mirror of
https://github.com/langgenius/dify.git
synced 2026-01-20 03:59:30 +08:00
Compare commits
64 Commits
fix/versio
...
0.15.2
| Author | SHA1 | Date | |
|---|---|---|---|
| 1e73f63ff8 | |||
| d167d5b1be | |||
| 71fa14f791 | |||
| 8dd1873e76 | |||
| f91f5c7401 | |||
| c62b7cc679 | |||
| 3ee213ddca | |||
| 8429877b02 | |||
| 05a0faff6a | |||
| e09f6e4987 | |||
| e23f4b0265 | |||
| f582d4a13e | |||
| 2f41bd495d | |||
| 162a8c4393 | |||
| 3d1ce4c53f | |||
| 6db3ae9b8e | |||
| 6d0cb9dc33 | |||
| 46e95e8309 | |||
| a7b9375877 | |||
| 0c6a8a130e | |||
| 9903f1e703 | |||
| 6fad719e42 | |||
| 9aaee8ee47 | |||
| 166221d784 | |||
| 925d69a2ee | |||
| 5ff08e241a | |||
| 3defd24087 | |||
| 9d86147d20 | |||
| 80801ac4ab | |||
| 210926cd91 | |||
| 677a69deed | |||
| 8dfdee21ce | |||
| 6ea77ab4cd | |||
| e3c996688d | |||
| bc3a570dda | |||
| 0800021a2d | |||
| 435eddd867 | |||
| 6e0fb055d1 | |||
| 1e9ac7ffeb | |||
| b4873ecb43 | |||
| 1859d57784 | |||
| 69d58fbb50 | |||
| cb34991663 | |||
| c700364e1c | |||
| 9a6b1dc3a1 | |||
| 54b5b80a07 | |||
| 831459b895 | |||
| 4e101604c3 | |||
| a6455269f0 | |||
| cd257b91c5 | |||
| d8f57bf899 | |||
| 989fb11fd7 | |||
| 140965b738 | |||
| 14ee51aead | |||
| 2e97ba5700 | |||
| f549d53b68 | |||
| a085ad4719 | |||
| f230a9232e | |||
| e84bf35e2a | |||
| 20f090537f | |||
| dbe7a7c4fd | |||
| b7a4e3903e | |||
| b4c1c2f731 | |||
| 1b940e7daa |
2
.github/actions/setup-poetry/action.yml
vendored
2
.github/actions/setup-poetry/action.yml
vendored
@ -8,7 +8,7 @@ inputs:
|
||||
poetry-version:
|
||||
description: Poetry version to set up
|
||||
required: true
|
||||
default: '1.8.4'
|
||||
default: '2.0.1'
|
||||
poetry-lockfile:
|
||||
description: Path to the Poetry lockfile to restore cache from
|
||||
required: true
|
||||
|
||||
16
.github/workflows/api-tests.yml
vendored
16
.github/workflows/api-tests.yml
vendored
@ -42,25 +42,23 @@ jobs:
|
||||
run: poetry install -C api --with dev
|
||||
|
||||
- name: Check dependencies in pyproject.toml
|
||||
run: poetry run -C api bash dev/pytest/pytest_artifacts.sh
|
||||
run: poetry run -P api bash dev/pytest/pytest_artifacts.sh
|
||||
|
||||
- name: Run Unit tests
|
||||
run: poetry run -C api bash dev/pytest/pytest_unit_tests.sh
|
||||
run: poetry run -P api bash dev/pytest/pytest_unit_tests.sh
|
||||
|
||||
- name: Run ModelRuntime
|
||||
run: poetry run -C api bash dev/pytest/pytest_model_runtime.sh
|
||||
run: poetry run -P api bash dev/pytest/pytest_model_runtime.sh
|
||||
|
||||
- name: Run dify config tests
|
||||
run: poetry run -C api python dev/pytest/pytest_config_tests.py
|
||||
run: poetry run -P api python dev/pytest/pytest_config_tests.py
|
||||
|
||||
- name: Run Tool
|
||||
run: poetry run -C api bash dev/pytest/pytest_tools.sh
|
||||
run: poetry run -P api bash dev/pytest/pytest_tools.sh
|
||||
|
||||
- name: Run mypy
|
||||
run: |
|
||||
pushd api
|
||||
poetry run python -m mypy --install-types --non-interactive .
|
||||
popd
|
||||
poetry run -C api python -m mypy --install-types --non-interactive .
|
||||
|
||||
- name: Set up dotenvs
|
||||
run: |
|
||||
@ -80,4 +78,4 @@ jobs:
|
||||
ssrf_proxy
|
||||
|
||||
- name: Run Workflow
|
||||
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
|
||||
run: poetry run -P api bash dev/pytest/pytest_workflow.sh
|
||||
|
||||
33
.github/workflows/style.yml
vendored
33
.github/workflows/style.yml
vendored
@ -38,12 +38,12 @@ jobs:
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: |
|
||||
poetry run -C api ruff --version
|
||||
poetry run -C api ruff check ./api
|
||||
poetry run -C api ruff format --check ./api
|
||||
poetry run -C api ruff check ./
|
||||
poetry run -C api ruff format --check ./
|
||||
|
||||
- name: Dotenv check
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: poetry run -C api dotenv-linter ./api/.env.example ./web/.env.example
|
||||
run: poetry run -P api dotenv-linter ./api/.env.example ./web/.env.example
|
||||
|
||||
- name: Lint hints
|
||||
if: failure()
|
||||
@ -82,6 +82,33 @@ jobs:
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: yarn run lint
|
||||
|
||||
docker-compose-template:
|
||||
name: Docker Compose Template
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Check changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@v45
|
||||
with:
|
||||
files: |
|
||||
docker/generate_docker_compose
|
||||
docker/.env.example
|
||||
docker/docker-compose-template.yaml
|
||||
docker/docker-compose.yaml
|
||||
|
||||
- name: Generate Docker Compose
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: |
|
||||
cd docker
|
||||
./generate_docker_compose
|
||||
|
||||
- name: Check for changes
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
run: git diff --exit-code
|
||||
|
||||
superlinter:
|
||||
name: SuperLinter
|
||||
|
||||
2
.github/workflows/vdb-tests.yml
vendored
2
.github/workflows/vdb-tests.yml
vendored
@ -70,4 +70,4 @@ jobs:
|
||||
tidb
|
||||
|
||||
- name: Test Vector Stores
|
||||
run: poetry run -C api bash dev/pytest/pytest_vdb.sh
|
||||
run: poetry run -P api bash dev/pytest/pytest_vdb.sh
|
||||
|
||||
@ -53,10 +53,12 @@ ignore = [
|
||||
"FURB152", # math-constant
|
||||
"UP007", # non-pep604-annotation
|
||||
"UP032", # f-string
|
||||
"UP045", # non-pep604-annotation-optional
|
||||
"B005", # strip-with-multi-characters
|
||||
"B006", # mutable-argument-default
|
||||
"B007", # unused-loop-control-variable
|
||||
"B026", # star-arg-unpacking-after-keyword-arg
|
||||
"B903", # class-as-data-structure
|
||||
"B904", # raise-without-from-inside-except
|
||||
"B905", # zip-without-explicit-strict
|
||||
"N806", # non-lowercase-variable-in-function
|
||||
|
||||
@ -4,7 +4,7 @@ FROM python:3.12-slim-bookworm AS base
|
||||
WORKDIR /app/api
|
||||
|
||||
# Install Poetry
|
||||
ENV POETRY_VERSION=1.8.4
|
||||
ENV POETRY_VERSION=2.0.1
|
||||
|
||||
# if you located in China, you can use aliyun mirror to speed up
|
||||
# RUN pip install --no-cache-dir poetry==${POETRY_VERSION} -i https://mirrors.aliyun.com/pypi/simple/
|
||||
|
||||
@ -79,5 +79,5 @@
|
||||
2. Run the tests locally with mocked system environment variables in `tool.pytest_env` section in `pyproject.toml`
|
||||
|
||||
```bash
|
||||
poetry run -C api bash dev/pytest/pytest_all_tests.sh
|
||||
poetry run -P api bash dev/pytest/pytest_all_tests.sh
|
||||
```
|
||||
|
||||
@ -146,7 +146,7 @@ class EndpointConfig(BaseSettings):
|
||||
)
|
||||
|
||||
CONSOLE_WEB_URL: str = Field(
|
||||
description="Base URL for the console web interface," "used for frontend references and CORS configuration",
|
||||
description="Base URL for the console web interface,used for frontend references and CORS configuration",
|
||||
default="",
|
||||
)
|
||||
|
||||
|
||||
@ -181,7 +181,7 @@ class HostedFetchAppTemplateConfig(BaseSettings):
|
||||
"""
|
||||
|
||||
HOSTED_FETCH_APP_TEMPLATES_MODE: str = Field(
|
||||
description="Mode for fetching app templates: remote, db, or builtin" " default to remote,",
|
||||
description="Mode for fetching app templates: remote, db, or builtin default to remote,",
|
||||
default="remote",
|
||||
)
|
||||
|
||||
|
||||
@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
|
||||
|
||||
CURRENT_VERSION: str = Field(
|
||||
description="Dify version",
|
||||
default="0.15.0",
|
||||
default="0.15.2",
|
||||
)
|
||||
|
||||
COMMIT_SHA: str = Field(
|
||||
|
||||
@ -56,7 +56,7 @@ class InsertExploreAppListApi(Resource):
|
||||
|
||||
app = App.query.filter(App.id == args["app_id"]).first()
|
||||
if not app:
|
||||
raise NotFound(f'App \'{args["app_id"]}\' is not found')
|
||||
raise NotFound(f"App '{args['app_id']}' is not found")
|
||||
|
||||
site = app.site
|
||||
if not site:
|
||||
|
||||
@ -22,7 +22,7 @@ from controllers.console.wraps import account_initialization_required, setup_req
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
from libs.login import login_required
|
||||
from models.model import AppMode
|
||||
from models import App, AppMode
|
||||
from services.audio_service import AudioService
|
||||
from services.errors.audio import (
|
||||
AudioTooLargeServiceError,
|
||||
@ -79,7 +79,7 @@ class ChatMessageTextApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@get_app_model
|
||||
def post(self, app_model):
|
||||
def post(self, app_model: App):
|
||||
from werkzeug.exceptions import InternalServerError
|
||||
|
||||
try:
|
||||
@ -98,9 +98,13 @@ class ChatMessageTextApi(Resource):
|
||||
and app_model.workflow.features_dict
|
||||
):
|
||||
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
|
||||
if text_to_speech is None:
|
||||
raise ValueError("TTS is not enabled")
|
||||
voice = args.get("voice") or text_to_speech.get("voice")
|
||||
else:
|
||||
try:
|
||||
if app_model.app_model_config is None:
|
||||
raise ValueError("AppModelConfig not found")
|
||||
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
|
||||
except Exception:
|
||||
voice = None
|
||||
|
||||
@ -52,12 +52,12 @@ class DatasetListApi(Resource):
|
||||
# provider = request.args.get("provider", default="vendor")
|
||||
search = request.args.get("keyword", default=None, type=str)
|
||||
tag_ids = request.args.getlist("tag_ids")
|
||||
|
||||
include_all = request.args.get("include_all", default="false").lower() == "true"
|
||||
if ids:
|
||||
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
|
||||
else:
|
||||
datasets, total = DatasetService.get_datasets(
|
||||
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
|
||||
page, limit, current_user.current_tenant_id, current_user, search, tag_ids, include_all
|
||||
)
|
||||
|
||||
# check embedding setting
|
||||
@ -457,7 +457,7 @@ class DatasetIndexingEstimateApi(Resource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@ -619,8 +619,7 @@ class DatasetRetrievalSettingApi(Resource):
|
||||
vector_type = dify_config.VECTOR_STORE
|
||||
match vector_type:
|
||||
case (
|
||||
VectorType.MILVUS
|
||||
| VectorType.RELYT
|
||||
VectorType.RELYT
|
||||
| VectorType.PGVECTOR
|
||||
| VectorType.TIDB_VECTOR
|
||||
| VectorType.CHROMA
|
||||
@ -645,6 +644,7 @@ class DatasetRetrievalSettingApi(Resource):
|
||||
| VectorType.TIDB_ON_QDRANT
|
||||
| VectorType.LINDORM
|
||||
| VectorType.COUCHBASE
|
||||
| VectorType.MILVUS
|
||||
):
|
||||
return {
|
||||
"retrieval_method": [
|
||||
|
||||
@ -350,8 +350,7 @@ class DatasetInitApi(Resource):
|
||||
)
|
||||
except InvokeAuthorizationError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@ -526,8 +525,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
|
||||
return response.model_dump(), 200
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
@ -168,8 +168,7 @@ class DatasetDocumentSegmentApi(Resource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@ -217,8 +216,7 @@ class DatasetDocumentSegmentAddApi(Resource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@ -267,8 +265,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@ -368,9 +365,9 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
|
||||
result = []
|
||||
for index, row in df.iterrows():
|
||||
if document.doc_form == "qa_model":
|
||||
data = {"content": row[0], "answer": row[1]}
|
||||
data = {"content": row.iloc[0], "answer": row.iloc[1]}
|
||||
else:
|
||||
data = {"content": row[0]}
|
||||
data = {"content": row.iloc[0]}
|
||||
result.append(data)
|
||||
if len(result) == 0:
|
||||
raise ValueError("The CSV file is empty.")
|
||||
@ -437,8 +434,7 @@ class ChildChunkAddApi(Resource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
@ -32,7 +32,7 @@ class ConversationListApi(InstalledAppResource):
|
||||
|
||||
pinned = None
|
||||
if "pinned" in args and args["pinned"] is not None:
|
||||
pinned = True if args["pinned"] == "true" else False
|
||||
pinned = args["pinned"] == "true"
|
||||
|
||||
try:
|
||||
with Session(db.engine) as session:
|
||||
|
||||
@ -7,4 +7,4 @@ api = ExternalApi(bp)
|
||||
|
||||
from . import index
|
||||
from .app import app, audio, completion, conversation, file, message, workflow
|
||||
from .dataset import dataset, document, hit_testing, segment
|
||||
from .dataset import dataset, document, hit_testing, segment, upload_file
|
||||
|
||||
@ -31,8 +31,11 @@ class DatasetListApi(DatasetApiResource):
|
||||
# provider = request.args.get("provider", default="vendor")
|
||||
search = request.args.get("keyword", default=None, type=str)
|
||||
tag_ids = request.args.getlist("tag_ids")
|
||||
include_all = request.args.get("include_all", default="false").lower() == "true"
|
||||
|
||||
datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
|
||||
datasets, total = DatasetService.get_datasets(
|
||||
page, limit, tenant_id, current_user, search, tag_ids, include_all
|
||||
)
|
||||
# check embedding setting
|
||||
provider_manager = ProviderManager()
|
||||
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
|
||||
|
||||
@ -53,8 +53,7 @@ class SegmentApi(DatasetApiResource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@ -95,8 +94,7 @@ class SegmentApi(DatasetApiResource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
@ -175,8 +173,7 @@ class DatasetSegmentApi(DatasetApiResource):
|
||||
)
|
||||
except LLMBadRequestError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
"in the Settings -> Model Provider."
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
)
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ProviderNotInitializeError(ex.description)
|
||||
|
||||
54
api/controllers/service_api/dataset/upload_file.py
Normal file
54
api/controllers/service_api/dataset/upload_file.py
Normal file
@ -0,0 +1,54 @@
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from controllers.service_api import api
|
||||
from controllers.service_api.wraps import (
|
||||
DatasetApiResource,
|
||||
)
|
||||
from core.file import helpers as file_helpers
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset
|
||||
from models.model import UploadFile
|
||||
from services.dataset_service import DocumentService
|
||||
|
||||
|
||||
class UploadFileApi(DatasetApiResource):
|
||||
def get(self, tenant_id, dataset_id, document_id):
|
||||
"""Get upload file."""
|
||||
# check dataset
|
||||
dataset_id = str(dataset_id)
|
||||
tenant_id = str(tenant_id)
|
||||
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
|
||||
if not dataset:
|
||||
raise NotFound("Dataset not found.")
|
||||
# check document
|
||||
document_id = str(document_id)
|
||||
document = DocumentService.get_document(dataset.id, document_id)
|
||||
if not document:
|
||||
raise NotFound("Document not found.")
|
||||
# check upload file
|
||||
if document.data_source_type != "upload_file":
|
||||
raise ValueError(f"Document data source type ({document.data_source_type}) is not upload_file.")
|
||||
data_source_info = document.data_source_info_dict
|
||||
if data_source_info and "upload_file_id" in data_source_info:
|
||||
file_id = data_source_info["upload_file_id"]
|
||||
upload_file = db.session.query(UploadFile).filter(UploadFile.id == file_id).first()
|
||||
if not upload_file:
|
||||
raise NotFound("UploadFile not found.")
|
||||
else:
|
||||
raise ValueError("Upload file id not found in document data source info.")
|
||||
|
||||
url = file_helpers.get_signed_file_url(upload_file_id=upload_file.id)
|
||||
return {
|
||||
"id": upload_file.id,
|
||||
"name": upload_file.name,
|
||||
"size": upload_file.size,
|
||||
"extension": upload_file.extension,
|
||||
"url": url,
|
||||
"download_url": f"{url}&as_attachment=true",
|
||||
"mime_type": upload_file.mime_type,
|
||||
"created_by": upload_file.created_by,
|
||||
"created_at": upload_file.created_at.timestamp(),
|
||||
}, 200
|
||||
|
||||
|
||||
api.add_resource(UploadFileApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/upload-file")
|
||||
@ -195,7 +195,11 @@ def validate_and_get_api_token(scope: str | None = None):
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
update_stmt = (
|
||||
update(ApiToken)
|
||||
.where(ApiToken.token == auth_token, ApiToken.last_used_at < cutoff_time, ApiToken.type == scope)
|
||||
.where(
|
||||
ApiToken.token == auth_token,
|
||||
(ApiToken.last_used_at.is_(None) | (ApiToken.last_used_at < cutoff_time)),
|
||||
ApiToken.type == scope,
|
||||
)
|
||||
.values(last_used_at=current_time)
|
||||
.returning(ApiToken)
|
||||
)
|
||||
@ -236,7 +240,7 @@ def create_or_update_end_user_for_user_id(app_model: App, user_id: Optional[str]
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
type="service_api",
|
||||
is_anonymous=True if user_id == "DEFAULT-USER" else False,
|
||||
is_anonymous=user_id == "DEFAULT-USER",
|
||||
session_id=user_id,
|
||||
)
|
||||
db.session.add(end_user)
|
||||
|
||||
@ -39,7 +39,7 @@ class ConversationListApi(WebApiResource):
|
||||
|
||||
pinned = None
|
||||
if "pinned" in args and args["pinned"] is not None:
|
||||
pinned = True if args["pinned"] == "true" else False
|
||||
pinned = args["pinned"] == "true"
|
||||
|
||||
try:
|
||||
with Session(db.engine) as session:
|
||||
|
||||
@ -172,7 +172,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name=scratchpad.action.action_name if scratchpad.action else "",
|
||||
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
|
||||
tool_invoke_meta={},
|
||||
thought=scratchpad.thought or "",
|
||||
|
||||
@ -167,8 +167,7 @@ class AppQueueManager:
|
||||
else:
|
||||
if isinstance(data, DeclarativeMeta) or hasattr(data, "_sa_instance_state"):
|
||||
raise TypeError(
|
||||
"Critical Error: Passing SQLAlchemy Model instances "
|
||||
"that cause thread safety issues is not allowed."
|
||||
"Critical Error: Passing SQLAlchemy Model instances that cause thread safety issues is not allowed."
|
||||
)
|
||||
|
||||
|
||||
|
||||
@ -89,6 +89,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
|
||||
Conversation.id == conversation_id,
|
||||
Conversation.app_id == app_model.id,
|
||||
Conversation.status == "normal",
|
||||
Conversation.is_deleted.is_(False),
|
||||
]
|
||||
|
||||
if isinstance(user, Account):
|
||||
|
||||
@ -145,7 +145,7 @@ class MessageCycleManage:
|
||||
|
||||
# get extension
|
||||
if "." in message_file.url:
|
||||
extension = f'.{message_file.url.split(".")[-1]}'
|
||||
extension = f".{message_file.url.split('.')[-1]}"
|
||||
if len(extension) > 10:
|
||||
extension = ".bin"
|
||||
else:
|
||||
|
||||
@ -62,8 +62,9 @@ class ApiExternalDataTool(ExternalDataTool):
|
||||
|
||||
if not api_based_extension:
|
||||
raise ValueError(
|
||||
"[External data tool] API query failed, variable: {}, "
|
||||
"error: api_based_extension_id is invalid".format(self.variable)
|
||||
"[External data tool] API query failed, variable: {}, error: api_based_extension_id is invalid".format(
|
||||
self.variable
|
||||
)
|
||||
)
|
||||
|
||||
# decrypt api_key
|
||||
|
||||
@ -90,7 +90,7 @@ class File(BaseModel):
|
||||
def markdown(self) -> str:
|
||||
url = self.generate_url()
|
||||
if self.type == FileType.IMAGE:
|
||||
text = f''
|
||||
text = f""
|
||||
else:
|
||||
text = f"[{self.filename or url}]({url})"
|
||||
|
||||
|
||||
@ -530,7 +530,6 @@ class IndexingRunner:
|
||||
# chunk nodes by chunk size
|
||||
indexing_start_at = time.perf_counter()
|
||||
tokens = 0
|
||||
chunk_size = 10
|
||||
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
|
||||
# create keyword index
|
||||
create_keyword_thread = threading.Thread(
|
||||
@ -539,11 +538,22 @@ class IndexingRunner:
|
||||
)
|
||||
create_keyword_thread.start()
|
||||
|
||||
max_workers = 10
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
futures = []
|
||||
for i in range(0, len(documents), chunk_size):
|
||||
chunk_documents = documents[i : i + chunk_size]
|
||||
|
||||
# Distribute documents into multiple groups based on the hash values of page_content
|
||||
# This is done to prevent multiple threads from processing the same document,
|
||||
# Thereby avoiding potential database insertion deadlocks
|
||||
document_groups: list[list[Document]] = [[] for _ in range(max_workers)]
|
||||
for document in documents:
|
||||
hash = helper.generate_text_hash(document.page_content)
|
||||
group_index = int(hash, 16) % max_workers
|
||||
document_groups[group_index].append(document)
|
||||
for chunk_documents in document_groups:
|
||||
if len(chunk_documents) == 0:
|
||||
continue
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self._process_chunk,
|
||||
|
||||
@ -131,7 +131,7 @@ JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE = (
|
||||
SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
|
||||
"Please help me predict the three most likely questions that human would ask, "
|
||||
"and keeping each question under 20 characters.\n"
|
||||
"MAKE SURE your output is the SAME language as the Assistant's latest response"
|
||||
"MAKE SURE your output is the SAME language as the Assistant's latest response. "
|
||||
"The output must be an array in JSON format following the specified schema:\n"
|
||||
'["question1","question2","question3"]\n'
|
||||
)
|
||||
|
||||
@ -1,6 +1,9 @@
|
||||
import logging
|
||||
from threading import Lock
|
||||
from typing import Any
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_tokenizer: Any = None
|
||||
_lock = Lock()
|
||||
|
||||
@ -43,5 +46,6 @@ class GPT2Tokenizer:
|
||||
base_path = abspath(__file__)
|
||||
gpt2_tokenizer_path = join(dirname(base_path), "gpt2")
|
||||
_tokenizer = TransformerGPT2Tokenizer.from_pretrained(gpt2_tokenizer_path)
|
||||
logger.info("Fallback to Transformers' GPT-2 tokenizer from tiktoken")
|
||||
|
||||
return _tokenizer
|
||||
|
||||
@ -108,7 +108,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
|
||||
ai_model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
|
||||
|
||||
if not ai_model_entity:
|
||||
raise CredentialsValidateFailedError(f'Base Model Name {credentials["base_model_name"]} is invalid')
|
||||
raise CredentialsValidateFailedError(f"Base Model Name {credentials['base_model_name']} is invalid")
|
||||
|
||||
try:
|
||||
client = AzureOpenAI(**self._to_credential_kwargs(credentials))
|
||||
|
||||
@ -130,7 +130,7 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
|
||||
raise CredentialsValidateFailedError("Base Model Name is required")
|
||||
|
||||
if not self._get_ai_model_entity(credentials["base_model_name"], model):
|
||||
raise CredentialsValidateFailedError(f'Base Model Name {credentials["base_model_name"]} is invalid')
|
||||
raise CredentialsValidateFailedError(f"Base Model Name {credentials['base_model_name']} is invalid")
|
||||
|
||||
try:
|
||||
credentials_kwargs = self._to_credential_kwargs(credentials)
|
||||
|
||||
@ -70,7 +70,7 @@ class BedrockRerankModel(RerankModel):
|
||||
rerankingConfiguration = {
|
||||
"type": "BEDROCK_RERANKING_MODEL",
|
||||
"bedrockRerankingConfiguration": {
|
||||
"numberOfResults": top_n,
|
||||
"numberOfResults": min(top_n, len(text_sources)),
|
||||
"modelConfiguration": {
|
||||
"modelArn": model_package_arn,
|
||||
},
|
||||
|
||||
@ -1,2 +1,3 @@
|
||||
- deepseek-chat
|
||||
- deepseek-coder
|
||||
- deepseek-reasoner
|
||||
|
||||
@ -10,7 +10,7 @@ features:
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
context_size: 64000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
|
||||
@ -10,7 +10,7 @@ features:
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
context_size: 64000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
|
||||
@ -0,0 +1,21 @@
|
||||
model: deepseek-reasoner
|
||||
label:
|
||||
zh_Hans: deepseek-reasoner
|
||||
en_US: deepseek-reasoner
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 64000
|
||||
parameter_rules:
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
max: 8192
|
||||
default: 4096
|
||||
pricing:
|
||||
input: "4"
|
||||
output: "16"
|
||||
unit: "0.000001"
|
||||
currency: RMB
|
||||
@ -24,9 +24,6 @@ class DeepseekLargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
user: Optional[str] = None,
|
||||
) -> Union[LLMResult, Generator]:
|
||||
self._add_custom_parameters(credentials)
|
||||
# {"response_format": "xx"} need convert to {"response_format": {"type": "xx"}}
|
||||
if "response_format" in model_parameters:
|
||||
model_parameters["response_format"] = {"type": model_parameters.get("response_format")}
|
||||
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
- gemini-2.0-flash-exp
|
||||
- gemini-2.0-flash-thinking-exp-1219
|
||||
- gemini-2.0-flash-thinking-exp-01-21
|
||||
- gemini-1.5-pro
|
||||
- gemini-1.5-pro-latest
|
||||
- gemini-1.5-pro-001
|
||||
|
||||
@ -0,0 +1,39 @@
|
||||
model: gemini-2.0-flash-thinking-exp-01-21
|
||||
label:
|
||||
en_US: Gemini 2.0 Flash Thinking Exp 01-21
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- vision
|
||||
- document
|
||||
- video
|
||||
- audio
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32767
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_output_tokens
|
||||
use_template: max_tokens
|
||||
default: 8192
|
||||
min: 1
|
||||
max: 8192
|
||||
- name: json_schema
|
||||
use_template: json_schema
|
||||
pricing:
|
||||
input: '0.00'
|
||||
output: '0.00'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
||||
@ -162,9 +162,9 @@ class HuggingfaceHubTextEmbeddingModel(_CommonHuggingfaceHub, TextEmbeddingModel
|
||||
@staticmethod
|
||||
def _check_endpoint_url_model_repository_name(credentials: dict, model_name: str):
|
||||
try:
|
||||
url = f'{HUGGINGFACE_ENDPOINT_API}{credentials["huggingface_namespace"]}'
|
||||
url = f"{HUGGINGFACE_ENDPOINT_API}{credentials['huggingface_namespace']}"
|
||||
headers = {
|
||||
"Authorization": f'Bearer {credentials["huggingfacehub_api_token"]}',
|
||||
"Authorization": f"Bearer {credentials['huggingfacehub_api_token']}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
|
||||
@ -34,6 +34,7 @@ from core.model_runtime.model_providers.minimax.llm.types import MinimaxMessage
|
||||
|
||||
class MinimaxLargeLanguageModel(LargeLanguageModel):
|
||||
model_apis = {
|
||||
"minimax-text-01": MinimaxChatCompletionPro,
|
||||
"abab7-chat-preview": MinimaxChatCompletionPro,
|
||||
"abab6.5t-chat": MinimaxChatCompletionPro,
|
||||
"abab6.5s-chat": MinimaxChatCompletionPro,
|
||||
|
||||
@ -0,0 +1,46 @@
|
||||
model: minimax-text-01
|
||||
label:
|
||||
en_US: Minimax-Text-01
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- tool-call
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 1000192
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
min: 0.01
|
||||
max: 1
|
||||
default: 0.1
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
min: 0.01
|
||||
max: 1
|
||||
default: 0.95
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
default: 2048
|
||||
min: 1
|
||||
max: 1000192
|
||||
- name: mask_sensitive_info
|
||||
type: boolean
|
||||
default: true
|
||||
label:
|
||||
zh_Hans: 隐私保护
|
||||
en_US: Moderate
|
||||
help:
|
||||
zh_Hans: 对输出中易涉及隐私问题的文本信息进行打码,目前包括但不限于邮箱、域名、链接、证件号、家庭住址等,默认true,即开启打码
|
||||
en_US: Mask the sensitive info of the generated content, such as email/domain/link/address/phone/id..
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
input: '0.001'
|
||||
output: '0.008'
|
||||
unit: '0.001'
|
||||
currency: RMB
|
||||
@ -44,9 +44,6 @@ class MoonshotLargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
self._add_custom_parameters(credentials)
|
||||
self._add_function_call(model, credentials)
|
||||
user = user[:32] if user else None
|
||||
# {"response_format": "json_object"} need convert to {"response_format": {"type": "json_object"}}
|
||||
if "response_format" in model_parameters:
|
||||
model_parameters["response_format"] = {"type": model_parameters.get("response_format")}
|
||||
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
from collections.abc import Generator
|
||||
from typing import Any, Optional, Union, cast
|
||||
|
||||
@ -621,11 +622,19 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
||||
prompt_messages = self._clear_illegal_prompt_messages(model, prompt_messages)
|
||||
|
||||
# o1 compatibility
|
||||
block_as_stream = False
|
||||
if model.startswith("o1"):
|
||||
if "max_tokens" in model_parameters:
|
||||
model_parameters["max_completion_tokens"] = model_parameters["max_tokens"]
|
||||
del model_parameters["max_tokens"]
|
||||
|
||||
if re.match(r"^o1(-\d{4}-\d{2}-\d{2})?$", model):
|
||||
if stream:
|
||||
block_as_stream = True
|
||||
stream = False
|
||||
if "stream_options" in extra_model_kwargs:
|
||||
del extra_model_kwargs["stream_options"]
|
||||
|
||||
if "stop" in extra_model_kwargs:
|
||||
del extra_model_kwargs["stop"]
|
||||
|
||||
@ -642,7 +651,45 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
||||
if stream:
|
||||
return self._handle_chat_generate_stream_response(model, credentials, response, prompt_messages, tools)
|
||||
|
||||
return self._handle_chat_generate_response(model, credentials, response, prompt_messages, tools)
|
||||
block_result = self._handle_chat_generate_response(model, credentials, response, prompt_messages, tools)
|
||||
|
||||
if block_as_stream:
|
||||
return self._handle_chat_block_as_stream_response(block_result, prompt_messages, stop)
|
||||
|
||||
return block_result
|
||||
|
||||
def _handle_chat_block_as_stream_response(
|
||||
self,
|
||||
block_result: LLMResult,
|
||||
prompt_messages: list[PromptMessage],
|
||||
stop: Optional[list[str]] = None,
|
||||
) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Handle llm chat response
|
||||
:param model: model name
|
||||
:param credentials: credentials
|
||||
:param response: response
|
||||
:param prompt_messages: prompt messages
|
||||
:param tools: tools for tool calling
|
||||
:return: llm response chunk generator
|
||||
"""
|
||||
text = block_result.message.content
|
||||
text = cast(str, text)
|
||||
|
||||
if stop:
|
||||
text = self.enforce_stop_tokens(text, stop)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=block_result.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=block_result.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=block_result.message,
|
||||
finish_reason="stop",
|
||||
usage=block_result.usage,
|
||||
),
|
||||
)
|
||||
|
||||
def _handle_chat_generate_response(
|
||||
self,
|
||||
|
||||
@ -29,9 +29,6 @@ class SiliconflowLargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
user: Optional[str] = None,
|
||||
) -> Union[LLMResult, Generator]:
|
||||
self._add_custom_parameters(credentials)
|
||||
# {"response_format": "json_object"} need convert to {"response_format": {"type": "json_object"}}
|
||||
if "response_format" in model_parameters:
|
||||
model_parameters["response_format"] = {"type": model_parameters.get("response_format")}
|
||||
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
|
||||
@ -21,7 +21,7 @@ class SparkLLMClient:
|
||||
domain = api_domain
|
||||
|
||||
model_api_configs = {
|
||||
"spark-lite": {"version": "v1.1", "chat_domain": "general"},
|
||||
"spark-lite": {"version": "v1.1", "chat_domain": "lite"},
|
||||
"spark-pro": {"version": "v3.1", "chat_domain": "generalv3"},
|
||||
"spark-pro-128k": {"version": "pro-128k", "chat_domain": "pro-128k"},
|
||||
"spark-max": {"version": "v3.5", "chat_domain": "generalv3.5"},
|
||||
|
||||
@ -257,8 +257,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
|
||||
for index, response in enumerate(responses):
|
||||
if response.status_code not in {200, HTTPStatus.OK}:
|
||||
raise ServiceUnavailableError(
|
||||
f"Failed to invoke model {model}, status code: {response.status_code}, "
|
||||
f"message: {response.message}"
|
||||
f"Failed to invoke model {model}, status code: {response.status_code}, message: {response.message}"
|
||||
)
|
||||
|
||||
resp_finish_reason = response.output.choices[0].finish_reason
|
||||
|
||||
@ -146,7 +146,7 @@ class TritonInferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
elif credentials["completion_type"] == "completion":
|
||||
completion_type = LLMMode.COMPLETION.value
|
||||
else:
|
||||
raise ValueError(f'completion_type {credentials["completion_type"]} is not supported')
|
||||
raise ValueError(f"completion_type {credentials['completion_type']} is not supported")
|
||||
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
|
||||
@ -18,72 +18,93 @@ class ModelConfig(BaseModel):
|
||||
|
||||
|
||||
configs: dict[str, ModelConfig] = {
|
||||
"Doubao-1.5-vision-pro-32k": ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=12288, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.VISION],
|
||||
),
|
||||
"Doubao-1.5-pro-32k": ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=12288, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.AGENT_THOUGHT],
|
||||
),
|
||||
"Doubao-1.5-lite-32k": ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=12288, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.AGENT_THOUGHT],
|
||||
),
|
||||
"Doubao-1.5-pro-256k": ModelConfig(
|
||||
properties=ModelProperties(context_size=262144, max_tokens=12288, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.AGENT_THOUGHT],
|
||||
),
|
||||
"Doubao-vision-pro-32k": ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.VISION],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.VISION],
|
||||
),
|
||||
"Doubao-vision-lite-32k": ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.VISION],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.VISION],
|
||||
),
|
||||
"Doubao-pro-4k": ModelConfig(
|
||||
properties=ModelProperties(context_size=4096, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"Doubao-lite-4k": ModelConfig(
|
||||
properties=ModelProperties(context_size=4096, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"Doubao-pro-32k": ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"Doubao-lite-32k": ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"Doubao-pro-256k": ModelConfig(
|
||||
properties=ModelProperties(context_size=262144, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[],
|
||||
features=[ModelFeature.AGENT_THOUGHT],
|
||||
),
|
||||
"Doubao-pro-128k": ModelConfig(
|
||||
properties=ModelProperties(context_size=131072, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"Doubao-lite-128k": ModelConfig(
|
||||
properties=ModelProperties(context_size=131072, max_tokens=4096, mode=LLMMode.CHAT), features=[]
|
||||
properties=ModelProperties(context_size=131072, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.AGENT_THOUGHT],
|
||||
),
|
||||
"Skylark2-pro-4k": ModelConfig(
|
||||
properties=ModelProperties(context_size=4096, max_tokens=4096, mode=LLMMode.CHAT), features=[]
|
||||
properties=ModelProperties(context_size=4096, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.AGENT_THOUGHT],
|
||||
),
|
||||
"Llama3-8B": ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=8192, mode=LLMMode.CHAT), features=[]
|
||||
properties=ModelProperties(context_size=8192, max_tokens=8192, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.AGENT_THOUGHT],
|
||||
),
|
||||
"Llama3-70B": ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=8192, mode=LLMMode.CHAT), features=[]
|
||||
properties=ModelProperties(context_size=8192, max_tokens=8192, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.AGENT_THOUGHT],
|
||||
),
|
||||
"Moonshot-v1-8k": ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"Moonshot-v1-32k": ModelConfig(
|
||||
properties=ModelProperties(context_size=32768, max_tokens=16384, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"Moonshot-v1-128k": ModelConfig(
|
||||
properties=ModelProperties(context_size=131072, max_tokens=65536, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"GLM3-130B": ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"GLM3-130B-Fin": ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=4096, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.TOOL_CALL],
|
||||
features=[ModelFeature.AGENT_THOUGHT, ModelFeature.TOOL_CALL],
|
||||
),
|
||||
"Mistral-7B": ModelConfig(
|
||||
properties=ModelProperties(context_size=8192, max_tokens=2048, mode=LLMMode.CHAT), features=[]
|
||||
properties=ModelProperties(context_size=8192, max_tokens=2048, mode=LLMMode.CHAT),
|
||||
features=[ModelFeature.AGENT_THOUGHT],
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
@ -118,6 +118,30 @@ model_credential_schema:
|
||||
type: select
|
||||
required: true
|
||||
options:
|
||||
- label:
|
||||
en_US: Doubao-1.5-vision-pro-32k
|
||||
value: Doubao-1.5-vision-pro-32k
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- label:
|
||||
en_US: Doubao-1.5-pro-32k
|
||||
value: Doubao-1.5-pro-32k
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- label:
|
||||
en_US: Doubao-1.5-lite-32k
|
||||
value: Doubao-1.5-lite-32k
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- label:
|
||||
en_US: Doubao-1.5-pro-256k
|
||||
value: Doubao-1.5-pro-256k
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- label:
|
||||
en_US: Doubao-vision-pro-32k
|
||||
value: Doubao-vision-pro-32k
|
||||
|
||||
@ -41,15 +41,15 @@ class BaiduAccessToken:
|
||||
resp = response.json()
|
||||
if "error" in resp:
|
||||
if resp["error"] == "invalid_client":
|
||||
raise InvalidAPIKeyError(f'Invalid API key or secret key: {resp["error_description"]}')
|
||||
raise InvalidAPIKeyError(f"Invalid API key or secret key: {resp['error_description']}")
|
||||
elif resp["error"] == "unknown_error":
|
||||
raise InternalServerError(f'Internal server error: {resp["error_description"]}')
|
||||
raise InternalServerError(f"Internal server error: {resp['error_description']}")
|
||||
elif resp["error"] == "invalid_request":
|
||||
raise BadRequestError(f'Bad request: {resp["error_description"]}')
|
||||
raise BadRequestError(f"Bad request: {resp['error_description']}")
|
||||
elif resp["error"] == "rate_limit_exceeded":
|
||||
raise RateLimitReachedError(f'Rate limit reached: {resp["error_description"]}')
|
||||
raise RateLimitReachedError(f"Rate limit reached: {resp['error_description']}")
|
||||
else:
|
||||
raise Exception(f'Unknown error: {resp["error_description"]}')
|
||||
raise Exception(f"Unknown error: {resp['error_description']}")
|
||||
|
||||
return resp["access_token"]
|
||||
|
||||
|
||||
@ -406,7 +406,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
elif credentials["completion_type"] == "completion":
|
||||
completion_type = LLMMode.COMPLETION.value
|
||||
else:
|
||||
raise ValueError(f'completion_type {credentials["completion_type"]} is not supported')
|
||||
raise ValueError(f"completion_type {credentials['completion_type']} is not supported")
|
||||
else:
|
||||
extra_args = XinferenceHelper.get_xinference_extra_parameter(
|
||||
server_url=credentials["server_url"],
|
||||
@ -472,7 +472,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
api_key = credentials.get("api_key") or "abc"
|
||||
|
||||
client = OpenAI(
|
||||
base_url=f'{credentials["server_url"]}/v1',
|
||||
base_url=f"{credentials['server_url']}/v1",
|
||||
api_key=api_key,
|
||||
max_retries=int(credentials.get("max_retries") or DEFAULT_MAX_RETRIES),
|
||||
timeout=int(credentials.get("invoke_timeout") or DEFAULT_INVOKE_TIMEOUT),
|
||||
|
||||
@ -87,6 +87,6 @@ class CommonValidator:
|
||||
if value.lower() not in {"true", "false"}:
|
||||
raise ValueError(f"Variable {credential_form_schema.variable} should be true or false")
|
||||
|
||||
value = True if value.lower() == "true" else False
|
||||
value = value.lower() == "true"
|
||||
|
||||
return value
|
||||
|
||||
@ -6,6 +6,7 @@ from pydantic import BaseModel, ValidationInfo, field_validator
|
||||
class TracingProviderEnum(Enum):
|
||||
LANGFUSE = "langfuse"
|
||||
LANGSMITH = "langsmith"
|
||||
OPIK = "opik"
|
||||
|
||||
|
||||
class BaseTracingConfig(BaseModel):
|
||||
@ -56,5 +57,36 @@ class LangSmithConfig(BaseTracingConfig):
|
||||
return v
|
||||
|
||||
|
||||
class OpikConfig(BaseTracingConfig):
|
||||
"""
|
||||
Model class for Opik tracing config.
|
||||
"""
|
||||
|
||||
api_key: str | None = None
|
||||
project: str | None = None
|
||||
workspace: str | None = None
|
||||
url: str = "https://www.comet.com/opik/api/"
|
||||
|
||||
@field_validator("project")
|
||||
@classmethod
|
||||
def project_validator(cls, v, info: ValidationInfo):
|
||||
if v is None or v == "":
|
||||
v = "Default Project"
|
||||
|
||||
return v
|
||||
|
||||
@field_validator("url")
|
||||
@classmethod
|
||||
def url_validator(cls, v, info: ValidationInfo):
|
||||
if v is None or v == "":
|
||||
v = "https://www.comet.com/opik/api/"
|
||||
if not v.startswith(("https://", "http://")):
|
||||
raise ValueError("url must start with https:// or http://")
|
||||
if not v.endswith("/api/"):
|
||||
raise ValueError("url should ends with /api/")
|
||||
|
||||
return v
|
||||
|
||||
|
||||
OPS_FILE_PATH = "ops_trace/"
|
||||
OPS_TRACE_FAILED_KEY = "FAILED_OPS_TRACE"
|
||||
|
||||
0
api/core/ops/opik_trace/__init__.py
Normal file
0
api/core/ops/opik_trace/__init__.py
Normal file
469
api/core/ops/opik_trace/opik_trace.py
Normal file
469
api/core/ops/opik_trace/opik_trace.py
Normal file
@ -0,0 +1,469 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Optional, cast
|
||||
|
||||
from opik import Opik, Trace
|
||||
from opik.id_helpers import uuid4_to_uuid7
|
||||
|
||||
from core.ops.base_trace_instance import BaseTraceInstance
|
||||
from core.ops.entities.config_entity import OpikConfig
|
||||
from core.ops.entities.trace_entity import (
|
||||
BaseTraceInfo,
|
||||
DatasetRetrievalTraceInfo,
|
||||
GenerateNameTraceInfo,
|
||||
MessageTraceInfo,
|
||||
ModerationTraceInfo,
|
||||
SuggestedQuestionTraceInfo,
|
||||
ToolTraceInfo,
|
||||
TraceTaskName,
|
||||
WorkflowTraceInfo,
|
||||
)
|
||||
from extensions.ext_database import db
|
||||
from models.model import EndUser, MessageFile
|
||||
from models.workflow import WorkflowNodeExecution
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def wrap_dict(key_name, data):
|
||||
"""Make sure that the input data is a dict"""
|
||||
if not isinstance(data, dict):
|
||||
return {key_name: data}
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def wrap_metadata(metadata, **kwargs):
|
||||
"""Add common metatada to all Traces and Spans"""
|
||||
metadata["created_from"] = "dify"
|
||||
|
||||
metadata.update(kwargs)
|
||||
|
||||
return metadata
|
||||
|
||||
|
||||
def prepare_opik_uuid(user_datetime: Optional[datetime], user_uuid: Optional[str]):
|
||||
"""Opik needs UUIDv7 while Dify uses UUIDv4 for identifier of most
|
||||
messages and objects. The type-hints of BaseTraceInfo indicates that
|
||||
objects start_time and message_id could be null which means we cannot map
|
||||
it to a UUIDv7. Given that we have no way to identify that object
|
||||
uniquely, generate a new random one UUIDv7 in that case.
|
||||
"""
|
||||
|
||||
if user_datetime is None:
|
||||
user_datetime = datetime.now()
|
||||
|
||||
if user_uuid is None:
|
||||
user_uuid = str(uuid.uuid4())
|
||||
|
||||
return uuid4_to_uuid7(user_datetime, user_uuid)
|
||||
|
||||
|
||||
class OpikDataTrace(BaseTraceInstance):
|
||||
def __init__(
|
||||
self,
|
||||
opik_config: OpikConfig,
|
||||
):
|
||||
super().__init__(opik_config)
|
||||
self.opik_client = Opik(
|
||||
project_name=opik_config.project,
|
||||
workspace=opik_config.workspace,
|
||||
host=opik_config.url,
|
||||
api_key=opik_config.api_key,
|
||||
)
|
||||
self.project = opik_config.project
|
||||
self.file_base_url = os.getenv("FILES_URL", "http://127.0.0.1:5001")
|
||||
|
||||
def trace(self, trace_info: BaseTraceInfo):
|
||||
if isinstance(trace_info, WorkflowTraceInfo):
|
||||
self.workflow_trace(trace_info)
|
||||
if isinstance(trace_info, MessageTraceInfo):
|
||||
self.message_trace(trace_info)
|
||||
if isinstance(trace_info, ModerationTraceInfo):
|
||||
self.moderation_trace(trace_info)
|
||||
if isinstance(trace_info, SuggestedQuestionTraceInfo):
|
||||
self.suggested_question_trace(trace_info)
|
||||
if isinstance(trace_info, DatasetRetrievalTraceInfo):
|
||||
self.dataset_retrieval_trace(trace_info)
|
||||
if isinstance(trace_info, ToolTraceInfo):
|
||||
self.tool_trace(trace_info)
|
||||
if isinstance(trace_info, GenerateNameTraceInfo):
|
||||
self.generate_name_trace(trace_info)
|
||||
|
||||
def workflow_trace(self, trace_info: WorkflowTraceInfo):
|
||||
dify_trace_id = trace_info.workflow_run_id
|
||||
opik_trace_id = prepare_opik_uuid(trace_info.start_time, dify_trace_id)
|
||||
workflow_metadata = wrap_metadata(
|
||||
trace_info.metadata, message_id=trace_info.message_id, workflow_app_log_id=trace_info.workflow_app_log_id
|
||||
)
|
||||
root_span_id = None
|
||||
|
||||
if trace_info.message_id:
|
||||
dify_trace_id = trace_info.message_id
|
||||
opik_trace_id = prepare_opik_uuid(trace_info.start_time, dify_trace_id)
|
||||
|
||||
trace_data = {
|
||||
"id": opik_trace_id,
|
||||
"name": TraceTaskName.MESSAGE_TRACE.value,
|
||||
"start_time": trace_info.start_time,
|
||||
"end_time": trace_info.end_time,
|
||||
"metadata": workflow_metadata,
|
||||
"input": wrap_dict("input", trace_info.workflow_run_inputs),
|
||||
"output": wrap_dict("output", trace_info.workflow_run_outputs),
|
||||
"tags": ["message", "workflow"],
|
||||
"project_name": self.project,
|
||||
}
|
||||
self.add_trace(trace_data)
|
||||
|
||||
root_span_id = prepare_opik_uuid(trace_info.start_time, trace_info.workflow_run_id)
|
||||
span_data = {
|
||||
"id": root_span_id,
|
||||
"parent_span_id": None,
|
||||
"trace_id": opik_trace_id,
|
||||
"name": TraceTaskName.WORKFLOW_TRACE.value,
|
||||
"input": wrap_dict("input", trace_info.workflow_run_inputs),
|
||||
"output": wrap_dict("output", trace_info.workflow_run_outputs),
|
||||
"start_time": trace_info.start_time,
|
||||
"end_time": trace_info.end_time,
|
||||
"metadata": workflow_metadata,
|
||||
"tags": ["workflow"],
|
||||
"project_name": self.project,
|
||||
}
|
||||
self.add_span(span_data)
|
||||
else:
|
||||
trace_data = {
|
||||
"id": opik_trace_id,
|
||||
"name": TraceTaskName.MESSAGE_TRACE.value,
|
||||
"start_time": trace_info.start_time,
|
||||
"end_time": trace_info.end_time,
|
||||
"metadata": workflow_metadata,
|
||||
"input": wrap_dict("input", trace_info.workflow_run_inputs),
|
||||
"output": wrap_dict("output", trace_info.workflow_run_outputs),
|
||||
"tags": ["workflow"],
|
||||
"project_name": self.project,
|
||||
}
|
||||
self.add_trace(trace_data)
|
||||
|
||||
# through workflow_run_id get all_nodes_execution
|
||||
workflow_nodes_execution_id_records = (
|
||||
db.session.query(WorkflowNodeExecution.id)
|
||||
.filter(WorkflowNodeExecution.workflow_run_id == trace_info.workflow_run_id)
|
||||
.all()
|
||||
)
|
||||
|
||||
for node_execution_id_record in workflow_nodes_execution_id_records:
|
||||
node_execution = (
|
||||
db.session.query(
|
||||
WorkflowNodeExecution.id,
|
||||
WorkflowNodeExecution.tenant_id,
|
||||
WorkflowNodeExecution.app_id,
|
||||
WorkflowNodeExecution.title,
|
||||
WorkflowNodeExecution.node_type,
|
||||
WorkflowNodeExecution.status,
|
||||
WorkflowNodeExecution.inputs,
|
||||
WorkflowNodeExecution.outputs,
|
||||
WorkflowNodeExecution.created_at,
|
||||
WorkflowNodeExecution.elapsed_time,
|
||||
WorkflowNodeExecution.process_data,
|
||||
WorkflowNodeExecution.execution_metadata,
|
||||
)
|
||||
.filter(WorkflowNodeExecution.id == node_execution_id_record.id)
|
||||
.first()
|
||||
)
|
||||
|
||||
if not node_execution:
|
||||
continue
|
||||
|
||||
node_execution_id = node_execution.id
|
||||
tenant_id = node_execution.tenant_id
|
||||
app_id = node_execution.app_id
|
||||
node_name = node_execution.title
|
||||
node_type = node_execution.node_type
|
||||
status = node_execution.status
|
||||
if node_type == "llm":
|
||||
inputs = (
|
||||
json.loads(node_execution.process_data).get("prompts", {}) if node_execution.process_data else {}
|
||||
)
|
||||
else:
|
||||
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
|
||||
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
|
||||
created_at = node_execution.created_at or datetime.now()
|
||||
elapsed_time = node_execution.elapsed_time
|
||||
finished_at = created_at + timedelta(seconds=elapsed_time)
|
||||
|
||||
execution_metadata = (
|
||||
json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}
|
||||
)
|
||||
metadata = execution_metadata.copy()
|
||||
metadata.update(
|
||||
{
|
||||
"workflow_run_id": trace_info.workflow_run_id,
|
||||
"node_execution_id": node_execution_id,
|
||||
"tenant_id": tenant_id,
|
||||
"app_id": app_id,
|
||||
"app_name": node_name,
|
||||
"node_type": node_type,
|
||||
"status": status,
|
||||
}
|
||||
)
|
||||
|
||||
process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
|
||||
|
||||
provider = None
|
||||
model = None
|
||||
total_tokens = 0
|
||||
completion_tokens = 0
|
||||
prompt_tokens = 0
|
||||
|
||||
if process_data and process_data.get("model_mode") == "chat":
|
||||
run_type = "llm"
|
||||
provider = process_data.get("model_provider", None)
|
||||
model = process_data.get("model_name", "")
|
||||
metadata.update(
|
||||
{
|
||||
"ls_provider": provider,
|
||||
"ls_model_name": model,
|
||||
}
|
||||
)
|
||||
|
||||
try:
|
||||
if outputs.get("usage"):
|
||||
total_tokens = outputs["usage"].get("total_tokens", 0)
|
||||
prompt_tokens = outputs["usage"].get("prompt_tokens", 0)
|
||||
completion_tokens = outputs["usage"].get("completion_tokens", 0)
|
||||
except Exception:
|
||||
logger.error("Failed to extract usage", exc_info=True)
|
||||
|
||||
else:
|
||||
run_type = "tool"
|
||||
|
||||
parent_span_id = trace_info.workflow_app_log_id or trace_info.workflow_run_id
|
||||
|
||||
if not total_tokens:
|
||||
total_tokens = execution_metadata.get("total_tokens", 0)
|
||||
|
||||
span_data = {
|
||||
"trace_id": opik_trace_id,
|
||||
"id": prepare_opik_uuid(created_at, node_execution_id),
|
||||
"parent_span_id": prepare_opik_uuid(trace_info.start_time, parent_span_id),
|
||||
"name": node_type,
|
||||
"type": run_type,
|
||||
"start_time": created_at,
|
||||
"end_time": finished_at,
|
||||
"metadata": wrap_metadata(metadata),
|
||||
"input": wrap_dict("input", inputs),
|
||||
"output": wrap_dict("output", outputs),
|
||||
"tags": ["node_execution"],
|
||||
"project_name": self.project,
|
||||
"usage": {
|
||||
"total_tokens": total_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"prompt_tokens": prompt_tokens,
|
||||
},
|
||||
"model": model,
|
||||
"provider": provider,
|
||||
}
|
||||
|
||||
self.add_span(span_data)
|
||||
|
||||
def message_trace(self, trace_info: MessageTraceInfo):
|
||||
# get message file data
|
||||
file_list = cast(list[str], trace_info.file_list) or []
|
||||
message_file_data: Optional[MessageFile] = trace_info.message_file_data
|
||||
|
||||
if message_file_data is not None:
|
||||
file_url = f"{self.file_base_url}/{message_file_data.url}" if message_file_data else ""
|
||||
file_list.append(file_url)
|
||||
|
||||
message_data = trace_info.message_data
|
||||
if message_data is None:
|
||||
return
|
||||
|
||||
metadata = trace_info.metadata
|
||||
message_id = trace_info.message_id
|
||||
|
||||
user_id = message_data.from_account_id
|
||||
metadata["user_id"] = user_id
|
||||
metadata["file_list"] = file_list
|
||||
|
||||
if message_data.from_end_user_id:
|
||||
end_user_data: Optional[EndUser] = (
|
||||
db.session.query(EndUser).filter(EndUser.id == message_data.from_end_user_id).first()
|
||||
)
|
||||
if end_user_data is not None:
|
||||
end_user_id = end_user_data.session_id
|
||||
metadata["end_user_id"] = end_user_id
|
||||
|
||||
trace_data = {
|
||||
"id": prepare_opik_uuid(trace_info.start_time, message_id),
|
||||
"name": TraceTaskName.MESSAGE_TRACE.value,
|
||||
"start_time": trace_info.start_time,
|
||||
"end_time": trace_info.end_time,
|
||||
"metadata": wrap_metadata(metadata),
|
||||
"input": trace_info.inputs,
|
||||
"output": message_data.answer,
|
||||
"tags": ["message", str(trace_info.conversation_mode)],
|
||||
"project_name": self.project,
|
||||
}
|
||||
trace = self.add_trace(trace_data)
|
||||
|
||||
span_data = {
|
||||
"trace_id": trace.id,
|
||||
"name": "llm",
|
||||
"type": "llm",
|
||||
"start_time": trace_info.start_time,
|
||||
"end_time": trace_info.end_time,
|
||||
"metadata": wrap_metadata(metadata),
|
||||
"input": {"input": trace_info.inputs},
|
||||
"output": {"output": message_data.answer},
|
||||
"tags": ["llm", str(trace_info.conversation_mode)],
|
||||
"usage": {
|
||||
"completion_tokens": trace_info.answer_tokens,
|
||||
"prompt_tokens": trace_info.message_tokens,
|
||||
"total_tokens": trace_info.total_tokens,
|
||||
},
|
||||
"project_name": self.project,
|
||||
}
|
||||
self.add_span(span_data)
|
||||
|
||||
def moderation_trace(self, trace_info: ModerationTraceInfo):
|
||||
if trace_info.message_data is None:
|
||||
return
|
||||
|
||||
start_time = trace_info.start_time or trace_info.message_data.created_at
|
||||
|
||||
span_data = {
|
||||
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
|
||||
"name": TraceTaskName.MODERATION_TRACE.value,
|
||||
"type": "tool",
|
||||
"start_time": start_time,
|
||||
"end_time": trace_info.end_time or trace_info.message_data.updated_at,
|
||||
"metadata": wrap_metadata(trace_info.metadata),
|
||||
"input": wrap_dict("input", trace_info.inputs),
|
||||
"output": {
|
||||
"action": trace_info.action,
|
||||
"flagged": trace_info.flagged,
|
||||
"preset_response": trace_info.preset_response,
|
||||
"inputs": trace_info.inputs,
|
||||
},
|
||||
"tags": ["moderation"],
|
||||
}
|
||||
|
||||
self.add_span(span_data)
|
||||
|
||||
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
|
||||
message_data = trace_info.message_data
|
||||
if message_data is None:
|
||||
return
|
||||
|
||||
start_time = trace_info.start_time or message_data.created_at
|
||||
|
||||
span_data = {
|
||||
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
|
||||
"name": TraceTaskName.SUGGESTED_QUESTION_TRACE.value,
|
||||
"type": "tool",
|
||||
"start_time": start_time,
|
||||
"end_time": trace_info.end_time or message_data.updated_at,
|
||||
"metadata": wrap_metadata(trace_info.metadata),
|
||||
"input": wrap_dict("input", trace_info.inputs),
|
||||
"output": wrap_dict("output", trace_info.suggested_question),
|
||||
"tags": ["suggested_question"],
|
||||
}
|
||||
|
||||
self.add_span(span_data)
|
||||
|
||||
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
|
||||
if trace_info.message_data is None:
|
||||
return
|
||||
|
||||
start_time = trace_info.start_time or trace_info.message_data.created_at
|
||||
|
||||
span_data = {
|
||||
"trace_id": prepare_opik_uuid(start_time, trace_info.message_id),
|
||||
"name": TraceTaskName.DATASET_RETRIEVAL_TRACE.value,
|
||||
"type": "tool",
|
||||
"start_time": start_time,
|
||||
"end_time": trace_info.end_time or trace_info.message_data.updated_at,
|
||||
"metadata": wrap_metadata(trace_info.metadata),
|
||||
"input": wrap_dict("input", trace_info.inputs),
|
||||
"output": {"documents": trace_info.documents},
|
||||
"tags": ["dataset_retrieval"],
|
||||
}
|
||||
|
||||
self.add_span(span_data)
|
||||
|
||||
def tool_trace(self, trace_info: ToolTraceInfo):
|
||||
span_data = {
|
||||
"trace_id": prepare_opik_uuid(trace_info.start_time, trace_info.message_id),
|
||||
"name": trace_info.tool_name,
|
||||
"type": "tool",
|
||||
"start_time": trace_info.start_time,
|
||||
"end_time": trace_info.end_time,
|
||||
"metadata": wrap_metadata(trace_info.metadata),
|
||||
"input": wrap_dict("input", trace_info.tool_inputs),
|
||||
"output": wrap_dict("output", trace_info.tool_outputs),
|
||||
"tags": ["tool", trace_info.tool_name],
|
||||
}
|
||||
|
||||
self.add_span(span_data)
|
||||
|
||||
def generate_name_trace(self, trace_info: GenerateNameTraceInfo):
|
||||
trace_data = {
|
||||
"id": prepare_opik_uuid(trace_info.start_time, trace_info.message_id),
|
||||
"name": TraceTaskName.GENERATE_NAME_TRACE.value,
|
||||
"start_time": trace_info.start_time,
|
||||
"end_time": trace_info.end_time,
|
||||
"metadata": wrap_metadata(trace_info.metadata),
|
||||
"input": trace_info.inputs,
|
||||
"output": trace_info.outputs,
|
||||
"tags": ["generate_name"],
|
||||
"project_name": self.project,
|
||||
}
|
||||
|
||||
trace = self.add_trace(trace_data)
|
||||
|
||||
span_data = {
|
||||
"trace_id": trace.id,
|
||||
"name": TraceTaskName.GENERATE_NAME_TRACE.value,
|
||||
"start_time": trace_info.start_time,
|
||||
"end_time": trace_info.end_time,
|
||||
"metadata": wrap_metadata(trace_info.metadata),
|
||||
"input": wrap_dict("input", trace_info.inputs),
|
||||
"output": wrap_dict("output", trace_info.outputs),
|
||||
"tags": ["generate_name"],
|
||||
}
|
||||
|
||||
self.add_span(span_data)
|
||||
|
||||
def add_trace(self, opik_trace_data: dict) -> Trace:
|
||||
try:
|
||||
trace = self.opik_client.trace(**opik_trace_data)
|
||||
logger.debug("Opik Trace created successfully")
|
||||
return trace
|
||||
except Exception as e:
|
||||
raise ValueError(f"Opik Failed to create trace: {str(e)}")
|
||||
|
||||
def add_span(self, opik_span_data: dict):
|
||||
try:
|
||||
self.opik_client.span(**opik_span_data)
|
||||
logger.debug("Opik Span created successfully")
|
||||
except Exception as e:
|
||||
raise ValueError(f"Opik Failed to create span: {str(e)}")
|
||||
|
||||
def api_check(self):
|
||||
try:
|
||||
self.opik_client.auth_check()
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.info(f"Opik API check failed: {str(e)}", exc_info=True)
|
||||
raise ValueError(f"Opik API check failed: {str(e)}")
|
||||
|
||||
def get_project_url(self):
|
||||
try:
|
||||
return self.opik_client.get_project_url(project_name=self.project)
|
||||
except Exception as e:
|
||||
logger.info(f"Opik get run url failed: {str(e)}", exc_info=True)
|
||||
raise ValueError(f"Opik get run url failed: {str(e)}")
|
||||
@ -17,6 +17,7 @@ from core.ops.entities.config_entity import (
|
||||
OPS_FILE_PATH,
|
||||
LangfuseConfig,
|
||||
LangSmithConfig,
|
||||
OpikConfig,
|
||||
TracingProviderEnum,
|
||||
)
|
||||
from core.ops.entities.trace_entity import (
|
||||
@ -32,6 +33,7 @@ from core.ops.entities.trace_entity import (
|
||||
)
|
||||
from core.ops.langfuse_trace.langfuse_trace import LangFuseDataTrace
|
||||
from core.ops.langsmith_trace.langsmith_trace import LangSmithDataTrace
|
||||
from core.ops.opik_trace.opik_trace import OpikDataTrace
|
||||
from core.ops.utils import get_message_data
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
@ -52,6 +54,12 @@ provider_config_map: dict[str, dict[str, Any]] = {
|
||||
"other_keys": ["project", "endpoint"],
|
||||
"trace_instance": LangSmithDataTrace,
|
||||
},
|
||||
TracingProviderEnum.OPIK.value: {
|
||||
"config_class": OpikConfig,
|
||||
"secret_keys": ["api_key"],
|
||||
"other_keys": ["project", "url", "workspace"],
|
||||
"trace_instance": OpikDataTrace,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -22,7 +22,12 @@ from core.helper import encrypter
|
||||
from core.helper.model_provider_cache import ProviderCredentialsCache, ProviderCredentialsCacheType
|
||||
from core.helper.position_helper import is_filtered
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.entities.provider_entities import CredentialFormSchema, FormType, ProviderEntity
|
||||
from core.model_runtime.entities.provider_entities import (
|
||||
ConfigurateMethod,
|
||||
CredentialFormSchema,
|
||||
FormType,
|
||||
ProviderEntity,
|
||||
)
|
||||
from core.model_runtime.model_providers import model_provider_factory
|
||||
from extensions import ext_hosting_provider
|
||||
from extensions.ext_database import db
|
||||
@ -835,11 +840,18 @@ class ProviderManager:
|
||||
:return:
|
||||
"""
|
||||
# Get provider model credential secret variables
|
||||
model_credential_secret_variables = self._extract_secret_variables(
|
||||
provider_entity.model_credential_schema.credential_form_schemas
|
||||
if provider_entity.model_credential_schema
|
||||
else []
|
||||
)
|
||||
if ConfigurateMethod.PREDEFINED_MODEL in provider_entity.configurate_methods:
|
||||
model_credential_secret_variables = self._extract_secret_variables(
|
||||
provider_entity.provider_credential_schema.credential_form_schemas
|
||||
if provider_entity.provider_credential_schema
|
||||
else []
|
||||
)
|
||||
else:
|
||||
model_credential_secret_variables = self._extract_secret_variables(
|
||||
provider_entity.model_credential_schema.credential_form_schemas
|
||||
if provider_entity.model_credential_schema
|
||||
else []
|
||||
)
|
||||
|
||||
model_settings: list[ModelSettings] = []
|
||||
if not provider_model_settings:
|
||||
|
||||
@ -258,7 +258,7 @@ class LindormVectorStore(BaseVector):
|
||||
hnsw_ef_construction = kwargs.pop("hnsw_ef_construction", 500)
|
||||
ivfpq_m = kwargs.pop("ivfpq_m", dimension)
|
||||
nlist = kwargs.pop("nlist", 1000)
|
||||
centroids_use_hnsw = kwargs.pop("centroids_use_hnsw", True if nlist >= 5000 else False)
|
||||
centroids_use_hnsw = kwargs.pop("centroids_use_hnsw", nlist >= 5000)
|
||||
centroids_hnsw_m = kwargs.pop("centroids_hnsw_m", 24)
|
||||
centroids_hnsw_ef_construct = kwargs.pop("centroids_hnsw_ef_construct", 500)
|
||||
centroids_hnsw_ef_search = kwargs.pop("centroids_hnsw_ef_search", 100)
|
||||
@ -305,7 +305,7 @@ def default_text_mapping(dimension: int, method_name: str, **kwargs: Any) -> dic
|
||||
if method_name == "ivfpq":
|
||||
ivfpq_m = kwargs["ivfpq_m"]
|
||||
nlist = kwargs["nlist"]
|
||||
centroids_use_hnsw = True if nlist > 10000 else False
|
||||
centroids_use_hnsw = nlist > 10000
|
||||
centroids_hnsw_m = 24
|
||||
centroids_hnsw_ef_construct = 500
|
||||
centroids_hnsw_ef_search = 100
|
||||
|
||||
@ -31,7 +31,7 @@ class FirecrawlApp:
|
||||
"markdown": data.get("markdown"),
|
||||
}
|
||||
else:
|
||||
raise Exception(f'Failed to scrape URL. Error: {response_data["error"]}')
|
||||
raise Exception(f"Failed to scrape URL. Error: {response_data['error']}")
|
||||
|
||||
elif response.status_code in {402, 409, 500}:
|
||||
error_message = response.json().get("error", "Unknown error occurred")
|
||||
|
||||
@ -358,8 +358,7 @@ class NotionExtractor(BaseExtractor):
|
||||
|
||||
if not data_source_binding:
|
||||
raise Exception(
|
||||
f"No notion data source binding found for tenant {tenant_id} "
|
||||
f"and notion workspace {notion_workspace_id}"
|
||||
f"No notion data source binding found for tenant {tenant_id} and notion workspace {notion_workspace_id}"
|
||||
)
|
||||
|
||||
return cast(str, data_source_binding.access_token)
|
||||
|
||||
@ -112,7 +112,7 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
df = pd.read_csv(file)
|
||||
text_docs = []
|
||||
for index, row in df.iterrows():
|
||||
data = Document(page_content=row[0], metadata={"answer": row[1]})
|
||||
data = Document(page_content=row.iloc[0], metadata={"answer": row.iloc[1]})
|
||||
text_docs.append(data)
|
||||
if len(text_docs) == 0:
|
||||
raise ValueError("The CSV file is empty.")
|
||||
|
||||
@ -127,7 +127,7 @@ class AIPPTGenerateToolAdapter:
|
||||
|
||||
response = response.json()
|
||||
if response.get("code") != 0:
|
||||
raise Exception(f'Failed to create task: {response.get("msg")}')
|
||||
raise Exception(f"Failed to create task: {response.get('msg')}")
|
||||
|
||||
return response.get("data", {}).get("id")
|
||||
|
||||
@ -222,7 +222,7 @@ class AIPPTGenerateToolAdapter:
|
||||
elif model == "wenxin":
|
||||
response = response.json()
|
||||
if response.get("code") != 0:
|
||||
raise Exception(f'Failed to generate content: {response.get("msg")}')
|
||||
raise Exception(f"Failed to generate content: {response.get('msg')}")
|
||||
|
||||
return response.get("data", "")
|
||||
|
||||
@ -254,7 +254,7 @@ class AIPPTGenerateToolAdapter:
|
||||
|
||||
response = response.json()
|
||||
if response.get("code") != 0:
|
||||
raise Exception(f'Failed to generate ppt: {response.get("msg")}')
|
||||
raise Exception(f"Failed to generate ppt: {response.get('msg')}")
|
||||
|
||||
id = response.get("data", {}).get("id")
|
||||
cover_url = response.get("data", {}).get("cover_url")
|
||||
@ -270,7 +270,7 @@ class AIPPTGenerateToolAdapter:
|
||||
|
||||
response = response.json()
|
||||
if response.get("code") != 0:
|
||||
raise Exception(f'Failed to generate ppt: {response.get("msg")}')
|
||||
raise Exception(f"Failed to generate ppt: {response.get('msg')}")
|
||||
|
||||
export_code = response.get("data")
|
||||
if not export_code:
|
||||
@ -290,7 +290,7 @@ class AIPPTGenerateToolAdapter:
|
||||
|
||||
response = response.json()
|
||||
if response.get("code") != 0:
|
||||
raise Exception(f'Failed to generate ppt: {response.get("msg")}')
|
||||
raise Exception(f"Failed to generate ppt: {response.get('msg')}")
|
||||
|
||||
if response.get("msg") == "导出中":
|
||||
current_iteration += 1
|
||||
@ -343,7 +343,7 @@ class AIPPTGenerateToolAdapter:
|
||||
raise Exception(f"Failed to connect to aippt: {response.text}")
|
||||
response = response.json()
|
||||
if response.get("code") != 0:
|
||||
raise Exception(f'Failed to connect to aippt: {response.get("msg")}')
|
||||
raise Exception(f"Failed to connect to aippt: {response.get('msg')}")
|
||||
|
||||
token = response.get("data", {}).get("token")
|
||||
expire = response.get("data", {}).get("time_expire")
|
||||
@ -379,7 +379,7 @@ class AIPPTGenerateToolAdapter:
|
||||
if cls._style_cache[key]["expire"] < now:
|
||||
del cls._style_cache[key]
|
||||
|
||||
key = f'{credentials["aippt_access_key"]}#@#{user_id}'
|
||||
key = f"{credentials['aippt_access_key']}#@#{user_id}"
|
||||
if key in cls._style_cache:
|
||||
return cls._style_cache[key]["colors"], cls._style_cache[key]["styles"]
|
||||
|
||||
@ -396,11 +396,11 @@ class AIPPTGenerateToolAdapter:
|
||||
response = response.json()
|
||||
|
||||
if response.get("code") != 0:
|
||||
raise Exception(f'Failed to connect to aippt: {response.get("msg")}')
|
||||
raise Exception(f"Failed to connect to aippt: {response.get('msg')}")
|
||||
|
||||
colors = [
|
||||
{
|
||||
"id": f'id-{item.get("id")}',
|
||||
"id": f"id-{item.get('id')}",
|
||||
"name": item.get("name"),
|
||||
"en_name": item.get("en_name", item.get("name")),
|
||||
}
|
||||
@ -408,7 +408,7 @@ class AIPPTGenerateToolAdapter:
|
||||
]
|
||||
styles = [
|
||||
{
|
||||
"id": f'id-{item.get("id")}',
|
||||
"id": f"id-{item.get('id')}",
|
||||
"name": item.get("title"),
|
||||
}
|
||||
for item in response.get("data", {}).get("suit_style") or []
|
||||
@ -454,7 +454,7 @@ class AIPPTGenerateToolAdapter:
|
||||
response = response.json()
|
||||
|
||||
if response.get("code") != 0:
|
||||
raise Exception(f'Failed to connect to aippt: {response.get("msg")}')
|
||||
raise Exception(f"Failed to connect to aippt: {response.get('msg')}")
|
||||
|
||||
if len(response.get("data", {}).get("list") or []) > 0:
|
||||
return response.get("data", {}).get("list")[0].get("id")
|
||||
|
||||
@ -229,8 +229,7 @@ class NovaReelTool(BuiltinTool):
|
||||
|
||||
if async_mode:
|
||||
return self.create_text_message(
|
||||
f"Video generation started.\nInvocation ARN: {invocation_arn}\n"
|
||||
f"Video will be available at: {video_uri}"
|
||||
f"Video generation started.\nInvocation ARN: {invocation_arn}\nVideo will be available at: {video_uri}"
|
||||
)
|
||||
|
||||
return self._wait_for_completion(bedrock, s3_client, invocation_arn)
|
||||
|
||||
@ -65,7 +65,7 @@ class BaiduFieldTranslateTool(BuiltinTool, BaiduTranslateToolBase):
|
||||
if "trans_result" in result:
|
||||
result_text = result["trans_result"][0]["dst"]
|
||||
else:
|
||||
result_text = f'{result["error_code"]}: {result["error_msg"]}'
|
||||
result_text = f"{result['error_code']}: {result['error_msg']}"
|
||||
|
||||
return self.create_text_message(str(result_text))
|
||||
except requests.RequestException as e:
|
||||
|
||||
@ -52,7 +52,7 @@ class BaiduLanguageTool(BuiltinTool, BaiduTranslateToolBase):
|
||||
|
||||
result_text = ""
|
||||
if result["error_code"] != 0:
|
||||
result_text = f'{result["error_code"]}: {result["error_msg"]}'
|
||||
result_text = f"{result['error_code']}: {result['error_msg']}"
|
||||
else:
|
||||
result_text = result["data"]["src"]
|
||||
result_text = self.mapping_result(description_language, result_text)
|
||||
|
||||
@ -58,7 +58,7 @@ class BaiduTranslateTool(BuiltinTool, BaiduTranslateToolBase):
|
||||
if "trans_result" in result:
|
||||
result_text = result["trans_result"][0]["dst"]
|
||||
else:
|
||||
result_text = f'{result["error_code"]}: {result["error_msg"]}'
|
||||
result_text = f"{result['error_code']}: {result['error_msg']}"
|
||||
|
||||
return self.create_text_message(str(result_text))
|
||||
except requests.RequestException as e:
|
||||
|
||||
@ -30,7 +30,7 @@ class BingSearchTool(BuiltinTool):
|
||||
headers = {"Ocp-Apim-Subscription-Key": subscription_key, "Accept-Language": accept_language}
|
||||
|
||||
query = quote(query)
|
||||
server_url = f'{server_url}?q={query}&mkt={market_code}&count={limit}&responseFilter={",".join(filters)}'
|
||||
server_url = f"{server_url}?q={query}&mkt={market_code}&count={limit}&responseFilter={','.join(filters)}"
|
||||
response = get(server_url, headers=headers)
|
||||
|
||||
if response.status_code != 200:
|
||||
@ -47,23 +47,23 @@ class BingSearchTool(BuiltinTool):
|
||||
results = []
|
||||
if search_results:
|
||||
for result in search_results:
|
||||
url = f': {result["url"]}' if "url" in result else ""
|
||||
results.append(self.create_text_message(text=f'{result["name"]}{url}'))
|
||||
url = f": {result['url']}" if "url" in result else ""
|
||||
results.append(self.create_text_message(text=f"{result['name']}{url}"))
|
||||
|
||||
if entities:
|
||||
for entity in entities:
|
||||
url = f': {entity["url"]}' if "url" in entity else ""
|
||||
results.append(self.create_text_message(text=f'{entity.get("name", "")}{url}'))
|
||||
url = f": {entity['url']}" if "url" in entity else ""
|
||||
results.append(self.create_text_message(text=f"{entity.get('name', '')}{url}"))
|
||||
|
||||
if news:
|
||||
for news_item in news:
|
||||
url = f': {news_item["url"]}' if "url" in news_item else ""
|
||||
results.append(self.create_text_message(text=f'{news_item.get("name", "")}{url}'))
|
||||
url = f": {news_item['url']}" if "url" in news_item else ""
|
||||
results.append(self.create_text_message(text=f"{news_item.get('name', '')}{url}"))
|
||||
|
||||
if related_searches:
|
||||
for related in related_searches:
|
||||
url = f': {related["displayText"]}' if "displayText" in related else ""
|
||||
results.append(self.create_text_message(text=f'{related.get("displayText", "")}{url}'))
|
||||
url = f": {related['displayText']}" if "displayText" in related else ""
|
||||
results.append(self.create_text_message(text=f"{related.get('displayText', '')}{url}"))
|
||||
|
||||
return results
|
||||
elif result_type == "json":
|
||||
@ -106,29 +106,29 @@ class BingSearchTool(BuiltinTool):
|
||||
text = ""
|
||||
if search_results:
|
||||
for i, result in enumerate(search_results):
|
||||
text += f'{i + 1}: {result.get("name", "")} - {result.get("snippet", "")}\n'
|
||||
text += f"{i + 1}: {result.get('name', '')} - {result.get('snippet', '')}\n"
|
||||
|
||||
if computation and "expression" in computation and "value" in computation:
|
||||
text += "\nComputation:\n"
|
||||
text += f'{computation["expression"]} = {computation["value"]}\n'
|
||||
text += f"{computation['expression']} = {computation['value']}\n"
|
||||
|
||||
if entities:
|
||||
text += "\nEntities:\n"
|
||||
for entity in entities:
|
||||
url = f'- {entity["url"]}' if "url" in entity else ""
|
||||
text += f'{entity.get("name", "")}{url}\n'
|
||||
url = f"- {entity['url']}" if "url" in entity else ""
|
||||
text += f"{entity.get('name', '')}{url}\n"
|
||||
|
||||
if news:
|
||||
text += "\nNews:\n"
|
||||
for news_item in news:
|
||||
url = f'- {news_item["url"]}' if "url" in news_item else ""
|
||||
text += f'{news_item.get("name", "")}{url}\n'
|
||||
url = f"- {news_item['url']}" if "url" in news_item else ""
|
||||
text += f"{news_item.get('name', '')}{url}\n"
|
||||
|
||||
if related_searches:
|
||||
text += "\n\nRelated Searches:\n"
|
||||
for related in related_searches:
|
||||
url = f'- {related["webSearchUrl"]}' if "webSearchUrl" in related else ""
|
||||
text += f'{related.get("displayText", "")}{url}\n'
|
||||
url = f"- {related['webSearchUrl']}" if "webSearchUrl" in related else ""
|
||||
text += f"{related.get('displayText', '')}{url}\n"
|
||||
|
||||
return self.create_text_message(text=self.summary(user_id=user_id, content=text))
|
||||
|
||||
|
||||
@ -83,5 +83,5 @@ class DIDApp:
|
||||
if status["status"] == "done":
|
||||
return status
|
||||
elif status["status"] == "error" or status["status"] == "rejected":
|
||||
raise HTTPError(f'Talks {id} failed: {status["status"]} {status.get("error", {}).get("description")}')
|
||||
raise HTTPError(f"Talks {id} failed: {status['status']} {status.get('error', {}).get('description')}")
|
||||
time.sleep(poll_interval)
|
||||
|
||||
@ -20,33 +20,33 @@ class SendEmailToolParameters(BaseModel):
|
||||
encrypt_method: str
|
||||
|
||||
|
||||
def send_mail(parmas: SendEmailToolParameters):
|
||||
def send_mail(params: SendEmailToolParameters):
|
||||
timeout = 60
|
||||
msg = MIMEMultipart("alternative")
|
||||
msg["From"] = parmas.email_account
|
||||
msg["To"] = parmas.sender_to
|
||||
msg["Subject"] = parmas.subject
|
||||
msg.attach(MIMEText(parmas.email_content, "plain"))
|
||||
msg.attach(MIMEText(parmas.email_content, "html"))
|
||||
msg["From"] = params.email_account
|
||||
msg["To"] = params.sender_to
|
||||
msg["Subject"] = params.subject
|
||||
msg.attach(MIMEText(params.email_content, "plain"))
|
||||
msg.attach(MIMEText(params.email_content, "html"))
|
||||
|
||||
ctx = ssl.create_default_context()
|
||||
|
||||
if parmas.encrypt_method.upper() == "SSL":
|
||||
if params.encrypt_method.upper() == "SSL":
|
||||
try:
|
||||
with smtplib.SMTP_SSL(parmas.smtp_server, parmas.smtp_port, context=ctx, timeout=timeout) as server:
|
||||
server.login(parmas.email_account, parmas.email_password)
|
||||
server.sendmail(parmas.email_account, parmas.sender_to, msg.as_string())
|
||||
with smtplib.SMTP_SSL(params.smtp_server, params.smtp_port, context=ctx, timeout=timeout) as server:
|
||||
server.login(params.email_account, params.email_password)
|
||||
server.sendmail(params.email_account, params.sender_to, msg.as_string())
|
||||
return True
|
||||
except Exception as e:
|
||||
logging.exception("send email failed")
|
||||
return False
|
||||
else: # NONE or TLS
|
||||
try:
|
||||
with smtplib.SMTP(parmas.smtp_server, parmas.smtp_port, timeout=timeout) as server:
|
||||
if parmas.encrypt_method.upper() == "TLS":
|
||||
with smtplib.SMTP(params.smtp_server, params.smtp_port, timeout=timeout) as server:
|
||||
if params.encrypt_method.upper() == "TLS":
|
||||
server.starttls(context=ctx)
|
||||
server.login(parmas.email_account, parmas.email_password)
|
||||
server.sendmail(parmas.email_account, parmas.sender_to, msg.as_string())
|
||||
server.login(params.email_account, params.email_password)
|
||||
server.sendmail(params.email_account, params.sender_to, msg.as_string())
|
||||
return True
|
||||
except Exception as e:
|
||||
logging.exception("send email failed")
|
||||
|
||||
@ -74,7 +74,7 @@ class FirecrawlApp:
|
||||
if response is None:
|
||||
raise HTTPError("Failed to initiate crawl after multiple retries")
|
||||
elif response.get("success") == False:
|
||||
raise HTTPError(f'Failed to crawl: {response.get("error")}')
|
||||
raise HTTPError(f"Failed to crawl: {response.get('error')}")
|
||||
job_id: str = response["id"]
|
||||
if wait:
|
||||
return self._monitor_job_status(job_id=job_id, poll_interval=poll_interval)
|
||||
@ -100,7 +100,7 @@ class FirecrawlApp:
|
||||
if status["status"] == "completed":
|
||||
return status
|
||||
elif status["status"] == "failed":
|
||||
raise HTTPError(f'Job {job_id} failed: {status["error"]}')
|
||||
raise HTTPError(f"Job {job_id} failed: {status['error']}")
|
||||
time.sleep(poll_interval)
|
||||
|
||||
|
||||
|
||||
@ -37,8 +37,9 @@ class GaodeRepositoriesTool(BuiltinTool):
|
||||
CityCode = City_data["districts"][0]["adcode"]
|
||||
weatherInfo_response = s.request(
|
||||
method="GET",
|
||||
url="{url}/weather/weatherInfo?city={citycode}&extensions=all&key={apikey}&output=json"
|
||||
"".format(url=api_domain, citycode=CityCode, apikey=self.runtime.credentials.get("api_key")),
|
||||
url="{url}/weather/weatherInfo?city={citycode}&extensions=all&key={apikey}&output=json".format(
|
||||
url=api_domain, citycode=CityCode, apikey=self.runtime.credentials.get("api_key")
|
||||
),
|
||||
)
|
||||
weatherInfo_data = weatherInfo_response.json()
|
||||
if weatherInfo_response.status_code == 200 and weatherInfo_data.get("info") == "OK":
|
||||
|
||||
@ -11,19 +11,21 @@ class GitlabFilesTool(BuiltinTool):
|
||||
def _invoke(
|
||||
self, user_id: str, tool_parameters: dict[str, Any]
|
||||
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
|
||||
project = tool_parameters.get("project", "")
|
||||
repository = tool_parameters.get("repository", "")
|
||||
project = tool_parameters.get("project", "")
|
||||
branch = tool_parameters.get("branch", "")
|
||||
path = tool_parameters.get("path", "")
|
||||
file_path = tool_parameters.get("file_path", "")
|
||||
|
||||
if not project and not repository:
|
||||
return self.create_text_message("Either project or repository is required")
|
||||
if not repository and not project:
|
||||
return self.create_text_message("Either repository or project is required")
|
||||
if not branch:
|
||||
return self.create_text_message("Branch is required")
|
||||
if not path:
|
||||
return self.create_text_message("Path is required")
|
||||
if not path and not file_path:
|
||||
return self.create_text_message("Either path or file_path is required")
|
||||
|
||||
access_token = self.runtime.credentials.get("access_tokens")
|
||||
headers = {"PRIVATE-TOKEN": access_token}
|
||||
site_url = self.runtime.credentials.get("site_url")
|
||||
|
||||
if "access_tokens" not in self.runtime.credentials or not self.runtime.credentials.get("access_tokens"):
|
||||
@ -31,33 +33,45 @@ class GitlabFilesTool(BuiltinTool):
|
||||
if "site_url" not in self.runtime.credentials or not self.runtime.credentials.get("site_url"):
|
||||
site_url = "https://gitlab.com"
|
||||
|
||||
# Get file content
|
||||
if repository:
|
||||
result = self.fetch_files(site_url, access_token, repository, branch, path, is_repository=True)
|
||||
# URL encode the repository path
|
||||
identifier = urllib.parse.quote(repository, safe="")
|
||||
else:
|
||||
result = self.fetch_files(site_url, access_token, project, branch, path, is_repository=False)
|
||||
identifier = self.get_project_id(site_url, access_token, project)
|
||||
if not identifier:
|
||||
raise Exception(f"Project '{project}' not found.)")
|
||||
|
||||
return [self.create_json_message(item) for item in result]
|
||||
# Get file content
|
||||
if path:
|
||||
results = self.fetch_files(site_url, headers, identifier, branch, path)
|
||||
return [self.create_json_message(item) for item in results]
|
||||
else:
|
||||
result = self.fetch_file(site_url, headers, identifier, branch, file_path)
|
||||
return [self.create_json_message(result)]
|
||||
|
||||
@staticmethod
|
||||
def fetch_file(
|
||||
site_url: str,
|
||||
headers: dict[str, str],
|
||||
identifier: str,
|
||||
branch: str,
|
||||
path: str,
|
||||
) -> dict[str, Any]:
|
||||
encoded_file_path = urllib.parse.quote(path, safe="")
|
||||
file_url = f"{site_url}/api/v4/projects/{identifier}/repository/files/{encoded_file_path}/raw?ref={branch}"
|
||||
|
||||
file_response = requests.get(file_url, headers=headers)
|
||||
file_response.raise_for_status()
|
||||
file_content = file_response.text
|
||||
return {"path": path, "branch": branch, "content": file_content}
|
||||
|
||||
def fetch_files(
|
||||
self, site_url: str, access_token: str, identifier: str, branch: str, path: str, is_repository: bool
|
||||
self, site_url: str, headers: dict[str, str], identifier: str, branch: str, path: str
|
||||
) -> list[dict[str, Any]]:
|
||||
domain = site_url
|
||||
headers = {"PRIVATE-TOKEN": access_token}
|
||||
results = []
|
||||
|
||||
try:
|
||||
if is_repository:
|
||||
# URL encode the repository path
|
||||
encoded_identifier = urllib.parse.quote(identifier, safe="")
|
||||
tree_url = f"{domain}/api/v4/projects/{encoded_identifier}/repository/tree?path={path}&ref={branch}"
|
||||
else:
|
||||
# Get project ID from project name
|
||||
project_id = self.get_project_id(site_url, access_token, identifier)
|
||||
if not project_id:
|
||||
return self.create_text_message(f"Project '{identifier}' not found.")
|
||||
tree_url = f"{domain}/api/v4/projects/{project_id}/repository/tree?path={path}&ref={branch}"
|
||||
|
||||
tree_url = f"{site_url}/api/v4/projects/{identifier}/repository/tree?path={path}&ref={branch}"
|
||||
response = requests.get(tree_url, headers=headers)
|
||||
response.raise_for_status()
|
||||
items = response.json()
|
||||
@ -65,26 +79,10 @@ class GitlabFilesTool(BuiltinTool):
|
||||
for item in items:
|
||||
item_path = item["path"]
|
||||
if item["type"] == "tree": # It's a directory
|
||||
results.extend(
|
||||
self.fetch_files(site_url, access_token, identifier, branch, item_path, is_repository)
|
||||
)
|
||||
results.extend(self.fetch_files(site_url, headers, identifier, branch, item_path))
|
||||
else: # It's a file
|
||||
encoded_item_path = urllib.parse.quote(item_path, safe="")
|
||||
if is_repository:
|
||||
file_url = (
|
||||
f"{domain}/api/v4/projects/{encoded_identifier}/repository/files"
|
||||
f"/{encoded_item_path}/raw?ref={branch}"
|
||||
)
|
||||
else:
|
||||
file_url = (
|
||||
f"{domain}/api/v4/projects/{project_id}/repository/files"
|
||||
f"{encoded_item_path}/raw?ref={branch}"
|
||||
)
|
||||
|
||||
file_response = requests.get(file_url, headers=headers)
|
||||
file_response.raise_for_status()
|
||||
file_content = file_response.text
|
||||
results.append({"path": item_path, "branch": branch, "content": file_content})
|
||||
result = self.fetch_file(site_url, headers, identifier, branch, item_path)
|
||||
results.append(result)
|
||||
except requests.RequestException as e:
|
||||
print(f"Error fetching data from GitLab: {e}")
|
||||
|
||||
|
||||
@ -29,7 +29,7 @@ parameters:
|
||||
zh_Hans: 项目
|
||||
human_description:
|
||||
en_US: project
|
||||
zh_Hans: 项目
|
||||
zh_Hans: 项目(和仓库路径二选一,都填写以仓库路径优先)
|
||||
llm_description: Project for GitLab
|
||||
form: llm
|
||||
- name: branch
|
||||
@ -45,12 +45,21 @@ parameters:
|
||||
form: llm
|
||||
- name: path
|
||||
type: string
|
||||
required: true
|
||||
label:
|
||||
en_US: path
|
||||
zh_Hans: 文件路径
|
||||
zh_Hans: 文件夹
|
||||
human_description:
|
||||
en_US: path
|
||||
zh_Hans: 文件夹
|
||||
llm_description: Dir path for GitLab
|
||||
form: llm
|
||||
- name: file_path
|
||||
type: string
|
||||
label:
|
||||
en_US: file_path
|
||||
zh_Hans: 文件路径
|
||||
human_description:
|
||||
en_US: file_path
|
||||
zh_Hans: 文件路径(和文件夹二选一,都填写以文件夹优先)
|
||||
llm_description: File path for GitLab
|
||||
form: llm
|
||||
|
||||
@ -110,7 +110,7 @@ class ListWorksheetRecordsTool(BuiltinTool):
|
||||
result["rows"].append(self.get_row_field_value(row, schema))
|
||||
return self.create_text_message(json.dumps(result, ensure_ascii=False))
|
||||
else:
|
||||
result_text = f"Found {result['total']} rows in worksheet \"{worksheet_name}\"."
|
||||
result_text = f'Found {result["total"]} rows in worksheet "{worksheet_name}".'
|
||||
if result["total"] > 0:
|
||||
result_text += (
|
||||
f" The following are {min(limit, result['total'])}"
|
||||
|
||||
@ -28,4 +28,4 @@ class BaseStabilityAuthorization:
|
||||
"""
|
||||
This method is responsible for generating the authorization headers.
|
||||
"""
|
||||
return {"Authorization": f'Bearer {credentials.get("api_key", "")}'}
|
||||
return {"Authorization": f"Bearer {credentials.get('api_key', '')}"}
|
||||
|
||||
@ -38,7 +38,7 @@ class VannaProvider(BuiltinToolProviderController):
|
||||
tool_parameters={
|
||||
"model": "chinook",
|
||||
"db_type": "SQLite",
|
||||
"url": f'{self._get_protocol_and_main_domain(credentials["base_url"])}/Chinook.sqlite',
|
||||
"url": f"{self._get_protocol_and_main_domain(credentials['base_url'])}/Chinook.sqlite",
|
||||
"query": "What are the top 10 customers by sales?",
|
||||
},
|
||||
)
|
||||
|
||||
@ -43,7 +43,7 @@ class SerplyApi:
|
||||
def parse_results(res: dict) -> str:
|
||||
"""Process response from Serply Job Search."""
|
||||
jobs = res.get("jobs", [])
|
||||
if not jobs:
|
||||
if not res or "jobs" not in res:
|
||||
raise ValueError(f"Got error from Serply: {res}")
|
||||
|
||||
string = []
|
||||
|
||||
@ -43,7 +43,7 @@ class SerplyApi:
|
||||
def parse_results(res: dict) -> str:
|
||||
"""Process response from Serply News Search."""
|
||||
news = res.get("entries", [])
|
||||
if not news:
|
||||
if not res or "entries" not in res:
|
||||
raise ValueError(f"Got error from Serply: {res}")
|
||||
|
||||
string = []
|
||||
|
||||
@ -43,7 +43,7 @@ class SerplyApi:
|
||||
def parse_results(res: dict) -> str:
|
||||
"""Process response from Serply News Search."""
|
||||
articles = res.get("articles", [])
|
||||
if not articles:
|
||||
if not res or "articles" not in res:
|
||||
raise ValueError(f"Got error from Serply: {res}")
|
||||
|
||||
string = []
|
||||
|
||||
@ -42,7 +42,7 @@ class SerplyApi:
|
||||
def parse_results(res: dict) -> str:
|
||||
"""Process response from Serply Web Search."""
|
||||
results = res.get("results", [])
|
||||
if not results:
|
||||
if not res or "results" not in res:
|
||||
raise ValueError(f"Got error from Serply: {res}")
|
||||
|
||||
string = []
|
||||
|
||||
@ -84,9 +84,9 @@ class ApiTool(Tool):
|
||||
if "api_key_header_prefix" in credentials:
|
||||
api_key_header_prefix = credentials["api_key_header_prefix"]
|
||||
if api_key_header_prefix == "basic" and credentials["api_key_value"]:
|
||||
credentials["api_key_value"] = f'Basic {credentials["api_key_value"]}'
|
||||
credentials["api_key_value"] = f"Basic {credentials['api_key_value']}"
|
||||
elif api_key_header_prefix == "bearer" and credentials["api_key_value"]:
|
||||
credentials["api_key_value"] = f'Bearer {credentials["api_key_value"]}'
|
||||
credentials["api_key_value"] = f"Bearer {credentials['api_key_value']}"
|
||||
elif api_key_header_prefix == "custom":
|
||||
pass
|
||||
|
||||
|
||||
@ -29,7 +29,7 @@ class ToolFileMessageTransformer:
|
||||
user_id=user_id, tenant_id=tenant_id, conversation_id=conversation_id, file_url=message.message
|
||||
)
|
||||
|
||||
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
|
||||
url = f"/files/tools/{file.id}{guess_extension(file.mimetype) or '.png'}"
|
||||
|
||||
result.append(
|
||||
ToolInvokeMessage(
|
||||
@ -122,4 +122,4 @@ class ToolFileMessageTransformer:
|
||||
|
||||
@classmethod
|
||||
def get_tool_file_url(cls, tool_file_id: str, extension: Optional[str]) -> str:
|
||||
return f'/files/tools/{tool_file_id}{extension or ".bin"}'
|
||||
return f"/files/tools/{tool_file_id}{extension or '.bin'}"
|
||||
|
||||
@ -5,6 +5,7 @@ from json import loads as json_loads
|
||||
from json.decoder import JSONDecodeError
|
||||
from typing import Optional
|
||||
|
||||
from flask import request
|
||||
from requests import get
|
||||
from yaml import YAMLError, safe_load # type: ignore
|
||||
|
||||
@ -29,6 +30,10 @@ class ApiBasedToolSchemaParser:
|
||||
raise ToolProviderNotFoundError("No server found in the openapi yaml.")
|
||||
|
||||
server_url = openapi["servers"][0]["url"]
|
||||
request_env = request.headers.get("X-Request-Env")
|
||||
if request_env:
|
||||
matched_servers = [server["url"] for server in openapi["servers"] if server["env"] == request_env]
|
||||
server_url = matched_servers[0] if matched_servers else server_url
|
||||
|
||||
# list all interfaces
|
||||
interfaces = []
|
||||
@ -112,7 +117,7 @@ class ApiBasedToolSchemaParser:
|
||||
llm_description=property.get("description", ""),
|
||||
default=property.get("default", None),
|
||||
placeholder=I18nObject(
|
||||
en_US=parameter.get("description", ""), zh_Hans=parameter.get("description", "")
|
||||
en_US=property.get("description", ""), zh_Hans=property.get("description", "")
|
||||
),
|
||||
)
|
||||
|
||||
@ -144,7 +149,7 @@ class ApiBasedToolSchemaParser:
|
||||
if not path:
|
||||
path = str(uuid.uuid4())
|
||||
|
||||
interface["operation"]["operationId"] = f'{path}_{interface["method"]}'
|
||||
interface["operation"]["operationId"] = f"{path}_{interface['method']}"
|
||||
|
||||
bundles.append(
|
||||
ApiToolBundle(
|
||||
|
||||
@ -134,6 +134,10 @@ class ArrayStringSegment(ArraySegment):
|
||||
value_type: SegmentType = SegmentType.ARRAY_STRING
|
||||
value: Sequence[str]
|
||||
|
||||
@property
|
||||
def text(self) -> str:
|
||||
return json.dumps(self.value)
|
||||
|
||||
|
||||
class ArrayNumberSegment(ArraySegment):
|
||||
value_type: SegmentType = SegmentType.ARRAY_NUMBER
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator
|
||||
from typing import Optional
|
||||
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.graph_engine.entities.event import GraphEngineEvent, NodeRunExceptionEvent, NodeRunSucceededEvent
|
||||
@ -48,25 +49,35 @@ class StreamProcessor(ABC):
|
||||
# we remove the node maybe shortcut the answer node, so comment this code for now
|
||||
# there is not effect on the answer node and the workflow, when we have a better solution
|
||||
# we can open this code. Issues: #11542 #9560 #10638 #10564
|
||||
ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id)
|
||||
if "answer" in ids:
|
||||
continue
|
||||
else:
|
||||
reachable_node_ids.extend(ids)
|
||||
# ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id)
|
||||
# if "answer" in ids:
|
||||
# continue
|
||||
# else:
|
||||
# reachable_node_ids.extend(ids)
|
||||
|
||||
# The branch_identify parameter is added to ensure that
|
||||
# only nodes in the correct logical branch are included.
|
||||
ids = self._fetch_node_ids_in_reachable_branch(edge.target_node_id, run_result.edge_source_handle)
|
||||
reachable_node_ids.extend(ids)
|
||||
else:
|
||||
unreachable_first_node_ids.append(edge.target_node_id)
|
||||
|
||||
for node_id in unreachable_first_node_ids:
|
||||
self._remove_node_ids_in_unreachable_branch(node_id, reachable_node_ids)
|
||||
|
||||
def _fetch_node_ids_in_reachable_branch(self, node_id: str) -> list[str]:
|
||||
def _fetch_node_ids_in_reachable_branch(self, node_id: str, branch_identify: Optional[str] = None) -> list[str]:
|
||||
node_ids = []
|
||||
for edge in self.graph.edge_mapping.get(node_id, []):
|
||||
if edge.target_node_id == self.graph.root_node_id:
|
||||
continue
|
||||
|
||||
# Only follow edges that match the branch_identify or have no run_condition
|
||||
if edge.run_condition and edge.run_condition.branch_identify:
|
||||
if not branch_identify or edge.run_condition.branch_identify != branch_identify:
|
||||
continue
|
||||
|
||||
node_ids.append(edge.target_node_id)
|
||||
node_ids.extend(self._fetch_node_ids_in_reachable_branch(edge.target_node_id))
|
||||
node_ids.extend(self._fetch_node_ids_in_reachable_branch(edge.target_node_id, branch_identify))
|
||||
return node_ids
|
||||
|
||||
def _remove_node_ids_in_unreachable_branch(self, node_id: str, reachable_node_ids: list[str]) -> None:
|
||||
|
||||
@ -253,9 +253,9 @@ class Executor:
|
||||
)
|
||||
if executor_response.size > threshold_size:
|
||||
raise ResponseSizeError(
|
||||
f'{"File" if executor_response.is_file else "Text"} size is too large,'
|
||||
f' max size is {threshold_size / 1024 / 1024:.2f} MB,'
|
||||
f' but current size is {executor_response.readable_size}.'
|
||||
f"{'File' if executor_response.is_file else 'Text'} size is too large,"
|
||||
f" max size is {threshold_size / 1024 / 1024:.2f} MB,"
|
||||
f" but current size is {executor_response.readable_size}."
|
||||
)
|
||||
|
||||
return executor_response
|
||||
@ -338,7 +338,7 @@ class Executor:
|
||||
if self.auth.config and self.auth.config.header:
|
||||
authorization_header = self.auth.config.header
|
||||
if k.lower() == authorization_header.lower():
|
||||
raw += f'{k}: {"*" * len(v)}\r\n'
|
||||
raw += f"{k}: {'*' * len(v)}\r\n"
|
||||
continue
|
||||
raw += f"{k}: {v}\r\n"
|
||||
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import json
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, cast
|
||||
|
||||
from core.variables import SegmentType, Variable
|
||||
@ -31,7 +32,7 @@ class VariableAssignerNode(BaseNode[VariableAssignerNodeData]):
|
||||
inputs = self.node_data.model_dump()
|
||||
process_data: dict[str, Any] = {}
|
||||
# NOTE: This node has no outputs
|
||||
updated_variables: list[Variable] = []
|
||||
updated_variable_selectors: list[Sequence[str]] = []
|
||||
|
||||
try:
|
||||
for item in self.node_data.items:
|
||||
@ -98,7 +99,8 @@ class VariableAssignerNode(BaseNode[VariableAssignerNodeData]):
|
||||
value=item.value,
|
||||
)
|
||||
variable = variable.model_copy(update={"value": updated_value})
|
||||
updated_variables.append(variable)
|
||||
self.graph_runtime_state.variable_pool.add(variable.selector, variable)
|
||||
updated_variable_selectors.append(variable.selector)
|
||||
except VariableOperatorNodeError as e:
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
@ -107,9 +109,15 @@ class VariableAssignerNode(BaseNode[VariableAssignerNodeData]):
|
||||
error=str(e),
|
||||
)
|
||||
|
||||
# The `updated_variable_selectors` is a list contains list[str] which not hashable,
|
||||
# remove the duplicated items first.
|
||||
updated_variable_selectors = list(set(map(tuple, updated_variable_selectors)))
|
||||
|
||||
# Update variables
|
||||
for variable in updated_variables:
|
||||
self.graph_runtime_state.variable_pool.add(variable.selector, variable)
|
||||
for selector in updated_variable_selectors:
|
||||
variable = self.graph_runtime_state.variable_pool.get(selector)
|
||||
if not isinstance(variable, Variable):
|
||||
raise VariableNotFoundError(variable_selector=selector)
|
||||
process_data[variable.name] = variable.value
|
||||
|
||||
if variable.selector[0] == CONVERSATION_VARIABLE_NODE_ID:
|
||||
|
||||
@ -26,7 +26,7 @@ def handle(sender, **kwargs):
|
||||
tool_runtime=tool_runtime,
|
||||
provider_name=tool_entity.provider_name,
|
||||
provider_type=tool_entity.provider_type,
|
||||
identity_id=f'WORKFLOW.{app.id}.{node_data.get("id")}',
|
||||
identity_id=f"WORKFLOW.{app.id}.{node_data.get('id')}",
|
||||
)
|
||||
manager.delete_tool_parameters_cache()
|
||||
except:
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
from flask_restful import fields # type: ignore
|
||||
|
||||
from libs.helper import TimestampField
|
||||
from libs.helper import AvatarUrlField, TimestampField
|
||||
|
||||
simple_account_fields = {"id": fields.String, "name": fields.String, "email": fields.String}
|
||||
|
||||
@ -8,6 +8,7 @@ account_fields = {
|
||||
"id": fields.String,
|
||||
"name": fields.String,
|
||||
"avatar": fields.String,
|
||||
"avatar_url": AvatarUrlField,
|
||||
"email": fields.String,
|
||||
"is_password_set": fields.Boolean,
|
||||
"interface_language": fields.String,
|
||||
@ -22,6 +23,7 @@ account_with_role_fields = {
|
||||
"id": fields.String,
|
||||
"name": fields.String,
|
||||
"avatar": fields.String,
|
||||
"avatar_url": AvatarUrlField,
|
||||
"email": fields.String,
|
||||
"last_login_at": TimestampField,
|
||||
"last_active_at": TimestampField,
|
||||
|
||||
@ -41,6 +41,18 @@ class AppIconUrlField(fields.Raw):
|
||||
return None
|
||||
|
||||
|
||||
class AvatarUrlField(fields.Raw):
|
||||
def output(self, key, obj):
|
||||
if obj is None:
|
||||
return None
|
||||
|
||||
from models.account import Account
|
||||
|
||||
if isinstance(obj, Account) and obj.avatar is not None:
|
||||
return file_helpers.get_signed_file_url(obj.avatar)
|
||||
return None
|
||||
|
||||
|
||||
class TimestampField(fields.Raw):
|
||||
def format(self, value) -> int:
|
||||
return int(value.timestamp())
|
||||
|
||||
@ -13,6 +13,7 @@ from typing import Any, cast
|
||||
|
||||
from sqlalchemy import func
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
from sqlalchemy.orm import Mapped
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
@ -515,7 +516,7 @@ class DocumentSegment(db.Model): # type: ignore[name-defined]
|
||||
tenant_id = db.Column(StringUUID, nullable=False)
|
||||
dataset_id = db.Column(StringUUID, nullable=False)
|
||||
document_id = db.Column(StringUUID, nullable=False)
|
||||
position = db.Column(db.Integer, nullable=False)
|
||||
position: Mapped[int]
|
||||
content = db.Column(db.Text, nullable=False)
|
||||
answer = db.Column(db.Text, nullable=True)
|
||||
word_count = db.Column(db.Integer, nullable=False)
|
||||
|
||||
@ -1405,9 +1405,8 @@ class ApiToken(db.Model): # type: ignore[name-defined]
|
||||
def generate_api_key(prefix, n):
|
||||
while True:
|
||||
result = prefix + generate_string(n)
|
||||
while db.session.query(ApiToken).filter(ApiToken.token == result).count() > 0:
|
||||
result = prefix + generate_string(n)
|
||||
|
||||
if db.session.query(ApiToken).filter(ApiToken.token == result).count() > 0:
|
||||
continue
|
||||
return result
|
||||
|
||||
|
||||
|
||||
1074
api/poetry.lock
generated
1074
api/poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -1,9 +1,10 @@
|
||||
[project]
|
||||
name = "dify-api"
|
||||
requires-python = ">=3.11,<3.13"
|
||||
dynamic = [ "dependencies" ]
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
requires = ["poetry-core>=2.0.0"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.poetry]
|
||||
@ -59,6 +60,7 @@ numpy = "~1.26.4"
|
||||
oci = "~2.135.1"
|
||||
openai = "~1.52.0"
|
||||
openpyxl = "~3.1.5"
|
||||
opik = "~1.3.4"
|
||||
pandas = { version = "~2.2.2", extras = ["performance", "excel"] }
|
||||
pandas-stubs = "~2.2.3.241009"
|
||||
psycogreen = "~1.0.2"
|
||||
@ -190,4 +192,4 @@ pytest-mock = "~3.14.0"
|
||||
optional = true
|
||||
[tool.poetry.group.lint.dependencies]
|
||||
dotenv-linter = "~0.5.0"
|
||||
ruff = "~0.8.1"
|
||||
ruff = "~0.9.2"
|
||||
|
||||
@ -286,7 +286,7 @@ class AppAnnotationService:
|
||||
df = pd.read_csv(file)
|
||||
result = []
|
||||
for index, row in df.iterrows():
|
||||
content = {"question": row[0], "answer": row[1]}
|
||||
content = {"question": row.iloc[0], "answer": row.iloc[1]}
|
||||
result.append(content)
|
||||
if len(result) == 0:
|
||||
raise ValueError("The CSV file is empty.")
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
import uuid
|
||||
from enum import StrEnum
|
||||
from typing import Optional, cast
|
||||
from typing import Optional
|
||||
from urllib.parse import urlparse
|
||||
from uuid import uuid4
|
||||
|
||||
@ -139,15 +139,6 @@ class AppDslService:
|
||||
status=ImportStatus.FAILED,
|
||||
error="Empty content from url",
|
||||
)
|
||||
|
||||
try:
|
||||
content = cast(bytes, content).decode("utf-8")
|
||||
except UnicodeDecodeError as e:
|
||||
return Import(
|
||||
id=import_id,
|
||||
status=ImportStatus.FAILED,
|
||||
error=f"Error decoding content: {e}",
|
||||
)
|
||||
except Exception as e:
|
||||
return Import(
|
||||
id=import_id,
|
||||
|
||||
@ -82,7 +82,7 @@ class AudioService:
|
||||
from app import app
|
||||
from extensions.ext_database import db
|
||||
|
||||
def invoke_tts(text_content: str, app_model, voice: Optional[str] = None):
|
||||
def invoke_tts(text_content: str, app_model: App, voice: Optional[str] = None):
|
||||
with app.app_context():
|
||||
if app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
|
||||
workflow = app_model.workflow
|
||||
@ -95,6 +95,8 @@ class AudioService:
|
||||
|
||||
voice = features_dict["text_to_speech"].get("voice") if voice is None else voice
|
||||
else:
|
||||
if app_model.app_model_config is None:
|
||||
raise ValueError("AppModelConfig not found")
|
||||
text_to_speech_dict = app_model.app_model_config.text_to_speech_dict
|
||||
|
||||
if not text_to_speech_dict.get("enabled"):
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user