Compare commits

..

80 Commits

Author SHA1 Message Date
3d9c8d76b9 fix: version check 2025-02-13 14:44:24 +08:00
9ac6662635 fix: agent thought not saved (#13631) 2025-02-13 10:17:39 +08:00
316c418a01 fix: unexpected None embedding model provdier (#13610) 2025-02-12 18:40:15 +08:00
4886e5ae96 feat: add Dify-Hook-Url to endpoint headers (#13602) 2025-02-12 17:38:56 +08:00
7f4a8b955d fix: convert provider_id to plugin_provider_id in get_configurations (#13596) 2025-02-12 16:42:03 +08:00
83d0142641 fix: refresh after install plugin (#13593) 2025-02-12 15:51:55 +08:00
56c7f49625 fix: add langgenius to list tool api (#13578) 2025-02-12 15:37:10 +08:00
7c1d842cfe (1.0) fix: invalid default model provider (#13572) 2025-02-12 14:21:58 +08:00
2ea3b64a45 Feat: tool setting support variable (#13465)
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
2025-02-12 12:54:10 +08:00
824f8d8994 chore: add debug doc link (#13537) 2025-02-11 18:32:01 +08:00
31c17e6378 fix: installed plugin not show upgrade (#13523) 2025-02-11 14:08:43 +08:00
50cfb7c9ec fix: allow variable message to be any (#13494) 2025-02-10 21:13:28 +08:00
8281c688ca fix: iteration open parallel not show iteration detail (#13476) 2025-02-10 16:05:05 +08:00
ad9d6eb5f4 fix app detail panel merge issues (#13460) 2025-02-10 14:24:48 +08:00
aa3dc9002c fix: workflow chat preview (#13455) 2025-02-10 11:15:56 +08:00
4a43e165fb Plugin/merge main 20250208 (#13414)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Signed-off-by: -LAN- <laipz8200@outlook.com>
Signed-off-by: xhe <xw897002528@gmail.com>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: kurokobo <kuro664@gmail.com>
Co-authored-by: Hiroshi Fujita <fujita-h@users.noreply.github.com>
Co-authored-by: NFish <douxc512@gmail.com>
Co-authored-by: Gen Sato <52241300+halogen22@users.noreply.github.com>
Co-authored-by: eux <euxuuu@gmail.com>
Co-authored-by: huangzhuo1949 <167434202+huangzhuo1949@users.noreply.github.com>
Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com>
Co-authored-by: lotsik <lotsik@mail.ru>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: Wu Tianwei <30284043+WTW0313@users.noreply.github.com>
Co-authored-by: nite-knite <nkCoding@gmail.com>
Co-authored-by: Jyong <76649700+JohnJyong@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: gakkiyomi <gakkiyomi@aliyun.com>
Co-authored-by: CN-P5 <heibai2006@gmail.com>
Co-authored-by: CN-P5 <heibai2006@qq.com>
Co-authored-by: Chuehnone <1897025+chuehnone@users.noreply.github.com>
Co-authored-by: yihong <zouzou0208@gmail.com>
Co-authored-by: Kevin9703 <51311316+Kevin9703@users.noreply.github.com>
Co-authored-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: Boris Feld <lothiraldan@gmail.com>
Co-authored-by: mbo <himabo@gmail.com>
Co-authored-by: mabo <mabo@aeyes.ai>
Co-authored-by: Warren Chen <warren.chen830@gmail.com>
Co-authored-by: KVOJJJin <jzongcode@gmail.com>
Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com>
Co-authored-by: jiandanfeng <chenjh3@wangsu.com>
Co-authored-by: zhu-an <70234959+xhdd123321@users.noreply.github.com>
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
Co-authored-by: 海狸大師 <86974027+yenslife@users.noreply.github.com>
Co-authored-by: Xu Song <xusong.vip@gmail.com>
Co-authored-by: rayshaw001 <396301947@163.com>
Co-authored-by: Ding Jiatong <dingjiatong@gmail.com>
Co-authored-by: Bowen Liang <liangbowen@gf.com.cn>
Co-authored-by: JasonVV <jasonwangiii@outlook.com>
Co-authored-by: le0zh <newlight@qq.com>
Co-authored-by: zhuxinliang <zhuxinliang@didiglobal.com>
Co-authored-by: k-zaku <zaku99@outlook.jp>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: luckylhb90 <luckylhb90@gmail.com>
Co-authored-by: hobo.l <hobo.l@binance.com>
Co-authored-by: jiangbo721 <365065261@qq.com>
Co-authored-by: 刘江波 <jiangbo721@163.com>
Co-authored-by: Shun Miyazawa <34241526+miya@users.noreply.github.com>
Co-authored-by: EricPan <30651140+Egfly@users.noreply.github.com>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
Co-authored-by: sino <sino2322@gmail.com>
Co-authored-by: Jhvcc <37662342+Jhvcc@users.noreply.github.com>
Co-authored-by: lowell <lowell.hu@zkteco.in>
Co-authored-by: Ademílson Tonato <ademilsonft@outlook.com>
Co-authored-by: Ademílson Tonato <ademilson.tonato@refurbed.com>
Co-authored-by: IWAI, Masaharu <iwaim.sub@gmail.com>
Co-authored-by: Yueh-Po Peng (Yabi) <94939112+y10ab1@users.noreply.github.com>
Co-authored-by: 非法操作 <hjlarry@163.com>
Co-authored-by: Jason <ggbbddjm@gmail.com>
Co-authored-by: Xin Zhang <sjhpzx@gmail.com>
Co-authored-by: yjc980121 <3898524+yjc980121@users.noreply.github.com>
Co-authored-by: heyszt <36215648+hieheihei@users.noreply.github.com>
Co-authored-by: Abdullah AlOsaimi <osaimiacc@gmail.com>
Co-authored-by: Abdullah AlOsaimi <189027247+osaimi@users.noreply.github.com>
Co-authored-by: Yingchun Lai <laiyingchun@apache.org>
Co-authored-by: Hash Brown <hi@xzd.me>
Co-authored-by: zuodongxu <192560071+zuodongxu@users.noreply.github.com>
Co-authored-by: Masashi Tomooka <tmokmss@users.noreply.github.com>
Co-authored-by: aplio <ryo.091219@gmail.com>
Co-authored-by: Obada Khalili <54270856+obadakhalili@users.noreply.github.com>
Co-authored-by: Nam Vu <zuzoovn@gmail.com>
Co-authored-by: Kei YAMAZAKI <1715090+kei-yamazaki@users.noreply.github.com>
Co-authored-by: TechnoHouse <13776377+deephbz@users.noreply.github.com>
Co-authored-by: Riddhimaan-Senapati <114703025+Riddhimaan-Senapati@users.noreply.github.com>
Co-authored-by: MaFee921 <31881301+2284730142@users.noreply.github.com>
Co-authored-by: te-chan <t-nakanome@sakura-is.co.jp>
Co-authored-by: HQidea <HQidea@users.noreply.github.com>
Co-authored-by: Joshbly <36315710+Joshbly@users.noreply.github.com>
Co-authored-by: xhe <xw897002528@gmail.com>
Co-authored-by: weiwenyan-dev <154779315+weiwenyan-dev@users.noreply.github.com>
Co-authored-by: ex_wenyan.wei <ex_wenyan.wei@tcl.com>
Co-authored-by: engchina <12236799+engchina@users.noreply.github.com>
Co-authored-by: engchina <atjapan2015@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: 呆萌闷油瓶 <253605712@qq.com>
Co-authored-by: Kemal <kemalmeler@outlook.com>
Co-authored-by: Lazy_Frog <4590648+lazyFrogLOL@users.noreply.github.com>
Co-authored-by: Novice Lee <novicelee@NoviPro.local>
Co-authored-by: Yi Xiao <54782454+YIXIAO0@users.noreply.github.com>
Co-authored-by: Steven sun <98230804+Tuyohai@users.noreply.github.com>
Co-authored-by: steven <sunzwj@digitalchina.com>
Co-authored-by: Kalo Chin <91766386+fdb02983rhy@users.noreply.github.com>
Co-authored-by: Katy Tao <34019945+KatyTao@users.noreply.github.com>
Co-authored-by: depy <42985524+h4ckdepy@users.noreply.github.com>
Co-authored-by: 胡春东 <gycm520@gmail.com>
Co-authored-by: Junjie.M <118170653@qq.com>
2025-02-08 19:12:36 +08:00
4d25b598f9 fix: template app check dependency (#13389) 2025-02-08 14:11:20 +08:00
3e9c3d0bb7 fix: install installed plugin problem (#13384) 2025-02-08 11:31:55 +08:00
fec3bb4469 fix: models sort in model page (#13334) 2025-02-07 17:30:04 +08:00
d4a09805a3 improve preview document tokenizer (#13328) 2025-02-07 16:08:25 +08:00
7e1d9894fb fix: plugins task permission (#13330) 2025-02-07 16:02:12 +08:00
a8a8a5513c fix: app check dependency (#13320) 2025-02-07 14:04:49 +08:00
470e72c820 chore: bump katex version and tweak UI copy (#13280) 2025-02-07 14:02:57 +08:00
beebba0340 Unify plugin endpoint configuration for api and worker: An alternative solution to PR #13214 (#13239) 2025-02-06 11:29:37 +08:00
4e27d82d68 improve: remove docker-legacy (#13236) 2025-02-05 20:28:02 +08:00
cdeaf3f70b Fix ruff linting error caused by api/models/dataset.py (#13221) 2025-02-05 17:45:23 +08:00
24839bb3e1 fix: mismatches dependencies in dockerfile (#13220) 2025-02-05 17:00:26 +08:00
1650dbfbb1 Fix: merge error of tracing and web app setting modal (#13219) 2025-02-05 16:16:28 +08:00
fd11817044 fix: select input not show save value (#13218) 2025-02-05 16:13:40 +08:00
6642fc6012 fix: fix fallback route logic (#13199) 2025-02-05 14:38:36 +08:00
2710242982 Feat: feature and log dark mode (#13208) 2025-02-05 13:58:19 +08:00
1de84fdda0 fix: correct env vars for docker deployment (#13055) 2025-01-27 11:19:29 +08:00
3befbc1d68 feat: docx image preview (#13057) 2025-01-26 15:12:05 +08:00
62c413aca5 add sign-content (#13050) 2025-01-26 10:58:47 +08:00
6887b501b8 fix: can choose selected tools and show tool name instead of label (#13025) 2025-01-24 22:34:09 +08:00
f93bf131ab fix(1.0): explore market page empty (#13017) 2025-01-24 18:43:56 +08:00
ef1f429437 fix(1.0): update github plugin 404 (#13014) 2025-01-24 18:42:14 +08:00
c966bf1474 Feat: dark mode of app configure (#13010) 2025-01-24 14:16:35 +08:00
899df30bf6 Plugin/merge main to plugin/beta 20250122 (#12962)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Signed-off-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: kurokobo <kuro664@gmail.com>
Co-authored-by: Hiroshi Fujita <fujita-h@users.noreply.github.com>
Co-authored-by: NFish <douxc512@gmail.com>
Co-authored-by: Gen Sato <52241300+halogen22@users.noreply.github.com>
Co-authored-by: eux <euxuuu@gmail.com>
Co-authored-by: huangzhuo1949 <167434202+huangzhuo1949@users.noreply.github.com>
Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com>
Co-authored-by: lotsik <lotsik@mail.ru>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: Wu Tianwei <30284043+WTW0313@users.noreply.github.com>
Co-authored-by: nite-knite <nkCoding@gmail.com>
Co-authored-by: Jyong <76649700+JohnJyong@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: gakkiyomi <gakkiyomi@aliyun.com>
Co-authored-by: CN-P5 <heibai2006@gmail.com>
Co-authored-by: CN-P5 <heibai2006@qq.com>
Co-authored-by: Chuehnone <1897025+chuehnone@users.noreply.github.com>
Co-authored-by: yihong <zouzou0208@gmail.com>
Co-authored-by: Kevin9703 <51311316+Kevin9703@users.noreply.github.com>
Co-authored-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: Boris Feld <lothiraldan@gmail.com>
Co-authored-by: mbo <himabo@gmail.com>
Co-authored-by: mabo <mabo@aeyes.ai>
Co-authored-by: Warren Chen <warren.chen830@gmail.com>
Co-authored-by: KVOJJJin <jzongcode@gmail.com>
Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com>
Co-authored-by: jiandanfeng <chenjh3@wangsu.com>
Co-authored-by: zhu-an <70234959+xhdd123321@users.noreply.github.com>
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
Co-authored-by: 海狸大師 <86974027+yenslife@users.noreply.github.com>
Co-authored-by: Xu Song <xusong.vip@gmail.com>
Co-authored-by: rayshaw001 <396301947@163.com>
Co-authored-by: Ding Jiatong <dingjiatong@gmail.com>
Co-authored-by: Bowen Liang <liangbowen@gf.com.cn>
Co-authored-by: JasonVV <jasonwangiii@outlook.com>
Co-authored-by: le0zh <newlight@qq.com>
Co-authored-by: zhuxinliang <zhuxinliang@didiglobal.com>
Co-authored-by: k-zaku <zaku99@outlook.jp>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: luckylhb90 <luckylhb90@gmail.com>
Co-authored-by: hobo.l <hobo.l@binance.com>
Co-authored-by: jiangbo721 <365065261@qq.com>
Co-authored-by: 刘江波 <jiangbo721@163.com>
Co-authored-by: Shun Miyazawa <34241526+miya@users.noreply.github.com>
Co-authored-by: EricPan <30651140+Egfly@users.noreply.github.com>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
Co-authored-by: sino <sino2322@gmail.com>
Co-authored-by: Jhvcc <37662342+Jhvcc@users.noreply.github.com>
Co-authored-by: lowell <lowell.hu@zkteco.in>
2025-01-23 14:48:16 +08:00
8d8d3e3f2f fix: plugin search api url (#12977) 2025-01-23 14:25:24 +08:00
5f0fa38ec6 fix(1.0): invoke llm raise error (#12753) 2025-01-22 16:46:35 +08:00
cc1fe70d34 fix: add adapter for datasets update checking (#12939) 2025-01-22 15:40:06 +08:00
15ee1e11be fix: 500 error in Notion integration API (#12934) 2025-01-22 14:38:01 +08:00
c8b4a76530 fix: agent node output vars error (#12931) 2025-01-22 13:33:27 +08:00
6ee4eba86b fix: change default PLUGIN_DAEMON_URL to http://localhost:5002 (#12915) 2025-01-21 22:30:24 +08:00
357d2e8be8 fix(1.0): add cross-env to pnpm run dev (#12600) 2025-01-21 19:51:32 +08:00
b5accda3fe fix: correct validation for agent node which is invoked before publishing the app (#12805) 2025-01-21 10:07:25 +08:00
de4752a16b fix(1.0): unexpected error raise (#12812) 2025-01-21 10:04:56 +08:00
60427f1adf chore(1.0): improve some environment variables (#12814) 2025-01-21 10:04:46 +08:00
1a313c868d fix(1.0): sometimes add tool raise error (#12821) 2025-01-21 10:04:05 +08:00
0b32b1988f fix: missing tenant_id in get_signed_file_url_for_plugin (#12734) 2025-01-14 19:39:21 +08:00
e56c051d97 Fix: tool card info (#12726) 2025-01-14 16:10:00 +08:00
0a6b4d01d7 fix: save tool not add type (#12712) 2025-01-14 10:28:41 +08:00
98b139c680 feat: add agent strategy on node start (#12667)
Co-authored-by: Novice Lee <novicelee@NoviPro.local>
2025-01-13 13:04:05 +08:00
f0a3c14adb fix: plugins task (#12662) 2025-01-13 10:59:34 +08:00
51947575c2 feat: add skip signature verification (#12627) 2025-01-10 20:37:33 +08:00
cb8debee3e Plugins/fix backend ci errors (#12615) 2025-01-10 19:46:59 +08:00
d56079a549 fix: marketplace card i18n (#12623) 2025-01-10 18:15:58 +08:00
c08b451874 fix: marketplace page list style (#12613) 2025-01-10 17:31:09 +08:00
ac336ff359 fix(1.0): add missing environment variable (#12599) 2025-01-10 17:17:13 +08:00
4cbd511cd7 fix: ci use pnpm error (#12597) 2025-01-10 16:55:16 +08:00
c03adcb154 Fix: style checks and unittests (#12603) 2025-01-10 16:40:39 +08:00
04dade2f9b fix: update fetchReleases to use owner and repo from meta (#12590) 2025-01-10 15:46:10 +08:00
f69220ca96 fix: add location directive for /explore (#12572) 2025-01-10 15:42:32 +08:00
a5e24ff6d3 fix: update language change handling in I18n component (#12596)
ok
2025-01-10 14:47:24 +08:00
71976f9192 fix: marketplace serach bundle (#12581) 2025-01-10 14:03:00 +08:00
39ec6c8025 Fix/setting model page crash (#12594)
Co-authored-by: JzoNg <jzongcode@gmail.com>
2025-01-10 13:10:58 +08:00
e370045ac4 Fix:screenshots image missed (#12589) 2025-01-10 11:47:20 +08:00
28edbbac0b Plugins/bump to 1.0.0 beta.1 (#12568) 2025-01-09 22:46:24 +08:00
782abcecd8 bump version to 1.0.0-beta.1 (#12567) 2025-01-09 22:38:20 +08:00
4deb02fc2c fix: rename plugin db name to dify_plugin (#12565) 2025-01-09 21:56:24 +08:00
f967180dc2 fix: not show stragry type (#12561) 2025-01-09 20:55:17 +08:00
cead13cbc3 plugins: remove middleware.1.yaml (#12559) 2025-01-09 20:34:49 +08:00
078c151065 fix: add-default-console-url (#12558) 2025-01-09 20:34:13 +08:00
17babca362 Introducing: Plugin Mechanism (#12553) 2025-01-09 19:54:17 +08:00
8efed8858c feat: reset parameters when switch agent strategy (#12549) 2025-01-09 19:31:02 +08:00
0d411a0b5a feat: refactor docker-compose (#12550) 2025-01-09 19:08:11 +08:00
13f0c01f93 feat: add ci checks to plugins/beta branch (#12542)
Co-authored-by: Novice Lee <novicelee@NoviPro.local>
2025-01-09 18:57:09 +08:00
3c014f3ae5 Feat/plugins (#12547)
Co-authored-by: AkaraChen <akarachen@outlook.com>
Co-authored-by: Yi <yxiaoisme@gmail.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: JzoNg <jzongcode@gmail.com>
Co-authored-by: twwu <twwu@dify.ai>
Co-authored-by: kurokobo <kuro664@gmail.com>
Co-authored-by: Hiroshi Fujita <fujita-h@users.noreply.github.com>
2025-01-09 18:47:41 +08:00
e4c4490175 refactor 2025-01-09 17:27:05 +08:00
1166 changed files with 60867 additions and 14838 deletions

View File

@ -1,11 +1,12 @@
#!/bin/bash
cd web && npm install
npm add -g pnpm@9.12.2
cd web && pnpm install
pipx install poetry
echo 'alias start-api="cd /workspaces/dify/api && poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug"' >> ~/.bashrc
echo 'alias start-worker="cd /workspaces/dify/api && poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion"' >> ~/.bashrc
echo 'alias start-web="cd /workspaces/dify/web && npm run dev"' >> ~/.bashrc
echo 'alias start-web="cd /workspaces/dify/web && pnpm dev"' >> ~/.bashrc
echo 'alias start-containers="cd /workspaces/dify/docker && docker-compose -f docker-compose.middleware.yaml -p dify up -d"' >> ~/.bashrc
echo 'alias stop-containers="cd /workspaces/dify/docker && docker-compose -f docker-compose.middleware.yaml -p dify down"' >> ~/.bashrc

View File

@ -8,7 +8,7 @@ inputs:
poetry-version:
description: Poetry version to set up
required: true
default: '1.8.4'
default: '2.0.1'
poetry-lockfile:
description: Path to the Poetry lockfile to restore cache from
required: true

View File

@ -4,6 +4,7 @@ on:
pull_request:
branches:
- main
- plugins/beta
paths:
- api/**
- docker/**
@ -42,25 +43,17 @@ jobs:
run: poetry install -C api --with dev
- name: Check dependencies in pyproject.toml
run: poetry run -C api bash dev/pytest/pytest_artifacts.sh
run: poetry run -P api bash dev/pytest/pytest_artifacts.sh
- name: Run Unit tests
run: poetry run -C api bash dev/pytest/pytest_unit_tests.sh
- name: Run ModelRuntime
run: poetry run -C api bash dev/pytest/pytest_model_runtime.sh
run: poetry run -P api bash dev/pytest/pytest_unit_tests.sh
- name: Run dify config tests
run: poetry run -C api python dev/pytest/pytest_config_tests.py
- name: Run Tool
run: poetry run -C api bash dev/pytest/pytest_tools.sh
run: poetry run -P api python dev/pytest/pytest_config_tests.py
- name: Run mypy
run: |
pushd api
poetry run python -m mypy --install-types --non-interactive .
popd
poetry run -C api python -m mypy --install-types --non-interactive .
- name: Set up dotenvs
run: |
@ -80,4 +73,4 @@ jobs:
ssrf_proxy
- name: Run Workflow
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
run: poetry run -P api bash dev/pytest/pytest_workflow.sh

View File

@ -5,6 +5,7 @@ on:
branches:
- "main"
- "deploy/dev"
- "plugins/beta"
release:
types: [published]

View File

@ -4,6 +4,7 @@ on:
pull_request:
branches:
- main
- plugins/beta
paths:
- api/migrations/**
- .github/workflows/db-migration-test.yml

47
.github/workflows/docker-build.yml vendored Normal file
View File

@ -0,0 +1,47 @@
name: Build docker image
on:
pull_request:
branches:
- "main"
paths:
- api/Dockerfile
- web/Dockerfile
concurrency:
group: docker-build-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build-docker:
runs-on: ubuntu-latest
strategy:
matrix:
include:
- service_name: "api-amd64"
platform: linux/amd64
context: "api"
- service_name: "api-arm64"
platform: linux/arm64
context: "api"
- service_name: "web-amd64"
platform: linux/amd64
context: "web"
- service_name: "web-arm64"
platform: linux/arm64
context: "web"
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build Docker Image
uses: docker/build-push-action@v6
with:
push: false
context: "{{defaultContext}}:${{ matrix.context }}"
platforms: ${{ matrix.platform }}
cache-from: type=gha
cache-to: type=gha,mode=max

View File

@ -4,6 +4,7 @@ on:
pull_request:
branches:
- main
- plugins/beta
concurrency:
group: style-${{ github.head_ref || github.run_id }}
@ -38,12 +39,12 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
run: |
poetry run -C api ruff --version
poetry run -C api ruff check ./api
poetry run -C api ruff format --check ./api
poetry run -C api ruff check ./
poetry run -C api ruff format --check ./
- name: Dotenv check
if: steps.changed-files.outputs.any_changed == 'true'
run: poetry run -C api dotenv-linter ./api/.env.example ./web/.env.example
run: poetry run -P api dotenv-linter ./api/.env.example ./web/.env.example
- name: Lint hints
if: failure()
@ -66,22 +67,55 @@ jobs:
with:
files: web/**
- name: Install pnpm
uses: pnpm/action-setup@v4
with:
version: 10
run_install: false
- name: Setup NodeJS
uses: actions/setup-node@v4
if: steps.changed-files.outputs.any_changed == 'true'
with:
node-version: 20
cache: yarn
cache: pnpm
cache-dependency-path: ./web/package.json
- name: Web dependencies
if: steps.changed-files.outputs.any_changed == 'true'
run: yarn install --frozen-lockfile
run: pnpm install --frozen-lockfile
- name: Web style check
if: steps.changed-files.outputs.any_changed == 'true'
run: yarn run lint
docker-compose-template:
name: Docker Compose Template
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Check changed files
id: changed-files
uses: tj-actions/changed-files@v45
with:
files: |
docker/generate_docker_compose
docker/.env.example
docker/docker-compose-template.yaml
docker/docker-compose.yaml
- name: Generate Docker Compose
if: steps.changed-files.outputs.any_changed == 'true'
run: |
cd docker
./generate_docker_compose
- name: Check for changes
if: steps.changed-files.outputs.any_changed == 'true'
run: git diff --exit-code
superlinter:
name: SuperLinter
@ -107,7 +141,7 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
env:
BASH_SEVERITY: warning
DEFAULT_BRANCH: main
DEFAULT_BRANCH: plugins/beta
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
IGNORE_GENERATED_FILES: true
IGNORE_GITIGNORED_FILES: true

View File

@ -32,10 +32,10 @@ jobs:
with:
node-version: ${{ matrix.node-version }}
cache: ''
cache-dependency-path: 'yarn.lock'
cache-dependency-path: 'pnpm-lock.yaml'
- name: Install Dependencies
run: yarn install
run: pnpm install
- name: Test
run: yarn test
run: pnpm test

View File

@ -38,11 +38,11 @@ jobs:
- name: Install dependencies
if: env.FILES_CHANGED == 'true'
run: yarn install --frozen-lockfile
run: pnpm install --frozen-lockfile
- name: Run npm script
if: env.FILES_CHANGED == 'true'
run: npm run auto-gen-i18n
run: pnpm run auto-gen-i18n
- name: Create Pull Request
if: env.FILES_CHANGED == 'true'

View File

@ -70,4 +70,4 @@ jobs:
tidb
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh
run: poetry run -P api bash dev/pytest/pytest_vdb.sh

View File

@ -34,13 +34,13 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
with:
node-version: 20
cache: yarn
cache: pnpm
cache-dependency-path: ./web/package.json
- name: Install dependencies
if: steps.changed-files.outputs.any_changed == 'true'
run: yarn install --frozen-lockfile
run: pnpm install --frozen-lockfile
- name: Run tests
if: steps.changed-files.outputs.any_changed == 'true'
run: yarn test
run: pnpm test

6
.gitignore vendored
View File

@ -194,3 +194,9 @@ api/.vscode
.idea/
.vscode
# pnpm
/.pnpm-store
# plugin migrate
plugins.jsonl

View File

@ -25,6 +25,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="seguir en X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="seguir en LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Descargas de Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="suivre sur X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="suivre sur LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Tirages Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="X(Twitter)でフォロー"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="LinkedInでフォロー"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -25,6 +25,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -22,6 +22,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="X(Twitter)'da takip et"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="LinkedIn'da takip et"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Çekmeleri" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -62,8 +65,6 @@ Görsel bir arayüz üzerinde güçlü AI iş akışları oluşturun ve test edi
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
Özür dilerim, haklısınız. Daha anlamlı ve akıcı bir çeviri yapmaya çalışayım. İşte güncellenmiş çeviri:
**3. Prompt IDE**:
Komut istemlerini oluşturmak, model performansını karşılaştırmak ve sohbet tabanlı uygulamalara metin-konuşma gibi ek özellikler eklemek için kullanıcı dostu bir arayüz.
@ -150,8 +151,6 @@ Görsel bir arayüz üzerinde güçlü AI iş akışları oluşturun ve test edi
## Dify'ı Kullanma
- **Cloud </br>**
İşte verdiğiniz metnin Türkçe çevirisi, kod bloğu içinde:
-
Herkesin sıfır kurulumla denemesi için bir [Dify Cloud](https://dify.ai) hizmeti sunuyoruz. Bu hizmet, kendi kendine dağıtılan versiyonun tüm yeteneklerini sağlar ve sandbox planında 200 ücretsiz GPT-4 çağrısı içerir.
- **Dify Topluluk Sürümünü Kendi Sunucunuzda Barındırma</br>**
@ -177,8 +176,6 @@ GitHub'da Dify'a yıldız verin ve yeni sürümlerden anında haberdar olun.
>- RAM >= 4GB
</br>
İşte verdiğiniz metnin Türkçe çevirisi, kod bloğu içinde:
Dify sunucusunu başlatmanın en kolay yolu, [docker-compose.yml](docker/docker-compose.yaml) dosyamızı çalıştırmaktır. Kurulum komutunu çalıştırmadan önce, makinenizde [Docker](https://docs.docker.com/get-docker/) ve [Docker Compose](https://docs.docker.com/compose/install/)'un kurulu olduğundan emin olun:
```bash

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="theo dõi trên X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="theo dõi trên LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -422,8 +422,8 @@ POSITION_PROVIDER_INCLUDES=
POSITION_PROVIDER_EXCLUDES=
# Plugin configuration
PLUGIN_API_KEY=lYkiYYT6owG+71oLerGzA7GXCgOT++6ovaezWAjpCjf+Sjc3ZtU+qUEi+vRjI/+XbV1AaFy691iy+kGDv2Jvy0/eAh8Y1
PLUGIN_API_URL=http://127.0.0.1:5002
PLUGIN_DAEMON_KEY=lYkiYYT6owG+71oLerGzA7GXCgOT++6ovaezWAjpCjf+Sjc3ZtU+qUEi
PLUGIN_DAEMON_URL=http://127.0.0.1:5002
PLUGIN_REMOTE_INSTALL_PORT=5003
PLUGIN_REMOTE_INSTALL_HOST=localhost
PLUGIN_MAX_PACKAGE_SIZE=15728640
@ -435,7 +435,7 @@ MARKETPLACE_ENABLED=true
MARKETPLACE_API_URL=https://marketplace.dify.ai
# Endpoint configuration
ENDPOINT_URL_TEMPLATE=http://localhost/e/{hook_id}
ENDPOINT_URL_TEMPLATE=http://localhost:5002/e/{hook_id}
# Reset password token expiry minutes
RESET_PASSWORD_TOKEN_EXPIRY_MINUTES=5

View File

@ -53,10 +53,12 @@ ignore = [
"FURB152", # math-constant
"UP007", # non-pep604-annotation
"UP032", # f-string
"UP045", # non-pep604-annotation-optional
"B005", # strip-with-multi-characters
"B006", # mutable-argument-default
"B007", # unused-loop-control-variable
"B026", # star-arg-unpacking-after-keyword-arg
"B903", # class-as-data-structure
"B904", # raise-without-from-inside-except
"B905", # zip-without-explicit-strict
"N806", # non-lowercase-variable-in-function

View File

@ -4,7 +4,7 @@ FROM python:3.12-slim-bookworm AS base
WORKDIR /app/api
# Install Poetry
ENV POETRY_VERSION=1.8.4
ENV POETRY_VERSION=2.0.1
# if you located in China, you can use aliyun mirror to speed up
# RUN pip install --no-cache-dir poetry==${POETRY_VERSION} -i https://mirrors.aliyun.com/pypi/simple/
@ -48,16 +48,18 @@ ENV TZ=UTC
WORKDIR /app/api
RUN apt-get update \
&& apt-get install -y --no-install-recommends curl nodejs libgmp-dev libmpfr-dev libmpc-dev \
# if you located in China, you can use aliyun mirror to speed up
# && echo "deb http://mirrors.aliyun.com/debian testing main" > /etc/apt/sources.list \
&& echo "deb http://deb.debian.org/debian testing main" > /etc/apt/sources.list \
&& apt-get update \
# For Security
&& apt-get install -y --no-install-recommends expat=2.6.4-1 libldap-2.5-0=2.5.19+dfsg-1 perl=5.40.0-8 libsqlite3-0=3.46.1-1 zlib1g=1:1.3.dfsg+really1.3.1-1+b1 \
# install a chinese font to support the use of tools like matplotlib
&& apt-get install -y fonts-noto-cjk \
RUN \
apt-get update \
# Install dependencies
&& apt-get install -y --no-install-recommends \
# basic environment
curl nodejs libgmp-dev libmpfr-dev libmpc-dev \
# For Security
# expat libldap-2.5-0 perl libsqlite3-0 zlib1g \
# install a chinese font to support the use of tools like matplotlib
fonts-noto-cjk \
# install libmagic to support the use of python-magic guess MIMETYPE
libmagic1 \
&& apt-get autoremove -y \
&& rm -rf /var/lib/apt/lists/*
@ -80,7 +82,6 @@ COPY . /app/api/
COPY docker/entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh
ARG COMMIT_SHA
ENV COMMIT_SHA=${COMMIT_SHA}

View File

@ -79,5 +79,5 @@
2. Run the tests locally with mocked system environment variables in `tool.pytest_env` section in `pyproject.toml`
```bash
poetry run -C api bash dev/pytest/pytest_all_tests.sh
poetry run -P api bash dev/pytest/pytest_all_tests.sh
```

View File

@ -141,10 +141,10 @@ class PluginConfig(BaseSettings):
PLUGIN_DAEMON_URL: HttpUrl = Field(
description="Plugin API URL",
default="http://plugin:5002",
default="http://localhost:5002",
)
PLUGIN_API_KEY: str = Field(
PLUGIN_DAEMON_KEY: str = Field(
description="Plugin API key",
default="plugin-api-key",
)
@ -200,7 +200,7 @@ class EndpointConfig(BaseSettings):
)
CONSOLE_WEB_URL: str = Field(
description="Base URL for the console web interface," "used for frontend references and CORS configuration",
description="Base URL for the console web interface,used for frontend references and CORS configuration",
default="",
)
@ -556,6 +556,11 @@ class AuthConfig(BaseSettings):
default=86400,
)
FORGOT_PASSWORD_LOCKOUT_DURATION: PositiveInt = Field(
description="Time (in seconds) a user must wait before retrying password reset after exceeding the rate limit.",
default=86400,
)
class ModerationConfig(BaseSettings):
"""

View File

@ -1,9 +1,40 @@
from typing import Optional
from pydantic import Field, NonNegativeInt
from pydantic import Field, NonNegativeInt, computed_field
from pydantic_settings import BaseSettings
class HostedCreditConfig(BaseSettings):
HOSTED_MODEL_CREDIT_CONFIG: str = Field(
description="Model credit configuration in format 'model:credits,model:credits', e.g., 'gpt-4:20,gpt-4o:10'",
default="",
)
def get_model_credits(self, model_name: str) -> int:
"""
Get credit value for a specific model name.
Returns 1 if model is not found in configuration (default credit).
:param model_name: The name of the model to search for
:return: The credit value for the model
"""
if not self.HOSTED_MODEL_CREDIT_CONFIG:
return 1
try:
credit_map = dict(
item.strip().split(":", 1) for item in self.HOSTED_MODEL_CREDIT_CONFIG.split(",") if ":" in item
)
# Search for matching model pattern
for pattern, credit in credit_map.items():
if pattern.strip() == model_name:
return int(credit)
return 1 # Default quota if no match found
except (ValueError, AttributeError):
return 1 # Return default quota if parsing fails
class HostedOpenAiConfig(BaseSettings):
"""
Configuration for hosted OpenAI service
@ -181,7 +212,7 @@ class HostedFetchAppTemplateConfig(BaseSettings):
"""
HOSTED_FETCH_APP_TEMPLATES_MODE: str = Field(
description="Mode for fetching app templates: remote, db, or builtin" " default to remote,",
description="Mode for fetching app templates: remote, db, or builtin default to remote,",
default="remote",
)
@ -202,5 +233,7 @@ class HostedServiceConfig(
HostedZhipuAIConfig,
# moderation
HostedModerationConfig,
# credit config
HostedCreditConfig,
):
pass

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.15.0",
default="1.0.0",
)
COMMIT_SHA: str = Field(

View File

@ -1,12 +1,32 @@
import mimetypes
import os
import platform
import re
import urllib.parse
import warnings
from collections.abc import Mapping
from typing import Any
from uuid import uuid4
import httpx
try:
import magic
except ImportError:
if platform.system() == "Windows":
warnings.warn(
"To use python-magic guess MIMETYPE, you need to run `pip install python-magic-bin`", stacklevel=2
)
elif platform.system() == "Darwin":
warnings.warn("To use python-magic guess MIMETYPE, you need to run `brew install libmagic`", stacklevel=2)
elif platform.system() == "Linux":
warnings.warn(
"To use python-magic guess MIMETYPE, you need to run `sudo apt-get install libmagic1`", stacklevel=2
)
else:
warnings.warn("To use python-magic guess MIMETYPE, you need to install `libmagic`", stacklevel=2)
magic = None # type: ignore
from pydantic import BaseModel
from configs import dify_config
@ -47,6 +67,13 @@ def guess_file_info_from_response(response: httpx.Response):
# If guessing fails, use Content-Type from response headers
mimetype = response.headers.get("Content-Type", "application/octet-stream")
# Use python-magic to guess MIME type if still unknown or generic
if mimetype == "application/octet-stream" and magic is not None:
try:
mimetype = magic.from_buffer(response.content[:1024], mime=True)
except magic.MagicException:
pass
extension = os.path.splitext(filename)[1]
# Ensure filename has an extension

View File

@ -59,7 +59,7 @@ class InsertExploreAppListApi(Resource):
with Session(db.engine) as session:
app = session.execute(select(App).filter(App.id == args["app_id"])).scalar_one_or_none()
if not app:
raise NotFound(f'App \'{args["app_id"]}\' is not found')
raise NotFound(f"App '{args['app_id']}' is not found")
site = app.site
if not site:

View File

@ -22,7 +22,7 @@ from controllers.console.wraps import account_initialization_required, setup_req
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from models.model import AppMode
from models import App, AppMode
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -79,7 +79,7 @@ class ChatMessageTextApi(Resource):
@login_required
@account_initialization_required
@get_app_model
def post(self, app_model):
def post(self, app_model: App):
from werkzeug.exceptions import InternalServerError
try:
@ -98,9 +98,13 @@ class ChatMessageTextApi(Resource):
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
if text_to_speech is None:
raise ValueError("TTS is not enabled")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
if app_model.app_model_config is None:
raise ValueError("AppModelConfig not found")
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None

View File

@ -59,3 +59,9 @@ class EmailCodeAccountDeletionRateLimitExceededError(BaseHTTPException):
error_code = "email_code_account_deletion_rate_limit_exceeded"
description = "Too many account deletion emails have been sent. Please try again in 5 minutes."
code = 429
class EmailPasswordResetLimitError(BaseHTTPException):
error_code = "email_password_reset_limit"
description = "Too many failed password reset attempts. Please try again in 24 hours."
code = 429

View File

@ -8,7 +8,13 @@ from sqlalchemy.orm import Session
from constants.languages import languages
from controllers.console import api
from controllers.console.auth.error import EmailCodeError, InvalidEmailError, InvalidTokenError, PasswordMismatchError
from controllers.console.auth.error import (
EmailCodeError,
EmailPasswordResetLimitError,
InvalidEmailError,
InvalidTokenError,
PasswordMismatchError,
)
from controllers.console.error import AccountInFreezeError, AccountNotFound, EmailSendIpLimitError
from controllers.console.wraps import setup_required
from events.tenant_event import tenant_was_created
@ -65,6 +71,10 @@ class ForgotPasswordCheckApi(Resource):
user_email = args["email"]
is_forgot_password_error_rate_limit = AccountService.is_forgot_password_error_rate_limit(args["email"])
if is_forgot_password_error_rate_limit:
raise EmailPasswordResetLimitError()
token_data = AccountService.get_reset_password_data(args["token"])
if token_data is None:
raise InvalidTokenError()
@ -73,8 +83,10 @@ class ForgotPasswordCheckApi(Resource):
raise InvalidEmailError()
if args["code"] != token_data.get("code"):
AccountService.add_forgot_password_error_rate_limit(args["email"])
raise EmailCodeError()
AccountService.reset_forgot_password_error_rate_limit(args["email"])
return {"is_valid": True, "email": token_data.get("email")}

View File

@ -135,7 +135,7 @@ class DataSourceNotionListApi(Resource):
data_source_info = json.loads(document.data_source_info)
exist_page_ids.append(data_source_info["notion_page_id"])
# get all authorized pages
data_source_bindings = session.execute(
data_source_bindings = session.scalars(
select(DataSourceOauthBinding).filter_by(
tenant_id=current_user.current_tenant_id, provider="notion", disabled=False
)

View File

@ -14,6 +14,7 @@ from controllers.console.wraps import account_initialization_required, enterpris
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.indexing_runner import IndexingRunner
from core.model_runtime.entities.model_entities import ModelType
from core.plugin.entities.plugin import ModelProviderID
from core.provider_manager import ProviderManager
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.extractor.entity.extract_setting import ExtractSetting
@ -52,12 +53,12 @@ class DatasetListApi(Resource):
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
include_all = request.args.get("include_all", default="false").lower() == "true"
if ids:
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
else:
datasets, total = DatasetService.get_datasets(
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
page, limit, current_user.current_tenant_id, current_user, search, tag_ids, include_all
)
# check embedding setting
@ -72,7 +73,9 @@ class DatasetListApi(Resource):
data = marshal(datasets, dataset_detail_fields)
for item in data:
# convert embedding_model_provider to plugin standard format
if item["indexing_technique"] == "high_quality":
item["embedding_model_provider"] = str(ModelProviderID(item["embedding_model_provider"]))
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
if item_model in model_names:
item["embedding_available"] = True
@ -457,7 +460,7 @@ class DatasetIndexingEstimateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -619,8 +622,7 @@ class DatasetRetrievalSettingApi(Resource):
vector_type = dify_config.VECTOR_STORE
match vector_type:
case (
VectorType.MILVUS
| VectorType.RELYT
VectorType.RELYT
| VectorType.PGVECTOR
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
@ -645,6 +647,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.TIDB_ON_QDRANT
| VectorType.LINDORM
| VectorType.COUCHBASE
| VectorType.MILVUS
):
return {
"retrieval_method": [

View File

@ -362,8 +362,7 @@ class DatasetInitApi(Resource):
)
except InvokeAuthorizationError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -540,8 +539,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
return response.model_dump(), 200
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -168,8 +168,7 @@ class DatasetDocumentSegmentApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -217,8 +216,7 @@ class DatasetDocumentSegmentAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -267,8 +265,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -368,9 +365,9 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
result = []
for index, row in df.iterrows():
if document.doc_form == "qa_model":
data = {"content": row[0], "answer": row[1]}
data = {"content": row.iloc[0], "answer": row.iloc[1]}
else:
data = {"content": row[0]}
data = {"content": row.iloc[0]}
result.append(data)
if len(result) == 0:
raise ValueError("The CSV file is empty.")
@ -437,8 +434,7 @@ class ChildChunkAddApi(Resource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -32,7 +32,7 @@ class ConversationListApi(InstalledAppResource):
pinned = None
if "pinned" in args and args["pinned"] is not None:
pinned = True if args["pinned"] == "true" else False
pinned = args["pinned"] == "true"
try:
with Session(db.engine) as session:

View File

@ -50,7 +50,7 @@ class MessageListApi(InstalledAppResource):
try:
return MessageService.pagination_by_first_id(
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"]
)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -1,3 +1,5 @@
import json
from flask_restful import Resource, reqparse # type: ignore
from controllers.console.wraps import setup_required
@ -29,4 +31,34 @@ class EnterpriseWorkspace(Resource):
return {"message": "enterprise workspace created."}
class EnterpriseWorkspaceNoOwnerEmail(Resource):
@setup_required
@enterprise_inner_api_only
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("name", type=str, required=True, location="json")
args = parser.parse_args()
tenant = TenantService.create_tenant(args["name"], is_from_dashboard=True)
tenant_was_created.send(tenant)
resp = {
"id": tenant.id,
"name": tenant.name,
"encrypt_public_key": tenant.encrypt_public_key,
"plan": tenant.plan,
"status": tenant.status,
"custom_config": json.loads(tenant.custom_config) if tenant.custom_config else {},
"created_at": tenant.created_at.isoformat() if tenant.created_at else None,
"updated_at": tenant.updated_at.isoformat() if tenant.updated_at else None,
}
return {
"message": "enterprise workspace created.",
"tenant": resp,
}
api.add_resource(EnterpriseWorkspace, "/enterprise/workspace")
api.add_resource(EnterpriseWorkspaceNoOwnerEmail, "/enterprise/workspace/ownerless")

View File

@ -65,7 +65,7 @@ def enterprise_inner_api_user_auth(view):
def plugin_inner_api_only(view):
@wraps(view)
def decorated(*args, **kwargs):
if not dify_config.PLUGIN_API_KEY:
if not dify_config.PLUGIN_DAEMON_KEY:
abort(404)
# get header 'X-Inner-Api-Key'

View File

@ -7,4 +7,4 @@ api = ExternalApi(bp)
from . import index
from .app import app, audio, completion, conversation, file, message, workflow
from .dataset import dataset, document, hit_testing, segment
from .dataset import dataset, document, hit_testing, segment, upload_file

View File

@ -31,8 +31,11 @@ class DatasetListApi(DatasetApiResource):
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
include_all = request.args.get("include_all", default="false").lower() == "true"
datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
datasets, total = DatasetService.get_datasets(
page, limit, tenant_id, current_user, search, tag_ids, include_all
)
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)

View File

@ -18,6 +18,7 @@ from controllers.service_api.app.error import (
from controllers.service_api.dataset.error import (
ArchivedDocumentImmutableError,
DocumentIndexingError,
InvalidMetadataError,
)
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
from core.errors.error import ProviderTokenNotInitError
@ -50,6 +51,9 @@ class DocumentAddByTextApi(DatasetApiResource):
"indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
@ -61,6 +65,28 @@ class DocumentAddByTextApi(DatasetApiResource):
if not dataset.indexing_technique and not args["indexing_technique"]:
raise ValueError("indexing_technique is required.")
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
text = args.get("text")
name = args.get("name")
if text is None or name is None:
@ -107,6 +133,8 @@ class DocumentUpdateByTextApi(DatasetApiResource):
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
@ -115,6 +143,32 @@ class DocumentUpdateByTextApi(DatasetApiResource):
if not dataset:
raise ValueError("Dataset is not exist.")
# indexing_technique is already set in dataset since this is an update
args["indexing_technique"] = dataset.indexing_technique
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
if args["text"]:
text = args.get("text")
name = args.get("name")
@ -161,6 +215,30 @@ class DocumentAddByFileApi(DatasetApiResource):
args["doc_form"] = "text_model"
if "doc_language" not in args:
args["doc_language"] = "English"
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
@ -228,6 +306,29 @@ class DocumentUpdateByFileApi(DatasetApiResource):
if "doc_language" not in args:
args["doc_language"] = "English"
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)

View File

@ -53,8 +53,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -95,8 +94,7 @@ class SegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -175,8 +173,7 @@ class DatasetSegmentApi(DatasetApiResource):
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -0,0 +1,54 @@
from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.wraps import (
DatasetApiResource,
)
from core.file import helpers as file_helpers
from extensions.ext_database import db
from models.dataset import Dataset
from models.model import UploadFile
from services.dataset_service import DocumentService
class UploadFileApi(DatasetApiResource):
def get(self, tenant_id, dataset_id, document_id):
"""Get upload file."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
raise NotFound("Dataset not found.")
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound("Document not found.")
# check upload file
if document.data_source_type != "upload_file":
raise ValueError(f"Document data source type ({document.data_source_type}) is not upload_file.")
data_source_info = document.data_source_info_dict
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
upload_file = db.session.query(UploadFile).filter(UploadFile.id == file_id).first()
if not upload_file:
raise NotFound("UploadFile not found.")
else:
raise ValueError("Upload file id not found in document data source info.")
url = file_helpers.get_signed_file_url(upload_file_id=upload_file.id)
return {
"id": upload_file.id,
"name": upload_file.name,
"size": upload_file.size,
"extension": upload_file.extension,
"url": url,
"download_url": f"{url}&as_attachment=true",
"mime_type": upload_file.mime_type,
"created_by": upload_file.created_by,
"created_at": upload_file.created_at.timestamp(),
}, 200
api.add_resource(UploadFileApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/upload-file")

View File

@ -195,7 +195,11 @@ def validate_and_get_api_token(scope: str | None = None):
with Session(db.engine, expire_on_commit=False) as session:
update_stmt = (
update(ApiToken)
.where(ApiToken.token == auth_token, ApiToken.last_used_at < cutoff_time, ApiToken.type == scope)
.where(
ApiToken.token == auth_token,
(ApiToken.last_used_at.is_(None) | (ApiToken.last_used_at < cutoff_time)),
ApiToken.type == scope,
)
.values(last_used_at=current_time)
.returning(ApiToken)
)
@ -236,7 +240,7 @@ def create_or_update_end_user_for_user_id(app_model: App, user_id: Optional[str]
tenant_id=app_model.tenant_id,
app_id=app_model.id,
type="service_api",
is_anonymous=True if user_id == "DEFAULT-USER" else False,
is_anonymous=user_id == "DEFAULT-USER",
session_id=user_id,
)
db.session.add(end_user)

View File

@ -39,7 +39,7 @@ class ConversationListApi(WebApiResource):
pinned = None
if "pinned" in args and args["pinned"] is not None:
pinned = True if args["pinned"] == "true" else False
pinned = args["pinned"] == "true"
try:
with Session(db.engine) as session:

View File

@ -91,7 +91,7 @@ class MessageListApi(WebApiResource):
try:
return MessageService.pagination_by_first_id(
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"]
)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -329,6 +329,7 @@ class BaseAgentRunner(AppRunner):
)
if not updated_agent_thought:
raise ValueError("agent thought not found")
agent_thought = updated_agent_thought
if thought:
agent_thought.thought = thought

View File

@ -168,7 +168,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=scratchpad.action.action_name if scratchpad.action else "",
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought or "",

View File

@ -8,16 +8,16 @@ from core.agent.fc_agent_runner import FunctionCallAgentRunner
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.base_app_runner import AppRunner
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity, ModelConfigWithCredentialsEntity
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMMode, LLMUsage
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.base import ModerationError
from extensions.ext_database import db
from models.model import App, Conversation, Message, MessageAgentThought
from models.model import App, Conversation, Message
logger = logging.getLogger(__name__)
@ -191,7 +191,8 @@ class AgentChatAppRunner(AppRunner):
# change function call strategy based on LLM model
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
assert model_schema is not None
if not model_schema:
raise ValueError("Model schema not found")
if {ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL}.intersection(model_schema.features or []):
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
@ -247,29 +248,3 @@ class AgentChatAppRunner(AppRunner):
stream=application_generate_entity.stream,
agent=True,
)
def _get_usage_of_all_agent_thoughts(
self, model_config: ModelConfigWithCredentialsEntity, message: Message
) -> LLMUsage:
"""
Get usage of all agent thoughts
:param model_config: model config
:param message: message
:return:
"""
agent_thoughts = (
db.session.query(MessageAgentThought).filter(MessageAgentThought.message_id == message.id).all()
)
all_message_tokens = 0
all_answer_tokens = 0
for agent_thought in agent_thoughts:
all_message_tokens += agent_thought.message_tokens
all_answer_tokens += agent_thought.answer_tokens
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
return model_type_instance._calc_response_usage(
model_config.model, model_config.credentials, all_message_tokens, all_answer_tokens
)

View File

@ -167,8 +167,7 @@ class AppQueueManager:
else:
if isinstance(data, DeclarativeMeta) or hasattr(data, "_sa_instance_state"):
raise TypeError(
"Critical Error: Passing SQLAlchemy Model instances "
"that cause thread safety issues is not allowed."
"Critical Error: Passing SQLAlchemy Model instances that cause thread safety issues is not allowed."
)

View File

@ -89,6 +89,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
Conversation.id == conversation_id,
Conversation.app_id == app_model.id,
Conversation.status == "normal",
Conversation.is_deleted.is_(False),
]
if isinstance(user, Account):

View File

@ -241,6 +241,7 @@ class WorkflowBasedAppRunner(AppRunner):
predecessor_node_id=event.predecessor_node_id,
in_iteration_id=event.in_iteration_id,
parallel_mode_run_id=event.parallel_mode_run_id,
agent_strategy=event.agent_strategy,
)
)
elif isinstance(event, NodeRunSucceededEvent):
@ -386,7 +387,6 @@ class WorkflowBasedAppRunner(AppRunner):
status=event.status,
data=event.data,
metadata=event.metadata,
node_id=event.node_id,
)
)
elif isinstance(event, ParallelBranchRunStartedEvent):

View File

@ -6,7 +6,7 @@ from typing import Any, Optional
from pydantic import BaseModel
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from core.workflow.entities.node_entities import NodeRunMetadataKey
from core.workflow.entities.node_entities import AgentNodeStrategyInit, NodeRunMetadataKey
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.nodes import NodeType
from core.workflow.nodes.base import BaseNodeData
@ -281,6 +281,7 @@ class QueueNodeStartedEvent(AppQueueEvent):
start_at: datetime
parallel_mode_run_id: Optional[str] = None
"""iteratoin run in parallel mode run id"""
agent_strategy: Optional[AgentNodeStrategyInit] = None
class QueueNodeSucceededEvent(AppQueueEvent):
@ -330,7 +331,6 @@ class QueueAgentLogEvent(AppQueueEvent):
status: str
data: Mapping[str, Any]
metadata: Optional[Mapping[str, Any]] = None
node_id: str
class QueueNodeRetryEvent(QueueNodeStartedEvent):

View File

@ -6,6 +6,7 @@ from pydantic import BaseModel, ConfigDict
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.utils.encoders import jsonable_encoder
from core.workflow.entities.node_entities import AgentNodeStrategyInit
from models.workflow import WorkflowNodeExecutionStatus
@ -248,6 +249,7 @@ class NodeStartStreamResponse(StreamResponse):
parent_parallel_start_node_id: Optional[str] = None
iteration_id: Optional[str] = None
parallel_run_id: Optional[str] = None
agent_strategy: Optional[AgentNodeStrategyInit] = None
event: StreamEvent = StreamEvent.NODE_STARTED
workflow_run_id: str
@ -717,7 +719,6 @@ class AgentLogStreamResponse(StreamResponse):
status: str
data: Mapping[str, Any]
metadata: Optional[Mapping[str, Any]] = None
node_id: str
event: StreamEvent = StreamEvent.AGENT_LOG
data: Data

View File

@ -145,7 +145,7 @@ class MessageCycleManage:
# get extension
if "." in message_file.url:
extension = f'.{message_file.url.split(".")[-1]}'
extension = f".{message_file.url.split('.')[-1]}"
if len(extension) > 10:
extension = ".bin"
else:

View File

@ -541,6 +541,7 @@ class WorkflowCycleManage:
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
iteration_id=event.in_iteration_id,
parallel_run_id=event.parallel_mode_run_id,
agent_strategy=event.agent_strategy,
),
)
@ -863,6 +864,5 @@ class WorkflowCycleManage:
status=event.status,
data=event.data,
metadata=event.metadata,
node_id=event.node_id,
),
)

View File

@ -62,8 +62,9 @@ class ApiExternalDataTool(ExternalDataTool):
if not api_based_extension:
raise ValueError(
"[External data tool] API query failed, variable: {}, "
"error: api_based_extension_id is invalid".format(self.variable)
"[External data tool] API query failed, variable: {}, error: api_based_extension_id is invalid".format(
self.variable
)
)
# decrypt api_key

View File

@ -33,7 +33,7 @@ def get_signed_file_url_for_plugin(filename: str, mimetype: str, tenant_id: str,
sign = hmac.new(key, msg.encode(), hashlib.sha256).digest()
encoded_sign = base64.urlsafe_b64encode(sign).decode()
return f"{url}?timestamp={timestamp}&nonce={nonce}&sign={encoded_sign}&user_id={user_id}"
return f"{url}?timestamp={timestamp}&nonce={nonce}&sign={encoded_sign}&user_id={user_id}&tenant_id={tenant_id}"
def verify_plugin_file_signature(

View File

@ -90,7 +90,7 @@ class File(BaseModel):
def markdown(self) -> str:
url = self.generate_url()
if self.type == FileType.IMAGE:
text = f'![{self.filename or ""}]({url})'
text = f"![{self.filename or ''}]({url})"
else:
text = f"[{self.filename or url}]({url})"

View File

@ -11,15 +11,6 @@ from configs import dify_config
SSRF_DEFAULT_MAX_RETRIES = dify_config.SSRF_DEFAULT_MAX_RETRIES
proxy_mounts = (
{
"http://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTP_URL),
"https://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTPS_URL),
}
if dify_config.SSRF_PROXY_HTTP_URL and dify_config.SSRF_PROXY_HTTPS_URL
else None
)
BACKOFF_FACTOR = 0.5
STATUS_FORCELIST = [429, 500, 502, 503, 504]
@ -50,7 +41,11 @@ def make_request(method, url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
if dify_config.SSRF_PROXY_ALL_URL:
with httpx.Client(proxy=dify_config.SSRF_PROXY_ALL_URL) as client:
response = client.request(method=method, url=url, **kwargs)
elif proxy_mounts:
elif dify_config.SSRF_PROXY_HTTP_URL and dify_config.SSRF_PROXY_HTTPS_URL:
proxy_mounts = {
"http://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTP_URL),
"https://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTPS_URL),
}
with httpx.Client(mounts=proxy_mounts) as client:
response = client.request(method=method, url=url, **kwargs)
else:

View File

@ -530,7 +530,6 @@ class IndexingRunner:
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 10
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
# create keyword index
create_keyword_thread = threading.Thread(
@ -539,11 +538,22 @@ class IndexingRunner:
)
create_keyword_thread.start()
max_workers = 10
if dataset.indexing_technique == "high_quality":
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
for i in range(0, len(documents), chunk_size):
chunk_documents = documents[i : i + chunk_size]
# Distribute documents into multiple groups based on the hash values of page_content
# This is done to prevent multiple threads from processing the same document,
# Thereby avoiding potential database insertion deadlocks
document_groups: list[list[Document]] = [[] for _ in range(max_workers)]
for document in documents:
hash = helper.generate_text_hash(document.page_content)
group_index = int(hash, 16) % max_workers
document_groups[group_index].append(document)
for chunk_documents in document_groups:
if len(chunk_documents) == 0:
continue
futures.append(
executor.submit(
self._process_chunk,

View File

@ -131,7 +131,7 @@ JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE = (
SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
"Please help me predict the three most likely questions that human would ask, "
"and keeping each question under 20 characters.\n"
"MAKE SURE your output is the SAME language as the Assistant's latest response"
"MAKE SURE your output is the SAME language as the Assistant's latest response. "
"The output must be an array in JSON format following the specified schema:\n"
'["question1","question2","question3"]\n'
)

View File

@ -1,4 +1,4 @@
from .llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from .llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from .message_entities import (
AssistantPromptMessage,
AudioPromptMessageContent,
@ -23,6 +23,7 @@ __all__ = [
"AudioPromptMessageContent",
"DocumentPromptMessageContent",
"ImagePromptMessageContent",
"LLMMode",
"LLMResult",
"LLMResultChunk",
"LLMResultChunkDelta",

View File

@ -1,5 +1,5 @@
from decimal import Decimal
from enum import Enum
from enum import StrEnum
from typing import Optional
from pydantic import BaseModel
@ -8,7 +8,7 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
from core.model_runtime.entities.model_entities import ModelUsage, PriceInfo
class LLMMode(Enum):
class LLMMode(StrEnum):
"""
Enum class for large language model mode.
"""

View File

@ -3,8 +3,11 @@ from typing import Optional
from pydantic import BaseModel, ConfigDict, Field
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.defaults import PARAMETER_RULE_TEMPLATE
from core.model_runtime.entities.model_entities import (
AIModelEntity,
DefaultParameterName,
ModelType,
PriceConfig,
PriceInfo,
@ -18,6 +21,7 @@ from core.model_runtime.errors.invoke import (
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
from core.plugin.entities.plugin_daemon import PluginDaemonInnerError, PluginModelProviderEntity
from core.plugin.manager.model import PluginModelManager
@ -144,3 +148,102 @@ class AIModel(BaseModel):
model=model,
credentials=credentials or {},
)
def get_customizable_model_schema_from_credentials(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Get customizable model schema from credentials
:param model: model name
:param credentials: model credentials
:return: model schema
"""
return self._get_customizable_model_schema(model, credentials)
def _get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Get customizable model schema and fill in the template
"""
schema = self.get_customizable_model_schema(model, credentials)
if not schema:
return None
# fill in the template
new_parameter_rules = []
for parameter_rule in schema.parameter_rules:
if parameter_rule.use_template:
try:
default_parameter_name = DefaultParameterName.value_of(parameter_rule.use_template)
default_parameter_rule = self._get_default_parameter_rule_variable_map(default_parameter_name)
if not parameter_rule.max and "max" in default_parameter_rule:
parameter_rule.max = default_parameter_rule["max"]
if not parameter_rule.min and "min" in default_parameter_rule:
parameter_rule.min = default_parameter_rule["min"]
if not parameter_rule.default and "default" in default_parameter_rule:
parameter_rule.default = default_parameter_rule["default"]
if not parameter_rule.precision and "precision" in default_parameter_rule:
parameter_rule.precision = default_parameter_rule["precision"]
if not parameter_rule.required and "required" in default_parameter_rule:
parameter_rule.required = default_parameter_rule["required"]
if not parameter_rule.help and "help" in default_parameter_rule:
parameter_rule.help = I18nObject(
en_US=default_parameter_rule["help"]["en_US"],
)
if (
parameter_rule.help
and not parameter_rule.help.en_US
and ("help" in default_parameter_rule and "en_US" in default_parameter_rule["help"])
):
parameter_rule.help.en_US = default_parameter_rule["help"]["en_US"]
if (
parameter_rule.help
and not parameter_rule.help.zh_Hans
and ("help" in default_parameter_rule and "zh_Hans" in default_parameter_rule["help"])
):
parameter_rule.help.zh_Hans = default_parameter_rule["help"].get(
"zh_Hans", default_parameter_rule["help"]["en_US"]
)
except ValueError:
pass
new_parameter_rules.append(parameter_rule)
schema.parameter_rules = new_parameter_rules
return schema
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Get customizable model schema
:param model: model name
:param credentials: model credentials
:return: model schema
"""
return None
def _get_default_parameter_rule_variable_map(self, name: DefaultParameterName) -> dict:
"""
Get default parameter rule for given name
:param name: parameter name
:return: parameter rule
"""
default_parameter_rule = PARAMETER_RULE_TEMPLATE.get(name)
if not default_parameter_rule:
raise Exception(f"Invalid model parameter rule name {name}")
return default_parameter_rule
def _get_num_tokens_by_gpt2(self, text: str) -> int:
"""
Get number of tokens for given prompt messages by gpt2
Some provider models do not provide an interface for obtaining the number of tokens.
Here, the gpt2 tokenizer is used to calculate the number of tokens.
This method can be executed offline, and the gpt2 tokenizer has been cached in the project.
:param text: plain text of prompt. You need to convert the original message to plain text
:return: number of tokens
"""
return GPT2Tokenizer.get_num_tokens(text)

View File

@ -107,11 +107,46 @@ class LargeLanguageModel(AIModel):
content_list = []
usage = LLMUsage.empty_usage()
system_fingerprint = None
tools_calls: list[AssistantPromptMessage.ToolCall] = []
def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]):
def get_tool_call(tool_name: str):
if not tool_name:
return tools_calls[-1]
tool_call = next(
(tool_call for tool_call in tools_calls if tool_call.function.name == tool_name), None
)
if tool_call is None:
tool_call = AssistantPromptMessage.ToolCall(
id="",
type="",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tool_name, arguments=""),
)
tools_calls.append(tool_call)
return tool_call
for new_tool_call in new_tool_calls:
# get tool call
tool_call = get_tool_call(new_tool_call.function.name)
# update tool call
if new_tool_call.id:
tool_call.id = new_tool_call.id
if new_tool_call.type:
tool_call.type = new_tool_call.type
if new_tool_call.function.name:
tool_call.function.name = new_tool_call.function.name
if new_tool_call.function.arguments:
tool_call.function.arguments += new_tool_call.function.arguments
for chunk in result:
if isinstance(chunk.delta.message.content, str):
content += chunk.delta.message.content
elif isinstance(chunk.delta.message.content, list):
content_list.extend(chunk.delta.message.content)
if chunk.delta.message.tool_calls:
increase_tool_call(chunk.delta.message.tool_calls)
usage = chunk.delta.usage or LLMUsage.empty_usage()
system_fingerprint = chunk.system_fingerprint
@ -120,7 +155,10 @@ class LargeLanguageModel(AIModel):
result = LLMResult(
model=model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=content or content_list),
message=AssistantPromptMessage(
content=content or content_list,
tool_calls=tools_calls,
),
usage=usage,
system_fingerprint=system_fingerprint,
)

View File

@ -1,6 +1,9 @@
import logging
from threading import Lock
from typing import Any
logger = logging.getLogger(__name__)
_tokenizer: Any = None
_lock = Lock()
@ -43,5 +46,6 @@ class GPT2Tokenizer:
base_path = abspath(__file__)
gpt2_tokenizer_path = join(dirname(base_path), "gpt2")
_tokenizer = TransformerGPT2Tokenizer.from_pretrained(gpt2_tokenizer_path)
logger.info("Fallback to Transformers' GPT-2 tokenizer from tiktoken")
return _tokenizer

View File

@ -1,4 +1,5 @@
- openai
- deepseek
- anthropic
- azure_openai
- google
@ -32,7 +33,6 @@
- localai
- volcengine_maas
- openai_api_compatible
- deepseek
- hunyuan
- siliconflow
- perfxcloud

View File

@ -20,6 +20,7 @@ from core.model_runtime.model_providers.__base.text_embedding_model import TextE
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.schema_validators.model_credential_schema_validator import ModelCredentialSchemaValidator
from core.model_runtime.schema_validators.provider_credential_schema_validator import ProviderCredentialSchemaValidator
from core.plugin.entities.plugin import ModelProviderID
from core.plugin.entities.plugin_daemon import PluginModelProviderEntity
from core.plugin.manager.asset import PluginAssetManager
from core.plugin.manager.model import PluginModelManager
@ -112,6 +113,9 @@ class ModelProviderFactory:
:param provider: provider name
:return: provider schema
"""
if "/" not in provider:
provider = str(ModelProviderID(provider))
# fetch plugin model providers
plugin_model_provider_entities = self.get_plugin_model_providers()
@ -363,4 +367,4 @@ class ModelProviderFactory:
plugin_id = "/".join(provider.split("/")[:-1])
provider_name = provider.split("/")[-1]
return plugin_id, provider_name
return str(plugin_id), provider_name

View File

@ -0,0 +1,41 @@
model: gemini-2.0-flash-001
label:
en_US: Gemini 2.0 Flash 001
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,41 @@
model: gemini-2.0-flash-lite-preview-02-05
label:
en_US: Gemini 2.0 Flash Lite Preview 0205
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,39 @@
model: gemini-2.0-flash-thinking-exp-01-21
label:
en_US: Gemini 2.0 Flash Thinking Exp 0121
model_type: llm
features:
- agent-thought
- vision
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,39 @@
model: gemini-2.0-flash-thinking-exp-1219
label:
en_US: Gemini 2.0 Flash Thinking Exp 1219
model_type: llm
features:
- agent-thought
- vision
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,37 @@
model: gemini-2.0-pro-exp-02-05
label:
en_US: Gemini 2.0 Pro Exp 0205
model_type: llm
features:
- agent-thought
- document
model_properties:
mode: chat
context_size: 2000000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
en_US: Top k
type: int
help:
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_output_tokens
use_template: max_tokens
required: true
default: 8192
min: 1
max: 8192
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,41 @@
model: gemini-exp-1114
label:
en_US: Gemini exp 1114
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,41 @@
model: gemini-exp-1121
label:
en_US: Gemini exp 1121
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,41 @@
model: gemini-exp-1206
label:
en_US: Gemini exp 1206
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 2097152
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -1,42 +0,0 @@
model: ernie-lite-pro-128k
label:
en_US: Ernie-Lite-Pro-128K
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.8
- name: top_p
use_template: top_p
- name: min_output_tokens
label:
en_US: "Min Output Tokens"
zh_Hans: "最小输出Token数"
use_template: max_tokens
min: 2
max: 2048
help:
zh_Hans: 指定模型最小输出token数
en_US: Specifies the lower limit on the length of generated results.
- name: max_output_tokens
label:
en_US: "Max Output Tokens"
zh_Hans: "最大输出Token数"
use_template: max_tokens
min: 2
max: 2048
default: 2048
help:
zh_Hans: 指定模型最大输出token数
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty

View File

@ -0,0 +1,66 @@
model: glm-4-air-0111
label:
en_US: glm-4-air-0111
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 131072
parameter_rules:
- name: temperature
use_template: temperature
default: 0.95
min: 0.0
max: 1.0
help:
zh_Hans: 采样温度,控制输出的随机性,必须为正数取值范围是:(0.0,1.0],不能等于 0,默认值为 0.95 值越大,会使输出更随机,更具创造性;值越小,输出会更加稳定或确定建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数。
en_US: Sampling temperature, controls the randomness of the output, must be a positive number. The value range is (0.0,1.0], which cannot be equal to 0. The default value is 0.95. The larger the value, the more random and creative the output will be; the smaller the value, The output will be more stable or certain. It is recommended that you adjust the top_p or temperature parameters according to the application scenario, but do not adjust both parameters at the same time.
- name: top_p
use_template: top_p
default: 0.7
help:
zh_Hans: 用温度取样的另一种方法,称为核取样取值范围是:(0.0, 1.0) 开区间,不能等于 0 或 1默认值为 0.7 模型考虑具有 top_p 概率质量tokens的结果例如0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取 tokens 建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数。
en_US: Another method of temperature sampling is called kernel sampling. The value range is (0.0, 1.0) open interval, which cannot be equal to 0 or 1. The default value is 0.7. The model considers the results with top_p probability mass tokens. For example 0.1 means The model decoder only considers tokens from the candidate set with the top 10% probability. It is recommended that you adjust the top_p or temperature parameters according to the application scenario, but do not adjust both parameters at the same time.
- name: do_sample
label:
zh_Hans: 采样策略
en_US: Sampling strategy
type: boolean
help:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: max_tokens
use_template: max_tokens
default: 1024
min: 1
max: 4095
- name: web_search
type: boolean
label:
zh_Hans: 联网搜索
en_US: Web Search
default: false
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0.0005'
output: '0.0005'
unit: '0.001'
currency: RMB

View File

@ -87,6 +87,6 @@ class CommonValidator:
if value.lower() not in {"true", "false"}:
raise ValueError(f"Variable {credential_form_schema.variable} should be true or false")
value = True if value.lower() == "true" else False
value = value.lower() == "true"
return value

View File

@ -6,6 +6,7 @@ from pydantic import BaseModel, ValidationInfo, field_validator
class TracingProviderEnum(Enum):
LANGFUSE = "langfuse"
LANGSMITH = "langsmith"
OPIK = "opik"
class BaseTracingConfig(BaseModel):
@ -56,5 +57,36 @@ class LangSmithConfig(BaseTracingConfig):
return v
class OpikConfig(BaseTracingConfig):
"""
Model class for Opik tracing config.
"""
api_key: str | None = None
project: str | None = None
workspace: str | None = None
url: str = "https://www.comet.com/opik/api/"
@field_validator("project")
@classmethod
def project_validator(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "Default Project"
return v
@field_validator("url")
@classmethod
def url_validator(cls, v, info: ValidationInfo):
if v is None or v == "":
v = "https://www.comet.com/opik/api/"
if not v.startswith(("https://", "http://")):
raise ValueError("url must start with https:// or http://")
if not v.endswith("/api/"):
raise ValueError("url should ends with /api/")
return v
OPS_FILE_PATH = "ops_trace/"
OPS_TRACE_FAILED_KEY = "FAILED_OPS_TRACE"

View File

@ -0,0 +1,469 @@
import json
import logging
import os
import uuid
from datetime import datetime, timedelta
from typing import Optional, cast
from opik import Opik, Trace
from opik.id_helpers import uuid4_to_uuid7
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import OpikConfig
from core.ops.entities.trace_entity import (
BaseTraceInfo,
DatasetRetrievalTraceInfo,
GenerateNameTraceInfo,
MessageTraceInfo,
ModerationTraceInfo,
SuggestedQuestionTraceInfo,
ToolTraceInfo,
TraceTaskName,
WorkflowTraceInfo,
)
from extensions.ext_database import db
from models.model import EndUser, MessageFile
from models.workflow import WorkflowNodeExecution
logger = logging.getLogger(__name__)
def wrap_dict(key_name, data):
"""Make sure that the input data is a dict"""
if not isinstance(data, dict):
return {key_name: data}
return data
def wrap_metadata(metadata, **kwargs):
"""Add common metatada to all Traces and Spans"""
metadata["created_from"] = "dify"
metadata.update(kwargs)
return metadata
def prepare_opik_uuid(user_datetime: Optional[datetime], user_uuid: Optional[str]):
"""Opik needs UUIDv7 while Dify uses UUIDv4 for identifier of most
messages and objects. The type-hints of BaseTraceInfo indicates that
objects start_time and message_id could be null which means we cannot map
it to a UUIDv7. Given that we have no way to identify that object
uniquely, generate a new random one UUIDv7 in that case.
"""
if user_datetime is None:
user_datetime = datetime.now()
if user_uuid is None:
user_uuid = str(uuid.uuid4())
return uuid4_to_uuid7(user_datetime, user_uuid)
class OpikDataTrace(BaseTraceInstance):
def __init__(
self,
opik_config: OpikConfig,
):
super().__init__(opik_config)
self.opik_client = Opik(
project_name=opik_config.project,
workspace=opik_config.workspace,
host=opik_config.url,
api_key=opik_config.api_key,
)
self.project = opik_config.project
self.file_base_url = os.getenv("FILES_URL", "http://127.0.0.1:5001")
def trace(self, trace_info: BaseTraceInfo):
if isinstance(trace_info, WorkflowTraceInfo):
self.workflow_trace(trace_info)
if isinstance(trace_info, MessageTraceInfo):
self.message_trace(trace_info)
if isinstance(trace_info, ModerationTraceInfo):
self.moderation_trace(trace_info)
if isinstance(trace_info, SuggestedQuestionTraceInfo):
self.suggested_question_trace(trace_info)
if isinstance(trace_info, DatasetRetrievalTraceInfo):
self.dataset_retrieval_trace(trace_info)
if isinstance(trace_info, ToolTraceInfo):
self.tool_trace(trace_info)
if isinstance(trace_info, GenerateNameTraceInfo):
self.generate_name_trace(trace_info)
def workflow_trace(self, trace_info: WorkflowTraceInfo):
dify_trace_id = trace_info.workflow_run_id
opik_trace_id = prepare_opik_uuid(trace_info.start_time, dify_trace_id)
workflow_metadata = wrap_metadata(
trace_info.metadata, message_id=trace_info.message_id, workflow_app_log_id=trace_info.workflow_app_log_id
)
root_span_id = None
if trace_info.message_id:
dify_trace_id = trace_info.message_id
opik_trace_id = prepare_opik_uuid(trace_info.start_time, dify_trace_id)
trace_data = {
"id": opik_trace_id,
"name": TraceTaskName.MESSAGE_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": workflow_metadata,
"input": wrap_dict("input", trace_info.workflow_run_inputs),
"output": wrap_dict("output", trace_info.workflow_run_outputs),
"tags": ["message", "workflow"],
"project_name": self.project,
}
self.add_trace(trace_data)
root_span_id = prepare_opik_uuid(trace_info.start_time, trace_info.workflow_run_id)
span_data = {
"id": root_span_id,
"parent_span_id": None,
"trace_id": opik_trace_id,
"name": TraceTaskName.WORKFLOW_TRACE.value,
"input": wrap_dict("input", trace_info.workflow_run_inputs),
"output": wrap_dict("output", trace_info.workflow_run_outputs),
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": workflow_metadata,
"tags": ["workflow"],
"project_name": self.project,
}
self.add_span(span_data)
else:
trace_data = {
"id": opik_trace_id,
"name": TraceTaskName.MESSAGE_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": workflow_metadata,
"input": wrap_dict("input", trace_info.workflow_run_inputs),
"output": wrap_dict("output", trace_info.workflow_run_outputs),
"tags": ["workflow"],
"project_name": self.project,
}
self.add_trace(trace_data)
# through workflow_run_id get all_nodes_execution
workflow_nodes_execution_id_records = (
db.session.query(WorkflowNodeExecution.id)
.filter(WorkflowNodeExecution.workflow_run_id == trace_info.workflow_run_id)
.all()
)
for node_execution_id_record in workflow_nodes_execution_id_records:
node_execution = (
db.session.query(
WorkflowNodeExecution.id,
WorkflowNodeExecution.tenant_id,
WorkflowNodeExecution.app_id,
WorkflowNodeExecution.title,
WorkflowNodeExecution.node_type,
WorkflowNodeExecution.status,
WorkflowNodeExecution.inputs,
WorkflowNodeExecution.outputs,
WorkflowNodeExecution.created_at,
WorkflowNodeExecution.elapsed_time,
WorkflowNodeExecution.process_data,
WorkflowNodeExecution.execution_metadata,
)
.filter(WorkflowNodeExecution.id == node_execution_id_record.id)
.first()
)
if not node_execution:
continue
node_execution_id = node_execution.id
tenant_id = node_execution.tenant_id
app_id = node_execution.app_id
node_name = node_execution.title
node_type = node_execution.node_type
status = node_execution.status
if node_type == "llm":
inputs = (
json.loads(node_execution.process_data).get("prompts", {}) if node_execution.process_data else {}
)
else:
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
created_at = node_execution.created_at or datetime.now()
elapsed_time = node_execution.elapsed_time
finished_at = created_at + timedelta(seconds=elapsed_time)
execution_metadata = (
json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}
)
metadata = execution_metadata.copy()
metadata.update(
{
"workflow_run_id": trace_info.workflow_run_id,
"node_execution_id": node_execution_id,
"tenant_id": tenant_id,
"app_id": app_id,
"app_name": node_name,
"node_type": node_type,
"status": status,
}
)
process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
provider = None
model = None
total_tokens = 0
completion_tokens = 0
prompt_tokens = 0
if process_data and process_data.get("model_mode") == "chat":
run_type = "llm"
provider = process_data.get("model_provider", None)
model = process_data.get("model_name", "")
metadata.update(
{
"ls_provider": provider,
"ls_model_name": model,
}
)
try:
if outputs.get("usage"):
total_tokens = outputs["usage"].get("total_tokens", 0)
prompt_tokens = outputs["usage"].get("prompt_tokens", 0)
completion_tokens = outputs["usage"].get("completion_tokens", 0)
except Exception:
logger.error("Failed to extract usage", exc_info=True)
else:
run_type = "tool"
parent_span_id = trace_info.workflow_app_log_id or trace_info.workflow_run_id
if not total_tokens:
total_tokens = execution_metadata.get("total_tokens", 0)
span_data = {
"trace_id": opik_trace_id,
"id": prepare_opik_uuid(created_at, node_execution_id),
"parent_span_id": prepare_opik_uuid(trace_info.start_time, parent_span_id),
"name": node_type,
"type": run_type,
"start_time": created_at,
"end_time": finished_at,
"metadata": wrap_metadata(metadata),
"input": wrap_dict("input", inputs),
"output": wrap_dict("output", outputs),
"tags": ["node_execution"],
"project_name": self.project,
"usage": {
"total_tokens": total_tokens,
"completion_tokens": completion_tokens,
"prompt_tokens": prompt_tokens,
},
"model": model,
"provider": provider,
}
self.add_span(span_data)
def message_trace(self, trace_info: MessageTraceInfo):
# get message file data
file_list = cast(list[str], trace_info.file_list) or []
message_file_data: Optional[MessageFile] = trace_info.message_file_data
if message_file_data is not None:
file_url = f"{self.file_base_url}/{message_file_data.url}" if message_file_data else ""
file_list.append(file_url)
message_data = trace_info.message_data
if message_data is None:
return
metadata = trace_info.metadata
message_id = trace_info.message_id
user_id = message_data.from_account_id
metadata["user_id"] = user_id
metadata["file_list"] = file_list
if message_data.from_end_user_id:
end_user_data: Optional[EndUser] = (
db.session.query(EndUser).filter(EndUser.id == message_data.from_end_user_id).first()
)
if end_user_data is not None:
end_user_id = end_user_data.session_id
metadata["end_user_id"] = end_user_id
trace_data = {
"id": prepare_opik_uuid(trace_info.start_time, message_id),
"name": TraceTaskName.MESSAGE_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(metadata),
"input": trace_info.inputs,
"output": message_data.answer,
"tags": ["message", str(trace_info.conversation_mode)],
"project_name": self.project,
}
trace = self.add_trace(trace_data)
span_data = {
"trace_id": trace.id,
"name": "llm",
"type": "llm",
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(metadata),
"input": {"input": trace_info.inputs},
"output": {"output": message_data.answer},
"tags": ["llm", str(trace_info.conversation_mode)],
"usage": {
"completion_tokens": trace_info.answer_tokens,
"prompt_tokens": trace_info.message_tokens,
"total_tokens": trace_info.total_tokens,
},
"project_name": self.project,
}
self.add_span(span_data)
def moderation_trace(self, trace_info: ModerationTraceInfo):
if trace_info.message_data is None:
return
start_time = trace_info.start_time or trace_info.message_data.created_at
span_data = {
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
"name": TraceTaskName.MODERATION_TRACE.value,
"type": "tool",
"start_time": start_time,
"end_time": trace_info.end_time or trace_info.message_data.updated_at,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": {
"action": trace_info.action,
"flagged": trace_info.flagged,
"preset_response": trace_info.preset_response,
"inputs": trace_info.inputs,
},
"tags": ["moderation"],
}
self.add_span(span_data)
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
message_data = trace_info.message_data
if message_data is None:
return
start_time = trace_info.start_time or message_data.created_at
span_data = {
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
"name": TraceTaskName.SUGGESTED_QUESTION_TRACE.value,
"type": "tool",
"start_time": start_time,
"end_time": trace_info.end_time or message_data.updated_at,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": wrap_dict("output", trace_info.suggested_question),
"tags": ["suggested_question"],
}
self.add_span(span_data)
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
if trace_info.message_data is None:
return
start_time = trace_info.start_time or trace_info.message_data.created_at
span_data = {
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
"name": TraceTaskName.DATASET_RETRIEVAL_TRACE.value,
"type": "tool",
"start_time": start_time,
"end_time": trace_info.end_time or trace_info.message_data.updated_at,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": {"documents": trace_info.documents},
"tags": ["dataset_retrieval"],
}
self.add_span(span_data)
def tool_trace(self, trace_info: ToolTraceInfo):
span_data = {
"trace_id": prepare_opik_uuid(trace_info.start_time, trace_info.message_id),
"name": trace_info.tool_name,
"type": "tool",
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.tool_inputs),
"output": wrap_dict("output", trace_info.tool_outputs),
"tags": ["tool", trace_info.tool_name],
}
self.add_span(span_data)
def generate_name_trace(self, trace_info: GenerateNameTraceInfo):
trace_data = {
"id": prepare_opik_uuid(trace_info.start_time, trace_info.message_id),
"name": TraceTaskName.GENERATE_NAME_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(trace_info.metadata),
"input": trace_info.inputs,
"output": trace_info.outputs,
"tags": ["generate_name"],
"project_name": self.project,
}
trace = self.add_trace(trace_data)
span_data = {
"trace_id": trace.id,
"name": TraceTaskName.GENERATE_NAME_TRACE.value,
"start_time": trace_info.start_time,
"end_time": trace_info.end_time,
"metadata": wrap_metadata(trace_info.metadata),
"input": wrap_dict("input", trace_info.inputs),
"output": wrap_dict("output", trace_info.outputs),
"tags": ["generate_name"],
}
self.add_span(span_data)
def add_trace(self, opik_trace_data: dict) -> Trace:
try:
trace = self.opik_client.trace(**opik_trace_data)
logger.debug("Opik Trace created successfully")
return trace
except Exception as e:
raise ValueError(f"Opik Failed to create trace: {str(e)}")
def add_span(self, opik_span_data: dict):
try:
self.opik_client.span(**opik_span_data)
logger.debug("Opik Span created successfully")
except Exception as e:
raise ValueError(f"Opik Failed to create span: {str(e)}")
def api_check(self):
try:
self.opik_client.auth_check()
return True
except Exception as e:
logger.info(f"Opik API check failed: {str(e)}", exc_info=True)
raise ValueError(f"Opik API check failed: {str(e)}")
def get_project_url(self):
try:
return self.opik_client.get_project_url(project_name=self.project)
except Exception as e:
logger.info(f"Opik get run url failed: {str(e)}", exc_info=True)
raise ValueError(f"Opik get run url failed: {str(e)}")

View File

@ -17,6 +17,7 @@ from core.ops.entities.config_entity import (
OPS_FILE_PATH,
LangfuseConfig,
LangSmithConfig,
OpikConfig,
TracingProviderEnum,
)
from core.ops.entities.trace_entity import (
@ -32,6 +33,7 @@ from core.ops.entities.trace_entity import (
)
from core.ops.langfuse_trace.langfuse_trace import LangFuseDataTrace
from core.ops.langsmith_trace.langsmith_trace import LangSmithDataTrace
from core.ops.opik_trace.opik_trace import OpikDataTrace
from core.ops.utils import get_message_data
from extensions.ext_database import db
from extensions.ext_storage import storage
@ -52,6 +54,12 @@ provider_config_map: dict[str, dict[str, Any]] = {
"other_keys": ["project", "endpoint"],
"trace_instance": LangSmithDataTrace,
},
TracingProviderEnum.OPIK.value: {
"config_class": OpikConfig,
"secret_keys": ["api_key"],
"other_keys": ["project", "url", "workspace"],
"trace_instance": OpikDataTrace,
},
}

View File

@ -169,6 +169,21 @@ class GenericProviderID:
return f"{self.organization}/{self.plugin_name}"
class ModelProviderID(GenericProviderID):
def __init__(self, value: str, is_hardcoded: bool = False) -> None:
super().__init__(value, is_hardcoded)
if self.organization == "langgenius" and self.provider_name == "google":
self.plugin_name = "gemini"
class ToolProviderID(GenericProviderID):
def __init__(self, value: str, is_hardcoded: bool = False) -> None:
super().__init__(value, is_hardcoded)
if self.organization == "langgenius":
if self.provider_name in ["jina", "siliconflow"]:
self.plugin_name = f"{self.provider_name}_tool"
class PluginDependency(BaseModel):
class Type(enum.StrEnum):
Github = PluginInstallationSource.Github.value

View File

@ -30,7 +30,7 @@ from core.plugin.manager.exc import (
)
plugin_daemon_inner_api_baseurl = dify_config.PLUGIN_DAEMON_URL
plugin_daemon_inner_api_key = dify_config.PLUGIN_API_KEY
plugin_daemon_inner_api_key = dify_config.PLUGIN_DAEMON_KEY
T = TypeVar("T", bound=(BaseModel | dict | list | bool | str))

View File

@ -48,8 +48,10 @@ class PluginToolManager(BasePluginManager):
tool_provider_id = GenericProviderID(provider)
def transformer(json_response: dict[str, Any]) -> dict:
for tool in json_response.get("data", {}).get("declaration", {}).get("tools", []):
tool["identity"]["provider"] = tool_provider_id.provider_name
data = json_response.get("data")
if data:
for tool in data.get("declaration", {}).get("tools", []):
tool["identity"]["provider"] = tool_provider_id.provider_name
return json_response

View File

@ -23,8 +23,14 @@ from core.helper import encrypter
from core.helper.model_provider_cache import ProviderCredentialsCache, ProviderCredentialsCacheType
from core.helper.position_helper import is_filtered
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.provider_entities import CredentialFormSchema, FormType, ProviderEntity
from core.model_runtime.entities.provider_entities import (
ConfigurateMethod,
CredentialFormSchema,
FormType,
ProviderEntity,
)
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from core.plugin.entities.plugin import ModelProviderID
from extensions import ext_hosting_provider
from extensions.ext_database import db
from extensions.ext_redis import redis_client
@ -186,7 +192,7 @@ class ProviderManager:
model_settings=model_settings,
)
provider_configurations[provider_name] = provider_configuration
provider_configurations[str(ModelProviderID(provider_name))] = provider_configuration
# Return the encapsulated object
return provider_configurations
@ -839,11 +845,18 @@ class ProviderManager:
:return:
"""
# Get provider model credential secret variables
model_credential_secret_variables = self._extract_secret_variables(
provider_entity.model_credential_schema.credential_form_schemas
if provider_entity.model_credential_schema
else []
)
if ConfigurateMethod.PREDEFINED_MODEL in provider_entity.configurate_methods:
model_credential_secret_variables = self._extract_secret_variables(
provider_entity.provider_credential_schema.credential_form_schemas
if provider_entity.provider_credential_schema
else []
)
else:
model_credential_secret_variables = self._extract_secret_variables(
provider_entity.model_credential_schema.credential_form_schemas
if provider_entity.model_credential_schema
else []
)
model_settings: list[ModelSettings] = []
if not provider_model_settings:

View File

@ -174,7 +174,7 @@ class LindormVectorStore(BaseVector):
if self._using_ugc:
params["routing"] = self._routing
response = self._client.search(index=self._collection_name, body=query, params=params)
except Exception as e:
except Exception:
logger.exception(f"Error executing vector search, query: {query}")
raise
@ -258,7 +258,7 @@ class LindormVectorStore(BaseVector):
hnsw_ef_construction = kwargs.pop("hnsw_ef_construction", 500)
ivfpq_m = kwargs.pop("ivfpq_m", dimension)
nlist = kwargs.pop("nlist", 1000)
centroids_use_hnsw = kwargs.pop("centroids_use_hnsw", True if nlist >= 5000 else False)
centroids_use_hnsw = kwargs.pop("centroids_use_hnsw", nlist >= 5000)
centroids_hnsw_m = kwargs.pop("centroids_hnsw_m", 24)
centroids_hnsw_ef_construct = kwargs.pop("centroids_hnsw_ef_construct", 500)
centroids_hnsw_ef_search = kwargs.pop("centroids_hnsw_ef_search", 100)
@ -305,7 +305,7 @@ def default_text_mapping(dimension: int, method_name: str, **kwargs: Any) -> dic
if method_name == "ivfpq":
ivfpq_m = kwargs["ivfpq_m"]
nlist = kwargs["nlist"]
centroids_use_hnsw = True if nlist > 10000 else False
centroids_use_hnsw = nlist > 10000
centroids_hnsw_m = 24
centroids_hnsw_ef_construct = 500
centroids_hnsw_ef_search = 100
@ -347,7 +347,8 @@ def default_text_mapping(dimension: int, method_name: str, **kwargs: Any) -> dic
}
if excludes_from_source:
mapping["mappings"]["_source"] = {"excludes": excludes_from_source} # e.g. {"excludes": ["vector_field"]}
# e.g. {"excludes": ["vector_field"]}
mapping["mappings"]["_source"] = {"excludes": excludes_from_source}
if using_ugc and method_name == "ivfpq":
mapping["settings"]["index"]["knn_routing"] = True

View File

@ -57,6 +57,11 @@ CREATE TABLE IF NOT EXISTS {table_name} (
) using heap;
"""
SQL_CREATE_INDEX = """
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx ON {table_name}
USING hnsw (embedding vector_cosine_ops) WITH (m = 16, ef_construction = 64);
"""
class PGVector(BaseVector):
def __init__(self, collection_name: str, config: PGVectorConfig):
@ -205,7 +210,10 @@ class PGVector(BaseVector):
with self._get_cursor() as cur:
cur.execute("CREATE EXTENSION IF NOT EXISTS vector")
cur.execute(SQL_CREATE_TABLE.format(table_name=self.table_name, dimension=dimension))
# TODO: create index https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
# PG hnsw index only support 2000 dimension or less
# ref: https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
if dimension <= 2000:
cur.execute(SQL_CREATE_INDEX.format(table_name=self.table_name))
redis_client.set(collection_exist_cache_key, 1, ex=3600)

View File

@ -74,7 +74,7 @@ class CacheEmbedding(Embeddings):
embedding_queue_embeddings.append(normalized_embedding)
except IntegrityError:
db.session.rollback()
except Exception as e:
except Exception:
logging.exception("Failed transform embedding")
cache_embeddings = []
try:

View File

@ -1,6 +1,6 @@
import json
import time
from typing import cast
from typing import Any, cast
import requests
@ -14,48 +14,47 @@ class FirecrawlApp:
if self.api_key is None and self.base_url == "https://api.firecrawl.dev":
raise ValueError("No API key provided")
def scrape_url(self, url, params=None) -> dict:
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_key}"}
json_data = {"url": url}
def scrape_url(self, url, params=None) -> dict[str, Any]:
# Documentation: https://docs.firecrawl.dev/api-reference/endpoint/scrape
headers = self._prepare_headers()
json_data = {
"url": url,
"formats": ["markdown"],
"onlyMainContent": True,
"timeout": 30000,
}
if params:
json_data.update(params)
response = requests.post(f"{self.base_url}/v0/scrape", headers=headers, json=json_data)
response = self._post_request(f"{self.base_url}/v1/scrape", json_data, headers)
if response.status_code == 200:
response_data = response.json()
if response_data["success"] == True:
data = response_data["data"]
return {
"title": data.get("metadata").get("title"),
"description": data.get("metadata").get("description"),
"source_url": data.get("metadata").get("sourceURL"),
"markdown": data.get("markdown"),
}
else:
raise Exception(f'Failed to scrape URL. Error: {response_data["error"]}')
elif response.status_code in {402, 409, 500}:
error_message = response.json().get("error", "Unknown error occurred")
raise Exception(f"Failed to scrape URL. Status code: {response.status_code}. Error: {error_message}")
data = response_data["data"]
return self._extract_common_fields(data)
elif response.status_code in {402, 409, 500, 429, 408}:
self._handle_error(response, "scrape URL")
return {} # Avoid additional exception after handling error
else:
raise Exception(f"Failed to scrape URL. Status code: {response.status_code}")
def crawl_url(self, url, params=None) -> str:
# Documentation: https://docs.firecrawl.dev/api-reference/endpoint/crawl-post
headers = self._prepare_headers()
json_data = {"url": url}
if params:
json_data.update(params)
response = self._post_request(f"{self.base_url}/v0/crawl", json_data, headers)
response = self._post_request(f"{self.base_url}/v1/crawl", json_data, headers)
if response.status_code == 200:
job_id = response.json().get("jobId")
# There's also another two fields in the response: "success" (bool) and "url" (str)
job_id = response.json().get("id")
return cast(str, job_id)
else:
self._handle_error(response, "start crawl job")
# FIXME: unreachable code for mypy
return "" # unreachable
def check_crawl_status(self, job_id) -> dict:
def check_crawl_status(self, job_id) -> dict[str, Any]:
headers = self._prepare_headers()
response = self._get_request(f"{self.base_url}/v0/crawl/status/{job_id}", headers)
response = self._get_request(f"{self.base_url}/v1/crawl/{job_id}", headers)
if response.status_code == 200:
crawl_status_response = response.json()
if crawl_status_response.get("status") == "completed":
@ -66,42 +65,48 @@ class FirecrawlApp:
url_data_list = []
for item in data:
if isinstance(item, dict) and "metadata" in item and "markdown" in item:
url_data = {
"title": item.get("metadata", {}).get("title"),
"description": item.get("metadata", {}).get("description"),
"source_url": item.get("metadata", {}).get("sourceURL"),
"markdown": item.get("markdown"),
}
url_data = self._extract_common_fields(item)
url_data_list.append(url_data)
if url_data_list:
file_key = "website_files/" + job_id + ".txt"
if storage.exists(file_key):
storage.delete(file_key)
storage.save(file_key, json.dumps(url_data_list).encode("utf-8"))
return {
"status": "completed",
"total": crawl_status_response.get("total"),
"current": crawl_status_response.get("current"),
"data": url_data_list,
}
try:
if storage.exists(file_key):
storage.delete(file_key)
storage.save(file_key, json.dumps(url_data_list).encode("utf-8"))
except Exception as e:
raise Exception(f"Error saving crawl data: {e}")
return self._format_crawl_status_response("completed", crawl_status_response, url_data_list)
else:
return {
"status": crawl_status_response.get("status"),
"total": crawl_status_response.get("total"),
"current": crawl_status_response.get("current"),
"data": [],
}
return self._format_crawl_status_response(
crawl_status_response.get("status"), crawl_status_response, []
)
else:
self._handle_error(response, "check crawl status")
# FIXME: unreachable code for mypy
return {} # unreachable
def _prepare_headers(self):
def _format_crawl_status_response(
self, status: str, crawl_status_response: dict[str, Any], url_data_list: list[dict[str, Any]]
) -> dict[str, Any]:
return {
"status": status,
"total": crawl_status_response.get("total"),
"current": crawl_status_response.get("completed"),
"data": url_data_list,
}
def _extract_common_fields(self, item: dict[str, Any]) -> dict[str, Any]:
return {
"title": item.get("metadata", {}).get("title"),
"description": item.get("metadata", {}).get("description"),
"source_url": item.get("metadata", {}).get("sourceURL"),
"markdown": item.get("markdown"),
}
def _prepare_headers(self) -> dict[str, Any]:
return {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_key}"}
def _post_request(self, url, data, headers, retries=3, backoff_factor=0.5):
def _post_request(self, url, data, headers, retries=3, backoff_factor=0.5) -> requests.Response:
for attempt in range(retries):
response = requests.post(url, headers=headers, json=data)
if response.status_code == 502:
@ -110,7 +115,7 @@ class FirecrawlApp:
return response
return response
def _get_request(self, url, headers, retries=3, backoff_factor=0.5):
def _get_request(self, url, headers, retries=3, backoff_factor=0.5) -> requests.Response:
for attempt in range(retries):
response = requests.get(url, headers=headers)
if response.status_code == 502:
@ -119,6 +124,6 @@ class FirecrawlApp:
return response
return response
def _handle_error(self, response, action):
def _handle_error(self, response, action) -> None:
error_message = response.json().get("error", "Unknown error occurred")
raise Exception(f"Failed to {action}. Status code: {response.status_code}. Error: {error_message}")

View File

@ -13,9 +13,10 @@ class FirecrawlWebExtractor(BaseExtractor):
api_key: The API key for Firecrawl.
base_url: The base URL for the Firecrawl API. Defaults to 'https://api.firecrawl.dev'.
mode: The mode of operation. Defaults to 'scrape'. Options are 'crawl', 'scrape' and 'crawl_return_urls'.
only_main_content: Only return the main content of the page excluding headers, navs, footers, etc.
"""
def __init__(self, url: str, job_id: str, tenant_id: str, mode: str = "crawl", only_main_content: bool = False):
def __init__(self, url: str, job_id: str, tenant_id: str, mode: str = "crawl", only_main_content: bool = True):
"""Initialize with url, api_key, base_url and mode."""
self._url = url
self.job_id = job_id

View File

@ -358,8 +358,7 @@ class NotionExtractor(BaseExtractor):
if not data_source_binding:
raise Exception(
f"No notion data source binding found for tenant {tenant_id} "
f"and notion workspace {notion_workspace_id}"
f"No notion data source binding found for tenant {tenant_id} and notion workspace {notion_workspace_id}"
)
return cast(str, data_source_binding.access_token)

Some files were not shown because too many files have changed in this diff Show More