Merge branch 'main' into wentao-refactor-batch-invariant-fp8-deepgemm
This commit is contained in:
@ -0,0 +1,14 @@
|
||||
model_name: "Qwen/Qwen3-235B-A22B-Instruct-2507-FP8"
|
||||
tasks:
|
||||
- name: "mmlu_pro"
|
||||
metrics:
|
||||
- name: "exact_match,custom-extract"
|
||||
value: 0.82
|
||||
limit: 250 # will run on 250 * 14 subjects = 3500 samples
|
||||
num_fewshot: 5
|
||||
enforce_eager: false # we use false to speed up the eval process
|
||||
kv_cache_dtype: fp8 # we use fp8 to speed up the eval process
|
||||
max_model_len: 40960
|
||||
apply_chat_template: true
|
||||
fewshot_as_multiturn: true
|
||||
gen_kwargs: "temperature=0,top_p=1,top_k=0,max_gen_toks=5632,until=<|ENDANSWER|>"
|
||||
@ -1 +0,0 @@
|
||||
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8.yaml
|
||||
@ -0,0 +1 @@
|
||||
Qwen3-235B-A22B-Instruct-2507-FP8.yaml
|
||||
@ -21,10 +21,13 @@ def launch_lm_eval(eval_config, tp_size):
|
||||
max_model_len = eval_config.get("max_model_len", 4096)
|
||||
batch_size = eval_config.get("batch_size", "auto")
|
||||
backend = eval_config.get("backend", "vllm")
|
||||
enforce_eager = eval_config.get("enforce_eager", "true")
|
||||
kv_cache_dtype = eval_config.get("kv_cache_dtype", "auto")
|
||||
model_args = (
|
||||
f"pretrained={eval_config['model_name']},"
|
||||
f"tensor_parallel_size={tp_size},"
|
||||
f"enforce_eager=true,"
|
||||
f"enforce_eager={enforce_eager},"
|
||||
f"kv_cache_dtype={kv_cache_dtype},"
|
||||
f"add_bos_token=true,"
|
||||
f"trust_remote_code={trust_remote_code},"
|
||||
f"max_model_len={max_model_len},"
|
||||
@ -37,8 +40,13 @@ def launch_lm_eval(eval_config, tp_size):
|
||||
limit=eval_config["limit"],
|
||||
# TODO(yeq): using chat template w/ fewshot_as_multiturn is supposed help
|
||||
# text models. however, this is regressing measured strict-match for
|
||||
# existing text models in CI, so only apply it for mm.
|
||||
apply_chat_template=backend == "vllm-vlm",
|
||||
# existing text models in CI, so only apply it for mm, or explicitly set
|
||||
apply_chat_template=eval_config.get(
|
||||
"apply_chat_template", backend == "vllm-vlm"
|
||||
),
|
||||
fewshot_as_multiturn=eval_config.get("fewshot_as_multiturn", False),
|
||||
# Forward decoding and early-stop controls (e.g., max_gen_toks, until=...)
|
||||
gen_kwargs=eval_config.get("gen_kwargs"),
|
||||
batch_size=batch_size,
|
||||
)
|
||||
return results
|
||||
|
||||
@ -1,184 +0,0 @@
|
||||
steps:
|
||||
- label: "Wait for container to be ready"
|
||||
key: wait-for-container-image
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
containers:
|
||||
- image: badouralix/curl-jq
|
||||
command:
|
||||
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
|
||||
- label: "Cleanup H100"
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: ~
|
||||
command: docker system prune -a --volumes --force
|
||||
|
||||
- label: "A100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: A100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch == "main"
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
priorityClassName: perf-benchmark
|
||||
containers:
|
||||
- image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 8
|
||||
volumeMounts:
|
||||
- name: devshm
|
||||
mountPath: /dev/shm
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
nodeSelector:
|
||||
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
|
||||
volumes:
|
||||
- name: devshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
|
||||
- label: "H200"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H200
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch == "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: 4,5,6,7
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
#- block: "Run H100 Benchmark"
|
||||
#key: block-h100
|
||||
#depends_on: ~
|
||||
|
||||
- label: "H100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch == "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
# Premerge benchmark
|
||||
- label: "A100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: A100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch != "main"
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
priorityClassName: perf-benchmark
|
||||
containers:
|
||||
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 8
|
||||
volumeMounts:
|
||||
- name: devshm
|
||||
mountPath: /dev/shm
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
nodeSelector:
|
||||
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
|
||||
volumes:
|
||||
- name: devshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
|
||||
- label: "H200"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H200
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch != "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: 4,5,6,7
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
#- block: "Run H100 Benchmark"
|
||||
#key: block-h100
|
||||
#depends_on: ~
|
||||
|
||||
- label: "H100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch != "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
@ -1,28 +0,0 @@
|
||||
# Nightly benchmark annotation
|
||||
|
||||
## Description
|
||||
|
||||
This file contains the downloading link for benchmarking results.
|
||||
|
||||
- [benchmarking pipeline](artifact://nightly-pipeline.yaml)
|
||||
- [benchmarking results](artifact://results.zip)
|
||||
- [benchmarking code](artifact://nightly-benchmarks.zip)
|
||||
|
||||
Please download the visualization scripts in the post
|
||||
|
||||
## Results reproduction
|
||||
|
||||
- Find the docker we use in `benchmarking pipeline`
|
||||
- Deploy the docker, and inside the docker:
|
||||
- Download `nightly-benchmarks.zip`.
|
||||
- In the same folder, run the following code:
|
||||
|
||||
```bash
|
||||
export HF_TOKEN=<your HF token>
|
||||
apt update
|
||||
apt install -y git
|
||||
unzip nightly-benchmarks.zip
|
||||
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
|
||||
```
|
||||
|
||||
And the results will be inside `./benchmarks/results`.
|
||||
@ -1,39 +0,0 @@
|
||||
|
||||
# Nightly benchmark
|
||||
|
||||
This benchmark aims to:
|
||||
|
||||
- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload.
|
||||
- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions.
|
||||
|
||||
Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end.
|
||||
|
||||
Latest reproduction guide: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
|
||||
|
||||
## Setup
|
||||
|
||||
- Docker images:
|
||||
- vLLM: `vllm/vllm-openai:v0.6.2`
|
||||
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
|
||||
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
|
||||
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
|
||||
- *NOTE: we use r24.07 as the current implementation only works for this version. We are going to bump this up.*
|
||||
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
|
||||
- Hardware
|
||||
- 8x Nvidia A100 GPUs
|
||||
- Workload:
|
||||
- Dataset
|
||||
- ShareGPT dataset
|
||||
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
|
||||
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
|
||||
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
|
||||
- Models: llama-3 8B, llama-3 70B.
|
||||
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
|
||||
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
|
||||
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
|
||||
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
|
||||
|
||||
## Known issues
|
||||
|
||||
- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105).
|
||||
- TGI does not support `ignore-eos` flag.
|
||||
@ -1,196 +0,0 @@
|
||||
common_pod_spec: &common_pod_spec
|
||||
priorityClassName: perf-benchmark
|
||||
nodeSelector:
|
||||
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
|
||||
volumes:
|
||||
- name: devshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
- name: hf-cache
|
||||
hostPath:
|
||||
path: /root/.cache/huggingface
|
||||
type: Directory
|
||||
|
||||
common_container_settings: &common_container_settings
|
||||
command:
|
||||
- bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 8
|
||||
volumeMounts:
|
||||
- name: devshm
|
||||
mountPath: /dev/shm
|
||||
- name: hf-cache
|
||||
mountPath: /root/.cache/huggingface
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: HF_HOME
|
||||
value: /root/.cache/huggingface
|
||||
- name: VLLM_SOURCE_CODE_LOC
|
||||
value: /workspace/build/buildkite/vllm/performance-benchmark
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
|
||||
steps:
|
||||
- block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours."
|
||||
|
||||
|
||||
|
||||
- label: "A100 vllm step 10"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: vllm/vllm-openai:v0.6.2
|
||||
<<: *common_container_settings
|
||||
|
||||
|
||||
|
||||
- label: "A100 sglang benchmark"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: lmsysorg/sglang:v0.3.2-cu121
|
||||
<<: *common_container_settings
|
||||
|
||||
- label: "A100 lmdeploy benchmark"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: openmmlab/lmdeploy:v0.6.1-cu12
|
||||
<<: *common_container_settings
|
||||
|
||||
|
||||
|
||||
|
||||
- label: "A100 trt llama-8B"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
|
||||
<<: *common_container_settings
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: HF_HOME
|
||||
value: /root/.cache/huggingface
|
||||
- name: VLLM_SOURCE_CODE_LOC
|
||||
value: /workspace/build/buildkite/vllm/performance-benchmark
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
- name: TEST_SELECTOR
|
||||
value: "llama8B"
|
||||
|
||||
|
||||
- label: "A100 trt llama-70B"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
|
||||
<<: *common_container_settings
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: HF_HOME
|
||||
value: /root/.cache/huggingface
|
||||
- name: VLLM_SOURCE_CODE_LOC
|
||||
value: /workspace/build/buildkite/vllm/performance-benchmark
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
- name: TEST_SELECTOR
|
||||
value: "llama70B"
|
||||
|
||||
|
||||
# FIXME(Kuntai): uncomment this after NVIDIA gives us their test docker image
|
||||
# - label: "A100 trt benchmark"
|
||||
# priority: 100
|
||||
# agents:
|
||||
# queue: A100
|
||||
# plugins:
|
||||
# - kubernetes:
|
||||
# podSpec:
|
||||
# <<: *common_pod_spec
|
||||
# containers:
|
||||
# - image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
|
||||
# <<: *common_container_settings
|
||||
|
||||
|
||||
# FIXME(Kuntai): uncomment this after TGI supports `--ignore-eos`.
|
||||
# - label: "A100 tgi benchmark"
|
||||
# priority: 100
|
||||
# agents:
|
||||
# queue: A100
|
||||
# plugins:
|
||||
# - kubernetes:
|
||||
# podSpec:
|
||||
# <<: *common_pod_spec
|
||||
# containers:
|
||||
# - image: ghcr.io/huggingface/text-generation-inference:2.2.0
|
||||
# <<: *common_container_settings
|
||||
|
||||
- wait
|
||||
|
||||
- label: "Collect the results"
|
||||
priority: 100
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
<<: *common_pod_spec
|
||||
containers:
|
||||
- image: vllm/vllm-openai:v0.5.0.post1
|
||||
command:
|
||||
- bash .buildkite/nightly-benchmarks/scripts/nightly-annotate.sh
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 8
|
||||
volumeMounts:
|
||||
- name: devshm
|
||||
mountPath: /dev/shm
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: VLLM_SOURCE_CODE_LOC
|
||||
value: /workspace/build/buildkite/vllm/performance-benchmark
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
|
||||
- block: ":rocket: check the results!"
|
||||
@ -1,26 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
def main(model, cachedir):
|
||||
# Load the tokenizer and save it to the specified directory
|
||||
tokenizer = AutoTokenizer.from_pretrained(model)
|
||||
tokenizer.save_pretrained(cachedir)
|
||||
print(f"Tokenizer saved to {cachedir}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Download and save Hugging Face tokenizer"
|
||||
)
|
||||
parser.add_argument("--model", type=str, required=True, help="Name of the model")
|
||||
parser.add_argument(
|
||||
"--cachedir", type=str, required=True, help="Directory to save the tokenizer"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args.model, args.cachedir)
|
||||
@ -1,97 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Parse command line arguments for summary-nightly-results script."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--results-folder",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The folder where the results are stored.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--description", type=str, required=True, help="Description of the results."
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def get_perf(df, method, model, metric):
|
||||
means = []
|
||||
|
||||
for qps in [2, 4, 8, 16, "inf"]:
|
||||
target = df["Test name"].str.contains(model)
|
||||
target = target & df["Engine"].str.contains(method)
|
||||
target = target & df["Test name"].str.contains("qps_" + str(qps))
|
||||
filtered_df = df[target]
|
||||
|
||||
if filtered_df.empty:
|
||||
means.append(0.0)
|
||||
else:
|
||||
means.append(filtered_df[metric].values[0])
|
||||
|
||||
return np.array(means)
|
||||
|
||||
|
||||
def get_perf_w_std(df, method, model, metric):
|
||||
if metric in ["TTFT", "ITL"]:
|
||||
mean = get_perf(df, method, model, "Mean " + metric + " (ms)")
|
||||
mean = mean.tolist()
|
||||
std = get_perf(df, method, model, "Std " + metric + " (ms)")
|
||||
if std.mean() == 0:
|
||||
std = None
|
||||
success = get_perf(df, method, model, "Successful req.")
|
||||
if std is not None:
|
||||
std = std / np.sqrt(success)
|
||||
std = std.tolist()
|
||||
|
||||
else:
|
||||
assert metric == "Tput"
|
||||
mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf(
|
||||
df, method, model, "Output Tput (tok/s)"
|
||||
)
|
||||
mean = mean.tolist()
|
||||
std = None
|
||||
|
||||
return mean, std
|
||||
|
||||
|
||||
def main(args):
|
||||
results_folder = Path(args.results_folder)
|
||||
|
||||
results = []
|
||||
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*_nightly_results.json"):
|
||||
with open(test_file) as f:
|
||||
results = results + json.loads(f.read())
|
||||
|
||||
# generate markdown table
|
||||
df = pd.DataFrame.from_dict(results)
|
||||
|
||||
md_table = tabulate(df, headers="keys", tablefmt="pipe", showindex=False)
|
||||
|
||||
with open(args.description) as f:
|
||||
description = f.read()
|
||||
|
||||
description = description.format(nightly_results_benchmarking_table=md_table)
|
||||
|
||||
with open("nightly_results.md", "w") as f:
|
||||
f.write(description)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_arguments()
|
||||
main(args)
|
||||
@ -1,9 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
api_client = APIClient("http://localhost:8000")
|
||||
model_name = api_client.available_models[0]
|
||||
|
||||
print(model_name)
|
||||
@ -1,78 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
set -o pipefail
|
||||
|
||||
|
||||
main() {
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
(which jq) || (apt-get update && apt-get -y install jq)
|
||||
(which zip) || (apt-get install -y zip)
|
||||
|
||||
if [ ! -f /workspace/buildkite-agent ]; then
|
||||
echo "buildkite-agent binary not found. Skip plotting the results."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# initial annotation
|
||||
#description="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-descriptions.md"
|
||||
|
||||
# download results
|
||||
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
|
||||
mkdir -p results/
|
||||
/workspace/buildkite-agent artifact download 'results/*nightly_results.json' results/
|
||||
ls
|
||||
ls results/
|
||||
|
||||
# upload benchmark results
|
||||
zip -r results.zip results/
|
||||
/workspace/buildkite-agent artifact upload "results.zip"
|
||||
|
||||
# upload benchmarking scripts
|
||||
cd "$VLLM_SOURCE_CODE_LOC/"
|
||||
zip -r nightly-benchmarks.zip .buildkite/ benchmarks/
|
||||
/workspace/buildkite-agent artifact upload "nightly-benchmarks.zip"
|
||||
|
||||
cd "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
|
||||
# upload benchmarking pipeline
|
||||
/workspace/buildkite-agent artifact upload "nightly-pipeline.yaml"
|
||||
|
||||
cd "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
|
||||
/workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly-annotation.md
|
||||
|
||||
|
||||
|
||||
# The figures should be generated by a separate process outside the CI/CD pipeline
|
||||
|
||||
# # generate figures
|
||||
# python3 -m pip install tabulate pandas matplotlib
|
||||
|
||||
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/generate-nightly-markdown.py \
|
||||
# --description $description \
|
||||
# --results-folder results/
|
||||
|
||||
|
||||
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
|
||||
# --description $description \
|
||||
# --results-folder results/ \
|
||||
# --dataset sharegpt
|
||||
|
||||
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
|
||||
# --description $description \
|
||||
# --results-folder results/ \
|
||||
# --dataset sonnet_2048_128
|
||||
|
||||
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
|
||||
# --description $description \
|
||||
# --results-folder results/ \
|
||||
# --dataset sonnet_128_2048
|
||||
|
||||
# # upload results and figures
|
||||
# /workspace/buildkite-agent artifact upload "nightly_results*.png"
|
||||
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml
|
||||
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json
|
||||
# /workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md
|
||||
}
|
||||
|
||||
main "$@"
|
||||
@ -1,464 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -o pipefail
|
||||
set -x
|
||||
|
||||
check_gpus() {
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
if [[ $gpu_count -gt 0 ]]; then
|
||||
echo "GPU found."
|
||||
else
|
||||
echo "Need at least 1 GPU to run benchmarking."
|
||||
exit 1
|
||||
fi
|
||||
declare -g gpu_type="$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')"
|
||||
echo "GPU type is $gpu_type"
|
||||
}
|
||||
|
||||
check_hf_token() {
|
||||
# check if HF_TOKEN is available and valid
|
||||
if [[ -z "$HF_TOKEN" ]]; then
|
||||
echo "Error: HF_TOKEN is not set."
|
||||
exit 1
|
||||
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
|
||||
echo "Error: HF_TOKEN does not start with 'hf_'."
|
||||
exit 1
|
||||
else
|
||||
echo "HF_TOKEN is set and valid."
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
upload_to_buildkite() {
|
||||
# upload the benchmarking results to buildkite
|
||||
|
||||
# if the agent binary is not found, skip uploading the results, exit 0
|
||||
if [ ! -f /workspace/buildkite-agent ]; then
|
||||
echo "buildkite-agent binary not found. Skip uploading the results."
|
||||
return 0
|
||||
fi
|
||||
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
|
||||
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
|
||||
}
|
||||
|
||||
|
||||
get_current_llm_serving_engine() {
|
||||
|
||||
if which lmdeploy >/dev/null; then
|
||||
echo "Container: lmdeploy"
|
||||
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
|
||||
return
|
||||
fi
|
||||
|
||||
if [ -e /tgi-entrypoint.sh ]; then
|
||||
echo "Container: tgi"
|
||||
export CURRENT_LLM_SERVING_ENGINE=tgi
|
||||
return
|
||||
fi
|
||||
|
||||
if which trtllm-build >/dev/null; then
|
||||
echo "Container: tensorrt-llm"
|
||||
export CURRENT_LLM_SERVING_ENGINE=trt
|
||||
return
|
||||
fi
|
||||
|
||||
if [ -e /sgl-workspace ]; then
|
||||
echo "Container: sglang"
|
||||
export CURRENT_LLM_SERVING_ENGINE=sglang
|
||||
return
|
||||
fi
|
||||
|
||||
if [ -e /vllm-workspace ]; then
|
||||
echo "Container: vllm"
|
||||
# move to a completely irrelevant directory, to avoid import vllm from current folder
|
||||
export CURRENT_LLM_SERVING_ENGINE=vllm
|
||||
|
||||
return
|
||||
fi
|
||||
}
|
||||
|
||||
json2args() {
|
||||
# transforms the JSON string to command line args, and '_' is replaced to '-'
|
||||
# example:
|
||||
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
|
||||
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
|
||||
local json_string=$1
|
||||
local args=$(
|
||||
echo "$json_string" | jq -r '
|
||||
to_entries |
|
||||
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
|
||||
join(" ")
|
||||
'
|
||||
)
|
||||
echo "$args"
|
||||
}
|
||||
|
||||
kill_gpu_processes() {
|
||||
pkill -f '[p]ython'
|
||||
pkill -f '[p]ython3'
|
||||
pkill -f '[t]ritonserver'
|
||||
pkill -f '[p]t_main_thread'
|
||||
pkill -f '[t]ext-generation'
|
||||
pkill -f '[l]mdeploy'
|
||||
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
|
||||
pkill -f '[V]LLM'
|
||||
|
||||
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
}
|
||||
|
||||
wait_for_server() {
|
||||
# wait for vllm server to start
|
||||
# return 1 if vllm server crashes
|
||||
timeout 1200 bash -c '
|
||||
until curl -s localhost:8000/v1/completions > /dev/null; do
|
||||
sleep 1
|
||||
done' && return 0 || return 1
|
||||
}
|
||||
|
||||
ensure_installed() {
|
||||
# Ensure that the given command is installed by apt-get
|
||||
local cmd=$1
|
||||
if ! which "$cmd" >/dev/null; then
|
||||
apt-get update && apt-get install -y "$cmd"
|
||||
fi
|
||||
}
|
||||
|
||||
run_serving_tests() {
|
||||
# run serving tests using `vllm bench serve` command
|
||||
# $1: a json file specifying serving test cases
|
||||
|
||||
local serving_test_file
|
||||
serving_test_file=$1
|
||||
|
||||
# Iterate over serving tests
|
||||
jq -c '.[]' "$serving_test_file" | while read -r params; do
|
||||
# get the test name, and append the GPU type back to it.
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
||||
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
||||
echo "Skip test case $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
# prepend the current serving engine to the test name
|
||||
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
|
||||
|
||||
# get common parameters
|
||||
common_params=$(echo "$params" | jq -r '.common_parameters')
|
||||
model=$(echo "$common_params" | jq -r '.model')
|
||||
tp=$(echo "$common_params" | jq -r '.tp')
|
||||
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
|
||||
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
|
||||
port=$(echo "$common_params" | jq -r '.port')
|
||||
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
|
||||
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
|
||||
|
||||
# get client and server arguments
|
||||
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
|
||||
client_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_client_parameters")
|
||||
client_args=$(json2args "$client_params")
|
||||
qps_list=$(echo "$params" | jq -r '.qps_list')
|
||||
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
||||
echo "Running over qps list $qps_list"
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
if [[ $gpu_count -lt $tp ]]; then
|
||||
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
if [[ $reuse_server == "true" ]]; then
|
||||
echo "Reuse previous server for test case $test_name"
|
||||
else
|
||||
kill_gpu_processes
|
||||
bash "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh" \
|
||||
"$server_params" "$common_params"
|
||||
fi
|
||||
|
||||
if wait_for_server; then
|
||||
echo ""
|
||||
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
|
||||
else
|
||||
echo ""
|
||||
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
|
||||
break
|
||||
fi
|
||||
|
||||
# prepare tokenizer
|
||||
# this is required for lmdeploy.
|
||||
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
|
||||
rm -rf /tokenizer_cache
|
||||
mkdir /tokenizer_cache
|
||||
python3 ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
|
||||
--model "$model" \
|
||||
--cachedir /tokenizer_cache
|
||||
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
|
||||
|
||||
|
||||
# change model name for lmdeploy (it will not follow standard hf name)
|
||||
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "lmdeploy" ]]; then
|
||||
model=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
|
||||
fi
|
||||
|
||||
# iterate over different QPS
|
||||
for qps in $qps_list; do
|
||||
# remove the surrounding single quote from qps
|
||||
if [[ "$qps" == *"inf"* ]]; then
|
||||
echo "qps was $qps"
|
||||
qps="inf"
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
|
||||
backend=$CURRENT_LLM_SERVING_ENGINE
|
||||
|
||||
if [[ $backend = "trt" ]]; then
|
||||
backend="tensorrt-llm"
|
||||
fi
|
||||
|
||||
if [[ "$backend" == *"vllm"* ]]; then
|
||||
backend="vllm"
|
||||
fi
|
||||
|
||||
if [[ "$dataset_name" = "sharegpt" ]]; then
|
||||
|
||||
client_command="vllm bench serve \
|
||||
--backend $backend \
|
||||
--tokenizer /tokenizer_cache \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--num-prompts $num_prompts \
|
||||
--port $port \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
--ignore-eos \
|
||||
$client_args"
|
||||
|
||||
elif [[ "$dataset_name" = "sonnet" ]]; then
|
||||
|
||||
sonnet_input_len=$(echo "$common_params" | jq -r '.sonnet_input_len')
|
||||
sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len')
|
||||
sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len')
|
||||
|
||||
client_command="vllm bench serve \
|
||||
--backend $backend \
|
||||
--tokenizer /tokenizer_cache \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--num-prompts $num_prompts \
|
||||
--sonnet-input-len $sonnet_input_len \
|
||||
--sonnet-output-len $sonnet_output_len \
|
||||
--sonnet-prefix-len $sonnet_prefix_len \
|
||||
--port $port \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
--ignore-eos \
|
||||
$client_args"
|
||||
|
||||
else
|
||||
|
||||
echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name."
|
||||
exit 1
|
||||
|
||||
fi
|
||||
|
||||
|
||||
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
echo "Client command: $client_command"
|
||||
|
||||
eval "$client_command"
|
||||
|
||||
server_command="None"
|
||||
|
||||
# record the benchmarking commands
|
||||
jq_output=$(jq -n \
|
||||
--arg server "$server_command" \
|
||||
--arg client "$client_command" \
|
||||
--arg gpu "$gpu_type" \
|
||||
--arg engine "$CURRENT_LLM_SERVING_ENGINE" \
|
||||
'{
|
||||
server_command: $server,
|
||||
client_command: $client,
|
||||
gpu_type: $gpu,
|
||||
engine: $engine
|
||||
}')
|
||||
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
|
||||
|
||||
done
|
||||
|
||||
done
|
||||
|
||||
kill_gpu_processes
|
||||
}
|
||||
|
||||
run_genai_perf_tests() {
|
||||
# run genai-perf tests
|
||||
|
||||
# $1: a json file specifying genai-perf test cases
|
||||
local genai_perf_test_file
|
||||
genai_perf_test_file=$1
|
||||
|
||||
# Iterate over genai-perf tests
|
||||
jq -c '.[]' "$genai_perf_test_file" | while read -r params; do
|
||||
# get the test name, and append the GPU type back to it.
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
||||
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
||||
echo "Skip test case $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
# prepend the current serving engine to the test name
|
||||
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
|
||||
|
||||
# get common parameters
|
||||
common_params=$(echo "$params" | jq -r '.common_parameters')
|
||||
model=$(echo "$common_params" | jq -r '.model')
|
||||
tp=$(echo "$common_params" | jq -r '.tp')
|
||||
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
|
||||
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
|
||||
port=$(echo "$common_params" | jq -r '.port')
|
||||
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
|
||||
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
|
||||
|
||||
# get client and server arguments
|
||||
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
|
||||
qps_list=$(echo "$params" | jq -r '.qps_list')
|
||||
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
||||
echo "Running over qps list $qps_list"
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
if [[ $gpu_count -lt $tp ]]; then
|
||||
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
if [[ $reuse_server == "true" ]]; then
|
||||
echo "Reuse previous server for test case $test_name"
|
||||
else
|
||||
kill_gpu_processes
|
||||
bash "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh" \
|
||||
"$server_params" "$common_params"
|
||||
fi
|
||||
|
||||
if wait_for_server; then
|
||||
echo ""
|
||||
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
|
||||
else
|
||||
echo ""
|
||||
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
|
||||
break
|
||||
fi
|
||||
|
||||
# iterate over different QPS
|
||||
for qps in $qps_list; do
|
||||
# remove the surrounding single quote from qps
|
||||
if [[ "$qps" == *"inf"* ]]; then
|
||||
echo "qps was $qps"
|
||||
qps=$num_prompts
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
backend=$CURRENT_LLM_SERVING_ENGINE
|
||||
|
||||
if [[ "$backend" == *"vllm"* ]]; then
|
||||
backend="vllm"
|
||||
fi
|
||||
#TODO: add output dir.
|
||||
client_command="genai-perf profile \
|
||||
-m $model \
|
||||
--service-kind openai \
|
||||
--backend "$backend" \
|
||||
--endpoint-type chat \
|
||||
--streaming \
|
||||
--url localhost:$port \
|
||||
--request-rate $qps \
|
||||
--num-prompts $num_prompts \
|
||||
"
|
||||
|
||||
echo "Client command: $client_command"
|
||||
|
||||
eval "$client_command"
|
||||
|
||||
#TODO: process/record outputs
|
||||
done
|
||||
done
|
||||
|
||||
kill_gpu_processes
|
||||
|
||||
}
|
||||
|
||||
prepare_dataset() {
|
||||
|
||||
# download sharegpt dataset
|
||||
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
# duplicate sonnet by 4x, to allow benchmarking with input length 2048
|
||||
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
|
||||
echo "" > sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat sonnet.txt >> sonnet_4x.txt
|
||||
done
|
||||
|
||||
}
|
||||
|
||||
main() {
|
||||
|
||||
# check if the environment variable is successfully injected from yaml
|
||||
|
||||
check_gpus
|
||||
check_hf_token
|
||||
get_current_llm_serving_engine
|
||||
|
||||
pip install -U transformers
|
||||
|
||||
pip install -r requirements/dev.txt
|
||||
which genai-perf
|
||||
|
||||
# check storage
|
||||
df -h
|
||||
|
||||
ensure_installed wget
|
||||
ensure_installed curl
|
||||
ensure_installed jq
|
||||
# genai-perf dependency
|
||||
ensure_installed libb64-0d
|
||||
|
||||
prepare_dataset
|
||||
|
||||
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
|
||||
declare -g RESULTS_FOLDER=results/
|
||||
mkdir -p $RESULTS_FOLDER
|
||||
BENCHMARK_ROOT="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
|
||||
|
||||
# run the test
|
||||
run_serving_tests "$BENCHMARK_ROOT/tests/nightly-tests.json"
|
||||
|
||||
# run genai-perf tests
|
||||
run_genai_perf_tests "$BENCHMARK_ROOT/tests/genai-perf-tests.json"
|
||||
mv artifacts/ $RESULTS_FOLDER/
|
||||
|
||||
# upload benchmark results to buildkite
|
||||
python3 -m pip install tabulate pandas
|
||||
python3 "$BENCHMARK_ROOT/scripts/summary-nightly-results.py"
|
||||
upload_to_buildkite
|
||||
|
||||
}
|
||||
|
||||
main "$@"
|
||||
@ -1,82 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
|
||||
results_folder = Path("results/")
|
||||
|
||||
# serving results and the keys that will be printed into markdown
|
||||
serving_results = []
|
||||
serving_column_mapping = {
|
||||
"test_name": "Test name",
|
||||
"gpu_type": "GPU",
|
||||
"completed": "Successful req.",
|
||||
"request_throughput": "Tput (req/s)",
|
||||
"mean_ttft_ms": "Mean TTFT (ms)",
|
||||
"std_ttft_ms": "Std TTFT (ms)",
|
||||
"median_ttft_ms": "Median TTFT (ms)",
|
||||
"mean_itl_ms": "Mean ITL (ms)",
|
||||
"std_itl_ms": "Std ITL (ms)",
|
||||
"median_itl_ms": "Median ITL (ms)",
|
||||
"mean_tpot_ms": "Mean TPOT (ms)",
|
||||
"std_tpot_ms": "Std TPOT (ms)",
|
||||
"median_tpot_ms": "Median TPOT (ms)",
|
||||
"total_token_throughput": "Total Token Tput (tok/s)",
|
||||
"output_throughput": "Output Tput (tok/s)",
|
||||
"total_input_tokens": "Total input tokens",
|
||||
"total_output_tokens": "Total output tokens",
|
||||
"engine": "Engine",
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*.json"):
|
||||
with open(test_file) as f:
|
||||
raw_result = json.loads(f.read())
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
raw_result.update(command)
|
||||
|
||||
# update the test name of this result
|
||||
raw_result.update({"test_name": test_file.stem})
|
||||
|
||||
# add the result to raw_result
|
||||
serving_results.append(raw_result)
|
||||
continue
|
||||
|
||||
serving_results = pd.DataFrame.from_dict(serving_results)
|
||||
|
||||
if not serving_results.empty:
|
||||
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping
|
||||
)
|
||||
|
||||
serving_md_table_with_headers = tabulate(
|
||||
serving_results, headers="keys", tablefmt="pipe", showindex=False
|
||||
)
|
||||
# remove the first line of header
|
||||
serving_md_table_lines = serving_md_table_with_headers.split("\n")
|
||||
serving_md_table_without_header = "\n".join(serving_md_table_lines[2:])
|
||||
|
||||
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
||||
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
|
||||
|
||||
# document benchmarking results in markdown
|
||||
with open(results_folder / f"{prefix}_nightly_results.md", "w") as f:
|
||||
# document results with header.
|
||||
# for those who wants to reproduce our benchmark.
|
||||
f.write(serving_md_table_with_headers)
|
||||
f.write("\n")
|
||||
|
||||
# document benchmarking results in json
|
||||
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
|
||||
results = serving_results.to_dict(orient="records")
|
||||
f.write(json.dumps(results))
|
||||
@ -1,23 +0,0 @@
|
||||
#!/bin/sh
|
||||
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-postmerge-repo:pull" | jq -r .token)
|
||||
if [[ "$BUILDKITE_BRANCH" == "main" ]]; then
|
||||
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-postmerge-repo/manifests/$BUILDKITE_COMMIT"
|
||||
else
|
||||
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
|
||||
fi
|
||||
|
||||
TIMEOUT_SECONDS=10
|
||||
|
||||
retries=0
|
||||
while [ $retries -lt 1000 ]; do
|
||||
if [ "$(curl -s --max-time "$TIMEOUT_SECONDS" -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" "$URL")" -eq 200 ]; then
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Waiting for image to be available..."
|
||||
|
||||
retries=$((retries + 1))
|
||||
sleep 5
|
||||
done
|
||||
|
||||
exit 1
|
||||
@ -2,40 +2,23 @@
|
||||
|
||||
## Introduction
|
||||
|
||||
This directory contains two sets of benchmark for vllm.
|
||||
|
||||
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
|
||||
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
|
||||
|
||||
See [vLLM performance dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
|
||||
This directory contains a benchmarking suite for **developers** to run locally and gain clarity on whether their PR improves/degrades vllm's performance.
|
||||
vLLM also maintains a continuous performance benchmark under [perf.vllm.ai](https://perf.vllm.ai/), hosted under PyTorch CI HUD.
|
||||
|
||||
## Performance benchmark quick overview
|
||||
|
||||
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) and Intel® Xeon® Processors, with different models.
|
||||
**Benchmarking Coverage**: latency, throughput and fix-qps serving on B200, A100, H100 and Intel® Xeon® Processors, with different models.
|
||||
|
||||
**Benchmarking Duration**: about 1hr.
|
||||
|
||||
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
|
||||
|
||||
## Nightly benchmark quick overview
|
||||
|
||||
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
|
||||
|
||||
**Benchmarking engines**: vllm, TGI, trt-llm and lmdeploy.
|
||||
|
||||
**Benchmarking Duration**: about 3.5hrs.
|
||||
|
||||
## Trigger the benchmark
|
||||
|
||||
Performance benchmark will be triggered when:
|
||||
|
||||
- A PR being merged into vllm.
|
||||
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
|
||||
|
||||
Manually Trigger the benchmark
|
||||
The benchmark needs to be triggered manually:
|
||||
|
||||
```bash
|
||||
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
bash .buildkite/performance-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
```
|
||||
|
||||
Runtime environment variables:
|
||||
@ -47,10 +30,6 @@ Runtime environment variables:
|
||||
- `REMOTE_HOST`: IP for the remote vLLM service to benchmark. Default value is empty string.
|
||||
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
|
||||
|
||||
Nightly benchmark will be triggered when:
|
||||
|
||||
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
|
||||
|
||||
## Performance benchmark details
|
||||
|
||||
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
|
||||
@ -152,26 +131,3 @@ Here is an example using the script to compare result_a and result_b with Model,
|
||||
A comparison diagram will be generated below the table.
|
||||
Here is an example to compare between 96c/results_gnr_96c_091_tp2pp3 and 128c/results_gnr_128c_091_tp2pp3
|
||||
<img width="1886" height="828" alt="image" src="https://github.com/user-attachments/assets/c02a43ef-25d0-4fd6-90e5-2169a28682dd" />
|
||||
|
||||
## Nightly test details
|
||||
|
||||
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
|
||||
|
||||
### Workflow
|
||||
|
||||
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
|
||||
- Inside each container, we run [scripts/run-nightly-benchmarks.sh](scripts/run-nightly-benchmarks.sh), which will probe the serving engine of the current container.
|
||||
- The `scripts/run-nightly-benchmarks.sh` will parse the workload described in [nightly-tests.json](tests/nightly-tests.json) and launch the right benchmark for the specified serving engine via `scripts/launch-server.sh`.
|
||||
- At last, we run [scripts/summary-nightly-results.py](scripts/summary-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
|
||||
|
||||
### Nightly tests
|
||||
|
||||
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
|
||||
|
||||
### Docker containers
|
||||
|
||||
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
|
||||
|
||||
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `scripts/run-nightly-benchmarks.sh` and `scripts/launch-server.sh`.
|
||||
|
||||
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).
|
||||
@ -392,7 +392,7 @@ if __name__ == "__main__":
|
||||
json_file = "benchmark_results.json"
|
||||
with open(results_folder / md_file, "w") as f:
|
||||
results = read_markdown(
|
||||
"../.buildkite/nightly-benchmarks/"
|
||||
"../.buildkite/performance-benchmarks/"
|
||||
+ "performance-benchmarks-descriptions.md"
|
||||
)
|
||||
results = results.format(
|
||||
@ -469,7 +469,7 @@ main() {
|
||||
ensure_sharegpt_downloaded
|
||||
declare -g RESULTS_FOLDER=results/
|
||||
mkdir -p $RESULTS_FOLDER
|
||||
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
|
||||
QUICK_BENCHMARK_ROOT=../.buildkite/performance-benchmarks/
|
||||
|
||||
# dump vllm info via vllm collect-env
|
||||
env_output=$(vllm collect-env)
|
||||
@ -20,7 +20,10 @@ trap remove_docker_container EXIT
|
||||
|
||||
# Run the image and test offline inference/tensor parallel
|
||||
docker run \
|
||||
--device /dev/dri \
|
||||
--device /dev/dri:/dev/dri \
|
||||
--net=host \
|
||||
--ipc=host \
|
||||
--privileged \
|
||||
-v /dev/dri/by-path:/dev/dri/by-path \
|
||||
--entrypoint="" \
|
||||
-e "HF_TOKEN=${HF_TOKEN}" \
|
||||
@ -42,7 +45,7 @@ docker run \
|
||||
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
|
||||
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
|
||||
pytest -v -s v1/structured_output
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py --ignore=v1/spec_decode/test_speculators_eagle3.py
|
||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
||||
pytest -v -s v1/test_serial_utils.py
|
||||
'
|
||||
|
||||
@ -38,7 +38,7 @@ steps:
|
||||
- label: Pytorch Nightly Dependency Override Check # 2min
|
||||
# if this test fails, it means the nightly torch version is not compatible with some
|
||||
# of the dependencies. Please check the error message and add the package to whitelist
|
||||
# in /vllm/tools/generate_nightly_torch_test.py
|
||||
# in /vllm/tools/pre_commit/generate_nightly_torch_test.py
|
||||
mirror_hardwares: [amdexperimental]
|
||||
agent_pool: mi325_1
|
||||
# grade: Blocking
|
||||
@ -286,7 +286,7 @@ steps:
|
||||
|
||||
- label: Engine Test # 25min
|
||||
timeout_in_minutes: 40
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
agent_pool: mi325_1
|
||||
#grade: Blocking
|
||||
source_file_dependencies:
|
||||
@ -318,7 +318,7 @@ steps:
|
||||
|
||||
- label: V1 Test entrypoints # 35min
|
||||
timeout_in_minutes: 50
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
agent_pool: mi325_1
|
||||
# grade: Blocking
|
||||
source_file_dependencies:
|
||||
@ -908,7 +908,7 @@ steps:
|
||||
|
||||
- label: Quantized Models Test # 45 min
|
||||
timeout_in_minutes: 60
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
agent_pool: mi325_1
|
||||
# grade: Blocking
|
||||
source_file_dependencies:
|
||||
|
||||
@ -38,7 +38,7 @@ steps:
|
||||
- label: Pytorch Nightly Dependency Override Check # 2min
|
||||
# if this test fails, it means the nightly torch version is not compatible with some
|
||||
# of the dependencies. Please check the error message and add the package to whitelist
|
||||
# in /vllm/tools/generate_nightly_torch_test.py
|
||||
# in /vllm/tools/pre_commit/generate_nightly_torch_test.py
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- requirements/nightly_torch_test.txt
|
||||
@ -205,6 +205,24 @@ steps:
|
||||
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
|
||||
- popd
|
||||
|
||||
- label: Distributed Tests (8 GPUs) # 4min
|
||||
timeout_in_minutes: 10
|
||||
gpu: h100
|
||||
num_gpus: 8
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
source_file_dependencies:
|
||||
- examples/offline_inference/torchrun_dp_example.py
|
||||
- vllm/config/parallel.py
|
||||
- vllm/distributed/
|
||||
- vllm/v1/engine/llm_engine.py
|
||||
- vllm/v1/executor/uniproc_executor.py
|
||||
- vllm/v1/worker/gpu_worker.py
|
||||
commands:
|
||||
# https://github.com/NVIDIA/nccl/issues/1838
|
||||
- export NCCL_CUMEM_HOST_ENABLE=0
|
||||
# test with torchrun tp=2 and dp=4 with ep
|
||||
- torchrun --nproc-per-node=8 ../examples/offline_inference/torchrun_dp_example.py --tp-size=2 --pp-size=1 --dp-size=4 --enable-ep
|
||||
|
||||
- label: EPLB Algorithm Test # 5min
|
||||
timeout_in_minutes: 15
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
@ -401,7 +419,7 @@ steps:
|
||||
--ignore=lora/test_deepseekv2_tp.py \
|
||||
--ignore=lora/test_gptoss.py \
|
||||
--ignore=lora/test_qwen3moe_tp.py
|
||||
|
||||
|
||||
parallelism: 4
|
||||
|
||||
- label: PyTorch Compilation Unit Tests # 15min
|
||||
@ -498,6 +516,8 @@ steps:
|
||||
- tests/kernels/moe
|
||||
- vllm/model_executor/layers/fused_moe/
|
||||
- vllm/distributed/device_communicators/
|
||||
- vllm/envs.py
|
||||
- vllm/config
|
||||
commands:
|
||||
- pytest -v -s kernels/moe --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
@ -1124,7 +1144,7 @@ steps:
|
||||
- tests/weight_loading
|
||||
commands:
|
||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
||||
|
||||
|
||||
- label: NixlConnector PD accuracy tests (Distributed) # 30min
|
||||
timeout_in_minutes: 30
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
@ -1166,6 +1186,19 @@ steps:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
|
||||
|
||||
##### H100 test #####
|
||||
- label: LM Eval Large Models (H100) # optional
|
||||
gpu: h100
|
||||
optional: true
|
||||
num_gpus: 4
|
||||
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/model_executor/layers/quantization
|
||||
commands:
|
||||
- export VLLM_USE_DEEP_GEMM=0 # We found Triton is faster than DeepGEMM for H100
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large-hopper.txt --tp-size=4
|
||||
|
||||
##### H200 test #####
|
||||
- label: Distributed Tests (H200) # optional
|
||||
gpu: h200
|
||||
|
||||
2
.github/mergify.yml
vendored
2
.github/mergify.yml
vendored
@ -108,7 +108,7 @@ pull_request_rules:
|
||||
- files~=^benchmarks/
|
||||
- files~=^vllm/benchmarks/
|
||||
- files~=^tests/benchmarks/
|
||||
- files~=^\.buildkite/nightly-benchmarks/
|
||||
- files~=^\.buildkite/performance-benchmarks/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
|
||||
@ -45,7 +45,7 @@ repos:
|
||||
- id: format-torch-nightly-test
|
||||
name: reformat nightly_torch_test.txt to be in sync with test.in
|
||||
language: python
|
||||
entry: python tools/generate_nightly_torch_test.py
|
||||
entry: python tools/pre_commit/generate_nightly_torch_test.py
|
||||
files: ^requirements/test\.(in|txt)$
|
||||
- id: mypy-local
|
||||
name: Run mypy locally for lowest supported Python version
|
||||
@ -78,12 +78,12 @@ repos:
|
||||
stages: [manual] # Only run in CI
|
||||
- id: shellcheck
|
||||
name: Lint shell scripts
|
||||
entry: tools/shellcheck.sh
|
||||
entry: tools/pre_commit/shellcheck.sh
|
||||
language: script
|
||||
types: [shell]
|
||||
- id: png-lint
|
||||
name: Lint PNG exports from excalidraw
|
||||
entry: tools/png-lint.sh
|
||||
entry: tools/pre_commit/png-lint.sh
|
||||
language: script
|
||||
types: [png]
|
||||
- id: signoff-commit
|
||||
@ -100,12 +100,12 @@ repos:
|
||||
stages: [commit-msg]
|
||||
- id: check-spdx-header
|
||||
name: Check SPDX headers
|
||||
entry: python tools/check_spdx_header.py
|
||||
entry: python tools/pre_commit/check_spdx_header.py
|
||||
language: python
|
||||
types: [python]
|
||||
- id: check-root-lazy-imports
|
||||
name: Check root lazy imports
|
||||
entry: python tools/check_init_lazy_imports.py
|
||||
entry: python tools/pre_commit/check_init_lazy_imports.py
|
||||
language: python
|
||||
types: [python]
|
||||
- id: check-filenames
|
||||
@ -119,11 +119,11 @@ repos:
|
||||
pass_filenames: false
|
||||
- id: update-dockerfile-graph
|
||||
name: Update Dockerfile dependency graph
|
||||
entry: tools/update-dockerfile-graph.sh
|
||||
entry: tools/pre_commit/update-dockerfile-graph.sh
|
||||
language: script
|
||||
- id: enforce-import-regex-instead-of-re
|
||||
name: Enforce import regex as re
|
||||
entry: python tools/enforce_regex_import.py
|
||||
entry: python tools/pre_commit/enforce_regex_import.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: false
|
||||
@ -131,7 +131,7 @@ repos:
|
||||
# forbid directly import triton
|
||||
- id: forbid-direct-triton-import
|
||||
name: "Forbid direct 'import triton'"
|
||||
entry: python tools/check_triton_import.py
|
||||
entry: python tools/pre_commit/check_triton_import.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: false
|
||||
@ -144,7 +144,7 @@ repos:
|
||||
additional_dependencies: [regex]
|
||||
- id: validate-config
|
||||
name: Validate configuration has default values and that each field has a docstring
|
||||
entry: python tools/validate_config.py
|
||||
entry: python tools/pre_commit/validate_config.py
|
||||
language: python
|
||||
additional_dependencies: [regex]
|
||||
# Keep `suggestion` last
|
||||
|
||||
@ -495,7 +495,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
else \
|
||||
BITSANDBYTES_VERSION="0.46.1"; \
|
||||
fi; \
|
||||
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3,gcs]>=0.14.0'
|
||||
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3,gcs]>=0.15.0'
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image
|
||||
|
||||
|
||||
@ -5,4 +5,4 @@ nav:
|
||||
- complete.md
|
||||
- run-batch.md
|
||||
- vllm bench:
|
||||
- bench/*.md
|
||||
- bench/**/*.md
|
||||
|
||||
9
docs/cli/bench/sweep/plot.md
Normal file
9
docs/cli/bench/sweep/plot.md
Normal file
@ -0,0 +1,9 @@
|
||||
# vllm bench sweep plot
|
||||
|
||||
## JSON CLI Arguments
|
||||
|
||||
--8<-- "docs/cli/json_tip.inc.md"
|
||||
|
||||
## Options
|
||||
|
||||
--8<-- "docs/argparse/bench_sweep_plot.md"
|
||||
9
docs/cli/bench/sweep/serve.md
Normal file
9
docs/cli/bench/sweep/serve.md
Normal file
@ -0,0 +1,9 @@
|
||||
# vllm bench sweep serve
|
||||
|
||||
## JSON CLI Arguments
|
||||
|
||||
--8<-- "docs/cli/json_tip.inc.md"
|
||||
|
||||
## Options
|
||||
|
||||
--8<-- "docs/argparse/bench_sweep_serve.md"
|
||||
9
docs/cli/bench/sweep/serve_sla.md
Normal file
9
docs/cli/bench/sweep/serve_sla.md
Normal file
@ -0,0 +1,9 @@
|
||||
# vllm bench sweep serve_sla
|
||||
|
||||
## JSON CLI Arguments
|
||||
|
||||
--8<-- "docs/cli/json_tip.inc.md"
|
||||
|
||||
## Options
|
||||
|
||||
--8<-- "docs/argparse/bench_sweep_serve_sla.md"
|
||||
@ -9,7 +9,6 @@ vLLM provides comprehensive benchmarking tools for performance testing and evalu
|
||||
- **[Benchmark CLI](#benchmark-cli)**: `vllm bench` CLI tools and specialized benchmark scripts for interactive performance testing
|
||||
- **[Parameter sweeps](#parameter-sweeps)**: Automate `vllm bench` runs for multiple configurations
|
||||
- **[Performance benchmarks](#performance-benchmarks)**: Automated CI benchmarks for development
|
||||
- **[Nightly benchmarks](#nightly-benchmarks)**: Comparative benchmarks against alternatives
|
||||
|
||||
[Benchmark CLI]: #benchmark-cli
|
||||
|
||||
@ -1061,7 +1060,7 @@ Follow these steps to run the script:
|
||||
Example command:
|
||||
|
||||
```bash
|
||||
python -m vllm.benchmarks.sweep.serve \
|
||||
vllm bench sweep serve \
|
||||
--serve-cmd 'vllm serve meta-llama/Llama-2-7b-chat-hf' \
|
||||
--bench-cmd 'vllm bench serve --model meta-llama/Llama-2-7b-chat-hf --backend vllm --endpoint /v1/completions --dataset-name sharegpt --dataset-path benchmarks/ShareGPT_V3_unfiltered_cleaned_split.json' \
|
||||
--serve-params benchmarks/serve_hparams.json \
|
||||
@ -1109,7 +1108,7 @@ For example, to ensure E2E latency within different target values for 99% of req
|
||||
Example command:
|
||||
|
||||
```bash
|
||||
python -m vllm.benchmarks.sweep.serve_sla \
|
||||
vllm bench sweep serve_sla \
|
||||
--serve-cmd 'vllm serve meta-llama/Llama-2-7b-chat-hf' \
|
||||
--bench-cmd 'vllm bench serve --model meta-llama/Llama-2-7b-chat-hf --backend vllm --endpoint /v1/completions --dataset-name sharegpt --dataset-path benchmarks/ShareGPT_V3_unfiltered_cleaned_split.json' \
|
||||
--serve-params benchmarks/serve_hparams.json \
|
||||
@ -1138,7 +1137,7 @@ The algorithm for adjusting the SLA variable is as follows:
|
||||
Example command:
|
||||
|
||||
```bash
|
||||
python -m vllm.benchmarks.sweep.plot benchmarks/results/<timestamp> \
|
||||
vllm bench sweep plot benchmarks/results/<timestamp> \
|
||||
--var-x max_concurrency \
|
||||
--row-by random_input_len \
|
||||
--col-by random_output_len \
|
||||
@ -1167,7 +1166,7 @@ docker run -it --entrypoint /bin/bash -v /data/huggingface:/root/.cache/huggingf
|
||||
Then, run below command inside the docker instance.
|
||||
|
||||
```bash
|
||||
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
bash .buildkite/performance-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
```
|
||||
|
||||
When run, benchmark script generates results under **benchmark/results** folder, along with the benchmark_results.md and benchmark_results.json.
|
||||
@ -1185,7 +1184,7 @@ For more results visualization, check the [visualizing the results](https://gith
|
||||
|
||||
The latest performance results are hosted on the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
|
||||
|
||||
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](../../.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
|
||||
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](../../.buildkite/performance-benchmarks/performance-benchmarks-descriptions.md).
|
||||
|
||||
### Continuous Benchmarking
|
||||
|
||||
@ -1210,11 +1209,3 @@ The benchmarking currently runs on a predefined set of models configured in the
|
||||
#### Viewing Results
|
||||
|
||||
All continuous benchmarking results are automatically published to the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
|
||||
|
||||
## Nightly Benchmarks
|
||||
|
||||
These compare vLLM's performance against alternatives (`tgi`, `trt-llm`, and `lmdeploy`) when there are major updates of vLLM (e.g., bumping up to a new version). They are primarily intended for consumers to evaluate when to choose vLLM over other options and are triggered on every commit with both the `perf-benchmarks` and `nightly-benchmarks` labels.
|
||||
|
||||
The latest nightly benchmark results are shared in major release blog posts such as [vLLM v0.6.0](https://blog.vllm.ai/2024/09/05/perf-update.html).
|
||||
|
||||
More information on the nightly benchmarks and their parameters can be found [here](../../.buildkite/nightly-benchmarks/nightly-descriptions.md).
|
||||
|
||||
@ -49,11 +49,14 @@ First, create a Kubernetes PVC and Secret for downloading and storing Hugging Fa
|
||||
metadata:
|
||||
name: hf-token-secret
|
||||
type: Opaque
|
||||
data:
|
||||
token: $(HF_TOKEN)
|
||||
stringData:
|
||||
token: "REPLACE_WITH_TOKEN"
|
||||
EOF
|
||||
```
|
||||
|
||||
Here, the `token` field stores your **Hugging Face access token**. For details on how to generate a token,
|
||||
see the [Hugging Face documentation](https://huggingface.co/docs/hub/en/security-tokens).
|
||||
|
||||
Next, start the vLLM server as a Kubernetes Deployment and Service:
|
||||
|
||||
??? console "Config"
|
||||
|
||||
@ -79,7 +79,7 @@ The `post_process*` methods take `PoolingRequestOutput` objects as input and gen
|
||||
The `validate_or_generate_params` method is used for validating with the plugin any `SamplingParameters`/`PoolingParameters` received with the user request, or to generate new ones if none are specified. The function always returns the validated/generated parameters.
|
||||
The `output_to_response` method is used only for online serving and converts the plugin output to the `IOProcessorResponse` type that is then returned by the API Server. The implementation of the `/pooling` serving endpoint is available here [vllm/entrypoints/openai/serving_pooling.py](../../vllm/entrypoints/openai/serving_pooling.py).
|
||||
|
||||
An example implementation of a plugin that enables generating geotiff images with the PrithviGeospatialMAE model is available [here](https://github.com/IBM/terratorch/tree/main/terratorch/vllm/plugins/segmentation). Please, also refer to our online ([examples/online_serving/prithvi_geospatial_mae.py](../../examples/online_serving/prithvi_geospatial_mae.py)) and offline ([examples/offline_inference/prithvi_geospatial_mae_io_processor.py](../../examples/offline_inference/prithvi_geospatial_mae_io_processor.py)) inference examples.
|
||||
An example implementation of a plugin that enables generating geotiff images with the PrithviGeospatialMAE model is available [here](https://github.com/IBM/terratorch/tree/main/terratorch/vllm/plugins/segmentation). Please, also refer to our online ([examples/online_serving/pooling/prithvi_geospatial_mae.py](../../examples/online_serving/pooling/prithvi_geospatial_mae.py)) and offline ([examples/offline_inference/pooling/prithvi_geospatial_mae_io_processor.py](../../examples/offline_inference/pooling/prithvi_geospatial_mae_io_processor.py)) inference examples.
|
||||
|
||||
## Using an IO Processor plugin
|
||||
|
||||
|
||||
@ -56,8 +56,10 @@ docker build -f docker/Dockerfile.xpu -t vllm-xpu-env --shm-size=4g .
|
||||
docker run -it \
|
||||
--rm \
|
||||
--network=host \
|
||||
--device /dev/dri \
|
||||
--device /dev/dri:/dev/dri \
|
||||
-v /dev/dri/by-path:/dev/dri/by-path \
|
||||
--ipc=host \
|
||||
--privileged \
|
||||
vllm-xpu-env
|
||||
```
|
||||
|
||||
|
||||
@ -56,15 +56,20 @@ def auto_mock(module, attr, max_mocks=50):
|
||||
)
|
||||
|
||||
|
||||
latency = auto_mock("vllm.benchmarks", "latency")
|
||||
serve = auto_mock("vllm.benchmarks", "serve")
|
||||
throughput = auto_mock("vllm.benchmarks", "throughput")
|
||||
bench_latency = auto_mock("vllm.benchmarks", "latency")
|
||||
bench_serve = auto_mock("vllm.benchmarks", "serve")
|
||||
bench_sweep_plot = auto_mock("vllm.benchmarks.sweep.plot", "SweepPlotArgs")
|
||||
bench_sweep_serve = auto_mock("vllm.benchmarks.sweep.serve", "SweepServeArgs")
|
||||
bench_sweep_serve_sla = auto_mock(
|
||||
"vllm.benchmarks.sweep.serve_sla", "SweepServeSLAArgs"
|
||||
)
|
||||
bench_throughput = auto_mock("vllm.benchmarks", "throughput")
|
||||
AsyncEngineArgs = auto_mock("vllm.engine.arg_utils", "AsyncEngineArgs")
|
||||
EngineArgs = auto_mock("vllm.engine.arg_utils", "EngineArgs")
|
||||
ChatCommand = auto_mock("vllm.entrypoints.cli.openai", "ChatCommand")
|
||||
CompleteCommand = auto_mock("vllm.entrypoints.cli.openai", "CompleteCommand")
|
||||
cli_args = auto_mock("vllm.entrypoints.openai", "cli_args")
|
||||
run_batch = auto_mock("vllm.entrypoints.openai", "run_batch")
|
||||
openai_cli_args = auto_mock("vllm.entrypoints.openai", "cli_args")
|
||||
openai_run_batch = auto_mock("vllm.entrypoints.openai", "run_batch")
|
||||
FlexibleArgumentParser = auto_mock(
|
||||
"vllm.utils.argparse_utils", "FlexibleArgumentParser"
|
||||
)
|
||||
@ -114,6 +119,9 @@ class MarkdownFormatter(HelpFormatter):
|
||||
self._markdown_output.append(f"{action.help}\n\n")
|
||||
|
||||
if (default := action.default) != SUPPRESS:
|
||||
# Make empty string defaults visible
|
||||
if default == "":
|
||||
default = '""'
|
||||
self._markdown_output.append(f"Default: `{default}`\n\n")
|
||||
|
||||
def format_help(self):
|
||||
@ -150,17 +158,23 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
|
||||
|
||||
# Create parsers to document
|
||||
parsers = {
|
||||
# Engine args
|
||||
"engine_args": create_parser(EngineArgs.add_cli_args),
|
||||
"async_engine_args": create_parser(
|
||||
AsyncEngineArgs.add_cli_args, async_args_only=True
|
||||
),
|
||||
"serve": create_parser(cli_args.make_arg_parser),
|
||||
# CLI
|
||||
"serve": create_parser(openai_cli_args.make_arg_parser),
|
||||
"chat": create_parser(ChatCommand.add_cli_args),
|
||||
"complete": create_parser(CompleteCommand.add_cli_args),
|
||||
"bench_latency": create_parser(latency.add_cli_args),
|
||||
"bench_throughput": create_parser(throughput.add_cli_args),
|
||||
"bench_serve": create_parser(serve.add_cli_args),
|
||||
"run-batch": create_parser(run_batch.make_arg_parser),
|
||||
"run-batch": create_parser(openai_run_batch.make_arg_parser),
|
||||
# Benchmark CLI
|
||||
"bench_latency": create_parser(bench_latency.add_cli_args),
|
||||
"bench_serve": create_parser(bench_serve.add_cli_args),
|
||||
"bench_sweep_plot": create_parser(bench_sweep_plot.add_cli_args),
|
||||
"bench_sweep_serve": create_parser(bench_sweep_serve.add_cli_args),
|
||||
"bench_sweep_serve_sla": create_parser(bench_sweep_serve_sla.add_cli_args),
|
||||
"bench_throughput": create_parser(bench_throughput.add_cli_args),
|
||||
}
|
||||
|
||||
# Generate documentation for each parser
|
||||
|
||||
@ -45,6 +45,15 @@ vllm serve s3://core-llm/Llama-3-8b \
|
||||
|
||||
You can tune parameters using `--model-loader-extra-config`:
|
||||
|
||||
You can tune `distributed` that controls whether distributed streaming should be used. This is currently only possible on CUDA and ROCM devices. This can significantly improve loading times from object storage or high-throughput network fileshares.
|
||||
You can read further about Distributed streaming [here](https://github.com/run-ai/runai-model-streamer/blob/master/docs/src/usage.md#distributed-streaming)
|
||||
|
||||
```bash
|
||||
vllm serve /home/meta-llama/Llama-3.2-3B-Instruct \
|
||||
--load-format runai_streamer \
|
||||
--model-loader-extra-config '{"distributed":true}'
|
||||
```
|
||||
|
||||
You can tune `concurrency` that controls the level of concurrency and number of OS threads reading tensors from the file to the CPU buffer.
|
||||
For reading from S3, it will be the number of client instances the host is opening to the S3 server.
|
||||
|
||||
|
||||
@ -30,11 +30,11 @@ If `--runner pooling` has been set (manually or automatically) but the model doe
|
||||
vLLM will attempt to automatically convert the model according to the architecture names
|
||||
shown in the table below.
|
||||
|
||||
| Architecture | `--convert` | Supported pooling tasks |
|
||||
|-------------------------------------------------|-------------|-------------------------------|
|
||||
| `*ForTextEncoding`, `*EmbeddingModel`, `*Model` | `embed` | `encode`, `embed` |
|
||||
| `*For*Classification`, `*ClassificationModel` | `classify` | `encode`, `classify`, `score` |
|
||||
| `*ForRewardModeling`, `*RewardModel` | `reward` | `encode` |
|
||||
| Architecture | `--convert` | Supported pooling tasks |
|
||||
|-------------------------------------------------|-------------|---------------------------------------|
|
||||
| `*ForTextEncoding`, `*EmbeddingModel`, `*Model` | `embed` | `token_embed`, `embed` |
|
||||
| `*For*Classification`, `*ClassificationModel` | `classify` | `token_classify`, `classify`, `score` |
|
||||
| `*ForRewardModeling`, `*RewardModel` | `reward` | `token_classify` |
|
||||
|
||||
!!! tip
|
||||
You can explicitly set `--convert <type>` to specify how to convert the model.
|
||||
@ -45,12 +45,14 @@ Each pooling model in vLLM supports one or more of these tasks according to
|
||||
[Pooler.get_supported_tasks][vllm.model_executor.layers.pooler.Pooler.get_supported_tasks],
|
||||
enabling the corresponding APIs:
|
||||
|
||||
| Task | APIs |
|
||||
|------------|--------------------------------------|
|
||||
| `encode` | `LLM.reward(...)` |
|
||||
| `embed` | `LLM.embed(...)`, `LLM.score(...)`\* |
|
||||
| `classify` | `LLM.classify(...)` |
|
||||
| `score` | `LLM.score(...)` |
|
||||
| Task | APIs |
|
||||
|------------------|-------------------------------------------------------------------------------|
|
||||
| `embed` | `LLM.embed(...)`, `LLM.score(...)`\*, `LLM.encode(..., pooling_task="embed")` |
|
||||
| `classify` | `LLM.classify(...)`, `LLM.encode(..., pooling_task="classify")` |
|
||||
| `score` | `LLM.score(...)` |
|
||||
| `token_classify` | `LLM.reward(...)`, `LLM.encode(..., pooling_task="token_classify")` |
|
||||
| `token_embed` | `LLM.encode(..., pooling_task="token_embed")` |
|
||||
| `plugin` | `LLM.encode(..., pooling_task="plugin")` |
|
||||
|
||||
\* The `LLM.score(...)` API falls back to `embed` task if the model does not support `score` task.
|
||||
|
||||
@ -144,7 +146,6 @@ A code example can be found here: [examples/offline_inference/basic/score.py](..
|
||||
### `LLM.reward`
|
||||
|
||||
The [reward][vllm.LLM.reward] method is available to all reward models in vLLM.
|
||||
It returns the extracted hidden states directly.
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
@ -161,15 +162,17 @@ A code example can be found here: [examples/offline_inference/basic/reward.py](.
|
||||
### `LLM.encode`
|
||||
|
||||
The [encode][vllm.LLM.encode] method is available to all pooling models in vLLM.
|
||||
It returns the extracted hidden states directly.
|
||||
|
||||
!!! note
|
||||
Please use one of the more specific methods or set the task directly when using `LLM.encode`:
|
||||
|
||||
- For embeddings, use `LLM.embed(...)` or `pooling_task="embed"`.
|
||||
- For classification logits, use `LLM.classify(...)` or `pooling_task="classify"`.
|
||||
- For rewards, use `LLM.reward(...)` or `pooling_task="reward"`.
|
||||
- For similarity scores, use `LLM.score(...)`.
|
||||
- For rewards, use `LLM.reward(...)` or `pooling_task="token_classify"`.
|
||||
- For token classification, use `pooling_task="token_classify"`.
|
||||
- For multi-vector retrieval, use `pooling_task="token_embed"`
|
||||
- For IO Processor Plugins , use `pooling_task="plugin"`
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
@ -185,10 +188,47 @@ print(f"Data: {data!r}")
|
||||
|
||||
Our [OpenAI-Compatible Server](../serving/openai_compatible_server.md) provides endpoints that correspond to the offline APIs:
|
||||
|
||||
- [Pooling API](../serving/openai_compatible_server.md#pooling-api) is similar to `LLM.encode`, being applicable to all types of pooling models.
|
||||
- [Embeddings API](../serving/openai_compatible_server.md#embeddings-api) is similar to `LLM.embed`, accepting both text and [multi-modal inputs](../features/multimodal_inputs.md) for embedding models.
|
||||
- [Classification API](../serving/openai_compatible_server.md#classification-api) is similar to `LLM.classify` and is applicable to sequence classification models.
|
||||
- [Score API](../serving/openai_compatible_server.md#score-api) is similar to `LLM.score` for cross-encoder models.
|
||||
- [Pooling API](../serving/openai_compatible_server.md#pooling-api) is similar to `LLM.encode`, being applicable to all types of pooling models.
|
||||
|
||||
!!! note
|
||||
Please use one of the more specific methods or set the task directly when using [Pooling API](../serving/openai_compatible_server.md#pooling-api) api.:
|
||||
|
||||
- For embeddings, use [Embeddings API](../serving/openai_compatible_server.md#embeddings-api) or `"task":"embed"`.
|
||||
- For classification logits, use [Classification API](../serving/openai_compatible_server.md#classification-api) or `task":"classify"`.
|
||||
- For similarity scores, use [Score API](../serving/openai_compatible_server.md#score-api).
|
||||
- For rewards, `task":"token_classify"`.
|
||||
- For token classification, use `task":"token_classify"`.
|
||||
- For multi-vector retrieval, use `task":"token_embed"`
|
||||
- For IO Processor Plugins , use `task":"plugin"`
|
||||
|
||||
```python
|
||||
# start a supported embeddings model server with `vllm serve`, e.g.
|
||||
# vllm serve intfloat/e5-small
|
||||
import requests
|
||||
|
||||
host = "localhost"
|
||||
port = "8000"
|
||||
model_name = "intfloat/e5-small"
|
||||
|
||||
api_url = f"http://{host}:{port}/pooling"
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
prompt = {"model": model_name, "input": prompts, "task": "embed"}
|
||||
|
||||
response = requests.post(api_url, json=prompt)
|
||||
|
||||
for output in response.json()["data"]:
|
||||
data = output["data"]
|
||||
print(f"Data: {data!r} (size={len(data)})")
|
||||
```
|
||||
|
||||
## Matryoshka Embeddings
|
||||
|
||||
@ -265,3 +305,16 @@ Expected output:
|
||||
```
|
||||
|
||||
An OpenAI client example can be found here: [examples/online_serving/pooling/openai_embedding_matryoshka_fy.py](../../examples/online_serving/pooling/openai_embedding_matryoshka_fy.py)
|
||||
|
||||
## Deprecated Features
|
||||
|
||||
### Encode task
|
||||
|
||||
We have split the `encode` task into two more specific token wise tasks: `token_embed` and `token_classify`:
|
||||
|
||||
- `token_embed` is the same as embed, using normalize as activation.
|
||||
- `token_classify` is the same as classify, default using softmax as activation.
|
||||
|
||||
### Remove softmax from PoolingParams
|
||||
|
||||
We are going to remove `softmax` and `activation` from `PoolingParams`. Instead, you should set `use_activation`, since we actually allow `classify` and `token_classify` to use any activation function.
|
||||
|
||||
@ -382,6 +382,7 @@ th {
|
||||
| `InternLM3ForCausalLM` | InternLM3 | `internlm/internlm3-8b-instruct`, etc. | ✅︎ | ✅︎ |
|
||||
| `JAISLMHeadModel` | Jais | `inceptionai/jais-13b`, `inceptionai/jais-13b-chat`, `inceptionai/jais-30b-v3`, `inceptionai/jais-30b-chat-v3`, etc. | | ✅︎ |
|
||||
| `JambaForCausalLM` | Jamba | `ai21labs/AI21-Jamba-1.5-Large`, `ai21labs/AI21-Jamba-1.5-Mini`, `ai21labs/Jamba-v0.1`, etc. | ✅︎ | ✅︎ |
|
||||
| `KimiLinearForCausalLM` | Kimi-Linear-48B-A3B-Base, Kimi-Linear-48B-A3B-Instruct | `moonshotai/Kimi-Linear-48B-A3B-Base`, `moonshotai/Kimi-Linear-48B-A3B-Instruct` | | ✅︎ |
|
||||
| `Lfm2ForCausalLM` | LFM2 | `LiquidAI/LFM2-1.2B`, `LiquidAI/LFM2-700M`, `LiquidAI/LFM2-350M`, etc. | ✅︎ | ✅︎ |
|
||||
| `Lfm2MoeForCausalLM` | LFM2MoE | `LiquidAI/LFM2-8B-A1B-preview`, etc. | ✅︎ | ✅︎ |
|
||||
| `LlamaForCausalLM` | Llama 3.1, Llama 3, Llama 2, LLaMA, Yi | `meta-llama/Meta-Llama-3.1-405B-Instruct`, `meta-llama/Meta-Llama-3.1-70B`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `01-ai/Yi-34B`, etc. | ✅︎ | ✅︎ |
|
||||
@ -402,6 +403,7 @@ th {
|
||||
| `OLMoEForCausalLM` | OLMoE | `allenai/OLMoE-1B-7B-0924`, `allenai/OLMoE-1B-7B-0924-Instruct`, etc. | | ✅︎ |
|
||||
| `OPTForCausalLM` | OPT, OPT-IML | `facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc. | ✅︎ | ✅︎ |
|
||||
| `OrionForCausalLM` | Orion | `OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc. | | ✅︎ |
|
||||
| `OuroForCausalLM` | ouro | `ByteDance/Ouro-1.4B`, `ByteDance/Ouro-2.6B`, etc. | ✅︎ | |
|
||||
| `PhiForCausalLM` | Phi | `microsoft/phi-1_5`, `microsoft/phi-2`, etc. | ✅︎ | ✅︎ |
|
||||
| `Phi3ForCausalLM` | Phi-4, Phi-3 | `microsoft/Phi-4-mini-instruct`, `microsoft/Phi-4`, `microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, `microsoft/Phi-3-medium-128k-instruct`, etc. | ✅︎ | ✅︎ |
|
||||
| `PhiMoEForCausalLM` | Phi-3.5-MoE | `microsoft/Phi-3.5-MoE-instruct`, etc. | ✅︎ | ✅︎ |
|
||||
|
||||
@ -638,7 +638,7 @@ Usually, the score for a sentence pair refers to the similarity between two sent
|
||||
|
||||
You can find the documentation for cross encoder models at [sbert.net](https://www.sbert.net/docs/package_reference/cross_encoder/cross_encoder.html).
|
||||
|
||||
Code example: [examples/online_serving/openai_cross_encoder_score.py](../../examples/online_serving/openai_cross_encoder_score.py)
|
||||
Code example: [examples/online_serving/pooling/openai_cross_encoder_score.py](../../examples/online_serving/pooling/openai_cross_encoder_score.py)
|
||||
|
||||
#### Single inference
|
||||
|
||||
@ -819,7 +819,7 @@ You can pass multi-modal inputs to scoring models by passing `content` including
|
||||
print("Scoring output:", response_json["data"][0]["score"])
|
||||
print("Scoring output:", response_json["data"][1]["score"])
|
||||
```
|
||||
Full example: [examples/online_serving/openai_cross_encoder_score_for_multimodal.py](../../examples/online_serving/openai_cross_encoder_score_for_multimodal.py)
|
||||
Full example: [examples/online_serving/pooling/openai_cross_encoder_score_for_multimodal.py](../../examples/online_serving/pooling/openai_cross_encoder_score_for_multimodal.py)
|
||||
|
||||
#### Extra parameters
|
||||
|
||||
|
||||
@ -38,6 +38,18 @@ python examples/offline_inference/pooling/multi_vector_retrieval.py
|
||||
python examples/offline_inference/pooling/ner.py
|
||||
```
|
||||
|
||||
## Prithvi Geospatial MAE usage
|
||||
|
||||
```bash
|
||||
python examples/offline_inference/pooling/prithvi_geospatial_mae.py
|
||||
```
|
||||
|
||||
## IO Processor Plugins for Prithvi Geospatial MAE
|
||||
|
||||
```bash
|
||||
python examples/offline_inference/pooling/prithvi_geospatial_mae_io_processor.py
|
||||
```
|
||||
|
||||
## Qwen3 reranker usage
|
||||
|
||||
```bash
|
||||
|
||||
@ -33,7 +33,7 @@ def main(args: Namespace):
|
||||
label_map = llm.llm_engine.vllm_config.model_config.hf_config.id2label
|
||||
|
||||
# Run inference
|
||||
outputs = llm.encode(prompts)
|
||||
outputs = llm.encode(prompts, pooling_task="token_classify")
|
||||
|
||||
for prompt, output in zip(prompts, outputs):
|
||||
logits = output.outputs.data
|
||||
|
||||
@ -9,10 +9,76 @@ To run this example:
|
||||
```bash
|
||||
$ torchrun --nproc-per-node=2 examples/offline_inference/torchrun_dp_example.py
|
||||
```
|
||||
|
||||
With custom parallelism settings:
|
||||
```bash
|
||||
$ torchrun --nproc-per-node=8 examples/offline_inference/torchrun_dp_example.py \
|
||||
--tp-size=2 --pp-size=1 --dp-size=4 --enable-ep
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Data-parallel inference with torchrun"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tp-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Tensor parallel size (default: 1)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pp-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Pipeline parallel size (default: 1)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dp-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="Data parallel size (default: 2)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--enable-ep",
|
||||
action="store_true",
|
||||
help="Enable expert parallel (default: False)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="microsoft/Phi-mini-MoE-instruct",
|
||||
help="Model name or path (default: microsoft/Phi-mini-MoE-instruct)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-model-len",
|
||||
type=int,
|
||||
default=4096,
|
||||
help="Maximum model length (default: 4096)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gpu-memory-utilization",
|
||||
type=float,
|
||||
default=0.6,
|
||||
help="GPU memory utilization (default: 0.6)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Random seed (default: 1)",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
args = parse_args()
|
||||
|
||||
|
||||
# Create prompts, the same across all ranks
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
@ -30,15 +96,15 @@ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
# all ranks have the same random seed, so that sampling can be
|
||||
# deterministic across ranks.
|
||||
llm = LLM(
|
||||
model="microsoft/Phi-mini-MoE-instruct",
|
||||
tensor_parallel_size=1,
|
||||
data_parallel_size=2,
|
||||
pipeline_parallel_size=1,
|
||||
enable_expert_parallel=False,
|
||||
model=args.model,
|
||||
tensor_parallel_size=args.tp_size,
|
||||
data_parallel_size=args.dp_size,
|
||||
pipeline_parallel_size=args.pp_size,
|
||||
enable_expert_parallel=args.enable_ep,
|
||||
distributed_executor_backend="external_launcher",
|
||||
max_model_len=4096,
|
||||
gpu_memory_utilization=0.6,
|
||||
seed=1,
|
||||
max_model_len=args.max_model_len,
|
||||
gpu_memory_utilization=args.gpu_memory_utilization,
|
||||
seed=args.seed,
|
||||
)
|
||||
|
||||
dp_rank = llm.llm_engine.vllm_config.parallel_config.data_parallel_rank
|
||||
|
||||
@ -3,65 +3,95 @@
|
||||
## Cohere rerank usage
|
||||
|
||||
```bash
|
||||
# vllm serve BAAI/bge-reranker-base
|
||||
python examples/online_serving/pooling/cohere_rerank_client.py
|
||||
```
|
||||
|
||||
## Embedding requests base64 encoding_format usage
|
||||
|
||||
```bash
|
||||
# vllm serve intfloat/e5-small
|
||||
python examples/online_serving/pooling/embedding_requests_base64_client.py
|
||||
```
|
||||
|
||||
## Embedding requests bytes encoding_format usage
|
||||
|
||||
```bash
|
||||
# vllm serve intfloat/e5-small
|
||||
python examples/online_serving/pooling/embedding_requests_bytes_client.py
|
||||
```
|
||||
|
||||
## Jinaai rerank usage
|
||||
|
||||
```bash
|
||||
# vllm serve BAAI/bge-reranker-base
|
||||
python examples/online_serving/pooling/jinaai_rerank_client.py
|
||||
```
|
||||
|
||||
## Multi vector retrieval usage
|
||||
|
||||
```bash
|
||||
# vllm serve BAAI/bge-m3
|
||||
python examples/online_serving/pooling/multi_vector_retrieval_client.py
|
||||
```
|
||||
|
||||
## Named Entity Recognition (NER) usage
|
||||
|
||||
```bash
|
||||
# vllm serve boltuix/NeuroBERT-NER
|
||||
python examples/online_serving/pooling/ner_client.py
|
||||
```
|
||||
|
||||
## Openai chat embedding for multimodal usage
|
||||
## OpenAI chat embedding for multimodal usage
|
||||
|
||||
```bash
|
||||
python examples/online_serving/pooling/openai_chat_embedding_client_for_multimodal.py
|
||||
```
|
||||
|
||||
## Openai classification usage
|
||||
## OpenAI classification usage
|
||||
|
||||
```bash
|
||||
# vllm serve jason9693/Qwen2.5-1.5B-apeach
|
||||
python examples/online_serving/pooling/openai_classification_client.py
|
||||
```
|
||||
|
||||
## Openai embedding usage
|
||||
## OpenAI cross_encoder score usage
|
||||
|
||||
```bash
|
||||
# vllm serve BAAI/bge-reranker-v2-m3
|
||||
python examples/online_serving/pooling/openai_cross_encoder_score.py
|
||||
```
|
||||
|
||||
## OpenAI cross_encoder score for multimodal usage
|
||||
|
||||
```bash
|
||||
# vllm serve jinaai/jina-reranker-m0
|
||||
python examples/online_serving/pooling/openai_cross_encoder_score_for_multimodal.py
|
||||
```
|
||||
|
||||
## OpenAI embedding usage
|
||||
|
||||
```bash
|
||||
# vllm serve intfloat/e5-small
|
||||
python examples/online_serving/pooling/openai_embedding_client.py
|
||||
```
|
||||
|
||||
## Openai embedding matryoshka dimensions usage
|
||||
## OpenAI embedding matryoshka dimensions usage
|
||||
|
||||
```bash
|
||||
# vllm serve jinaai/jina-embeddings-v3 --trust-remote-code
|
||||
python examples/online_serving/pooling/openai_embedding_matryoshka_fy.py
|
||||
```
|
||||
|
||||
## Openai pooling usage
|
||||
## OpenAI pooling usage
|
||||
|
||||
```bash
|
||||
# vllm serve internlm/internlm2-1_8b-reward --trust-remote-code
|
||||
python examples/online_serving/pooling/openai_pooling_client.py
|
||||
```
|
||||
|
||||
## Online Prithvi Geospatial MAE usage
|
||||
|
||||
```bash
|
||||
python examples/online_serving/pooling/prithvi_geospatial_mae.py
|
||||
```
|
||||
|
||||
@ -13,5 +13,3 @@ torchvision==0.24.0 # Required for phi3v processor. See https://github.com/pytor
|
||||
# xformers==0.0.32.post1; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch >= 2.8
|
||||
# FlashInfer should be updated together with the Dockerfile
|
||||
flashinfer-python==0.4.1
|
||||
# Triton Kernels are needed for mxfp4 fused moe. (Should be updated alongside torch)
|
||||
triton_kernels @ git+https://github.com/triton-lang/triton.git@v3.5.0#subdirectory=python/triton_kernels
|
||||
|
||||
@ -42,6 +42,6 @@ tritonclient==2.51.0
|
||||
|
||||
numba == 0.61.2 # Required for N-gram speculative decoding
|
||||
numpy
|
||||
runai-model-streamer[s3,gcs]==0.14.0
|
||||
runai-model-streamer[s3,gcs]==0.15.0
|
||||
fastsafetensors>=0.1.10
|
||||
pydantic>=2.12 # 2.11 leads to error on python 3.13
|
||||
|
||||
@ -12,6 +12,6 @@ tensorizer==2.10.1
|
||||
packaging>=24.2
|
||||
setuptools>=77.0.3,<80.0.0
|
||||
setuptools-scm>=8
|
||||
runai-model-streamer[s3,gcs]==0.14.0
|
||||
runai-model-streamer[s3,gcs]==0.15.0
|
||||
conch-triton-kernels==1.2.1
|
||||
timm>=1.0.17
|
||||
|
||||
@ -50,7 +50,7 @@ tritonclient==2.51.0
|
||||
|
||||
numba == 0.61.2 # Required for N-gram speculative decoding
|
||||
numpy
|
||||
runai-model-streamer[s3,gcs]==0.14.0
|
||||
runai-model-streamer[s3,gcs]==0.15.0
|
||||
fastsafetensors>=0.1.10
|
||||
pydantic>=2.12 # 2.11 leads to error on python 3.13
|
||||
decord==0.6.0
|
||||
|
||||
@ -965,11 +965,11 @@ rsa==4.9.1
|
||||
# via google-auth
|
||||
rtree==1.4.0
|
||||
# via torchgeo
|
||||
runai-model-streamer==0.14.0
|
||||
runai-model-streamer==0.15.0
|
||||
# via -r requirements/test.in
|
||||
runai-model-streamer-gcs==0.14.0
|
||||
runai-model-streamer-gcs==0.15.0
|
||||
# via runai-model-streamer
|
||||
runai-model-streamer-s3==0.14.0
|
||||
runai-model-streamer-s3==0.15.0
|
||||
# via runai-model-streamer
|
||||
s3transfer==0.10.3
|
||||
# via boto3
|
||||
|
||||
@ -15,4 +15,4 @@ torchaudio
|
||||
torchvision
|
||||
--extra-index-url=https://download.pytorch.org/whl/xpu
|
||||
|
||||
intel-extension-for-pytorch @ https://intel-extension-for-pytorch.s3.us-east-1.amazonaws.com/ipex_dev/xpu/intel_extension_for_pytorch-2.8.10.post0%2Bxpu-cp312-cp312-linux_x86_64.whl
|
||||
intel-extension-for-pytorch @ https://intel-extension-for-pytorch.s3.us-east-1.amazonaws.com/ipex_dev/xpu/intel_extension_for_pytorch-2.8.10.post1%2Bxpu-cp312-cp312-linux_x86_64.whl
|
||||
|
||||
4
setup.py
4
setup.py
@ -709,10 +709,10 @@ setup(
|
||||
ext_modules=ext_modules,
|
||||
install_requires=get_requirements(),
|
||||
extras_require={
|
||||
"bench": ["pandas", "datasets"],
|
||||
"bench": ["pandas", "matplotlib", "seaborn", "datasets"],
|
||||
"tensorizer": ["tensorizer==2.10.1"],
|
||||
"fastsafetensors": ["fastsafetensors >= 0.1.10"],
|
||||
"runai": ["runai-model-streamer[s3,gcs] >= 0.14.0"],
|
||||
"runai": ["runai-model-streamer[s3,gcs] >= 0.15.0"],
|
||||
"audio": [
|
||||
"librosa",
|
||||
"soundfile",
|
||||
|
||||
@ -359,3 +359,126 @@ def test_random_mm_bucket_config_not_mutated(
|
||||
assert len(mm_data) >= 1
|
||||
for it in mm_data:
|
||||
assert it.get("type") == "image_url"
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_random_mm_video_sampling(hf_tokenizer: PreTrainedTokenizerBase) -> None:
|
||||
"""Test video sampling functionality in RandomMultiModalDataset."""
|
||||
ds = RandomMultiModalDataset(random_seed=42)
|
||||
|
||||
# Test with video bucket configuration
|
||||
bucket_config = {
|
||||
(64, 64, 1): 0.3, # Images
|
||||
(64, 64, 8): 0.7, # Videos
|
||||
}
|
||||
|
||||
limit_mm_per_prompt = {"image": 2, "video": 2}
|
||||
|
||||
samples = _collect_mm_samples(
|
||||
ds,
|
||||
hf_tokenizer,
|
||||
num_requests=5,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
)
|
||||
|
||||
assert len(samples) == 5
|
||||
|
||||
# Check that we have both images and videos
|
||||
video_count = 0
|
||||
image_count = 0
|
||||
|
||||
for s in samples:
|
||||
mm_data = cast(list[dict[str, Any]], s.multi_modal_data)
|
||||
assert len(mm_data) == 1
|
||||
|
||||
item = mm_data[0]
|
||||
if item.get("type") == "video_url":
|
||||
video_count += 1
|
||||
# Verify video URL format
|
||||
url = item.get("video_url", {}).get("url", "")
|
||||
assert url.startswith("data:video/mp4;base64,")
|
||||
elif item.get("type") == "image_url":
|
||||
image_count += 1
|
||||
# Verify image URL format
|
||||
url = item.get("image_url", {}).get("url", "")
|
||||
assert url.startswith("data:image/jpeg;base64,")
|
||||
|
||||
# Should have some videos due to 0.7 probability
|
||||
assert video_count > 0
|
||||
assert image_count > 0
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_random_mm_video_only_sampling(hf_tokenizer: PreTrainedTokenizerBase) -> None:
|
||||
"""Test sampling with only video buckets."""
|
||||
ds = RandomMultiModalDataset(random_seed=42)
|
||||
|
||||
bucket_config = {
|
||||
(64, 64, 8): 1.0, # Only videos
|
||||
}
|
||||
|
||||
limit_mm_per_prompt = {"image": 0, "video": 1}
|
||||
|
||||
samples = _collect_mm_samples(
|
||||
ds,
|
||||
hf_tokenizer,
|
||||
num_requests=3,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
)
|
||||
|
||||
assert len(samples) == 3
|
||||
|
||||
for s in samples:
|
||||
mm_data = cast(list[dict[str, Any]], s.multi_modal_data)
|
||||
assert len(mm_data) == 1
|
||||
|
||||
item = mm_data[0]
|
||||
assert item.get("type") == "video_url"
|
||||
url = item.get("video_url", {}).get("url", "")
|
||||
assert url.startswith("data:video/mp4;base64,")
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_random_mm_video_deterministic_sampling(
|
||||
hf_tokenizer: PreTrainedTokenizerBase,
|
||||
) -> None:
|
||||
"""Test that video sampling is deterministic with same seed."""
|
||||
seed = 123
|
||||
ds_a = RandomMultiModalDataset(random_seed=seed)
|
||||
ds_b = RandomMultiModalDataset(random_seed=seed)
|
||||
|
||||
bucket_config = {
|
||||
(64, 64, 8): 1.0, # Only videos
|
||||
}
|
||||
|
||||
limit_mm_per_prompt = {"image": 0, "video": 1}
|
||||
|
||||
a = _collect_mm_samples(
|
||||
ds_a,
|
||||
hf_tokenizer,
|
||||
num_requests=3,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
)
|
||||
|
||||
b = _collect_mm_samples(
|
||||
ds_b,
|
||||
hf_tokenizer,
|
||||
num_requests=3,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
)
|
||||
|
||||
fa = [_mm_fingerprint_sample(s) for s in a]
|
||||
fb = [_mm_fingerprint_sample(s) for s in b]
|
||||
assert fa == fb
|
||||
|
||||
398
tests/benchmarks/test_random_multimodal_dataset_video.py
Normal file
398
tests/benchmarks/test_random_multimodal_dataset_video.py
Normal file
@ -0,0 +1,398 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import base64
|
||||
import os
|
||||
from tempfile import NamedTemporaryFile
|
||||
from typing import Any, cast
|
||||
|
||||
import cv2
|
||||
import pytest
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||
|
||||
from vllm.benchmarks.datasets import RandomMultiModalDataset, SampleRequest
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def hf_tokenizer() -> PreTrainedTokenizerBase:
|
||||
"""Use a small, commonly available tokenizer."""
|
||||
return AutoTokenizer.from_pretrained("gpt2")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def video_dataset() -> RandomMultiModalDataset:
|
||||
"""Create a RandomMultiModalDataset instance for testing."""
|
||||
return RandomMultiModalDataset(random_seed=42)
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_generate_synthetic_video_different_seeds():
|
||||
"""Test that different seeds produce different videos."""
|
||||
dataset1 = RandomMultiModalDataset(random_seed=123)
|
||||
dataset2 = RandomMultiModalDataset(random_seed=456)
|
||||
|
||||
width, height, num_frames = 64, 48, 8
|
||||
|
||||
video1 = dataset1.generate_synthetic_video(width, height, num_frames)
|
||||
video2 = dataset2.generate_synthetic_video(width, height, num_frames)
|
||||
|
||||
# Videos should be different due to different seeds
|
||||
assert video1["bytes"] != video2["bytes"]
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_map_config_to_modality(video_dataset: RandomMultiModalDataset):
|
||||
"""Test modality mapping for different configurations."""
|
||||
# Test image configuration (num_frames = 1)
|
||||
assert video_dataset.map_config_to_modality((256, 256, 1)) == "image"
|
||||
assert video_dataset.map_config_to_modality((720, 1280, 1)) == "image"
|
||||
|
||||
# Test video configurations (num_frames > 1)
|
||||
assert video_dataset.map_config_to_modality((256, 256, 8)) == "video"
|
||||
assert video_dataset.map_config_to_modality((720, 1280, 16)) == "video"
|
||||
assert video_dataset.map_config_to_modality((64, 64, 32)) == "video"
|
||||
|
||||
# Test invalid configurations
|
||||
with pytest.raises(ValueError, match="Invalid multimodal item configuration"):
|
||||
video_dataset.map_config_to_modality((256, 256, 0))
|
||||
|
||||
with pytest.raises(ValueError, match="Invalid multimodal item configuration"):
|
||||
video_dataset.map_config_to_modality((256, 256, -1))
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_generate_mm_item_video(video_dataset: RandomMultiModalDataset):
|
||||
"""Test generating multimodal items for video configurations."""
|
||||
# Test video item generation
|
||||
video_config = (64, 48, 8) # height, width, num_frames
|
||||
result = video_dataset.generate_mm_item(video_config)
|
||||
|
||||
# Check the result structure matches OpenAI API format
|
||||
assert isinstance(result, dict)
|
||||
assert result["type"] == "video_url"
|
||||
assert "video_url" in result
|
||||
assert "url" in result["video_url"]
|
||||
|
||||
# Check that the URL is a data URL with base64 encoded video
|
||||
url = result["video_url"]["url"]
|
||||
assert url.startswith("data:video/mp4;base64,")
|
||||
|
||||
# Decode and verify the video content
|
||||
base64_data = url.split(",")[1]
|
||||
video_bytes = base64.b64decode(base64_data)
|
||||
assert len(video_bytes) > 0
|
||||
|
||||
# Verify the video can be decoded
|
||||
with NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
||||
temp_path = temp_file.name
|
||||
temp_file.write(video_bytes)
|
||||
|
||||
try:
|
||||
cap = cv2.VideoCapture(temp_path)
|
||||
assert cap.isOpened()
|
||||
|
||||
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
|
||||
assert frame_count == 8
|
||||
assert frame_width == 48
|
||||
assert frame_height == 64
|
||||
|
||||
cap.release()
|
||||
finally:
|
||||
if os.path.exists(temp_path):
|
||||
os.unlink(temp_path)
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_generate_mm_item_image(video_dataset: RandomMultiModalDataset):
|
||||
"""Test generating multimodal items for image configurations."""
|
||||
# Test image item generation
|
||||
image_config = (64, 48, 1) # height, width, num_frames=1
|
||||
result = video_dataset.generate_mm_item(image_config)
|
||||
|
||||
# Check the result structure matches OpenAI API format
|
||||
assert isinstance(result, dict)
|
||||
assert result["type"] == "image_url"
|
||||
assert "image_url" in result
|
||||
assert "url" in result["image_url"]
|
||||
|
||||
# Check that the URL is a data URL with base64 encoded image
|
||||
url = result["image_url"]["url"]
|
||||
assert url.startswith("data:image/jpeg;base64,")
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_generate_mm_item_invalid_config(video_dataset: RandomMultiModalDataset):
|
||||
"""Test error handling for invalid configurations."""
|
||||
with pytest.raises(ValueError, match="Invalid multimodal item configuration"):
|
||||
video_dataset.generate_mm_item((256, 256, 0))
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_sample_with_video_buckets(
|
||||
video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase
|
||||
):
|
||||
"""Test sampling with video bucket configurations."""
|
||||
# Configure bucket with video probability > 0
|
||||
bucket_config = {
|
||||
(64, 64, 1): 0.3, # Images
|
||||
(64, 64, 8): 0.7, # Videos
|
||||
}
|
||||
|
||||
limit_mm_per_prompt = {"image": 5, "video": 3}
|
||||
|
||||
samples = video_dataset.sample(
|
||||
tokenizer=hf_tokenizer,
|
||||
num_requests=5,
|
||||
base_items_per_request=2,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
input_len=20,
|
||||
output_len=5,
|
||||
)
|
||||
|
||||
assert len(samples) == 5
|
||||
|
||||
# Check that samples contain both images and videos
|
||||
video_count = 0
|
||||
image_count = 0
|
||||
|
||||
for sample in samples:
|
||||
assert isinstance(sample, SampleRequest)
|
||||
assert sample.multi_modal_data is not None
|
||||
assert isinstance(sample.multi_modal_data, list)
|
||||
|
||||
mm_data = cast(list[dict[str, Any]], sample.multi_modal_data)
|
||||
assert len(mm_data) == 2 # base_items_per_request
|
||||
|
||||
for item in mm_data:
|
||||
if item["type"] == "video_url":
|
||||
video_count += 1
|
||||
# Verify video URL format
|
||||
url = item["video_url"]["url"]
|
||||
assert url.startswith("data:video/mp4;base64,")
|
||||
elif item["type"] == "image_url":
|
||||
image_count += 1
|
||||
# Verify image URL format
|
||||
url = item["image_url"]["url"]
|
||||
assert url.startswith("data:image/jpeg;base64,")
|
||||
|
||||
# Should have some videos due to 0.7 probability
|
||||
assert video_count > 0
|
||||
assert image_count > 0
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_sample_video_only_buckets(
|
||||
video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase
|
||||
):
|
||||
"""Test sampling with only video buckets."""
|
||||
bucket_config = {
|
||||
(64, 64, 8): 1.0, # Only videos
|
||||
}
|
||||
|
||||
limit_mm_per_prompt = {"image": 0, "video": 2}
|
||||
|
||||
samples = video_dataset.sample(
|
||||
tokenizer=hf_tokenizer,
|
||||
num_requests=3,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
input_len=20,
|
||||
output_len=5,
|
||||
)
|
||||
|
||||
assert len(samples) == 3
|
||||
|
||||
for sample in samples:
|
||||
assert isinstance(sample, SampleRequest)
|
||||
assert sample.multi_modal_data is not None
|
||||
assert isinstance(sample.multi_modal_data, list)
|
||||
|
||||
mm_data = cast(list[dict[str, Any]], sample.multi_modal_data)
|
||||
assert len(mm_data) == 1
|
||||
|
||||
item = mm_data[0]
|
||||
assert item["type"] == "video_url"
|
||||
url = item["video_url"]["url"]
|
||||
assert url.startswith("data:video/mp4;base64,")
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_sample_respects_video_limits(
|
||||
video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase
|
||||
):
|
||||
"""Test that sampling respects video limits per prompt."""
|
||||
bucket_config = {
|
||||
(64, 64, 8): 1.0, # Only videos
|
||||
}
|
||||
|
||||
# Set very low video limit
|
||||
limit_mm_per_prompt = {"image": 0, "video": 1}
|
||||
|
||||
samples = video_dataset.sample(
|
||||
tokenizer=hf_tokenizer,
|
||||
num_requests=3,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
input_len=20,
|
||||
output_len=5,
|
||||
)
|
||||
|
||||
assert len(samples) == 3
|
||||
|
||||
for sample in samples:
|
||||
mm_data = cast(list[dict[str, Any]], sample.multi_modal_data)
|
||||
assert len(mm_data) <= 1 # Should respect video limit
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_sample_mixed_buckets_with_zero_probability(
|
||||
video_dataset: RandomMultiModalDataset, hf_tokenizer: PreTrainedTokenizerBase
|
||||
):
|
||||
"""Test sampling with mixed buckets including zero probability entries."""
|
||||
bucket_config = {
|
||||
(64, 64, 1): 0.5, # Images
|
||||
(64, 64, 8): 0.5, # Videos
|
||||
(128, 128, 16): 0.0, # Zero probability videos (should be ignored)
|
||||
}
|
||||
|
||||
limit_mm_per_prompt = {"image": 2, "video": 2}
|
||||
|
||||
samples = video_dataset.sample(
|
||||
tokenizer=hf_tokenizer,
|
||||
num_requests=4,
|
||||
base_items_per_request=2,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
input_len=20,
|
||||
output_len=5,
|
||||
)
|
||||
|
||||
assert len(samples) == 4
|
||||
|
||||
# Should only see 64x64 videos, not 128x128 videos
|
||||
for sample in samples:
|
||||
mm_data = cast(list[dict[str, Any]], sample.multi_modal_data)
|
||||
for item in mm_data:
|
||||
if item["type"] == "video_url":
|
||||
# Decode video to verify dimensions
|
||||
url = item["video_url"]["url"]
|
||||
base64_data = url.split(",")[1]
|
||||
video_bytes = base64.b64decode(base64_data)
|
||||
|
||||
with NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file: # noqa
|
||||
temp_path = temp_file.name
|
||||
temp_file.write(video_bytes)
|
||||
|
||||
try:
|
||||
cap = cv2.VideoCapture(temp_path)
|
||||
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
cap.release()
|
||||
|
||||
# Should be 64x64, not 128x128
|
||||
assert frame_width == 64
|
||||
assert frame_height == 64
|
||||
finally:
|
||||
if os.path.exists(temp_path):
|
||||
os.unlink(temp_path)
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_sample_deterministic_with_videos(hf_tokenizer: PreTrainedTokenizerBase):
|
||||
"""Test that sampling with videos is deterministic with same seed."""
|
||||
dataset1 = RandomMultiModalDataset(random_seed=123)
|
||||
dataset2 = RandomMultiModalDataset(random_seed=123)
|
||||
|
||||
bucket_config = {
|
||||
(64, 64, 1): 0.3, # Images
|
||||
(64, 64, 8): 0.7, # Videos
|
||||
}
|
||||
|
||||
limit_mm_per_prompt = {"image": 2, "video": 2}
|
||||
|
||||
samples1 = dataset1.sample(
|
||||
tokenizer=hf_tokenizer,
|
||||
num_requests=3,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
input_len=20,
|
||||
output_len=5,
|
||||
)
|
||||
|
||||
samples2 = dataset2.sample(
|
||||
tokenizer=hf_tokenizer,
|
||||
num_requests=3,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
input_len=20,
|
||||
output_len=5,
|
||||
)
|
||||
|
||||
assert len(samples1) == len(samples2)
|
||||
|
||||
# Compare multimodal data
|
||||
for s1, s2 in zip(samples1, samples2):
|
||||
assert s1.multi_modal_data == s2.multi_modal_data
|
||||
|
||||
|
||||
@pytest.mark.benchmark
|
||||
def test_sample_different_seeds_produce_different_videos(
|
||||
hf_tokenizer: PreTrainedTokenizerBase,
|
||||
):
|
||||
"""Test that different seeds produce different video content."""
|
||||
dataset1 = RandomMultiModalDataset(random_seed=123)
|
||||
dataset2 = RandomMultiModalDataset(random_seed=456)
|
||||
|
||||
bucket_config = {
|
||||
(64, 64, 8): 1.0, # Only videos
|
||||
}
|
||||
|
||||
limit_mm_per_prompt = {"image": 0, "video": 1}
|
||||
|
||||
samples1 = dataset1.sample(
|
||||
tokenizer=hf_tokenizer,
|
||||
num_requests=2,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
input_len=20,
|
||||
output_len=5,
|
||||
)
|
||||
|
||||
samples2 = dataset2.sample(
|
||||
tokenizer=hf_tokenizer,
|
||||
num_requests=2,
|
||||
base_items_per_request=1,
|
||||
num_mm_items_range_ratio=0.0,
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
bucket_config=bucket_config,
|
||||
input_len=20,
|
||||
output_len=5,
|
||||
)
|
||||
|
||||
# Video content should be different
|
||||
for s1, s2 in zip(samples1, samples2):
|
||||
mm_data1 = cast(list[dict[str, Any]], s1.multi_modal_data)
|
||||
mm_data2 = cast(list[dict[str, Any]], s2.multi_modal_data)
|
||||
|
||||
assert len(mm_data1) == len(mm_data2) == 1
|
||||
|
||||
url1 = mm_data1[0]["video_url"]["url"]
|
||||
url2 = mm_data2[0]["video_url"]["url"]
|
||||
|
||||
assert url1 != url2 # Different video content
|
||||
36
tests/compile/test_multimodal_compile.py
Normal file
36
tests/compile/test_multimodal_compile.py
Normal file
@ -0,0 +1,36 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import pytest
|
||||
|
||||
from vllm.compilation.counter import compilation_counter
|
||||
from vllm.config.compilation import CompilationMode
|
||||
|
||||
|
||||
# forked needed to workaround https://github.com/vllm-project/vllm/issues/21073
|
||||
@pytest.mark.forked
|
||||
def test_qwen2_5_vl_compilation(vllm_runner, monkeypatch):
|
||||
"""Test that Qwen2.5-VL vision submodules are compiled.
|
||||
|
||||
This test verifies that the 3 vision submodules (Qwen2_5_VisionPatchEmbed,
|
||||
Qwen2_5_VisionBlock, and Qwen2_5_VisionPatchMerger) are properly tagged
|
||||
for compilation by checking that num_models_seen increases by at least 3.
|
||||
"""
|
||||
# Disable multiprocessing so that the counter is in the same process
|
||||
monkeypatch.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
|
||||
|
||||
with (
|
||||
# NOTE: Qwen2.5-VL has 35 models in total - the LLM backend
|
||||
# Vision Patch Embed, Vision Patch Merger, and then 32 Vision Blocks
|
||||
# (one for each layer) - in the future, we should fix vLLM compilation
|
||||
# logic to handle this case and only compile the Vision submodules once
|
||||
# and reuse the compiled code for all layers
|
||||
# See https://github.com/vllm-project/vllm/issues/27590
|
||||
compilation_counter.expect(num_models_seen=35),
|
||||
vllm_runner(
|
||||
"Qwen/Qwen2.5-VL-3B-Instruct",
|
||||
max_model_len=2048,
|
||||
gpu_memory_utilization=0.7,
|
||||
compilation_config={"mode": CompilationMode.VLLM_COMPILE},
|
||||
) as _,
|
||||
):
|
||||
pass
|
||||
@ -831,8 +831,9 @@ class VllmRunner:
|
||||
images: PromptImageInput | None = None,
|
||||
videos: PromptVideoInput | None = None,
|
||||
audios: PromptAudioInput | None = None,
|
||||
return_logprobs: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> list[tuple[list[list[int]], list[str]]]:
|
||||
) -> list[tuple[list[list[int]], list[str]]] | tuple[list, list]:
|
||||
inputs = self.get_inputs(prompts, images=images, videos=videos, audios=audios)
|
||||
|
||||
req_outputs = self.llm.generate(
|
||||
@ -840,18 +841,23 @@ class VllmRunner:
|
||||
)
|
||||
|
||||
outputs: list[tuple[list[list[int]], list[str]]] = []
|
||||
logprobs = []
|
||||
for req_output in req_outputs:
|
||||
prompt_str = req_output.prompt
|
||||
prompt_ids = req_output.prompt_token_ids
|
||||
req_sample_output_ids: list[list[int]] = []
|
||||
req_sample_output_strs: list[str] = []
|
||||
req_logprobs = []
|
||||
for sample in req_output.outputs:
|
||||
output_str = sample.text
|
||||
output_ids = list(sample.token_ids)
|
||||
req_sample_output_ids.append(prompt_ids + output_ids)
|
||||
req_sample_output_strs.append((prompt_str or "") + output_str)
|
||||
if sample.logprobs:
|
||||
req_logprobs.extend(sample.logprobs)
|
||||
outputs.append((req_sample_output_ids, req_sample_output_strs))
|
||||
return outputs
|
||||
logprobs.append(req_logprobs)
|
||||
return outputs if not return_logprobs else (outputs, logprobs)
|
||||
|
||||
@staticmethod
|
||||
def _final_steps_generate_w_logprobs(
|
||||
|
||||
@ -26,6 +26,8 @@ def mcp_disabled_server(monkeypatch_module: pytest.MonkeyPatch):
|
||||
with monkeypatch_module.context() as m:
|
||||
m.setenv("VLLM_ENABLE_RESPONSES_API_STORE", "1")
|
||||
m.setenv("PYTHON_EXECUTION_BACKEND", "dangerously_use_uv")
|
||||
# Helps the model follow instructions better
|
||||
m.setenv("VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS", "1")
|
||||
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
||||
yield remote_server
|
||||
|
||||
@ -37,7 +39,9 @@ def mcp_enabled_server(monkeypatch_module: pytest.MonkeyPatch):
|
||||
with monkeypatch_module.context() as m:
|
||||
m.setenv("VLLM_ENABLE_RESPONSES_API_STORE", "1")
|
||||
m.setenv("PYTHON_EXECUTION_BACKEND", "dangerously_use_uv")
|
||||
m.setenv("GPT_OSS_SYSTEM_TOOL_MCP_LABELS", "code_interpreter,container")
|
||||
m.setenv("VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS", "code_interpreter,container")
|
||||
# Helps the model follow instructions better
|
||||
m.setenv("VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS", "1")
|
||||
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
||||
yield remote_server
|
||||
|
||||
@ -56,18 +60,15 @@ async def mcp_enabled_client(mcp_enabled_server):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.skip(reason="Code interpreter tool is not available in CI yet.")
|
||||
async def test_mcp_tool_env_flag_enabled(mcp_enabled_client: OpenAI, model_name: str):
|
||||
response = await mcp_enabled_client.responses.create(
|
||||
model=model_name,
|
||||
# TODO: Ideally should be able to set max tool calls
|
||||
# to prevent multi-turn, but it is not currently supported
|
||||
# would speed up the test
|
||||
input=(
|
||||
"What's the first 4 digits after the decimal point of "
|
||||
"cube root of `19910212 * 20250910`? "
|
||||
"Show only the digits. The python interpreter is not stateful "
|
||||
"and you must print to see the output."
|
||||
"Execute the following code: "
|
||||
"import random; print(random.randint(1, 1000000))"
|
||||
),
|
||||
instructions=(
|
||||
"You must use the Python tool to execute code. Never simulate execution."
|
||||
),
|
||||
tools=[
|
||||
{
|
||||
@ -77,26 +78,47 @@ async def test_mcp_tool_env_flag_enabled(mcp_enabled_client: OpenAI, model_name:
|
||||
"server_url": "http://localhost:8888",
|
||||
}
|
||||
],
|
||||
extra_body={"enable_response_messages": True},
|
||||
)
|
||||
assert response is not None
|
||||
assert response.status == "completed"
|
||||
assert response.usage.output_tokens_details.tool_output_tokens > 0
|
||||
# Verify output messages: Tool calls and responses on analysis channel
|
||||
tool_call_found = False
|
||||
tool_response_found = False
|
||||
for message in response.output_messages:
|
||||
recipient = message.get("recipient")
|
||||
if recipient and recipient.startswith("python"):
|
||||
tool_call_found = True
|
||||
assert message.get("channel") == "analysis", (
|
||||
"Tool call should be on analysis channel"
|
||||
)
|
||||
author = message.get("author", {})
|
||||
if (
|
||||
author.get("role") == "tool"
|
||||
and author.get("name")
|
||||
and author.get("name").startswith("python")
|
||||
):
|
||||
tool_response_found = True
|
||||
assert message.get("channel") == "analysis", (
|
||||
"Tool response should be on analysis channel"
|
||||
)
|
||||
|
||||
assert tool_call_found, "Should have found at least one Python tool call"
|
||||
assert tool_response_found, "Should have found at least one Python tool response"
|
||||
for message in response.input_messages:
|
||||
assert message.get("author").get("role") != "developer", (
|
||||
"No developer messages should be present with valid mcp tool"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.skip(reason="Code interpreter tool is not available in CI yet.")
|
||||
async def test_mcp_tool_env_flag_disabled(mcp_disabled_client: OpenAI, model_name: str):
|
||||
response = await mcp_disabled_client.responses.create(
|
||||
model=model_name,
|
||||
# TODO: Ideally should be able to set max tool calls
|
||||
# to prevent multi-turn, but it is not currently supported
|
||||
# would speed up the test
|
||||
input=(
|
||||
"What's the first 4 digits after the decimal point of "
|
||||
"cube root of `19910212 * 20250910`? "
|
||||
"Show only the digits. The python interpreter is not stateful "
|
||||
"and you must print to see the output."
|
||||
"Execute the following code if the tool is present: "
|
||||
"import random; print(random.randint(1, 1000000))"
|
||||
),
|
||||
tools=[
|
||||
{
|
||||
@ -106,7 +128,34 @@ async def test_mcp_tool_env_flag_disabled(mcp_disabled_client: OpenAI, model_nam
|
||||
"server_url": "http://localhost:8888",
|
||||
}
|
||||
],
|
||||
extra_body={"enable_response_messages": True},
|
||||
)
|
||||
assert response is not None
|
||||
assert response.status == "completed"
|
||||
assert response.usage.output_tokens_details.tool_output_tokens == 0
|
||||
# Verify output messages: No tool calls and responses
|
||||
tool_call_found = False
|
||||
tool_response_found = False
|
||||
for message in response.output_messages:
|
||||
recipient = message.get("recipient")
|
||||
if recipient and recipient.startswith("python"):
|
||||
tool_call_found = True
|
||||
assert message.get("channel") == "analysis", (
|
||||
"Tool call should be on analysis channel"
|
||||
)
|
||||
author = message.get("author", {})
|
||||
if (
|
||||
author.get("role") == "tool"
|
||||
and author.get("name")
|
||||
and author.get("name").startswith("python")
|
||||
):
|
||||
tool_response_found = True
|
||||
assert message.get("channel") == "analysis", (
|
||||
"Tool response should be on analysis channel"
|
||||
)
|
||||
|
||||
assert not tool_call_found, "Should not have a python call"
|
||||
assert not tool_response_found, "Should not have a tool response"
|
||||
for message in response.input_messages:
|
||||
assert message.get("author").get("role") != "developer", (
|
||||
"No developer messages should be present without a valid tool"
|
||||
)
|
||||
|
||||
@ -6,10 +6,19 @@ from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from openai.types.responses.tool import (
|
||||
CodeInterpreterContainerCodeInterpreterToolAuto,
|
||||
LocalShell,
|
||||
Mcp,
|
||||
Tool,
|
||||
)
|
||||
|
||||
from vllm.entrypoints.context import ConversationContext
|
||||
from vllm.entrypoints.openai.protocol import ErrorResponse, ResponsesRequest
|
||||
from vllm.entrypoints.openai.serving_responses import OpenAIServingResponses
|
||||
from vllm.entrypoints.openai.serving_responses import (
|
||||
OpenAIServingResponses,
|
||||
extract_tool_types,
|
||||
)
|
||||
from vllm.entrypoints.tool_server import ToolServer
|
||||
from vllm.inputs.data import TokensPrompt as EngineTokensPrompt
|
||||
|
||||
@ -62,6 +71,45 @@ def mock_exit_stack():
|
||||
return MagicMock(spec=AsyncExitStack)
|
||||
|
||||
|
||||
def test_extract_tool_types(monkeypatch: pytest.MonkeyPatch) -> None:
|
||||
tools: list[Tool] = []
|
||||
assert extract_tool_types(tools) == set()
|
||||
|
||||
tools.append(LocalShell(type="local_shell"))
|
||||
assert extract_tool_types(tools) == {"local_shell"}
|
||||
|
||||
tools.append(CodeInterpreterContainerCodeInterpreterToolAuto(type="auto"))
|
||||
assert extract_tool_types(tools) == {"local_shell", "auto"}
|
||||
|
||||
tools.extend(
|
||||
[
|
||||
Mcp(type="mcp", server_label="random", server_url=""),
|
||||
Mcp(type="mcp", server_label="container", server_url=""),
|
||||
Mcp(type="mcp", server_label="code_interpreter", server_url=""),
|
||||
Mcp(type="mcp", server_label="web_search_preview", server_url=""),
|
||||
]
|
||||
)
|
||||
# When envs.VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS is not set,
|
||||
# mcp tool types are all ignored.
|
||||
assert extract_tool_types(tools) == {"local_shell", "auto"}
|
||||
|
||||
# container is allowed, it would be extracted
|
||||
monkeypatch.setenv("VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS", "container")
|
||||
assert extract_tool_types(tools) == {"local_shell", "auto", "container"}
|
||||
|
||||
# code_interpreter and web_search_preview are allowed,
|
||||
# they would be extracted
|
||||
monkeypatch.setenv(
|
||||
"VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS", "code_interpreter,web_search_preview"
|
||||
)
|
||||
assert extract_tool_types(tools) == {
|
||||
"local_shell",
|
||||
"auto",
|
||||
"code_interpreter",
|
||||
"web_search_preview",
|
||||
}
|
||||
|
||||
|
||||
class TestInitializeToolSessions:
|
||||
"""Test class for _initialize_tool_sessions method"""
|
||||
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import requests
|
||||
from prometheus_client.parser import text_string_to_metric_families
|
||||
|
||||
from ...utils import RemoteOpenAIServer
|
||||
|
||||
@ -31,12 +32,28 @@ def test_sleep_mode():
|
||||
assert response.status_code == 200
|
||||
assert response.json().get("is_sleeping") is True
|
||||
|
||||
# check sleep metrics
|
||||
response = requests.get(remote_server.url_for("metrics"))
|
||||
assert response.status_code == 200
|
||||
awake, weights_offloaded, discard_all = _get_sleep_metrics_from_api(response)
|
||||
assert awake == 0
|
||||
assert weights_offloaded == 1
|
||||
assert discard_all == 0
|
||||
|
||||
response = requests.post(remote_server.url_for("wake_up"))
|
||||
assert response.status_code == 200
|
||||
response = requests.get(remote_server.url_for("is_sleeping"))
|
||||
assert response.status_code == 200
|
||||
assert response.json().get("is_sleeping") is False
|
||||
|
||||
# check sleep metrics
|
||||
response = requests.get(remote_server.url_for("metrics"))
|
||||
assert response.status_code == 200
|
||||
awake, weights_offloaded, discard_all = _get_sleep_metrics_from_api(response)
|
||||
assert awake == 1
|
||||
assert weights_offloaded == 0
|
||||
assert discard_all == 0
|
||||
|
||||
# test wake up with tags
|
||||
response = requests.post(remote_server.url_for("sleep"), params={"level": "1"})
|
||||
assert response.status_code == 200
|
||||
@ -59,3 +76,35 @@ def test_sleep_mode():
|
||||
response = requests.get(remote_server.url_for("is_sleeping"))
|
||||
assert response.status_code == 200
|
||||
assert response.json().get("is_sleeping") is False
|
||||
|
||||
# check sleep metrics
|
||||
response = requests.get(remote_server.url_for("metrics"))
|
||||
assert response.status_code == 200
|
||||
awake, weights_offloaded, discard_all = _get_sleep_metrics_from_api(response)
|
||||
assert awake == 1
|
||||
assert weights_offloaded == 0
|
||||
assert discard_all == 0
|
||||
|
||||
|
||||
def _get_sleep_metrics_from_api(response: requests.Response):
|
||||
"""Return (awake, weights_offloaded, discard_all)"""
|
||||
|
||||
awake, weights_offloaded, discard_all = None, None, None
|
||||
|
||||
for family in text_string_to_metric_families(response.text):
|
||||
if family.name == "vllm:engine_sleep_state":
|
||||
for sample in family.samples:
|
||||
if sample.name == "vllm:engine_sleep_state":
|
||||
for label_name, label_value in sample.labels.items():
|
||||
if label_value == "awake":
|
||||
awake = sample.value
|
||||
elif label_value == "weights_offloaded":
|
||||
weights_offloaded = sample.value
|
||||
elif label_value == "discard_all":
|
||||
discard_all = sample.value
|
||||
|
||||
assert awake is not None
|
||||
assert weights_offloaded is not None
|
||||
assert discard_all is not None
|
||||
|
||||
return awake, weights_offloaded, discard_all
|
||||
|
||||
@ -37,15 +37,17 @@ def llm():
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
def test_pooling_params(llm: LLM):
|
||||
def get_outputs(activation):
|
||||
def get_outputs(use_activation):
|
||||
outputs = llm.classify(
|
||||
prompts, pooling_params=PoolingParams(activation=activation), use_tqdm=False
|
||||
prompts,
|
||||
pooling_params=PoolingParams(use_activation=use_activation),
|
||||
use_tqdm=False,
|
||||
)
|
||||
return torch.tensor([x.outputs.probs for x in outputs])
|
||||
|
||||
default = get_outputs(activation=None)
|
||||
w_activation = get_outputs(activation=True)
|
||||
wo_activation = get_outputs(activation=False)
|
||||
default = get_outputs(use_activation=None)
|
||||
w_activation = get_outputs(use_activation=True)
|
||||
wo_activation = get_outputs(use_activation=False)
|
||||
|
||||
assert torch.allclose(default, w_activation, atol=1e-2), (
|
||||
"Default should use activation."
|
||||
|
||||
@ -37,15 +37,17 @@ def llm():
|
||||
|
||||
|
||||
def test_pooling_params(llm: LLM):
|
||||
def get_outputs(activation):
|
||||
def get_outputs(use_activation):
|
||||
outputs = llm.reward(
|
||||
prompts, pooling_params=PoolingParams(activation=activation), use_tqdm=False
|
||||
prompts,
|
||||
pooling_params=PoolingParams(use_activation=use_activation),
|
||||
use_tqdm=False,
|
||||
)
|
||||
return torch.cat([x.outputs.data for x in outputs])
|
||||
|
||||
default = get_outputs(activation=None)
|
||||
w_activation = get_outputs(activation=True)
|
||||
wo_activation = get_outputs(activation=False)
|
||||
default = get_outputs(use_activation=None)
|
||||
w_activation = get_outputs(use_activation=True)
|
||||
wo_activation = get_outputs(use_activation=False)
|
||||
|
||||
assert torch.allclose(default, w_activation, atol=1e-2), (
|
||||
"Default should use activation."
|
||||
|
||||
@ -34,21 +34,21 @@ def llm():
|
||||
|
||||
|
||||
def test_pooling_params(llm: LLM):
|
||||
def get_outputs(activation):
|
||||
def get_outputs(use_activation):
|
||||
text_1 = "What is the capital of France?"
|
||||
text_2 = "The capital of France is Paris."
|
||||
|
||||
outputs = llm.score(
|
||||
text_1,
|
||||
text_2,
|
||||
pooling_params=PoolingParams(activation=activation),
|
||||
pooling_params=PoolingParams(use_activation=use_activation),
|
||||
use_tqdm=False,
|
||||
)
|
||||
return torch.tensor([x.outputs.score for x in outputs])
|
||||
|
||||
default = get_outputs(activation=None)
|
||||
w_activation = get_outputs(activation=True)
|
||||
wo_activation = get_outputs(activation=False)
|
||||
default = get_outputs(use_activation=None)
|
||||
w_activation = get_outputs(use_activation=True)
|
||||
wo_activation = get_outputs(use_activation=False)
|
||||
|
||||
assert torch.allclose(default, w_activation, atol=1e-2), (
|
||||
"Default should use activation."
|
||||
|
||||
@ -7,7 +7,7 @@ import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from tests.utils import RemoteOpenAIServer
|
||||
from vllm.entrypoints.openai.protocol import ClassificationResponse
|
||||
from vllm.entrypoints.openai.protocol import ClassificationResponse, PoolingResponse
|
||||
|
||||
MODEL_NAME = "jason9693/Qwen2.5-1.5B-apeach"
|
||||
DTYPE = "float32" # Use float32 to avoid NaN issue
|
||||
@ -163,20 +163,24 @@ async def test_invocations(server: RemoteOpenAIServer):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_activation(server: RemoteOpenAIServer, model_name: str):
|
||||
async def test_use_activation(server: RemoteOpenAIServer, model_name: str):
|
||||
input_text = ["This product was excellent and exceeded my expectations"]
|
||||
|
||||
async def get_outputs(activation):
|
||||
async def get_outputs(use_activation):
|
||||
response = requests.post(
|
||||
server.url_for("classify"),
|
||||
json={"model": model_name, "input": input_text, "activation": activation},
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_text,
|
||||
"use_activation": use_activation,
|
||||
},
|
||||
)
|
||||
outputs = response.json()
|
||||
return torch.tensor([x["probs"] for x in outputs["data"]])
|
||||
|
||||
default = await get_outputs(activation=None)
|
||||
w_activation = await get_outputs(activation=True)
|
||||
wo_activation = await get_outputs(activation=False)
|
||||
default = await get_outputs(use_activation=None)
|
||||
w_activation = await get_outputs(use_activation=True)
|
||||
wo_activation = await get_outputs(use_activation=False)
|
||||
|
||||
assert torch.allclose(default, w_activation, atol=1e-2), (
|
||||
"Default should use activation."
|
||||
@ -191,18 +195,7 @@ async def test_activation(server: RemoteOpenAIServer, model_name: str):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
def test_pooling(server: RemoteOpenAIServer, model_name: str):
|
||||
# pooling api uses ALL pooling, which does not support chunked prefill.
|
||||
response = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={"model": model_name, "input": "test", "encoding_format": "float"},
|
||||
)
|
||||
assert response.json()["error"]["type"] == "BadRequestError"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
def test_score(server: RemoteOpenAIServer, model_name: str):
|
||||
async def test_score(server: RemoteOpenAIServer, model_name: str):
|
||||
# score api is only enabled for num_labels == 1.
|
||||
response = requests.post(
|
||||
server.url_for("score"),
|
||||
@ -217,7 +210,7 @@ def test_score(server: RemoteOpenAIServer, model_name: str):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
def test_rerank(server: RemoteOpenAIServer, model_name: str):
|
||||
async def test_rerank(server: RemoteOpenAIServer, model_name: str):
|
||||
# rerank api is only enabled for num_labels == 1.
|
||||
response = requests.post(
|
||||
server.url_for("rerank"),
|
||||
@ -228,3 +221,62 @@ def test_rerank(server: RemoteOpenAIServer, model_name: str):
|
||||
},
|
||||
)
|
||||
assert response.json()["error"]["type"] == "BadRequestError"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_pooling_classify(server: RemoteOpenAIServer, model_name: str):
|
||||
input_text = "This product was excellent and exceeded my expectations"
|
||||
response = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_text,
|
||||
"encoding_format": "float",
|
||||
"task": "classify",
|
||||
},
|
||||
)
|
||||
poolings = PoolingResponse.model_validate(response.json())
|
||||
assert len(poolings.data) == 1
|
||||
assert len(poolings.data[0].data) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_pooling_token_classify(server: RemoteOpenAIServer, model_name: str):
|
||||
# token_classify uses ALL pooling, which does not support chunked prefill.
|
||||
task = "token_classify"
|
||||
response = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": "test",
|
||||
"encoding_format": "float",
|
||||
"task": task,
|
||||
},
|
||||
)
|
||||
assert response.json()["error"]["type"] == "BadRequestError"
|
||||
assert response.json()["error"]["message"].startswith(
|
||||
f"Task {task} is not supported"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("task", ["embed", "token_embed", "plugin"])
|
||||
async def test_pooling_not_supported(
|
||||
server: RemoteOpenAIServer, model_name: str, task: str
|
||||
):
|
||||
response = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": "test",
|
||||
"encoding_format": "float",
|
||||
"task": task,
|
||||
},
|
||||
)
|
||||
assert response.json()["error"]["type"] == "BadRequestError"
|
||||
assert response.json()["error"]["message"].startswith(
|
||||
f"Task {task} is not supported"
|
||||
)
|
||||
|
||||
@ -562,12 +562,40 @@ async def test_normalize(server: RemoteOpenAIServer, model_name: str):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_pooling(server: RemoteOpenAIServer, model_name: str):
|
||||
async def test_pooling_embed(server: RemoteOpenAIServer, model_name: str):
|
||||
task = "embed"
|
||||
input_text = ["The chef prepared a delicious meal."]
|
||||
|
||||
response = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={"model": model_name, "input": input_text, "encoding_format": "float"},
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_text,
|
||||
"encoding_format": "float",
|
||||
"task": task,
|
||||
},
|
||||
)
|
||||
|
||||
poolings = PoolingResponse.model_validate(response.json())
|
||||
|
||||
assert len(poolings.data) == 1
|
||||
assert len(poolings.data[0].data) == 384
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_pooling_token_embed(server: RemoteOpenAIServer, model_name: str):
|
||||
task = "token_embed"
|
||||
input_text = ["The chef prepared a delicious meal."]
|
||||
|
||||
response = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_text,
|
||||
"encoding_format": "float",
|
||||
"task": task,
|
||||
},
|
||||
)
|
||||
|
||||
poolings = PoolingResponse.model_validate(response.json())
|
||||
@ -575,3 +603,24 @@ async def test_pooling(server: RemoteOpenAIServer, model_name: str):
|
||||
assert len(poolings.data) == 1
|
||||
assert len(poolings.data[0].data) == 11
|
||||
assert len(poolings.data[0].data[0]) == 384
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("task", ["classify", "token_classify", "plugin"])
|
||||
async def test_pooling_not_supported(
|
||||
server: RemoteOpenAIServer, model_name: str, task: str
|
||||
):
|
||||
response = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": "test",
|
||||
"encoding_format": "float",
|
||||
"task": task,
|
||||
},
|
||||
)
|
||||
assert response.json()["error"]["type"] == "BadRequestError"
|
||||
assert response.json()["error"]["message"].startswith(
|
||||
f"Task {task} is not supported"
|
||||
)
|
||||
|
||||
@ -125,8 +125,8 @@ def test_invocations(server: RemoteOpenAIServer):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_activation(server: RemoteOpenAIServer, model_name: str):
|
||||
async def get_outputs(activation):
|
||||
async def test_use_activation(server: RemoteOpenAIServer, model_name: str):
|
||||
async def get_outputs(use_activation):
|
||||
query = "What is the capital of France?"
|
||||
documents = [
|
||||
"The capital of Brazil is Brasilia.",
|
||||
@ -139,16 +139,16 @@ async def test_activation(server: RemoteOpenAIServer, model_name: str):
|
||||
"model": model_name,
|
||||
"query": query,
|
||||
"documents": documents,
|
||||
"activation": activation,
|
||||
"use_activation": use_activation,
|
||||
},
|
||||
)
|
||||
outputs = response.json()
|
||||
|
||||
return torch.tensor([x["relevance_score"] for x in outputs["results"]])
|
||||
|
||||
default = await get_outputs(activation=None)
|
||||
w_activation = await get_outputs(activation=True)
|
||||
wo_activation = await get_outputs(activation=False)
|
||||
default = await get_outputs(use_activation=None)
|
||||
w_activation = await get_outputs(use_activation=True)
|
||||
wo_activation = await get_outputs(use_activation=False)
|
||||
|
||||
assert torch.allclose(default, w_activation, atol=1e-2), (
|
||||
"Default should use activation."
|
||||
@ -163,7 +163,25 @@ async def test_activation(server: RemoteOpenAIServer, model_name: str):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_pooling(server: RemoteOpenAIServer, model_name: str):
|
||||
async def test_pooling_classify(server: RemoteOpenAIServer, model_name: str):
|
||||
input_text = "This product was excellent and exceeded my expectations"
|
||||
response = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_text,
|
||||
"encoding_format": "float",
|
||||
"task": "classify",
|
||||
},
|
||||
)
|
||||
poolings = PoolingResponse.model_validate(response.json())
|
||||
assert len(poolings.data) == 1
|
||||
assert len(poolings.data[0].data) == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_pooling_token_classify(server: RemoteOpenAIServer, model_name: str):
|
||||
input_text = ["The chef prepared a delicious meal."]
|
||||
|
||||
response = requests.post(
|
||||
@ -176,3 +194,24 @@ async def test_pooling(server: RemoteOpenAIServer, model_name: str):
|
||||
assert len(poolings.data) == 1
|
||||
assert len(poolings.data[0].data) == 11
|
||||
assert len(poolings.data[0].data[0]) == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("task", ["embed", "token_embed", "plugin"])
|
||||
async def test_pooling_not_supported(
|
||||
server: RemoteOpenAIServer, model_name: str, task: str
|
||||
):
|
||||
response = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": "test",
|
||||
"encoding_format": "float",
|
||||
"task": task,
|
||||
},
|
||||
)
|
||||
assert response.json()["error"]["type"] == "BadRequestError"
|
||||
assert response.json()["error"]["message"].startswith(
|
||||
f"Task {task} is not supported"
|
||||
)
|
||||
|
||||
@ -218,8 +218,8 @@ class TestModel:
|
||||
# TODO: reset this tolerance to 0.01 once we find
|
||||
# an alternative to flash_attn with bfloat16
|
||||
|
||||
def test_activation(self, server: RemoteOpenAIServer, model: dict[str, Any]):
|
||||
def get_outputs(activation):
|
||||
def test_use_activation(self, server: RemoteOpenAIServer, model: dict[str, Any]):
|
||||
def get_outputs(use_activation):
|
||||
text_1 = "What is the capital of France?"
|
||||
text_2 = "The capital of France is Paris."
|
||||
response = requests.post(
|
||||
@ -228,7 +228,7 @@ class TestModel:
|
||||
"model": model["name"],
|
||||
"text_1": text_1,
|
||||
"text_2": text_2,
|
||||
"activation": activation,
|
||||
"use_activation": use_activation,
|
||||
},
|
||||
)
|
||||
if response.status_code != 200:
|
||||
@ -238,9 +238,9 @@ class TestModel:
|
||||
return torch.tensor([x["score"] for x in outputs["data"]])
|
||||
|
||||
if model["is_cross_encoder"]:
|
||||
default = get_outputs(activation=None)
|
||||
w_activation = get_outputs(activation=True)
|
||||
wo_activation = get_outputs(activation=False)
|
||||
default = get_outputs(use_activation=None)
|
||||
w_activation = get_outputs(use_activation=True)
|
||||
wo_activation = get_outputs(use_activation=False)
|
||||
|
||||
assert torch.allclose(default, w_activation, atol=1e-2), (
|
||||
"Default should use activation."
|
||||
@ -252,8 +252,8 @@ class TestModel:
|
||||
"w_activation should be close to activation(wo_activation)."
|
||||
)
|
||||
else:
|
||||
get_outputs(activation=None)
|
||||
get_outputs(use_activation=None)
|
||||
|
||||
# The activation parameter only works for the is_cross_encoder model
|
||||
response = get_outputs(activation=True)
|
||||
response = get_outputs(use_activation=True)
|
||||
assert response.status_code == 400
|
||||
|
||||
@ -3,7 +3,10 @@
|
||||
|
||||
from openai_harmony import Role
|
||||
|
||||
from vllm.entrypoints.harmony_utils import parse_input_to_harmony_message
|
||||
from vllm.entrypoints.harmony_utils import (
|
||||
has_custom_tools,
|
||||
parse_input_to_harmony_message,
|
||||
)
|
||||
|
||||
|
||||
class TestParseInputToHarmonyMessage:
|
||||
@ -252,3 +255,12 @@ class TestParseInputToHarmonyMessage:
|
||||
assert len(messages[0].content) == 2
|
||||
assert messages[0].content[0].text == ""
|
||||
assert messages[0].content[1].text == "actual text"
|
||||
|
||||
|
||||
def test_has_custom_tools() -> None:
|
||||
assert not has_custom_tools(set())
|
||||
assert not has_custom_tools({"web_search_preview", "code_interpreter", "container"})
|
||||
assert has_custom_tools({"others"})
|
||||
assert has_custom_tools(
|
||||
{"web_search_preview", "code_interpreter", "container", "others"}
|
||||
)
|
||||
|
||||
@ -138,6 +138,7 @@ class Config:
|
||||
}
|
||||
|
||||
backend = self.all2all_backend()
|
||||
vllm_config.parallel_config.all2all_backend = backend
|
||||
if backend is not None:
|
||||
env_dict.update({"VLLM_ALL2ALL_BACKEND": backend})
|
||||
|
||||
|
||||
@ -24,23 +24,16 @@ from vllm.triton_utils import tl
|
||||
|
||||
MNK_FACTORS = [
|
||||
(1, 128, 128),
|
||||
(1, 128, 2048),
|
||||
(1, 512, 512),
|
||||
(1, 1024, 128),
|
||||
(1, 1024, 2048),
|
||||
(32, 128, 128),
|
||||
(32, 512, 512),
|
||||
(32, 1024, 2048),
|
||||
(45, 128, 128),
|
||||
(45, 128, 2048),
|
||||
(45, 512, 512),
|
||||
(45, 1024, 128),
|
||||
(45, 1024, 2048),
|
||||
(64, 512, 512),
|
||||
(64, 1024, 2048),
|
||||
(222, 128, 128),
|
||||
(222, 128, 2048),
|
||||
(222, 1024, 128),
|
||||
(222, 1024, 2048),
|
||||
]
|
||||
NUM_EXPERTS = [8, 64]
|
||||
@ -117,10 +110,19 @@ def test_batched_mm(
|
||||
block_shape: list[int] | None,
|
||||
per_act_token_quant: bool,
|
||||
):
|
||||
"""Note: float8_e4m3fn is not supported on CUDA architecture < 89,
|
||||
and those tests will be skipped on unsupported hardware."""
|
||||
current_platform.seed_everything(7)
|
||||
|
||||
use_fp8_w8a8 = dtype == torch.float8_e4m3fn
|
||||
|
||||
if (dtype == torch.float8_e4m3fn) and not current_platform.has_device_capability(
|
||||
89
|
||||
):
|
||||
pytest.skip(
|
||||
"Triton limitation: fp8e4nv data type is not supported on CUDA arch < 89"
|
||||
)
|
||||
|
||||
if (per_act_token_quant or block_shape is not None) and not use_fp8_w8a8:
|
||||
pytest.skip("Don't test blocking for non-quantized types.")
|
||||
|
||||
@ -244,10 +246,19 @@ def test_fused_moe_batched_experts(
|
||||
block_shape: list[int] | None,
|
||||
input_scales: bool,
|
||||
):
|
||||
"""Note: float8_e4m3fn is not supported on CUDA architecture < 89,
|
||||
and those tests will be skipped on unsupported hardware."""
|
||||
current_platform.seed_everything(7)
|
||||
|
||||
use_fp8_w8a8 = dtype == torch.float8_e4m3fn
|
||||
|
||||
if (dtype == torch.float8_e4m3fn) and not current_platform.has_device_capability(
|
||||
89
|
||||
):
|
||||
pytest.skip(
|
||||
"Triton limitation: fp8e4nv data type is not supported on CUDA arch < 89"
|
||||
)
|
||||
|
||||
if topk > e:
|
||||
pytest.skip("topk > e")
|
||||
|
||||
|
||||
@ -42,57 +42,43 @@ DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32]
|
||||
# and its hidden size is 7168.
|
||||
MNK_FACTORS = [
|
||||
(1, 128, 128),
|
||||
(1, 512, 512),
|
||||
(1, 128, 7168),
|
||||
(1, 1024, 7168),
|
||||
(1, 4608, 128),
|
||||
(1, 4608, 512),
|
||||
(1, 4608, 7168),
|
||||
(83, 128, 128),
|
||||
(83, 512, 512),
|
||||
(83, 1024, 7168),
|
||||
(83, 4608, 512),
|
||||
(83, 4608, 7168),
|
||||
(128, 128, 128),
|
||||
(128, 512, 512),
|
||||
(128, 1024, 7168),
|
||||
(128, 4608, 512),
|
||||
(128, 4608, 7168),
|
||||
(2048, 128, 128),
|
||||
(2048, 1024, 7168),
|
||||
(2048, 4608, 512),
|
||||
(2048, 4608, 7168),
|
||||
(8192, 128, 128),
|
||||
(8192, 512, 512),
|
||||
(8192, 128, 7168),
|
||||
(8192, 1024, 7168),
|
||||
(8192, 4608, 512),
|
||||
(8192, 4608, 7168),
|
||||
]
|
||||
|
||||
MNK_FACTORS_DG = [
|
||||
(128, 128, 128),
|
||||
(128, 512, 512),
|
||||
(128, 128, 7168),
|
||||
(128, 1024, 7168),
|
||||
(128, 4608, 128),
|
||||
(128, 4608, 512),
|
||||
(128, 4608, 7168),
|
||||
(192, 128, 128),
|
||||
(192, 512, 512),
|
||||
(192, 1024, 7168),
|
||||
(192, 4608, 512),
|
||||
(192, 4608, 7168),
|
||||
(1335, 128, 128),
|
||||
(1335, 1024, 7168),
|
||||
(1335, 4608, 512),
|
||||
(1335, 4608, 7168),
|
||||
(2048, 128, 128),
|
||||
(2048, 512, 512),
|
||||
(2048, 128, 7168),
|
||||
(2048, 1024, 7168),
|
||||
(2048, 4608, 128),
|
||||
(2048, 4608, 512),
|
||||
(2048, 4608, 7168),
|
||||
]
|
||||
|
||||
|
||||
@ -21,36 +21,28 @@ vllm_config = VllmConfig()
|
||||
vllm_config.scheduler_config.max_num_seqs = 128
|
||||
vllm_config.scheduler_config.max_model_len = 8192
|
||||
|
||||
DTYPES = [torch.half, torch.bfloat16]
|
||||
DTYPES = [torch.bfloat16]
|
||||
|
||||
MNK_FACTORS = [
|
||||
(1, 128, 128),
|
||||
(1, 512, 512),
|
||||
(1, 128, 7168),
|
||||
(1, 1024, 7168),
|
||||
(1, 4096, 128),
|
||||
(1, 4096, 512),
|
||||
(1, 4096, 7168),
|
||||
(33, 128, 128),
|
||||
(33, 512, 512),
|
||||
(33, 128, 7168),
|
||||
(33, 1024, 7168),
|
||||
(33, 4096, 128),
|
||||
(33, 4096, 512),
|
||||
(33, 4096, 7168),
|
||||
(128, 128, 128),
|
||||
(128, 512, 512),
|
||||
(128, 1024, 7168),
|
||||
(128, 4096, 512),
|
||||
(128, 4096, 7168),
|
||||
(222, 128, 128),
|
||||
(222, 512, 512),
|
||||
(222, 1024, 7168),
|
||||
(222, 4096, 512),
|
||||
(222, 4096, 7168),
|
||||
(2048, 128, 128),
|
||||
(2048, 1024, 7168),
|
||||
(2048, 4096, 512),
|
||||
(2048, 4096, 4096),
|
||||
]
|
||||
|
||||
|
||||
@ -26,16 +26,13 @@ TOP_KS = [6, 8]
|
||||
|
||||
MNK_FACTORS = [
|
||||
(2, 1024, 1024),
|
||||
(2, 1024, 1536),
|
||||
(2, 3072, 1024),
|
||||
(2, 3072, 1536),
|
||||
(7, 3072, 1536),
|
||||
(64, 1024, 1024),
|
||||
(64, 1024, 1536),
|
||||
(64, 3072, 1024),
|
||||
(64, 3072, 1536),
|
||||
(224, 1024, 1024),
|
||||
(224, 1024, 1536),
|
||||
(224, 3072, 1024),
|
||||
(224, 3072, 1536),
|
||||
(32768, 1024, 1024),
|
||||
|
||||
@ -393,7 +393,6 @@ def _test_deepep_deepgemm_moe(
|
||||
MNKs = [
|
||||
(8, 128, 128),
|
||||
(8, 128, 512),
|
||||
(8, 512, 512),
|
||||
(3, 1024, 2048),
|
||||
(32, 128, 1024),
|
||||
(45, 512, 2048),
|
||||
|
||||
@ -130,10 +130,8 @@ def run_single_case(m, n, k, topk, num_experts, block_size):
|
||||
# Note: N <= 512 will disable the deepgemm path due to performance issues.
|
||||
MNKs = [
|
||||
(1024, 768, 128),
|
||||
(1024, 768, 512),
|
||||
(2048, 768, 512),
|
||||
(512, 1024, 1024),
|
||||
(512, 2048, 2048),
|
||||
(4096, 4096, 1024),
|
||||
]
|
||||
|
||||
|
||||
@ -34,8 +34,6 @@ TOP_KS = [1]
|
||||
|
||||
MNK_FACTORS = [
|
||||
(256, 8192, 5120),
|
||||
(256, 4096, 5120),
|
||||
(127, 8192, 5120),
|
||||
(127, 4096, 5120),
|
||||
(10, 8192, 5120),
|
||||
(10, 4096, 5120),
|
||||
|
||||
@ -34,10 +34,8 @@ if not has_flashinfer_cutlass_fused_moe() or not current_platform.has_device_cap
|
||||
|
||||
MNK_FACTORS = [
|
||||
(2, 1024, 1024),
|
||||
(2, 1024, 1536),
|
||||
(2, 3072, 1024),
|
||||
(2, 3072, 1536),
|
||||
(64, 1024, 1024),
|
||||
(64, 1024, 1536),
|
||||
(64, 3072, 1024),
|
||||
(64, 2048, 1536),
|
||||
@ -49,7 +47,7 @@ MNK_FACTORS = [
|
||||
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
|
||||
@pytest.mark.parametrize("e", [40, 64, 256])
|
||||
@pytest.mark.parametrize("topk", [1, 6, 8])
|
||||
@pytest.mark.parametrize("dtype", [torch.half, torch.bfloat16])
|
||||
@pytest.mark.parametrize("dtype", [torch.bfloat16])
|
||||
@torch.inference_mode()
|
||||
def test_flashinfer_fp4_moe_no_graph(
|
||||
m: int, n: int, k: int, e: int, topk: int, dtype: torch.dtype
|
||||
|
||||
@ -27,7 +27,7 @@ from vllm.platforms import current_platform
|
||||
@pytest.mark.parametrize("topk_group", [2])
|
||||
@pytest.mark.parametrize("scoring_func", ["softmax", "sigmoid"])
|
||||
@pytest.mark.parametrize("routed_scaling_factor", [1.0, 2.5])
|
||||
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32])
|
||||
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
|
||||
def test_grouped_topk(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
n_token: int,
|
||||
|
||||
@ -295,6 +295,8 @@ def test_modular_kernel_combinations_singlegpu(
|
||||
world_size: int,
|
||||
pytestconfig,
|
||||
):
|
||||
"""Note: float8_e4m3fn is not supported on CUDA architecture < 89,
|
||||
and those tests will be skipped on unsupported hardware."""
|
||||
config = Config(
|
||||
Ms=Ms,
|
||||
K=k,
|
||||
@ -309,6 +311,12 @@ def test_modular_kernel_combinations_singlegpu(
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
if (
|
||||
quant_config is not None and quant_config.quant_dtype == torch.float8_e4m3fn
|
||||
) and not current_platform.has_device_capability(89):
|
||||
pytest.skip(
|
||||
"Triton limitation: fp8e4nv data type is not supported on CUDA arch < 89"
|
||||
)
|
||||
verbosity = pytestconfig.getoption("verbose")
|
||||
run(config, verbosity > 0)
|
||||
|
||||
|
||||
@ -66,8 +66,6 @@ FUSED_MOE_MNK_FACTORS = [
|
||||
(1, 128, 128),
|
||||
(1, 2048, 128),
|
||||
(33, 2048, 128),
|
||||
(222, 1024, 1024),
|
||||
(32768, 128, 128),
|
||||
(32768, 2048, 511),
|
||||
(40000, 1024, 1024),
|
||||
]
|
||||
@ -76,7 +74,6 @@ FUSED_MOE_WN16_MNK_FACTORS = [
|
||||
(1, 128, 128),
|
||||
(1, 1024, 1024),
|
||||
(32, 2048, 128),
|
||||
(32, 1024, 1024),
|
||||
(222, 2048, 1024),
|
||||
]
|
||||
|
||||
@ -512,8 +509,8 @@ def marlin_moe_generate_valid_test_cases():
|
||||
e_list = [4, 12]
|
||||
topk_list = [2, 3]
|
||||
ep_size_list = [1, 4]
|
||||
dtype_list = [torch.half, torch.bfloat16]
|
||||
group_size_list = [-1, 16, 32, 128]
|
||||
dtype_list = [torch.bfloat16]
|
||||
group_size_list = [-1, 32, 128]
|
||||
act_order_list = [True, False]
|
||||
quant_type_list = [
|
||||
scalar_types.float4_e2m1f,
|
||||
@ -885,10 +882,10 @@ def test_batched_moe_align_block_size_opcheck():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("m", [1, 33, 64, 222])
|
||||
@pytest.mark.parametrize("m", [1, 33, 222])
|
||||
@pytest.mark.parametrize("topk", TOP_KS)
|
||||
@pytest.mark.parametrize("k", [128, 511, 1024])
|
||||
@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
|
||||
@pytest.mark.parametrize("dtype", [torch.float32, torch.bfloat16])
|
||||
@pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm")
|
||||
def test_moe_sum(m: int, topk: int, k: int, dtype: torch.dtype):
|
||||
input = torch.randn((m, topk, k), device="cuda", dtype=dtype)
|
||||
|
||||
@ -26,9 +26,7 @@ MNK_FACTORS = [
|
||||
(2, 1024, 1024),
|
||||
(2, 1024, 1536),
|
||||
(2, 3072, 1024),
|
||||
(2, 3072, 1536),
|
||||
(64, 1024, 1024),
|
||||
(64, 1024, 1536),
|
||||
(64, 3072, 1024),
|
||||
(64, 2048, 1536),
|
||||
(224, 1024, 1024),
|
||||
@ -39,7 +37,7 @@ MNK_FACTORS = [
|
||||
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
|
||||
@pytest.mark.parametrize("e", [40, 64, 256])
|
||||
@pytest.mark.parametrize("topk", [1, 6, 8])
|
||||
@pytest.mark.parametrize("dtype", [torch.half, torch.bfloat16])
|
||||
@pytest.mark.parametrize("dtype", [torch.bfloat16])
|
||||
@torch.inference_mode()
|
||||
def test_cutlass_fp4_moe_no_graph(
|
||||
m: int, n: int, k: int, e: int, topk: int, dtype: torch.dtype
|
||||
|
||||
@ -19,20 +19,16 @@ CASES = [
|
||||
(32, 64, 256, fp8_dtype),
|
||||
(17, 31, 768, fp8_dtype),
|
||||
(1, 1, 128 * 1, fp8_dtype),
|
||||
(1, 1, 128 * 2, fp8_dtype),
|
||||
(1, 1, 128 * 3, fp8_dtype),
|
||||
(1, 1, 128 * 4, fp8_dtype),
|
||||
(8, 16, 128 * 1, fp8_dtype),
|
||||
(8, 16, 128 * 2, fp8_dtype),
|
||||
(8, 16, 128 * 3, fp8_dtype),
|
||||
(8, 16, 128 * 4, fp8_dtype),
|
||||
(8, 64, 7168, fp8_dtype),
|
||||
(8, 128, 7168, fp8_dtype),
|
||||
(8, 256, 7168, fp8_dtype),
|
||||
(8, 512, 7168, fp8_dtype),
|
||||
(8, 1024, 7168, fp8_dtype),
|
||||
(256, 8, 7168, fp8_dtype),
|
||||
(256, 16, 7168, fp8_dtype),
|
||||
(256, 32, 7168, fp8_dtype),
|
||||
(256, 64, 7168, fp8_dtype),
|
||||
# Only add a few fnuz tests to help with long CI times.
|
||||
|
||||
@ -30,7 +30,8 @@ VLLM_RUNNER_BASE_KWARGS = {
|
||||
"enable_lora": "True",
|
||||
"max_num_seqs": 2,
|
||||
"max_lora_rank": 320,
|
||||
"max_model_len": 12800,
|
||||
# Keep these LoRA tests on short-RoPE for determinism post-LongRoPE change.
|
||||
"max_model_len": 4096,
|
||||
"gpu_memory_utilization": 0.8,
|
||||
"limit_mm_per_prompt": {"audio": 1},
|
||||
"enforce_eager": True,
|
||||
|
||||
@ -24,7 +24,7 @@ def test_classify_models_using_activation(
|
||||
model,
|
||||
max_model_len=512,
|
||||
dtype=dtype,
|
||||
pooler_config=PoolerConfig(activation=False),
|
||||
pooler_config=PoolerConfig(use_activation=False),
|
||||
) as vllm_model:
|
||||
wo_activation_out = vllm_model.classify(example_prompts)
|
||||
|
||||
@ -32,7 +32,7 @@ def test_classify_models_using_activation(
|
||||
model,
|
||||
max_model_len=512,
|
||||
dtype=dtype,
|
||||
pooler_config=PoolerConfig(activation=True),
|
||||
pooler_config=PoolerConfig(use_activation=True),
|
||||
) as vllm_model:
|
||||
w_activation_out = vllm_model.classify(example_prompts)
|
||||
|
||||
@ -104,7 +104,7 @@ def test_reward_models_using_activation(
|
||||
model,
|
||||
max_model_len=1024,
|
||||
dtype=dtype,
|
||||
pooler_config=PoolerConfig(activation=False),
|
||||
pooler_config=PoolerConfig(use_activation=False),
|
||||
) as vllm_model:
|
||||
wo_activation = vllm_model.reward(example_prompts)
|
||||
|
||||
@ -112,7 +112,7 @@ def test_reward_models_using_activation(
|
||||
model,
|
||||
max_model_len=1024,
|
||||
dtype=dtype,
|
||||
pooler_config=PoolerConfig(activation=True),
|
||||
pooler_config=PoolerConfig(use_activation=True),
|
||||
) as vllm_model:
|
||||
w_activation = vllm_model.reward(example_prompts)
|
||||
|
||||
|
||||
@ -159,6 +159,28 @@ VLM_TEST_SETTINGS = {
|
||||
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
|
||||
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
|
||||
),
|
||||
"qwen3_vl": VLMTestInfo(
|
||||
models=["Qwen/Qwen3-VL-4B-Instruct"],
|
||||
test_type=(
|
||||
VLMTestType.IMAGE,
|
||||
VLMTestType.MULTI_IMAGE,
|
||||
VLMTestType.VIDEO,
|
||||
),
|
||||
needs_video_metadata=True,
|
||||
prompt_formatter=lambda img_prompt: f"<|im_start|>User\n{img_prompt}<|im_end|>\n<|im_start|>assistant\n", # noqa: E501
|
||||
img_idx_to_prompt=lambda idx: "<|vision_start|><|image_pad|><|vision_end|>", # noqa: E501
|
||||
video_idx_to_prompt=lambda idx: "<|vision_start|><|video_pad|><|vision_end|>", # noqa: E501
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
num_logprobs=20,
|
||||
auto_cls=AutoModelForImageTextToText,
|
||||
vllm_output_post_proc=model_utils.qwen2_vllm_to_hf_output,
|
||||
patch_hf_runner=model_utils.qwen3_vl_patch_hf_runner,
|
||||
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
|
||||
marks=[
|
||||
pytest.mark.core_model,
|
||||
],
|
||||
),
|
||||
"ultravox": VLMTestInfo(
|
||||
models=["fixie-ai/ultravox-v0_5-llama-3_2-1b"],
|
||||
test_type=VLMTestType.AUDIO,
|
||||
|
||||
@ -4,7 +4,9 @@
|
||||
|
||||
from collections.abc import Callable, Iterable
|
||||
from pathlib import PosixPath
|
||||
from typing import Any
|
||||
|
||||
import numpy.typing as npt
|
||||
import torch
|
||||
|
||||
from vllm.multimodal.audio import AudioResampler
|
||||
@ -236,6 +238,7 @@ def build_video_inputs_from_test_info(
|
||||
video_assets: VideoTestAssets,
|
||||
size_wrapper: ImageSizeWrapper,
|
||||
num_frames: int,
|
||||
needs_video_metadata: bool,
|
||||
) -> list[PromptWithMultiModalInput]:
|
||||
if test_info.prompt_formatter is None:
|
||||
raise ValueError("Prompt formatter must be set to build video inputs")
|
||||
@ -248,7 +251,10 @@ def build_video_inputs_from_test_info(
|
||||
)
|
||||
|
||||
sampled_vids = [
|
||||
sample_frames_from_video(asset.np_ndarrays, num_frames)
|
||||
sample_frames_with_video_metadata(
|
||||
(asset.np_ndarrays, asset.metadata),
|
||||
num_frames,
|
||||
)
|
||||
for asset in video_assets
|
||||
]
|
||||
|
||||
@ -259,12 +265,33 @@ def build_video_inputs_from_test_info(
|
||||
return [
|
||||
PromptWithMultiModalInput(
|
||||
prompts=[prompt for _ in size_wrapper.data],
|
||||
video_data=[video_scaler(video, size) for size in size_wrapper.data],
|
||||
video_data=[
|
||||
(
|
||||
video_scaler(video, size)
|
||||
if not needs_video_metadata
|
||||
else (video_scaler(video, size), meta)
|
||||
)
|
||||
for size in size_wrapper.data
|
||||
],
|
||||
)
|
||||
for video, prompt in zip(sampled_vids, model_prompts)
|
||||
for (video, meta), prompt in zip(sampled_vids, model_prompts)
|
||||
]
|
||||
|
||||
|
||||
def sample_frames_with_video_metadata(
|
||||
video_with_meta: tuple[npt.NDArray, dict[str, Any]],
|
||||
num_frames: int,
|
||||
) -> tuple[npt.NDArray, dict[str, Any]]:
|
||||
video, meta = video_with_meta
|
||||
video = sample_frames_from_video(video, num_frames)
|
||||
|
||||
meta["do_sample_frames"] = meta["total_num_frames"] == num_frames
|
||||
meta["total_num_frames"] = num_frames
|
||||
meta["fps"] = meta["duration"] / num_frames
|
||||
meta["frames_indices"] = list(range(num_frames))
|
||||
return video, meta
|
||||
|
||||
|
||||
def apply_image_size_scaling(image, size: float | tuple[int, int], size_type: SizeType):
|
||||
"""Applies a size scaler to one image; this can be an image size factor,
|
||||
which scales the image while maintaining the aspect ratio"""
|
||||
|
||||
@ -100,6 +100,9 @@ def get_parametrized_options(
|
||||
# num_frames is video only
|
||||
if test_type == VLMTestType.VIDEO:
|
||||
iter_kwargs["num_video_frames"] = ensure_wrapped(test_info.num_video_frames)
|
||||
iter_kwargs["needs_video_metadata"] = ensure_wrapped(
|
||||
test_info.needs_video_metadata
|
||||
)
|
||||
|
||||
# No sizes passed for custom inputs, since inputs are directly provided
|
||||
if test_type not in (VLMTestType.CUSTOM_INPUTS, VLMTestType.AUDIO):
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user