Add arcee model (#21296)
Signed-off-by: alyosha-swamy <raghav@arcee.ai> Signed-off-by: Jee Jee Li <pandaleefree@gmail.com> Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
committed by
GitHub
parent
3779eb8c81
commit
82b8027be6
@ -324,6 +324,7 @@ th {
|
||||
| Architecture | Models | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/distributed_serving.md) | [V1](gh-issue:8779) |
|
||||
|--------------|--------|-------------------|----------------------|---------------------------|---------------------|
|
||||
| `AquilaForCausalLM` | Aquila, Aquila2 | `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `ArceeForCausalLM` | Arcee (AFM) | `arcee-ai/AFM-4.5B-Base`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `ArcticForCausalLM` | Arctic | `Snowflake/snowflake-arctic-base`, `Snowflake/snowflake-arctic-instruct`, etc. | | ✅︎ | ✅︎ |
|
||||
| `BaiChuanForCausalLM` | Baichuan2, Baichuan | `baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `BailingMoeForCausalLM` | Ling | `inclusionAI/Ling-lite-1.5`, `inclusionAI/Ling-plus`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
|
||||
@ -135,6 +135,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
||||
trust_remote_code=True),
|
||||
"AquilaForCausalLM": _HfExamplesInfo("BAAI/AquilaChat2-7B",
|
||||
trust_remote_code=True),
|
||||
"ArceeForCausalLM": _HfExamplesInfo("arcee-ai/AFM-4.5B-Base",
|
||||
is_available_online=False),
|
||||
"ArcticForCausalLM": _HfExamplesInfo("Snowflake/snowflake-arctic-instruct",
|
||||
trust_remote_code=True),
|
||||
"BaiChuanForCausalLM": _HfExamplesInfo("baichuan-inc/Baichuan-7B",
|
||||
|
||||
347
vllm/model_executor/models/arcee.py
Normal file
347
vllm/model_executor/models/arcee.py
Normal file
@ -0,0 +1,347 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# Copyright 2023-2025 vLLM Team
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# You may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Inference-only Arcee (AFM) model – adds support for ReLU^2 feed-forward
|
||||
# activation.
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import LlamaConfig
|
||||
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.distributed import get_pp_group
|
||||
from vllm.model_executor.layers.activation import ReLUSquaredActivation
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
from .utils import (AutoWeightsLoader, PPMissingLayer,
|
||||
make_empty_intermediate_tensors_factory, make_layers)
|
||||
|
||||
|
||||
class ArceeMLP(nn.Module):
|
||||
"""Feed-forward layer for Arcee using ReLU^2 activation
|
||||
(no gating as in LLaMA)."""
|
||||
|
||||
def __init__(self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
quant_config: Optional[Any] = None,
|
||||
bias: bool = False,
|
||||
prefix: str = "",
|
||||
reduce_results: bool = True) -> None:
|
||||
super().__init__()
|
||||
# Single linear projection up to intermediate size
|
||||
# (no separate gate projection)
|
||||
self.up_proj = ColumnParallelLinear(
|
||||
input_size=hidden_size,
|
||||
output_size=intermediate_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.up_proj",
|
||||
)
|
||||
# Down projection back to hidden size
|
||||
self.down_proj = RowParallelLinear(
|
||||
input_size=intermediate_size,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
reduce_results=reduce_results,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
)
|
||||
if hidden_act != "relu2":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only 'relu2' is supported for AFM.")
|
||||
# Define ReLU^2 activation: (ReLU(x))^2 elementwise
|
||||
self.act_fn = ReLUSquaredActivation()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x, _ = self.up_proj(x) # Project to intermediate size
|
||||
x = self.act_fn(x) # Apply ReLU^2 activation elementwise
|
||||
x, _ = self.down_proj(x) # Project back down to hidden size
|
||||
return x
|
||||
|
||||
|
||||
class ArceeDecoderLayer(nn.Module):
|
||||
"""Transformer decoder block for Arcee, with self-attention and
|
||||
ReLU^2 MLP."""
|
||||
|
||||
def __init__(self,
|
||||
config: LlamaConfig,
|
||||
cache_config: Optional[Any] = None,
|
||||
quant_config: Optional[Any] = None,
|
||||
prefix: str = "") -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
# Rotary embedding parameters (reuse LLaMA defaults)
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
if rope_scaling is not None and getattr(
|
||||
config, "original_max_position_embeddings", None):
|
||||
rope_scaling["original_max_position_embeddings"] = (
|
||||
config.original_max_position_embeddings)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
# Determine if attention bias is needed (some variants use bias terms)
|
||||
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
||||
config, "bias", False)
|
||||
bias_o_proj = attention_bias
|
||||
if hasattr(config, "qkv_bias"):
|
||||
attention_bias = config.qkv_bias
|
||||
|
||||
# Self-Attention (using LLaMA's attention structure)
|
||||
from vllm.model_executor.models.llama import (
|
||||
LlamaAttention) # import here to avoid circular import
|
||||
self.self_attn = LlamaAttention(
|
||||
config=config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=getattr(config, "num_key_value_heads",
|
||||
config.num_attention_heads),
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
quant_config=quant_config,
|
||||
bias=attention_bias,
|
||||
bias_o_proj=bias_o_proj,
|
||||
cache_config=cache_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
attn_type=getattr(
|
||||
config, "attn_type",
|
||||
"decoder"), # assume decoder (causal) unless specified
|
||||
)
|
||||
# MLP with ReLU^2 activation
|
||||
self.mlp = ArceeMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
bias=getattr(config, "mlp_bias", False),
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
# Layer normalization layers (RMSNorm as in LLaMA)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self, positions: torch.Tensor, hidden_states: torch.Tensor,
|
||||
residual: Optional[torch.Tensor]
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self-Attention block
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
# Fused residual add + layernorm if supported
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(positions=positions,
|
||||
hidden_states=hidden_states)
|
||||
# Feed-forward block
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class ArceeModel(nn.Module):
|
||||
"""The transformer model backbone for Arcee (embedding layer + stacked
|
||||
decoder blocks + final norm)."""
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
vllm_config,
|
||||
prefix: str = "",
|
||||
layer_type: type[nn.Module] = ArceeDecoderLayer) -> None:
|
||||
super().__init__()
|
||||
config: LlamaConfig = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
self.quant_config = quant_config
|
||||
self.config = config
|
||||
self.vocab_size = config.vocab_size
|
||||
self.org_vocab_size = config.vocab_size
|
||||
|
||||
# Word embeddings (parallelized if using pipeline parallel)
|
||||
if get_pp_group().is_first_rank or (config.tie_word_embeddings
|
||||
and get_pp_group().is_last_rank):
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
else:
|
||||
self.embed_tokens = PPMissingLayer(
|
||||
) # placeholder on non-embedding ranks
|
||||
|
||||
# Build decoder layers across pipeline ranks
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: layer_type(config=config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=prefix),
|
||||
prefix=f"{prefix}.layers",
|
||||
)
|
||||
# Final RMSNorm on the last pipeline stage
|
||||
if get_pp_group().is_last_rank:
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
else:
|
||||
self.norm = PPMissingLayer()
|
||||
|
||||
# For optional capturing of intermediate hidden states
|
||||
# (not used by default)
|
||||
self.aux_hidden_state_layers: tuple[int, ...] = tuple()
|
||||
|
||||
# Prepare factory for empty intermediate tensors
|
||||
# (for pipeline scheduling)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
make_empty_intermediate_tensors_factory(
|
||||
["hidden_states", "residual"], config.hidden_size))
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.embed_tokens(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor],
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors],
|
||||
inputs_embeds: Optional[torch.Tensor] = None
|
||||
) -> Union[torch.Tensor, IntermediateTensors, tuple[torch.Tensor,
|
||||
list[torch.Tensor]]]:
|
||||
# Embedding lookup (on first pipeline rank)
|
||||
if get_pp_group().is_first_rank:
|
||||
hidden_states = (inputs_embeds if inputs_embeds is not None else
|
||||
self.get_input_embeddings(input_ids))
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None, (
|
||||
"IntermediateTensors must be provided for non-first "
|
||||
"pipeline ranks")
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
|
||||
aux_hidden_states: list[torch.Tensor] = []
|
||||
for idx, layer in enumerate(
|
||||
self.layers[self.start_layer:self.end_layer]):
|
||||
if idx in self.aux_hidden_state_layers:
|
||||
aux_hidden_states.append(
|
||||
hidden_states +
|
||||
residual) # capture pre-layer hidden state if needed
|
||||
hidden_states, residual = layer(positions, hidden_states, residual)
|
||||
|
||||
if not get_pp_group().is_last_rank:
|
||||
# Send intermediate results to the next pipeline stage
|
||||
return IntermediateTensors({
|
||||
"hidden_states": hidden_states,
|
||||
"residual": residual
|
||||
})
|
||||
# On last rank: apply final layer norm
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
if len(aux_hidden_states) > 0:
|
||||
return hidden_states, aux_hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class ArceeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
"""Arcee Model for causal language modeling, integrated with vLLM
|
||||
runtime."""
|
||||
# Map fused module names to their sub-module components
|
||||
# (for quantization and LoRA)
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config, prefix: str = "") -> None:
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
self.config = config
|
||||
|
||||
# Initialize the inner Transformer model (ArceeModel)
|
||||
self.model = ArceeModel(vllm_config=vllm_config,
|
||||
prefix=f"{prefix}.model")
|
||||
# On the last pipeline stage, set up the LM head and logits processor
|
||||
if get_pp_group().is_last_rank:
|
||||
# Determine vocabulary size (including any LoRA extra tokens
|
||||
# for padded LM head)
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
|
||||
quant_config=vllm_config.quant_config,
|
||||
bias=getattr(config, "lm_head_bias", False),
|
||||
prefix=f"{prefix}.lm_head",
|
||||
)
|
||||
if config.tie_word_embeddings:
|
||||
# Tie output weights with input embedding matrix
|
||||
self.lm_head = self.lm_head.tie_weights(
|
||||
self.model.embed_tokens)
|
||||
logit_scale = getattr(config, "logit_scale", 1.0)
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size,
|
||||
logit_scale)
|
||||
else:
|
||||
# Placeholder for lm_head on non-last ranks
|
||||
self.lm_head = PPMissingLayer()
|
||||
# Provide a reference to the model's method for generating empty
|
||||
# tensors (used in pipeline parallel schedule)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
# Forward pass through the Arcee model backbone
|
||||
model_output = self.model(input_ids=input_ids,
|
||||
positions=positions,
|
||||
intermediate_tensors=intermediate_tensors,
|
||||
inputs_embeds=inputs_embeds)
|
||||
return model_output
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata) -> Optional[torch.Tensor]:
|
||||
# Compute final logits from hidden states (last pipeline rank only)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.get_input_embeddings(input_ids)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
"""Load weights into the model (delegates to inner model and handles
|
||||
tied embeddings)."""
|
||||
loader = AutoWeightsLoader(
|
||||
self,
|
||||
skip_prefixes=(["lm_head."]
|
||||
if self.config.tie_word_embeddings else None),
|
||||
skip_substrs=["gate_proj"])
|
||||
# AutoWeightLoader handles weight name remapping, including fusing
|
||||
# separate q_proj, k_proj, v_proj into qkv_proj
|
||||
return loader.load_weights(weights)
|
||||
@ -33,6 +33,7 @@ _TEXT_GENERATION_MODELS = {
|
||||
# [Decoder-only]
|
||||
"AquilaModel": ("llama", "LlamaForCausalLM"),
|
||||
"AquilaForCausalLM": ("llama", "LlamaForCausalLM"), # AquilaChat2
|
||||
"ArceeForCausalLM": ("arcee", "ArceeForCausalLM"),
|
||||
"ArcticForCausalLM": ("arctic", "ArcticForCausalLM"),
|
||||
"MiniMaxForCausalLM": ("minimax_text_01", "MiniMaxText01ForCausalLM"),
|
||||
"MiniMaxText01ForCausalLM": ("minimax_text_01", "MiniMaxText01ForCausalLM"),
|
||||
|
||||
Reference in New Issue
Block a user