[Model] Introduce Kimi Linear to vLLM (#27809)
Signed-off-by: lizhiyuan <lizhiyuan@moonshot.cn> Signed-off-by: Zhiyuan Li <uniartisan2017@gmail.com>
This commit is contained in:
@ -382,6 +382,7 @@ th {
|
||||
| `InternLM3ForCausalLM` | InternLM3 | `internlm/internlm3-8b-instruct`, etc. | ✅︎ | ✅︎ |
|
||||
| `JAISLMHeadModel` | Jais | `inceptionai/jais-13b`, `inceptionai/jais-13b-chat`, `inceptionai/jais-30b-v3`, `inceptionai/jais-30b-chat-v3`, etc. | | ✅︎ |
|
||||
| `JambaForCausalLM` | Jamba | `ai21labs/AI21-Jamba-1.5-Large`, `ai21labs/AI21-Jamba-1.5-Mini`, `ai21labs/Jamba-v0.1`, etc. | ✅︎ | ✅︎ |
|
||||
| `KimiLinearForCausalLM` | Kimi-Linear-48B-A3B-Base, Kimi-Linear-48B-A3B-Instruct | `moonshotai/Kimi-Linear-48B-A3B-Base`, `moonshotai/Kimi-Linear-48B-A3B-Instruct` | | ✅︎ |
|
||||
| `Lfm2ForCausalLM` | LFM2 | `LiquidAI/LFM2-1.2B`, `LiquidAI/LFM2-700M`, `LiquidAI/LFM2-350M`, etc. | ✅︎ | ✅︎ |
|
||||
| `Lfm2MoeForCausalLM` | LFM2MoE | `LiquidAI/LFM2-8B-A1B-preview`, etc. | ✅︎ | ✅︎ |
|
||||
| `LlamaForCausalLM` | Llama 3.1, Llama 3, Llama 2, LLaMA, Yi | `meta-llama/Meta-Llama-3.1-405B-Instruct`, `meta-llama/Meta-Llama-3.1-70B`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `01-ai/Yi-34B`, etc. | ✅︎ | ✅︎ |
|
||||
|
||||
@ -296,6 +296,9 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
||||
"random": "ai21labs/Jamba-tiny-random",
|
||||
},
|
||||
),
|
||||
"KimiLinearForCausalLM": _HfExamplesInfo(
|
||||
"moonshotai/Kimi-Linear-48B-A3B-Instruct", trust_remote_code=True
|
||||
),
|
||||
"Lfm2ForCausalLM": _HfExamplesInfo("LiquidAI/LFM2-1.2B"),
|
||||
"Lfm2MoeForCausalLM": _HfExamplesInfo(
|
||||
"LiquidAI/LFM2-8B-A1B", min_transformers_version="4.58"
|
||||
|
||||
@ -453,6 +453,7 @@ class CompilationConfig:
|
||||
"vllm::linear_attention",
|
||||
"vllm::plamo2_mamba_mixer",
|
||||
"vllm::gdn_attention",
|
||||
"vllm::kda_attention",
|
||||
"vllm::sparse_attn_indexer",
|
||||
]
|
||||
|
||||
|
||||
@ -1236,6 +1236,7 @@ class ModelConfig:
|
||||
"deepseek_v32",
|
||||
"deepseek_mtp",
|
||||
"kimi_k2",
|
||||
"kimi_linear",
|
||||
"longcat_flash",
|
||||
):
|
||||
return self.hf_text_config.kv_lora_rank is not None
|
||||
|
||||
@ -1304,7 +1304,7 @@ def kda_gate_fwd_kernel(
|
||||
tl.store(y_ptr, b_y.to(y.dtype.element_ty), boundary_check=(0, 1))
|
||||
|
||||
|
||||
def kda_gate_fwd(
|
||||
def fused_kda_gate(
|
||||
g: torch.Tensor,
|
||||
A: torch.Tensor,
|
||||
head_k_dim: int,
|
||||
|
||||
426
vllm/model_executor/layers/kda.py
Normal file
426
vllm/model_executor/layers/kda.py
Normal file
@ -0,0 +1,426 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import nn
|
||||
|
||||
from vllm.attention import AttentionBackend
|
||||
from vllm.attention.backends.abstract import AttentionMetadata
|
||||
from vllm.config import CacheConfig, ModelConfig, get_current_vllm_config
|
||||
from vllm.distributed import (
|
||||
divide,
|
||||
get_tensor_model_parallel_rank,
|
||||
get_tensor_model_parallel_world_size,
|
||||
)
|
||||
from vllm.forward_context import ForwardContext, get_forward_context
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.model_loader.weight_utils import sharded_weight_loader
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.utils.torch_utils import direct_register_custom_op
|
||||
from vllm.v1.attention.backends.gdn_attn import GDNAttentionMetadata
|
||||
|
||||
from .fla.ops.kda import (
|
||||
FusedRMSNormGated,
|
||||
chunk_kda,
|
||||
fused_kda_gate,
|
||||
fused_recurrent_kda,
|
||||
)
|
||||
from .linear import (
|
||||
ColumnParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear,
|
||||
)
|
||||
from .mamba.abstract import MambaBase
|
||||
from .mamba.mamba_utils import MambaStateDtypeCalculator, MambaStateShapeCalculator
|
||||
from .mamba.ops.causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
||||
from .quantization.base_config import QuantizationConfig
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
def kda_attention(
|
||||
hidden_states: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
layer_name: str,
|
||||
) -> None:
|
||||
forward_context: ForwardContext = get_forward_context()
|
||||
self = forward_context.no_compile_layers[layer_name]
|
||||
self._forward(hidden_states=hidden_states, output=output)
|
||||
|
||||
|
||||
def kda_attention_fake(
|
||||
hidden_states: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
layer_name: str,
|
||||
) -> None:
|
||||
return
|
||||
|
||||
|
||||
direct_register_custom_op(
|
||||
op_name="kda_attention",
|
||||
op_func=kda_attention,
|
||||
mutates_args=["output"],
|
||||
fake_impl=kda_attention_fake,
|
||||
)
|
||||
|
||||
|
||||
class KimiDeltaAttention(nn.Module, MambaBase):
|
||||
@property
|
||||
def mamba_type(self) -> str:
|
||||
return "linear_attention"
|
||||
|
||||
def get_attn_backend(self) -> type["AttentionBackend"]:
|
||||
from vllm.v1.attention.backends.gdn_attn import GDNAttentionBackend
|
||||
|
||||
return GDNAttentionBackend
|
||||
|
||||
def get_state_dtype(
|
||||
self,
|
||||
) -> tuple[torch.dtype, torch.dtype, torch.dtype, torch.dtype]:
|
||||
if self.model_config is None or self.cache_config is None:
|
||||
raise ValueError("model_config and cache_config must be set")
|
||||
return MambaStateDtypeCalculator.kda_state_dtype(
|
||||
self.model_config.dtype, self.cache_config.mamba_cache_dtype
|
||||
)
|
||||
|
||||
def get_state_shape(
|
||||
self,
|
||||
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
|
||||
return MambaStateShapeCalculator.kda_state_shape(
|
||||
self.tp_size, self.num_heads, self.head_dim, conv_kernel_size=self.conv_size
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_idx: int,
|
||||
hidden_size: int,
|
||||
quant_config: QuantizationConfig | None = None,
|
||||
cache_config: CacheConfig | None = None,
|
||||
model_config: ModelConfig | None = None,
|
||||
rms_norm_eps: float = 1e-5,
|
||||
prefix: str = "",
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.tp_rank = get_tensor_model_parallel_rank()
|
||||
self.hidden_size = hidden_size
|
||||
self.model_config = model_config
|
||||
self.cache_config = cache_config
|
||||
if model_config is None:
|
||||
raise ValueError("model_config must be provided")
|
||||
kda_config = model_config.linear_attn_config
|
||||
self.head_dim = kda_config["head_dim"]
|
||||
self.num_heads = kda_config["num_heads"]
|
||||
self.layer_idx = layer_idx
|
||||
self.prefix = prefix
|
||||
assert self.num_heads % self.tp_size == 0
|
||||
self.local_num_heads = divide(self.num_heads, self.tp_size)
|
||||
|
||||
projection_size = self.head_dim * self.num_heads
|
||||
self.conv_size = kda_config["short_conv_kernel_size"]
|
||||
|
||||
self.q_proj = ColumnParallelLinear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.q_proj",
|
||||
)
|
||||
self.k_proj = ColumnParallelLinear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.k_proj",
|
||||
)
|
||||
self.v_proj = ColumnParallelLinear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.v_proj",
|
||||
)
|
||||
|
||||
self.f_a_proj = ReplicatedLinear(
|
||||
self.hidden_size,
|
||||
self.head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.f_a_proj",
|
||||
)
|
||||
|
||||
self.f_b_proj = ColumnParallelLinear(
|
||||
self.head_dim,
|
||||
projection_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.f_b_proj",
|
||||
)
|
||||
self.dt_bias = nn.Parameter(
|
||||
torch.empty(divide(projection_size, self.tp_size), dtype=torch.float32)
|
||||
)
|
||||
|
||||
set_weight_attrs(self.dt_bias, {"weight_loader": sharded_weight_loader(0)})
|
||||
|
||||
self.b_proj = ColumnParallelLinear(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.b_proj",
|
||||
)
|
||||
|
||||
self.q_conv1d = ColumnParallelLinear(
|
||||
input_size=self.conv_size,
|
||||
output_size=projection_size,
|
||||
bias=False,
|
||||
params_dtype=torch.float32,
|
||||
prefix=f"{prefix}.q_conv1d",
|
||||
)
|
||||
self.k_conv1d = ColumnParallelLinear(
|
||||
input_size=self.conv_size,
|
||||
output_size=projection_size,
|
||||
bias=False,
|
||||
params_dtype=torch.float32,
|
||||
prefix=f"{prefix}.k_conv1d",
|
||||
)
|
||||
self.v_conv1d = ColumnParallelLinear(
|
||||
input_size=self.conv_size,
|
||||
output_size=projection_size,
|
||||
bias=False,
|
||||
params_dtype=torch.float32,
|
||||
prefix=f"{prefix}.v_conv1d",
|
||||
)
|
||||
# unsqueeze to fit conv1d weights shape into the linear weights shape.
|
||||
# Can't do this in `weight_loader` since it already exists in
|
||||
# `ColumnParallelLinear` and `set_weight_attrs`
|
||||
# doesn't allow to override it
|
||||
self.q_conv1d.weight.data = self.q_conv1d.weight.data.unsqueeze(1)
|
||||
self.k_conv1d.weight.data = self.k_conv1d.weight.data.unsqueeze(1)
|
||||
self.v_conv1d.weight.data = self.v_conv1d.weight.data.unsqueeze(1)
|
||||
|
||||
self.A_log = nn.Parameter(
|
||||
torch.empty(1, 1, self.local_num_heads, 1, dtype=torch.float32)
|
||||
)
|
||||
set_weight_attrs(self.A_log, {"weight_loader": sharded_weight_loader(2)})
|
||||
|
||||
self.g_a_proj = ReplicatedLinear(
|
||||
self.hidden_size,
|
||||
self.head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.g_a_proj",
|
||||
)
|
||||
self.g_b_proj = ColumnParallelLinear(
|
||||
self.head_dim,
|
||||
projection_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.g_b_proj",
|
||||
)
|
||||
self.o_norm = FusedRMSNormGated(
|
||||
self.head_dim, eps=rms_norm_eps, activation="sigmoid"
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
projection_size,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
)
|
||||
|
||||
compilation_config = get_current_vllm_config().compilation_config
|
||||
if prefix in compilation_config.static_forward_context:
|
||||
raise ValueError(f"Duplicate layer name: {prefix}")
|
||||
compilation_config.static_forward_context[prefix] = self
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
) -> None:
|
||||
return torch.ops.vllm.kda_attention(
|
||||
hidden_states,
|
||||
output,
|
||||
self.prefix,
|
||||
)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
) -> None:
|
||||
forward_context = get_forward_context()
|
||||
attn_metadata: AttentionMetadata = forward_context.attn_metadata
|
||||
|
||||
if attn_metadata is None:
|
||||
# V1 profile run
|
||||
# Mimic the memory allocation in the real run
|
||||
q = torch.empty_like(hidden_states)
|
||||
k = torch.empty_like(hidden_states)
|
||||
v = torch.empty_like(hidden_states)
|
||||
g = hidden_states.new_empty(
|
||||
hidden_states.size(0),
|
||||
self.local_num_heads,
|
||||
self.head_dim,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
beta = torch.empty(
|
||||
hidden_states.size(0), self.local_num_heads, dtype=torch.float32
|
||||
)
|
||||
core_attn_out = torch.empty_like(hidden_states)
|
||||
return
|
||||
|
||||
assert isinstance(attn_metadata, dict)
|
||||
attn_metadata = attn_metadata[self.prefix]
|
||||
assert isinstance(attn_metadata, GDNAttentionMetadata)
|
||||
has_initial_state = attn_metadata.has_initial_state
|
||||
non_spec_query_start_loc = attn_metadata.non_spec_query_start_loc
|
||||
non_spec_state_indices_tensor = attn_metadata.non_spec_state_indices_tensor # noqa: E501
|
||||
constant_caches = self.kv_cache[forward_context.virtual_engine]
|
||||
|
||||
(conv_state_q, conv_state_k, conv_state_v, recurrent_state) = constant_caches
|
||||
# deal with strides
|
||||
conv_state_q = conv_state_q.transpose(-1, -2)
|
||||
conv_state_k = conv_state_k.transpose(-1, -2)
|
||||
conv_state_v = conv_state_v.transpose(-1, -2)
|
||||
|
||||
q_proj_states = self.q_proj(hidden_states)[0]
|
||||
k_proj_states = self.k_proj(hidden_states)[0]
|
||||
v_proj_states = self.v_proj(hidden_states)[0]
|
||||
|
||||
q_conv_weights = self.q_conv1d.weight.view(
|
||||
self.q_conv1d.weight.size(0), self.q_conv1d.weight.size(2)
|
||||
)
|
||||
k_conv_weights = self.k_conv1d.weight.view(
|
||||
self.k_conv1d.weight.size(0), self.k_conv1d.weight.size(2)
|
||||
)
|
||||
v_conv_weights = self.v_conv1d.weight.view(
|
||||
self.v_conv1d.weight.size(0), self.v_conv1d.weight.size(2)
|
||||
)
|
||||
if attn_metadata.num_prefills > 0:
|
||||
q_proj_states = q_proj_states.transpose(0, 1)
|
||||
k_proj_states = k_proj_states.transpose(0, 1)
|
||||
v_proj_states = v_proj_states.transpose(0, 1)
|
||||
q = causal_conv1d_fn(
|
||||
q_proj_states,
|
||||
q_conv_weights,
|
||||
self.q_conv1d.bias,
|
||||
activation="silu",
|
||||
conv_states=conv_state_q,
|
||||
has_initial_state=has_initial_state,
|
||||
cache_indices=non_spec_state_indices_tensor,
|
||||
query_start_loc=non_spec_query_start_loc,
|
||||
metadata=attn_metadata,
|
||||
).transpose(0, 1)
|
||||
k = causal_conv1d_fn(
|
||||
k_proj_states,
|
||||
k_conv_weights,
|
||||
self.k_conv1d.bias,
|
||||
activation="silu",
|
||||
conv_states=conv_state_k,
|
||||
has_initial_state=has_initial_state,
|
||||
cache_indices=non_spec_state_indices_tensor,
|
||||
query_start_loc=non_spec_query_start_loc,
|
||||
metadata=attn_metadata,
|
||||
).transpose(0, 1)
|
||||
v = causal_conv1d_fn(
|
||||
v_proj_states,
|
||||
v_conv_weights,
|
||||
self.v_conv1d.bias,
|
||||
activation="silu",
|
||||
conv_states=conv_state_v,
|
||||
has_initial_state=has_initial_state,
|
||||
cache_indices=non_spec_state_indices_tensor,
|
||||
query_start_loc=non_spec_query_start_loc,
|
||||
metadata=attn_metadata,
|
||||
).transpose(0, 1)
|
||||
else:
|
||||
decode_conv_indices = non_spec_state_indices_tensor[
|
||||
: attn_metadata.num_decodes
|
||||
]
|
||||
q = causal_conv1d_update(
|
||||
q_proj_states,
|
||||
conv_state_q,
|
||||
q_conv_weights,
|
||||
self.q_conv1d.bias,
|
||||
activation="silu",
|
||||
conv_state_indices=decode_conv_indices,
|
||||
validate_data=True,
|
||||
)
|
||||
k = causal_conv1d_update(
|
||||
k_proj_states,
|
||||
conv_state_k,
|
||||
k_conv_weights,
|
||||
self.k_conv1d.bias,
|
||||
activation="silu",
|
||||
conv_state_indices=decode_conv_indices,
|
||||
validate_data=True,
|
||||
)
|
||||
v = causal_conv1d_update(
|
||||
v_proj_states,
|
||||
conv_state_v,
|
||||
v_conv_weights,
|
||||
self.v_conv1d.bias,
|
||||
activation="silu",
|
||||
conv_state_indices=decode_conv_indices,
|
||||
validate_data=True,
|
||||
)
|
||||
|
||||
q, k, v = map(
|
||||
lambda x: rearrange(x, "n (h d) -> 1 n h d", d=self.head_dim), (q, k, v)
|
||||
)
|
||||
|
||||
beta = self.b_proj(hidden_states)[0].float().sigmoid()
|
||||
|
||||
g = self.f_b_proj(self.f_a_proj(hidden_states)[0])[0]
|
||||
g = fused_kda_gate(g, self.A_log, self.head_dim, g_bias=self.dt_bias)
|
||||
|
||||
beta = beta.unsqueeze(0)
|
||||
g = g.unsqueeze(0)
|
||||
|
||||
if attn_metadata.num_prefills > 0:
|
||||
zero_idx = non_spec_state_indices_tensor[~has_initial_state]
|
||||
recurrent_state[zero_idx] = 0
|
||||
initial_state = recurrent_state[non_spec_state_indices_tensor].contiguous()
|
||||
(
|
||||
core_attn_out_non_spec,
|
||||
last_recurrent_state,
|
||||
) = chunk_kda(
|
||||
q=q,
|
||||
k=k,
|
||||
v=v,
|
||||
g=g,
|
||||
beta=beta,
|
||||
initial_state=initial_state,
|
||||
output_final_state=True,
|
||||
use_qk_l2norm_in_kernel=True,
|
||||
cu_seqlens=non_spec_query_start_loc,
|
||||
)
|
||||
# Init cache
|
||||
recurrent_state[non_spec_state_indices_tensor] = last_recurrent_state
|
||||
else:
|
||||
(
|
||||
core_attn_out_non_spec,
|
||||
last_recurrent_state,
|
||||
) = fused_recurrent_kda(
|
||||
q=q,
|
||||
k=k,
|
||||
v=v,
|
||||
g=g,
|
||||
beta=beta,
|
||||
initial_state=recurrent_state,
|
||||
use_qk_l2norm_in_kernel=True,
|
||||
cu_seqlens=non_spec_query_start_loc,
|
||||
ssm_state_indices=non_spec_state_indices_tensor,
|
||||
)
|
||||
|
||||
g_proj_states = self.g_b_proj(self.g_a_proj(hidden_states)[0])[0]
|
||||
g = rearrange(g_proj_states, "... (h d) -> ... h d", d=self.head_dim)
|
||||
core_attn_out = self.o_norm(core_attn_out_non_spec, g)
|
||||
core_attn_out = rearrange(core_attn_out, "1 n h d -> n (h d)")
|
||||
|
||||
output[:] = self.o_proj(core_attn_out)[0]
|
||||
@ -80,6 +80,15 @@ class MambaStateDtypeCalculator:
|
||||
state_dtype = get_kv_cache_torch_dtype(mamba_cache_dtype, model_dtype)
|
||||
return (state_dtype, state_dtype)
|
||||
|
||||
@classmethod
|
||||
def kda_state_dtype(
|
||||
cls,
|
||||
model_dtype: ModelDType | torch.dtype,
|
||||
mamba_cache_dtype: MambaDType,
|
||||
):
|
||||
state_dtype = get_kv_cache_torch_dtype(mamba_cache_dtype, model_dtype)
|
||||
return (state_dtype, state_dtype, state_dtype, torch.float32)
|
||||
|
||||
|
||||
class MambaStateShapeCalculator:
|
||||
@classmethod
|
||||
@ -182,3 +191,35 @@ class MambaStateShapeCalculator:
|
||||
head_v_dim,
|
||||
)
|
||||
return conv_state_shape, temporal_state_shape
|
||||
|
||||
@classmethod
|
||||
def kda_state_shape(
|
||||
cls,
|
||||
tp_world_size: int,
|
||||
num_heads: int,
|
||||
head_dim: int,
|
||||
num_k_heads: int | None = None,
|
||||
head_k_dim: int | None = None,
|
||||
conv_kernel_size: int = 4,
|
||||
num_spec: int = 0,
|
||||
) -> tuple[tuple[int, int], tuple[int, int], tuple[int, int], tuple[int, int, int]]:
|
||||
if num_k_heads is None:
|
||||
num_k_heads = num_heads
|
||||
if head_k_dim is None:
|
||||
head_k_dim = head_dim
|
||||
|
||||
proj_size = num_heads * head_dim
|
||||
proj_k_size = num_k_heads * head_k_dim
|
||||
|
||||
conv_state_shape = (divide(proj_size, tp_world_size), conv_kernel_size - 1)
|
||||
conv_state_k_shape = (divide(proj_k_size, tp_world_size), conv_kernel_size - 1)
|
||||
recurrent_state_shape = (divide(num_heads, tp_world_size), head_dim, head_dim)
|
||||
|
||||
conv_state_shape = conv_state_shape[1], conv_state_shape[0]
|
||||
conv_state_k_shape = conv_state_k_shape[1], conv_state_k_shape[0]
|
||||
return (
|
||||
conv_state_shape,
|
||||
conv_state_k_shape,
|
||||
conv_state_k_shape,
|
||||
recurrent_state_shape,
|
||||
)
|
||||
|
||||
@ -147,9 +147,10 @@ class MultiHeadLatentAttentionWrapper(CustomOp):
|
||||
# Add head dim of 1 to k_pe
|
||||
k_pe = k_pe.unsqueeze(1)
|
||||
|
||||
q[..., self.qk_nope_head_dim :], k_pe = self.rotary_emb(
|
||||
positions, q[..., self.qk_nope_head_dim :], k_pe
|
||||
)
|
||||
if self.rotary_emb is not None:
|
||||
q[..., self.qk_nope_head_dim :], k_pe = self.rotary_emb(
|
||||
positions, q[..., self.qk_nope_head_dim :], k_pe
|
||||
)
|
||||
|
||||
if self.indexer and self.is_sparse:
|
||||
_topk_indices = self.indexer(hidden_states, q_c, positions, self.rotary_emb)
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from copy import deepcopy
|
||||
from math import lcm
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import vllm.envs as envs
|
||||
@ -8,7 +9,7 @@ from vllm.logger import init_logger
|
||||
from vllm.model_executor.models import ModelRegistry
|
||||
from vllm.utils.math_utils import cdiv, round_up
|
||||
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
||||
from vllm.v1.kv_cache_interface import FullAttentionSpec, MambaSpec
|
||||
from vllm.v1.kv_cache_interface import FullAttentionSpec, MambaSpec, MLAAttentionSpec
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.config import VllmConfig
|
||||
@ -347,12 +348,28 @@ class HybridAttentionMambaModelConfig(VerifyAndUpdateConfig):
|
||||
kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_config.cache_dtype]
|
||||
|
||||
# get attention page size (for 1 token)
|
||||
attn_page_size_1_token = FullAttentionSpec(
|
||||
block_size=1,
|
||||
num_kv_heads=model_config.get_num_kv_heads(parallel_config),
|
||||
head_size=model_config.get_head_size(),
|
||||
dtype=kv_cache_dtype,
|
||||
).page_size_bytes
|
||||
# Attention backend constraints:
|
||||
# - FlashAttention (FA) requires block size to be multiple of 16
|
||||
# - MLA (Multi-head Latent Attention) requires larger alignment:
|
||||
# * CUTLASS_MLA backend: kernel_block_size 128 alignment
|
||||
# * Other MLA backends: kernel_block_size 64 alignment
|
||||
if model_config.use_mla:
|
||||
use_cutlass_mla = envs.VLLM_ATTENTION_BACKEND == "CUTLASS_MLA"
|
||||
kernel_block_alignment_size = 128 if use_cutlass_mla else 64
|
||||
attn_page_size_1_token = MLAAttentionSpec(
|
||||
block_size=1,
|
||||
num_kv_heads=model_config.get_num_kv_heads(parallel_config),
|
||||
head_size=model_config.get_head_size(),
|
||||
dtype=kv_cache_dtype,
|
||||
).page_size_bytes
|
||||
else:
|
||||
kernel_block_alignment_size = 16
|
||||
attn_page_size_1_token = FullAttentionSpec(
|
||||
block_size=1,
|
||||
num_kv_heads=model_config.get_num_kv_heads(parallel_config),
|
||||
head_size=model_config.get_head_size(),
|
||||
dtype=kv_cache_dtype,
|
||||
).page_size_bytes
|
||||
|
||||
model_cls, _ = ModelRegistry.resolve_model_cls(
|
||||
model_config.architecture,
|
||||
@ -372,17 +389,6 @@ class HybridAttentionMambaModelConfig(VerifyAndUpdateConfig):
|
||||
if mamba_page_size == 0:
|
||||
return
|
||||
|
||||
# Attention backend constraints:
|
||||
# - FlashAttention (FA) requires block size to be multiple of 16
|
||||
# - MLA (Multi-head Latent Attention) requires larger alignment:
|
||||
# * CUTLASS_MLA backend: 128-byte alignment
|
||||
# * Other MLA backends: 64-byte alignment
|
||||
if model_config.use_mla:
|
||||
use_cutlass_mla = envs.VLLM_ATTENTION_BACKEND == "CUTLASS_MLA"
|
||||
kernel_block_alignment_size = 128 if use_cutlass_mla else 64
|
||||
else:
|
||||
kernel_block_alignment_size = 16
|
||||
|
||||
if cache_config.enable_prefix_caching:
|
||||
# With prefix caching, select attention block size to
|
||||
# optimize for mamba kernel performance
|
||||
@ -400,15 +406,8 @@ class HybridAttentionMambaModelConfig(VerifyAndUpdateConfig):
|
||||
# easily by changing the way we layout chunks in the
|
||||
# mamba2 kernels.
|
||||
|
||||
from math import gcd
|
||||
|
||||
def lcm(a, b):
|
||||
return a * b // gcd(a, b)
|
||||
|
||||
base_chunk_size = mamba_block_size or model_config.get_mamba_chunk_size()
|
||||
|
||||
base_chunk_size = model_config.get_mamba_chunk_size()
|
||||
attn_tokens_per_mamba_state = cdiv(mamba_page_size, attn_page_size_1_token)
|
||||
|
||||
chunk_size = lcm(base_chunk_size, kernel_block_alignment_size)
|
||||
attn_block_size = chunk_size * cdiv(attn_tokens_per_mamba_state, chunk_size)
|
||||
cache_config.mamba_block_size = attn_block_size
|
||||
|
||||
663
vllm/model_executor/models/kimi_linear.py
Normal file
663
vllm/model_executor/models/kimi_linear.py
Normal file
@ -0,0 +1,663 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, ModelConfig, ParallelConfig, VllmConfig
|
||||
from vllm.distributed import (
|
||||
get_pp_group,
|
||||
get_tensor_model_parallel_world_size,
|
||||
tensor_model_parallel_all_reduce,
|
||||
)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||
from vllm.model_executor.layers.kda import KimiDeltaAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (
|
||||
ColumnParallelLinear,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear,
|
||||
)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.mamba.mamba_utils import (
|
||||
MambaStateDtypeCalculator,
|
||||
MambaStateShapeCalculator,
|
||||
)
|
||||
from vllm.model_executor.layers.mla import MLAModules, MultiHeadLatentAttentionWrapper
|
||||
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead,
|
||||
VocabParallelEmbedding,
|
||||
)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader,
|
||||
maybe_remap_kv_scale_name,
|
||||
)
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs.kimi_linear import KimiLinearConfig
|
||||
|
||||
from .interfaces import HasInnerState, IsHybrid, MixtureOfExperts, SupportsPP
|
||||
from .utils import (
|
||||
PPMissingLayer,
|
||||
is_pp_missing_parameter,
|
||||
make_layers,
|
||||
maybe_prefix,
|
||||
)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
class KimiMLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
quant_config: QKVParallelLinear | None = None,
|
||||
reduce_results: bool = True,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size,
|
||||
[intermediate_size] * 2,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.gate_up_proj",
|
||||
)
|
||||
self.down_proj = RowParallelLinear(
|
||||
intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
reduce_results=reduce_results,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(
|
||||
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
|
||||
)
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class KimiMoE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
config: KimiLinearConfig,
|
||||
quant_config: QuantizationConfig | None = None,
|
||||
prefix: str = "",
|
||||
layer_idx: int = 0,
|
||||
):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
intermediate_size = config.intermediate_size
|
||||
moe_intermediate_size = config.moe_intermediate_size
|
||||
num_experts = config.num_experts
|
||||
moe_renormalize = config.moe_renormalize
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
self.num_shared_experts = config.num_shared_experts
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
if config.hidden_act != "silu":
|
||||
raise ValueError(
|
||||
f"Unsupported activation: {config.hidden_act}. "
|
||||
"Only silu is supported for now."
|
||||
)
|
||||
|
||||
# Gate always runs at half / full precision for now.
|
||||
self.gate = ReplicatedLinear(
|
||||
hidden_size,
|
||||
num_experts,
|
||||
bias=False,
|
||||
quant_config=None,
|
||||
prefix=f"{prefix}.gate",
|
||||
)
|
||||
|
||||
self.gate.e_score_correction_bias = nn.Parameter(torch.empty(num_experts))
|
||||
|
||||
self.experts = FusedMoE(
|
||||
num_experts=num_experts,
|
||||
top_k=config.num_experts_per_token,
|
||||
hidden_size=hidden_size,
|
||||
intermediate_size=moe_intermediate_size,
|
||||
reduce_results=False,
|
||||
renormalize=moe_renormalize,
|
||||
quant_config=quant_config,
|
||||
use_grouped_topk=config.use_grouped_topk,
|
||||
num_expert_group=config.num_expert_group,
|
||||
topk_group=config.topk_group,
|
||||
prefix=f"{prefix}.experts",
|
||||
scoring_func=config.moe_router_activation_func,
|
||||
e_score_correction_bias=self.gate.e_score_correction_bias,
|
||||
)
|
||||
|
||||
if self.num_shared_experts is not None:
|
||||
intermediate_size = moe_intermediate_size * self.num_shared_experts
|
||||
self.shared_experts = KimiMLP(
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
reduce_results=False,
|
||||
)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
num_tokens, hidden_size = hidden_states.shape
|
||||
hidden_states = hidden_states.view(-1, hidden_size)
|
||||
if self.num_shared_experts is not None:
|
||||
shared_output = self.shared_experts(hidden_states)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
final_hidden_states = (
|
||||
self.experts(hidden_states=hidden_states, router_logits=router_logits)
|
||||
* self.routed_scaling_factor
|
||||
)
|
||||
if shared_output is not None:
|
||||
final_hidden_states = final_hidden_states + shared_output
|
||||
|
||||
if self.tp_size > 1:
|
||||
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
|
||||
return final_hidden_states.view(num_tokens, hidden_size)
|
||||
|
||||
|
||||
class KimiMLAAttention(nn.Module):
|
||||
"""
|
||||
Main reference: DeepseekV2 vllm Implementation
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: KimiLinearConfig,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
qk_nope_head_dim: int,
|
||||
qk_rope_head_dim: int,
|
||||
v_head_dim: int,
|
||||
q_lora_rank: int | None,
|
||||
kv_lora_rank: int,
|
||||
rope_theta: float = 10000,
|
||||
use_nope: bool = False,
|
||||
rope_scaling: dict[str, Any] | None = None,
|
||||
cache_config: CacheConfig | None = None,
|
||||
quant_config: QuantizationConfig | None = None,
|
||||
prefix: str = "",
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.num_heads = num_heads
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.num_local_heads = num_heads // tp_size
|
||||
self.scaling = self.qk_head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.use_nope = use_nope
|
||||
assert self.use_nope is True
|
||||
assert self.q_lora_rank is None
|
||||
assert rope_scaling is None
|
||||
assert num_heads % tp_size == 0
|
||||
self.kv_a_proj_with_mqa = ReplicatedLinear(
|
||||
self.hidden_size,
|
||||
self.kv_lora_rank + self.qk_rope_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.kv_a_proj_with_mqa",
|
||||
)
|
||||
self.q_proj = ColumnParallelLinear(
|
||||
self.hidden_size,
|
||||
self.num_heads * self.qk_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.q_proj",
|
||||
)
|
||||
self.kv_a_layernorm = RMSNorm(
|
||||
self.kv_lora_rank,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
self.kv_b_proj = ColumnParallelLinear(
|
||||
self.kv_lora_rank,
|
||||
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.kv_b_proj",
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.num_heads * self.v_head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
)
|
||||
|
||||
mla_modules = MLAModules(
|
||||
kv_a_layernorm=self.kv_a_layernorm,
|
||||
kv_b_proj=self.kv_b_proj,
|
||||
rotary_emb=None,
|
||||
o_proj=self.o_proj,
|
||||
fused_qkv_a_proj=None,
|
||||
kv_a_proj_with_mqa=self.kv_a_proj_with_mqa,
|
||||
q_a_layernorm=None,
|
||||
q_b_proj=None,
|
||||
q_proj=self.q_proj,
|
||||
indexer=None,
|
||||
is_sparse=False,
|
||||
topk_indices_buffer=None,
|
||||
)
|
||||
self.mla_attn = MultiHeadLatentAttentionWrapper(
|
||||
self.hidden_size,
|
||||
self.num_local_heads,
|
||||
self.scaling,
|
||||
self.qk_nope_head_dim,
|
||||
self.qk_rope_head_dim,
|
||||
self.v_head_dim,
|
||||
self.q_lora_rank,
|
||||
self.kv_lora_rank,
|
||||
mla_modules,
|
||||
cache_config,
|
||||
quant_config,
|
||||
prefix,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
) -> None:
|
||||
output[:] = self.mla_attn(positions, hidden_states)
|
||||
|
||||
|
||||
class KimiDecoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
config: KimiLinearConfig,
|
||||
layer_idx: int,
|
||||
cache_config: CacheConfig | None = None,
|
||||
quant_config: QuantizationConfig | None = None,
|
||||
parallel_config: ParallelConfig | None = None,
|
||||
model_config: ModelConfig | None = None,
|
||||
prefix: str = "",
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
self.is_moe = config.is_moe
|
||||
|
||||
if config.is_kda_layer(layer_idx):
|
||||
self.self_attn = KimiDeltaAttention(
|
||||
layer_idx=layer_idx,
|
||||
hidden_size=config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
cache_config=cache_config,
|
||||
model_config=config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
else:
|
||||
self.self_attn = KimiMLAAttention(
|
||||
layer_idx=layer_idx,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
quant_config=quant_config,
|
||||
cache_config=cache_config,
|
||||
model_config=model_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
config=config,
|
||||
qk_nope_head_dim=config.qk_nope_head_dim,
|
||||
qk_rope_head_dim=config.qk_rope_head_dim,
|
||||
v_head_dim=config.v_head_dim,
|
||||
q_lora_rank=config.q_lora_rank,
|
||||
kv_lora_rank=config.kv_lora_rank,
|
||||
use_nope=config.mla_use_nope,
|
||||
)
|
||||
|
||||
if (
|
||||
self.is_moe
|
||||
and config.num_experts is not None
|
||||
and layer_idx >= config.first_k_dense_replace
|
||||
and layer_idx % config.moe_layer_freq == 0
|
||||
):
|
||||
self.block_sparse_moe = KimiMoE(
|
||||
config=config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
self.mlp = self.block_sparse_moe
|
||||
else:
|
||||
self.mlp = KimiMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(
|
||||
config.hidden_size, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: torch.Tensor | None,
|
||||
**kwargs,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
||||
|
||||
attn_output = torch.empty_like(hidden_states)
|
||||
self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
positions=positions,
|
||||
output=attn_output,
|
||||
)
|
||||
hidden_states = attn_output
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class KimiLinearModel(nn.Module):
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_text_config
|
||||
model_config = vllm_config.model_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
parallel_config = vllm_config.parallel_config
|
||||
self.config = config
|
||||
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
if get_pp_group().is_first_rank:
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
prefix=f"{prefix}.embed_tokens",
|
||||
)
|
||||
else:
|
||||
self.embed_tokens = PPMissingLayer()
|
||||
|
||||
extra_kwargs = {}
|
||||
|
||||
def get_layer(prefix: str):
|
||||
layer_idx = int(prefix.rsplit(".", 1)[1])
|
||||
return KimiDecoderLayer(
|
||||
config,
|
||||
layer_idx,
|
||||
cache_config,
|
||||
quant_config,
|
||||
parallel_config,
|
||||
model_config,
|
||||
prefix,
|
||||
**extra_kwargs,
|
||||
)
|
||||
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
get_layer,
|
||||
prefix=f"{prefix}.layers",
|
||||
)
|
||||
|
||||
if get_pp_group().is_last_rank:
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
else:
|
||||
self.norm = PPMissingLayer()
|
||||
|
||||
world_size = get_tensor_model_parallel_world_size()
|
||||
assert config.num_attention_heads % world_size == 0, (
|
||||
"num_attention_heads must be divisible by world_size"
|
||||
)
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.embed_tokens(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor | None,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: IntermediateTensors | None,
|
||||
inputs_embeds: torch.Tensor | None = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
|
||||
for _, layer in enumerate(self.layers[self.start_layer : self.end_layer]):
|
||||
hidden_states, residual = layer(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
residual=residual,
|
||||
)
|
||||
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors(
|
||||
{"hidden_states": hidden_states, "residual": residual}
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class KimiLinearForCausalLM(
|
||||
nn.Module, HasInnerState, SupportsPP, MixtureOfExperts, IsHybrid
|
||||
):
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
self.model_config = vllm_config.model_config
|
||||
self.vllm_config = vllm_config
|
||||
self.config = self.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
self.quant_config = quant_config
|
||||
self.model = KimiLinearModel(
|
||||
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
||||
)
|
||||
if get_pp_group().is_last_rank:
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.config.vocab_size,
|
||||
self.config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "lm_head"),
|
||||
)
|
||||
else:
|
||||
self.lm_head = PPMissingLayer()
|
||||
logit_scale = getattr(self.config, "logit_scale", 1.0)
|
||||
self.logits_processor = LogitsProcessor(
|
||||
self.config.vocab_size, scale=logit_scale
|
||||
)
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.get_input_embeddings(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: IntermediateTensors | None = None,
|
||||
inputs_embeds: torch.Tensor | None = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor | IntermediateTensors:
|
||||
hidden_states = self.model(
|
||||
input_ids, positions, intermediate_tensors, inputs_embeds, **kwargs
|
||||
)
|
||||
return hidden_states
|
||||
|
||||
@classmethod
|
||||
def get_mamba_state_dtype_from_config(
|
||||
cls,
|
||||
vllm_config: "VllmConfig",
|
||||
) -> tuple[torch.dtype, torch.dtype, torch.dtype, torch.dtype]:
|
||||
return MambaStateDtypeCalculator.kda_state_dtype(
|
||||
vllm_config.model_config.dtype, vllm_config.cache_config.mamba_cache_dtype
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_mamba_state_shape_from_config(
|
||||
cls, vllm_config: "VllmConfig"
|
||||
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
|
||||
parallel_config = vllm_config.parallel_config
|
||||
hf_config = vllm_config.model_config.hf_config
|
||||
tp_size = parallel_config.tensor_parallel_size
|
||||
num_spec = (
|
||||
vllm_config.speculative_config.num_speculative_tokens
|
||||
if vllm_config.speculative_config
|
||||
else 0
|
||||
)
|
||||
return MambaStateShapeCalculator.kda_state_shape(
|
||||
tp_size,
|
||||
hf_config.linear_attn_config["num_heads"],
|
||||
hf_config.linear_attn_config["head_dim"],
|
||||
conv_kernel_size=hf_config.linear_attn_config["short_conv_kernel_size"],
|
||||
num_spec=num_spec,
|
||||
)
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> torch.Tensor | None:
|
||||
return self.logits_processor(self.lm_head, hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
(".gate_up_proj", ".gate_proj", 0),
|
||||
(".gate_up_proj", ".up_proj", 1),
|
||||
]
|
||||
if self.config.is_moe:
|
||||
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="w1",
|
||||
ckpt_down_proj_name="w2",
|
||||
ckpt_up_proj_name="w3",
|
||||
num_experts=self.config.num_experts,
|
||||
)
|
||||
else:
|
||||
expert_params_mapping = []
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
for args in weights:
|
||||
name, loaded_weight = args[:2]
|
||||
kwargs = args[2] if len(args) > 2 else {}
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
|
||||
if spec_layer is not None:
|
||||
continue # skip spec decode layers for main model
|
||||
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
||||
# Models trained using ColossalAI may include these tensors in
|
||||
# the checkpoint. Skip them.
|
||||
continue
|
||||
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
# We have mlp.experts[0].gate_proj in the checkpoint.
|
||||
# Since we handle the experts below in expert_params_mapping,
|
||||
# we need to skip here BEFORE we update the name, otherwise
|
||||
# name will be updated to mlp.experts[0].gate_up_proj, which
|
||||
# will then be updated below in expert_params_mapping
|
||||
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
||||
if ("mlp.experts." in name) and name not in params_dict:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for idx, (param_name, weight_name, expert_id, shard_id) in enumerate(
|
||||
expert_params_mapping
|
||||
):
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(
|
||||
param,
|
||||
loaded_weight,
|
||||
name,
|
||||
expert_id=expert_id,
|
||||
shard_id=shard_id,
|
||||
)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if (
|
||||
name.endswith(".bias")
|
||||
and name not in params_dict
|
||||
and not self.config.is_linear_attn
|
||||
): # noqa: E501
|
||||
continue
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(
|
||||
param, "weight_loader", default_weight_loader
|
||||
)
|
||||
weight_loader(param, loaded_weight, **kwargs)
|
||||
loaded_params.add(name)
|
||||
|
||||
|
||||
def get_spec_layer_idx_from_weight_name(
|
||||
config: KimiLinearConfig, weight_name: str
|
||||
) -> int | None:
|
||||
if hasattr(config, "num_nextn_predict_layers") and (
|
||||
config.num_nextn_predict_layers > 0
|
||||
):
|
||||
layer_idx = config.num_hidden_layers
|
||||
for i in range(config.num_nextn_predict_layers):
|
||||
if weight_name.startswith(f"model.layers.{layer_idx + i}."):
|
||||
return layer_idx + i
|
||||
return None
|
||||
@ -118,6 +118,7 @@ _TEXT_GENERATION_MODELS = {
|
||||
"InternLM3ForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
"JAISLMHeadModel": ("jais", "JAISLMHeadModel"),
|
||||
"JambaForCausalLM": ("jamba", "JambaForCausalLM"),
|
||||
"KimiLinearForCausalLM": ("kimi_linear", "KimiLinearForCausalLM"), # noqa: E501
|
||||
"Lfm2ForCausalLM": ("lfm2", "Lfm2ForCausalLM"),
|
||||
"Lfm2MoeForCausalLM": ("lfm2_moe", "Lfm2MoeForCausalLM"),
|
||||
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
|
||||
@ -79,6 +79,7 @@ _CONFIG_REGISTRY: dict[str, type[PretrainedConfig]] = LazyConfigDict(
|
||||
deepseek_v3="DeepseekV3Config",
|
||||
deepseek_v32="DeepseekV3Config",
|
||||
flex_olmo="FlexOlmoConfig",
|
||||
kimi_linear="KimiLinearConfig",
|
||||
kimi_vl="KimiVLConfig",
|
||||
Llama_Nemotron_Nano_VL="Nemotron_Nano_VL_Config",
|
||||
RefinedWeb="RWConfig", # For tiiuae/falcon-40b(-instruct)
|
||||
|
||||
@ -19,6 +19,7 @@ from vllm.transformers_utils.configs.eagle import EAGLEConfig
|
||||
from vllm.transformers_utils.configs.falcon import RWConfig
|
||||
from vllm.transformers_utils.configs.flex_olmo import FlexOlmoConfig
|
||||
from vllm.transformers_utils.configs.jais import JAISConfig
|
||||
from vllm.transformers_utils.configs.kimi_linear import KimiLinearConfig
|
||||
from vllm.transformers_utils.configs.kimi_vl import KimiVLConfig
|
||||
from vllm.transformers_utils.configs.lfm2_moe import Lfm2MoeConfig
|
||||
from vllm.transformers_utils.configs.medusa import MedusaConfig
|
||||
@ -54,6 +55,7 @@ __all__ = [
|
||||
"MiDashengLMConfig",
|
||||
"MLPSpeculatorConfig",
|
||||
"MoonViTConfig",
|
||||
"KimiLinearConfig",
|
||||
"KimiVLConfig",
|
||||
"NemotronConfig",
|
||||
"NemotronHConfig",
|
||||
|
||||
144
vllm/transformers_utils/configs/kimi_linear.py
Normal file
144
vllm/transformers_utils/configs/kimi_linear.py
Normal file
@ -0,0 +1,144 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
from vllm.logger import init_logger
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
class KimiLinearConfig(PretrainedConfig):
|
||||
model_type = "kimi_linear"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_type="kimi_linear",
|
||||
vocab_size=163840,
|
||||
hidden_size=4096,
|
||||
head_dim=None,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
hidden_act="silu",
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
tie_word_embeddings=False,
|
||||
moe_intermediate_size: int | None = None,
|
||||
moe_renormalize: bool = True,
|
||||
moe_router_activation_func: str = "sigmoid",
|
||||
num_experts: int | None = None,
|
||||
num_experts_per_token: int | None = None,
|
||||
num_shared_experts: int = 0,
|
||||
routed_scaling_factor: float = 1.0,
|
||||
first_k_dense_replace: int = 0,
|
||||
moe_layer_freq: int = 1,
|
||||
use_grouped_topk: bool = True,
|
||||
num_expert_group: int = 1,
|
||||
topk_group: int = 1,
|
||||
q_lora_rank: int | None = None,
|
||||
kv_lora_rank: int | None = None,
|
||||
qk_nope_head_dim: int | None = None,
|
||||
qk_rope_head_dim: int | None = None,
|
||||
v_head_dim: int | None = None,
|
||||
mla_use_nope: bool | None = False,
|
||||
num_nextn_predict_layers: int = 0,
|
||||
linear_attn_config: dict | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
self.model_type = model_type
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.head_dim = (
|
||||
head_dim if head_dim is not None else hidden_size // num_attention_heads
|
||||
)
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.mla_use_nope = mla_use_nope
|
||||
# moe config
|
||||
self.num_experts = num_experts
|
||||
self.num_experts_per_token = num_experts_per_token
|
||||
self.moe_renormalize = moe_renormalize
|
||||
self.num_shared_experts = num_shared_experts
|
||||
self.routed_scaling_factor = routed_scaling_factor
|
||||
self.moe_router_activation_func = moe_router_activation_func
|
||||
assert self.moe_router_activation_func in ("softmax", "sigmoid")
|
||||
self.moe_intermediate_size = moe_intermediate_size
|
||||
self.first_k_dense_replace = first_k_dense_replace
|
||||
self.moe_layer_freq = moe_layer_freq
|
||||
self.use_grouped_topk = use_grouped_topk
|
||||
self.num_expert_group = num_expert_group
|
||||
self.topk_group = topk_group
|
||||
self.num_nextn_predict_layers = num_nextn_predict_layers
|
||||
|
||||
if linear_attn_config is not None:
|
||||
assert linear_attn_config["kda_layers"] is not None
|
||||
assert linear_attn_config["full_attn_layers"] is not None
|
||||
self.linear_attn_config = linear_attn_config
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def is_mla(self):
|
||||
return (
|
||||
self.q_lora_rank is not None
|
||||
or self.kv_lora_rank is not None
|
||||
or self.qk_nope_head_dim is not None
|
||||
or self.qk_rope_head_dim is not None
|
||||
or self.v_head_dim is not None
|
||||
or self.mla_use_nope is True
|
||||
)
|
||||
|
||||
@property
|
||||
def is_moe(self):
|
||||
return self.num_experts is not None
|
||||
|
||||
@property
|
||||
def is_linear_attn(self) -> bool:
|
||||
return not (
|
||||
self.linear_attn_config is None
|
||||
or (
|
||||
isinstance(self.linear_attn_config, dict)
|
||||
and self.linear_attn_config["kda_layers"] is not None
|
||||
and len(self.linear_attn_config["kda_layers"]) == 0
|
||||
)
|
||||
)
|
||||
|
||||
def is_kda_layer(self, layer_idx: int):
|
||||
return (
|
||||
self.linear_attn_config is not None
|
||||
and (layer_idx + 1) in self.linear_attn_config["kda_layers"]
|
||||
)
|
||||
@ -8,6 +8,7 @@ from collections import defaultdict
|
||||
from collections.abc import Iterator
|
||||
from contextlib import contextmanager
|
||||
from copy import deepcopy
|
||||
from functools import reduce
|
||||
from itertools import product
|
||||
from typing import TYPE_CHECKING, Any, NamedTuple, TypeAlias, cast
|
||||
|
||||
@ -4134,26 +4135,18 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
|
||||
def calculate_reorder_batch_threshold(self) -> None:
|
||||
"""
|
||||
Check that if any backends reorder batches; that the reordering
|
||||
is compatible (e.g., decode threshold is the same)
|
||||
Choose the minimum reorder batch threshold from all attention groups.
|
||||
Backends should be able to support lower threshold then what they request
|
||||
just may have a performance penalty due to that backend treating decodes
|
||||
as prefills.
|
||||
"""
|
||||
for group in self._attn_group_iterator():
|
||||
attn_metadata_builder_i = group.get_metadata_builder()
|
||||
min_none_high = lambda a, b: a if b is None else b if a is None else min(a, b)
|
||||
|
||||
# check that if any backends reorder batches; that the reordering
|
||||
# is compatible (e.g., decode threshold is the same)
|
||||
reorder_batch_threshold_i = attn_metadata_builder_i.reorder_batch_threshold
|
||||
if reorder_batch_threshold_i is not None:
|
||||
if self.reorder_batch_threshold is not None:
|
||||
if reorder_batch_threshold_i != self.reorder_batch_threshold:
|
||||
raise ValueError(
|
||||
f"Attention backend reorders decodes with "
|
||||
f"threshold {reorder_batch_threshold_i} but other "
|
||||
f"backend uses threshold "
|
||||
f"{self.reorder_batch_threshold}"
|
||||
)
|
||||
else:
|
||||
self.reorder_batch_threshold = reorder_batch_threshold_i
|
||||
reorder_batch_thresholds = [
|
||||
group.get_metadata_builder().reorder_batch_threshold
|
||||
for group in self._attn_group_iterator()
|
||||
]
|
||||
self.reorder_batch_threshold = reduce(min_none_high, reorder_batch_thresholds)
|
||||
|
||||
def _find_compatible_block_sizes(
|
||||
self,
|
||||
|
||||
Reference in New Issue
Block a user