[Doc] Update reasoning with stream example to use OpenAI library (#14077)

Signed-off-by: liuyanyi <wolfsonliu@163.com>
This commit is contained in:
Yanyi Liu
2025-03-06 21:20:37 +08:00
committed by GitHub
parent fa82b93853
commit 0ddc991f5c
2 changed files with 83 additions and 58 deletions

View File

@ -78,7 +78,55 @@ Streaming chat completions are also supported for reasoning models. The `reasoni
}
```
Please note that it is not compatible with the OpenAI Python client library. You can use the `requests` library to make streaming requests. You could checkout the [example](https://github.com/vllm-project/vllm/blob/main/examples/online_serving/openai_chat_completion_with_reasoning_streaming.py).
OpenAI Python client library does not officially support `reasoning_content` attribute for streaming output. But the client support extra attributes in the response. You can use `hasattr` to check if the `reasoning_content` attribute is present in the response. For example:
```python
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
stream = client.chat.completions.create(model=model,
messages=messages,
stream=True)
print("client: Start streaming chat completions...")
printed_reasoning_content = False
printed_content = False
for chunk in stream:
reasoning_content = None
content = None
# Check the content is reasoning_content or content
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content = chunk.choices[0].delta.reasoning_content
elif hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if reasoning_content is not None:
if not printed_reasoning_content:
printed_reasoning_content = True
print("reasoning_content:", end="", flush=True)
print(reasoning_content, end="", flush=True)
elif content is not None:
if not printed_content:
printed_content = True
print("\ncontent:", end="", flush=True)
# Extract and print the content
print(content, end="", flush=True)
```
Remember to check whether the `reasoning_content` exists in the response before accessing it. You could checkout the [example](https://github.com/vllm-project/vllm/blob/main/examples/online_serving/openai_chat_completion_with_reasoning_streaming.py).
## Structured output

View File

@ -19,73 +19,50 @@ in real-time as they are generated by the model. This is useful for scenarios
where you want to display chat completions to the user as they are generated
by the model.
Here we do not use the OpenAI Python client library, because it does not support
`reasoning_content` fields in the response.
Remember to check content and reasoning_content exist in `ChatCompletionChunk`,
content may not exist leading to errors if you try to access it.
"""
import json
import requests
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
models = requests.get(
f"{openai_api_base}/models",
headers={
"Authorization": f"Bearer {openai_api_key}"
},
).json()
model = models["data"][0]["id"]
# Streaming chat completions
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = requests.post(
f"{openai_api_base}/chat/completions",
headers={"Authorization": f"Bearer {openai_api_key}"},
json={
"model": model,
"messages": messages,
"stream": True
},
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
stream = client.chat.completions.create(model=model,
messages=messages,
stream=True)
print("client: Start streaming chat completions...")
printed_reasoning_content = False
printed_content = False
# Make the streaming request
if response.status_code == 200:
# Process the streaming response
for line in response.iter_lines():
if line: # Filter out keep-alive new lines
# Decode the line and parse the JSON
decoded_line = line.decode("utf-8")
if decoded_line.startswith("data:"):
data = decoded_line[5:].strip() # Remove "data:" prefix
if data == "[DONE]": # End of stream
print("\nclient: Stream completed.")
break
try:
# Parse the JSON data
chunk = json.loads(data)
reasoning_content = chunk["choices"][0]["delta"].get(
"reasoning_content", "")
content = chunk["choices"][0]["delta"].get("content", "")
if reasoning_content:
if not printed_reasoning_content:
printed_reasoning_content = True
print("reasoning_content:", end="", flush=True)
print(reasoning_content, end="", flush=True)
elif content:
if not printed_content:
printed_content = True
print("\ncontent:", end="", flush=True)
# Extract and print the content
print(content, end="", flush=True)
except json.JSONDecodeError:
print("Error decoding JSON:", decoded_line)
else:
print(f"Error: {response.status_code} - {response.text}")
for chunk in stream:
reasoning_content = None
content = None
# Check the content is reasoning_content or content
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content = chunk.choices[0].delta.reasoning_content
elif hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if reasoning_content is not None:
if not printed_reasoning_content:
printed_reasoning_content = True
print("reasoning_content:", end="", flush=True)
print(reasoning_content, end="", flush=True)
elif content is not None:
if not printed_content:
printed_content = True
print("\ncontent:", end="", flush=True)
# Extract and print the content
print(content, end="", flush=True)