Compare commits

...

3 Commits

Author SHA1 Message Date
2ad6985c49 opt
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-15 14:24:50 -07:00
da03cb8f0b fix
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-15 14:00:26 -07:00
90d43db442 [Optimization] Truncate kv page indices for sliding window attention
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-15 19:10:01 +00:00

View File

@ -248,7 +248,9 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
self.block_table_arange = torch.arange(max_num_pages_per_req,
dtype=torch.int32,
device=self.device)
device="cpu")
self.sliding_window = getattr(kv_cache_spec, "sliding_window", None)
def _get_workspace_buffer(self):
if self._workspace_buffer is None:
@ -487,16 +489,30 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
shared_kv_page_indices_cpu = None
shared_kv_last_page_len_cpu = None
max_num_blocks = block_table_bounds_cpu.max()
block_table_bounds = block_table_bounds_cpu.to(self.device,
non_blocking=True)
mask = (self.block_table_arange[:max_num_blocks].unsqueeze(0)
< block_table_bounds.unsqueeze(1))
max_num_blocks = block_table_bounds_cpu.max().item()
arange = self.block_table_arange[:max_num_blocks].unsqueeze(0)
mask = arange < block_table_bounds_cpu.unsqueeze(1)
if (self.sliding_window is not None and not use_cascade
and num_decodes > 0 and
max_num_blocks > self.sliding_window // page_size):
# NOTE(woosuk): Since FlashInfer's decode kernel doesn't skip the kv
# outside the sliding window and only do masking, we manually
# manipulate the seq_lens and block table for skipping.
# NOTE: Don't apply this optimization to prefill requests.
decode_seq_lens_cpu = seq_lens_cpu[:num_decodes]
num_skipped_pages = (
torch.relu(decode_seq_lens_cpu - self.sliding_window) //
page_size)
block_table_bounds_cpu[:num_decodes] -= num_skipped_pages
mask[:num_decodes] &= (arange[:num_decodes]
>= num_skipped_pages.unsqueeze(1))
# write self.paged_kv_indices inplace
num_actual_pages = torch.sum(mask)
paged_kv_indices = self.paged_kv_indices[:num_actual_pages]
torch.masked_select(block_table_tensor[:, :max_num_blocks],
mask,
mask.to(self.device, non_blocking=True),
out=paged_kv_indices)
# write self.paged_kv_indptr_cpu inplace (0-index is always 0)