mirror of
https://github.com/langgenius/dify.git
synced 2026-01-19 19:55:06 +08:00
Compare commits
179 Commits
feat/suppo
...
deploy/dev
| Author | SHA1 | Date | |
|---|---|---|---|
| 08caa4fce3 | |||
| 5293fbe8ba | |||
| ed555c5fe7 | |||
| 22974ea6b0 | |||
| 754b01366a | |||
| 8af626092e | |||
| 49b3bad26b | |||
| 50616c25d4 | |||
| 3b4b5b332c | |||
| 62c3f14570 | |||
| 41c3b1c57c | |||
| 994357d8b5 | |||
| 5fb9fe3c94 | |||
| 4fb08ae7d2 | |||
| 7481762acb | |||
| fcb2fe55e7 | |||
| a0aa8cdb45 | |||
| ae8618877b | |||
| 1c55602445 | |||
| a3f1220d23 | |||
| 4d7384731e | |||
| d62e16b9bb | |||
| 13f2a43ccc | |||
| 553dd3266b | |||
| 5b0590d58e | |||
| d97f2df85c | |||
| d3c09f16a9 | |||
| fde8efa4a2 | |||
| 5f6d1297b0 | |||
| 869e70964f | |||
| 1f313eb15c | |||
| f02adc26e5 | |||
| 73027eab0a | |||
| 74245fea8e | |||
| 5bc4bba668 | |||
| 1126a2aa95 | |||
| 2107a3c32c | |||
| 22d0c55363 | |||
| 7c3ce7b1e6 | |||
| f4d20a02aa | |||
| 7eb65b07c8 | |||
| 830a7fb034 | |||
| 9b7e807690 | |||
| af86f8de6f | |||
| ec78676949 | |||
| 01a7dbcee8 | |||
| 4fe8d2491e | |||
| 76da8b4ff3 | |||
| 25bfc1cc3b | |||
| 5c2ae922bc | |||
| a92df530da | |||
| 13eec13a14 | |||
| 431936beb9 | |||
| 163540bf4a | |||
| 221130b448 | |||
| b1eb265fa5 | |||
| c2a0950660 | |||
| bfe98009fd | |||
| ea1704d211 | |||
| 3ed0937734 | |||
| 1fcf6e4943 | |||
| f4a7efde3d | |||
| 38d4f0fd96 | |||
| ec4f885dad | |||
| 3781c2a025 | |||
| 3782f17dc7 | |||
| 29698aeed2 | |||
| 15ff8efb15 | |||
| 407e1c8276 | |||
| e368825c21 | |||
| 8dad6b6a6d | |||
| 2f54965a72 | |||
| a1a3fa0283 | |||
| ff7344f3d3 | |||
| bcd33be22a | |||
| 0fb339ca4f | |||
| c1871e67aa | |||
| f711f9a317 | |||
| 9ff3310cb6 | |||
| b6bdcc7052 | |||
| 67b0771081 | |||
| 9a07488da9 | |||
| ef043c6906 | |||
| ab814e3eac | |||
| a0e1eeb3f1 | |||
| b1ebeb67a7 | |||
| 082179f70f | |||
| 8786ebdbca | |||
| b49a4eab62 | |||
| 0a7b59f500 | |||
| c264d9152f | |||
| 3bf9d898c0 | |||
| a7f2849e74 | |||
| 0957ece92f | |||
| 949bf38d3c | |||
| 7bafb7f959 | |||
| 9735f55ca4 | |||
| 4c1f9b949b | |||
| 0af0c94dde | |||
| 8e4f0640cc | |||
| 1f513e3b43 | |||
| aa0841e2a8 | |||
| b6a1562357 | |||
| bee0797401 | |||
| e085f39c13 | |||
| 344844d3e0 | |||
| 6e9f82491d | |||
| 372b1c3db8 | |||
| 58d305dbed | |||
| 0360a0416b | |||
| 72282b6e8f | |||
| 8391884c4e | |||
| b018f2b0a0 | |||
| ab56b4a818 | |||
| 61ebc756aa | |||
| 4bea38042a | |||
| 337abc536b | |||
| cc02b78aca | |||
| 18f2d24f8e | |||
| 0c7b9a462f | |||
| 4dd5580854 | |||
| 440bd825d8 | |||
| d2379c38bd | |||
| cbc55c577b | |||
| 8e962d15d1 | |||
| b07c766551 | |||
| 9e3dd69277 | |||
| db9e5665c2 | |||
| cad77ce0bf | |||
| 6f4518ebf7 | |||
| a8f5748dee | |||
| 738d3001be | |||
| df4e32aaa0 | |||
| a25e37a96d | |||
| f156b46705 | |||
| 3b64e118d0 | |||
| 566cd20849 | |||
| df76527f29 | |||
| 53a80a5dbe | |||
| 1507792a0c | |||
| 00b9bbff75 | |||
| e1f8b4b387 | |||
| 1539d86f7d | |||
| 67bb14d3ee | |||
| 5653309080 | |||
| 0f52b34b61 | |||
| 75e35857c1 | |||
| 4f81be70e3 | |||
| 1d4d627d05 | |||
| 2357234f39 | |||
| a3f7d8f996 | |||
| 56f12e70c1 | |||
| b14afda160 | |||
| 44b4948972 | |||
| 487eac3b91 | |||
| 84b2913cd9 | |||
| 176d810c8d | |||
| 9e66564526 | |||
| 781a9a56cd | |||
| 93be1219eb | |||
| 3276d6429d | |||
| 50072a63ae | |||
| 1ab7e1cba8 | |||
| b0aef35c63 | |||
| ac351b700c | |||
| d1e5d30ea9 | |||
| c73e84d992 | |||
| 5f0bd5119a | |||
| 8353352bda | |||
| 73845cbec5 | |||
| c2f94e9e8a | |||
| e54efda36f | |||
| d4bd19f6d8 | |||
| 4decbbbf18 | |||
| b15867f92e | |||
| a5e5fbc6e0 | |||
| 1b1471b6d8 | |||
| 5280bffde2 | |||
| db0fc94b39 |
@ -716,13 +716,3 @@ SANDBOX_EXPIRED_RECORDS_CLEAN_GRACEFUL_PERIOD=21
|
||||
SANDBOX_EXPIRED_RECORDS_CLEAN_BATCH_SIZE=1000
|
||||
SANDBOX_EXPIRED_RECORDS_RETENTION_DAYS=30
|
||||
|
||||
# Sandbox Dify CLI configuration
|
||||
# Directory containing dify CLI binaries (dify-cli-<os>-<arch>). Defaults to api/bin when unset.
|
||||
SANDBOX_DIFY_CLI_ROOT=
|
||||
|
||||
# CLI API URL for sandbox (dify-sandbox or e2b) to call back to Dify API.
|
||||
# This URL must be accessible from the sandbox environment.
|
||||
# For local development: use http://localhost:5001 or http://127.0.0.1:5001
|
||||
# For Docker deployment: use http://api:5001 (internal Docker network)
|
||||
# For external sandbox (e.g., e2b): use a publicly accessible URL
|
||||
CLI_API_URL=http://localhost:5001
|
||||
|
||||
@ -71,8 +71,6 @@ def create_app() -> DifyApp:
|
||||
|
||||
|
||||
def initialize_extensions(app: DifyApp):
|
||||
# Initialize Flask context capture for workflow execution
|
||||
from context.flask_app_context import init_flask_context
|
||||
from extensions import (
|
||||
ext_app_metrics,
|
||||
ext_blueprints,
|
||||
@ -102,8 +100,6 @@ def initialize_extensions(app: DifyApp):
|
||||
ext_warnings,
|
||||
)
|
||||
|
||||
init_flask_context()
|
||||
|
||||
extensions = [
|
||||
ext_timezone,
|
||||
ext_logging,
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
102
api/commands.py
102
api/commands.py
@ -23,7 +23,7 @@ from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.index_processor.constant.built_in_field import BuiltInField
|
||||
from core.rag.models.document import Document
|
||||
from core.tools.utils.system_encryption import encrypt_system_params
|
||||
from core.tools.utils.system_oauth_encryption import encrypt_system_oauth_params
|
||||
from events.app_event import app_was_created
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
@ -862,27 +862,8 @@ def clear_free_plan_tenant_expired_logs(days: int, batch: int, tenant_ids: list[
|
||||
|
||||
|
||||
@click.command("clean-workflow-runs", help="Clean expired workflow runs and related data for free tenants.")
|
||||
@click.option(
|
||||
"--before-days",
|
||||
"--days",
|
||||
default=30,
|
||||
show_default=True,
|
||||
type=click.IntRange(min=0),
|
||||
help="Delete workflow runs created before N days ago.",
|
||||
)
|
||||
@click.option("--days", default=30, show_default=True, help="Delete workflow runs created before N days ago.")
|
||||
@click.option("--batch-size", default=200, show_default=True, help="Batch size for selecting workflow runs.")
|
||||
@click.option(
|
||||
"--from-days-ago",
|
||||
default=None,
|
||||
type=click.IntRange(min=0),
|
||||
help="Lower bound in days ago (older). Must be paired with --to-days-ago.",
|
||||
)
|
||||
@click.option(
|
||||
"--to-days-ago",
|
||||
default=None,
|
||||
type=click.IntRange(min=0),
|
||||
help="Upper bound in days ago (newer). Must be paired with --from-days-ago.",
|
||||
)
|
||||
@click.option(
|
||||
"--start-from",
|
||||
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
|
||||
@ -901,10 +882,8 @@ def clear_free_plan_tenant_expired_logs(days: int, batch: int, tenant_ids: list[
|
||||
help="Preview cleanup results without deleting any workflow run data.",
|
||||
)
|
||||
def clean_workflow_runs(
|
||||
before_days: int,
|
||||
days: int,
|
||||
batch_size: int,
|
||||
from_days_ago: int | None,
|
||||
to_days_ago: int | None,
|
||||
start_from: datetime.datetime | None,
|
||||
end_before: datetime.datetime | None,
|
||||
dry_run: bool,
|
||||
@ -915,24 +894,11 @@ def clean_workflow_runs(
|
||||
if (start_from is None) ^ (end_before is None):
|
||||
raise click.UsageError("--start-from and --end-before must be provided together.")
|
||||
|
||||
if (from_days_ago is None) ^ (to_days_ago is None):
|
||||
raise click.UsageError("--from-days-ago and --to-days-ago must be provided together.")
|
||||
|
||||
if from_days_ago is not None and to_days_ago is not None:
|
||||
if start_from or end_before:
|
||||
raise click.UsageError("Choose either day offsets or explicit dates, not both.")
|
||||
if from_days_ago <= to_days_ago:
|
||||
raise click.UsageError("--from-days-ago must be greater than --to-days-ago.")
|
||||
now = datetime.datetime.now()
|
||||
start_from = now - datetime.timedelta(days=from_days_ago)
|
||||
end_before = now - datetime.timedelta(days=to_days_ago)
|
||||
before_days = 0
|
||||
|
||||
start_time = datetime.datetime.now(datetime.UTC)
|
||||
click.echo(click.style(f"Starting workflow run cleanup at {start_time.isoformat()}.", fg="white"))
|
||||
|
||||
WorkflowRunCleanup(
|
||||
days=before_days,
|
||||
days=days,
|
||||
batch_size=batch_size,
|
||||
start_from=start_from,
|
||||
end_before=end_before,
|
||||
@ -1245,7 +1211,7 @@ def remove_orphaned_files_on_storage(force: bool):
|
||||
click.echo(click.style(f"- Scanning files on storage path {storage_path}", fg="white"))
|
||||
files = storage.scan(path=storage_path, files=True, directories=False)
|
||||
all_files_on_storage.extend(files)
|
||||
except FileNotFoundError:
|
||||
except FileNotFoundError as e:
|
||||
click.echo(click.style(f" -> Skipping path {storage_path} as it does not exist.", fg="yellow"))
|
||||
continue
|
||||
except Exception as e:
|
||||
@ -1493,60 +1459,6 @@ def file_usage(
|
||||
click.echo(click.style(f"Use --offset {offset + limit} to see next page", fg="white"))
|
||||
|
||||
|
||||
@click.command("setup-sandbox-system-config", help="Setup system-level sandbox provider configuration.")
|
||||
@click.option(
|
||||
"--provider-type", prompt=True, type=click.Choice(["e2b", "docker", "local"]), help="Sandbox provider type"
|
||||
)
|
||||
@click.option("--config", prompt=True, help='Configuration JSON (e.g., {"api_key": "xxx"} for e2b)')
|
||||
def setup_sandbox_system_config(provider_type: str, config: str):
|
||||
"""
|
||||
Setup system-level sandbox provider configuration.
|
||||
|
||||
Examples:
|
||||
flask setup-sandbox-system-config --provider-type e2b --config '{"api_key": "e2b_xxx"}'
|
||||
flask setup-sandbox-system-config --provider-type docker --config '{"docker_sock": "unix:///var/run/docker.sock"}'
|
||||
flask setup-sandbox-system-config --provider-type local --config '{}'
|
||||
"""
|
||||
from models.sandbox import SandboxProviderSystemConfig
|
||||
from services.sandbox.sandbox_provider_service import PROVIDER_CONFIG_MODELS
|
||||
|
||||
try:
|
||||
click.echo(click.style(f"Validating config: {config}", fg="yellow"))
|
||||
config_dict = TypeAdapter(dict[str, Any]).validate_json(config)
|
||||
click.echo(click.style("Config validated successfully.", fg="green"))
|
||||
|
||||
click.echo(click.style(f"Validating config schema for provider type: {provider_type}", fg="yellow"))
|
||||
model_class = PROVIDER_CONFIG_MODELS.get(provider_type)
|
||||
if model_class:
|
||||
model_class.model_validate(config_dict)
|
||||
click.echo(click.style("Config schema validated successfully.", fg="green"))
|
||||
|
||||
click.echo(click.style("Encrypting config...", fg="yellow"))
|
||||
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
|
||||
encrypted_config = encrypt_system_params(config_dict)
|
||||
click.echo(click.style("Config encrypted successfully.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f"Error validating/encrypting config: {str(e)}", fg="red"))
|
||||
return
|
||||
|
||||
deleted_count = db.session.query(SandboxProviderSystemConfig).filter_by(provider_type=provider_type).delete()
|
||||
if deleted_count > 0:
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Deleted {deleted_count} existing system config for provider type: {provider_type}", fg="yellow"
|
||||
)
|
||||
)
|
||||
|
||||
system_config = SandboxProviderSystemConfig(
|
||||
provider_type=provider_type,
|
||||
encrypted_config=encrypted_config,
|
||||
)
|
||||
db.session.add(system_config)
|
||||
db.session.commit()
|
||||
click.echo(click.style(f"Sandbox system config setup successfully. id: {system_config.id}", fg="green"))
|
||||
click.echo(click.style(f"Provider type: {provider_type}", fg="green"))
|
||||
|
||||
|
||||
@click.command("setup-system-tool-oauth-client", help="Setup system tool oauth client.")
|
||||
@click.option("--provider", prompt=True, help="Provider name")
|
||||
@click.option("--client-params", prompt=True, help="Client Params")
|
||||
@ -1566,7 +1478,7 @@ def setup_system_tool_oauth_client(provider, client_params):
|
||||
|
||||
click.echo(click.style(f"Encrypting client params: {client_params}", fg="yellow"))
|
||||
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
|
||||
oauth_client_params = encrypt_system_params(client_params_dict)
|
||||
oauth_client_params = encrypt_system_oauth_params(client_params_dict)
|
||||
click.echo(click.style("Client params encrypted successfully.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f"Error parsing client params: {str(e)}", fg="red"))
|
||||
@ -1615,7 +1527,7 @@ def setup_system_trigger_oauth_client(provider, client_params):
|
||||
|
||||
click.echo(click.style(f"Encrypting client params: {client_params}", fg="yellow"))
|
||||
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
|
||||
oauth_client_params = encrypt_system_params(client_params_dict)
|
||||
oauth_client_params = encrypt_system_oauth_params(client_params_dict)
|
||||
click.echo(click.style("Client params encrypted successfully.", fg="green"))
|
||||
except Exception as e:
|
||||
click.echo(click.style(f"Error parsing client params: {str(e)}", fg="red"))
|
||||
|
||||
@ -2,7 +2,6 @@ import logging
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from pydantic import Field
|
||||
from pydantic.fields import FieldInfo
|
||||
from pydantic_settings import BaseSettings, PydanticBaseSettingsSource, SettingsConfigDict, TomlConfigSettingsSource
|
||||
|
||||
@ -83,14 +82,6 @@ class DifyConfig(
|
||||
extra="ignore",
|
||||
)
|
||||
|
||||
SANDBOX_DIFY_CLI_ROOT: str | None = Field(
|
||||
default=None,
|
||||
description=(
|
||||
"Filesystem directory containing dify CLI binaries named dify-cli-<os>-<arch>. "
|
||||
"Defaults to api/bin when unset."
|
||||
),
|
||||
)
|
||||
|
||||
# Before adding any config,
|
||||
# please consider to arrange it in the proper config group of existed or added
|
||||
# for better readability and maintainability.
|
||||
|
||||
@ -244,17 +244,6 @@ class PluginConfig(BaseSettings):
|
||||
)
|
||||
|
||||
|
||||
class CliApiConfig(BaseSettings):
|
||||
"""
|
||||
Configuration for CLI API (for dify-cli to call back from external sandbox environments)
|
||||
"""
|
||||
|
||||
CLI_API_URL: str = Field(
|
||||
description="CLI API URL for external sandbox (e.g., e2b) to call back.",
|
||||
default="http://localhost:5001",
|
||||
)
|
||||
|
||||
|
||||
class MarketplaceConfig(BaseSettings):
|
||||
"""
|
||||
Configuration for marketplace
|
||||
@ -1320,7 +1309,6 @@ class FeatureConfig(
|
||||
TriggerConfig,
|
||||
AsyncWorkflowConfig,
|
||||
PluginConfig,
|
||||
CliApiConfig,
|
||||
MarketplaceConfig,
|
||||
DataSetConfig,
|
||||
EndpointConfig,
|
||||
|
||||
@ -1,74 +0,0 @@
|
||||
"""
|
||||
Core Context - Framework-agnostic context management.
|
||||
|
||||
This module provides context management that is independent of any specific
|
||||
web framework. Framework-specific implementations register their context
|
||||
capture functions at application initialization time.
|
||||
|
||||
This ensures the workflow layer remains completely decoupled from Flask
|
||||
or any other web framework.
|
||||
"""
|
||||
|
||||
import contextvars
|
||||
from collections.abc import Callable
|
||||
|
||||
from core.workflow.context.execution_context import (
|
||||
ExecutionContext,
|
||||
IExecutionContext,
|
||||
NullAppContext,
|
||||
)
|
||||
|
||||
# Global capturer function - set by framework-specific modules
|
||||
_capturer: Callable[[], IExecutionContext] | None = None
|
||||
|
||||
|
||||
def register_context_capturer(capturer: Callable[[], IExecutionContext]) -> None:
|
||||
"""
|
||||
Register a context capture function.
|
||||
|
||||
This should be called by framework-specific modules (e.g., Flask)
|
||||
during application initialization.
|
||||
|
||||
Args:
|
||||
capturer: Function that captures current context and returns IExecutionContext
|
||||
"""
|
||||
global _capturer
|
||||
_capturer = capturer
|
||||
|
||||
|
||||
def capture_current_context() -> IExecutionContext:
|
||||
"""
|
||||
Capture current execution context.
|
||||
|
||||
This function uses the registered context capturer. If no capturer
|
||||
is registered, it returns a minimal context with only contextvars
|
||||
(suitable for non-framework environments like tests or standalone scripts).
|
||||
|
||||
Returns:
|
||||
IExecutionContext with captured context
|
||||
"""
|
||||
if _capturer is None:
|
||||
# No framework registered - return minimal context
|
||||
return ExecutionContext(
|
||||
app_context=NullAppContext(),
|
||||
context_vars=contextvars.copy_context(),
|
||||
)
|
||||
|
||||
return _capturer()
|
||||
|
||||
|
||||
def reset_context_provider() -> None:
|
||||
"""
|
||||
Reset the context capturer.
|
||||
|
||||
This is primarily useful for testing to ensure a clean state.
|
||||
"""
|
||||
global _capturer
|
||||
_capturer = None
|
||||
|
||||
|
||||
__all__ = [
|
||||
"capture_current_context",
|
||||
"register_context_capturer",
|
||||
"reset_context_provider",
|
||||
]
|
||||
@ -1,198 +0,0 @@
|
||||
"""
|
||||
Flask App Context - Flask implementation of AppContext interface.
|
||||
"""
|
||||
|
||||
import contextvars
|
||||
from collections.abc import Generator
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, final
|
||||
|
||||
from flask import Flask, current_app, g
|
||||
|
||||
from context import register_context_capturer
|
||||
from core.workflow.context.execution_context import (
|
||||
AppContext,
|
||||
IExecutionContext,
|
||||
)
|
||||
|
||||
|
||||
@final
|
||||
class FlaskAppContext(AppContext):
|
||||
"""
|
||||
Flask implementation of AppContext.
|
||||
|
||||
This adapts Flask's app context to the AppContext interface.
|
||||
"""
|
||||
|
||||
def __init__(self, flask_app: Flask) -> None:
|
||||
"""
|
||||
Initialize Flask app context.
|
||||
|
||||
Args:
|
||||
flask_app: The Flask application instance
|
||||
"""
|
||||
self._flask_app = flask_app
|
||||
|
||||
def get_config(self, key: str, default: Any = None) -> Any:
|
||||
"""Get configuration value from Flask app config."""
|
||||
return self._flask_app.config.get(key, default)
|
||||
|
||||
def get_extension(self, name: str) -> Any:
|
||||
"""Get Flask extension by name."""
|
||||
return self._flask_app.extensions.get(name)
|
||||
|
||||
@contextmanager
|
||||
def enter(self) -> Generator[None, None, None]:
|
||||
"""Enter Flask app context."""
|
||||
with self._flask_app.app_context():
|
||||
yield
|
||||
|
||||
@property
|
||||
def flask_app(self) -> Flask:
|
||||
"""Get the underlying Flask app instance."""
|
||||
return self._flask_app
|
||||
|
||||
|
||||
def capture_flask_context(user: Any = None) -> IExecutionContext:
|
||||
"""
|
||||
Capture current Flask execution context.
|
||||
|
||||
This function captures the Flask app context and contextvars from the
|
||||
current environment. It should be called from within a Flask request or
|
||||
app context.
|
||||
|
||||
Args:
|
||||
user: Optional user object to include in context
|
||||
|
||||
Returns:
|
||||
IExecutionContext with captured Flask context
|
||||
|
||||
Raises:
|
||||
RuntimeError: If called outside Flask context
|
||||
"""
|
||||
# Get Flask app instance
|
||||
flask_app = current_app._get_current_object() # type: ignore
|
||||
|
||||
# Save current user if available
|
||||
saved_user = user
|
||||
if saved_user is None:
|
||||
# Check for user in g (flask-login)
|
||||
if hasattr(g, "_login_user"):
|
||||
saved_user = g._login_user
|
||||
|
||||
# Capture contextvars
|
||||
context_vars = contextvars.copy_context()
|
||||
|
||||
return FlaskExecutionContext(
|
||||
flask_app=flask_app,
|
||||
context_vars=context_vars,
|
||||
user=saved_user,
|
||||
)
|
||||
|
||||
|
||||
@final
|
||||
class FlaskExecutionContext:
|
||||
"""
|
||||
Flask-specific execution context.
|
||||
|
||||
This is a specialized version of ExecutionContext that includes Flask app
|
||||
context. It provides the same interface as ExecutionContext but with
|
||||
Flask-specific implementation.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
context_vars: contextvars.Context,
|
||||
user: Any = None,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize Flask execution context.
|
||||
|
||||
Args:
|
||||
flask_app: Flask application instance
|
||||
context_vars: Python contextvars
|
||||
user: Optional user object
|
||||
"""
|
||||
self._app_context = FlaskAppContext(flask_app)
|
||||
self._context_vars = context_vars
|
||||
self._user = user
|
||||
self._flask_app = flask_app
|
||||
|
||||
@property
|
||||
def app_context(self) -> FlaskAppContext:
|
||||
"""Get Flask app context."""
|
||||
return self._app_context
|
||||
|
||||
@property
|
||||
def context_vars(self) -> contextvars.Context:
|
||||
"""Get context variables."""
|
||||
return self._context_vars
|
||||
|
||||
@property
|
||||
def user(self) -> Any:
|
||||
"""Get user object."""
|
||||
return self._user
|
||||
|
||||
def __enter__(self) -> "FlaskExecutionContext":
|
||||
"""Enter the Flask execution context."""
|
||||
# Restore context variables
|
||||
for var, val in self._context_vars.items():
|
||||
var.set(val)
|
||||
|
||||
# Save current user from g if available
|
||||
saved_user = None
|
||||
if hasattr(g, "_login_user"):
|
||||
saved_user = g._login_user
|
||||
|
||||
# Enter Flask app context
|
||||
self._cm = self._app_context.enter()
|
||||
self._cm.__enter__()
|
||||
|
||||
# Restore user in new app context
|
||||
if saved_user is not None:
|
||||
g._login_user = saved_user
|
||||
|
||||
return self
|
||||
|
||||
def __exit__(self, *args: Any) -> None:
|
||||
"""Exit the Flask execution context."""
|
||||
if hasattr(self, "_cm"):
|
||||
self._cm.__exit__(*args)
|
||||
|
||||
@contextmanager
|
||||
def enter(self) -> Generator[None, None, None]:
|
||||
"""Enter Flask execution context as context manager."""
|
||||
# Restore context variables
|
||||
for var, val in self._context_vars.items():
|
||||
var.set(val)
|
||||
|
||||
# Save current user from g if available
|
||||
saved_user = None
|
||||
if hasattr(g, "_login_user"):
|
||||
saved_user = g._login_user
|
||||
|
||||
# Enter Flask app context
|
||||
with self._flask_app.app_context():
|
||||
# Restore user in new app context
|
||||
if saved_user is not None:
|
||||
g._login_user = saved_user
|
||||
yield
|
||||
|
||||
|
||||
def init_flask_context() -> None:
|
||||
"""
|
||||
Initialize Flask context capture by registering the capturer.
|
||||
|
||||
This function should be called during Flask application initialization
|
||||
to register the Flask-specific context capturer with the core context module.
|
||||
|
||||
Example:
|
||||
app = Flask(__name__)
|
||||
init_flask_context() # Register Flask context capturer
|
||||
|
||||
Note:
|
||||
This function does not need the app instance as it uses Flask's
|
||||
`current_app` to get the app when capturing context.
|
||||
"""
|
||||
register_context_capturer(capture_flask_context)
|
||||
@ -1,27 +0,0 @@
|
||||
from flask import Blueprint
|
||||
from flask_restx import Namespace
|
||||
|
||||
from libs.external_api import ExternalApi
|
||||
|
||||
bp = Blueprint("cli_api", __name__, url_prefix="/cli/api")
|
||||
|
||||
api = ExternalApi(
|
||||
bp,
|
||||
version="1.0",
|
||||
title="CLI API",
|
||||
description="APIs for Dify CLI to call back from external sandbox environments (e.g., e2b)",
|
||||
)
|
||||
|
||||
# Create namespace
|
||||
cli_api_ns = Namespace("cli_api", description="CLI API operations", path="/")
|
||||
|
||||
from .plugin import plugin as _plugin
|
||||
|
||||
api.add_namespace(cli_api_ns)
|
||||
|
||||
__all__ = [
|
||||
"_plugin",
|
||||
"api",
|
||||
"bp",
|
||||
"cli_api_ns",
|
||||
]
|
||||
@ -1,137 +0,0 @@
|
||||
from flask_restx import Resource
|
||||
|
||||
from controllers.cli_api import cli_api_ns
|
||||
from controllers.cli_api.plugin.wraps import get_user_tenant, plugin_data
|
||||
from controllers.cli_api.wraps import cli_api_only
|
||||
from controllers.console.wraps import setup_required
|
||||
from core.file.helpers import get_signed_file_url_for_plugin
|
||||
from core.plugin.backwards_invocation.app import PluginAppBackwardsInvocation
|
||||
from core.plugin.backwards_invocation.base import BaseBackwardsInvocationResponse
|
||||
from core.plugin.backwards_invocation.model import PluginModelBackwardsInvocation
|
||||
from core.plugin.backwards_invocation.tool import PluginToolBackwardsInvocation
|
||||
from core.plugin.entities.request import (
|
||||
RequestInvokeApp,
|
||||
RequestInvokeLLM,
|
||||
RequestInvokeTool,
|
||||
RequestRequestUploadFile,
|
||||
)
|
||||
from core.tools.entities.tool_entities import ToolProviderType
|
||||
from libs.helper import length_prefixed_response
|
||||
from models import Account, Tenant
|
||||
from models.model import EndUser
|
||||
|
||||
|
||||
@cli_api_ns.route("/invoke/llm")
|
||||
class CliInvokeLLMApi(Resource):
|
||||
@get_user_tenant
|
||||
@setup_required
|
||||
@cli_api_only
|
||||
@plugin_data(payload_type=RequestInvokeLLM)
|
||||
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestInvokeLLM):
|
||||
def generator():
|
||||
response = PluginModelBackwardsInvocation.invoke_llm(user_model.id, tenant_model, payload)
|
||||
return PluginModelBackwardsInvocation.convert_to_event_stream(response)
|
||||
|
||||
return length_prefixed_response(0xF, generator())
|
||||
|
||||
|
||||
@cli_api_ns.route("/invoke/tool")
|
||||
class CliInvokeToolApi(Resource):
|
||||
@get_user_tenant
|
||||
@setup_required
|
||||
@cli_api_only
|
||||
@plugin_data(payload_type=RequestInvokeTool)
|
||||
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestInvokeTool):
|
||||
def generator():
|
||||
return PluginToolBackwardsInvocation.convert_to_event_stream(
|
||||
PluginToolBackwardsInvocation.invoke_tool(
|
||||
tenant_id=tenant_model.id,
|
||||
user_id=user_model.id,
|
||||
tool_type=ToolProviderType.value_of(payload.tool_type),
|
||||
provider=payload.provider,
|
||||
tool_name=payload.tool,
|
||||
tool_parameters=payload.tool_parameters,
|
||||
credential_id=payload.credential_id,
|
||||
),
|
||||
)
|
||||
|
||||
return length_prefixed_response(0xF, generator())
|
||||
|
||||
|
||||
@cli_api_ns.route("/invoke/app")
|
||||
class CliInvokeAppApi(Resource):
|
||||
@get_user_tenant
|
||||
@setup_required
|
||||
@cli_api_only
|
||||
@plugin_data(payload_type=RequestInvokeApp)
|
||||
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestInvokeApp):
|
||||
response = PluginAppBackwardsInvocation.invoke_app(
|
||||
app_id=payload.app_id,
|
||||
user_id=user_model.id,
|
||||
tenant_id=tenant_model.id,
|
||||
conversation_id=payload.conversation_id,
|
||||
query=payload.query,
|
||||
stream=payload.response_mode == "streaming",
|
||||
inputs=payload.inputs,
|
||||
files=payload.files,
|
||||
)
|
||||
|
||||
return length_prefixed_response(0xF, PluginAppBackwardsInvocation.convert_to_event_stream(response))
|
||||
|
||||
|
||||
@cli_api_ns.route("/upload/file/request")
|
||||
class CliUploadFileRequestApi(Resource):
|
||||
@get_user_tenant
|
||||
@setup_required
|
||||
@cli_api_only
|
||||
@plugin_data(payload_type=RequestRequestUploadFile)
|
||||
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestRequestUploadFile):
|
||||
# generate signed url
|
||||
url = get_signed_file_url_for_plugin(
|
||||
filename=payload.filename,
|
||||
mimetype=payload.mimetype,
|
||||
tenant_id=tenant_model.id,
|
||||
user_id=user_model.id,
|
||||
)
|
||||
return BaseBackwardsInvocationResponse(data={"url": url}).model_dump()
|
||||
|
||||
|
||||
@cli_api_ns.route("/fetch/tools/list")
|
||||
class CliFetchToolsListApi(Resource):
|
||||
@get_user_tenant
|
||||
@setup_required
|
||||
@cli_api_only
|
||||
def post(self, user_model: Account | EndUser, tenant_model: Tenant):
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from extensions.ext_database import db
|
||||
from services.tools.api_tools_manage_service import ApiToolManageService
|
||||
from services.tools.builtin_tools_manage_service import BuiltinToolManageService
|
||||
from services.tools.mcp_tools_manage_service import MCPToolManageService
|
||||
from services.tools.workflow_tools_manage_service import WorkflowToolManageService
|
||||
|
||||
providers = []
|
||||
|
||||
# Get builtin tools
|
||||
builtin_providers = BuiltinToolManageService.list_builtin_tools(user_model.id, tenant_model.id)
|
||||
for provider in builtin_providers:
|
||||
providers.append(provider.to_dict())
|
||||
|
||||
# Get API tools
|
||||
api_providers = ApiToolManageService.list_api_tools(tenant_model.id)
|
||||
for provider in api_providers:
|
||||
providers.append(provider.to_dict())
|
||||
|
||||
# Get workflow tools
|
||||
workflow_providers = WorkflowToolManageService.list_tenant_workflow_tools(user_model.id, tenant_model.id)
|
||||
for provider in workflow_providers:
|
||||
providers.append(provider.to_dict())
|
||||
|
||||
# Get MCP tools
|
||||
with Session(db.engine) as session:
|
||||
mcp_service = MCPToolManageService(session)
|
||||
mcp_providers = mcp_service.list_providers(tenant_id=tenant_model.id, for_list=True)
|
||||
for provider in mcp_providers:
|
||||
providers.append(provider.to_dict())
|
||||
|
||||
return BaseBackwardsInvocationResponse(data={"providers": providers}).model_dump()
|
||||
@ -1,145 +0,0 @@
|
||||
from collections.abc import Callable
|
||||
from functools import wraps
|
||||
from typing import ParamSpec, TypeVar
|
||||
|
||||
from flask import current_app, request
|
||||
from flask_login import user_logged_in
|
||||
from pydantic import BaseModel
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.session.cli_api import CliApiSession, CliApiSessionManager
|
||||
from extensions.ext_database import db
|
||||
from libs.login import current_user
|
||||
from models.account import Tenant
|
||||
from models.model import DefaultEndUserSessionID, EndUser
|
||||
|
||||
P = ParamSpec("P")
|
||||
R = TypeVar("R")
|
||||
|
||||
|
||||
class TenantUserPayload(BaseModel):
|
||||
tenant_id: str
|
||||
user_id: str
|
||||
|
||||
|
||||
def get_user(tenant_id: str, user_id: str | None) -> EndUser:
|
||||
"""
|
||||
Get current user
|
||||
|
||||
NOTE: user_id is not trusted, it could be maliciously set to any value.
|
||||
As a result, it could only be considered as an end user id.
|
||||
"""
|
||||
if not user_id:
|
||||
user_id = DefaultEndUserSessionID.DEFAULT_SESSION_ID
|
||||
is_anonymous = user_id == DefaultEndUserSessionID.DEFAULT_SESSION_ID
|
||||
try:
|
||||
with Session(db.engine) as session:
|
||||
user_model = None
|
||||
|
||||
if is_anonymous:
|
||||
user_model = (
|
||||
session.query(EndUser)
|
||||
.where(
|
||||
EndUser.session_id == user_id,
|
||||
EndUser.tenant_id == tenant_id,
|
||||
)
|
||||
.first()
|
||||
)
|
||||
else:
|
||||
user_model = (
|
||||
session.query(EndUser)
|
||||
.where(
|
||||
EndUser.id == user_id,
|
||||
EndUser.tenant_id == tenant_id,
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
if not user_model:
|
||||
user_model = EndUser(
|
||||
tenant_id=tenant_id,
|
||||
type="service_api",
|
||||
is_anonymous=is_anonymous,
|
||||
session_id=user_id,
|
||||
)
|
||||
session.add(user_model)
|
||||
session.commit()
|
||||
session.refresh(user_model)
|
||||
|
||||
except Exception:
|
||||
raise ValueError("user not found")
|
||||
|
||||
return user_model
|
||||
|
||||
|
||||
def get_user_tenant(view_func: Callable[P, R]):
|
||||
@wraps(view_func)
|
||||
def decorated_view(*args: P.args, **kwargs: P.kwargs):
|
||||
session_id = request.headers.get("X-Cli-Api-Session-Id")
|
||||
|
||||
if session_id:
|
||||
session: CliApiSession | None = CliApiSessionManager().get(session_id)
|
||||
if not session:
|
||||
raise ValueError("session not found")
|
||||
user_id = session.user_id
|
||||
tenant_id = session.tenant_id
|
||||
else:
|
||||
payload = TenantUserPayload.model_validate(request.get_json(silent=True) or {})
|
||||
user_id = payload.user_id
|
||||
tenant_id = payload.tenant_id
|
||||
|
||||
if not tenant_id:
|
||||
raise ValueError("tenant_id is required")
|
||||
|
||||
if not user_id:
|
||||
user_id = DefaultEndUserSessionID.DEFAULT_SESSION_ID
|
||||
|
||||
try:
|
||||
tenant_model = (
|
||||
db.session.query(Tenant)
|
||||
.where(
|
||||
Tenant.id == tenant_id,
|
||||
)
|
||||
.first()
|
||||
)
|
||||
except Exception:
|
||||
raise ValueError("tenant not found")
|
||||
|
||||
if not tenant_model:
|
||||
raise ValueError("tenant not found")
|
||||
|
||||
kwargs["tenant_model"] = tenant_model
|
||||
|
||||
user = get_user(tenant_id, user_id)
|
||||
kwargs["user_model"] = user
|
||||
|
||||
current_app.login_manager._update_request_context_with_user(user) # type: ignore
|
||||
user_logged_in.send(current_app._get_current_object(), user=current_user) # type: ignore
|
||||
|
||||
return view_func(*args, **kwargs)
|
||||
|
||||
return decorated_view
|
||||
|
||||
|
||||
def plugin_data(view: Callable[P, R] | None = None, *, payload_type: type[BaseModel]):
|
||||
def decorator(view_func: Callable[P, R]):
|
||||
def decorated_view(*args: P.args, **kwargs: P.kwargs):
|
||||
try:
|
||||
data = request.get_json()
|
||||
except Exception:
|
||||
raise ValueError("invalid json")
|
||||
|
||||
try:
|
||||
payload = payload_type.model_validate(data)
|
||||
except Exception as e:
|
||||
raise ValueError(f"invalid payload: {str(e)}")
|
||||
|
||||
kwargs["payload"] = payload
|
||||
return view_func(*args, **kwargs)
|
||||
|
||||
return decorated_view
|
||||
|
||||
if view is None:
|
||||
return decorator
|
||||
else:
|
||||
return decorator(view)
|
||||
@ -1,54 +0,0 @@
|
||||
import hashlib
|
||||
import hmac
|
||||
import time
|
||||
from collections.abc import Callable
|
||||
from functools import wraps
|
||||
from typing import ParamSpec, TypeVar
|
||||
|
||||
from flask import abort, request
|
||||
|
||||
from core.session.cli_api import CliApiSessionManager
|
||||
|
||||
P = ParamSpec("P")
|
||||
R = TypeVar("R")
|
||||
|
||||
SIGNATURE_TTL_SECONDS = 300
|
||||
|
||||
|
||||
def _verify_signature(session_secret: str, timestamp: str, body: bytes, signature: str) -> bool:
|
||||
expected = hmac.new(
|
||||
session_secret.encode(),
|
||||
f"{timestamp}.".encode() + body,
|
||||
hashlib.sha256,
|
||||
).hexdigest()
|
||||
return hmac.compare_digest(f"sha256={expected}", signature)
|
||||
|
||||
|
||||
def cli_api_only(view: Callable[P, R]):
|
||||
@wraps(view)
|
||||
def decorated(*args: P.args, **kwargs: P.kwargs):
|
||||
session_id = request.headers.get("X-Cli-Api-Session-Id")
|
||||
timestamp = request.headers.get("X-Cli-Api-Timestamp")
|
||||
signature = request.headers.get("X-Cli-Api-Signature")
|
||||
|
||||
if not session_id or not timestamp or not signature:
|
||||
abort(401)
|
||||
|
||||
try:
|
||||
ts = int(timestamp)
|
||||
if abs(time.time() - ts) > SIGNATURE_TTL_SECONDS:
|
||||
abort(401)
|
||||
except ValueError:
|
||||
abort(401)
|
||||
|
||||
session = CliApiSessionManager().get(session_id)
|
||||
if not session:
|
||||
abort(401)
|
||||
|
||||
body = request.get_data()
|
||||
if not _verify_signature(session.secret, timestamp, body, signature):
|
||||
abort(401)
|
||||
|
||||
return view(*args, **kwargs)
|
||||
|
||||
return decorated
|
||||
@ -50,7 +50,6 @@ from .app import (
|
||||
agent,
|
||||
annotation,
|
||||
app,
|
||||
app_asset,
|
||||
audio,
|
||||
completion,
|
||||
conversation,
|
||||
@ -127,7 +126,6 @@ from .workspace import (
|
||||
model_providers,
|
||||
models,
|
||||
plugin,
|
||||
sandbox_providers,
|
||||
tool_providers,
|
||||
trigger_providers,
|
||||
workspace,
|
||||
@ -146,7 +144,6 @@ __all__ = [
|
||||
"api",
|
||||
"apikey",
|
||||
"app",
|
||||
"app_asset",
|
||||
"audio",
|
||||
"billing",
|
||||
"bp",
|
||||
@ -194,7 +191,6 @@ __all__ = [
|
||||
"rag_pipeline_import",
|
||||
"rag_pipeline_workflow",
|
||||
"recommended_app",
|
||||
"sandbox_providers",
|
||||
"saved_message",
|
||||
"setup",
|
||||
"site",
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
import re
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from typing import Any, Literal, TypeAlias
|
||||
@ -67,6 +68,48 @@ class AppListQuery(BaseModel):
|
||||
raise ValueError("Invalid UUID format in tag_ids.") from exc
|
||||
|
||||
|
||||
# XSS prevention: patterns that could lead to XSS attacks
|
||||
# Includes: script tags, iframe tags, javascript: protocol, SVG with onload, etc.
|
||||
_XSS_PATTERNS = [
|
||||
r"<script[^>]*>.*?</script>", # Script tags
|
||||
r"<iframe\b[^>]*?(?:/>|>.*?</iframe>)", # Iframe tags (including self-closing)
|
||||
r"javascript:", # JavaScript protocol
|
||||
r"<svg[^>]*?\s+onload\s*=[^>]*>", # SVG with onload handler (attribute-aware, flexible whitespace)
|
||||
r"<.*?on\s*\w+\s*=", # Event handlers like onclick, onerror, etc.
|
||||
r"<object\b[^>]*(?:\s*/>|>.*?</object\s*>)", # Object tags (opening tag)
|
||||
r"<embed[^>]*>", # Embed tags (self-closing)
|
||||
r"<link[^>]*>", # Link tags with javascript
|
||||
]
|
||||
|
||||
|
||||
def _validate_xss_safe(value: str | None, field_name: str = "Field") -> str | None:
|
||||
"""
|
||||
Validate that a string value doesn't contain potential XSS payloads.
|
||||
|
||||
Args:
|
||||
value: The string value to validate
|
||||
field_name: Name of the field for error messages
|
||||
|
||||
Returns:
|
||||
The original value if safe
|
||||
|
||||
Raises:
|
||||
ValueError: If the value contains XSS patterns
|
||||
"""
|
||||
if value is None:
|
||||
return None
|
||||
|
||||
value_lower = value.lower()
|
||||
for pattern in _XSS_PATTERNS:
|
||||
if re.search(pattern, value_lower, re.DOTALL | re.IGNORECASE):
|
||||
raise ValueError(
|
||||
f"{field_name} contains invalid characters or patterns. "
|
||||
"HTML tags, JavaScript, and other potentially dangerous content are not allowed."
|
||||
)
|
||||
|
||||
return value
|
||||
|
||||
|
||||
class CreateAppPayload(BaseModel):
|
||||
name: str = Field(..., min_length=1, description="App name")
|
||||
description: str | None = Field(default=None, description="App description (max 400 chars)", max_length=400)
|
||||
@ -75,6 +118,11 @@ class CreateAppPayload(BaseModel):
|
||||
icon: str | None = Field(default=None, description="Icon")
|
||||
icon_background: str | None = Field(default=None, description="Icon background color")
|
||||
|
||||
@field_validator("name", "description", mode="before")
|
||||
@classmethod
|
||||
def validate_xss_safe(cls, value: str | None, info) -> str | None:
|
||||
return _validate_xss_safe(value, info.field_name)
|
||||
|
||||
|
||||
class UpdateAppPayload(BaseModel):
|
||||
name: str = Field(..., min_length=1, description="App name")
|
||||
@ -85,6 +133,11 @@ class UpdateAppPayload(BaseModel):
|
||||
use_icon_as_answer_icon: bool | None = Field(default=None, description="Use icon as answer icon")
|
||||
max_active_requests: int | None = Field(default=None, description="Maximum active requests")
|
||||
|
||||
@field_validator("name", "description", mode="before")
|
||||
@classmethod
|
||||
def validate_xss_safe(cls, value: str | None, info) -> str | None:
|
||||
return _validate_xss_safe(value, info.field_name)
|
||||
|
||||
|
||||
class CopyAppPayload(BaseModel):
|
||||
name: str | None = Field(default=None, description="Name for the copied app")
|
||||
@ -93,6 +146,11 @@ class CopyAppPayload(BaseModel):
|
||||
icon: str | None = Field(default=None, description="Icon")
|
||||
icon_background: str | None = Field(default=None, description="Icon background color")
|
||||
|
||||
@field_validator("name", "description", mode="before")
|
||||
@classmethod
|
||||
def validate_xss_safe(cls, value: str | None, info) -> str | None:
|
||||
return _validate_xss_safe(value, info.field_name)
|
||||
|
||||
|
||||
class AppExportQuery(BaseModel):
|
||||
include_secret: bool = Field(default=False, description="Include secrets in export")
|
||||
|
||||
@ -1,274 +0,0 @@
|
||||
from flask import request
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from controllers.console import console_ns
|
||||
from controllers.console.app.error import (
|
||||
AppAssetFileRequiredError,
|
||||
AppAssetNodeNotFoundError,
|
||||
AppAssetPathConflictError,
|
||||
)
|
||||
from controllers.console.app.wraps import get_app_model
|
||||
from controllers.console.wraps import account_initialization_required, setup_required
|
||||
from libs.login import current_account_with_tenant, login_required
|
||||
from models import App
|
||||
from models.model import AppMode
|
||||
from services.app_asset_service import AppAssetService
|
||||
from services.errors.app_asset import (
|
||||
AppAssetNodeNotFoundError as ServiceNodeNotFoundError,
|
||||
)
|
||||
from services.errors.app_asset import (
|
||||
AppAssetParentNotFoundError,
|
||||
)
|
||||
from services.errors.app_asset import (
|
||||
AppAssetPathConflictError as ServicePathConflictError,
|
||||
)
|
||||
|
||||
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
|
||||
|
||||
|
||||
class CreateFolderPayload(BaseModel):
|
||||
name: str = Field(..., min_length=1, max_length=255)
|
||||
parent_id: str | None = None
|
||||
|
||||
|
||||
class CreateFilePayload(BaseModel):
|
||||
name: str = Field(..., min_length=1, max_length=255)
|
||||
parent_id: str | None = None
|
||||
|
||||
@field_validator("name", mode="before")
|
||||
@classmethod
|
||||
def strip_name(cls, v: str) -> str:
|
||||
return v.strip() if isinstance(v, str) else v
|
||||
|
||||
@field_validator("parent_id", mode="before")
|
||||
@classmethod
|
||||
def empty_to_none(cls, v: str | None) -> str | None:
|
||||
return v or None
|
||||
|
||||
|
||||
class UpdateFileContentPayload(BaseModel):
|
||||
content: str
|
||||
|
||||
|
||||
class RenameNodePayload(BaseModel):
|
||||
name: str = Field(..., min_length=1, max_length=255)
|
||||
|
||||
|
||||
class MoveNodePayload(BaseModel):
|
||||
parent_id: str | None = None
|
||||
|
||||
|
||||
class ReorderNodePayload(BaseModel):
|
||||
after_node_id: str | None = Field(default=None, description="Place after this node, None for first position")
|
||||
|
||||
|
||||
def reg(cls: type[BaseModel]) -> None:
|
||||
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
|
||||
|
||||
|
||||
reg(CreateFolderPayload)
|
||||
reg(CreateFilePayload)
|
||||
reg(UpdateFileContentPayload)
|
||||
reg(RenameNodePayload)
|
||||
reg(MoveNodePayload)
|
||||
reg(ReorderNodePayload)
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/tree")
|
||||
class AppAssetTreeResource(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def get(self, app_model: App):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
tree = AppAssetService.get_asset_tree(app_model, current_user.id)
|
||||
return {"children": [view.model_dump() for view in tree.transform()]}
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/folders")
|
||||
class AppAssetFolderResource(Resource):
|
||||
@console_ns.expect(console_ns.models[CreateFolderPayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def post(self, app_model: App):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
payload = CreateFolderPayload.model_validate(console_ns.payload or {})
|
||||
|
||||
try:
|
||||
node = AppAssetService.create_folder(app_model, current_user.id, payload.name, payload.parent_id)
|
||||
return node.model_dump(), 201
|
||||
except AppAssetParentNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
except ServicePathConflictError:
|
||||
raise AppAssetPathConflictError()
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/files")
|
||||
class AppAssetFileResource(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def post(self, app_model: App):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
|
||||
file = request.files.get("file")
|
||||
if not file:
|
||||
raise AppAssetFileRequiredError()
|
||||
|
||||
payload = CreateFilePayload.model_validate(request.form.to_dict())
|
||||
content = file.read()
|
||||
|
||||
try:
|
||||
node = AppAssetService.create_file(app_model, current_user.id, payload.name, content, payload.parent_id)
|
||||
return node.model_dump(), 201
|
||||
except AppAssetParentNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
except ServicePathConflictError:
|
||||
raise AppAssetPathConflictError()
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/files/<string:node_id>")
|
||||
class AppAssetFileDetailResource(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def get(self, app_model: App, node_id: str):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
try:
|
||||
content = AppAssetService.get_file_content(app_model, current_user.id, node_id)
|
||||
return {"content": content.decode("utf-8", errors="replace")}
|
||||
except ServiceNodeNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
|
||||
@console_ns.expect(console_ns.models[UpdateFileContentPayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def put(self, app_model: App, node_id: str):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
|
||||
file = request.files.get("file")
|
||||
if file:
|
||||
content = file.read()
|
||||
else:
|
||||
payload = UpdateFileContentPayload.model_validate(console_ns.payload or {})
|
||||
content = payload.content.encode("utf-8")
|
||||
|
||||
try:
|
||||
node = AppAssetService.update_file_content(app_model, current_user.id, node_id, content)
|
||||
return node.model_dump()
|
||||
except ServiceNodeNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>")
|
||||
class AppAssetNodeResource(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def delete(self, app_model: App, node_id: str):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
try:
|
||||
AppAssetService.delete_node(app_model, current_user.id, node_id)
|
||||
return {"result": "success"}, 200
|
||||
except ServiceNodeNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/rename")
|
||||
class AppAssetNodeRenameResource(Resource):
|
||||
@console_ns.expect(console_ns.models[RenameNodePayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def post(self, app_model: App, node_id: str):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
payload = RenameNodePayload.model_validate(console_ns.payload or {})
|
||||
|
||||
try:
|
||||
node = AppAssetService.rename_node(app_model, current_user.id, node_id, payload.name)
|
||||
return node.model_dump()
|
||||
except ServiceNodeNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
except ServicePathConflictError:
|
||||
raise AppAssetPathConflictError()
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/move")
|
||||
class AppAssetNodeMoveResource(Resource):
|
||||
@console_ns.expect(console_ns.models[MoveNodePayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def post(self, app_model: App, node_id: str):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
payload = MoveNodePayload.model_validate(console_ns.payload or {})
|
||||
|
||||
try:
|
||||
node = AppAssetService.move_node(app_model, current_user.id, node_id, payload.parent_id)
|
||||
return node.model_dump()
|
||||
except ServiceNodeNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
except AppAssetParentNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
except ServicePathConflictError:
|
||||
raise AppAssetPathConflictError()
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/reorder")
|
||||
class AppAssetNodeReorderResource(Resource):
|
||||
@console_ns.expect(console_ns.models[ReorderNodePayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def post(self, app_model: App, node_id: str):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
payload = ReorderNodePayload.model_validate(console_ns.payload or {})
|
||||
|
||||
try:
|
||||
node = AppAssetService.reorder_node(app_model, current_user.id, node_id, payload.after_node_id)
|
||||
return node.model_dump()
|
||||
except ServiceNodeNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/publish")
|
||||
class AppAssetPublishResource(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def post(self, app_model: App):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
published = AppAssetService.publish(app_model, current_user.id)
|
||||
return {
|
||||
"id": published.id,
|
||||
"version": published.version,
|
||||
"asset_tree": published.asset_tree.model_dump(),
|
||||
}, 201
|
||||
|
||||
|
||||
@console_ns.route("/apps/<string:app_id>/assets/files/<string:node_id>/download-url")
|
||||
class AppAssetFileDownloadUrlResource(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
|
||||
def get(self, app_model: App, node_id: str):
|
||||
current_user, _ = current_account_with_tenant()
|
||||
try:
|
||||
download_url = AppAssetService.get_file_download_url(app_model, current_user.id, node_id)
|
||||
return {"download_url": download_url}
|
||||
except ServiceNodeNotFoundError:
|
||||
raise AppAssetNodeNotFoundError()
|
||||
@ -110,24 +110,8 @@ class TracingConfigCheckError(BaseHTTPException):
|
||||
|
||||
|
||||
class InvokeRateLimitError(BaseHTTPException):
|
||||
"""Raised when the Invoke returns rate limit error."""
|
||||
|
||||
error_code = "rate_limit_error"
|
||||
description = "Rate Limit Error"
|
||||
code = 429
|
||||
|
||||
|
||||
class AppAssetNodeNotFoundError(BaseHTTPException):
|
||||
error_code = "app_asset_node_not_found"
|
||||
description = "App asset node not found."
|
||||
code = 404
|
||||
|
||||
|
||||
class AppAssetFileRequiredError(BaseHTTPException):
|
||||
error_code = "app_asset_file_required"
|
||||
description = "File is required."
|
||||
code = 400
|
||||
|
||||
|
||||
class AppAssetPathConflictError(BaseHTTPException):
|
||||
error_code = "app_asset_path_conflict"
|
||||
description = "Path already exists."
|
||||
code = 409
|
||||
|
||||
@ -202,7 +202,6 @@ message_detail_model = console_ns.model(
|
||||
"status": fields.String,
|
||||
"error": fields.String,
|
||||
"parent_message_id": fields.String,
|
||||
"generation_detail": fields.Raw,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@ -69,13 +69,6 @@ class ActivateCheckApi(Resource):
|
||||
if invitation:
|
||||
data = invitation.get("data", {})
|
||||
tenant = invitation.get("tenant", None)
|
||||
|
||||
# Check workspace permission
|
||||
if tenant:
|
||||
from libs.workspace_permission import check_workspace_member_invite_permission
|
||||
|
||||
check_workspace_member_invite_permission(tenant.id)
|
||||
|
||||
workspace_name = tenant.name if tenant else None
|
||||
workspace_id = tenant.id if tenant else None
|
||||
invitee_email = data.get("email") if data else None
|
||||
|
||||
@ -146,6 +146,7 @@ class DatasetUpdatePayload(BaseModel):
|
||||
embedding_model: str | None = None
|
||||
embedding_model_provider: str | None = None
|
||||
retrieval_model: dict[str, Any] | None = None
|
||||
summary_index_setting: dict[str, Any] | None = None
|
||||
partial_member_list: list[dict[str, str]] | None = None
|
||||
external_retrieval_model: dict[str, Any] | None = None
|
||||
external_knowledge_id: str | None = None
|
||||
|
||||
@ -39,9 +39,10 @@ from fields.document_fields import (
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from libs.login import current_account_with_tenant, login_required
|
||||
from models import DatasetProcessRule, Document, DocumentSegment, UploadFile
|
||||
from models.dataset import DocumentPipelineExecutionLog
|
||||
from models.dataset import DocumentPipelineExecutionLog, DocumentSegmentSummary
|
||||
from services.dataset_service import DatasetService, DocumentService
|
||||
from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig, ProcessRule, RetrievalModel
|
||||
from tasks.generate_summary_index_task import generate_summary_index_task
|
||||
|
||||
from ..app.error import (
|
||||
ProviderModelCurrentlyNotSupportError,
|
||||
@ -104,6 +105,10 @@ class DocumentRenamePayload(BaseModel):
|
||||
name: str
|
||||
|
||||
|
||||
class GenerateSummaryPayload(BaseModel):
|
||||
document_list: list[str]
|
||||
|
||||
|
||||
class DocumentDatasetListParam(BaseModel):
|
||||
page: int = Field(1, title="Page", description="Page number.")
|
||||
limit: int = Field(20, title="Limit", description="Page size.")
|
||||
@ -120,6 +125,7 @@ register_schema_models(
|
||||
RetrievalModel,
|
||||
DocumentRetryPayload,
|
||||
DocumentRenamePayload,
|
||||
GenerateSummaryPayload,
|
||||
)
|
||||
|
||||
|
||||
@ -306,6 +312,94 @@ class DatasetDocumentListApi(Resource):
|
||||
|
||||
paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
|
||||
documents = paginated_documents.items
|
||||
|
||||
# Check if dataset has summary index enabled
|
||||
has_summary_index = dataset.summary_index_setting and dataset.summary_index_setting.get("enable") is True
|
||||
|
||||
# Filter documents that need summary calculation
|
||||
documents_need_summary = [doc for doc in documents if doc.need_summary is True]
|
||||
document_ids_need_summary = [str(doc.id) for doc in documents_need_summary]
|
||||
|
||||
# Calculate summary_index_status for documents that need summary (only if dataset summary index is enabled)
|
||||
summary_status_map = {}
|
||||
if has_summary_index and document_ids_need_summary:
|
||||
# Get all segments for these documents (excluding qa_model and re_segment)
|
||||
segments = (
|
||||
db.session.query(DocumentSegment.id, DocumentSegment.document_id)
|
||||
.where(
|
||||
DocumentSegment.document_id.in_(document_ids_need_summary),
|
||||
DocumentSegment.status != "re_segment",
|
||||
DocumentSegment.tenant_id == current_tenant_id,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
# Group segments by document_id
|
||||
document_segments_map = {}
|
||||
for segment in segments:
|
||||
doc_id = str(segment.document_id)
|
||||
if doc_id not in document_segments_map:
|
||||
document_segments_map[doc_id] = []
|
||||
document_segments_map[doc_id].append(segment.id)
|
||||
|
||||
# Get all summary records for these segments
|
||||
all_segment_ids = [seg.id for seg in segments]
|
||||
summaries = {}
|
||||
if all_segment_ids:
|
||||
summary_records = (
|
||||
db.session.query(DocumentSegmentSummary)
|
||||
.where(
|
||||
DocumentSegmentSummary.chunk_id.in_(all_segment_ids),
|
||||
DocumentSegmentSummary.dataset_id == dataset_id,
|
||||
DocumentSegmentSummary.enabled == True, # Only count enabled summaries
|
||||
)
|
||||
.all()
|
||||
)
|
||||
summaries = {summary.chunk_id: summary.status for summary in summary_records}
|
||||
|
||||
# Calculate summary_index_status for each document
|
||||
for doc_id in document_ids_need_summary:
|
||||
segment_ids = document_segments_map.get(doc_id, [])
|
||||
if not segment_ids:
|
||||
# No segments, status is "GENERATING" (waiting to generate)
|
||||
summary_status_map[doc_id] = "GENERATING"
|
||||
continue
|
||||
|
||||
# Count summary statuses for this document's segments
|
||||
status_counts = {"completed": 0, "generating": 0, "error": 0, "not_started": 0}
|
||||
for segment_id in segment_ids:
|
||||
status = summaries.get(segment_id, "not_started")
|
||||
if status in status_counts:
|
||||
status_counts[status] += 1
|
||||
else:
|
||||
status_counts["not_started"] += 1
|
||||
|
||||
total_segments = len(segment_ids)
|
||||
completed_count = status_counts["completed"]
|
||||
generating_count = status_counts["generating"]
|
||||
error_count = status_counts["error"]
|
||||
|
||||
# Determine overall status (only three states: GENERATING, COMPLETED, ERROR)
|
||||
if completed_count == total_segments:
|
||||
summary_status_map[doc_id] = "COMPLETED"
|
||||
elif error_count > 0:
|
||||
# Has errors (even if some are completed or generating)
|
||||
summary_status_map[doc_id] = "ERROR"
|
||||
elif generating_count > 0 or status_counts["not_started"] > 0:
|
||||
# Still generating or not started
|
||||
summary_status_map[doc_id] = "GENERATING"
|
||||
else:
|
||||
# Default to generating
|
||||
summary_status_map[doc_id] = "GENERATING"
|
||||
|
||||
# Add summary_index_status to each document
|
||||
for document in documents:
|
||||
if has_summary_index and document.need_summary is True:
|
||||
document.summary_index_status = summary_status_map.get(str(document.id), "GENERATING")
|
||||
else:
|
||||
# Return null if summary index is not enabled or document doesn't need summary
|
||||
document.summary_index_status = None
|
||||
|
||||
if fetch:
|
||||
for document in documents:
|
||||
completed_segments = (
|
||||
@ -791,6 +885,7 @@ class DocumentApi(DocumentResource):
|
||||
"display_status": document.display_status,
|
||||
"doc_form": document.doc_form,
|
||||
"doc_language": document.doc_language,
|
||||
"need_summary": document.need_summary if document.need_summary is not None else False,
|
||||
}
|
||||
else:
|
||||
dataset_process_rules = DatasetService.get_process_rules(dataset_id)
|
||||
@ -826,6 +921,7 @@ class DocumentApi(DocumentResource):
|
||||
"display_status": document.display_status,
|
||||
"doc_form": document.doc_form,
|
||||
"doc_language": document.doc_language,
|
||||
"need_summary": document.need_summary if document.need_summary is not None else False,
|
||||
}
|
||||
|
||||
return response, 200
|
||||
@ -1193,3 +1289,216 @@ class DocumentPipelineExecutionLogApi(DocumentResource):
|
||||
"input_data": log.input_data,
|
||||
"datasource_node_id": log.datasource_node_id,
|
||||
}, 200
|
||||
|
||||
|
||||
@console_ns.route("/datasets/<uuid:dataset_id>/documents/generate-summary")
|
||||
class DocumentGenerateSummaryApi(Resource):
|
||||
@console_ns.doc("generate_summary_for_documents")
|
||||
@console_ns.doc(description="Generate summary index for documents")
|
||||
@console_ns.doc(params={"dataset_id": "Dataset ID"})
|
||||
@console_ns.expect(console_ns.models[GenerateSummaryPayload.__name__])
|
||||
@console_ns.response(200, "Summary generation started successfully")
|
||||
@console_ns.response(400, "Invalid request or dataset configuration")
|
||||
@console_ns.response(403, "Permission denied")
|
||||
@console_ns.response(404, "Dataset not found")
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@cloud_edition_billing_rate_limit_check("knowledge")
|
||||
def post(self, dataset_id):
|
||||
"""
|
||||
Generate summary index for specified documents.
|
||||
|
||||
This endpoint checks if the dataset configuration supports summary generation
|
||||
(indexing_technique must be 'high_quality' and summary_index_setting.enable must be true),
|
||||
then asynchronously generates summary indexes for the provided documents.
|
||||
"""
|
||||
current_user, _ = current_account_with_tenant()
|
||||
dataset_id = str(dataset_id)
|
||||
|
||||
# Get dataset
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
|
||||
# Check permissions
|
||||
if not current_user.is_dataset_editor:
|
||||
raise Forbidden()
|
||||
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
|
||||
# Validate request payload
|
||||
payload = GenerateSummaryPayload.model_validate(console_ns.payload or {})
|
||||
document_list = payload.document_list
|
||||
|
||||
if not document_list:
|
||||
raise ValueError("document_list cannot be empty.")
|
||||
|
||||
# Check if dataset configuration supports summary generation
|
||||
if dataset.indexing_technique != "high_quality":
|
||||
raise ValueError(
|
||||
f"Summary generation is only available for 'high_quality' indexing technique. "
|
||||
f"Current indexing technique: {dataset.indexing_technique}"
|
||||
)
|
||||
|
||||
summary_index_setting = dataset.summary_index_setting
|
||||
if not summary_index_setting or not summary_index_setting.get("enable"):
|
||||
raise ValueError("Summary index is not enabled for this dataset. Please enable it in the dataset settings.")
|
||||
|
||||
# Verify all documents exist and belong to the dataset
|
||||
documents = (
|
||||
db.session.query(Document)
|
||||
.filter(
|
||||
Document.id.in_(document_list),
|
||||
Document.dataset_id == dataset_id,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
if len(documents) != len(document_list):
|
||||
found_ids = {doc.id for doc in documents}
|
||||
missing_ids = set(document_list) - found_ids
|
||||
raise NotFound(f"Some documents not found: {list(missing_ids)}")
|
||||
|
||||
# Dispatch async tasks for each document
|
||||
for document in documents:
|
||||
# Skip qa_model documents as they don't generate summaries
|
||||
if document.doc_form == "qa_model":
|
||||
logger.info("Skipping summary generation for qa_model document %s", document.id)
|
||||
continue
|
||||
|
||||
# Dispatch async task
|
||||
generate_summary_index_task(dataset_id, document.id)
|
||||
logger.info(
|
||||
"Dispatched summary generation task for document %s in dataset %s",
|
||||
document.id,
|
||||
dataset_id,
|
||||
)
|
||||
|
||||
return {"result": "success"}, 200
|
||||
|
||||
|
||||
@console_ns.route("/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/summary-status")
|
||||
class DocumentSummaryStatusApi(DocumentResource):
|
||||
@console_ns.doc("get_document_summary_status")
|
||||
@console_ns.doc(description="Get summary index generation status for a document")
|
||||
@console_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
|
||||
@console_ns.response(200, "Summary status retrieved successfully")
|
||||
@console_ns.response(404, "Document not found")
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, dataset_id, document_id):
|
||||
"""
|
||||
Get summary index generation status for a document.
|
||||
|
||||
Returns:
|
||||
- total_segments: Total number of segments in the document
|
||||
- summary_status: Dictionary with status counts
|
||||
- completed: Number of summaries completed
|
||||
- generating: Number of summaries being generated
|
||||
- error: Number of summaries with errors
|
||||
- not_started: Number of segments without summary records
|
||||
- summaries: List of summary records with status and content preview
|
||||
"""
|
||||
current_user, _ = current_account_with_tenant()
|
||||
dataset_id = str(dataset_id)
|
||||
document_id = str(document_id)
|
||||
|
||||
# Get document
|
||||
document = self.get_document(dataset_id, document_id)
|
||||
|
||||
# Get dataset
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
|
||||
# Check permissions
|
||||
try:
|
||||
DatasetService.check_dataset_permission(dataset, current_user)
|
||||
except services.errors.account.NoPermissionError as e:
|
||||
raise Forbidden(str(e))
|
||||
|
||||
# Get all segments for this document
|
||||
segments = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.document_id == document_id,
|
||||
DocumentSegment.dataset_id == dataset_id,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.enabled == True,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
total_segments = len(segments)
|
||||
|
||||
# Get all summary records for these segments
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
summaries = []
|
||||
if segment_ids:
|
||||
summaries = (
|
||||
db.session.query(DocumentSegmentSummary)
|
||||
.filter(
|
||||
DocumentSegmentSummary.document_id == document_id,
|
||||
DocumentSegmentSummary.dataset_id == dataset_id,
|
||||
DocumentSegmentSummary.chunk_id.in_(segment_ids),
|
||||
DocumentSegmentSummary.enabled == True, # Only return enabled summaries
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
# Create a mapping of chunk_id to summary
|
||||
summary_map = {summary.chunk_id: summary for summary in summaries}
|
||||
|
||||
# Count statuses
|
||||
status_counts = {
|
||||
"completed": 0,
|
||||
"generating": 0,
|
||||
"error": 0,
|
||||
"not_started": 0,
|
||||
}
|
||||
|
||||
summary_list = []
|
||||
for segment in segments:
|
||||
summary = summary_map.get(segment.id)
|
||||
if summary:
|
||||
status = summary.status
|
||||
status_counts[status] = status_counts.get(status, 0) + 1
|
||||
summary_list.append(
|
||||
{
|
||||
"segment_id": segment.id,
|
||||
"segment_position": segment.position,
|
||||
"status": summary.status,
|
||||
"summary_preview": (
|
||||
summary.summary_content[:100] + "..."
|
||||
if summary.summary_content and len(summary.summary_content) > 100
|
||||
else summary.summary_content
|
||||
),
|
||||
"error": summary.error,
|
||||
"created_at": int(summary.created_at.timestamp()) if summary.created_at else None,
|
||||
"updated_at": int(summary.updated_at.timestamp()) if summary.updated_at else None,
|
||||
}
|
||||
)
|
||||
else:
|
||||
status_counts["not_started"] += 1
|
||||
summary_list.append(
|
||||
{
|
||||
"segment_id": segment.id,
|
||||
"segment_position": segment.position,
|
||||
"status": "not_started",
|
||||
"summary_preview": None,
|
||||
"error": None,
|
||||
"created_at": None,
|
||||
"updated_at": None,
|
||||
}
|
||||
)
|
||||
|
||||
return {
|
||||
"total_segments": total_segments,
|
||||
"summary_status": status_counts,
|
||||
"summaries": summary_list,
|
||||
}, 200
|
||||
|
||||
@ -32,7 +32,7 @@ from extensions.ext_redis import redis_client
|
||||
from fields.segment_fields import child_chunk_fields, segment_fields
|
||||
from libs.helper import escape_like_pattern
|
||||
from libs.login import current_account_with_tenant, login_required
|
||||
from models.dataset import ChildChunk, DocumentSegment
|
||||
from models.dataset import ChildChunk, DocumentSegment, DocumentSegmentSummary
|
||||
from models.model import UploadFile
|
||||
from services.dataset_service import DatasetService, DocumentService, SegmentService
|
||||
from services.entities.knowledge_entities.knowledge_entities import ChildChunkUpdateArgs, SegmentUpdateArgs
|
||||
@ -41,6 +41,23 @@ from services.errors.chunk import ChildChunkIndexingError as ChildChunkIndexingS
|
||||
from tasks.batch_create_segment_to_index_task import batch_create_segment_to_index_task
|
||||
|
||||
|
||||
def _get_segment_with_summary(segment, dataset_id):
|
||||
"""Helper function to marshal segment and add summary information."""
|
||||
segment_dict = marshal(segment, segment_fields)
|
||||
# Query summary for this segment (only enabled summaries)
|
||||
summary = (
|
||||
db.session.query(DocumentSegmentSummary)
|
||||
.where(
|
||||
DocumentSegmentSummary.chunk_id == segment.id,
|
||||
DocumentSegmentSummary.dataset_id == dataset_id,
|
||||
DocumentSegmentSummary.enabled == True, # Only return enabled summaries
|
||||
)
|
||||
.first()
|
||||
)
|
||||
segment_dict["summary"] = summary.summary_content if summary else None
|
||||
return segment_dict
|
||||
|
||||
|
||||
class SegmentListQuery(BaseModel):
|
||||
limit: int = Field(default=20, ge=1, le=100)
|
||||
status: list[str] = Field(default_factory=list)
|
||||
@ -63,6 +80,7 @@ class SegmentUpdatePayload(BaseModel):
|
||||
keywords: list[str] | None = None
|
||||
regenerate_child_chunks: bool = False
|
||||
attachment_ids: list[str] | None = None
|
||||
summary: str | None = None # Summary content for summary index
|
||||
|
||||
|
||||
class BatchImportPayload(BaseModel):
|
||||
@ -180,8 +198,32 @@ class DatasetDocumentSegmentListApi(Resource):
|
||||
|
||||
segments = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
|
||||
|
||||
# Query summaries for all segments in this page (batch query for efficiency)
|
||||
segment_ids = [segment.id for segment in segments.items]
|
||||
summaries = {}
|
||||
if segment_ids:
|
||||
summary_records = (
|
||||
db.session.query(DocumentSegmentSummary)
|
||||
.where(
|
||||
DocumentSegmentSummary.chunk_id.in_(segment_ids),
|
||||
DocumentSegmentSummary.dataset_id == dataset_id,
|
||||
)
|
||||
.all()
|
||||
)
|
||||
# Only include enabled summaries
|
||||
summaries = {
|
||||
summary.chunk_id: summary.summary_content for summary in summary_records if summary.enabled is True
|
||||
}
|
||||
|
||||
# Add summary to each segment
|
||||
segments_with_summary = []
|
||||
for segment in segments.items:
|
||||
segment_dict = marshal(segment, segment_fields)
|
||||
segment_dict["summary"] = summaries.get(segment.id)
|
||||
segments_with_summary.append(segment_dict)
|
||||
|
||||
response = {
|
||||
"data": marshal(segments.items, segment_fields),
|
||||
"data": segments_with_summary,
|
||||
"limit": limit,
|
||||
"total": segments.total,
|
||||
"total_pages": segments.pages,
|
||||
@ -327,7 +369,7 @@ class DatasetDocumentSegmentAddApi(Resource):
|
||||
payload_dict = payload.model_dump(exclude_none=True)
|
||||
SegmentService.segment_create_args_validate(payload_dict, document)
|
||||
segment = SegmentService.create_segment(payload_dict, document, dataset)
|
||||
return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
|
||||
return {"data": _get_segment_with_summary(segment, dataset_id), "doc_form": document.doc_form}, 200
|
||||
|
||||
|
||||
@console_ns.route("/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>")
|
||||
@ -389,10 +431,12 @@ class DatasetDocumentSegmentUpdateApi(Resource):
|
||||
payload = SegmentUpdatePayload.model_validate(console_ns.payload or {})
|
||||
payload_dict = payload.model_dump(exclude_none=True)
|
||||
SegmentService.segment_create_args_validate(payload_dict, document)
|
||||
|
||||
# Update segment (summary update with change detection is handled in SegmentService.update_segment)
|
||||
segment = SegmentService.update_segment(
|
||||
SegmentUpdateArgs.model_validate(payload.model_dump(exclude_none=True)), segment, document, dataset
|
||||
)
|
||||
return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
|
||||
return {"data": _get_segment_with_summary(segment, dataset_id), "doc_form": document.doc_form}, 200
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
|
||||
@ -1,6 +1,13 @@
|
||||
from flask_restx import Resource
|
||||
from flask_restx import Resource, fields
|
||||
|
||||
from controllers.common.schema import register_schema_model
|
||||
from fields.hit_testing_fields import (
|
||||
child_chunk_fields,
|
||||
document_fields,
|
||||
files_fields,
|
||||
hit_testing_record_fields,
|
||||
segment_fields,
|
||||
)
|
||||
from libs.login import login_required
|
||||
|
||||
from .. import console_ns
|
||||
@ -14,13 +21,45 @@ from ..wraps import (
|
||||
register_schema_model(console_ns, HitTestingPayload)
|
||||
|
||||
|
||||
def _get_or_create_model(model_name: str, field_def):
|
||||
"""Get or create a flask_restx model to avoid dict type issues in Swagger."""
|
||||
existing = console_ns.models.get(model_name)
|
||||
if existing is None:
|
||||
existing = console_ns.model(model_name, field_def)
|
||||
return existing
|
||||
|
||||
|
||||
# Register models for flask_restx to avoid dict type issues in Swagger
|
||||
document_model = _get_or_create_model("HitTestingDocument", document_fields)
|
||||
|
||||
segment_fields_copy = segment_fields.copy()
|
||||
segment_fields_copy["document"] = fields.Nested(document_model)
|
||||
segment_model = _get_or_create_model("HitTestingSegment", segment_fields_copy)
|
||||
|
||||
child_chunk_model = _get_or_create_model("HitTestingChildChunk", child_chunk_fields)
|
||||
files_model = _get_or_create_model("HitTestingFile", files_fields)
|
||||
|
||||
hit_testing_record_fields_copy = hit_testing_record_fields.copy()
|
||||
hit_testing_record_fields_copy["segment"] = fields.Nested(segment_model)
|
||||
hit_testing_record_fields_copy["child_chunks"] = fields.List(fields.Nested(child_chunk_model))
|
||||
hit_testing_record_fields_copy["files"] = fields.List(fields.Nested(files_model))
|
||||
hit_testing_record_model = _get_or_create_model("HitTestingRecord", hit_testing_record_fields_copy)
|
||||
|
||||
# Response model for hit testing API
|
||||
hit_testing_response_fields = {
|
||||
"query": fields.String,
|
||||
"records": fields.List(fields.Nested(hit_testing_record_model)),
|
||||
}
|
||||
hit_testing_response_model = _get_or_create_model("HitTestingResponse", hit_testing_response_fields)
|
||||
|
||||
|
||||
@console_ns.route("/datasets/<uuid:dataset_id>/hit-testing")
|
||||
class HitTestingApi(Resource, DatasetsHitTestingBase):
|
||||
@console_ns.doc("test_dataset_retrieval")
|
||||
@console_ns.doc(description="Test dataset knowledge retrieval")
|
||||
@console_ns.doc(params={"dataset_id": "Dataset ID"})
|
||||
@console_ns.expect(console_ns.models[HitTestingPayload.__name__])
|
||||
@console_ns.response(200, "Hit testing completed successfully")
|
||||
@console_ns.response(200, "Hit testing completed successfully", model=hit_testing_response_model)
|
||||
@console_ns.response(404, "Dataset not found")
|
||||
@console_ns.response(400, "Invalid parameters")
|
||||
@setup_required
|
||||
|
||||
@ -1,65 +0,0 @@
|
||||
import json
|
||||
|
||||
import httpx
|
||||
import yaml
|
||||
from flask_restx import Resource, reqparse
|
||||
from sqlalchemy.orm import Session
|
||||
from werkzeug.exceptions import Forbidden
|
||||
|
||||
from controllers.console import console_ns
|
||||
from controllers.console.wraps import account_initialization_required, setup_required
|
||||
from core.plugin.impl.exc import PluginPermissionDeniedError
|
||||
from extensions.ext_database import db
|
||||
from libs.login import current_account_with_tenant, login_required
|
||||
from models.model import App
|
||||
from models.workflow import Workflow
|
||||
from services.app_dsl_service import AppDslService
|
||||
|
||||
|
||||
@console_ns.route("/workspaces/current/dsl/predict")
|
||||
class DSLPredictApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self):
|
||||
user, _ = current_account_with_tenant()
|
||||
if not user.is_admin_or_owner:
|
||||
raise Forbidden()
|
||||
|
||||
parser = (
|
||||
reqparse.RequestParser()
|
||||
.add_argument("app_id", type=str, required=True, location="json")
|
||||
.add_argument("current_node_id", type=str, required=True, location="json")
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
app_id: str = args["app_id"]
|
||||
current_node_id: str = args["current_node_id"]
|
||||
|
||||
with Session(db.engine) as session:
|
||||
app = session.query(App).filter_by(id=app_id).first()
|
||||
workflow = session.query(Workflow).filter_by(app_id=app_id, version=Workflow.VERSION_DRAFT).first()
|
||||
|
||||
if not app:
|
||||
raise ValueError("App not found")
|
||||
if not workflow:
|
||||
raise ValueError("Workflow not found")
|
||||
|
||||
try:
|
||||
i = 0
|
||||
for node_id, _ in workflow.walk_nodes():
|
||||
if node_id == current_node_id:
|
||||
break
|
||||
i += 1
|
||||
|
||||
dsl = yaml.safe_load(AppDslService.export_dsl(app_model=app))
|
||||
|
||||
response = httpx.post(
|
||||
"http://spark-832c:8000/predict",
|
||||
json={"graph_data": dsl, "source_node_index": i},
|
||||
)
|
||||
return {
|
||||
"nodes": json.loads(response.json()),
|
||||
}
|
||||
except PluginPermissionDeniedError as e:
|
||||
raise ValueError(e.description) from e
|
||||
@ -107,12 +107,6 @@ class MemberInviteEmailApi(Resource):
|
||||
inviter = current_user
|
||||
if not inviter.current_tenant:
|
||||
raise ValueError("No current tenant")
|
||||
|
||||
# Check workspace permission for member invitations
|
||||
from libs.workspace_permission import check_workspace_member_invite_permission
|
||||
|
||||
check_workspace_member_invite_permission(inviter.current_tenant.id)
|
||||
|
||||
invitation_results = []
|
||||
console_web_url = dify_config.CONSOLE_WEB_URL
|
||||
|
||||
|
||||
@ -1,95 +0,0 @@
|
||||
import logging
|
||||
|
||||
from flask_restx import Resource, fields, reqparse
|
||||
|
||||
from controllers.console import console_ns
|
||||
from controllers.console.wraps import account_initialization_required, setup_required
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from libs.login import current_account_with_tenant, login_required
|
||||
from services.sandbox.sandbox_provider_service import SandboxProviderService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@console_ns.route("/workspaces/current/sandbox-providers")
|
||||
class SandboxProviderListApi(Resource):
|
||||
@console_ns.doc("list_sandbox_providers")
|
||||
@console_ns.doc(description="Get list of available sandbox providers with configuration status")
|
||||
@console_ns.response(200, "Success", fields.List(fields.Raw(description="Sandbox provider information")))
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
providers = SandboxProviderService.list_providers(current_tenant_id)
|
||||
return jsonable_encoder([p.model_dump() for p in providers])
|
||||
|
||||
|
||||
config_parser = reqparse.RequestParser()
|
||||
config_parser.add_argument("config", type=dict, required=True, location="json")
|
||||
|
||||
|
||||
@console_ns.route("/workspaces/current/sandbox-provider/<string:provider_type>/config")
|
||||
class SandboxProviderConfigApi(Resource):
|
||||
@console_ns.doc("save_sandbox_provider_config")
|
||||
@console_ns.doc(description="Save or update configuration for a sandbox provider")
|
||||
@console_ns.expect(config_parser)
|
||||
@console_ns.response(200, "Success")
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider_type: str):
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
args = config_parser.parse_args()
|
||||
|
||||
try:
|
||||
result = SandboxProviderService.save_config(
|
||||
tenant_id=current_tenant_id,
|
||||
provider_type=provider_type,
|
||||
config=args["config"],
|
||||
)
|
||||
return result
|
||||
except ValueError as e:
|
||||
return {"message": str(e)}, 400
|
||||
|
||||
@console_ns.doc("delete_sandbox_provider_config")
|
||||
@console_ns.doc(description="Delete configuration for a sandbox provider")
|
||||
@console_ns.response(200, "Success")
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def delete(self, provider_type: str):
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
try:
|
||||
result = SandboxProviderService.delete_config(
|
||||
tenant_id=current_tenant_id,
|
||||
provider_type=provider_type,
|
||||
)
|
||||
return result
|
||||
except ValueError as e:
|
||||
return {"message": str(e)}, 400
|
||||
|
||||
|
||||
@console_ns.route("/workspaces/current/sandbox-provider/<string:provider_type>/activate")
|
||||
class SandboxProviderActivateApi(Resource):
|
||||
"""Activate a sandbox provider."""
|
||||
|
||||
@console_ns.doc("activate_sandbox_provider")
|
||||
@console_ns.doc(description="Activate a sandbox provider for the current workspace")
|
||||
@console_ns.response(200, "Success")
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def post(self, provider_type: str):
|
||||
"""Activate a sandbox provider."""
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
try:
|
||||
result = SandboxProviderService.activate_provider(
|
||||
tenant_id=current_tenant_id,
|
||||
provider_type=provider_type,
|
||||
)
|
||||
return result
|
||||
except ValueError as e:
|
||||
return {"message": str(e)}, 400
|
||||
@ -20,7 +20,6 @@ from controllers.console.error import AccountNotLinkTenantError
|
||||
from controllers.console.wraps import (
|
||||
account_initialization_required,
|
||||
cloud_edition_billing_resource_check,
|
||||
only_edition_enterprise,
|
||||
setup_required,
|
||||
)
|
||||
from enums.cloud_plan import CloudPlan
|
||||
@ -29,7 +28,6 @@ from libs.helper import TimestampField
|
||||
from libs.login import current_account_with_tenant, login_required
|
||||
from models.account import Tenant, TenantStatus
|
||||
from services.account_service import TenantService
|
||||
from services.enterprise.enterprise_service import EnterpriseService
|
||||
from services.feature_service import FeatureService
|
||||
from services.file_service import FileService
|
||||
from services.workspace_service import WorkspaceService
|
||||
@ -290,31 +288,3 @@ class WorkspaceInfoApi(Resource):
|
||||
db.session.commit()
|
||||
|
||||
return {"result": "success", "tenant": marshal(WorkspaceService.get_tenant_info(tenant), tenant_fields)}
|
||||
|
||||
|
||||
@console_ns.route("/workspaces/current/permission")
|
||||
class WorkspacePermissionApi(Resource):
|
||||
"""Get workspace permissions for the current workspace."""
|
||||
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@only_edition_enterprise
|
||||
def get(self):
|
||||
"""
|
||||
Get workspace permission settings.
|
||||
Returns permission flags that control workspace features like member invitations and owner transfer.
|
||||
"""
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
if not current_tenant_id:
|
||||
raise ValueError("No current tenant")
|
||||
|
||||
# Get workspace permissions from enterprise service
|
||||
permission = EnterpriseService.WorkspacePermissionService.get_permission(current_tenant_id)
|
||||
|
||||
return {
|
||||
"workspace_id": permission.workspace_id,
|
||||
"allow_member_invite": permission.allow_member_invite,
|
||||
"allow_owner_transfer": permission.allow_owner_transfer,
|
||||
}, 200
|
||||
|
||||
@ -286,12 +286,13 @@ def enable_change_email(view: Callable[P, R]):
|
||||
def is_allow_transfer_owner(view: Callable[P, R]):
|
||||
@wraps(view)
|
||||
def decorated(*args: P.args, **kwargs: P.kwargs):
|
||||
from libs.workspace_permission import check_workspace_owner_transfer_permission
|
||||
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
# Check both billing/plan level and workspace policy level permissions
|
||||
check_workspace_owner_transfer_permission(current_tenant_id)
|
||||
return view(*args, **kwargs)
|
||||
features = FeatureService.get_features(current_tenant_id)
|
||||
if features.is_allow_transfer_workspace:
|
||||
return view(*args, **kwargs)
|
||||
|
||||
# otherwise, return 403
|
||||
abort(403)
|
||||
|
||||
return decorated
|
||||
|
||||
|
||||
@ -14,7 +14,7 @@ api = ExternalApi(
|
||||
|
||||
files_ns = Namespace("files", description="File operations", path="/")
|
||||
|
||||
from . import image_preview, storage_download, tool_files, upload
|
||||
from . import image_preview, tool_files, upload
|
||||
|
||||
api.add_namespace(files_ns)
|
||||
|
||||
@ -23,7 +23,6 @@ __all__ = [
|
||||
"bp",
|
||||
"files_ns",
|
||||
"image_preview",
|
||||
"storage_download",
|
||||
"tool_files",
|
||||
"upload",
|
||||
]
|
||||
|
||||
@ -1,56 +0,0 @@
|
||||
from urllib.parse import quote, unquote
|
||||
|
||||
from flask import Response, request
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, Field
|
||||
from werkzeug.exceptions import Forbidden, NotFound
|
||||
|
||||
from controllers.files import files_ns
|
||||
from extensions.ext_storage import storage
|
||||
from extensions.storage.file_presign_storage import FilePresignStorage
|
||||
|
||||
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
|
||||
|
||||
|
||||
class StorageDownloadQuery(BaseModel):
|
||||
timestamp: str = Field(..., description="Unix timestamp used in the signature")
|
||||
nonce: str = Field(..., description="Random string for signature")
|
||||
sign: str = Field(..., description="HMAC signature")
|
||||
|
||||
|
||||
files_ns.schema_model(
|
||||
StorageDownloadQuery.__name__,
|
||||
StorageDownloadQuery.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
|
||||
)
|
||||
|
||||
|
||||
@files_ns.route("/storage/<path:filename>/download")
|
||||
class StorageFileDownloadApi(Resource):
|
||||
def get(self, filename: str):
|
||||
filename = unquote(filename)
|
||||
|
||||
args = StorageDownloadQuery.model_validate(request.args.to_dict(flat=True))
|
||||
|
||||
if not FilePresignStorage.verify_signature(
|
||||
filename=filename,
|
||||
timestamp=args.timestamp,
|
||||
nonce=args.nonce,
|
||||
sign=args.sign,
|
||||
):
|
||||
raise Forbidden("Invalid or expired download link")
|
||||
|
||||
try:
|
||||
generator = storage.load_stream(filename)
|
||||
except FileNotFoundError:
|
||||
raise NotFound("File not found")
|
||||
|
||||
encoded_filename = quote(filename.split("/")[-1])
|
||||
|
||||
return Response(
|
||||
generator,
|
||||
mimetype="application/octet-stream",
|
||||
direct_passthrough=True,
|
||||
headers={
|
||||
"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}",
|
||||
},
|
||||
)
|
||||
@ -448,53 +448,3 @@ class PluginFetchAppInfoApi(Resource):
|
||||
return BaseBackwardsInvocationResponse(
|
||||
data=PluginAppBackwardsInvocation.fetch_app_info(payload.app_id, tenant_model.id)
|
||||
).model_dump()
|
||||
|
||||
|
||||
@inner_api_ns.route("/fetch/tools/list")
|
||||
class PluginFetchToolsListApi(Resource):
|
||||
@get_user_tenant
|
||||
@setup_required
|
||||
@plugin_inner_api_only
|
||||
@inner_api_ns.doc("plugin_fetch_tools_list")
|
||||
@inner_api_ns.doc(description="Fetch all available tools through plugin interface")
|
||||
@inner_api_ns.doc(
|
||||
responses={
|
||||
200: "Tools list retrieved successfully",
|
||||
401: "Unauthorized - invalid API key",
|
||||
404: "Service not available",
|
||||
}
|
||||
)
|
||||
def post(self, user_model: Account | EndUser, tenant_model: Tenant):
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from extensions.ext_database import db
|
||||
from services.tools.api_tools_manage_service import ApiToolManageService
|
||||
from services.tools.builtin_tools_manage_service import BuiltinToolManageService
|
||||
from services.tools.mcp_tools_manage_service import MCPToolManageService
|
||||
from services.tools.workflow_tools_manage_service import WorkflowToolManageService
|
||||
|
||||
providers = []
|
||||
|
||||
# Get builtin tools
|
||||
builtin_providers = BuiltinToolManageService.list_builtin_tools(user_model.id, tenant_model.id)
|
||||
for provider in builtin_providers:
|
||||
providers.append(provider.to_dict())
|
||||
|
||||
# Get API tools
|
||||
api_providers = ApiToolManageService.list_api_tools(tenant_model.id)
|
||||
for provider in api_providers:
|
||||
providers.append(provider.to_dict())
|
||||
|
||||
# Get workflow tools
|
||||
workflow_providers = WorkflowToolManageService.list_tenant_workflow_tools(user_model.id, tenant_model.id)
|
||||
for provider in workflow_providers:
|
||||
providers.append(provider.to_dict())
|
||||
|
||||
# Get MCP tools
|
||||
with Session(db.engine) as session:
|
||||
mcp_service = MCPToolManageService(session)
|
||||
mcp_providers = mcp_service.list_providers(tenant_id=tenant_model.id, for_list=True)
|
||||
for provider in mcp_providers:
|
||||
providers.append(provider.to_dict())
|
||||
|
||||
return BaseBackwardsInvocationResponse(data={"providers": providers}).model_dump()
|
||||
|
||||
@ -75,6 +75,7 @@ def get_user_tenant(view_func: Callable[P, R]):
|
||||
@wraps(view_func)
|
||||
def decorated_view(*args: P.args, **kwargs: P.kwargs):
|
||||
payload = TenantUserPayload.model_validate(request.get_json(silent=True) or {})
|
||||
|
||||
user_id = payload.user_id
|
||||
tenant_id = payload.tenant_id
|
||||
|
||||
|
||||
@ -5,15 +5,14 @@ from hashlib import sha1
|
||||
from hmac import new as hmac_new
|
||||
from typing import ParamSpec, TypeVar
|
||||
|
||||
P = ParamSpec("P")
|
||||
R = TypeVar("R")
|
||||
from flask import abort, request
|
||||
|
||||
from configs import dify_config
|
||||
from extensions.ext_database import db
|
||||
from models.model import EndUser
|
||||
|
||||
P = ParamSpec("P")
|
||||
R = TypeVar("R")
|
||||
|
||||
|
||||
def billing_inner_api_only(view: Callable[P, R]):
|
||||
@wraps(view)
|
||||
@ -89,11 +88,11 @@ def plugin_inner_api_only(view: Callable[P, R]):
|
||||
if not dify_config.PLUGIN_DAEMON_KEY:
|
||||
abort(404)
|
||||
|
||||
# validate using inner api key
|
||||
# get header 'X-Inner-Api-Key'
|
||||
inner_api_key = request.headers.get("X-Inner-Api-Key")
|
||||
if inner_api_key and inner_api_key == dify_config.INNER_API_KEY_FOR_PLUGIN:
|
||||
return view(*args, **kwargs)
|
||||
if not inner_api_key or inner_api_key != dify_config.INNER_API_KEY_FOR_PLUGIN:
|
||||
abort(404)
|
||||
|
||||
abort(401)
|
||||
return view(*args, **kwargs)
|
||||
|
||||
return decorated
|
||||
|
||||
@ -1,380 +0,0 @@
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from copy import deepcopy
|
||||
from typing import Any
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.agent.entities import AgentEntity, AgentLog, AgentResult
|
||||
from core.agent.patterns.strategy_factory import StrategyFactory
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageContentType,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.__base.tool import Tool
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentAppRunner(BaseAgentRunner):
|
||||
def _create_tool_invoke_hook(self, message: Message):
|
||||
"""
|
||||
Create a tool invoke hook that uses ToolEngine.agent_invoke.
|
||||
This hook handles file creation and returns proper meta information.
|
||||
"""
|
||||
# Get trace manager from app generate entity
|
||||
trace_manager = self.application_generate_entity.trace_manager
|
||||
|
||||
def tool_invoke_hook(
|
||||
tool: Tool, tool_args: dict[str, Any], tool_name: str
|
||||
) -> tuple[str, list[str], ToolInvokeMeta]:
|
||||
"""Hook that uses agent_invoke for proper file and meta handling."""
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool,
|
||||
tool_parameters=tool_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
app_id=self.application_generate_entity.app_config.app_id,
|
||||
message_id=message.id,
|
||||
conversation_id=self.conversation.id,
|
||||
)
|
||||
|
||||
# Publish files and track IDs
|
||||
for message_file_id in message_files:
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
self._current_message_file_ids.append(message_file_id)
|
||||
|
||||
return tool_invoke_response, message_files, tool_invoke_meta
|
||||
|
||||
return tool_invoke_hook
|
||||
|
||||
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Run Agent application
|
||||
"""
|
||||
self.query = query
|
||||
app_generate_entity = self.application_generate_entity
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config is not None, "app_config is required"
|
||||
assert app_config.agent is not None, "app_config.agent is required"
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, _ = self._init_prompt_tools()
|
||||
|
||||
assert app_config.agent
|
||||
|
||||
# Create tool invoke hook for agent_invoke
|
||||
tool_invoke_hook = self._create_tool_invoke_hook(message)
|
||||
|
||||
# Get instruction for ReAct strategy
|
||||
instruction = self.app_config.prompt_template.simple_prompt_template or ""
|
||||
|
||||
# Use factory to create appropriate strategy
|
||||
strategy = StrategyFactory.create_strategy(
|
||||
model_features=self.model_features,
|
||||
model_instance=self.model_instance,
|
||||
tools=list(tool_instances.values()),
|
||||
files=list(self.files),
|
||||
max_iterations=app_config.agent.max_iteration,
|
||||
context=self.build_execution_context(),
|
||||
agent_strategy=self.config.strategy,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
instruction=instruction,
|
||||
)
|
||||
|
||||
# Initialize state variables
|
||||
current_agent_thought_id = None
|
||||
has_published_thought = False
|
||||
current_tool_name: str | None = None
|
||||
self._current_message_file_ids: list[str] = []
|
||||
|
||||
# organize prompt messages
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
|
||||
# Run strategy
|
||||
generator = strategy.run(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# Consume generator and collect result
|
||||
result: AgentResult | None = None
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
output = next(generator)
|
||||
except StopIteration as e:
|
||||
# Generator finished, get the return value
|
||||
result = e.value
|
||||
break
|
||||
|
||||
if isinstance(output, LLMResultChunk):
|
||||
# Handle LLM chunk
|
||||
if current_agent_thought_id and not has_published_thought:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
has_published_thought = True
|
||||
|
||||
yield output
|
||||
|
||||
elif isinstance(output, AgentLog):
|
||||
# Handle Agent Log using log_type for type-safe dispatch
|
||||
if output.status == AgentLog.LogStatus.START:
|
||||
if output.log_type == AgentLog.LogType.ROUND:
|
||||
# Start of a new round
|
||||
message_file_ids: list[str] = []
|
||||
current_agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id,
|
||||
message="",
|
||||
tool_name="",
|
||||
tool_input="",
|
||||
messages_ids=message_file_ids,
|
||||
)
|
||||
has_published_thought = False
|
||||
|
||||
elif output.log_type == AgentLog.LogType.TOOL_CALL:
|
||||
if current_agent_thought_id is None:
|
||||
continue
|
||||
|
||||
# Tool call start - extract data from structured fields
|
||||
current_tool_name = output.data.get("tool_name", "")
|
||||
tool_input = output.data.get("tool_args", {})
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=current_agent_thought_id,
|
||||
tool_name=current_tool_name,
|
||||
tool_input=tool_input,
|
||||
thought=None,
|
||||
observation=None,
|
||||
tool_invoke_meta=None,
|
||||
answer=None,
|
||||
messages_ids=[],
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
elif output.status == AgentLog.LogStatus.SUCCESS:
|
||||
if output.log_type == AgentLog.LogType.THOUGHT:
|
||||
if current_agent_thought_id is None:
|
||||
continue
|
||||
|
||||
thought_text = output.data.get("thought")
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=current_agent_thought_id,
|
||||
tool_name=None,
|
||||
tool_input=None,
|
||||
thought=thought_text,
|
||||
observation=None,
|
||||
tool_invoke_meta=None,
|
||||
answer=None,
|
||||
messages_ids=[],
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
elif output.log_type == AgentLog.LogType.TOOL_CALL:
|
||||
if current_agent_thought_id is None:
|
||||
continue
|
||||
|
||||
# Tool call finished
|
||||
tool_output = output.data.get("output")
|
||||
# Get meta from strategy output (now properly populated)
|
||||
tool_meta = output.data.get("meta")
|
||||
|
||||
# Wrap tool_meta with tool_name as key (required by agent_service)
|
||||
if tool_meta and current_tool_name:
|
||||
tool_meta = {current_tool_name: tool_meta}
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=current_agent_thought_id,
|
||||
tool_name=None,
|
||||
tool_input=None,
|
||||
thought=None,
|
||||
observation=tool_output,
|
||||
tool_invoke_meta=tool_meta,
|
||||
answer=None,
|
||||
messages_ids=self._current_message_file_ids,
|
||||
)
|
||||
# Clear message file ids after saving
|
||||
self._current_message_file_ids = []
|
||||
current_tool_name = None
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
elif output.log_type == AgentLog.LogType.ROUND:
|
||||
if current_agent_thought_id is None:
|
||||
continue
|
||||
|
||||
# Round finished - save LLM usage and answer
|
||||
llm_usage = output.metadata.get(AgentLog.LogMetadata.LLM_USAGE)
|
||||
llm_result = output.data.get("llm_result")
|
||||
final_answer = output.data.get("final_answer")
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=current_agent_thought_id,
|
||||
tool_name=None,
|
||||
tool_input=None,
|
||||
thought=llm_result,
|
||||
observation=None,
|
||||
tool_invoke_meta=None,
|
||||
answer=final_answer,
|
||||
messages_ids=[],
|
||||
llm_usage=llm_usage,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
except Exception:
|
||||
# Re-raise any other exceptions
|
||||
raise
|
||||
|
||||
# Process final result
|
||||
if isinstance(result, AgentResult):
|
||||
final_answer = result.text
|
||||
usage = result.usage or LLMUsage.empty_usage()
|
||||
|
||||
# Publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=self.model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=usage,
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Initialize system message
|
||||
"""
|
||||
if not prompt_template:
|
||||
return prompt_messages or []
|
||||
|
||||
prompt_messages = prompt_messages or []
|
||||
|
||||
if prompt_messages and isinstance(prompt_messages[0], SystemPromptMessage):
|
||||
prompt_messages[0] = SystemPromptMessage(content=prompt_template)
|
||||
return prompt_messages
|
||||
|
||||
if not prompt_messages:
|
||||
return [SystemPromptMessage(content=prompt_template)]
|
||||
|
||||
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
|
||||
return prompt_messages
|
||||
|
||||
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
As for now, gpt supports both fc and vision at the first iteration.
|
||||
We need to remove the image messages from the prompt messages at the first iteration.
|
||||
"""
|
||||
prompt_messages = deepcopy(prompt_messages)
|
||||
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, UserPromptMessage):
|
||||
if isinstance(prompt_message.content, list):
|
||||
prompt_message.content = "\n".join(
|
||||
[
|
||||
content.data
|
||||
if content.type == PromptMessageContentType.TEXT
|
||||
else "[image]"
|
||||
if content.type == PromptMessageContentType.IMAGE
|
||||
else "[file]"
|
||||
for content in prompt_message.content
|
||||
]
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self):
|
||||
# For ReAct strategy, use the agent prompt template
|
||||
if self.config.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT and self.config.prompt:
|
||||
prompt_template = self.config.prompt.first_prompt
|
||||
else:
|
||||
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
|
||||
|
||||
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
|
||||
query_prompt_messages = self._organize_user_query(self.query or "", [])
|
||||
|
||||
self.history_prompt_messages = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
|
||||
history_messages=self.history_prompt_messages,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
|
||||
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
|
||||
if len(self._current_thoughts) != 0:
|
||||
# clear messages after the first iteration
|
||||
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
|
||||
return prompt_messages
|
||||
@ -6,7 +6,7 @@ from typing import Union, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.agent.entities import AgentEntity, AgentToolEntity, ExecutionContext
|
||||
from core.agent.entities import AgentEntity, AgentToolEntity
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
@ -116,20 +116,9 @@ class BaseAgentRunner(AppRunner):
|
||||
features = model_schema.features if model_schema and model_schema.features else []
|
||||
self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
|
||||
self.files = application_generate_entity.files if ModelFeature.VISION in features else []
|
||||
self.model_features = features
|
||||
self.query: str | None = ""
|
||||
self._current_thoughts: list[PromptMessage] = []
|
||||
|
||||
def build_execution_context(self) -> ExecutionContext:
|
||||
"""Build execution context."""
|
||||
return ExecutionContext(
|
||||
user_id=self.user_id,
|
||||
app_id=self.app_config.app_id,
|
||||
conversation_id=self.conversation.id,
|
||||
message_id=self.message.id,
|
||||
tenant_id=self.tenant_id,
|
||||
)
|
||||
|
||||
def _repack_app_generate_entity(
|
||||
self, app_generate_entity: AgentChatAppGenerateEntity
|
||||
) -> AgentChatAppGenerateEntity:
|
||||
|
||||
437
api/core/agent/cot_agent_runner.py
Normal file
437
api/core/agent/cot_agent_runner.py
Normal file
@ -0,0 +1,437 @@
|
||||
import json
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import Any
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.agent.entities import AgentScratchpadUnit
|
||||
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.__base.tool import Tool
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from core.workflow.nodes.agent.exc import AgentMaxIterationError
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
_is_first_iteration = True
|
||||
_ignore_observation_providers = ["wenxin"]
|
||||
_historic_prompt_messages: list[PromptMessage]
|
||||
_agent_scratchpad: list[AgentScratchpadUnit]
|
||||
_instruction: str
|
||||
_query: str
|
||||
_prompt_messages_tools: Sequence[PromptMessageTool]
|
||||
|
||||
def run(
|
||||
self,
|
||||
message: Message,
|
||||
query: str,
|
||||
inputs: Mapping[str, str],
|
||||
) -> Generator:
|
||||
"""
|
||||
Run Cot agent application
|
||||
"""
|
||||
|
||||
app_generate_entity = self.application_generate_entity
|
||||
self._repack_app_generate_entity(app_generate_entity)
|
||||
self._init_react_state(query)
|
||||
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
# check model mode
|
||||
if "Observation" not in app_generate_entity.model_conf.stop:
|
||||
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
|
||||
app_generate_entity.model_conf.stop.append("Observation")
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config.agent
|
||||
|
||||
# init instruction
|
||||
inputs = inputs or {}
|
||||
instruction = app_config.prompt_template.simple_prompt_template or ""
|
||||
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
||||
self._prompt_messages_tools = prompt_messages_tools
|
||||
|
||||
function_call_state = True
|
||||
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
final_answer = ""
|
||||
prompt_messages: list = [] # Initialize prompt_messages
|
||||
agent_thought_id = "" # Initialize agent_thought_id
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.total_tokens += usage.total_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
llm_usage.total_price += usage.total_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
self._prompt_messages_tools = []
|
||||
|
||||
message_file_ids: list[str] = []
|
||||
|
||||
agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
if iteration_step > 1:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
tools=[],
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=True,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
usage_dict: dict[str, LLMUsage | None] = {}
|
||||
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
|
||||
scratchpad = AgentScratchpadUnit(
|
||||
agent_response="",
|
||||
thought="",
|
||||
action_str="",
|
||||
observation="",
|
||||
action=None,
|
||||
)
|
||||
|
||||
# publish agent thought if it's first iteration
|
||||
if iteration_step == 1:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
for chunk in react_chunks:
|
||||
if isinstance(chunk, AgentScratchpadUnit.Action):
|
||||
action = chunk
|
||||
# detect action
|
||||
assert scratchpad.agent_response is not None
|
||||
scratchpad.agent_response += json.dumps(chunk.model_dump())
|
||||
scratchpad.action_str = json.dumps(chunk.model_dump())
|
||||
scratchpad.action = action
|
||||
else:
|
||||
assert scratchpad.agent_response is not None
|
||||
scratchpad.agent_response += chunk
|
||||
assert scratchpad.thought is not None
|
||||
scratchpad.thought += chunk
|
||||
yield LLMResultChunk(
|
||||
model=self.model_config.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint="",
|
||||
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
|
||||
)
|
||||
|
||||
assert scratchpad.thought is not None
|
||||
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
|
||||
self._agent_scratchpad.append(scratchpad)
|
||||
|
||||
# Check if max iteration is reached and model still wants to call tools
|
||||
if iteration_step == max_iteration_steps and scratchpad.action:
|
||||
if scratchpad.action.action_name.lower() != "final answer":
|
||||
raise AgentMaxIterationError(app_config.agent.max_iteration)
|
||||
|
||||
# get llm usage
|
||||
if "usage" in usage_dict:
|
||||
if usage_dict["usage"] is not None:
|
||||
increase_usage(llm_usage, usage_dict["usage"])
|
||||
else:
|
||||
usage_dict["usage"] = LLMUsage.empty_usage()
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
|
||||
tool_invoke_meta={},
|
||||
thought=scratchpad.thought or "",
|
||||
observation="",
|
||||
answer=scratchpad.agent_response or "",
|
||||
messages_ids=[],
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
if not scratchpad.is_final():
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
if not scratchpad.action:
|
||||
# failed to extract action, return final answer directly
|
||||
final_answer = ""
|
||||
else:
|
||||
if scratchpad.action.action_name.lower() == "final answer":
|
||||
# action is final answer, return final answer directly
|
||||
try:
|
||||
if isinstance(scratchpad.action.action_input, dict):
|
||||
final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
|
||||
elif isinstance(scratchpad.action.action_input, str):
|
||||
final_answer = scratchpad.action.action_input
|
||||
else:
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
except TypeError:
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
else:
|
||||
function_call_state = True
|
||||
# action is tool call, invoke tool
|
||||
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
|
||||
action=scratchpad.action,
|
||||
tool_instances=tool_instances,
|
||||
message_file_ids=message_file_ids,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
scratchpad.observation = tool_invoke_response
|
||||
scratchpad.agent_response = tool_invoke_response
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=scratchpad.action.action_name,
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
|
||||
thought=scratchpad.thought or "",
|
||||
observation={scratchpad.action.action_name: tool_invoke_response},
|
||||
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=message_file_ids,
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# update prompt tool message
|
||||
for prompt_tool in self._prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
|
||||
),
|
||||
system_fingerprint="",
|
||||
)
|
||||
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name="",
|
||||
tool_input={},
|
||||
tool_invoke_meta={},
|
||||
thought=final_answer,
|
||||
observation={},
|
||||
answer=final_answer,
|
||||
messages_ids=[],
|
||||
)
|
||||
# publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _handle_invoke_action(
|
||||
self,
|
||||
action: AgentScratchpadUnit.Action,
|
||||
tool_instances: Mapping[str, Tool],
|
||||
message_file_ids: list[str],
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> tuple[str, ToolInvokeMeta]:
|
||||
"""
|
||||
handle invoke action
|
||||
:param action: action
|
||||
:param tool_instances: tool instances
|
||||
:param message_file_ids: message file ids
|
||||
:param trace_manager: trace manager
|
||||
:return: observation, meta
|
||||
"""
|
||||
# action is tool call, invoke tool
|
||||
tool_call_name = action.action_name
|
||||
tool_call_args = action.action_input
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
|
||||
if not tool_instance:
|
||||
answer = f"there is not a tool named {tool_call_name}"
|
||||
return answer, ToolInvokeMeta.error_instance(answer)
|
||||
|
||||
if isinstance(tool_call_args, str):
|
||||
try:
|
||||
tool_call_args = json.loads(tool_call_args)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# publish files
|
||||
for message_file_id in message_files:
|
||||
# publish message file
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
return tool_invoke_response, tool_invoke_meta
|
||||
|
||||
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
|
||||
"""
|
||||
convert dict to action
|
||||
"""
|
||||
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
|
||||
|
||||
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
|
||||
"""
|
||||
fill in inputs from external data tools
|
||||
"""
|
||||
for key, value in inputs.items():
|
||||
try:
|
||||
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return instruction
|
||||
|
||||
def _init_react_state(self, query):
|
||||
"""
|
||||
init agent scratchpad
|
||||
"""
|
||||
self._query = query
|
||||
self._agent_scratchpad = []
|
||||
self._historic_prompt_messages = self._organize_historic_prompt_messages()
|
||||
|
||||
@abstractmethod
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
organize prompt messages
|
||||
"""
|
||||
|
||||
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
||||
"""
|
||||
format assistant message
|
||||
"""
|
||||
message = ""
|
||||
for scratchpad in agent_scratchpad:
|
||||
if scratchpad.is_final():
|
||||
message += f"Final Answer: {scratchpad.agent_response}"
|
||||
else:
|
||||
message += f"Thought: {scratchpad.thought}\n\n"
|
||||
if scratchpad.action_str:
|
||||
message += f"Action: {scratchpad.action_str}\n\n"
|
||||
if scratchpad.observation:
|
||||
message += f"Observation: {scratchpad.observation}\n\n"
|
||||
|
||||
return message
|
||||
|
||||
def _organize_historic_prompt_messages(
|
||||
self, current_session_messages: list[PromptMessage] | None = None
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize historic prompt messages
|
||||
"""
|
||||
result: list[PromptMessage] = []
|
||||
scratchpads: list[AgentScratchpadUnit] = []
|
||||
current_scratchpad: AgentScratchpadUnit | None = None
|
||||
|
||||
for message in self.history_prompt_messages:
|
||||
if isinstance(message, AssistantPromptMessage):
|
||||
if not current_scratchpad:
|
||||
assert isinstance(message.content, str)
|
||||
current_scratchpad = AgentScratchpadUnit(
|
||||
agent_response=message.content,
|
||||
thought=message.content or "I am thinking about how to help you",
|
||||
action_str="",
|
||||
action=None,
|
||||
observation=None,
|
||||
)
|
||||
scratchpads.append(current_scratchpad)
|
||||
if message.tool_calls:
|
||||
try:
|
||||
current_scratchpad.action = AgentScratchpadUnit.Action(
|
||||
action_name=message.tool_calls[0].function.name,
|
||||
action_input=json.loads(message.tool_calls[0].function.arguments),
|
||||
)
|
||||
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
|
||||
except Exception:
|
||||
logger.exception("Failed to parse tool call from assistant message")
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
if current_scratchpad:
|
||||
assert isinstance(message.content, str)
|
||||
current_scratchpad.observation = message.content
|
||||
else:
|
||||
raise NotImplementedError("expected str type")
|
||||
elif isinstance(message, UserPromptMessage):
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
scratchpads = []
|
||||
current_scratchpad = None
|
||||
|
||||
result.append(message)
|
||||
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
|
||||
historic_prompts = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=current_session_messages or [],
|
||||
history_messages=result,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
return historic_prompts
|
||||
118
api/core/agent/cot_chat_agent_runner.py
Normal file
118
api/core/agent/cot_chat_agent_runner.py
Normal file
@ -0,0 +1,118 @@
|
||||
import json
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
|
||||
class CotChatAgentRunner(CotAgentRunner):
|
||||
def _organize_system_prompt(self) -> SystemPromptMessage:
|
||||
"""
|
||||
Organize system prompt
|
||||
"""
|
||||
assert self.app_config.agent
|
||||
assert self.app_config.agent.prompt
|
||||
|
||||
prompt_entity = self.app_config.agent.prompt
|
||||
if not prompt_entity:
|
||||
raise ValueError("Agent prompt configuration is not set")
|
||||
first_prompt = prompt_entity.first_prompt
|
||||
|
||||
system_prompt = (
|
||||
first_prompt.replace("{{instruction}}", self._instruction)
|
||||
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
|
||||
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
|
||||
)
|
||||
|
||||
return SystemPromptMessage(content=system_prompt)
|
||||
|
||||
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize
|
||||
"""
|
||||
# organize system prompt
|
||||
system_message = self._organize_system_prompt()
|
||||
|
||||
# organize current assistant messages
|
||||
agent_scratchpad = self._agent_scratchpad
|
||||
if not agent_scratchpad:
|
||||
assistant_messages = []
|
||||
else:
|
||||
assistant_message = AssistantPromptMessage(content="")
|
||||
assistant_message.content = "" # FIXME: type check tell mypy that assistant_message.content is str
|
||||
for unit in agent_scratchpad:
|
||||
if unit.is_final():
|
||||
assert isinstance(assistant_message.content, str)
|
||||
assistant_message.content += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
assert isinstance(assistant_message.content, str)
|
||||
assistant_message.content += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
assistant_message.content += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
assistant_message.content += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
assistant_messages = [assistant_message]
|
||||
|
||||
# query messages
|
||||
query_messages = self._organize_user_query(self._query, [])
|
||||
|
||||
if assistant_messages:
|
||||
# organize historic prompt messages
|
||||
historic_messages = self._organize_historic_prompt_messages(
|
||||
[system_message, *query_messages, *assistant_messages, UserPromptMessage(content="continue")]
|
||||
)
|
||||
messages = [
|
||||
system_message,
|
||||
*historic_messages,
|
||||
*query_messages,
|
||||
*assistant_messages,
|
||||
UserPromptMessage(content="continue"),
|
||||
]
|
||||
else:
|
||||
# organize historic prompt messages
|
||||
historic_messages = self._organize_historic_prompt_messages([system_message, *query_messages])
|
||||
messages = [system_message, *historic_messages, *query_messages]
|
||||
|
||||
# join all messages
|
||||
return messages
|
||||
87
api/core/agent/cot_completion_agent_runner.py
Normal file
87
api/core/agent/cot_completion_agent_runner.py
Normal file
@ -0,0 +1,87 @@
|
||||
import json
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
|
||||
class CotCompletionAgentRunner(CotAgentRunner):
|
||||
def _organize_instruction_prompt(self) -> str:
|
||||
"""
|
||||
Organize instruction prompt
|
||||
"""
|
||||
if self.app_config.agent is None:
|
||||
raise ValueError("Agent configuration is not set")
|
||||
prompt_entity = self.app_config.agent.prompt
|
||||
if prompt_entity is None:
|
||||
raise ValueError("prompt entity is not set")
|
||||
first_prompt = prompt_entity.first_prompt
|
||||
|
||||
system_prompt = (
|
||||
first_prompt.replace("{{instruction}}", self._instruction)
|
||||
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
|
||||
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
|
||||
)
|
||||
|
||||
return system_prompt
|
||||
|
||||
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] | None = None) -> str:
|
||||
"""
|
||||
Organize historic prompt
|
||||
"""
|
||||
historic_prompt_messages = self._organize_historic_prompt_messages(current_session_messages)
|
||||
historic_prompt = ""
|
||||
|
||||
for message in historic_prompt_messages:
|
||||
if isinstance(message, UserPromptMessage):
|
||||
historic_prompt += f"Question: {message.content}\n\n"
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
if isinstance(message.content, str):
|
||||
historic_prompt += message.content + "\n\n"
|
||||
elif isinstance(message.content, list):
|
||||
for content in message.content:
|
||||
if not isinstance(content, TextPromptMessageContent):
|
||||
continue
|
||||
historic_prompt += content.data
|
||||
|
||||
return historic_prompt
|
||||
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize prompt messages
|
||||
"""
|
||||
# organize system prompt
|
||||
system_prompt = self._organize_instruction_prompt()
|
||||
|
||||
# organize historic prompt messages
|
||||
historic_prompt = self._organize_historic_prompt()
|
||||
|
||||
# organize current assistant messages
|
||||
agent_scratchpad = self._agent_scratchpad
|
||||
assistant_prompt = ""
|
||||
for unit in agent_scratchpad or []:
|
||||
if unit.is_final():
|
||||
assistant_prompt += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
assistant_prompt += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
assistant_prompt += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
assistant_prompt += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
# query messages
|
||||
query_prompt = f"Question: {self._query}"
|
||||
|
||||
# join all messages
|
||||
prompt = (
|
||||
system_prompt.replace("{{historic_messages}}", historic_prompt)
|
||||
.replace("{{agent_scratchpad}}", assistant_prompt)
|
||||
.replace("{{query}}", query_prompt)
|
||||
)
|
||||
|
||||
return [UserPromptMessage(content=prompt)]
|
||||
@ -1,5 +1,3 @@
|
||||
import uuid
|
||||
from collections.abc import Mapping
|
||||
from enum import StrEnum
|
||||
from typing import Any, Union
|
||||
|
||||
@ -94,96 +92,3 @@ class AgentInvokeMessage(ToolInvokeMessage):
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class ExecutionContext(BaseModel):
|
||||
"""Execution context containing trace and audit information.
|
||||
|
||||
This context carries all the IDs and metadata that are not part of
|
||||
the core business logic but needed for tracing, auditing, and
|
||||
correlation purposes.
|
||||
"""
|
||||
|
||||
user_id: str | None = None
|
||||
app_id: str | None = None
|
||||
conversation_id: str | None = None
|
||||
message_id: str | None = None
|
||||
tenant_id: str | None = None
|
||||
|
||||
@classmethod
|
||||
def create_minimal(cls, user_id: str | None = None) -> "ExecutionContext":
|
||||
"""Create a minimal context with only essential fields."""
|
||||
return cls(user_id=user_id)
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary for passing to legacy code."""
|
||||
return {
|
||||
"user_id": self.user_id,
|
||||
"app_id": self.app_id,
|
||||
"conversation_id": self.conversation_id,
|
||||
"message_id": self.message_id,
|
||||
"tenant_id": self.tenant_id,
|
||||
}
|
||||
|
||||
def with_updates(self, **kwargs) -> "ExecutionContext":
|
||||
"""Create a new context with updated fields."""
|
||||
data = self.to_dict()
|
||||
data.update(kwargs)
|
||||
|
||||
return ExecutionContext(
|
||||
user_id=data.get("user_id"),
|
||||
app_id=data.get("app_id"),
|
||||
conversation_id=data.get("conversation_id"),
|
||||
message_id=data.get("message_id"),
|
||||
tenant_id=data.get("tenant_id"),
|
||||
)
|
||||
|
||||
|
||||
class AgentLog(BaseModel):
|
||||
"""
|
||||
Agent Log.
|
||||
"""
|
||||
|
||||
class LogType(StrEnum):
|
||||
"""Type of agent log entry."""
|
||||
|
||||
ROUND = "round" # A complete iteration round
|
||||
THOUGHT = "thought" # LLM thinking/reasoning
|
||||
TOOL_CALL = "tool_call" # Tool invocation
|
||||
|
||||
class LogMetadata(StrEnum):
|
||||
STARTED_AT = "started_at"
|
||||
FINISHED_AT = "finished_at"
|
||||
ELAPSED_TIME = "elapsed_time"
|
||||
TOTAL_PRICE = "total_price"
|
||||
TOTAL_TOKENS = "total_tokens"
|
||||
PROVIDER = "provider"
|
||||
CURRENCY = "currency"
|
||||
LLM_USAGE = "llm_usage"
|
||||
ICON = "icon"
|
||||
ICON_DARK = "icon_dark"
|
||||
|
||||
class LogStatus(StrEnum):
|
||||
START = "start"
|
||||
ERROR = "error"
|
||||
SUCCESS = "success"
|
||||
|
||||
id: str = Field(default_factory=lambda: str(uuid.uuid4()), description="The id of the log")
|
||||
label: str = Field(..., description="The label of the log")
|
||||
log_type: LogType = Field(..., description="The type of the log")
|
||||
parent_id: str | None = Field(default=None, description="Leave empty for root log")
|
||||
error: str | None = Field(default=None, description="The error message")
|
||||
status: LogStatus = Field(..., description="The status of the log")
|
||||
data: Mapping[str, Any] = Field(..., description="Detailed log data")
|
||||
metadata: Mapping[LogMetadata, Any] = Field(default={}, description="The metadata of the log")
|
||||
|
||||
|
||||
class AgentResult(BaseModel):
|
||||
"""
|
||||
Agent execution result.
|
||||
"""
|
||||
|
||||
text: str = Field(default="", description="The generated text")
|
||||
files: list[Any] = Field(default_factory=list, description="Files produced during execution")
|
||||
usage: Any | None = Field(default=None, description="LLM usage statistics")
|
||||
finish_reason: str | None = Field(default=None, description="Reason for completion")
|
||||
|
||||
468
api/core/agent/fc_agent_runner.py
Normal file
468
api/core/agent/fc_agent_runner.py
Normal file
@ -0,0 +1,468 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from copy import deepcopy
|
||||
from typing import Any, Union
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageContentType,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from core.workflow.nodes.agent.exc import AgentMaxIterationError
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Run FunctionCall agent application
|
||||
"""
|
||||
self.query = query
|
||||
app_generate_entity = self.application_generate_entity
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config is not None, "app_config is required"
|
||||
assert app_config.agent is not None, "app_config.agent is required"
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
||||
|
||||
assert app_config.agent
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
|
||||
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = True
|
||||
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
final_answer = ""
|
||||
prompt_messages: list = [] # Initialize prompt_messages
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.total_tokens += usage.total_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
llm_usage.total_price += usage.total_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
prompt_messages_tools = []
|
||||
|
||||
message_file_ids: list[str] = []
|
||||
agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
tools=prompt_messages_tools,
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=self.stream_tool_call,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
|
||||
|
||||
# save full response
|
||||
response = ""
|
||||
|
||||
# save tool call names and inputs
|
||||
tool_call_names = ""
|
||||
tool_call_inputs = ""
|
||||
|
||||
current_llm_usage = None
|
||||
|
||||
if isinstance(chunks, Generator):
|
||||
is_first_chunk = True
|
||||
for chunk in chunks:
|
||||
if is_first_chunk:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
is_first_chunk = False
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk) or [])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except TypeError:
|
||||
# fallback: force ASCII to handle non-serializable objects
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
for content in chunk.delta.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += str(chunk.delta.message.content)
|
||||
|
||||
if chunk.delta.usage:
|
||||
increase_usage(llm_usage, chunk.delta.usage)
|
||||
current_llm_usage = chunk.delta.usage
|
||||
|
||||
yield chunk
|
||||
else:
|
||||
result = chunks
|
||||
# check if there is any tool call
|
||||
if self.check_blocking_tool_calls(result):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except TypeError:
|
||||
# fallback: force ASCII to handle non-serializable objects
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if result.usage:
|
||||
increase_usage(llm_usage, result.usage)
|
||||
current_llm_usage = result.usage
|
||||
|
||||
if result.message and result.message.content:
|
||||
if isinstance(result.message.content, list):
|
||||
for content in result.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += str(result.message.content)
|
||||
|
||||
if not result.message.content:
|
||||
result.message.content = ""
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=result.prompt_messages,
|
||||
system_fingerprint=result.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=result.message,
|
||||
usage=result.usage,
|
||||
),
|
||||
)
|
||||
|
||||
assistant_message = AssistantPromptMessage(content=response, tool_calls=[])
|
||||
if tool_calls:
|
||||
assistant_message.tool_calls = [
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tool_call[0],
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
|
||||
),
|
||||
)
|
||||
for tool_call in tool_calls
|
||||
]
|
||||
|
||||
self._current_thoughts.append(assistant_message)
|
||||
|
||||
# save thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=tool_call_names,
|
||||
tool_input=tool_call_inputs,
|
||||
thought=response,
|
||||
tool_invoke_meta=None,
|
||||
observation=None,
|
||||
answer=response,
|
||||
messages_ids=[],
|
||||
llm_usage=current_llm_usage,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
final_answer += response + "\n"
|
||||
|
||||
# Check if max iteration is reached and model still wants to call tools
|
||||
if iteration_step == max_iteration_steps and tool_calls:
|
||||
raise AgentMaxIterationError(app_config.agent.max_iteration)
|
||||
|
||||
# call tools
|
||||
tool_responses = []
|
||||
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
if not tool_instance:
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": f"there is not a tool named {tool_call_name}",
|
||||
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
|
||||
}
|
||||
else:
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
app_id=self.application_generate_entity.app_config.app_id,
|
||||
message_id=self.message.id,
|
||||
conversation_id=self.conversation.id,
|
||||
)
|
||||
# publish files
|
||||
for message_file_id in message_files:
|
||||
# publish message file
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": tool_invoke_response,
|
||||
"meta": tool_invoke_meta.to_dict(),
|
||||
}
|
||||
|
||||
tool_responses.append(tool_response)
|
||||
if tool_response["tool_response"] is not None:
|
||||
self._current_thoughts.append(
|
||||
ToolPromptMessage(
|
||||
content=str(tool_response["tool_response"]),
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_call_name,
|
||||
)
|
||||
)
|
||||
|
||||
if len(tool_responses) > 0:
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name="",
|
||||
tool_input="",
|
||||
thought="",
|
||||
tool_invoke_meta={
|
||||
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
|
||||
},
|
||||
observation={
|
||||
tool_response["tool_call_name"]: tool_response["tool_response"]
|
||||
for tool_response in tool_responses
|
||||
},
|
||||
answer="",
|
||||
messages_ids=message_file_ids,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# update prompt tool
|
||||
for prompt_tool in prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
# publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
|
||||
"""
|
||||
Check if there is any tool call in llm result chunk
|
||||
"""
|
||||
if llm_result_chunk.delta.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
|
||||
"""
|
||||
Check if there is any blocking tool call in llm result
|
||||
"""
|
||||
if llm_result.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""
|
||||
Extract tool calls from llm result chunk
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result_chunk.delta.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""
|
||||
Extract blocking tool calls from llm result
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Initialize system message
|
||||
"""
|
||||
if not prompt_messages and prompt_template:
|
||||
return [
|
||||
SystemPromptMessage(content=prompt_template),
|
||||
]
|
||||
|
||||
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
|
||||
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
|
||||
|
||||
return prompt_messages or []
|
||||
|
||||
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
As for now, gpt supports both fc and vision at the first iteration.
|
||||
We need to remove the image messages from the prompt messages at the first iteration.
|
||||
"""
|
||||
prompt_messages = deepcopy(prompt_messages)
|
||||
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, UserPromptMessage):
|
||||
if isinstance(prompt_message.content, list):
|
||||
prompt_message.content = "\n".join(
|
||||
[
|
||||
content.data
|
||||
if content.type == PromptMessageContentType.TEXT
|
||||
else "[image]"
|
||||
if content.type == PromptMessageContentType.IMAGE
|
||||
else "[file]"
|
||||
for content in prompt_message.content
|
||||
]
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self):
|
||||
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
|
||||
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
|
||||
query_prompt_messages = self._organize_user_query(self.query or "", [])
|
||||
|
||||
self.history_prompt_messages = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
|
||||
history_messages=self.history_prompt_messages,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
|
||||
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
|
||||
if len(self._current_thoughts) != 0:
|
||||
# clear messages after the first iteration
|
||||
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
|
||||
return prompt_messages
|
||||
@ -1,55 +0,0 @@
|
||||
# Agent Patterns
|
||||
|
||||
A unified agent pattern module that powers both Agent V2 workflow nodes and agent applications. Strategies share a common execution contract while adapting to model capabilities and tool availability.
|
||||
|
||||
## Overview
|
||||
|
||||
The module applies a strategy pattern around LLM/tool orchestration. `StrategyFactory` auto-selects the best implementation based on model features or an explicit agent strategy, and each strategy streams logs and usage consistently.
|
||||
|
||||
## Key Features
|
||||
|
||||
- **Dual strategies**
|
||||
- `FunctionCallStrategy`: uses native LLM function/tool calling when the model exposes `TOOL_CALL`, `MULTI_TOOL_CALL`, or `STREAM_TOOL_CALL`.
|
||||
- `ReActStrategy`: ReAct (reasoning + acting) flow driven by `CotAgentOutputParser`, used when function calling is unavailable or explicitly requested.
|
||||
- **Explicit or auto selection**
|
||||
- `StrategyFactory.create_strategy` prefers an explicit `AgentEntity.Strategy` (FUNCTION_CALLING or CHAIN_OF_THOUGHT).
|
||||
- Otherwise it falls back to function calling when tool-call features exist, or ReAct when they do not.
|
||||
- **Unified execution contract**
|
||||
- `AgentPattern.run` yields streaming `AgentLog` entries and `LLMResultChunk` data, returning an `AgentResult` with text, files, usage, and `finish_reason`.
|
||||
- Iterations are configurable and hard-capped at 99 rounds; the last round forces a final answer by withholding tools.
|
||||
- **Tool handling and hooks**
|
||||
- Tools convert to `PromptMessageTool` objects before invocation.
|
||||
- Optional `tool_invoke_hook` lets callers override tool execution (e.g., agent apps) while workflow runs use `ToolEngine.generic_invoke`.
|
||||
- Tool outputs support text, links, JSON, variables, blobs, retriever resources, and file attachments; `target=="self"` files are reloaded into model context, others are returned as outputs.
|
||||
- **File-aware arguments**
|
||||
- Tool args accept `[File: <id>]` or `[Files: <id1, id2>]` placeholders that resolve to `File` objects before invocation, enabling models to reference uploaded files safely.
|
||||
- **ReAct prompt shaping**
|
||||
- System prompts replace `{{instruction}}`, `{{tools}}`, and `{{tool_names}}` placeholders.
|
||||
- Adds `Observation` to stop sequences and appends scratchpad text so the model sees prior Thought/Action/Observation history.
|
||||
- **Observability and accounting**
|
||||
- Standardized `AgentLog` entries for rounds, model thoughts, and tool calls, including usage aggregation (`LLMUsage`) across streaming and non-streaming paths.
|
||||
|
||||
## Architecture
|
||||
|
||||
```
|
||||
agent/patterns/
|
||||
├── base.py # Shared utilities: logging, usage, tool invocation, file handling
|
||||
├── function_call.py # Native function-calling loop with tool execution
|
||||
├── react.py # ReAct loop with CoT parsing and scratchpad wiring
|
||||
└── strategy_factory.py # Strategy selection by model features or explicit override
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
- For auto-selection:
|
||||
- Call `StrategyFactory.create_strategy(model_features, model_instance, context, tools, files, ...)` and run the returned strategy with prompt messages and model params.
|
||||
- For explicit behavior:
|
||||
- Pass `agent_strategy=AgentEntity.Strategy.FUNCTION_CALLING` to force native calls (falls back to ReAct if unsupported), or `CHAIN_OF_THOUGHT` to force ReAct.
|
||||
- Both strategies stream chunks and logs; collect the generator output until it returns an `AgentResult`.
|
||||
|
||||
## Integration Points
|
||||
|
||||
- **Model runtime**: delegates to `ModelInstance.invoke_llm` for both streaming and non-streaming calls.
|
||||
- **Tool system**: defaults to `ToolEngine.generic_invoke`, with `tool_invoke_hook` for custom callers.
|
||||
- **Files**: flows through `File` objects for tool inputs/outputs and model-context attachments.
|
||||
- **Execution context**: `ExecutionContext` fields (user/app/conversation/message) propagate to tool invocations and logging.
|
||||
@ -1,19 +0,0 @@
|
||||
"""Agent patterns module.
|
||||
|
||||
This module provides different strategies for agent execution:
|
||||
- FunctionCallStrategy: Uses native function/tool calling
|
||||
- ReActStrategy: Uses ReAct (Reasoning + Acting) approach
|
||||
- StrategyFactory: Factory for creating strategies based on model features
|
||||
"""
|
||||
|
||||
from .base import AgentPattern
|
||||
from .function_call import FunctionCallStrategy
|
||||
from .react import ReActStrategy
|
||||
from .strategy_factory import StrategyFactory
|
||||
|
||||
__all__ = [
|
||||
"AgentPattern",
|
||||
"FunctionCallStrategy",
|
||||
"ReActStrategy",
|
||||
"StrategyFactory",
|
||||
]
|
||||
@ -1,474 +0,0 @@
|
||||
"""Base class for agent strategies."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import re
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Callable, Generator
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from core.agent.entities import AgentLog, AgentResult, ExecutionContext
|
||||
from core.file import File
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
)
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.entities.message_entities import TextPromptMessageContent
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMeta
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.tools.__base.tool import Tool
|
||||
|
||||
# Type alias for tool invoke hook
|
||||
# Returns: (response_content, message_file_ids, tool_invoke_meta)
|
||||
ToolInvokeHook = Callable[["Tool", dict[str, Any], str], tuple[str, list[str], ToolInvokeMeta]]
|
||||
|
||||
|
||||
class AgentPattern(ABC):
|
||||
"""Base class for agent execution strategies."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_instance: ModelInstance,
|
||||
tools: list[Tool],
|
||||
context: ExecutionContext,
|
||||
max_iterations: int = 10,
|
||||
workflow_call_depth: int = 0,
|
||||
files: list[File] = [],
|
||||
tool_invoke_hook: ToolInvokeHook | None = None,
|
||||
):
|
||||
"""Initialize the agent strategy."""
|
||||
self.model_instance = model_instance
|
||||
self.tools = tools
|
||||
self.context = context
|
||||
self.max_iterations = min(max_iterations, 99) # Cap at 99 iterations
|
||||
self.workflow_call_depth = workflow_call_depth
|
||||
self.files: list[File] = files
|
||||
self.tool_invoke_hook = tool_invoke_hook
|
||||
|
||||
@abstractmethod
|
||||
def run(
|
||||
self,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict[str, Any],
|
||||
stop: list[str] = [],
|
||||
stream: bool = True,
|
||||
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
|
||||
"""Execute the agent strategy."""
|
||||
pass
|
||||
|
||||
def _accumulate_usage(self, total_usage: dict[str, Any], delta_usage: LLMUsage) -> None:
|
||||
"""Accumulate LLM usage statistics."""
|
||||
if not total_usage.get("usage"):
|
||||
# Create a copy to avoid modifying the original
|
||||
total_usage["usage"] = LLMUsage(
|
||||
prompt_tokens=delta_usage.prompt_tokens,
|
||||
prompt_unit_price=delta_usage.prompt_unit_price,
|
||||
prompt_price_unit=delta_usage.prompt_price_unit,
|
||||
prompt_price=delta_usage.prompt_price,
|
||||
completion_tokens=delta_usage.completion_tokens,
|
||||
completion_unit_price=delta_usage.completion_unit_price,
|
||||
completion_price_unit=delta_usage.completion_price_unit,
|
||||
completion_price=delta_usage.completion_price,
|
||||
total_tokens=delta_usage.total_tokens,
|
||||
total_price=delta_usage.total_price,
|
||||
currency=delta_usage.currency,
|
||||
latency=delta_usage.latency,
|
||||
)
|
||||
else:
|
||||
current: LLMUsage = total_usage["usage"]
|
||||
current.prompt_tokens += delta_usage.prompt_tokens
|
||||
current.completion_tokens += delta_usage.completion_tokens
|
||||
current.total_tokens += delta_usage.total_tokens
|
||||
current.prompt_price += delta_usage.prompt_price
|
||||
current.completion_price += delta_usage.completion_price
|
||||
current.total_price += delta_usage.total_price
|
||||
|
||||
def _extract_content(self, content: Any) -> str:
|
||||
"""Extract text content from message content."""
|
||||
if isinstance(content, list):
|
||||
# Content items are PromptMessageContentUnionTypes
|
||||
text_parts = []
|
||||
for c in content:
|
||||
# Check if it's a TextPromptMessageContent (which has data attribute)
|
||||
if isinstance(c, TextPromptMessageContent):
|
||||
text_parts.append(c.data)
|
||||
return "".join(text_parts)
|
||||
return str(content)
|
||||
|
||||
def _has_tool_calls(self, chunk: LLMResultChunk) -> bool:
|
||||
"""Check if chunk contains tool calls."""
|
||||
# LLMResultChunk always has delta attribute
|
||||
return bool(chunk.delta.message and chunk.delta.message.tool_calls)
|
||||
|
||||
def _has_tool_calls_result(self, result: LLMResult) -> bool:
|
||||
"""Check if result contains tool calls (non-streaming)."""
|
||||
# LLMResult always has message attribute
|
||||
return bool(result.message and result.message.tool_calls)
|
||||
|
||||
def _extract_tool_calls(self, chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""Extract tool calls from streaming chunk."""
|
||||
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
|
||||
if chunk.delta.message and chunk.delta.message.tool_calls:
|
||||
for tool_call in chunk.delta.message.tool_calls:
|
||||
if tool_call.function:
|
||||
try:
|
||||
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
||||
except json.JSONDecodeError:
|
||||
args = {}
|
||||
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
|
||||
return tool_calls
|
||||
|
||||
def _extract_tool_calls_result(self, result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""Extract tool calls from non-streaming result."""
|
||||
tool_calls = []
|
||||
if result.message and result.message.tool_calls:
|
||||
for tool_call in result.message.tool_calls:
|
||||
if tool_call.function:
|
||||
try:
|
||||
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
||||
except json.JSONDecodeError:
|
||||
args = {}
|
||||
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
|
||||
return tool_calls
|
||||
|
||||
def _extract_text_from_message(self, message: PromptMessage) -> str:
|
||||
"""Extract text content from a prompt message."""
|
||||
# PromptMessage always has content attribute
|
||||
content = message.content
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
elif isinstance(content, list):
|
||||
# Extract text from content list
|
||||
text_parts = []
|
||||
for item in content:
|
||||
if isinstance(item, TextPromptMessageContent):
|
||||
text_parts.append(item.data)
|
||||
return " ".join(text_parts)
|
||||
return ""
|
||||
|
||||
def _get_tool_metadata(self, tool_instance: Tool) -> dict[AgentLog.LogMetadata, Any]:
|
||||
"""Get metadata for a tool including provider and icon info."""
|
||||
from core.tools.tool_manager import ToolManager
|
||||
|
||||
metadata: dict[AgentLog.LogMetadata, Any] = {}
|
||||
if tool_instance.entity and tool_instance.entity.identity:
|
||||
identity = tool_instance.entity.identity
|
||||
if identity.provider:
|
||||
metadata[AgentLog.LogMetadata.PROVIDER] = identity.provider
|
||||
|
||||
# Get icon using ToolManager for proper URL generation
|
||||
tenant_id = self.context.tenant_id
|
||||
if tenant_id and identity.provider:
|
||||
try:
|
||||
provider_type = tool_instance.tool_provider_type()
|
||||
icon = ToolManager.get_tool_icon(tenant_id, provider_type, identity.provider)
|
||||
if isinstance(icon, str):
|
||||
metadata[AgentLog.LogMetadata.ICON] = icon
|
||||
elif isinstance(icon, dict):
|
||||
# Handle icon dict with background/content or light/dark variants
|
||||
metadata[AgentLog.LogMetadata.ICON] = icon
|
||||
except Exception:
|
||||
# Fallback to identity.icon if ToolManager fails
|
||||
if identity.icon:
|
||||
metadata[AgentLog.LogMetadata.ICON] = identity.icon
|
||||
elif identity.icon:
|
||||
metadata[AgentLog.LogMetadata.ICON] = identity.icon
|
||||
return metadata
|
||||
|
||||
def _create_log(
|
||||
self,
|
||||
label: str,
|
||||
log_type: AgentLog.LogType,
|
||||
status: AgentLog.LogStatus,
|
||||
data: dict[str, Any] | None = None,
|
||||
parent_id: str | None = None,
|
||||
extra_metadata: dict[AgentLog.LogMetadata, Any] | None = None,
|
||||
) -> AgentLog:
|
||||
"""Create a new AgentLog with standard metadata."""
|
||||
metadata: dict[AgentLog.LogMetadata, Any] = {
|
||||
AgentLog.LogMetadata.STARTED_AT: time.perf_counter(),
|
||||
}
|
||||
if extra_metadata:
|
||||
metadata.update(extra_metadata)
|
||||
|
||||
return AgentLog(
|
||||
label=label,
|
||||
log_type=log_type,
|
||||
status=status,
|
||||
data=data or {},
|
||||
parent_id=parent_id,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
def _finish_log(
|
||||
self,
|
||||
log: AgentLog,
|
||||
data: dict[str, Any] | None = None,
|
||||
usage: LLMUsage | None = None,
|
||||
) -> AgentLog:
|
||||
"""Finish an AgentLog by updating its status and metadata."""
|
||||
log.status = AgentLog.LogStatus.SUCCESS
|
||||
|
||||
if data is not None:
|
||||
log.data = data
|
||||
|
||||
# Calculate elapsed time
|
||||
started_at = log.metadata.get(AgentLog.LogMetadata.STARTED_AT, time.perf_counter())
|
||||
finished_at = time.perf_counter()
|
||||
|
||||
# Update metadata
|
||||
log.metadata = {
|
||||
**log.metadata,
|
||||
AgentLog.LogMetadata.FINISHED_AT: finished_at,
|
||||
# Calculate elapsed time in seconds
|
||||
AgentLog.LogMetadata.ELAPSED_TIME: round(finished_at - started_at, 4),
|
||||
}
|
||||
|
||||
# Add usage information if provided
|
||||
if usage:
|
||||
log.metadata.update(
|
||||
{
|
||||
AgentLog.LogMetadata.TOTAL_PRICE: usage.total_price,
|
||||
AgentLog.LogMetadata.CURRENCY: usage.currency,
|
||||
AgentLog.LogMetadata.TOTAL_TOKENS: usage.total_tokens,
|
||||
AgentLog.LogMetadata.LLM_USAGE: usage,
|
||||
}
|
||||
)
|
||||
|
||||
return log
|
||||
|
||||
def _replace_file_references(self, tool_args: dict[str, Any]) -> dict[str, Any]:
|
||||
"""
|
||||
Replace file references in tool arguments with actual File objects.
|
||||
|
||||
Args:
|
||||
tool_args: Dictionary of tool arguments
|
||||
|
||||
Returns:
|
||||
Updated tool arguments with file references replaced
|
||||
"""
|
||||
# Process each argument in the dictionary
|
||||
processed_args: dict[str, Any] = {}
|
||||
for key, value in tool_args.items():
|
||||
processed_args[key] = self._process_file_reference(value)
|
||||
return processed_args
|
||||
|
||||
def _process_file_reference(self, data: Any) -> Any:
|
||||
"""
|
||||
Recursively process data to replace file references.
|
||||
Supports both single file [File: file_id] and multiple files [Files: file_id1, file_id2, ...].
|
||||
|
||||
Args:
|
||||
data: The data to process (can be dict, list, str, or other types)
|
||||
|
||||
Returns:
|
||||
Processed data with file references replaced
|
||||
"""
|
||||
single_file_pattern = re.compile(r"^\[File:\s*([^\]]+)\]$")
|
||||
multiple_files_pattern = re.compile(r"^\[Files:\s*([^\]]+)\]$")
|
||||
|
||||
if isinstance(data, dict):
|
||||
# Process dictionary recursively
|
||||
return {key: self._process_file_reference(value) for key, value in data.items()}
|
||||
elif isinstance(data, list):
|
||||
# Process list recursively
|
||||
return [self._process_file_reference(item) for item in data]
|
||||
elif isinstance(data, str):
|
||||
# Check for single file pattern [File: file_id]
|
||||
single_match = single_file_pattern.match(data.strip())
|
||||
if single_match:
|
||||
file_id = single_match.group(1).strip()
|
||||
# Find the file in self.files
|
||||
for file in self.files:
|
||||
if file.id and str(file.id) == file_id:
|
||||
return file
|
||||
# If file not found, return original value
|
||||
return data
|
||||
|
||||
# Check for multiple files pattern [Files: file_id1, file_id2, ...]
|
||||
multiple_match = multiple_files_pattern.match(data.strip())
|
||||
if multiple_match:
|
||||
file_ids_str = multiple_match.group(1).strip()
|
||||
# Split by comma and strip whitespace
|
||||
file_ids = [fid.strip() for fid in file_ids_str.split(",")]
|
||||
|
||||
# Find all matching files
|
||||
matched_files: list[File] = []
|
||||
for file_id in file_ids:
|
||||
for file in self.files:
|
||||
if file.id and str(file.id) == file_id:
|
||||
matched_files.append(file)
|
||||
break
|
||||
|
||||
# Return list of files if any were found, otherwise return original
|
||||
return matched_files or data
|
||||
|
||||
return data
|
||||
else:
|
||||
# Return other types as-is
|
||||
return data
|
||||
|
||||
def _create_text_chunk(self, text: str, prompt_messages: list[PromptMessage]) -> LLMResultChunk:
|
||||
"""Create a text chunk for streaming."""
|
||||
return LLMResultChunk(
|
||||
model=self.model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(content=text),
|
||||
usage=None,
|
||||
),
|
||||
system_fingerprint="",
|
||||
)
|
||||
|
||||
def _invoke_tool(
|
||||
self,
|
||||
tool_instance: Tool,
|
||||
tool_args: dict[str, Any],
|
||||
tool_name: str,
|
||||
) -> tuple[str, list[File], ToolInvokeMeta | None]:
|
||||
"""
|
||||
Invoke a tool and collect its response.
|
||||
|
||||
Args:
|
||||
tool_instance: The tool instance to invoke
|
||||
tool_args: Tool arguments
|
||||
tool_name: Name of the tool
|
||||
|
||||
Returns:
|
||||
Tuple of (response_content, tool_files, tool_invoke_meta)
|
||||
"""
|
||||
# Process tool_args to replace file references with actual File objects
|
||||
tool_args = self._replace_file_references(tool_args)
|
||||
|
||||
# If a tool invoke hook is set, use it instead of generic_invoke
|
||||
if self.tool_invoke_hook:
|
||||
response_content, _, tool_invoke_meta = self.tool_invoke_hook(tool_instance, tool_args, tool_name)
|
||||
# Note: message_file_ids are stored in DB, we don't convert them to File objects here
|
||||
# The caller (AgentAppRunner) handles file publishing
|
||||
return response_content, [], tool_invoke_meta
|
||||
|
||||
# Default: use generic_invoke for workflow scenarios
|
||||
# Import here to avoid circular import
|
||||
from core.tools.tool_engine import DifyWorkflowCallbackHandler, ToolEngine
|
||||
|
||||
tool_response = ToolEngine().generic_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_args,
|
||||
user_id=self.context.user_id or "",
|
||||
workflow_tool_callback=DifyWorkflowCallbackHandler(),
|
||||
workflow_call_depth=self.workflow_call_depth,
|
||||
app_id=self.context.app_id,
|
||||
conversation_id=self.context.conversation_id,
|
||||
message_id=self.context.message_id,
|
||||
)
|
||||
|
||||
# Collect response and files
|
||||
response_content = ""
|
||||
tool_files: list[File] = []
|
||||
|
||||
for response in tool_response:
|
||||
if response.type == ToolInvokeMessage.MessageType.TEXT:
|
||||
assert isinstance(response.message, ToolInvokeMessage.TextMessage)
|
||||
response_content += response.message.text
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.LINK:
|
||||
# Handle link messages
|
||||
if isinstance(response.message, ToolInvokeMessage.TextMessage):
|
||||
response_content += f"[Link: {response.message.text}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.IMAGE:
|
||||
# Handle image URL messages
|
||||
if isinstance(response.message, ToolInvokeMessage.TextMessage):
|
||||
response_content += f"[Image: {response.message.text}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK:
|
||||
# Handle image link messages
|
||||
if isinstance(response.message, ToolInvokeMessage.TextMessage):
|
||||
response_content += f"[Image: {response.message.text}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.BINARY_LINK:
|
||||
# Handle binary file link messages
|
||||
if isinstance(response.message, ToolInvokeMessage.TextMessage):
|
||||
filename = response.meta.get("filename", "file") if response.meta else "file"
|
||||
response_content += f"[File: {filename} - {response.message.text}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.JSON:
|
||||
# Handle JSON messages
|
||||
if isinstance(response.message, ToolInvokeMessage.JsonMessage):
|
||||
response_content += json.dumps(response.message.json_object, ensure_ascii=False, indent=2)
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.BLOB:
|
||||
# Handle blob messages - convert to text representation
|
||||
if isinstance(response.message, ToolInvokeMessage.BlobMessage):
|
||||
mime_type = (
|
||||
response.meta.get("mime_type", "application/octet-stream")
|
||||
if response.meta
|
||||
else "application/octet-stream"
|
||||
)
|
||||
size = len(response.message.blob)
|
||||
response_content += f"[Binary data: {mime_type}, size: {size} bytes]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.VARIABLE:
|
||||
# Handle variable messages
|
||||
if isinstance(response.message, ToolInvokeMessage.VariableMessage):
|
||||
var_name = response.message.variable_name
|
||||
var_value = response.message.variable_value
|
||||
if isinstance(var_value, str):
|
||||
response_content += var_value
|
||||
else:
|
||||
response_content += f"[Variable {var_name}: {json.dumps(var_value, ensure_ascii=False)}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.BLOB_CHUNK:
|
||||
# Handle blob chunk messages - these are parts of a larger blob
|
||||
if isinstance(response.message, ToolInvokeMessage.BlobChunkMessage):
|
||||
response_content += f"[Blob chunk {response.message.sequence}: {len(response.message.blob)} bytes]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.RETRIEVER_RESOURCES:
|
||||
# Handle retriever resources messages
|
||||
if isinstance(response.message, ToolInvokeMessage.RetrieverResourceMessage):
|
||||
response_content += response.message.context
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.FILE:
|
||||
# Extract file from meta
|
||||
if response.meta and "file" in response.meta:
|
||||
file = response.meta["file"]
|
||||
if isinstance(file, File):
|
||||
# Check if file is for model or tool output
|
||||
if response.meta.get("target") == "self":
|
||||
# File is for model - add to files for next prompt
|
||||
self.files.append(file)
|
||||
response_content += f"File '{file.filename}' has been loaded into your context."
|
||||
else:
|
||||
# File is tool output
|
||||
tool_files.append(file)
|
||||
|
||||
return response_content, tool_files, None
|
||||
|
||||
def _find_tool_by_name(self, tool_name: str) -> Tool | None:
|
||||
"""Find a tool instance by its name."""
|
||||
for tool in self.tools:
|
||||
if tool.entity.identity.name == tool_name:
|
||||
return tool
|
||||
return None
|
||||
|
||||
def _convert_tools_to_prompt_format(self) -> list[PromptMessageTool]:
|
||||
"""Convert tools to prompt message format."""
|
||||
prompt_tools: list[PromptMessageTool] = []
|
||||
for tool in self.tools:
|
||||
prompt_tools.append(tool.to_prompt_message_tool())
|
||||
return prompt_tools
|
||||
|
||||
def _update_usage_with_empty(self, llm_usage: dict[str, Any]) -> None:
|
||||
"""Initialize usage tracking with empty usage if not set."""
|
||||
if "usage" not in llm_usage or llm_usage["usage"] is None:
|
||||
llm_usage["usage"] = LLMUsage.empty_usage()
|
||||
@ -1,299 +0,0 @@
|
||||
"""Function Call strategy implementation."""
|
||||
|
||||
import json
|
||||
from collections.abc import Generator
|
||||
from typing import Any, Union
|
||||
|
||||
from core.agent.entities import AgentLog, AgentResult
|
||||
from core.file import File
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
ToolPromptMessage,
|
||||
)
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
|
||||
from .base import AgentPattern
|
||||
|
||||
|
||||
class FunctionCallStrategy(AgentPattern):
|
||||
"""Function Call strategy using model's native tool calling capability."""
|
||||
|
||||
def run(
|
||||
self,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict[str, Any],
|
||||
stop: list[str] = [],
|
||||
stream: bool = True,
|
||||
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
|
||||
"""Execute the function call agent strategy."""
|
||||
# Convert tools to prompt format
|
||||
prompt_tools: list[PromptMessageTool] = self._convert_tools_to_prompt_format()
|
||||
|
||||
# Initialize tracking
|
||||
iteration_step: int = 1
|
||||
max_iterations: int = self.max_iterations + 1
|
||||
function_call_state: bool = True
|
||||
total_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
messages: list[PromptMessage] = list(prompt_messages) # Create mutable copy
|
||||
final_text: str = ""
|
||||
finish_reason: str | None = None
|
||||
output_files: list[File] = [] # Track files produced by tools
|
||||
|
||||
while function_call_state and iteration_step <= max_iterations:
|
||||
function_call_state = False
|
||||
round_log = self._create_log(
|
||||
label=f"ROUND {iteration_step}",
|
||||
log_type=AgentLog.LogType.ROUND,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={},
|
||||
)
|
||||
yield round_log
|
||||
# On last iteration, remove tools to force final answer
|
||||
current_tools: list[PromptMessageTool] = [] if iteration_step == max_iterations else prompt_tools
|
||||
model_log = self._create_log(
|
||||
label=f"{self.model_instance.model} Thought",
|
||||
log_type=AgentLog.LogType.THOUGHT,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={},
|
||||
parent_id=round_log.id,
|
||||
extra_metadata={
|
||||
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
|
||||
},
|
||||
)
|
||||
yield model_log
|
||||
|
||||
# Track usage for this round only
|
||||
round_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
|
||||
# Invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
|
||||
prompt_messages=messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=current_tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=self.context.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
# Process response
|
||||
tool_calls, response_content, chunk_finish_reason = yield from self._handle_chunks(
|
||||
chunks, round_usage, model_log
|
||||
)
|
||||
messages.append(self._create_assistant_message(response_content, tool_calls))
|
||||
|
||||
# Accumulate to total usage
|
||||
round_usage_value = round_usage.get("usage")
|
||||
if round_usage_value:
|
||||
self._accumulate_usage(total_usage, round_usage_value)
|
||||
|
||||
# Update final text if no tool calls (this is likely the final answer)
|
||||
if not tool_calls:
|
||||
final_text = response_content
|
||||
|
||||
# Update finish reason
|
||||
if chunk_finish_reason:
|
||||
finish_reason = chunk_finish_reason
|
||||
|
||||
# Process tool calls
|
||||
tool_outputs: dict[str, str] = {}
|
||||
if tool_calls:
|
||||
function_call_state = True
|
||||
# Execute tools
|
||||
for tool_call_id, tool_name, tool_args in tool_calls:
|
||||
tool_response, tool_files, _ = yield from self._handle_tool_call(
|
||||
tool_name, tool_args, tool_call_id, messages, round_log
|
||||
)
|
||||
tool_outputs[tool_name] = tool_response
|
||||
# Track files produced by tools
|
||||
output_files.extend(tool_files)
|
||||
yield self._finish_log(
|
||||
round_log,
|
||||
data={
|
||||
"llm_result": response_content,
|
||||
"tool_calls": [
|
||||
{"name": tc[1], "args": tc[2], "output": tool_outputs.get(tc[1], "")} for tc in tool_calls
|
||||
]
|
||||
if tool_calls
|
||||
else [],
|
||||
"final_answer": final_text if not function_call_state else None,
|
||||
},
|
||||
usage=round_usage.get("usage"),
|
||||
)
|
||||
iteration_step += 1
|
||||
|
||||
# Return final result
|
||||
from core.agent.entities import AgentResult
|
||||
|
||||
return AgentResult(
|
||||
text=final_text,
|
||||
files=output_files,
|
||||
usage=total_usage.get("usage") or LLMUsage.empty_usage(),
|
||||
finish_reason=finish_reason,
|
||||
)
|
||||
|
||||
def _handle_chunks(
|
||||
self,
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
|
||||
llm_usage: dict[str, LLMUsage | None],
|
||||
start_log: AgentLog,
|
||||
) -> Generator[
|
||||
LLMResultChunk | AgentLog,
|
||||
None,
|
||||
tuple[list[tuple[str, str, dict[str, Any]]], str, str | None],
|
||||
]:
|
||||
"""Handle LLM response chunks and extract tool calls and content.
|
||||
|
||||
Returns a tuple of (tool_calls, response_content, finish_reason).
|
||||
"""
|
||||
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
|
||||
response_content: str = ""
|
||||
finish_reason: str | None = None
|
||||
if isinstance(chunks, Generator):
|
||||
# Streaming response
|
||||
for chunk in chunks:
|
||||
# Extract tool calls
|
||||
if self._has_tool_calls(chunk):
|
||||
tool_calls.extend(self._extract_tool_calls(chunk))
|
||||
|
||||
# Extract content
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
response_content += self._extract_content(chunk.delta.message.content)
|
||||
|
||||
# Track usage
|
||||
if chunk.delta.usage:
|
||||
self._accumulate_usage(llm_usage, chunk.delta.usage)
|
||||
|
||||
# Capture finish reason
|
||||
if chunk.delta.finish_reason:
|
||||
finish_reason = chunk.delta.finish_reason
|
||||
|
||||
yield chunk
|
||||
else:
|
||||
# Non-streaming response
|
||||
result: LLMResult = chunks
|
||||
|
||||
if self._has_tool_calls_result(result):
|
||||
tool_calls.extend(self._extract_tool_calls_result(result))
|
||||
|
||||
if result.message and result.message.content:
|
||||
response_content += self._extract_content(result.message.content)
|
||||
|
||||
if result.usage:
|
||||
self._accumulate_usage(llm_usage, result.usage)
|
||||
|
||||
# Convert to streaming format
|
||||
yield LLMResultChunk(
|
||||
model=result.model,
|
||||
prompt_messages=result.prompt_messages,
|
||||
delta=LLMResultChunkDelta(index=0, message=result.message, usage=result.usage),
|
||||
)
|
||||
yield self._finish_log(
|
||||
start_log,
|
||||
data={
|
||||
"result": response_content,
|
||||
},
|
||||
usage=llm_usage.get("usage"),
|
||||
)
|
||||
return tool_calls, response_content, finish_reason
|
||||
|
||||
def _create_assistant_message(
|
||||
self, content: str, tool_calls: list[tuple[str, str, dict[str, Any]]] | None = None
|
||||
) -> AssistantPromptMessage:
|
||||
"""Create assistant message with tool calls."""
|
||||
if tool_calls is None:
|
||||
return AssistantPromptMessage(content=content)
|
||||
return AssistantPromptMessage(
|
||||
content=content or "",
|
||||
tool_calls=[
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tc[0],
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tc[1], arguments=json.dumps(tc[2])),
|
||||
)
|
||||
for tc in tool_calls
|
||||
],
|
||||
)
|
||||
|
||||
def _handle_tool_call(
|
||||
self,
|
||||
tool_name: str,
|
||||
tool_args: dict[str, Any],
|
||||
tool_call_id: str,
|
||||
messages: list[PromptMessage],
|
||||
round_log: AgentLog,
|
||||
) -> Generator[AgentLog, None, tuple[str, list[File], ToolInvokeMeta | None]]:
|
||||
"""Handle a single tool call and return response with files and meta."""
|
||||
# Find tool
|
||||
tool_instance = self._find_tool_by_name(tool_name)
|
||||
if not tool_instance:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
|
||||
# Get tool metadata (provider, icon, etc.)
|
||||
tool_metadata = self._get_tool_metadata(tool_instance)
|
||||
|
||||
# Create tool call log
|
||||
tool_call_log = self._create_log(
|
||||
label=f"CALL {tool_name}",
|
||||
log_type=AgentLog.LogType.TOOL_CALL,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_args": tool_args,
|
||||
},
|
||||
parent_id=round_log.id,
|
||||
extra_metadata=tool_metadata,
|
||||
)
|
||||
yield tool_call_log
|
||||
|
||||
# Invoke tool using base class method with error handling
|
||||
try:
|
||||
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args, tool_name)
|
||||
|
||||
yield self._finish_log(
|
||||
tool_call_log,
|
||||
data={
|
||||
**tool_call_log.data,
|
||||
"output": response_content,
|
||||
"files": len(tool_files),
|
||||
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
|
||||
},
|
||||
)
|
||||
final_content = response_content or "Tool executed successfully"
|
||||
# Add tool response to messages
|
||||
messages.append(
|
||||
ToolPromptMessage(
|
||||
content=final_content,
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_name,
|
||||
)
|
||||
)
|
||||
return response_content, tool_files, tool_invoke_meta
|
||||
except Exception as e:
|
||||
# Tool invocation failed, yield error log
|
||||
error_message = str(e)
|
||||
tool_call_log.status = AgentLog.LogStatus.ERROR
|
||||
tool_call_log.error = error_message
|
||||
tool_call_log.data = {
|
||||
**tool_call_log.data,
|
||||
"error": error_message,
|
||||
}
|
||||
yield tool_call_log
|
||||
|
||||
# Add error message to conversation
|
||||
error_content = f"Tool execution failed: {error_message}"
|
||||
messages.append(
|
||||
ToolPromptMessage(
|
||||
content=error_content,
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_name,
|
||||
)
|
||||
)
|
||||
return error_content, [], None
|
||||
@ -1,418 +0,0 @@
|
||||
"""ReAct strategy implementation."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from collections.abc import Generator
|
||||
from typing import TYPE_CHECKING, Any, Union
|
||||
|
||||
from core.agent.entities import AgentLog, AgentResult, AgentScratchpadUnit, ExecutionContext
|
||||
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
|
||||
from core.file import File
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
PromptMessage,
|
||||
SystemPromptMessage,
|
||||
)
|
||||
|
||||
from .base import AgentPattern, ToolInvokeHook
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.tools.__base.tool import Tool
|
||||
|
||||
|
||||
class ReActStrategy(AgentPattern):
|
||||
"""ReAct strategy using reasoning and acting approach."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_instance: ModelInstance,
|
||||
tools: list[Tool],
|
||||
context: ExecutionContext,
|
||||
max_iterations: int = 10,
|
||||
workflow_call_depth: int = 0,
|
||||
files: list[File] = [],
|
||||
tool_invoke_hook: ToolInvokeHook | None = None,
|
||||
instruction: str = "",
|
||||
):
|
||||
"""Initialize the ReAct strategy with instruction support."""
|
||||
super().__init__(
|
||||
model_instance=model_instance,
|
||||
tools=tools,
|
||||
context=context,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
files=files,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
)
|
||||
self.instruction = instruction
|
||||
|
||||
def run(
|
||||
self,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict[str, Any],
|
||||
stop: list[str] = [],
|
||||
stream: bool = True,
|
||||
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
|
||||
"""Execute the ReAct agent strategy."""
|
||||
# Initialize tracking
|
||||
agent_scratchpad: list[AgentScratchpadUnit] = []
|
||||
iteration_step: int = 1
|
||||
max_iterations: int = self.max_iterations + 1
|
||||
react_state: bool = True
|
||||
total_usage: dict[str, Any] = {"usage": None}
|
||||
output_files: list[File] = [] # Track files produced by tools
|
||||
final_text: str = ""
|
||||
finish_reason: str | None = None
|
||||
|
||||
# Add "Observation" to stop sequences
|
||||
if "Observation" not in stop:
|
||||
stop = stop.copy()
|
||||
stop.append("Observation")
|
||||
|
||||
while react_state and iteration_step <= max_iterations:
|
||||
react_state = False
|
||||
round_log = self._create_log(
|
||||
label=f"ROUND {iteration_step}",
|
||||
log_type=AgentLog.LogType.ROUND,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={},
|
||||
)
|
||||
yield round_log
|
||||
|
||||
# Build prompt with/without tools based on iteration
|
||||
include_tools = iteration_step < max_iterations
|
||||
current_messages = self._build_prompt_with_react_format(
|
||||
prompt_messages, agent_scratchpad, include_tools, self.instruction
|
||||
)
|
||||
|
||||
model_log = self._create_log(
|
||||
label=f"{self.model_instance.model} Thought",
|
||||
log_type=AgentLog.LogType.THOUGHT,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={},
|
||||
parent_id=round_log.id,
|
||||
extra_metadata={
|
||||
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
|
||||
},
|
||||
)
|
||||
yield model_log
|
||||
|
||||
# Track usage for this round only
|
||||
round_usage: dict[str, Any] = {"usage": None}
|
||||
|
||||
# Use current messages directly (files are handled by base class if needed)
|
||||
messages_to_use = current_messages
|
||||
|
||||
# Invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
|
||||
prompt_messages=messages_to_use,
|
||||
model_parameters=model_parameters,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=self.context.user_id or "",
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
# Process response
|
||||
scratchpad, chunk_finish_reason = yield from self._handle_chunks(
|
||||
chunks, round_usage, model_log, current_messages
|
||||
)
|
||||
agent_scratchpad.append(scratchpad)
|
||||
|
||||
# Accumulate to total usage
|
||||
round_usage_value = round_usage.get("usage")
|
||||
if round_usage_value:
|
||||
self._accumulate_usage(total_usage, round_usage_value)
|
||||
|
||||
# Update finish reason
|
||||
if chunk_finish_reason:
|
||||
finish_reason = chunk_finish_reason
|
||||
|
||||
# Check if we have an action to execute
|
||||
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
||||
react_state = True
|
||||
# Execute tool
|
||||
observation, tool_files = yield from self._handle_tool_call(
|
||||
scratchpad.action, current_messages, round_log
|
||||
)
|
||||
scratchpad.observation = observation
|
||||
# Track files produced by tools
|
||||
output_files.extend(tool_files)
|
||||
|
||||
# Add observation to scratchpad for display
|
||||
yield self._create_text_chunk(f"\nObservation: {observation}\n", current_messages)
|
||||
else:
|
||||
# Extract final answer
|
||||
if scratchpad.action and scratchpad.action.action_input:
|
||||
final_answer = scratchpad.action.action_input
|
||||
if isinstance(final_answer, dict):
|
||||
final_answer = json.dumps(final_answer, ensure_ascii=False)
|
||||
final_text = str(final_answer)
|
||||
elif scratchpad.thought:
|
||||
# If no action but we have thought, use thought as final answer
|
||||
final_text = scratchpad.thought
|
||||
|
||||
yield self._finish_log(
|
||||
round_log,
|
||||
data={
|
||||
"thought": scratchpad.thought,
|
||||
"action": scratchpad.action_str if scratchpad.action else None,
|
||||
"observation": scratchpad.observation or None,
|
||||
"final_answer": final_text if not react_state else None,
|
||||
},
|
||||
usage=round_usage.get("usage"),
|
||||
)
|
||||
iteration_step += 1
|
||||
|
||||
# Return final result
|
||||
|
||||
from core.agent.entities import AgentResult
|
||||
|
||||
return AgentResult(
|
||||
text=final_text, files=output_files, usage=total_usage.get("usage"), finish_reason=finish_reason
|
||||
)
|
||||
|
||||
def _build_prompt_with_react_format(
|
||||
self,
|
||||
original_messages: list[PromptMessage],
|
||||
agent_scratchpad: list[AgentScratchpadUnit],
|
||||
include_tools: bool = True,
|
||||
instruction: str = "",
|
||||
) -> list[PromptMessage]:
|
||||
"""Build prompt messages with ReAct format."""
|
||||
# Copy messages to avoid modifying original
|
||||
messages = list(original_messages)
|
||||
|
||||
# Find and update the system prompt that should already exist
|
||||
system_prompt_found = False
|
||||
for i, msg in enumerate(messages):
|
||||
if isinstance(msg, SystemPromptMessage):
|
||||
system_prompt_found = True
|
||||
# The system prompt from frontend already has the template, just replace placeholders
|
||||
|
||||
# Format tools
|
||||
tools_str = ""
|
||||
tool_names = []
|
||||
if include_tools and self.tools:
|
||||
# Convert tools to prompt message tools format
|
||||
prompt_tools = [tool.to_prompt_message_tool() for tool in self.tools]
|
||||
tool_names = [tool.name for tool in prompt_tools]
|
||||
|
||||
# Format tools as JSON for comprehensive information
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
tools_str = json.dumps(jsonable_encoder(prompt_tools), indent=2)
|
||||
tool_names_str = ", ".join(f'"{name}"' for name in tool_names)
|
||||
else:
|
||||
tools_str = "No tools available"
|
||||
tool_names_str = ""
|
||||
|
||||
# Replace placeholders in the existing system prompt
|
||||
updated_content = msg.content
|
||||
assert isinstance(updated_content, str)
|
||||
updated_content = updated_content.replace("{{instruction}}", instruction)
|
||||
updated_content = updated_content.replace("{{tools}}", tools_str)
|
||||
updated_content = updated_content.replace("{{tool_names}}", tool_names_str)
|
||||
|
||||
# Create new SystemPromptMessage with updated content
|
||||
messages[i] = SystemPromptMessage(content=updated_content)
|
||||
break
|
||||
|
||||
# If no system prompt found, that's unexpected but add scratchpad anyway
|
||||
if not system_prompt_found:
|
||||
# This shouldn't happen if frontend is working correctly
|
||||
pass
|
||||
|
||||
# Format agent scratchpad
|
||||
scratchpad_str = ""
|
||||
if agent_scratchpad:
|
||||
scratchpad_parts: list[str] = []
|
||||
for unit in agent_scratchpad:
|
||||
if unit.thought:
|
||||
scratchpad_parts.append(f"Thought: {unit.thought}")
|
||||
if unit.action_str:
|
||||
scratchpad_parts.append(f"Action:\n```\n{unit.action_str}\n```")
|
||||
if unit.observation:
|
||||
scratchpad_parts.append(f"Observation: {unit.observation}")
|
||||
scratchpad_str = "\n".join(scratchpad_parts)
|
||||
|
||||
# If there's a scratchpad, append it to the last message
|
||||
if scratchpad_str:
|
||||
messages.append(AssistantPromptMessage(content=scratchpad_str))
|
||||
|
||||
return messages
|
||||
|
||||
def _handle_chunks(
|
||||
self,
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
|
||||
llm_usage: dict[str, Any],
|
||||
model_log: AgentLog,
|
||||
current_messages: list[PromptMessage],
|
||||
) -> Generator[
|
||||
LLMResultChunk | AgentLog,
|
||||
None,
|
||||
tuple[AgentScratchpadUnit, str | None],
|
||||
]:
|
||||
"""Handle LLM response chunks and extract action/thought.
|
||||
|
||||
Returns a tuple of (scratchpad_unit, finish_reason).
|
||||
"""
|
||||
usage_dict: dict[str, Any] = {}
|
||||
|
||||
# Convert non-streaming to streaming format if needed
|
||||
if isinstance(chunks, LLMResult):
|
||||
# Create a generator from the LLMResult
|
||||
def result_to_chunks() -> Generator[LLMResultChunk, None, None]:
|
||||
yield LLMResultChunk(
|
||||
model=chunks.model,
|
||||
prompt_messages=chunks.prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=chunks.message,
|
||||
usage=chunks.usage,
|
||||
finish_reason=None, # LLMResult doesn't have finish_reason, only streaming chunks do
|
||||
),
|
||||
system_fingerprint=chunks.system_fingerprint or "",
|
||||
)
|
||||
|
||||
streaming_chunks = result_to_chunks()
|
||||
else:
|
||||
streaming_chunks = chunks
|
||||
|
||||
react_chunks = CotAgentOutputParser.handle_react_stream_output(streaming_chunks, usage_dict)
|
||||
|
||||
# Initialize scratchpad unit
|
||||
scratchpad = AgentScratchpadUnit(
|
||||
agent_response="",
|
||||
thought="",
|
||||
action_str="",
|
||||
observation="",
|
||||
action=None,
|
||||
)
|
||||
|
||||
finish_reason: str | None = None
|
||||
|
||||
# Process chunks
|
||||
for chunk in react_chunks:
|
||||
if isinstance(chunk, AgentScratchpadUnit.Action):
|
||||
# Action detected
|
||||
action_str = json.dumps(chunk.model_dump())
|
||||
scratchpad.agent_response = (scratchpad.agent_response or "") + action_str
|
||||
scratchpad.action_str = action_str
|
||||
scratchpad.action = chunk
|
||||
|
||||
yield self._create_text_chunk(json.dumps(chunk.model_dump()), current_messages)
|
||||
else:
|
||||
# Text chunk
|
||||
chunk_text = str(chunk)
|
||||
scratchpad.agent_response = (scratchpad.agent_response or "") + chunk_text
|
||||
scratchpad.thought = (scratchpad.thought or "") + chunk_text
|
||||
|
||||
yield self._create_text_chunk(chunk_text, current_messages)
|
||||
|
||||
# Update usage
|
||||
if usage_dict.get("usage"):
|
||||
if llm_usage.get("usage"):
|
||||
self._accumulate_usage(llm_usage, usage_dict["usage"])
|
||||
else:
|
||||
llm_usage["usage"] = usage_dict["usage"]
|
||||
|
||||
# Clean up thought
|
||||
scratchpad.thought = (scratchpad.thought or "").strip() or "I am thinking about how to help you"
|
||||
|
||||
# Finish model log
|
||||
yield self._finish_log(
|
||||
model_log,
|
||||
data={
|
||||
"thought": scratchpad.thought,
|
||||
"action": scratchpad.action_str if scratchpad.action else None,
|
||||
},
|
||||
usage=llm_usage.get("usage"),
|
||||
)
|
||||
|
||||
return scratchpad, finish_reason
|
||||
|
||||
def _handle_tool_call(
|
||||
self,
|
||||
action: AgentScratchpadUnit.Action,
|
||||
prompt_messages: list[PromptMessage],
|
||||
round_log: AgentLog,
|
||||
) -> Generator[AgentLog, None, tuple[str, list[File]]]:
|
||||
"""Handle tool call and return observation with files."""
|
||||
tool_name = action.action_name
|
||||
tool_args: dict[str, Any] | str = action.action_input
|
||||
|
||||
# Find tool instance first to get metadata
|
||||
tool_instance = self._find_tool_by_name(tool_name)
|
||||
tool_metadata = self._get_tool_metadata(tool_instance) if tool_instance else {}
|
||||
|
||||
# Start tool log with tool metadata
|
||||
tool_log = self._create_log(
|
||||
label=f"CALL {tool_name}",
|
||||
log_type=AgentLog.LogType.TOOL_CALL,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={
|
||||
"tool_name": tool_name,
|
||||
"tool_args": tool_args,
|
||||
},
|
||||
parent_id=round_log.id,
|
||||
extra_metadata=tool_metadata,
|
||||
)
|
||||
yield tool_log
|
||||
|
||||
if not tool_instance:
|
||||
# Finish tool log with error
|
||||
yield self._finish_log(
|
||||
tool_log,
|
||||
data={
|
||||
**tool_log.data,
|
||||
"error": f"Tool {tool_name} not found",
|
||||
},
|
||||
)
|
||||
return f"Tool {tool_name} not found", []
|
||||
|
||||
# Ensure tool_args is a dict
|
||||
tool_args_dict: dict[str, Any]
|
||||
if isinstance(tool_args, str):
|
||||
try:
|
||||
tool_args_dict = json.loads(tool_args)
|
||||
except json.JSONDecodeError:
|
||||
tool_args_dict = {"input": tool_args}
|
||||
elif not isinstance(tool_args, dict):
|
||||
tool_args_dict = {"input": str(tool_args)}
|
||||
else:
|
||||
tool_args_dict = tool_args
|
||||
|
||||
# Invoke tool using base class method with error handling
|
||||
try:
|
||||
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args_dict, tool_name)
|
||||
|
||||
# Finish tool log
|
||||
yield self._finish_log(
|
||||
tool_log,
|
||||
data={
|
||||
**tool_log.data,
|
||||
"output": response_content,
|
||||
"files": len(tool_files),
|
||||
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
|
||||
},
|
||||
)
|
||||
|
||||
return response_content or "Tool executed successfully", tool_files
|
||||
except Exception as e:
|
||||
# Tool invocation failed, yield error log
|
||||
error_message = str(e)
|
||||
tool_log.status = AgentLog.LogStatus.ERROR
|
||||
tool_log.error = error_message
|
||||
tool_log.data = {
|
||||
**tool_log.data,
|
||||
"error": error_message,
|
||||
}
|
||||
yield tool_log
|
||||
|
||||
return f"Tool execution failed: {error_message}", []
|
||||
@ -1,107 +0,0 @@
|
||||
"""Strategy factory for creating agent strategies."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from core.agent.entities import AgentEntity, ExecutionContext
|
||||
from core.file.models import File
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
|
||||
from .base import AgentPattern, ToolInvokeHook
|
||||
from .function_call import FunctionCallStrategy
|
||||
from .react import ReActStrategy
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.tools.__base.tool import Tool
|
||||
|
||||
|
||||
class StrategyFactory:
|
||||
"""Factory for creating agent strategies based on model features."""
|
||||
|
||||
# Tool calling related features
|
||||
TOOL_CALL_FEATURES = {ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL}
|
||||
|
||||
@staticmethod
|
||||
def create_strategy(
|
||||
model_features: list[ModelFeature],
|
||||
model_instance: ModelInstance,
|
||||
context: ExecutionContext,
|
||||
tools: list[Tool],
|
||||
files: list[File],
|
||||
max_iterations: int = 10,
|
||||
workflow_call_depth: int = 0,
|
||||
agent_strategy: AgentEntity.Strategy | None = None,
|
||||
tool_invoke_hook: ToolInvokeHook | None = None,
|
||||
instruction: str = "",
|
||||
) -> AgentPattern:
|
||||
"""
|
||||
Create an appropriate strategy based on model features.
|
||||
|
||||
Args:
|
||||
model_features: List of model features/capabilities
|
||||
model_instance: Model instance to use
|
||||
context: Execution context containing trace/audit information
|
||||
tools: Available tools
|
||||
files: Available files
|
||||
max_iterations: Maximum iterations for the strategy
|
||||
workflow_call_depth: Depth of workflow calls
|
||||
agent_strategy: Optional explicit strategy override
|
||||
tool_invoke_hook: Optional hook for custom tool invocation (e.g., agent_invoke)
|
||||
instruction: Optional instruction for ReAct strategy
|
||||
|
||||
Returns:
|
||||
AgentStrategy instance
|
||||
"""
|
||||
# If explicit strategy is provided and it's Function Calling, try to use it if supported
|
||||
if agent_strategy == AgentEntity.Strategy.FUNCTION_CALLING:
|
||||
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
|
||||
return FunctionCallStrategy(
|
||||
model_instance=model_instance,
|
||||
context=context,
|
||||
tools=tools,
|
||||
files=files,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
)
|
||||
# Fallback to ReAct if FC is requested but not supported
|
||||
|
||||
# If explicit strategy is Chain of Thought (ReAct)
|
||||
if agent_strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||
return ReActStrategy(
|
||||
model_instance=model_instance,
|
||||
context=context,
|
||||
tools=tools,
|
||||
files=files,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
instruction=instruction,
|
||||
)
|
||||
|
||||
# Default auto-selection logic
|
||||
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
|
||||
# Model supports native function calling
|
||||
return FunctionCallStrategy(
|
||||
model_instance=model_instance,
|
||||
context=context,
|
||||
tools=tools,
|
||||
files=files,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
)
|
||||
else:
|
||||
# Use ReAct strategy for models without function calling
|
||||
return ReActStrategy(
|
||||
model_instance=model_instance,
|
||||
context=context,
|
||||
tools=tools,
|
||||
files=files,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
instruction=instruction,
|
||||
)
|
||||
@ -24,13 +24,11 @@ from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
|
||||
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
|
||||
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom
|
||||
from core.app.entities.task_entities import ChatbotAppBlockingResponse, ChatbotAppStreamResponse
|
||||
from core.app.layers.sandbox_layer import SandboxLayer
|
||||
from core.helper.trace_id_helper import extract_external_trace_id_from_args
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.prompt.utils.get_thread_messages_length import get_thread_messages_length
|
||||
from core.repositories import DifyCoreRepositoryFactory
|
||||
from core.sandbox.storage.archive_storage import ArchiveSandboxStorage
|
||||
from core.workflow.repositories.draft_variable_repository import (
|
||||
DraftVariableSaverFactory,
|
||||
)
|
||||
@ -42,7 +40,6 @@ from factories import file_factory
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, App, Conversation, EndUser, Message, Workflow, WorkflowNodeExecutionTriggeredFrom
|
||||
from models.enums import WorkflowRunTriggeredFrom
|
||||
from models.workflow_features import WorkflowFeatures
|
||||
from services.conversation_service import ConversationService
|
||||
from services.workflow_draft_variable_service import (
|
||||
DraftVarLoader,
|
||||
@ -515,23 +512,6 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
if workflow is None:
|
||||
raise ValueError("Workflow not found")
|
||||
|
||||
graph_engine_layers: tuple = ()
|
||||
if workflow.get_feature(WorkflowFeatures.SANDBOX).enabled:
|
||||
if application_generate_entity.workflow_run_id is None:
|
||||
raise ValueError("workflow_run_id is required when sandbox is enabled")
|
||||
graph_engine_layers = (
|
||||
SandboxLayer(
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
workflow_version=workflow.version,
|
||||
sandbox_id=application_generate_entity.workflow_run_id,
|
||||
sandbox_storage=ArchiveSandboxStorage(
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
sandbox_id=application_generate_entity.workflow_run_id,
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
# Determine system_user_id based on invocation source
|
||||
is_external_api_call = application_generate_entity.invoke_from in {
|
||||
InvokeFrom.WEB_APP,
|
||||
@ -562,7 +542,6 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
app=app,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
graph_engine_layers=graph_engine_layers,
|
||||
)
|
||||
|
||||
try:
|
||||
|
||||
@ -4,7 +4,6 @@ import re
|
||||
import time
|
||||
from collections.abc import Callable, Generator, Mapping
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass, field
|
||||
from threading import Thread
|
||||
from typing import Any, Union
|
||||
|
||||
@ -20,7 +19,6 @@ from core.app.entities.app_invoke_entities import (
|
||||
InvokeFrom,
|
||||
)
|
||||
from core.app.entities.queue_entities import (
|
||||
ChunkType,
|
||||
MessageQueueMessage,
|
||||
QueueAdvancedChatMessageEndEvent,
|
||||
QueueAgentLogEvent,
|
||||
@ -72,122 +70,13 @@ from core.workflow.runtime import GraphRuntimeState
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account, Conversation, EndUser, LLMGenerationDetail, Message, MessageFile
|
||||
from models import Account, Conversation, EndUser, Message, MessageFile
|
||||
from models.enums import CreatorUserRole
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class StreamEventBuffer:
|
||||
"""
|
||||
Buffer for recording stream events in order to reconstruct the generation sequence.
|
||||
Records the exact order of text chunks, thoughts, and tool calls as they stream.
|
||||
"""
|
||||
|
||||
# Accumulated reasoning content (each thought block is a separate element)
|
||||
reasoning_content: list[str] = field(default_factory=list)
|
||||
# Current reasoning buffer (accumulates until we see a different event type)
|
||||
_current_reasoning: str = ""
|
||||
# Tool calls with their details
|
||||
tool_calls: list[dict] = field(default_factory=list)
|
||||
# Tool call ID to index mapping for updating results
|
||||
_tool_call_id_map: dict[str, int] = field(default_factory=dict)
|
||||
# Sequence of events in stream order
|
||||
sequence: list[dict] = field(default_factory=list)
|
||||
# Current position in answer text
|
||||
_content_position: int = 0
|
||||
# Track last event type to detect transitions
|
||||
_last_event_type: str | None = None
|
||||
|
||||
def _flush_current_reasoning(self) -> None:
|
||||
"""Flush accumulated reasoning to the list and add to sequence."""
|
||||
if self._current_reasoning.strip():
|
||||
self.reasoning_content.append(self._current_reasoning.strip())
|
||||
self.sequence.append({"type": "reasoning", "index": len(self.reasoning_content) - 1})
|
||||
self._current_reasoning = ""
|
||||
|
||||
def record_text_chunk(self, text: str) -> None:
|
||||
"""Record a text chunk event."""
|
||||
if not text:
|
||||
return
|
||||
|
||||
# Flush any pending reasoning first
|
||||
if self._last_event_type == "thought":
|
||||
self._flush_current_reasoning()
|
||||
|
||||
text_len = len(text)
|
||||
start_pos = self._content_position
|
||||
|
||||
# If last event was also content, extend it; otherwise create new
|
||||
if self.sequence and self.sequence[-1].get("type") == "content":
|
||||
self.sequence[-1]["end"] = start_pos + text_len
|
||||
else:
|
||||
self.sequence.append({"type": "content", "start": start_pos, "end": start_pos + text_len})
|
||||
|
||||
self._content_position += text_len
|
||||
self._last_event_type = "content"
|
||||
|
||||
def record_thought_chunk(self, text: str) -> None:
|
||||
"""Record a thought/reasoning chunk event."""
|
||||
if not text:
|
||||
return
|
||||
|
||||
# Accumulate thought content
|
||||
self._current_reasoning += text
|
||||
self._last_event_type = "thought"
|
||||
|
||||
def record_tool_call(self, tool_call_id: str, tool_name: str, tool_arguments: str) -> None:
|
||||
"""Record a tool call event."""
|
||||
if not tool_call_id:
|
||||
return
|
||||
|
||||
# Flush any pending reasoning first
|
||||
if self._last_event_type == "thought":
|
||||
self._flush_current_reasoning()
|
||||
|
||||
# Check if this tool call already exists (we might get multiple chunks)
|
||||
if tool_call_id in self._tool_call_id_map:
|
||||
idx = self._tool_call_id_map[tool_call_id]
|
||||
# Update arguments if provided
|
||||
if tool_arguments:
|
||||
self.tool_calls[idx]["arguments"] = tool_arguments
|
||||
else:
|
||||
# New tool call
|
||||
tool_call = {
|
||||
"id": tool_call_id or "",
|
||||
"name": tool_name or "",
|
||||
"arguments": tool_arguments or "",
|
||||
"result": "",
|
||||
"elapsed_time": None,
|
||||
}
|
||||
self.tool_calls.append(tool_call)
|
||||
idx = len(self.tool_calls) - 1
|
||||
self._tool_call_id_map[tool_call_id] = idx
|
||||
self.sequence.append({"type": "tool_call", "index": idx})
|
||||
|
||||
self._last_event_type = "tool_call"
|
||||
|
||||
def record_tool_result(self, tool_call_id: str, result: str, tool_elapsed_time: float | None = None) -> None:
|
||||
"""Record a tool result event (update existing tool call)."""
|
||||
if not tool_call_id:
|
||||
return
|
||||
if tool_call_id in self._tool_call_id_map:
|
||||
idx = self._tool_call_id_map[tool_call_id]
|
||||
self.tool_calls[idx]["result"] = result
|
||||
self.tool_calls[idx]["elapsed_time"] = tool_elapsed_time
|
||||
|
||||
def finalize(self) -> None:
|
||||
"""Finalize the buffer, flushing any pending data."""
|
||||
if self._last_event_type == "thought":
|
||||
self._flush_current_reasoning()
|
||||
|
||||
def has_data(self) -> bool:
|
||||
"""Check if there's any meaningful data recorded."""
|
||||
return bool(self.reasoning_content or self.tool_calls or self.sequence)
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
"""
|
||||
AdvancedChatAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
|
||||
@ -255,8 +144,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
self._workflow_run_id: str = ""
|
||||
self._draft_var_saver_factory = draft_var_saver_factory
|
||||
self._graph_runtime_state: GraphRuntimeState | None = None
|
||||
# Stream event buffer for recording generation sequence
|
||||
self._stream_buffer = StreamEventBuffer()
|
||||
self._seed_graph_runtime_state_from_queue_manager()
|
||||
|
||||
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
|
||||
@ -496,7 +383,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle text chunk events and record to stream buffer for sequence reconstruction."""
|
||||
"""Handle text chunk events."""
|
||||
delta_text = event.text
|
||||
if delta_text is None:
|
||||
return
|
||||
@ -518,52 +405,9 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
if tts_publisher and queue_message:
|
||||
tts_publisher.publish(queue_message)
|
||||
|
||||
tool_call = event.tool_call
|
||||
tool_result = event.tool_result
|
||||
tool_payload = tool_call or tool_result
|
||||
tool_call_id = tool_payload.id if tool_payload and tool_payload.id else ""
|
||||
tool_name = tool_payload.name if tool_payload and tool_payload.name else ""
|
||||
tool_arguments = tool_call.arguments if tool_call and tool_call.arguments else ""
|
||||
tool_files = tool_result.files if tool_result else []
|
||||
tool_elapsed_time = tool_result.elapsed_time if tool_result else None
|
||||
tool_icon = tool_payload.icon if tool_payload else None
|
||||
tool_icon_dark = tool_payload.icon_dark if tool_payload else None
|
||||
# Record stream event based on chunk type
|
||||
chunk_type = event.chunk_type or ChunkType.TEXT
|
||||
match chunk_type:
|
||||
case ChunkType.TEXT:
|
||||
self._stream_buffer.record_text_chunk(delta_text)
|
||||
self._task_state.answer += delta_text
|
||||
case ChunkType.THOUGHT:
|
||||
# Reasoning should not be part of final answer text
|
||||
self._stream_buffer.record_thought_chunk(delta_text)
|
||||
case ChunkType.TOOL_CALL:
|
||||
self._stream_buffer.record_tool_call(
|
||||
tool_call_id=tool_call_id,
|
||||
tool_name=tool_name,
|
||||
tool_arguments=tool_arguments,
|
||||
)
|
||||
case ChunkType.TOOL_RESULT:
|
||||
self._stream_buffer.record_tool_result(
|
||||
tool_call_id=tool_call_id,
|
||||
result=delta_text,
|
||||
tool_elapsed_time=tool_elapsed_time,
|
||||
)
|
||||
self._task_state.answer += delta_text
|
||||
case _:
|
||||
pass
|
||||
self._task_state.answer += delta_text
|
||||
yield self._message_cycle_manager.message_to_stream_response(
|
||||
answer=delta_text,
|
||||
message_id=self._message_id,
|
||||
from_variable_selector=event.from_variable_selector,
|
||||
chunk_type=event.chunk_type.value if event.chunk_type else None,
|
||||
tool_call_id=tool_call_id or None,
|
||||
tool_name=tool_name or None,
|
||||
tool_arguments=tool_arguments or None,
|
||||
tool_files=tool_files,
|
||||
tool_elapsed_time=tool_elapsed_time,
|
||||
tool_icon=tool_icon,
|
||||
tool_icon_dark=tool_icon_dark,
|
||||
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
|
||||
)
|
||||
|
||||
def _handle_iteration_start_event(
|
||||
@ -931,7 +775,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
|
||||
# If there are assistant files, remove markdown image links from answer
|
||||
answer_text = self._task_state.answer
|
||||
answer_text = self._strip_think_blocks(answer_text)
|
||||
if self._recorded_files:
|
||||
# Remove markdown image links since we're storing files separately
|
||||
answer_text = re.sub(r"!\[.*?\]\(.*?\)", "", answer_text).strip()
|
||||
@ -983,54 +826,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
]
|
||||
session.add_all(message_files)
|
||||
|
||||
# Save generation detail (reasoning/tool calls/sequence) from stream buffer
|
||||
self._save_generation_detail(session=session, message=message)
|
||||
|
||||
@staticmethod
|
||||
def _strip_think_blocks(text: str) -> str:
|
||||
"""Remove <think>...</think> blocks (including their content) from text."""
|
||||
if not text or "<think" not in text.lower():
|
||||
return text
|
||||
|
||||
clean_text = re.sub(r"<think[^>]*>.*?</think>", "", text, flags=re.IGNORECASE | re.DOTALL)
|
||||
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
|
||||
return clean_text
|
||||
|
||||
def _save_generation_detail(self, *, session: Session, message: Message) -> None:
|
||||
"""
|
||||
Save LLM generation detail for Chatflow using stream event buffer.
|
||||
The buffer records the exact order of events as they streamed,
|
||||
allowing accurate reconstruction of the generation sequence.
|
||||
"""
|
||||
# Finalize the stream buffer to flush any pending data
|
||||
self._stream_buffer.finalize()
|
||||
|
||||
# Only save if there's meaningful data
|
||||
if not self._stream_buffer.has_data():
|
||||
return
|
||||
|
||||
reasoning_content = self._stream_buffer.reasoning_content
|
||||
tool_calls = self._stream_buffer.tool_calls
|
||||
sequence = self._stream_buffer.sequence
|
||||
|
||||
# Check if generation detail already exists for this message
|
||||
existing = session.query(LLMGenerationDetail).filter_by(message_id=message.id).first()
|
||||
|
||||
if existing:
|
||||
existing.reasoning_content = json.dumps(reasoning_content) if reasoning_content else None
|
||||
existing.tool_calls = json.dumps(tool_calls) if tool_calls else None
|
||||
existing.sequence = json.dumps(sequence) if sequence else None
|
||||
else:
|
||||
generation_detail = LLMGenerationDetail(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
message_id=message.id,
|
||||
reasoning_content=json.dumps(reasoning_content) if reasoning_content else None,
|
||||
tool_calls=json.dumps(tool_calls) if tool_calls else None,
|
||||
sequence=json.dumps(sequence) if sequence else None,
|
||||
)
|
||||
session.add(generation_detail)
|
||||
|
||||
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
|
||||
"""Bootstrap the cached runtime state from the queue manager when present."""
|
||||
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
|
||||
@ -3,8 +3,10 @@ from typing import cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.agent.agent_app_runner import AgentAppRunner
|
||||
from core.agent.cot_chat_agent_runner import CotChatAgentRunner
|
||||
from core.agent.cot_completion_agent_runner import CotCompletionAgentRunner
|
||||
from core.agent.entities import AgentEntity
|
||||
from core.agent.fc_agent_runner import FunctionCallAgentRunner
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
@ -12,7 +14,8 @@ from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
|
||||
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.entities.llm_entities import LLMMode
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.moderation.base import ModerationError
|
||||
from extensions.ext_database import db
|
||||
@ -191,7 +194,22 @@ class AgentChatAppRunner(AppRunner):
|
||||
raise ValueError("Message not found")
|
||||
db.session.close()
|
||||
|
||||
runner = AgentAppRunner(
|
||||
runner_cls: type[FunctionCallAgentRunner] | type[CotChatAgentRunner] | type[CotCompletionAgentRunner]
|
||||
# start agent runner
|
||||
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||
# check LLM mode
|
||||
if model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT:
|
||||
runner_cls = CotChatAgentRunner
|
||||
elif model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.COMPLETION:
|
||||
runner_cls = CotCompletionAgentRunner
|
||||
else:
|
||||
raise ValueError(f"Invalid LLM mode: {model_schema.model_properties.get(ModelPropertyKey.MODE)}")
|
||||
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
|
||||
runner_cls = FunctionCallAgentRunner
|
||||
else:
|
||||
raise ValueError(f"Invalid agent strategy: {agent_entity.strategy}")
|
||||
|
||||
runner = runner_cls(
|
||||
tenant_id=app_config.tenant_id,
|
||||
application_generate_entity=application_generate_entity,
|
||||
conversation=conversation_result,
|
||||
|
||||
@ -671,7 +671,7 @@ class WorkflowResponseConverter:
|
||||
task_id=task_id,
|
||||
data=AgentLogStreamResponse.Data(
|
||||
node_execution_id=event.node_execution_id,
|
||||
message_id=event.id,
|
||||
id=event.id,
|
||||
parent_id=event.parent_id,
|
||||
label=event.label,
|
||||
error=event.error,
|
||||
|
||||
@ -8,7 +8,7 @@ from typing import Any, Literal, Union, overload
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
import contexts
|
||||
from configs import dify_config
|
||||
@ -23,13 +23,10 @@ from core.app.apps.workflow.generate_response_converter import WorkflowAppGenera
|
||||
from core.app.apps.workflow.generate_task_pipeline import WorkflowAppGenerateTaskPipeline
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
|
||||
from core.app.layers.sandbox_layer import SandboxLayer
|
||||
from core.db.session_factory import session_factory
|
||||
from core.helper.trace_id_helper import extract_external_trace_id_from_args
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.repositories import DifyCoreRepositoryFactory
|
||||
from core.sandbox.storage.archive_storage import ArchiveSandboxStorage
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
@ -40,7 +37,6 @@ from factories import file_factory
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, App, EndUser, Workflow, WorkflowNodeExecutionTriggeredFrom
|
||||
from models.enums import WorkflowRunTriggeredFrom
|
||||
from models.workflow_features import WorkflowFeatures
|
||||
from services.workflow_draft_variable_service import DraftVarLoader, WorkflowDraftVariableService
|
||||
|
||||
SKIP_PREPARE_USER_INPUTS_KEY = "_skip_prepare_user_inputs"
|
||||
@ -480,7 +476,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
:return:
|
||||
"""
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
with session_factory.create_session() as session:
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
workflow = session.scalar(
|
||||
select(Workflow).where(
|
||||
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
|
||||
@ -491,21 +487,6 @@ class WorkflowAppGenerator(BaseAppGenerator):
|
||||
if workflow is None:
|
||||
raise ValueError("Workflow not found")
|
||||
|
||||
if workflow.get_feature(WorkflowFeatures.SANDBOX).enabled:
|
||||
graph_engine_layers = (
|
||||
*graph_engine_layers,
|
||||
SandboxLayer(
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
workflow_version=workflow.version,
|
||||
sandbox_id=application_generate_entity.workflow_execution_id,
|
||||
sandbox_storage=ArchiveSandboxStorage(
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
sandbox_id=application_generate_entity.workflow_execution_id,
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
# Determine system_user_id based on invocation source
|
||||
is_external_api_call = application_generate_entity.invoke_from in {
|
||||
InvokeFrom.WEB_APP,
|
||||
|
||||
@ -13,7 +13,6 @@ from core.app.apps.common.workflow_response_converter import WorkflowResponseCon
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
ChunkType,
|
||||
MessageQueueMessage,
|
||||
QueueAgentLogEvent,
|
||||
QueueErrorEvent,
|
||||
@ -484,33 +483,11 @@ class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
if delta_text is None:
|
||||
return
|
||||
|
||||
tool_call = event.tool_call
|
||||
tool_result = event.tool_result
|
||||
tool_payload = tool_call or tool_result
|
||||
tool_call_id = tool_payload.id if tool_payload and tool_payload.id else None
|
||||
tool_name = tool_payload.name if tool_payload and tool_payload.name else None
|
||||
tool_arguments = tool_call.arguments if tool_call else None
|
||||
tool_elapsed_time = tool_result.elapsed_time if tool_result else None
|
||||
tool_files = tool_result.files if tool_result else []
|
||||
tool_icon = tool_payload.icon if tool_payload else None
|
||||
tool_icon_dark = tool_payload.icon_dark if tool_payload else None
|
||||
|
||||
# only publish tts message at text chunk streaming
|
||||
if tts_publisher and queue_message:
|
||||
tts_publisher.publish(queue_message)
|
||||
|
||||
yield self._text_chunk_to_stream_response(
|
||||
text=delta_text,
|
||||
from_variable_selector=event.from_variable_selector,
|
||||
chunk_type=event.chunk_type,
|
||||
tool_call_id=tool_call_id,
|
||||
tool_name=tool_name,
|
||||
tool_arguments=tool_arguments,
|
||||
tool_files=tool_files,
|
||||
tool_elapsed_time=tool_elapsed_time,
|
||||
tool_icon=tool_icon,
|
||||
tool_icon_dark=tool_icon_dark,
|
||||
)
|
||||
yield self._text_chunk_to_stream_response(delta_text, from_variable_selector=event.from_variable_selector)
|
||||
|
||||
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle agent log events."""
|
||||
@ -673,61 +650,16 @@ class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
session.add(workflow_app_log)
|
||||
|
||||
def _text_chunk_to_stream_response(
|
||||
self,
|
||||
text: str,
|
||||
from_variable_selector: list[str] | None = None,
|
||||
chunk_type: ChunkType | None = None,
|
||||
tool_call_id: str | None = None,
|
||||
tool_name: str | None = None,
|
||||
tool_arguments: str | None = None,
|
||||
tool_files: list[str] | None = None,
|
||||
tool_error: str | None = None,
|
||||
tool_elapsed_time: float | None = None,
|
||||
tool_icon: str | dict | None = None,
|
||||
tool_icon_dark: str | dict | None = None,
|
||||
self, text: str, from_variable_selector: list[str] | None = None
|
||||
) -> TextChunkStreamResponse:
|
||||
"""
|
||||
Handle completed event.
|
||||
:param text: text
|
||||
:return:
|
||||
"""
|
||||
from core.app.entities.task_entities import ChunkType as ResponseChunkType
|
||||
|
||||
response_chunk_type = ResponseChunkType(chunk_type.value) if chunk_type else ResponseChunkType.TEXT
|
||||
|
||||
data = TextChunkStreamResponse.Data(
|
||||
text=text,
|
||||
from_variable_selector=from_variable_selector,
|
||||
chunk_type=response_chunk_type,
|
||||
)
|
||||
|
||||
if response_chunk_type == ResponseChunkType.TOOL_CALL:
|
||||
data = data.model_copy(
|
||||
update={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_arguments": tool_arguments,
|
||||
"tool_icon": tool_icon,
|
||||
"tool_icon_dark": tool_icon_dark,
|
||||
}
|
||||
)
|
||||
elif response_chunk_type == ResponseChunkType.TOOL_RESULT:
|
||||
data = data.model_copy(
|
||||
update={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_arguments": tool_arguments,
|
||||
"tool_files": tool_files,
|
||||
"tool_error": tool_error,
|
||||
"tool_elapsed_time": tool_elapsed_time,
|
||||
"tool_icon": tool_icon,
|
||||
"tool_icon_dark": tool_icon_dark,
|
||||
}
|
||||
)
|
||||
|
||||
response = TextChunkStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
data=data,
|
||||
data=TextChunkStreamResponse.Data(text=text, from_variable_selector=from_variable_selector),
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
@ -463,20 +463,12 @@ class WorkflowBasedAppRunner:
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunStreamChunkEvent):
|
||||
from core.app.entities.queue_entities import ChunkType as QueueChunkType
|
||||
|
||||
if event.is_final and not event.chunk:
|
||||
return
|
||||
|
||||
self._publish_event(
|
||||
QueueTextChunkEvent(
|
||||
text=event.chunk,
|
||||
from_variable_selector=list(event.selector),
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
chunk_type=QueueChunkType(event.chunk_type.value),
|
||||
tool_call=event.tool_call,
|
||||
tool_result=event.tool_result,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunRetrieverResourceEvent):
|
||||
|
||||
@ -1,236 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections import defaultdict
|
||||
from collections.abc import Generator
|
||||
from enum import StrEnum
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class AssetNodeType(StrEnum):
|
||||
FILE = "file"
|
||||
FOLDER = "folder"
|
||||
|
||||
|
||||
class AppAssetNode(BaseModel):
|
||||
id: str = Field(description="Unique identifier for the node")
|
||||
node_type: AssetNodeType = Field(description="Type of node: file or folder")
|
||||
name: str = Field(description="Name of the file or folder")
|
||||
parent_id: str | None = Field(default=None, description="Parent folder ID, None for root level")
|
||||
order: int = Field(default=0, description="Sort order within parent folder, lower values first")
|
||||
extension: str = Field(default="", description="File extension without dot, empty for folders")
|
||||
size: int = Field(default=0, description="File size in bytes, 0 for folders")
|
||||
checksum: str = Field(default="", description="SHA-256 checksum of file content, empty for folders")
|
||||
|
||||
@classmethod
|
||||
def create_folder(cls, node_id: str, name: str, parent_id: str | None = None) -> AppAssetNode:
|
||||
return cls(id=node_id, node_type=AssetNodeType.FOLDER, name=name, parent_id=parent_id)
|
||||
|
||||
@classmethod
|
||||
def create_file(
|
||||
cls, node_id: str, name: str, parent_id: str | None = None, size: int = 0, checksum: str = ""
|
||||
) -> AppAssetNode:
|
||||
return cls(
|
||||
id=node_id,
|
||||
node_type=AssetNodeType.FILE,
|
||||
name=name,
|
||||
parent_id=parent_id,
|
||||
extension=name.rsplit(".", 1)[-1] if "." in name else "",
|
||||
size=size,
|
||||
checksum=checksum,
|
||||
)
|
||||
|
||||
|
||||
class AppAssetNodeView(BaseModel):
|
||||
id: str = Field(description="Unique identifier for the node")
|
||||
node_type: str = Field(description="Type of node: 'file' or 'folder'")
|
||||
name: str = Field(description="Name of the file or folder")
|
||||
path: str = Field(description="Full path from root, e.g. '/folder/file.txt'")
|
||||
extension: str = Field(default="", description="File extension without dot")
|
||||
size: int = Field(default=0, description="File size in bytes")
|
||||
checksum: str = Field(default="", description="SHA-256 checksum of file content")
|
||||
children: list[AppAssetNodeView] = Field(default_factory=list, description="Child nodes for folders")
|
||||
|
||||
|
||||
class TreeNodeNotFoundError(Exception):
|
||||
"""Tree internal: node not found"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class TreeParentNotFoundError(Exception):
|
||||
"""Tree internal: parent folder not found"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class TreePathConflictError(Exception):
|
||||
"""Tree internal: path already exists"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class AppAssetFileTree(BaseModel):
|
||||
"""
|
||||
File tree structure for app assets using adjacency list pattern.
|
||||
|
||||
Design:
|
||||
- Storage: Flat list with parent_id references (adjacency list)
|
||||
- Path: Computed dynamically via get_path(), not stored
|
||||
- Order: Integer field for user-defined sorting within each folder
|
||||
- API response: transform() builds nested tree with computed paths
|
||||
|
||||
Why adjacency list over nested tree or materialized path:
|
||||
- Simpler CRUD: move/rename only updates one node's parent_id
|
||||
- No path cascade: renaming parent doesn't require updating all descendants
|
||||
- JSON-friendly: flat list serializes cleanly to database JSON column
|
||||
- Trade-off: path lookup is O(depth), acceptable for typical file trees
|
||||
"""
|
||||
|
||||
nodes: list[AppAssetNode] = Field(default_factory=list, description="Flat list of all nodes in the tree")
|
||||
|
||||
def get(self, node_id: str) -> AppAssetNode | None:
|
||||
return next((n for n in self.nodes if n.id == node_id), None)
|
||||
|
||||
def get_children(self, parent_id: str | None) -> list[AppAssetNode]:
|
||||
return [n for n in self.nodes if n.parent_id == parent_id]
|
||||
|
||||
def has_child_named(self, parent_id: str | None, name: str) -> bool:
|
||||
return any(n.name == name and n.parent_id == parent_id for n in self.nodes)
|
||||
|
||||
def get_path(self, node_id: str) -> str:
|
||||
node = self.get(node_id)
|
||||
if not node:
|
||||
raise TreeNodeNotFoundError(node_id)
|
||||
parts: list[str] = []
|
||||
current: AppAssetNode | None = node
|
||||
while current:
|
||||
parts.append(current.name)
|
||||
current = self.get(current.parent_id) if current.parent_id else None
|
||||
return "/" + "/".join(reversed(parts))
|
||||
|
||||
def get_descendant_ids(self, node_id: str) -> list[str]:
|
||||
result: list[str] = []
|
||||
stack = [node_id]
|
||||
while stack:
|
||||
current_id = stack.pop()
|
||||
for child in self.nodes:
|
||||
if child.parent_id == current_id:
|
||||
result.append(child.id)
|
||||
stack.append(child.id)
|
||||
return result
|
||||
|
||||
def add(self, node: AppAssetNode) -> AppAssetNode:
|
||||
if self.get(node.id):
|
||||
raise TreePathConflictError(node.id)
|
||||
if self.has_child_named(node.parent_id, node.name):
|
||||
raise TreePathConflictError(node.name)
|
||||
if node.parent_id:
|
||||
parent = self.get(node.parent_id)
|
||||
if not parent or parent.node_type != AssetNodeType.FOLDER:
|
||||
raise TreeParentNotFoundError(node.parent_id)
|
||||
siblings = self.get_children(node.parent_id)
|
||||
node.order = max((s.order for s in siblings), default=-1) + 1
|
||||
self.nodes.append(node)
|
||||
return node
|
||||
|
||||
def update(self, node_id: str, size: int, checksum: str) -> AppAssetNode:
|
||||
node = self.get(node_id)
|
||||
if not node or node.node_type != AssetNodeType.FILE:
|
||||
raise TreeNodeNotFoundError(node_id)
|
||||
node.size = size
|
||||
node.checksum = checksum
|
||||
return node
|
||||
|
||||
def rename(self, node_id: str, new_name: str) -> AppAssetNode:
|
||||
node = self.get(node_id)
|
||||
if not node:
|
||||
raise TreeNodeNotFoundError(node_id)
|
||||
if node.name != new_name and self.has_child_named(node.parent_id, new_name):
|
||||
raise TreePathConflictError(new_name)
|
||||
node.name = new_name
|
||||
if node.node_type == AssetNodeType.FILE:
|
||||
node.extension = new_name.rsplit(".", 1)[-1] if "." in new_name else ""
|
||||
return node
|
||||
|
||||
def move(self, node_id: str, new_parent_id: str | None) -> AppAssetNode:
|
||||
node = self.get(node_id)
|
||||
if not node:
|
||||
raise TreeNodeNotFoundError(node_id)
|
||||
if new_parent_id:
|
||||
parent = self.get(new_parent_id)
|
||||
if not parent or parent.node_type != AssetNodeType.FOLDER:
|
||||
raise TreeParentNotFoundError(new_parent_id)
|
||||
if self.has_child_named(new_parent_id, node.name):
|
||||
raise TreePathConflictError(node.name)
|
||||
node.parent_id = new_parent_id
|
||||
siblings = self.get_children(new_parent_id)
|
||||
node.order = max((s.order for s in siblings if s.id != node_id), default=-1) + 1
|
||||
return node
|
||||
|
||||
def reorder(self, node_id: str, after_node_id: str | None) -> AppAssetNode:
|
||||
node = self.get(node_id)
|
||||
if not node:
|
||||
raise TreeNodeNotFoundError(node_id)
|
||||
|
||||
siblings = sorted(self.get_children(node.parent_id), key=lambda x: x.order)
|
||||
siblings = [s for s in siblings if s.id != node_id]
|
||||
|
||||
if after_node_id is None:
|
||||
insert_idx = 0
|
||||
else:
|
||||
after_node = self.get(after_node_id)
|
||||
if not after_node or after_node.parent_id != node.parent_id:
|
||||
raise TreeNodeNotFoundError(after_node_id)
|
||||
insert_idx = next((i for i, s in enumerate(siblings) if s.id == after_node_id), -1) + 1
|
||||
|
||||
siblings.insert(insert_idx, node)
|
||||
for idx, sibling in enumerate(siblings):
|
||||
sibling.order = idx
|
||||
|
||||
return node
|
||||
|
||||
def remove(self, node_id: str) -> list[str]:
|
||||
node = self.get(node_id)
|
||||
if not node:
|
||||
raise TreeNodeNotFoundError(node_id)
|
||||
ids_to_remove = [node_id] + self.get_descendant_ids(node_id)
|
||||
self.nodes = [n for n in self.nodes if n.id not in ids_to_remove]
|
||||
return ids_to_remove
|
||||
|
||||
def walk_files(self) -> Generator[AppAssetNode, None, None]:
|
||||
return (n for n in self.nodes if n.node_type == AssetNodeType.FILE)
|
||||
|
||||
def transform(self) -> list[AppAssetNodeView]:
|
||||
by_parent: dict[str | None, list[AppAssetNode]] = defaultdict(list)
|
||||
for n in self.nodes:
|
||||
by_parent[n.parent_id].append(n)
|
||||
|
||||
for children in by_parent.values():
|
||||
children.sort(key=lambda x: x.order)
|
||||
|
||||
paths: dict[str, str] = {}
|
||||
tree_views: dict[str, AppAssetNodeView] = {}
|
||||
|
||||
def build_view(node: AppAssetNode, parent_path: str) -> None:
|
||||
path = f"{parent_path}/{node.name}"
|
||||
paths[node.id] = path
|
||||
child_views: list[AppAssetNodeView] = []
|
||||
for child in by_parent.get(node.id, []):
|
||||
build_view(child, path)
|
||||
child_views.append(tree_views[child.id])
|
||||
tree_views[node.id] = AppAssetNodeView(
|
||||
id=node.id,
|
||||
node_type=node.node_type.value,
|
||||
name=node.name,
|
||||
path=path,
|
||||
extension=node.extension,
|
||||
size=node.size,
|
||||
checksum=node.checksum,
|
||||
children=child_views,
|
||||
)
|
||||
|
||||
for root_node in by_parent.get(None, []):
|
||||
build_view(root_node, "")
|
||||
|
||||
return [tree_views[n.id] for n in by_parent.get(None, [])]
|
||||
@ -36,9 +36,6 @@ class InvokeFrom(StrEnum):
|
||||
# this is used for plugin trigger and webhook trigger.
|
||||
TRIGGER = "trigger"
|
||||
|
||||
# AGENT indicates that this invocation is from an agent.
|
||||
AGENT = "agent"
|
||||
|
||||
# EXPLORE indicates that this invocation is from
|
||||
# the workflow (or chatflow) explore page.
|
||||
EXPLORE = "explore"
|
||||
|
||||
@ -1,70 +0,0 @@
|
||||
"""
|
||||
LLM Generation Detail entities.
|
||||
|
||||
Defines the structure for storing and transmitting LLM generation details
|
||||
including reasoning content, tool calls, and their sequence.
|
||||
"""
|
||||
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ContentSegment(BaseModel):
|
||||
"""Represents a content segment in the generation sequence."""
|
||||
|
||||
type: Literal["content"] = "content"
|
||||
start: int = Field(..., description="Start position in the text")
|
||||
end: int = Field(..., description="End position in the text")
|
||||
|
||||
|
||||
class ReasoningSegment(BaseModel):
|
||||
"""Represents a reasoning segment in the generation sequence."""
|
||||
|
||||
type: Literal["reasoning"] = "reasoning"
|
||||
index: int = Field(..., description="Index into reasoning_content array")
|
||||
|
||||
|
||||
class ToolCallSegment(BaseModel):
|
||||
"""Represents a tool call segment in the generation sequence."""
|
||||
|
||||
type: Literal["tool_call"] = "tool_call"
|
||||
index: int = Field(..., description="Index into tool_calls array")
|
||||
|
||||
|
||||
SequenceSegment = ContentSegment | ReasoningSegment | ToolCallSegment
|
||||
|
||||
|
||||
class ToolCallDetail(BaseModel):
|
||||
"""Represents a tool call with its arguments and result."""
|
||||
|
||||
id: str = Field(default="", description="Unique identifier for the tool call")
|
||||
name: str = Field(..., description="Name of the tool")
|
||||
arguments: str = Field(default="", description="JSON string of tool arguments")
|
||||
result: str = Field(default="", description="Result from the tool execution")
|
||||
elapsed_time: float | None = Field(default=None, description="Elapsed time in seconds")
|
||||
|
||||
|
||||
class LLMGenerationDetailData(BaseModel):
|
||||
"""
|
||||
Domain model for LLM generation detail.
|
||||
|
||||
Contains the structured data for reasoning content, tool calls,
|
||||
and their display sequence.
|
||||
"""
|
||||
|
||||
reasoning_content: list[str] = Field(default_factory=list, description="List of reasoning segments")
|
||||
tool_calls: list[ToolCallDetail] = Field(default_factory=list, description="List of tool call details")
|
||||
sequence: list[SequenceSegment] = Field(default_factory=list, description="Display order of segments")
|
||||
|
||||
def is_empty(self) -> bool:
|
||||
"""Check if there's any meaningful generation detail."""
|
||||
return not self.reasoning_content and not self.tool_calls
|
||||
|
||||
def to_response_dict(self) -> dict:
|
||||
"""Convert to dictionary for API response."""
|
||||
return {
|
||||
"reasoning_content": self.reasoning_content,
|
||||
"tool_calls": [tc.model_dump() for tc in self.tool_calls],
|
||||
"sequence": [seg.model_dump() for seg in self.sequence],
|
||||
}
|
||||
@ -7,7 +7,7 @@ from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.workflow.entities import AgentNodeStrategyInit, ToolCall, ToolResult
|
||||
from core.workflow.entities import AgentNodeStrategyInit
|
||||
from core.workflow.enums import WorkflowNodeExecutionMetadataKey
|
||||
from core.workflow.nodes import NodeType
|
||||
|
||||
@ -177,17 +177,6 @@ class QueueLoopCompletedEvent(AppQueueEvent):
|
||||
error: str | None = None
|
||||
|
||||
|
||||
class ChunkType(StrEnum):
|
||||
"""Stream chunk type for LLM-related events."""
|
||||
|
||||
TEXT = "text" # Normal text streaming
|
||||
TOOL_CALL = "tool_call" # Tool call arguments streaming
|
||||
TOOL_RESULT = "tool_result" # Tool execution result
|
||||
THOUGHT = "thought" # Agent thinking process (ReAct)
|
||||
THOUGHT_START = "thought_start" # Agent thought start
|
||||
THOUGHT_END = "thought_end" # Agent thought end
|
||||
|
||||
|
||||
class QueueTextChunkEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueTextChunkEvent entity
|
||||
@ -202,16 +191,6 @@ class QueueTextChunkEvent(AppQueueEvent):
|
||||
in_loop_id: str | None = None
|
||||
"""loop id if node is in loop"""
|
||||
|
||||
# Extended fields for Agent/Tool streaming
|
||||
chunk_type: ChunkType = ChunkType.TEXT
|
||||
"""type of the chunk"""
|
||||
|
||||
# Tool streaming payloads
|
||||
tool_call: ToolCall | None = None
|
||||
"""structured tool call info"""
|
||||
tool_result: ToolResult | None = None
|
||||
"""structured tool result info"""
|
||||
|
||||
|
||||
class QueueAgentMessageEvent(AppQueueEvent):
|
||||
"""
|
||||
|
||||
@ -113,38 +113,6 @@ class MessageStreamResponse(StreamResponse):
|
||||
answer: str
|
||||
from_variable_selector: list[str] | None = None
|
||||
|
||||
# Extended fields for Agent/Tool streaming (imported at runtime to avoid circular import)
|
||||
chunk_type: str | None = None
|
||||
"""type of the chunk: text, tool_call, tool_result, thought"""
|
||||
|
||||
# Tool call fields (when chunk_type == "tool_call")
|
||||
tool_call_id: str | None = None
|
||||
"""unique identifier for this tool call"""
|
||||
tool_name: str | None = None
|
||||
"""name of the tool being called"""
|
||||
tool_arguments: str | None = None
|
||||
"""accumulated tool arguments JSON"""
|
||||
|
||||
# Tool result fields (when chunk_type == "tool_result")
|
||||
tool_files: list[str] | None = None
|
||||
"""file IDs produced by tool"""
|
||||
tool_error: str | None = None
|
||||
"""error message if tool failed"""
|
||||
tool_elapsed_time: float | None = None
|
||||
"""elapsed time spent executing the tool"""
|
||||
tool_icon: str | dict | None = None
|
||||
"""icon of the tool"""
|
||||
tool_icon_dark: str | dict | None = None
|
||||
"""dark theme icon of the tool"""
|
||||
|
||||
def model_dump(self, *args, **kwargs) -> dict[str, object]:
|
||||
kwargs.setdefault("exclude_none", True)
|
||||
return super().model_dump(*args, **kwargs)
|
||||
|
||||
def model_dump_json(self, *args, **kwargs) -> str:
|
||||
kwargs.setdefault("exclude_none", True)
|
||||
return super().model_dump_json(*args, **kwargs)
|
||||
|
||||
|
||||
class MessageAudioStreamResponse(StreamResponse):
|
||||
"""
|
||||
@ -614,17 +582,6 @@ class LoopNodeCompletedStreamResponse(StreamResponse):
|
||||
data: Data
|
||||
|
||||
|
||||
class ChunkType(StrEnum):
|
||||
"""Stream chunk type for LLM-related events."""
|
||||
|
||||
TEXT = "text" # Normal text streaming
|
||||
TOOL_CALL = "tool_call" # Tool call arguments streaming
|
||||
TOOL_RESULT = "tool_result" # Tool execution result
|
||||
THOUGHT = "thought" # Agent thinking process (ReAct)
|
||||
THOUGHT_START = "thought_start" # Agent thought start
|
||||
THOUGHT_END = "thought_end" # Agent thought end
|
||||
|
||||
|
||||
class TextChunkStreamResponse(StreamResponse):
|
||||
"""
|
||||
TextChunkStreamResponse entity
|
||||
@ -638,36 +595,6 @@ class TextChunkStreamResponse(StreamResponse):
|
||||
text: str
|
||||
from_variable_selector: list[str] | None = None
|
||||
|
||||
# Extended fields for Agent/Tool streaming
|
||||
chunk_type: ChunkType = ChunkType.TEXT
|
||||
"""type of the chunk"""
|
||||
|
||||
# Tool call fields (when chunk_type == TOOL_CALL)
|
||||
tool_call_id: str | None = None
|
||||
"""unique identifier for this tool call"""
|
||||
tool_name: str | None = None
|
||||
"""name of the tool being called"""
|
||||
tool_arguments: str | None = None
|
||||
"""accumulated tool arguments JSON"""
|
||||
|
||||
# Tool result fields (when chunk_type == TOOL_RESULT)
|
||||
tool_files: list[str] | None = None
|
||||
"""file IDs produced by tool"""
|
||||
tool_error: str | None = None
|
||||
"""error message if tool failed"""
|
||||
|
||||
# Tool elapsed time fields (when chunk_type == TOOL_RESULT)
|
||||
tool_elapsed_time: float | None = None
|
||||
"""elapsed time spent executing the tool"""
|
||||
|
||||
def model_dump(self, *args, **kwargs) -> dict[str, object]:
|
||||
kwargs.setdefault("exclude_none", True)
|
||||
return super().model_dump(*args, **kwargs)
|
||||
|
||||
def model_dump_json(self, *args, **kwargs) -> str:
|
||||
kwargs.setdefault("exclude_none", True)
|
||||
return super().model_dump_json(*args, **kwargs)
|
||||
|
||||
event: StreamEvent = StreamEvent.TEXT_CHUNK
|
||||
data: Data
|
||||
|
||||
@ -816,7 +743,7 @@ class AgentLogStreamResponse(StreamResponse):
|
||||
"""
|
||||
|
||||
node_execution_id: str
|
||||
message_id: str
|
||||
id: str
|
||||
label: str
|
||||
parent_id: str | None = None
|
||||
error: str | None = None
|
||||
|
||||
@ -1,119 +0,0 @@
|
||||
import logging
|
||||
|
||||
from core.sandbox import AppAssetsInitializer, DifyCliInitializer, SandboxManager
|
||||
from core.sandbox.storage.sandbox_storage import SandboxStorage
|
||||
from core.virtual_environment.__base.virtual_environment import VirtualEnvironment
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.graph_events.base import GraphEngineEvent
|
||||
from core.workflow.graph_events.graph import GraphRunPausedEvent
|
||||
from models.workflow import Workflow
|
||||
from services.app_asset_service import AppAssetService
|
||||
from services.sandbox.sandbox_provider_service import SandboxProviderService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SandboxInitializationError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class SandboxLayer(GraphEngineLayer):
|
||||
def __init__(
|
||||
self,
|
||||
tenant_id: str,
|
||||
app_id: str,
|
||||
workflow_version: str,
|
||||
sandbox_id: str,
|
||||
sandbox_storage: SandboxStorage,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self._tenant_id = tenant_id
|
||||
self._app_id = app_id
|
||||
self._workflow_version = workflow_version
|
||||
self._sandbox_id = sandbox_id
|
||||
self._sandbox_storage = sandbox_storage
|
||||
|
||||
@property
|
||||
def sandbox(self) -> VirtualEnvironment:
|
||||
sandbox = SandboxManager.get(self._sandbox_id)
|
||||
if sandbox is None:
|
||||
raise RuntimeError(f"Sandbox not found or not initialized for sandbox_id={self._sandbox_id}")
|
||||
return sandbox
|
||||
|
||||
def on_graph_start(self) -> None:
|
||||
try:
|
||||
is_draft = self._workflow_version == Workflow.VERSION_DRAFT
|
||||
assets = AppAssetService.get_assets(self._tenant_id, self._app_id, is_draft=is_draft)
|
||||
if not assets:
|
||||
raise ValueError(
|
||||
f"No assets found for tid={self._tenant_id}, app_id={self._app_id}, wf={self._workflow_version}"
|
||||
)
|
||||
if is_draft:
|
||||
logger.info(
|
||||
"Building draft assets for tenant_id=%s, app_id=%s, workflow_version=%s, assets_id=%s",
|
||||
self._tenant_id,
|
||||
self._app_id,
|
||||
self._workflow_version,
|
||||
assets.id,
|
||||
)
|
||||
AppAssetService.build_assets(self._tenant_id, self._app_id, assets)
|
||||
|
||||
logger.info(
|
||||
"Initializing sandbox for tenant_id=%s, app_id=%s, workflow_version=%s, assets_id=%s",
|
||||
self._tenant_id,
|
||||
self._app_id,
|
||||
self._workflow_version,
|
||||
assets.id,
|
||||
)
|
||||
|
||||
builder = (
|
||||
SandboxProviderService.create_sandbox_builder(self._tenant_id)
|
||||
.initializer(AppAssetsInitializer(self._tenant_id, self._app_id, assets.id))
|
||||
.initializer(DifyCliInitializer(self._tenant_id, self._app_id, assets.id))
|
||||
)
|
||||
sandbox = builder.build()
|
||||
|
||||
SandboxManager.register(self._sandbox_id, sandbox)
|
||||
logger.info(
|
||||
"Sandbox initialized, workflow_execution_id=%s, sandbox_id=%s, sandbox_arch=%s",
|
||||
self._sandbox_id,
|
||||
sandbox.metadata.id,
|
||||
sandbox.metadata.arch,
|
||||
)
|
||||
|
||||
# Check if sandbox is initialized
|
||||
if self._sandbox_storage.mount(sandbox):
|
||||
logger.info("Sandbox files restored, sandbox_id=%s", self._sandbox_id)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to initialize sandbox")
|
||||
raise SandboxInitializationError(f"Failed to initialize sandbox: {e}") from e
|
||||
|
||||
def on_event(self, event: GraphEngineEvent) -> None:
|
||||
# TODO: handle graph run paused event
|
||||
if not isinstance(event, GraphRunPausedEvent):
|
||||
return
|
||||
|
||||
def on_graph_end(self, error: Exception | None) -> None:
|
||||
sandbox = SandboxManager.unregister(self._sandbox_id)
|
||||
if sandbox is None:
|
||||
logger.debug("No sandbox to release for sandbox_id=%s", self._sandbox_id)
|
||||
return
|
||||
|
||||
sandbox_id = sandbox.metadata.id
|
||||
logger.info(
|
||||
"Releasing sandbox, workflow_execution_id=%s, sandbox_id=%s",
|
||||
self._sandbox_id,
|
||||
sandbox_id,
|
||||
)
|
||||
|
||||
try:
|
||||
self._sandbox_storage.unmount(sandbox)
|
||||
logger.info("Sandbox files persisted, sandbox_id=%s", self._sandbox_id)
|
||||
except Exception:
|
||||
logger.exception("Failed to persist sandbox files, sandbox_id=%s", self._sandbox_id)
|
||||
|
||||
try:
|
||||
sandbox.release_environment()
|
||||
logger.info("Sandbox released, sandbox_id=%s", sandbox_id)
|
||||
except Exception:
|
||||
logger.exception("Failed to release sandbox, sandbox_id=%s", sandbox_id)
|
||||
@ -1,5 +1,4 @@
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
from threading import Thread
|
||||
@ -59,7 +58,7 @@ from core.prompt.utils.prompt_template_parser import PromptTemplateParser
|
||||
from events.message_event import message_was_created
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models.model import AppMode, Conversation, LLMGenerationDetail, Message, MessageAgentThought
|
||||
from models.model import AppMode, Conversation, Message, MessageAgentThought
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -69,8 +68,6 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
|
||||
EasyUIBasedGenerateTaskPipeline is a class that generate stream output and state management for Application.
|
||||
"""
|
||||
|
||||
_THINK_PATTERN = re.compile(r"<think[^>]*>(.*?)</think>", re.IGNORECASE | re.DOTALL)
|
||||
|
||||
_task_state: EasyUITaskState
|
||||
_application_generate_entity: Union[ChatAppGenerateEntity, CompletionAppGenerateEntity, AgentChatAppGenerateEntity]
|
||||
|
||||
@ -412,136 +409,11 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
|
||||
)
|
||||
)
|
||||
|
||||
# Save LLM generation detail if there's reasoning_content
|
||||
self._save_generation_detail(session=session, message=message, llm_result=llm_result)
|
||||
|
||||
message_was_created.send(
|
||||
message,
|
||||
application_generate_entity=self._application_generate_entity,
|
||||
)
|
||||
|
||||
def _save_generation_detail(self, *, session: Session, message: Message, llm_result: LLMResult) -> None:
|
||||
"""
|
||||
Save LLM generation detail for Completion/Chat/Agent-Chat applications.
|
||||
For Agent-Chat, also merges MessageAgentThought records.
|
||||
"""
|
||||
import json
|
||||
|
||||
reasoning_list: list[str] = []
|
||||
tool_calls_list: list[dict] = []
|
||||
sequence: list[dict] = []
|
||||
answer = message.answer or ""
|
||||
|
||||
# Check if this is Agent-Chat mode by looking for agent thoughts
|
||||
agent_thoughts = (
|
||||
session.query(MessageAgentThought)
|
||||
.filter_by(message_id=message.id)
|
||||
.order_by(MessageAgentThought.position.asc())
|
||||
.all()
|
||||
)
|
||||
|
||||
if agent_thoughts:
|
||||
# Agent-Chat mode: merge MessageAgentThought records
|
||||
content_pos = 0
|
||||
cleaned_answer_parts: list[str] = []
|
||||
for thought in agent_thoughts:
|
||||
# Add thought/reasoning
|
||||
if thought.thought:
|
||||
reasoning_text = thought.thought
|
||||
if "<think" in reasoning_text.lower():
|
||||
clean_text, extracted_reasoning = self._split_reasoning_from_answer(reasoning_text)
|
||||
if extracted_reasoning:
|
||||
reasoning_text = extracted_reasoning
|
||||
thought.thought = clean_text or extracted_reasoning
|
||||
reasoning_list.append(reasoning_text)
|
||||
sequence.append({"type": "reasoning", "index": len(reasoning_list) - 1})
|
||||
|
||||
# Add tool calls
|
||||
if thought.tool:
|
||||
tool_calls_list.append(
|
||||
{
|
||||
"name": thought.tool,
|
||||
"arguments": thought.tool_input or "",
|
||||
"result": thought.observation or "",
|
||||
}
|
||||
)
|
||||
sequence.append({"type": "tool_call", "index": len(tool_calls_list) - 1})
|
||||
|
||||
# Add answer content if present
|
||||
if thought.answer:
|
||||
content_text = thought.answer
|
||||
if "<think" in content_text.lower():
|
||||
clean_answer, extracted_reasoning = self._split_reasoning_from_answer(content_text)
|
||||
if extracted_reasoning:
|
||||
reasoning_list.append(extracted_reasoning)
|
||||
sequence.append({"type": "reasoning", "index": len(reasoning_list) - 1})
|
||||
content_text = clean_answer
|
||||
thought.answer = clean_answer or content_text
|
||||
|
||||
if content_text:
|
||||
start = content_pos
|
||||
end = content_pos + len(content_text)
|
||||
sequence.append({"type": "content", "start": start, "end": end})
|
||||
content_pos = end
|
||||
cleaned_answer_parts.append(content_text)
|
||||
|
||||
if cleaned_answer_parts:
|
||||
merged_answer = "".join(cleaned_answer_parts)
|
||||
message.answer = merged_answer
|
||||
llm_result.message.content = merged_answer
|
||||
else:
|
||||
# Completion/Chat mode: use reasoning_content from llm_result
|
||||
reasoning_content = llm_result.reasoning_content
|
||||
if not reasoning_content and answer:
|
||||
# Extract reasoning from <think> blocks and clean the final answer
|
||||
clean_answer, reasoning_content = self._split_reasoning_from_answer(answer)
|
||||
if reasoning_content:
|
||||
answer = clean_answer
|
||||
llm_result.message.content = clean_answer
|
||||
llm_result.reasoning_content = reasoning_content
|
||||
message.answer = clean_answer
|
||||
if reasoning_content:
|
||||
reasoning_list = [reasoning_content]
|
||||
# Content comes first, then reasoning
|
||||
if answer:
|
||||
sequence.append({"type": "content", "start": 0, "end": len(answer)})
|
||||
sequence.append({"type": "reasoning", "index": 0})
|
||||
|
||||
# Only save if there's meaningful generation detail
|
||||
if not reasoning_list and not tool_calls_list:
|
||||
return
|
||||
|
||||
# Check if generation detail already exists
|
||||
existing = session.query(LLMGenerationDetail).filter_by(message_id=message.id).first()
|
||||
|
||||
if existing:
|
||||
existing.reasoning_content = json.dumps(reasoning_list) if reasoning_list else None
|
||||
existing.tool_calls = json.dumps(tool_calls_list) if tool_calls_list else None
|
||||
existing.sequence = json.dumps(sequence) if sequence else None
|
||||
else:
|
||||
generation_detail = LLMGenerationDetail(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
message_id=message.id,
|
||||
reasoning_content=json.dumps(reasoning_list) if reasoning_list else None,
|
||||
tool_calls=json.dumps(tool_calls_list) if tool_calls_list else None,
|
||||
sequence=json.dumps(sequence) if sequence else None,
|
||||
)
|
||||
session.add(generation_detail)
|
||||
|
||||
@classmethod
|
||||
def _split_reasoning_from_answer(cls, text: str) -> tuple[str, str]:
|
||||
"""
|
||||
Extract reasoning segments from <think> blocks and return (clean_text, reasoning).
|
||||
"""
|
||||
matches = cls._THINK_PATTERN.findall(text)
|
||||
reasoning_content = "\n".join(match.strip() for match in matches) if matches else ""
|
||||
|
||||
clean_text = cls._THINK_PATTERN.sub("", text)
|
||||
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
|
||||
|
||||
return clean_text, reasoning_content or ""
|
||||
|
||||
def _handle_stop(self, event: QueueStopEvent):
|
||||
"""
|
||||
Handle stop.
|
||||
|
||||
@ -232,31 +232,15 @@ class MessageCycleManager:
|
||||
answer: str,
|
||||
message_id: str,
|
||||
from_variable_selector: list[str] | None = None,
|
||||
chunk_type: str | None = None,
|
||||
tool_call_id: str | None = None,
|
||||
tool_name: str | None = None,
|
||||
tool_arguments: str | None = None,
|
||||
tool_files: list[str] | None = None,
|
||||
tool_error: str | None = None,
|
||||
tool_elapsed_time: float | None = None,
|
||||
tool_icon: str | dict | None = None,
|
||||
tool_icon_dark: str | dict | None = None,
|
||||
event_type: StreamEvent | None = None,
|
||||
) -> MessageStreamResponse:
|
||||
"""
|
||||
Message to stream response.
|
||||
:param answer: answer
|
||||
:param message_id: message id
|
||||
:param from_variable_selector: from variable selector
|
||||
:param chunk_type: type of the chunk (text, function_call, tool_result, thought)
|
||||
:param tool_call_id: unique identifier for this tool call
|
||||
:param tool_name: name of the tool being called
|
||||
:param tool_arguments: accumulated tool arguments JSON
|
||||
:param tool_files: file IDs produced by tool
|
||||
:param tool_error: error message if tool failed
|
||||
:return:
|
||||
"""
|
||||
response = MessageStreamResponse(
|
||||
return MessageStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
id=message_id,
|
||||
answer=answer,
|
||||
@ -264,35 +248,6 @@ class MessageCycleManager:
|
||||
event=event_type or StreamEvent.MESSAGE,
|
||||
)
|
||||
|
||||
if chunk_type:
|
||||
response = response.model_copy(update={"chunk_type": chunk_type})
|
||||
|
||||
if chunk_type == "tool_call":
|
||||
response = response.model_copy(
|
||||
update={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_arguments": tool_arguments,
|
||||
"tool_icon": tool_icon,
|
||||
"tool_icon_dark": tool_icon_dark,
|
||||
}
|
||||
)
|
||||
elif chunk_type == "tool_result":
|
||||
response = response.model_copy(
|
||||
update={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_arguments": tool_arguments,
|
||||
"tool_files": tool_files,
|
||||
"tool_error": tool_error,
|
||||
"tool_elapsed_time": tool_elapsed_time,
|
||||
"tool_icon": tool_icon,
|
||||
"tool_icon_dark": tool_icon_dark,
|
||||
}
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
def message_replace_to_stream_response(self, answer: str, reason: str = "") -> MessageReplaceStreamResponse:
|
||||
"""
|
||||
Message replace to stream response.
|
||||
|
||||
@ -1,35 +0,0 @@
|
||||
from .entities import (
|
||||
AssetItem,
|
||||
FileAsset,
|
||||
FileReference,
|
||||
SkillAsset,
|
||||
SkillMetadata,
|
||||
ToolConfiguration,
|
||||
ToolDefinition,
|
||||
ToolFieldConfig,
|
||||
ToolReference,
|
||||
ToolType,
|
||||
)
|
||||
from .packager import AssetPackager, ZipPackager
|
||||
from .parser import AssetItemParser, AssetParser, FileAssetParser, SkillAssetParser
|
||||
from .paths import AssetPaths
|
||||
|
||||
__all__ = [
|
||||
"AssetItem",
|
||||
"AssetItemParser",
|
||||
"AssetPackager",
|
||||
"AssetParser",
|
||||
"AssetPaths",
|
||||
"FileAsset",
|
||||
"FileAssetParser",
|
||||
"FileReference",
|
||||
"SkillAsset",
|
||||
"SkillAssetParser",
|
||||
"SkillMetadata",
|
||||
"ToolConfiguration",
|
||||
"ToolDefinition",
|
||||
"ToolFieldConfig",
|
||||
"ToolReference",
|
||||
"ToolType",
|
||||
"ZipPackager",
|
||||
]
|
||||
@ -1,24 +0,0 @@
|
||||
from .assets import AssetItem, FileAsset
|
||||
from .skill import (
|
||||
FileReference,
|
||||
SkillAsset,
|
||||
SkillMetadata,
|
||||
ToolConfiguration,
|
||||
ToolDefinition,
|
||||
ToolFieldConfig,
|
||||
ToolReference,
|
||||
ToolType,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"AssetItem",
|
||||
"FileAsset",
|
||||
"FileReference",
|
||||
"SkillAsset",
|
||||
"SkillMetadata",
|
||||
"ToolConfiguration",
|
||||
"ToolDefinition",
|
||||
"ToolFieldConfig",
|
||||
"ToolReference",
|
||||
"ToolType",
|
||||
]
|
||||
@ -1,22 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class AssetItem(ABC):
|
||||
node_id: str
|
||||
path: str
|
||||
file_name: str
|
||||
extension: str
|
||||
|
||||
@abstractmethod
|
||||
def get_storage_key(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@dataclass
|
||||
class FileAsset(AssetItem):
|
||||
storage_key: str
|
||||
|
||||
def get_storage_key(self) -> str:
|
||||
return self.storage_key
|
||||
@ -1,68 +0,0 @@
|
||||
from dataclasses import dataclass, field
|
||||
from enum import StrEnum
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from .assets import AssetItem
|
||||
|
||||
|
||||
class ToolType(StrEnum):
|
||||
MCP = "mcp"
|
||||
BUILTIN = "builtin"
|
||||
|
||||
|
||||
class ToolFieldConfig(BaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
id: str
|
||||
value: Any
|
||||
auto: bool = False
|
||||
|
||||
|
||||
class ToolConfiguration(BaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
fields: list[ToolFieldConfig] = Field(default_factory=list)
|
||||
|
||||
|
||||
class ToolDefinition(BaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
type: ToolType
|
||||
credential_id: str | None = None
|
||||
configuration: ToolConfiguration = Field(default_factory=ToolConfiguration)
|
||||
|
||||
|
||||
class ToolReference(BaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
provider: str
|
||||
tool_name: str
|
||||
uuid: str
|
||||
raw: str
|
||||
|
||||
|
||||
class FileReference(BaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
source: str
|
||||
uuid: str
|
||||
raw: str
|
||||
|
||||
|
||||
class SkillMetadata(BaseModel):
|
||||
model_config = ConfigDict(extra="allow")
|
||||
|
||||
tools: dict[str, ToolDefinition] = Field(default_factory=dict)
|
||||
|
||||
|
||||
@dataclass
|
||||
class SkillAsset(AssetItem):
|
||||
storage_key: str
|
||||
metadata: SkillMetadata
|
||||
tool_references: list[ToolReference] = field(default_factory=list)
|
||||
file_references: list[FileReference] = field(default_factory=list)
|
||||
|
||||
def get_storage_key(self) -> str:
|
||||
return self.storage_key
|
||||
@ -1,7 +0,0 @@
|
||||
from .base import AssetPackager
|
||||
from .zip_packager import ZipPackager
|
||||
|
||||
__all__ = [
|
||||
"AssetPackager",
|
||||
"ZipPackager",
|
||||
]
|
||||
@ -1,9 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from core.app_assets.entities import AssetItem
|
||||
|
||||
|
||||
class AssetPackager(ABC):
|
||||
@abstractmethod
|
||||
def package(self, assets: list[AssetItem]) -> bytes:
|
||||
raise NotImplementedError
|
||||
@ -1,27 +0,0 @@
|
||||
import io
|
||||
import zipfile
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from core.app_assets.entities import AssetItem
|
||||
|
||||
from .base import AssetPackager
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from extensions.ext_storage import Storage
|
||||
|
||||
|
||||
class ZipPackager(AssetPackager):
|
||||
_storage: "Storage"
|
||||
|
||||
def __init__(self, storage: "Storage") -> None:
|
||||
self._storage = storage
|
||||
|
||||
def package(self, assets: list[AssetItem]) -> bytes:
|
||||
zip_buffer = io.BytesIO()
|
||||
|
||||
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zf:
|
||||
for asset in assets:
|
||||
content = self._storage.load_once(asset.get_storage_key())
|
||||
zf.writestr(asset.path, content)
|
||||
|
||||
return zip_buffer.getvalue()
|
||||
@ -1,10 +0,0 @@
|
||||
from .asset_parser import AssetParser
|
||||
from .base import AssetItemParser, FileAssetParser
|
||||
from .skill_parser import SkillAssetParser
|
||||
|
||||
__all__ = [
|
||||
"AssetItemParser",
|
||||
"AssetParser",
|
||||
"FileAssetParser",
|
||||
"SkillAssetParser",
|
||||
]
|
||||
@ -1,36 +0,0 @@
|
||||
from core.app.entities.app_asset_entities import AppAssetFileTree
|
||||
from core.app_assets.entities import AssetItem
|
||||
from core.app_assets.paths import AssetPaths
|
||||
|
||||
from .base import AssetItemParser, FileAssetParser
|
||||
|
||||
|
||||
class AssetParser:
|
||||
def __init__(
|
||||
self,
|
||||
tree: AppAssetFileTree,
|
||||
tenant_id: str,
|
||||
app_id: str,
|
||||
) -> None:
|
||||
self._tree = tree
|
||||
self._tenant_id = tenant_id
|
||||
self._app_id = app_id
|
||||
self._parsers = {}
|
||||
self._default_parser = FileAssetParser()
|
||||
|
||||
def register(self, extension: str, parser: AssetItemParser) -> None:
|
||||
self._parsers[extension] = parser
|
||||
|
||||
def parse(self) -> list[AssetItem]:
|
||||
assets: list[AssetItem] = []
|
||||
|
||||
for node in self._tree.walk_files():
|
||||
path = self._tree.get_path(node.id).lstrip("/")
|
||||
storage_key = AssetPaths.draft_file(self._tenant_id, self._app_id, node.id)
|
||||
extension = node.extension or ""
|
||||
|
||||
parser = self._parsers.get(extension, self._default_parser)
|
||||
asset = parser.parse(node.id, path, node.name, extension, storage_key)
|
||||
assets.append(asset)
|
||||
|
||||
return assets
|
||||
@ -1,34 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from core.app_assets.entities import AssetItem, FileAsset
|
||||
|
||||
|
||||
class AssetItemParser(ABC):
|
||||
@abstractmethod
|
||||
def parse(
|
||||
self,
|
||||
node_id: str,
|
||||
path: str,
|
||||
file_name: str,
|
||||
extension: str,
|
||||
storage_key: str,
|
||||
) -> AssetItem:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class FileAssetParser(AssetItemParser):
|
||||
def parse(
|
||||
self,
|
||||
node_id: str,
|
||||
path: str,
|
||||
file_name: str,
|
||||
extension: str,
|
||||
storage_key: str,
|
||||
) -> FileAsset:
|
||||
return FileAsset(
|
||||
node_id=node_id,
|
||||
path=path,
|
||||
file_name=file_name,
|
||||
extension=extension,
|
||||
storage_key=storage_key,
|
||||
)
|
||||
@ -1,146 +0,0 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from core.app_assets.entities import (
|
||||
FileReference,
|
||||
SkillAsset,
|
||||
SkillMetadata,
|
||||
ToolReference,
|
||||
)
|
||||
from core.app_assets.paths import AssetPaths
|
||||
from extensions.ext_storage import storage
|
||||
|
||||
from .base import AssetItemParser
|
||||
|
||||
TOOL_REFERENCE_PATTERN = re.compile(r"§\[tool\]\.\[([^\]]+)\]\.\[([^\]]+)\]\.\[([^\]]+)\]§")
|
||||
FILE_REFERENCE_PATTERN = re.compile(r"§\[file\]\.\[([^\]]+)\]\.\[([^\]]+)\]§")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SkillAssetParser(AssetItemParser):
|
||||
def __init__(
|
||||
self,
|
||||
tenant_id: str,
|
||||
app_id: str,
|
||||
assets_id: str,
|
||||
) -> None:
|
||||
self._tenant_id = tenant_id
|
||||
self._app_id = app_id
|
||||
self._assets_id = assets_id
|
||||
|
||||
def parse(
|
||||
self,
|
||||
node_id: str,
|
||||
path: str,
|
||||
file_name: str,
|
||||
extension: str,
|
||||
storage_key: str,
|
||||
) -> SkillAsset:
|
||||
try:
|
||||
return self._parse_skill_asset(node_id, path, file_name, extension, storage_key)
|
||||
except Exception:
|
||||
logger.exception("Failed to parse skill asset %s: %s", node_id)
|
||||
# handle as plain text
|
||||
return SkillAsset(
|
||||
node_id=node_id,
|
||||
path=path,
|
||||
file_name=file_name,
|
||||
extension=extension,
|
||||
storage_key=storage_key,
|
||||
metadata=SkillMetadata(),
|
||||
tool_references=[],
|
||||
file_references=[],
|
||||
)
|
||||
|
||||
def _parse_skill_asset(
|
||||
self, node_id: str, path: str, file_name: str, extension: str, storage_key: str
|
||||
) -> SkillAsset:
|
||||
try:
|
||||
data = json.loads(storage.load_once(storage_key))
|
||||
except (json.JSONDecodeError, UnicodeDecodeError):
|
||||
# handle as plain text
|
||||
return SkillAsset(
|
||||
node_id=node_id,
|
||||
path=path,
|
||||
file_name=file_name,
|
||||
extension=extension,
|
||||
storage_key=storage_key,
|
||||
metadata=SkillMetadata(),
|
||||
tool_references=[],
|
||||
file_references=[],
|
||||
)
|
||||
|
||||
if not isinstance(data, dict):
|
||||
raise ValueError(f"Skill document {node_id} must be a JSON object")
|
||||
|
||||
data_dict: dict[str, Any] = data
|
||||
metadata_raw = data_dict.get("metadata", {})
|
||||
content = data_dict.get("content", "")
|
||||
|
||||
if not isinstance(content, str):
|
||||
raise ValueError(f"Skill document {node_id} 'content' must be a string")
|
||||
|
||||
metadata = SkillMetadata.model_validate(metadata_raw)
|
||||
|
||||
tool_references: list[ToolReference] = self._parse_tool_references(content)
|
||||
file_references: list[FileReference] = self._parse_file_references(content)
|
||||
|
||||
resolved_content = self._resolve_content(content, tool_references, file_references)
|
||||
resolved_key = AssetPaths.build_resolved_file(self._tenant_id, self._app_id, self._assets_id, node_id)
|
||||
storage.save(resolved_key, resolved_content.encode("utf-8"))
|
||||
|
||||
return SkillAsset(
|
||||
node_id=node_id,
|
||||
path=path,
|
||||
file_name=file_name,
|
||||
extension=extension,
|
||||
storage_key=resolved_key,
|
||||
metadata=metadata,
|
||||
tool_references=tool_references,
|
||||
file_references=file_references,
|
||||
)
|
||||
|
||||
def _resolve_content(
|
||||
self,
|
||||
content: str,
|
||||
tool_references: list[ToolReference],
|
||||
file_references: list[FileReference],
|
||||
) -> str:
|
||||
for ref in tool_references:
|
||||
replacement = f"{ref.tool_name}"
|
||||
content = content.replace(ref.raw, replacement)
|
||||
|
||||
for ref in file_references:
|
||||
replacement = f"[file:{ref.uuid}]"
|
||||
content = content.replace(ref.raw, replacement)
|
||||
|
||||
return content
|
||||
|
||||
def _parse_tool_references(self, content: str) -> list[ToolReference]:
|
||||
tool_references: list[ToolReference] = []
|
||||
for match in TOOL_REFERENCE_PATTERN.finditer(content):
|
||||
tool_references.append(
|
||||
ToolReference(
|
||||
provider=match.group(1),
|
||||
tool_name=match.group(2),
|
||||
uuid=match.group(3),
|
||||
raw=match.group(0),
|
||||
)
|
||||
)
|
||||
|
||||
return tool_references
|
||||
|
||||
def _parse_file_references(self, content: str) -> list[FileReference]:
|
||||
file_references: list[FileReference] = []
|
||||
for match in FILE_REFERENCE_PATTERN.finditer(content):
|
||||
file_references.append(
|
||||
FileReference(
|
||||
source=match.group(1),
|
||||
uuid=match.group(2),
|
||||
raw=match.group(0),
|
||||
)
|
||||
)
|
||||
return file_references
|
||||
@ -1,18 +0,0 @@
|
||||
class AssetPaths:
|
||||
_BASE = "app_assets"
|
||||
|
||||
@staticmethod
|
||||
def draft_file(tenant_id: str, app_id: str, node_id: str) -> str:
|
||||
return f"{AssetPaths._BASE}/{tenant_id}/{app_id}/draft/{node_id}"
|
||||
|
||||
@staticmethod
|
||||
def build_zip(tenant_id: str, app_id: str, assets_id: str) -> str:
|
||||
return f"{AssetPaths._BASE}/{tenant_id}/{app_id}/build/{assets_id}.zip"
|
||||
|
||||
@staticmethod
|
||||
def build_resolved_file(tenant_id: str, app_id: str, assets_id: str, node_id: str) -> str:
|
||||
return f"{AssetPaths._BASE}/{tenant_id}/{app_id}/build/{assets_id}/resolved/{node_id}"
|
||||
|
||||
@staticmethod
|
||||
def build_tool_manifest(tenant_id: str, app_id: str, assets_id: str) -> str:
|
||||
return f"{AssetPaths._BASE}/{tenant_id}/{app_id}/build/{assets_id}/tools.json"
|
||||
@ -5,6 +5,7 @@ from sqlalchemy import select
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import QueueRetrieverResourcesEvent
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.models.document import Document
|
||||
@ -89,8 +90,6 @@ class DatasetIndexToolCallbackHandler:
|
||||
# TODO(-LAN-): Improve type check
|
||||
def return_retriever_resource_info(self, resource: Sequence[RetrievalSourceMetadata]):
|
||||
"""Handle return_retriever_resource_info."""
|
||||
from core.app.entities.queue_entities import QueueRetrieverResourcesEvent
|
||||
|
||||
self._queue_manager.publish(
|
||||
QueueRetrieverResourcesEvent(retriever_resources=resource), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
@ -3,6 +3,7 @@ from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
class PreviewDetail(BaseModel):
|
||||
content: str
|
||||
summary: str | None = None
|
||||
child_chunks: list[str] | None = None
|
||||
|
||||
|
||||
|
||||
@ -311,14 +311,18 @@ class IndexingRunner:
|
||||
qa_preview_texts: list[QAPreviewDetail] = []
|
||||
|
||||
total_segments = 0
|
||||
# doc_form represents the segmentation method (general, parent-child, QA)
|
||||
index_type = doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
# one extract_setting is one source document
|
||||
for extract_setting in extract_settings:
|
||||
# extract
|
||||
processing_rule = DatasetProcessRule(
|
||||
mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
|
||||
)
|
||||
# Extract document content
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
|
||||
# Cleaning and segmentation
|
||||
documents = index_processor.transform(
|
||||
text_docs,
|
||||
current_user=None,
|
||||
@ -361,6 +365,12 @@ class IndexingRunner:
|
||||
|
||||
if doc_form and doc_form == "qa_model":
|
||||
return IndexingEstimate(total_segments=total_segments * 20, qa_preview=qa_preview_texts, preview=[])
|
||||
|
||||
# Generate summary preview
|
||||
summary_index_setting = tmp_processing_rule.get("summary_index_setting")
|
||||
if summary_index_setting and summary_index_setting.get("enable") and preview_texts:
|
||||
preview_texts = index_processor.generate_summary_preview(tenant_id, preview_texts, summary_index_setting)
|
||||
|
||||
return IndexingEstimate(total_segments=total_segments, preview=preview_texts)
|
||||
|
||||
def _extract(
|
||||
|
||||
@ -72,7 +72,7 @@ class LLMGenerator:
|
||||
prompt_messages=list(prompts), model_parameters={"max_tokens": 500, "temperature": 1}, stream=False
|
||||
)
|
||||
answer = response.message.get_text_content()
|
||||
if answer == "":
|
||||
if answer is None:
|
||||
return ""
|
||||
try:
|
||||
result_dict = json.loads(answer)
|
||||
@ -113,9 +113,11 @@ class LLMGenerator:
|
||||
output_parser = SuggestedQuestionsAfterAnswerOutputParser()
|
||||
format_instructions = output_parser.get_format_instructions()
|
||||
|
||||
prompt_template = PromptTemplateParser(template="{{histories}}\n{{format_instructions}}\nquestions:\n")
|
||||
prompt_template = PromptTemplateParser(
|
||||
template="{{histories}}\n{{format_instructions}}\nquestions:\n")
|
||||
|
||||
prompt = prompt_template.format({"histories": histories, "format_instructions": format_instructions})
|
||||
prompt = prompt_template.format(
|
||||
{"histories": histories, "format_instructions": format_instructions})
|
||||
|
||||
try:
|
||||
model_manager = ModelManager()
|
||||
@ -141,11 +143,13 @@ class LLMGenerator:
|
||||
)
|
||||
|
||||
text_content = response.message.get_text_content()
|
||||
questions = output_parser.parse(text_content) if text_content else []
|
||||
questions = output_parser.parse(
|
||||
text_content) if text_content else []
|
||||
except InvokeError:
|
||||
questions = []
|
||||
except Exception:
|
||||
logger.exception("Failed to generate suggested questions after answer")
|
||||
logger.exception(
|
||||
"Failed to generate suggested questions after answer")
|
||||
questions = []
|
||||
|
||||
return questions
|
||||
@ -156,10 +160,12 @@ class LLMGenerator:
|
||||
|
||||
error = ""
|
||||
error_step = ""
|
||||
rule_config = {"prompt": "", "variables": [], "opening_statement": "", "error": ""}
|
||||
rule_config = {"prompt": "", "variables": [],
|
||||
"opening_statement": "", "error": ""}
|
||||
model_parameters = model_config.get("completion_params", {})
|
||||
if no_variable:
|
||||
prompt_template = PromptTemplateParser(WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE)
|
||||
prompt_template = PromptTemplateParser(
|
||||
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE)
|
||||
|
||||
prompt_generate = prompt_template.format(
|
||||
inputs={
|
||||
@ -190,7 +196,8 @@ class LLMGenerator:
|
||||
error = str(e)
|
||||
error_step = "generate rule config"
|
||||
except Exception as e:
|
||||
logger.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
logger.exception(
|
||||
"Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
rule_config["error"] = str(e)
|
||||
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
@ -245,7 +252,8 @@ class LLMGenerator:
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
parameter_messages = [UserPromptMessage(content=parameter_generate_prompt)]
|
||||
parameter_messages = [UserPromptMessage(
|
||||
content=parameter_generate_prompt)]
|
||||
|
||||
# the second step to generate the task_parameter and task_statement
|
||||
statement_generate_prompt = statement_template.format(
|
||||
@ -255,13 +263,15 @@ class LLMGenerator:
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
statement_messages = [UserPromptMessage(content=statement_generate_prompt)]
|
||||
statement_messages = [UserPromptMessage(
|
||||
content=statement_generate_prompt)]
|
||||
|
||||
try:
|
||||
parameter_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(parameter_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
rule_config["variables"] = re.findall(r'"\s*([^"]+)\s*"', parameter_content.message.get_text_content())
|
||||
rule_config["variables"] = re.findall(
|
||||
r'"\s*([^"]+)\s*"', parameter_content.message.get_text_content())
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate variables"
|
||||
@ -270,13 +280,15 @@ class LLMGenerator:
|
||||
statement_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(statement_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
rule_config["opening_statement"] = statement_content.message.get_text_content()
|
||||
rule_config["opening_statement"] = statement_content.message.get_text_content(
|
||||
)
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate conversation opener"
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
logger.exception(
|
||||
"Failed to generate rule config, model: %s", model_config.get("name"))
|
||||
rule_config["error"] = str(e)
|
||||
|
||||
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
|
||||
@ -286,9 +298,11 @@ class LLMGenerator:
|
||||
@classmethod
|
||||
def generate_code(cls, tenant_id: str, instruction: str, model_config: dict, code_language: str = "javascript"):
|
||||
if code_language == "python":
|
||||
prompt_template = PromptTemplateParser(PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE)
|
||||
prompt_template = PromptTemplateParser(
|
||||
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE)
|
||||
else:
|
||||
prompt_template = PromptTemplateParser(JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE)
|
||||
prompt_template = PromptTemplateParser(
|
||||
JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE)
|
||||
|
||||
prompt = prompt_template.format(
|
||||
inputs={
|
||||
@ -321,7 +335,8 @@ class LLMGenerator:
|
||||
return {"code": "", "language": code_language, "error": f"Failed to generate code. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Failed to invoke LLM model, model: %s, language: %s", model_config.get("name"), code_language
|
||||
"Failed to invoke LLM model, model: %s, language: %s", model_config.get(
|
||||
"name"), code_language
|
||||
)
|
||||
return {"code": "", "language": code_language, "error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
||||
@ -335,7 +350,8 @@ class LLMGenerator:
|
||||
model_type=ModelType.LLM,
|
||||
)
|
||||
|
||||
prompt_messages: list[PromptMessage] = [SystemPromptMessage(content=prompt), UserPromptMessage(content=query)]
|
||||
prompt_messages: list[PromptMessage] = [SystemPromptMessage(
|
||||
content=prompt), UserPromptMessage(content=query)]
|
||||
|
||||
# Explicitly use the non-streaming overload
|
||||
result = model_instance.invoke_llm(
|
||||
@ -381,16 +397,19 @@ class LLMGenerator:
|
||||
parsed_content = json_repair.loads(raw_content)
|
||||
|
||||
if not isinstance(parsed_content, dict | list):
|
||||
raise ValueError(f"Failed to parse structured output from llm: {raw_content}")
|
||||
raise ValueError(
|
||||
f"Failed to parse structured output from llm: {raw_content}")
|
||||
|
||||
generated_json_schema = json.dumps(parsed_content, indent=2, ensure_ascii=False)
|
||||
generated_json_schema = json.dumps(
|
||||
parsed_content, indent=2, ensure_ascii=False)
|
||||
return {"output": generated_json_schema, "error": ""}
|
||||
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
return {"output": "", "error": f"Failed to generate JSON Schema. Error: {error}"}
|
||||
except Exception as e:
|
||||
logger.exception("Failed to invoke LLM model, model: %s", model_config.get("name"))
|
||||
logger.exception(
|
||||
"Failed to invoke LLM model, model: %s", model_config.get("name"))
|
||||
return {"output": "", "error": f"An unexpected error occurred: {str(e)}"}
|
||||
|
||||
@staticmethod
|
||||
@ -398,7 +417,8 @@ class LLMGenerator:
|
||||
tenant_id: str, flow_id: str, current: str, instruction: str, model_config: dict, ideal_output: str | None
|
||||
):
|
||||
last_run: Message | None = (
|
||||
db.session.query(Message).where(Message.app_id == flow_id).order_by(Message.created_at.desc()).first()
|
||||
db.session.query(Message).where(Message.app_id == flow_id).order_by(
|
||||
Message.created_at.desc()).first()
|
||||
)
|
||||
if not last_run:
|
||||
return LLMGenerator.__instruction_modify_common(
|
||||
@ -446,7 +466,8 @@ class LLMGenerator:
|
||||
workflow = workflow_service.get_draft_workflow(app_model=app)
|
||||
if not workflow:
|
||||
raise ValueError("Workflow not found for the given app model.")
|
||||
last_run = workflow_service.get_node_last_run(app_model=app, workflow=workflow, node_id=node_id)
|
||||
last_run = workflow_service.get_node_last_run(
|
||||
app_model=app, workflow=workflow, node_id=node_id)
|
||||
try:
|
||||
node_type = cast(WorkflowNodeExecutionModel, last_run).node_type
|
||||
except Exception:
|
||||
@ -470,7 +491,8 @@ class LLMGenerator:
|
||||
)
|
||||
|
||||
def agent_log_of(node_execution: WorkflowNodeExecutionModel) -> Sequence:
|
||||
raw_agent_log = node_execution.execution_metadata_dict.get(WorkflowNodeExecutionMetadataKey.AGENT_LOG, [])
|
||||
raw_agent_log = node_execution.execution_metadata_dict.get(
|
||||
WorkflowNodeExecutionMetadataKey.AGENT_LOG, [])
|
||||
if not raw_agent_log:
|
||||
return []
|
||||
|
||||
@ -518,11 +540,14 @@ class LLMGenerator:
|
||||
ERROR_MESSAGE = "{{#error_message#}}"
|
||||
injected_instruction = instruction
|
||||
if LAST_RUN in injected_instruction:
|
||||
injected_instruction = injected_instruction.replace(LAST_RUN, json.dumps(last_run))
|
||||
injected_instruction = injected_instruction.replace(
|
||||
LAST_RUN, json.dumps(last_run))
|
||||
if CURRENT in injected_instruction:
|
||||
injected_instruction = injected_instruction.replace(CURRENT, current or "null")
|
||||
injected_instruction = injected_instruction.replace(
|
||||
CURRENT, current or "null")
|
||||
if ERROR_MESSAGE in injected_instruction:
|
||||
injected_instruction = injected_instruction.replace(ERROR_MESSAGE, error_message or "null")
|
||||
injected_instruction = injected_instruction.replace(
|
||||
ERROR_MESSAGE, error_message or "null")
|
||||
model_instance = ModelManager().get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
@ -560,11 +585,13 @@ class LLMGenerator:
|
||||
first_brace = generated_raw.find("{")
|
||||
last_brace = generated_raw.rfind("}")
|
||||
if first_brace == -1 or last_brace == -1 or last_brace < first_brace:
|
||||
raise ValueError(f"Could not find a valid JSON object in response: {generated_raw}")
|
||||
json_str = generated_raw[first_brace : last_brace + 1]
|
||||
raise ValueError(
|
||||
f"Could not find a valid JSON object in response: {generated_raw}")
|
||||
json_str = generated_raw[first_brace: last_brace + 1]
|
||||
data = json_repair.loads(json_str)
|
||||
if not isinstance(data, dict):
|
||||
raise TypeError(f"Expected a JSON object, but got {type(data).__name__}")
|
||||
raise TypeError(
|
||||
f"Expected a JSON object, but got {type(data).__name__}")
|
||||
return data
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
|
||||
@ -434,3 +434,20 @@ INSTRUCTION_GENERATE_TEMPLATE_PROMPT = """The output of this prompt is not as ex
|
||||
You should edit the prompt according to the IDEAL OUTPUT."""
|
||||
|
||||
INSTRUCTION_GENERATE_TEMPLATE_CODE = """Please fix the errors in the {{#error_message#}}."""
|
||||
|
||||
DEFAULT_GENERATOR_SUMMARY_PROMPT = (
|
||||
"""Summarize the following content. Extract only the key information and main points. """
|
||||
"""Remove redundant details.
|
||||
|
||||
Requirements:
|
||||
1. Write a concise summary in plain text
|
||||
2. Use the same language as the input content
|
||||
3. Focus on important facts, concepts, and details
|
||||
4. If images are included, describe their key information
|
||||
5. Do not use words like "好的", "ok", "I understand", "This text discusses", "The content mentions"
|
||||
6. Write directly without extra words
|
||||
|
||||
Output only the summary text. Start summarizing now:
|
||||
|
||||
"""
|
||||
)
|
||||
@ -4,7 +4,6 @@ from typing import Any
|
||||
from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
|
||||
from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderType
|
||||
from core.tools.signature import sign_tool_file
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.tools.utils.message_transformer import ToolFileMessageTransformer
|
||||
@ -42,43 +41,6 @@ class PluginToolBackwardsInvocation(BaseBackwardsInvocation):
|
||||
response, user_id=user_id, tenant_id=tenant_id
|
||||
)
|
||||
|
||||
return cls._sign_tool_file_urls(response)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
# FIXME: this method should be gracefully deprecated
|
||||
@classmethod
|
||||
def _sign_tool_file_urls(
|
||||
cls, messages: Generator[ToolInvokeMessage, None, None]
|
||||
) -> Generator[ToolInvokeMessage, None, None]:
|
||||
"""
|
||||
Sign file URLs in tool invoke messages for external access.
|
||||
"""
|
||||
for message in messages:
|
||||
if message.type in {
|
||||
ToolInvokeMessage.MessageType.IMAGE_LINK,
|
||||
ToolInvokeMessage.MessageType.BINARY_LINK,
|
||||
ToolInvokeMessage.MessageType.FILE,
|
||||
}:
|
||||
if isinstance(message.message, ToolInvokeMessage.TextMessage):
|
||||
url = message.message.text
|
||||
# Check if it's an unsigned internal path
|
||||
if url.startswith("/files/tools/"):
|
||||
parts = url.split("/")[-1]
|
||||
if "." in parts:
|
||||
file_id, ext = parts.rsplit(".", 1)
|
||||
extension = f".{ext}"
|
||||
else:
|
||||
file_id = parts
|
||||
extension = ".bin"
|
||||
|
||||
signed_url = sign_tool_file(tool_file_id=file_id, extension=extension)
|
||||
|
||||
yield ToolInvokeMessage(
|
||||
type=message.type,
|
||||
message=ToolInvokeMessage.TextMessage(text=signed_url),
|
||||
meta=message.meta,
|
||||
)
|
||||
continue
|
||||
|
||||
yield message
|
||||
|
||||
@ -282,11 +282,3 @@ class TriggerDispatchResponse(BaseModel):
|
||||
return deserialize_response(binascii.unhexlify(v.encode()))
|
||||
except Exception as e:
|
||||
raise ValueError("Failed to deserialize response from hex string") from e
|
||||
|
||||
|
||||
class RequestListTools(BaseModel):
|
||||
"""
|
||||
Request to list all available tools
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
@ -320,17 +320,18 @@ class BasePluginClient:
|
||||
case PluginInvokeError.__name__:
|
||||
error_object = json.loads(message)
|
||||
invoke_error_type = error_object.get("error_type")
|
||||
args = error_object.get("args")
|
||||
match invoke_error_type:
|
||||
case InvokeRateLimitError.__name__:
|
||||
raise InvokeRateLimitError(description=error_object.get("message"))
|
||||
raise InvokeRateLimitError(description=args.get("description"))
|
||||
case InvokeAuthorizationError.__name__:
|
||||
raise InvokeAuthorizationError(description=error_object.get("message"))
|
||||
raise InvokeAuthorizationError(description=args.get("description"))
|
||||
case InvokeBadRequestError.__name__:
|
||||
raise InvokeBadRequestError(description=error_object.get("message"))
|
||||
raise InvokeBadRequestError(description=args.get("description"))
|
||||
case InvokeConnectionError.__name__:
|
||||
raise InvokeConnectionError(description=error_object.get("message"))
|
||||
raise InvokeConnectionError(description=args.get("description"))
|
||||
case InvokeServerUnavailableError.__name__:
|
||||
raise InvokeServerUnavailableError(description=error_object.get("message"))
|
||||
raise InvokeServerUnavailableError(description=args.get("description"))
|
||||
case CredentialsValidateFailedError.__name__:
|
||||
raise CredentialsValidateFailedError(error_object.get("message"))
|
||||
case EndpointSetupFailedError.__name__:
|
||||
@ -338,11 +339,11 @@ class BasePluginClient:
|
||||
case TriggerProviderCredentialValidationError.__name__:
|
||||
raise TriggerProviderCredentialValidationError(error_object.get("message"))
|
||||
case TriggerPluginInvokeError.__name__:
|
||||
raise TriggerPluginInvokeError(description=error_object.get("message"))
|
||||
raise TriggerPluginInvokeError(description=error_object.get("description"))
|
||||
case TriggerInvokeError.__name__:
|
||||
raise TriggerInvokeError(error_object.get("message"))
|
||||
case EventIgnoreError.__name__:
|
||||
raise EventIgnoreError(description=error_object.get("message"))
|
||||
raise EventIgnoreError(description=error_object.get("description"))
|
||||
case _:
|
||||
raise PluginInvokeError(description=message)
|
||||
case PluginDaemonInternalServerError.__name__:
|
||||
|
||||
@ -389,15 +389,14 @@ class RetrievalService:
|
||||
.all()
|
||||
}
|
||||
|
||||
records = []
|
||||
include_segment_ids = set()
|
||||
segment_child_map = {}
|
||||
|
||||
valid_dataset_documents = {}
|
||||
image_doc_ids: list[Any] = []
|
||||
child_index_node_ids = []
|
||||
index_node_ids = []
|
||||
doc_to_document_map = {}
|
||||
summary_segment_ids = set() # Track segments retrieved via summary
|
||||
|
||||
# First pass: collect all document IDs and identify summary documents
|
||||
for document in documents:
|
||||
document_id = document.metadata.get("document_id")
|
||||
if document_id not in dataset_documents:
|
||||
@ -408,16 +407,24 @@ class RetrievalService:
|
||||
continue
|
||||
valid_dataset_documents[document_id] = dataset_document
|
||||
|
||||
doc_id = document.metadata.get("doc_id") or ""
|
||||
doc_to_document_map[doc_id] = document
|
||||
|
||||
# Check if this is a summary document
|
||||
is_summary = document.metadata.get("is_summary", False)
|
||||
if is_summary:
|
||||
# For summary documents, find the original chunk via original_chunk_id
|
||||
original_chunk_id = document.metadata.get("original_chunk_id")
|
||||
if original_chunk_id:
|
||||
summary_segment_ids.add(original_chunk_id)
|
||||
continue # Skip adding to other lists for summary documents
|
||||
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
doc_id = document.metadata.get("doc_id") or ""
|
||||
doc_to_document_map[doc_id] = document
|
||||
if document.metadata.get("doc_type") == DocType.IMAGE:
|
||||
image_doc_ids.append(doc_id)
|
||||
else:
|
||||
child_index_node_ids.append(doc_id)
|
||||
else:
|
||||
doc_id = document.metadata.get("doc_id") or ""
|
||||
doc_to_document_map[doc_id] = document
|
||||
if document.metadata.get("doc_type") == DocType.IMAGE:
|
||||
image_doc_ids.append(doc_id)
|
||||
else:
|
||||
@ -433,6 +440,7 @@ class RetrievalService:
|
||||
attachment_map: dict[str, list[dict[str, Any]]] = {}
|
||||
child_chunk_map: dict[str, list[ChildChunk]] = {}
|
||||
doc_segment_map: dict[str, list[str]] = {}
|
||||
segment_summary_map: dict[str, str] = {} # Map segment_id to summary content
|
||||
|
||||
with session_factory.create_session() as session:
|
||||
attachments = cls.get_segment_attachment_infos(image_doc_ids, session)
|
||||
@ -447,6 +455,7 @@ class RetrievalService:
|
||||
doc_segment_map[attachment["segment_id"]].append(attachment["attachment_id"])
|
||||
else:
|
||||
doc_segment_map[attachment["segment_id"]] = [attachment["attachment_id"]]
|
||||
|
||||
child_chunk_stmt = select(ChildChunk).where(ChildChunk.index_node_id.in_(child_index_node_ids))
|
||||
child_index_nodes = session.execute(child_chunk_stmt).scalars().all()
|
||||
|
||||
@ -470,6 +479,7 @@ class RetrievalService:
|
||||
index_node_segments = session.execute(document_segment_stmt).scalars().all() # type: ignore
|
||||
for index_node_segment in index_node_segments:
|
||||
doc_segment_map[index_node_segment.id] = [index_node_segment.index_node_id]
|
||||
|
||||
if segment_ids:
|
||||
document_segment_stmt = select(DocumentSegment).where(
|
||||
DocumentSegment.enabled == True,
|
||||
@ -481,6 +491,42 @@ class RetrievalService:
|
||||
if index_node_segments:
|
||||
segments.extend(index_node_segments)
|
||||
|
||||
# Handle summary documents: query segments by original_chunk_id
|
||||
if summary_segment_ids:
|
||||
summary_segment_ids_list = list(summary_segment_ids)
|
||||
summary_segment_stmt = select(DocumentSegment).where(
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.id.in_(summary_segment_ids_list),
|
||||
)
|
||||
summary_segments = session.execute(summary_segment_stmt).scalars().all() # type: ignore
|
||||
segments.extend(summary_segments)
|
||||
# Add summary segment IDs to segment_ids for summary query
|
||||
for seg in summary_segments:
|
||||
if seg.id not in segment_ids:
|
||||
segment_ids.append(seg.id)
|
||||
|
||||
# Batch query summaries for segments retrieved via summary (only enabled summaries)
|
||||
if summary_segment_ids:
|
||||
from models.dataset import DocumentSegmentSummary
|
||||
|
||||
summaries = (
|
||||
session.query(DocumentSegmentSummary)
|
||||
.filter(
|
||||
DocumentSegmentSummary.chunk_id.in_(list(summary_segment_ids)),
|
||||
DocumentSegmentSummary.status == "completed",
|
||||
DocumentSegmentSummary.enabled == True, # Only retrieve enabled summaries
|
||||
)
|
||||
.all()
|
||||
)
|
||||
for summary in summaries:
|
||||
if summary.summary_content:
|
||||
segment_summary_map[summary.chunk_id] = summary.summary_content
|
||||
|
||||
include_segment_ids = set()
|
||||
segment_child_map: dict[str, dict[str, Any]] = {}
|
||||
records: list[dict[str, Any]] = []
|
||||
|
||||
for segment in segments:
|
||||
child_chunks: list[ChildChunk] = child_chunk_map.get(segment.id, [])
|
||||
attachment_infos: list[dict[str, Any]] = attachment_map.get(segment.id, [])
|
||||
@ -493,7 +539,7 @@ class RetrievalService:
|
||||
child_chunk_details = []
|
||||
max_score = 0.0
|
||||
for child_chunk in child_chunks:
|
||||
document = doc_to_document_map[child_chunk.index_node_id]
|
||||
document = doc_to_document_map.get(child_chunk.index_node_id)
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
@ -503,7 +549,7 @@ class RetrievalService:
|
||||
child_chunk_details.append(child_chunk_detail)
|
||||
max_score = max(max_score, document.metadata.get("score", 0.0) if document else 0.0)
|
||||
for attachment_info in attachment_infos:
|
||||
file_document = doc_to_document_map[attachment_info["id"]]
|
||||
file_document = doc_to_document_map.get(attachment_info["id"])
|
||||
max_score = max(
|
||||
max_score, file_document.metadata.get("score", 0.0) if file_document else 0.0
|
||||
)
|
||||
@ -576,9 +622,16 @@ class RetrievalService:
|
||||
else None
|
||||
)
|
||||
|
||||
# Extract summary if this segment was retrieved via summary
|
||||
summary_content = segment_summary_map.get(segment.id)
|
||||
|
||||
# Create RetrievalSegments object
|
||||
retrieval_segment = RetrievalSegments(
|
||||
segment=segment, child_chunks=child_chunks_list, score=score, files=files
|
||||
segment=segment,
|
||||
child_chunks=child_chunks_list,
|
||||
score=score,
|
||||
files=files,
|
||||
summary=summary_content,
|
||||
)
|
||||
result.append(retrieval_segment)
|
||||
|
||||
|
||||
@ -20,3 +20,4 @@ class RetrievalSegments(BaseModel):
|
||||
child_chunks: list[RetrievalChildChunk] | None = None
|
||||
score: float | None = None
|
||||
files: list[dict[str, str | int]] | None = None
|
||||
summary: str | None = None # Summary content if retrieved via summary index
|
||||
|
||||
@ -13,6 +13,7 @@ from urllib.parse import unquote, urlparse
|
||||
import httpx
|
||||
|
||||
from configs import dify_config
|
||||
from core.entities.knowledge_entities import PreviewDetail
|
||||
from core.helper import ssrf_proxy
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
@ -45,6 +46,17 @@ class BaseIndexProcessor(ABC):
|
||||
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def generate_summary_preview(
|
||||
self, tenant_id: str, preview_texts: list[PreviewDetail], summary_index_setting: dict
|
||||
) -> list[PreviewDetail]:
|
||||
"""
|
||||
For each segment in preview_texts, generate a summary using LLM and attach it to the segment.
|
||||
The summary can be stored in a new attribute, e.g., summary.
|
||||
This method should be implemented by subclasses.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def load(
|
||||
self,
|
||||
|
||||
@ -1,9 +1,25 @@
|
||||
"""Paragraph index processor."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
import uuid
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
from core.entities.knowledge_entities import PreviewDetail
|
||||
from core.file import File, FileTransferMethod, FileType, file_manager
|
||||
from core.llm_generator.prompts import DEFAULT_GENERATOR_SUMMARY_PROMPT
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
ImagePromptMessageContent,
|
||||
PromptMessageContentUnionTypes,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.provider_manager import ProviderManager
|
||||
from core.rag.cleaner.clean_processor import CleanProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
@ -17,12 +33,16 @@ from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.models.document import AttachmentDocument, Document, MultimodalGeneralStructureChunk
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
from extensions.ext_database import db
|
||||
from factories.file_factory import build_from_mapping
|
||||
from libs import helper
|
||||
from models import UploadFile
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
from models.dataset import Dataset, DatasetProcessRule, DocumentSegment, SegmentAttachmentBinding
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.account_service import AccountService
|
||||
from services.entities.knowledge_entities.knowledge_entities import Rule
|
||||
from services.summary_index_service import SummaryIndexService
|
||||
|
||||
|
||||
class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
@ -108,6 +128,29 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
keyword.add_texts(documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
|
||||
# Note: Summary indexes are now disabled (not deleted) when segments are disabled.
|
||||
# This method is called for actual deletion scenarios (e.g., when segment is deleted).
|
||||
# For disable operations, disable_summaries_for_segments is called directly in the task.
|
||||
# Only delete summaries if explicitly requested (e.g., when segment is actually deleted)
|
||||
delete_summaries = kwargs.get("delete_summaries", False)
|
||||
if delete_summaries:
|
||||
if node_ids:
|
||||
# Find segments by index_node_id
|
||||
segments = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.dataset_id == dataset.id,
|
||||
DocumentSegment.index_node_id.in_(node_ids),
|
||||
)
|
||||
.all()
|
||||
)
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
if segment_ids:
|
||||
SummaryIndexService.delete_summaries_for_segments(dataset, segment_ids)
|
||||
else:
|
||||
# Delete all summaries for the dataset
|
||||
SummaryIndexService.delete_summaries_for_segments(dataset, None)
|
||||
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
if node_ids:
|
||||
@ -227,3 +270,263 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
}
|
||||
else:
|
||||
raise ValueError("Chunks is not a list")
|
||||
|
||||
def generate_summary_preview(
|
||||
self, tenant_id: str, preview_texts: list[PreviewDetail], summary_index_setting: dict
|
||||
) -> list[PreviewDetail]:
|
||||
"""
|
||||
For each segment, concurrently call generate_summary to generate a summary
|
||||
and write it to the summary attribute of PreviewDetail.
|
||||
"""
|
||||
import concurrent.futures
|
||||
|
||||
from flask import current_app
|
||||
|
||||
# Capture Flask app context for worker threads
|
||||
flask_app = None
|
||||
try:
|
||||
flask_app = current_app._get_current_object() # type: ignore
|
||||
except RuntimeError:
|
||||
logger.warning("No Flask application context available, summary generation may fail")
|
||||
|
||||
def process(preview: PreviewDetail) -> None:
|
||||
"""Generate summary for a single preview item."""
|
||||
try:
|
||||
if flask_app:
|
||||
# Ensure Flask app context in worker thread
|
||||
with flask_app.app_context():
|
||||
summary = self.generate_summary(tenant_id, preview.content, summary_index_setting)
|
||||
preview.summary = summary
|
||||
else:
|
||||
# Fallback: try without app context (may fail)
|
||||
summary = self.generate_summary(tenant_id, preview.content, summary_index_setting)
|
||||
preview.summary = summary
|
||||
except Exception:
|
||||
logger.exception("Failed to generate summary for preview")
|
||||
# Don't fail the entire preview if summary generation fails
|
||||
preview.summary = None
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
list(executor.map(process, preview_texts))
|
||||
return preview_texts
|
||||
|
||||
@staticmethod
|
||||
def generate_summary(
|
||||
tenant_id: str,
|
||||
text: str,
|
||||
summary_index_setting: dict | None = None,
|
||||
segment_id: str | None = None,
|
||||
) -> str:
|
||||
"""
|
||||
Generate summary for the given text using ModelInstance.invoke_llm and the default or custom summary prompt,
|
||||
and supports vision models by including images from the segment attachments or text content.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant ID
|
||||
text: Text content to summarize
|
||||
summary_index_setting: Summary index configuration
|
||||
segment_id: Optional segment ID to fetch attachments from SegmentAttachmentBinding table
|
||||
"""
|
||||
if not summary_index_setting or not summary_index_setting.get("enable"):
|
||||
raise ValueError("summary_index_setting is required and must be enabled to generate summary.")
|
||||
|
||||
model_name = summary_index_setting.get("model_name")
|
||||
model_provider_name = summary_index_setting.get("model_provider_name")
|
||||
summary_prompt = summary_index_setting.get("summary_prompt")
|
||||
|
||||
# Import default summary prompt
|
||||
if not summary_prompt:
|
||||
summary_prompt = DEFAULT_GENERATOR_SUMMARY_PROMPT
|
||||
|
||||
provider_manager = ProviderManager()
|
||||
provider_model_bundle = provider_manager.get_provider_model_bundle(
|
||||
tenant_id, model_provider_name, ModelType.LLM
|
||||
)
|
||||
model_instance = ModelInstance(provider_model_bundle, model_name)
|
||||
|
||||
# Get model schema to check if vision is supported
|
||||
model_schema = model_instance.model_type_instance.get_model_schema(model_name, model_instance.credentials)
|
||||
supports_vision = model_schema and model_schema.features and ModelFeature.VISION in model_schema.features
|
||||
|
||||
# Extract images if model supports vision
|
||||
image_files = []
|
||||
if supports_vision:
|
||||
# First, try to get images from SegmentAttachmentBinding (preferred method)
|
||||
if segment_id:
|
||||
image_files = ParagraphIndexProcessor._extract_images_from_segment_attachments(tenant_id, segment_id)
|
||||
|
||||
# If no images from attachments, fall back to extracting from text
|
||||
if not image_files:
|
||||
image_files = ParagraphIndexProcessor._extract_images_from_text(tenant_id, text)
|
||||
|
||||
# Build prompt messages
|
||||
prompt_messages = []
|
||||
|
||||
if image_files:
|
||||
# If we have images, create a UserPromptMessage with both text and images
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
|
||||
# Add images first
|
||||
for file in image_files:
|
||||
try:
|
||||
file_content = file_manager.to_prompt_message_content(
|
||||
file, image_detail_config=ImagePromptMessageContent.DETAIL.LOW
|
||||
)
|
||||
prompt_message_contents.append(file_content)
|
||||
except Exception as e:
|
||||
logger.warning("Failed to convert image file to prompt message content: %s", str(e))
|
||||
continue
|
||||
|
||||
# Add text content
|
||||
if prompt_message_contents: # Only add text if we successfully added images
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=f"{summary_prompt}\n{text}"))
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
# If image conversion failed, fall back to text-only
|
||||
prompt = f"{summary_prompt}\n{text}"
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
else:
|
||||
# No images, use simple text prompt
|
||||
prompt = f"{summary_prompt}\n{text}"
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
|
||||
result = model_instance.invoke_llm(prompt_messages=prompt_messages, model_parameters={}, stream=False)
|
||||
|
||||
return getattr(result.message, "content", "")
|
||||
|
||||
@staticmethod
|
||||
def _extract_images_from_text(tenant_id: str, text: str) -> list[File]:
|
||||
"""
|
||||
Extract images from markdown text and convert them to File objects.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant ID
|
||||
text: Text content that may contain markdown image links
|
||||
|
||||
Returns:
|
||||
List of File objects representing images found in the text
|
||||
"""
|
||||
# Extract markdown images using regex pattern
|
||||
pattern = r"!\[.*?\]\((.*?)\)"
|
||||
images = re.findall(pattern, text)
|
||||
|
||||
if not images:
|
||||
return []
|
||||
|
||||
upload_file_id_list = []
|
||||
|
||||
for image in images:
|
||||
# For data before v0.10.0
|
||||
pattern = r"/files/([a-f0-9\-]+)/image-preview(?:\?.*?)?"
|
||||
match = re.search(pattern, image)
|
||||
if match:
|
||||
upload_file_id = match.group(1)
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
continue
|
||||
|
||||
# For data after v0.10.0
|
||||
pattern = r"/files/([a-f0-9\-]+)/file-preview(?:\?.*?)?"
|
||||
match = re.search(pattern, image)
|
||||
if match:
|
||||
upload_file_id = match.group(1)
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
continue
|
||||
|
||||
# For tools directory - direct file formats (e.g., .png, .jpg, etc.)
|
||||
pattern = r"/files/tools/([a-f0-9\-]+)\.([a-zA-Z0-9]+)(?:\?[^\s\)\"\']*)?"
|
||||
match = re.search(pattern, image)
|
||||
if match:
|
||||
# Tool files are handled differently, skip for now
|
||||
continue
|
||||
|
||||
if not upload_file_id_list:
|
||||
return []
|
||||
|
||||
# Get unique IDs for database query
|
||||
unique_upload_file_ids = list(set(upload_file_id_list))
|
||||
upload_files = (
|
||||
db.session.query(UploadFile)
|
||||
.where(UploadFile.id.in_(unique_upload_file_ids), UploadFile.tenant_id == tenant_id)
|
||||
.all()
|
||||
)
|
||||
|
||||
# Create File objects from UploadFile records
|
||||
file_objects = []
|
||||
for upload_file in upload_files:
|
||||
# Only process image files
|
||||
if not upload_file.mime_type or "image" not in upload_file.mime_type:
|
||||
continue
|
||||
|
||||
mapping = {
|
||||
"upload_file_id": upload_file.id,
|
||||
"transfer_method": FileTransferMethod.LOCAL_FILE.value,
|
||||
"type": FileType.IMAGE.value,
|
||||
}
|
||||
|
||||
try:
|
||||
file_obj = build_from_mapping(
|
||||
mapping=mapping,
|
||||
tenant_id=tenant_id,
|
||||
)
|
||||
file_objects.append(file_obj)
|
||||
except Exception as e:
|
||||
logger.warning("Failed to create File object from UploadFile %s: %s", upload_file.id, str(e))
|
||||
continue
|
||||
|
||||
return file_objects
|
||||
|
||||
@staticmethod
|
||||
def _extract_images_from_segment_attachments(tenant_id: str, segment_id: str) -> list[File]:
|
||||
"""
|
||||
Extract images from SegmentAttachmentBinding table (preferred method).
|
||||
This matches how DatasetRetrieval gets segment attachments.
|
||||
|
||||
Args:
|
||||
tenant_id: Tenant ID
|
||||
segment_id: Segment ID to fetch attachments for
|
||||
|
||||
Returns:
|
||||
List of File objects representing images found in segment attachments
|
||||
"""
|
||||
from sqlalchemy import select
|
||||
|
||||
# Query attachments from SegmentAttachmentBinding table
|
||||
attachments_with_bindings = db.session.execute(
|
||||
select(SegmentAttachmentBinding, UploadFile)
|
||||
.join(UploadFile, UploadFile.id == SegmentAttachmentBinding.attachment_id)
|
||||
.where(
|
||||
SegmentAttachmentBinding.segment_id == segment_id,
|
||||
SegmentAttachmentBinding.tenant_id == tenant_id,
|
||||
)
|
||||
).all()
|
||||
|
||||
if not attachments_with_bindings:
|
||||
return []
|
||||
|
||||
file_objects = []
|
||||
for _, upload_file in attachments_with_bindings:
|
||||
# Only process image files
|
||||
if not upload_file.mime_type or "image" not in upload_file.mime_type:
|
||||
continue
|
||||
|
||||
try:
|
||||
# Create File object directly (similar to DatasetRetrieval)
|
||||
file_obj = File(
|
||||
id=upload_file.id,
|
||||
filename=upload_file.name,
|
||||
extension="." + upload_file.extension,
|
||||
mime_type=upload_file.mime_type,
|
||||
tenant_id=tenant_id,
|
||||
type=FileType.IMAGE,
|
||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||
remote_url=upload_file.source_url,
|
||||
related_id=upload_file.id,
|
||||
size=upload_file.size,
|
||||
storage_key=upload_file.key,
|
||||
)
|
||||
file_objects.append(file_obj)
|
||||
except Exception as e:
|
||||
logger.warning("Failed to create File object from UploadFile %s: %s", upload_file.id, str(e))
|
||||
continue
|
||||
|
||||
return file_objects
|
||||
|
||||
@ -1,11 +1,13 @@
|
||||
"""Paragraph index processor."""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
from configs import dify_config
|
||||
from core.entities.knowledge_entities import PreviewDetail
|
||||
from core.model_manager import ModelInstance
|
||||
from core.rag.cleaner.clean_processor import CleanProcessor
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
@ -25,6 +27,9 @@ from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegm
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.account_service import AccountService
|
||||
from services.entities.knowledge_entities.knowledge_entities import ParentMode, Rule
|
||||
from services.summary_index_service import SummaryIndexService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
@ -135,6 +140,29 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
|
||||
# node_ids is segment's node_ids
|
||||
# Note: Summary indexes are now disabled (not deleted) when segments are disabled.
|
||||
# This method is called for actual deletion scenarios (e.g., when segment is deleted).
|
||||
# For disable operations, disable_summaries_for_segments is called directly in the task.
|
||||
# Only delete summaries if explicitly requested (e.g., when segment is actually deleted)
|
||||
delete_summaries = kwargs.get("delete_summaries", False)
|
||||
if delete_summaries:
|
||||
if node_ids:
|
||||
# Find segments by index_node_id
|
||||
segments = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.dataset_id == dataset.id,
|
||||
DocumentSegment.index_node_id.in_(node_ids),
|
||||
)
|
||||
.all()
|
||||
)
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
if segment_ids:
|
||||
SummaryIndexService.delete_summaries_for_segments(dataset, segment_ids)
|
||||
else:
|
||||
# Delete all summaries for the dataset
|
||||
SummaryIndexService.delete_summaries_for_segments(dataset, None)
|
||||
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
delete_child_chunks = kwargs.get("delete_child_chunks") or False
|
||||
precomputed_child_node_ids = kwargs.get("precomputed_child_node_ids")
|
||||
@ -326,3 +354,57 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
"preview": preview,
|
||||
"total_segments": len(parent_childs.parent_child_chunks),
|
||||
}
|
||||
|
||||
def generate_summary_preview(
|
||||
self, tenant_id: str, preview_texts: list[PreviewDetail], summary_index_setting: dict
|
||||
) -> list[PreviewDetail]:
|
||||
"""
|
||||
For each parent chunk in preview_texts, concurrently call generate_summary to generate a summary
|
||||
and write it to the summary attribute of PreviewDetail.
|
||||
|
||||
Note: For parent-child structure, we only generate summaries for parent chunks.
|
||||
"""
|
||||
import concurrent.futures
|
||||
|
||||
from flask import current_app
|
||||
|
||||
# Capture Flask app context for worker threads
|
||||
flask_app = None
|
||||
try:
|
||||
flask_app = current_app._get_current_object() # type: ignore
|
||||
except RuntimeError:
|
||||
logger.warning("No Flask application context available, summary generation may fail")
|
||||
|
||||
def process(preview: PreviewDetail) -> None:
|
||||
"""Generate summary for a single preview item (parent chunk)."""
|
||||
try:
|
||||
if flask_app:
|
||||
# Ensure Flask app context in worker thread
|
||||
with flask_app.app_context():
|
||||
# Use ParagraphIndexProcessor's generate_summary method
|
||||
from core.rag.index_processor.processor.paragraph_index_processor import ParagraphIndexProcessor
|
||||
summary = ParagraphIndexProcessor.generate_summary(
|
||||
tenant_id=tenant_id,
|
||||
text=preview.content,
|
||||
summary_index_setting=summary_index_setting,
|
||||
)
|
||||
if summary:
|
||||
preview.summary = summary
|
||||
else:
|
||||
# Fallback: try without app context (may fail)
|
||||
from core.rag.index_processor.processor.paragraph_index_processor import ParagraphIndexProcessor
|
||||
summary = ParagraphIndexProcessor.generate_summary(
|
||||
tenant_id=tenant_id,
|
||||
text=preview.content,
|
||||
summary_index_setting=summary_index_setting,
|
||||
)
|
||||
if summary:
|
||||
preview.summary = summary
|
||||
except Exception:
|
||||
logger.exception("Failed to generate summary for preview")
|
||||
# Don't fail the entire preview if summary generation fails
|
||||
preview.summary = None
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
list(executor.map(process, preview_texts))
|
||||
return preview_texts
|
||||
|
||||
@ -11,6 +11,7 @@ import pandas as pd
|
||||
from flask import Flask, current_app
|
||||
from werkzeug.datastructures import FileStorage
|
||||
|
||||
from core.entities.knowledge_entities import PreviewDetail
|
||||
from core.llm_generator.llm_generator import LLMGenerator
|
||||
from core.rag.cleaner.clean_processor import CleanProcessor
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
@ -25,9 +26,10 @@ from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
from libs import helper
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.entities.knowledge_entities.knowledge_entities import Rule
|
||||
from services.summary_index_service import SummaryIndexService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -144,6 +146,30 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
vector.create_multimodal(multimodal_documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
|
||||
# Note: Summary indexes are now disabled (not deleted) when segments are disabled.
|
||||
# This method is called for actual deletion scenarios (e.g., when segment is deleted).
|
||||
# For disable operations, disable_summaries_for_segments is called directly in the task.
|
||||
# Note: qa_model doesn't generate summaries, but we clean them for completeness
|
||||
# Only delete summaries if explicitly requested (e.g., when segment is actually deleted)
|
||||
delete_summaries = kwargs.get("delete_summaries", False)
|
||||
if delete_summaries:
|
||||
if node_ids:
|
||||
# Find segments by index_node_id
|
||||
segments = (
|
||||
db.session.query(DocumentSegment)
|
||||
.filter(
|
||||
DocumentSegment.dataset_id == dataset.id,
|
||||
DocumentSegment.index_node_id.in_(node_ids),
|
||||
)
|
||||
.all()
|
||||
)
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
if segment_ids:
|
||||
SummaryIndexService.delete_summaries_for_segments(dataset, segment_ids)
|
||||
else:
|
||||
# Delete all summaries for the dataset
|
||||
SummaryIndexService.delete_summaries_for_segments(dataset, None)
|
||||
|
||||
vector = Vector(dataset)
|
||||
if node_ids:
|
||||
vector.delete_by_ids(node_ids)
|
||||
@ -212,6 +238,17 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
"total_segments": len(qa_chunks.qa_chunks),
|
||||
}
|
||||
|
||||
def generate_summary_preview(
|
||||
self, tenant_id: str, preview_texts: list[PreviewDetail], summary_index_setting: dict
|
||||
) -> list[PreviewDetail]:
|
||||
"""
|
||||
QA model doesn't generate summaries, so this method returns preview_texts unchanged.
|
||||
|
||||
Note: QA model uses question-answer pairs, which don't require summary generation.
|
||||
"""
|
||||
# QA model doesn't generate summaries, return as-is
|
||||
return preview_texts
|
||||
|
||||
def _format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
|
||||
format_documents = []
|
||||
if document_node.page_content is None or not document_node.page_content.strip():
|
||||
|
||||
@ -29,7 +29,6 @@ from models import (
|
||||
Account,
|
||||
CreatorUserRole,
|
||||
EndUser,
|
||||
LLMGenerationDetail,
|
||||
WorkflowNodeExecutionModel,
|
||||
WorkflowNodeExecutionTriggeredFrom,
|
||||
)
|
||||
@ -458,113 +457,6 @@ class SQLAlchemyWorkflowNodeExecutionRepository(WorkflowNodeExecutionRepository)
|
||||
session.merge(db_model)
|
||||
session.flush()
|
||||
|
||||
# Save LLMGenerationDetail for LLM nodes with successful execution
|
||||
if (
|
||||
domain_model.node_type == NodeType.LLM
|
||||
and domain_model.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
and domain_model.outputs is not None
|
||||
):
|
||||
self._save_llm_generation_detail(session, domain_model)
|
||||
|
||||
def _save_llm_generation_detail(self, session, execution: WorkflowNodeExecution) -> None:
|
||||
"""
|
||||
Save LLM generation detail for LLM nodes.
|
||||
Extracts reasoning_content, tool_calls, and sequence from outputs and metadata.
|
||||
"""
|
||||
outputs = execution.outputs or {}
|
||||
metadata = execution.metadata or {}
|
||||
|
||||
reasoning_list = self._extract_reasoning(outputs)
|
||||
tool_calls_list = self._extract_tool_calls(metadata.get(WorkflowNodeExecutionMetadataKey.AGENT_LOG))
|
||||
|
||||
if not reasoning_list and not tool_calls_list:
|
||||
return
|
||||
|
||||
sequence = self._build_generation_sequence(outputs.get("text", ""), reasoning_list, tool_calls_list)
|
||||
self._upsert_generation_detail(session, execution, reasoning_list, tool_calls_list, sequence)
|
||||
|
||||
def _extract_reasoning(self, outputs: Mapping[str, Any]) -> list[str]:
|
||||
"""Extract reasoning_content as a clean list of non-empty strings."""
|
||||
reasoning_content = outputs.get("reasoning_content")
|
||||
if isinstance(reasoning_content, str):
|
||||
trimmed = reasoning_content.strip()
|
||||
return [trimmed] if trimmed else []
|
||||
if isinstance(reasoning_content, list):
|
||||
return [item.strip() for item in reasoning_content if isinstance(item, str) and item.strip()]
|
||||
return []
|
||||
|
||||
def _extract_tool_calls(self, agent_log: Any) -> list[dict[str, str]]:
|
||||
"""Extract tool call records from agent logs."""
|
||||
if not agent_log or not isinstance(agent_log, list):
|
||||
return []
|
||||
|
||||
tool_calls: list[dict[str, str]] = []
|
||||
for log in agent_log:
|
||||
log_data = log.data if hasattr(log, "data") else (log.get("data", {}) if isinstance(log, dict) else {})
|
||||
tool_name = log_data.get("tool_name")
|
||||
if tool_name and str(tool_name).strip():
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": log_data.get("tool_call_id", ""),
|
||||
"name": tool_name,
|
||||
"arguments": json.dumps(log_data.get("tool_args", {})),
|
||||
"result": str(log_data.get("output", "")),
|
||||
}
|
||||
)
|
||||
return tool_calls
|
||||
|
||||
def _build_generation_sequence(
|
||||
self, text: str, reasoning_list: list[str], tool_calls_list: list[dict[str, str]]
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Build a simple content/reasoning/tool_call sequence."""
|
||||
sequence: list[dict[str, Any]] = []
|
||||
if text:
|
||||
sequence.append({"type": "content", "start": 0, "end": len(text)})
|
||||
for index in range(len(reasoning_list)):
|
||||
sequence.append({"type": "reasoning", "index": index})
|
||||
for index in range(len(tool_calls_list)):
|
||||
sequence.append({"type": "tool_call", "index": index})
|
||||
return sequence
|
||||
|
||||
def _upsert_generation_detail(
|
||||
self,
|
||||
session,
|
||||
execution: WorkflowNodeExecution,
|
||||
reasoning_list: list[str],
|
||||
tool_calls_list: list[dict[str, str]],
|
||||
sequence: list[dict[str, Any]],
|
||||
) -> None:
|
||||
"""Insert or update LLMGenerationDetail with serialized fields."""
|
||||
existing = (
|
||||
session.query(LLMGenerationDetail)
|
||||
.filter_by(
|
||||
workflow_run_id=execution.workflow_execution_id,
|
||||
node_id=execution.node_id,
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
reasoning_json = json.dumps(reasoning_list) if reasoning_list else None
|
||||
tool_calls_json = json.dumps(tool_calls_list) if tool_calls_list else None
|
||||
sequence_json = json.dumps(sequence) if sequence else None
|
||||
|
||||
if existing:
|
||||
existing.reasoning_content = reasoning_json
|
||||
existing.tool_calls = tool_calls_json
|
||||
existing.sequence = sequence_json
|
||||
return
|
||||
|
||||
generation_detail = LLMGenerationDetail(
|
||||
tenant_id=self._tenant_id,
|
||||
app_id=self._app_id,
|
||||
workflow_run_id=execution.workflow_execution_id,
|
||||
node_id=execution.node_id,
|
||||
reasoning_content=reasoning_json,
|
||||
tool_calls=tool_calls_json,
|
||||
sequence=sequence_json,
|
||||
)
|
||||
session.add(generation_detail)
|
||||
|
||||
def get_db_models_by_workflow_run(
|
||||
self,
|
||||
workflow_run_id: str,
|
||||
|
||||
@ -1,53 +0,0 @@
|
||||
from .bash.dify_cli import (
|
||||
DifyCliBinary,
|
||||
DifyCliConfig,
|
||||
DifyCliEnvConfig,
|
||||
DifyCliLocator,
|
||||
DifyCliToolConfig,
|
||||
)
|
||||
from .constants import (
|
||||
APP_ASSETS_PATH,
|
||||
APP_ASSETS_ZIP_PATH,
|
||||
DIFY_CLI_CONFIG_FILENAME,
|
||||
DIFY_CLI_GLOBAL_TOOLS_PATH,
|
||||
DIFY_CLI_PATH,
|
||||
DIFY_CLI_PATH_PATTERN,
|
||||
DIFY_CLI_ROOT,
|
||||
DIFY_CLI_TOOLS_ROOT,
|
||||
)
|
||||
from .initializer import AppAssetsInitializer, DifyCliInitializer, SandboxInitializer
|
||||
from .manager import SandboxManager
|
||||
from .session import SandboxSession
|
||||
from .storage import ArchiveSandboxStorage, SandboxStorage
|
||||
from .utils.debug import sandbox_debug
|
||||
from .utils.encryption import create_sandbox_config_encrypter, masked_config
|
||||
from .vm import SandboxBuilder, SandboxType, VMConfig
|
||||
|
||||
__all__ = [
|
||||
"APP_ASSETS_PATH",
|
||||
"APP_ASSETS_ZIP_PATH",
|
||||
"DIFY_CLI_CONFIG_FILENAME",
|
||||
"DIFY_CLI_GLOBAL_TOOLS_PATH",
|
||||
"DIFY_CLI_PATH",
|
||||
"DIFY_CLI_PATH_PATTERN",
|
||||
"DIFY_CLI_ROOT",
|
||||
"DIFY_CLI_TOOLS_ROOT",
|
||||
"AppAssetsInitializer",
|
||||
"ArchiveSandboxStorage",
|
||||
"DifyCliBinary",
|
||||
"DifyCliConfig",
|
||||
"DifyCliEnvConfig",
|
||||
"DifyCliInitializer",
|
||||
"DifyCliLocator",
|
||||
"DifyCliToolConfig",
|
||||
"SandboxBuilder",
|
||||
"SandboxInitializer",
|
||||
"SandboxManager",
|
||||
"SandboxSession",
|
||||
"SandboxStorage",
|
||||
"SandboxType",
|
||||
"VMConfig",
|
||||
"create_sandbox_config_encrypter",
|
||||
"masked_config",
|
||||
"sandbox_debug",
|
||||
]
|
||||
@ -1,15 +0,0 @@
|
||||
from .dify_cli import (
|
||||
DifyCliBinary,
|
||||
DifyCliConfig,
|
||||
DifyCliEnvConfig,
|
||||
DifyCliLocator,
|
||||
DifyCliToolConfig,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"DifyCliBinary",
|
||||
"DifyCliConfig",
|
||||
"DifyCliEnvConfig",
|
||||
"DifyCliLocator",
|
||||
"DifyCliToolConfig",
|
||||
]
|
||||
@ -1,98 +0,0 @@
|
||||
from collections.abc import Generator
|
||||
from typing import Any
|
||||
|
||||
from core.tools.__base.tool import Tool
|
||||
from core.tools.__base.tool_runtime import ToolRuntime
|
||||
from core.tools.entities.common_entities import I18nObject
|
||||
from core.tools.entities.tool_entities import (
|
||||
ToolDescription,
|
||||
ToolEntity,
|
||||
ToolIdentity,
|
||||
ToolInvokeMessage,
|
||||
ToolParameter,
|
||||
ToolProviderType,
|
||||
)
|
||||
from core.virtual_environment.__base.helpers import submit_command, with_connection
|
||||
from core.virtual_environment.__base.virtual_environment import VirtualEnvironment
|
||||
|
||||
from ..utils.debug import sandbox_debug
|
||||
|
||||
COMMAND_TIMEOUT_SECONDS = 60
|
||||
|
||||
|
||||
class SandboxBashTool(Tool):
|
||||
def __init__(self, sandbox: VirtualEnvironment, tenant_id: str, tools_path: str) -> None:
|
||||
self._sandbox = sandbox
|
||||
self._tools_path = tools_path
|
||||
|
||||
entity = ToolEntity(
|
||||
identity=ToolIdentity(
|
||||
author="Dify",
|
||||
name="bash",
|
||||
label=I18nObject(en_US="Bash", zh_Hans="Bash"),
|
||||
provider="sandbox",
|
||||
),
|
||||
parameters=[
|
||||
ToolParameter.get_simple_instance(
|
||||
name="command",
|
||||
llm_description="The bash command to execute in current working directory",
|
||||
typ=ToolParameter.ToolParameterType.STRING,
|
||||
required=True,
|
||||
),
|
||||
],
|
||||
description=ToolDescription(
|
||||
human=I18nObject(
|
||||
en_US="Execute bash commands in current working directory",
|
||||
),
|
||||
llm="Execute bash commands in current working directory. "
|
||||
"Use this tool to run shell commands, scripts, or interact with the system. "
|
||||
"The command will be executed in the current working directory.",
|
||||
),
|
||||
)
|
||||
|
||||
runtime = ToolRuntime(tenant_id=tenant_id)
|
||||
super().__init__(entity=entity, runtime=runtime)
|
||||
|
||||
def tool_provider_type(self) -> ToolProviderType:
|
||||
return ToolProviderType.BUILT_IN
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
user_id: str,
|
||||
tool_parameters: dict[str, Any],
|
||||
conversation_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
message_id: str | None = None,
|
||||
) -> Generator[ToolInvokeMessage, None, None]:
|
||||
command = tool_parameters.get("command", "")
|
||||
if not command:
|
||||
yield self.create_text_message("Error: No command provided")
|
||||
return
|
||||
|
||||
try:
|
||||
with with_connection(self._sandbox) as conn:
|
||||
cmd_list = ["bash", "-c", command]
|
||||
env_vars = {"PATH": f"{self._tools_path}:/usr/local/bin:/usr/bin:/bin"}
|
||||
|
||||
sandbox_debug("bash_tool", "cmd_list", cmd_list)
|
||||
future = submit_command(self._sandbox, conn, cmd_list, environments=env_vars)
|
||||
timeout = COMMAND_TIMEOUT_SECONDS if COMMAND_TIMEOUT_SECONDS > 0 else None
|
||||
result = future.result(timeout=timeout)
|
||||
|
||||
stdout = result.stdout.decode("utf-8", errors="replace") if result.stdout else ""
|
||||
stderr = result.stderr.decode("utf-8", errors="replace") if result.stderr else ""
|
||||
exit_code = result.exit_code
|
||||
|
||||
output_parts: list[str] = []
|
||||
if stdout:
|
||||
output_parts.append(f"\n{stdout}")
|
||||
if stderr:
|
||||
output_parts.append(f"\n{stderr}")
|
||||
output_parts.append(f"\nCommand exited with code {exit_code}")
|
||||
|
||||
yield self.create_text_message("\n".join(output_parts))
|
||||
|
||||
except TimeoutError:
|
||||
yield self.create_text_message(f"Error: Command timed out after {COMMAND_TIMEOUT_SECONDS}s")
|
||||
except Exception as e:
|
||||
yield self.create_text_message(f"Error: {e!s}")
|
||||
@ -1,134 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.session.cli_api import CliApiSession
|
||||
from core.tools.entities.tool_entities import ToolParameter, ToolProviderType
|
||||
from core.virtual_environment.__base.entities import Arch, OperatingSystem
|
||||
|
||||
from ..constants import DIFY_CLI_PATH_PATTERN
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.tools.__base.tool import Tool
|
||||
|
||||
|
||||
class DifyCliBinary(BaseModel):
|
||||
operating_system: OperatingSystem = Field(alias="os")
|
||||
arch: Arch
|
||||
path: Path
|
||||
|
||||
model_config = {
|
||||
"populate_by_name": True,
|
||||
"arbitrary_types_allowed": True,
|
||||
}
|
||||
|
||||
|
||||
class DifyCliLocator:
|
||||
def __init__(self, root: str | Path | None = None) -> None:
|
||||
from configs import dify_config
|
||||
|
||||
if root is not None:
|
||||
self._root = Path(root)
|
||||
elif dify_config.SANDBOX_DIFY_CLI_ROOT:
|
||||
self._root = Path(dify_config.SANDBOX_DIFY_CLI_ROOT)
|
||||
else:
|
||||
api_root = Path(__file__).resolve().parents[3]
|
||||
self._root = api_root / "bin"
|
||||
|
||||
def resolve(self, operating_system: OperatingSystem, arch: Arch) -> DifyCliBinary:
|
||||
filename = DIFY_CLI_PATH_PATTERN.format(os=operating_system.value, arch=arch.value)
|
||||
candidate = self._root / filename
|
||||
if not candidate.is_file():
|
||||
raise FileNotFoundError(
|
||||
f"dify CLI binary not found: {candidate}. Configure SANDBOX_DIFY_CLI_ROOT or ensure the file exists."
|
||||
)
|
||||
|
||||
return DifyCliBinary(os=operating_system, arch=arch, path=candidate)
|
||||
|
||||
|
||||
class DifyCliEnvConfig(BaseModel):
|
||||
files_url: str
|
||||
cli_api_url: str
|
||||
cli_api_session_id: str
|
||||
cli_api_secret: str
|
||||
|
||||
|
||||
class DifyCliToolConfig(BaseModel):
|
||||
provider_type: str
|
||||
identity: dict[str, Any]
|
||||
description: dict[str, Any]
|
||||
parameters: list[dict[str, Any]]
|
||||
|
||||
@classmethod
|
||||
def transform_provider_type(cls, tool_provider_type: ToolProviderType) -> str:
|
||||
provider_type = tool_provider_type
|
||||
match tool_provider_type:
|
||||
case ToolProviderType.BUILT_IN | ToolProviderType.PLUGIN:
|
||||
provider_type = "builtin"
|
||||
case ToolProviderType.MCP | ToolProviderType.WORKFLOW | ToolProviderType.API:
|
||||
provider_type = provider_type
|
||||
case _:
|
||||
raise ValueError(f"Invalid tool provider type: {tool_provider_type}")
|
||||
return provider_type
|
||||
|
||||
@classmethod
|
||||
def create_from_tool(cls, tool: Tool) -> DifyCliToolConfig:
|
||||
return cls(
|
||||
provider_type=cls.transform_provider_type(tool.tool_provider_type()),
|
||||
identity=to_json(tool.entity.identity),
|
||||
description=to_json(tool.entity.description),
|
||||
parameters=[cls.transform_parameter(parameter) for parameter in tool.entity.parameters],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def transform_parameter(cls, parameter: ToolParameter) -> dict[str, Any]:
|
||||
transformed_parameter = to_json(parameter)
|
||||
transformed_parameter.pop("input_schema", None)
|
||||
transformed_parameter.pop("form", None)
|
||||
match parameter.type:
|
||||
case (
|
||||
ToolParameter.ToolParameterType.SYSTEM_FILES
|
||||
| ToolParameter.ToolParameterType.FILE
|
||||
| ToolParameter.ToolParameterType.FILES
|
||||
):
|
||||
return transformed_parameter
|
||||
case _:
|
||||
return transformed_parameter
|
||||
|
||||
|
||||
class DifyCliConfig(BaseModel):
|
||||
env: DifyCliEnvConfig
|
||||
tools: list[DifyCliToolConfig]
|
||||
|
||||
@classmethod
|
||||
def create(cls, session: CliApiSession, tools: list[Tool]) -> DifyCliConfig:
|
||||
from configs import dify_config
|
||||
|
||||
cli_api_url = dify_config.CLI_API_URL
|
||||
|
||||
return cls(
|
||||
env=DifyCliEnvConfig(
|
||||
files_url=dify_config.FILES_URL,
|
||||
cli_api_url=cli_api_url,
|
||||
cli_api_session_id=session.id,
|
||||
cli_api_secret=session.secret,
|
||||
),
|
||||
tools=[DifyCliToolConfig.create_from_tool(tool) for tool in tools],
|
||||
)
|
||||
|
||||
|
||||
def to_json(obj: Any) -> dict[str, Any]:
|
||||
return jsonable_encoder(obj, exclude_unset=True, exclude_defaults=True, exclude_none=True)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"DifyCliBinary",
|
||||
"DifyCliConfig",
|
||||
"DifyCliEnvConfig",
|
||||
"DifyCliLocator",
|
||||
"DifyCliToolConfig",
|
||||
]
|
||||
@ -1,16 +0,0 @@
|
||||
from typing import Final
|
||||
|
||||
# Dify CLI (absolute path - hidden in /tmp, not in sandbox workdir)
|
||||
DIFY_CLI_ROOT: Final[str] = "/tmp/.dify"
|
||||
DIFY_CLI_PATH: Final[str] = "/tmp/.dify/bin/dify"
|
||||
|
||||
DIFY_CLI_PATH_PATTERN: Final[str] = "dify-cli-{os}-{arch}"
|
||||
|
||||
DIFY_CLI_CONFIG_FILENAME: Final[str] = ".dify_cli.json"
|
||||
|
||||
DIFY_CLI_TOOLS_ROOT: Final[str] = "/tmp/.dify/tools"
|
||||
DIFY_CLI_GLOBAL_TOOLS_PATH: Final[str] = "/tmp/.dify/tools/global"
|
||||
|
||||
# App Assets (relative path - stays in sandbox workdir)
|
||||
APP_ASSETS_PATH: Final[str] = "assets"
|
||||
APP_ASSETS_ZIP_PATH: Final[str] = "/tmp/assets.zip"
|
||||
@ -1,3 +0,0 @@
|
||||
from .providers import SandboxProviderApiEntity
|
||||
|
||||
__all__ = ["SandboxProviderApiEntity"]
|
||||
@ -1,21 +0,0 @@
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class SandboxProviderApiEntity(BaseModel):
|
||||
provider_type: str = Field(..., description="Provider type identifier")
|
||||
is_system_configured: bool = Field(default=False)
|
||||
is_tenant_configured: bool = Field(default=False)
|
||||
is_active: bool = Field(default=False)
|
||||
config: Mapping[str, Any] = Field(default_factory=dict)
|
||||
config_schema: list[dict[str, Any]] = Field(default_factory=list)
|
||||
|
||||
|
||||
class SandboxProviderEntity(BaseModel):
|
||||
id: str = Field(..., description="Provider identifier")
|
||||
provider_type: str = Field(..., description="Provider type identifier")
|
||||
is_active: bool = Field(default=False)
|
||||
config: Mapping[str, Any] = Field(default_factory=dict)
|
||||
config_schema: list[dict[str, Any]] = Field(default_factory=list)
|
||||
@ -1,9 +0,0 @@
|
||||
from .app_assets_initializer import AppAssetsInitializer
|
||||
from .base import SandboxInitializer
|
||||
from .dify_cli_initializer import DifyCliInitializer
|
||||
|
||||
__all__ = [
|
||||
"AppAssetsInitializer",
|
||||
"DifyCliInitializer",
|
||||
"SandboxInitializer",
|
||||
]
|
||||
@ -1,55 +0,0 @@
|
||||
import logging
|
||||
from io import BytesIO
|
||||
|
||||
from core.app_assets.paths import AssetPaths
|
||||
from core.virtual_environment.__base.helpers import execute, with_connection
|
||||
from core.virtual_environment.__base.virtual_environment import VirtualEnvironment
|
||||
from extensions.ext_storage import storage
|
||||
|
||||
from ..constants import APP_ASSETS_PATH, APP_ASSETS_ZIP_PATH
|
||||
from .base import SandboxInitializer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AppAssetsInitializer(SandboxInitializer):
|
||||
def __init__(self, tenant_id: str, app_id: str, assets_id: str) -> None:
|
||||
self._tenant_id = tenant_id
|
||||
self._app_id = app_id
|
||||
self._assets_id = assets_id
|
||||
|
||||
def initialize(self, env: VirtualEnvironment) -> None:
|
||||
zip_key = AssetPaths.build_zip(self._tenant_id, self._app_id, self._assets_id)
|
||||
try:
|
||||
zip_data = storage.load_once(zip_key)
|
||||
except Exception:
|
||||
logger.warning(
|
||||
"Failed to load assets zip for app_id=%s, key=%s",
|
||||
self._app_id,
|
||||
zip_key,
|
||||
exc_info=True,
|
||||
)
|
||||
return
|
||||
|
||||
env.upload_file(APP_ASSETS_ZIP_PATH, BytesIO(zip_data))
|
||||
|
||||
with with_connection(env) as conn:
|
||||
execute(
|
||||
env,
|
||||
["unzip", "-o", APP_ASSETS_ZIP_PATH, "-d", APP_ASSETS_PATH],
|
||||
connection=conn,
|
||||
timeout=60,
|
||||
error_message="Failed to unzip assets",
|
||||
)
|
||||
execute(
|
||||
env,
|
||||
["rm", "-f", APP_ASSETS_ZIP_PATH],
|
||||
connection=conn,
|
||||
error_message="Failed to cleanup temp zip file",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"App assets initialized for app_id=%s, published_id=%s",
|
||||
self._app_id,
|
||||
self._assets_id,
|
||||
)
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user