@ -4,11 +4,10 @@ import torch
|
||||
|
||||
from vllm.attention.backends.abstract import AttentionBackend, AttentionType
|
||||
from vllm.attention.layer import Attention
|
||||
from vllm.v1.attention.backends.utils import AttentionMetadataBuilder
|
||||
from vllm.v1.kv_cache_interface import KVCacheConfig
|
||||
from vllm.config import VllmConfig, get_layers_from_vllm_config
|
||||
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheSpec,
|
||||
SlidingWindowSpec)
|
||||
from vllm.v1.attention.backends.utils import AttentionMetadataBuilder
|
||||
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
|
||||
KVCacheSpec, SlidingWindowSpec)
|
||||
|
||||
|
||||
def get_kv_cache_spec(
|
||||
@ -48,7 +47,7 @@ def init_attn_backend(
|
||||
device: torch.device,
|
||||
):
|
||||
attn_backends: dict[str, AttentionBackend] = {}
|
||||
attn_metadata_builders: dict[str, AttentionMetadataBuilder] = {}
|
||||
attn_metadata_builders: list[AttentionMetadataBuilder] = []
|
||||
|
||||
attn_layers = get_layers_from_vllm_config(vllm_config, Attention)
|
||||
for kv_cache_group_spec in kv_cache_config.kv_cache_groups:
|
||||
@ -56,15 +55,16 @@ def init_attn_backend(
|
||||
any_layer_name = next(iter(layer_names))
|
||||
|
||||
attn_backend = attn_layers[any_layer_name].get_attn_backend()
|
||||
for layer_name in layer_names:
|
||||
attn_backends[layer_name] = attn_backend
|
||||
|
||||
attn_metadata_builder = attn_backend.get_builder_cls()(
|
||||
kv_cache_group_spec.kv_cache_spec,
|
||||
layer_names,
|
||||
vllm_config,
|
||||
device,
|
||||
)
|
||||
for layer_name in layer_names:
|
||||
attn_backends[layer_name] = attn_backend
|
||||
attn_metadata_builders[layer_name] = attn_metadata_builder
|
||||
attn_metadata_builders.append(attn_metadata_builder)
|
||||
return attn_backends, attn_metadata_builders
|
||||
|
||||
|
||||
@ -98,7 +98,7 @@ def _reshape_kv_cache(
|
||||
for kv_cache_group_spec in kv_cache_config.kv_cache_groups:
|
||||
kv_cache_spec = kv_cache_group_spec.kv_cache_spec
|
||||
for layer_name in kv_cache_group_spec.layer_names:
|
||||
raw_tensor = kv_cache_raw_tensors[layer_name]
|
||||
raw_tensor = kv_cache_raw_tensors[layer_name]
|
||||
assert raw_tensor.numel() % kv_cache_spec.page_size_bytes == 0
|
||||
num_blocks = (raw_tensor.numel() // kv_cache_spec.page_size_bytes)
|
||||
|
||||
@ -110,7 +110,7 @@ def _reshape_kv_cache(
|
||||
dtype = kv_cache_spec.dtype
|
||||
kv_cache_stride_order = attn_backend.get_kv_cache_stride_order()
|
||||
kv_cache_shape = tuple(kv_cache_shape[i]
|
||||
for i in kv_cache_stride_order)
|
||||
for i in kv_cache_stride_order)
|
||||
|
||||
inv_order = [
|
||||
kv_cache_stride_order.index(i)
|
||||
@ -129,5 +129,6 @@ def init_kv_cache(
|
||||
device: torch.device,
|
||||
):
|
||||
kv_cache_raw_tensors = _allocate_kv_cache(kv_cache_config, device)
|
||||
kv_caches = _reshape_kv_cache(kv_cache_config, kv_cache_raw_tensors, attn_backends)
|
||||
kv_caches = _reshape_kv_cache(kv_cache_config, kv_cache_raw_tensors,
|
||||
attn_backends)
|
||||
return kv_caches
|
||||
|
||||
@ -54,6 +54,7 @@ class InputBatch:
|
||||
num_scheduled_tokens: np.ndarray
|
||||
# sum(num_scheduled_tokens)
|
||||
num_tokens: int
|
||||
num_tokens_after_padding: int
|
||||
# [num_reqs]
|
||||
is_chunked_prefilling: np.ndarray
|
||||
|
||||
|
||||
@ -10,20 +10,21 @@ import torch
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.forward_context import set_forward_context
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, is_pin_memory_available
|
||||
from vllm.model_executor.model_loader import get_model_loader
|
||||
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler,
|
||||
GiB_bytes, is_pin_memory_available)
|
||||
from vllm.v1.attention.backends.utils import CommonAttentionMetadata
|
||||
from vllm.v1.core.sched.output import SchedulerOutput
|
||||
from vllm.v1.kv_cache_interface import KVCacheConfig
|
||||
from vllm.v1.sample.sampler import SamplerOutput
|
||||
from vllm.v1.worker.gpu.attn_utils import get_kv_cache_spec, init_attn_backend, init_kv_cache
|
||||
from vllm.v1.worker.utils import bind_kv_cache
|
||||
from vllm.v1.worker.gpu.attn_utils import (get_kv_cache_spec,
|
||||
init_attn_backend, init_kv_cache)
|
||||
from vllm.v1.worker.gpu.block_table import BlockTables
|
||||
from vllm.v1.worker.gpu.input_batch import (InputBatch, InputBuffers,
|
||||
prepare_inputs)
|
||||
from vllm.v1.worker.gpu.sampler import Sampler
|
||||
from vllm.model_executor.model_loader import get_model_loader
|
||||
from vllm.utils import DeviceMemoryProfiler, GiB_bytes
|
||||
from vllm.v1.worker.gpu.states import RequestState
|
||||
from vllm.v1.worker.utils import bind_kv_cache
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
@ -123,7 +124,11 @@ class GPUModelRunner:
|
||||
self.device,
|
||||
)
|
||||
|
||||
kv_caches = init_kv_cache(self.kv_cache_config, self.attn_backends, self.device)
|
||||
kv_caches = init_kv_cache(
|
||||
self.kv_cache_config,
|
||||
self.attn_backends,
|
||||
self.device,
|
||||
)
|
||||
self.kv_caches: list[torch.Tensor] = []
|
||||
bind_kv_cache(
|
||||
kv_caches,
|
||||
@ -134,12 +139,13 @@ class GPUModelRunner:
|
||||
def _dummy_run(self, num_tokens: int, *args, **kwargs) -> None:
|
||||
return None, None
|
||||
|
||||
def _dummy_sampler_run(self, hidden_states: torch.Tensor, *args, **kwargs) -> None:
|
||||
def _dummy_sampler_run(self, hidden_states: torch.Tensor, *args,
|
||||
**kwargs) -> None:
|
||||
return None
|
||||
|
||||
def update_states(self, scheduler_output: SchedulerOutput) -> None:
|
||||
for req_id in scheduler_output.preempted_req_ids:
|
||||
self.req_states.remove_request(req_id)
|
||||
# for req_id in scheduler_output.preempted_req_ids:
|
||||
# self.req_states.remove_request(req_id)
|
||||
for req_id in scheduler_output.finished_req_ids:
|
||||
self.req_states.remove_request(req_id)
|
||||
|
||||
@ -207,6 +213,9 @@ class GPUModelRunner:
|
||||
[scheduler_output.num_scheduled_tokens[i] for i in req_ids],
|
||||
dtype=np.int32)
|
||||
|
||||
# TODO(woosuk): Support CUDA graphs.
|
||||
num_tokens_after_padding = num_tokens
|
||||
|
||||
idx_mapping_list = [
|
||||
self.req_states.req_id_to_index[req_id] for req_id in req_ids
|
||||
]
|
||||
@ -251,8 +260,8 @@ class GPUModelRunner:
|
||||
num_computed_tokens_np = self.req_states.num_computed_tokens[
|
||||
idx_mapping_np]
|
||||
num_computed_tokens_cpu = torch.from_numpy(num_computed_tokens_np)
|
||||
num_tokens = self.req_states.num_tokens[idx_mapping_np]
|
||||
is_chunked_prefilling = seq_lens_np < num_tokens
|
||||
is_chunked_prefilling = (seq_lens_np
|
||||
< self.req_states.num_tokens[idx_mapping_np])
|
||||
|
||||
# Slot mappings: [num_kv_cache_groups, num_tokens]
|
||||
slot_mappings = self.block_tables.compute_slot_mappings(
|
||||
@ -285,12 +294,12 @@ class GPUModelRunner:
|
||||
)
|
||||
|
||||
attn_metadata_builder = self.attn_metadata_builders[i]
|
||||
attn_metadata = attn_metadata_builder.build(
|
||||
metadata = attn_metadata_builder.build(
|
||||
common_prefix_len=0,
|
||||
common_attn_metadata=common_attn_metadata,
|
||||
)
|
||||
for layer_name in kv_cache_spec.layer_names:
|
||||
attn_metadata[layer_name] = attn_metadata
|
||||
attn_metadata[layer_name] = metadata
|
||||
|
||||
return InputBatch(
|
||||
req_ids=req_ids,
|
||||
@ -299,9 +308,10 @@ class GPUModelRunner:
|
||||
idx_mapping_np=idx_mapping_np,
|
||||
num_scheduled_tokens=num_scheduled_tokens,
|
||||
num_tokens=num_tokens,
|
||||
num_tokens_after_padding=num_tokens_after_padding,
|
||||
is_chunked_prefilling=is_chunked_prefilling,
|
||||
input_ids=input_ids,
|
||||
positions=positions,
|
||||
input_ids=input_ids.gpu,
|
||||
positions=positions.gpu,
|
||||
attn_metadata=attn_metadata,
|
||||
logits_indices=logits_indices,
|
||||
)
|
||||
@ -333,7 +343,8 @@ class GPUModelRunner:
|
||||
return None
|
||||
|
||||
num_prompt_tokens_scheduled = ...
|
||||
if not np.any((num_prompt_tokens_scheduled > 0) & needs_prompt_logprobs):
|
||||
if not np.any((num_prompt_tokens_scheduled > 0)
|
||||
& needs_prompt_logprobs):
|
||||
# The request already computed prompt logprobs.
|
||||
return None
|
||||
|
||||
|
||||
@ -123,7 +123,7 @@ def _apply_temp_kernel(
|
||||
if temp < EPSILON:
|
||||
# Greedy sampling. Don't apply temperature.
|
||||
# NOTE(woosuk): In this case, we assume that its logprobs are not used.
|
||||
temp = tl.ones([1], dtype=tl.float32)
|
||||
temp = 1.0
|
||||
|
||||
offset = tl.arange(0, BLOCK_SIZE)
|
||||
block = block_idx * BLOCK_SIZE + offset
|
||||
|
||||
@ -100,8 +100,8 @@ class RequestState:
|
||||
top_k = self.vocab_size
|
||||
self.top_k[req_idx] = top_k
|
||||
|
||||
if sampling_params.num_logprobs is not None:
|
||||
num_logprobs = sampling_params.num_logprobs
|
||||
if sampling_params.logprobs is not None:
|
||||
num_logprobs = sampling_params.logprobs
|
||||
else:
|
||||
num_logprobs = -1
|
||||
self.num_logprobs[req_idx] = num_logprobs
|
||||
|
||||
@ -335,7 +335,9 @@ class Worker(WorkerBase):
|
||||
self.model_runner._dummy_run(size,
|
||||
skip_eplb=True,
|
||||
remove_lora=False)
|
||||
self.model_runner.maybe_remove_all_loras(self.model_runner.lora_config)
|
||||
if self.model_runner.lora_config is not None:
|
||||
self.model_runner.maybe_remove_all_loras(
|
||||
self.model_runner.lora_config)
|
||||
|
||||
# Warmup and tune the kernels used during model execution before
|
||||
# cuda graph capture.
|
||||
@ -429,6 +431,9 @@ class Worker(WorkerBase):
|
||||
self,
|
||||
scheduler_output: "SchedulerOutput",
|
||||
) -> Optional[Union[ModelRunnerOutput, AsyncModelRunnerOutput]]:
|
||||
if len(get_pp_group().ranks) == 1:
|
||||
return self.model_runner.execute_model(scheduler_output)
|
||||
|
||||
intermediate_tensors = None
|
||||
forward_pass = scheduler_output.total_num_scheduled_tokens > 0
|
||||
num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
|
||||
@ -447,8 +452,6 @@ class Worker(WorkerBase):
|
||||
|
||||
output = self.model_runner.execute_model(scheduler_output,
|
||||
intermediate_tensors)
|
||||
if isinstance(output, (ModelRunnerOutput, AsyncModelRunnerOutput)):
|
||||
return output
|
||||
|
||||
assert isinstance(output, IntermediateTensors)
|
||||
parallel_config = self.vllm_config.parallel_config
|
||||
|
||||
Reference in New Issue
Block a user