[BugFix] Ensure integrity of reused CPU tensors during async scheduling (#24527)

Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: guoze.lin <guozelin@tencent.com>
This commit is contained in:
Nick Hill
2025-09-10 06:15:14 -07:00
committed by GitHub
parent 0b9a612fa3
commit f4f1a8df22

View File

@ -326,6 +326,14 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
self.mrope_positions = self._make_buffer(
(3, self.max_num_tokens + 1), dtype=torch.int64)
# CUDA event to synchronize use of reused CPU tensors between steps
# when async scheduling is enabled.
self.prepare_inputs_event: Optional[torch.cuda.Event] = None
if self.use_async_scheduling:
self.prepare_inputs_event = torch.cuda.Event()
# Start in a completed state.
self.prepare_inputs_event.record(torch.cuda.default_stream())
# None in the first PP rank. The rest are set after load_model.
self.intermediate_tensors: Optional[IntermediateTensors] = None
@ -354,11 +362,11 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
# Cudagraph dispatcher for runtime cudagraph dispatching.
self.cudagraph_dispatcher = CudagraphDispatcher(self.vllm_config)
self.mm_budget = (MultiModalBudget(
self.mm_budget = MultiModalBudget(
self.model_config,
self.scheduler_config,
self.mm_registry,
) if self.supports_mm_inputs else None)
) if self.supports_mm_inputs else None
self.reorder_batch_threshold: Optional[int] = None
@ -991,10 +999,10 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
builder,
)
attn_metadata_i = (builder.build(
attn_metadata_i = builder.build(
common_prefix_len=common_prefix_len,
common_attn_metadata=common_attn_metadata,
))
)
for layer_name in attn_group.layer_names:
attn_metadata[layer_name] = attn_metadata_i
@ -1866,10 +1874,18 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
"prompt tokens, tokens, please disable it when the requests"
" need prompt logprobs")
# Prepare the decoder inputs.
(attn_metadata, logits_indices, spec_decode_metadata,
num_scheduled_tokens_np, spec_decode_common_attn_metadata,
max_query_len) = self._prepare_inputs(scheduler_output)
if self.prepare_inputs_event is not None:
# Ensure prior step has finished with reused CPU tensors.
self.prepare_inputs_event.synchronize()
try:
# Prepare the decoder inputs.
(attn_metadata, logits_indices, spec_decode_metadata,
num_scheduled_tokens_np, spec_decode_common_attn_metadata,
max_query_len) = self._prepare_inputs(scheduler_output)
finally:
if self.prepare_inputs_event is not None:
self.prepare_inputs_event.record()
(
num_scheduled_tokens,