Compare commits

..

30 Commits

Author SHA1 Message Date
fa205cba37 fix: account deletion api 2026-01-26 15:00:22 +08:00
dd988d42c2 feat: enhance quota panel to support additional model providers and integrate trial models feature (#31443)
Co-authored-by: CodingOnStar <hanxujiang@dify.ai>
2026-01-26 14:04:12 +08:00
a43d2ec4f0 refactor: restructure Completed component (#31435)
Co-authored-by: CodingOnStar <hanxujiang@dify.ai>
2026-01-26 14:03:51 +08:00
7c12e923b6 feat: add trial model list in system features (#31313)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
Co-authored-by: hj24 <mambahj24@gmail.com>
2026-01-26 11:52:05 +08:00
b9f1d65d4f refactor: example of refine dict / Mapping (#31498) 2026-01-26 10:23:38 +08:00
b4e2af96e2 chore(deps): bump @lexical/utils from 0.38.2 to 0.39.0 in /web (#31503)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-26 10:17:04 +08:00
9d38af6d99 chore(deps): bump pyasn1 from 0.6.1 to 0.6.2 in /api (#31140)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-24 10:31:56 +08:00
0772d49257 fix(api): fix IRIS hybrid search returning zero results (#31309)
Co-authored-by: Tomo Okuyama <tomo.okuyama@intersystems.com>
2026-01-24 10:29:19 +08:00
67eb8c052d refactor: single-node workflow runner helpers (#31472) 2026-01-24 10:27:44 +08:00
5c4028d557 refactor: port AppModelConfig (#30919)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2026-01-24 10:25:51 +08:00
lif
55e6bca11c fix(http-request): prevent UUID truncation in JSON body (#31444)
Signed-off-by: majiayu000 <1835304752@qq.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2026-01-24 10:21:21 +08:00
67657c2f48 chore: Update dev setup scripts and API README (#31415)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2026-01-24 10:20:47 +08:00
e8f9d64651 fix(tools): fix ToolInvokeMessage Union type parsing issue (#31450)
Co-authored-by: qiaofenglin <qiaofenglin@baidu.com>
2026-01-24 10:18:06 +08:00
1f8c730259 feat: optimize http status code (#31430) 2026-01-24 10:16:16 +08:00
8d45755303 feat: init fastopenapi (#30453)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2026-01-23 21:07:52 +09:00
6342d196e8 refactor: split changes for api/controllers/web/workflow.py (#29852) 2026-01-23 19:06:21 +09:00
5dc5709d58 refactor: split changes for api/controllers/web/login.py (#29854)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2026-01-23 19:06:04 +09:00
99d19cd3db docs(api): clarity SystemFeatureApi for webapp is unauthenticated by design (#31432)
The `/api/system-features` is required for the web app initialization.
Authentication would create circular dependency (can't authenticate without web app loading).

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2026-01-23 16:03:12 +08:00
fa92548cf6 feat: archive workflow run logs backend (#31310)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2026-01-23 13:11:56 +08:00
lif
41428432cc ci: enable ESLint autofix in autofix bot (#31428)
Signed-off-by: majiayu000 <1835304752@qq.com>
2026-01-23 13:05:51 +08:00
b3a869b91b refactor: optimize system features response payload for unauthenticated clients (#31392)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
Co-authored-by: QuantumGhost <obelisk.reg+git@gmail.com>
2026-01-23 12:12:11 +08:00
f911199c8e chore: disable serwist in dev (#31424)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2026-01-23 11:35:14 +08:00
056095238b fix: fix create-by-file doc_form (#31346) 2026-01-23 11:34:47 +08:00
c8ae6e39d2 fix: NextStep crash when target node is missing (#31416) 2026-01-23 10:15:20 +08:00
61f8647f37 docs(api): mark SystemFeatureApi as unauthenticated by design (#31417)
The `/console/api/system-features` is required for the dashboard initialization. Authentication would create circular dependency (can't login without dashboard loading).

ref: CVE-2025-63387

Related: #31368
2026-01-22 22:33:59 +08:00
356a156f36 chore(i18n): sync translations with en-US (#31413)
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Claude Sonnet 4.5 <noreply@anthropic.com>
Co-authored-by: yyh <92089059+lyzno1@users.noreply.github.com>
2026-01-22 20:56:19 +08:00
lif
e2d7fe9c72 fix(web): use Array.from() for FileList to fix tsc type errors (#31398) 2026-01-22 19:51:24 +08:00
b9f718005c feat: frontend part of support try apps (#31287)
Co-authored-by: CodingOnStar <hanxujiang@dify.ai>
Co-authored-by: yyh <92089059+lyzno1@users.noreply.github.com>
2026-01-22 18:16:37 +08:00
c575c34ca6 refactor: Move workflow node factory to app workflow (#31385)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2026-01-22 18:08:21 +08:00
a112caf5ec fix: use thread local isolation the context (#31410) 2026-01-22 18:02:54 +08:00
867 changed files with 19161 additions and 52648 deletions

View File

@ -4,6 +4,7 @@ Quick validation script for skills - minimal version
"""
import sys
import os
import re
import yaml
from pathlib import Path

View File

@ -33,13 +33,11 @@ Comprehensive performance optimization guide for React and Next.js applications,
- 2.4 [Dynamic Imports for Heavy Components](#24-dynamic-imports-for-heavy-components)
- 2.5 [Preload Based on User Intent](#25-preload-based-on-user-intent)
3. [Server-Side Performance](#3-server-side-performance) — **HIGH**
- 3.1 [Authenticate Server Actions Like API Routes](#31-authenticate-server-actions-like-api-routes)
- 3.2 [Avoid Duplicate Serialization in RSC Props](#32-avoid-duplicate-serialization-in-rsc-props)
- 3.3 [Cross-Request LRU Caching](#33-cross-request-lru-caching)
- 3.4 [Minimize Serialization at RSC Boundaries](#34-minimize-serialization-at-rsc-boundaries)
- 3.5 [Parallel Data Fetching with Component Composition](#35-parallel-data-fetching-with-component-composition)
- 3.6 [Per-Request Deduplication with React.cache()](#36-per-request-deduplication-with-reactcache)
- 3.7 [Use after() for Non-Blocking Operations](#37-use-after-for-non-blocking-operations)
- 3.1 [Cross-Request LRU Caching](#31-cross-request-lru-caching)
- 3.2 [Minimize Serialization at RSC Boundaries](#32-minimize-serialization-at-rsc-boundaries)
- 3.3 [Parallel Data Fetching with Component Composition](#33-parallel-data-fetching-with-component-composition)
- 3.4 [Per-Request Deduplication with React.cache()](#34-per-request-deduplication-with-reactcache)
- 3.5 [Use after() for Non-Blocking Operations](#35-use-after-for-non-blocking-operations)
4. [Client-Side Data Fetching](#4-client-side-data-fetching) — **MEDIUM-HIGH**
- 4.1 [Deduplicate Global Event Listeners](#41-deduplicate-global-event-listeners)
- 4.2 [Use Passive Event Listeners for Scrolling Performance](#42-use-passive-event-listeners-for-scrolling-performance)
@ -570,158 +568,7 @@ The `typeof window !== 'undefined'` check prevents bundling preloaded modules fo
Optimizing server-side rendering and data fetching eliminates server-side waterfalls and reduces response times.
### 3.1 Authenticate Server Actions Like API Routes
**Impact: CRITICAL (prevents unauthorized access to server mutations)**
Server Actions (functions with `"use server"`) are exposed as public endpoints, just like API routes. Always verify authentication and authorization **inside** each Server Action—do not rely solely on middleware, layout guards, or page-level checks, as Server Actions can be invoked directly.
Next.js documentation explicitly states: "Treat Server Actions with the same security considerations as public-facing API endpoints, and verify if the user is allowed to perform a mutation."
**Incorrect: no authentication check**
```typescript
'use server'
export async function deleteUser(userId: string) {
// Anyone can call this! No auth check
await db.user.delete({ where: { id: userId } })
return { success: true }
}
```
**Correct: authentication inside the action**
```typescript
'use server'
import { verifySession } from '@/lib/auth'
import { unauthorized } from '@/lib/errors'
export async function deleteUser(userId: string) {
// Always check auth inside the action
const session = await verifySession()
if (!session) {
throw unauthorized('Must be logged in')
}
// Check authorization too
if (session.user.role !== 'admin' && session.user.id !== userId) {
throw unauthorized('Cannot delete other users')
}
await db.user.delete({ where: { id: userId } })
return { success: true }
}
```
**With input validation:**
```typescript
'use server'
import { verifySession } from '@/lib/auth'
import { z } from 'zod'
const updateProfileSchema = z.object({
userId: z.string().uuid(),
name: z.string().min(1).max(100),
email: z.string().email()
})
export async function updateProfile(data: unknown) {
// Validate input first
const validated = updateProfileSchema.parse(data)
// Then authenticate
const session = await verifySession()
if (!session) {
throw new Error('Unauthorized')
}
// Then authorize
if (session.user.id !== validated.userId) {
throw new Error('Can only update own profile')
}
// Finally perform the mutation
await db.user.update({
where: { id: validated.userId },
data: {
name: validated.name,
email: validated.email
}
})
return { success: true }
}
```
Reference: [https://nextjs.org/docs/app/guides/authentication](https://nextjs.org/docs/app/guides/authentication)
### 3.2 Avoid Duplicate Serialization in RSC Props
**Impact: LOW (reduces network payload by avoiding duplicate serialization)**
RSC→client serialization deduplicates by object reference, not value. Same reference = serialized once; new reference = serialized again. Do transformations (`.toSorted()`, `.filter()`, `.map()`) in client, not server.
**Incorrect: duplicates array**
```tsx
// RSC: sends 6 strings (2 arrays × 3 items)
<ClientList usernames={usernames} usernamesOrdered={usernames.toSorted()} />
```
**Correct: sends 3 strings**
```tsx
// RSC: send once
<ClientList usernames={usernames} />
// Client: transform there
'use client'
const sorted = useMemo(() => [...usernames].sort(), [usernames])
```
**Nested deduplication behavior:**
```tsx
// string[] - duplicates everything
usernames={['a','b']} sorted={usernames.toSorted()} // sends 4 strings
// object[] - duplicates array structure only
users={[{id:1},{id:2}]} sorted={users.toSorted()} // sends 2 arrays + 2 unique objects (not 4)
```
Deduplication works recursively. Impact varies by data type:
- `string[]`, `number[]`, `boolean[]`: **HIGH impact** - array + all primitives fully duplicated
- `object[]`: **LOW impact** - array duplicated, but nested objects deduplicated by reference
**Operations breaking deduplication: create new references**
- Arrays: `.toSorted()`, `.filter()`, `.map()`, `.slice()`, `[...arr]`
- Objects: `{...obj}`, `Object.assign()`, `structuredClone()`, `JSON.parse(JSON.stringify())`
**More examples:**
```tsx
// ❌ Bad
<C users={users} active={users.filter(u => u.active)} />
<C product={product} productName={product.name} />
// ✅ Good
<C users={users} />
<C product={product} />
// Do filtering/destructuring in client
```
**Exception:** Pass derived data when transformation is expensive or client doesn't need original.
### 3.3 Cross-Request LRU Caching
### 3.1 Cross-Request LRU Caching
**Impact: HIGH (caches across requests)**
@ -758,7 +605,7 @@ Use when sequential user actions hit multiple endpoints needing the same data wi
Reference: [https://github.com/isaacs/node-lru-cache](https://github.com/isaacs/node-lru-cache)
### 3.4 Minimize Serialization at RSC Boundaries
### 3.2 Minimize Serialization at RSC Boundaries
**Impact: HIGH (reduces data transfer size)**
@ -792,7 +639,7 @@ function Profile({ name }: { name: string }) {
}
```
### 3.5 Parallel Data Fetching with Component Composition
### 3.3 Parallel Data Fetching with Component Composition
**Impact: CRITICAL (eliminates server-side waterfalls)**
@ -871,7 +718,7 @@ export default function Page() {
}
```
### 3.6 Per-Request Deduplication with React.cache()
### 3.4 Per-Request Deduplication with React.cache()
**Impact: MEDIUM (deduplicates within request)**
@ -937,7 +784,7 @@ Use `React.cache()` to deduplicate these operations across your component tree.
Reference: [https://react.dev/reference/react/cache](https://react.dev/reference/react/cache)
### 3.7 Use after() for Non-Blocking Operations
### 3.5 Use after() for Non-Blocking Operations
**Impact: MEDIUM (faster response times)**
@ -1868,32 +1715,79 @@ Micro-optimizations for hot paths can add up to meaningful improvements.
**Impact: MEDIUM (reduces reflows/repaints)**
Avoid interleaving style writes with layout reads. When you read a layout property (like `offsetWidth`, `getBoundingClientRect()`, or `getComputedStyle()`) between style changes, the browser is forced to trigger a synchronous reflow.
Avoid changing styles one property at a time. Group multiple CSS changes together via classes or `cssText` to minimize browser reflows.
**Incorrect: interleaved reads and writes force reflows**
**Incorrect: multiple reflows**
```typescript
function updateElementStyles(element: HTMLElement) {
// Each line triggers a reflow
element.style.width = '100px'
const width = element.offsetWidth // Forces reflow
element.style.height = '200px'
const height = element.offsetHeight // Forces another reflow
element.style.backgroundColor = 'blue'
element.style.border = '1px solid black'
}
```
**Correct: batch writes, then read once**
**Correct: add class - single reflow**
```typescript
// CSS file
.highlighted-box {
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
}
// JavaScript
function updateElementStyles(element: HTMLElement) {
element.classList.add('highlighted-box')
const { width, height } = element.getBoundingClientRect()
}
```
**Better: use CSS classes**
**Correct: change cssText - single reflow**
Prefer CSS classes over inline styles when possible. CSS files are cached by the browser, and classes provide better separation of concerns and are easier to maintain.
```typescript
function updateElementStyles(element: HTMLElement) {
element.style.cssText = `
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
`
}
```
**React example:**
```tsx
// Incorrect: changing styles one by one
function Box({ isHighlighted }: { isHighlighted: boolean }) {
const ref = useRef<HTMLDivElement>(null)
useEffect(() => {
if (ref.current && isHighlighted) {
ref.current.style.width = '100px'
ref.current.style.height = '200px'
ref.current.style.backgroundColor = 'blue'
}
}, [isHighlighted])
return <div ref={ref}>Content</div>
}
// Correct: toggle class
function Box({ isHighlighted }: { isHighlighted: boolean }) {
return (
<div className={isHighlighted ? 'highlighted-box' : ''}>
Content
</div>
)
}
```
Prefer CSS classes over inline styles when possible. Classes are cached by the browser and provide better separation of concerns.
### 7.2 Build Index Maps for Repeated Lookups
@ -2150,7 +2044,7 @@ function hasChanges(current: string[], original: string[]) {
if (current.length !== original.length) {
return true
}
// Only sort when lengths match
// Only sort/join when lengths match
const currentSorted = current.toSorted()
const originalSorted = original.toSorted()
for (let i = 0; i < currentSorted.length; i++) {
@ -2335,7 +2229,7 @@ const min = Math.min(...numbers)
const max = Math.max(...numbers)
```
This works for small arrays, but can be slower or just throw an error for very large arrays due to spread operator limitations. Maximal array length is approximately 124000 in Chrome 143 and 638000 in Safari 18; exact numbers may vary - see [the fiddle](https://jsfiddle.net/qw1jabsx/4/). Use the loop approach for reliability.
This works for small arrays but can be slower for very large arrays due to spread operator limitations. Use the loop approach for reliability.
### 7.11 Use Set/Map for O(1) Lookups
@ -2431,7 +2325,7 @@ Store callbacks in refs when used in effects that shouldn't re-subscribe on call
**Incorrect: re-subscribes on every render**
```tsx
function useWindowEvent(event: string, handler: (e) => void) {
function useWindowEvent(event: string, handler: () => void) {
useEffect(() => {
window.addEventListener(event, handler)
return () => window.removeEventListener(event, handler)
@ -2444,7 +2338,7 @@ function useWindowEvent(event: string, handler: (e) => void) {
```tsx
import { useEffectEvent } from 'react'
function useWindowEvent(event: string, handler: (e) => void) {
function useWindowEvent(event: string, handler: () => void) {
const onEvent = useEffectEvent(handler)
useEffect(() => {
@ -2469,7 +2363,7 @@ Access latest values in callbacks without adding them to dependency arrays. Prev
```typescript
function useLatest<T>(value: T) {
const ref = useRef(value)
useLayoutEffect(() => {
useEffect(() => {
ref.current = value
}, [value])
return ref

View File

@ -1,14 +1,26 @@
---
title: useEffectEvent for Stable Callback Refs
title: useLatest for Stable Callback Refs
impact: LOW
impactDescription: prevents effect re-runs
tags: advanced, hooks, useEffectEvent, refs, optimization
tags: advanced, hooks, useLatest, refs, optimization
---
## useEffectEvent for Stable Callback Refs
## useLatest for Stable Callback Refs
Access latest values in callbacks without adding them to dependency arrays. Prevents effect re-runs while avoiding stale closures.
**Implementation:**
```typescript
function useLatest<T>(value: T) {
const ref = useRef(value)
useLayoutEffect(() => {
ref.current = value
}, [value])
return ref
}
```
**Incorrect (effect re-runs on every callback change):**
```tsx
@ -22,17 +34,15 @@ function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
}
```
**Correct (using React's useEffectEvent):**
**Correct (stable effect, fresh callback):**
```tsx
import { useEffectEvent } from 'react';
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
const onSearchEvent = useEffectEvent(onSearch)
const onSearchRef = useLatest(onSearch)
useEffect(() => {
const timeout = setTimeout(() => onSearchEvent(query), 300)
const timeout = setTimeout(() => onSearchRef.current(query), 300)
return () => clearTimeout(timeout)
}, [query])
}

View File

@ -33,19 +33,4 @@ const { user, config, profile } = await all({
})
```
**Alternative without extra dependencies:**
We can also create all the promises first, and do `Promise.all()` at the end.
```typescript
const userPromise = fetchUser()
const profilePromise = userPromise.then(user => fetchProfile(user.id))
const [user, config, profile] = await Promise.all([
userPromise,
fetchConfig(),
profilePromise
])
```
Reference: [https://github.com/shuding/better-all](https://github.com/shuding/better-all)

View File

@ -1,28 +1,18 @@
---
title: Avoid Layout Thrashing
title: Batch DOM CSS Changes
impact: MEDIUM
impactDescription: prevents forced synchronous layouts and reduces performance bottlenecks
tags: javascript, dom, css, performance, reflow, layout-thrashing
impactDescription: reduces reflows/repaints
tags: javascript, dom, css, performance, reflow
---
## Avoid Layout Thrashing
## Batch DOM CSS Changes
Avoid interleaving style writes with layout reads. When you read a layout property (like `offsetWidth`, `getBoundingClientRect()`, or `getComputedStyle()`) between style changes, the browser is forced to trigger a synchronous reflow.
**This is OK (browser batches style changes):**
**Incorrect (interleaved reads and writes force reflows):**
```typescript
function updateElementStyles(element: HTMLElement) {
// Each line invalidates style, but browser batches the recalculation
element.style.width = '100px'
element.style.height = '200px'
element.style.backgroundColor = 'blue'
element.style.border = '1px solid black'
}
```
**Incorrect (interleaved reads and writes force reflows):**
```typescript
function layoutThrashing(element: HTMLElement) {
element.style.width = '100px'
const width = element.offsetWidth // Forces reflow
element.style.height = '200px'
@ -31,6 +21,7 @@ function layoutThrashing(element: HTMLElement) {
```
**Correct (batch writes, then read once):**
```typescript
function updateElementStyles(element: HTMLElement) {
// Batch all writes together
@ -44,21 +35,8 @@ function updateElementStyles(element: HTMLElement) {
}
```
**Correct (batch reads, then writes):**
```typescript
function avoidThrashing(element: HTMLElement) {
// Read phase - all layout queries first
const rect1 = element.getBoundingClientRect()
const offsetWidth = element.offsetWidth
const offsetHeight = element.offsetHeight
// Write phase - all style changes after
element.style.width = '100px'
element.style.height = '200px'
}
```
**Better: use CSS classes**
```css
.highlighted-box {
width: 100px;
@ -67,41 +45,13 @@ function avoidThrashing(element: HTMLElement) {
border: 1px solid black;
}
```
```typescript
function updateElementStyles(element: HTMLElement) {
element.classList.add('highlighted-box')
const { width, height } = element.getBoundingClientRect()
}
```
**React example:**
```tsx
// Incorrect: interleaving style changes with layout queries
function Box({ isHighlighted }: { isHighlighted: boolean }) {
const ref = useRef<HTMLDivElement>(null)
useEffect(() => {
if (ref.current && isHighlighted) {
ref.current.style.width = '100px'
const width = ref.current.offsetWidth // Forces layout
ref.current.style.height = '200px'
}
}, [isHighlighted])
return <div ref={ref}>Content</div>
}
// Correct: toggle class
function Box({ isHighlighted }: { isHighlighted: boolean }) {
return (
<div className={isHighlighted ? 'highlighted-box' : ''}>
Content
</div>
)
}
```
Prefer CSS classes over inline styles when possible. CSS files are cached by the browser, and classes provide better separation of concerns and are easier to maintain.
See [this gist](https://gist.github.com/paulirish/5d52fb081b3570c81e3a) and [CSS Triggers](https://csstriggers.com/) for more information on layout-forcing operations.
Prefer CSS classes over inline styles when possible. CSS files are cached by the browser, and classes provide better separation of concerns and are easier to maintain.

View File

@ -1,38 +0,0 @@
---
title: Extract Default Non-primitive Parameter Value from Memoized Component to Constant
impact: MEDIUM
impactDescription: restores memoization by using a constant for default value
tags: rerender, memo, optimization
---
## Extract Default Non-primitive Parameter Value from Memoized Component to Constant
When memoized component has a default value for some non-primitive optional parameter, such as an array, function, or object, calling the component without that parameter results in broken memoization. This is because new value instances are created on every rerender, and they do not pass strict equality comparison in `memo()`.
To address this issue, extract the default value into a constant.
**Incorrect (`onClick` has different values on every rerender):**
```tsx
const UserAvatar = memo(function UserAvatar({ onClick = () => {} }: { onClick?: () => void }) {
// ...
})
// Used without optional onClick
<UserAvatar />
```
**Correct (stable default value):**
```tsx
const NOOP = () => {};
const UserAvatar = memo(function UserAvatar({ onClick = NOOP }: { onClick?: () => void }) {
// ...
})
// Used without optional onClick
<UserAvatar />
```

View File

@ -1,35 +0,0 @@
---
title: Do not wrap a simple expression with a primitive result type in useMemo
impact: LOW-MEDIUM
impactDescription: wasted computation on every render
tags: rerender, useMemo, optimization
---
## Do not wrap a simple expression with a primitive result type in useMemo
When an expression is simple (few logical or arithmetical operators) and has a primitive result type (boolean, number, string), do not wrap it in `useMemo`.
Calling `useMemo` and comparing hook dependencies may consume more resources than the expression itself.
**Incorrect:**
```tsx
function Header({ user, notifications }: Props) {
const isLoading = useMemo(() => {
return user.isLoading || notifications.isLoading
}, [user.isLoading, notifications.isLoading])
if (isLoading) return <Skeleton />
// return some markup
}
```
**Correct:**
```tsx
function Header({ user, notifications }: Props) {
const isLoading = user.isLoading || notifications.isLoading
if (isLoading) return <Skeleton />
// return some markup
}
```

View File

@ -1,96 +0,0 @@
---
title: Authenticate Server Actions Like API Routes
impact: CRITICAL
impactDescription: prevents unauthorized access to server mutations
tags: server, server-actions, authentication, security, authorization
---
## Authenticate Server Actions Like API Routes
**Impact: CRITICAL (prevents unauthorized access to server mutations)**
Server Actions (functions with `"use server"`) are exposed as public endpoints, just like API routes. Always verify authentication and authorization **inside** each Server Action—do not rely solely on middleware, layout guards, or page-level checks, as Server Actions can be invoked directly.
Next.js documentation explicitly states: "Treat Server Actions with the same security considerations as public-facing API endpoints, and verify if the user is allowed to perform a mutation."
**Incorrect (no authentication check):**
```typescript
'use server'
export async function deleteUser(userId: string) {
// Anyone can call this! No auth check
await db.user.delete({ where: { id: userId } })
return { success: true }
}
```
**Correct (authentication inside the action):**
```typescript
'use server'
import { verifySession } from '@/lib/auth'
import { unauthorized } from '@/lib/errors'
export async function deleteUser(userId: string) {
// Always check auth inside the action
const session = await verifySession()
if (!session) {
throw unauthorized('Must be logged in')
}
// Check authorization too
if (session.user.role !== 'admin' && session.user.id !== userId) {
throw unauthorized('Cannot delete other users')
}
await db.user.delete({ where: { id: userId } })
return { success: true }
}
```
**With input validation:**
```typescript
'use server'
import { verifySession } from '@/lib/auth'
import { z } from 'zod'
const updateProfileSchema = z.object({
userId: z.string().uuid(),
name: z.string().min(1).max(100),
email: z.string().email()
})
export async function updateProfile(data: unknown) {
// Validate input first
const validated = updateProfileSchema.parse(data)
// Then authenticate
const session = await verifySession()
if (!session) {
throw new Error('Unauthorized')
}
// Then authorize
if (session.user.id !== validated.userId) {
throw new Error('Can only update own profile')
}
// Finally perform the mutation
await db.user.update({
where: { id: validated.userId },
data: {
name: validated.name,
email: validated.email
}
})
return { success: true }
}
```
Reference: [https://nextjs.org/docs/app/guides/authentication](https://nextjs.org/docs/app/guides/authentication)

View File

@ -1,65 +0,0 @@
---
title: Avoid Duplicate Serialization in RSC Props
impact: LOW
impactDescription: reduces network payload by avoiding duplicate serialization
tags: server, rsc, serialization, props, client-components
---
## Avoid Duplicate Serialization in RSC Props
**Impact: LOW (reduces network payload by avoiding duplicate serialization)**
RSC→client serialization deduplicates by object reference, not value. Same reference = serialized once; new reference = serialized again. Do transformations (`.toSorted()`, `.filter()`, `.map()`) in client, not server.
**Incorrect (duplicates array):**
```tsx
// RSC: sends 6 strings (2 arrays × 3 items)
<ClientList usernames={usernames} usernamesOrdered={usernames.toSorted()} />
```
**Correct (sends 3 strings):**
```tsx
// RSC: send once
<ClientList usernames={usernames} />
// Client: transform there
'use client'
const sorted = useMemo(() => [...usernames].sort(), [usernames])
```
**Nested deduplication behavior:**
Deduplication works recursively. Impact varies by data type:
- `string[]`, `number[]`, `boolean[]`: **HIGH impact** - array + all primitives fully duplicated
- `object[]`: **LOW impact** - array duplicated, but nested objects deduplicated by reference
```tsx
// string[] - duplicates everything
usernames={['a','b']} sorted={usernames.toSorted()} // sends 4 strings
// object[] - duplicates array structure only
users={[{id:1},{id:2}]} sorted={users.toSorted()} // sends 2 arrays + 2 unique objects (not 4)
```
**Operations breaking deduplication (create new references):**
- Arrays: `.toSorted()`, `.filter()`, `.map()`, `.slice()`, `[...arr]`
- Objects: `{...obj}`, `Object.assign()`, `structuredClone()`, `JSON.parse(JSON.stringify())`
**More examples:**
```tsx
// ❌ Bad
<C users={users} active={users.filter(u => u.active)} />
<C product={product} productName={product.name} />
// ✅ Good
<C users={users} />
<C product={product} />
// Do filtering/destructuring in client
```
**Exception:** Pass derived data when transformation is expensive or client doesn't need original.

View File

@ -79,6 +79,29 @@ jobs:
find . -name "*.py" -type f -exec sed -i.bak -E 's/"([^"]+)" \| None/Optional["\1"]/g; s/'"'"'([^'"'"']+)'"'"' \| None/Optional['"'"'\1'"'"']/g' {} \;
find . -name "*.py.bak" -type f -delete
- name: Install pnpm
uses: pnpm/action-setup@v4
with:
package_json_file: web/package.json
run_install: false
- name: Setup Node.js
uses: actions/setup-node@v6
with:
node-version: 24
cache: pnpm
cache-dependency-path: ./web/pnpm-lock.yaml
- name: Install web dependencies
run: |
cd web
pnpm install --frozen-lockfile
- name: ESLint autofix
run: |
cd web
pnpm lint:fix || true
# mdformat breaks YAML front matter in markdown files. Add --exclude for directories containing YAML front matter.
- name: mdformat
run: |

View File

@ -125,7 +125,7 @@ jobs:
- name: Web type check
if: steps.changed-files.outputs.any_changed == 'true'
working-directory: ./web
run: pnpm run type-check:tsgo
run: pnpm run type-check
- name: Web dead code check
if: steps.changed-files.outputs.any_changed == 'true'

1
.gitignore vendored
View File

@ -209,7 +209,6 @@ api/.vscode
.history
.idea/
web/migration/
# pnpm
/.pnpm-store

View File

@ -717,13 +717,3 @@ SANDBOX_EXPIRED_RECORDS_CLEAN_BATCH_SIZE=1000
SANDBOX_EXPIRED_RECORDS_RETENTION_DAYS=30
SANDBOX_EXPIRED_RECORDS_CLEAN_TASK_LOCK_TTL=90000
# Sandbox Dify CLI configuration
# Directory containing dify CLI binaries (dify-cli-<os>-<arch>). Defaults to api/bin when unset.
SANDBOX_DIFY_CLI_ROOT=
# CLI API URL for sandbox (dify-sandbox or e2b) to call back to Dify API.
# This URL must be accessible from the sandbox environment.
# For local development: use http://localhost:5001 or http://127.0.0.1:5001
# For Docker deployment: use http://api:5001 (internal Docker network)
# For external sandbox (e.g., e2b): use a publicly accessible URL
CLI_API_URL=http://localhost:5001

View File

@ -27,7 +27,9 @@ ignore_imports =
core.workflow.nodes.iteration.iteration_node -> core.workflow.graph_events
core.workflow.nodes.loop.loop_node -> core.workflow.graph_events
core.workflow.nodes.node_factory -> core.workflow.graph
core.workflow.nodes.iteration.iteration_node -> core.app.workflow.node_factory
core.workflow.nodes.loop.loop_node -> core.app.workflow.node_factory
core.workflow.nodes.iteration.iteration_node -> core.workflow.graph_engine
core.workflow.nodes.iteration.iteration_node -> core.workflow.graph
core.workflow.nodes.iteration.iteration_node -> core.workflow.graph_engine.command_channels
@ -57,6 +59,252 @@ ignore_imports =
core.workflow.graph_engine.manager -> extensions.ext_redis
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> extensions.ext_redis
[importlinter:contract:workflow-external-imports]
name = Workflow External Imports
type = forbidden
source_modules =
core.workflow
forbidden_modules =
configs
controllers
extensions
models
services
tasks
core.agent
core.app
core.base
core.callback_handler
core.datasource
core.db
core.entities
core.errors
core.extension
core.external_data_tool
core.file
core.helper
core.hosting_configuration
core.indexing_runner
core.llm_generator
core.logging
core.mcp
core.memory
core.model_manager
core.moderation
core.ops
core.plugin
core.prompt
core.provider_manager
core.rag
core.repositories
core.schemas
core.tools
core.trigger
core.variables
ignore_imports =
core.workflow.nodes.loop.loop_node -> core.app.workflow.node_factory
core.workflow.graph_engine.command_channels.redis_channel -> extensions.ext_redis
core.workflow.graph_engine.layers.observability -> configs
core.workflow.graph_engine.layers.observability -> extensions.otel.runtime
core.workflow.graph_engine.layers.persistence -> core.ops.ops_trace_manager
core.workflow.graph_engine.worker_management.worker_pool -> configs
core.workflow.nodes.agent.agent_node -> core.model_manager
core.workflow.nodes.agent.agent_node -> core.provider_manager
core.workflow.nodes.agent.agent_node -> core.tools.tool_manager
core.workflow.nodes.code.code_node -> core.helper.code_executor.code_executor
core.workflow.nodes.datasource.datasource_node -> models.model
core.workflow.nodes.datasource.datasource_node -> models.tools
core.workflow.nodes.datasource.datasource_node -> services.datasource_provider_service
core.workflow.nodes.document_extractor.node -> configs
core.workflow.nodes.document_extractor.node -> core.file.file_manager
core.workflow.nodes.document_extractor.node -> core.helper.ssrf_proxy
core.workflow.nodes.http_request.entities -> configs
core.workflow.nodes.http_request.executor -> configs
core.workflow.nodes.http_request.executor -> core.file.file_manager
core.workflow.nodes.http_request.node -> configs
core.workflow.nodes.http_request.node -> core.tools.tool_file_manager
core.workflow.nodes.iteration.iteration_node -> core.app.workflow.node_factory
core.workflow.nodes.knowledge_index.knowledge_index_node -> core.rag.index_processor.index_processor_factory
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.rag.datasource.retrieval_service
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.rag.retrieval.dataset_retrieval
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> models.dataset
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> services.feature_service
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.model_runtime.model_providers.__base.large_language_model
core.workflow.nodes.llm.llm_utils -> configs
core.workflow.nodes.llm.llm_utils -> core.app.entities.app_invoke_entities
core.workflow.nodes.llm.llm_utils -> core.file.models
core.workflow.nodes.llm.llm_utils -> core.model_manager
core.workflow.nodes.llm.llm_utils -> core.model_runtime.model_providers.__base.large_language_model
core.workflow.nodes.llm.llm_utils -> models.model
core.workflow.nodes.llm.llm_utils -> models.provider
core.workflow.nodes.llm.llm_utils -> services.credit_pool_service
core.workflow.nodes.llm.node -> core.tools.signature
core.workflow.nodes.template_transform.template_transform_node -> configs
core.workflow.nodes.tool.tool_node -> core.callback_handler.workflow_tool_callback_handler
core.workflow.nodes.tool.tool_node -> core.tools.tool_engine
core.workflow.nodes.tool.tool_node -> core.tools.tool_manager
core.workflow.workflow_entry -> configs
core.workflow.workflow_entry -> models.workflow
core.workflow.nodes.agent.agent_node -> core.agent.entities
core.workflow.nodes.agent.agent_node -> core.agent.plugin_entities
core.workflow.graph_engine.layers.persistence -> core.app.entities.app_invoke_entities
core.workflow.nodes.base.node -> core.app.entities.app_invoke_entities
core.workflow.nodes.knowledge_index.knowledge_index_node -> core.app.entities.app_invoke_entities
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.app.app_config.entities
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.app.entities.app_invoke_entities
core.workflow.nodes.llm.node -> core.app.entities.app_invoke_entities
core.workflow.nodes.parameter_extractor.parameter_extractor_node -> core.app.entities.app_invoke_entities
core.workflow.nodes.parameter_extractor.parameter_extractor_node -> core.prompt.advanced_prompt_transform
core.workflow.nodes.parameter_extractor.parameter_extractor_node -> core.prompt.simple_prompt_transform
core.workflow.nodes.parameter_extractor.parameter_extractor_node -> core.model_runtime.model_providers.__base.large_language_model
core.workflow.nodes.question_classifier.question_classifier_node -> core.app.entities.app_invoke_entities
core.workflow.nodes.question_classifier.question_classifier_node -> core.prompt.advanced_prompt_transform
core.workflow.nodes.question_classifier.question_classifier_node -> core.prompt.simple_prompt_transform
core.workflow.nodes.start.entities -> core.app.app_config.entities
core.workflow.nodes.start.start_node -> core.app.app_config.entities
core.workflow.workflow_entry -> core.app.apps.exc
core.workflow.workflow_entry -> core.app.entities.app_invoke_entities
core.workflow.workflow_entry -> core.app.workflow.node_factory
core.workflow.nodes.datasource.datasource_node -> core.datasource.datasource_manager
core.workflow.nodes.datasource.datasource_node -> core.datasource.utils.message_transformer
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.entities.agent_entities
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.entities.model_entities
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.model_manager
core.workflow.nodes.llm.llm_utils -> core.entities.provider_entities
core.workflow.nodes.parameter_extractor.parameter_extractor_node -> core.model_manager
core.workflow.nodes.question_classifier.question_classifier_node -> core.model_manager
core.workflow.node_events.node -> core.file
core.workflow.nodes.agent.agent_node -> core.file
core.workflow.nodes.datasource.datasource_node -> core.file
core.workflow.nodes.datasource.datasource_node -> core.file.enums
core.workflow.nodes.document_extractor.node -> core.file
core.workflow.nodes.http_request.executor -> core.file.enums
core.workflow.nodes.http_request.node -> core.file
core.workflow.nodes.http_request.node -> core.file.file_manager
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.file.models
core.workflow.nodes.list_operator.node -> core.file
core.workflow.nodes.llm.file_saver -> core.file
core.workflow.nodes.llm.llm_utils -> core.variables.segments
core.workflow.nodes.llm.node -> core.file
core.workflow.nodes.llm.node -> core.file.file_manager
core.workflow.nodes.llm.node -> core.file.models
core.workflow.nodes.loop.entities -> core.variables.types
core.workflow.nodes.parameter_extractor.parameter_extractor_node -> core.file
core.workflow.nodes.protocols -> core.file
core.workflow.nodes.question_classifier.question_classifier_node -> core.file.models
core.workflow.nodes.tool.tool_node -> core.file
core.workflow.nodes.tool.tool_node -> core.tools.utils.message_transformer
core.workflow.nodes.tool.tool_node -> models
core.workflow.nodes.trigger_webhook.node -> core.file
core.workflow.runtime.variable_pool -> core.file
core.workflow.runtime.variable_pool -> core.file.file_manager
core.workflow.system_variable -> core.file.models
core.workflow.utils.condition.processor -> core.file
core.workflow.utils.condition.processor -> core.file.file_manager
core.workflow.workflow_entry -> core.file.models
core.workflow.workflow_type_encoder -> core.file.models
core.workflow.nodes.agent.agent_node -> models.model
core.workflow.nodes.code.code_node -> core.helper.code_executor.code_node_provider
core.workflow.nodes.code.code_node -> core.helper.code_executor.javascript.javascript_code_provider
core.workflow.nodes.code.code_node -> core.helper.code_executor.python3.python3_code_provider
core.workflow.nodes.code.entities -> core.helper.code_executor.code_executor
core.workflow.nodes.datasource.datasource_node -> core.variables.variables
core.workflow.nodes.http_request.executor -> core.helper.ssrf_proxy
core.workflow.nodes.http_request.node -> core.helper.ssrf_proxy
core.workflow.nodes.llm.file_saver -> core.helper.ssrf_proxy
core.workflow.nodes.llm.node -> core.helper.code_executor
core.workflow.nodes.template_transform.template_renderer -> core.helper.code_executor.code_executor
core.workflow.nodes.llm.node -> core.llm_generator.output_parser.errors
core.workflow.nodes.llm.node -> core.llm_generator.output_parser.structured_output
core.workflow.nodes.llm.node -> core.model_manager
core.workflow.graph_engine.layers.persistence -> core.ops.entities.trace_entity
core.workflow.nodes.agent.entities -> core.prompt.entities.advanced_prompt_entities
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.prompt.simple_prompt_transform
core.workflow.nodes.llm.entities -> core.prompt.entities.advanced_prompt_entities
core.workflow.nodes.llm.llm_utils -> core.prompt.entities.advanced_prompt_entities
core.workflow.nodes.llm.node -> core.prompt.entities.advanced_prompt_entities
core.workflow.nodes.llm.node -> core.prompt.utils.prompt_message_util
core.workflow.nodes.parameter_extractor.entities -> core.prompt.entities.advanced_prompt_entities
core.workflow.nodes.parameter_extractor.parameter_extractor_node -> core.prompt.entities.advanced_prompt_entities
core.workflow.nodes.parameter_extractor.parameter_extractor_node -> core.prompt.utils.prompt_message_util
core.workflow.nodes.question_classifier.entities -> core.prompt.entities.advanced_prompt_entities
core.workflow.nodes.question_classifier.question_classifier_node -> core.prompt.utils.prompt_message_util
core.workflow.nodes.knowledge_index.entities -> core.rag.retrieval.retrieval_methods
core.workflow.nodes.knowledge_index.knowledge_index_node -> core.rag.retrieval.retrieval_methods
core.workflow.nodes.knowledge_index.knowledge_index_node -> models.dataset
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.rag.retrieval.retrieval_methods
core.workflow.nodes.llm.node -> models.dataset
core.workflow.nodes.agent.agent_node -> core.tools.utils.message_transformer
core.workflow.nodes.llm.file_saver -> core.tools.signature
core.workflow.nodes.llm.file_saver -> core.tools.tool_file_manager
core.workflow.nodes.tool.tool_node -> core.tools.errors
core.workflow.conversation_variable_updater -> core.variables
core.workflow.graph_engine.entities.commands -> core.variables.variables
core.workflow.nodes.agent.agent_node -> core.variables.segments
core.workflow.nodes.answer.answer_node -> core.variables
core.workflow.nodes.code.code_node -> core.variables.segments
core.workflow.nodes.code.code_node -> core.variables.types
core.workflow.nodes.code.entities -> core.variables.types
core.workflow.nodes.datasource.datasource_node -> core.variables.segments
core.workflow.nodes.document_extractor.node -> core.variables
core.workflow.nodes.document_extractor.node -> core.variables.segments
core.workflow.nodes.http_request.executor -> core.variables.segments
core.workflow.nodes.http_request.node -> core.variables.segments
core.workflow.nodes.iteration.iteration_node -> core.variables
core.workflow.nodes.iteration.iteration_node -> core.variables.segments
core.workflow.nodes.iteration.iteration_node -> core.variables.variables
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.variables
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> core.variables.segments
core.workflow.nodes.list_operator.node -> core.variables
core.workflow.nodes.list_operator.node -> core.variables.segments
core.workflow.nodes.llm.node -> core.variables
core.workflow.nodes.loop.loop_node -> core.variables
core.workflow.nodes.parameter_extractor.entities -> core.variables.types
core.workflow.nodes.parameter_extractor.exc -> core.variables.types
core.workflow.nodes.parameter_extractor.parameter_extractor_node -> core.variables.types
core.workflow.nodes.tool.tool_node -> core.variables.segments
core.workflow.nodes.tool.tool_node -> core.variables.variables
core.workflow.nodes.trigger_webhook.node -> core.variables.types
core.workflow.nodes.trigger_webhook.node -> core.variables.variables
core.workflow.nodes.variable_aggregator.entities -> core.variables.types
core.workflow.nodes.variable_aggregator.variable_aggregator_node -> core.variables.segments
core.workflow.nodes.variable_assigner.common.helpers -> core.variables
core.workflow.nodes.variable_assigner.common.helpers -> core.variables.consts
core.workflow.nodes.variable_assigner.common.helpers -> core.variables.types
core.workflow.nodes.variable_assigner.v1.node -> core.variables
core.workflow.nodes.variable_assigner.v2.helpers -> core.variables
core.workflow.nodes.variable_assigner.v2.node -> core.variables
core.workflow.nodes.variable_assigner.v2.node -> core.variables.consts
core.workflow.runtime.graph_runtime_state_protocol -> core.variables.segments
core.workflow.runtime.read_only_wrappers -> core.variables.segments
core.workflow.runtime.variable_pool -> core.variables
core.workflow.runtime.variable_pool -> core.variables.consts
core.workflow.runtime.variable_pool -> core.variables.segments
core.workflow.runtime.variable_pool -> core.variables.variables
core.workflow.utils.condition.processor -> core.variables
core.workflow.utils.condition.processor -> core.variables.segments
core.workflow.variable_loader -> core.variables
core.workflow.variable_loader -> core.variables.consts
core.workflow.workflow_type_encoder -> core.variables
core.workflow.graph_engine.manager -> extensions.ext_redis
core.workflow.nodes.agent.agent_node -> extensions.ext_database
core.workflow.nodes.datasource.datasource_node -> extensions.ext_database
core.workflow.nodes.knowledge_index.knowledge_index_node -> extensions.ext_database
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> extensions.ext_database
core.workflow.nodes.knowledge_retrieval.knowledge_retrieval_node -> extensions.ext_redis
core.workflow.nodes.llm.file_saver -> extensions.ext_database
core.workflow.nodes.llm.llm_utils -> extensions.ext_database
core.workflow.nodes.llm.node -> extensions.ext_database
core.workflow.nodes.tool.tool_node -> extensions.ext_database
core.workflow.workflow_entry -> extensions.otel.runtime
core.workflow.nodes.agent.agent_node -> models
core.workflow.nodes.base.node -> models.enums
core.workflow.nodes.llm.llm_utils -> models.provider_ids
core.workflow.nodes.llm.node -> models.model
core.workflow.workflow_entry -> models.enums
core.workflow.nodes.agent.agent_node -> services
core.workflow.nodes.tool.tool_node -> services
[importlinter:contract:rsc]
name = RSC
type = layers

View File

@ -1,6 +1,6 @@
# Dify Backend API
## Usage
## Setup and Run
> [!IMPORTANT]
>
@ -8,48 +8,77 @@
> [`uv`](https://docs.astral.sh/uv/) as the package manager
> for Dify API backend service.
1. Start the docker-compose stack
`uv` and `pnpm` are required to run the setup and development commands below.
The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using `docker-compose`.
### Using scripts (recommended)
The scripts resolve paths relative to their location, so you can run them from anywhere.
1. Run setup (copies env files and installs dependencies).
```bash
cd ../docker
cp middleware.env.example middleware.env
# change the profile to mysql if you are not using postgres,change the profile to other vector database if you are not using weaviate
docker compose -f docker-compose.middleware.yaml --profile postgresql --profile weaviate -p dify up -d
cd ../api
./dev/setup
```
1. Copy `.env.example` to `.env`
1. Review `api/.env`, `web/.env.local`, and `docker/middleware.env` values (see the `SECRET_KEY` note below).
```cli
cp .env.example .env
1. Start middleware (PostgreSQL/Redis/Weaviate).
```bash
./dev/start-docker-compose
```
> [!IMPORTANT]
>
> When the frontend and backend run on different subdomains, set COOKIE_DOMAIN to the sites top-level domain (e.g., `example.com`). The frontend and backend must be under the same top-level domain in order to share authentication cookies.
1. Start backend (runs migrations first).
1. Generate a `SECRET_KEY` in the `.env` file.
bash for Linux
```bash for Linux
sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
```bash
./dev/start-api
```
bash for Mac
1. Start Dify [web](../web) service.
```bash for Mac
secret_key=$(openssl rand -base64 42)
sed -i '' "/^SECRET_KEY=/c\\
SECRET_KEY=${secret_key}" .env
```bash
./dev/start-web
```
1. Create environment.
1. Set up your application by visiting `http://localhost:3000`.
Dify API service uses [UV](https://docs.astral.sh/uv/) to manage dependencies.
First, you need to add the uv package manager, if you don't have it already.
1. Optional: start the worker service (async tasks, runs from `api`).
```bash
./dev/start-worker
```
1. Optional: start Celery Beat (scheduled tasks).
```bash
./dev/start-beat
```
### Manual commands
<details>
<summary>Show manual setup and run steps</summary>
These commands assume you start from the repository root.
1. Start the docker-compose stack.
The backend requires middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using `docker-compose`.
```bash
cp docker/middleware.env.example docker/middleware.env
# Use mysql or another vector database profile if you are not using postgres/weaviate.
docker compose -f docker/docker-compose.middleware.yaml --profile postgresql --profile weaviate -p dify up -d
```
1. Copy env files.
```bash
cp api/.env.example api/.env
cp web/.env.example web/.env.local
```
1. Install UV if needed.
```bash
pip install uv
@ -57,60 +86,96 @@
brew install uv
```
1. Install dependencies
1. Install API dependencies.
```bash
uv sync --dev
cd api
uv sync --group dev
```
1. Run migrate
Before the first launch, migrate the database to the latest version.
1. Install web dependencies.
```bash
cd web
pnpm install
cd ..
```
1. Start backend (runs migrations first, in a new terminal).
```bash
cd api
uv run flask db upgrade
```
1. Start backend
```bash
uv run flask run --host 0.0.0.0 --port=5001 --debug
```
1. Start Dify [web](../web) service.
1. Start Dify [web](../web) service (in a new terminal).
1. Setup your application by visiting `http://localhost:3000`.
```bash
cd web
pnpm dev:inspect
```
1. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
1. Set up your application by visiting `http://localhost:3000`.
```bash
uv run celery -A app.celery worker -P threads -c 2 --loglevel INFO -Q dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention
```
1. Optional: start the worker service (async tasks, in a new terminal).
Additionally, if you want to debug the celery scheduled tasks, you can run the following command in another terminal to start the beat service:
```bash
cd api
uv run celery -A app.celery worker -P threads -c 2 --loglevel INFO -Q dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention
```
```bash
uv run celery -A app.celery beat
```
1. Optional: start Celery Beat (scheduled tasks, in a new terminal).
```bash
cd api
uv run celery -A app.celery beat
```
</details>
### Environment notes
> [!IMPORTANT]
>
> When the frontend and backend run on different subdomains, set COOKIE_DOMAIN to the sites top-level domain (e.g., `example.com`). The frontend and backend must be under the same top-level domain in order to share authentication cookies.
- Generate a `SECRET_KEY` in the `.env` file.
bash for Linux
```bash
sed -i "/^SECRET_KEY=/c\\SECRET_KEY=$(openssl rand -base64 42)" .env
```
bash for Mac
```bash
secret_key=$(openssl rand -base64 42)
sed -i '' "/^SECRET_KEY=/c\\
SECRET_KEY=${secret_key}" .env
```
## Testing
1. Install dependencies for both the backend and the test environment
```bash
uv sync --dev
cd api
uv sync --group dev
```
1. Run the tests locally with mocked system environment variables in `tool.pytest_env` section in `pyproject.toml`, more can check [Claude.md](../CLAUDE.md)
```bash
cd api
uv run pytest # Run all tests
uv run pytest tests/unit_tests/ # Unit tests only
uv run pytest tests/integration_tests/ # Integration tests
# Code quality
../dev/reformat # Run all formatters and linters
uv run ruff check --fix ./ # Fix linting issues
uv run ruff format ./ # Format code
uv run basedpyright . # Type checking
./dev/reformat # Run all formatters and linters
uv run ruff check --fix ./ # Fix linting issues
uv run ruff format ./ # Format code
uv run basedpyright . # Type checking
```

View File

@ -1,14 +0,0 @@
# Zip Packager Notes
## Purpose
- Builds a ZIP archive of asset contents stored via the configured storage backend.
## Key Decisions
- Packaging writes assets into an in-memory zip buffer returned as bytes.
- Asset fetch + zip writing are executed via a thread pool with a lock guarding `ZipFile` writes.
## Edge Cases
- ZIP writes are serialized by the lock; storage reads still run in parallel.
## Tests/Verification
- None yet.

View File

@ -1,16 +0,0 @@
# E2B Sandbox Provider Notes
## Purpose
- Implements the E2B-backed `VirtualEnvironment` provider and bootstraps sandbox metadata, file I/O, and command execution.
## Key Decisions
- Sandbox metadata is gathered during `_construct_environment` using the E2B SDK before returning `Metadata`.
- Architecture/OS detection uses a single `uname -m -s` call split by whitespace to reduce round-trips.
- Command execution streams stdout/stderr through `QueueTransportReadCloser`; stdin is unsupported.
## Edge Cases
- `release_environment` raises when sandbox termination fails.
- `execute_command` runs in a background thread; consumers must read stdout/stderr until EOF.
## Tests/Verification
- None yet. Add targeted service tests when behavior changes.

View File

@ -81,6 +81,7 @@ def initialize_extensions(app: DifyApp):
ext_commands,
ext_compress,
ext_database,
ext_fastopenapi,
ext_forward_refs,
ext_hosting_provider,
ext_import_modules,
@ -128,6 +129,7 @@ def initialize_extensions(app: DifyApp):
ext_proxy_fix,
ext_blueprints,
ext_commands,
ext_fastopenapi,
ext_otel,
ext_request_logging,
ext_session_factory,

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -23,8 +23,7 @@ from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.index_processor.constant.built_in_field import BuiltInField
from core.rag.models.document import Document
from core.sandbox import SandboxBuilder, SandboxType
from core.tools.utils.system_encryption import encrypt_system_params
from core.tools.utils.system_oauth_encryption import encrypt_system_oauth_params
from events.app_event import app_was_created
from extensions.ext_database import db
from extensions.ext_redis import redis_client
@ -951,6 +950,346 @@ def clean_workflow_runs(
)
@click.command(
"archive-workflow-runs",
help="Archive workflow runs for paid plan tenants to S3-compatible storage.",
)
@click.option("--tenant-ids", default=None, help="Optional comma-separated tenant IDs for grayscale rollout.")
@click.option("--before-days", default=90, show_default=True, help="Archive runs older than N days.")
@click.option(
"--from-days-ago",
default=None,
type=click.IntRange(min=0),
help="Lower bound in days ago (older). Must be paired with --to-days-ago.",
)
@click.option(
"--to-days-ago",
default=None,
type=click.IntRange(min=0),
help="Upper bound in days ago (newer). Must be paired with --from-days-ago.",
)
@click.option(
"--start-from",
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
default=None,
help="Archive runs created at or after this timestamp (UTC if no timezone).",
)
@click.option(
"--end-before",
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
default=None,
help="Archive runs created before this timestamp (UTC if no timezone).",
)
@click.option("--batch-size", default=100, show_default=True, help="Batch size for processing.")
@click.option("--workers", default=1, show_default=True, type=int, help="Concurrent workflow runs to archive.")
@click.option("--limit", default=None, type=int, help="Maximum number of runs to archive.")
@click.option("--dry-run", is_flag=True, help="Preview without archiving.")
@click.option("--delete-after-archive", is_flag=True, help="Delete runs and related data after archiving.")
def archive_workflow_runs(
tenant_ids: str | None,
before_days: int,
from_days_ago: int | None,
to_days_ago: int | None,
start_from: datetime.datetime | None,
end_before: datetime.datetime | None,
batch_size: int,
workers: int,
limit: int | None,
dry_run: bool,
delete_after_archive: bool,
):
"""
Archive workflow runs for paid plan tenants older than the specified days.
This command archives the following tables to storage:
- workflow_node_executions
- workflow_node_execution_offload
- workflow_pauses
- workflow_pause_reasons
- workflow_trigger_logs
The workflow_runs and workflow_app_logs tables are preserved for UI listing.
"""
from services.retention.workflow_run.archive_paid_plan_workflow_run import WorkflowRunArchiver
run_started_at = datetime.datetime.now(datetime.UTC)
click.echo(
click.style(
f"Starting workflow run archiving at {run_started_at.isoformat()}.",
fg="white",
)
)
if (start_from is None) ^ (end_before is None):
click.echo(click.style("start-from and end-before must be provided together.", fg="red"))
return
if (from_days_ago is None) ^ (to_days_ago is None):
click.echo(click.style("from-days-ago and to-days-ago must be provided together.", fg="red"))
return
if from_days_ago is not None and to_days_ago is not None:
if start_from or end_before:
click.echo(click.style("Choose either day offsets or explicit dates, not both.", fg="red"))
return
if from_days_ago <= to_days_ago:
click.echo(click.style("from-days-ago must be greater than to-days-ago.", fg="red"))
return
now = datetime.datetime.now()
start_from = now - datetime.timedelta(days=from_days_ago)
end_before = now - datetime.timedelta(days=to_days_ago)
before_days = 0
if start_from and end_before and start_from >= end_before:
click.echo(click.style("start-from must be earlier than end-before.", fg="red"))
return
if workers < 1:
click.echo(click.style("workers must be at least 1.", fg="red"))
return
archiver = WorkflowRunArchiver(
days=before_days,
batch_size=batch_size,
start_from=start_from,
end_before=end_before,
workers=workers,
tenant_ids=[tid.strip() for tid in tenant_ids.split(",")] if tenant_ids else None,
limit=limit,
dry_run=dry_run,
delete_after_archive=delete_after_archive,
)
summary = archiver.run()
click.echo(
click.style(
f"Summary: processed={summary.total_runs_processed}, archived={summary.runs_archived}, "
f"skipped={summary.runs_skipped}, failed={summary.runs_failed}, "
f"time={summary.total_elapsed_time:.2f}s",
fg="cyan",
)
)
run_finished_at = datetime.datetime.now(datetime.UTC)
elapsed = run_finished_at - run_started_at
click.echo(
click.style(
f"Workflow run archiving completed. start={run_started_at.isoformat()} "
f"end={run_finished_at.isoformat()} duration={elapsed}",
fg="green",
)
)
@click.command(
"restore-workflow-runs",
help="Restore archived workflow runs from S3-compatible storage.",
)
@click.option(
"--tenant-ids",
required=False,
help="Tenant IDs (comma-separated).",
)
@click.option("--run-id", required=False, help="Workflow run ID to restore.")
@click.option(
"--start-from",
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
default=None,
help="Optional lower bound (inclusive) for created_at; must be paired with --end-before.",
)
@click.option(
"--end-before",
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
default=None,
help="Optional upper bound (exclusive) for created_at; must be paired with --start-from.",
)
@click.option("--workers", default=1, show_default=True, type=int, help="Concurrent workflow runs to restore.")
@click.option("--limit", type=int, default=100, show_default=True, help="Maximum number of runs to restore.")
@click.option("--dry-run", is_flag=True, help="Preview without restoring.")
def restore_workflow_runs(
tenant_ids: str | None,
run_id: str | None,
start_from: datetime.datetime | None,
end_before: datetime.datetime | None,
workers: int,
limit: int,
dry_run: bool,
):
"""
Restore an archived workflow run from storage to the database.
This restores the following tables:
- workflow_node_executions
- workflow_node_execution_offload
- workflow_pauses
- workflow_pause_reasons
- workflow_trigger_logs
"""
from services.retention.workflow_run.restore_archived_workflow_run import WorkflowRunRestore
parsed_tenant_ids = None
if tenant_ids:
parsed_tenant_ids = [tid.strip() for tid in tenant_ids.split(",") if tid.strip()]
if not parsed_tenant_ids:
raise click.BadParameter("tenant-ids must not be empty")
if (start_from is None) ^ (end_before is None):
raise click.UsageError("--start-from and --end-before must be provided together.")
if run_id is None and (start_from is None or end_before is None):
raise click.UsageError("--start-from and --end-before are required for batch restore.")
if workers < 1:
raise click.BadParameter("workers must be at least 1")
start_time = datetime.datetime.now(datetime.UTC)
click.echo(
click.style(
f"Starting restore of workflow run {run_id} at {start_time.isoformat()}.",
fg="white",
)
)
restorer = WorkflowRunRestore(dry_run=dry_run, workers=workers)
if run_id:
results = [restorer.restore_by_run_id(run_id)]
else:
assert start_from is not None
assert end_before is not None
results = restorer.restore_batch(
parsed_tenant_ids,
start_date=start_from,
end_date=end_before,
limit=limit,
)
end_time = datetime.datetime.now(datetime.UTC)
elapsed = end_time - start_time
successes = sum(1 for result in results if result.success)
failures = len(results) - successes
if failures == 0:
click.echo(
click.style(
f"Restore completed successfully. success={successes} duration={elapsed}",
fg="green",
)
)
else:
click.echo(
click.style(
f"Restore completed with failures. success={successes} failed={failures} duration={elapsed}",
fg="red",
)
)
@click.command(
"delete-archived-workflow-runs",
help="Delete archived workflow runs from the database.",
)
@click.option(
"--tenant-ids",
required=False,
help="Tenant IDs (comma-separated).",
)
@click.option("--run-id", required=False, help="Workflow run ID to delete.")
@click.option(
"--start-from",
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
default=None,
help="Optional lower bound (inclusive) for created_at; must be paired with --end-before.",
)
@click.option(
"--end-before",
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
default=None,
help="Optional upper bound (exclusive) for created_at; must be paired with --start-from.",
)
@click.option("--limit", type=int, default=100, show_default=True, help="Maximum number of runs to delete.")
@click.option("--dry-run", is_flag=True, help="Preview without deleting.")
def delete_archived_workflow_runs(
tenant_ids: str | None,
run_id: str | None,
start_from: datetime.datetime | None,
end_before: datetime.datetime | None,
limit: int,
dry_run: bool,
):
"""
Delete archived workflow runs from the database.
"""
from services.retention.workflow_run.delete_archived_workflow_run import ArchivedWorkflowRunDeletion
parsed_tenant_ids = None
if tenant_ids:
parsed_tenant_ids = [tid.strip() for tid in tenant_ids.split(",") if tid.strip()]
if not parsed_tenant_ids:
raise click.BadParameter("tenant-ids must not be empty")
if (start_from is None) ^ (end_before is None):
raise click.UsageError("--start-from and --end-before must be provided together.")
if run_id is None and (start_from is None or end_before is None):
raise click.UsageError("--start-from and --end-before are required for batch delete.")
start_time = datetime.datetime.now(datetime.UTC)
target_desc = f"workflow run {run_id}" if run_id else "workflow runs"
click.echo(
click.style(
f"Starting delete of {target_desc} at {start_time.isoformat()}.",
fg="white",
)
)
deleter = ArchivedWorkflowRunDeletion(dry_run=dry_run)
if run_id:
results = [deleter.delete_by_run_id(run_id)]
else:
assert start_from is not None
assert end_before is not None
results = deleter.delete_batch(
parsed_tenant_ids,
start_date=start_from,
end_date=end_before,
limit=limit,
)
for result in results:
if result.success:
click.echo(
click.style(
f"{'[DRY RUN] Would delete' if dry_run else 'Deleted'} "
f"workflow run {result.run_id} (tenant={result.tenant_id})",
fg="green",
)
)
else:
click.echo(
click.style(
f"Failed to delete workflow run {result.run_id}: {result.error}",
fg="red",
)
)
end_time = datetime.datetime.now(datetime.UTC)
elapsed = end_time - start_time
successes = sum(1 for result in results if result.success)
failures = len(results) - successes
if failures == 0:
click.echo(
click.style(
f"Delete completed successfully. success={successes} duration={elapsed}",
fg="green",
)
)
else:
click.echo(
click.style(
f"Delete completed with failures. success={successes} failed={failures} duration={elapsed}",
fg="red",
)
)
@click.option("-f", "--force", is_flag=True, help="Skip user confirmation and force the command to execute.")
@click.command("clear-orphaned-file-records", help="Clear orphaned file records.")
def clear_orphaned_file_records(force: bool):
@ -1246,7 +1585,7 @@ def remove_orphaned_files_on_storage(force: bool):
click.echo(click.style(f"- Scanning files on storage path {storage_path}", fg="white"))
files = storage.scan(path=storage_path, files=True, directories=False)
all_files_on_storage.extend(files)
except FileNotFoundError:
except FileNotFoundError as e:
click.echo(click.style(f" -> Skipping path {storage_path} as it does not exist.", fg="yellow"))
continue
except Exception as e:
@ -1494,57 +1833,6 @@ def file_usage(
click.echo(click.style(f"Use --offset {offset + limit} to see next page", fg="white"))
@click.command("setup-sandbox-system-config", help="Setup system-level sandbox provider configuration.")
@click.option(
"--provider-type", prompt=True, type=click.Choice(["e2b", "docker", "local"]), help="Sandbox provider type"
)
@click.option("--config", prompt=True, help='Configuration JSON (e.g., {"api_key": "xxx"} for e2b)')
def setup_sandbox_system_config(provider_type: str, config: str):
"""
Setup system-level sandbox provider configuration.
Examples:
flask setup-sandbox-system-config --provider-type e2b --config '{"api_key": "e2b_xxx"}'
flask setup-sandbox-system-config --provider-type docker --config '{"docker_sock": "unix:///var/run/docker.sock"}'
flask setup-sandbox-system-config --provider-type local --config '{}'
"""
from models.sandbox import SandboxProviderSystemConfig
try:
click.echo(click.style(f"Validating config: {config}", fg="yellow"))
config_dict = TypeAdapter(dict[str, Any]).validate_json(config)
click.echo(click.style("Config validated successfully.", fg="green"))
click.echo(click.style(f"Validating config schema for provider type: {provider_type}", fg="yellow"))
SandboxBuilder.validate(SandboxType(provider_type), config_dict)
click.echo(click.style("Config schema validated successfully.", fg="green"))
click.echo(click.style("Encrypting config...", fg="yellow"))
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
encrypted_config = encrypt_system_params(config_dict)
click.echo(click.style("Config encrypted successfully.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error validating/encrypting config: {str(e)}", fg="red"))
return
deleted_count = db.session.query(SandboxProviderSystemConfig).filter_by(provider_type=provider_type).delete()
if deleted_count > 0:
click.echo(
click.style(
f"Deleted {deleted_count} existing system config for provider type: {provider_type}", fg="yellow"
)
)
system_config = SandboxProviderSystemConfig(
provider_type=provider_type,
encrypted_config=encrypted_config,
)
db.session.add(system_config)
db.session.commit()
click.echo(click.style(f"Sandbox system config setup successfully. id: {system_config.id}", fg="green"))
click.echo(click.style(f"Provider type: {provider_type}", fg="green"))
@click.command("setup-system-tool-oauth-client", help="Setup system tool oauth client.")
@click.option("--provider", prompt=True, help="Provider name")
@click.option("--client-params", prompt=True, help="Client Params")
@ -1564,7 +1852,7 @@ def setup_system_tool_oauth_client(provider, client_params):
click.echo(click.style(f"Encrypting client params: {client_params}", fg="yellow"))
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
oauth_client_params = encrypt_system_params(client_params_dict)
oauth_client_params = encrypt_system_oauth_params(client_params_dict)
click.echo(click.style("Client params encrypted successfully.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error parsing client params: {str(e)}", fg="red"))
@ -1613,7 +1901,7 @@ def setup_system_trigger_oauth_client(provider, client_params):
click.echo(click.style(f"Encrypting client params: {client_params}", fg="yellow"))
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
oauth_client_params = encrypt_system_params(client_params_dict)
oauth_client_params = encrypt_system_oauth_params(client_params_dict)
click.echo(click.style("Client params encrypted successfully.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error parsing client params: {str(e)}", fg="red"))

View File

@ -2,7 +2,6 @@ import logging
from pathlib import Path
from typing import Any
from pydantic import Field
from pydantic.fields import FieldInfo
from pydantic_settings import BaseSettings, PydanticBaseSettingsSource, SettingsConfigDict, TomlConfigSettingsSource
@ -83,14 +82,6 @@ class DifyConfig(
extra="ignore",
)
SANDBOX_DIFY_CLI_ROOT: str | None = Field(
default=None,
description=(
"Filesystem directory containing dify CLI binaries named dify-cli-<os>-<arch>. "
"Defaults to api/bin when unset."
),
)
# Before adding any config,
# please consider to arrange it in the proper config group of existed or added
# for better readability and maintainability.

View File

@ -244,17 +244,6 @@ class PluginConfig(BaseSettings):
)
class CliApiConfig(BaseSettings):
"""
Configuration for CLI API (for dify-cli to call back from external sandbox environments)
"""
CLI_API_URL: str = Field(
description="CLI API URL for external sandbox (e.g., e2b) to call back.",
default="http://localhost:5001",
)
class MarketplaceConfig(BaseSettings):
"""
Configuration for marketplace
@ -1334,7 +1323,6 @@ class FeatureConfig(
TriggerConfig,
AsyncWorkflowConfig,
PluginConfig,
CliApiConfig,
MarketplaceConfig,
DataSetConfig,
EndpointConfig,

View File

@ -3,6 +3,7 @@ Flask App Context - Flask implementation of AppContext interface.
"""
import contextvars
import threading
from collections.abc import Generator
from contextlib import contextmanager
from typing import Any, final
@ -118,6 +119,7 @@ class FlaskExecutionContext:
self._context_vars = context_vars
self._user = user
self._flask_app = flask_app
self._local = threading.local()
@property
def app_context(self) -> FlaskAppContext:
@ -136,47 +138,39 @@ class FlaskExecutionContext:
def __enter__(self) -> "FlaskExecutionContext":
"""Enter the Flask execution context."""
# Restore context variables
# Restore non-Flask context variables to avoid leaking Flask tokens across threads
for var, val in self._context_vars.items():
var.set(val)
# Save current user from g if available
saved_user = None
if hasattr(g, "_login_user"):
saved_user = g._login_user
# Enter Flask app context
self._cm = self._app_context.enter()
self._cm.__enter__()
cm = self._app_context.enter()
self._local.cm = cm
cm.__enter__()
# Restore user in new app context
if saved_user is not None:
g._login_user = saved_user
if self._user is not None:
g._login_user = self._user
return self
def __exit__(self, *args: Any) -> None:
"""Exit the Flask execution context."""
if hasattr(self, "_cm"):
self._cm.__exit__(*args)
cm = getattr(self._local, "cm", None)
if cm is not None:
cm.__exit__(*args)
@contextmanager
def enter(self) -> Generator[None, None, None]:
"""Enter Flask execution context as context manager."""
# Restore context variables
# Restore non-Flask context variables to avoid leaking Flask tokens across threads
for var, val in self._context_vars.items():
var.set(val)
# Save current user from g if available
saved_user = None
if hasattr(g, "_login_user"):
saved_user = g._login_user
# Enter Flask app context
with self._flask_app.app_context():
# Restore user in new app context
if saved_user is not None:
g._login_user = saved_user
if self._user is not None:
g._login_user = self._user
yield

View File

@ -1,27 +0,0 @@
from flask import Blueprint
from flask_restx import Namespace
from libs.external_api import ExternalApi
bp = Blueprint("cli_api", __name__, url_prefix="/cli/api")
api = ExternalApi(
bp,
version="1.0",
title="CLI API",
description="APIs for Dify CLI to call back from external sandbox environments (e.g., e2b)",
)
# Create namespace
cli_api_ns = Namespace("cli_api", description="CLI API operations", path="/")
from .plugin import plugin as _plugin
api.add_namespace(cli_api_ns)
__all__ = [
"_plugin",
"api",
"bp",
"cli_api_ns",
]

View File

@ -1,137 +0,0 @@
from flask_restx import Resource
from controllers.cli_api import cli_api_ns
from controllers.cli_api.plugin.wraps import get_cli_user_tenant, plugin_data
from controllers.cli_api.wraps import cli_api_only
from controllers.console.wraps import setup_required
from core.file.helpers import get_signed_file_url_for_plugin
from core.plugin.backwards_invocation.app import PluginAppBackwardsInvocation
from core.plugin.backwards_invocation.base import BaseBackwardsInvocationResponse
from core.plugin.backwards_invocation.model import PluginModelBackwardsInvocation
from core.plugin.backwards_invocation.tool import PluginToolBackwardsInvocation
from core.plugin.entities.request import (
RequestInvokeApp,
RequestInvokeLLM,
RequestInvokeTool,
RequestRequestUploadFile,
)
from core.tools.entities.tool_entities import ToolProviderType
from libs.helper import length_prefixed_response
from models import Account, Tenant
from models.model import EndUser
@cli_api_ns.route("/invoke/llm")
class CliInvokeLLMApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
@plugin_data(payload_type=RequestInvokeLLM)
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestInvokeLLM):
def generator():
response = PluginModelBackwardsInvocation.invoke_llm(user_model.id, tenant_model, payload)
return PluginModelBackwardsInvocation.convert_to_event_stream(response)
return length_prefixed_response(0xF, generator())
@cli_api_ns.route("/invoke/tool")
class CliInvokeToolApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
@plugin_data(payload_type=RequestInvokeTool)
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestInvokeTool):
def generator():
return PluginToolBackwardsInvocation.convert_to_event_stream(
PluginToolBackwardsInvocation.invoke_tool(
tenant_id=tenant_model.id,
user_id=user_model.id,
tool_type=ToolProviderType.value_of(payload.tool_type),
provider=payload.provider,
tool_name=payload.tool,
tool_parameters=payload.tool_parameters,
credential_id=payload.credential_id,
),
)
return length_prefixed_response(0xF, generator())
@cli_api_ns.route("/invoke/app")
class CliInvokeAppApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
@plugin_data(payload_type=RequestInvokeApp)
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestInvokeApp):
response = PluginAppBackwardsInvocation.invoke_app(
app_id=payload.app_id,
user_id=user_model.id,
tenant_id=tenant_model.id,
conversation_id=payload.conversation_id,
query=payload.query,
stream=payload.response_mode == "streaming",
inputs=payload.inputs,
files=payload.files,
)
return length_prefixed_response(0xF, PluginAppBackwardsInvocation.convert_to_event_stream(response))
@cli_api_ns.route("/upload/file/request")
class CliUploadFileRequestApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
@plugin_data(payload_type=RequestRequestUploadFile)
def post(self, user_model: Account | EndUser, tenant_model: Tenant, payload: RequestRequestUploadFile):
# generate signed url
url = get_signed_file_url_for_plugin(
filename=payload.filename,
mimetype=payload.mimetype,
tenant_id=tenant_model.id,
user_id=user_model.id,
)
return BaseBackwardsInvocationResponse(data={"url": url}).model_dump()
@cli_api_ns.route("/fetch/tools/list")
class CliFetchToolsListApi(Resource):
@get_cli_user_tenant
@setup_required
@cli_api_only
def post(self, user_model: Account | EndUser, tenant_model: Tenant):
from sqlalchemy.orm import Session
from extensions.ext_database import db
from services.tools.api_tools_manage_service import ApiToolManageService
from services.tools.builtin_tools_manage_service import BuiltinToolManageService
from services.tools.mcp_tools_manage_service import MCPToolManageService
from services.tools.workflow_tools_manage_service import WorkflowToolManageService
providers = []
# Get builtin tools
builtin_providers = BuiltinToolManageService.list_builtin_tools(user_model.id, tenant_model.id)
for provider in builtin_providers:
providers.append(provider.to_dict())
# Get API tools
api_providers = ApiToolManageService.list_api_tools(tenant_model.id)
for provider in api_providers:
providers.append(provider.to_dict())
# Get workflow tools
workflow_providers = WorkflowToolManageService.list_tenant_workflow_tools(user_model.id, tenant_model.id)
for provider in workflow_providers:
providers.append(provider.to_dict())
# Get MCP tools
with Session(db.engine) as session:
mcp_service = MCPToolManageService(session)
mcp_providers = mcp_service.list_providers(tenant_id=tenant_model.id, for_list=True)
for provider in mcp_providers:
providers.append(provider.to_dict())
return BaseBackwardsInvocationResponse(data={"providers": providers}).model_dump()

View File

@ -1,146 +0,0 @@
from collections.abc import Callable
from functools import wraps
from typing import ParamSpec, TypeVar
from flask import current_app, request
from flask_login import user_logged_in
from pydantic import BaseModel
from sqlalchemy.orm import Session
from core.session.cli_api import CliApiSession, CliApiSessionManager
from extensions.ext_database import db
from libs.login import current_user
from models.account import Tenant
from models.model import DefaultEndUserSessionID, EndUser
P = ParamSpec("P")
R = TypeVar("R")
class TenantUserPayload(BaseModel):
tenant_id: str
user_id: str
def get_user(tenant_id: str, user_id: str | None) -> EndUser:
"""
Get current user
NOTE: user_id is not trusted, it could be maliciously set to any value.
As a result, it could only be considered as an end user id.
"""
if not user_id:
user_id = DefaultEndUserSessionID.DEFAULT_SESSION_ID
is_anonymous = user_id == DefaultEndUserSessionID.DEFAULT_SESSION_ID
try:
with Session(db.engine) as session:
user_model = None
if is_anonymous:
user_model = (
session.query(EndUser)
.where(
EndUser.session_id == user_id,
EndUser.tenant_id == tenant_id,
)
.first()
)
else:
user_model = (
session.query(EndUser)
.where(
EndUser.id == user_id,
EndUser.tenant_id == tenant_id,
)
.first()
)
if not user_model:
user_model = EndUser(
tenant_id=tenant_id,
type="service_api",
is_anonymous=is_anonymous,
session_id=user_id,
)
session.add(user_model)
session.commit()
session.refresh(user_model)
except Exception:
raise ValueError("user not found")
return user_model
def get_cli_user_tenant(view_func: Callable[P, R]):
@wraps(view_func)
def decorated_view(*args: P.args, **kwargs: P.kwargs):
session_id = request.headers.get("X-Cli-Api-Session-Id")
if session_id:
session: CliApiSession | None = CliApiSessionManager().get(session_id)
if not session:
raise ValueError("session not found")
user_id = session.user_id
tenant_id = session.tenant_id
else:
payload = TenantUserPayload.model_validate(request.get_json(silent=True) or {})
user_id = payload.user_id
tenant_id = payload.tenant_id
if not tenant_id:
raise ValueError("tenant_id is required")
if not user_id:
user_id = DefaultEndUserSessionID.DEFAULT_SESSION_ID
try:
tenant_model = (
db.session.query(Tenant)
.where(
Tenant.id == tenant_id,
)
.first()
)
except Exception:
raise ValueError("tenant not found")
if not tenant_model:
raise ValueError("tenant not found")
kwargs["tenant_model"] = tenant_model
user = get_user(tenant_id, user_id)
kwargs["user_model"] = user
current_app.login_manager._update_request_context_with_user(user) # type: ignore
user_logged_in.send(current_app._get_current_object(), user=current_user) # type: ignore
return view_func(*args, **kwargs)
return decorated_view
def plugin_data(view: Callable[P, R] | None = None, *, payload_type: type[BaseModel]):
def decorator(view_func: Callable[P, R]):
def decorated_view(*args: P.args, **kwargs: P.kwargs):
try:
data = request.get_json()
except Exception:
raise ValueError("invalid json")
try:
payload = payload_type.model_validate(data)
except Exception as e:
raise ValueError(f"invalid payload: {str(e)}")
kwargs["payload"] = payload
return view_func(*args, **kwargs)
return decorated_view
if view is None:
return decorator
else:
return decorator(view)

View File

@ -1,54 +0,0 @@
import hashlib
import hmac
import time
from collections.abc import Callable
from functools import wraps
from typing import ParamSpec, TypeVar
from flask import abort, request
from core.session.cli_api import CliApiSessionManager
P = ParamSpec("P")
R = TypeVar("R")
SIGNATURE_TTL_SECONDS = 300
def _verify_signature(session_secret: str, timestamp: str, body: bytes, signature: str) -> bool:
expected = hmac.new(
session_secret.encode(),
f"{timestamp}.".encode() + body,
hashlib.sha256,
).hexdigest()
return hmac.compare_digest(f"sha256={expected}", signature)
def cli_api_only(view: Callable[P, R]):
@wraps(view)
def decorated(*args: P.args, **kwargs: P.kwargs):
session_id = request.headers.get("X-Cli-Api-Session-Id")
timestamp = request.headers.get("X-Cli-Api-Timestamp")
signature = request.headers.get("X-Cli-Api-Signature")
if not session_id or not timestamp or not signature:
abort(401)
try:
ts = int(timestamp)
if abs(time.time() - ts) > SIGNATURE_TTL_SECONDS:
abort(401)
except ValueError:
abort(401)
session = CliApiSessionManager().get(session_id)
if not session:
abort(401)
body = request.get_data()
if not _verify_signature(session.secret, timestamp, body, signature):
abort(401)
return view(*args, **kwargs)
return decorated

View File

@ -50,7 +50,6 @@ from .app import (
agent,
annotation,
app,
app_asset,
audio,
completion,
conversation,
@ -129,7 +128,6 @@ from .workspace import (
model_providers,
models,
plugin,
sandbox_providers,
tool_providers,
trigger_providers,
workspace,
@ -148,7 +146,6 @@ __all__ = [
"api",
"apikey",
"app",
"app_asset",
"audio",
"banner",
"billing",
@ -197,7 +194,6 @@ __all__ = [
"rag_pipeline_import",
"rag_pipeline_workflow",
"recommended_app",
"sandbox_providers",
"saved_message",
"setup",
"site",

View File

@ -1,274 +0,0 @@
from flask import request
from flask_restx import Resource
from pydantic import BaseModel, Field, field_validator
from controllers.console import console_ns
from controllers.console.app.error import (
AppAssetFileRequiredError,
AppAssetNodeNotFoundError,
AppAssetPathConflictError,
)
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from libs.login import current_account_with_tenant, login_required
from models import App
from models.model import AppMode
from services.app_asset_service import AppAssetService
from services.errors.app_asset import (
AppAssetNodeNotFoundError as ServiceNodeNotFoundError,
)
from services.errors.app_asset import (
AppAssetParentNotFoundError,
)
from services.errors.app_asset import (
AppAssetPathConflictError as ServicePathConflictError,
)
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class CreateFolderPayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
parent_id: str | None = None
class CreateFilePayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
parent_id: str | None = None
@field_validator("name", mode="before")
@classmethod
def strip_name(cls, v: str) -> str:
return v.strip() if isinstance(v, str) else v
@field_validator("parent_id", mode="before")
@classmethod
def empty_to_none(cls, v: str | None) -> str | None:
return v or None
class UpdateFileContentPayload(BaseModel):
content: str
class RenameNodePayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
class MoveNodePayload(BaseModel):
parent_id: str | None = None
class ReorderNodePayload(BaseModel):
after_node_id: str | None = Field(default=None, description="Place after this node, None for first position")
def reg(cls: type[BaseModel]) -> None:
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
reg(CreateFolderPayload)
reg(CreateFilePayload)
reg(UpdateFileContentPayload)
reg(RenameNodePayload)
reg(MoveNodePayload)
reg(ReorderNodePayload)
@console_ns.route("/apps/<string:app_id>/assets/tree")
class AppAssetTreeResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App):
current_user, _ = current_account_with_tenant()
tree = AppAssetService.get_asset_tree(app_model, current_user.id)
return {"children": [view.model_dump() for view in tree.transform()]}
@console_ns.route("/apps/<string:app_id>/assets/folders")
class AppAssetFolderResource(Resource):
@console_ns.expect(console_ns.models[CreateFolderPayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
current_user, _ = current_account_with_tenant()
payload = CreateFolderPayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.create_folder(app_model, current_user.id, payload.name, payload.parent_id)
return node.model_dump(), 201
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/files")
class AppAssetFileResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
current_user, _ = current_account_with_tenant()
file = request.files.get("file")
if not file:
raise AppAssetFileRequiredError()
payload = CreateFilePayload.model_validate(request.form.to_dict())
content = file.read()
try:
node = AppAssetService.create_file(app_model, current_user.id, payload.name, content, payload.parent_id)
return node.model_dump(), 201
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/files/<string:node_id>")
class AppAssetFileDetailResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
try:
content = AppAssetService.get_file_content(app_model, current_user.id, node_id)
return {"content": content.decode("utf-8", errors="replace")}
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.expect(console_ns.models[UpdateFileContentPayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def put(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
file = request.files.get("file")
if file:
content = file.read()
else:
payload = UpdateFileContentPayload.model_validate(console_ns.payload or {})
content = payload.content.encode("utf-8")
try:
node = AppAssetService.update_file_content(app_model, current_user.id, node_id, content)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>")
class AppAssetNodeResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def delete(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
try:
AppAssetService.delete_node(app_model, current_user.id, node_id)
return {"result": "success"}, 200
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/rename")
class AppAssetNodeRenameResource(Resource):
@console_ns.expect(console_ns.models[RenameNodePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
payload = RenameNodePayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.rename_node(app_model, current_user.id, node_id, payload.name)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/move")
class AppAssetNodeMoveResource(Resource):
@console_ns.expect(console_ns.models[MoveNodePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
payload = MoveNodePayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.move_node(app_model, current_user.id, node_id, payload.parent_id)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/reorder")
class AppAssetNodeReorderResource(Resource):
@console_ns.expect(console_ns.models[ReorderNodePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
payload = ReorderNodePayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.reorder_node(app_model, current_user.id, node_id, payload.after_node_id)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/publish")
class AppAssetPublishResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
current_user, _ = current_account_with_tenant()
published = AppAssetService.publish(app_model, current_user.id)
return {
"id": published.id,
"version": published.version,
"asset_tree": published.asset_tree.model_dump(),
}, 201
@console_ns.route("/apps/<string:app_id>/assets/files/<string:node_id>/download-url")
class AppAssetFileDownloadUrlResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
try:
download_url = AppAssetService.get_file_download_url(app_model, current_user.id, node_id)
return {"download_url": download_url}
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()

View File

@ -82,13 +82,13 @@ class ProviderNotSupportSpeechToTextError(BaseHTTPException):
class DraftWorkflowNotExist(BaseHTTPException):
error_code = "draft_workflow_not_exist"
description = "Draft workflow need to be initialized."
code = 400
code = 404
class DraftWorkflowNotSync(BaseHTTPException):
error_code = "draft_workflow_not_sync"
description = "Workflow graph might have been modified, please refresh and resubmit."
code = 400
code = 409
class TracingConfigNotExist(BaseHTTPException):
@ -110,6 +110,8 @@ class TracingConfigCheckError(BaseHTTPException):
class InvokeRateLimitError(BaseHTTPException):
"""Raised when the Invoke returns rate limit error."""
error_code = "rate_limit_error"
description = "Rate Limit Error"
code = 429
@ -119,21 +121,3 @@ class NeedAddIdsError(BaseHTTPException):
error_code = "need_add_ids"
description = "Need to add ids."
code = 400
class AppAssetNodeNotFoundError(BaseHTTPException):
error_code = "app_asset_node_not_found"
description = "App asset node not found."
code = 404
class AppAssetFileRequiredError(BaseHTTPException):
error_code = "app_asset_file_required"
description = "File is required."
code = 400
class AppAssetPathConflictError(BaseHTTPException):
error_code = "app_asset_path_conflict"
description = "Path already exists."
code = 409

View File

@ -55,35 +55,6 @@ class InstructionTemplatePayload(BaseModel):
type: str = Field(..., description="Instruction template type")
class ContextGeneratePayload(BaseModel):
"""Payload for generating extractor code node."""
workflow_id: str = Field(..., description="Workflow ID")
node_id: str = Field(..., description="Current tool/llm node ID")
parameter_name: str = Field(..., description="Parameter name to generate code for")
language: str = Field(default="python3", description="Code language (python3/javascript)")
prompt_messages: list[dict[str, Any]] = Field(
..., description="Multi-turn conversation history, last message is the current instruction"
)
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
class SuggestedQuestionsPayload(BaseModel):
"""Payload for generating suggested questions."""
workflow_id: str = Field(..., description="Workflow ID")
node_id: str = Field(..., description="Current tool/llm node ID")
parameter_name: str = Field(..., description="Parameter name")
language: str = Field(
default="English", description="Language for generated questions (e.g. English, Chinese, Japanese)"
)
model_config_data: dict[str, Any] | None = Field(
default=None,
alias="model_config",
description="Model configuration (optional, uses system default if not provided)",
)
def reg(cls: type[BaseModel]):
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
@ -93,8 +64,6 @@ reg(RuleCodeGeneratePayload)
reg(RuleStructuredOutputPayload)
reg(InstructionGeneratePayload)
reg(InstructionTemplatePayload)
reg(ContextGeneratePayload)
reg(SuggestedQuestionsPayload)
@console_ns.route("/rule-generate")
@ -309,74 +278,3 @@ class InstructionGenerationTemplateApi(Resource):
return {"data": INSTRUCTION_GENERATE_TEMPLATE_CODE}
case _:
raise ValueError(f"Invalid type: {args.type}")
@console_ns.route("/context-generate")
class ContextGenerateApi(Resource):
@console_ns.doc("generate_with_context")
@console_ns.doc(description="Generate with multi-turn conversation context")
@console_ns.expect(console_ns.models[ContextGeneratePayload.__name__])
@console_ns.response(200, "Content generated successfully")
@console_ns.response(400, "Invalid request parameters or workflow not found")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
from core.llm_generator.utils import deserialize_prompt_messages
args = ContextGeneratePayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
prompt_messages = deserialize_prompt_messages(args.prompt_messages)
try:
return LLMGenerator.generate_with_context(
tenant_id=current_tenant_id,
workflow_id=args.workflow_id,
node_id=args.node_id,
parameter_name=args.parameter_name,
language=args.language,
prompt_messages=prompt_messages,
model_config=args.model_config_data,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
@console_ns.route("/context-generate/suggested-questions")
class SuggestedQuestionsApi(Resource):
@console_ns.doc("generate_suggested_questions")
@console_ns.doc(description="Generate suggested questions for context generation")
@console_ns.expect(console_ns.models[SuggestedQuestionsPayload.__name__])
@console_ns.response(200, "Questions generated successfully")
@setup_required
@login_required
@account_initialization_required
def post(self):
args = SuggestedQuestionsPayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
try:
return LLMGenerator.generate_suggested_questions(
tenant_id=current_tenant_id,
workflow_id=args.workflow_id,
node_id=args.node_id,
parameter_name=args.parameter_name,
language=args.language,
model_config=args.model_config_data,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)

View File

@ -202,7 +202,6 @@ message_detail_model = console_ns.model(
"status": fields.String,
"error": fields.String,
"parent_message_id": fields.String,
"generation_detail": fields.Raw,
},
)

View File

@ -46,8 +46,6 @@ from models.workflow import Workflow
from services.app_generate_service import AppGenerateService
from services.errors.app import WorkflowHashNotEqualError
from services.errors.llm import InvokeRateLimitError
from services.workflow.entities import NestedNodeGraphRequest, NestedNodeParameterSchema
from services.workflow.nested_node_graph_service import NestedNodeGraphService
from services.workflow_service import DraftWorkflowDeletionError, WorkflowInUseError, WorkflowService
logger = logging.getLogger(__name__)
@ -190,15 +188,6 @@ class DraftWorkflowTriggerRunAllPayload(BaseModel):
node_ids: list[str]
class NestedNodeGraphPayload(BaseModel):
"""Request payload for generating nested node graph."""
parent_node_id: str = Field(description="ID of the parent node that uses the extracted value")
parameter_key: str = Field(description="Key of the parameter being extracted")
context_source: list[str] = Field(description="Variable selector for the context source")
parameter_schema: dict[str, Any] = Field(description="Schema of the parameter to extract")
def reg(cls: type[BaseModel]):
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
@ -216,7 +205,6 @@ reg(WorkflowListQuery)
reg(WorkflowUpdatePayload)
reg(DraftWorkflowTriggerRunPayload)
reg(DraftWorkflowTriggerRunAllPayload)
reg(NestedNodeGraphPayload)
# TODO(QuantumGhost): Refactor existing node run API to handle file parameter parsing
@ -482,7 +470,7 @@ class AdvancedChatDraftRunLoopNodeApi(Resource):
Run draft workflow loop node
"""
current_user, _ = current_account_with_tenant()
args = LoopNodeRunPayload.model_validate(console_ns.payload or {}).model_dump(exclude_none=True)
args = LoopNodeRunPayload.model_validate(console_ns.payload or {})
try:
response = AppGenerateService.generate_single_loop(
@ -520,7 +508,7 @@ class WorkflowDraftRunLoopNodeApi(Resource):
Run draft workflow loop node
"""
current_user, _ = current_account_with_tenant()
args = LoopNodeRunPayload.model_validate(console_ns.payload or {}).model_dump(exclude_none=True)
args = LoopNodeRunPayload.model_validate(console_ns.payload or {})
try:
response = AppGenerateService.generate_single_loop(
@ -1011,6 +999,7 @@ class DraftWorkflowTriggerRunApi(Resource):
if not event:
return jsonable_encoder({"status": "waiting", "retry_in": LISTENING_RETRY_IN})
workflow_args = dict(event.workflow_args)
workflow_args[SKIP_PREPARE_USER_INPUTS_KEY] = True
return helper.compact_generate_response(
AppGenerateService.generate(
@ -1159,6 +1148,7 @@ class DraftWorkflowTriggerRunAllApi(Resource):
try:
workflow_args = dict(trigger_debug_event.workflow_args)
workflow_args[SKIP_PREPARE_USER_INPUTS_KEY] = True
response = AppGenerateService.generate(
app_model=app_model,
@ -1178,54 +1168,3 @@ class DraftWorkflowTriggerRunAllApi(Resource):
"status": "error",
}
), 400
@console_ns.route("/apps/<uuid:app_id>/workflows/draft/nested-node-graph")
class NestedNodeGraphApi(Resource):
"""
API for generating Nested Node LLM graph structures.
This endpoint creates a complete graph structure containing an LLM node
configured to extract values from list[PromptMessage] variables.
"""
@console_ns.doc("generate_nested_node_graph")
@console_ns.doc(description="Generate a Nested Node LLM graph structure")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.expect(console_ns.models[NestedNodeGraphPayload.__name__])
@console_ns.response(200, "Nested node graph generated successfully")
@console_ns.response(400, "Invalid request parameters")
@console_ns.response(403, "Permission denied")
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@edit_permission_required
def post(self, app_model: App):
"""
Generate a Nested Node LLM graph structure.
Returns a complete graph structure containing a single LLM node
configured for extracting values from list[PromptMessage] context.
"""
payload = NestedNodeGraphPayload.model_validate(console_ns.payload or {})
parameter_schema = NestedNodeParameterSchema(
name=payload.parameter_schema.get("name", payload.parameter_key),
type=payload.parameter_schema.get("type", "string"),
description=payload.parameter_schema.get("description", ""),
)
request = NestedNodeGraphRequest(
parent_node_id=payload.parent_node_id,
parameter_key=payload.parameter_key,
context_source=payload.context_source,
parameter_schema=parameter_schema,
)
with Session(db.engine) as session:
service = NestedNodeGraphService(session)
response = service.generate_nested_node_graph(tenant_id=app_model.tenant_id, request=request)
return response.model_dump()

View File

@ -11,7 +11,10 @@ from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from core.workflow.enums import WorkflowExecutionStatus
from extensions.ext_database import db
from fields.workflow_app_log_fields import build_workflow_app_log_pagination_model
from fields.workflow_app_log_fields import (
build_workflow_app_log_pagination_model,
build_workflow_archived_log_pagination_model,
)
from libs.login import login_required
from models import App
from models.model import AppMode
@ -61,6 +64,7 @@ console_ns.schema_model(
# Register model for flask_restx to avoid dict type issues in Swagger
workflow_app_log_pagination_model = build_workflow_app_log_pagination_model(console_ns)
workflow_archived_log_pagination_model = build_workflow_archived_log_pagination_model(console_ns)
@console_ns.route("/apps/<uuid:app_id>/workflow-app-logs")
@ -99,3 +103,33 @@ class WorkflowAppLogApi(Resource):
)
return workflow_app_log_pagination
@console_ns.route("/apps/<uuid:app_id>/workflow-archived-logs")
class WorkflowArchivedLogApi(Resource):
@console_ns.doc("get_workflow_archived_logs")
@console_ns.doc(description="Get workflow archived execution logs")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.expect(console_ns.models[WorkflowAppLogQuery.__name__])
@console_ns.response(200, "Workflow archived logs retrieved successfully", workflow_archived_log_pagination_model)
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.WORKFLOW])
@marshal_with(workflow_archived_log_pagination_model)
def get(self, app_model: App):
"""
Get workflow archived logs
"""
args = WorkflowAppLogQuery.model_validate(request.args.to_dict(flat=True)) # type: ignore
workflow_app_service = WorkflowAppService()
with Session(db.engine) as session:
workflow_app_log_pagination = workflow_app_service.get_paginate_workflow_archive_logs(
session=session,
app_model=app_model,
page=args.page,
limit=args.limit,
)
return workflow_app_log_pagination

View File

@ -16,15 +16,14 @@ from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, edit_permission_required, setup_required
from controllers.web.error import InvalidArgumentError, NotFoundError
from core.file import helpers as file_helpers
from core.sandbox.manager import SandboxManager
from core.variables.segment_group import SegmentGroup
from core.variables.segments import ArrayFileSegment, ArrayPromptMessageSegment, FileSegment, Segment
from core.variables.segments import ArrayFileSegment, FileSegment, Segment
from core.variables.types import SegmentType
from core.workflow.constants import CONVERSATION_VARIABLE_NODE_ID, SYSTEM_VARIABLE_NODE_ID
from extensions.ext_database import db
from factories.file_factory import build_from_mapping, build_from_mappings
from factories.variable_factory import build_segment_with_type
from libs.login import current_account_with_tenant, login_required
from libs.login import login_required
from models import App, AppMode
from models.workflow import WorkflowDraftVariable
from services.workflow_draft_variable_service import WorkflowDraftVariableList, WorkflowDraftVariableService
@ -59,8 +58,6 @@ def _convert_values_to_json_serializable_object(value: Segment):
return value.value.model_dump()
elif isinstance(value, ArrayFileSegment):
return [i.model_dump() for i in value.value]
elif isinstance(value, ArrayPromptMessageSegment):
return value.to_object()
elif isinstance(value, SegmentGroup):
return [_convert_values_to_json_serializable_object(i) for i in value.value]
else:
@ -250,9 +247,6 @@ class WorkflowVariableCollectionApi(Resource):
@console_ns.response(204, "Workflow variables deleted successfully")
@_api_prerequisite
def delete(self, app_model: App):
# FIXME(Mairuis): move to SandboxArtifactService
current_user, _ = current_account_with_tenant()
SandboxManager.delete_storage(app_model.tenant_id, current_user.id)
draft_var_srv = WorkflowDraftVariableService(
session=db.session(),
)

View File

@ -1,12 +1,15 @@
from datetime import UTC, datetime, timedelta
from typing import Literal, cast
from flask import request
from flask_restx import Resource, fields, marshal_with
from pydantic import BaseModel, Field, field_validator
from sqlalchemy import select
from controllers.console import console_ns
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from extensions.ext_database import db
from fields.end_user_fields import simple_end_user_fields
from fields.member_fields import simple_account_fields
from fields.workflow_run_fields import (
@ -19,14 +22,17 @@ from fields.workflow_run_fields import (
workflow_run_node_execution_list_fields,
workflow_run_pagination_fields,
)
from libs.archive_storage import ArchiveStorageNotConfiguredError, get_archive_storage
from libs.custom_inputs import time_duration
from libs.helper import uuid_value
from libs.login import current_user, login_required
from models import Account, App, AppMode, EndUser, WorkflowRunTriggeredFrom
from models import Account, App, AppMode, EndUser, WorkflowArchiveLog, WorkflowRunTriggeredFrom
from services.retention.workflow_run.constants import ARCHIVE_BUNDLE_NAME
from services.workflow_run_service import WorkflowRunService
# Workflow run status choices for filtering
WORKFLOW_RUN_STATUS_CHOICES = ["running", "succeeded", "failed", "stopped", "partial-succeeded"]
EXPORT_SIGNED_URL_EXPIRE_SECONDS = 3600
# Register models for flask_restx to avoid dict type issues in Swagger
# Register in dependency order: base models first, then dependent models
@ -93,6 +99,15 @@ workflow_run_node_execution_list_model = console_ns.model(
"WorkflowRunNodeExecutionList", workflow_run_node_execution_list_fields_copy
)
workflow_run_export_fields = console_ns.model(
"WorkflowRunExport",
{
"status": fields.String(description="Export status: success/failed"),
"presigned_url": fields.String(description="Pre-signed URL for download", required=False),
"presigned_url_expires_at": fields.String(description="Pre-signed URL expiration time", required=False),
},
)
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
@ -181,6 +196,56 @@ class AdvancedChatAppWorkflowRunListApi(Resource):
return result
@console_ns.route("/apps/<uuid:app_id>/workflow-runs/<uuid:run_id>/export")
class WorkflowRunExportApi(Resource):
@console_ns.doc("get_workflow_run_export_url")
@console_ns.doc(description="Generate a download URL for an archived workflow run.")
@console_ns.doc(params={"app_id": "Application ID", "run_id": "Workflow run ID"})
@console_ns.response(200, "Export URL generated", workflow_run_export_fields)
@setup_required
@login_required
@account_initialization_required
@get_app_model()
def get(self, app_model: App, run_id: str):
tenant_id = str(app_model.tenant_id)
app_id = str(app_model.id)
run_id_str = str(run_id)
run_created_at = db.session.scalar(
select(WorkflowArchiveLog.run_created_at)
.where(
WorkflowArchiveLog.tenant_id == tenant_id,
WorkflowArchiveLog.app_id == app_id,
WorkflowArchiveLog.workflow_run_id == run_id_str,
)
.limit(1)
)
if not run_created_at:
return {"code": "archive_log_not_found", "message": "workflow run archive not found"}, 404
prefix = (
f"{tenant_id}/app_id={app_id}/year={run_created_at.strftime('%Y')}/"
f"month={run_created_at.strftime('%m')}/workflow_run_id={run_id_str}"
)
archive_key = f"{prefix}/{ARCHIVE_BUNDLE_NAME}"
try:
archive_storage = get_archive_storage()
except ArchiveStorageNotConfiguredError as e:
return {"code": "archive_storage_not_configured", "message": str(e)}, 500
presigned_url = archive_storage.generate_presigned_url(
archive_key,
expires_in=EXPORT_SIGNED_URL_EXPIRE_SECONDS,
)
expires_at = datetime.now(UTC) + timedelta(seconds=EXPORT_SIGNED_URL_EXPIRE_SECONDS)
return {
"status": "success",
"presigned_url": presigned_url,
"presigned_url_expires_at": expires_at.isoformat(),
}, 200
@console_ns.route("/apps/<uuid:app_id>/advanced-chat/workflow-runs/count")
class AdvancedChatAppWorkflowRunCountApi(Resource):
@console_ns.doc("get_advanced_chat_workflow_runs_count")

View File

@ -1,6 +1,7 @@
from flask_restx import Resource, fields
from werkzeug.exceptions import Unauthorized
from libs.login import current_account_with_tenant, login_required
from libs.login import current_account_with_tenant, current_user, login_required
from services.feature_service import FeatureService
from . import console_ns
@ -39,5 +40,21 @@ class SystemFeatureApi(Resource):
),
)
def get(self):
"""Get system-wide feature configuration"""
return FeatureService.get_system_features().model_dump()
"""Get system-wide feature configuration
NOTE: This endpoint is unauthenticated by design, as it provides system features
data required for dashboard initialization.
Authentication would create circular dependency (can't login without dashboard loading).
Only non-sensitive configuration data should be returned by this endpoint.
"""
# NOTE(QuantumGhost): ideally we should access `current_user.is_authenticated`
# without a try-catch. However, due to the implementation of user loader (the `load_user_from_request`
# in api/extensions/ext_login.py), accessing `current_user.is_authenticated` will
# raise `Unauthorized` exception if authentication token is not provided.
try:
is_authenticated = current_user.is_authenticated
except Unauthorized:
is_authenticated = False
return FeatureService.get_system_features(is_authenticated=is_authenticated).model_dump()

View File

@ -1,17 +1,17 @@
from flask_restx import Resource, fields
from pydantic import BaseModel, Field
from . import console_ns
from controllers.fastopenapi import console_router
@console_ns.route("/ping")
class PingApi(Resource):
@console_ns.doc("health_check")
@console_ns.doc(description="Health check endpoint for connection testing")
@console_ns.response(
200,
"Success",
console_ns.model("PingResponse", {"result": fields.String(description="Health check result", example="pong")}),
)
def get(self):
"""Health check endpoint for connection testing"""
return {"result": "pong"}
class PingResponse(BaseModel):
result: str = Field(description="Health check result", examples=["pong"])
@console_router.get(
"/ping",
response_model=PingResponse,
tags=["console"],
)
def ping() -> PingResponse:
"""Health check endpoint for connection testing."""
return PingResponse(result="pong")

View File

@ -1,65 +0,0 @@
import json
import httpx
import yaml
from flask_restx import Resource, reqparse
from sqlalchemy.orm import Session
from werkzeug.exceptions import Forbidden
from controllers.console import console_ns
from controllers.console.wraps import account_initialization_required, setup_required
from core.plugin.impl.exc import PluginPermissionDeniedError
from extensions.ext_database import db
from libs.login import current_account_with_tenant, login_required
from models.model import App
from models.workflow import Workflow
from services.app_dsl_service import AppDslService
@console_ns.route("/workspaces/current/dsl/predict")
class DSLPredictApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
user, _ = current_account_with_tenant()
if not user.is_admin_or_owner:
raise Forbidden()
parser = (
reqparse.RequestParser()
.add_argument("app_id", type=str, required=True, location="json")
.add_argument("current_node_id", type=str, required=True, location="json")
)
args = parser.parse_args()
app_id: str = args["app_id"]
current_node_id: str = args["current_node_id"]
with Session(db.engine) as session:
app = session.query(App).filter_by(id=app_id).first()
workflow = session.query(Workflow).filter_by(app_id=app_id, version=Workflow.VERSION_DRAFT).first()
if not app:
raise ValueError("App not found")
if not workflow:
raise ValueError("Workflow not found")
try:
i = 0
for node_id, _ in workflow.walk_nodes():
if node_id == current_node_id:
break
i += 1
dsl = yaml.safe_load(AppDslService.export_dsl(app_model=app))
response = httpx.post(
"http://spark-832c:8000/predict",
json={"graph_data": dsl, "source_node_index": i},
)
return {
"nodes": json.loads(response.json()),
}
except PluginPermissionDeniedError as e:
raise ValueError(e.description) from e

View File

@ -1,103 +0,0 @@
import logging
from flask_restx import Resource, fields, reqparse
from controllers.console import console_ns
from controllers.console.wraps import account_initialization_required, setup_required
from core.model_runtime.utils.encoders import jsonable_encoder
from libs.login import current_account_with_tenant, login_required
from services.sandbox.sandbox_provider_service import SandboxProviderService
logger = logging.getLogger(__name__)
@console_ns.route("/workspaces/current/sandbox-providers")
class SandboxProviderListApi(Resource):
@console_ns.doc("list_sandbox_providers")
@console_ns.doc(description="Get list of available sandbox providers with configuration status")
@console_ns.response(200, "Success", fields.List(fields.Raw(description="Sandbox provider information")))
@setup_required
@login_required
@account_initialization_required
def get(self):
_, current_tenant_id = current_account_with_tenant()
providers = SandboxProviderService.list_providers(current_tenant_id)
return jsonable_encoder([p.model_dump() for p in providers])
config_parser = reqparse.RequestParser()
config_parser.add_argument("config", type=dict, required=True, location="json")
config_parser.add_argument("activate", type=bool, required=False, default=False, location="json")
@console_ns.route("/workspaces/current/sandbox-provider/<string:provider_type>/config")
class SandboxProviderConfigApi(Resource):
@console_ns.doc("save_sandbox_provider_config")
@console_ns.doc(description="Save or update configuration for a sandbox provider")
@console_ns.expect(config_parser)
@console_ns.response(200, "Success")
@setup_required
@login_required
@account_initialization_required
def post(self, provider_type: str):
_, current_tenant_id = current_account_with_tenant()
args = config_parser.parse_args()
try:
result = SandboxProviderService.save_config(
tenant_id=current_tenant_id,
provider_type=provider_type,
config=args["config"],
activate=args["activate"],
)
return result
except ValueError as e:
return {"message": str(e)}, 400
@console_ns.doc("delete_sandbox_provider_config")
@console_ns.doc(description="Delete configuration for a sandbox provider")
@console_ns.response(200, "Success")
@setup_required
@login_required
@account_initialization_required
def delete(self, provider_type: str):
_, current_tenant_id = current_account_with_tenant()
try:
result = SandboxProviderService.delete_config(
tenant_id=current_tenant_id,
provider_type=provider_type,
)
return result
except ValueError as e:
return {"message": str(e)}, 400
activate_parser = reqparse.RequestParser()
activate_parser.add_argument("type", type=str, required=True, location="json")
@console_ns.route("/workspaces/current/sandbox-provider/<string:provider_type>/activate")
class SandboxProviderActivateApi(Resource):
"""Activate a sandbox provider."""
@console_ns.doc("activate_sandbox_provider")
@console_ns.doc(description="Activate a sandbox provider for the current workspace")
@console_ns.response(200, "Success")
@setup_required
@login_required
@account_initialization_required
def post(self, provider_type: str):
"""Activate a sandbox provider."""
_, current_tenant_id = current_account_with_tenant()
try:
args = activate_parser.parse_args()
result = SandboxProviderService.activate_provider(
tenant_id=current_tenant_id,
provider_type=provider_type,
type=args["type"],
)
return result
except ValueError as e:
return {"message": str(e)}, 400

View File

@ -0,0 +1,3 @@
from fastopenapi.routers import FlaskRouter
console_router = FlaskRouter()

View File

@ -14,7 +14,7 @@ api = ExternalApi(
files_ns = Namespace("files", description="File operations", path="/")
from . import image_preview, storage_download, tool_files, upload
from . import image_preview, tool_files, upload
api.add_namespace(files_ns)
@ -23,7 +23,6 @@ __all__ = [
"bp",
"files_ns",
"image_preview",
"storage_download",
"tool_files",
"upload",
]

View File

@ -1,56 +0,0 @@
from urllib.parse import quote, unquote
from flask import Response, request
from flask_restx import Resource
from pydantic import BaseModel, Field
from werkzeug.exceptions import Forbidden, NotFound
from controllers.files import files_ns
from extensions.ext_storage import storage
from extensions.storage.file_presign_storage import FilePresignStorage
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class StorageDownloadQuery(BaseModel):
timestamp: str = Field(..., description="Unix timestamp used in the signature")
nonce: str = Field(..., description="Random string for signature")
sign: str = Field(..., description="HMAC signature")
files_ns.schema_model(
StorageDownloadQuery.__name__,
StorageDownloadQuery.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
)
@files_ns.route("/storage/<path:filename>/download")
class StorageFileDownloadApi(Resource):
def get(self, filename: str):
filename = unquote(filename)
args = StorageDownloadQuery.model_validate(request.args.to_dict(flat=True))
if not FilePresignStorage.verify_signature(
filename=filename,
timestamp=args.timestamp,
nonce=args.nonce,
sign=args.sign,
):
raise Forbidden("Invalid or expired download link")
try:
generator = storage.load_stream(filename)
except FileNotFoundError:
raise NotFound("File not found")
encoded_filename = quote(filename.split("/")[-1])
return Response(
generator,
mimetype="application/octet-stream",
direct_passthrough=True,
headers={
"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}",
},
)

View File

@ -448,53 +448,3 @@ class PluginFetchAppInfoApi(Resource):
return BaseBackwardsInvocationResponse(
data=PluginAppBackwardsInvocation.fetch_app_info(payload.app_id, tenant_model.id)
).model_dump()
@inner_api_ns.route("/fetch/tools/list")
class PluginFetchToolsListApi(Resource):
@get_user_tenant
@setup_required
@plugin_inner_api_only
@inner_api_ns.doc("plugin_fetch_tools_list")
@inner_api_ns.doc(description="Fetch all available tools through plugin interface")
@inner_api_ns.doc(
responses={
200: "Tools list retrieved successfully",
401: "Unauthorized - invalid API key",
404: "Service not available",
}
)
def post(self, user_model: Account | EndUser, tenant_model: Tenant):
from sqlalchemy.orm import Session
from extensions.ext_database import db
from services.tools.api_tools_manage_service import ApiToolManageService
from services.tools.builtin_tools_manage_service import BuiltinToolManageService
from services.tools.mcp_tools_manage_service import MCPToolManageService
from services.tools.workflow_tools_manage_service import WorkflowToolManageService
providers = []
# Get builtin tools
builtin_providers = BuiltinToolManageService.list_builtin_tools(user_model.id, tenant_model.id)
for provider in builtin_providers:
providers.append(provider.to_dict())
# Get API tools
api_providers = ApiToolManageService.list_api_tools(tenant_model.id)
for provider in api_providers:
providers.append(provider.to_dict())
# Get workflow tools
workflow_providers = WorkflowToolManageService.list_tenant_workflow_tools(user_model.id, tenant_model.id)
for provider in workflow_providers:
providers.append(provider.to_dict())
# Get MCP tools
with Session(db.engine) as session:
mcp_service = MCPToolManageService(session)
mcp_providers = mcp_service.list_providers(tenant_id=tenant_model.id, for_list=True)
for provider in mcp_providers:
providers.append(provider.to_dict())
return BaseBackwardsInvocationResponse(data={"providers": providers}).model_dump()

View File

@ -75,6 +75,7 @@ def get_user_tenant(view_func: Callable[P, R]):
@wraps(view_func)
def decorated_view(*args: P.args, **kwargs: P.kwargs):
payload = TenantUserPayload.model_validate(request.get_json(silent=True) or {})
user_id = payload.user_id
tenant_id = payload.tenant_id

View File

@ -5,15 +5,14 @@ from hashlib import sha1
from hmac import new as hmac_new
from typing import ParamSpec, TypeVar
P = ParamSpec("P")
R = TypeVar("R")
from flask import abort, request
from configs import dify_config
from extensions.ext_database import db
from models.model import EndUser
P = ParamSpec("P")
R = TypeVar("R")
def billing_inner_api_only(view: Callable[P, R]):
@wraps(view)
@ -89,11 +88,11 @@ def plugin_inner_api_only(view: Callable[P, R]):
if not dify_config.PLUGIN_DAEMON_KEY:
abort(404)
# validate using inner api key
# get header 'X-Inner-Api-Key'
inner_api_key = request.headers.get("X-Inner-Api-Key")
if inner_api_key and inner_api_key == dify_config.INNER_API_KEY_FOR_PLUGIN:
return view(*args, **kwargs)
if not inner_api_key or inner_api_key != dify_config.INNER_API_KEY_FOR_PLUGIN:
abort(404)
abort(401)
return view(*args, **kwargs)
return decorated

View File

@ -261,17 +261,6 @@ class DocumentAddByFileApi(DatasetApiResource):
@cloud_edition_billing_rate_limit_check("knowledge", "dataset")
def post(self, tenant_id, dataset_id):
"""Create document by upload file."""
args = {}
if "data" in request.form:
args = json.loads(request.form["data"])
if "doc_form" not in args:
args["doc_form"] = "text_model"
if "doc_language" not in args:
args["doc_language"] = "English"
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
@ -280,6 +269,18 @@ class DocumentAddByFileApi(DatasetApiResource):
if dataset.provider == "external":
raise ValueError("External datasets are not supported.")
args = {}
if "data" in request.form:
args = json.loads(request.form["data"])
if "doc_form" not in args:
args["doc_form"] = dataset.chunk_structure or "text_model"
if "doc_language" not in args:
args["doc_language"] = "English"
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
indexing_technique = args.get("indexing_technique") or dataset.indexing_technique
if not indexing_technique:
raise ValueError("indexing_technique is required.")
@ -370,17 +371,6 @@ class DocumentUpdateByFileApi(DatasetApiResource):
@cloud_edition_billing_rate_limit_check("knowledge", "dataset")
def post(self, tenant_id, dataset_id, document_id):
"""Update document by upload file."""
args = {}
if "data" in request.form:
args = json.loads(request.form["data"])
if "doc_form" not in args:
args["doc_form"] = "text_model"
if "doc_language" not in args:
args["doc_language"] = "English"
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
@ -389,6 +379,18 @@ class DocumentUpdateByFileApi(DatasetApiResource):
if dataset.provider == "external":
raise ValueError("External datasets are not supported.")
args = {}
if "data" in request.form:
args = json.loads(request.form["data"])
if "doc_form" not in args:
args["doc_form"] = dataset.chunk_structure or "text_model"
if "doc_language" not in args:
args["doc_language"] = "English"
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
# indexing_technique is already set in dataset since this is an update
args["indexing_technique"] = dataset.indexing_technique

View File

@ -17,5 +17,15 @@ class SystemFeatureApi(Resource):
Returns:
dict: System feature configuration object
This endpoint is akin to the `SystemFeatureApi` endpoint in api/controllers/console/feature.py,
except it is intended for use by the web app, instead of the console dashboard.
NOTE: This endpoint is unauthenticated by design, as it provides system features
data required for webapp initialization.
Authentication would create circular dependency (can't authenticate without webapp loading).
Only non-sensitive configuration data should be returned by this endpoint.
"""
return FeatureService.get_system_features().model_dump()

View File

@ -1,9 +1,11 @@
from flask import make_response, request
from flask_restx import Resource, reqparse
from flask_restx import Resource
from jwt import InvalidTokenError
from pydantic import BaseModel, Field, field_validator
import services
from configs import dify_config
from controllers.common.schema import register_schema_models
from controllers.console.auth.error import (
AuthenticationFailedError,
EmailCodeError,
@ -18,7 +20,7 @@ from controllers.console.wraps import (
)
from controllers.web import web_ns
from controllers.web.wraps import decode_jwt_token
from libs.helper import email
from libs.helper import EmailStr
from libs.passport import PassportService
from libs.password import valid_password
from libs.token import (
@ -30,10 +32,35 @@ from services.app_service import AppService
from services.webapp_auth_service import WebAppAuthService
class LoginPayload(BaseModel):
email: EmailStr
password: str
@field_validator("password")
@classmethod
def validate_password(cls, value: str) -> str:
return valid_password(value)
class EmailCodeLoginSendPayload(BaseModel):
email: EmailStr
language: str | None = None
class EmailCodeLoginVerifyPayload(BaseModel):
email: EmailStr
code: str
token: str = Field(min_length=1)
register_schema_models(web_ns, LoginPayload, EmailCodeLoginSendPayload, EmailCodeLoginVerifyPayload)
@web_ns.route("/login")
class LoginApi(Resource):
"""Resource for web app email/password login."""
@web_ns.expect(web_ns.models[LoginPayload.__name__])
@setup_required
@only_edition_enterprise
@web_ns.doc("web_app_login")
@ -50,15 +77,10 @@ class LoginApi(Resource):
@decrypt_password_field
def post(self):
"""Authenticate user and login."""
parser = (
reqparse.RequestParser()
.add_argument("email", type=email, required=True, location="json")
.add_argument("password", type=valid_password, required=True, location="json")
)
args = parser.parse_args()
payload = LoginPayload.model_validate(web_ns.payload or {})
try:
account = WebAppAuthService.authenticate(args["email"], args["password"])
account = WebAppAuthService.authenticate(payload.email, payload.password)
except services.errors.account.AccountLoginError:
raise AccountBannedError()
except services.errors.account.AccountPasswordError:
@ -145,6 +167,7 @@ class EmailCodeLoginSendEmailApi(Resource):
@only_edition_enterprise
@web_ns.doc("send_email_code_login")
@web_ns.doc(description="Send email verification code for login")
@web_ns.expect(web_ns.models[EmailCodeLoginSendPayload.__name__])
@web_ns.doc(
responses={
200: "Email code sent successfully",
@ -153,19 +176,14 @@ class EmailCodeLoginSendEmailApi(Resource):
}
)
def post(self):
parser = (
reqparse.RequestParser()
.add_argument("email", type=email, required=True, location="json")
.add_argument("language", type=str, required=False, location="json")
)
args = parser.parse_args()
payload = EmailCodeLoginSendPayload.model_validate(web_ns.payload or {})
if args["language"] is not None and args["language"] == "zh-Hans":
if payload.language == "zh-Hans":
language = "zh-Hans"
else:
language = "en-US"
account = WebAppAuthService.get_user_through_email(args["email"])
account = WebAppAuthService.get_user_through_email(payload.email)
if account is None:
raise AuthenticationFailedError()
else:
@ -179,6 +197,7 @@ class EmailCodeLoginApi(Resource):
@only_edition_enterprise
@web_ns.doc("verify_email_code_login")
@web_ns.doc(description="Verify email code and complete login")
@web_ns.expect(web_ns.models[EmailCodeLoginVerifyPayload.__name__])
@web_ns.doc(
responses={
200: "Email code verified and login successful",
@ -189,17 +208,11 @@ class EmailCodeLoginApi(Resource):
)
@decrypt_code_field
def post(self):
parser = (
reqparse.RequestParser()
.add_argument("email", type=str, required=True, location="json")
.add_argument("code", type=str, required=True, location="json")
.add_argument("token", type=str, required=True, location="json")
)
args = parser.parse_args()
payload = EmailCodeLoginVerifyPayload.model_validate(web_ns.payload or {})
user_email = args["email"].lower()
user_email = payload.email.lower()
token_data = WebAppAuthService.get_email_code_login_data(args["token"])
token_data = WebAppAuthService.get_email_code_login_data(payload.token)
if token_data is None:
raise InvalidTokenError()
@ -210,10 +223,10 @@ class EmailCodeLoginApi(Resource):
if normalized_token_email != user_email:
raise InvalidEmailError()
if token_data["code"] != args["code"]:
if token_data["code"] != payload.code:
raise EmailCodeError()
WebAppAuthService.revoke_email_code_login_token(args["token"])
WebAppAuthService.revoke_email_code_login_token(payload.token)
account = WebAppAuthService.get_user_through_email(token_email)
if not account:
raise AuthenticationFailedError()

View File

@ -1,8 +1,10 @@
import logging
from typing import Any
from flask_restx import reqparse
from pydantic import BaseModel, Field
from werkzeug.exceptions import InternalServerError
from controllers.common.schema import register_schema_models
from controllers.web import web_ns
from controllers.web.error import (
CompletionRequestError,
@ -27,19 +29,22 @@ from models.model import App, AppMode, EndUser
from services.app_generate_service import AppGenerateService
from services.errors.llm import InvokeRateLimitError
class WorkflowRunPayload(BaseModel):
inputs: dict[str, Any] = Field(description="Input variables for the workflow")
files: list[dict[str, Any]] | None = Field(default=None, description="Files to be processed by the workflow")
logger = logging.getLogger(__name__)
register_schema_models(web_ns, WorkflowRunPayload)
@web_ns.route("/workflows/run")
class WorkflowRunApi(WebApiResource):
@web_ns.doc("Run Workflow")
@web_ns.doc(description="Execute a workflow with provided inputs and files.")
@web_ns.doc(
params={
"inputs": {"description": "Input variables for the workflow", "type": "object", "required": True},
"files": {"description": "Files to be processed by the workflow", "type": "array", "required": False},
}
)
@web_ns.expect(web_ns.models[WorkflowRunPayload.__name__])
@web_ns.doc(
responses={
200: "Success",
@ -58,12 +63,8 @@ class WorkflowRunApi(WebApiResource):
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
parser = (
reqparse.RequestParser()
.add_argument("inputs", type=dict, required=True, nullable=False, location="json")
.add_argument("files", type=list, required=False, location="json")
)
args = parser.parse_args()
payload = WorkflowRunPayload.model_validate(web_ns.payload or {})
args = payload.model_dump(exclude_none=True)
try:
response = AppGenerateService.generate(

View File

@ -1,380 +0,0 @@
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentEntity, AgentLog, AgentResult
from core.agent.patterns.strategy_factory import StrategyFactory
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMUsage,
PromptMessage,
PromptMessageContentType,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Message
logger = logging.getLogger(__name__)
class AgentAppRunner(BaseAgentRunner):
def _create_tool_invoke_hook(self, message: Message):
"""
Create a tool invoke hook that uses ToolEngine.agent_invoke.
This hook handles file creation and returns proper meta information.
"""
# Get trace manager from app generate entity
trace_manager = self.application_generate_entity.trace_manager
def tool_invoke_hook(
tool: Tool, tool_args: dict[str, Any], tool_name: str
) -> tuple[str, list[str], ToolInvokeMeta]:
"""Hook that uses agent_invoke for proper file and meta handling."""
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool,
tool_parameters=tool_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
app_id=self.application_generate_entity.app_config.app_id,
message_id=message.id,
conversation_id=self.conversation.id,
)
# Publish files and track IDs
for message_file_id in message_files:
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id),
PublishFrom.APPLICATION_MANAGER,
)
self._current_message_file_ids.append(message_file_id)
return tool_invoke_response, message_files, tool_invoke_meta
return tool_invoke_hook
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
"""
Run Agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
assert app_config is not None, "app_config is required"
assert app_config.agent is not None, "app_config.agent is required"
# convert tools into ModelRuntime Tool format
tool_instances, _ = self._init_prompt_tools()
assert app_config.agent
# Create tool invoke hook for agent_invoke
tool_invoke_hook = self._create_tool_invoke_hook(message)
# Get instruction for ReAct strategy
instruction = self.app_config.prompt_template.simple_prompt_template or ""
# Use factory to create appropriate strategy
strategy = StrategyFactory.create_strategy(
model_features=self.model_features,
model_instance=self.model_instance,
tools=list(tool_instances.values()),
files=list(self.files),
max_iterations=app_config.agent.max_iteration,
context=self.build_execution_context(),
agent_strategy=self.config.strategy,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)
# Initialize state variables
current_agent_thought_id = None
has_published_thought = False
current_tool_name: str | None = None
self._current_message_file_ids: list[str] = []
# organize prompt messages
prompt_messages = self._organize_prompt_messages()
# Run strategy
generator = strategy.run(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
stop=app_generate_entity.model_conf.stop,
stream=True,
)
# Consume generator and collect result
result: AgentResult | None = None
try:
while True:
try:
output = next(generator)
except StopIteration as e:
# Generator finished, get the return value
result = e.value
break
if isinstance(output, LLMResultChunk):
# Handle LLM chunk
if current_agent_thought_id and not has_published_thought:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
has_published_thought = True
yield output
elif isinstance(output, AgentLog):
# Handle Agent Log using log_type for type-safe dispatch
if output.status == AgentLog.LogStatus.START:
if output.log_type == AgentLog.LogType.ROUND:
# Start of a new round
message_file_ids: list[str] = []
current_agent_thought_id = self.create_agent_thought(
message_id=message.id,
message="",
tool_name="",
tool_input="",
messages_ids=message_file_ids,
)
has_published_thought = False
elif output.log_type == AgentLog.LogType.TOOL_CALL:
if current_agent_thought_id is None:
continue
# Tool call start - extract data from structured fields
current_tool_name = output.data.get("tool_name", "")
tool_input = output.data.get("tool_args", {})
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=current_tool_name,
tool_input=tool_input,
thought=None,
observation=None,
tool_invoke_meta=None,
answer=None,
messages_ids=[],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.status == AgentLog.LogStatus.SUCCESS:
if output.log_type == AgentLog.LogType.THOUGHT:
if current_agent_thought_id is None:
continue
thought_text = output.data.get("thought")
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=thought_text,
observation=None,
tool_invoke_meta=None,
answer=None,
messages_ids=[],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.log_type == AgentLog.LogType.TOOL_CALL:
if current_agent_thought_id is None:
continue
# Tool call finished
tool_output = output.data.get("output")
# Get meta from strategy output (now properly populated)
tool_meta = output.data.get("meta")
# Wrap tool_meta with tool_name as key (required by agent_service)
if tool_meta and current_tool_name:
tool_meta = {current_tool_name: tool_meta}
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=None,
observation=tool_output,
tool_invoke_meta=tool_meta,
answer=None,
messages_ids=self._current_message_file_ids,
)
# Clear message file ids after saving
self._current_message_file_ids = []
current_tool_name = None
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.log_type == AgentLog.LogType.ROUND:
if current_agent_thought_id is None:
continue
# Round finished - save LLM usage and answer
llm_usage = output.metadata.get(AgentLog.LogMetadata.LLM_USAGE)
llm_result = output.data.get("llm_result")
final_answer = output.data.get("final_answer")
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=llm_result,
observation=None,
tool_invoke_meta=None,
answer=final_answer,
messages_ids=[],
llm_usage=llm_usage,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
except Exception:
# Re-raise any other exceptions
raise
# Process final result
if isinstance(result, AgentResult):
final_answer = result.text
usage = result.usage or LLMUsage.empty_usage()
# Publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=self.model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=usage,
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Initialize system message
"""
if not prompt_template:
return prompt_messages or []
prompt_messages = prompt_messages or []
if prompt_messages and isinstance(prompt_messages[0], SystemPromptMessage):
prompt_messages[0] = SystemPromptMessage(content=prompt_template)
return prompt_messages
if not prompt_messages:
return [SystemPromptMessage(content=prompt_template)]
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
return prompt_messages
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
We need to remove the image messages from the prompt messages at the first iteration.
"""
prompt_messages = deepcopy(prompt_messages)
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
content.data
if content.type == PromptMessageContentType.TEXT
else "[image]"
if content.type == PromptMessageContentType.IMAGE
else "[file]"
for content in prompt_message.content
]
)
return prompt_messages
def _organize_prompt_messages(self):
# For ReAct strategy, use the agent prompt template
if self.config.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT and self.config.prompt:
prompt_template = self.config.prompt.first_prompt
else:
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query or "", [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory,
).get_prompt()
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages

View File

@ -6,7 +6,7 @@ from typing import Union, cast
from sqlalchemy import select
from core.agent.entities import AgentEntity, AgentToolEntity, ExecutionContext
from core.agent.entities import AgentEntity, AgentToolEntity
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager
@ -116,20 +116,9 @@ class BaseAgentRunner(AppRunner):
features = model_schema.features if model_schema and model_schema.features else []
self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
self.files = application_generate_entity.files if ModelFeature.VISION in features else []
self.model_features = features
self.query: str | None = ""
self._current_thoughts: list[PromptMessage] = []
def build_execution_context(self) -> ExecutionContext:
"""Build execution context."""
return ExecutionContext(
user_id=self.user_id,
app_id=self.app_config.app_id,
conversation_id=self.conversation.id,
message_id=self.message.id,
tenant_id=self.tenant_id,
)
def _repack_app_generate_entity(
self, app_generate_entity: AgentChatAppGenerateEntity
) -> AgentChatAppGenerateEntity:

View File

@ -0,0 +1,437 @@
import json
import logging
from abc import ABC, abstractmethod
from collections.abc import Generator, Mapping, Sequence
from typing import Any
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentScratchpadUnit
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
ToolPromptMessage,
UserPromptMessage,
)
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from core.workflow.nodes.agent.exc import AgentMaxIterationError
from models.model import Message
logger = logging.getLogger(__name__)
class CotAgentRunner(BaseAgentRunner, ABC):
_is_first_iteration = True
_ignore_observation_providers = ["wenxin"]
_historic_prompt_messages: list[PromptMessage]
_agent_scratchpad: list[AgentScratchpadUnit]
_instruction: str
_query: str
_prompt_messages_tools: Sequence[PromptMessageTool]
def run(
self,
message: Message,
query: str,
inputs: Mapping[str, str],
) -> Generator:
"""
Run Cot agent application
"""
app_generate_entity = self.application_generate_entity
self._repack_app_generate_entity(app_generate_entity)
self._init_react_state(query)
trace_manager = app_generate_entity.trace_manager
# check model mode
if "Observation" not in app_generate_entity.model_conf.stop:
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
app_generate_entity.model_conf.stop.append("Observation")
app_config = self.app_config
assert app_config.agent
# init instruction
inputs = inputs or {}
instruction = app_config.prompt_template.simple_prompt_template or ""
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
self._prompt_messages_tools = prompt_messages_tools
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
agent_thought_id = "" # Initialize agent_thought_id
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
self._prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
if iteration_step > 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=[],
stop=app_generate_entity.model_conf.stop,
stream=True,
user=self.user_id,
callbacks=[],
)
usage_dict: dict[str, LLMUsage | None] = {}
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
scratchpad = AgentScratchpadUnit(
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
action = chunk
# detect action
assert scratchpad.agent_response is not None
scratchpad.agent_response += json.dumps(chunk.model_dump())
scratchpad.action_str = json.dumps(chunk.model_dump())
scratchpad.action = action
else:
assert scratchpad.agent_response is not None
scratchpad.agent_response += chunk
assert scratchpad.thought is not None
scratchpad.thought += chunk
yield LLMResultChunk(
model=self.model_config.model,
prompt_messages=prompt_messages,
system_fingerprint="",
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
)
assert scratchpad.thought is not None
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
self._agent_scratchpad.append(scratchpad)
# Check if max iteration is reached and model still wants to call tools
if iteration_step == max_iteration_steps and scratchpad.action:
if scratchpad.action.action_name.lower() != "final answer":
raise AgentMaxIterationError(app_config.agent.max_iteration)
# get llm usage
if "usage" in usage_dict:
if usage_dict["usage"] is not None:
increase_usage(llm_usage, usage_dict["usage"])
else:
usage_dict["usage"] = LLMUsage.empty_usage()
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought or "",
observation="",
answer=scratchpad.agent_response or "",
messages_ids=[],
llm_usage=usage_dict["usage"],
)
if not scratchpad.is_final():
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
if not scratchpad.action:
# failed to extract action, return final answer directly
final_answer = ""
else:
if scratchpad.action.action_name.lower() == "final answer":
# action is final answer, return final answer directly
try:
if isinstance(scratchpad.action.action_input, dict):
final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
elif isinstance(scratchpad.action.action_input, str):
final_answer = scratchpad.action.action_input
else:
final_answer = f"{scratchpad.action.action_input}"
except TypeError:
final_answer = f"{scratchpad.action.action_input}"
else:
function_call_state = True
# action is tool call, invoke tool
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
action=scratchpad.action,
tool_instances=tool_instances,
message_file_ids=message_file_ids,
trace_manager=trace_manager,
)
scratchpad.observation = tool_invoke_response
scratchpad.agent_response = tool_invoke_response
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=scratchpad.action.action_name,
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
thought=scratchpad.thought or "",
observation={scratchpad.action.action_name: tool_invoke_response},
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
answer=scratchpad.agent_response,
messages_ids=message_file_ids,
llm_usage=usage_dict["usage"],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool message
for prompt_tool in self._prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
),
system_fingerprint="",
)
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input={},
tool_invoke_meta={},
thought=final_answer,
observation={},
answer=final_answer,
messages_ids=[],
)
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def _handle_invoke_action(
self,
action: AgentScratchpadUnit.Action,
tool_instances: Mapping[str, Tool],
message_file_ids: list[str],
trace_manager: TraceQueueManager | None = None,
) -> tuple[str, ToolInvokeMeta]:
"""
handle invoke action
:param action: action
:param tool_instances: tool instances
:param message_file_ids: message file ids
:param trace_manager: trace manager
:return: observation, meta
"""
# action is tool call, invoke tool
tool_call_name = action.action_name
tool_call_args = action.action_input
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
answer = f"there is not a tool named {tool_call_name}"
return answer, ToolInvokeMeta.error_instance(answer)
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
return tool_invoke_response, tool_invoke_meta
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
"""
convert dict to action
"""
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
"""
fill in inputs from external data tools
"""
for key, value in inputs.items():
try:
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
except Exception:
continue
return instruction
def _init_react_state(self, query):
"""
init agent scratchpad
"""
self._query = query
self._agent_scratchpad = []
self._historic_prompt_messages = self._organize_historic_prompt_messages()
@abstractmethod
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
organize prompt messages
"""
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
"""
format assistant message
"""
message = ""
for scratchpad in agent_scratchpad:
if scratchpad.is_final():
message += f"Final Answer: {scratchpad.agent_response}"
else:
message += f"Thought: {scratchpad.thought}\n\n"
if scratchpad.action_str:
message += f"Action: {scratchpad.action_str}\n\n"
if scratchpad.observation:
message += f"Observation: {scratchpad.observation}\n\n"
return message
def _organize_historic_prompt_messages(
self, current_session_messages: list[PromptMessage] | None = None
) -> list[PromptMessage]:
"""
organize historic prompt messages
"""
result: list[PromptMessage] = []
scratchpads: list[AgentScratchpadUnit] = []
current_scratchpad: AgentScratchpadUnit | None = None
for message in self.history_prompt_messages:
if isinstance(message, AssistantPromptMessage):
if not current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content or "I am thinking about how to help you",
action_str="",
action=None,
observation=None,
)
scratchpads.append(current_scratchpad)
if message.tool_calls:
try:
current_scratchpad.action = AgentScratchpadUnit.Action(
action_name=message.tool_calls[0].function.name,
action_input=json.loads(message.tool_calls[0].function.arguments),
)
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
except Exception:
logger.exception("Failed to parse tool call from assistant message")
elif isinstance(message, ToolPromptMessage):
if current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad.observation = message.content
else:
raise NotImplementedError("expected str type")
elif isinstance(message, UserPromptMessage):
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
scratchpads = []
current_scratchpad = None
result.append(message)
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
historic_prompts = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=current_session_messages or [],
history_messages=result,
memory=self.memory,
).get_prompt()
return historic_prompts

View File

@ -0,0 +1,118 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
PromptMessage,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.model_runtime.utils.encoders import jsonable_encoder
class CotChatAgentRunner(CotAgentRunner):
def _organize_system_prompt(self) -> SystemPromptMessage:
"""
Organize system prompt
"""
assert self.app_config.agent
assert self.app_config.agent.prompt
prompt_entity = self.app_config.agent.prompt
if not prompt_entity:
raise ValueError("Agent prompt configuration is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return SystemPromptMessage(content=system_prompt)
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize
"""
# organize system prompt
system_message = self._organize_system_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
if not agent_scratchpad:
assistant_messages = []
else:
assistant_message = AssistantPromptMessage(content="")
assistant_message.content = "" # FIXME: type check tell mypy that assistant_message.content is str
for unit in agent_scratchpad:
if unit.is_final():
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Final Answer: {unit.agent_response}"
else:
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_message.content += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_message.content += f"Observation: {unit.observation}\n\n"
assistant_messages = [assistant_message]
# query messages
query_messages = self._organize_user_query(self._query, [])
if assistant_messages:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages(
[system_message, *query_messages, *assistant_messages, UserPromptMessage(content="continue")]
)
messages = [
system_message,
*historic_messages,
*query_messages,
*assistant_messages,
UserPromptMessage(content="continue"),
]
else:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages([system_message, *query_messages])
messages = [system_message, *historic_messages, *query_messages]
# join all messages
return messages

View File

@ -0,0 +1,87 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.utils.encoders import jsonable_encoder
class CotCompletionAgentRunner(CotAgentRunner):
def _organize_instruction_prompt(self) -> str:
"""
Organize instruction prompt
"""
if self.app_config.agent is None:
raise ValueError("Agent configuration is not set")
prompt_entity = self.app_config.agent.prompt
if prompt_entity is None:
raise ValueError("prompt entity is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return system_prompt
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] | None = None) -> str:
"""
Organize historic prompt
"""
historic_prompt_messages = self._organize_historic_prompt_messages(current_session_messages)
historic_prompt = ""
for message in historic_prompt_messages:
if isinstance(message, UserPromptMessage):
historic_prompt += f"Question: {message.content}\n\n"
elif isinstance(message, AssistantPromptMessage):
if isinstance(message.content, str):
historic_prompt += message.content + "\n\n"
elif isinstance(message.content, list):
for content in message.content:
if not isinstance(content, TextPromptMessageContent):
continue
historic_prompt += content.data
return historic_prompt
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize prompt messages
"""
# organize system prompt
system_prompt = self._organize_instruction_prompt()
# organize historic prompt messages
historic_prompt = self._organize_historic_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
assistant_prompt = ""
for unit in agent_scratchpad or []:
if unit.is_final():
assistant_prompt += f"Final Answer: {unit.agent_response}"
else:
assistant_prompt += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_prompt += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_prompt += f"Observation: {unit.observation}\n\n"
# query messages
query_prompt = f"Question: {self._query}"
# join all messages
prompt = (
system_prompt.replace("{{historic_messages}}", historic_prompt)
.replace("{{agent_scratchpad}}", assistant_prompt)
.replace("{{query}}", query_prompt)
)
return [UserPromptMessage(content=prompt)]

View File

@ -1,5 +1,3 @@
import uuid
from collections.abc import Mapping
from enum import StrEnum
from typing import Any, Union
@ -94,96 +92,3 @@ class AgentInvokeMessage(ToolInvokeMessage):
"""
pass
class ExecutionContext(BaseModel):
"""Execution context containing trace and audit information.
This context carries all the IDs and metadata that are not part of
the core business logic but needed for tracing, auditing, and
correlation purposes.
"""
user_id: str | None = None
app_id: str | None = None
conversation_id: str | None = None
message_id: str | None = None
tenant_id: str | None = None
@classmethod
def create_minimal(cls, user_id: str | None = None) -> "ExecutionContext":
"""Create a minimal context with only essential fields."""
return cls(user_id=user_id)
def to_dict(self) -> dict[str, Any]:
"""Convert to dictionary for passing to legacy code."""
return {
"user_id": self.user_id,
"app_id": self.app_id,
"conversation_id": self.conversation_id,
"message_id": self.message_id,
"tenant_id": self.tenant_id,
}
def with_updates(self, **kwargs) -> "ExecutionContext":
"""Create a new context with updated fields."""
data = self.to_dict()
data.update(kwargs)
return ExecutionContext(
user_id=data.get("user_id"),
app_id=data.get("app_id"),
conversation_id=data.get("conversation_id"),
message_id=data.get("message_id"),
tenant_id=data.get("tenant_id"),
)
class AgentLog(BaseModel):
"""
Agent Log.
"""
class LogType(StrEnum):
"""Type of agent log entry."""
ROUND = "round" # A complete iteration round
THOUGHT = "thought" # LLM thinking/reasoning
TOOL_CALL = "tool_call" # Tool invocation
class LogMetadata(StrEnum):
STARTED_AT = "started_at"
FINISHED_AT = "finished_at"
ELAPSED_TIME = "elapsed_time"
TOTAL_PRICE = "total_price"
TOTAL_TOKENS = "total_tokens"
PROVIDER = "provider"
CURRENCY = "currency"
LLM_USAGE = "llm_usage"
ICON = "icon"
ICON_DARK = "icon_dark"
class LogStatus(StrEnum):
START = "start"
ERROR = "error"
SUCCESS = "success"
id: str = Field(default_factory=lambda: str(uuid.uuid4()), description="The id of the log")
label: str = Field(..., description="The label of the log")
log_type: LogType = Field(..., description="The type of the log")
parent_id: str | None = Field(default=None, description="Leave empty for root log")
error: str | None = Field(default=None, description="The error message")
status: LogStatus = Field(..., description="The status of the log")
data: Mapping[str, Any] = Field(..., description="Detailed log data")
metadata: Mapping[LogMetadata, Any] = Field(default={}, description="The metadata of the log")
class AgentResult(BaseModel):
"""
Agent execution result.
"""
text: str = Field(default="", description="The generated text")
files: list[Any] = Field(default_factory=list, description="Files produced during execution")
usage: Any | None = Field(default=None, description="LLM usage statistics")
finish_reason: str | None = Field(default=None, description="Reason for completion")

View File

@ -0,0 +1,468 @@
import json
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any, Union
from core.agent.base_agent_runner import BaseAgentRunner
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMUsage,
PromptMessage,
PromptMessageContentType,
SystemPromptMessage,
TextPromptMessageContent,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from core.workflow.nodes.agent.exc import AgentMaxIterationError
from models.model import Message
logger = logging.getLogger(__name__)
class FunctionCallAgentRunner(BaseAgentRunner):
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
"""
Run FunctionCall agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
assert app_config is not None, "app_config is required"
assert app_config.agent is not None, "app_config.agent is required"
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
assert app_config.agent
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# continue to run until there is not any tool call
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
# get tracing instance
trace_manager = app_generate_entity.trace_manager
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=prompt_messages_tools,
stop=app_generate_entity.model_conf.stop,
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
)
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
# save full response
response = ""
# save tool call names and inputs
tool_call_names = ""
tool_call_inputs = ""
current_llm_usage = None
if isinstance(chunks, Generator):
is_first_chunk = True
for chunk in chunks:
if is_first_chunk:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
is_first_chunk = False
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += str(chunk.delta.message.content)
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
else:
result = chunks
# check if there is any tool call
if self.check_blocking_tool_calls(result):
function_call_state = True
tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if result.usage:
increase_usage(llm_usage, result.usage)
current_llm_usage = result.usage
if result.message and result.message.content:
if isinstance(result.message.content, list):
for content in result.message.content:
response += content.data
else:
response += str(result.message.content)
if not result.message.content:
result.message.content = ""
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=result.prompt_messages,
system_fingerprint=result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=result.message,
usage=result.usage,
),
)
assistant_message = AssistantPromptMessage(content=response, tool_calls=[])
if tool_calls:
assistant_message.tool_calls = [
AssistantPromptMessage.ToolCall(
id=tool_call[0],
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
),
)
for tool_call in tool_calls
]
self._current_thoughts.append(assistant_message)
# save thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=tool_call_names,
tool_input=tool_call_inputs,
thought=response,
tool_invoke_meta=None,
observation=None,
answer=response,
messages_ids=[],
llm_usage=current_llm_usage,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
final_answer += response + "\n"
# Check if max iteration is reached and model still wants to call tools
if iteration_step == max_iteration_steps and tool_calls:
raise AgentMaxIterationError(app_config.agent.max_iteration)
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": f"there is not a tool named {tool_call_name}",
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
}
else:
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
app_id=self.application_generate_entity.app_config.app_id,
message_id=self.message.id,
conversation_id=self.conversation.id,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": tool_invoke_response,
"meta": tool_invoke_meta.to_dict(),
}
tool_responses.append(tool_response)
if tool_response["tool_response"] is not None:
self._current_thoughts.append(
ToolPromptMessage(
content=str(tool_response["tool_response"]),
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
if len(tool_responses) > 0:
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input="",
thought="",
tool_invoke_meta={
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
},
observation={
tool_response["tool_call_name"]: tool_response["tool_response"]
for tool_response in tool_responses
},
answer="",
messages_ids=message_file_ids,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
"""
Check if there is any tool call in llm result chunk
"""
if llm_result_chunk.delta.message.tool_calls:
return True
return False
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
"""
Check if there is any blocking tool call in llm result
"""
if llm_result.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract tool calls from llm result chunk
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result_chunk.delta.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract blocking tool calls from llm result
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Initialize system message
"""
if not prompt_messages and prompt_template:
return [
SystemPromptMessage(content=prompt_template),
]
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
return prompt_messages or []
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
We need to remove the image messages from the prompt messages at the first iteration.
"""
prompt_messages = deepcopy(prompt_messages)
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
content.data
if content.type == PromptMessageContentType.TEXT
else "[image]"
if content.type == PromptMessageContentType.IMAGE
else "[file]"
for content in prompt_message.content
]
)
return prompt_messages
def _organize_prompt_messages(self):
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query or "", [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory,
).get_prompt()
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages

View File

@ -1,55 +0,0 @@
# Agent Patterns
A unified agent pattern module that powers both Agent V2 workflow nodes and agent applications. Strategies share a common execution contract while adapting to model capabilities and tool availability.
## Overview
The module applies a strategy pattern around LLM/tool orchestration. `StrategyFactory` auto-selects the best implementation based on model features or an explicit agent strategy, and each strategy streams logs and usage consistently.
## Key Features
- **Dual strategies**
- `FunctionCallStrategy`: uses native LLM function/tool calling when the model exposes `TOOL_CALL`, `MULTI_TOOL_CALL`, or `STREAM_TOOL_CALL`.
- `ReActStrategy`: ReAct (reasoning + acting) flow driven by `CotAgentOutputParser`, used when function calling is unavailable or explicitly requested.
- **Explicit or auto selection**
- `StrategyFactory.create_strategy` prefers an explicit `AgentEntity.Strategy` (FUNCTION_CALLING or CHAIN_OF_THOUGHT).
- Otherwise it falls back to function calling when tool-call features exist, or ReAct when they do not.
- **Unified execution contract**
- `AgentPattern.run` yields streaming `AgentLog` entries and `LLMResultChunk` data, returning an `AgentResult` with text, files, usage, and `finish_reason`.
- Iterations are configurable and hard-capped at 99 rounds; the last round forces a final answer by withholding tools.
- **Tool handling and hooks**
- Tools convert to `PromptMessageTool` objects before invocation.
- Optional `tool_invoke_hook` lets callers override tool execution (e.g., agent apps) while workflow runs use `ToolEngine.generic_invoke`.
- Tool outputs support text, links, JSON, variables, blobs, retriever resources, and file attachments; `target=="self"` files are reloaded into model context, others are returned as outputs.
- **File-aware arguments**
- Tool args accept `[File: <id>]` or `[Files: <id1, id2>]` placeholders that resolve to `File` objects before invocation, enabling models to reference uploaded files safely.
- **ReAct prompt shaping**
- System prompts replace `{{instruction}}`, `{{tools}}`, and `{{tool_names}}` placeholders.
- Adds `Observation` to stop sequences and appends scratchpad text so the model sees prior Thought/Action/Observation history.
- **Observability and accounting**
- Standardized `AgentLog` entries for rounds, model thoughts, and tool calls, including usage aggregation (`LLMUsage`) across streaming and non-streaming paths.
## Architecture
```
agent/patterns/
├── base.py # Shared utilities: logging, usage, tool invocation, file handling
├── function_call.py # Native function-calling loop with tool execution
├── react.py # ReAct loop with CoT parsing and scratchpad wiring
└── strategy_factory.py # Strategy selection by model features or explicit override
```
## Usage
- For auto-selection:
- Call `StrategyFactory.create_strategy(model_features, model_instance, context, tools, files, ...)` and run the returned strategy with prompt messages and model params.
- For explicit behavior:
- Pass `agent_strategy=AgentEntity.Strategy.FUNCTION_CALLING` to force native calls (falls back to ReAct if unsupported), or `CHAIN_OF_THOUGHT` to force ReAct.
- Both strategies stream chunks and logs; collect the generator output until it returns an `AgentResult`.
## Integration Points
- **Model runtime**: delegates to `ModelInstance.invoke_llm` for both streaming and non-streaming calls.
- **Tool system**: defaults to `ToolEngine.generic_invoke`, with `tool_invoke_hook` for custom callers.
- **Files**: flows through `File` objects for tool inputs/outputs and model-context attachments.
- **Execution context**: `ExecutionContext` fields (user/app/conversation/message) propagate to tool invocations and logging.

View File

@ -1,19 +0,0 @@
"""Agent patterns module.
This module provides different strategies for agent execution:
- FunctionCallStrategy: Uses native function/tool calling
- ReActStrategy: Uses ReAct (Reasoning + Acting) approach
- StrategyFactory: Factory for creating strategies based on model features
"""
from .base import AgentPattern
from .function_call import FunctionCallStrategy
from .react import ReActStrategy
from .strategy_factory import StrategyFactory
__all__ = [
"AgentPattern",
"FunctionCallStrategy",
"ReActStrategy",
"StrategyFactory",
]

View File

@ -1,474 +0,0 @@
"""Base class for agent strategies."""
from __future__ import annotations
import json
import re
import time
from abc import ABC, abstractmethod
from collections.abc import Callable, Generator
from typing import TYPE_CHECKING, Any
from core.agent.entities import AgentLog, AgentResult, ExecutionContext
from core.file import File
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
PromptMessage,
PromptMessageTool,
)
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.message_entities import TextPromptMessageContent
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMeta
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
# Type alias for tool invoke hook
# Returns: (response_content, message_file_ids, tool_invoke_meta)
ToolInvokeHook = Callable[["Tool", dict[str, Any], str], tuple[str, list[str], ToolInvokeMeta]]
class AgentPattern(ABC):
"""Base class for agent execution strategies."""
def __init__(
self,
model_instance: ModelInstance,
tools: list[Tool],
context: ExecutionContext,
max_iterations: int = 10,
workflow_call_depth: int = 0,
files: list[File] = [],
tool_invoke_hook: ToolInvokeHook | None = None,
):
"""Initialize the agent strategy."""
self.model_instance = model_instance
self.tools = tools
self.context = context
self.max_iterations = min(max_iterations, 99) # Cap at 99 iterations
self.workflow_call_depth = workflow_call_depth
self.files: list[File] = files
self.tool_invoke_hook = tool_invoke_hook
@abstractmethod
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str] = [],
stream: bool = True,
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the agent strategy."""
pass
def _accumulate_usage(self, total_usage: dict[str, Any], delta_usage: LLMUsage) -> None:
"""Accumulate LLM usage statistics."""
if not total_usage.get("usage"):
# Create a copy to avoid modifying the original
total_usage["usage"] = LLMUsage(
prompt_tokens=delta_usage.prompt_tokens,
prompt_unit_price=delta_usage.prompt_unit_price,
prompt_price_unit=delta_usage.prompt_price_unit,
prompt_price=delta_usage.prompt_price,
completion_tokens=delta_usage.completion_tokens,
completion_unit_price=delta_usage.completion_unit_price,
completion_price_unit=delta_usage.completion_price_unit,
completion_price=delta_usage.completion_price,
total_tokens=delta_usage.total_tokens,
total_price=delta_usage.total_price,
currency=delta_usage.currency,
latency=delta_usage.latency,
)
else:
current: LLMUsage = total_usage["usage"]
current.prompt_tokens += delta_usage.prompt_tokens
current.completion_tokens += delta_usage.completion_tokens
current.total_tokens += delta_usage.total_tokens
current.prompt_price += delta_usage.prompt_price
current.completion_price += delta_usage.completion_price
current.total_price += delta_usage.total_price
def _extract_content(self, content: Any) -> str:
"""Extract text content from message content."""
if isinstance(content, list):
# Content items are PromptMessageContentUnionTypes
text_parts = []
for c in content:
# Check if it's a TextPromptMessageContent (which has data attribute)
if isinstance(c, TextPromptMessageContent):
text_parts.append(c.data)
return "".join(text_parts)
return str(content)
def _has_tool_calls(self, chunk: LLMResultChunk) -> bool:
"""Check if chunk contains tool calls."""
# LLMResultChunk always has delta attribute
return bool(chunk.delta.message and chunk.delta.message.tool_calls)
def _has_tool_calls_result(self, result: LLMResult) -> bool:
"""Check if result contains tool calls (non-streaming)."""
# LLMResult always has message attribute
return bool(result.message and result.message.tool_calls)
def _extract_tool_calls(self, chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
"""Extract tool calls from streaming chunk."""
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
if chunk.delta.message and chunk.delta.message.tool_calls:
for tool_call in chunk.delta.message.tool_calls:
if tool_call.function:
try:
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
except json.JSONDecodeError:
args = {}
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
return tool_calls
def _extract_tool_calls_result(self, result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
"""Extract tool calls from non-streaming result."""
tool_calls = []
if result.message and result.message.tool_calls:
for tool_call in result.message.tool_calls:
if tool_call.function:
try:
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
except json.JSONDecodeError:
args = {}
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
return tool_calls
def _extract_text_from_message(self, message: PromptMessage) -> str:
"""Extract text content from a prompt message."""
# PromptMessage always has content attribute
content = message.content
if isinstance(content, str):
return content
elif isinstance(content, list):
# Extract text from content list
text_parts = []
for item in content:
if isinstance(item, TextPromptMessageContent):
text_parts.append(item.data)
return " ".join(text_parts)
return ""
def _get_tool_metadata(self, tool_instance: Tool) -> dict[AgentLog.LogMetadata, Any]:
"""Get metadata for a tool including provider and icon info."""
from core.tools.tool_manager import ToolManager
metadata: dict[AgentLog.LogMetadata, Any] = {}
if tool_instance.entity and tool_instance.entity.identity:
identity = tool_instance.entity.identity
if identity.provider:
metadata[AgentLog.LogMetadata.PROVIDER] = identity.provider
# Get icon using ToolManager for proper URL generation
tenant_id = self.context.tenant_id
if tenant_id and identity.provider:
try:
provider_type = tool_instance.tool_provider_type()
icon = ToolManager.get_tool_icon(tenant_id, provider_type, identity.provider)
if isinstance(icon, str):
metadata[AgentLog.LogMetadata.ICON] = icon
elif isinstance(icon, dict):
# Handle icon dict with background/content or light/dark variants
metadata[AgentLog.LogMetadata.ICON] = icon
except Exception:
# Fallback to identity.icon if ToolManager fails
if identity.icon:
metadata[AgentLog.LogMetadata.ICON] = identity.icon
elif identity.icon:
metadata[AgentLog.LogMetadata.ICON] = identity.icon
return metadata
def _create_log(
self,
label: str,
log_type: AgentLog.LogType,
status: AgentLog.LogStatus,
data: dict[str, Any] | None = None,
parent_id: str | None = None,
extra_metadata: dict[AgentLog.LogMetadata, Any] | None = None,
) -> AgentLog:
"""Create a new AgentLog with standard metadata."""
metadata: dict[AgentLog.LogMetadata, Any] = {
AgentLog.LogMetadata.STARTED_AT: time.perf_counter(),
}
if extra_metadata:
metadata.update(extra_metadata)
return AgentLog(
label=label,
log_type=log_type,
status=status,
data=data or {},
parent_id=parent_id,
metadata=metadata,
)
def _finish_log(
self,
log: AgentLog,
data: dict[str, Any] | None = None,
usage: LLMUsage | None = None,
) -> AgentLog:
"""Finish an AgentLog by updating its status and metadata."""
log.status = AgentLog.LogStatus.SUCCESS
if data is not None:
log.data = data
# Calculate elapsed time
started_at = log.metadata.get(AgentLog.LogMetadata.STARTED_AT, time.perf_counter())
finished_at = time.perf_counter()
# Update metadata
log.metadata = {
**log.metadata,
AgentLog.LogMetadata.FINISHED_AT: finished_at,
# Calculate elapsed time in seconds
AgentLog.LogMetadata.ELAPSED_TIME: round(finished_at - started_at, 4),
}
# Add usage information if provided
if usage:
log.metadata.update(
{
AgentLog.LogMetadata.TOTAL_PRICE: usage.total_price,
AgentLog.LogMetadata.CURRENCY: usage.currency,
AgentLog.LogMetadata.TOTAL_TOKENS: usage.total_tokens,
AgentLog.LogMetadata.LLM_USAGE: usage,
}
)
return log
def _replace_file_references(self, tool_args: dict[str, Any]) -> dict[str, Any]:
"""
Replace file references in tool arguments with actual File objects.
Args:
tool_args: Dictionary of tool arguments
Returns:
Updated tool arguments with file references replaced
"""
# Process each argument in the dictionary
processed_args: dict[str, Any] = {}
for key, value in tool_args.items():
processed_args[key] = self._process_file_reference(value)
return processed_args
def _process_file_reference(self, data: Any) -> Any:
"""
Recursively process data to replace file references.
Supports both single file [File: file_id] and multiple files [Files: file_id1, file_id2, ...].
Args:
data: The data to process (can be dict, list, str, or other types)
Returns:
Processed data with file references replaced
"""
single_file_pattern = re.compile(r"^\[File:\s*([^\]]+)\]$")
multiple_files_pattern = re.compile(r"^\[Files:\s*([^\]]+)\]$")
if isinstance(data, dict):
# Process dictionary recursively
return {key: self._process_file_reference(value) for key, value in data.items()}
elif isinstance(data, list):
# Process list recursively
return [self._process_file_reference(item) for item in data]
elif isinstance(data, str):
# Check for single file pattern [File: file_id]
single_match = single_file_pattern.match(data.strip())
if single_match:
file_id = single_match.group(1).strip()
# Find the file in self.files
for file in self.files:
if file.id and str(file.id) == file_id:
return file
# If file not found, return original value
return data
# Check for multiple files pattern [Files: file_id1, file_id2, ...]
multiple_match = multiple_files_pattern.match(data.strip())
if multiple_match:
file_ids_str = multiple_match.group(1).strip()
# Split by comma and strip whitespace
file_ids = [fid.strip() for fid in file_ids_str.split(",")]
# Find all matching files
matched_files: list[File] = []
for file_id in file_ids:
for file in self.files:
if file.id and str(file.id) == file_id:
matched_files.append(file)
break
# Return list of files if any were found, otherwise return original
return matched_files or data
return data
else:
# Return other types as-is
return data
def _create_text_chunk(self, text: str, prompt_messages: list[PromptMessage]) -> LLMResultChunk:
"""Create a text chunk for streaming."""
return LLMResultChunk(
model=self.model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=text),
usage=None,
),
system_fingerprint="",
)
def _invoke_tool(
self,
tool_instance: Tool,
tool_args: dict[str, Any],
tool_name: str,
) -> tuple[str, list[File], ToolInvokeMeta | None]:
"""
Invoke a tool and collect its response.
Args:
tool_instance: The tool instance to invoke
tool_args: Tool arguments
tool_name: Name of the tool
Returns:
Tuple of (response_content, tool_files, tool_invoke_meta)
"""
# Process tool_args to replace file references with actual File objects
tool_args = self._replace_file_references(tool_args)
# If a tool invoke hook is set, use it instead of generic_invoke
if self.tool_invoke_hook:
response_content, _, tool_invoke_meta = self.tool_invoke_hook(tool_instance, tool_args, tool_name)
# Note: message_file_ids are stored in DB, we don't convert them to File objects here
# The caller (AgentAppRunner) handles file publishing
return response_content, [], tool_invoke_meta
# Default: use generic_invoke for workflow scenarios
# Import here to avoid circular import
from core.tools.tool_engine import DifyWorkflowCallbackHandler, ToolEngine
tool_response = ToolEngine().generic_invoke(
tool=tool_instance,
tool_parameters=tool_args,
user_id=self.context.user_id or "",
workflow_tool_callback=DifyWorkflowCallbackHandler(),
workflow_call_depth=self.workflow_call_depth,
app_id=self.context.app_id,
conversation_id=self.context.conversation_id,
message_id=self.context.message_id,
)
# Collect response and files
response_content = ""
tool_files: list[File] = []
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.TEXT:
assert isinstance(response.message, ToolInvokeMessage.TextMessage)
response_content += response.message.text
elif response.type == ToolInvokeMessage.MessageType.LINK:
# Handle link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Link: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.IMAGE:
# Handle image URL messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Image: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK:
# Handle image link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Image: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.BINARY_LINK:
# Handle binary file link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
filename = response.meta.get("filename", "file") if response.meta else "file"
response_content += f"[File: {filename} - {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.JSON:
# Handle JSON messages
if isinstance(response.message, ToolInvokeMessage.JsonMessage):
response_content += json.dumps(response.message.json_object, ensure_ascii=False, indent=2)
elif response.type == ToolInvokeMessage.MessageType.BLOB:
# Handle blob messages - convert to text representation
if isinstance(response.message, ToolInvokeMessage.BlobMessage):
mime_type = (
response.meta.get("mime_type", "application/octet-stream")
if response.meta
else "application/octet-stream"
)
size = len(response.message.blob)
response_content += f"[Binary data: {mime_type}, size: {size} bytes]"
elif response.type == ToolInvokeMessage.MessageType.VARIABLE:
# Handle variable messages
if isinstance(response.message, ToolInvokeMessage.VariableMessage):
var_name = response.message.variable_name
var_value = response.message.variable_value
if isinstance(var_value, str):
response_content += var_value
else:
response_content += f"[Variable {var_name}: {json.dumps(var_value, ensure_ascii=False)}]"
elif response.type == ToolInvokeMessage.MessageType.BLOB_CHUNK:
# Handle blob chunk messages - these are parts of a larger blob
if isinstance(response.message, ToolInvokeMessage.BlobChunkMessage):
response_content += f"[Blob chunk {response.message.sequence}: {len(response.message.blob)} bytes]"
elif response.type == ToolInvokeMessage.MessageType.RETRIEVER_RESOURCES:
# Handle retriever resources messages
if isinstance(response.message, ToolInvokeMessage.RetrieverResourceMessage):
response_content += response.message.context
elif response.type == ToolInvokeMessage.MessageType.FILE:
# Extract file from meta
if response.meta and "file" in response.meta:
file = response.meta["file"]
if isinstance(file, File):
# Check if file is for model or tool output
if response.meta.get("target") == "self":
# File is for model - add to files for next prompt
self.files.append(file)
response_content += f"File '{file.filename}' has been loaded into your context."
else:
# File is tool output
tool_files.append(file)
return response_content, tool_files, None
def _find_tool_by_name(self, tool_name: str) -> Tool | None:
"""Find a tool instance by its name."""
for tool in self.tools:
if tool.entity.identity.name == tool_name:
return tool
return None
def _convert_tools_to_prompt_format(self) -> list[PromptMessageTool]:
"""Convert tools to prompt message format."""
prompt_tools: list[PromptMessageTool] = []
for tool in self.tools:
prompt_tools.append(tool.to_prompt_message_tool())
return prompt_tools
def _update_usage_with_empty(self, llm_usage: dict[str, Any]) -> None:
"""Initialize usage tracking with empty usage if not set."""
if "usage" not in llm_usage or llm_usage["usage"] is None:
llm_usage["usage"] = LLMUsage.empty_usage()

View File

@ -1,299 +0,0 @@
"""Function Call strategy implementation."""
import json
from collections.abc import Generator
from typing import Any, Union
from core.agent.entities import AgentLog, AgentResult
from core.file import File
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMUsage,
PromptMessage,
PromptMessageTool,
ToolPromptMessage,
)
from core.tools.entities.tool_entities import ToolInvokeMeta
from .base import AgentPattern
class FunctionCallStrategy(AgentPattern):
"""Function Call strategy using model's native tool calling capability."""
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str] = [],
stream: bool = True,
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the function call agent strategy."""
# Convert tools to prompt format
prompt_tools: list[PromptMessageTool] = self._convert_tools_to_prompt_format()
# Initialize tracking
iteration_step: int = 1
max_iterations: int = self.max_iterations + 1
function_call_state: bool = True
total_usage: dict[str, LLMUsage | None] = {"usage": None}
messages: list[PromptMessage] = list(prompt_messages) # Create mutable copy
final_text: str = ""
finish_reason: str | None = None
output_files: list[File] = [] # Track files produced by tools
while function_call_state and iteration_step <= max_iterations:
function_call_state = False
round_log = self._create_log(
label=f"ROUND {iteration_step}",
log_type=AgentLog.LogType.ROUND,
status=AgentLog.LogStatus.START,
data={},
)
yield round_log
# On last iteration, remove tools to force final answer
current_tools: list[PromptMessageTool] = [] if iteration_step == max_iterations else prompt_tools
model_log = self._create_log(
label=f"{self.model_instance.model} Thought",
log_type=AgentLog.LogType.THOUGHT,
status=AgentLog.LogStatus.START,
data={},
parent_id=round_log.id,
extra_metadata={
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
},
)
yield model_log
# Track usage for this round only
round_usage: dict[str, LLMUsage | None] = {"usage": None}
# Invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
prompt_messages=messages,
model_parameters=model_parameters,
tools=current_tools,
stop=stop,
stream=stream,
user=self.context.user_id,
callbacks=[],
)
# Process response
tool_calls, response_content, chunk_finish_reason = yield from self._handle_chunks(
chunks, round_usage, model_log
)
messages.append(self._create_assistant_message(response_content, tool_calls))
# Accumulate to total usage
round_usage_value = round_usage.get("usage")
if round_usage_value:
self._accumulate_usage(total_usage, round_usage_value)
# Update final text if no tool calls (this is likely the final answer)
if not tool_calls:
final_text = response_content
# Update finish reason
if chunk_finish_reason:
finish_reason = chunk_finish_reason
# Process tool calls
tool_outputs: dict[str, str] = {}
if tool_calls:
function_call_state = True
# Execute tools
for tool_call_id, tool_name, tool_args in tool_calls:
tool_response, tool_files, _ = yield from self._handle_tool_call(
tool_name, tool_args, tool_call_id, messages, round_log
)
tool_outputs[tool_name] = tool_response
# Track files produced by tools
output_files.extend(tool_files)
yield self._finish_log(
round_log,
data={
"llm_result": response_content,
"tool_calls": [
{"name": tc[1], "args": tc[2], "output": tool_outputs.get(tc[1], "")} for tc in tool_calls
]
if tool_calls
else [],
"final_answer": final_text if not function_call_state else None,
},
usage=round_usage.get("usage"),
)
iteration_step += 1
# Return final result
from core.agent.entities import AgentResult
return AgentResult(
text=final_text,
files=output_files,
usage=total_usage.get("usage") or LLMUsage.empty_usage(),
finish_reason=finish_reason,
)
def _handle_chunks(
self,
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
llm_usage: dict[str, LLMUsage | None],
start_log: AgentLog,
) -> Generator[
LLMResultChunk | AgentLog,
None,
tuple[list[tuple[str, str, dict[str, Any]]], str, str | None],
]:
"""Handle LLM response chunks and extract tool calls and content.
Returns a tuple of (tool_calls, response_content, finish_reason).
"""
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
response_content: str = ""
finish_reason: str | None = None
if isinstance(chunks, Generator):
# Streaming response
for chunk in chunks:
# Extract tool calls
if self._has_tool_calls(chunk):
tool_calls.extend(self._extract_tool_calls(chunk))
# Extract content
if chunk.delta.message and chunk.delta.message.content:
response_content += self._extract_content(chunk.delta.message.content)
# Track usage
if chunk.delta.usage:
self._accumulate_usage(llm_usage, chunk.delta.usage)
# Capture finish reason
if chunk.delta.finish_reason:
finish_reason = chunk.delta.finish_reason
yield chunk
else:
# Non-streaming response
result: LLMResult = chunks
if self._has_tool_calls_result(result):
tool_calls.extend(self._extract_tool_calls_result(result))
if result.message and result.message.content:
response_content += self._extract_content(result.message.content)
if result.usage:
self._accumulate_usage(llm_usage, result.usage)
# Convert to streaming format
yield LLMResultChunk(
model=result.model,
prompt_messages=result.prompt_messages,
delta=LLMResultChunkDelta(index=0, message=result.message, usage=result.usage),
)
yield self._finish_log(
start_log,
data={
"result": response_content,
},
usage=llm_usage.get("usage"),
)
return tool_calls, response_content, finish_reason
def _create_assistant_message(
self, content: str, tool_calls: list[tuple[str, str, dict[str, Any]]] | None = None
) -> AssistantPromptMessage:
"""Create assistant message with tool calls."""
if tool_calls is None:
return AssistantPromptMessage(content=content)
return AssistantPromptMessage(
content=content or "",
tool_calls=[
AssistantPromptMessage.ToolCall(
id=tc[0],
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tc[1], arguments=json.dumps(tc[2])),
)
for tc in tool_calls
],
)
def _handle_tool_call(
self,
tool_name: str,
tool_args: dict[str, Any],
tool_call_id: str,
messages: list[PromptMessage],
round_log: AgentLog,
) -> Generator[AgentLog, None, tuple[str, list[File], ToolInvokeMeta | None]]:
"""Handle a single tool call and return response with files and meta."""
# Find tool
tool_instance = self._find_tool_by_name(tool_name)
if not tool_instance:
raise ValueError(f"Tool {tool_name} not found")
# Get tool metadata (provider, icon, etc.)
tool_metadata = self._get_tool_metadata(tool_instance)
# Create tool call log
tool_call_log = self._create_log(
label=f"CALL {tool_name}",
log_type=AgentLog.LogType.TOOL_CALL,
status=AgentLog.LogStatus.START,
data={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_args": tool_args,
},
parent_id=round_log.id,
extra_metadata=tool_metadata,
)
yield tool_call_log
# Invoke tool using base class method with error handling
try:
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args, tool_name)
yield self._finish_log(
tool_call_log,
data={
**tool_call_log.data,
"output": response_content,
"files": len(tool_files),
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
},
)
final_content = response_content or "Tool executed successfully"
# Add tool response to messages
messages.append(
ToolPromptMessage(
content=final_content,
tool_call_id=tool_call_id,
name=tool_name,
)
)
return response_content, tool_files, tool_invoke_meta
except Exception as e:
# Tool invocation failed, yield error log
error_message = str(e)
tool_call_log.status = AgentLog.LogStatus.ERROR
tool_call_log.error = error_message
tool_call_log.data = {
**tool_call_log.data,
"error": error_message,
}
yield tool_call_log
# Add error message to conversation
error_content = f"Tool execution failed: {error_message}"
messages.append(
ToolPromptMessage(
content=error_content,
tool_call_id=tool_call_id,
name=tool_name,
)
)
return error_content, [], None

View File

@ -1,418 +0,0 @@
"""ReAct strategy implementation."""
from __future__ import annotations
import json
from collections.abc import Generator
from typing import TYPE_CHECKING, Any, Union
from core.agent.entities import AgentLog, AgentResult, AgentScratchpadUnit, ExecutionContext
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.file import File
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
PromptMessage,
SystemPromptMessage,
)
from .base import AgentPattern, ToolInvokeHook
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
class ReActStrategy(AgentPattern):
"""ReAct strategy using reasoning and acting approach."""
def __init__(
self,
model_instance: ModelInstance,
tools: list[Tool],
context: ExecutionContext,
max_iterations: int = 10,
workflow_call_depth: int = 0,
files: list[File] = [],
tool_invoke_hook: ToolInvokeHook | None = None,
instruction: str = "",
):
"""Initialize the ReAct strategy with instruction support."""
super().__init__(
model_instance=model_instance,
tools=tools,
context=context,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
files=files,
tool_invoke_hook=tool_invoke_hook,
)
self.instruction = instruction
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str] = [],
stream: bool = True,
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the ReAct agent strategy."""
# Initialize tracking
agent_scratchpad: list[AgentScratchpadUnit] = []
iteration_step: int = 1
max_iterations: int = self.max_iterations + 1
react_state: bool = True
total_usage: dict[str, Any] = {"usage": None}
output_files: list[File] = [] # Track files produced by tools
final_text: str = ""
finish_reason: str | None = None
# Add "Observation" to stop sequences
if "Observation" not in stop:
stop = stop.copy()
stop.append("Observation")
while react_state and iteration_step <= max_iterations:
react_state = False
round_log = self._create_log(
label=f"ROUND {iteration_step}",
log_type=AgentLog.LogType.ROUND,
status=AgentLog.LogStatus.START,
data={},
)
yield round_log
# Build prompt with/without tools based on iteration
include_tools = iteration_step < max_iterations
current_messages = self._build_prompt_with_react_format(
prompt_messages, agent_scratchpad, include_tools, self.instruction
)
model_log = self._create_log(
label=f"{self.model_instance.model} Thought",
log_type=AgentLog.LogType.THOUGHT,
status=AgentLog.LogStatus.START,
data={},
parent_id=round_log.id,
extra_metadata={
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
},
)
yield model_log
# Track usage for this round only
round_usage: dict[str, Any] = {"usage": None}
# Use current messages directly (files are handled by base class if needed)
messages_to_use = current_messages
# Invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
prompt_messages=messages_to_use,
model_parameters=model_parameters,
stop=stop,
stream=stream,
user=self.context.user_id or "",
callbacks=[],
)
# Process response
scratchpad, chunk_finish_reason = yield from self._handle_chunks(
chunks, round_usage, model_log, current_messages
)
agent_scratchpad.append(scratchpad)
# Accumulate to total usage
round_usage_value = round_usage.get("usage")
if round_usage_value:
self._accumulate_usage(total_usage, round_usage_value)
# Update finish reason
if chunk_finish_reason:
finish_reason = chunk_finish_reason
# Check if we have an action to execute
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
react_state = True
# Execute tool
observation, tool_files = yield from self._handle_tool_call(
scratchpad.action, current_messages, round_log
)
scratchpad.observation = observation
# Track files produced by tools
output_files.extend(tool_files)
# Add observation to scratchpad for display
yield self._create_text_chunk(f"\nObservation: {observation}\n", current_messages)
else:
# Extract final answer
if scratchpad.action and scratchpad.action.action_input:
final_answer = scratchpad.action.action_input
if isinstance(final_answer, dict):
final_answer = json.dumps(final_answer, ensure_ascii=False)
final_text = str(final_answer)
elif scratchpad.thought:
# If no action but we have thought, use thought as final answer
final_text = scratchpad.thought
yield self._finish_log(
round_log,
data={
"thought": scratchpad.thought,
"action": scratchpad.action_str if scratchpad.action else None,
"observation": scratchpad.observation or None,
"final_answer": final_text if not react_state else None,
},
usage=round_usage.get("usage"),
)
iteration_step += 1
# Return final result
from core.agent.entities import AgentResult
return AgentResult(
text=final_text, files=output_files, usage=total_usage.get("usage"), finish_reason=finish_reason
)
def _build_prompt_with_react_format(
self,
original_messages: list[PromptMessage],
agent_scratchpad: list[AgentScratchpadUnit],
include_tools: bool = True,
instruction: str = "",
) -> list[PromptMessage]:
"""Build prompt messages with ReAct format."""
# Copy messages to avoid modifying original
messages = list(original_messages)
# Find and update the system prompt that should already exist
system_prompt_found = False
for i, msg in enumerate(messages):
if isinstance(msg, SystemPromptMessage):
system_prompt_found = True
# The system prompt from frontend already has the template, just replace placeholders
# Format tools
tools_str = ""
tool_names = []
if include_tools and self.tools:
# Convert tools to prompt message tools format
prompt_tools = [tool.to_prompt_message_tool() for tool in self.tools]
tool_names = [tool.name for tool in prompt_tools]
# Format tools as JSON for comprehensive information
from core.model_runtime.utils.encoders import jsonable_encoder
tools_str = json.dumps(jsonable_encoder(prompt_tools), indent=2)
tool_names_str = ", ".join(f'"{name}"' for name in tool_names)
else:
tools_str = "No tools available"
tool_names_str = ""
# Replace placeholders in the existing system prompt
updated_content = msg.content
assert isinstance(updated_content, str)
updated_content = updated_content.replace("{{instruction}}", instruction)
updated_content = updated_content.replace("{{tools}}", tools_str)
updated_content = updated_content.replace("{{tool_names}}", tool_names_str)
# Create new SystemPromptMessage with updated content
messages[i] = SystemPromptMessage(content=updated_content)
break
# If no system prompt found, that's unexpected but add scratchpad anyway
if not system_prompt_found:
# This shouldn't happen if frontend is working correctly
pass
# Format agent scratchpad
scratchpad_str = ""
if agent_scratchpad:
scratchpad_parts: list[str] = []
for unit in agent_scratchpad:
if unit.thought:
scratchpad_parts.append(f"Thought: {unit.thought}")
if unit.action_str:
scratchpad_parts.append(f"Action:\n```\n{unit.action_str}\n```")
if unit.observation:
scratchpad_parts.append(f"Observation: {unit.observation}")
scratchpad_str = "\n".join(scratchpad_parts)
# If there's a scratchpad, append it to the last message
if scratchpad_str:
messages.append(AssistantPromptMessage(content=scratchpad_str))
return messages
def _handle_chunks(
self,
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
llm_usage: dict[str, Any],
model_log: AgentLog,
current_messages: list[PromptMessage],
) -> Generator[
LLMResultChunk | AgentLog,
None,
tuple[AgentScratchpadUnit, str | None],
]:
"""Handle LLM response chunks and extract action/thought.
Returns a tuple of (scratchpad_unit, finish_reason).
"""
usage_dict: dict[str, Any] = {}
# Convert non-streaming to streaming format if needed
if isinstance(chunks, LLMResult):
# Create a generator from the LLMResult
def result_to_chunks() -> Generator[LLMResultChunk, None, None]:
yield LLMResultChunk(
model=chunks.model,
prompt_messages=chunks.prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=chunks.message,
usage=chunks.usage,
finish_reason=None, # LLMResult doesn't have finish_reason, only streaming chunks do
),
system_fingerprint=chunks.system_fingerprint or "",
)
streaming_chunks = result_to_chunks()
else:
streaming_chunks = chunks
react_chunks = CotAgentOutputParser.handle_react_stream_output(streaming_chunks, usage_dict)
# Initialize scratchpad unit
scratchpad = AgentScratchpadUnit(
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
finish_reason: str | None = None
# Process chunks
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
# Action detected
action_str = json.dumps(chunk.model_dump())
scratchpad.agent_response = (scratchpad.agent_response or "") + action_str
scratchpad.action_str = action_str
scratchpad.action = chunk
yield self._create_text_chunk(json.dumps(chunk.model_dump()), current_messages)
else:
# Text chunk
chunk_text = str(chunk)
scratchpad.agent_response = (scratchpad.agent_response or "") + chunk_text
scratchpad.thought = (scratchpad.thought or "") + chunk_text
yield self._create_text_chunk(chunk_text, current_messages)
# Update usage
if usage_dict.get("usage"):
if llm_usage.get("usage"):
self._accumulate_usage(llm_usage, usage_dict["usage"])
else:
llm_usage["usage"] = usage_dict["usage"]
# Clean up thought
scratchpad.thought = (scratchpad.thought or "").strip() or "I am thinking about how to help you"
# Finish model log
yield self._finish_log(
model_log,
data={
"thought": scratchpad.thought,
"action": scratchpad.action_str if scratchpad.action else None,
},
usage=llm_usage.get("usage"),
)
return scratchpad, finish_reason
def _handle_tool_call(
self,
action: AgentScratchpadUnit.Action,
prompt_messages: list[PromptMessage],
round_log: AgentLog,
) -> Generator[AgentLog, None, tuple[str, list[File]]]:
"""Handle tool call and return observation with files."""
tool_name = action.action_name
tool_args: dict[str, Any] | str = action.action_input
# Find tool instance first to get metadata
tool_instance = self._find_tool_by_name(tool_name)
tool_metadata = self._get_tool_metadata(tool_instance) if tool_instance else {}
# Start tool log with tool metadata
tool_log = self._create_log(
label=f"CALL {tool_name}",
log_type=AgentLog.LogType.TOOL_CALL,
status=AgentLog.LogStatus.START,
data={
"tool_name": tool_name,
"tool_args": tool_args,
},
parent_id=round_log.id,
extra_metadata=tool_metadata,
)
yield tool_log
if not tool_instance:
# Finish tool log with error
yield self._finish_log(
tool_log,
data={
**tool_log.data,
"error": f"Tool {tool_name} not found",
},
)
return f"Tool {tool_name} not found", []
# Ensure tool_args is a dict
tool_args_dict: dict[str, Any]
if isinstance(tool_args, str):
try:
tool_args_dict = json.loads(tool_args)
except json.JSONDecodeError:
tool_args_dict = {"input": tool_args}
elif not isinstance(tool_args, dict):
tool_args_dict = {"input": str(tool_args)}
else:
tool_args_dict = tool_args
# Invoke tool using base class method with error handling
try:
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args_dict, tool_name)
# Finish tool log
yield self._finish_log(
tool_log,
data={
**tool_log.data,
"output": response_content,
"files": len(tool_files),
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
},
)
return response_content or "Tool executed successfully", tool_files
except Exception as e:
# Tool invocation failed, yield error log
error_message = str(e)
tool_log.status = AgentLog.LogStatus.ERROR
tool_log.error = error_message
tool_log.data = {
**tool_log.data,
"error": error_message,
}
yield tool_log
return f"Tool execution failed: {error_message}", []

View File

@ -1,107 +0,0 @@
"""Strategy factory for creating agent strategies."""
from __future__ import annotations
from typing import TYPE_CHECKING
from core.agent.entities import AgentEntity, ExecutionContext
from core.file.models import File
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelFeature
from .base import AgentPattern, ToolInvokeHook
from .function_call import FunctionCallStrategy
from .react import ReActStrategy
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
class StrategyFactory:
"""Factory for creating agent strategies based on model features."""
# Tool calling related features
TOOL_CALL_FEATURES = {ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL}
@staticmethod
def create_strategy(
model_features: list[ModelFeature],
model_instance: ModelInstance,
context: ExecutionContext,
tools: list[Tool],
files: list[File],
max_iterations: int = 10,
workflow_call_depth: int = 0,
agent_strategy: AgentEntity.Strategy | None = None,
tool_invoke_hook: ToolInvokeHook | None = None,
instruction: str = "",
) -> AgentPattern:
"""
Create an appropriate strategy based on model features.
Args:
model_features: List of model features/capabilities
model_instance: Model instance to use
context: Execution context containing trace/audit information
tools: Available tools
files: Available files
max_iterations: Maximum iterations for the strategy
workflow_call_depth: Depth of workflow calls
agent_strategy: Optional explicit strategy override
tool_invoke_hook: Optional hook for custom tool invocation (e.g., agent_invoke)
instruction: Optional instruction for ReAct strategy
Returns:
AgentStrategy instance
"""
# If explicit strategy is provided and it's Function Calling, try to use it if supported
if agent_strategy == AgentEntity.Strategy.FUNCTION_CALLING:
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
return FunctionCallStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
)
# Fallback to ReAct if FC is requested but not supported
# If explicit strategy is Chain of Thought (ReAct)
if agent_strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
return ReActStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)
# Default auto-selection logic
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
# Model supports native function calling
return FunctionCallStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
)
else:
# Use ReAct strategy for models without function calling
return ReActStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)

View File

@ -1,9 +1,11 @@
from __future__ import annotations
import contextvars
import logging
import threading
import uuid
from collections.abc import Generator, Mapping
from typing import Any, Literal, Union, overload
from typing import TYPE_CHECKING, Any, Literal, Union, overload
from flask import Flask, current_app
from pydantic import ValidationError
@ -13,6 +15,9 @@ from sqlalchemy.orm import Session, sessionmaker
import contexts
from configs import dify_config
from constants import UUID_NIL
if TYPE_CHECKING:
from controllers.console.app.workflow import LoopNodeRunPayload
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
from core.app.apps.advanced_chat.app_runner import AdvancedChatAppRunner
@ -24,13 +29,11 @@ from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom
from core.app.entities.task_entities import ChatbotAppBlockingResponse, ChatbotAppStreamResponse
from core.app.layers.sandbox_layer import SandboxLayer
from core.helper.trace_id_helper import extract_external_trace_id_from_args
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.utils.get_thread_messages_length import get_thread_messages_length
from core.repositories import DifyCoreRepositoryFactory
from core.sandbox import Sandbox, SandboxManager
from core.workflow.repositories.draft_variable_repository import (
DraftVariableSaverFactory,
)
@ -42,9 +45,7 @@ from factories import file_factory
from libs.flask_utils import preserve_flask_contexts
from models import Account, App, Conversation, EndUser, Message, Workflow, WorkflowNodeExecutionTriggeredFrom
from models.enums import WorkflowRunTriggeredFrom
from models.workflow_features import WorkflowFeatures
from services.conversation_service import ConversationService
from services.sandbox.sandbox_provider_service import SandboxProviderService
from services.workflow_draft_variable_service import (
DraftVarLoader,
WorkflowDraftVariableService,
@ -308,7 +309,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping,
args: LoopNodeRunPayload,
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
"""
@ -324,7 +325,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
if args.inputs is None:
raise ValueError("inputs is required")
# convert to app config
@ -342,7 +343,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_loop_run=AdvancedChatAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
single_loop_run=AdvancedChatAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args.inputs),
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
@ -516,31 +517,6 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
if workflow is None:
raise ValueError("Workflow not found")
sandbox: Sandbox | None = None
graph_engine_layers: tuple = ()
if workflow.get_feature(WorkflowFeatures.SANDBOX).enabled:
sandbox_provider = SandboxProviderService.get_sandbox_provider(
application_generate_entity.app_config.tenant_id
)
if workflow.version == Workflow.VERSION_DRAFT:
sandbox = SandboxManager.create_draft(
tenant_id=application_generate_entity.app_config.tenant_id,
app_id=application_generate_entity.app_config.app_id,
user_id=application_generate_entity.user_id,
sandbox_provider=sandbox_provider,
)
else:
if application_generate_entity.workflow_run_id is None:
raise ValueError("workflow_run_id is required when sandbox is enabled")
sandbox = SandboxManager.create(
tenant_id=application_generate_entity.app_config.tenant_id,
app_id=application_generate_entity.app_config.app_id,
user_id=application_generate_entity.user_id,
workflow_execution_id=application_generate_entity.workflow_run_id,
sandbox_provider=sandbox_provider,
)
graph_engine_layers = (SandboxLayer(sandbox=sandbox),)
# Determine system_user_id based on invocation source
is_external_api_call = application_generate_entity.invoke_from in {
InvokeFrom.WEB_APP,
@ -571,8 +547,6 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
app=app,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
graph_engine_layers=graph_engine_layers,
sandbox=sandbox,
)
try:

View File

@ -24,7 +24,6 @@ from core.app.layers.conversation_variable_persist_layer import ConversationVari
from core.db.session_factory import session_factory
from core.moderation.base import ModerationError
from core.moderation.input_moderation import InputModeration
from core.sandbox import Sandbox
from core.variables.variables import Variable
from core.workflow.enums import WorkflowType
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
@ -67,7 +66,6 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
sandbox: Sandbox | None = None,
):
super().__init__(
queue_manager=queue_manager,
@ -84,7 +82,6 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
self._app = app
self._workflow_execution_repository = workflow_execution_repository
self._workflow_node_execution_repository = workflow_node_execution_repository
self._sandbox = sandbox
@trace_span(WorkflowAppRunnerHandler)
def run(self):
@ -159,10 +156,6 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
# init graph
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.time())
if self._sandbox:
graph_runtime_state.set_sandbox(self._sandbox)
graph = self._init_graph(
graph_config=self._workflow.graph_dict,
graph_runtime_state=graph_runtime_state,

View File

@ -82,7 +82,7 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
@ -110,7 +110,7 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
@ -120,6 +120,6 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@ -4,7 +4,6 @@ import re
import time
from collections.abc import Callable, Generator, Mapping
from contextlib import contextmanager
from dataclasses import dataclass, field
from threading import Thread
from typing import Any, Union
@ -20,7 +19,6 @@ from core.app.entities.app_invoke_entities import (
InvokeFrom,
)
from core.app.entities.queue_entities import (
ChunkType,
MessageQueueMessage,
QueueAdvancedChatMessageEndEvent,
QueueAgentLogEvent,
@ -72,131 +70,13 @@ from core.workflow.runtime import GraphRuntimeState
from core.workflow.system_variable import SystemVariable
from extensions.ext_database import db
from libs.datetime_utils import naive_utc_now
from models import Account, Conversation, EndUser, LLMGenerationDetail, Message, MessageFile
from models import Account, Conversation, EndUser, Message, MessageFile
from models.enums import CreatorUserRole
from models.workflow import Workflow
logger = logging.getLogger(__name__)
@dataclass
class StreamEventBuffer:
"""
Buffer for recording stream events in order to reconstruct the generation sequence.
Records the exact order of text chunks, thoughts, and tool calls as they stream.
"""
# Accumulated reasoning content (each thought block is a separate element)
reasoning_content: list[str] = field(default_factory=list)
# Current reasoning buffer (accumulates until we see a different event type)
_current_reasoning: str = ""
# Tool calls with their details
tool_calls: list[dict] = field(default_factory=list)
# Tool call ID to index mapping for updating results
_tool_call_id_map: dict[str, int] = field(default_factory=dict)
# Sequence of events in stream order
sequence: list[dict] = field(default_factory=list)
# Current position in answer text
_content_position: int = 0
# Track last event type to detect transitions
_last_event_type: str | None = None
def _flush_current_reasoning(self) -> None:
"""Flush accumulated reasoning to the list and add to sequence."""
if self._current_reasoning.strip():
self.reasoning_content.append(self._current_reasoning.strip())
self.sequence.append({"type": "reasoning", "index": len(self.reasoning_content) - 1})
self._current_reasoning = ""
def record_text_chunk(self, text: str) -> None:
"""Record a text chunk event."""
if not text:
return
# Flush any pending reasoning first
if self._last_event_type == "thought":
self._flush_current_reasoning()
text_len = len(text)
start_pos = self._content_position
# If last event was also content, extend it; otherwise create new
if self.sequence and self.sequence[-1].get("type") == "content":
self.sequence[-1]["end"] = start_pos + text_len
else:
self.sequence.append({"type": "content", "start": start_pos, "end": start_pos + text_len})
self._content_position += text_len
self._last_event_type = "content"
def record_thought_chunk(self, text: str) -> None:
"""Record a thought/reasoning chunk event."""
if not text:
return
# Accumulate thought content
self._current_reasoning += text
self._last_event_type = "thought"
def record_tool_call(
self,
tool_call_id: str,
tool_name: str,
tool_arguments: str,
tool_icon: str | dict | None = None,
tool_icon_dark: str | dict | None = None,
) -> None:
"""Record a tool call event."""
if not tool_call_id:
return
# Flush any pending reasoning first
if self._last_event_type == "thought":
self._flush_current_reasoning()
# Check if this tool call already exists (we might get multiple chunks)
if tool_call_id in self._tool_call_id_map:
idx = self._tool_call_id_map[tool_call_id]
# Update arguments if provided
if tool_arguments:
self.tool_calls[idx]["arguments"] = tool_arguments
else:
# New tool call
tool_call = {
"id": tool_call_id or "",
"name": tool_name or "",
"arguments": tool_arguments or "",
"result": "",
"elapsed_time": None,
"icon": tool_icon,
"icon_dark": tool_icon_dark,
}
self.tool_calls.append(tool_call)
idx = len(self.tool_calls) - 1
self._tool_call_id_map[tool_call_id] = idx
self.sequence.append({"type": "tool_call", "index": idx})
self._last_event_type = "tool_call"
def record_tool_result(self, tool_call_id: str, result: str, tool_elapsed_time: float | None = None) -> None:
"""Record a tool result event (update existing tool call)."""
if not tool_call_id:
return
if tool_call_id in self._tool_call_id_map:
idx = self._tool_call_id_map[tool_call_id]
self.tool_calls[idx]["result"] = result
self.tool_calls[idx]["elapsed_time"] = tool_elapsed_time
def finalize(self) -> None:
"""Finalize the buffer, flushing any pending data."""
if self._last_event_type == "thought":
self._flush_current_reasoning()
def has_data(self) -> bool:
"""Check if there's any meaningful data recorded."""
return bool(self.reasoning_content or self.tool_calls or self.sequence)
class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
"""
AdvancedChatAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
@ -264,8 +144,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
self._workflow_run_id: str = ""
self._draft_var_saver_factory = draft_var_saver_factory
self._graph_runtime_state: GraphRuntimeState | None = None
# Stream event buffer for recording generation sequence
self._stream_buffer = StreamEventBuffer()
self._seed_graph_runtime_state_from_queue_manager()
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
@ -505,7 +383,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle text chunk events and record to stream buffer for sequence reconstruction."""
"""Handle text chunk events."""
delta_text = event.text
if delta_text is None:
return
@ -527,53 +405,9 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
tool_call = event.tool_call
tool_result = event.tool_result
tool_payload = tool_call or tool_result
tool_call_id = tool_payload.id if tool_payload and tool_payload.id else ""
tool_name = tool_payload.name if tool_payload and tool_payload.name else ""
tool_arguments = tool_call.arguments if tool_call and tool_call.arguments else ""
tool_files = tool_result.files if tool_result else []
tool_elapsed_time = tool_result.elapsed_time if tool_result else None
tool_icon = tool_payload.icon if tool_payload else None
tool_icon_dark = tool_payload.icon_dark if tool_payload else None
# Record stream event based on chunk type
chunk_type = event.chunk_type or ChunkType.TEXT
match chunk_type:
case ChunkType.TEXT:
self._stream_buffer.record_text_chunk(delta_text)
self._task_state.answer += delta_text
case ChunkType.THOUGHT:
# Reasoning should not be part of final answer text
self._stream_buffer.record_thought_chunk(delta_text)
case ChunkType.TOOL_CALL:
self._stream_buffer.record_tool_call(
tool_call_id=tool_call_id,
tool_name=tool_name,
tool_arguments=tool_arguments,
tool_icon=tool_icon,
tool_icon_dark=tool_icon_dark,
)
case ChunkType.TOOL_RESULT:
self._stream_buffer.record_tool_result(
tool_call_id=tool_call_id,
result=delta_text,
tool_elapsed_time=tool_elapsed_time,
)
case _:
pass
self._task_state.answer += delta_text
yield self._message_cycle_manager.message_to_stream_response(
answer=delta_text,
message_id=self._message_id,
from_variable_selector=event.from_variable_selector,
chunk_type=event.chunk_type.value if event.chunk_type else None,
tool_call_id=tool_call_id or None,
tool_name=tool_name or None,
tool_arguments=tool_arguments or None,
tool_files=tool_files,
tool_elapsed_time=tool_elapsed_time,
tool_icon=tool_icon,
tool_icon_dark=tool_icon_dark,
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
)
def _handle_iteration_start_event(
@ -941,7 +775,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
# If there are assistant files, remove markdown image links from answer
answer_text = self._task_state.answer
answer_text = self._strip_think_blocks(answer_text)
if self._recorded_files:
# Remove markdown image links since we're storing files separately
answer_text = re.sub(r"!\[.*?\]\(.*?\)", "", answer_text).strip()
@ -993,54 +826,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
]
session.add_all(message_files)
# Save generation detail (reasoning/tool calls/sequence) from stream buffer
self._save_generation_detail(session=session, message=message)
@staticmethod
def _strip_think_blocks(text: str) -> str:
"""Remove <think>...</think> blocks (including their content) from text."""
if not text or "<think" not in text.lower():
return text
clean_text = re.sub(r"<think[^>]*>.*?</think>", "", text, flags=re.IGNORECASE | re.DOTALL)
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
return clean_text
def _save_generation_detail(self, *, session: Session, message: Message) -> None:
"""
Save LLM generation detail for Chatflow using stream event buffer.
The buffer records the exact order of events as they streamed,
allowing accurate reconstruction of the generation sequence.
"""
# Finalize the stream buffer to flush any pending data
self._stream_buffer.finalize()
# Only save if there's meaningful data
if not self._stream_buffer.has_data():
return
reasoning_content = self._stream_buffer.reasoning_content
tool_calls = self._stream_buffer.tool_calls
sequence = self._stream_buffer.sequence
# Check if generation detail already exists for this message
existing = session.query(LLMGenerationDetail).filter_by(message_id=message.id).first()
if existing:
existing.reasoning_content = json.dumps(reasoning_content) if reasoning_content else None
existing.tool_calls = json.dumps(tool_calls) if tool_calls else None
existing.sequence = json.dumps(sequence) if sequence else None
else:
generation_detail = LLMGenerationDetail(
tenant_id=self._application_generate_entity.app_config.tenant_id,
app_id=self._application_generate_entity.app_config.app_id,
message_id=message.id,
reasoning_content=json.dumps(reasoning_content) if reasoning_content else None,
tool_calls=json.dumps(tool_calls) if tool_calls else None,
sequence=json.dumps(sequence) if sequence else None,
)
session.add(generation_detail)
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
"""Bootstrap the cached runtime state from the queue manager when present."""
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state

View File

@ -3,8 +3,10 @@ from typing import cast
from sqlalchemy import select
from core.agent.agent_app_runner import AgentAppRunner
from core.agent.cot_chat_agent_runner import CotChatAgentRunner
from core.agent.cot_completion_agent_runner import CotCompletionAgentRunner
from core.agent.entities import AgentEntity
from core.agent.fc_agent_runner import FunctionCallAgentRunner
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.base_app_runner import AppRunner
@ -12,7 +14,8 @@ from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.base import ModerationError
from extensions.ext_database import db
@ -191,7 +194,22 @@ class AgentChatAppRunner(AppRunner):
raise ValueError("Message not found")
db.session.close()
runner = AgentAppRunner(
runner_cls: type[FunctionCallAgentRunner] | type[CotChatAgentRunner] | type[CotCompletionAgentRunner]
# start agent runner
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
# check LLM mode
if model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT:
runner_cls = CotChatAgentRunner
elif model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.COMPLETION:
runner_cls = CotCompletionAgentRunner
else:
raise ValueError(f"Invalid LLM mode: {model_schema.model_properties.get(ModelPropertyKey.MODE)}")
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
runner_cls = FunctionCallAgentRunner
else:
raise ValueError(f"Invalid agent strategy: {agent_entity.strategy}")
runner = runner_cls(
tenant_id=app_config.tenant_id,
application_generate_entity=application_generate_entity,
conversation=conversation_result,

View File

@ -81,7 +81,7 @@ class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
@ -109,7 +109,7 @@ class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
@ -117,6 +117,6 @@ class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@ -81,7 +81,7 @@ class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
@ -109,7 +109,7 @@ class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
@ -117,6 +117,6 @@ class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@ -70,8 +70,6 @@ class _NodeSnapshot:
"""Empty string means the node is not executing inside an iteration."""
loop_id: str = ""
"""Empty string means the node is not executing inside a loop."""
parent_node_id: str = ""
"""Empty string means the node is not an nested node (extractor node)."""
class WorkflowResponseConverter:
@ -133,7 +131,6 @@ class WorkflowResponseConverter:
start_at=event.start_at,
iteration_id=event.in_iteration_id or "",
loop_id=event.in_loop_id or "",
parent_node_id=event.in_parent_node_id or "",
)
node_execution_id = NodeExecutionId(event.node_execution_id)
self._node_snapshots[node_execution_id] = snapshot
@ -290,7 +287,6 @@ class WorkflowResponseConverter:
created_at=int(snapshot.start_at.timestamp()),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
parent_node_id=event.in_parent_node_id,
agent_strategy=event.agent_strategy,
),
)
@ -377,7 +373,6 @@ class WorkflowResponseConverter:
files=self.fetch_files_from_node_outputs(event.outputs or {}),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
parent_node_id=event.in_parent_node_id,
),
)
@ -427,7 +422,6 @@ class WorkflowResponseConverter:
files=self.fetch_files_from_node_outputs(event.outputs or {}),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
parent_node_id=event.in_parent_node_id,
retry_index=event.retry_index,
),
)
@ -677,7 +671,7 @@ class WorkflowResponseConverter:
task_id=task_id,
data=AgentLogStreamResponse.Data(
node_execution_id=event.node_execution_id,
message_id=event.id,
id=event.id,
parent_id=event.parent_id,
label=event.label,
error=event.error,

View File

@ -79,7 +79,7 @@ class CompletionAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
@ -106,7 +106,7 @@ class CompletionAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
if not isinstance(metadata, dict):
metadata = {}
@ -116,6 +116,6 @@ class CompletionAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@ -60,7 +60,7 @@ class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(cast(dict, data))
else:
response_chunk.update(sub_stream_response.model_dump(exclude_none=True))
response_chunk.update(sub_stream_response.model_dump())
yield response_chunk
@classmethod
@ -91,5 +91,5 @@ class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(cast(dict, sub_stream_response.to_ignore_detail_dict()))
else:
response_chunk.update(sub_stream_response.model_dump(exclude_none=True))
response_chunk.update(sub_stream_response.model_dump())
yield response_chunk

View File

@ -9,13 +9,13 @@ from core.app.entities.app_invoke_entities import (
InvokeFrom,
RagPipelineGenerateEntity,
)
from core.app.workflow.node_factory import DifyNodeFactory
from core.variables.variables import RAGPipelineVariable, RAGPipelineVariableInput
from core.workflow.entities.graph_init_params import GraphInitParams
from core.workflow.enums import WorkflowType
from core.workflow.graph import Graph
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
from core.workflow.graph_events import GraphEngineEvent, GraphRunFailedEvent
from core.workflow.nodes.node_factory import DifyNodeFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.runtime import GraphRuntimeState, VariablePool

View File

@ -1,9 +1,11 @@
from __future__ import annotations
import contextvars
import logging
import threading
import uuid
from collections.abc import Generator, Mapping, Sequence
from typing import Any, Literal, Union, overload
from typing import TYPE_CHECKING, Any, Literal, Union, overload
from flask import Flask, current_app
from pydantic import ValidationError
@ -23,13 +25,11 @@ from core.app.apps.workflow.generate_response_converter import WorkflowAppGenera
from core.app.apps.workflow.generate_task_pipeline import WorkflowAppGenerateTaskPipeline
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
from core.app.layers.sandbox_layer import SandboxLayer
from core.db.session_factory import session_factory
from core.helper.trace_id_helper import extract_external_trace_id_from_args
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from core.repositories import DifyCoreRepositoryFactory
from core.sandbox import Sandbox, SandboxManager
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
@ -40,10 +40,11 @@ from factories import file_factory
from libs.flask_utils import preserve_flask_contexts
from models import Account, App, EndUser, Workflow, WorkflowNodeExecutionTriggeredFrom
from models.enums import WorkflowRunTriggeredFrom
from models.workflow_features import WorkflowFeatures
from services.sandbox.sandbox_provider_service import SandboxProviderService
from services.workflow_draft_variable_service import DraftVarLoader, WorkflowDraftVariableService
if TYPE_CHECKING:
from controllers.console.app.workflow import LoopNodeRunPayload
SKIP_PREPARE_USER_INPUTS_KEY = "_skip_prepare_user_inputs"
logger = logging.getLogger(__name__)
@ -385,7 +386,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping[str, Any],
args: LoopNodeRunPayload,
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
"""
@ -401,7 +402,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
if args.inputs is None:
raise ValueError("inputs is required")
# convert to app config
@ -417,7 +418,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_loop_run=WorkflowAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
single_loop_run=WorkflowAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args.inputs or {}),
workflow_execution_id=str(uuid.uuid4()),
)
contexts.plugin_tool_providers.set({})
@ -492,31 +493,6 @@ class WorkflowAppGenerator(BaseAppGenerator):
if workflow is None:
raise ValueError("Workflow not found")
sandbox: Sandbox | None = None
if workflow.get_feature(WorkflowFeatures.SANDBOX).enabled:
sandbox_provider = SandboxProviderService.get_sandbox_provider(
application_generate_entity.app_config.tenant_id
)
if workflow.version == Workflow.VERSION_DRAFT:
sandbox = SandboxManager.create_draft(
tenant_id=application_generate_entity.app_config.tenant_id,
app_id=application_generate_entity.app_config.app_id,
user_id=application_generate_entity.user_id,
sandbox_provider=sandbox_provider,
)
else:
sandbox = SandboxManager.create(
tenant_id=application_generate_entity.app_config.tenant_id,
app_id=application_generate_entity.app_config.app_id,
user_id=application_generate_entity.user_id,
workflow_execution_id=application_generate_entity.workflow_execution_id,
sandbox_provider=sandbox_provider,
)
graph_engine_layers = (
*graph_engine_layers,
SandboxLayer(sandbox=sandbox),
)
# Determine system_user_id based on invocation source
is_external_api_call = application_generate_entity.invoke_from in {
InvokeFrom.WEB_APP,
@ -541,7 +517,6 @@ class WorkflowAppGenerator(BaseAppGenerator):
workflow_node_execution_repository=workflow_node_execution_repository,
root_node_id=root_node_id,
graph_engine_layers=graph_engine_layers,
sandbox=sandbox,
)
try:

View File

@ -7,7 +7,6 @@ from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.workflow.app_config_manager import WorkflowAppConfig
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
from core.sandbox import Sandbox
from core.workflow.enums import WorkflowType
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
from core.workflow.graph_engine.layers.base import GraphEngineLayer
@ -43,7 +42,6 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
sandbox: Sandbox | None = None,
):
super().__init__(
queue_manager=queue_manager,
@ -57,7 +55,6 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
self._root_node_id = root_node_id
self._workflow_execution_repository = workflow_execution_repository
self._workflow_node_execution_repository = workflow_node_execution_repository
self._sandbox = sandbox
@trace_span(WorkflowAppRunnerHandler)
def run(self):
@ -102,9 +99,6 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
if self._sandbox:
graph_runtime_state.set_sandbox(self._sandbox)
# init graph
graph = self._init_graph(
graph_config=self._workflow.graph_dict,

View File

@ -60,7 +60,7 @@ class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
@ -91,5 +91,5 @@ class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@ -13,7 +13,6 @@ from core.app.apps.common.workflow_response_converter import WorkflowResponseCon
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
from core.app.entities.queue_entities import (
AppQueueEvent,
ChunkType,
MessageQueueMessage,
QueueAgentLogEvent,
QueueErrorEvent,
@ -484,33 +483,11 @@ class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
if delta_text is None:
return
tool_call = event.tool_call
tool_result = event.tool_result
tool_payload = tool_call or tool_result
tool_call_id = tool_payload.id if tool_payload and tool_payload.id else None
tool_name = tool_payload.name if tool_payload and tool_payload.name else None
tool_arguments = tool_call.arguments if tool_call else None
tool_elapsed_time = tool_result.elapsed_time if tool_result else None
tool_files = tool_result.files if tool_result else []
tool_icon = tool_payload.icon if tool_payload else None
tool_icon_dark = tool_payload.icon_dark if tool_payload else None
# only publish tts message at text chunk streaming
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
yield self._text_chunk_to_stream_response(
text=delta_text,
from_variable_selector=event.from_variable_selector,
chunk_type=event.chunk_type,
tool_call_id=tool_call_id,
tool_name=tool_name,
tool_arguments=tool_arguments,
tool_files=tool_files,
tool_elapsed_time=tool_elapsed_time,
tool_icon=tool_icon,
tool_icon_dark=tool_icon_dark,
)
yield self._text_chunk_to_stream_response(delta_text, from_variable_selector=event.from_variable_selector)
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle agent log events."""
@ -673,61 +650,16 @@ class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
session.add(workflow_app_log)
def _text_chunk_to_stream_response(
self,
text: str,
from_variable_selector: list[str] | None = None,
chunk_type: ChunkType | None = None,
tool_call_id: str | None = None,
tool_name: str | None = None,
tool_arguments: str | None = None,
tool_files: list[str] | None = None,
tool_error: str | None = None,
tool_elapsed_time: float | None = None,
tool_icon: str | dict | None = None,
tool_icon_dark: str | dict | None = None,
self, text: str, from_variable_selector: list[str] | None = None
) -> TextChunkStreamResponse:
"""
Handle completed event.
:param text: text
:return:
"""
from core.app.entities.task_entities import ChunkType as ResponseChunkType
response_chunk_type = ResponseChunkType(chunk_type.value) if chunk_type else ResponseChunkType.TEXT
data = TextChunkStreamResponse.Data(
text=text,
from_variable_selector=from_variable_selector,
chunk_type=response_chunk_type,
)
if response_chunk_type == ResponseChunkType.TOOL_CALL:
data = data.model_copy(
update={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_arguments": tool_arguments,
"tool_icon": tool_icon,
"tool_icon_dark": tool_icon_dark,
}
)
elif response_chunk_type == ResponseChunkType.TOOL_RESULT:
data = data.model_copy(
update={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_arguments": tool_arguments,
"tool_files": tool_files,
"tool_error": tool_error,
"tool_elapsed_time": tool_elapsed_time,
"tool_icon": tool_icon,
"tool_icon_dark": tool_icon_dark,
}
)
response = TextChunkStreamResponse(
task_id=self._application_generate_entity.task_id,
data=data,
data=TextChunkStreamResponse.Data(text=text, from_variable_selector=from_variable_selector),
)
return response

View File

@ -25,6 +25,7 @@ from core.app.entities.queue_entities import (
QueueWorkflowStartedEvent,
QueueWorkflowSucceededEvent,
)
from core.app.workflow.node_factory import DifyNodeFactory
from core.workflow.entities import GraphInitParams
from core.workflow.graph import Graph
from core.workflow.graph_engine.layers.base import GraphEngineLayer
@ -53,7 +54,6 @@ from core.workflow.graph_events import (
)
from core.workflow.graph_events.graph import GraphRunAbortedEvent
from core.workflow.nodes import NodeType
from core.workflow.nodes.node_factory import DifyNodeFactory
from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
from core.workflow.runtime import GraphRuntimeState, VariablePool
from core.workflow.system_variable import SystemVariable
@ -166,18 +166,22 @@ class WorkflowBasedAppRunner:
# Determine which type of single node execution and get graph/variable_pool
if single_iteration_run:
graph, variable_pool = self._get_graph_and_variable_pool_of_single_iteration(
graph, variable_pool = self._get_graph_and_variable_pool_for_single_node_run(
workflow=workflow,
node_id=single_iteration_run.node_id,
user_inputs=dict(single_iteration_run.inputs),
graph_runtime_state=graph_runtime_state,
node_type_filter_key="iteration_id",
node_type_label="iteration",
)
elif single_loop_run:
graph, variable_pool = self._get_graph_and_variable_pool_of_single_loop(
graph, variable_pool = self._get_graph_and_variable_pool_for_single_node_run(
workflow=workflow,
node_id=single_loop_run.node_id,
user_inputs=dict(single_loop_run.inputs),
graph_runtime_state=graph_runtime_state,
node_type_filter_key="loop_id",
node_type_label="loop",
)
else:
raise ValueError("Neither single_iteration_run nor single_loop_run is specified")
@ -314,44 +318,6 @@ class WorkflowBasedAppRunner:
return graph, variable_pool
def _get_graph_and_variable_pool_of_single_iteration(
self,
workflow: Workflow,
node_id: str,
user_inputs: dict[str, Any],
graph_runtime_state: GraphRuntimeState,
) -> tuple[Graph, VariablePool]:
"""
Get variable pool of single iteration
"""
return self._get_graph_and_variable_pool_for_single_node_run(
workflow=workflow,
node_id=node_id,
user_inputs=user_inputs,
graph_runtime_state=graph_runtime_state,
node_type_filter_key="iteration_id",
node_type_label="iteration",
)
def _get_graph_and_variable_pool_of_single_loop(
self,
workflow: Workflow,
node_id: str,
user_inputs: dict[str, Any],
graph_runtime_state: GraphRuntimeState,
) -> tuple[Graph, VariablePool]:
"""
Get variable pool of single loop
"""
return self._get_graph_and_variable_pool_for_single_node_run(
workflow=workflow,
node_id=node_id,
user_inputs=user_inputs,
graph_runtime_state=graph_runtime_state,
node_type_filter_key="loop_id",
node_type_label="loop",
)
def _handle_event(self, workflow_entry: WorkflowEntry, event: GraphEngineEvent):
"""
Handle event
@ -385,7 +351,6 @@ class WorkflowBasedAppRunner:
start_at=event.start_at,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_parent_node_id=event.in_parent_node_id,
inputs=inputs,
process_data=process_data,
outputs=outputs,
@ -406,7 +371,6 @@ class WorkflowBasedAppRunner:
start_at=event.start_at,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_parent_node_id=event.in_parent_node_id,
agent_strategy=event.agent_strategy,
provider_type=event.provider_type,
provider_id=event.provider_id,
@ -430,7 +394,6 @@ class WorkflowBasedAppRunner:
execution_metadata=execution_metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_parent_node_id=event.in_parent_node_id,
)
)
elif isinstance(event, NodeRunFailedEvent):
@ -447,7 +410,6 @@ class WorkflowBasedAppRunner:
execution_metadata=event.node_run_result.metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_parent_node_id=event.in_parent_node_id,
)
)
elif isinstance(event, NodeRunExceptionEvent):
@ -464,25 +426,15 @@ class WorkflowBasedAppRunner:
execution_metadata=event.node_run_result.metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_parent_node_id=event.in_parent_node_id,
)
)
elif isinstance(event, NodeRunStreamChunkEvent):
from core.app.entities.queue_entities import ChunkType as QueueChunkType
if event.is_final and not event.chunk:
return
self._publish_event(
QueueTextChunkEvent(
text=event.chunk,
from_variable_selector=list(event.selector),
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
chunk_type=QueueChunkType(event.chunk_type.value),
tool_call=event.tool_call,
tool_result=event.tool_result,
in_parent_node_id=event.in_parent_node_id,
)
)
elif isinstance(event, NodeRunRetrieverResourceEvent):
@ -491,7 +443,6 @@ class WorkflowBasedAppRunner:
retriever_resources=event.retriever_resources,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
in_parent_node_id=event.in_parent_node_id,
)
)
elif isinstance(event, NodeRunAgentLogEvent):

View File

@ -1,294 +0,0 @@
from __future__ import annotations
from collections import defaultdict
from collections.abc import Generator
from enum import StrEnum
from pydantic import BaseModel, Field
class AssetNodeType(StrEnum):
FILE = "file"
FOLDER = "folder"
class AppAssetNode(BaseModel):
id: str = Field(description="Unique identifier for the node")
node_type: AssetNodeType = Field(description="Type of node: file or folder")
name: str = Field(description="Name of the file or folder")
parent_id: str | None = Field(default=None, description="Parent folder ID, None for root level")
order: int = Field(default=0, description="Sort order within parent folder, lower values first")
extension: str = Field(default="", description="File extension without dot, empty for folders")
size: int = Field(default=0, description="File size in bytes, 0 for folders")
checksum: str = Field(default="", description="SHA-256 checksum of file content, empty for folders")
@classmethod
def create_folder(cls, node_id: str, name: str, parent_id: str | None = None) -> AppAssetNode:
return cls(id=node_id, node_type=AssetNodeType.FOLDER, name=name, parent_id=parent_id)
@classmethod
def create_file(
cls, node_id: str, name: str, parent_id: str | None = None, size: int = 0, checksum: str = ""
) -> AppAssetNode:
return cls(
id=node_id,
node_type=AssetNodeType.FILE,
name=name,
parent_id=parent_id,
extension=name.rsplit(".", 1)[-1] if "." in name else "",
size=size,
checksum=checksum,
)
class AppAssetNodeView(BaseModel):
id: str = Field(description="Unique identifier for the node")
node_type: str = Field(description="Type of node: 'file' or 'folder'")
name: str = Field(description="Name of the file or folder")
path: str = Field(description="Full path from root, e.g. '/folder/file.txt'")
extension: str = Field(default="", description="File extension without dot")
size: int = Field(default=0, description="File size in bytes")
checksum: str = Field(default="", description="SHA-256 checksum of file content")
children: list[AppAssetNodeView] = Field(default_factory=list, description="Child nodes for folders")
class TreeNodeNotFoundError(Exception):
"""Tree internal: node not found"""
pass
class TreeParentNotFoundError(Exception):
"""Tree internal: parent folder not found"""
pass
class TreePathConflictError(Exception):
"""Tree internal: path already exists"""
pass
class AppAssetFileTree(BaseModel):
"""
File tree structure for app assets using adjacency list pattern.
Design:
- Storage: Flat list with parent_id references (adjacency list)
- Path: Computed dynamically via get_path(), not stored
- Order: Integer field for user-defined sorting within each folder
- API response: transform() builds nested tree with computed paths
Why adjacency list over nested tree or materialized path:
- Simpler CRUD: move/rename only updates one node's parent_id
- No path cascade: renaming parent doesn't require updating all descendants
- JSON-friendly: flat list serializes cleanly to database JSON column
- Trade-off: path lookup is O(depth), acceptable for typical file trees
"""
nodes: list[AppAssetNode] = Field(default_factory=list, description="Flat list of all nodes in the tree")
def get(self, node_id: str) -> AppAssetNode | None:
return next((n for n in self.nodes if n.id == node_id), None)
def get_children(self, parent_id: str | None) -> list[AppAssetNode]:
return [n for n in self.nodes if n.parent_id == parent_id]
def has_child_named(self, parent_id: str | None, name: str) -> bool:
return any(n.name == name and n.parent_id == parent_id for n in self.nodes)
def get_path(self, node_id: str) -> str:
node = self.get(node_id)
if not node:
raise TreeNodeNotFoundError(node_id)
parts: list[str] = []
current: AppAssetNode | None = node
while current:
parts.append(current.name)
current = self.get(current.parent_id) if current.parent_id else None
return "/".join(reversed(parts))
def relative_path(self, a: AppAssetNode, b: AppAssetNode) -> str:
"""
Calculate relative path from node a to node b for Markdown references.
Path is computed from a's parent directory (where the file resides).
Examples:
/foo/a.md -> /foo/b.md => ./b.md
/foo/a.md -> /foo/sub/b.md => ./sub/b.md
/foo/sub/a.md -> /foo/b.md => ../b.md
/foo/sub/deep/a.md -> /foo/b.md => ../../b.md
"""
def get_ancestor_ids(node_id: str | None) -> list[str]:
chain: list[str] = []
current_id = node_id
while current_id:
chain.append(current_id)
node = self.get(current_id)
current_id = node.parent_id if node else None
return chain
a_dir_ancestors = get_ancestor_ids(a.parent_id)
b_ancestors = [b.id] + get_ancestor_ids(b.parent_id)
a_dir_set = set(a_dir_ancestors)
lca_id: str | None = None
lca_index_in_b = -1
for idx, ancestor_id in enumerate(b_ancestors):
if ancestor_id in a_dir_set or (a.parent_id is None and b_ancestors[idx:] == []):
lca_id = ancestor_id
lca_index_in_b = idx
break
if a.parent_id is None:
steps_up = 0
lca_index_in_b = len(b_ancestors)
elif lca_id is None:
steps_up = len(a_dir_ancestors)
lca_index_in_b = len(b_ancestors)
else:
steps_up = 0
for ancestor_id in a_dir_ancestors:
if ancestor_id == lca_id:
break
steps_up += 1
path_down: list[str] = []
for i in range(lca_index_in_b - 1, -1, -1):
node = self.get(b_ancestors[i])
if node:
path_down.append(node.name)
if steps_up == 0:
return "./" + "/".join(path_down)
parts: list[str] = [".."] * steps_up + path_down
return "/".join(parts)
def get_descendant_ids(self, node_id: str) -> list[str]:
result: list[str] = []
stack = [node_id]
while stack:
current_id = stack.pop()
for child in self.nodes:
if child.parent_id == current_id:
result.append(child.id)
stack.append(child.id)
return result
def add(self, node: AppAssetNode) -> AppAssetNode:
if self.get(node.id):
raise TreePathConflictError(node.id)
if self.has_child_named(node.parent_id, node.name):
raise TreePathConflictError(node.name)
if node.parent_id:
parent = self.get(node.parent_id)
if not parent or parent.node_type != AssetNodeType.FOLDER:
raise TreeParentNotFoundError(node.parent_id)
siblings = self.get_children(node.parent_id)
node.order = max((s.order for s in siblings), default=-1) + 1
self.nodes.append(node)
return node
def update(self, node_id: str, size: int, checksum: str) -> AppAssetNode:
node = self.get(node_id)
if not node or node.node_type != AssetNodeType.FILE:
raise TreeNodeNotFoundError(node_id)
node.size = size
node.checksum = checksum
return node
def rename(self, node_id: str, new_name: str) -> AppAssetNode:
node = self.get(node_id)
if not node:
raise TreeNodeNotFoundError(node_id)
if node.name != new_name and self.has_child_named(node.parent_id, new_name):
raise TreePathConflictError(new_name)
node.name = new_name
if node.node_type == AssetNodeType.FILE:
node.extension = new_name.rsplit(".", 1)[-1] if "." in new_name else ""
return node
def move(self, node_id: str, new_parent_id: str | None) -> AppAssetNode:
node = self.get(node_id)
if not node:
raise TreeNodeNotFoundError(node_id)
if new_parent_id:
parent = self.get(new_parent_id)
if not parent or parent.node_type != AssetNodeType.FOLDER:
raise TreeParentNotFoundError(new_parent_id)
if self.has_child_named(new_parent_id, node.name):
raise TreePathConflictError(node.name)
node.parent_id = new_parent_id
siblings = self.get_children(new_parent_id)
node.order = max((s.order for s in siblings if s.id != node_id), default=-1) + 1
return node
def reorder(self, node_id: str, after_node_id: str | None) -> AppAssetNode:
node = self.get(node_id)
if not node:
raise TreeNodeNotFoundError(node_id)
siblings = sorted(self.get_children(node.parent_id), key=lambda x: x.order)
siblings = [s for s in siblings if s.id != node_id]
if after_node_id is None:
insert_idx = 0
else:
after_node = self.get(after_node_id)
if not after_node or after_node.parent_id != node.parent_id:
raise TreeNodeNotFoundError(after_node_id)
insert_idx = next((i for i, s in enumerate(siblings) if s.id == after_node_id), -1) + 1
siblings.insert(insert_idx, node)
for idx, sibling in enumerate(siblings):
sibling.order = idx
return node
def remove(self, node_id: str) -> list[str]:
node = self.get(node_id)
if not node:
raise TreeNodeNotFoundError(node_id)
ids_to_remove = [node_id] + self.get_descendant_ids(node_id)
self.nodes = [n for n in self.nodes if n.id not in ids_to_remove]
return ids_to_remove
def walk_files(self) -> Generator[AppAssetNode, None, None]:
return (n for n in self.nodes if n.node_type == AssetNodeType.FILE)
def transform(self) -> list[AppAssetNodeView]:
by_parent: dict[str | None, list[AppAssetNode]] = defaultdict(list)
for n in self.nodes:
by_parent[n.parent_id].append(n)
for children in by_parent.values():
children.sort(key=lambda x: x.order)
paths: dict[str, str] = {}
tree_views: dict[str, AppAssetNodeView] = {}
def build_view(node: AppAssetNode, parent_path: str) -> None:
path = f"{parent_path}/{node.name}"
paths[node.id] = path
child_views: list[AppAssetNodeView] = []
for child in by_parent.get(node.id, []):
build_view(child, path)
child_views.append(tree_views[child.id])
tree_views[node.id] = AppAssetNodeView(
id=node.id,
node_type=node.node_type.value,
name=node.name,
path=path,
extension=node.extension,
size=node.size,
checksum=node.checksum,
children=child_views,
)
for root_node in by_parent.get(None, []):
build_view(root_node, "")
return [tree_views[n.id] for n in by_parent.get(None, [])]

View File

@ -36,9 +36,6 @@ class InvokeFrom(StrEnum):
# this is used for plugin trigger and webhook trigger.
TRIGGER = "trigger"
# AGENT indicates that this invocation is from an agent.
AGENT = "agent"
# EXPLORE indicates that this invocation is from
# the workflow (or chatflow) explore page.
EXPLORE = "explore"

View File

@ -1,72 +0,0 @@
"""
LLM Generation Detail entities.
Defines the structure for storing and transmitting LLM generation details
including reasoning content, tool calls, and their sequence.
"""
from typing import Literal
from pydantic import BaseModel, Field
class ContentSegment(BaseModel):
"""Represents a content segment in the generation sequence."""
type: Literal["content"] = "content"
start: int = Field(..., description="Start position in the text")
end: int = Field(..., description="End position in the text")
class ReasoningSegment(BaseModel):
"""Represents a reasoning segment in the generation sequence."""
type: Literal["reasoning"] = "reasoning"
index: int = Field(..., description="Index into reasoning_content array")
class ToolCallSegment(BaseModel):
"""Represents a tool call segment in the generation sequence."""
type: Literal["tool_call"] = "tool_call"
index: int = Field(..., description="Index into tool_calls array")
SequenceSegment = ContentSegment | ReasoningSegment | ToolCallSegment
class ToolCallDetail(BaseModel):
"""Represents a tool call with its arguments and result."""
id: str = Field(default="", description="Unique identifier for the tool call")
name: str = Field(..., description="Name of the tool")
arguments: str = Field(default="", description="JSON string of tool arguments")
result: str = Field(default="", description="Result from the tool execution")
elapsed_time: float | None = Field(default=None, description="Elapsed time in seconds")
icon: str | dict | None = Field(default=None, description="Icon of the tool")
icon_dark: str | dict | None = Field(default=None, description="Dark theme icon of the tool")
class LLMGenerationDetailData(BaseModel):
"""
Domain model for LLM generation detail.
Contains the structured data for reasoning content, tool calls,
and their display sequence.
"""
reasoning_content: list[str] = Field(default_factory=list, description="List of reasoning segments")
tool_calls: list[ToolCallDetail] = Field(default_factory=list, description="List of tool call details")
sequence: list[SequenceSegment] = Field(default_factory=list, description="Display order of segments")
def is_empty(self) -> bool:
"""Check if there's any meaningful generation detail."""
return not self.reasoning_content and not self.tool_calls
def to_response_dict(self) -> dict:
"""Convert to dictionary for API response."""
return {
"reasoning_content": self.reasoning_content,
"tool_calls": [tc.model_dump() for tc in self.tool_calls],
"sequence": [seg.model_dump() for seg in self.sequence],
}

View File

@ -7,7 +7,7 @@ from pydantic import BaseModel, ConfigDict, Field
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
from core.workflow.entities import AgentNodeStrategyInit, ToolCall, ToolResult
from core.workflow.entities import AgentNodeStrategyInit
from core.workflow.enums import WorkflowNodeExecutionMetadataKey
from core.workflow.nodes import NodeType
@ -177,17 +177,6 @@ class QueueLoopCompletedEvent(AppQueueEvent):
error: str | None = None
class ChunkType(StrEnum):
"""Stream chunk type for LLM-related events."""
TEXT = "text" # Normal text streaming
TOOL_CALL = "tool_call" # Tool call arguments streaming
TOOL_RESULT = "tool_result" # Tool execution result
THOUGHT = "thought" # Agent thinking process (ReAct)
THOUGHT_START = "thought_start" # Agent thought start
THOUGHT_END = "thought_end" # Agent thought end
class QueueTextChunkEvent(AppQueueEvent):
"""
QueueTextChunkEvent entity
@ -201,18 +190,6 @@ class QueueTextChunkEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_parent_node_id: str | None = None
"""parent node id if this is an extractor node event"""
# Extended fields for Agent/Tool streaming
chunk_type: ChunkType = ChunkType.TEXT
"""type of the chunk"""
# Tool streaming payloads
tool_call: ToolCall | None = None
"""structured tool call info"""
tool_result: ToolResult | None = None
"""structured tool result info"""
class QueueAgentMessageEvent(AppQueueEvent):
@ -252,8 +229,6 @@ class QueueRetrieverResourcesEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_parent_node_id: str | None = None
"""parent node id if this is an extractor node event"""
class QueueAnnotationReplyEvent(AppQueueEvent):
@ -331,8 +306,6 @@ class QueueNodeStartedEvent(AppQueueEvent):
node_run_index: int = 1 # FIXME(-LAN-): may not used
in_iteration_id: str | None = None
in_loop_id: str | None = None
in_parent_node_id: str | None = None
"""parent node id if this is an extractor node event"""
start_at: datetime
agent_strategy: AgentNodeStrategyInit | None = None
@ -355,8 +328,6 @@ class QueueNodeSucceededEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_parent_node_id: str | None = None
"""parent node id if this is an extractor node event"""
start_at: datetime
inputs: Mapping[str, object] = Field(default_factory=dict)
@ -412,8 +383,6 @@ class QueueNodeExceptionEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_parent_node_id: str | None = None
"""parent node id if this is an extractor node event"""
start_at: datetime
inputs: Mapping[str, object] = Field(default_factory=dict)
@ -438,8 +407,6 @@ class QueueNodeFailedEvent(AppQueueEvent):
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
in_parent_node_id: str | None = None
"""parent node id if this is an extractor node event"""
start_at: datetime
inputs: Mapping[str, object] = Field(default_factory=dict)

View File

@ -113,38 +113,6 @@ class MessageStreamResponse(StreamResponse):
answer: str
from_variable_selector: list[str] | None = None
# Extended fields for Agent/Tool streaming (imported at runtime to avoid circular import)
chunk_type: str | None = None
"""type of the chunk: text, tool_call, tool_result, thought"""
# Tool call fields (when chunk_type == "tool_call")
tool_call_id: str | None = None
"""unique identifier for this tool call"""
tool_name: str | None = None
"""name of the tool being called"""
tool_arguments: str | None = None
"""accumulated tool arguments JSON"""
# Tool result fields (when chunk_type == "tool_result")
tool_files: list[str] | None = None
"""file IDs produced by tool"""
tool_error: str | None = None
"""error message if tool failed"""
tool_elapsed_time: float | None = None
"""elapsed time spent executing the tool"""
tool_icon: str | dict | None = None
"""icon of the tool"""
tool_icon_dark: str | dict | None = None
"""dark theme icon of the tool"""
def model_dump(self, *args, **kwargs) -> dict[str, object]:
kwargs.setdefault("exclude_none", True)
return super().model_dump(*args, **kwargs)
def model_dump_json(self, *args, **kwargs) -> str:
kwargs.setdefault("exclude_none", True)
return super().model_dump_json(*args, **kwargs)
class MessageAudioStreamResponse(StreamResponse):
"""
@ -294,7 +262,6 @@ class NodeStartStreamResponse(StreamResponse):
extras: dict[str, object] = Field(default_factory=dict)
iteration_id: str | None = None
loop_id: str | None = None
parent_node_id: str | None = None
agent_strategy: AgentNodeStrategyInit | None = None
event: StreamEvent = StreamEvent.NODE_STARTED
@ -318,7 +285,6 @@ class NodeStartStreamResponse(StreamResponse):
"extras": {},
"iteration_id": self.data.iteration_id,
"loop_id": self.data.loop_id,
"parent_node_id": self.data.parent_node_id,
},
}
@ -354,7 +320,6 @@ class NodeFinishStreamResponse(StreamResponse):
files: Sequence[Mapping[str, Any]] | None = []
iteration_id: str | None = None
loop_id: str | None = None
parent_node_id: str | None = None
event: StreamEvent = StreamEvent.NODE_FINISHED
workflow_run_id: str
@ -384,7 +349,6 @@ class NodeFinishStreamResponse(StreamResponse):
"files": [],
"iteration_id": self.data.iteration_id,
"loop_id": self.data.loop_id,
"parent_node_id": self.data.parent_node_id,
},
}
@ -420,7 +384,6 @@ class NodeRetryStreamResponse(StreamResponse):
files: Sequence[Mapping[str, Any]] | None = []
iteration_id: str | None = None
loop_id: str | None = None
parent_node_id: str | None = None
retry_index: int = 0
event: StreamEvent = StreamEvent.NODE_RETRY
@ -451,7 +414,6 @@ class NodeRetryStreamResponse(StreamResponse):
"files": [],
"iteration_id": self.data.iteration_id,
"loop_id": self.data.loop_id,
"parent_node_id": self.data.parent_node_id,
"retry_index": self.data.retry_index,
},
}
@ -620,17 +582,6 @@ class LoopNodeCompletedStreamResponse(StreamResponse):
data: Data
class ChunkType(StrEnum):
"""Stream chunk type for LLM-related events."""
TEXT = "text" # Normal text streaming
TOOL_CALL = "tool_call" # Tool call arguments streaming
TOOL_RESULT = "tool_result" # Tool execution result
THOUGHT = "thought" # Agent thinking process (ReAct)
THOUGHT_START = "thought_start" # Agent thought start
THOUGHT_END = "thought_end" # Agent thought end
class TextChunkStreamResponse(StreamResponse):
"""
TextChunkStreamResponse entity
@ -644,36 +595,6 @@ class TextChunkStreamResponse(StreamResponse):
text: str
from_variable_selector: list[str] | None = None
# Extended fields for Agent/Tool streaming
chunk_type: ChunkType = ChunkType.TEXT
"""type of the chunk"""
# Tool call fields (when chunk_type == TOOL_CALL)
tool_call_id: str | None = None
"""unique identifier for this tool call"""
tool_name: str | None = None
"""name of the tool being called"""
tool_arguments: str | None = None
"""accumulated tool arguments JSON"""
# Tool result fields (when chunk_type == TOOL_RESULT)
tool_files: list[str] | None = None
"""file IDs produced by tool"""
tool_error: str | None = None
"""error message if tool failed"""
# Tool elapsed time fields (when chunk_type == TOOL_RESULT)
tool_elapsed_time: float | None = None
"""elapsed time spent executing the tool"""
def model_dump(self, *args, **kwargs) -> dict[str, object]:
kwargs.setdefault("exclude_none", True)
return super().model_dump(*args, **kwargs)
def model_dump_json(self, *args, **kwargs) -> str:
kwargs.setdefault("exclude_none", True)
return super().model_dump_json(*args, **kwargs)
event: StreamEvent = StreamEvent.TEXT_CHUNK
data: Data
@ -822,7 +743,7 @@ class AgentLogStreamResponse(StreamResponse):
"""
node_execution_id: str
message_id: str
id: str
label: str
parent_id: str | None = None
error: str | None = None

View File

@ -1,22 +0,0 @@
import logging
from core.sandbox import Sandbox
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.graph_events.base import GraphEngineEvent
logger = logging.getLogger(__name__)
class SandboxLayer(GraphEngineLayer):
def __init__(self, sandbox: Sandbox) -> None:
super().__init__()
self._sandbox = sandbox
def on_graph_start(self) -> None:
pass
def on_event(self, event: GraphEngineEvent) -> None:
pass
def on_graph_end(self, error: Exception | None) -> None:
self._sandbox.release()

View File

@ -1,5 +1,4 @@
import logging
import re
import time
from collections.abc import Generator
from threading import Thread
@ -59,7 +58,7 @@ from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from events.message_event import message_was_created
from extensions.ext_database import db
from libs.datetime_utils import naive_utc_now
from models.model import AppMode, Conversation, LLMGenerationDetail, Message, MessageAgentThought
from models.model import AppMode, Conversation, Message, MessageAgentThought
logger = logging.getLogger(__name__)
@ -69,8 +68,6 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
EasyUIBasedGenerateTaskPipeline is a class that generate stream output and state management for Application.
"""
_THINK_PATTERN = re.compile(r"<think[^>]*>(.*?)</think>", re.IGNORECASE | re.DOTALL)
_task_state: EasyUITaskState
_application_generate_entity: Union[ChatAppGenerateEntity, CompletionAppGenerateEntity, AgentChatAppGenerateEntity]
@ -412,136 +409,11 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
)
)
# Save LLM generation detail if there's reasoning_content
self._save_generation_detail(session=session, message=message, llm_result=llm_result)
message_was_created.send(
message,
application_generate_entity=self._application_generate_entity,
)
def _save_generation_detail(self, *, session: Session, message: Message, llm_result: LLMResult) -> None:
"""
Save LLM generation detail for Completion/Chat/Agent-Chat applications.
For Agent-Chat, also merges MessageAgentThought records.
"""
import json
reasoning_list: list[str] = []
tool_calls_list: list[dict] = []
sequence: list[dict] = []
answer = message.answer or ""
# Check if this is Agent-Chat mode by looking for agent thoughts
agent_thoughts = (
session.query(MessageAgentThought)
.filter_by(message_id=message.id)
.order_by(MessageAgentThought.position.asc())
.all()
)
if agent_thoughts:
# Agent-Chat mode: merge MessageAgentThought records
content_pos = 0
cleaned_answer_parts: list[str] = []
for thought in agent_thoughts:
# Add thought/reasoning
if thought.thought:
reasoning_text = thought.thought
if "<think" in reasoning_text.lower():
clean_text, extracted_reasoning = self._split_reasoning_from_answer(reasoning_text)
if extracted_reasoning:
reasoning_text = extracted_reasoning
thought.thought = clean_text or extracted_reasoning
reasoning_list.append(reasoning_text)
sequence.append({"type": "reasoning", "index": len(reasoning_list) - 1})
# Add tool calls
if thought.tool:
tool_calls_list.append(
{
"name": thought.tool,
"arguments": thought.tool_input or "",
"result": thought.observation or "",
}
)
sequence.append({"type": "tool_call", "index": len(tool_calls_list) - 1})
# Add answer content if present
if thought.answer:
content_text = thought.answer
if "<think" in content_text.lower():
clean_answer, extracted_reasoning = self._split_reasoning_from_answer(content_text)
if extracted_reasoning:
reasoning_list.append(extracted_reasoning)
sequence.append({"type": "reasoning", "index": len(reasoning_list) - 1})
content_text = clean_answer
thought.answer = clean_answer or content_text
if content_text:
start = content_pos
end = content_pos + len(content_text)
sequence.append({"type": "content", "start": start, "end": end})
content_pos = end
cleaned_answer_parts.append(content_text)
if cleaned_answer_parts:
merged_answer = "".join(cleaned_answer_parts)
message.answer = merged_answer
llm_result.message.content = merged_answer
else:
# Completion/Chat mode: use reasoning_content from llm_result
reasoning_content = llm_result.reasoning_content
if not reasoning_content and answer:
# Extract reasoning from <think> blocks and clean the final answer
clean_answer, reasoning_content = self._split_reasoning_from_answer(answer)
if reasoning_content:
answer = clean_answer
llm_result.message.content = clean_answer
llm_result.reasoning_content = reasoning_content
message.answer = clean_answer
if reasoning_content:
reasoning_list = [reasoning_content]
# Content comes first, then reasoning
if answer:
sequence.append({"type": "content", "start": 0, "end": len(answer)})
sequence.append({"type": "reasoning", "index": 0})
# Only save if there's meaningful generation detail
if not reasoning_list and not tool_calls_list:
return
# Check if generation detail already exists
existing = session.query(LLMGenerationDetail).filter_by(message_id=message.id).first()
if existing:
existing.reasoning_content = json.dumps(reasoning_list) if reasoning_list else None
existing.tool_calls = json.dumps(tool_calls_list) if tool_calls_list else None
existing.sequence = json.dumps(sequence) if sequence else None
else:
generation_detail = LLMGenerationDetail(
tenant_id=self._application_generate_entity.app_config.tenant_id,
app_id=self._application_generate_entity.app_config.app_id,
message_id=message.id,
reasoning_content=json.dumps(reasoning_list) if reasoning_list else None,
tool_calls=json.dumps(tool_calls_list) if tool_calls_list else None,
sequence=json.dumps(sequence) if sequence else None,
)
session.add(generation_detail)
@classmethod
def _split_reasoning_from_answer(cls, text: str) -> tuple[str, str]:
"""
Extract reasoning segments from <think> blocks and return (clean_text, reasoning).
"""
matches = cls._THINK_PATTERN.findall(text)
reasoning_content = "\n".join(match.strip() for match in matches) if matches else ""
clean_text = cls._THINK_PATTERN.sub("", text)
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
return clean_text, reasoning_content or ""
def _handle_stop(self, event: QueueStopEvent):
"""
Handle stop.

View File

@ -232,31 +232,15 @@ class MessageCycleManager:
answer: str,
message_id: str,
from_variable_selector: list[str] | None = None,
chunk_type: str | None = None,
tool_call_id: str | None = None,
tool_name: str | None = None,
tool_arguments: str | None = None,
tool_files: list[str] | None = None,
tool_error: str | None = None,
tool_elapsed_time: float | None = None,
tool_icon: str | dict | None = None,
tool_icon_dark: str | dict | None = None,
event_type: StreamEvent | None = None,
) -> MessageStreamResponse:
"""
Message to stream response.
:param answer: answer
:param message_id: message id
:param from_variable_selector: from variable selector
:param chunk_type: type of the chunk (text, function_call, tool_result, thought)
:param tool_call_id: unique identifier for this tool call
:param tool_name: name of the tool being called
:param tool_arguments: accumulated tool arguments JSON
:param tool_files: file IDs produced by tool
:param tool_error: error message if tool failed
:return:
"""
response = MessageStreamResponse(
return MessageStreamResponse(
task_id=self._application_generate_entity.task_id,
id=message_id,
answer=answer,
@ -264,35 +248,6 @@ class MessageCycleManager:
event=event_type or StreamEvent.MESSAGE,
)
if chunk_type:
response = response.model_copy(update={"chunk_type": chunk_type})
if chunk_type == "tool_call":
response = response.model_copy(
update={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_arguments": tool_arguments,
"tool_icon": tool_icon,
"tool_icon_dark": tool_icon_dark,
}
)
elif chunk_type == "tool_result":
response = response.model_copy(
update={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_arguments": tool_arguments,
"tool_files": tool_files,
"tool_error": tool_error,
"tool_elapsed_time": tool_elapsed_time,
"tool_icon": tool_icon,
"tool_icon_dark": tool_icon_dark,
}
)
return response
def message_replace_to_stream_response(self, answer: str, reason: str = "") -> MessageReplaceStreamResponse:
"""
Message replace to stream response.

View File

@ -0,0 +1,3 @@
from .node_factory import DifyNodeFactory
__all__ = ["DifyNodeFactory"]

View File

@ -15,6 +15,7 @@ from core.workflow.nodes.base.node import Node
from core.workflow.nodes.code.code_node import CodeNode
from core.workflow.nodes.code.limits import CodeNodeLimits
from core.workflow.nodes.http_request.node import HttpRequestNode
from core.workflow.nodes.node_mapping import LATEST_VERSION, NODE_TYPE_CLASSES_MAPPING
from core.workflow.nodes.protocols import FileManagerProtocol, HttpClientProtocol
from core.workflow.nodes.template_transform.template_renderer import (
CodeExecutorJinja2TemplateRenderer,
@ -23,8 +24,6 @@ from core.workflow.nodes.template_transform.template_renderer import (
from core.workflow.nodes.template_transform.template_transform_node import TemplateTransformNode
from libs.typing import is_str, is_str_dict
from .node_mapping import LATEST_VERSION, NODE_TYPE_CLASSES_MAPPING
if TYPE_CHECKING:
from core.workflow.entities import GraphInitParams
from core.workflow.runtime import GraphRuntimeState

View File

@ -1,23 +0,0 @@
from .constants import AppAssetsAttrs
from .entities import (
AssetItem,
FileAsset,
SkillAsset,
)
from .packager import AssetPackager, ZipPackager
from .parser import AssetItemParser, AssetParser, FileAssetParser, SkillAssetParser
from .paths import AssetPaths
__all__ = [
"AppAssetsAttrs",
"AssetItem",
"AssetItemParser",
"AssetPackager",
"AssetParser",
"AssetPaths",
"FileAsset",
"FileAssetParser",
"SkillAsset",
"SkillAssetParser",
"ZipPackager",
]

View File

@ -1,12 +0,0 @@
from .base import AssetBuilder, BuildContext
from .file_builder import FileBuilder
from .pipeline import AssetBuildPipeline
from .skill_builder import SkillBuilder
__all__ = [
"AssetBuildPipeline",
"AssetBuilder",
"BuildContext",
"FileBuilder",
"SkillBuilder",
]

View File

@ -1,20 +0,0 @@
from dataclasses import dataclass
from typing import Protocol
from core.app.entities.app_asset_entities import AppAssetFileTree, AppAssetNode
from core.app_assets.entities import AssetItem
@dataclass
class BuildContext:
tenant_id: str
app_id: str
build_id: str
class AssetBuilder(Protocol):
def accept(self, node: AppAssetNode) -> bool: ...
def collect(self, node: AppAssetNode, path: str, ctx: BuildContext) -> None: ...
def build(self, tree: AppAssetFileTree, ctx: BuildContext) -> list[AssetItem]: ...

View File

@ -1,30 +0,0 @@
from core.app.entities.app_asset_entities import AppAssetFileTree, AppAssetNode
from core.app_assets.entities import AssetItem, FileAsset
from core.app_assets.paths import AssetPaths
from .base import BuildContext
class FileBuilder:
_nodes: list[tuple[AppAssetNode, str]]
def __init__(self) -> None:
self._nodes = []
def accept(self, node: AppAssetNode) -> bool:
return True
def collect(self, node: AppAssetNode, path: str, ctx: BuildContext) -> None:
self._nodes.append((node, path))
def build(self, tree: AppAssetFileTree, ctx: BuildContext) -> list[AssetItem]:
return [
FileAsset(
asset_id=node.id,
path=path,
file_name=node.name,
extension=node.extension or "",
storage_key=AssetPaths.draft_file(ctx.tenant_id, ctx.app_id, node.id),
)
for node, path in self._nodes
]

View File

@ -1,29 +0,0 @@
from core.app.entities.app_asset_entities import AppAssetFileTree
from core.app_assets.builder.file_builder import FileBuilder
from core.app_assets.builder.skill_builder import SkillBuilder
from core.app_assets.entities import AssetItem
from .base import AssetBuilder, BuildContext
class AssetBuildPipeline:
_builders: list[AssetBuilder]
def __init__(self, builders: list[AssetBuilder] | None = None) -> None:
self._builders = builders or [SkillBuilder(), FileBuilder()]
def build_all(self, tree: AppAssetFileTree, ctx: BuildContext) -> list[AssetItem]:
# 1. Distribute: each node goes to first accepting builder
for node in tree.walk_files():
path = tree.get_path(node.id)
for builder in self._builders:
if builder.accept(node):
builder.collect(node, path, ctx)
break
# 2. Each builder builds its collected nodes
results: list[AssetItem] = []
for builder in self._builders:
results.extend(builder.build(tree, ctx))
return results

View File

@ -1,113 +0,0 @@
import json
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass
from core.app.entities.app_asset_entities import AppAssetFileTree, AppAssetNode
from core.app_assets.entities import AssetItem, FileAsset
from core.app_assets.paths import AssetPaths
from core.skill.entities.skill_document import SkillDocument
from core.skill.skill_compiler import SkillCompiler
from core.skill.skill_manager import SkillManager
from extensions.ext_storage import storage
from .base import BuildContext
@dataclass
class _LoadedSkill:
node: AppAssetNode
path: str
content: str
metadata: dict
@dataclass
class _CompiledSkill:
node: AppAssetNode
path: str
resolved_key: str
content_bytes: bytes
class SkillBuilder:
_nodes: list[tuple[AppAssetNode, str]]
_max_workers: int
def __init__(self, max_workers: int = 8) -> None:
self._nodes = []
self._max_workers = max_workers
def accept(self, node: AppAssetNode) -> bool:
return node.extension == "md"
def collect(self, node: AppAssetNode, path: str, ctx: BuildContext) -> None:
self._nodes.append((node, path))
def build(self, tree: AppAssetFileTree, ctx: BuildContext) -> list[AssetItem]:
if not self._nodes:
return []
# 1. Load all skills (parallel IO)
loaded = self._load_all(ctx)
# 2. Compile all skills (CPU-bound, single thread)
documents = [SkillDocument(skill_id=s.node.id, content=s.content, metadata=s.metadata) for s in loaded]
artifact_set = SkillCompiler().compile_all(documents, tree, ctx.build_id)
SkillManager.save_bundle(ctx.tenant_id, ctx.app_id, ctx.build_id, artifact_set)
# 4. Prepare compiled skills for upload
to_upload: list[_CompiledSkill] = []
for skill in loaded:
artifact = artifact_set.get(skill.node.id)
if artifact is None:
continue
resolved_key = AssetPaths.build_resolved_file(ctx.tenant_id, ctx.app_id, ctx.build_id, skill.node.id)
to_upload.append(
_CompiledSkill(
node=skill.node,
path=skill.path,
resolved_key=resolved_key,
content_bytes=artifact.content.encode("utf-8"),
)
)
# 5. Upload all compiled skills (parallel IO)
self._upload_all(to_upload)
# 6. Return FileAssets
return [
FileAsset(
asset_id=s.node.id,
path=s.path,
file_name=s.node.name,
extension=s.node.extension or "",
storage_key=s.resolved_key,
)
for s in to_upload
]
def _load_all(self, ctx: BuildContext) -> list[_LoadedSkill]:
def load_one(node: AppAssetNode, path: str) -> _LoadedSkill:
draft_key = AssetPaths.draft_file(ctx.tenant_id, ctx.app_id, node.id)
try:
data = json.loads(storage.load_once(draft_key))
content = data.get("content", "") if isinstance(data, dict) else ""
metadata = data.get("metadata", {}) if isinstance(data, dict) else {}
except Exception:
content = ""
metadata = {}
return _LoadedSkill(node=node, path=path, content=content, metadata=metadata)
with ThreadPoolExecutor(max_workers=self._max_workers) as executor:
futures = [executor.submit(load_one, node, path) for node, path in self._nodes]
return [f.result() for f in futures]
def _upload_all(self, skills: list[_CompiledSkill]) -> None:
def upload_one(skill: _CompiledSkill) -> None:
storage.save(skill.resolved_key, skill.content_bytes)
with ThreadPoolExecutor(max_workers=self._max_workers) as executor:
futures = [executor.submit(upload_one, skill) for skill in skills]
for f in futures:
f.result()

View File

@ -1,7 +0,0 @@
from core.app.entities.app_asset_entities import AppAssetFileTree
from libs.attr_map import AttrKey
class AppAssetsAttrs:
# Skill artifact set
FILE_TREE = AttrKey("file_tree", AppAssetFileTree)

Some files were not shown because too many files have changed in this diff Show More