Compare commits

..

315 Commits

Author SHA1 Message Date
f5a34e9ee8 feat(skill): skill support 2026-01-20 03:02:34 +08:00
yyh
bc9ce23fdc refactor(skill): rename components for semantic clarity
Rename components and reorganize directory structure:
- skill-doc-editor.tsx → file-content-panel.tsx (handles edit/preview/download)
- editor-area.tsx → content-area.tsx
- editor-body.tsx → content-body.tsx
- editor-tabs.tsx → file-tabs.tsx
- editor-tab-item.tsx → file-tab-item.tsx

Create viewer/ directory for non-editor components:
- Move media-file-preview.tsx from editor/ to viewer/
- Move unsupported-file-download.tsx from editor/ to viewer/

This clarifies the distinction between:
- editor/: actual file editors (code, markdown)
- viewer/: preview and download components (media, unsupported files)
2026-01-19 23:50:08 +08:00
yyh
cab33d440b refactor(skill): remove Office file special handling, merge into unsupported
Remove the Office file placeholder that only showed "Preview will be
supported in a future update" without any download option. Office files
(pdf, doc, docx, xls, xlsx, ppt, pptx) now fall through to the generic
"unsupported file" handler which provides a download button.

Removed:
- OfficeFilePlaceholder component
- isOfficeFile function and OFFICE_EXTENSIONS constant
- isOffice flag from useFileTypeInfo hook
- i18n keys for officePlaceholder

This simplifies the file type handling to just three categories:
- Editable: markdown, code, text files → editor
- Previewable: image, video files → media preview
- Everything else: download button
2026-01-19 23:39:32 +08:00
yyh
b3793b0198 fix(skill): use download URL for all non-editable files
Change useSkillFileData to use isEditable instead of isMediaFile:
- Editable files (markdown, code, text) fetch file content for editing
- Non-editable files (image, video, office, unsupported) fetch download URL

This fixes the download button for unsupported files which was incorrectly
using file content (UTF-8 decoded garbage) instead of the presigned URL.
2026-01-19 23:34:56 +08:00
yyh
8486c675c8 refactor(skill): extract hooks from skill-doc-editor for better separation
Extract business logic into dedicated hooks to reduce component complexity:
- useFileTypeInfo: file type detection (markdown, code, image, video, etc.)
- useSkillFileData: data fetching with conditional API calls
- useSkillFileSave: save logic with Ctrl+S keyboard shortcut

Also fix Vercel best practice: use ternary instead of && for conditional rendering.
2026-01-19 23:25:48 +08:00
yyh
b6df7b3afe fix(skill): use presigned URL for image/video preview in skill editor
Previously, media files were fetched via getFileContent API which decodes
binary data as UTF-8, resulting in corrupted strings that cannot be used
as img/video src. Now media files use getFileDownloadUrl API to get a
presigned URL, enabling proper preview of images and videos of any size.
2026-01-19 23:15:00 +08:00
yyh
31a7db2657 refactor(skill): unify root/blank constants and eliminate magic strings
- Add constants.ts with ROOT_ID, CONTEXT_MENU_TYPE, NODE_MENU_TYPE
- Add root utilities to tree-utils.ts (isRootId, toApiParentId, etc.)
- Replace '__root__' with ROOT_ID for consistent root identifier
- Replace inline 'blank'/'root' strings with constants
- Use NodeMenuType for type-safe menu type props
- Remove duplicate ContextMenuType from types.ts, use from constants.ts
2026-01-19 23:07:49 +08:00
yyh
9080607028 refactor(skill): unify tree selection with VSCode-style single state
Remove redundant createTargetNodeId and use selectedTreeNodeId for both
visual highlight and creation target. This simplifies the state management
by having a single source of truth for tree selection, similar to VSCode's
file explorer behavior where both files and folders can be selected.
2026-01-19 22:36:04 +08:00
yyh
8f4a4214a1 feat(sandbox): preserve user config when switching to system default
Update frontend to use new backend API:
- save_config now accepts optional 'activate' parameter
- activate endpoint now requires 'type' parameter ('system' | 'user')

When switching to managed mode, call activate with type='system' instead
of deleting user config, so custom configurations are preserved for
future use.
2026-01-19 22:27:06 +08:00
yyh
ff210a98db feat(skill): add placeholder for inline tree node input
Display localized placeholder text ("File name" / "Folder name") when
creating new files or folders in the skill editor file tree.
2026-01-19 22:01:31 +08:00
9ad1f30a8c fix(app_asset_service): increase maximum preview content size from 1MB to 5MB 2026-01-19 21:53:48 +08:00
5053fae5b4 fix(app_asset_service): reduce maximum preview content size from 5MB to 1MB 2026-01-19 21:52:18 +08:00
d297167fef feat(sandbox): add optional activate argument to sandbox provider config
- Updated the request parser in SandboxProviderListApi to include an optional 'activate' boolean argument for JSON input.
- This enhancement allows users to specify activation status when configuring sandbox providers.
2026-01-19 21:46:26 +08:00
41aec357b0 feat(sandbox): add activation functionality for sandbox providers
- Enhanced the SandboxProviderConfigApi to accept an 'activate' argument when saving provider configurations.
- Introduced a new request parser for activating sandbox providers, requiring a 'type' argument.
- Updated the SandboxProviderService to handle the activation state during configuration saving and provider activation.
2026-01-19 21:43:03 +08:00
yyh
96da3b9560 fix: migration 2026-01-19 20:13:24 +08:00
yyh
3bb9625ced fix(sandbox): prevent revoking active provider config
Hide revoke button for active providers to avoid "no sandbox provider"
error when user deletes the only available configuration.
2026-01-19 20:09:14 +08:00
yyh
5aa4088051 fix(sandbox): use deleteConfig when switching to managed mode
Delete user config instead of saving empty config when switching to
managed mode, allowing the system to fall back to system defaults.
2026-01-19 19:51:47 +08:00
yyh
9f444f1f6a refactor(skill): split file operations hook and extract TreeNodeIcon component
Split use-file-operations.ts (248 lines) into smaller focused hooks:
- use-create-operations.ts for file/folder creation and upload
- use-modify-operations.ts for rename and delete operations
- use-file-operations.ts now serves as orchestrator maintaining backward compatibility

Extract TreeNodeIcon component from tree-node.tsx for cleaner separation of concerns.

Add brief comments to drag hooks explaining their purpose and relationships.
2026-01-19 19:13:09 +08:00
49effca35d fix: auto default 2026-01-19 18:41:05 +08:00
yyh
fb28f03155 Merge branch 'feat/support-agent-sandbox' of https://github.com/langgenius/dify into feat/support-agent-sandbox 2026-01-19 18:37:48 +08:00
2afc4704ad chore: add limit to tool param auto 2026-01-19 18:35:57 +08:00
yyh
5496fc014c feat(sandbox): add connect mode selection for E2B provider
Add ability to choose between "Managed by Dify" (using system config)
and "Bring Your Own API Key" modes when configuring E2B sandbox provider.
This allows Cloud users to use Dify's pre-configured credentials or
their own E2B account for more control over resources and billing.
2026-01-19 18:35:53 +08:00
yyh
7756c151ed feat: add VSCode-style blink animation before folder auto-expand
When dragging files over a closed folder, the highlight now blinks
during the second half of the 2-second hover period to signal that
the folder is about to expand. This provides better visual feedback
similar to VSCode's drag-and-drop behavior.
2026-01-19 18:35:26 +08:00
83c458d2fe chore: change tool setting copywriting and ts promble 2026-01-19 18:27:33 +08:00
956436b943 feat(sandbox): skill initialize & draft run 2026-01-19 18:15:39 +08:00
3bb9c4b280 feat(constants): introduce DIFY_CLI_ROOT and update paths for Dify CLI and app assets
- Added DIFY_CLI_ROOT constant for the root directory of Dify CLI.
- Updated DIFY_CLI_PATH and DIFY_CLI_CONFIG_PATH to use absolute paths.
- Modified app asset initialization to create directories under DIFY_CLI_ROOT.
- Enhanced Docker and E2B environment file handling to use workspace paths.
2026-01-19 18:15:39 +08:00
c38463c9a9 refactor: reorganize asset-related classes into entities module and remove unused skill and asset files 2026-01-19 18:15:39 +08:00
yyh
fc49592769 Merge branch 'feat/support-agent-sandbox' of https://github.com/langgenius/dify into feat/support-agent-sandbox 2026-01-19 18:07:15 +08:00
6643569efc fix: tool can not auth modal 2026-01-19 18:06:23 +08:00
yyh
fe0ea13f70 perf: parallelize file uploads and add consistent drag validation
Use Promise.all for concurrent file uploads instead of sequential
processing, improving upload performance for multiple files. Also
add isFileDrag check to handleFolderDragOver for consistency with
other drag handlers.
2026-01-19 18:05:59 +08:00
yyh
c979b59e1e fix: correct test expectation for model provider setting payload
The test was expecting 'provider' but the actual value passed is
'model-provider' from ACCOUNT_SETTING_TAB.MODEL_PROVIDER constant.
2026-01-19 18:05:59 +08:00
yyh
144ca11c03 refactor file drop handlers into hooks 2026-01-19 18:05:58 +08:00
yyh
a432fa5fcf feat: add external file drag-and-drop upload to file tree
Enable users to drag files from their system directly into the file tree
to upload them. Files can be dropped on the tree container (uploads to root)
or on specific folders. Hovering over a closed folder for 2 seconds auto-
expands it. Uses Zustand for drag state management instead of React Context
for better performance.
2026-01-19 18:05:58 +08:00
4b67008dba fix: not blank not render tool correct 2026-01-19 17:01:32 +08:00
f4b683aa2f fix: no blank not render file write 2026-01-19 17:01:32 +08:00
yyh
7de6ecdedf fix: lint 2026-01-19 16:35:50 +08:00
bd070857ed fix: fold indent style 2026-01-19 16:34:46 +08:00
yyh
d3d1ba2488 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox
# Conflicts:
#	api/core/app/apps/workflow/app_generator.py
2026-01-19 16:33:10 +08:00
2d4289a925 chore: relocate datasets api form (#31224) 2026-01-19 16:15:51 +08:00
eae82b1085 chore: remove sync from left panel tree 2026-01-19 16:11:10 +08:00
88780c7eb7 fix: Revert "fix: fix create app xss issue" (#31219) 2026-01-19 16:07:24 +08:00
0f1db88dcb fix: fix dify-plugin-daemon error message (#31218) 2026-01-19 16:00:44 +08:00
f9fd234cf8 feat: support expand the selected file struct 2026-01-19 15:38:43 +08:00
1dfee05b7e fix: view file popup place error 2026-01-19 15:25:57 +08:00
dd42e7706a fix: workflow can not init 2026-01-19 15:15:24 +08:00
3a775fc2bf feat: support choose folders and files 2026-01-19 14:47:57 +08:00
92dbc94f2f test: add unit tests for plugin detail panel components including action lists, strategy lists, and endpoint management (#31053)
Co-authored-by: CodingOnStar <hanxujiang@dify.ai>
2026-01-19 14:40:32 +08:00
9f09414dbe refactor: make url in email template more better (#31166) 2026-01-19 14:28:41 +08:00
yyh
0d5e971a0c fix(skill): pass root nodeId for blank-area context menu
The previous refactor inadvertently passed undefined nodeId for blank
area menus, causing root-level folder creation/upload to fail. This
restores the original behavior by explicitly passing 'root' when the
context menu type is 'blank'.
2026-01-19 14:23:38 +08:00
yyh
9aed4f830f refactor(skill): merge BlankAreaMenu into NodeMenu
Consolidate menu components by extending NodeMenu to support a 'root'
type, eliminating the redundant BlankAreaMenu component. This reduces
code duplication and simplifies the context menu logic by storing
isFolder in the context menu state instead of re-querying tree data.
2026-01-19 14:22:25 +08:00
yyh
5947e04226 feat: decouple create target from tab selection 2026-01-19 14:09:37 +08:00
yyh
611ff05bde feat: sync tree selection with active tab 2026-01-19 14:05:46 +08:00
yyh
0e890e5692 feat: auto pin created editable files 2026-01-19 13:51:08 +08:00
yyh
6584dc2480 feat: inline create nodes in skill file tree 2026-01-19 13:43:29 +08:00
yyh
a922e844eb fix(skill): return raw content as fallback for non-JSON file content
When file content is not in JSON format (e.g., newly uploaded files),
return the raw content instead of empty string to ensure files display
correctly.
2026-01-19 12:55:22 +08:00
b3902374ac chore: drop slow lint rules (#31205) 2026-01-19 12:45:02 +08:00
yyh
4bd05ed96e fix(types): remove unused and misaligned app-asset types
Remove types that don't match backend API:
- AppAssetFileContentResponse (unused, had extra metadata field)
- CreateFilePayload (unused, FormData built manually)
- metadata field from UpdateFileContentPayload
2026-01-19 12:43:44 +08:00
0de32f682a feat(skill): skill parser & packager 2026-01-19 12:41:01 +08:00
245567118c chore: struct to wrap with content 2026-01-19 12:19:40 +08:00
3b225c01da refactor: refactor workflow context (#30607) 2026-01-19 12:18:51 +08:00
yyh
021f055c36 feat(skill-editor): add blank area context menu and align search/add styles
Add right-click context menu for file tree blank area with New File,
New Folder, and Upload Files options. Also align search input and
add button styles to match Figma design specs (24px height, 6px radius).
2026-01-19 11:38:59 +08:00
72ce6ca437 feat: implement workspace permission checks for member invitations an… (#31202) 2026-01-18 19:35:50 -08:00
269c85d5a3 feat: ee workspace permission control (#30841) 2026-01-19 11:06:04 +08:00
b0545635b8 chore: improve clear workflow_run task (#31124)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: hj24 <mambahj24@gmail.com>
2026-01-19 10:58:57 +08:00
yyh
5f707c5585 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-19 10:53:16 +08:00
yyh
232da66b53 chore: update eslint suppressions 2026-01-19 10:51:53 +08:00
yyh
ebeee92e51 fix(sandbox-provider): align frontend types with backend API after refactor
Remove label, description, and icon fields from SandboxProvider type
as they are no longer returned by the backend API. Use i18n translations
to display provider labels instead of relying on API response data.
2026-01-19 10:50:57 +08:00
yyh
f481947b0d Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-19 10:38:36 +08:00
13d648cf7b chore: no custom lint cache location (#31195) 2026-01-19 10:37:49 +08:00
yyh
94ea7031e8 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-19 10:31:54 +08:00
yyh
e8397ae7a8 fix(web): Zustand testing best practices and state read optimization (#31163)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2026-01-19 10:31:34 +08:00
yyh
8893913b3a feat: add Vercel React Best Practices skill for Claude Code (#31133) 2026-01-19 10:30:49 +08:00
14f123802d chore: update vite related version (#31180) 2026-01-19 10:28:06 +08:00
yyh
2f081fa6fa refactor(skill-editor): adopt 4-generic StateCreator pattern for type-safe cross-slice access
Use explicit StateCreator<FullStore, [], [], SliceType> pattern instead of
StateCreator<SliceType> for all skill-editor slices. This enables:
- Type-safe cross-slice state access via get()
- Explicit type contracts instead of relying on spread args behavior
- Better maintainability following Lobe-chat's proven pattern

Extract all type definitions to types.ts to avoid circular dependencies.
2026-01-18 13:24:34 +08:00
yyh
3b27d9e819 refactor(skill-editor): remove type assertions by using spread args pattern
Replace explicit parameter destructuring with spread args pattern to
eliminate `as unknown as` type assertions when composing sub-slices.
This aligns with the pattern used in the main workflow store.
2026-01-18 13:11:06 +08:00
yyh
c0a76220dd fix(skill-editor): resolve React Compiler memoization warnings
Consolidate file type derivations into a single useMemo with stable
dependencies (currentFileNode?.name and currentFileNode?.extension)
to help React Compiler track stability.

Extract originalContent as a separate variable to avoid property access
in useCallback dependencies, which caused Compiler to infer broader
dependencies than specified.
2026-01-17 22:01:33 +08:00
yyh
9d04fb4992 fix(skill-editor): resolve React Compiler memoization warnings
Wrap isEditable in useMemo to help React Compiler track its stability
and preserve memoization for callbacks that depend on it. Also replace
Record<string, any> with Record<string, unknown> to satisfy no-explicit-any.
2026-01-17 21:51:25 +08:00
yyh
02fcf33067 fix(skill-editor): remove unnecessary store subscriptions in tool-picker-block
Move activeTabId and fileMetadata reads from selector subscriptions to
getState() calls inside the callback. These values were only used in the
insertTools callback, not for rendering, causing unnecessary re-renders
when they changed.
2026-01-17 21:47:31 +08:00
7b66bbc35a chore: introduce bulk-suppressions and multithread linting (#31157) 2026-01-17 19:51:56 +08:00
yyh
bbf1247f80 fix(skill-editor): compare content with original to determine dirty state
Previously, any edit would mark the file as dirty even if the content
was restored to its original state. Now we compare against the original
content and clear the dirty flag when they match.
2026-01-17 17:52:00 +08:00
77366f33a4 feat(web): add loading indicators for infinite scroll pagination (#31110)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Stephen Zhou <38493346+hyoban@users.noreply.github.com>
2026-01-17 17:36:07 +08:00
yyh
e3b0918dd9 test(web): add global zustand mock for tests (#31149) 2026-01-17 17:29:13 +08:00
yyh
b82b73ef94 refactor(skill-editor): split slice into separate files for better organization
Split the monolithic skill-editor-slice.ts into a dedicated directory with
individual slice files (tab, file-tree, dirty, metadata, file-operations-menu)
to improve maintainability and code organization.
2026-01-17 17:28:25 +08:00
yyh
15d6f60f25 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-17 17:03:32 +08:00
yyh
ad8c5f5452 perf: lazy load SkillMain component using next/dynamic
Reduce initial bundle size by dynamically importing SkillMain
component. This prevents loading the entire Skill module (including
Monaco and Lexical editors) when users only access the Graph view.
2026-01-16 21:31:56 +08:00
721d82b91a refactor(sandbox): modify sandbox provider configuration by adding 'configure_type' column and updating unique constraints 2026-01-16 19:02:16 +08:00
d542a74733 feat: panel ui 2026-01-16 18:39:13 +08:00
16078a9df6 refactor(sandbox): update DifyCliLocator path resolution and enhance sandbox provider configuration logic 2026-01-16 18:37:43 +08:00
0bd17c6d0f refactor(sandbox): sandbox provider system default configuration 2026-01-16 18:22:44 +08:00
8b42435f7a feat: support set default value when choose tool 2026-01-16 18:16:01 +08:00
3147e850be fix: click tool not show current 2026-01-16 17:52:40 +08:00
0b33381efb feat: support save settings 2026-01-16 17:44:40 +08:00
yyh
ee7a9a34e0 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-16 17:25:19 +08:00
148f92f92d fix: allow all fileds and not allow model set to auto 2026-01-16 17:20:11 +08:00
f79df6982d feat: support setting show on click 2026-01-16 16:58:58 +08:00
649283df09 fix: not popup and use new setting 2026-01-16 15:09:25 +08:00
yyh
06b6625c01 feat(skill): implement file tree search with debounced filtering
Add search functionality to skill sidebar using react-arborist's built-in
searchTerm and searchMatch props. Search input is debounced at 300ms and
filters tree nodes by name (case-insensitive). Also add success toast for
rename operations.
2026-01-16 14:44:44 +08:00
eb4f57fb8b chore: split tool config 2026-01-16 14:39:33 +08:00
yyh
0f5d3f38da refactor(skill): use node.parent chain for ancestor traversal
Replace getAncestorIds(treeData) with node.parent chain traversal
for more efficient ancestor lookup. This avoids re-traversing the
tree data structure and uses react-arborist's built-in parent refs.

Also rename hook to useSyncTreeWithActiveTab for clarity.
2026-01-16 14:27:21 +08:00
yyh
76da178cc1 refactor(skill): extract tree node handlers into reusable hooks
Extract complex event handling and side effects from file tree components
into dedicated hooks for better separation of concerns and reusability.
2026-01-16 14:15:21 +08:00
yyh
38a2d2fe68 fix(skill): isolate more button click from tree node click handling
Use split button pattern to separate main content area from more button.
This prevents click events on the more button from bubbling up to the
parent element's click/double-click handlers, which caused unintended
file opening when clicking the menu button multiple times.
2026-01-16 14:07:07 +08:00
yyh
9397ba5bd2 refactor: move skill store to workflow/store/ 2026-01-16 13:51:50 +08:00
yyh
7093962f30 refactor(skill): move skill editor slice to core workflow store
Move SkillEditorSlice from injection pattern to core workflow store,
making it available to all workflow contexts (workflow-app, chatflow,
and future rag-pipeline).

- Add createSkillEditorSlice to core createWorkflowStore
- Remove complex type conversion logic from workflow-app/index.tsx
- Remove optional chaining (?.) and non-null assertions (!) from components
- Simplify slice composition with type assertions via unknown
2026-01-16 13:51:50 +08:00
yyh
7022e4b9ca fix(skill): add key prop to editors to fix content sync on tab switch
Lexical editor only uses initialConfig.editorState on mount, ignoring
subsequent value prop changes when the component is reused by React.
Adding key={activeTabId} forces React to remount editors when switching
tabs, ensuring correct content is displayed.
2026-01-16 13:51:50 +08:00
yyh
b8d67a42bd refactor(skill): migrate skill editor store to workflow store slice injection
Refactor the skill editor state management from a standalone Zustand store
with Context provider pattern to a slice injection pattern that integrates
with the existing workflow store. This aligns with how rag-pipeline already
injects its slice.

- Remove SkillEditorProvider and SkillEditorContext
- Export createSkillEditorSlice for injection into workflow store
- Update all components to use useStore/useWorkflowStore from workflow store
- Add SkillEditorSliceShape to SliceFromInjection union type
- Use type-safe slice creator args without any types
2026-01-16 13:51:49 +08:00
yyh
106cb8e373 refactor(skill): unify node menu components with cva variants
Merge file-node-menu.tsx and folder-node-menu.tsx into a single
declarative NodeMenu component that uses type prop to determine
menu items. Add cva-based variant support to MenuItem for consistent
destructive styling.
2026-01-16 13:51:49 +08:00
9492eda5ef chore: tool format and render problem 2026-01-16 13:50:20 +08:00
64ddcc8960 chore: fix choose provder id 2026-01-16 11:31:03 +08:00
yyh
c7bca6a3fb fix(skill): restore auto-pin on edit behavior (VS Code style) 2026-01-16 11:26:13 +08:00
yyh
f1ce933b33 fix(skill): address code review issues for tab management
1. Add confirmation dialog when closing dirty tabs
2. Fix file double-click race condition with useDelayedClick hook
3. Fix previewTabId orphan state in closeTab
4. Remove auto-pin on every keystroke (VS Code behavior)
5. Extract shared MenuItem component to eliminate duplication
6. Make nodeId optional when node is provided (reduce props drilling)
2026-01-16 11:20:49 +08:00
yyh
17990512ce fix(skill): add throttle to folder toggle and validate pinTab
- Use es-toolkit throttle with leading edge to prevent folder toggle
  flickering on double-click (3 toggles reduced to 1)
- Add validation in pinTab to check if file exists in openTabIds
2026-01-16 11:20:49 +08:00
yyh
a30fb5909b feat(skill): implement VS Code-style preview/pinned tab management
- Single-click file in tree opens in preview mode (temporary, replaceable)
- Double-click file opens in pinned mode (permanent)
- Preview tabs display with italic filename
- Editing content auto-converts preview tab to pinned
- Double-clicking preview tab header converts to pinned
- Only one preview tab can exist at a time
2026-01-16 11:20:49 +08:00
3dea5adf5c fix: change caused problem 2026-01-16 11:00:56 +08:00
yyh
5aca563a01 fix: migrations 2026-01-16 10:26:53 +08:00
yyh
bf1ebcdf8f Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-16 10:05:12 +08:00
yyh
3252748345 feat(skill): add oRPC contract and hook for file download URL
Add frontend oRPC integration for the existing backend download URL
endpoint to enable file downloads from the asset tree.
2026-01-16 09:55:17 +08:00
yyh
783cdb1357 feat(skill): add inline rename and guide lines to file tree
Add TreeEditInput component for inline file/folder renaming with keyboard
support (Enter to submit, Escape to cancel). Add TreeGuideLines component
to render vertical indent lines based on node depth for better visual
hierarchy in the tree view.

Reorganize file tree components into dedicated `file-tree` subdirectory
for better code organization.
2026-01-15 21:30:02 +08:00
yyh
2de17cb1a4 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-15 20:47:34 +08:00
yyh
3b6946d3da refactor(skill): centralize asset tree data fetching with custom hooks
Extract repeated appId retrieval and tree data fetching patterns into
dedicated hooks (useSkillAssetTreeData, useSkillAssetNodeMap) to reduce
code duplication across 6 components and leverage TanStack Query's
select option for efficient nodeMap computation.
2026-01-15 19:45:33 +08:00
yyh
b8adc8f498 fix(web): memoize skill sidebar menu offset 2026-01-15 19:45:32 +08:00
yyh
ca7c4d2c86 fix(skill): improve accessibility for file tree and tabs
- Convert div with onClick to proper button elements for keyboard access
- Add focus-visible ring styles to all interactive elements
- Add ARIA attributes (role, aria-selected, aria-expanded) to tree nodes
- Add keyboard navigation (Enter/Space) support to tree items
- Mark decorative icons with aria-hidden="true"
- Add missing i18n keys for accessibility labels
- Fix typography: use ellipsis character (…) instead of three dots
2026-01-15 19:45:32 +08:00
d8bafb0d1c refactor(app-asset): remove deprecated file download resource and streamline download URL handling with pre-signed storage 2026-01-15 19:28:15 +08:00
cd0724b827 refactor(app-asset-service): remove unused signed proxy URL generation and improve error handling for download URL 2026-01-15 19:28:15 +08:00
yyh
6e66e2591b feat(skill): disable file tree during mutations
- Add useIsMutating hook to track ongoing mutations
- Apply pointer-events-none and opacity-50 when mutating
- Prevents user interaction during file operations
2026-01-15 18:14:10 +08:00
yyh
fd0556909f fix(skill): default folders to collapsed state on load
- Add openByDefault={false} to Tree component
- react-arborist defaults openByDefault to true, causing all folders
  to be expanded on page refresh
2026-01-15 18:05:42 +08:00
yyh
ac2120da1e refactor(skill): separate DropTip from tree container
- Move DropTip component outside the tree flex container
- Use Fragment to group tree container, DropTip and context menu
- DropTip is now an independent fixed element at the bottom
2026-01-15 18:05:42 +08:00
yyh
f3904a7e39 fix(skill): use dynamic height for file tree to fix scroll issues
- Replace fixed height={1000} with dynamic containerSize.height
- Use useSize hook from ahooks to observe container dimensions
- Fallback to 400px default height for initial render
- Fixes scroll issues when collapsing folders
2026-01-15 18:05:42 +08:00
yyh
b3923ec3ca fix: translations 2026-01-15 18:05:41 +08:00
9ffdad6465 fix: click tool inner caused blur 2026-01-15 17:58:38 +08:00
yyh
713e040481 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-15 17:26:58 +08:00
yyh
f58f36fc8f feat(skill): add file right-click/more menu and refactor naming
- Add right-click context menu and '...' more button for files
  - Files now support Rename and Delete operations
  - Created file-node-menu.tsx for file-specific menu

- Refactor component naming for consistency
  - file-item-menu.tsx -> file-node-menu.tsx (unify 'node' terminology)
  - file-operations-menu.tsx -> folder-node-menu.tsx (clarify folder menu)
  - file-tree-context-menu.tsx -> tree-context-menu.tsx (simplify)
  - file-tree-node.tsx -> tree-node.tsx (simplify)
  - files.tsx -> file-tree.tsx (more descriptive)
  - Renamed internal components: FileTreeNode -> TreeNode, Files -> FileTree

- Add context menu node highlight
  - When right-clicking a node, it now shows hover highlight
  - Subscribed to contextMenu.nodeId in TreeNode component
2026-01-15 17:26:12 +08:00
195cd2c898 chore: show line numbers to skill editor 2026-01-15 17:21:12 +08:00
6bb09dc58c feat(app-assets): add file download functionality with pre-signed URLs and enhance asset management 2026-01-15 17:20:10 +08:00
33f3374ea6 refactor(sandbox): simplify sandbox_layer by removing ArchiveSandboxStorage and updating event handling 2026-01-15 17:20:10 +08:00
41baaca21d feat(sandbox): integrate ArchiveSandboxStorage into AdvancedChat and Workflow app generators 2026-01-15 17:20:10 +08:00
d650cde323 feat: skill editor choose tool 2026-01-15 17:16:01 +08:00
yyh
e651c6cacf fix: css 2026-01-15 16:45:40 +08:00
yyh
eab395f58a refactor: sync file tree open state 2026-01-15 16:39:22 +08:00
yyh
2f92957e15 fix: css 2026-01-15 16:14:51 +08:00
yyh
7bc1390366 feat(skill-editor): enhance + button with full operations and smart target folder
- Refactor sidebar-search-add to reuse useFileOperations hook
- Add getTargetFolderIdFromSelection utility for smart folder targeting
- Expand + button menu: New File, New Folder, Upload File, Upload Folder
- Target folder based on selection: file's parent, folder itself, or root
2026-01-15 16:10:01 +08:00
e91fb94d0e chore: palceholder 2026-01-15 16:08:26 +08:00
yyh
5c03a2e251 refactor(skill-editor): extract hooks and utils into separate directories
- Extract useFileOperations hook to hooks/use-file-operations.ts
- Move tree utilities to utils/tree-utils.ts
- Move file utilities to utils/file-utils.ts (renamed from utils.ts)
- Remove unnecessary JSDoc comments throughout components
- Simplify type.ts to only contain local type definitions
- Clean up store/index.ts by removing verbose comments
2026-01-15 16:00:42 +08:00
yyh
1741fcf84d feat(skill-editor): add rename and delete operations for folder context menu
- Add Rename using react-arborist native inline editing (node.edit())
- Add Delete with Confirm modal and automatic tab cleanup
- Add getAllDescendantFileIds utility for finding files to close on delete
- Add i18n strings for rename/delete operations (en-US, zh-Hans)
2026-01-15 16:00:41 +08:00
yyh
52215e9166 fix(prompt-editor): show border on hover for better scroll boundary visibility
Add hover state border to prompt editor so users can see the boundary
while scrolling even when the editor is not focused.
2026-01-15 16:00:41 +08:00
4cfc135652 feat: prompt editor support line num 2026-01-15 15:56:49 +08:00
yyh
ff632bf9b8 feat(workflow): persist view tab state to URL search params
Use nuqs to sync graph/skill view selection to URL, enabling
shareable links and browser history navigation. Hoists
SkillEditorProvider to maintain state across view switches.
2026-01-15 15:09:36 +08:00
yyh
ce9ed88b03 refactor(skill-editor): hoist SkillEditorProvider for state persistence
Move SkillEditorProvider from SkillMain to WorkflowAppWrapper so that
store state persists across view switches between Graph and Skill views.
Also add URL query state for view type using nuqs.
2026-01-15 15:09:12 +08:00
yyh
e6a4a08120 refactor(skill-editor): simplify code by extracting MenuItem component and removing dead code
- Extract reusable MenuItem component for menu buttons in FileOperationsMenu
- Remove unused handleUploadFileClick/handleUploadFolderClick callbacks
- Remove unused handleDropdownClose callback, inline directly
- Remove unused _fileId parameter from revealFile function
- Simplify toOpensObject using Object.fromEntries
2026-01-15 15:05:43 +08:00
yyh
388ee087c0 feat(skill-editor): add folder context menu with file operations
Add right-click context menu and "..." dropdown button for folders in
the file tree, enabling file operations within any folder:

- New File: Create empty file via Blob upload
- New Folder: Create subfolder
- Upload File: Upload multiple files to folder
- Upload Folder: Upload entire folder structure preserving hierarchy

Implementation includes:
- FileOperationsMenu: Shared menu component for both triggers
- FileTreeContextMenu: Right-click menu with absolute positioning
- FileTreeNode: Added context menu and dropdown button for folders
- Store slice for context menu state management
- i18n strings for en-US and zh-Hans
2026-01-15 14:56:31 +08:00
2fb8883918 feat: split different filetypes 2026-01-15 14:53:00 +08:00
yyh
28ccd42a1c refactor(skill-editor): simplify SkillEditorProvider
Remove verbose comments and appId reset logic since parent component
remounts on appId change. Consolidate imports and use function declaration.
2026-01-15 14:10:41 +08:00
yyh
fcd814a2c3 refactor(skill-editor): simplify state management and remove dead code
- Replace useRef pattern with useMemo for store creation in context.tsx
- Remove unused extension prop from EditorTabItem
- Fix useMemo dependency warnings in editor-tabs.tsx and skill-doc-editor.tsx
- Add proper OnMount type for Monaco editor instead of any
- Delete unused file-item.tsx and fold-item.tsx components
- Remove unused getExtension and fromOpensObject utilities from type.ts
- Refactor auto-reveal effect in files.tsx for better readability
2026-01-15 14:02:15 +08:00
yyh
fe17cbc1a8 feat(skill-editor): implement file tree, tab management, and dirty state tracking
Implement MVP features for skill editor based on design doc:
- Add Zustand store with Tab, FileTree, and Dirty slices
- Rewrite file tree using react-arborist for virtual scrolling
- Implement Tab↔FileTree sync with auto-reveal on tab activation
- Add upload functionality (new folder, upload file)
- Implement Monaco editor with dirty state tracking and Ctrl+S save
- Add i18n translations (en-US and zh-Hans)
2026-01-15 13:53:19 +08:00
63b3e71909 refactor(sandbox): redesign sandbox_layer & reorganize import paths 2026-01-15 13:22:49 +08:00
c1c8b6af44 chore: remove duplicate secret field in CliApiSession 2026-01-15 12:10:53 +08:00
3bd434ddf2 chore: ui enchance 2026-01-15 11:35:48 +08:00
834a5df580 fix: switch zindex 2026-01-15 11:31:08 +08:00
e40c2354d5 chore: remove useless props 2026-01-15 11:24:59 +08:00
b0eca12d88 feat: tabs 2026-01-15 11:22:43 +08:00
yyh
3a86983207 refactor(web): nest sandbox provider contracts 2026-01-15 11:04:43 +08:00
f461ddeb7e missing files 2026-01-15 11:04:15 +08:00
7b534baf15 chore: file type utils 2026-01-15 11:02:07 +08:00
74d8bdd3a7 chore: search ui 2026-01-15 11:02:07 +08:00
yyh
657739d48b Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox
# Conflicts:
#	api/models/model.py
#	web/contract/router.ts
2026-01-15 10:59:45 +08:00
yyh
f8b27dd662 fix(web): accept 2xx status codes in upload function for HTTP semantics
The upload helper was hardcoded to only accept HTTP 201, which broke
PUT requests that return 200. This aligns with standard HTTP semantics
where POST returns 201 Created and PUT returns 200 OK.
2026-01-15 10:54:42 +08:00
yyh
18c7f4698a feat(web): add oRPC contracts and service hooks for app asset API
- Add TypeScript types for app asset management (types/app-asset.ts)
- Add oRPC contract definitions with nested router pattern (contract/console/app-asset.ts)
- Add React Query hooks for all asset operations (service/use-app-asset.ts)
- Integrate app asset contracts into console router

Endpoints covered: tree, createFolder, createFile, getFileContent,
updateFileContent, deleteNode, renameNode, moveNode, reorderNode, publish
2026-01-15 09:50:05 +08:00
6cb8d03bf6 feat(sandbox): enhance SandboxLayer with app_id handling and storage integration
- Introduce _app_id attribute to store application ID from system variables
- Add _get_app_id method to retrieve and validate app_id
- Update on_graph_start to log app_id during sandbox initialization
- Integrate ArchiveSandboxStorage for persisting and restoring sandbox files
- Ensure proper error handling for sandbox file operations
2026-01-15 00:28:41 +08:00
94ff904a04 feat(sandbox): add AppAssetsInitializer and refactor VMFactory to VMBuilder
- Add AppAssetsInitializer to load published app assets into sandbox
- Refactor VMFactory.create() to VMBuilder with builder pattern
- Extract SandboxInitializer base class and DifyCliInitializer
- Simplify SandboxLayer constructor (remove options/environments params)
- Fix circular import in sandbox module by removing eager SandboxBashTool export
- Update SandboxProviderService to return VMBuilder instead of VirtualEnvironment
2026-01-15 00:13:52 +08:00
a0c388f283 refactor(sandbox): extract connection helpers and move run_command to helper module
- Add helpers.py with connection management utilities:
    - with_connection: context manager for connection lifecycle
    - submit_command: execute command and return CommandFuture
    - execute: run command with auto connection, raise on failure
    - try_execute: run command with auto connection, return result

  - Add CommandExecutionError to exec.py for typed error handling
    with access to exit_code, stderr, and full result

  - Remove run_command method from VirtualEnvironment base class
    (now available as submit_command helper)

  - Update all call sites to use new helper functions:
    - sandbox/session.py
    - sandbox/storage/archive_storage.py
    - sandbox/bash/bash_tool.py
    - workflow/nodes/command/node.py

  - Add comprehensive unit tests for helpers with connection reuse
2026-01-15 00:13:52 +08:00
yyh
31427e9c42 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-14 21:15:23 +08:00
yyh
384b99435b Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox
# Conflicts:
#	api/.env.example
#	api/uv.lock
2026-01-14 21:14:36 +08:00
425d182f21 refactor: move app_asset_tree module and update imports in app_asset and app_asset_service 2026-01-14 20:31:40 +08:00
4394ba1fe1 feat(skill): implement app asset management features including folder and file operations, error handling, and database migration for app asset drafts 2026-01-14 20:25:17 +08:00
be5a4cf5e3 temp fix: tab change caused empty the nodes 2026-01-14 17:20:40 +08:00
yyh
d17a92f713 refactor(web): split sandbox provider contracts into separate file
Move sandbox provider related contracts from contract/console.ts
to contract/console/sandbox-provider.ts for better organization
2026-01-14 16:46:04 +08:00
5ac2230c5d feat: sandbox storage 2026-01-14 16:31:24 +08:00
ab531d946e feat: add main skill struct 2026-01-14 16:28:14 +08:00
1a8fd08563 chore: add list define and mock data 2026-01-14 16:28:14 +08:00
yyh
c6ddf89980 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-14 16:24:47 +08:00
yyh
71c39ae583 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-14 16:23:57 +08:00
yyh
7209ef4aa7 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-14 16:16:28 +08:00
6b55e6781f feat: graph skill main struct 2026-01-14 15:41:02 +08:00
yyh
4887c9ea6f refactor(web): simplify MCP tool availability context and hook
- Add useMemo to prevent unnecessary re-renders of context value
- Extract ProviderProps type for better readability
- Convert arrow functions to standard function declarations
- Remove unused versionSupported/sandboxEnabled from hook return type
2026-01-14 14:15:07 +08:00
yyh
18170a1de5 feat(web): add sandbox mode check for MCP tool availability
Extend MCP tool availability context to include sandbox mode check
alongside version support. MCP tools are now blocked when sandbox
is disabled, with appropriate tooltip messages for each blocking
condition.
2026-01-14 14:01:56 +08:00
yyh
7ce144f493 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-14 13:40:39 +08:00
yyh
2279b605c6 refactor: import SandboxProvider type from @/types and remove retry:0
Move type imports to @/types/sandbox-provider instead of re-exporting
from service file. Remove unnecessary retry:0 options to use React
Query's default retry behavior.
2026-01-14 10:10:04 +08:00
yyh
3b78f9c2a5 refactor: migrate sandbox-provider API to ORPC
Replace manual fetch calls in use-sandbox-provider.ts with typed ORPC
contracts and client. Adds type definitions to types/sandbox-provider.ts
and registers contracts in the console router for consistent API handling.
2026-01-14 10:07:27 +08:00
yyh
7c029ce808 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox
# Conflicts:
#	api/services/workflow_service.py
2026-01-14 09:54:07 +08:00
f28ded8455 feat(agent-sandbox): new tool resolver and bash execution implementation 2026-01-13 18:16:48 +08:00
yyh
c6ba51127f fix(sandbox-provider): allow admin role to manage sandbox providers
Change permission check from isCurrentWorkspaceOwner to
isCurrentWorkspaceManager so both owner and admin roles can
configure sandbox providers.
2026-01-13 17:17:36 +08:00
yyh
5675a44ffd fix(sandbox-provider): use Loading component and add daytona doc link
- Replace hardcoded "Loading..." text with Loading component
- Add daytona documentation link to PROVIDER_DOC_LINKS
2026-01-13 16:37:58 +08:00
yyh
48295e5161 refactor(sandbox-provider): extract shared constants and remove redundant cache invalidation
- Extract PROVIDER_ICONS and PROVIDER_DESCRIPTION_KEYS to constants.ts
- Create shared ProviderIcon component with size and withBorder props
- Remove manual invalidateList() calls from config-modal and switch-modal
  (mutations already invalidate cache in onSuccess)
- Remove unused useInvalidSandboxProviderList hook
2026-01-13 16:18:08 +08:00
yyh
ffc39b0235 refactor: rename ACCOUNT_SETTING_TAB.PROVIDER to MODEL_PROVIDER
Rename the constant for clarity and consistency with the new
sandbox-provider tab naming convention. Update all references
across the codebase to use the new constant name.
2026-01-13 15:07:04 +08:00
yyh
f72f58dbc4 fix: loading state 2026-01-13 14:38:19 +08:00
yyh
9d0f4a2152 fix(sandbox-provider): prevent permission hint flash on page load
Use strict equality check to only show no-permission message when
isCurrentWorkspaceOwner is explicitly false, not undefined.
2026-01-13 14:23:52 +08:00
yyh
1ed4ab4299 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-13 14:19:04 +08:00
yyh
3f69d348a1 chore: add translations 2026-01-13 14:05:41 +08:00
yyh
63fff151c7 fix: provider card style 2026-01-13 13:50:28 +08:00
yyh
9920e0b89a fix(sandbox-provider): hide config controls in read-only mode
Hide config button, divider, and enable button for non-owner users.
Adjust right padding to 24px in read-only mode for proper alignment.
2026-01-13 13:32:18 +08:00
yyh
3042f29c15 fix(sandbox-provider): update switch modal warning style to match design
Replace yellow warning box with red text for destructive emphasis.
Bold the provider name in confirmation text using Trans component.
2026-01-13 13:23:03 +08:00
yyh
99273e1118 style: provider card 2026-01-13 13:18:09 +08:00
yyh
041dbd482d fix(sandbox-provider): use i18n for provider card descriptions
Use PROVIDER_DESCRIPTION_KEYS mapping to display localized descriptions
instead of raw backend data, ensuring descriptions match Figma design.
2026-01-13 11:43:49 +08:00
yyh
b4aa1de10a fix(sandbox-provider): update provider descriptions to match Figma design
Update E2B, Daytona, and Docker descriptions with unique copy from design:
- E2B: "E2B Gives AI Agents Secure Computers with Real-World Tools."
- Daytona: "Deploy AI code with confidence using Daytona's lightning-fast infrastructure."
- Docker: "The Easiest Way to Build, Run, and Secure Agents."
2026-01-13 11:41:20 +08:00
yyh
c5a9b98cbe refactor(sandbox-provider): add centralized query keys management
Add sandboxProviderQueryKeys object for type-safe and maintainable
query key management, following the pattern used in use-common.ts.
2026-01-13 11:39:01 +08:00
yyh
21f47fbe58 fix(sandbox-provider): fix config modal header spacing and icon style
- Use custom header with 8px gap between title and subtitle
- Fix icon overflow-clip for proper border-radius
2026-01-13 11:12:51 +08:00
yyh
49f115dce3 fix(sandbox-provider): fix config modal subtitle icon to fill container 2026-01-13 11:11:03 +08:00
yyh
a81d0327d2 feat(sandbox-provider): update UI to match Figma design
- Update settings icon to RiEqualizer2Line
- Add 4px rounded container for provider icons in config modal
- Update section titles to uppercase style
- Change switch modal confirm button to warning variant
- Add i18n keys for setAsActive, readDocLink, securityTip
2026-01-13 11:04:11 +08:00
yyh
9eafe982ee fix: migration 2026-01-13 10:21:38 +08:00
yyh
a46bfdd0fc Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-13 10:15:59 +08:00
16f26c4f99 feat(cli_api): implement CLI API for external sandbox interactions, including session management and request handling 2026-01-12 20:57:07 +08:00
42fd0a0a62 refactor(sandbox): simplify command execution by using shlex for command parsing and improve output formatting 2026-01-12 16:35:09 +08:00
b78439b334 refactor(llm): update model features handling and change agent strategy to FUNCTION_CALLING 2026-01-12 15:52:26 +08:00
1082d73355 refactor(sandbox): remove unused SANDBOX_WORK_DIR constant and update bash command descriptions for clarity 2026-01-12 15:02:30 +08:00
201a18d6ba refactor(virtual_environment): add cwd parameter to execute_command method across all providers for improved command execution context 2026-01-12 14:20:03 +08:00
f990f4a8d4 refactor(sandbox): update DIFY_CLI_PATH and DIFY_CLI_CONFIG_PATH to use SANDBOX_WORK_DIR and enhance error handling in SandboxSession 2026-01-12 14:07:54 +08:00
e7c89b6153 refactor(sandbox): update imports and remove unused bash tool files, adjust DIFY_CLI_CONFIG_PATH 2026-01-12 13:36:19 +08:00
3e49d6b900 refactor: using initializer to replace hardcoded dify cli initialization 2026-01-12 12:13:56 +08:00
8aaff7fec1 refactor(sandbox): move VMFactory and related classes, update imports to reflect new structure 2026-01-12 12:01:21 +08:00
51ac23c9f1 refactor(sandbox): reorganize sandbox-related imports and rename SandboxFactory to VMFactory for clarity 2026-01-12 02:07:31 +08:00
9dd0361d0e refactor: rename new runtime as sandbox feature 2026-01-12 01:53:39 +08:00
3d2840edb6 feat: sandbox session and dify cli 2026-01-12 01:49:08 +08:00
ce0a59b60d feat: ad os field to virtual enviroment 2026-01-12 01:26:55 +08:00
2d8acf92f0 refactor(sandbox): remove Chinese translation for bash command execution description in SandboxBashTool 2026-01-12 01:16:53 +08:00
bc2ffa39fc refactor(sandbox): remove unused bash tool methods and streamline sandbox session handling in LLMNode 2026-01-12 00:09:40 +08:00
390c805ef4 feat(sandbox): implement sandbox runtime checks and integrate bash tool invocation in LLMNode 2026-01-11 22:56:05 +08:00
5b753dfd6e fix(sandbox): update FIXME comments to specify sandbox context for runtime config checks 2026-01-09 18:12:36 +08:00
5c8b80b01a feat(app): update default runtime mode and adjust runtime selection component styling 2026-01-09 18:12:36 +08:00
95d62039b1 feat(ui): change runtime selection component 2026-01-09 18:12:36 +08:00
78acfb0040 feat(sandbox): add command to setup system-level sandbox provider configuration 2026-01-09 18:12:35 +08:00
eb821efda7 refactor(encryption): update encryption utility references and clean up sandbox provider service logic 2026-01-09 18:12:35 +08:00
925825a41b refactor(encryption): using oauth encryption as a general encryption util. 2026-01-09 18:12:34 +08:00
07ff8df58d Merge branch 'main' into feat/support-agent-sandbox 2026-01-09 16:20:33 +08:00
0a0f02c0c6 chore(migrations): re-arrange migration of "add llm generation details table" 2026-01-09 15:55:25 +08:00
d2f41ae9ef Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2026-01-09 15:37:29 +08:00
5a4f5f54a7 chore: apply ruff 2026-01-09 14:47:21 +08:00
eabfa8f3af fix(migrations): update down_revision for sandbox_providers migration 2026-01-09 14:45:56 +08:00
1557f48740 Merge branch 'feat/agent-node-v2' into feat/support-agent-sandbox 2026-01-09 14:19:27 +08:00
00d787a75b feat(workflows): add deployment workflow for agent development
- Created a new GitHub Actions workflow to automate deployment for the agent development branch.
- Configured the workflow to trigger upon successful completion of the "Build and Push API & Web" workflow.
- Implemented SSH deployment steps using appleboy/ssh-action for secure server updates.
2026-01-09 13:11:37 +08:00
3b454fa95a refactor(sandbox-manager): implement sharded locking for sandbox management
- Enhanced the SandboxManager to use a sharded locking mechanism for improved concurrency and performance.
- Replaced the global lock with shard-specific locks, allowing for lock-free reads and reducing contention.
- Updated methods for registering, retrieving, unregistering, and counting sandboxes to work with the new sharded structure.
- Improved documentation within the class to clarify the purpose and functionality of the sharding approach.
2026-01-09 12:13:41 +08:00
0da4d64d38 feat(sandbox-layer): refactor sandbox management and integrate with SandboxManager
- Simplified the SandboxLayer initialization by removing unused parameters and consolidating sandbox creation logic.
- Integrated SandboxManager for better lifecycle management of sandboxes during workflow execution.
- Updated error handling to ensure proper initialization and cleanup of sandboxes.
- Enhanced CommandNode to retrieve sandboxes from SandboxManager, improving sandbox availability checks.
- Added unit tests to validate the new sandbox management approach and ensure robust error handling.
2026-01-09 11:23:03 +08:00
b09a831d15 feat: add tenant_id support to Sandbox and VirtualEnvironment initialization 2026-01-08 16:19:29 +08:00
94dbda503f refactor(llm-panel): update layout and enhance Max Iterations component
- Adjusted padding in the LLM panel for better visual alignment.
- Refactored the Max Iterations component to accept a className prop for flexible styling.
- Maintained the structure of advanced settings while ensuring consistent rendering of fields.
2026-01-08 14:15:58 +08:00
beefff3d48 feat(docker-demuxer): implement producer-consumer pattern for stream demultiplexing
- Introduced threading to handle Docker's stdout/stderr streams, improving thread safety and preventing race conditions.
- Replaced buffer-based reading with queue-based reading for stdout and stderr.
- Updated read methods to handle errors and end-of-stream conditions more gracefully.
- Enhanced documentation to reflect changes in the demuxing process.
2026-01-08 14:15:41 +08:00
c2e5081437 feat(llm-panel): collapse panel with advanced settings and max iterations
- Introduced a collapsible section for advanced settings in the LLM panel.
- Added Max Iterations component with conditional rendering based on the new hideMaxIterations prop.
- Updated context field and vision configuration to be part of the advanced settings.
- Added new translation key for advanced settings in the workflow localization file.
2026-01-08 12:16:18 +08:00
786c3e4137 chore: apply ruff 2026-01-08 11:14:44 +08:00
0d33714f28 fix(command-node): enhance error message formatting in command execution
- Improved error message handling by assigning the stderr output to a variable for better readability.
- Ensured consistent error reporting when a command fails, maintaining clarity in the output.
2026-01-08 11:14:37 +08:00
1fbba38436 fix(command-node): improve error reporting in command execution
- Updated error handling to provide detailed stderr output when a command fails.
- Streamlined working directory and command rendering by combining operations into single lines.
2026-01-08 11:14:23 +08:00
15c3d712d3 feat: sandbox provider configuration 2026-01-08 11:04:12 +08:00
5b01f544d1 refactor(command-node): streamline command execution and directory checks
- Simplified the command execution logic by removing unnecessary shell invocations.
- Enhanced working directory validation by directly using the `test` command.
- Improved command parsing with `shlex.split` for better handling of raw commands.
2026-01-08 11:04:11 +08:00
fe4c591cfd feat(daytona-environment): enhance command management with threading support and default API URL 2026-01-07 18:47:22 +08:00
0cd613ae52 fix(docker-daemon): update default Docker socket to use Unix socket 2026-01-07 18:35:49 +08:00
0082f468b4 Refactor code structure for improved readability and maintainability 2026-01-07 18:33:13 +08:00
eec57e84e4 Merge branch 'main' into feat/agent-node-v2 2026-01-07 17:34:23 +08:00
cd0f41a3e0 fix(command-node): improve working directory handling in CommandNode
- Added checks to verify the existence of the specified working directory before executing commands.
- Updated command execution logic to conditionally change the working directory if provided.
- Included FIXME comments to address future enhancements for native cwd support in VirtualEnvironment.run_command.
2026-01-07 15:30:59 +08:00
094c9fd802 fix: command node single debug run
- Added FIXME comments to indicate the need for unifying runtime config checking in AdvancedChatAppGenerator and WorkflowAppGenerator.
- Introduced sandbox management in WorkflowService with proper error handling for sandbox release.
- Enhanced runtime feature handling in the workflow execution process.
2026-01-07 15:22:12 +08:00
1584a78fc9 chore: add model name in detail 2026-01-07 15:05:18 +08:00
1a203031e0 fix(virtual-env): fix Docker stdout/stderr demuxing and exit code parsing
- Add _DockerDemuxer to properly separate stdout/stderr from multiplexed stream
- Fix binary header garbage in Docker exec output (tty=False 8-byte header)
- Fix LocalVirtualEnvironment.get_command_status() to use os.WEXITSTATUS()
- Update tests to use Transport API instead of raw file descriptors
2026-01-07 12:20:07 +08:00
05c3344554 feat: future interface for easy way to use VM.execute_command 2026-01-07 11:57:00 +08:00
888be71639 feat: command node output variables 2026-01-07 11:15:52 +08:00
3902929d9f feat: new runtime options 2026-01-07 00:01:55 +08:00
1c7c475c43 feat: add Command node support
- Introduced Command node type in workflow with associated UI components and translations.
- Enhanced SandboxLayer to manage sandbox attachment for Command nodes during execution.
- Updated various components and constants to integrate Command node functionality across the workflow.
2026-01-06 19:30:38 +08:00
cef7fd484b chore: add trace metadata and streaming icon 2026-01-06 16:30:33 +08:00
caabca3f02 feat: sandbox layer for workflow execution 2026-01-06 15:47:20 +08:00
36b7075cf4 Merge feat/llm-node-support-tools and fix type errors
- Merge origin/feat/llm-node-support-tools branch
- Fix unused variable tenant_id in dsl.py
- Add None checks for app and workflow in dsl.py
- Add type ignore for e2b_code_interpreter import

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-05 18:32:15 +08:00
f3761c26e9 Merge remote-tracking branch 'origin/main' into feat/llm-node-support-tools 2026-01-05 18:17:05 +08:00
43daf4f82c refactor: rename construct_environment method to _construct_environment for consistency across virtual environment providers 2026-01-05 18:13:13 +08:00
932be0ad64 feat: session management for InnerAPI&VM 2026-01-05 18:13:13 +08:00
81547c5981 feat: add tests for QueueTransportReadCloser to handle blocking reads and first chunk returns 2026-01-04 17:58:04 +08:00
a911b268aa feat: improve read behavior in QueueTransportReadCloser to handle initial data wait and subsequent immediate returns 2026-01-04 17:58:04 +08:00
dc8a618b6a feat: add think start end tag 2026-01-04 11:09:43 +08:00
f3e7fea628 feat: add tool call time 2026-01-04 10:29:02 +08:00
926349b1f8 feat: transform tool file message for external access 2026-01-02 15:23:16 +08:00
ec29c24916 feat: enhance QueueTransportReadCloser to handle reading with available data and improve EOF handling 2026-01-02 15:03:17 +08:00
3842eade67 feat: add API endpoint to fetch list of available tools and corresponding request model 2026-01-02 15:00:42 +08:00
cf7e2d5d75 feat: add unit tests for transport classes including queue, pipe, and socket transports 2026-01-01 18:57:03 +08:00
2673fe05a5 feat: introduce TransportEOFError for handling closed transport scenarios and update transport classes to raise it 2026-01-01 18:46:08 +08:00
180fdffab1 feat: update E2BEnvironment options to include default template, list file depth, and API URL 2025-12-31 18:29:22 +08:00
62e422f75a feat: add NotSupportedOperationError and update E2BEnvironment to raise it for unsupported command status retrieval 2025-12-31 18:09:14 +08:00
41565e91ed feat: add support for passing environment variables to E2B sandbox 2025-12-31 18:07:43 +08:00
c9610e9949 feat: implement transport abstractions for virtual environments and add E2B environment provider 2025-12-31 17:51:38 +08:00
29dc083d8d feat: enhance DockerDaemonEnvironment with options handling and default values 2025-12-31 16:19:47 +08:00
f679065d2c feat: extend construct_environment method to accept environments parameter in virtual environment classes 2025-12-30 21:07:16 +08:00
0a97e87a8e docs: clarify usage of close() method in PipeTransport docstring 2025-12-30 20:58:51 +08:00
4d81455a83 fix: correct PipeTransport file descriptor assignments and architecture matching case sensitivity 2025-12-30 20:54:39 +08:00
39091fe4df feat: enhance command execution and status retrieval in virtual environments with transport abstractions 2025-12-30 19:37:30 +08:00
bac5245cd0 Merge remote-tracking branch 'origin/main' into feat/support-agent-sandbox 2025-12-30 19:11:29 +08:00
274f9a3f32 Refactor code structure for improved readability and maintainability 2025-12-30 16:31:34 +08:00
a513ab9a59 feat: implement DSL prediction API and virtual environment base classes 2025-12-30 15:24:54 +08:00
152fd52cd7 [autofix.ci] apply automated fixes 2025-12-30 02:23:25 +00:00
ccabdbc83b Merge branch 'main' into feat/agent-node-v2 2025-12-30 10:20:42 +08:00
56c8221b3f chore: remove frontend changes 2025-12-30 10:19:40 +08:00
d132abcdb4 merge main 2025-12-29 15:55:45 +08:00
d60348572e feat: llm node support tools 2025-12-29 14:55:26 +08:00
f55faae31b chore: strip reasoning from chatflow answers and persist generation details 2025-12-25 13:59:38 +08:00
0cff94d90e Merge branch 'main' into feat/llm-node-support-tools 2025-12-25 13:45:49 +08:00
7fc25cafb2 feat: basic app add thought field 2025-12-25 10:28:21 +08:00
a7859de625 feat: llm node support tools 2025-12-24 14:15:55 +08:00
047ea8c143 chore: improve type checking 2025-12-18 10:09:31 +08:00
f54b9b12b0 feat: add process data 2025-12-17 17:34:02 +08:00
cb99b8f04d chore: handle migrations 2025-12-17 15:59:09 +08:00
7c03bcba2b Merge branch 'main' into feat/agent-node-v2 2025-12-17 15:55:27 +08:00
92fa7271ed refactor(llm node): remove unused args 2025-12-17 15:42:23 +08:00
d3486cab31 refactor(llm node): tool call tool result entity 2025-12-17 10:30:21 +08:00
dd0a870969 Merge branch 'main' into feat/agent-node-v2 2025-12-16 15:17:29 +08:00
0c4c268003 chore: fix ci issues 2025-12-16 15:14:42 +08:00
ff57848268 [autofix.ci] apply automated fixes 2025-12-15 07:29:20 +00:00
d223fee9b9 Merge branch 'main' into feat/agent-node-v2 2025-12-15 15:26:48 +08:00
ad18d084f3 feat: add sequence output variable. 2025-12-15 14:59:06 +08:00
9941d1f160 feat: add llm log metadata 2025-12-15 14:18:53 +08:00
13fa56b5b1 feat: add tracing metadata 2025-12-12 16:24:49 +08:00
9ce48b4dc4 fix: llm generation variable 2025-12-12 11:08:49 +08:00
abb2b860f2 chore: remove unused changes 2025-12-10 15:04:19 +08:00
930c36e757 fix: llm detail store 2025-12-09 20:56:54 +08:00
2d2ce5df85 feat: generation stream output. 2025-12-09 16:22:17 +08:00
2b23c43434 feat: add agent package 2025-12-09 11:36:47 +08:00
524 changed files with 45349 additions and 5996 deletions

View File

@ -1,11 +1,4 @@
{
"enabledPlugins": {
"feature-dev@claude-plugins-official": true,
"context7@claude-plugins-official": true,
"typescript-lsp@claude-plugins-official": true,
"pyright-lsp@claude-plugins-official": true,
"ralph-loop@claude-plugins-official": true
},
"hooks": {
"PreToolUse": [
{
@ -18,5 +11,10 @@
]
}
]
},
"enabledPlugins": {
"feature-dev@claude-plugins-official": true,
"context7@claude-plugins-official": true,
"ralph-loop@claude-plugins-official": true
}
}

View File

@ -83,6 +83,9 @@ vi.mock('next/navigation', () => ({
usePathname: () => '/test',
}))
// ✅ Zustand stores: Use real stores (auto-mocked globally)
// Set test state with: useAppStore.setState({ ... })
// Shared state for mocks (if needed)
let mockSharedState = false
@ -296,7 +299,7 @@ For each test file generated, aim for:
For more detailed information, refer to:
- `references/workflow.md` - **Incremental testing workflow** (MUST READ for multi-file testing)
- `references/mocking.md` - Mock patterns and best practices
- `references/mocking.md` - Mock patterns, Zustand store testing, and best practices
- `references/async-testing.md` - Async operations and API calls
- `references/domain-components.md` - Workflow, Dataset, Configuration testing
- `references/common-patterns.md` - Frequently used testing patterns

View File

@ -37,16 +37,36 @@ Only mock these categories:
1. **Third-party libraries with side effects** - `next/navigation`, external SDKs
1. **i18n** - Always mock to return keys
### Zustand Stores - DO NOT Mock Manually
**Zustand is globally mocked** in `web/vitest.setup.ts`. Use real stores with `setState()`:
```typescript
// ✅ CORRECT: Use real store, set test state
import { useAppStore } from '@/app/components/app/store'
useAppStore.setState({ appDetail: { id: 'test', name: 'Test' } })
render(<MyComponent />)
// ❌ WRONG: Don't mock the store module
vi.mock('@/app/components/app/store', () => ({ ... }))
```
See [Zustand Store Testing](#zustand-store-testing) section for full details.
## Mock Placement
| Location | Purpose |
|----------|---------|
| `web/vitest.setup.ts` | Global mocks shared by all tests (for example `react-i18next`, `next/image`) |
| `web/vitest.setup.ts` | Global mocks shared by all tests (`react-i18next`, `next/image`, `zustand`) |
| `web/__mocks__/zustand.ts` | Zustand mock implementation (auto-resets stores after each test) |
| `web/__mocks__/` | Reusable mock factories shared across multiple test files |
| Test file | Test-specific mocks, inline with `vi.mock()` |
Modules are not mocked automatically. Use `vi.mock` in test files, or add global mocks in `web/vitest.setup.ts`.
**Note**: Zustand is special - it's globally mocked but you should NOT mock store modules manually. See [Zustand Store Testing](#zustand-store-testing).
## Essential Mocks
### 1. i18n (Auto-loaded via Global Mock)
@ -276,6 +296,7 @@ const renderWithQueryClient = (ui: React.ReactElement) => {
1. **Use real base components** - Import from `@/app/components/base/` directly
1. **Use real project components** - Prefer importing over mocking
1. **Use real Zustand stores** - Set test state via `store.setState()`
1. **Reset mocks in `beforeEach`**, not `afterEach`
1. **Match actual component behavior** in mocks (when mocking is necessary)
1. **Use factory functions** for complex mock data
@ -285,6 +306,7 @@ const renderWithQueryClient = (ui: React.ReactElement) => {
### ❌ DON'T
1. **Don't mock base components** (`Loading`, `Button`, `Tooltip`, etc.)
1. **Don't mock Zustand store modules** - Use real stores with `setState()`
1. Don't mock components you can import directly
1. Don't create overly simplified mocks that miss conditional logic
1. Don't forget to clean up nock after each test
@ -308,10 +330,151 @@ Need to use a component in test?
├─ Is it a third-party lib with side effects?
│ └─ YES → Mock it (next/navigation, external SDKs)
├─ Is it a Zustand store?
│ └─ YES → DO NOT mock the module!
│ Use real store + setState() to set test state
│ (Global mock handles auto-reset)
└─ Is it i18n?
└─ YES → Uses shared mock (auto-loaded). Override only for custom translations
```
## Zustand Store Testing
### Global Zustand Mock (Auto-loaded)
Zustand is globally mocked in `web/vitest.setup.ts` following the [official Zustand testing guide](https://zustand.docs.pmnd.rs/guides/testing). The mock in `web/__mocks__/zustand.ts` provides:
- Real store behavior with `getState()`, `setState()`, `subscribe()` methods
- Automatic store reset after each test via `afterEach`
- Proper test isolation between tests
### ✅ Recommended: Use Real Stores (Official Best Practice)
**DO NOT mock store modules manually.** Import and use the real store, then use `setState()` to set test state:
```typescript
// ✅ CORRECT: Use real store with setState
import { useAppStore } from '@/app/components/app/store'
describe('MyComponent', () => {
it('should render app details', () => {
// Arrange: Set test state via setState
useAppStore.setState({
appDetail: {
id: 'test-app',
name: 'Test App',
mode: 'chat',
},
})
// Act
render(<MyComponent />)
// Assert
expect(screen.getByText('Test App')).toBeInTheDocument()
// Can also verify store state directly
expect(useAppStore.getState().appDetail?.name).toBe('Test App')
})
// No cleanup needed - global mock auto-resets after each test
})
```
### ❌ Avoid: Manual Store Module Mocking
Manual mocking conflicts with the global Zustand mock and loses store functionality:
```typescript
// ❌ WRONG: Don't mock the store module
vi.mock('@/app/components/app/store', () => ({
useStore: (selector) => mockSelector(selector), // Missing getState, setState!
}))
// ❌ WRONG: This conflicts with global zustand mock
vi.mock('@/app/components/workflow/store', () => ({
useWorkflowStore: vi.fn(() => mockState),
}))
```
**Problems with manual mocking:**
1. Loses `getState()`, `setState()`, `subscribe()` methods
1. Conflicts with global Zustand mock behavior
1. Requires manual maintenance of store API
1. Tests don't reflect actual store behavior
### When Manual Store Mocking is Necessary
In rare cases where the store has complex initialization or side effects, you can mock it, but ensure you provide the full store API:
```typescript
// If you MUST mock (rare), include full store API
const mockStore = {
appDetail: { id: 'test', name: 'Test' },
setAppDetail: vi.fn(),
}
vi.mock('@/app/components/app/store', () => ({
useStore: Object.assign(
(selector: (state: typeof mockStore) => unknown) => selector(mockStore),
{
getState: () => mockStore,
setState: vi.fn(),
subscribe: vi.fn(),
},
),
}))
```
### Store Testing Decision Tree
```
Need to test a component using Zustand store?
├─ Can you use the real store?
│ └─ YES → Use real store + setState (RECOMMENDED)
│ useAppStore.setState({ ... })
├─ Does the store have complex initialization/side effects?
│ └─ YES → Consider mocking, but include full API
│ (getState, setState, subscribe)
└─ Are you testing the store itself (not a component)?
└─ YES → Test store directly with getState/setState
const store = useMyStore
store.setState({ count: 0 })
store.getState().increment()
expect(store.getState().count).toBe(1)
```
### Example: Testing Store Actions
```typescript
import { useCounterStore } from '@/stores/counter'
describe('Counter Store', () => {
it('should increment count', () => {
// Initial state (auto-reset by global mock)
expect(useCounterStore.getState().count).toBe(0)
// Call action
useCounterStore.getState().increment()
// Verify state change
expect(useCounterStore.getState().count).toBe(1)
})
it('should reset to initial state', () => {
// Set some state
useCounterStore.setState({ count: 100 })
expect(useCounterStore.getState().count).toBe(100)
// After this test, global mock will reset to initial state
})
})
```
## Factory Function Pattern
```typescript

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,125 @@
---
name: vercel-react-best-practices
description: React and Next.js performance optimization guidelines from Vercel Engineering. This skill should be used when writing, reviewing, or refactoring React/Next.js code to ensure optimal performance patterns. Triggers on tasks involving React components, Next.js pages, data fetching, bundle optimization, or performance improvements.
license: MIT
metadata:
author: vercel
version: "1.0.0"
---
# Vercel React Best Practices
Comprehensive performance optimization guide for React and Next.js applications, maintained by Vercel. Contains 45 rules across 8 categories, prioritized by impact to guide automated refactoring and code generation.
## When to Apply
Reference these guidelines when:
- Writing new React components or Next.js pages
- Implementing data fetching (client or server-side)
- Reviewing code for performance issues
- Refactoring existing React/Next.js code
- Optimizing bundle size or load times
## Rule Categories by Priority
| Priority | Category | Impact | Prefix |
|----------|----------|--------|--------|
| 1 | Eliminating Waterfalls | CRITICAL | `async-` |
| 2 | Bundle Size Optimization | CRITICAL | `bundle-` |
| 3 | Server-Side Performance | HIGH | `server-` |
| 4 | Client-Side Data Fetching | MEDIUM-HIGH | `client-` |
| 5 | Re-render Optimization | MEDIUM | `rerender-` |
| 6 | Rendering Performance | MEDIUM | `rendering-` |
| 7 | JavaScript Performance | LOW-MEDIUM | `js-` |
| 8 | Advanced Patterns | LOW | `advanced-` |
## Quick Reference
### 1. Eliminating Waterfalls (CRITICAL)
- `async-defer-await` - Move await into branches where actually used
- `async-parallel` - Use Promise.all() for independent operations
- `async-dependencies` - Use better-all for partial dependencies
- `async-api-routes` - Start promises early, await late in API routes
- `async-suspense-boundaries` - Use Suspense to stream content
### 2. Bundle Size Optimization (CRITICAL)
- `bundle-barrel-imports` - Import directly, avoid barrel files
- `bundle-dynamic-imports` - Use next/dynamic for heavy components
- `bundle-defer-third-party` - Load analytics/logging after hydration
- `bundle-conditional` - Load modules only when feature is activated
- `bundle-preload` - Preload on hover/focus for perceived speed
### 3. Server-Side Performance (HIGH)
- `server-cache-react` - Use React.cache() for per-request deduplication
- `server-cache-lru` - Use LRU cache for cross-request caching
- `server-serialization` - Minimize data passed to client components
- `server-parallel-fetching` - Restructure components to parallelize fetches
- `server-after-nonblocking` - Use after() for non-blocking operations
### 4. Client-Side Data Fetching (MEDIUM-HIGH)
- `client-swr-dedup` - Use SWR for automatic request deduplication
- `client-event-listeners` - Deduplicate global event listeners
### 5. Re-render Optimization (MEDIUM)
- `rerender-defer-reads` - Don't subscribe to state only used in callbacks
- `rerender-memo` - Extract expensive work into memoized components
- `rerender-dependencies` - Use primitive dependencies in effects
- `rerender-derived-state` - Subscribe to derived booleans, not raw values
- `rerender-functional-setstate` - Use functional setState for stable callbacks
- `rerender-lazy-state-init` - Pass function to useState for expensive values
- `rerender-transitions` - Use startTransition for non-urgent updates
### 6. Rendering Performance (MEDIUM)
- `rendering-animate-svg-wrapper` - Animate div wrapper, not SVG element
- `rendering-content-visibility` - Use content-visibility for long lists
- `rendering-hoist-jsx` - Extract static JSX outside components
- `rendering-svg-precision` - Reduce SVG coordinate precision
- `rendering-hydration-no-flicker` - Use inline script for client-only data
- `rendering-activity` - Use Activity component for show/hide
- `rendering-conditional-render` - Use ternary, not && for conditionals
### 7. JavaScript Performance (LOW-MEDIUM)
- `js-batch-dom-css` - Group CSS changes via classes or cssText
- `js-index-maps` - Build Map for repeated lookups
- `js-cache-property-access` - Cache object properties in loops
- `js-cache-function-results` - Cache function results in module-level Map
- `js-cache-storage` - Cache localStorage/sessionStorage reads
- `js-combine-iterations` - Combine multiple filter/map into one loop
- `js-length-check-first` - Check array length before expensive comparison
- `js-early-exit` - Return early from functions
- `js-hoist-regexp` - Hoist RegExp creation outside loops
- `js-min-max-loop` - Use loop for min/max instead of sort
- `js-set-map-lookups` - Use Set/Map for O(1) lookups
- `js-tosorted-immutable` - Use toSorted() for immutability
### 8. Advanced Patterns (LOW)
- `advanced-event-handler-refs` - Store event handlers in refs
- `advanced-use-latest` - useLatest for stable callback refs
## How to Use
Read individual rule files for detailed explanations and code examples:
```
rules/async-parallel.md
rules/bundle-barrel-imports.md
rules/_sections.md
```
Each rule file contains:
- Brief explanation of why it matters
- Incorrect code example with explanation
- Correct code example with explanation
- Additional context and references
## Full Compiled Document
For the complete guide with all rules expanded: `AGENTS.md`

View File

@ -0,0 +1,55 @@
---
title: Store Event Handlers in Refs
impact: LOW
impactDescription: stable subscriptions
tags: advanced, hooks, refs, event-handlers, optimization
---
## Store Event Handlers in Refs
Store callbacks in refs when used in effects that shouldn't re-subscribe on callback changes.
**Incorrect (re-subscribes on every render):**
```tsx
function useWindowEvent(event: string, handler: (e) => void) {
useEffect(() => {
window.addEventListener(event, handler)
return () => window.removeEventListener(event, handler)
}, [event, handler])
}
```
**Correct (stable subscription):**
```tsx
function useWindowEvent(event: string, handler: (e) => void) {
const handlerRef = useRef(handler)
useEffect(() => {
handlerRef.current = handler
}, [handler])
useEffect(() => {
const listener = (e) => handlerRef.current(e)
window.addEventListener(event, listener)
return () => window.removeEventListener(event, listener)
}, [event])
}
```
**Alternative: use `useEffectEvent` if you're on latest React:**
```tsx
import { useEffectEvent } from 'react'
function useWindowEvent(event: string, handler: (e) => void) {
const onEvent = useEffectEvent(handler)
useEffect(() => {
window.addEventListener(event, onEvent)
return () => window.removeEventListener(event, onEvent)
}, [event])
}
```
`useEffectEvent` provides a cleaner API for the same pattern: it creates a stable function reference that always calls the latest version of the handler.

View File

@ -0,0 +1,49 @@
---
title: useLatest for Stable Callback Refs
impact: LOW
impactDescription: prevents effect re-runs
tags: advanced, hooks, useLatest, refs, optimization
---
## useLatest for Stable Callback Refs
Access latest values in callbacks without adding them to dependency arrays. Prevents effect re-runs while avoiding stale closures.
**Implementation:**
```typescript
function useLatest<T>(value: T) {
const ref = useRef(value)
useLayoutEffect(() => {
ref.current = value
}, [value])
return ref
}
```
**Incorrect (effect re-runs on every callback change):**
```tsx
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
useEffect(() => {
const timeout = setTimeout(() => onSearch(query), 300)
return () => clearTimeout(timeout)
}, [query, onSearch])
}
```
**Correct (stable effect, fresh callback):**
```tsx
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
const onSearchRef = useLatest(onSearch)
useEffect(() => {
const timeout = setTimeout(() => onSearchRef.current(query), 300)
return () => clearTimeout(timeout)
}, [query])
}
```

View File

@ -0,0 +1,38 @@
---
title: Prevent Waterfall Chains in API Routes
impact: CRITICAL
impactDescription: 2-10× improvement
tags: api-routes, server-actions, waterfalls, parallelization
---
## Prevent Waterfall Chains in API Routes
In API routes and Server Actions, start independent operations immediately, even if you don't await them yet.
**Incorrect (config waits for auth, data waits for both):**
```typescript
export async function GET(request: Request) {
const session = await auth()
const config = await fetchConfig()
const data = await fetchData(session.user.id)
return Response.json({ data, config })
}
```
**Correct (auth and config start immediately):**
```typescript
export async function GET(request: Request) {
const sessionPromise = auth()
const configPromise = fetchConfig()
const session = await sessionPromise
const [config, data] = await Promise.all([
configPromise,
fetchData(session.user.id)
])
return Response.json({ data, config })
}
```
For operations with more complex dependency chains, use `better-all` to automatically maximize parallelism (see Dependency-Based Parallelization).

View File

@ -0,0 +1,80 @@
---
title: Defer Await Until Needed
impact: HIGH
impactDescription: avoids blocking unused code paths
tags: async, await, conditional, optimization
---
## Defer Await Until Needed
Move `await` operations into the branches where they're actually used to avoid blocking code paths that don't need them.
**Incorrect (blocks both branches):**
```typescript
async function handleRequest(userId: string, skipProcessing: boolean) {
const userData = await fetchUserData(userId)
if (skipProcessing) {
// Returns immediately but still waited for userData
return { skipped: true }
}
// Only this branch uses userData
return processUserData(userData)
}
```
**Correct (only blocks when needed):**
```typescript
async function handleRequest(userId: string, skipProcessing: boolean) {
if (skipProcessing) {
// Returns immediately without waiting
return { skipped: true }
}
// Fetch only when needed
const userData = await fetchUserData(userId)
return processUserData(userData)
}
```
**Another example (early return optimization):**
```typescript
// Incorrect: always fetches permissions
async function updateResource(resourceId: string, userId: string) {
const permissions = await fetchPermissions(userId)
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
// Correct: fetches only when needed
async function updateResource(resourceId: string, userId: string) {
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
const permissions = await fetchPermissions(userId)
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
```
This optimization is especially valuable when the skipped branch is frequently taken, or when the deferred operation is expensive.

View File

@ -0,0 +1,36 @@
---
title: Dependency-Based Parallelization
impact: CRITICAL
impactDescription: 2-10× improvement
tags: async, parallelization, dependencies, better-all
---
## Dependency-Based Parallelization
For operations with partial dependencies, use `better-all` to maximize parallelism. It automatically starts each task at the earliest possible moment.
**Incorrect (profile waits for config unnecessarily):**
```typescript
const [user, config] = await Promise.all([
fetchUser(),
fetchConfig()
])
const profile = await fetchProfile(user.id)
```
**Correct (config and profile run in parallel):**
```typescript
import { all } from 'better-all'
const { user, config, profile } = await all({
async user() { return fetchUser() },
async config() { return fetchConfig() },
async profile() {
return fetchProfile((await this.$.user).id)
}
})
```
Reference: [https://github.com/shuding/better-all](https://github.com/shuding/better-all)

View File

@ -0,0 +1,28 @@
---
title: Promise.all() for Independent Operations
impact: CRITICAL
impactDescription: 2-10× improvement
tags: async, parallelization, promises, waterfalls
---
## Promise.all() for Independent Operations
When async operations have no interdependencies, execute them concurrently using `Promise.all()`.
**Incorrect (sequential execution, 3 round trips):**
```typescript
const user = await fetchUser()
const posts = await fetchPosts()
const comments = await fetchComments()
```
**Correct (parallel execution, 1 round trip):**
```typescript
const [user, posts, comments] = await Promise.all([
fetchUser(),
fetchPosts(),
fetchComments()
])
```

View File

@ -0,0 +1,99 @@
---
title: Strategic Suspense Boundaries
impact: HIGH
impactDescription: faster initial paint
tags: async, suspense, streaming, layout-shift
---
## Strategic Suspense Boundaries
Instead of awaiting data in async components before returning JSX, use Suspense boundaries to show the wrapper UI faster while data loads.
**Incorrect (wrapper blocked by data fetching):**
```tsx
async function Page() {
const data = await fetchData() // Blocks entire page
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<DataDisplay data={data} />
</div>
<div>Footer</div>
</div>
)
}
```
The entire layout waits for data even though only the middle section needs it.
**Correct (wrapper shows immediately, data streams in):**
```tsx
function Page() {
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<Suspense fallback={<Skeleton />}>
<DataDisplay />
</Suspense>
</div>
<div>Footer</div>
</div>
)
}
async function DataDisplay() {
const data = await fetchData() // Only blocks this component
return <div>{data.content}</div>
}
```
Sidebar, Header, and Footer render immediately. Only DataDisplay waits for data.
**Alternative (share promise across components):**
```tsx
function Page() {
// Start fetch immediately, but don't await
const dataPromise = fetchData()
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<Suspense fallback={<Skeleton />}>
<DataDisplay dataPromise={dataPromise} />
<DataSummary dataPromise={dataPromise} />
</Suspense>
<div>Footer</div>
</div>
)
}
function DataDisplay({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Unwraps the promise
return <div>{data.content}</div>
}
function DataSummary({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Reuses the same promise
return <div>{data.summary}</div>
}
```
Both components share the same promise, so only one fetch occurs. Layout renders immediately while both components wait together.
**When NOT to use this pattern:**
- Critical data needed for layout decisions (affects positioning)
- SEO-critical content above the fold
- Small, fast queries where suspense overhead isn't worth it
- When you want to avoid layout shift (loading → content jump)
**Trade-off:** Faster initial paint vs potential layout shift. Choose based on your UX priorities.

View File

@ -0,0 +1,59 @@
---
title: Avoid Barrel File Imports
impact: CRITICAL
impactDescription: 200-800ms import cost, slow builds
tags: bundle, imports, tree-shaking, barrel-files, performance
---
## Avoid Barrel File Imports
Import directly from source files instead of barrel files to avoid loading thousands of unused modules. **Barrel files** are entry points that re-export multiple modules (e.g., `index.js` that does `export * from './module'`).
Popular icon and component libraries can have **up to 10,000 re-exports** in their entry file. For many React packages, **it takes 200-800ms just to import them**, affecting both development speed and production cold starts.
**Why tree-shaking doesn't help:** When a library is marked as external (not bundled), the bundler can't optimize it. If you bundle it to enable tree-shaking, builds become substantially slower analyzing the entire module graph.
**Incorrect (imports entire library):**
```tsx
import { Check, X, Menu } from 'lucide-react'
// Loads 1,583 modules, takes ~2.8s extra in dev
// Runtime cost: 200-800ms on every cold start
import { Button, TextField } from '@mui/material'
// Loads 2,225 modules, takes ~4.2s extra in dev
```
**Correct (imports only what you need):**
```tsx
import Check from 'lucide-react/dist/esm/icons/check'
import X from 'lucide-react/dist/esm/icons/x'
import Menu from 'lucide-react/dist/esm/icons/menu'
// Loads only 3 modules (~2KB vs ~1MB)
import Button from '@mui/material/Button'
import TextField from '@mui/material/TextField'
// Loads only what you use
```
**Alternative (Next.js 13.5+):**
```js
// next.config.js - use optimizePackageImports
module.exports = {
experimental: {
optimizePackageImports: ['lucide-react', '@mui/material']
}
}
// Then you can keep the ergonomic barrel imports:
import { Check, X, Menu } from 'lucide-react'
// Automatically transformed to direct imports at build time
```
Direct imports provide 15-70% faster dev boot, 28% faster builds, 40% faster cold starts, and significantly faster HMR.
Libraries commonly affected: `lucide-react`, `@mui/material`, `@mui/icons-material`, `@tabler/icons-react`, `react-icons`, `@headlessui/react`, `@radix-ui/react-*`, `lodash`, `ramda`, `date-fns`, `rxjs`, `react-use`.
Reference: [How we optimized package imports in Next.js](https://vercel.com/blog/how-we-optimized-package-imports-in-next-js)

View File

@ -0,0 +1,31 @@
---
title: Conditional Module Loading
impact: HIGH
impactDescription: loads large data only when needed
tags: bundle, conditional-loading, lazy-loading
---
## Conditional Module Loading
Load large data or modules only when a feature is activated.
**Example (lazy-load animation frames):**
```tsx
function AnimationPlayer({ enabled, setEnabled }: { enabled: boolean; setEnabled: React.Dispatch<React.SetStateAction<boolean>> }) {
const [frames, setFrames] = useState<Frame[] | null>(null)
useEffect(() => {
if (enabled && !frames && typeof window !== 'undefined') {
import('./animation-frames.js')
.then(mod => setFrames(mod.frames))
.catch(() => setEnabled(false))
}
}, [enabled, frames, setEnabled])
if (!frames) return <Skeleton />
return <Canvas frames={frames} />
}
```
The `typeof window !== 'undefined'` check prevents bundling this module for SSR, optimizing server bundle size and build speed.

View File

@ -0,0 +1,49 @@
---
title: Defer Non-Critical Third-Party Libraries
impact: MEDIUM
impactDescription: loads after hydration
tags: bundle, third-party, analytics, defer
---
## Defer Non-Critical Third-Party Libraries
Analytics, logging, and error tracking don't block user interaction. Load them after hydration.
**Incorrect (blocks initial bundle):**
```tsx
import { Analytics } from '@vercel/analytics/react'
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
```
**Correct (loads after hydration):**
```tsx
import dynamic from 'next/dynamic'
const Analytics = dynamic(
() => import('@vercel/analytics/react').then(m => m.Analytics),
{ ssr: false }
)
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
```

View File

@ -0,0 +1,35 @@
---
title: Dynamic Imports for Heavy Components
impact: CRITICAL
impactDescription: directly affects TTI and LCP
tags: bundle, dynamic-import, code-splitting, next-dynamic
---
## Dynamic Imports for Heavy Components
Use `next/dynamic` to lazy-load large components not needed on initial render.
**Incorrect (Monaco bundles with main chunk ~300KB):**
```tsx
import { MonacoEditor } from './monaco-editor'
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
```
**Correct (Monaco loads on demand):**
```tsx
import dynamic from 'next/dynamic'
const MonacoEditor = dynamic(
() => import('./monaco-editor').then(m => m.MonacoEditor),
{ ssr: false }
)
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
```

View File

@ -0,0 +1,50 @@
---
title: Preload Based on User Intent
impact: MEDIUM
impactDescription: reduces perceived latency
tags: bundle, preload, user-intent, hover
---
## Preload Based on User Intent
Preload heavy bundles before they're needed to reduce perceived latency.
**Example (preload on hover/focus):**
```tsx
function EditorButton({ onClick }: { onClick: () => void }) {
const preload = () => {
if (typeof window !== 'undefined') {
void import('./monaco-editor')
}
}
return (
<button
onMouseEnter={preload}
onFocus={preload}
onClick={onClick}
>
Open Editor
</button>
)
}
```
**Example (preload when feature flag is enabled):**
```tsx
function FlagsProvider({ children, flags }: Props) {
useEffect(() => {
if (flags.editorEnabled && typeof window !== 'undefined') {
void import('./monaco-editor').then(mod => mod.init())
}
}, [flags.editorEnabled])
return <FlagsContext.Provider value={flags}>
{children}
</FlagsContext.Provider>
}
```
The `typeof window !== 'undefined'` check prevents bundling preloaded modules for SSR, optimizing server bundle size and build speed.

View File

@ -0,0 +1,74 @@
---
title: Deduplicate Global Event Listeners
impact: LOW
impactDescription: single listener for N components
tags: client, swr, event-listeners, subscription
---
## Deduplicate Global Event Listeners
Use `useSWRSubscription()` to share global event listeners across component instances.
**Incorrect (N instances = N listeners):**
```tsx
function useKeyboardShortcut(key: string, callback: () => void) {
useEffect(() => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && e.key === key) {
callback()
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
}, [key, callback])
}
```
When using the `useKeyboardShortcut` hook multiple times, each instance will register a new listener.
**Correct (N instances = 1 listener):**
```tsx
import useSWRSubscription from 'swr/subscription'
// Module-level Map to track callbacks per key
const keyCallbacks = new Map<string, Set<() => void>>()
function useKeyboardShortcut(key: string, callback: () => void) {
// Register this callback in the Map
useEffect(() => {
if (!keyCallbacks.has(key)) {
keyCallbacks.set(key, new Set())
}
keyCallbacks.get(key)!.add(callback)
return () => {
const set = keyCallbacks.get(key)
if (set) {
set.delete(callback)
if (set.size === 0) {
keyCallbacks.delete(key)
}
}
}
}, [key, callback])
useSWRSubscription('global-keydown', () => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && keyCallbacks.has(e.key)) {
keyCallbacks.get(e.key)!.forEach(cb => cb())
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
})
}
function Profile() {
// Multiple shortcuts will share the same listener
useKeyboardShortcut('p', () => { /* ... */ })
useKeyboardShortcut('k', () => { /* ... */ })
// ...
}
```

View File

@ -0,0 +1,71 @@
---
title: Version and Minimize localStorage Data
impact: MEDIUM
impactDescription: prevents schema conflicts, reduces storage size
tags: client, localStorage, storage, versioning, data-minimization
---
## Version and Minimize localStorage Data
Add version prefix to keys and store only needed fields. Prevents schema conflicts and accidental storage of sensitive data.
**Incorrect:**
```typescript
// No version, stores everything, no error handling
localStorage.setItem('userConfig', JSON.stringify(fullUserObject))
const data = localStorage.getItem('userConfig')
```
**Correct:**
```typescript
const VERSION = 'v2'
function saveConfig(config: { theme: string; language: string }) {
try {
localStorage.setItem(`userConfig:${VERSION}`, JSON.stringify(config))
} catch {
// Throws in incognito/private browsing, quota exceeded, or disabled
}
}
function loadConfig() {
try {
const data = localStorage.getItem(`userConfig:${VERSION}`)
return data ? JSON.parse(data) : null
} catch {
return null
}
}
// Migration from v1 to v2
function migrate() {
try {
const v1 = localStorage.getItem('userConfig:v1')
if (v1) {
const old = JSON.parse(v1)
saveConfig({ theme: old.darkMode ? 'dark' : 'light', language: old.lang })
localStorage.removeItem('userConfig:v1')
}
} catch {}
}
```
**Store minimal fields from server responses:**
```typescript
// User object has 20+ fields, only store what UI needs
function cachePrefs(user: FullUser) {
try {
localStorage.setItem('prefs:v1', JSON.stringify({
theme: user.preferences.theme,
notifications: user.preferences.notifications
}))
} catch {}
}
```
**Always wrap in try-catch:** `getItem()` and `setItem()` throw in incognito/private browsing (Safari, Firefox), when quota exceeded, or when disabled.
**Benefits:** Schema evolution via versioning, reduced storage size, prevents storing tokens/PII/internal flags.

View File

@ -0,0 +1,48 @@
---
title: Use Passive Event Listeners for Scrolling Performance
impact: MEDIUM
impactDescription: eliminates scroll delay caused by event listeners
tags: client, event-listeners, scrolling, performance, touch, wheel
---
## Use Passive Event Listeners for Scrolling Performance
Add `{ passive: true }` to touch and wheel event listeners to enable immediate scrolling. Browsers normally wait for listeners to finish to check if `preventDefault()` is called, causing scroll delay.
**Incorrect:**
```typescript
useEffect(() => {
const handleTouch = (e: TouchEvent) => console.log(e.touches[0].clientX)
const handleWheel = (e: WheelEvent) => console.log(e.deltaY)
document.addEventListener('touchstart', handleTouch)
document.addEventListener('wheel', handleWheel)
return () => {
document.removeEventListener('touchstart', handleTouch)
document.removeEventListener('wheel', handleWheel)
}
}, [])
```
**Correct:**
```typescript
useEffect(() => {
const handleTouch = (e: TouchEvent) => console.log(e.touches[0].clientX)
const handleWheel = (e: WheelEvent) => console.log(e.deltaY)
document.addEventListener('touchstart', handleTouch, { passive: true })
document.addEventListener('wheel', handleWheel, { passive: true })
return () => {
document.removeEventListener('touchstart', handleTouch)
document.removeEventListener('wheel', handleWheel)
}
}, [])
```
**Use passive when:** tracking/analytics, logging, any listener that doesn't call `preventDefault()`.
**Don't use passive when:** implementing custom swipe gestures, custom zoom controls, or any listener that needs `preventDefault()`.

View File

@ -0,0 +1,56 @@
---
title: Use SWR for Automatic Deduplication
impact: MEDIUM-HIGH
impactDescription: automatic deduplication
tags: client, swr, deduplication, data-fetching
---
## Use SWR for Automatic Deduplication
SWR enables request deduplication, caching, and revalidation across component instances.
**Incorrect (no deduplication, each instance fetches):**
```tsx
function UserList() {
const [users, setUsers] = useState([])
useEffect(() => {
fetch('/api/users')
.then(r => r.json())
.then(setUsers)
}, [])
}
```
**Correct (multiple instances share one request):**
```tsx
import useSWR from 'swr'
function UserList() {
const { data: users } = useSWR('/api/users', fetcher)
}
```
**For immutable data:**
```tsx
import { useImmutableSWR } from '@/lib/swr'
function StaticContent() {
const { data } = useImmutableSWR('/api/config', fetcher)
}
```
**For mutations:**
```tsx
import { useSWRMutation } from 'swr/mutation'
function UpdateButton() {
const { trigger } = useSWRMutation('/api/user', updateUser)
return <button onClick={() => trigger()}>Update</button>
}
```
Reference: [https://swr.vercel.app](https://swr.vercel.app)

View File

@ -0,0 +1,57 @@
---
title: Batch DOM CSS Changes
impact: MEDIUM
impactDescription: reduces reflows/repaints
tags: javascript, dom, css, performance, reflow
---
## Batch DOM CSS Changes
Avoid interleaving style writes with layout reads. When you read a layout property (like `offsetWidth`, `getBoundingClientRect()`, or `getComputedStyle()`) between style changes, the browser is forced to trigger a synchronous reflow.
**Incorrect (interleaved reads and writes force reflows):**
```typescript
function updateElementStyles(element: HTMLElement) {
element.style.width = '100px'
const width = element.offsetWidth // Forces reflow
element.style.height = '200px'
const height = element.offsetHeight // Forces another reflow
}
```
**Correct (batch writes, then read once):**
```typescript
function updateElementStyles(element: HTMLElement) {
// Batch all writes together
element.style.width = '100px'
element.style.height = '200px'
element.style.backgroundColor = 'blue'
element.style.border = '1px solid black'
// Read after all writes are done (single reflow)
const { width, height } = element.getBoundingClientRect()
}
```
**Better: use CSS classes**
```css
.highlighted-box {
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
}
```
```typescript
function updateElementStyles(element: HTMLElement) {
element.classList.add('highlighted-box')
const { width, height } = element.getBoundingClientRect()
}
```
Prefer CSS classes over inline styles when possible. CSS files are cached by the browser, and classes provide better separation of concerns and are easier to maintain.

View File

@ -0,0 +1,80 @@
---
title: Cache Repeated Function Calls
impact: MEDIUM
impactDescription: avoid redundant computation
tags: javascript, cache, memoization, performance
---
## Cache Repeated Function Calls
Use a module-level Map to cache function results when the same function is called repeatedly with the same inputs during render.
**Incorrect (redundant computation):**
```typescript
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// slugify() called 100+ times for same project names
const slug = slugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
```
**Correct (cached results):**
```typescript
// Module-level cache
const slugifyCache = new Map<string, string>()
function cachedSlugify(text: string): string {
if (slugifyCache.has(text)) {
return slugifyCache.get(text)!
}
const result = slugify(text)
slugifyCache.set(text, result)
return result
}
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// Computed only once per unique project name
const slug = cachedSlugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
```
**Simpler pattern for single-value functions:**
```typescript
let isLoggedInCache: boolean | null = null
function isLoggedIn(): boolean {
if (isLoggedInCache !== null) {
return isLoggedInCache
}
isLoggedInCache = document.cookie.includes('auth=')
return isLoggedInCache
}
// Clear cache when auth changes
function onAuthChange() {
isLoggedInCache = null
}
```
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
Reference: [How we made the Vercel Dashboard twice as fast](https://vercel.com/blog/how-we-made-the-vercel-dashboard-twice-as-fast)

View File

@ -0,0 +1,28 @@
---
title: Cache Property Access in Loops
impact: LOW-MEDIUM
impactDescription: reduces lookups
tags: javascript, loops, optimization, caching
---
## Cache Property Access in Loops
Cache object property lookups in hot paths.
**Incorrect (3 lookups × N iterations):**
```typescript
for (let i = 0; i < arr.length; i++) {
process(obj.config.settings.value)
}
```
**Correct (1 lookup total):**
```typescript
const value = obj.config.settings.value
const len = arr.length
for (let i = 0; i < len; i++) {
process(value)
}
```

View File

@ -0,0 +1,70 @@
---
title: Cache Storage API Calls
impact: LOW-MEDIUM
impactDescription: reduces expensive I/O
tags: javascript, localStorage, storage, caching, performance
---
## Cache Storage API Calls
`localStorage`, `sessionStorage`, and `document.cookie` are synchronous and expensive. Cache reads in memory.
**Incorrect (reads storage on every call):**
```typescript
function getTheme() {
return localStorage.getItem('theme') ?? 'light'
}
// Called 10 times = 10 storage reads
```
**Correct (Map cache):**
```typescript
const storageCache = new Map<string, string | null>()
function getLocalStorage(key: string) {
if (!storageCache.has(key)) {
storageCache.set(key, localStorage.getItem(key))
}
return storageCache.get(key)
}
function setLocalStorage(key: string, value: string) {
localStorage.setItem(key, value)
storageCache.set(key, value) // keep cache in sync
}
```
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
**Cookie caching:**
```typescript
let cookieCache: Record<string, string> | null = null
function getCookie(name: string) {
if (!cookieCache) {
cookieCache = Object.fromEntries(
document.cookie.split('; ').map(c => c.split('='))
)
}
return cookieCache[name]
}
```
**Important (invalidate on external changes):**
If storage can change externally (another tab, server-set cookies), invalidate cache:
```typescript
window.addEventListener('storage', (e) => {
if (e.key) storageCache.delete(e.key)
})
document.addEventListener('visibilitychange', () => {
if (document.visibilityState === 'visible') {
storageCache.clear()
}
})
```

View File

@ -0,0 +1,32 @@
---
title: Combine Multiple Array Iterations
impact: LOW-MEDIUM
impactDescription: reduces iterations
tags: javascript, arrays, loops, performance
---
## Combine Multiple Array Iterations
Multiple `.filter()` or `.map()` calls iterate the array multiple times. Combine into one loop.
**Incorrect (3 iterations):**
```typescript
const admins = users.filter(u => u.isAdmin)
const testers = users.filter(u => u.isTester)
const inactive = users.filter(u => !u.isActive)
```
**Correct (1 iteration):**
```typescript
const admins: User[] = []
const testers: User[] = []
const inactive: User[] = []
for (const user of users) {
if (user.isAdmin) admins.push(user)
if (user.isTester) testers.push(user)
if (!user.isActive) inactive.push(user)
}
```

View File

@ -0,0 +1,50 @@
---
title: Early Return from Functions
impact: LOW-MEDIUM
impactDescription: avoids unnecessary computation
tags: javascript, functions, optimization, early-return
---
## Early Return from Functions
Return early when result is determined to skip unnecessary processing.
**Incorrect (processes all items even after finding answer):**
```typescript
function validateUsers(users: User[]) {
let hasError = false
let errorMessage = ''
for (const user of users) {
if (!user.email) {
hasError = true
errorMessage = 'Email required'
}
if (!user.name) {
hasError = true
errorMessage = 'Name required'
}
// Continues checking all users even after error found
}
return hasError ? { valid: false, error: errorMessage } : { valid: true }
}
```
**Correct (returns immediately on first error):**
```typescript
function validateUsers(users: User[]) {
for (const user of users) {
if (!user.email) {
return { valid: false, error: 'Email required' }
}
if (!user.name) {
return { valid: false, error: 'Name required' }
}
}
return { valid: true }
}
```

View File

@ -0,0 +1,45 @@
---
title: Hoist RegExp Creation
impact: LOW-MEDIUM
impactDescription: avoids recreation
tags: javascript, regexp, optimization, memoization
---
## Hoist RegExp Creation
Don't create RegExp inside render. Hoist to module scope or memoize with `useMemo()`.
**Incorrect (new RegExp every render):**
```tsx
function Highlighter({ text, query }: Props) {
const regex = new RegExp(`(${query})`, 'gi')
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
```
**Correct (memoize or hoist):**
```tsx
const EMAIL_REGEX = /^[^\s@]+@[^\s@]+\.[^\s@]+$/
function Highlighter({ text, query }: Props) {
const regex = useMemo(
() => new RegExp(`(${escapeRegex(query)})`, 'gi'),
[query]
)
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
```
**Warning (global regex has mutable state):**
Global regex (`/g`) has mutable `lastIndex` state:
```typescript
const regex = /foo/g
regex.test('foo') // true, lastIndex = 3
regex.test('foo') // false, lastIndex = 0
```

View File

@ -0,0 +1,37 @@
---
title: Build Index Maps for Repeated Lookups
impact: LOW-MEDIUM
impactDescription: 1M ops to 2K ops
tags: javascript, map, indexing, optimization, performance
---
## Build Index Maps for Repeated Lookups
Multiple `.find()` calls by the same key should use a Map.
**Incorrect (O(n) per lookup):**
```typescript
function processOrders(orders: Order[], users: User[]) {
return orders.map(order => ({
...order,
user: users.find(u => u.id === order.userId)
}))
}
```
**Correct (O(1) per lookup):**
```typescript
function processOrders(orders: Order[], users: User[]) {
const userById = new Map(users.map(u => [u.id, u]))
return orders.map(order => ({
...order,
user: userById.get(order.userId)
}))
}
```
Build map once (O(n)), then all lookups are O(1).
For 1000 orders × 1000 users: 1M ops → 2K ops.

View File

@ -0,0 +1,49 @@
---
title: Early Length Check for Array Comparisons
impact: MEDIUM-HIGH
impactDescription: avoids expensive operations when lengths differ
tags: javascript, arrays, performance, optimization, comparison
---
## Early Length Check for Array Comparisons
When comparing arrays with expensive operations (sorting, deep equality, serialization), check lengths first. If lengths differ, the arrays cannot be equal.
In real-world applications, this optimization is especially valuable when the comparison runs in hot paths (event handlers, render loops).
**Incorrect (always runs expensive comparison):**
```typescript
function hasChanges(current: string[], original: string[]) {
// Always sorts and joins, even when lengths differ
return current.sort().join() !== original.sort().join()
}
```
Two O(n log n) sorts run even when `current.length` is 5 and `original.length` is 100. There is also overhead of joining the arrays and comparing the strings.
**Correct (O(1) length check first):**
```typescript
function hasChanges(current: string[], original: string[]) {
// Early return if lengths differ
if (current.length !== original.length) {
return true
}
// Only sort when lengths match
const currentSorted = current.toSorted()
const originalSorted = original.toSorted()
for (let i = 0; i < currentSorted.length; i++) {
if (currentSorted[i] !== originalSorted[i]) {
return true
}
}
return false
}
```
This new approach is more efficient because:
- It avoids the overhead of sorting and joining the arrays when lengths differ
- It avoids consuming memory for the joined strings (especially important for large arrays)
- It avoids mutating the original arrays
- It returns early when a difference is found

View File

@ -0,0 +1,82 @@
---
title: Use Loop for Min/Max Instead of Sort
impact: LOW
impactDescription: O(n) instead of O(n log n)
tags: javascript, arrays, performance, sorting, algorithms
---
## Use Loop for Min/Max Instead of Sort
Finding the smallest or largest element only requires a single pass through the array. Sorting is wasteful and slower.
**Incorrect (O(n log n) - sort to find latest):**
```typescript
interface Project {
id: string
name: string
updatedAt: number
}
function getLatestProject(projects: Project[]) {
const sorted = [...projects].sort((a, b) => b.updatedAt - a.updatedAt)
return sorted[0]
}
```
Sorts the entire array just to find the maximum value.
**Incorrect (O(n log n) - sort for oldest and newest):**
```typescript
function getOldestAndNewest(projects: Project[]) {
const sorted = [...projects].sort((a, b) => a.updatedAt - b.updatedAt)
return { oldest: sorted[0], newest: sorted[sorted.length - 1] }
}
```
Still sorts unnecessarily when only min/max are needed.
**Correct (O(n) - single loop):**
```typescript
function getLatestProject(projects: Project[]) {
if (projects.length === 0) return null
let latest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt > latest.updatedAt) {
latest = projects[i]
}
}
return latest
}
function getOldestAndNewest(projects: Project[]) {
if (projects.length === 0) return { oldest: null, newest: null }
let oldest = projects[0]
let newest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt < oldest.updatedAt) oldest = projects[i]
if (projects[i].updatedAt > newest.updatedAt) newest = projects[i]
}
return { oldest, newest }
}
```
Single pass through the array, no copying, no sorting.
**Alternative (Math.min/Math.max for small arrays):**
```typescript
const numbers = [5, 2, 8, 1, 9]
const min = Math.min(...numbers)
const max = Math.max(...numbers)
```
This works for small arrays, but can be slower or just throw an error for very large arrays due to spread operator limitations. Maximal array length is approximately 124000 in Chrome 143 and 638000 in Safari 18; exact numbers may vary - see [the fiddle](https://jsfiddle.net/qw1jabsx/4/). Use the loop approach for reliability.

View File

@ -0,0 +1,24 @@
---
title: Use Set/Map for O(1) Lookups
impact: LOW-MEDIUM
impactDescription: O(n) to O(1)
tags: javascript, set, map, data-structures, performance
---
## Use Set/Map for O(1) Lookups
Convert arrays to Set/Map for repeated membership checks.
**Incorrect (O(n) per check):**
```typescript
const allowedIds = ['a', 'b', 'c', ...]
items.filter(item => allowedIds.includes(item.id))
```
**Correct (O(1) per check):**
```typescript
const allowedIds = new Set(['a', 'b', 'c', ...])
items.filter(item => allowedIds.has(item.id))
```

View File

@ -0,0 +1,57 @@
---
title: Use toSorted() Instead of sort() for Immutability
impact: MEDIUM-HIGH
impactDescription: prevents mutation bugs in React state
tags: javascript, arrays, immutability, react, state, mutation
---
## Use toSorted() Instead of sort() for Immutability
`.sort()` mutates the array in place, which can cause bugs with React state and props. Use `.toSorted()` to create a new sorted array without mutation.
**Incorrect (mutates original array):**
```typescript
function UserList({ users }: { users: User[] }) {
// Mutates the users prop array!
const sorted = useMemo(
() => users.sort((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
```
**Correct (creates new array):**
```typescript
function UserList({ users }: { users: User[] }) {
// Creates new sorted array, original unchanged
const sorted = useMemo(
() => users.toSorted((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
```
**Why this matters in React:**
1. Props/state mutations break React's immutability model - React expects props and state to be treated as read-only
2. Causes stale closure bugs - Mutating arrays inside closures (callbacks, effects) can lead to unexpected behavior
**Browser support (fallback for older browsers):**
`.toSorted()` is available in all modern browsers (Chrome 110+, Safari 16+, Firefox 115+, Node.js 20+). For older environments, use spread operator:
```typescript
// Fallback for older browsers
const sorted = [...items].sort((a, b) => a.value - b.value)
```
**Other immutable array methods:**
- `.toSorted()` - immutable sort
- `.toReversed()` - immutable reverse
- `.toSpliced()` - immutable splice
- `.with()` - immutable element replacement

View File

@ -0,0 +1,26 @@
---
title: Use Activity Component for Show/Hide
impact: MEDIUM
impactDescription: preserves state/DOM
tags: rendering, activity, visibility, state-preservation
---
## Use Activity Component for Show/Hide
Use React's `<Activity>` to preserve state/DOM for expensive components that frequently toggle visibility.
**Usage:**
```tsx
import { Activity } from 'react'
function Dropdown({ isOpen }: Props) {
return (
<Activity mode={isOpen ? 'visible' : 'hidden'}>
<ExpensiveMenu />
</Activity>
)
}
```
Avoids expensive re-renders and state loss.

View File

@ -0,0 +1,47 @@
---
title: Animate SVG Wrapper Instead of SVG Element
impact: LOW
impactDescription: enables hardware acceleration
tags: rendering, svg, css, animation, performance
---
## Animate SVG Wrapper Instead of SVG Element
Many browsers don't have hardware acceleration for CSS3 animations on SVG elements. Wrap SVG in a `<div>` and animate the wrapper instead.
**Incorrect (animating SVG directly - no hardware acceleration):**
```tsx
function LoadingSpinner() {
return (
<svg
className="animate-spin"
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
)
}
```
**Correct (animating wrapper div - hardware accelerated):**
```tsx
function LoadingSpinner() {
return (
<div className="animate-spin">
<svg
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
</div>
)
}
```
This applies to all CSS transforms and transitions (`transform`, `opacity`, `translate`, `scale`, `rotate`). The wrapper div allows browsers to use GPU acceleration for smoother animations.

View File

@ -0,0 +1,40 @@
---
title: Use Explicit Conditional Rendering
impact: LOW
impactDescription: prevents rendering 0 or NaN
tags: rendering, conditional, jsx, falsy-values
---
## Use Explicit Conditional Rendering
Use explicit ternary operators (`? :`) instead of `&&` for conditional rendering when the condition can be `0`, `NaN`, or other falsy values that render.
**Incorrect (renders "0" when count is 0):**
```tsx
function Badge({ count }: { count: number }) {
return (
<div>
{count && <span className="badge">{count}</span>}
</div>
)
}
// When count = 0, renders: <div>0</div>
// When count = 5, renders: <div><span class="badge">5</span></div>
```
**Correct (renders nothing when count is 0):**
```tsx
function Badge({ count }: { count: number }) {
return (
<div>
{count > 0 ? <span className="badge">{count}</span> : null}
</div>
)
}
// When count = 0, renders: <div></div>
// When count = 5, renders: <div><span class="badge">5</span></div>
```

View File

@ -0,0 +1,38 @@
---
title: CSS content-visibility for Long Lists
impact: HIGH
impactDescription: faster initial render
tags: rendering, css, content-visibility, long-lists
---
## CSS content-visibility for Long Lists
Apply `content-visibility: auto` to defer off-screen rendering.
**CSS:**
```css
.message-item {
content-visibility: auto;
contain-intrinsic-size: 0 80px;
}
```
**Example:**
```tsx
function MessageList({ messages }: { messages: Message[] }) {
return (
<div className="overflow-y-auto h-screen">
{messages.map(msg => (
<div key={msg.id} className="message-item">
<Avatar user={msg.author} />
<div>{msg.content}</div>
</div>
))}
</div>
)
}
```
For 1000 messages, browser skips layout/paint for ~990 off-screen items (10× faster initial render).

View File

@ -0,0 +1,46 @@
---
title: Hoist Static JSX Elements
impact: LOW
impactDescription: avoids re-creation
tags: rendering, jsx, static, optimization
---
## Hoist Static JSX Elements
Extract static JSX outside components to avoid re-creation.
**Incorrect (recreates element every render):**
```tsx
function LoadingSkeleton() {
return <div className="animate-pulse h-20 bg-gray-200" />
}
function Container() {
return (
<div>
{loading && <LoadingSkeleton />}
</div>
)
}
```
**Correct (reuses same element):**
```tsx
const loadingSkeleton = (
<div className="animate-pulse h-20 bg-gray-200" />
)
function Container() {
return (
<div>
{loading && loadingSkeleton}
</div>
)
}
```
This is especially helpful for large and static SVG nodes, which can be expensive to recreate on every render.
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, the compiler automatically hoists static JSX elements and optimizes component re-renders, making manual hoisting unnecessary.

View File

@ -0,0 +1,82 @@
---
title: Prevent Hydration Mismatch Without Flickering
impact: MEDIUM
impactDescription: avoids visual flicker and hydration errors
tags: rendering, ssr, hydration, localStorage, flicker
---
## Prevent Hydration Mismatch Without Flickering
When rendering content that depends on client-side storage (localStorage, cookies), avoid both SSR breakage and post-hydration flickering by injecting a synchronous script that updates the DOM before React hydrates.
**Incorrect (breaks SSR):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
// localStorage is not available on server - throws error
const theme = localStorage.getItem('theme') || 'light'
return (
<div className={theme}>
{children}
</div>
)
}
```
Server-side rendering will fail because `localStorage` is undefined.
**Incorrect (visual flickering):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
const [theme, setTheme] = useState('light')
useEffect(() => {
// Runs after hydration - causes visible flash
const stored = localStorage.getItem('theme')
if (stored) {
setTheme(stored)
}
}, [])
return (
<div className={theme}>
{children}
</div>
)
}
```
Component first renders with default value (`light`), then updates after hydration, causing a visible flash of incorrect content.
**Correct (no flicker, no hydration mismatch):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
return (
<>
<div id="theme-wrapper">
{children}
</div>
<script
dangerouslySetInnerHTML={{
__html: `
(function() {
try {
var theme = localStorage.getItem('theme') || 'light';
var el = document.getElementById('theme-wrapper');
if (el) el.className = theme;
} catch (e) {}
})();
`,
}}
/>
</>
)
}
```
The inline script executes synchronously before showing the element, ensuring the DOM already has the correct value. No flickering, no hydration mismatch.
This pattern is especially useful for theme toggles, user preferences, authentication states, and any client-only data that should render immediately without flashing default values.

View File

@ -0,0 +1,28 @@
---
title: Optimize SVG Precision
impact: LOW
impactDescription: reduces file size
tags: rendering, svg, optimization, svgo
---
## Optimize SVG Precision
Reduce SVG coordinate precision to decrease file size. The optimal precision depends on the viewBox size, but in general reducing precision should be considered.
**Incorrect (excessive precision):**
```svg
<path d="M 10.293847 20.847362 L 30.938472 40.192837" />
```
**Correct (1 decimal place):**
```svg
<path d="M 10.3 20.8 L 30.9 40.2" />
```
**Automate with SVGO:**
```bash
npx svgo --precision=1 --multipass icon.svg
```

View File

@ -0,0 +1,39 @@
---
title: Defer State Reads to Usage Point
impact: MEDIUM
impactDescription: avoids unnecessary subscriptions
tags: rerender, searchParams, localStorage, optimization
---
## Defer State Reads to Usage Point
Don't subscribe to dynamic state (searchParams, localStorage) if you only read it inside callbacks.
**Incorrect (subscribes to all searchParams changes):**
```tsx
function ShareButton({ chatId }: { chatId: string }) {
const searchParams = useSearchParams()
const handleShare = () => {
const ref = searchParams.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
```
**Correct (reads on demand, no subscription):**
```tsx
function ShareButton({ chatId }: { chatId: string }) {
const handleShare = () => {
const params = new URLSearchParams(window.location.search)
const ref = params.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
```

View File

@ -0,0 +1,45 @@
---
title: Narrow Effect Dependencies
impact: LOW
impactDescription: minimizes effect re-runs
tags: rerender, useEffect, dependencies, optimization
---
## Narrow Effect Dependencies
Specify primitive dependencies instead of objects to minimize effect re-runs.
**Incorrect (re-runs on any user field change):**
```tsx
useEffect(() => {
console.log(user.id)
}, [user])
```
**Correct (re-runs only when id changes):**
```tsx
useEffect(() => {
console.log(user.id)
}, [user.id])
```
**For derived state, compute outside effect:**
```tsx
// Incorrect: runs on width=767, 766, 765...
useEffect(() => {
if (width < 768) {
enableMobileMode()
}
}, [width])
// Correct: runs only on boolean transition
const isMobile = width < 768
useEffect(() => {
if (isMobile) {
enableMobileMode()
}
}, [isMobile])
```

View File

@ -0,0 +1,29 @@
---
title: Subscribe to Derived State
impact: MEDIUM
impactDescription: reduces re-render frequency
tags: rerender, derived-state, media-query, optimization
---
## Subscribe to Derived State
Subscribe to derived boolean state instead of continuous values to reduce re-render frequency.
**Incorrect (re-renders on every pixel change):**
```tsx
function Sidebar() {
const width = useWindowWidth() // updates continuously
const isMobile = width < 768
return <nav className={isMobile ? 'mobile' : 'desktop'} />
}
```
**Correct (re-renders only when boolean changes):**
```tsx
function Sidebar() {
const isMobile = useMediaQuery('(max-width: 767px)')
return <nav className={isMobile ? 'mobile' : 'desktop'} />
}
```

View File

@ -0,0 +1,74 @@
---
title: Use Functional setState Updates
impact: MEDIUM
impactDescription: prevents stale closures and unnecessary callback recreations
tags: react, hooks, useState, useCallback, callbacks, closures
---
## Use Functional setState Updates
When updating state based on the current state value, use the functional update form of setState instead of directly referencing the state variable. This prevents stale closures, eliminates unnecessary dependencies, and creates stable callback references.
**Incorrect (requires state as dependency):**
```tsx
function TodoList() {
const [items, setItems] = useState(initialItems)
// Callback must depend on items, recreated on every items change
const addItems = useCallback((newItems: Item[]) => {
setItems([...items, ...newItems])
}, [items]) // ❌ items dependency causes recreations
// Risk of stale closure if dependency is forgotten
const removeItem = useCallback((id: string) => {
setItems(items.filter(item => item.id !== id))
}, []) // ❌ Missing items dependency - will use stale items!
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
```
The first callback is recreated every time `items` changes, which can cause child components to re-render unnecessarily. The second callback has a stale closure bug—it will always reference the initial `items` value.
**Correct (stable callbacks, no stale closures):**
```tsx
function TodoList() {
const [items, setItems] = useState(initialItems)
// Stable callback, never recreated
const addItems = useCallback((newItems: Item[]) => {
setItems(curr => [...curr, ...newItems])
}, []) // ✅ No dependencies needed
// Always uses latest state, no stale closure risk
const removeItem = useCallback((id: string) => {
setItems(curr => curr.filter(item => item.id !== id))
}, []) // ✅ Safe and stable
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
```
**Benefits:**
1. **Stable callback references** - Callbacks don't need to be recreated when state changes
2. **No stale closures** - Always operates on the latest state value
3. **Fewer dependencies** - Simplifies dependency arrays and reduces memory leaks
4. **Prevents bugs** - Eliminates the most common source of React closure bugs
**When to use functional updates:**
- Any setState that depends on the current state value
- Inside useCallback/useMemo when state is needed
- Event handlers that reference state
- Async operations that update state
**When direct updates are fine:**
- Setting state to a static value: `setCount(0)`
- Setting state from props/arguments only: `setName(newName)`
- State doesn't depend on previous value
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, the compiler can automatically optimize some cases, but functional updates are still recommended for correctness and to prevent stale closure bugs.

View File

@ -0,0 +1,58 @@
---
title: Use Lazy State Initialization
impact: MEDIUM
impactDescription: wasted computation on every render
tags: react, hooks, useState, performance, initialization
---
## Use Lazy State Initialization
Pass a function to `useState` for expensive initial values. Without the function form, the initializer runs on every render even though the value is only used once.
**Incorrect (runs on every render):**
```tsx
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs on EVERY render, even after initialization
const [searchIndex, setSearchIndex] = useState(buildSearchIndex(items))
const [query, setQuery] = useState('')
// When query changes, buildSearchIndex runs again unnecessarily
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs on every render
const [settings, setSettings] = useState(
JSON.parse(localStorage.getItem('settings') || '{}')
)
return <SettingsForm settings={settings} onChange={setSettings} />
}
```
**Correct (runs only once):**
```tsx
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs ONLY on initial render
const [searchIndex, setSearchIndex] = useState(() => buildSearchIndex(items))
const [query, setQuery] = useState('')
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs only on initial render
const [settings, setSettings] = useState(() => {
const stored = localStorage.getItem('settings')
return stored ? JSON.parse(stored) : {}
})
return <SettingsForm settings={settings} onChange={setSettings} />
}
```
Use lazy initialization when computing initial values from localStorage/sessionStorage, building data structures (indexes, maps), reading from the DOM, or performing heavy transformations.
For simple primitives (`useState(0)`), direct references (`useState(props.value)`), or cheap literals (`useState({})`), the function form is unnecessary.

View File

@ -0,0 +1,44 @@
---
title: Extract to Memoized Components
impact: MEDIUM
impactDescription: enables early returns
tags: rerender, memo, useMemo, optimization
---
## Extract to Memoized Components
Extract expensive work into memoized components to enable early returns before computation.
**Incorrect (computes avatar even when loading):**
```tsx
function Profile({ user, loading }: Props) {
const avatar = useMemo(() => {
const id = computeAvatarId(user)
return <Avatar id={id} />
}, [user])
if (loading) return <Skeleton />
return <div>{avatar}</div>
}
```
**Correct (skips computation when loading):**
```tsx
const UserAvatar = memo(function UserAvatar({ user }: { user: User }) {
const id = useMemo(() => computeAvatarId(user), [user])
return <Avatar id={id} />
})
function Profile({ user, loading }: Props) {
if (loading) return <Skeleton />
return (
<div>
<UserAvatar user={user} />
</div>
)
}
```
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, manual memoization with `memo()` and `useMemo()` is not necessary. The compiler automatically optimizes re-renders.

View File

@ -0,0 +1,40 @@
---
title: Use Transitions for Non-Urgent Updates
impact: MEDIUM
impactDescription: maintains UI responsiveness
tags: rerender, transitions, startTransition, performance
---
## Use Transitions for Non-Urgent Updates
Mark frequent, non-urgent state updates as transitions to maintain UI responsiveness.
**Incorrect (blocks UI on every scroll):**
```tsx
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => setScrollY(window.scrollY)
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
```
**Correct (non-blocking updates):**
```tsx
import { startTransition } from 'react'
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => {
startTransition(() => setScrollY(window.scrollY))
}
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
```

View File

@ -0,0 +1,73 @@
---
title: Use after() for Non-Blocking Operations
impact: MEDIUM
impactDescription: faster response times
tags: server, async, logging, analytics, side-effects
---
## Use after() for Non-Blocking Operations
Use Next.js's `after()` to schedule work that should execute after a response is sent. This prevents logging, analytics, and other side effects from blocking the response.
**Incorrect (blocks response):**
```tsx
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Logging blocks the response
const userAgent = request.headers.get('user-agent') || 'unknown'
await logUserAction({ userAgent })
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
```
**Correct (non-blocking):**
```tsx
import { after } from 'next/server'
import { headers, cookies } from 'next/headers'
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Log after response is sent
after(async () => {
const userAgent = (await headers()).get('user-agent') || 'unknown'
const sessionCookie = (await cookies()).get('session-id')?.value || 'anonymous'
logUserAction({ sessionCookie, userAgent })
})
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
```
The response is sent immediately while logging happens in the background.
**Common use cases:**
- Analytics tracking
- Audit logging
- Sending notifications
- Cache invalidation
- Cleanup tasks
**Important notes:**
- `after()` runs even if the response fails or redirects
- Works in Server Actions, Route Handlers, and Server Components
Reference: [https://nextjs.org/docs/app/api-reference/functions/after](https://nextjs.org/docs/app/api-reference/functions/after)

View File

@ -0,0 +1,41 @@
---
title: Cross-Request LRU Caching
impact: HIGH
impactDescription: caches across requests
tags: server, cache, lru, cross-request
---
## Cross-Request LRU Caching
`React.cache()` only works within one request. For data shared across sequential requests (user clicks button A then button B), use an LRU cache.
**Implementation:**
```typescript
import { LRUCache } from 'lru-cache'
const cache = new LRUCache<string, any>({
max: 1000,
ttl: 5 * 60 * 1000 // 5 minutes
})
export async function getUser(id: string) {
const cached = cache.get(id)
if (cached) return cached
const user = await db.user.findUnique({ where: { id } })
cache.set(id, user)
return user
}
// Request 1: DB query, result cached
// Request 2: cache hit, no DB query
```
Use when sequential user actions hit multiple endpoints needing the same data within seconds.
**With Vercel's [Fluid Compute](https://vercel.com/docs/fluid-compute):** LRU caching is especially effective because multiple concurrent requests can share the same function instance and cache. This means the cache persists across requests without needing external storage like Redis.
**In traditional serverless:** Each invocation runs in isolation, so consider Redis for cross-process caching.
Reference: [https://github.com/isaacs/node-lru-cache](https://github.com/isaacs/node-lru-cache)

View File

@ -0,0 +1,76 @@
---
title: Per-Request Deduplication with React.cache()
impact: MEDIUM
impactDescription: deduplicates within request
tags: server, cache, react-cache, deduplication
---
## Per-Request Deduplication with React.cache()
Use `React.cache()` for server-side request deduplication. Authentication and database queries benefit most.
**Usage:**
```typescript
import { cache } from 'react'
export const getCurrentUser = cache(async () => {
const session = await auth()
if (!session?.user?.id) return null
return await db.user.findUnique({
where: { id: session.user.id }
})
})
```
Within a single request, multiple calls to `getCurrentUser()` execute the query only once.
**Avoid inline objects as arguments:**
`React.cache()` uses shallow equality (`Object.is`) to determine cache hits. Inline objects create new references each call, preventing cache hits.
**Incorrect (always cache miss):**
```typescript
const getUser = cache(async (params: { uid: number }) => {
return await db.user.findUnique({ where: { id: params.uid } })
})
// Each call creates new object, never hits cache
getUser({ uid: 1 })
getUser({ uid: 1 }) // Cache miss, runs query again
```
**Correct (cache hit):**
```typescript
const getUser = cache(async (uid: number) => {
return await db.user.findUnique({ where: { id: uid } })
})
// Primitive args use value equality
getUser(1)
getUser(1) // Cache hit, returns cached result
```
If you must pass objects, pass the same reference:
```typescript
const params = { uid: 1 }
getUser(params) // Query runs
getUser(params) // Cache hit (same reference)
```
**Next.js-Specific Note:**
In Next.js, the `fetch` API is automatically extended with request memoization. Requests with the same URL and options are automatically deduplicated within a single request, so you don't need `React.cache()` for `fetch` calls. However, `React.cache()` is still essential for other async tasks:
- Database queries (Prisma, Drizzle, etc.)
- Heavy computations
- Authentication checks
- File system operations
- Any non-fetch async work
Use `React.cache()` to deduplicate these operations across your component tree.
Reference: [React.cache documentation](https://react.dev/reference/react/cache)

View File

@ -0,0 +1,83 @@
---
title: Parallel Data Fetching with Component Composition
impact: CRITICAL
impactDescription: eliminates server-side waterfalls
tags: server, rsc, parallel-fetching, composition
---
## Parallel Data Fetching with Component Composition
React Server Components execute sequentially within a tree. Restructure with composition to parallelize data fetching.
**Incorrect (Sidebar waits for Page's fetch to complete):**
```tsx
export default async function Page() {
const header = await fetchHeader()
return (
<div>
<div>{header}</div>
<Sidebar />
</div>
)
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
```
**Correct (both fetch simultaneously):**
```tsx
async function Header() {
const data = await fetchHeader()
return <div>{data}</div>
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
export default function Page() {
return (
<div>
<Header />
<Sidebar />
</div>
)
}
```
**Alternative with children prop:**
```tsx
async function Header() {
const data = await fetchHeader()
return <div>{data}</div>
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
function Layout({ children }: { children: ReactNode }) {
return (
<div>
<Header />
{children}
</div>
)
}
export default function Page() {
return (
<Layout>
<Sidebar />
</Layout>
)
}
```

View File

@ -0,0 +1,38 @@
---
title: Minimize Serialization at RSC Boundaries
impact: HIGH
impactDescription: reduces data transfer size
tags: server, rsc, serialization, props
---
## Minimize Serialization at RSC Boundaries
The React Server/Client boundary serializes all object properties into strings and embeds them in the HTML response and subsequent RSC requests. This serialized data directly impacts page weight and load time, so **size matters a lot**. Only pass fields that the client actually uses.
**Incorrect (serializes all 50 fields):**
```tsx
async function Page() {
const user = await fetchUser() // 50 fields
return <Profile user={user} />
}
'use client'
function Profile({ user }: { user: User }) {
return <div>{user.name}</div> // uses 1 field
}
```
**Correct (serializes only 1 field):**
```tsx
async function Page() {
const user = await fetchUser()
return <Profile name={user.name} />
}
'use client'
function Profile({ name }: { name: string }) {
return <div>{name}</div>
}
```

View File

@ -82,6 +82,6 @@ jobs:
# mdformat breaks YAML front matter in markdown files. Add --exclude for directories containing YAML front matter.
- name: mdformat
run: |
uvx --python 3.13 mdformat . --exclude ".claude/skills/**/SKILL.md"
uvx --python 3.13 mdformat . --exclude ".claude/skills/**"
- uses: autofix-ci/action@635ffb0c9798bd160680f18fd73371e355b85f27

View File

@ -106,8 +106,9 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
working-directory: ./web
run: |
pnpm run lint:report
continue-on-error: true
pnpm run lint:ci
# pnpm run lint:report
# continue-on-error: true
# - name: Annotate Code
# if: steps.changed-files.outputs.any_changed == 'true' && github.event_name == 'pull_request'
@ -126,11 +127,6 @@ jobs:
working-directory: ./web
run: pnpm run knip
- name: Web build check
if: steps.changed-files.outputs.any_changed == 'true'
working-directory: ./web
run: pnpm run build
superlinter:
name: SuperLinter
runs-on: ubuntu-latest

View File

@ -366,3 +366,48 @@ jobs:
path: web/coverage
retention-days: 30
if-no-files-found: error
web-build:
name: Web Build
runs-on: ubuntu-latest
defaults:
run:
working-directory: ./web
steps:
- name: Checkout code
uses: actions/checkout@v6
with:
persist-credentials: false
- name: Check changed files
id: changed-files
uses: tj-actions/changed-files@v47
with:
files: |
web/**
.github/workflows/web-tests.yml
- name: Install pnpm
uses: pnpm/action-setup@v4
with:
package_json_file: web/package.json
run_install: false
- name: Setup NodeJS
uses: actions/setup-node@v6
if: steps.changed-files.outputs.any_changed == 'true'
with:
node-version: 24
cache: pnpm
cache-dependency-path: ./web/pnpm-lock.yaml
- name: Web dependencies
if: steps.changed-files.outputs.any_changed == 'true'
working-directory: ./web
run: pnpm install --frozen-lockfile
- name: Web build check
if: steps.changed-files.outputs.any_changed == 'true'
working-directory: ./web
run: pnpm run build

View File

@ -716,3 +716,13 @@ SANDBOX_EXPIRED_RECORDS_CLEAN_GRACEFUL_PERIOD=21
SANDBOX_EXPIRED_RECORDS_CLEAN_BATCH_SIZE=1000
SANDBOX_EXPIRED_RECORDS_RETENTION_DAYS=30
# Sandbox Dify CLI configuration
# Directory containing dify CLI binaries (dify-cli-<os>-<arch>). Defaults to api/bin when unset.
SANDBOX_DIFY_CLI_ROOT=
# CLI API URL for sandbox (dify-sandbox or e2b) to call back to Dify API.
# This URL must be accessible from the sandbox environment.
# For local development: use http://localhost:5001 or http://127.0.0.1:5001
# For Docker deployment: use http://api:5001 (internal Docker network)
# For external sandbox (e.g., e2b): use a publicly accessible URL
CLI_API_URL=http://localhost:5001

View File

@ -71,6 +71,8 @@ def create_app() -> DifyApp:
def initialize_extensions(app: DifyApp):
# Initialize Flask context capture for workflow execution
from context.flask_app_context import init_flask_context
from extensions import (
ext_app_metrics,
ext_blueprints,
@ -100,6 +102,8 @@ def initialize_extensions(app: DifyApp):
ext_warnings,
)
init_flask_context()
extensions = [
ext_timezone,
ext_logging,

BIN
api/bin/dify-cli-darwin-amd64 Executable file

Binary file not shown.

BIN
api/bin/dify-cli-darwin-arm64 Executable file

Binary file not shown.

BIN
api/bin/dify-cli-linux-amd64 Executable file

Binary file not shown.

BIN
api/bin/dify-cli-linux-arm64 Executable file

Binary file not shown.

View File

@ -23,7 +23,7 @@ from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.index_processor.constant.built_in_field import BuiltInField
from core.rag.models.document import Document
from core.tools.utils.system_oauth_encryption import encrypt_system_oauth_params
from core.tools.utils.system_encryption import encrypt_system_params
from events.app_event import app_was_created
from extensions.ext_database import db
from extensions.ext_redis import redis_client
@ -862,8 +862,27 @@ def clear_free_plan_tenant_expired_logs(days: int, batch: int, tenant_ids: list[
@click.command("clean-workflow-runs", help="Clean expired workflow runs and related data for free tenants.")
@click.option("--days", default=30, show_default=True, help="Delete workflow runs created before N days ago.")
@click.option(
"--before-days",
"--days",
default=30,
show_default=True,
type=click.IntRange(min=0),
help="Delete workflow runs created before N days ago.",
)
@click.option("--batch-size", default=200, show_default=True, help="Batch size for selecting workflow runs.")
@click.option(
"--from-days-ago",
default=None,
type=click.IntRange(min=0),
help="Lower bound in days ago (older). Must be paired with --to-days-ago.",
)
@click.option(
"--to-days-ago",
default=None,
type=click.IntRange(min=0),
help="Upper bound in days ago (newer). Must be paired with --from-days-ago.",
)
@click.option(
"--start-from",
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
@ -882,8 +901,10 @@ def clear_free_plan_tenant_expired_logs(days: int, batch: int, tenant_ids: list[
help="Preview cleanup results without deleting any workflow run data.",
)
def clean_workflow_runs(
days: int,
before_days: int,
batch_size: int,
from_days_ago: int | None,
to_days_ago: int | None,
start_from: datetime.datetime | None,
end_before: datetime.datetime | None,
dry_run: bool,
@ -894,11 +915,24 @@ def clean_workflow_runs(
if (start_from is None) ^ (end_before is None):
raise click.UsageError("--start-from and --end-before must be provided together.")
if (from_days_ago is None) ^ (to_days_ago is None):
raise click.UsageError("--from-days-ago and --to-days-ago must be provided together.")
if from_days_ago is not None and to_days_ago is not None:
if start_from or end_before:
raise click.UsageError("Choose either day offsets or explicit dates, not both.")
if from_days_ago <= to_days_ago:
raise click.UsageError("--from-days-ago must be greater than --to-days-ago.")
now = datetime.datetime.now()
start_from = now - datetime.timedelta(days=from_days_ago)
end_before = now - datetime.timedelta(days=to_days_ago)
before_days = 0
start_time = datetime.datetime.now(datetime.UTC)
click.echo(click.style(f"Starting workflow run cleanup at {start_time.isoformat()}.", fg="white"))
WorkflowRunCleanup(
days=days,
days=before_days,
batch_size=batch_size,
start_from=start_from,
end_before=end_before,
@ -1211,7 +1245,7 @@ def remove_orphaned_files_on_storage(force: bool):
click.echo(click.style(f"- Scanning files on storage path {storage_path}", fg="white"))
files = storage.scan(path=storage_path, files=True, directories=False)
all_files_on_storage.extend(files)
except FileNotFoundError as e:
except FileNotFoundError:
click.echo(click.style(f" -> Skipping path {storage_path} as it does not exist.", fg="yellow"))
continue
except Exception as e:
@ -1459,6 +1493,60 @@ def file_usage(
click.echo(click.style(f"Use --offset {offset + limit} to see next page", fg="white"))
@click.command("setup-sandbox-system-config", help="Setup system-level sandbox provider configuration.")
@click.option(
"--provider-type", prompt=True, type=click.Choice(["e2b", "docker", "local"]), help="Sandbox provider type"
)
@click.option("--config", prompt=True, help='Configuration JSON (e.g., {"api_key": "xxx"} for e2b)')
def setup_sandbox_system_config(provider_type: str, config: str):
"""
Setup system-level sandbox provider configuration.
Examples:
flask setup-sandbox-system-config --provider-type e2b --config '{"api_key": "e2b_xxx"}'
flask setup-sandbox-system-config --provider-type docker --config '{"docker_sock": "unix:///var/run/docker.sock"}'
flask setup-sandbox-system-config --provider-type local --config '{}'
"""
from models.sandbox import SandboxProviderSystemConfig
from services.sandbox.sandbox_provider_service import PROVIDER_CONFIG_MODELS
try:
click.echo(click.style(f"Validating config: {config}", fg="yellow"))
config_dict = TypeAdapter(dict[str, Any]).validate_json(config)
click.echo(click.style("Config validated successfully.", fg="green"))
click.echo(click.style(f"Validating config schema for provider type: {provider_type}", fg="yellow"))
model_class = PROVIDER_CONFIG_MODELS.get(provider_type)
if model_class:
model_class.model_validate(config_dict)
click.echo(click.style("Config schema validated successfully.", fg="green"))
click.echo(click.style("Encrypting config...", fg="yellow"))
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
encrypted_config = encrypt_system_params(config_dict)
click.echo(click.style("Config encrypted successfully.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error validating/encrypting config: {str(e)}", fg="red"))
return
deleted_count = db.session.query(SandboxProviderSystemConfig).filter_by(provider_type=provider_type).delete()
if deleted_count > 0:
click.echo(
click.style(
f"Deleted {deleted_count} existing system config for provider type: {provider_type}", fg="yellow"
)
)
system_config = SandboxProviderSystemConfig(
provider_type=provider_type,
encrypted_config=encrypted_config,
)
db.session.add(system_config)
db.session.commit()
click.echo(click.style(f"Sandbox system config setup successfully. id: {system_config.id}", fg="green"))
click.echo(click.style(f"Provider type: {provider_type}", fg="green"))
@click.command("setup-system-tool-oauth-client", help="Setup system tool oauth client.")
@click.option("--provider", prompt=True, help="Provider name")
@click.option("--client-params", prompt=True, help="Client Params")
@ -1478,7 +1566,7 @@ def setup_system_tool_oauth_client(provider, client_params):
click.echo(click.style(f"Encrypting client params: {client_params}", fg="yellow"))
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
oauth_client_params = encrypt_system_oauth_params(client_params_dict)
oauth_client_params = encrypt_system_params(client_params_dict)
click.echo(click.style("Client params encrypted successfully.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error parsing client params: {str(e)}", fg="red"))
@ -1527,7 +1615,7 @@ def setup_system_trigger_oauth_client(provider, client_params):
click.echo(click.style(f"Encrypting client params: {client_params}", fg="yellow"))
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
oauth_client_params = encrypt_system_oauth_params(client_params_dict)
oauth_client_params = encrypt_system_params(client_params_dict)
click.echo(click.style("Client params encrypted successfully.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error parsing client params: {str(e)}", fg="red"))

View File

@ -2,6 +2,7 @@ import logging
from pathlib import Path
from typing import Any
from pydantic import Field
from pydantic.fields import FieldInfo
from pydantic_settings import BaseSettings, PydanticBaseSettingsSource, SettingsConfigDict, TomlConfigSettingsSource
@ -82,6 +83,14 @@ class DifyConfig(
extra="ignore",
)
SANDBOX_DIFY_CLI_ROOT: str | None = Field(
default=None,
description=(
"Filesystem directory containing dify CLI binaries named dify-cli-<os>-<arch>. "
"Defaults to api/bin when unset."
),
)
# Before adding any config,
# please consider to arrange it in the proper config group of existed or added
# for better readability and maintainability.

View File

@ -244,6 +244,17 @@ class PluginConfig(BaseSettings):
)
class CliApiConfig(BaseSettings):
"""
Configuration for CLI API (for dify-cli to call back from external sandbox environments)
"""
CLI_API_URL: str = Field(
description="CLI API URL for external sandbox (e.g., e2b) to call back.",
default="http://localhost:5001",
)
class MarketplaceConfig(BaseSettings):
"""
Configuration for marketplace
@ -1309,6 +1320,7 @@ class FeatureConfig(
TriggerConfig,
AsyncWorkflowConfig,
PluginConfig,
CliApiConfig,
MarketplaceConfig,
DataSetConfig,
EndpointConfig,

74
api/context/__init__.py Normal file
View File

@ -0,0 +1,74 @@
"""
Core Context - Framework-agnostic context management.
This module provides context management that is independent of any specific
web framework. Framework-specific implementations register their context
capture functions at application initialization time.
This ensures the workflow layer remains completely decoupled from Flask
or any other web framework.
"""
import contextvars
from collections.abc import Callable
from core.workflow.context.execution_context import (
ExecutionContext,
IExecutionContext,
NullAppContext,
)
# Global capturer function - set by framework-specific modules
_capturer: Callable[[], IExecutionContext] | None = None
def register_context_capturer(capturer: Callable[[], IExecutionContext]) -> None:
"""
Register a context capture function.
This should be called by framework-specific modules (e.g., Flask)
during application initialization.
Args:
capturer: Function that captures current context and returns IExecutionContext
"""
global _capturer
_capturer = capturer
def capture_current_context() -> IExecutionContext:
"""
Capture current execution context.
This function uses the registered context capturer. If no capturer
is registered, it returns a minimal context with only contextvars
(suitable for non-framework environments like tests or standalone scripts).
Returns:
IExecutionContext with captured context
"""
if _capturer is None:
# No framework registered - return minimal context
return ExecutionContext(
app_context=NullAppContext(),
context_vars=contextvars.copy_context(),
)
return _capturer()
def reset_context_provider() -> None:
"""
Reset the context capturer.
This is primarily useful for testing to ensure a clean state.
"""
global _capturer
_capturer = None
__all__ = [
"capture_current_context",
"register_context_capturer",
"reset_context_provider",
]

View File

@ -0,0 +1,198 @@
"""
Flask App Context - Flask implementation of AppContext interface.
"""
import contextvars
from collections.abc import Generator
from contextlib import contextmanager
from typing import Any, final
from flask import Flask, current_app, g
from context import register_context_capturer
from core.workflow.context.execution_context import (
AppContext,
IExecutionContext,
)
@final
class FlaskAppContext(AppContext):
"""
Flask implementation of AppContext.
This adapts Flask's app context to the AppContext interface.
"""
def __init__(self, flask_app: Flask) -> None:
"""
Initialize Flask app context.
Args:
flask_app: The Flask application instance
"""
self._flask_app = flask_app
def get_config(self, key: str, default: Any = None) -> Any:
"""Get configuration value from Flask app config."""
return self._flask_app.config.get(key, default)
def get_extension(self, name: str) -> Any:
"""Get Flask extension by name."""
return self._flask_app.extensions.get(name)
@contextmanager
def enter(self) -> Generator[None, None, None]:
"""Enter Flask app context."""
with self._flask_app.app_context():
yield
@property
def flask_app(self) -> Flask:
"""Get the underlying Flask app instance."""
return self._flask_app
def capture_flask_context(user: Any = None) -> IExecutionContext:
"""
Capture current Flask execution context.
This function captures the Flask app context and contextvars from the
current environment. It should be called from within a Flask request or
app context.
Args:
user: Optional user object to include in context
Returns:
IExecutionContext with captured Flask context
Raises:
RuntimeError: If called outside Flask context
"""
# Get Flask app instance
flask_app = current_app._get_current_object() # type: ignore
# Save current user if available
saved_user = user
if saved_user is None:
# Check for user in g (flask-login)
if hasattr(g, "_login_user"):
saved_user = g._login_user
# Capture contextvars
context_vars = contextvars.copy_context()
return FlaskExecutionContext(
flask_app=flask_app,
context_vars=context_vars,
user=saved_user,
)
@final
class FlaskExecutionContext:
"""
Flask-specific execution context.
This is a specialized version of ExecutionContext that includes Flask app
context. It provides the same interface as ExecutionContext but with
Flask-specific implementation.
"""
def __init__(
self,
flask_app: Flask,
context_vars: contextvars.Context,
user: Any = None,
) -> None:
"""
Initialize Flask execution context.
Args:
flask_app: Flask application instance
context_vars: Python contextvars
user: Optional user object
"""
self._app_context = FlaskAppContext(flask_app)
self._context_vars = context_vars
self._user = user
self._flask_app = flask_app
@property
def app_context(self) -> FlaskAppContext:
"""Get Flask app context."""
return self._app_context
@property
def context_vars(self) -> contextvars.Context:
"""Get context variables."""
return self._context_vars
@property
def user(self) -> Any:
"""Get user object."""
return self._user
def __enter__(self) -> "FlaskExecutionContext":
"""Enter the Flask execution context."""
# Restore context variables
for var, val in self._context_vars.items():
var.set(val)
# Save current user from g if available
saved_user = None
if hasattr(g, "_login_user"):
saved_user = g._login_user
# Enter Flask app context
self._cm = self._app_context.enter()
self._cm.__enter__()
# Restore user in new app context
if saved_user is not None:
g._login_user = saved_user
return self
def __exit__(self, *args: Any) -> None:
"""Exit the Flask execution context."""
if hasattr(self, "_cm"):
self._cm.__exit__(*args)
@contextmanager
def enter(self) -> Generator[None, None, None]:
"""Enter Flask execution context as context manager."""
# Restore context variables
for var, val in self._context_vars.items():
var.set(val)
# Save current user from g if available
saved_user = None
if hasattr(g, "_login_user"):
saved_user = g._login_user
# Enter Flask app context
with self._flask_app.app_context():
# Restore user in new app context
if saved_user is not None:
g._login_user = saved_user
yield
def init_flask_context() -> None:
"""
Initialize Flask context capture by registering the capturer.
This function should be called during Flask application initialization
to register the Flask-specific context capturer with the core context module.
Example:
app = Flask(__name__)
init_flask_context() # Register Flask context capturer
Note:
This function does not need the app instance as it uses Flask's
`current_app` to get the app when capturing context.
"""
register_context_capturer(capture_flask_context)

View File

@ -0,0 +1,27 @@
from flask import Blueprint
from flask_restx import Namespace
from libs.external_api import ExternalApi
bp = Blueprint("cli_api", __name__, url_prefix="/cli/api")
api = ExternalApi(
bp,
version="1.0",
title="CLI API",
description="APIs for Dify CLI to call back from external sandbox environments (e.g., e2b)",
)
# Create namespace
cli_api_ns = Namespace("cli_api", description="CLI API operations", path="/")
from .plugin import plugin as _plugin
api.add_namespace(cli_api_ns)
__all__ = [
"_plugin",
"api",
"bp",
"cli_api_ns",
]

View File

@ -0,0 +1,137 @@
from flask_restx import Resource
from controllers.cli_api import cli_api_ns
from controllers.cli_api.plugin.wraps import get_cli_user_tenant, plugin_data
from controllers.cli_api.wraps import cli_api_only
from controllers.console.wraps import setup_required
from core.file.helpers import get_signed_file_url_for_plugin
from core.plugin.backwards_invocation.app import PluginAppBackwardsInvocation
from core.plugin.backwards_invocation.base import BaseBackwardsInvocationResponse
from core.plugin.backwards_invocation.model import PluginModelBackwardsInvocation
from core.plugin.backwards_invocation.tool import PluginToolBackwardsInvocation
from core.plugin.entities.request import (
RequestInvokeApp,
RequestInvokeLLM,
RequestInvokeTool,
RequestRequestUploadFile,
)
from core.tools.entities.tool_entities import ToolProviderType
from libs.helper import length_prefixed_response
from models import Account, Tenant
from models.model import EndUser
@cli_api_ns.route("/invoke/llm")
class CliInvokeLLMApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
@plugin_data(payload_type=RequestInvokeLLM)
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestInvokeLLM):
def generator():
response = PluginModelBackwardsInvocation.invoke_llm(user_model.id, tenant_model, payload)
return PluginModelBackwardsInvocation.convert_to_event_stream(response)
return length_prefixed_response(0xF, generator())
@cli_api_ns.route("/invoke/tool")
class CliInvokeToolApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
@plugin_data(payload_type=RequestInvokeTool)
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestInvokeTool):
def generator():
return PluginToolBackwardsInvocation.convert_to_event_stream(
PluginToolBackwardsInvocation.invoke_tool(
tenant_id=tenant_model.id,
user_id=user_model.id,
tool_type=ToolProviderType.value_of(payload.tool_type),
provider=payload.provider,
tool_name=payload.tool,
tool_parameters=payload.tool_parameters,
credential_id=payload.credential_id,
),
)
return length_prefixed_response(0xF, generator())
@cli_api_ns.route("/invoke/app")
class CliInvokeAppApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
@plugin_data(payload_type=RequestInvokeApp)
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestInvokeApp):
response = PluginAppBackwardsInvocation.invoke_app(
app_id=payload.app_id,
user_id=user_model.id,
tenant_id=tenant_model.id,
conversation_id=payload.conversation_id,
query=payload.query,
stream=payload.response_mode == "streaming",
inputs=payload.inputs,
files=payload.files,
)
return length_prefixed_response(0xF, PluginAppBackwardsInvocation.convert_to_event_stream(response))
@cli_api_ns.route("/upload/file/request")
class CliUploadFileRequestApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
@plugin_data(payload_type=RequestRequestUploadFile)
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestRequestUploadFile):
# generate signed url
url = get_signed_file_url_for_plugin(
filename=payload.filename,
mimetype=payload.mimetype,
tenant_id=tenant_model.id,
user_id=user_model.id,
)
return BaseBackwardsInvocationResponse(data={"url": url}).model_dump()
@cli_api_ns.route("/fetch/tools/list")
class CliFetchToolsListApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
def post(self, user_model: Account | EndUser, tenant_model: Tenant):
from sqlalchemy.orm import Session
from extensions.ext_database import db
from services.tools.api_tools_manage_service import ApiToolManageService
from services.tools.builtin_tools_manage_service import BuiltinToolManageService
from services.tools.mcp_tools_manage_service import MCPToolManageService
from services.tools.workflow_tools_manage_service import WorkflowToolManageService
providers = []
# Get builtin tools
builtin_providers = BuiltinToolManageService.list_builtin_tools(user_model.id, tenant_model.id)
for provider in builtin_providers:
providers.append(provider.to_dict())
# Get API tools
api_providers = ApiToolManageService.list_api_tools(tenant_model.id)
for provider in api_providers:
providers.append(provider.to_dict())
# Get workflow tools
workflow_providers = WorkflowToolManageService.list_tenant_workflow_tools(user_model.id, tenant_model.id)
for provider in workflow_providers:
providers.append(provider.to_dict())
# Get MCP tools
with Session(db.engine) as session:
mcp_service = MCPToolManageService(session)
mcp_providers = mcp_service.list_providers(tenant_id=tenant_model.id, for_list=True)
for provider in mcp_providers:
providers.append(provider.to_dict())
return BaseBackwardsInvocationResponse(data={"providers": providers}).model_dump()

View File

@ -0,0 +1,146 @@
from collections.abc import Callable
from functools import wraps
from typing import ParamSpec, TypeVar
from flask import current_app, request
from flask_login import user_logged_in
from pydantic import BaseModel
from sqlalchemy.orm import Session
from core.session.cli_api import CliApiSession, CliApiSessionManager
from extensions.ext_database import db
from libs.login import current_user
from models.account import Tenant
from models.model import DefaultEndUserSessionID, EndUser
P = ParamSpec("P")
R = TypeVar("R")
class TenantUserPayload(BaseModel):
tenant_id: str
user_id: str
def get_user(tenant_id: str, user_id: str | None) -> EndUser:
"""
Get current user
NOTE: user_id is not trusted, it could be maliciously set to any value.
As a result, it could only be considered as an end user id.
"""
if not user_id:
user_id = DefaultEndUserSessionID.DEFAULT_SESSION_ID
is_anonymous = user_id == DefaultEndUserSessionID.DEFAULT_SESSION_ID
try:
with Session(db.engine) as session:
user_model = None
if is_anonymous:
user_model = (
session.query(EndUser)
.where(
EndUser.session_id == user_id,
EndUser.tenant_id == tenant_id,
)
.first()
)
else:
user_model = (
session.query(EndUser)
.where(
EndUser.id == user_id,
EndUser.tenant_id == tenant_id,
)
.first()
)
if not user_model:
user_model = EndUser(
tenant_id=tenant_id,
type="service_api",
is_anonymous=is_anonymous,
session_id=user_id,
)
session.add(user_model)
session.commit()
session.refresh(user_model)
except Exception:
raise ValueError("user not found")
return user_model
def get_cli_user_tenant(view_func: Callable[P, R]):
@wraps(view_func)
def decorated_view(*args: P.args, **kwargs: P.kwargs):
session_id = request.headers.get("X-Cli-Api-Session-Id")
if session_id:
session: CliApiSession | None = CliApiSessionManager().get(session_id)
if not session:
raise ValueError("session not found")
user_id = session.user_id
tenant_id = session.tenant_id
else:
payload = TenantUserPayload.model_validate(request.get_json(silent=True) or {})
user_id = payload.user_id
tenant_id = payload.tenant_id
if not tenant_id:
raise ValueError("tenant_id is required")
if not user_id:
user_id = DefaultEndUserSessionID.DEFAULT_SESSION_ID
try:
tenant_model = (
db.session.query(Tenant)
.where(
Tenant.id == tenant_id,
)
.first()
)
except Exception:
raise ValueError("tenant not found")
if not tenant_model:
raise ValueError("tenant not found")
kwargs["tenant_model"] = tenant_model
user = get_user(tenant_id, user_id)
kwargs["user_model"] = user
current_app.login_manager._update_request_context_with_user(user) # type: ignore
user_logged_in.send(current_app._get_current_object(), user=current_user) # type: ignore
return view_func(*args, **kwargs)
return decorated_view
def plugin_data(view: Callable[P, R] | None = None, *, payload_type: type[BaseModel]):
def decorator(view_func: Callable[P, R]):
def decorated_view(*args: P.args, **kwargs: P.kwargs):
try:
data = request.get_json()
except Exception:
raise ValueError("invalid json")
try:
payload = payload_type.model_validate(data)
except Exception as e:
raise ValueError(f"invalid payload: {str(e)}")
kwargs["payload"] = payload
return view_func(*args, **kwargs)
return decorated_view
if view is None:
return decorator
else:
return decorator(view)

View File

@ -0,0 +1,54 @@
import hashlib
import hmac
import time
from collections.abc import Callable
from functools import wraps
from typing import ParamSpec, TypeVar
from flask import abort, request
from core.session.cli_api import CliApiSessionManager
P = ParamSpec("P")
R = TypeVar("R")
SIGNATURE_TTL_SECONDS = 300
def _verify_signature(session_secret: str, timestamp: str, body: bytes, signature: str) -> bool:
expected = hmac.new(
session_secret.encode(),
f"{timestamp}.".encode() + body,
hashlib.sha256,
).hexdigest()
return hmac.compare_digest(f"sha256={expected}", signature)
def cli_api_only(view: Callable[P, R]):
@wraps(view)
def decorated(*args: P.args, **kwargs: P.kwargs):
session_id = request.headers.get("X-Cli-Api-Session-Id")
timestamp = request.headers.get("X-Cli-Api-Timestamp")
signature = request.headers.get("X-Cli-Api-Signature")
if not session_id or not timestamp or not signature:
abort(401)
try:
ts = int(timestamp)
if abs(time.time() - ts) > SIGNATURE_TTL_SECONDS:
abort(401)
except ValueError:
abort(401)
session = CliApiSessionManager().get(session_id)
if not session:
abort(401)
body = request.get_data()
if not _verify_signature(session.secret, timestamp, body, signature):
abort(401)
return view(*args, **kwargs)
return decorated

View File

@ -50,6 +50,7 @@ from .app import (
agent,
annotation,
app,
app_asset,
audio,
completion,
conversation,
@ -126,6 +127,7 @@ from .workspace import (
model_providers,
models,
plugin,
sandbox_providers,
tool_providers,
trigger_providers,
workspace,
@ -144,6 +146,7 @@ __all__ = [
"api",
"apikey",
"app",
"app_asset",
"audio",
"billing",
"bp",
@ -191,6 +194,7 @@ __all__ = [
"rag_pipeline_import",
"rag_pipeline_workflow",
"recommended_app",
"sandbox_providers",
"saved_message",
"setup",
"site",

View File

@ -1,4 +1,3 @@
import re
import uuid
from datetime import datetime
from typing import Any, Literal, TypeAlias
@ -68,48 +67,6 @@ class AppListQuery(BaseModel):
raise ValueError("Invalid UUID format in tag_ids.") from exc
# XSS prevention: patterns that could lead to XSS attacks
# Includes: script tags, iframe tags, javascript: protocol, SVG with onload, etc.
_XSS_PATTERNS = [
r"<script[^>]*>.*?</script>", # Script tags
r"<iframe\b[^>]*?(?:/>|>.*?</iframe>)", # Iframe tags (including self-closing)
r"javascript:", # JavaScript protocol
r"<svg[^>]*?\s+onload\s*=[^>]*>", # SVG with onload handler (attribute-aware, flexible whitespace)
r"<.*?on\s*\w+\s*=", # Event handlers like onclick, onerror, etc.
r"<object\b[^>]*(?:\s*/>|>.*?</object\s*>)", # Object tags (opening tag)
r"<embed[^>]*>", # Embed tags (self-closing)
r"<link[^>]*>", # Link tags with javascript
]
def _validate_xss_safe(value: str | None, field_name: str = "Field") -> str | None:
"""
Validate that a string value doesn't contain potential XSS payloads.
Args:
value: The string value to validate
field_name: Name of the field for error messages
Returns:
The original value if safe
Raises:
ValueError: If the value contains XSS patterns
"""
if value is None:
return None
value_lower = value.lower()
for pattern in _XSS_PATTERNS:
if re.search(pattern, value_lower, re.DOTALL | re.IGNORECASE):
raise ValueError(
f"{field_name} contains invalid characters or patterns. "
"HTML tags, JavaScript, and other potentially dangerous content are not allowed."
)
return value
class CreateAppPayload(BaseModel):
name: str = Field(..., min_length=1, description="App name")
description: str | None = Field(default=None, description="App description (max 400 chars)", max_length=400)
@ -118,11 +75,6 @@ class CreateAppPayload(BaseModel):
icon: str | None = Field(default=None, description="Icon")
icon_background: str | None = Field(default=None, description="Icon background color")
@field_validator("name", "description", mode="before")
@classmethod
def validate_xss_safe(cls, value: str | None, info) -> str | None:
return _validate_xss_safe(value, info.field_name)
class UpdateAppPayload(BaseModel):
name: str = Field(..., min_length=1, description="App name")
@ -133,11 +85,6 @@ class UpdateAppPayload(BaseModel):
use_icon_as_answer_icon: bool | None = Field(default=None, description="Use icon as answer icon")
max_active_requests: int | None = Field(default=None, description="Maximum active requests")
@field_validator("name", "description", mode="before")
@classmethod
def validate_xss_safe(cls, value: str | None, info) -> str | None:
return _validate_xss_safe(value, info.field_name)
class CopyAppPayload(BaseModel):
name: str | None = Field(default=None, description="Name for the copied app")
@ -146,11 +93,6 @@ class CopyAppPayload(BaseModel):
icon: str | None = Field(default=None, description="Icon")
icon_background: str | None = Field(default=None, description="Icon background color")
@field_validator("name", "description", mode="before")
@classmethod
def validate_xss_safe(cls, value: str | None, info) -> str | None:
return _validate_xss_safe(value, info.field_name)
class AppExportQuery(BaseModel):
include_secret: bool = Field(default=False, description="Include secrets in export")

View File

@ -0,0 +1,274 @@
from flask import request
from flask_restx import Resource
from pydantic import BaseModel, Field, field_validator
from controllers.console import console_ns
from controllers.console.app.error import (
AppAssetFileRequiredError,
AppAssetNodeNotFoundError,
AppAssetPathConflictError,
)
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from libs.login import current_account_with_tenant, login_required
from models import App
from models.model import AppMode
from services.app_asset_service import AppAssetService
from services.errors.app_asset import (
AppAssetNodeNotFoundError as ServiceNodeNotFoundError,
)
from services.errors.app_asset import (
AppAssetParentNotFoundError,
)
from services.errors.app_asset import (
AppAssetPathConflictError as ServicePathConflictError,
)
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class CreateFolderPayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
parent_id: str | None = None
class CreateFilePayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
parent_id: str | None = None
@field_validator("name", mode="before")
@classmethod
def strip_name(cls, v: str) -> str:
return v.strip() if isinstance(v, str) else v
@field_validator("parent_id", mode="before")
@classmethod
def empty_to_none(cls, v: str | None) -> str | None:
return v or None
class UpdateFileContentPayload(BaseModel):
content: str
class RenameNodePayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
class MoveNodePayload(BaseModel):
parent_id: str | None = None
class ReorderNodePayload(BaseModel):
after_node_id: str | None = Field(default=None, description="Place after this node, None for first position")
def reg(cls: type[BaseModel]) -> None:
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
reg(CreateFolderPayload)
reg(CreateFilePayload)
reg(UpdateFileContentPayload)
reg(RenameNodePayload)
reg(MoveNodePayload)
reg(ReorderNodePayload)
@console_ns.route("/apps/<string:app_id>/assets/tree")
class AppAssetTreeResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App):
current_user, _ = current_account_with_tenant()
tree = AppAssetService.get_asset_tree(app_model, current_user.id)
return {"children": [view.model_dump() for view in tree.transform()]}
@console_ns.route("/apps/<string:app_id>/assets/folders")
class AppAssetFolderResource(Resource):
@console_ns.expect(console_ns.models[CreateFolderPayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
current_user, _ = current_account_with_tenant()
payload = CreateFolderPayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.create_folder(app_model, current_user.id, payload.name, payload.parent_id)
return node.model_dump(), 201
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/files")
class AppAssetFileResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
current_user, _ = current_account_with_tenant()
file = request.files.get("file")
if not file:
raise AppAssetFileRequiredError()
payload = CreateFilePayload.model_validate(request.form.to_dict())
content = file.read()
try:
node = AppAssetService.create_file(app_model, current_user.id, payload.name, content, payload.parent_id)
return node.model_dump(), 201
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/files/<string:node_id>")
class AppAssetFileDetailResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
try:
content = AppAssetService.get_file_content(app_model, current_user.id, node_id)
return {"content": content.decode("utf-8", errors="replace")}
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.expect(console_ns.models[UpdateFileContentPayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def put(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
file = request.files.get("file")
if file:
content = file.read()
else:
payload = UpdateFileContentPayload.model_validate(console_ns.payload or {})
content = payload.content.encode("utf-8")
try:
node = AppAssetService.update_file_content(app_model, current_user.id, node_id, content)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>")
class AppAssetNodeResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def delete(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
try:
AppAssetService.delete_node(app_model, current_user.id, node_id)
return {"result": "success"}, 200
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/rename")
class AppAssetNodeRenameResource(Resource):
@console_ns.expect(console_ns.models[RenameNodePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
payload = RenameNodePayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.rename_node(app_model, current_user.id, node_id, payload.name)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/move")
class AppAssetNodeMoveResource(Resource):
@console_ns.expect(console_ns.models[MoveNodePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
payload = MoveNodePayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.move_node(app_model, current_user.id, node_id, payload.parent_id)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/reorder")
class AppAssetNodeReorderResource(Resource):
@console_ns.expect(console_ns.models[ReorderNodePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
payload = ReorderNodePayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.reorder_node(app_model, current_user.id, node_id, payload.after_node_id)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/publish")
class AppAssetPublishResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
current_user, _ = current_account_with_tenant()
published = AppAssetService.publish(app_model, current_user.id)
return {
"id": published.id,
"version": published.version,
"asset_tree": published.asset_tree.model_dump(),
}, 201
@console_ns.route("/apps/<string:app_id>/assets/files/<string:node_id>/download-url")
class AppAssetFileDownloadUrlResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
try:
download_url = AppAssetService.get_file_download_url(app_model, current_user.id, node_id)
return {"download_url": download_url}
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()

View File

@ -110,8 +110,24 @@ class TracingConfigCheckError(BaseHTTPException):
class InvokeRateLimitError(BaseHTTPException):
"""Raised when the Invoke returns rate limit error."""
error_code = "rate_limit_error"
description = "Rate Limit Error"
code = 429
class AppAssetNodeNotFoundError(BaseHTTPException):
error_code = "app_asset_node_not_found"
description = "App asset node not found."
code = 404
class AppAssetFileRequiredError(BaseHTTPException):
error_code = "app_asset_file_required"
description = "File is required."
code = 400
class AppAssetPathConflictError(BaseHTTPException):
error_code = "app_asset_path_conflict"
description = "Path already exists."
code = 409

View File

@ -202,6 +202,7 @@ message_detail_model = console_ns.model(
"status": fields.String,
"error": fields.String,
"parent_message_id": fields.String,
"generation_detail": fields.Raw,
},
)

View File

@ -69,6 +69,13 @@ class ActivateCheckApi(Resource):
if invitation:
data = invitation.get("data", {})
tenant = invitation.get("tenant", None)
# Check workspace permission
if tenant:
from libs.workspace_permission import check_workspace_member_invite_permission
check_workspace_member_invite_permission(tenant.id)
workspace_name = tenant.name if tenant else None
workspace_id = tenant.id if tenant else None
invitee_email = data.get("email") if data else None

View File

@ -0,0 +1,65 @@
import json
import httpx
import yaml
from flask_restx import Resource, reqparse
from sqlalchemy.orm import Session
from werkzeug.exceptions import Forbidden
from controllers.console import console_ns
from controllers.console.wraps import account_initialization_required, setup_required
from core.plugin.impl.exc import PluginPermissionDeniedError
from extensions.ext_database import db
from libs.login import current_account_with_tenant, login_required
from models.model import App
from models.workflow import Workflow
from services.app_dsl_service import AppDslService
@console_ns.route("/workspaces/current/dsl/predict")
class DSLPredictApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
user, _ = current_account_with_tenant()
if not user.is_admin_or_owner:
raise Forbidden()
parser = (
reqparse.RequestParser()
.add_argument("app_id", type=str, required=True, location="json")
.add_argument("current_node_id", type=str, required=True, location="json")
)
args = parser.parse_args()
app_id: str = args["app_id"]
current_node_id: str = args["current_node_id"]
with Session(db.engine) as session:
app = session.query(App).filter_by(id=app_id).first()
workflow = session.query(Workflow).filter_by(app_id=app_id, version=Workflow.VERSION_DRAFT).first()
if not app:
raise ValueError("App not found")
if not workflow:
raise ValueError("Workflow not found")
try:
i = 0
for node_id, _ in workflow.walk_nodes():
if node_id == current_node_id:
break
i += 1
dsl = yaml.safe_load(AppDslService.export_dsl(app_model=app))
response = httpx.post(
"http://spark-832c:8000/predict",
json={"graph_data": dsl, "source_node_index": i},
)
return {
"nodes": json.loads(response.json()),
}
except PluginPermissionDeniedError as e:
raise ValueError(e.description) from e

View File

@ -107,6 +107,12 @@ class MemberInviteEmailApi(Resource):
inviter = current_user
if not inviter.current_tenant:
raise ValueError("No current tenant")
# Check workspace permission for member invitations
from libs.workspace_permission import check_workspace_member_invite_permission
check_workspace_member_invite_permission(inviter.current_tenant.id)
invitation_results = []
console_web_url = dify_config.CONSOLE_WEB_URL

View File

@ -0,0 +1,103 @@
import logging
from flask_restx import Resource, fields, reqparse
from controllers.console import console_ns
from controllers.console.wraps import account_initialization_required, setup_required
from core.model_runtime.utils.encoders import jsonable_encoder
from libs.login import current_account_with_tenant, login_required
from services.sandbox.sandbox_provider_service import SandboxProviderService
logger = logging.getLogger(__name__)
@console_ns.route("/workspaces/current/sandbox-providers")
class SandboxProviderListApi(Resource):
@console_ns.doc("list_sandbox_providers")
@console_ns.doc(description="Get list of available sandbox providers with configuration status")
@console_ns.response(200, "Success", fields.List(fields.Raw(description="Sandbox provider information")))
@setup_required
@login_required
@account_initialization_required
def get(self):
_, current_tenant_id = current_account_with_tenant()
providers = SandboxProviderService.list_providers(current_tenant_id)
return jsonable_encoder([p.model_dump() for p in providers])
config_parser = reqparse.RequestParser()
config_parser.add_argument("config", type=dict, required=True, location="json")
config_parser.add_argument("activate", type=bool, required=False, default=False, location="json")
@console_ns.route("/workspaces/current/sandbox-provider/<string:provider_type>/config")
class SandboxProviderConfigApi(Resource):
@console_ns.doc("save_sandbox_provider_config")
@console_ns.doc(description="Save or update configuration for a sandbox provider")
@console_ns.expect(config_parser)
@console_ns.response(200, "Success")
@setup_required
@login_required
@account_initialization_required
def post(self, provider_type: str):
_, current_tenant_id = current_account_with_tenant()
args = config_parser.parse_args()
try:
result = SandboxProviderService.save_config(
tenant_id=current_tenant_id,
provider_type=provider_type,
config=args["config"],
activate=args["activate"],
)
return result
except ValueError as e:
return {"message": str(e)}, 400
@console_ns.doc("delete_sandbox_provider_config")
@console_ns.doc(description="Delete configuration for a sandbox provider")
@console_ns.response(200, "Success")
@setup_required
@login_required
@account_initialization_required
def delete(self, provider_type: str):
_, current_tenant_id = current_account_with_tenant()
try:
result = SandboxProviderService.delete_config(
tenant_id=current_tenant_id,
provider_type=provider_type,
)
return result
except ValueError as e:
return {"message": str(e)}, 400
activate_parser = reqparse.RequestParser()
activate_parser.add_argument("type", type=str, required=True, location="json")
@console_ns.route("/workspaces/current/sandbox-provider/<string:provider_type>/activate")
class SandboxProviderActivateApi(Resource):
"""Activate a sandbox provider."""
@console_ns.doc("activate_sandbox_provider")
@console_ns.doc(description="Activate a sandbox provider for the current workspace")
@console_ns.response(200, "Success")
@setup_required
@login_required
@account_initialization_required
def post(self, provider_type: str):
"""Activate a sandbox provider."""
_, current_tenant_id = current_account_with_tenant()
try:
args = activate_parser.parse_args()
result = SandboxProviderService.activate_provider(
tenant_id=current_tenant_id,
provider_type=provider_type,
type=args["type"],
)
return result
except ValueError as e:
return {"message": str(e)}, 400

View File

@ -20,6 +20,7 @@ from controllers.console.error import AccountNotLinkTenantError
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_resource_check,
only_edition_enterprise,
setup_required,
)
from enums.cloud_plan import CloudPlan
@ -28,6 +29,7 @@ from libs.helper import TimestampField
from libs.login import current_account_with_tenant, login_required
from models.account import Tenant, TenantStatus
from services.account_service import TenantService
from services.enterprise.enterprise_service import EnterpriseService
from services.feature_service import FeatureService
from services.file_service import FileService
from services.workspace_service import WorkspaceService
@ -288,3 +290,31 @@ class WorkspaceInfoApi(Resource):
db.session.commit()
return {"result": "success", "tenant": marshal(WorkspaceService.get_tenant_info(tenant), tenant_fields)}
@console_ns.route("/workspaces/current/permission")
class WorkspacePermissionApi(Resource):
"""Get workspace permissions for the current workspace."""
@setup_required
@login_required
@account_initialization_required
@only_edition_enterprise
def get(self):
"""
Get workspace permission settings.
Returns permission flags that control workspace features like member invitations and owner transfer.
"""
_, current_tenant_id = current_account_with_tenant()
if not current_tenant_id:
raise ValueError("No current tenant")
# Get workspace permissions from enterprise service
permission = EnterpriseService.WorkspacePermissionService.get_permission(current_tenant_id)
return {
"workspace_id": permission.workspace_id,
"allow_member_invite": permission.allow_member_invite,
"allow_owner_transfer": permission.allow_owner_transfer,
}, 200

View File

@ -286,13 +286,12 @@ def enable_change_email(view: Callable[P, R]):
def is_allow_transfer_owner(view: Callable[P, R]):
@wraps(view)
def decorated(*args: P.args, **kwargs: P.kwargs):
_, current_tenant_id = current_account_with_tenant()
features = FeatureService.get_features(current_tenant_id)
if features.is_allow_transfer_workspace:
return view(*args, **kwargs)
from libs.workspace_permission import check_workspace_owner_transfer_permission
# otherwise, return 403
abort(403)
_, current_tenant_id = current_account_with_tenant()
# Check both billing/plan level and workspace policy level permissions
check_workspace_owner_transfer_permission(current_tenant_id)
return view(*args, **kwargs)
return decorated

View File

@ -14,7 +14,7 @@ api = ExternalApi(
files_ns = Namespace("files", description="File operations", path="/")
from . import image_preview, tool_files, upload
from . import image_preview, storage_download, tool_files, upload
api.add_namespace(files_ns)
@ -23,6 +23,7 @@ __all__ = [
"bp",
"files_ns",
"image_preview",
"storage_download",
"tool_files",
"upload",
]

View File

@ -0,0 +1,56 @@
from urllib.parse import quote, unquote
from flask import Response, request
from flask_restx import Resource
from pydantic import BaseModel, Field
from werkzeug.exceptions import Forbidden, NotFound
from controllers.files import files_ns
from extensions.ext_storage import storage
from extensions.storage.file_presign_storage import FilePresignStorage
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class StorageDownloadQuery(BaseModel):
timestamp: str = Field(..., description="Unix timestamp used in the signature")
nonce: str = Field(..., description="Random string for signature")
sign: str = Field(..., description="HMAC signature")
files_ns.schema_model(
StorageDownloadQuery.__name__,
StorageDownloadQuery.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
)
@files_ns.route("/storage/<path:filename>/download")
class StorageFileDownloadApi(Resource):
def get(self, filename: str):
filename = unquote(filename)
args = StorageDownloadQuery.model_validate(request.args.to_dict(flat=True))
if not FilePresignStorage.verify_signature(
filename=filename,
timestamp=args.timestamp,
nonce=args.nonce,
sign=args.sign,
):
raise Forbidden("Invalid or expired download link")
try:
generator = storage.load_stream(filename)
except FileNotFoundError:
raise NotFound("File not found")
encoded_filename = quote(filename.split("/")[-1])
return Response(
generator,
mimetype="application/octet-stream",
direct_passthrough=True,
headers={
"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}",
},
)

View File

@ -448,3 +448,53 @@ class PluginFetchAppInfoApi(Resource):
return BaseBackwardsInvocationResponse(
data=PluginAppBackwardsInvocation.fetch_app_info(payload.app_id, tenant_model.id)
).model_dump()
@inner_api_ns.route("/fetch/tools/list")
class PluginFetchToolsListApi(Resource):
@get_user_tenant
@setup_required
@plugin_inner_api_only
@inner_api_ns.doc("plugin_fetch_tools_list")
@inner_api_ns.doc(description="Fetch all available tools through plugin interface")
@inner_api_ns.doc(
responses={
200: "Tools list retrieved successfully",
401: "Unauthorized - invalid API key",
404: "Service not available",
}
)
def post(self, user_model: Account | EndUser, tenant_model: Tenant):
from sqlalchemy.orm import Session
from extensions.ext_database import db
from services.tools.api_tools_manage_service import ApiToolManageService
from services.tools.builtin_tools_manage_service import BuiltinToolManageService
from services.tools.mcp_tools_manage_service import MCPToolManageService
from services.tools.workflow_tools_manage_service import WorkflowToolManageService
providers = []
# Get builtin tools
builtin_providers = BuiltinToolManageService.list_builtin_tools(user_model.id, tenant_model.id)
for provider in builtin_providers:
providers.append(provider.to_dict())
# Get API tools
api_providers = ApiToolManageService.list_api_tools(tenant_model.id)
for provider in api_providers:
providers.append(provider.to_dict())
# Get workflow tools
workflow_providers = WorkflowToolManageService.list_tenant_workflow_tools(user_model.id, tenant_model.id)
for provider in workflow_providers:
providers.append(provider.to_dict())
# Get MCP tools
with Session(db.engine) as session:
mcp_service = MCPToolManageService(session)
mcp_providers = mcp_service.list_providers(tenant_id=tenant_model.id, for_list=True)
for provider in mcp_providers:
providers.append(provider.to_dict())
return BaseBackwardsInvocationResponse(data={"providers": providers}).model_dump()

View File

@ -75,7 +75,6 @@ def get_user_tenant(view_func: Callable[P, R]):
@wraps(view_func)
def decorated_view(*args: P.args, **kwargs: P.kwargs):
payload = TenantUserPayload.model_validate(request.get_json(silent=True) or {})
user_id = payload.user_id
tenant_id = payload.tenant_id

View File

@ -5,14 +5,15 @@ from hashlib import sha1
from hmac import new as hmac_new
from typing import ParamSpec, TypeVar
P = ParamSpec("P")
R = TypeVar("R")
from flask import abort, request
from configs import dify_config
from extensions.ext_database import db
from models.model import EndUser
P = ParamSpec("P")
R = TypeVar("R")
def billing_inner_api_only(view: Callable[P, R]):
@wraps(view)
@ -88,11 +89,11 @@ def plugin_inner_api_only(view: Callable[P, R]):
if not dify_config.PLUGIN_DAEMON_KEY:
abort(404)
# get header 'X-Inner-Api-Key'
# validate using inner api key
inner_api_key = request.headers.get("X-Inner-Api-Key")
if not inner_api_key or inner_api_key != dify_config.INNER_API_KEY_FOR_PLUGIN:
abort(404)
if inner_api_key and inner_api_key == dify_config.INNER_API_KEY_FOR_PLUGIN:
return view(*args, **kwargs)
return view(*args, **kwargs)
abort(401)
return decorated

View File

@ -0,0 +1,380 @@
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentEntity, AgentLog, AgentResult
from core.agent.patterns.strategy_factory import StrategyFactory
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMUsage,
PromptMessage,
PromptMessageContentType,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Message
logger = logging.getLogger(__name__)
class AgentAppRunner(BaseAgentRunner):
def _create_tool_invoke_hook(self, message: Message):
"""
Create a tool invoke hook that uses ToolEngine.agent_invoke.
This hook handles file creation and returns proper meta information.
"""
# Get trace manager from app generate entity
trace_manager = self.application_generate_entity.trace_manager
def tool_invoke_hook(
tool: Tool, tool_args: dict[str, Any], tool_name: str
) -> tuple[str, list[str], ToolInvokeMeta]:
"""Hook that uses agent_invoke for proper file and meta handling."""
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool,
tool_parameters=tool_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
app_id=self.application_generate_entity.app_config.app_id,
message_id=message.id,
conversation_id=self.conversation.id,
)
# Publish files and track IDs
for message_file_id in message_files:
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id),
PublishFrom.APPLICATION_MANAGER,
)
self._current_message_file_ids.append(message_file_id)
return tool_invoke_response, message_files, tool_invoke_meta
return tool_invoke_hook
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
"""
Run Agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
assert app_config is not None, "app_config is required"
assert app_config.agent is not None, "app_config.agent is required"
# convert tools into ModelRuntime Tool format
tool_instances, _ = self._init_prompt_tools()
assert app_config.agent
# Create tool invoke hook for agent_invoke
tool_invoke_hook = self._create_tool_invoke_hook(message)
# Get instruction for ReAct strategy
instruction = self.app_config.prompt_template.simple_prompt_template or ""
# Use factory to create appropriate strategy
strategy = StrategyFactory.create_strategy(
model_features=self.model_features,
model_instance=self.model_instance,
tools=list(tool_instances.values()),
files=list(self.files),
max_iterations=app_config.agent.max_iteration,
context=self.build_execution_context(),
agent_strategy=self.config.strategy,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)
# Initialize state variables
current_agent_thought_id = None
has_published_thought = False
current_tool_name: str | None = None
self._current_message_file_ids: list[str] = []
# organize prompt messages
prompt_messages = self._organize_prompt_messages()
# Run strategy
generator = strategy.run(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
stop=app_generate_entity.model_conf.stop,
stream=True,
)
# Consume generator and collect result
result: AgentResult | None = None
try:
while True:
try:
output = next(generator)
except StopIteration as e:
# Generator finished, get the return value
result = e.value
break
if isinstance(output, LLMResultChunk):
# Handle LLM chunk
if current_agent_thought_id and not has_published_thought:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
has_published_thought = True
yield output
elif isinstance(output, AgentLog):
# Handle Agent Log using log_type for type-safe dispatch
if output.status == AgentLog.LogStatus.START:
if output.log_type == AgentLog.LogType.ROUND:
# Start of a new round
message_file_ids: list[str] = []
current_agent_thought_id = self.create_agent_thought(
message_id=message.id,
message="",
tool_name="",
tool_input="",
messages_ids=message_file_ids,
)
has_published_thought = False
elif output.log_type == AgentLog.LogType.TOOL_CALL:
if current_agent_thought_id is None:
continue
# Tool call start - extract data from structured fields
current_tool_name = output.data.get("tool_name", "")
tool_input = output.data.get("tool_args", {})
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=current_tool_name,
tool_input=tool_input,
thought=None,
observation=None,
tool_invoke_meta=None,
answer=None,
messages_ids=[],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.status == AgentLog.LogStatus.SUCCESS:
if output.log_type == AgentLog.LogType.THOUGHT:
if current_agent_thought_id is None:
continue
thought_text = output.data.get("thought")
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=thought_text,
observation=None,
tool_invoke_meta=None,
answer=None,
messages_ids=[],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.log_type == AgentLog.LogType.TOOL_CALL:
if current_agent_thought_id is None:
continue
# Tool call finished
tool_output = output.data.get("output")
# Get meta from strategy output (now properly populated)
tool_meta = output.data.get("meta")
# Wrap tool_meta with tool_name as key (required by agent_service)
if tool_meta and current_tool_name:
tool_meta = {current_tool_name: tool_meta}
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=None,
observation=tool_output,
tool_invoke_meta=tool_meta,
answer=None,
messages_ids=self._current_message_file_ids,
)
# Clear message file ids after saving
self._current_message_file_ids = []
current_tool_name = None
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.log_type == AgentLog.LogType.ROUND:
if current_agent_thought_id is None:
continue
# Round finished - save LLM usage and answer
llm_usage = output.metadata.get(AgentLog.LogMetadata.LLM_USAGE)
llm_result = output.data.get("llm_result")
final_answer = output.data.get("final_answer")
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=llm_result,
observation=None,
tool_invoke_meta=None,
answer=final_answer,
messages_ids=[],
llm_usage=llm_usage,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
except Exception:
# Re-raise any other exceptions
raise
# Process final result
if isinstance(result, AgentResult):
final_answer = result.text
usage = result.usage or LLMUsage.empty_usage()
# Publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=self.model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=usage,
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Initialize system message
"""
if not prompt_template:
return prompt_messages or []
prompt_messages = prompt_messages or []
if prompt_messages and isinstance(prompt_messages[0], SystemPromptMessage):
prompt_messages[0] = SystemPromptMessage(content=prompt_template)
return prompt_messages
if not prompt_messages:
return [SystemPromptMessage(content=prompt_template)]
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
return prompt_messages
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
We need to remove the image messages from the prompt messages at the first iteration.
"""
prompt_messages = deepcopy(prompt_messages)
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
content.data
if content.type == PromptMessageContentType.TEXT
else "[image]"
if content.type == PromptMessageContentType.IMAGE
else "[file]"
for content in prompt_message.content
]
)
return prompt_messages
def _organize_prompt_messages(self):
# For ReAct strategy, use the agent prompt template
if self.config.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT and self.config.prompt:
prompt_template = self.config.prompt.first_prompt
else:
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query or "", [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory,
).get_prompt()
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages

View File

@ -6,7 +6,7 @@ from typing import Union, cast
from sqlalchemy import select
from core.agent.entities import AgentEntity, AgentToolEntity
from core.agent.entities import AgentEntity, AgentToolEntity, ExecutionContext
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager
@ -116,9 +116,20 @@ class BaseAgentRunner(AppRunner):
features = model_schema.features if model_schema and model_schema.features else []
self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
self.files = application_generate_entity.files if ModelFeature.VISION in features else []
self.model_features = features
self.query: str | None = ""
self._current_thoughts: list[PromptMessage] = []
def build_execution_context(self) -> ExecutionContext:
"""Build execution context."""
return ExecutionContext(
user_id=self.user_id,
app_id=self.app_config.app_id,
conversation_id=self.conversation.id,
message_id=self.message.id,
tenant_id=self.tenant_id,
)
def _repack_app_generate_entity(
self, app_generate_entity: AgentChatAppGenerateEntity
) -> AgentChatAppGenerateEntity:

View File

@ -1,437 +0,0 @@
import json
import logging
from abc import ABC, abstractmethod
from collections.abc import Generator, Mapping, Sequence
from typing import Any
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentScratchpadUnit
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
ToolPromptMessage,
UserPromptMessage,
)
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from core.workflow.nodes.agent.exc import AgentMaxIterationError
from models.model import Message
logger = logging.getLogger(__name__)
class CotAgentRunner(BaseAgentRunner, ABC):
_is_first_iteration = True
_ignore_observation_providers = ["wenxin"]
_historic_prompt_messages: list[PromptMessage]
_agent_scratchpad: list[AgentScratchpadUnit]
_instruction: str
_query: str
_prompt_messages_tools: Sequence[PromptMessageTool]
def run(
self,
message: Message,
query: str,
inputs: Mapping[str, str],
) -> Generator:
"""
Run Cot agent application
"""
app_generate_entity = self.application_generate_entity
self._repack_app_generate_entity(app_generate_entity)
self._init_react_state(query)
trace_manager = app_generate_entity.trace_manager
# check model mode
if "Observation" not in app_generate_entity.model_conf.stop:
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
app_generate_entity.model_conf.stop.append("Observation")
app_config = self.app_config
assert app_config.agent
# init instruction
inputs = inputs or {}
instruction = app_config.prompt_template.simple_prompt_template or ""
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
self._prompt_messages_tools = prompt_messages_tools
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
agent_thought_id = "" # Initialize agent_thought_id
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
self._prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
if iteration_step > 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=[],
stop=app_generate_entity.model_conf.stop,
stream=True,
user=self.user_id,
callbacks=[],
)
usage_dict: dict[str, LLMUsage | None] = {}
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
scratchpad = AgentScratchpadUnit(
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
action = chunk
# detect action
assert scratchpad.agent_response is not None
scratchpad.agent_response += json.dumps(chunk.model_dump())
scratchpad.action_str = json.dumps(chunk.model_dump())
scratchpad.action = action
else:
assert scratchpad.agent_response is not None
scratchpad.agent_response += chunk
assert scratchpad.thought is not None
scratchpad.thought += chunk
yield LLMResultChunk(
model=self.model_config.model,
prompt_messages=prompt_messages,
system_fingerprint="",
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
)
assert scratchpad.thought is not None
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
self._agent_scratchpad.append(scratchpad)
# Check if max iteration is reached and model still wants to call tools
if iteration_step == max_iteration_steps and scratchpad.action:
if scratchpad.action.action_name.lower() != "final answer":
raise AgentMaxIterationError(app_config.agent.max_iteration)
# get llm usage
if "usage" in usage_dict:
if usage_dict["usage"] is not None:
increase_usage(llm_usage, usage_dict["usage"])
else:
usage_dict["usage"] = LLMUsage.empty_usage()
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought or "",
observation="",
answer=scratchpad.agent_response or "",
messages_ids=[],
llm_usage=usage_dict["usage"],
)
if not scratchpad.is_final():
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
if not scratchpad.action:
# failed to extract action, return final answer directly
final_answer = ""
else:
if scratchpad.action.action_name.lower() == "final answer":
# action is final answer, return final answer directly
try:
if isinstance(scratchpad.action.action_input, dict):
final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
elif isinstance(scratchpad.action.action_input, str):
final_answer = scratchpad.action.action_input
else:
final_answer = f"{scratchpad.action.action_input}"
except TypeError:
final_answer = f"{scratchpad.action.action_input}"
else:
function_call_state = True
# action is tool call, invoke tool
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
action=scratchpad.action,
tool_instances=tool_instances,
message_file_ids=message_file_ids,
trace_manager=trace_manager,
)
scratchpad.observation = tool_invoke_response
scratchpad.agent_response = tool_invoke_response
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=scratchpad.action.action_name,
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
thought=scratchpad.thought or "",
observation={scratchpad.action.action_name: tool_invoke_response},
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
answer=scratchpad.agent_response,
messages_ids=message_file_ids,
llm_usage=usage_dict["usage"],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool message
for prompt_tool in self._prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
),
system_fingerprint="",
)
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input={},
tool_invoke_meta={},
thought=final_answer,
observation={},
answer=final_answer,
messages_ids=[],
)
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def _handle_invoke_action(
self,
action: AgentScratchpadUnit.Action,
tool_instances: Mapping[str, Tool],
message_file_ids: list[str],
trace_manager: TraceQueueManager | None = None,
) -> tuple[str, ToolInvokeMeta]:
"""
handle invoke action
:param action: action
:param tool_instances: tool instances
:param message_file_ids: message file ids
:param trace_manager: trace manager
:return: observation, meta
"""
# action is tool call, invoke tool
tool_call_name = action.action_name
tool_call_args = action.action_input
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
answer = f"there is not a tool named {tool_call_name}"
return answer, ToolInvokeMeta.error_instance(answer)
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
return tool_invoke_response, tool_invoke_meta
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
"""
convert dict to action
"""
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
"""
fill in inputs from external data tools
"""
for key, value in inputs.items():
try:
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
except Exception:
continue
return instruction
def _init_react_state(self, query):
"""
init agent scratchpad
"""
self._query = query
self._agent_scratchpad = []
self._historic_prompt_messages = self._organize_historic_prompt_messages()
@abstractmethod
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
organize prompt messages
"""
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
"""
format assistant message
"""
message = ""
for scratchpad in agent_scratchpad:
if scratchpad.is_final():
message += f"Final Answer: {scratchpad.agent_response}"
else:
message += f"Thought: {scratchpad.thought}\n\n"
if scratchpad.action_str:
message += f"Action: {scratchpad.action_str}\n\n"
if scratchpad.observation:
message += f"Observation: {scratchpad.observation}\n\n"
return message
def _organize_historic_prompt_messages(
self, current_session_messages: list[PromptMessage] | None = None
) -> list[PromptMessage]:
"""
organize historic prompt messages
"""
result: list[PromptMessage] = []
scratchpads: list[AgentScratchpadUnit] = []
current_scratchpad: AgentScratchpadUnit | None = None
for message in self.history_prompt_messages:
if isinstance(message, AssistantPromptMessage):
if not current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content or "I am thinking about how to help you",
action_str="",
action=None,
observation=None,
)
scratchpads.append(current_scratchpad)
if message.tool_calls:
try:
current_scratchpad.action = AgentScratchpadUnit.Action(
action_name=message.tool_calls[0].function.name,
action_input=json.loads(message.tool_calls[0].function.arguments),
)
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
except Exception:
logger.exception("Failed to parse tool call from assistant message")
elif isinstance(message, ToolPromptMessage):
if current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad.observation = message.content
else:
raise NotImplementedError("expected str type")
elif isinstance(message, UserPromptMessage):
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
scratchpads = []
current_scratchpad = None
result.append(message)
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
historic_prompts = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=current_session_messages or [],
history_messages=result,
memory=self.memory,
).get_prompt()
return historic_prompts

View File

@ -1,118 +0,0 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
PromptMessage,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.model_runtime.utils.encoders import jsonable_encoder
class CotChatAgentRunner(CotAgentRunner):
def _organize_system_prompt(self) -> SystemPromptMessage:
"""
Organize system prompt
"""
assert self.app_config.agent
assert self.app_config.agent.prompt
prompt_entity = self.app_config.agent.prompt
if not prompt_entity:
raise ValueError("Agent prompt configuration is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return SystemPromptMessage(content=system_prompt)
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize
"""
# organize system prompt
system_message = self._organize_system_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
if not agent_scratchpad:
assistant_messages = []
else:
assistant_message = AssistantPromptMessage(content="")
assistant_message.content = "" # FIXME: type check tell mypy that assistant_message.content is str
for unit in agent_scratchpad:
if unit.is_final():
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Final Answer: {unit.agent_response}"
else:
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_message.content += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_message.content += f"Observation: {unit.observation}\n\n"
assistant_messages = [assistant_message]
# query messages
query_messages = self._organize_user_query(self._query, [])
if assistant_messages:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages(
[system_message, *query_messages, *assistant_messages, UserPromptMessage(content="continue")]
)
messages = [
system_message,
*historic_messages,
*query_messages,
*assistant_messages,
UserPromptMessage(content="continue"),
]
else:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages([system_message, *query_messages])
messages = [system_message, *historic_messages, *query_messages]
# join all messages
return messages

View File

@ -1,87 +0,0 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.utils.encoders import jsonable_encoder
class CotCompletionAgentRunner(CotAgentRunner):
def _organize_instruction_prompt(self) -> str:
"""
Organize instruction prompt
"""
if self.app_config.agent is None:
raise ValueError("Agent configuration is not set")
prompt_entity = self.app_config.agent.prompt
if prompt_entity is None:
raise ValueError("prompt entity is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return system_prompt
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] | None = None) -> str:
"""
Organize historic prompt
"""
historic_prompt_messages = self._organize_historic_prompt_messages(current_session_messages)
historic_prompt = ""
for message in historic_prompt_messages:
if isinstance(message, UserPromptMessage):
historic_prompt += f"Question: {message.content}\n\n"
elif isinstance(message, AssistantPromptMessage):
if isinstance(message.content, str):
historic_prompt += message.content + "\n\n"
elif isinstance(message.content, list):
for content in message.content:
if not isinstance(content, TextPromptMessageContent):
continue
historic_prompt += content.data
return historic_prompt
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize prompt messages
"""
# organize system prompt
system_prompt = self._organize_instruction_prompt()
# organize historic prompt messages
historic_prompt = self._organize_historic_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
assistant_prompt = ""
for unit in agent_scratchpad or []:
if unit.is_final():
assistant_prompt += f"Final Answer: {unit.agent_response}"
else:
assistant_prompt += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_prompt += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_prompt += f"Observation: {unit.observation}\n\n"
# query messages
query_prompt = f"Question: {self._query}"
# join all messages
prompt = (
system_prompt.replace("{{historic_messages}}", historic_prompt)
.replace("{{agent_scratchpad}}", assistant_prompt)
.replace("{{query}}", query_prompt)
)
return [UserPromptMessage(content=prompt)]

View File

@ -1,3 +1,5 @@
import uuid
from collections.abc import Mapping
from enum import StrEnum
from typing import Any, Union
@ -92,3 +94,96 @@ class AgentInvokeMessage(ToolInvokeMessage):
"""
pass
class ExecutionContext(BaseModel):
"""Execution context containing trace and audit information.
This context carries all the IDs and metadata that are not part of
the core business logic but needed for tracing, auditing, and
correlation purposes.
"""
user_id: str | None = None
app_id: str | None = None
conversation_id: str | None = None
message_id: str | None = None
tenant_id: str | None = None
@classmethod
def create_minimal(cls, user_id: str | None = None) -> "ExecutionContext":
"""Create a minimal context with only essential fields."""
return cls(user_id=user_id)
def to_dict(self) -> dict[str, Any]:
"""Convert to dictionary for passing to legacy code."""
return {
"user_id": self.user_id,
"app_id": self.app_id,
"conversation_id": self.conversation_id,
"message_id": self.message_id,
"tenant_id": self.tenant_id,
}
def with_updates(self, **kwargs) -> "ExecutionContext":
"""Create a new context with updated fields."""
data = self.to_dict()
data.update(kwargs)
return ExecutionContext(
user_id=data.get("user_id"),
app_id=data.get("app_id"),
conversation_id=data.get("conversation_id"),
message_id=data.get("message_id"),
tenant_id=data.get("tenant_id"),
)
class AgentLog(BaseModel):
"""
Agent Log.
"""
class LogType(StrEnum):
"""Type of agent log entry."""
ROUND = "round" # A complete iteration round
THOUGHT = "thought" # LLM thinking/reasoning
TOOL_CALL = "tool_call" # Tool invocation
class LogMetadata(StrEnum):
STARTED_AT = "started_at"
FINISHED_AT = "finished_at"
ELAPSED_TIME = "elapsed_time"
TOTAL_PRICE = "total_price"
TOTAL_TOKENS = "total_tokens"
PROVIDER = "provider"
CURRENCY = "currency"
LLM_USAGE = "llm_usage"
ICON = "icon"
ICON_DARK = "icon_dark"
class LogStatus(StrEnum):
START = "start"
ERROR = "error"
SUCCESS = "success"
id: str = Field(default_factory=lambda: str(uuid.uuid4()), description="The id of the log")
label: str = Field(..., description="The label of the log")
log_type: LogType = Field(..., description="The type of the log")
parent_id: str | None = Field(default=None, description="Leave empty for root log")
error: str | None = Field(default=None, description="The error message")
status: LogStatus = Field(..., description="The status of the log")
data: Mapping[str, Any] = Field(..., description="Detailed log data")
metadata: Mapping[LogMetadata, Any] = Field(default={}, description="The metadata of the log")
class AgentResult(BaseModel):
"""
Agent execution result.
"""
text: str = Field(default="", description="The generated text")
files: list[Any] = Field(default_factory=list, description="Files produced during execution")
usage: Any | None = Field(default=None, description="LLM usage statistics")
finish_reason: str | None = Field(default=None, description="Reason for completion")

View File

@ -1,468 +0,0 @@
import json
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any, Union
from core.agent.base_agent_runner import BaseAgentRunner
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMUsage,
PromptMessage,
PromptMessageContentType,
SystemPromptMessage,
TextPromptMessageContent,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from core.workflow.nodes.agent.exc import AgentMaxIterationError
from models.model import Message
logger = logging.getLogger(__name__)
class FunctionCallAgentRunner(BaseAgentRunner):
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
"""
Run FunctionCall agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
assert app_config is not None, "app_config is required"
assert app_config.agent is not None, "app_config.agent is required"
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
assert app_config.agent
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# continue to run until there is not any tool call
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
# get tracing instance
trace_manager = app_generate_entity.trace_manager
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=prompt_messages_tools,
stop=app_generate_entity.model_conf.stop,
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
)
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
# save full response
response = ""
# save tool call names and inputs
tool_call_names = ""
tool_call_inputs = ""
current_llm_usage = None
if isinstance(chunks, Generator):
is_first_chunk = True
for chunk in chunks:
if is_first_chunk:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
is_first_chunk = False
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += str(chunk.delta.message.content)
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
else:
result = chunks
# check if there is any tool call
if self.check_blocking_tool_calls(result):
function_call_state = True
tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if result.usage:
increase_usage(llm_usage, result.usage)
current_llm_usage = result.usage
if result.message and result.message.content:
if isinstance(result.message.content, list):
for content in result.message.content:
response += content.data
else:
response += str(result.message.content)
if not result.message.content:
result.message.content = ""
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=result.prompt_messages,
system_fingerprint=result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=result.message,
usage=result.usage,
),
)
assistant_message = AssistantPromptMessage(content=response, tool_calls=[])
if tool_calls:
assistant_message.tool_calls = [
AssistantPromptMessage.ToolCall(
id=tool_call[0],
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
),
)
for tool_call in tool_calls
]
self._current_thoughts.append(assistant_message)
# save thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=tool_call_names,
tool_input=tool_call_inputs,
thought=response,
tool_invoke_meta=None,
observation=None,
answer=response,
messages_ids=[],
llm_usage=current_llm_usage,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
final_answer += response + "\n"
# Check if max iteration is reached and model still wants to call tools
if iteration_step == max_iteration_steps and tool_calls:
raise AgentMaxIterationError(app_config.agent.max_iteration)
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": f"there is not a tool named {tool_call_name}",
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
}
else:
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
app_id=self.application_generate_entity.app_config.app_id,
message_id=self.message.id,
conversation_id=self.conversation.id,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": tool_invoke_response,
"meta": tool_invoke_meta.to_dict(),
}
tool_responses.append(tool_response)
if tool_response["tool_response"] is not None:
self._current_thoughts.append(
ToolPromptMessage(
content=str(tool_response["tool_response"]),
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
if len(tool_responses) > 0:
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input="",
thought="",
tool_invoke_meta={
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
},
observation={
tool_response["tool_call_name"]: tool_response["tool_response"]
for tool_response in tool_responses
},
answer="",
messages_ids=message_file_ids,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
"""
Check if there is any tool call in llm result chunk
"""
if llm_result_chunk.delta.message.tool_calls:
return True
return False
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
"""
Check if there is any blocking tool call in llm result
"""
if llm_result.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract tool calls from llm result chunk
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result_chunk.delta.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract blocking tool calls from llm result
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Initialize system message
"""
if not prompt_messages and prompt_template:
return [
SystemPromptMessage(content=prompt_template),
]
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
return prompt_messages or []
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
We need to remove the image messages from the prompt messages at the first iteration.
"""
prompt_messages = deepcopy(prompt_messages)
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
content.data
if content.type == PromptMessageContentType.TEXT
else "[image]"
if content.type == PromptMessageContentType.IMAGE
else "[file]"
for content in prompt_message.content
]
)
return prompt_messages
def _organize_prompt_messages(self):
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query or "", [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory,
).get_prompt()
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages

View File

@ -0,0 +1,55 @@
# Agent Patterns
A unified agent pattern module that powers both Agent V2 workflow nodes and agent applications. Strategies share a common execution contract while adapting to model capabilities and tool availability.
## Overview
The module applies a strategy pattern around LLM/tool orchestration. `StrategyFactory` auto-selects the best implementation based on model features or an explicit agent strategy, and each strategy streams logs and usage consistently.
## Key Features
- **Dual strategies**
- `FunctionCallStrategy`: uses native LLM function/tool calling when the model exposes `TOOL_CALL`, `MULTI_TOOL_CALL`, or `STREAM_TOOL_CALL`.
- `ReActStrategy`: ReAct (reasoning + acting) flow driven by `CotAgentOutputParser`, used when function calling is unavailable or explicitly requested.
- **Explicit or auto selection**
- `StrategyFactory.create_strategy` prefers an explicit `AgentEntity.Strategy` (FUNCTION_CALLING or CHAIN_OF_THOUGHT).
- Otherwise it falls back to function calling when tool-call features exist, or ReAct when they do not.
- **Unified execution contract**
- `AgentPattern.run` yields streaming `AgentLog` entries and `LLMResultChunk` data, returning an `AgentResult` with text, files, usage, and `finish_reason`.
- Iterations are configurable and hard-capped at 99 rounds; the last round forces a final answer by withholding tools.
- **Tool handling and hooks**
- Tools convert to `PromptMessageTool` objects before invocation.
- Optional `tool_invoke_hook` lets callers override tool execution (e.g., agent apps) while workflow runs use `ToolEngine.generic_invoke`.
- Tool outputs support text, links, JSON, variables, blobs, retriever resources, and file attachments; `target=="self"` files are reloaded into model context, others are returned as outputs.
- **File-aware arguments**
- Tool args accept `[File: <id>]` or `[Files: <id1, id2>]` placeholders that resolve to `File` objects before invocation, enabling models to reference uploaded files safely.
- **ReAct prompt shaping**
- System prompts replace `{{instruction}}`, `{{tools}}`, and `{{tool_names}}` placeholders.
- Adds `Observation` to stop sequences and appends scratchpad text so the model sees prior Thought/Action/Observation history.
- **Observability and accounting**
- Standardized `AgentLog` entries for rounds, model thoughts, and tool calls, including usage aggregation (`LLMUsage`) across streaming and non-streaming paths.
## Architecture
```
agent/patterns/
├── base.py # Shared utilities: logging, usage, tool invocation, file handling
├── function_call.py # Native function-calling loop with tool execution
├── react.py # ReAct loop with CoT parsing and scratchpad wiring
└── strategy_factory.py # Strategy selection by model features or explicit override
```
## Usage
- For auto-selection:
- Call `StrategyFactory.create_strategy(model_features, model_instance, context, tools, files, ...)` and run the returned strategy with prompt messages and model params.
- For explicit behavior:
- Pass `agent_strategy=AgentEntity.Strategy.FUNCTION_CALLING` to force native calls (falls back to ReAct if unsupported), or `CHAIN_OF_THOUGHT` to force ReAct.
- Both strategies stream chunks and logs; collect the generator output until it returns an `AgentResult`.
## Integration Points
- **Model runtime**: delegates to `ModelInstance.invoke_llm` for both streaming and non-streaming calls.
- **Tool system**: defaults to `ToolEngine.generic_invoke`, with `tool_invoke_hook` for custom callers.
- **Files**: flows through `File` objects for tool inputs/outputs and model-context attachments.
- **Execution context**: `ExecutionContext` fields (user/app/conversation/message) propagate to tool invocations and logging.

View File

@ -0,0 +1,19 @@
"""Agent patterns module.
This module provides different strategies for agent execution:
- FunctionCallStrategy: Uses native function/tool calling
- ReActStrategy: Uses ReAct (Reasoning + Acting) approach
- StrategyFactory: Factory for creating strategies based on model features
"""
from .base import AgentPattern
from .function_call import FunctionCallStrategy
from .react import ReActStrategy
from .strategy_factory import StrategyFactory
__all__ = [
"AgentPattern",
"FunctionCallStrategy",
"ReActStrategy",
"StrategyFactory",
]

View File

@ -0,0 +1,474 @@
"""Base class for agent strategies."""
from __future__ import annotations
import json
import re
import time
from abc import ABC, abstractmethod
from collections.abc import Callable, Generator
from typing import TYPE_CHECKING, Any
from core.agent.entities import AgentLog, AgentResult, ExecutionContext
from core.file import File
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
PromptMessage,
PromptMessageTool,
)
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.message_entities import TextPromptMessageContent
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMeta
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
# Type alias for tool invoke hook
# Returns: (response_content, message_file_ids, tool_invoke_meta)
ToolInvokeHook = Callable[["Tool", dict[str, Any], str], tuple[str, list[str], ToolInvokeMeta]]
class AgentPattern(ABC):
"""Base class for agent execution strategies."""
def __init__(
self,
model_instance: ModelInstance,
tools: list[Tool],
context: ExecutionContext,
max_iterations: int = 10,
workflow_call_depth: int = 0,
files: list[File] = [],
tool_invoke_hook: ToolInvokeHook | None = None,
):
"""Initialize the agent strategy."""
self.model_instance = model_instance
self.tools = tools
self.context = context
self.max_iterations = min(max_iterations, 99) # Cap at 99 iterations
self.workflow_call_depth = workflow_call_depth
self.files: list[File] = files
self.tool_invoke_hook = tool_invoke_hook
@abstractmethod
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str] = [],
stream: bool = True,
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the agent strategy."""
pass
def _accumulate_usage(self, total_usage: dict[str, Any], delta_usage: LLMUsage) -> None:
"""Accumulate LLM usage statistics."""
if not total_usage.get("usage"):
# Create a copy to avoid modifying the original
total_usage["usage"] = LLMUsage(
prompt_tokens=delta_usage.prompt_tokens,
prompt_unit_price=delta_usage.prompt_unit_price,
prompt_price_unit=delta_usage.prompt_price_unit,
prompt_price=delta_usage.prompt_price,
completion_tokens=delta_usage.completion_tokens,
completion_unit_price=delta_usage.completion_unit_price,
completion_price_unit=delta_usage.completion_price_unit,
completion_price=delta_usage.completion_price,
total_tokens=delta_usage.total_tokens,
total_price=delta_usage.total_price,
currency=delta_usage.currency,
latency=delta_usage.latency,
)
else:
current: LLMUsage = total_usage["usage"]
current.prompt_tokens += delta_usage.prompt_tokens
current.completion_tokens += delta_usage.completion_tokens
current.total_tokens += delta_usage.total_tokens
current.prompt_price += delta_usage.prompt_price
current.completion_price += delta_usage.completion_price
current.total_price += delta_usage.total_price
def _extract_content(self, content: Any) -> str:
"""Extract text content from message content."""
if isinstance(content, list):
# Content items are PromptMessageContentUnionTypes
text_parts = []
for c in content:
# Check if it's a TextPromptMessageContent (which has data attribute)
if isinstance(c, TextPromptMessageContent):
text_parts.append(c.data)
return "".join(text_parts)
return str(content)
def _has_tool_calls(self, chunk: LLMResultChunk) -> bool:
"""Check if chunk contains tool calls."""
# LLMResultChunk always has delta attribute
return bool(chunk.delta.message and chunk.delta.message.tool_calls)
def _has_tool_calls_result(self, result: LLMResult) -> bool:
"""Check if result contains tool calls (non-streaming)."""
# LLMResult always has message attribute
return bool(result.message and result.message.tool_calls)
def _extract_tool_calls(self, chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
"""Extract tool calls from streaming chunk."""
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
if chunk.delta.message and chunk.delta.message.tool_calls:
for tool_call in chunk.delta.message.tool_calls:
if tool_call.function:
try:
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
except json.JSONDecodeError:
args = {}
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
return tool_calls
def _extract_tool_calls_result(self, result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
"""Extract tool calls from non-streaming result."""
tool_calls = []
if result.message and result.message.tool_calls:
for tool_call in result.message.tool_calls:
if tool_call.function:
try:
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
except json.JSONDecodeError:
args = {}
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
return tool_calls
def _extract_text_from_message(self, message: PromptMessage) -> str:
"""Extract text content from a prompt message."""
# PromptMessage always has content attribute
content = message.content
if isinstance(content, str):
return content
elif isinstance(content, list):
# Extract text from content list
text_parts = []
for item in content:
if isinstance(item, TextPromptMessageContent):
text_parts.append(item.data)
return " ".join(text_parts)
return ""
def _get_tool_metadata(self, tool_instance: Tool) -> dict[AgentLog.LogMetadata, Any]:
"""Get metadata for a tool including provider and icon info."""
from core.tools.tool_manager import ToolManager
metadata: dict[AgentLog.LogMetadata, Any] = {}
if tool_instance.entity and tool_instance.entity.identity:
identity = tool_instance.entity.identity
if identity.provider:
metadata[AgentLog.LogMetadata.PROVIDER] = identity.provider
# Get icon using ToolManager for proper URL generation
tenant_id = self.context.tenant_id
if tenant_id and identity.provider:
try:
provider_type = tool_instance.tool_provider_type()
icon = ToolManager.get_tool_icon(tenant_id, provider_type, identity.provider)
if isinstance(icon, str):
metadata[AgentLog.LogMetadata.ICON] = icon
elif isinstance(icon, dict):
# Handle icon dict with background/content or light/dark variants
metadata[AgentLog.LogMetadata.ICON] = icon
except Exception:
# Fallback to identity.icon if ToolManager fails
if identity.icon:
metadata[AgentLog.LogMetadata.ICON] = identity.icon
elif identity.icon:
metadata[AgentLog.LogMetadata.ICON] = identity.icon
return metadata
def _create_log(
self,
label: str,
log_type: AgentLog.LogType,
status: AgentLog.LogStatus,
data: dict[str, Any] | None = None,
parent_id: str | None = None,
extra_metadata: dict[AgentLog.LogMetadata, Any] | None = None,
) -> AgentLog:
"""Create a new AgentLog with standard metadata."""
metadata: dict[AgentLog.LogMetadata, Any] = {
AgentLog.LogMetadata.STARTED_AT: time.perf_counter(),
}
if extra_metadata:
metadata.update(extra_metadata)
return AgentLog(
label=label,
log_type=log_type,
status=status,
data=data or {},
parent_id=parent_id,
metadata=metadata,
)
def _finish_log(
self,
log: AgentLog,
data: dict[str, Any] | None = None,
usage: LLMUsage | None = None,
) -> AgentLog:
"""Finish an AgentLog by updating its status and metadata."""
log.status = AgentLog.LogStatus.SUCCESS
if data is not None:
log.data = data
# Calculate elapsed time
started_at = log.metadata.get(AgentLog.LogMetadata.STARTED_AT, time.perf_counter())
finished_at = time.perf_counter()
# Update metadata
log.metadata = {
**log.metadata,
AgentLog.LogMetadata.FINISHED_AT: finished_at,
# Calculate elapsed time in seconds
AgentLog.LogMetadata.ELAPSED_TIME: round(finished_at - started_at, 4),
}
# Add usage information if provided
if usage:
log.metadata.update(
{
AgentLog.LogMetadata.TOTAL_PRICE: usage.total_price,
AgentLog.LogMetadata.CURRENCY: usage.currency,
AgentLog.LogMetadata.TOTAL_TOKENS: usage.total_tokens,
AgentLog.LogMetadata.LLM_USAGE: usage,
}
)
return log
def _replace_file_references(self, tool_args: dict[str, Any]) -> dict[str, Any]:
"""
Replace file references in tool arguments with actual File objects.
Args:
tool_args: Dictionary of tool arguments
Returns:
Updated tool arguments with file references replaced
"""
# Process each argument in the dictionary
processed_args: dict[str, Any] = {}
for key, value in tool_args.items():
processed_args[key] = self._process_file_reference(value)
return processed_args
def _process_file_reference(self, data: Any) -> Any:
"""
Recursively process data to replace file references.
Supports both single file [File: file_id] and multiple files [Files: file_id1, file_id2, ...].
Args:
data: The data to process (can be dict, list, str, or other types)
Returns:
Processed data with file references replaced
"""
single_file_pattern = re.compile(r"^\[File:\s*([^\]]+)\]$")
multiple_files_pattern = re.compile(r"^\[Files:\s*([^\]]+)\]$")
if isinstance(data, dict):
# Process dictionary recursively
return {key: self._process_file_reference(value) for key, value in data.items()}
elif isinstance(data, list):
# Process list recursively
return [self._process_file_reference(item) for item in data]
elif isinstance(data, str):
# Check for single file pattern [File: file_id]
single_match = single_file_pattern.match(data.strip())
if single_match:
file_id = single_match.group(1).strip()
# Find the file in self.files
for file in self.files:
if file.id and str(file.id) == file_id:
return file
# If file not found, return original value
return data
# Check for multiple files pattern [Files: file_id1, file_id2, ...]
multiple_match = multiple_files_pattern.match(data.strip())
if multiple_match:
file_ids_str = multiple_match.group(1).strip()
# Split by comma and strip whitespace
file_ids = [fid.strip() for fid in file_ids_str.split(",")]
# Find all matching files
matched_files: list[File] = []
for file_id in file_ids:
for file in self.files:
if file.id and str(file.id) == file_id:
matched_files.append(file)
break
# Return list of files if any were found, otherwise return original
return matched_files or data
return data
else:
# Return other types as-is
return data
def _create_text_chunk(self, text: str, prompt_messages: list[PromptMessage]) -> LLMResultChunk:
"""Create a text chunk for streaming."""
return LLMResultChunk(
model=self.model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=text),
usage=None,
),
system_fingerprint="",
)
def _invoke_tool(
self,
tool_instance: Tool,
tool_args: dict[str, Any],
tool_name: str,
) -> tuple[str, list[File], ToolInvokeMeta | None]:
"""
Invoke a tool and collect its response.
Args:
tool_instance: The tool instance to invoke
tool_args: Tool arguments
tool_name: Name of the tool
Returns:
Tuple of (response_content, tool_files, tool_invoke_meta)
"""
# Process tool_args to replace file references with actual File objects
tool_args = self._replace_file_references(tool_args)
# If a tool invoke hook is set, use it instead of generic_invoke
if self.tool_invoke_hook:
response_content, _, tool_invoke_meta = self.tool_invoke_hook(tool_instance, tool_args, tool_name)
# Note: message_file_ids are stored in DB, we don't convert them to File objects here
# The caller (AgentAppRunner) handles file publishing
return response_content, [], tool_invoke_meta
# Default: use generic_invoke for workflow scenarios
# Import here to avoid circular import
from core.tools.tool_engine import DifyWorkflowCallbackHandler, ToolEngine
tool_response = ToolEngine().generic_invoke(
tool=tool_instance,
tool_parameters=tool_args,
user_id=self.context.user_id or "",
workflow_tool_callback=DifyWorkflowCallbackHandler(),
workflow_call_depth=self.workflow_call_depth,
app_id=self.context.app_id,
conversation_id=self.context.conversation_id,
message_id=self.context.message_id,
)
# Collect response and files
response_content = ""
tool_files: list[File] = []
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.TEXT:
assert isinstance(response.message, ToolInvokeMessage.TextMessage)
response_content += response.message.text
elif response.type == ToolInvokeMessage.MessageType.LINK:
# Handle link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Link: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.IMAGE:
# Handle image URL messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Image: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK:
# Handle image link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Image: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.BINARY_LINK:
# Handle binary file link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
filename = response.meta.get("filename", "file") if response.meta else "file"
response_content += f"[File: {filename} - {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.JSON:
# Handle JSON messages
if isinstance(response.message, ToolInvokeMessage.JsonMessage):
response_content += json.dumps(response.message.json_object, ensure_ascii=False, indent=2)
elif response.type == ToolInvokeMessage.MessageType.BLOB:
# Handle blob messages - convert to text representation
if isinstance(response.message, ToolInvokeMessage.BlobMessage):
mime_type = (
response.meta.get("mime_type", "application/octet-stream")
if response.meta
else "application/octet-stream"
)
size = len(response.message.blob)
response_content += f"[Binary data: {mime_type}, size: {size} bytes]"
elif response.type == ToolInvokeMessage.MessageType.VARIABLE:
# Handle variable messages
if isinstance(response.message, ToolInvokeMessage.VariableMessage):
var_name = response.message.variable_name
var_value = response.message.variable_value
if isinstance(var_value, str):
response_content += var_value
else:
response_content += f"[Variable {var_name}: {json.dumps(var_value, ensure_ascii=False)}]"
elif response.type == ToolInvokeMessage.MessageType.BLOB_CHUNK:
# Handle blob chunk messages - these are parts of a larger blob
if isinstance(response.message, ToolInvokeMessage.BlobChunkMessage):
response_content += f"[Blob chunk {response.message.sequence}: {len(response.message.blob)} bytes]"
elif response.type == ToolInvokeMessage.MessageType.RETRIEVER_RESOURCES:
# Handle retriever resources messages
if isinstance(response.message, ToolInvokeMessage.RetrieverResourceMessage):
response_content += response.message.context
elif response.type == ToolInvokeMessage.MessageType.FILE:
# Extract file from meta
if response.meta and "file" in response.meta:
file = response.meta["file"]
if isinstance(file, File):
# Check if file is for model or tool output
if response.meta.get("target") == "self":
# File is for model - add to files for next prompt
self.files.append(file)
response_content += f"File '{file.filename}' has been loaded into your context."
else:
# File is tool output
tool_files.append(file)
return response_content, tool_files, None
def _find_tool_by_name(self, tool_name: str) -> Tool | None:
"""Find a tool instance by its name."""
for tool in self.tools:
if tool.entity.identity.name == tool_name:
return tool
return None
def _convert_tools_to_prompt_format(self) -> list[PromptMessageTool]:
"""Convert tools to prompt message format."""
prompt_tools: list[PromptMessageTool] = []
for tool in self.tools:
prompt_tools.append(tool.to_prompt_message_tool())
return prompt_tools
def _update_usage_with_empty(self, llm_usage: dict[str, Any]) -> None:
"""Initialize usage tracking with empty usage if not set."""
if "usage" not in llm_usage or llm_usage["usage"] is None:
llm_usage["usage"] = LLMUsage.empty_usage()

View File

@ -0,0 +1,299 @@
"""Function Call strategy implementation."""
import json
from collections.abc import Generator
from typing import Any, Union
from core.agent.entities import AgentLog, AgentResult
from core.file import File
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMUsage,
PromptMessage,
PromptMessageTool,
ToolPromptMessage,
)
from core.tools.entities.tool_entities import ToolInvokeMeta
from .base import AgentPattern
class FunctionCallStrategy(AgentPattern):
"""Function Call strategy using model's native tool calling capability."""
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str] = [],
stream: bool = True,
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the function call agent strategy."""
# Convert tools to prompt format
prompt_tools: list[PromptMessageTool] = self._convert_tools_to_prompt_format()
# Initialize tracking
iteration_step: int = 1
max_iterations: int = self.max_iterations + 1
function_call_state: bool = True
total_usage: dict[str, LLMUsage | None] = {"usage": None}
messages: list[PromptMessage] = list(prompt_messages) # Create mutable copy
final_text: str = ""
finish_reason: str | None = None
output_files: list[File] = [] # Track files produced by tools
while function_call_state and iteration_step <= max_iterations:
function_call_state = False
round_log = self._create_log(
label=f"ROUND {iteration_step}",
log_type=AgentLog.LogType.ROUND,
status=AgentLog.LogStatus.START,
data={},
)
yield round_log
# On last iteration, remove tools to force final answer
current_tools: list[PromptMessageTool] = [] if iteration_step == max_iterations else prompt_tools
model_log = self._create_log(
label=f"{self.model_instance.model} Thought",
log_type=AgentLog.LogType.THOUGHT,
status=AgentLog.LogStatus.START,
data={},
parent_id=round_log.id,
extra_metadata={
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
},
)
yield model_log
# Track usage for this round only
round_usage: dict[str, LLMUsage | None] = {"usage": None}
# Invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
prompt_messages=messages,
model_parameters=model_parameters,
tools=current_tools,
stop=stop,
stream=stream,
user=self.context.user_id,
callbacks=[],
)
# Process response
tool_calls, response_content, chunk_finish_reason = yield from self._handle_chunks(
chunks, round_usage, model_log
)
messages.append(self._create_assistant_message(response_content, tool_calls))
# Accumulate to total usage
round_usage_value = round_usage.get("usage")
if round_usage_value:
self._accumulate_usage(total_usage, round_usage_value)
# Update final text if no tool calls (this is likely the final answer)
if not tool_calls:
final_text = response_content
# Update finish reason
if chunk_finish_reason:
finish_reason = chunk_finish_reason
# Process tool calls
tool_outputs: dict[str, str] = {}
if tool_calls:
function_call_state = True
# Execute tools
for tool_call_id, tool_name, tool_args in tool_calls:
tool_response, tool_files, _ = yield from self._handle_tool_call(
tool_name, tool_args, tool_call_id, messages, round_log
)
tool_outputs[tool_name] = tool_response
# Track files produced by tools
output_files.extend(tool_files)
yield self._finish_log(
round_log,
data={
"llm_result": response_content,
"tool_calls": [
{"name": tc[1], "args": tc[2], "output": tool_outputs.get(tc[1], "")} for tc in tool_calls
]
if tool_calls
else [],
"final_answer": final_text if not function_call_state else None,
},
usage=round_usage.get("usage"),
)
iteration_step += 1
# Return final result
from core.agent.entities import AgentResult
return AgentResult(
text=final_text,
files=output_files,
usage=total_usage.get("usage") or LLMUsage.empty_usage(),
finish_reason=finish_reason,
)
def _handle_chunks(
self,
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
llm_usage: dict[str, LLMUsage | None],
start_log: AgentLog,
) -> Generator[
LLMResultChunk | AgentLog,
None,
tuple[list[tuple[str, str, dict[str, Any]]], str, str | None],
]:
"""Handle LLM response chunks and extract tool calls and content.
Returns a tuple of (tool_calls, response_content, finish_reason).
"""
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
response_content: str = ""
finish_reason: str | None = None
if isinstance(chunks, Generator):
# Streaming response
for chunk in chunks:
# Extract tool calls
if self._has_tool_calls(chunk):
tool_calls.extend(self._extract_tool_calls(chunk))
# Extract content
if chunk.delta.message and chunk.delta.message.content:
response_content += self._extract_content(chunk.delta.message.content)
# Track usage
if chunk.delta.usage:
self._accumulate_usage(llm_usage, chunk.delta.usage)
# Capture finish reason
if chunk.delta.finish_reason:
finish_reason = chunk.delta.finish_reason
yield chunk
else:
# Non-streaming response
result: LLMResult = chunks
if self._has_tool_calls_result(result):
tool_calls.extend(self._extract_tool_calls_result(result))
if result.message and result.message.content:
response_content += self._extract_content(result.message.content)
if result.usage:
self._accumulate_usage(llm_usage, result.usage)
# Convert to streaming format
yield LLMResultChunk(
model=result.model,
prompt_messages=result.prompt_messages,
delta=LLMResultChunkDelta(index=0, message=result.message, usage=result.usage),
)
yield self._finish_log(
start_log,
data={
"result": response_content,
},
usage=llm_usage.get("usage"),
)
return tool_calls, response_content, finish_reason
def _create_assistant_message(
self, content: str, tool_calls: list[tuple[str, str, dict[str, Any]]] | None = None
) -> AssistantPromptMessage:
"""Create assistant message with tool calls."""
if tool_calls is None:
return AssistantPromptMessage(content=content)
return AssistantPromptMessage(
content=content or "",
tool_calls=[
AssistantPromptMessage.ToolCall(
id=tc[0],
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tc[1], arguments=json.dumps(tc[2])),
)
for tc in tool_calls
],
)
def _handle_tool_call(
self,
tool_name: str,
tool_args: dict[str, Any],
tool_call_id: str,
messages: list[PromptMessage],
round_log: AgentLog,
) -> Generator[AgentLog, None, tuple[str, list[File], ToolInvokeMeta | None]]:
"""Handle a single tool call and return response with files and meta."""
# Find tool
tool_instance = self._find_tool_by_name(tool_name)
if not tool_instance:
raise ValueError(f"Tool {tool_name} not found")
# Get tool metadata (provider, icon, etc.)
tool_metadata = self._get_tool_metadata(tool_instance)
# Create tool call log
tool_call_log = self._create_log(
label=f"CALL {tool_name}",
log_type=AgentLog.LogType.TOOL_CALL,
status=AgentLog.LogStatus.START,
data={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_args": tool_args,
},
parent_id=round_log.id,
extra_metadata=tool_metadata,
)
yield tool_call_log
# Invoke tool using base class method with error handling
try:
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args, tool_name)
yield self._finish_log(
tool_call_log,
data={
**tool_call_log.data,
"output": response_content,
"files": len(tool_files),
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
},
)
final_content = response_content or "Tool executed successfully"
# Add tool response to messages
messages.append(
ToolPromptMessage(
content=final_content,
tool_call_id=tool_call_id,
name=tool_name,
)
)
return response_content, tool_files, tool_invoke_meta
except Exception as e:
# Tool invocation failed, yield error log
error_message = str(e)
tool_call_log.status = AgentLog.LogStatus.ERROR
tool_call_log.error = error_message
tool_call_log.data = {
**tool_call_log.data,
"error": error_message,
}
yield tool_call_log
# Add error message to conversation
error_content = f"Tool execution failed: {error_message}"
messages.append(
ToolPromptMessage(
content=error_content,
tool_call_id=tool_call_id,
name=tool_name,
)
)
return error_content, [], None

View File

@ -0,0 +1,418 @@
"""ReAct strategy implementation."""
from __future__ import annotations
import json
from collections.abc import Generator
from typing import TYPE_CHECKING, Any, Union
from core.agent.entities import AgentLog, AgentResult, AgentScratchpadUnit, ExecutionContext
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.file import File
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
PromptMessage,
SystemPromptMessage,
)
from .base import AgentPattern, ToolInvokeHook
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
class ReActStrategy(AgentPattern):
"""ReAct strategy using reasoning and acting approach."""
def __init__(
self,
model_instance: ModelInstance,
tools: list[Tool],
context: ExecutionContext,
max_iterations: int = 10,
workflow_call_depth: int = 0,
files: list[File] = [],
tool_invoke_hook: ToolInvokeHook | None = None,
instruction: str = "",
):
"""Initialize the ReAct strategy with instruction support."""
super().__init__(
model_instance=model_instance,
tools=tools,
context=context,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
files=files,
tool_invoke_hook=tool_invoke_hook,
)
self.instruction = instruction
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str] = [],
stream: bool = True,
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the ReAct agent strategy."""
# Initialize tracking
agent_scratchpad: list[AgentScratchpadUnit] = []
iteration_step: int = 1
max_iterations: int = self.max_iterations + 1
react_state: bool = True
total_usage: dict[str, Any] = {"usage": None}
output_files: list[File] = [] # Track files produced by tools
final_text: str = ""
finish_reason: str | None = None
# Add "Observation" to stop sequences
if "Observation" not in stop:
stop = stop.copy()
stop.append("Observation")
while react_state and iteration_step <= max_iterations:
react_state = False
round_log = self._create_log(
label=f"ROUND {iteration_step}",
log_type=AgentLog.LogType.ROUND,
status=AgentLog.LogStatus.START,
data={},
)
yield round_log
# Build prompt with/without tools based on iteration
include_tools = iteration_step < max_iterations
current_messages = self._build_prompt_with_react_format(
prompt_messages, agent_scratchpad, include_tools, self.instruction
)
model_log = self._create_log(
label=f"{self.model_instance.model} Thought",
log_type=AgentLog.LogType.THOUGHT,
status=AgentLog.LogStatus.START,
data={},
parent_id=round_log.id,
extra_metadata={
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
},
)
yield model_log
# Track usage for this round only
round_usage: dict[str, Any] = {"usage": None}
# Use current messages directly (files are handled by base class if needed)
messages_to_use = current_messages
# Invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
prompt_messages=messages_to_use,
model_parameters=model_parameters,
stop=stop,
stream=stream,
user=self.context.user_id or "",
callbacks=[],
)
# Process response
scratchpad, chunk_finish_reason = yield from self._handle_chunks(
chunks, round_usage, model_log, current_messages
)
agent_scratchpad.append(scratchpad)
# Accumulate to total usage
round_usage_value = round_usage.get("usage")
if round_usage_value:
self._accumulate_usage(total_usage, round_usage_value)
# Update finish reason
if chunk_finish_reason:
finish_reason = chunk_finish_reason
# Check if we have an action to execute
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
react_state = True
# Execute tool
observation, tool_files = yield from self._handle_tool_call(
scratchpad.action, current_messages, round_log
)
scratchpad.observation = observation
# Track files produced by tools
output_files.extend(tool_files)
# Add observation to scratchpad for display
yield self._create_text_chunk(f"\nObservation: {observation}\n", current_messages)
else:
# Extract final answer
if scratchpad.action and scratchpad.action.action_input:
final_answer = scratchpad.action.action_input
if isinstance(final_answer, dict):
final_answer = json.dumps(final_answer, ensure_ascii=False)
final_text = str(final_answer)
elif scratchpad.thought:
# If no action but we have thought, use thought as final answer
final_text = scratchpad.thought
yield self._finish_log(
round_log,
data={
"thought": scratchpad.thought,
"action": scratchpad.action_str if scratchpad.action else None,
"observation": scratchpad.observation or None,
"final_answer": final_text if not react_state else None,
},
usage=round_usage.get("usage"),
)
iteration_step += 1
# Return final result
from core.agent.entities import AgentResult
return AgentResult(
text=final_text, files=output_files, usage=total_usage.get("usage"), finish_reason=finish_reason
)
def _build_prompt_with_react_format(
self,
original_messages: list[PromptMessage],
agent_scratchpad: list[AgentScratchpadUnit],
include_tools: bool = True,
instruction: str = "",
) -> list[PromptMessage]:
"""Build prompt messages with ReAct format."""
# Copy messages to avoid modifying original
messages = list(original_messages)
# Find and update the system prompt that should already exist
system_prompt_found = False
for i, msg in enumerate(messages):
if isinstance(msg, SystemPromptMessage):
system_prompt_found = True
# The system prompt from frontend already has the template, just replace placeholders
# Format tools
tools_str = ""
tool_names = []
if include_tools and self.tools:
# Convert tools to prompt message tools format
prompt_tools = [tool.to_prompt_message_tool() for tool in self.tools]
tool_names = [tool.name for tool in prompt_tools]
# Format tools as JSON for comprehensive information
from core.model_runtime.utils.encoders import jsonable_encoder
tools_str = json.dumps(jsonable_encoder(prompt_tools), indent=2)
tool_names_str = ", ".join(f'"{name}"' for name in tool_names)
else:
tools_str = "No tools available"
tool_names_str = ""
# Replace placeholders in the existing system prompt
updated_content = msg.content
assert isinstance(updated_content, str)
updated_content = updated_content.replace("{{instruction}}", instruction)
updated_content = updated_content.replace("{{tools}}", tools_str)
updated_content = updated_content.replace("{{tool_names}}", tool_names_str)
# Create new SystemPromptMessage with updated content
messages[i] = SystemPromptMessage(content=updated_content)
break
# If no system prompt found, that's unexpected but add scratchpad anyway
if not system_prompt_found:
# This shouldn't happen if frontend is working correctly
pass
# Format agent scratchpad
scratchpad_str = ""
if agent_scratchpad:
scratchpad_parts: list[str] = []
for unit in agent_scratchpad:
if unit.thought:
scratchpad_parts.append(f"Thought: {unit.thought}")
if unit.action_str:
scratchpad_parts.append(f"Action:\n```\n{unit.action_str}\n```")
if unit.observation:
scratchpad_parts.append(f"Observation: {unit.observation}")
scratchpad_str = "\n".join(scratchpad_parts)
# If there's a scratchpad, append it to the last message
if scratchpad_str:
messages.append(AssistantPromptMessage(content=scratchpad_str))
return messages
def _handle_chunks(
self,
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
llm_usage: dict[str, Any],
model_log: AgentLog,
current_messages: list[PromptMessage],
) -> Generator[
LLMResultChunk | AgentLog,
None,
tuple[AgentScratchpadUnit, str | None],
]:
"""Handle LLM response chunks and extract action/thought.
Returns a tuple of (scratchpad_unit, finish_reason).
"""
usage_dict: dict[str, Any] = {}
# Convert non-streaming to streaming format if needed
if isinstance(chunks, LLMResult):
# Create a generator from the LLMResult
def result_to_chunks() -> Generator[LLMResultChunk, None, None]:
yield LLMResultChunk(
model=chunks.model,
prompt_messages=chunks.prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=chunks.message,
usage=chunks.usage,
finish_reason=None, # LLMResult doesn't have finish_reason, only streaming chunks do
),
system_fingerprint=chunks.system_fingerprint or "",
)
streaming_chunks = result_to_chunks()
else:
streaming_chunks = chunks
react_chunks = CotAgentOutputParser.handle_react_stream_output(streaming_chunks, usage_dict)
# Initialize scratchpad unit
scratchpad = AgentScratchpadUnit(
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
finish_reason: str | None = None
# Process chunks
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
# Action detected
action_str = json.dumps(chunk.model_dump())
scratchpad.agent_response = (scratchpad.agent_response or "") + action_str
scratchpad.action_str = action_str
scratchpad.action = chunk
yield self._create_text_chunk(json.dumps(chunk.model_dump()), current_messages)
else:
# Text chunk
chunk_text = str(chunk)
scratchpad.agent_response = (scratchpad.agent_response or "") + chunk_text
scratchpad.thought = (scratchpad.thought or "") + chunk_text
yield self._create_text_chunk(chunk_text, current_messages)
# Update usage
if usage_dict.get("usage"):
if llm_usage.get("usage"):
self._accumulate_usage(llm_usage, usage_dict["usage"])
else:
llm_usage["usage"] = usage_dict["usage"]
# Clean up thought
scratchpad.thought = (scratchpad.thought or "").strip() or "I am thinking about how to help you"
# Finish model log
yield self._finish_log(
model_log,
data={
"thought": scratchpad.thought,
"action": scratchpad.action_str if scratchpad.action else None,
},
usage=llm_usage.get("usage"),
)
return scratchpad, finish_reason
def _handle_tool_call(
self,
action: AgentScratchpadUnit.Action,
prompt_messages: list[PromptMessage],
round_log: AgentLog,
) -> Generator[AgentLog, None, tuple[str, list[File]]]:
"""Handle tool call and return observation with files."""
tool_name = action.action_name
tool_args: dict[str, Any] | str = action.action_input
# Find tool instance first to get metadata
tool_instance = self._find_tool_by_name(tool_name)
tool_metadata = self._get_tool_metadata(tool_instance) if tool_instance else {}
# Start tool log with tool metadata
tool_log = self._create_log(
label=f"CALL {tool_name}",
log_type=AgentLog.LogType.TOOL_CALL,
status=AgentLog.LogStatus.START,
data={
"tool_name": tool_name,
"tool_args": tool_args,
},
parent_id=round_log.id,
extra_metadata=tool_metadata,
)
yield tool_log
if not tool_instance:
# Finish tool log with error
yield self._finish_log(
tool_log,
data={
**tool_log.data,
"error": f"Tool {tool_name} not found",
},
)
return f"Tool {tool_name} not found", []
# Ensure tool_args is a dict
tool_args_dict: dict[str, Any]
if isinstance(tool_args, str):
try:
tool_args_dict = json.loads(tool_args)
except json.JSONDecodeError:
tool_args_dict = {"input": tool_args}
elif not isinstance(tool_args, dict):
tool_args_dict = {"input": str(tool_args)}
else:
tool_args_dict = tool_args
# Invoke tool using base class method with error handling
try:
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args_dict, tool_name)
# Finish tool log
yield self._finish_log(
tool_log,
data={
**tool_log.data,
"output": response_content,
"files": len(tool_files),
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
},
)
return response_content or "Tool executed successfully", tool_files
except Exception as e:
# Tool invocation failed, yield error log
error_message = str(e)
tool_log.status = AgentLog.LogStatus.ERROR
tool_log.error = error_message
tool_log.data = {
**tool_log.data,
"error": error_message,
}
yield tool_log
return f"Tool execution failed: {error_message}", []

View File

@ -0,0 +1,107 @@
"""Strategy factory for creating agent strategies."""
from __future__ import annotations
from typing import TYPE_CHECKING
from core.agent.entities import AgentEntity, ExecutionContext
from core.file.models import File
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelFeature
from .base import AgentPattern, ToolInvokeHook
from .function_call import FunctionCallStrategy
from .react import ReActStrategy
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
class StrategyFactory:
"""Factory for creating agent strategies based on model features."""
# Tool calling related features
TOOL_CALL_FEATURES = {ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL}
@staticmethod
def create_strategy(
model_features: list[ModelFeature],
model_instance: ModelInstance,
context: ExecutionContext,
tools: list[Tool],
files: list[File],
max_iterations: int = 10,
workflow_call_depth: int = 0,
agent_strategy: AgentEntity.Strategy | None = None,
tool_invoke_hook: ToolInvokeHook | None = None,
instruction: str = "",
) -> AgentPattern:
"""
Create an appropriate strategy based on model features.
Args:
model_features: List of model features/capabilities
model_instance: Model instance to use
context: Execution context containing trace/audit information
tools: Available tools
files: Available files
max_iterations: Maximum iterations for the strategy
workflow_call_depth: Depth of workflow calls
agent_strategy: Optional explicit strategy override
tool_invoke_hook: Optional hook for custom tool invocation (e.g., agent_invoke)
instruction: Optional instruction for ReAct strategy
Returns:
AgentStrategy instance
"""
# If explicit strategy is provided and it's Function Calling, try to use it if supported
if agent_strategy == AgentEntity.Strategy.FUNCTION_CALLING:
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
return FunctionCallStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
)
# Fallback to ReAct if FC is requested but not supported
# If explicit strategy is Chain of Thought (ReAct)
if agent_strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
return ReActStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)
# Default auto-selection logic
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
# Model supports native function calling
return FunctionCallStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
)
else:
# Use ReAct strategy for models without function calling
return ReActStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)

Some files were not shown because too many files have changed in this diff Show More