[Benchmark] Use truncation by default for pooling benchmarks (#26992)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
@ -527,6 +527,9 @@ async def async_request_openai_embeddings(
|
||||
if request_func_input.model_name
|
||||
else request_func_input.model,
|
||||
"input": request_func_input.prompt,
|
||||
# Many embedding models have short context length,
|
||||
# this is to avoid dropping some of the requests.
|
||||
"truncate_prompt_tokens": -1,
|
||||
}
|
||||
_update_payload_common(payload, request_func_input)
|
||||
|
||||
@ -564,6 +567,9 @@ async def async_request_vllm_rerank(
|
||||
else request_func_input.model,
|
||||
"query": request_func_input.prompt[0],
|
||||
"documents": request_func_input.prompt[1:],
|
||||
# Many reranker models have short context length,
|
||||
# this is to avoid dropping some of the requests.
|
||||
"truncate_prompt_tokens": -1,
|
||||
}
|
||||
|
||||
headers = {
|
||||
@ -599,6 +605,9 @@ async def async_request_openai_embeddings_chat(
|
||||
"messages": [
|
||||
{"role": "user", "content": content},
|
||||
],
|
||||
# Many embedding models have short context length,
|
||||
# this is to avoid dropping some of the requests.
|
||||
"truncate_prompt_tokens": -1,
|
||||
}
|
||||
_update_payload_common(payload, request_func_input)
|
||||
|
||||
@ -634,13 +643,6 @@ def _preprocess_clip(request_func_input: RequestFuncInput):
|
||||
# Image input
|
||||
request_func_input.prompt = ""
|
||||
|
||||
# max_model_len=77 is too short for most datasets,
|
||||
# so by default we truncate the prompt to max_model_len
|
||||
if request_func_input.extra_body is None:
|
||||
request_func_input.extra_body = {}
|
||||
if "truncate_prompt_tokens" not in request_func_input.extra_body:
|
||||
request_func_input.extra_body["truncate_prompt_tokens"] = -1
|
||||
|
||||
|
||||
def _preprocess_vlm2vec(request_func_input: RequestFuncInput):
|
||||
if request_func_input.multi_modal_content:
|
||||
|
||||
Reference in New Issue
Block a user