[Frontend] OpenAI Responses API supports input image (#20975)

Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
This commit is contained in:
Chauncey
2025-07-16 08:59:36 +08:00
committed by GitHub
parent 30800b01c2
commit 34cda778a0
2 changed files with 172 additions and 3 deletions

View File

@ -0,0 +1,166 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import openai
import pytest
import pytest_asyncio
from tests.utils import RemoteOpenAIServer
from vllm.multimodal.utils import encode_image_base64, fetch_image
# Use a small vision model for testing
MODEL_NAME = "Qwen/Qwen2.5-VL-3B-Instruct"
MAXIMUM_IMAGES = 2
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_URLS = [
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
"https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
"https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
]
@pytest.fixture(scope="module")
def default_image_server_args():
return [
"--enforce-eager",
"--max-model-len",
"6000",
"--max-num-seqs",
"128",
"--limit-mm-per-prompt",
json.dumps({"image": MAXIMUM_IMAGES}),
]
@pytest.fixture(scope="module")
def image_server(default_image_server_args):
with RemoteOpenAIServer(MODEL_NAME,
default_image_server_args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(image_server):
async with image_server.get_async_client() as async_client:
yield async_client
@pytest.fixture(scope="session")
def base64_encoded_image() -> dict[str, str]:
return {
image_url: encode_image_base64(fetch_image(image_url))
for image_url in TEST_IMAGE_URLS
}
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_single_chat_session_image(client: openai.AsyncOpenAI,
model_name: str, image_url: str):
content_text = "What's in this image?"
messages = [{
"role":
"user",
"content": [
{
"type": "input_image",
"image_url": image_url,
"detail": "auto",
},
{
"type": "input_text",
"text": content_text
},
],
}]
# test image url
response = await client.responses.create(
model=model_name,
input=messages,
)
assert len(response.output_text) > 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_single_chat_session_image_base64encoded(
client: openai.AsyncOpenAI,
model_name: str,
image_url: str,
base64_encoded_image: dict[str, str],
):
content_text = "What's in this image?"
messages = [{
"role":
"user",
"content": [
{
"type": "input_image",
"image_url":
f"data:image/jpeg;base64,{base64_encoded_image[image_url]}",
"detail": "auto",
},
{
"type": "input_text",
"text": content_text
},
],
}]
# test image base64
response = await client.responses.create(
model=model_name,
input=messages,
)
assert len(response.output_text) > 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize(
"image_urls",
[TEST_IMAGE_URLS[:i] for i in range(2, len(TEST_IMAGE_URLS))])
async def test_multi_image_input(client: openai.AsyncOpenAI, model_name: str,
image_urls: list[str]):
messages = [{
"role":
"user",
"content": [
*({
"type": "input_image",
"image_url": image_url,
"detail": "auto",
} for image_url in image_urls),
{
"type": "input_text",
"text": "What's in this image?"
},
],
}]
if len(image_urls) > MAXIMUM_IMAGES:
with pytest.raises(openai.BadRequestError): # test multi-image input
await client.responses.create(
model=model_name,
input=messages,
)
# the server should still work afterwards
response = await client.responses.create(
model=model_name,
input=[{
"role": "user",
"content": "What's the weather like in Paris today?",
}],
)
assert len(response.output_text) > 0
else:
response = await client.responses.create(
model=model_name,
input=messages,
)
assert len(response.output_text) > 0

View File

@ -28,6 +28,7 @@ from openai.types.chat import (ChatCompletionMessageToolCallParam,
ChatCompletionToolMessageParam)
from openai.types.chat.chat_completion_content_part_input_audio_param import (
InputAudio)
from openai.types.responses import ResponseInputImageParam
from PIL import Image
from pydantic import BaseModel, ConfigDict, TypeAdapter
# yapf: enable
@ -942,6 +943,8 @@ _ImageParser = TypeAdapter(ChatCompletionContentPartImageParam).validate_python
_AudioParser = TypeAdapter(ChatCompletionContentPartAudioParam).validate_python
_VideoParser = TypeAdapter(ChatCompletionContentPartVideoParam).validate_python
_ResponsesInputImageParser = TypeAdapter(
ResponseInputImageParam).validate_python
_ContentPart: TypeAlias = Union[str, dict[str, str], InputAudio, PILImage]
# Define a mapping from part types to their corresponding parsing functions.
@ -953,6 +956,8 @@ MM_PARSER_MAP: dict[
lambda part: _TextParser(part).get("text", None),
"input_text":
lambda part: _TextParser(part).get("text", None),
"input_image":
lambda part: _ResponsesInputImageParser(part).get("image_url", None),
"image_url":
lambda part: _ImageParser(part).get("image_url", {}).get("url", None),
"image_embeds":
@ -1085,10 +1090,8 @@ def _parse_chat_message_content_part(
"""
if isinstance(part, str): # Handle plain text parts
return part
# Handle structured dictionary parts
part_type, content = _parse_chat_message_content_mm_part(part)
# if part_type is text/refusal/image_url/audio_url/video_url/input_audio but
# content is None, log a warning and skip
if part_type in VALID_MESSAGE_CONTENT_MM_PART_TYPES and content is None:
@ -1109,7 +1112,7 @@ def _parse_chat_message_content_part(
image_content = cast(Image.Image, content)
mm_parser.parse_image_pil(image_content)
modality = "image"
elif part_type == "image_url":
elif part_type in ("image_url", "input_image"):
str_content = cast(str, content)
mm_parser.parse_image(str_content)
modality = "image"