Add arcee model (#21296)

Signed-off-by: alyosha-swamy <raghav@arcee.ai>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
Raghav Ravishankar
2025-07-22 13:27:43 +05:30
committed by GitHub
parent 3779eb8c81
commit 82b8027be6
4 changed files with 351 additions and 0 deletions

View File

@ -324,6 +324,7 @@ th {
| Architecture | Models | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/distributed_serving.md) | [V1](gh-issue:8779) |
|--------------|--------|-------------------|----------------------|---------------------------|---------------------|
| `AquilaForCausalLM` | Aquila, Aquila2 | `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `ArceeForCausalLM` | Arcee (AFM) | `arcee-ai/AFM-4.5B-Base`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `ArcticForCausalLM` | Arctic | `Snowflake/snowflake-arctic-base`, `Snowflake/snowflake-arctic-instruct`, etc. | | ✅︎ | ✅︎ |
| `BaiChuanForCausalLM` | Baichuan2, Baichuan | `baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `BailingMoeForCausalLM` | Ling | `inclusionAI/Ling-lite-1.5`, `inclusionAI/Ling-plus`, etc. | ✅︎ | ✅︎ | ✅︎ |

View File

@ -135,6 +135,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
trust_remote_code=True),
"AquilaForCausalLM": _HfExamplesInfo("BAAI/AquilaChat2-7B",
trust_remote_code=True),
"ArceeForCausalLM": _HfExamplesInfo("arcee-ai/AFM-4.5B-Base",
is_available_online=False),
"ArcticForCausalLM": _HfExamplesInfo("Snowflake/snowflake-arctic-instruct",
trust_remote_code=True),
"BaiChuanForCausalLM": _HfExamplesInfo("baichuan-inc/Baichuan-7B",

View File

@ -0,0 +1,347 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2023-2025 vLLM Team
# Licensed under the Apache License, Version 2.0 (the "License");
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Inference-only Arcee (AFM) model adds support for ReLU^2 feed-forward
# activation.
from collections.abc import Iterable
from typing import Any, Optional, Union
import torch
from torch import nn
from transformers import LlamaConfig
from vllm.compilation.decorators import support_torch_compile
from vllm.distributed import get_pp_group
from vllm.model_executor.layers.activation import ReLUSquaredActivation
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (AutoWeightsLoader, PPMissingLayer,
make_empty_intermediate_tensors_factory, make_layers)
class ArceeMLP(nn.Module):
"""Feed-forward layer for Arcee using ReLU^2 activation
(no gating as in LLaMA)."""
def __init__(self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[Any] = None,
bias: bool = False,
prefix: str = "",
reduce_results: bool = True) -> None:
super().__init__()
# Single linear projection up to intermediate size
# (no separate gate projection)
self.up_proj = ColumnParallelLinear(
input_size=hidden_size,
output_size=intermediate_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.up_proj",
)
# Down projection back to hidden size
self.down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=f"{prefix}.down_proj",
)
if hidden_act != "relu2":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only 'relu2' is supported for AFM.")
# Define ReLU^2 activation: (ReLU(x))^2 elementwise
self.act_fn = ReLUSquaredActivation()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, _ = self.up_proj(x) # Project to intermediate size
x = self.act_fn(x) # Apply ReLU^2 activation elementwise
x, _ = self.down_proj(x) # Project back down to hidden size
return x
class ArceeDecoderLayer(nn.Module):
"""Transformer decoder block for Arcee, with self-attention and
ReLU^2 MLP."""
def __init__(self,
config: LlamaConfig,
cache_config: Optional[Any] = None,
quant_config: Optional[Any] = None,
prefix: str = "") -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Rotary embedding parameters (reuse LLaMA defaults)
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
# Determine if attention bias is needed (some variants use bias terms)
attention_bias = getattr(config, "attention_bias", False) or getattr(
config, "bias", False)
bias_o_proj = attention_bias
if hasattr(config, "qkv_bias"):
attention_bias = config.qkv_bias
# Self-Attention (using LLaMA's attention structure)
from vllm.model_executor.models.llama import (
LlamaAttention) # import here to avoid circular import
self.self_attn = LlamaAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(config, "num_key_value_heads",
config.num_attention_heads),
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=attention_bias,
bias_o_proj=bias_o_proj,
cache_config=cache_config,
prefix=f"{prefix}.self_attn",
attn_type=getattr(
config, "attn_type",
"decoder"), # assume decoder (causal) unless specified
)
# MLP with ReLU^2 activation
self.mlp = ArceeMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
prefix=f"{prefix}.mlp",
)
# Layer normalization layers (RMSNorm as in LLaMA)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self, positions: torch.Tensor, hidden_states: torch.Tensor,
residual: Optional[torch.Tensor]
) -> tuple[torch.Tensor, torch.Tensor]:
# Self-Attention block
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
# Fused residual add + layernorm if supported
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(positions=positions,
hidden_states=hidden_states)
# Feed-forward block
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class ArceeModel(nn.Module):
"""The transformer model backbone for Arcee (embedding layer + stacked
decoder blocks + final norm)."""
def __init__(self,
*,
vllm_config,
prefix: str = "",
layer_type: type[nn.Module] = ArceeDecoderLayer) -> None:
super().__init__()
config: LlamaConfig = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.quant_config = quant_config
self.config = config
self.vocab_size = config.vocab_size
self.org_vocab_size = config.vocab_size
# Word embeddings (parallelized if using pipeline parallel)
if get_pp_group().is_first_rank or (config.tie_word_embeddings
and get_pp_group().is_last_rank):
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
quant_config=quant_config,
)
else:
self.embed_tokens = PPMissingLayer(
) # placeholder on non-embedding ranks
# Build decoder layers across pipeline ranks
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: layer_type(config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix),
prefix=f"{prefix}.layers",
)
# Final RMSNorm on the last pipeline stage
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
# For optional capturing of intermediate hidden states
# (not used by default)
self.aux_hidden_state_layers: tuple[int, ...] = tuple()
# Prepare factory for empty intermediate tensors
# (for pipeline scheduling)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None
) -> Union[torch.Tensor, IntermediateTensors, tuple[torch.Tensor,
list[torch.Tensor]]]:
# Embedding lookup (on first pipeline rank)
if get_pp_group().is_first_rank:
hidden_states = (inputs_embeds if inputs_embeds is not None else
self.get_input_embeddings(input_ids))
residual = None
else:
assert intermediate_tensors is not None, (
"IntermediateTensors must be provided for non-first "
"pipeline ranks")
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
aux_hidden_states: list[torch.Tensor] = []
for idx, layer in enumerate(
self.layers[self.start_layer:self.end_layer]):
if idx in self.aux_hidden_state_layers:
aux_hidden_states.append(
hidden_states +
residual) # capture pre-layer hidden state if needed
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
# Send intermediate results to the next pipeline stage
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
# On last rank: apply final layer norm
hidden_states, _ = self.norm(hidden_states, residual)
if len(aux_hidden_states) > 0:
return hidden_states, aux_hidden_states
return hidden_states
class ArceeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
"""Arcee Model for causal language modeling, integrated with vLLM
runtime."""
# Map fused module names to their sub-module components
# (for quantization and LoRA)
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
}
def __init__(self, *, vllm_config, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
self.config = config
# Initialize the inner Transformer model (ArceeModel)
self.model = ArceeModel(vllm_config=vllm_config,
prefix=f"{prefix}.model")
# On the last pipeline stage, set up the LM head and logits processor
if get_pp_group().is_last_rank:
# Determine vocabulary size (including any LoRA extra tokens
# for padded LM head)
self.unpadded_vocab_size = config.vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
quant_config=vllm_config.quant_config,
bias=getattr(config, "lm_head_bias", False),
prefix=f"{prefix}.lm_head",
)
if config.tie_word_embeddings:
# Tie output weights with input embedding matrix
self.lm_head = self.lm_head.tie_weights(
self.model.embed_tokens)
logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size,
logit_scale)
else:
# Placeholder for lm_head on non-last ranks
self.lm_head = PPMissingLayer()
# Provide a reference to the model's method for generating empty
# tensors (used in pipeline parallel schedule)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None
) -> Union[torch.Tensor, IntermediateTensors]:
# Forward pass through the Arcee model backbone
model_output = self.model(input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds)
return model_output
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata) -> Optional[torch.Tensor]:
# Compute final logits from hidden states (last pipeline rank only)
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
"""Load weights into the model (delegates to inner model and handles
tied embeddings)."""
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."]
if self.config.tie_word_embeddings else None),
skip_substrs=["gate_proj"])
# AutoWeightLoader handles weight name remapping, including fusing
# separate q_proj, k_proj, v_proj into qkv_proj
return loader.load_weights(weights)

View File

@ -33,6 +33,7 @@ _TEXT_GENERATION_MODELS = {
# [Decoder-only]
"AquilaModel": ("llama", "LlamaForCausalLM"),
"AquilaForCausalLM": ("llama", "LlamaForCausalLM"), # AquilaChat2
"ArceeForCausalLM": ("arcee", "ArceeForCausalLM"),
"ArcticForCausalLM": ("arctic", "ArcticForCausalLM"),
"MiniMaxForCausalLM": ("minimax_text_01", "MiniMaxText01ForCausalLM"),
"MiniMaxText01ForCausalLM": ("minimax_text_01", "MiniMaxText01ForCausalLM"),