[Core] Speed up decode by remove synchronizing operation in sampler (#16436)
Signed-off-by: Chanh Nguyen <cnguyen@linkedin.com> Co-authored-by: Chanh Nguyen <cnguyen@linkedin.com>
This commit is contained in:
@ -47,10 +47,15 @@ def apply_penalties(logits: torch.Tensor, prompt_tokens_tensor: torch.Tensor,
|
||||
output_tokens_tensor, vocab_size, num_seqs)
|
||||
repetition_penalties = repetition_penalties.unsqueeze(dim=1).repeat(
|
||||
1, vocab_size)
|
||||
logits[logits > 0] /= torch.where(prompt_mask | output_mask,
|
||||
repetition_penalties, 1.0)[logits > 0]
|
||||
logits[logits <= 0] *= torch.where(prompt_mask | output_mask,
|
||||
repetition_penalties, 1.0)[logits <= 0]
|
||||
|
||||
# If token appears in prompt or output, apply, otherwise use 1.0 for no-op.
|
||||
penalties = torch.where(prompt_mask | output_mask, repetition_penalties,
|
||||
1.0)
|
||||
|
||||
# If logits are positive, divide by penalty, otherwise multiply by penalty.
|
||||
scaling = torch.where(logits > 0, 1.0 / penalties, penalties)
|
||||
logits *= scaling
|
||||
|
||||
# We follow the definition in OpenAI API.
|
||||
# Refer to https://platform.openai.com/docs/api-reference/parameter-details
|
||||
logits -= frequency_penalties.unsqueeze(dim=1) * output_bin_counts
|
||||
|
||||
Reference in New Issue
Block a user