Compare commits
454 Commits
copilot/fi
...
il_tool
| Author | SHA1 | Date | |
|---|---|---|---|
| e793b9a70c | |||
| 76c9ec0ddf | |||
| e10fef0883 | |||
| e680723eba | |||
| 620db1fc58 | |||
| 41183c1fe0 | |||
| 43d9ad03ba | |||
| 7be141b2c5 | |||
| 8d7f39b48c | |||
| cd08636926 | |||
| 3feeeb9fea | |||
| 6f4a82f8b5 | |||
| c44797a4d6 | |||
| 55be93baf5 | |||
| 717fc00e98 | |||
| 01dfb5e982 | |||
| 03dd652c16 | |||
| 9cd76b71ab | |||
| e041314184 | |||
| 5e537f45b4 | |||
| c2a8b08fcd | |||
| f4962a6d55 | |||
| 2f0b833a05 | |||
| 425b04b8f4 | |||
| 60f0843ef8 | |||
| 8a46602606 | |||
| 61aa4b2901 | |||
| 8c892b1831 | |||
| 3bca396f79 | |||
| 3a3e91bdfe | |||
| b3d7e3c845 | |||
| 67841317d1 | |||
| 86173ad593 | |||
| 795b6951cd | |||
| 2e5d21378d | |||
| 0661cb9df3 | |||
| 105d3d62ef | |||
| 62f66be1f7 | |||
| 81c53ef55c | |||
| 75334956c2 | |||
| 77aec83b8c | |||
| e67597545b | |||
| 37a6fa95fd | |||
| 558f0907dc | |||
| 4172235ab7 | |||
| 848562bd49 | |||
| e68dc2f014 | |||
| a3645ed94d | |||
| fb691ee4e7 | |||
| 6024d115cd | |||
| 7555d6b34a | |||
| 00a4e56d8d | |||
| 0eadaeff7e | |||
| 0077c8634e | |||
| b121ca22ad | |||
| eddaafc1c7 | |||
| 305a1cc0d2 | |||
| 6d6c6b05d3 | |||
| 53b19ccdd5 | |||
| 6432739ef1 | |||
| ac201a0eaf | |||
| 3c529fc994 | |||
| 35bf193864 | |||
| 35efa70297 | |||
| cee182b297 | |||
| c954c6629c | |||
| 9dfbeb41e5 | |||
| eedb2a2a10 | |||
| 23a6c5280e | |||
| 7812bcf278 | |||
| 006e7a34ae | |||
| e599e2c65e | |||
| c29fb540ff | |||
| 65e038931d | |||
| 886ccbe5ba | |||
| adc3ddb430 | |||
| 60b755cbcb | |||
| 482e52f56c | |||
| 78336a0c3e | |||
| 94866d7c93 | |||
| 83609ca91d | |||
| e41a0fa377 | |||
| 37241077d5 | |||
| c9f7081f9c | |||
| 16ded21eeb | |||
| 2b30afa442 | |||
| eafa8dcde6 | |||
| 6c7af8110a | |||
| 8f423e5f43 | |||
| 369a079568 | |||
| 402759d472 | |||
| 2c301ee2eb | |||
| 3efb9f4d95 | |||
| 04f3c35cff | |||
| 51d5e9be7d | |||
| e7fc70016f | |||
| 12e1e63cc5 | |||
| 57b1ce94f7 | |||
| cb55ad86fe | |||
| 712b273f65 | |||
| e919d6f549 | |||
| a38f8bd54c | |||
| b5ee1e3261 | |||
| 36c260dad6 | |||
| a43a3f1770 | |||
| 6adaed42f4 | |||
| a742322092 | |||
| 731a6940e3 | |||
| e9b92dcd89 | |||
| fa4311d85f | |||
| 6d80ae83e1 | |||
| 4ba0c587ba | |||
| 6997a25ac6 | |||
| 28f350e147 | |||
| 51383bd472 | |||
| 9c99e4871f | |||
| 70549c1245 | |||
| f0c503f66e | |||
| f38035c123 | |||
| 426cc8629f | |||
| e81d4e69c1 | |||
| 02d411fdb2 | |||
| d7e1e59972 | |||
| c4ed78b14f | |||
| 1bd007f234 | |||
| 136d853e65 | |||
| e32a0e8678 | |||
| 42dc59dbac | |||
| 862f2ef893 | |||
| 2fd1a40a54 | |||
| 930a24144c | |||
| 457e471971 | |||
| d328f7894f | |||
| 98aee612aa | |||
| 598bd74cf8 | |||
| 2417798471 | |||
| 9480ae24e3 | |||
| f399182e8c | |||
| 1c41310584 | |||
| c83c4ff815 | |||
| 0e1759cd54 | |||
| e66ed3e675 | |||
| e0653f6c0b | |||
| 38ba061f6f | |||
| 0a74e9d0f2 | |||
| 8bd5844989 | |||
| ce30dca5c4 | |||
| 2f0bab3f26 | |||
| fad73be1a5 | |||
| 56d04089ef | |||
| 7be0cb8e9e | |||
| 1fa1d6a9a0 | |||
| d59c986444 | |||
| 04d0c60770 | |||
| 2b41cbbf03 | |||
| 0235103cbb | |||
| a344a5aa0a | |||
| 5685370271 | |||
| a0e0efd6bd | |||
| cf91a89dd2 | |||
| 39a22dcaac | |||
| 41c80698b3 | |||
| 7c8271cd1e | |||
| 3e330fcb21 | |||
| d46934b229 | |||
| 107284959a | |||
| dc1a53186d | |||
| 55602bb2e6 | |||
| d7fbc6ddac | |||
| 5438967fbc | |||
| 422e793fa6 | |||
| 1cb39dbcdd | |||
| 437c3ce026 | |||
| 499b074bfd | |||
| ff0e59d83a | |||
| b55713683c | |||
| acc1a6e10a | |||
| 8c742a66d1 | |||
| 183a70967a | |||
| 14b4326b94 | |||
| 752d2e1c36 | |||
| 81eea3d348 | |||
| 9701352e4b | |||
| 749be00a98 | |||
| 5b8077b8ac | |||
| 038e9be4eb | |||
| 68a349114f | |||
| e80bca309e | |||
| fb4983e112 | |||
| 379ea2823a | |||
| 3a6acad431 | |||
| 5490d633ce | |||
| 628d00cd7b | |||
| 4071c76cf3 | |||
| f1bddbd852 | |||
| 9748c5198b | |||
| ee52a32705 | |||
| 8fb85b7bb6 | |||
| 5b31cb1781 | |||
| d660c98c1b | |||
| 5674a40366 | |||
| 8c3e199998 | |||
| 1c26b42296 | |||
| b7adf94c4a | |||
| 4d7fe40fc0 | |||
| 0dc9532065 | |||
| 72a69132dc | |||
| d90d8eb674 | |||
| 0a2f4c0793 | |||
| 1cf3753b90 | |||
| 4f7cde7272 | |||
| 67c14906aa | |||
| 69f46359dd | |||
| d9e00dbd1f | |||
| ad39106b16 | |||
| 2554b27baa | |||
| 934bebf192 | |||
| 885ca6d31d | |||
| 2d0afcc9dc | |||
| b4f9e9631c | |||
| 05d839c19e | |||
| 6597d7a456 | |||
| 5264015d74 | |||
| 98ac0cb32d | |||
| c8b3b299c9 | |||
| 006477e60b | |||
| de533ab2a1 | |||
| 235c9db8a7 | |||
| b668055a11 | |||
| d3d2aad5a2 | |||
| cb293f6a79 | |||
| 7ffbf27239 | |||
| 27e88cee74 | |||
| 16a45b3a28 | |||
| 57d4ede520 | |||
| 04d1dd7f4a | |||
| f32a5bc505 | |||
| 8805ad9fa9 | |||
| 0583578f42 | |||
| db74d60490 | |||
| 95089607fa | |||
| 1f096f9b95 | |||
| 66548f6603 | |||
| d3da2eea54 | |||
| bfab219648 | |||
| a3432f18fd | |||
| 67cee40da0 | |||
| d99c3a4f7b | |||
| 3462c1c522 | |||
| c5d004aaaf | |||
| 11a7fafaa8 | |||
| 186aced5ff | |||
| daa1273b14 | |||
| c07a73317d | |||
| 22feac8e95 | |||
| c8851a4723 | |||
| f48a9af892 | |||
| a11adafdca | |||
| a781e84ec2 | |||
| 1b7b161a09 | |||
| a69693e38f | |||
| 5da4f5d857 | |||
| 321938e9ac | |||
| f9ca2b40a0 | |||
| 082cc07ef8 | |||
| 853c371fc3 | |||
| 8bf6266a17 | |||
| 0585a9e73c | |||
| 3c0ef769ba | |||
| 4e4d017b6f | |||
| dd58932280 | |||
| 52883ed084 | |||
| 4f35be10a9 | |||
| 2b61d2e22f | |||
| 3ce8285d6d | |||
| 83f555f637 | |||
| 841490434a | |||
| 3af47c3cc6 | |||
| 513c1fe255 | |||
| fe8d7b6f03 | |||
| 16dc4052b0 | |||
| 8dd2baa597 | |||
| 5eeef1b908 | |||
| 704432af3c | |||
| a403d0fa41 | |||
| 8c13820f0b | |||
| 9d30de4469 | |||
| 1f7a9c95e4 | |||
| 8f0d7eaea8 | |||
| e03940762b | |||
| 11eddf02f0 | |||
| 04ff1e43fb | |||
| 6578e87365 | |||
| 5bd9f84158 | |||
| 91e382c935 | |||
| 6446677839 | |||
| 69244e67e6 | |||
| 8dbf6ed7be | |||
| 9de25c294b | |||
| fce10dbed5 | |||
| d272415e57 | |||
| 142ac08030 | |||
| 3210264421 | |||
| 644d57d531 | |||
| c905684cfe | |||
| 786835807b | |||
| fecbb7c782 | |||
| 6dab89b8ec | |||
| de02b07db4 | |||
| eb1995167e | |||
| 2c2b140ae8 | |||
| c7c80af084 | |||
| 6891205b16 | |||
| b1625dbe9c | |||
| 585e0bde36 | |||
| 714872f1a9 | |||
| 5f1af97f86 | |||
| c3b0fd1ee6 | |||
| 6421b66bf4 | |||
| 2f13319f47 | |||
| d696f86e7b | |||
| 9816b81f5f | |||
| c37c0af990 | |||
| 9715f7bb0f | |||
| 98aa16ff41 | |||
| 227e231b55 | |||
| 730d0ac8b9 | |||
| 9b0187003e | |||
| 44ac25eae2 | |||
| 7ea22e42d5 | |||
| 9d4183dd2e | |||
| 513298f1b4 | |||
| 379f828fba | |||
| 1fdc732419 | |||
| f58675bfb3 | |||
| 7c04779afa | |||
| f66673a39d | |||
| b78bed1bc5 | |||
| 164b2273c8 | |||
| 2b4fc9bd9b | |||
| ebd5a77bb5 | |||
| 384dd1b0a8 | |||
| fdeb3dac13 | |||
| d52358c1e0 | |||
| 6ace2f72b0 | |||
| b00e69f8ca | |||
| 50fede6634 | |||
| b5d34af328 | |||
| 9b5f64238f | |||
| ff77764f86 | |||
| bfc1edc9f5 | |||
| 3ecbb14b81 | |||
| 7d67a9d9f9 | |||
| 959783fb99 | |||
| ce0e9dbd43 | |||
| b395b3b0a3 | |||
| 6fad29b11b | |||
| 6fd45e7b8a | |||
| 56dcf4e7e9 | |||
| ae067888d6 | |||
| 906e461ed6 | |||
| 2a97ffc33d | |||
| efc88cf64a | |||
| 7b6a837275 | |||
| c34c82b7fe | |||
| 8a044754bd | |||
| 9188ae7cb5 | |||
| 8a3cd90af5 | |||
| 2a167b2eeb | |||
| 0ff902f3b4 | |||
| a9082a4d14 | |||
| e0329ed4b4 | |||
| 6879cd80ae | |||
| e269be2ba2 | |||
| 5c4b6e66fe | |||
| d0a4a3f645 | |||
| ebafb0936d | |||
| 0cb7b065c3 | |||
| 2da02dd0d8 | |||
| d765cf01fe | |||
| 712d0f88d8 | |||
| 49ab23b3cc | |||
| c9abb10489 | |||
| 787cdb3829 | |||
| a5203d04df | |||
| 99f8094400 | |||
| 170e8ea9ea | |||
| a71e4765cc | |||
| 39971db3aa | |||
| 504d914314 | |||
| 47455c424f | |||
| c7fc6b1354 | |||
| ad78868450 | |||
| e2db1164a1 | |||
| 416f05929a | |||
| 5e021b4981 | |||
| 1b9b16649c | |||
| e76e233540 | |||
| a75277285b | |||
| 9dc30b7068 | |||
| 053278a5dc | |||
| c55c028998 | |||
| 65197a5fb3 | |||
| b8f17f5d98 | |||
| d9a55204ba | |||
| b4e9fd811f | |||
| 308fa287a8 | |||
| fa78de9dc3 | |||
| f6818a92cb | |||
| 23c939fd30 | |||
| add1adfec7 | |||
| c80c53a30f | |||
| 24d0c9e6ed | |||
| cc7ae5e7ca | |||
| 0313cf854d | |||
| 0483fabc74 | |||
| da65bec309 | |||
| 4645024d3a | |||
| cd7a3df26f | |||
| 32d2b4064f | |||
| 22cf679aad | |||
| b6d7d34fc6 | |||
| 341923b982 | |||
| 424fb7a5d2 | |||
| 88491c1b6b | |||
| 613a23b57f | |||
| 51a215300b | |||
| ebe14621e3 | |||
| 325aa3dee9 | |||
| a073be6d87 | |||
| 695e7adcd2 | |||
| 281710ef9a | |||
| 808d2e9aa0 | |||
| 285178b3b8 | |||
| 88016c372a | |||
| 998720859c | |||
| 0ba1b54ac6 | |||
| 53415653ff | |||
| 17373dcd93 | |||
| 5964069367 | |||
| de9c085e17 | |||
| 111692bb8c | |||
| 394591e343 | |||
| 3ac849665d | |||
| 0b9cc56fac | |||
| 8896eb72eb | |||
| 19fe1a0510 | |||
| 480bdf5a7b | |||
| 5368f76855 | |||
| 87c737016d | |||
| ba90794ff1 | |||
| ab4ab0fd28 | |||
| 2af83ebdde | |||
| d8bff253d7 |
@ -5,11 +5,11 @@ import os
|
||||
import sys
|
||||
import zipfile
|
||||
|
||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 400 MiB
|
||||
# Note that we have 400 MiB quota, please use it wisely.
|
||||
# See https://github.com/pypi/support/issues/3792 .
|
||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 450 MiB
|
||||
# Note that we have 800 MiB quota, please use it wisely.
|
||||
# See https://github.com/pypi/support/issues/6326 .
|
||||
# Please also sync the value with the one in Dockerfile.
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 400))
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 450))
|
||||
|
||||
|
||||
def print_top_10_largest_files(zip_file):
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
# We can use this script to compute baseline accuracy on GSM for transformers.
|
||||
#
|
||||
# Make sure you have lm-eval-harness installed:
|
||||
# pip install lm-eval==0.4.4
|
||||
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
|
||||
|
||||
usage() {
|
||||
echo``
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
# We use this for fp8, which HF does not support.
|
||||
#
|
||||
# Make sure you have lm-eval-harness installed:
|
||||
# pip install lm-eval==0.4.4
|
||||
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
|
||||
|
||||
usage() {
|
||||
echo``
|
||||
|
||||
@ -141,7 +141,7 @@ When run, benchmark script generates results under `benchmark/results` folder, a
|
||||
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
|
||||
If only one benchmark_results.json is passed, `compare-json-results.py` compares different TP and PP configurations in the benchmark_results.json instead.
|
||||
|
||||
Here is an example using the script to compare result_a and result_b with Model, Dataset name, input/output lenght, max concurrency and qps.
|
||||
Here is an example using the script to compare result_a and result_b with Model, Dataset name, input/output length, max concurrency and qps.
|
||||
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json`
|
||||
|
||||
| | Model | Dataset Name | Input Len | Output Len | # of max concurrency | qps | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|
||||
|
||||
@ -17,7 +17,7 @@ Latest reproduction guilde: [github issue link](https://github.com/vllm-project/
|
||||
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
|
||||
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
|
||||
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
|
||||
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
|
||||
- *NOTE: we use r24.07 as the current implementation only works for this version. We are going to bump this up.*
|
||||
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
|
||||
- Hardware
|
||||
- 8x Nvidia A100 GPUs
|
||||
|
||||
@ -218,7 +218,7 @@ if __name__ == "__main__":
|
||||
"--xaxis",
|
||||
type=str,
|
||||
default="# of max concurrency.",
|
||||
help="column name to use as X Axis in comparision graph",
|
||||
help="column name to use as X Axis in comparison graph",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@ -382,7 +382,7 @@ run_genai_perf_tests() {
|
||||
client_command="genai-perf profile \
|
||||
-m $model \
|
||||
--service-kind openai \
|
||||
--backend vllm \
|
||||
--backend "$backend" \
|
||||
--endpoint-type chat \
|
||||
--streaming \
|
||||
--url localhost:$port \
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[
|
||||
{
|
||||
"test_name": "serving_llama8B_tp1_sharegpt",
|
||||
"test_name": "serving_llama8B_bf16_tp1_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
@ -32,7 +32,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp2_sharegpt",
|
||||
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
@ -64,7 +64,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp4_sharegpt",
|
||||
"test_name": "serving_llama8B_bf16_tp4_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
@ -96,7 +96,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp1_random_128_128",
|
||||
"test_name": "serving_llama8B_bf16_tp1_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
@ -131,7 +131,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp2_random_128_128",
|
||||
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
@ -166,7 +166,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp4_random_128_128",
|
||||
"test_name": "serving_llama8B_bf16_tp4_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
@ -198,5 +198,413 @@
|
||||
"random-output-len": 128,
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp1_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp2_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp4_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 4,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp1_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp2_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp4_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 4,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp1_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp2_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp4_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 4,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp1_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp2_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp4_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 4,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[
|
||||
{
|
||||
"test_name": "serving_llama8B_pp1_sharegpt",
|
||||
"test_name": "serving_llama8B_bf16_pp1_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
@ -32,7 +32,39 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_pp3_sharegpt",
|
||||
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_bf16_pp3_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
@ -64,7 +96,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp2pp3_sharegpt",
|
||||
"test_name": "serving_llama8B_bf16_tp2pp3_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
@ -97,7 +129,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_pp1_random_128_128",
|
||||
"test_name": "serving_llama8B_bf16_pp1_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
@ -132,7 +164,42 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_pp3_random_128_128",
|
||||
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_bf16_pp3_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
@ -167,7 +234,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp2pp3_random_128_128",
|
||||
"test_name": "serving_llama8B_bf16_tp2pp3_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
@ -201,5 +268,553 @@
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_pp1_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"pipeline_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp2_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_pp3_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp2pp3_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 2,
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_pp1_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"pipeline_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp2_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_pp3_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int8_tp2pp3_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"tensor_parallel_size": 2,
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_pp1_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"pipeline_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp2_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_pp3_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp2pp3_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 2,
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_pp1_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"pipeline_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp2_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_pp3_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_int4_tp2pp3_random_128_128",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"quantization": "awq",
|
||||
"tensor_parallel_size": 2,
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
"block_size": 128,
|
||||
"trust_remote_code": "",
|
||||
"enable_chunked_prefill": "",
|
||||
"disable_log_stats": "",
|
||||
"enforce_eager": "",
|
||||
"max_num_batched_tokens": 2048,
|
||||
"max_num_seqs": 256,
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"num_prompts": 1000
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
@ -1,21 +1,24 @@
|
||||
steps:
|
||||
# aarch64 + CUDA builds
|
||||
- label: "Build arm64 wheel - CUDA 12.8"
|
||||
id: build-wheel-arm64-cuda-12-8
|
||||
# aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
|
||||
- label: "Build arm64 wheel - CUDA 12.9"
|
||||
id: build-wheel-arm64-cuda-12-9
|
||||
agents:
|
||||
queue: arm64_cpu_queue_postmerge
|
||||
commands:
|
||||
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
|
||||
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
# x86 + CUDA builds
|
||||
- block: "Build CUDA 12.8 wheel"
|
||||
key: block-build-cu128-wheel
|
||||
|
||||
- label: "Build wheel - CUDA 12.8"
|
||||
depends_on: block-build-cu128-wheel
|
||||
id: build-wheel-cuda-12-8
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
@ -44,44 +47,63 @@ steps:
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
# Note(simon): We can always build CUDA 11.8 wheel to ensure the build is working.
|
||||
# However, this block can be uncommented to save some compute hours.
|
||||
# - block: "Build CUDA 11.8 wheel"
|
||||
# key: block-build-cu118-wheel
|
||||
|
||||
- label: "Build wheel - CUDA 11.8"
|
||||
# depends_on: block-build-cu118-wheel
|
||||
id: build-wheel-cuda-11-8
|
||||
# x86 + CUDA builds
|
||||
- label: "Build wheel - CUDA 12.9"
|
||||
depends_on: ~
|
||||
id: build-wheel-cuda-12-9
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build release image"
|
||||
- label: "Build release image (x86)"
|
||||
depends_on: ~
|
||||
key: block-release-image-build
|
||||
|
||||
- label: "Build release image"
|
||||
depends_on: block-release-image-build
|
||||
id: build-release-image
|
||||
id: build-release-image-x86
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||
# re-tag to default image tag and push, just in case arm64 build fails
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
# PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
|
||||
- label: "Build release image (arm64)"
|
||||
depends_on: ~
|
||||
id: build-release-image-arm64
|
||||
agents:
|
||||
queue: arm64_cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||
|
||||
# Add job to create multi-arch manifest
|
||||
- label: "Create multi-arch manifest"
|
||||
depends_on:
|
||||
- build-release-image-x86
|
||||
- build-release-image-arm64
|
||||
id: create-multi-arch-manifest
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "docker manifest create public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64 public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64 --amend"
|
||||
- "docker manifest push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Annotate release workflow"
|
||||
depends_on:
|
||||
- build-release-image
|
||||
- create-multi-arch-manifest
|
||||
- build-wheel-cuda-12-8
|
||||
- build-wheel-cuda-12-6
|
||||
- build-wheel-cuda-11-8
|
||||
- build-wheel-cuda-12-9
|
||||
id: annotate-release-workflow
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
@ -127,19 +149,3 @@ steps:
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build Neuron release image"
|
||||
key: block-neuron-release-image-build
|
||||
depends_on: ~
|
||||
|
||||
- label: "Build and publish Neuron release image"
|
||||
depends_on: block-neuron-release-image-build
|
||||
agents:
|
||||
queue: neuron-postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest"
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -164,7 +164,6 @@ if [[ $commands == *" entrypoints/llm "* ]]; then
|
||||
--ignore=entrypoints/llm/test_chat.py \
|
||||
--ignore=entrypoints/llm/test_accuracy.py \
|
||||
--ignore=entrypoints/llm/test_init.py \
|
||||
--ignore=entrypoints/llm/test_generate_multiple_loras.py \
|
||||
--ignore=entrypoints/llm/test_prompt_validation.py "}
|
||||
fi
|
||||
|
||||
|
||||
@ -25,8 +25,8 @@ numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=16 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=16 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
@ -49,23 +49,23 @@ function cpu_tests() {
|
||||
# Run kernel tests
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -v -s tests/kernels/test_onednn.py"
|
||||
pytest -x -v -s tests/kernels/test_onednn.py"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
# Note: disable until supports V1
|
||||
# pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
||||
# pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
||||
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||
|
||||
# Note: disable Bart until supports V1
|
||||
pytest -v -s tests/models/language/generation -m cpu_model \
|
||||
pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||
--ignore=tests/models/language/generation/test_bart.py
|
||||
VLLM_CPU_SGL_KERNEL=1 pytest -v -s tests/models/language/generation -m cpu_model \
|
||||
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||
--ignore=tests/models/language/generation/test_bart.py
|
||||
|
||||
pytest -v -s tests/models/language/pooling -m cpu_model
|
||||
pytest -v -s tests/models/multimodal/generation \
|
||||
pytest -x -v -s tests/models/language/pooling -m cpu_model
|
||||
pytest -x -v -s tests/models/multimodal/generation \
|
||||
--ignore=tests/models/multimodal/generation/test_mllama.py \
|
||||
--ignore=tests/models/multimodal/generation/test_pixtral.py \
|
||||
-m cpu_model"
|
||||
@ -73,33 +73,49 @@ function cpu_tests() {
|
||||
# Run compressed-tensor test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
pytest -x -s -v \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
|
||||
|
||||
# Note: disable it until supports V1
|
||||
# Run AWQ test
|
||||
# docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
# set -e
|
||||
# VLLM_USE_V1=0 pytest -s -v \
|
||||
# VLLM_USE_V1=0 pytest -x -s -v \
|
||||
# tests/quantization/test_ipex_quant.py"
|
||||
|
||||
# Run multi-lora tests
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
pytest -x -s -v \
|
||||
tests/lora/test_qwen2vl.py"
|
||||
|
||||
# online serving
|
||||
# online serving: tp+pp
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c '
|
||||
set -e
|
||||
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -pp=2 &
|
||||
server_pid=$!
|
||||
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--dataset-name random \
|
||||
--model meta-llama/Llama-3.2-3B-Instruct \
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions'
|
||||
--endpoint /v1/completions
|
||||
kill -s SIGTERM $server_pid &'
|
||||
|
||||
# online serving: tp+dp
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c '
|
||||
set -e
|
||||
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -dp=2 &
|
||||
server_pid=$!
|
||||
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--dataset-name random \
|
||||
--model meta-llama/Llama-3.2-3B-Instruct \
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions
|
||||
kill -s SIGTERM $server_pid &'
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
|
||||
@ -1,64 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the Neuron docker image and run the API server inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -e
|
||||
set -v
|
||||
|
||||
image_name="neuron/vllm-ci"
|
||||
container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
|
||||
HF_CACHE="$(realpath ~)/huggingface"
|
||||
mkdir -p "${HF_CACHE}"
|
||||
HF_MOUNT="/root/.cache/huggingface"
|
||||
HF_TOKEN=$(aws secretsmanager get-secret-value --secret-id "ci/vllm-neuron/hf-token" --region us-west-2 --query 'SecretString' --output text | jq -r .VLLM_NEURON_CI_HF_TOKEN)
|
||||
|
||||
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
|
||||
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
|
||||
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
|
||||
|
||||
# Try building the docker image
|
||||
aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
|
||||
|
||||
# prune old image and containers to save disk space, and only once a day
|
||||
# by using a timestamp file in tmp.
|
||||
if [ -f /tmp/neuron-docker-build-timestamp ]; then
|
||||
last_build=$(cat /tmp/neuron-docker-build-timestamp)
|
||||
current_time=$(date +%s)
|
||||
if [ $((current_time - last_build)) -gt 86400 ]; then
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune -f
|
||||
echo "$current_time" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
else
|
||||
date "+%s" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
|
||||
docker build -t "${image_name}" -f docker/Dockerfile.neuron .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
docker image rm -f "${image_name}" || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Run the image
|
||||
docker run --rm -it --device=/dev/neuron0 --network bridge \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-e "HF_TOKEN=${HF_TOKEN}" \
|
||||
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
--name "${container_name}" \
|
||||
${image_name} \
|
||||
/bin/bash -c "
|
||||
set -e; # Exit on first error
|
||||
python3 /workspace/vllm/examples/offline_inference/neuron.py;
|
||||
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
|
||||
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
|
||||
echo \"Running test file: \$f\";
|
||||
python3 -m pytest \$f -v --capture=tee-sys;
|
||||
done
|
||||
"
|
||||
@ -61,7 +61,7 @@ echo "Results will be stored in: $RESULTS_DIR"
|
||||
echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
|
||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
|
||||
@ -61,7 +61,7 @@ echo "Results will be stored in: $RESULTS_DIR"
|
||||
echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
|
||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
|
||||
@ -30,9 +30,11 @@ docker run \
|
||||
bash -c '
|
||||
set -e
|
||||
echo $ZE_AFFINITY_MASK
|
||||
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
|
||||
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
||||
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
cd tests
|
||||
pytest -v -s v1/core
|
||||
pytest -v -s v1/engine
|
||||
|
||||
@ -58,14 +58,15 @@ python3 .buildkite/generate_index.py --wheel "$normal_wheel"
|
||||
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
||||
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
||||
|
||||
if [[ $normal_wheel == *"cu118"* ]]; then
|
||||
# if $normal_wheel matches cu118, do not upload the index.html
|
||||
echo "Skipping index files for cu118 wheels"
|
||||
elif [[ $normal_wheel == *"cu126"* ]]; then
|
||||
if [[ $normal_wheel == *"cu126"* ]]; then
|
||||
# if $normal_wheel matches cu126, do not upload the index.html
|
||||
echo "Skipping index files for cu126 wheels"
|
||||
elif [[ $normal_wheel == *"cu128"* ]]; then
|
||||
# if $normal_wheel matches cu128, do not upload the index.html
|
||||
echo "Skipping index files for cu128 wheels"
|
||||
else
|
||||
# only upload index.html for cu128 wheels (default wheels)
|
||||
# only upload index.html for cu129 wheels (default wheels) as it
|
||||
# is available on both x86 and arm64
|
||||
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
|
||||
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
|
||||
fi
|
||||
@ -74,14 +75,15 @@ fi
|
||||
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
|
||||
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
|
||||
|
||||
if [[ $normal_wheel == *"cu118"* ]]; then
|
||||
# if $normal_wheel matches cu118, do not upload the index.html
|
||||
echo "Skipping index files for cu118 wheels"
|
||||
elif [[ $normal_wheel == *"cu126"* ]]; then
|
||||
if [[ $normal_wheel == *"cu126"* ]]; then
|
||||
# if $normal_wheel matches cu126, do not upload the index.html
|
||||
echo "Skipping index files for cu126 wheels"
|
||||
elif [[ $normal_wheel == *"cu128"* ]]; then
|
||||
# if $normal_wheel matches cu128, do not upload the index.html
|
||||
echo "Skipping index files for cu128 wheels"
|
||||
else
|
||||
# only upload index.html for cu128 wheels (default wheels)
|
||||
# only upload index.html for cu129 wheels (default wheels) as it
|
||||
# is available on both x86 and arm64
|
||||
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
|
||||
fi
|
||||
|
||||
|
||||
@ -41,7 +41,8 @@ steps:
|
||||
commands:
|
||||
- bash standalone_tests/pytorch_nightly_dependency.sh
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test # 24min
|
||||
- label: Async Engine, Inputs, Utils, Worker Test # 36min
|
||||
timeout_in_minutes: 50
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -63,7 +64,8 @@ steps:
|
||||
- pytest -v -s utils_ # Utils
|
||||
- pytest -v -s worker # Worker
|
||||
|
||||
- label: Python-only Installation Test
|
||||
- label: Python-only Installation Test # 10min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- tests/standalone_tests/python_only_compile.sh
|
||||
@ -71,7 +73,8 @@ steps:
|
||||
commands:
|
||||
- bash standalone_tests/python_only_compile.sh
|
||||
|
||||
- label: Basic Correctness Test # 30min
|
||||
- label: Basic Correctness Test # 20min
|
||||
timeout_in_minutes: 30
|
||||
mirror_hardwares: [amdexperimental]
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
@ -88,7 +91,8 @@ steps:
|
||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
- label: Core Test # 10min
|
||||
- label: Core Test # 22min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
@ -98,7 +102,8 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s core
|
||||
|
||||
- label: Entrypoints Test (LLM) # 40min
|
||||
- label: Entrypoints Test (LLM) # 30min
|
||||
timeout_in_minutes: 40
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
fast_check: true
|
||||
@ -109,13 +114,13 @@ steps:
|
||||
- tests/entrypoints/offline_mode
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
- label: Entrypoints Test (API Server) # 40min
|
||||
- label: Entrypoints Test (API Server) # 100min
|
||||
timeout_in_minutes: 130
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
fast_check: true
|
||||
@ -130,7 +135,8 @@ steps:
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/test_chat_utils.py
|
||||
|
||||
- label: Distributed Tests (4 GPUs) # 10min
|
||||
- label: Distributed Tests (4 GPUs) # 35min
|
||||
timeout_in_minutes: 50
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
@ -173,7 +179,8 @@ steps:
|
||||
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
|
||||
- popd
|
||||
|
||||
- label: EPLB Algorithm Test
|
||||
- label: EPLB Algorithm Test # 5min
|
||||
timeout_in_minutes: 15
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
source_file_dependencies:
|
||||
- vllm/distributed/eplb
|
||||
@ -182,6 +189,7 @@ steps:
|
||||
- pytest -v -s distributed/test_eplb_algo.py
|
||||
|
||||
- label: EPLB Execution Test # 5min
|
||||
timeout_in_minutes: 15
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
@ -190,7 +198,8 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s distributed/test_eplb_execute.py
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
- label: Metrics, Tracing Test # 12min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental]
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
@ -209,7 +218,8 @@ steps:
|
||||
##### fast check tests #####
|
||||
##### 1 GPU test #####
|
||||
|
||||
- label: Regression Test # 5min
|
||||
- label: Regression Test # 7min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -219,7 +229,8 @@ steps:
|
||||
- pytest -v -s test_regression.py
|
||||
working_dir: "/vllm-workspace/tests" # optional
|
||||
|
||||
- label: Engine Test # 10min
|
||||
- label: Engine Test # 25min
|
||||
timeout_in_minutes: 40
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -234,7 +245,29 @@ steps:
|
||||
# OOM in the CI unless we run this separately
|
||||
- pytest -v -s tokenization
|
||||
|
||||
- label: V1 Test
|
||||
- label: V1 Test e2e + engine # 30min
|
||||
timeout_in_minutes: 45
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/v1
|
||||
commands:
|
||||
# TODO: accuracy does not match, whether setting
|
||||
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
|
||||
- pytest -v -s v1/e2e
|
||||
- pytest -v -s v1/engine
|
||||
|
||||
- label: V1 Test entrypoints # 35min
|
||||
timeout_in_minutes: 50
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/v1
|
||||
commands:
|
||||
- pytest -v -s v1/entrypoints
|
||||
|
||||
- label: V1 Test others # 42min
|
||||
timeout_in_minutes: 60
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -242,8 +275,7 @@ steps:
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/engine
|
||||
- pytest -v -s v1/entrypoints
|
||||
- pytest -v -s v1/executor
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/logits_processors
|
||||
- pytest -v -s v1/worker
|
||||
@ -255,14 +287,12 @@ steps:
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
- pytest -v -s v1/test_metrics_reader.py
|
||||
# TODO: accuracy does not match, whether setting
|
||||
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
|
||||
- pytest -v -s v1/e2e
|
||||
# Integration test for streaming correctness (requires special branch).
|
||||
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
|
||||
- label: Examples Test # 25min
|
||||
- label: Examples Test # 30min
|
||||
timeout_in_minutes: 45
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/examples"
|
||||
source_file_dependencies:
|
||||
@ -287,7 +317,8 @@ steps:
|
||||
- python3 offline_inference/basic/score.py
|
||||
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
|
||||
- label: Platform Tests (CUDA)
|
||||
- label: Platform Tests (CUDA) # 4min
|
||||
timeout_in_minutes: 15
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -295,7 +326,8 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s cuda/test_cuda_context.py
|
||||
|
||||
- label: Samplers Test # 36min
|
||||
- label: Samplers Test # 56min
|
||||
timeout_in_minutes: 75
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers
|
||||
@ -306,15 +338,23 @@ steps:
|
||||
- pytest -v -s samplers
|
||||
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
|
||||
|
||||
- label: LoRA Test %N # 15min each
|
||||
- label: LoRA Test %N # 20min each
|
||||
timeout_in_minutes: 30
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
|
||||
commands:
|
||||
- pytest -v -s lora \
|
||||
--shard-id=$$BUILDKITE_PARALLEL_JOB \
|
||||
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
|
||||
--ignore=lora/test_chatglm3_tp.py \
|
||||
--ignore=lora/test_llama_tp.py \
|
||||
--ignore=lora/test_llm_with_multi_loras.py
|
||||
parallelism: 4
|
||||
|
||||
- label: PyTorch Compilation Unit Tests
|
||||
- label: PyTorch Compilation Unit Tests # 15min
|
||||
timeout_in_minutes: 30
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
@ -330,7 +370,8 @@ steps:
|
||||
- pytest -v -s compile/test_fusion_all_reduce.py
|
||||
- pytest -v -s compile/test_decorator.py
|
||||
|
||||
- label: PyTorch Fullgraph Smoke Test # 9min
|
||||
- label: PyTorch Fullgraph Smoke Test # 15min
|
||||
timeout_in_minutes: 30
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
@ -344,7 +385,8 @@ steps:
|
||||
- pytest -v -s compile/piecewise/test_full_cudagraph.py
|
||||
- pytest -v -s compile/piecewise/test_multiple_graphs.py
|
||||
|
||||
- label: PyTorch Fullgraph Test # 18min
|
||||
- label: PyTorch Fullgraph Test # 20min
|
||||
timeout_in_minutes: 30
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
@ -353,7 +395,8 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s compile/test_full_graph.py
|
||||
|
||||
- label: Kernels Core Operation Test
|
||||
- label: Kernels Core Operation Test # 48min
|
||||
timeout_in_minutes: 75
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
@ -361,7 +404,8 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s kernels/core
|
||||
|
||||
- label: Kernels Attention Test %N
|
||||
- label: Kernels Attention Test %N # 23min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/attention/
|
||||
@ -372,7 +416,8 @@ steps:
|
||||
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels Quantization Test %N
|
||||
- label: Kernels Quantization Test %N # 64min
|
||||
timeout_in_minutes: 90
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/
|
||||
@ -382,18 +427,21 @@ steps:
|
||||
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels MoE Test %N
|
||||
- label: Kernels MoE Test %N # 40min
|
||||
timeout_in_minutes: 60
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/cutlass_w8a8/moe/
|
||||
- csrc/moe/
|
||||
- tests/kernels/moe
|
||||
- vllm/model_executor/layers/fused_moe/
|
||||
- vllm/distributed/device_communicators/
|
||||
commands:
|
||||
- pytest -v -s kernels/moe --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels Mamba Test
|
||||
- label: Kernels Mamba Test # 31min
|
||||
timeout_in_minutes: 45
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
@ -401,7 +449,8 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s kernels/mamba
|
||||
|
||||
- label: Tensorizer Test # 11min
|
||||
- label: Tensorizer Test # 14min
|
||||
timeout_in_minutes: 25
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
@ -413,7 +462,8 @@ steps:
|
||||
- pytest -v -s tensorizer_loader
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Model Executor Test
|
||||
- label: Model Executor Test # 7min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor
|
||||
@ -423,7 +473,8 @@ steps:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s model_executor
|
||||
|
||||
- label: Benchmarks # 9min
|
||||
- label: Benchmarks # 11min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/.buildkite"
|
||||
source_file_dependencies:
|
||||
@ -431,7 +482,8 @@ steps:
|
||||
commands:
|
||||
- bash scripts/run-benchmarks.sh
|
||||
|
||||
- label: Benchmarks CLI Test # 10min
|
||||
- label: Benchmarks CLI Test # 7min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -439,7 +491,8 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s benchmarks/
|
||||
|
||||
- label: Quantization Test
|
||||
- label: Quantization Test # 70min
|
||||
timeout_in_minutes: 90
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
@ -447,11 +500,12 @@ steps:
|
||||
- tests/quantization
|
||||
commands:
|
||||
# temporary install here since we need nightly, will move to requirements/test.in
|
||||
# after torchao 0.12 release
|
||||
- pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
|
||||
# after torchao 0.12 release, and pin a working version of torchao nightly here
|
||||
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
timeout_in_minutes: 75
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
@ -459,7 +513,8 @@ steps:
|
||||
commands:
|
||||
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
|
||||
|
||||
- label: OpenAI API correctness
|
||||
- label: OpenAI API correctness # 22min
|
||||
timeout_in_minutes: 30
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
@ -468,7 +523,8 @@ steps:
|
||||
commands: # LMEval+Transcription WER check
|
||||
- pytest -s entrypoints/openai/correctness/
|
||||
|
||||
- label: Encoder Decoder tests # 5min
|
||||
- label: Encoder Decoder tests # 12min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -476,7 +532,8 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s encoder_decoder
|
||||
|
||||
- label: OpenAI-Compatible Tool Use # 20 min
|
||||
- label: OpenAI-Compatible Tool Use # 23 min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
fast_check: false
|
||||
source_file_dependencies:
|
||||
@ -489,7 +546,8 @@ steps:
|
||||
|
||||
##### models test #####
|
||||
|
||||
- label: Basic Models Test # 24min
|
||||
- label: Basic Models Test # 57min
|
||||
timeout_in_minutes: 75
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
@ -502,7 +560,8 @@ steps:
|
||||
- pytest -v -s models/test_vision.py
|
||||
- pytest -v -s models/test_initialization.py
|
||||
|
||||
- label: Language Models Test (Standard)
|
||||
- label: Language Models Test (Standard) # 35min
|
||||
timeout_in_minutes: 45
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
@ -513,6 +572,7 @@ steps:
|
||||
- pytest -v -s models/language -m core_model
|
||||
|
||||
- label: Language Models Test (Hybrid) # 35 min
|
||||
timeout_in_minutes: 45
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
@ -525,7 +585,8 @@ steps:
|
||||
- uv pip install --system --no-build-isolation 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.2'
|
||||
- pytest -v -s models/language/generation -m hybrid_model
|
||||
|
||||
- label: Language Models Test (Extended Generation) # 1hr20min
|
||||
- label: Language Models Test (Extended Generation) # 80min
|
||||
timeout_in_minutes: 110
|
||||
mirror_hardwares: [amdexperimental]
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
@ -537,6 +598,7 @@ steps:
|
||||
- pytest -v -s models/language/generation -m '(not core_model) and (not hybrid_model)'
|
||||
|
||||
- label: Language Models Test (Extended Pooling) # 36min
|
||||
timeout_in_minutes: 50
|
||||
mirror_hardwares: [amdexperimental]
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
@ -545,16 +607,17 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s models/language/pooling -m 'not core_model'
|
||||
|
||||
- label: Multi-Modal Processor Test
|
||||
- label: Multi-Modal Processor Test # 44min
|
||||
timeout_in_minutes: 60
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/multimodal
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal/processing --ignore models/multimodal/processing/test_tensor_schema.py
|
||||
- pytest -v -s models/multimodal/processing/test_tensor_schema.py
|
||||
- pytest -v -s models/multimodal/processing
|
||||
|
||||
- label: Multi-Modal Models Test (Standard)
|
||||
- label: Multi-Modal Models Test (Standard) # 60min
|
||||
timeout_in_minutes: 80
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
@ -596,7 +659,8 @@ steps:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
|
||||
|
||||
- label: Quantized Models Test
|
||||
- label: Quantized Models Test # 45 min
|
||||
timeout_in_minutes: 60
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers/quantization
|
||||
@ -626,7 +690,8 @@ steps:
|
||||
- python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
|
||||
|
||||
- label: Blackwell Test
|
||||
- label: Blackwell Test # 38 min
|
||||
timeout_in_minutes: 60
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
# optional: true
|
||||
@ -652,7 +717,9 @@ steps:
|
||||
# Quantization
|
||||
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'
|
||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_quant.py
|
||||
- pytest -v -s tests/kernels/quantization/test_silu_nvfp4_quant_fusion.py
|
||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
|
||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
|
||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
|
||||
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
|
||||
- pytest -v -s tests/kernels/moe/test_mxfp4_moe.py
|
||||
@ -660,11 +727,13 @@ steps:
|
||||
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
||||
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
|
||||
- pytest -v -s tests/kernels/moe/test_flashinfer.py
|
||||
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
|
||||
|
||||
##### 1 GPU test #####
|
||||
##### multi gpus test #####
|
||||
|
||||
- label: Distributed Comm Ops Test # 7min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
@ -676,6 +745,7 @@ steps:
|
||||
- pytest -v -s distributed/test_shm_broadcast.py
|
||||
|
||||
- label: 2 Node Tests (4 GPUs in total) # 16min
|
||||
timeout_in_minutes: 30
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
@ -699,7 +769,8 @@ steps:
|
||||
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
|
||||
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
|
||||
|
||||
- label: Distributed Tests (2 GPUs) # 40min
|
||||
- label: Distributed Tests (2 GPUs) # 110min
|
||||
timeout_in_minutes: 150
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
@ -740,6 +811,7 @@ steps:
|
||||
- pytest -v -s models/multimodal/generation/test_maverick.py
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
timeout_in_minutes: 60
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
@ -752,6 +824,11 @@ steps:
|
||||
- pytest -v -s plugins_tests/test_platform_plugins.py
|
||||
- pip uninstall vllm_add_dummy_platform -y
|
||||
# end platform plugin tests
|
||||
# begin io_processor plugins test, all the code in between uses the prithvi_io_processor plugin
|
||||
- pip install -e ./plugins/prithvi_io_processor_plugin
|
||||
- pytest -v -s plugins_tests/test_io_processor_plugins.py
|
||||
- pip uninstall prithvi_io_processor_plugin -y
|
||||
# end io_processor plugins test
|
||||
# other tests continue here:
|
||||
- pytest -v -s plugins_tests/test_scheduler_plugins.py
|
||||
- pip install -e ./plugins/vllm_add_dummy_model
|
||||
@ -760,7 +837,8 @@ steps:
|
||||
- pytest -v -s models/test_oot_registration.py # it needs a clean process
|
||||
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
|
||||
|
||||
- label: Pipeline Parallelism Test # 45min
|
||||
- label: Pipeline + Context Parallelism Test # 45min
|
||||
timeout_in_minutes: 60
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
@ -773,8 +851,10 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s distributed/test_pp_cudagraph.py
|
||||
- pytest -v -s distributed/test_pipeline_parallel.py
|
||||
# - pytest -v -s distributed/test_context_parallel.py # TODO: enable it on Hopper runners or add triton MLA support
|
||||
|
||||
- label: LoRA TP Test (Distributed)
|
||||
- label: LoRA TP Test (Distributed) # 17 min
|
||||
timeout_in_minutes: 30
|
||||
mirror_hardwares: [amdexperimental]
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
@ -788,13 +868,15 @@ steps:
|
||||
# requires multi-GPU testing for validation.
|
||||
- pytest -v -s -x lora/test_chatglm3_tp.py
|
||||
- pytest -v -s -x lora/test_llama_tp.py
|
||||
- pytest -v -s -x lora/test_multi_loras_with_tp.py
|
||||
- pytest -v -s -x lora/test_llm_with_multi_loras.py
|
||||
|
||||
|
||||
- label: Weight Loading Multiple GPU Test # 33min
|
||||
timeout_in_minutes: 45
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
num_gpus: 2
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/weight_loading
|
||||
@ -842,3 +924,10 @@ steps:
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
|
||||
|
||||
- label: Qwen MoE EP Test # optional
|
||||
gpu: h200
|
||||
optional: true
|
||||
num_gpus: 2
|
||||
commands:
|
||||
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 /vllm-workspace/examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
|
||||
|
||||
19
.github/CODEOWNERS
vendored
19
.github/CODEOWNERS
vendored
@ -5,13 +5,15 @@
|
||||
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
|
||||
/vllm/model_executor/layers/mamba @tdoublep
|
||||
/vllm/model_executor/model_loader @22quinn
|
||||
/vllm/multimodal @DarkLight1337 @ywang96
|
||||
/vllm/v1/sample @22quinn @houseroad
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
/vllm/reasoning @aarnphm
|
||||
@ -25,7 +27,8 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||
/vllm/v1/spec_decode @benchislett @luccafong
|
||||
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
||||
|
||||
# Test ownership
|
||||
@ -67,6 +70,9 @@ mkdocs.yaml @hmellor
|
||||
/vllm/attention/backends/dual_chunk_flash_attn.py @sighingnow
|
||||
/vllm/model_executor/models/qwen* @sighingnow
|
||||
|
||||
# MTP-specific files
|
||||
/vllm/model_executor/models/deepseek_mtp.py @luccafong
|
||||
|
||||
# Mistral-specific files
|
||||
/vllm/model_executor/models/mistral*.py @patrickvonplaten
|
||||
/vllm/model_executor/models/mixtral*.py @patrickvonplaten
|
||||
@ -79,4 +85,9 @@ mkdocs.yaml @hmellor
|
||||
/vllm/attention/ops/chunked_prefill_paged_decode.py @tdoublep
|
||||
/vllm/attention/ops/triton_unified_attention.py @tdoublep
|
||||
|
||||
|
||||
# ROCm related: specify owner with write access to notify AMD folks for careful code review
|
||||
/docker/Dockerfile.rocm* @gshtras
|
||||
/vllm/v1/attention/backends/rocm*.py @gshtras
|
||||
/vllm/v1/attention/backends/mla/rocm*.py @gshtras
|
||||
/vllm/attention/ops/rocm*.py @gshtras
|
||||
/vllm/model_executor/layers/fused_moe/rocm*.py @gshtras
|
||||
|
||||
3
.github/PULL_REQUEST_TEMPLATE.md
vendored
3
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -7,8 +7,6 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTT
|
||||
|
||||
## Test Result
|
||||
|
||||
## (Optional) Documentation Update
|
||||
|
||||
---
|
||||
<details>
|
||||
<summary> Essential Elements of an Effective PR Description Checklist </summary>
|
||||
@ -17,6 +15,7 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTT
|
||||
- [ ] The test plan, such as providing test command.
|
||||
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
|
||||
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
|
||||
- [ ] (Optional) Release notes update. If your change is user facing, please update the release notes draft in the [Google Doc](https://docs.google.com/document/d/1YyVqrgX4gHTtrstbq8oWUImOyPCKSGnJ7xtTpmXzlRs/edit?tab=t.0).
|
||||
</details>
|
||||
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)
|
||||
|
||||
21
.github/scale-config.yml
vendored
Normal file
21
.github/scale-config.yml
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
# scale-config.yml:
|
||||
# Powers what instance types are available for GHA auto-scaled
|
||||
# runners. Runners listed here will be available as self hosted
|
||||
# runners, configuration is directly pulled from the main branch.
|
||||
# runner_types:
|
||||
# runner_label:
|
||||
# instance_type: m4.large
|
||||
# os: linux
|
||||
# # min_available defaults to the global cfg in the ALI Terraform
|
||||
# min_available: undefined
|
||||
# # when max_available value is not defined, no max runners is enforced
|
||||
# max_available: undefined
|
||||
# disk_size: 50
|
||||
# is_ephemeral: true
|
||||
|
||||
runner_types:
|
||||
linux.2xlarge:
|
||||
disk_size: 150
|
||||
instance_type: c5.2xlarge
|
||||
is_ephemeral: true
|
||||
os: linux
|
||||
309
.github/workflows/issue_autolabel.yml
vendored
Normal file
309
.github/workflows/issue_autolabel.yml
vendored
Normal file
@ -0,0 +1,309 @@
|
||||
name: Label issues based on keywords
|
||||
on:
|
||||
issues:
|
||||
types: [opened, edited, reopened]
|
||||
permissions:
|
||||
issues: write # needed so the workflow can add labels
|
||||
contents: read
|
||||
concurrency:
|
||||
group: issue-labeler-${{ github.event.issue.number }}
|
||||
cancel-in-progress: true
|
||||
jobs:
|
||||
add-labels:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Label issues based on keywords
|
||||
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
|
||||
with:
|
||||
script: |
|
||||
// Configuration: Add new labels and keywords here
|
||||
const labelConfig = {
|
||||
rocm: {
|
||||
// Keyword search - matches whole words only (with word boundaries)
|
||||
keywords: [
|
||||
{
|
||||
term: "composable kernel",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "rccl",
|
||||
searchIn: "body" // only search in body
|
||||
},
|
||||
{
|
||||
term: "migraphx",
|
||||
searchIn: "title" // only search in title
|
||||
},
|
||||
{
|
||||
term: "hipgraph",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "ROCm System Management Interface",
|
||||
searchIn: "body"
|
||||
},
|
||||
],
|
||||
|
||||
// Substring search - matches anywhere in text (partial matches)
|
||||
substrings: [
|
||||
{
|
||||
term: "VLLM_ROCM_",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "aiter",
|
||||
searchIn: "title"
|
||||
},
|
||||
{
|
||||
term: "rocm",
|
||||
searchIn: "title"
|
||||
},
|
||||
{
|
||||
term: "amd",
|
||||
searchIn: "title"
|
||||
},
|
||||
{
|
||||
term: "hip-",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "gfx",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "cdna",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "rdna",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "torch_hip",
|
||||
searchIn: "body" // only in body
|
||||
},
|
||||
{
|
||||
term: "_hip",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "hip_",
|
||||
searchIn: "both"
|
||||
},
|
||||
|
||||
// ROCm tools and libraries
|
||||
{
|
||||
term: "hipify",
|
||||
searchIn: "both"
|
||||
},
|
||||
],
|
||||
|
||||
// Regex patterns - for complex pattern matching
|
||||
regexPatterns: [
|
||||
{
|
||||
pattern: "\\bmi\\d{3}[a-z]*\\b",
|
||||
description: "AMD GPU names (mi + 3 digits + optional letters)",
|
||||
flags: "gi",
|
||||
searchIn: "both" // "title", "body", or "both"
|
||||
}
|
||||
],
|
||||
},
|
||||
};
|
||||
|
||||
// Helper function to create regex based on search type
|
||||
function createSearchRegex(term, type) {
|
||||
// Escape special regex characters in the term
|
||||
const escapedTerm = term.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
|
||||
|
||||
switch (type) {
|
||||
case 'keyword':
|
||||
// Word boundary search - matches whole words only
|
||||
return new RegExp(`\\b${escapedTerm}\\b`, "gi");
|
||||
case 'substring':
|
||||
// Substring search - matches anywhere in the text
|
||||
return new RegExp(escapedTerm, "gi");
|
||||
default:
|
||||
throw new Error(`Unknown search type: ${type}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to find matching terms in text with line information
|
||||
function findMatchingTermsWithLines(text, searchTerms = [], searchType = 'keyword', searchLocation = '') {
|
||||
const matches = [];
|
||||
const lines = text.split('\n');
|
||||
|
||||
for (const termConfig of searchTerms) {
|
||||
let regex;
|
||||
let term, searchIn, pattern, description, flags;
|
||||
|
||||
// Handle different input formats (string or object)
|
||||
if (typeof termConfig === 'string') {
|
||||
term = termConfig;
|
||||
searchIn = 'both'; // default
|
||||
} else {
|
||||
term = termConfig.term;
|
||||
searchIn = termConfig.searchIn || 'both';
|
||||
pattern = termConfig.pattern;
|
||||
description = termConfig.description;
|
||||
flags = termConfig.flags;
|
||||
}
|
||||
|
||||
// Skip if this term shouldn't be searched in the current location
|
||||
if (searchIn !== 'both' && searchIn !== searchLocation) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create appropriate regex
|
||||
if (searchType === 'regex') {
|
||||
regex = new RegExp(pattern, flags || "gi");
|
||||
} else {
|
||||
regex = createSearchRegex(term, searchType);
|
||||
}
|
||||
|
||||
const termMatches = [];
|
||||
|
||||
// Check each line for matches
|
||||
lines.forEach((line, lineIndex) => {
|
||||
const lineMatches = line.match(regex);
|
||||
if (lineMatches) {
|
||||
lineMatches.forEach(match => {
|
||||
termMatches.push({
|
||||
match: match,
|
||||
lineNumber: lineIndex + 1,
|
||||
lineContent: line.trim(),
|
||||
searchType: searchType,
|
||||
searchLocation: searchLocation,
|
||||
originalTerm: term || pattern,
|
||||
description: description,
|
||||
// Show context around the match in the line
|
||||
context: line.length > 100 ?
|
||||
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
|
||||
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
|
||||
: line.trim()
|
||||
});
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
if (termMatches.length > 0) {
|
||||
matches.push({
|
||||
term: term || (description || pattern),
|
||||
searchType: searchType,
|
||||
searchLocation: searchLocation,
|
||||
searchIn: searchIn,
|
||||
pattern: pattern,
|
||||
matches: termMatches,
|
||||
count: termMatches.length
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return matches;
|
||||
}
|
||||
|
||||
// Helper function to check if label should be added
|
||||
async function processLabel(labelName, config) {
|
||||
const body = context.payload.issue.body || "";
|
||||
const title = context.payload.issue.title || "";
|
||||
|
||||
core.notice(`Processing label: ${labelName}`);
|
||||
core.notice(`Issue Title: "${title}"`);
|
||||
core.notice(`Issue Body length: ${body.length} characters`);
|
||||
|
||||
let shouldAddLabel = false;
|
||||
let allMatches = [];
|
||||
let reason = '';
|
||||
|
||||
const keywords = config.keywords || [];
|
||||
const substrings = config.substrings || [];
|
||||
const regexPatterns = config.regexPatterns || [];
|
||||
|
||||
core.notice(`Searching with ${keywords.length} keywords, ${substrings.length} substrings, and ${regexPatterns.length} regex patterns`);
|
||||
|
||||
// Search in title
|
||||
if (title.trim()) {
|
||||
core.notice(`Searching in title: "${title}"`);
|
||||
|
||||
const titleKeywordMatches = findMatchingTermsWithLines(title, keywords, 'keyword', 'title');
|
||||
const titleSubstringMatches = findMatchingTermsWithLines(title, substrings, 'substring', 'title');
|
||||
const titleRegexMatches = findMatchingTermsWithLines(title, regexPatterns, 'regex', 'title');
|
||||
|
||||
allMatches.push(...titleKeywordMatches, ...titleSubstringMatches, ...titleRegexMatches);
|
||||
}
|
||||
|
||||
// Search in body
|
||||
if (body.trim()) {
|
||||
core.notice(`Searching in body (${body.length} characters)`);
|
||||
|
||||
const bodyKeywordMatches = findMatchingTermsWithLines(body, keywords, 'keyword', 'body');
|
||||
const bodySubstringMatches = findMatchingTermsWithLines(body, substrings, 'substring', 'body');
|
||||
const bodyRegexMatches = findMatchingTermsWithLines(body, regexPatterns, 'regex', 'body');
|
||||
|
||||
allMatches.push(...bodyKeywordMatches, ...bodySubstringMatches, ...bodyRegexMatches);
|
||||
}
|
||||
|
||||
if (allMatches.length > 0) {
|
||||
core.notice(`Found ${allMatches.length} matching term(s):`);
|
||||
|
||||
for (const termMatch of allMatches) {
|
||||
const locationText = termMatch.searchLocation === 'title' ? 'title' : 'body';
|
||||
const searchInText = termMatch.searchIn === 'both' ? 'both' : termMatch.searchIn;
|
||||
|
||||
if (termMatch.searchType === 'regex') {
|
||||
core.notice(` 📍 Regex: "${termMatch.term}" (pattern: ${termMatch.pattern}) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||
} else {
|
||||
core.notice(` 📍 Term: "${termMatch.term}" (${termMatch.searchType} search) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||
}
|
||||
|
||||
// Show details for each match
|
||||
termMatch.matches.forEach((match, index) => {
|
||||
core.notice(` ${index + 1}. Line ${match.lineNumber} in ${match.searchLocation}: "${match.match}" [${match.searchType}]`);
|
||||
if (match.description) {
|
||||
core.notice(` Description: ${match.description}`);
|
||||
}
|
||||
core.notice(` Context: ${match.context}`);
|
||||
if (match.lineContent !== match.context) {
|
||||
core.notice(` Full line: ${match.lineContent}`);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
shouldAddLabel = true;
|
||||
const totalMatches = allMatches.reduce((sum, t) => sum + t.count, 0);
|
||||
const titleMatches = allMatches.filter(t => t.searchLocation === 'title').reduce((sum, t) => sum + t.count, 0);
|
||||
const bodyMatches = allMatches.filter(t => t.searchLocation === 'body').reduce((sum, t) => sum + t.count, 0);
|
||||
const keywordMatches = allMatches.filter(t => t.searchType === 'keyword').reduce((sum, t) => sum + t.count, 0);
|
||||
const substringMatches = allMatches.filter(t => t.searchType === 'substring').reduce((sum, t) => sum + t.count, 0);
|
||||
const regexMatches = allMatches.filter(t => t.searchType === 'regex').reduce((sum, t) => sum + t.count, 0);
|
||||
|
||||
reason = `Found ${totalMatches} total matches (${titleMatches} in title, ${bodyMatches} in body) - ${keywordMatches} keyword matches, ${substringMatches} substring matches, ${regexMatches} regex matches`;
|
||||
}
|
||||
|
||||
core.notice(`Final decision: ${shouldAddLabel ? 'ADD LABEL' : 'DO NOT ADD LABEL'}`);
|
||||
core.notice(`Reason: ${reason || 'No matching terms found'}`);
|
||||
|
||||
if (shouldAddLabel) {
|
||||
const existingLabels = context.payload.issue.labels.map(l => l.name);
|
||||
if (!existingLabels.includes(labelName)) {
|
||||
await github.rest.issues.addLabels({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
labels: [labelName],
|
||||
});
|
||||
core.notice(`Label "${labelName}" added. ${reason}`);
|
||||
return true;
|
||||
}
|
||||
core.notice(`Label "${labelName}" already present.`);
|
||||
return false;
|
||||
}
|
||||
|
||||
core.notice(`No matching terms found for label "${labelName}".`);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Process all configured labels
|
||||
const processLabels = Object.entries(labelConfig)
|
||||
.map(([labelName, config]) => processLabel(labelName, config));
|
||||
const labelsAdded = await Promise.all(processLabels);
|
||||
const numLabelsAdded = labelsAdded.reduce((x, y) => x + y, 0);
|
||||
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);
|
||||
@ -21,7 +21,7 @@ repos:
|
||||
- id: ruff-format
|
||||
files: ^(.buildkite|benchmarks|examples)/.*
|
||||
- repo: https://github.com/crate-ci/typos
|
||||
rev: v1.34.0
|
||||
rev: v1.35.5
|
||||
hooks:
|
||||
- id: typos
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
|
||||
@ -30,7 +30,7 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
# Supported python versions. These versions will be searched in order, the
|
||||
# first match will be selected. These should be kept in sync with setup.py.
|
||||
#
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12", "3.13")
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||
@ -45,8 +45,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
|
||||
# requirements.txt files and should be kept consistent. The ROCm torch
|
||||
# versions are derived from docker/Dockerfile.rocm
|
||||
#
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.1")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.8.0")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.8.0")
|
||||
|
||||
#
|
||||
# Try to find python package with an executable that exactly matches
|
||||
@ -541,6 +541,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
"csrc/quantization/fp4/activation_nvfp4_quant_fusion_kernels.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_sm120_kernels.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
@ -559,6 +560,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
"csrc/quantization/fp4/activation_nvfp4_quant_fusion_kernels.cu"
|
||||
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu"
|
||||
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu")
|
||||
@ -750,6 +752,33 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"found in CUDA target architectures")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Only build W4A8 kernels if we are building for something compatible with sm90a
|
||||
cuda_archs_loose_intersection(W4A8_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND W4A8_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w4a8/w4a8_mm_entry.cu")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${W4A8_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
|
||||
message(STATUS "Building W4A8 kernels for archs: ${W4A8_ARCHS}")
|
||||
else()
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0
|
||||
AND W4A8_ARCHS)
|
||||
message(STATUS "Not building W4A8 kernels as CUDA Compiler version is "
|
||||
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
|
||||
"later if you intend on running w4a16 quantized models on "
|
||||
"Hopper.")
|
||||
else()
|
||||
message(STATUS "Not building W4A8 kernels as no compatible archs "
|
||||
"found in CUDA target architectures")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# if CUDA endif
|
||||
endif()
|
||||
|
||||
@ -790,7 +819,9 @@ set(VLLM_MOE_EXT_SRC
|
||||
"csrc/moe/topk_softmax_kernels.cu")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
|
||||
list(APPEND VLLM_MOE_EXT_SRC
|
||||
"csrc/moe/moe_wna16.cu"
|
||||
"csrc/moe/grouped_topk_kernels.cu")
|
||||
endif()
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
@ -2,7 +2,6 @@ include LICENSE
|
||||
include requirements/common.txt
|
||||
include requirements/cuda.txt
|
||||
include requirements/rocm.txt
|
||||
include requirements/neuron.txt
|
||||
include requirements/cpu.txt
|
||||
include CMakeLists.txt
|
||||
|
||||
|
||||
@ -18,14 +18,18 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
|
||||
*Latest News* 🔥
|
||||
|
||||
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
|
||||
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
|
||||
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
|
||||
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
|
||||
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
|
||||
|
||||
<details>
|
||||
<summary>Previous News</summary>
|
||||
|
||||
- [2025/08] We hosted [vLLM Korea Meetup](https://luma.com/cgcgprmh) with Red Hat and Rebellions! We shared the latest advancements in vLLM along with project spotlights from the vLLM Korea community. Please find the meetup slides [here](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
|
||||
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
|
||||
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
|
||||
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
|
||||
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
|
||||
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
|
||||
|
||||
@ -42,4 +42,9 @@ For certain security issues of CRITICAL, HIGH, or MODERATE severity level, we ma
|
||||
|
||||
* If you wish to be added to the prenotification group, please send an email copying all the members of the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html). Each vendor contact will be analyzed on a case-by-case basis.
|
||||
|
||||
* Organizations and vendors who either ship or use vLLM, are eligible to join the prenotification group if they meet at least one of the following qualifications
|
||||
* Substantial internal deployment leveraging the upstream vLLM project.
|
||||
* Established internal security teams and comprehensive compliance measures.
|
||||
* Active and consistent contributions to the upstream vLLM project.
|
||||
|
||||
* We may withdraw organizations from receiving future prenotifications if they release fixes or any other information about issues before they are public. Group membership may also change based on policy refinements for who may be included.
|
||||
|
||||
@ -59,6 +59,12 @@ become available.
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>synthetic</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>RandomMultiModal (Image/Video)</strong></td>
|
||||
<td style="text-align: center;">🟡</td>
|
||||
<td style="text-align: center;">🚧</td>
|
||||
<td><code>synthetic</code> </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Prefix Repetition</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
@ -104,7 +110,12 @@ become available.
|
||||
|
||||
🚧: to be supported
|
||||
|
||||
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
|
||||
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`.
|
||||
For local `dataset-path`, please set `hf-name` to its Hugging Face ID like
|
||||
|
||||
```bash
|
||||
--dataset-path /datasets/VisionArena-Chat/ --hf-name lmarena-ai/VisionArena-Chat
|
||||
```
|
||||
|
||||
## 🚀 Example - Online Benchmark
|
||||
|
||||
@ -722,4 +733,75 @@ python benchmarks/benchmark_serving.py \
|
||||
--endpoint /v1/chat/completion
|
||||
```
|
||||
|
||||
### Synthetic Random Images (random-mm)
|
||||
|
||||
Generate synthetic image inputs alongside random text prompts to stress-test vision models without external datasets.
|
||||
|
||||
Notes:
|
||||
|
||||
- Works only with online benchmark via the OpenAI backend (`--backend openai-chat`) and endpoint `/v1/chat/completions`.
|
||||
- Video sampling is not yet implemented.
|
||||
|
||||
Start the server (example):
|
||||
|
||||
```bash
|
||||
vllm serve Qwen/Qwen2.5-VL-3B-Instruct \
|
||||
--dtype bfloat16 \
|
||||
--max-model-len 16384 \
|
||||
--limit-mm-per-prompt '{"image": 3, "video": 0}' \
|
||||
--mm-processor-kwargs max_pixels=1003520
|
||||
```
|
||||
|
||||
Benchmark. It is recommended to use the flag `--ignore-eos` to simulate real responses. You can set the size of the output via the arg `random-output-len`.
|
||||
|
||||
Ex.1: Fixed number of items and a single image resolution, enforcing generation of approx 40 tokens:
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2.5-VL-3B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name random-mm \
|
||||
--num-prompts 100 \
|
||||
--max-concurrency 10 \
|
||||
--random-prefix-len 25 \
|
||||
--random-input-len 300 \
|
||||
--random-output-len 40 \
|
||||
--random-range-ratio 0.2 \
|
||||
--random-mm-base-items-per-request 2 \
|
||||
--random-mm-limit-mm-per-prompt '{"image": 3, "video": 0}' \
|
||||
--random-mm-bucket-config '{(224, 224, 1): 1.0}' \
|
||||
--request-rate inf \
|
||||
--ignore-eos \
|
||||
--seed 42
|
||||
```
|
||||
|
||||
The number of items per request can be controlled by passing multiple image buckets:
|
||||
|
||||
```bash
|
||||
--random-mm-base-items-per-request 2 \
|
||||
--random-mm-num-mm-items-range-ratio 0.5 \
|
||||
--random-mm-limit-mm-per-prompt '{"image": 4, "video": 0}' \
|
||||
--random-mm-bucket-config '{(256, 256, 1): 0.7, (720, 1280, 1): 0.3}' \
|
||||
```
|
||||
|
||||
Flags specific to `random-mm`:
|
||||
|
||||
- `--random-mm-base-items-per-request`: base number of multimodal items per request.
|
||||
- `--random-mm-num-mm-items-range-ratio`: vary item count uniformly in the closed integer range [floor(n·(1−r)), ceil(n·(1+r))]. Set r=0 to keep it fixed; r=1 allows 0 items.
|
||||
- `--random-mm-limit-mm-per-prompt`: per-modality hard caps, e.g. '{"image": 3, "video": 0}'.
|
||||
- `--random-mm-bucket-config`: dict mapping (H, W, T) → probability. Entries with probability 0 are removed; remaining probabilities are renormalized to sum to 1. Use T=1 for images. Set any T>1 for videos (video sampling not yet supported).
|
||||
|
||||
Behavioral notes:
|
||||
|
||||
- If the requested base item count cannot be satisfied under the provided per-prompt limits, the tool raises an error rather than silently clamping.
|
||||
|
||||
How sampling works:
|
||||
|
||||
- Determine per-request item count k by sampling uniformly from the integer range defined by `--random-mm-base-items-per-request` and `--random-mm-num-mm-items-range-ratio`, then clamp k to at most the sum of per-modality limits.
|
||||
- For each of the k items, sample a bucket (H, W, T) according to the normalized probabilities in `--random-mm-bucket-config`, while tracking how many items of each modality have been added.
|
||||
- If a modality (e.g., image) reaches its limit from `--random-mm-limit-mm-per-prompt`, all buckets of that modality are excluded and the remaining bucket probabilities are renormalized before continuing.
|
||||
This should be seen as an edge case, and if this behavior can be avoided by setting `--random-mm-limit-mm-per-prompt` to a large number. Note that this might result in errors due to engine config `--limit-mm-per-prompt`.
|
||||
- The resulting request contains synthetic image data in `multi_modal_data` (OpenAI Chat format). When `random-mm` is used with the OpenAI Chat backend, prompts remain text and MM content is attached via `multi_modal_data`.
|
||||
|
||||
</details>
|
||||
|
||||
@ -31,6 +31,12 @@ cd vllm
|
||||
|
||||
You must set the following variables at the top of the script before execution.
|
||||
|
||||
Note: You can also override the default values below via environment variables when running the script.
|
||||
|
||||
```bash
|
||||
MODEL=meta-llama/Llama-3.3-70B-Instruct SYSTEM=TPU TP=8 DOWNLOAD_DIR='' INPUT_LEN=128 OUTPUT_LEN=2048 MAX_MODEL_LEN=2300 MIN_CACHE_HIT_PCT=0 MAX_LATENCY_ALLOWED_MS=100000000000 NUM_SEQS_LIST="128 256" NUM_BATCHED_TOKENS_LIST="1024 2048 4096" VLLM_LOGGING_LEVEL=DEBUG bash auto_tune.sh
|
||||
```
|
||||
|
||||
| Variable | Description | Example Value |
|
||||
| --- | --- | --- |
|
||||
| `BASE` | **Required.** The absolute path to the parent directory of your vLLM repository directory. | `"$HOME"` |
|
||||
|
||||
@ -5,25 +5,41 @@
|
||||
|
||||
TAG=$(date +"%Y_%m_%d_%H_%M")
|
||||
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
||||
BASE="$SCRIPT_DIR/../../.."
|
||||
MODEL="meta-llama/Llama-3.1-8B-Instruct"
|
||||
SYSTEM="TPU"
|
||||
TP=1
|
||||
DOWNLOAD_DIR=""
|
||||
INPUT_LEN=4000
|
||||
OUTPUT_LEN=16
|
||||
MAX_MODEL_LEN=4096
|
||||
MIN_CACHE_HIT_PCT=0
|
||||
MAX_LATENCY_ALLOWED_MS=100000000000
|
||||
NUM_SEQS_LIST="128 256"
|
||||
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
|
||||
VLLM_LOGGING_LEVEL=${VLLM_LOGGING_LEVEL:-INFO}
|
||||
BASE=${BASE:-"$SCRIPT_DIR/../../.."}
|
||||
MODEL=${MODEL:-"meta-llama/Llama-3.1-8B-Instruct"}
|
||||
SYSTEM=${SYSTEM:-"TPU"}
|
||||
TP=${TP:-1}
|
||||
DOWNLOAD_DIR=${DOWNLOAD_DIR:-""}
|
||||
INPUT_LEN=${INPUT_LEN:-4000}
|
||||
OUTPUT_LEN=${OUTPUT_LEN:-16}
|
||||
MAX_MODEL_LEN=${MAX_MODEL_LEN:-4096}
|
||||
MIN_CACHE_HIT_PCT=${MIN_CACHE_HIT_PCT:-0}
|
||||
MAX_LATENCY_ALLOWED_MS=${MAX_LATENCY_ALLOWED_MS:-100000000000}
|
||||
NUM_SEQS_LIST=${NUM_SEQS_LIST:-"128 256"}
|
||||
NUM_BATCHED_TOKENS_LIST=${NUM_BATCHED_TOKENS_LIST:-"512 1024 2048 4096"}
|
||||
|
||||
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
|
||||
RESULT="$LOG_FOLDER/result.txt"
|
||||
PROFILE_PATH="$LOG_FOLDER/profile"
|
||||
|
||||
echo "result file: $RESULT"
|
||||
echo "model: $MODEL"
|
||||
echo "====================== AUTO TUNE PARAMETERS ===================="
|
||||
echo "SCRIPT_DIR=$SCRIPT_DIR"
|
||||
echo "BASE=$BASE"
|
||||
echo "MODEL=$MODEL"
|
||||
echo "SYSTEM=$SYSTEM"
|
||||
echo "TP=$TP"
|
||||
echo "DOWNLOAD_DIR=$DOWNLOAD_DIR"
|
||||
echo "INPUT_LEN=$INPUT_LEN"
|
||||
echo "OUTPUT_LEN=$OUTPUT_LEN"
|
||||
echo "MAX_MODEL_LEN=$MAX_MODEL_LEN"
|
||||
echo "MIN_CACHE_HIT_PCT=$MIN_CACHE_HIT_PCT"
|
||||
echo "MAX_LATENCY_ALLOWED_MS=$MAX_LATENCY_ALLOWED_MS"
|
||||
echo "NUM_SEQS_LIST=$NUM_SEQS_LIST"
|
||||
echo "NUM_BATCHED_TOKENS_LIST=$NUM_BATCHED_TOKENS_LIST"
|
||||
echo "VLLM_LOGGING_LEVEL=$VLLM_LOGGING_LEVEL"
|
||||
echo "RESULT_FILE=$RESULT"
|
||||
echo "====================== AUTO TUNEPARAMETERS ===================="
|
||||
|
||||
rm -rf $LOG_FOLDER
|
||||
rm -rf $PROFILE_PATH
|
||||
@ -213,7 +229,7 @@ run_benchmark() {
|
||||
|
||||
pkill -if vllm
|
||||
sleep 10
|
||||
printf '=%.0s' $(seq 1 20)
|
||||
echo "===================="
|
||||
return 0
|
||||
}
|
||||
|
||||
|
||||
@ -57,7 +57,7 @@ def invoke_main() -> None:
|
||||
"--num-iteration",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Number of iterations to run to stablize final data readings",
|
||||
help="Number of iterations to run to stabilize final data readings",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--allocate-blocks",
|
||||
|
||||
@ -403,7 +403,7 @@ class RandomDataset(BenchmarkDataset):
|
||||
# [6880, 6881] -> ['Ġcalls', 'here'] ->
|
||||
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
|
||||
# To avoid uncontrolled change of the prompt length,
|
||||
# the encoded sequence is truncated before being decode again.
|
||||
# the encoded sequence is truncated before being decoded again.
|
||||
total_input_len = prefix_len + int(input_lens[i])
|
||||
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
|
||||
:total_input_len
|
||||
|
||||
@ -77,7 +77,7 @@ def invoke_main() -> None:
|
||||
"--num-iteration",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of iterations to run to stablize final data readings",
|
||||
help="Number of iterations to run to stabilize final data readings",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-req", type=int, default=128, help="Number of requests in the batch"
|
||||
|
||||
@ -1104,7 +1104,7 @@ def create_argument_parser():
|
||||
"--percentile-metrics",
|
||||
type=str,
|
||||
default="ttft,tpot,itl",
|
||||
help="Comma-separated list of selected metrics to report percentils. "
|
||||
help="Comma-separated list of selected metrics to report percentiles. "
|
||||
"This argument specifies the metrics to report percentiles. "
|
||||
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
|
||||
'Default value is "ttft,tpot,itl".',
|
||||
|
||||
@ -998,7 +998,7 @@ def create_argument_parser():
|
||||
"--percentile-metrics",
|
||||
type=str,
|
||||
default="ttft,tpot,itl",
|
||||
help="Comma-separated list of selected metrics to report percentils. "
|
||||
help="Comma-separated list of selected metrics to report percentiles. "
|
||||
"This argument specifies the metrics to report percentiles. "
|
||||
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
|
||||
'Default value is "ttft,tpot,itl".',
|
||||
|
||||
@ -96,7 +96,6 @@ def run_vllm(
|
||||
end = time.perf_counter()
|
||||
else:
|
||||
assert lora_requests is None, "BeamSearch API does not support LoRA"
|
||||
prompts = [request.prompt for request in requests]
|
||||
# output_len should be the same for all requests.
|
||||
output_len = requests[0].expected_output_len
|
||||
for request in requests:
|
||||
@ -720,7 +719,7 @@ def create_argument_parser():
|
||||
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
|
||||
)
|
||||
|
||||
# hf dtaset
|
||||
# hf dataset
|
||||
parser.add_argument(
|
||||
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
|
||||
)
|
||||
|
||||
@ -62,7 +62,7 @@ benchmark() {
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
@ -72,7 +72,7 @@ benchmark() {
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
wait_for_server 8100
|
||||
wait_for_server 8200
|
||||
|
||||
@ -69,7 +69,7 @@ launch_disagg_prefill() {
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
@ -78,7 +78,7 @@ launch_disagg_prefill() {
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
wait_for_server 8100
|
||||
wait_for_server 8200
|
||||
|
||||
114
benchmarks/kernels/bench_block_fp8_gemm.py
Normal file
114
benchmarks/kernels/bench_block_fp8_gemm.py
Normal file
@ -0,0 +1,114 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import torch
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
w8a8_block_fp8_matmul,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.triton_utils import triton as vllm_triton
|
||||
|
||||
assert current_platform.is_cuda(), (
|
||||
"Only support benchmarking w8a8 block fp8 kernel on CUDA device."
|
||||
)
|
||||
|
||||
# DeepSeek-V3 weight shapes
|
||||
DEEPSEEK_V3_SHAPES = [
|
||||
(512 + 64, 7168),
|
||||
(2112, 7168),
|
||||
((128 + 64) * 128, 7168),
|
||||
(128 * (128 + 128), 512),
|
||||
(7168, 16384),
|
||||
(7168, 18432),
|
||||
(18432 * 2, 7168),
|
||||
(24576, 1536),
|
||||
(12288, 7168),
|
||||
(4096, 7168),
|
||||
(7168, 2048),
|
||||
]
|
||||
|
||||
|
||||
def build_w8a8_block_fp8_runner(M, N, K, block_size, device):
|
||||
"""Build runner function for w8a8 block fp8 matmul."""
|
||||
factor_for_scale = 1e-2
|
||||
|
||||
fp8_info = torch.finfo(torch.float8_e4m3fn)
|
||||
fp8_max, fp8_min = fp8_info.max, fp8_info.min
|
||||
|
||||
# Create random FP8 tensors
|
||||
A_fp32 = (torch.rand(M, K, dtype=torch.float32, device=device) - 0.5) * 2 * fp8_max
|
||||
A = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||||
|
||||
B_fp32 = (torch.rand(N, K, dtype=torch.float32, device=device) - 0.5) * 2 * fp8_max
|
||||
B = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||||
|
||||
# Create scales
|
||||
block_n, block_k = block_size[0], block_size[1]
|
||||
n_tiles = (N + block_n - 1) // block_n
|
||||
k_tiles = (K + block_k - 1) // block_k
|
||||
|
||||
As = torch.rand(M, k_tiles, dtype=torch.float32, device=device) * factor_for_scale
|
||||
Bs = (
|
||||
torch.rand(n_tiles, k_tiles, dtype=torch.float32, device=device)
|
||||
* factor_for_scale
|
||||
)
|
||||
|
||||
def run():
|
||||
return w8a8_block_fp8_matmul(A, B, As, Bs, block_size, torch.bfloat16)
|
||||
|
||||
return run
|
||||
|
||||
|
||||
@vllm_triton.testing.perf_report(
|
||||
vllm_triton.testing.Benchmark(
|
||||
x_names=["batch_size"],
|
||||
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
|
||||
x_log=False,
|
||||
line_arg="provider",
|
||||
line_vals=["torch-bf16", "w8a8-block-fp8"],
|
||||
line_names=["torch-bf16", "w8a8-block-fp8"],
|
||||
ylabel="TFLOP/s (larger is better)",
|
||||
plot_name="BF16 vs W8A8 Block FP8 GEMMs",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
def benchmark_tflops(batch_size, provider, N, K, block_size=(128, 128)):
|
||||
M = batch_size
|
||||
device = "cuda"
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
|
||||
if provider == "torch-bf16":
|
||||
a = torch.randn((M, K), device=device, dtype=torch.bfloat16)
|
||||
b = torch.randn((N, K), device=device, dtype=torch.bfloat16)
|
||||
ms, min_ms, max_ms = vllm_triton.testing.do_bench_cudagraph(
|
||||
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
|
||||
)
|
||||
else: # w8a8-block-fp8
|
||||
run_w8a8 = build_w8a8_block_fp8_runner(M, N, K, block_size, device)
|
||||
ms, min_ms, max_ms = vllm_triton.testing.do_bench_cudagraph(
|
||||
lambda: run_w8a8(), quantiles=quantiles
|
||||
)
|
||||
|
||||
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
|
||||
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
block_size = (128, 128)
|
||||
|
||||
for N, K in DEEPSEEK_V3_SHAPES:
|
||||
print(f"\nBenchmarking DeepSeek-V3, N={N} K={K}")
|
||||
|
||||
print(f"TFLOP/s comparison (block_size={block_size}):")
|
||||
benchmark_tflops.run(
|
||||
print_data=True,
|
||||
# show_plots=False,
|
||||
# save_path=f"bench_w8a8_block_fp8_tflops_n{N}_k{K}",
|
||||
N=N,
|
||||
K=K,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
print("\nBenchmark finished!")
|
||||
104
benchmarks/kernels/benchmark_activation.py
Normal file
104
benchmarks/kernels/benchmark_activation.py
Normal file
@ -0,0 +1,104 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# benchmark custom activation op performance
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
|
||||
import vllm.model_executor.layers.activation # noqa F401
|
||||
from vllm.model_executor.custom_op import CustomOp
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.triton_utils import triton
|
||||
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||
|
||||
batch_size_range = [1, 16, 32, 64, 128]
|
||||
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
|
||||
intermediate_size = [3072, 9728, 12288]
|
||||
configs = list(itertools.product(batch_size_range, seq_len_range, intermediate_size))
|
||||
|
||||
|
||||
def benchmark_activation(
|
||||
batch_size: int,
|
||||
seq_len: int,
|
||||
intermediate_size: int,
|
||||
provider: str,
|
||||
func_name: str,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
device = "cuda"
|
||||
num_tokens = batch_size * seq_len
|
||||
dim = intermediate_size
|
||||
current_platform.seed_everything(42)
|
||||
torch.set_default_device(device)
|
||||
|
||||
if func_name == "gelu_and_mul":
|
||||
layer = CustomOp.op_registry[func_name](approximate="none")
|
||||
elif func_name == "gelu_and_mul_tanh":
|
||||
layer = CustomOp.op_registry["gelu_and_mul"](approximate="tanh")
|
||||
elif func_name == "fatrelu_and_mul":
|
||||
threshold = 0.5
|
||||
layer = CustomOp.op_registry[func_name](threshold)
|
||||
else:
|
||||
layer = CustomOp.op_registry[func_name]()
|
||||
|
||||
x = torch.randn(num_tokens, dim, dtype=dtype, device=device)
|
||||
compiled_layer = torch.compile(layer.forward_native)
|
||||
|
||||
if provider == "custom":
|
||||
fn = lambda: layer(x)
|
||||
elif provider == "compiled":
|
||||
fn = lambda: compiled_layer(x)
|
||||
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
fn, quantiles=[0.5, 0.2, 0.8]
|
||||
)
|
||||
return ms, max_ms, min_ms
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(description="Benchmark the custom activation op.")
|
||||
parser.add_argument(
|
||||
"--func-name",
|
||||
type=str,
|
||||
choices=[
|
||||
"mul_and_silu",
|
||||
"silu_and_mul",
|
||||
"gelu_and_mul",
|
||||
"gelu_and_mul_tanh",
|
||||
"fatrelu_and_mul",
|
||||
"swigluoai_and_mul",
|
||||
"gelu_new",
|
||||
"gelu_fast",
|
||||
"quick_gelu",
|
||||
],
|
||||
default="silu_and_mul",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
assert args
|
||||
|
||||
func_name = args.func_name
|
||||
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
|
||||
|
||||
perf_report = triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["batch_size", "seq_len", "intermediate_size"],
|
||||
x_vals=configs,
|
||||
line_arg="provider",
|
||||
line_vals=["custom", "compiled"],
|
||||
line_names=["Custom OP", "Compiled"],
|
||||
styles=[("blue", "-"), ("green", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"{func_name}-op-performance",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
|
||||
perf_report(
|
||||
lambda batch_size, seq_len, intermediate_size, provider: benchmark_activation(
|
||||
batch_size, seq_len, intermediate_size, provider, func_name, dtype
|
||||
)
|
||||
).run(print_data=True)
|
||||
@ -637,7 +637,7 @@ def bench_optype(
|
||||
# Clear LoRA optimization hash-maps.
|
||||
_LORA_A_PTR_DICT.clear()
|
||||
_LORA_B_PTR_DICT.clear()
|
||||
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are setup
|
||||
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are set up
|
||||
for kwargs in kwargs_list:
|
||||
op_type.bench_fn()(**kwargs)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
@ -284,6 +284,25 @@ def machete_create_bench_fn(
|
||||
)
|
||||
|
||||
|
||||
def cutlass_w4a8_create_bench_fn(
|
||||
bt: BenchmarkTensors, out_type=torch.dtype, schedule=None
|
||||
) -> Callable:
|
||||
w_q = bt.w_q.t().contiguous().t() # make col major
|
||||
w_q = ops.cutlass_encode_and_reorder_int4b(w_q)
|
||||
# expects fp8 scales
|
||||
w_s = ops.cutlass_pack_scale_fp8(bt.w_g_s.to(torch.float8_e4m3fn))
|
||||
|
||||
return lambda: ops.cutlass_w4a8_mm(
|
||||
a=bt.a,
|
||||
b_q=w_q,
|
||||
b_group_scales=w_s,
|
||||
b_group_size=bt.group_size,
|
||||
b_channel_scales=bt.w_ch_s,
|
||||
a_token_scales=bt.w_tok_s,
|
||||
maybe_schedule=schedule,
|
||||
)
|
||||
|
||||
|
||||
# impl
|
||||
|
||||
# bench
|
||||
@ -385,6 +404,20 @@ def bench(
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass w4a8
|
||||
if types.act_type == torch.float8_e4m3fn and group_size == 128:
|
||||
timers.append(
|
||||
bench_fns(
|
||||
label,
|
||||
sub_label,
|
||||
f"cutlass w4a8 ({name_type_string})",
|
||||
[
|
||||
cutlass_w4a8_create_bench_fn(bt, out_type=types.output_type)
|
||||
for bt in benchmark_tensors
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
if sweep_schedules:
|
||||
global _SWEEP_SCHEDULES_RESULTS
|
||||
|
||||
|
||||
@ -419,8 +419,10 @@ class BenchmarkWorker:
|
||||
)
|
||||
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
|
||||
# is the intermediate size after silu_and_mul.
|
||||
block_n = block_quant_shape[0] if block_quant_shape else None
|
||||
block_k = block_quant_shape[1] if block_quant_shape else None
|
||||
op_config = get_moe_configs(
|
||||
num_experts, shard_intermediate_size // 2, dtype_str
|
||||
num_experts, shard_intermediate_size // 2, dtype_str, block_n, block_k
|
||||
)
|
||||
if op_config is None:
|
||||
config = get_default_config(
|
||||
@ -430,6 +432,7 @@ class BenchmarkWorker:
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype_str,
|
||||
block_quant_shape,
|
||||
)
|
||||
else:
|
||||
config = op_config[min(op_config.keys(), key=lambda x: abs(x - num_tokens))]
|
||||
@ -675,7 +678,11 @@ def main(args: argparse.Namespace):
|
||||
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
|
||||
search_space = get_configs_compute_bound(is_fp16, block_quant_shape)
|
||||
print(f"Start tuning over {len(search_space)} configurations...")
|
||||
|
||||
if use_deep_gemm:
|
||||
raise ValueError(
|
||||
"Tuning with --use-deep-gemm is not supported as it only tunes Triton "
|
||||
"kernels. Please remove the flag."
|
||||
)
|
||||
start = time.time()
|
||||
configs = _distribute(
|
||||
"tune",
|
||||
|
||||
@ -9,8 +9,11 @@ from typing import Optional
|
||||
import flashinfer
|
||||
import torch
|
||||
|
||||
from vllm.utils import round_up
|
||||
|
||||
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
|
||||
FP8_DTYPE = torch.float8_e4m3fn
|
||||
FP4_DTYPE = torch.uint8
|
||||
|
||||
|
||||
def to_float8(x, dtype=torch.float8_e4m3fn):
|
||||
@ -61,13 +64,13 @@ def benchmark_decode(
|
||||
else:
|
||||
raise ValueError(f"Invalid kv_layout: {kv_layout}")
|
||||
|
||||
query = torch.randn(batch_size, num_qo_heads, head_size, dtype=dtype)
|
||||
# Always using 1.0 scale to reflect the real perf in benchmarking
|
||||
q_scale = 1.0
|
||||
ref_query = torch.randn(batch_size, num_qo_heads, head_size, dtype=dtype)
|
||||
if q_quant_dtype == FP8_DTYPE:
|
||||
query, q_scale = to_float8(query)
|
||||
ref_query = query.to(dtype) * q_scale
|
||||
query, _ = to_float8(ref_query)
|
||||
else:
|
||||
q_scale = 1.0
|
||||
ref_query = query
|
||||
query = ref_query
|
||||
|
||||
kv_lens = torch.randint(1, max_seq_len, (batch_size,), dtype=torch.int32)
|
||||
kv_lens[-1] = max_seq_len
|
||||
@ -75,14 +78,13 @@ def benchmark_decode(
|
||||
seq_lens = kv_lens
|
||||
max_seq_len = torch.max(seq_lens).item()
|
||||
|
||||
kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
|
||||
# Always using 1.0 scale to reflect the real perf in benchmarking
|
||||
k_scale = v_scale = 1.0
|
||||
ref_kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
|
||||
if kv_quant_dtype == FP8_DTYPE:
|
||||
kv_cache, kv_scale = to_float8(kv_cache)
|
||||
ref_kv_cache = kv_cache.to(dtype) * kv_scale
|
||||
kv_cache, _ = to_float8(ref_kv_cache)
|
||||
else:
|
||||
kv_scale = 1.0
|
||||
ref_kv_cache = kv_cache
|
||||
k_scale = v_scale = kv_scale
|
||||
kv_cache = ref_kv_cache
|
||||
|
||||
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
|
||||
block_tables = torch.randint(
|
||||
@ -142,11 +144,31 @@ def benchmark_decode(
|
||||
return sum(times) / len(times), torch.std(torch.tensor(times))
|
||||
|
||||
o_scale = 1.0
|
||||
o_sf_scale = None
|
||||
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
|
||||
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
|
||||
if o_quant_dtype == FP4_DTYPE:
|
||||
o_sf_scale = 500.0
|
||||
output_trtllm = flashinfer.utils.FP4Tensor(
|
||||
torch.empty(query.shape[:-1] + (query.shape[-1] // 2,), dtype=torch.uint8),
|
||||
torch.empty(
|
||||
(
|
||||
round_up(query.shape[0], 128),
|
||||
round_up(query.shape[1] * query.shape[2] // 16, 4),
|
||||
),
|
||||
dtype=torch.float8_e4m3fn,
|
||||
),
|
||||
)
|
||||
else:
|
||||
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
|
||||
|
||||
def baseline_decode():
|
||||
return wrapper.run(ref_query, ref_kv_cache, out=output_baseline)
|
||||
return wrapper.run(
|
||||
ref_query,
|
||||
ref_kv_cache,
|
||||
k_scale=k_scale,
|
||||
v_scale=v_scale,
|
||||
out=output_baseline,
|
||||
)
|
||||
|
||||
def trtllm_decode():
|
||||
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
|
||||
@ -158,6 +180,7 @@ def benchmark_decode(
|
||||
max_seq_len=max_seq_len,
|
||||
bmm1_scale=q_scale * k_scale * sm_scale,
|
||||
bmm2_scale=v_scale / o_scale,
|
||||
o_sf_scale=o_sf_scale,
|
||||
out=output_trtllm,
|
||||
)
|
||||
|
||||
@ -237,6 +260,7 @@ if __name__ == "__main__":
|
||||
(None, None, None),
|
||||
(None, FP8_DTYPE, None),
|
||||
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
|
||||
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
|
||||
]
|
||||
|
||||
for quant_dtype in quant_dtypes:
|
||||
|
||||
@ -9,8 +9,11 @@ from typing import Optional
|
||||
import flashinfer
|
||||
import torch
|
||||
|
||||
from vllm.utils import round_up
|
||||
|
||||
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
|
||||
FP8_DTYPE = torch.float8_e4m3fn
|
||||
FP4_DTYPE = torch.uint8
|
||||
|
||||
|
||||
def to_float8(x, dtype=torch.float8_e4m3fn):
|
||||
@ -72,13 +75,15 @@ def benchmark_prefill(
|
||||
]
|
||||
)
|
||||
|
||||
query = torch.randn(torch.sum(q_lens).item(), num_qo_heads, head_size, dtype=dtype)
|
||||
# Always using 1.0 scale to reflect the real perf in benchmarking
|
||||
q_scale = 1.0
|
||||
ref_query = torch.randn(
|
||||
torch.sum(q_lens).item(), num_qo_heads, head_size, dtype=dtype
|
||||
)
|
||||
if q_quant_dtype == FP8_DTYPE:
|
||||
query, q_scale = to_float8(query)
|
||||
ref_query = query.to(dtype) * q_scale
|
||||
query, _ = to_float8(ref_query)
|
||||
else:
|
||||
q_scale = 1.0
|
||||
ref_query = query
|
||||
query = ref_query
|
||||
|
||||
kv_lens = torch.randint(0, max_kv_len, (batch_size,), dtype=torch.int32)
|
||||
kv_lens[-1] = max_kv_len
|
||||
@ -86,14 +91,13 @@ def benchmark_prefill(
|
||||
seq_lens = kv_lens + q_lens
|
||||
max_seq_len = torch.max(seq_lens).item()
|
||||
|
||||
kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
|
||||
# Always using 1.0 scale to reflect the real perf in benchmarking
|
||||
k_scale = v_scale = 1.0
|
||||
ref_kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
|
||||
if kv_quant_dtype == FP8_DTYPE:
|
||||
kv_cache, kv_scale = to_float8(kv_cache)
|
||||
ref_kv_cache = kv_cache.to(dtype) * kv_scale
|
||||
kv_cache, _ = to_float8(ref_kv_cache)
|
||||
else:
|
||||
kv_scale = 1.0
|
||||
ref_kv_cache = kv_cache
|
||||
k_scale = v_scale = kv_scale
|
||||
kv_cache = ref_kv_cache
|
||||
|
||||
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
|
||||
block_tables = torch.randint(
|
||||
@ -152,11 +156,31 @@ def benchmark_prefill(
|
||||
return sum(times) / len(times), torch.std(torch.tensor(times))
|
||||
|
||||
o_scale = 1.0
|
||||
o_sf_scale = None
|
||||
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
|
||||
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
|
||||
if o_quant_dtype == FP4_DTYPE:
|
||||
o_sf_scale = 500.0
|
||||
output_trtllm = flashinfer.utils.FP4Tensor(
|
||||
torch.empty(query.shape[:-1] + (query.shape[-1] // 2,), dtype=torch.uint8),
|
||||
torch.empty(
|
||||
(
|
||||
round_up(query.shape[0], 128),
|
||||
round_up(query.shape[1] * query.shape[2] // 16, 4),
|
||||
),
|
||||
dtype=torch.float8_e4m3fn,
|
||||
),
|
||||
)
|
||||
else:
|
||||
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
|
||||
|
||||
def baseline_prefill():
|
||||
return wrapper.run(ref_query, ref_kv_cache, out=output_baseline)
|
||||
return wrapper.run(
|
||||
ref_query,
|
||||
ref_kv_cache,
|
||||
k_scale=k_scale,
|
||||
v_scale=v_scale,
|
||||
out=output_baseline,
|
||||
)
|
||||
|
||||
def trtllm_prefill():
|
||||
return flashinfer.prefill.trtllm_batch_context_with_kv_cache(
|
||||
@ -172,6 +196,7 @@ def benchmark_prefill(
|
||||
batch_size=batch_size,
|
||||
cum_seq_lens_q=q_indptr,
|
||||
cum_seq_lens_kv=kv_indptr,
|
||||
o_sf_scale=o_sf_scale,
|
||||
out=output_trtllm,
|
||||
)
|
||||
|
||||
@ -250,6 +275,7 @@ if __name__ == "__main__":
|
||||
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
|
||||
(None, None, None),
|
||||
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
|
||||
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
|
||||
]
|
||||
|
||||
for quant_dtype in quant_dtypes:
|
||||
|
||||
@ -11,8 +11,8 @@ from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import tqdm
|
||||
import triton
|
||||
from tqdm import tqdm
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
_w8a8_block_fp8_matmul,
|
||||
@ -141,6 +141,7 @@ def get_weight_shapes(tp_size):
|
||||
# cannot TP
|
||||
total = [
|
||||
(512 + 64, 7168),
|
||||
(2112, 7168),
|
||||
((128 + 64) * 128, 7168),
|
||||
(128 * (128 + 128), 512),
|
||||
(7168, 16384),
|
||||
|
||||
@ -95,4 +95,10 @@ WEIGHT_SHAPES = {
|
||||
([2048, 2816], 1),
|
||||
([1408, 2048], 0),
|
||||
],
|
||||
"CohereLabs/c4ai-command-a-03-2025": [
|
||||
([12288, 14336], 1),
|
||||
([12288, 12288], 0),
|
||||
([12288, 73728], 1),
|
||||
([36864, 12288], 0),
|
||||
],
|
||||
}
|
||||
|
||||
@ -962,7 +962,7 @@ async def main_mp(
|
||||
|
||||
# At this point all the clients finished,
|
||||
# collect results (TTFT, TPOT, etc.) from all the clients.
|
||||
# This needs to happens before calling join on the clients
|
||||
# This needs to happen before calling join on the clients
|
||||
# (result_queue should be emptied).
|
||||
while not result_queue.empty():
|
||||
client_metrics.append(result_queue.get())
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
include(FetchContent)
|
||||
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_EXTENSIONS ON)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
@ -87,6 +88,7 @@ is_avx512_disabled(AVX512_DISABLED)
|
||||
|
||||
if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
|
||||
message(STATUS "Apple Silicon Detected")
|
||||
set(APPLE_SILICON_FOUND TRUE)
|
||||
set(ENABLE_NUMA OFF)
|
||||
check_sysctl(hw.optional.neon ASIMD_FOUND)
|
||||
check_sysctl(hw.optional.arm.FEAT_BF16 ARM_BF16_FOUND)
|
||||
@ -188,7 +190,7 @@ else()
|
||||
set(USE_ACL OFF)
|
||||
endif()
|
||||
|
||||
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
||||
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
||||
FetchContent_Declare(
|
||||
oneDNN
|
||||
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
|
||||
|
||||
@ -19,7 +19,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
flashmla
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
|
||||
GIT_TAG 0e43e774597682284358ff2c54530757b654b8d1
|
||||
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
|
||||
GIT_PROGRESS TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND ""
|
||||
@ -37,13 +37,14 @@ cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
set(FlashMLA_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu)
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
|
||||
|
||||
set(FlashMLA_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc/include)
|
||||
${flashmla_SOURCE_DIR}/csrc)
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_SOURCES}"
|
||||
|
||||
@ -38,7 +38,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG 57b4e68b9f9d94750b46de8f8dbd2bfcc86edd4f
|
||||
GIT_TAG ee4d25bd84e0cbc7e0b9b9685085fd5db2dcb62a
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
|
||||
@ -36,6 +36,7 @@ limitations under the License.
|
||||
#if !defined(CUDA_VERSION) || CUDA_VERSION < 12040
|
||||
void sm100_cutlass_mla_decode(
|
||||
torch::Tensor const& out,
|
||||
torch::Tensor const& lse,
|
||||
torch::Tensor const& q_nope,
|
||||
torch::Tensor const& q_pe,
|
||||
torch::Tensor const& kv_c_and_k_pe_cache,
|
||||
@ -64,11 +65,11 @@ struct IsPersistent {
|
||||
static const bool value = v;
|
||||
};
|
||||
|
||||
template <typename T, bool IsPaged128, typename PersistenceOption = IsPersistent<true>>
|
||||
template <typename T, typename TOut, bool IsPaged128, typename PersistenceOption = IsPersistent<true>>
|
||||
struct MlaSm100 {
|
||||
using Element = T;
|
||||
using ElementAcc = float;
|
||||
using ElementOut = T;
|
||||
using ElementOut = TOut;
|
||||
|
||||
using TileShape = Shape<_128, _128, Shape<_512, _64>>;
|
||||
using TileShapeH = cute::tuple_element_t<0, TileShape>;
|
||||
@ -99,6 +100,7 @@ struct MlaSm100 {
|
||||
template <typename T>
|
||||
typename T::Fmha::Arguments args_from_options(
|
||||
at::Tensor const& out,
|
||||
at::Tensor const& lse,
|
||||
at::Tensor const& q_nope,
|
||||
at::Tensor const& q_pe,
|
||||
at::Tensor const& kv_c_and_k_pe_cache,
|
||||
@ -162,7 +164,10 @@ typename T::Fmha::Arguments args_from_options(
|
||||
stride_PT,
|
||||
page_count_total,
|
||||
page_size},
|
||||
{static_cast<ElementOut*>(out.data_ptr()), stride_O, static_cast<ElementAcc*>(nullptr), stride_LSE},
|
||||
{static_cast<ElementOut*>(out.data_ptr()),
|
||||
stride_O,
|
||||
static_cast<ElementAcc*>(lse.defined() ? lse.data_ptr() : nullptr),
|
||||
stride_LSE},
|
||||
hw_info,
|
||||
// TODO(trevor-m): Change split_kv back to -1 when
|
||||
// https://github.com/NVIDIA/cutlass/issues/2274 is fixed. Split_kv=1 will
|
||||
@ -178,9 +183,10 @@ typename T::Fmha::Arguments args_from_options(
|
||||
return arguments;
|
||||
}
|
||||
|
||||
template <typename Element, bool IsPaged128, typename PersistenceOption>
|
||||
template <typename Element, typename ElementOut, bool IsPaged128, typename PersistenceOption>
|
||||
void runMla(
|
||||
at::Tensor const& out,
|
||||
at::Tensor const& lse,
|
||||
at::Tensor const& q_nope,
|
||||
at::Tensor const& q_pe,
|
||||
at::Tensor const& kv_c_and_k_pe_cache,
|
||||
@ -190,9 +196,9 @@ void runMla(
|
||||
double sm_scale,
|
||||
int64_t num_kv_splits,
|
||||
cudaStream_t stream) {
|
||||
using MlaSm100Type = MlaSm100<Element, IsPaged128, PersistenceOption>;
|
||||
using MlaSm100Type = MlaSm100<Element, ElementOut, IsPaged128, PersistenceOption>;
|
||||
typename MlaSm100Type::Fmha fmha;
|
||||
auto arguments = args_from_options<MlaSm100Type>(out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
|
||||
auto arguments = args_from_options<MlaSm100Type>(out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
|
||||
|
||||
CUTLASS_CHECK(fmha.can_implement(arguments));
|
||||
|
||||
@ -214,6 +220,7 @@ void runMla(
|
||||
|
||||
void sm100_cutlass_mla_decode(
|
||||
torch::Tensor const& out,
|
||||
torch::Tensor const& lse,
|
||||
torch::Tensor const& q_nope,
|
||||
torch::Tensor const& q_pe,
|
||||
torch::Tensor const& kv_c_and_k_pe_cache,
|
||||
@ -233,14 +240,14 @@ void sm100_cutlass_mla_decode(
|
||||
DISPATCH_BOOL(page_size == 128, IsPaged128, [&] {
|
||||
DISPATCH_BOOL(num_kv_splits <= 1, NotManualSplitKV, [&] {
|
||||
if (in_dtype == at::ScalarType::Half) {
|
||||
runMla<cutlass::half_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
|
||||
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
|
||||
runMla<cutlass::half_t, cutlass::half_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
|
||||
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
|
||||
} else if (in_dtype == at::ScalarType::BFloat16) {
|
||||
runMla<cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
|
||||
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
|
||||
runMla<cutlass::bfloat16_t, cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
|
||||
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
|
||||
} else if (in_dtype == at::ScalarType::Float8_e4m3fn) {
|
||||
runMla<cutlass::float_e4m3_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
|
||||
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
|
||||
runMla<cutlass::float_e4m3_t, cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
|
||||
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported input data type of MLA");
|
||||
}
|
||||
@ -253,7 +260,7 @@ void sm100_cutlass_mla_decode(
|
||||
int64_t sm100_cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_batches, int64_t sm_count, int64_t num_kv_splits) {
|
||||
// Workspace size depends on ElementAcc and ElementLSE (same as ElementAcc)
|
||||
// which are float, so Element type here doesn't matter.
|
||||
using MlaSm100Type = MlaSm100<cutlass::half_t, true>;
|
||||
using MlaSm100Type = MlaSm100<cutlass::half_t, cutlass::half_t, true>;
|
||||
|
||||
// Get split kv. Requires problem shape and sm_count only.
|
||||
typename MlaSm100Type::Fmha::Arguments arguments;
|
||||
|
||||
14
csrc/cache.h
14
csrc/cache.h
@ -40,9 +40,19 @@ void concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe,
|
||||
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
|
||||
const double scale, const std::string& kv_cache_dtype);
|
||||
|
||||
void gather_cache(
|
||||
void gather_and_maybe_dequant_cache(
|
||||
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
|
||||
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
|
||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
||||
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
|
||||
int64_t batch_size, const std::string& kv_cache_dtype,
|
||||
torch::Tensor const& scale,
|
||||
std::optional<torch::Tensor> seq_starts = std::nullopt);
|
||||
|
||||
// TODO(hc): cp_gather_cache need support scaled kvcahe in the future.
|
||||
void cp_gather_cache(
|
||||
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
|
||||
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
|
||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
||||
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#include <torch/all.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <c10/cuda/CUDAException.h>
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "cuda_compat.h"
|
||||
@ -624,9 +625,9 @@ void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
|
||||
namespace vllm {
|
||||
|
||||
// grid is launched with dimensions (batch, num_splits)
|
||||
template <typename scalar_t>
|
||||
__global__ void gather_cache(
|
||||
const scalar_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void gather_and_maybe_dequant_cache(
|
||||
const cache_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
|
||||
// ENTRIES...]
|
||||
scalar_t* __restrict__ dst, // [TOT_TOKENS, ENTRIES...]
|
||||
const int32_t* __restrict__ block_table, // [BATCH, BLOCK_INDICES]
|
||||
@ -634,6 +635,7 @@ __global__ void gather_cache(
|
||||
const int32_t block_size, const int32_t entry_size,
|
||||
const int64_t block_table_stride, const int64_t cache_block_stride,
|
||||
const int64_t cache_entry_stride, const int64_t dst_entry_stride,
|
||||
const float* __restrict__ scale,
|
||||
const int32_t* __restrict__ seq_starts) { // Optional: starting offsets per
|
||||
// batch
|
||||
|
||||
@ -675,10 +677,16 @@ __global__ void gather_cache(
|
||||
if (partial_block_size) full_blocks_end -= 1;
|
||||
}
|
||||
|
||||
auto copy_entry = [&](const scalar_t* __restrict__ _src,
|
||||
auto copy_entry = [&](const cache_t* __restrict__ _src,
|
||||
scalar_t* __restrict__ _dst) {
|
||||
for (int i = threadIdx.x; i < entry_size; i += blockDim.x)
|
||||
_dst[i] = _src[i];
|
||||
for (int i = threadIdx.x; i < entry_size; i += blockDim.x) {
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
_dst[i] = static_cast<scalar_t>(_src[i]);
|
||||
} else {
|
||||
_dst[i] =
|
||||
fp8::scaled_convert<scalar_t, cache_t, kv_dt>(_src[i], *scale);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
for (int pid = split_start; pid < full_blocks_end; ++pid) {
|
||||
@ -705,8 +713,144 @@ __global__ void gather_cache(
|
||||
} // namespace vllm
|
||||
|
||||
// Macro to dispatch the kernel based on the data type.
|
||||
#define CALL_GATHER_CACHE(CPY_DTYPE) \
|
||||
vllm::gather_cache<CPY_DTYPE><<<grid, block, 0, stream>>>( \
|
||||
// SCALAR_T is the data type of the destination tensor.
|
||||
// CACHE_T is the stored data type of kv-cache.
|
||||
// KV_DTYPE is the real data type of kv-cache.
|
||||
#define CALL_GATHER_CACHE(SCALAR_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::gather_and_maybe_dequant_cache<SCALAR_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<CACHE_T*>(src_cache.data_ptr()), \
|
||||
reinterpret_cast<SCALAR_T*>(dst.data_ptr()), \
|
||||
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
|
||||
block_size, entry_size, block_table_stride, cache_block_stride, \
|
||||
cache_entry_stride, dst_entry_stride, \
|
||||
reinterpret_cast<const float*>(scale.data_ptr()), seq_starts_ptr);
|
||||
|
||||
// Gather sequences from the cache into the destination tensor.
|
||||
// - cu_seq_lens contains the cumulative sequence lengths for each batch
|
||||
// - block_table contains the cache block indices for each sequence
|
||||
// - Optionally, seq_starts (if provided) offsets the starting block index by
|
||||
// (seq_starts[bid] / page_size)
|
||||
void gather_and_maybe_dequant_cache(
|
||||
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
|
||||
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
|
||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
||||
int64_t batch_size, const std::string& kv_cache_dtype,
|
||||
torch::Tensor const& scale,
|
||||
std::optional<torch::Tensor> seq_starts = std::nullopt) {
|
||||
at::cuda::OptionalCUDAGuard device_guard(src_cache.device());
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
int32_t block_size = src_cache.size(1);
|
||||
int32_t entry_size = src_cache.flatten(2, -1).size(2);
|
||||
|
||||
TORCH_CHECK(block_table.dtype() == torch::kInt32,
|
||||
"block_table must be int32");
|
||||
TORCH_CHECK(cu_seq_lens.dtype() == torch::kInt32,
|
||||
"cu_seq_lens must be int32");
|
||||
if (seq_starts.has_value()) {
|
||||
TORCH_CHECK(seq_starts.value().dtype() == torch::kInt32,
|
||||
"seq_starts must be int32");
|
||||
}
|
||||
|
||||
TORCH_CHECK(src_cache.device() == dst.device(),
|
||||
"src_cache and dst must be on the same device");
|
||||
TORCH_CHECK(src_cache.device() == block_table.device(),
|
||||
"src_cache and block_table must be on the same device");
|
||||
TORCH_CHECK(src_cache.device() == cu_seq_lens.device(),
|
||||
"src_cache and cu_seq_lens must be on the same device");
|
||||
if (seq_starts.has_value()) {
|
||||
TORCH_CHECK(src_cache.device() == seq_starts.value().device(),
|
||||
"src_cache and seq_starts must be on the same device");
|
||||
}
|
||||
|
||||
int64_t block_table_stride = block_table.stride(0);
|
||||
int64_t cache_block_stride = src_cache.stride(0);
|
||||
int64_t cache_entry_stride = src_cache.stride(1);
|
||||
int64_t dst_entry_stride = dst.stride(0);
|
||||
|
||||
// Decide on the number of splits based on the batch size.
|
||||
int num_splits = batch_size > 128 ? 2 : batch_size > 64 ? 4 : 16;
|
||||
dim3 grid(batch_size, num_splits);
|
||||
dim3 block(1024);
|
||||
|
||||
const int32_t* seq_starts_ptr =
|
||||
seq_starts.has_value() ? seq_starts.value().data_ptr<int32_t>() : nullptr;
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(dst.dtype(), kv_cache_dtype, CALL_GATHER_CACHE);
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
template <typename scalar_t>
|
||||
// Note(hc): The cp_gather_cache allows seq_starts to no longer be divisible by
|
||||
// block_size.
|
||||
__global__ void cp_gather_cache(
|
||||
const scalar_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
|
||||
// ENTRY_SIZE]
|
||||
scalar_t* __restrict__ dst, // [TOT_TOKENS, ENTRY_SIZE]
|
||||
const int32_t* __restrict__ block_table, // [BATCH, BLOCK_INDICES]
|
||||
const int32_t* __restrict__ cu_seq_lens, // [BATCH+1]
|
||||
const int32_t block_size, const int32_t entry_size,
|
||||
const int64_t block_table_stride, const int64_t cache_block_stride,
|
||||
const int64_t cache_entry_stride, const int64_t dst_entry_stride,
|
||||
const int32_t* __restrict__ seq_starts // Optional: starting offsets per
|
||||
// batch
|
||||
) {
|
||||
const int64_t bid = blockIdx.x; // Batch ID
|
||||
const int32_t num_splits = gridDim.y;
|
||||
const int32_t split = blockIdx.y;
|
||||
const int32_t seq_start = cu_seq_lens[bid];
|
||||
const int32_t seq_end = cu_seq_lens[bid + 1];
|
||||
const int32_t seq_len = seq_end - seq_start;
|
||||
const int32_t tot_slots = seq_len;
|
||||
const int32_t split_slots = cuda_utils::ceil_div(tot_slots, num_splits);
|
||||
|
||||
const int32_t split_start = split * split_slots;
|
||||
const int32_t split_end = min((split + 1) * split_slots, tot_slots);
|
||||
|
||||
const bool is_active_split = (split_start < tot_slots);
|
||||
|
||||
if (!is_active_split) return;
|
||||
|
||||
// Adjust the pointer for the block_table for this batch.
|
||||
// If seq_starts is provided, compute an offset based on it
|
||||
const int32_t batch_offset = bid * block_table_stride;
|
||||
int32_t offset = split_start;
|
||||
if (seq_starts != nullptr) {
|
||||
offset += seq_starts[bid];
|
||||
}
|
||||
int32_t offset_div = offset / block_size;
|
||||
offset = offset % block_size;
|
||||
const int32_t* batch_block_table = block_table + batch_offset;
|
||||
|
||||
// Adjust dst pointer based on the cumulative sequence lengths.
|
||||
dst += seq_start * dst_entry_stride;
|
||||
|
||||
auto copy_entry = [&](const scalar_t* __restrict__ _src,
|
||||
scalar_t* __restrict__ _dst) {
|
||||
for (int i = threadIdx.x; i < entry_size; i += blockDim.x)
|
||||
_dst[i] = _src[i];
|
||||
};
|
||||
|
||||
for (int pid = split_start; pid < split_end; ++pid) {
|
||||
auto block_id = batch_block_table[offset_div];
|
||||
auto block_start_ptr = src_cache + block_id * cache_block_stride;
|
||||
auto block_dst_ptr = dst + pid * dst_entry_stride;
|
||||
copy_entry(block_start_ptr + offset * cache_entry_stride, block_dst_ptr);
|
||||
offset += 1;
|
||||
// bump to next block
|
||||
if (offset == block_size) {
|
||||
offset_div += 1;
|
||||
offset = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace vllm
|
||||
|
||||
// Macro to dispatch the kernel based on the data type.
|
||||
#define CALL_CP_GATHER_CACHE(CPY_DTYPE) \
|
||||
vllm::cp_gather_cache<CPY_DTYPE><<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<CPY_DTYPE*>(src_cache.data_ptr()), \
|
||||
reinterpret_cast<CPY_DTYPE*>(dst.data_ptr()), \
|
||||
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
|
||||
@ -716,9 +860,9 @@ __global__ void gather_cache(
|
||||
// Gather sequences from the cache into the destination tensor.
|
||||
// - cu_seq_lens contains the cumulative sequence lengths for each batch
|
||||
// - block_table contains the cache block indices for each sequence
|
||||
// - Optionally, seq_starts (if provided) offsets the starting block index by
|
||||
// (seq_starts[bid] / page_size)
|
||||
void gather_cache(
|
||||
// - Optionally, seq_starts (if provided) offsets the starting slot index by
|
||||
// seq_starts[bid]
|
||||
void cp_gather_cache(
|
||||
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
|
||||
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
|
||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||
@ -769,11 +913,11 @@ void gather_cache(
|
||||
seq_starts.has_value() ? seq_starts.value().data_ptr<int32_t>() : nullptr;
|
||||
|
||||
if (dtype_bits == 32) {
|
||||
CALL_GATHER_CACHE(uint32_t);
|
||||
CALL_CP_GATHER_CACHE(uint32_t);
|
||||
} else if (dtype_bits == 16) {
|
||||
CALL_GATHER_CACHE(uint16_t);
|
||||
CALL_CP_GATHER_CACHE(uint16_t);
|
||||
} else if (dtype_bits == 8) {
|
||||
CALL_GATHER_CACHE(uint8_t);
|
||||
CALL_CP_GATHER_CACHE(uint8_t);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
|
||||
}
|
||||
|
||||
@ -22,6 +22,23 @@ void release_dnnl_matmul_handler(int64_t handler) {
|
||||
delete ptr;
|
||||
}
|
||||
|
||||
DNNLScratchPadManager::DNNLScratchPadManager() : size_(0), ptr_(nullptr) {
|
||||
this->realloc(allocation_unit * 128);
|
||||
}
|
||||
|
||||
void DNNLScratchPadManager::realloc(size_t new_size) {
|
||||
new_size = round(new_size);
|
||||
if (new_size > size_) {
|
||||
ptr_ = std::aligned_alloc(64, new_size);
|
||||
size_ = new_size;
|
||||
}
|
||||
}
|
||||
|
||||
DNNLScratchPadManager* DNNLScratchPadManager::get_dnnl_scratchpad_manager() {
|
||||
static DNNLScratchPadManager manager;
|
||||
return &manager;
|
||||
}
|
||||
|
||||
template <typename KT, typename VT>
|
||||
class DNNLPrimitiveCache {
|
||||
public:
|
||||
@ -166,6 +183,23 @@ struct hash<W8A8MatMulPrimitiveHandler::MSizeCacheKey> {
|
||||
hash<int>()(static_cast<int>(val.bias_type));
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct hash<MatMulPrimitiveHandler::ClassMatmulCacheKey> {
|
||||
size_t operator()(
|
||||
const MatMulPrimitiveHandler::ClassMatmulCacheKey& val) const {
|
||||
return hash<dnnl_dim_t>()(val.b_n_size) ^ hash<dnnl_dim_t>()(val.b_k_size);
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct hash<MatMulPrimitiveHandler::MSizeCacheKey> {
|
||||
size_t operator()(const MatMulPrimitiveHandler::MSizeCacheKey& val) const {
|
||||
return hash<dnnl_dim_t>()(val.a_m_size) ^
|
||||
hash<dnnl_dim_t>()(val.a_m_stride) ^ hash<bool>()(val.use_bias) ^
|
||||
hash<int>()(static_cast<int>(val.bias_type));
|
||||
}
|
||||
};
|
||||
} // namespace std
|
||||
|
||||
bool operator==(const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& l,
|
||||
@ -181,6 +215,17 @@ bool operator==(const W8A8MatMulPrimitiveHandler::MSizeCacheKey& l,
|
||||
l.bias_type == r.bias_type;
|
||||
}
|
||||
|
||||
bool operator==(const MatMulPrimitiveHandler::ClassMatmulCacheKey& l,
|
||||
const MatMulPrimitiveHandler::ClassMatmulCacheKey& r) {
|
||||
return l.b_n_size == r.b_n_size && l.b_k_size == r.b_k_size;
|
||||
}
|
||||
|
||||
bool operator==(const MatMulPrimitiveHandler::MSizeCacheKey& l,
|
||||
const MatMulPrimitiveHandler::MSizeCacheKey& r) {
|
||||
return l.a_m_size == r.a_m_size && l.a_m_stride == r.a_m_stride &&
|
||||
l.use_bias == r.use_bias && l.bias_type == r.bias_type;
|
||||
}
|
||||
|
||||
static std::shared_ptr<W8A8MatMulPrimitiveHandler::MSizeCache>
|
||||
get_w8a8_class_primitive_cache(
|
||||
const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& key,
|
||||
@ -239,6 +284,11 @@ void W8A8MatMulPrimitiveHandler::execute(ExecArgs& args) {
|
||||
}
|
||||
|
||||
dnnl::matmul matmul = get_matmul_cache(args);
|
||||
|
||||
auto&& [scratchpad_storage, scratchpad_mem_desc] = get_runtime_memory_ptr(5);
|
||||
scratchpad_storage->set_data_handle(
|
||||
DNNLScratchPadManager::get_dnnl_scratchpad_manager()->get_data<void>());
|
||||
|
||||
matmul.execute(default_stream(), memory_cache_);
|
||||
default_stream().wait();
|
||||
}
|
||||
@ -257,6 +307,8 @@ dnnl::matmul W8A8MatMulPrimitiveHandler::get_matmul_cache(
|
||||
|
||||
return m_size_cache_->get_or_create(key, [&]() {
|
||||
dnnl::matmul::primitive_desc desc = this->create_primitive_desc(key, false);
|
||||
auto manager = DNNLScratchPadManager::get_dnnl_scratchpad_manager();
|
||||
manager->realloc(desc.scratchpad_desc().get_size());
|
||||
return dnnl::matmul(desc);
|
||||
});
|
||||
}
|
||||
@ -300,6 +352,11 @@ void W8A8MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(4, memory_cache_[DNNL_ARG_BIAS].get());
|
||||
|
||||
memory_cache_[DNNL_ARG_SCRATCHPAD] =
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(5, memory_cache_[DNNL_ARG_SCRATCHPAD].get());
|
||||
}
|
||||
|
||||
dnnl::matmul::primitive_desc W8A8MatMulPrimitiveHandler::create_primitive_desc(
|
||||
@ -319,6 +376,9 @@ dnnl::matmul::primitive_desc W8A8MatMulPrimitiveHandler::create_primitive_desc(
|
||||
dnnl::memory::format_tag::ab);
|
||||
|
||||
dnnl::primitive_attr attr;
|
||||
|
||||
attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
|
||||
|
||||
// For PER_TOKEN, scales will be applied in outside epilogue
|
||||
if (a_qs_ == QuantizationStrategy::PER_TENSOR) {
|
||||
attr.set_scales_mask(DNNL_ARG_SRC, 0);
|
||||
@ -344,3 +404,120 @@ dnnl::matmul::primitive_desc W8A8MatMulPrimitiveHandler::create_primitive_desc(
|
||||
attr);
|
||||
}
|
||||
}
|
||||
|
||||
MatMulPrimitiveHandler::MatMulPrimitiveHandler(const Args& args)
|
||||
: DNNLMatMulPrimitiveHandler(
|
||||
static_cast<DNNLMatMulPrimitiveHandler::Args>(args), args.ab_type),
|
||||
m_size_cache_(nullptr) {
|
||||
assert(ab_type_ == dnnl::memory::data_type::f32 ||
|
||||
ab_type_ == dnnl::memory::data_type::bf16 ||
|
||||
ab_type_ == dnnl::memory::data_type::f16);
|
||||
prepack_weight(args.b_ptr,
|
||||
create_primitive_desc(
|
||||
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
|
||||
.a_m_stride = DNNL_RUNTIME_DIM_VAL,
|
||||
.use_bias = false,
|
||||
.bias_type = dnnl::memory::data_type::undef},
|
||||
true)
|
||||
.weights_desc());
|
||||
init_runtime_memory_cache(args);
|
||||
}
|
||||
|
||||
static std::shared_ptr<MatMulPrimitiveHandler::MSizeCache>
|
||||
get_matul_class_primitive_cache(
|
||||
const MatMulPrimitiveHandler::ClassMatmulCacheKey& key,
|
||||
int64_t cache_size) {
|
||||
static MatMulPrimitiveHandler::ClassMatmulCache cache(128);
|
||||
assert(cache_size > 0);
|
||||
return cache.get_or_create(key, [&]() {
|
||||
return std::make_shared<MatMulPrimitiveHandler::MSizeCache>(cache_size);
|
||||
});
|
||||
}
|
||||
|
||||
void MatMulPrimitiveHandler::execute(ExecArgs& args) {
|
||||
auto&& [a_storage, a_mem_desc] = get_runtime_memory_ptr(0);
|
||||
auto&& [c_storage, c_mem_desc] = get_runtime_memory_ptr(1);
|
||||
a_storage->set_data_handle((void*)args.a_ptr);
|
||||
a_mem_desc->dims[0] = args.a_m_size;
|
||||
a_mem_desc->format_desc.blocking.strides[0] = args.a_m_stride;
|
||||
c_storage->set_data_handle((void*)args.c_ptr);
|
||||
c_mem_desc->dims[0] = args.a_m_size;
|
||||
|
||||
if (args.use_bias) {
|
||||
auto&& [bias_storage, bias_mem_desc] = get_runtime_memory_ptr(2);
|
||||
bias_storage->set_data_handle((void*)args.bias_ptr);
|
||||
}
|
||||
|
||||
dnnl::matmul matmul = get_matmul_cache(args);
|
||||
|
||||
auto&& [scratchpad_storage, scratchpad_mem_desc] = get_runtime_memory_ptr(3);
|
||||
scratchpad_storage->set_data_handle(
|
||||
DNNLScratchPadManager::get_dnnl_scratchpad_manager()->get_data<void>());
|
||||
|
||||
matmul.execute(default_stream(), memory_cache_);
|
||||
default_stream().wait();
|
||||
}
|
||||
|
||||
dnnl::matmul MatMulPrimitiveHandler::get_matmul_cache(
|
||||
const MSizeCacheKey& key) {
|
||||
if (m_size_cache_.get() == nullptr) {
|
||||
ClassMatmulCacheKey key = {.b_n_size = b_n_size_, .b_k_size = b_k_size_};
|
||||
m_size_cache_ = get_matul_class_primitive_cache(key, primitive_cache_size_);
|
||||
}
|
||||
return m_size_cache_->get_or_create(key, [&]() {
|
||||
dnnl::matmul::primitive_desc desc = this->create_primitive_desc(key, false);
|
||||
auto manager = DNNLScratchPadManager::get_dnnl_scratchpad_manager();
|
||||
manager->realloc(desc.scratchpad_desc().get_size());
|
||||
return dnnl::matmul(desc);
|
||||
});
|
||||
}
|
||||
|
||||
dnnl::matmul::primitive_desc MatMulPrimitiveHandler::create_primitive_desc(
|
||||
const MSizeCacheKey& key, bool first_time) {
|
||||
dnnl::memory::desc a_md;
|
||||
dnnl::memory::desc b_md;
|
||||
if (first_time) {
|
||||
a_md = dnnl::memory::desc({key.a_m_size, b_k_size_}, b_type_,
|
||||
dnnl::memory::format_tag::ab);
|
||||
b_md = dnnl::memory::desc({b_k_size_, b_n_size_}, b_type_,
|
||||
dnnl::memory::format_tag::any);
|
||||
} else {
|
||||
a_md = dnnl::memory::desc({key.a_m_size, b_k_size_}, b_type_,
|
||||
{key.a_m_stride, 1});
|
||||
b_md = b_target_mem_desc_;
|
||||
}
|
||||
dnnl::memory::desc c_md({key.a_m_size, b_n_size_}, c_type_,
|
||||
dnnl::memory::format_tag::ab);
|
||||
|
||||
dnnl::primitive_attr attr;
|
||||
attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
|
||||
|
||||
if (key.use_bias) {
|
||||
dnnl::memory::desc bias_md({1, b_n_size_}, key.bias_type, {b_n_size_, 1});
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, bias_md,
|
||||
c_md, attr);
|
||||
} else {
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
|
||||
attr);
|
||||
}
|
||||
}
|
||||
|
||||
void MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
|
||||
memory_cache_[DNNL_ARG_SRC] = dnnl::memory(
|
||||
{{1, b_k_size_}, b_type_, {b_k_size_, 1}}, default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(0, memory_cache_[DNNL_ARG_SRC].get());
|
||||
memory_cache_[DNNL_ARG_DST] =
|
||||
dnnl::memory({{1, b_n_size_}, c_type_, dnnl::memory::format_tag::ab},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(1, memory_cache_[DNNL_ARG_DST].get());
|
||||
|
||||
memory_cache_[DNNL_ARG_BIAS] =
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(2, memory_cache_[DNNL_ARG_BIAS].get());
|
||||
|
||||
memory_cache_[DNNL_ARG_SCRATCHPAD] =
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(3, memory_cache_[DNNL_ARG_SCRATCHPAD].get());
|
||||
}
|
||||
|
||||
@ -59,6 +59,30 @@ constexpr inline dnnl::memory::data_type get_dnnl_type() {
|
||||
return DNNLType<std::decay_t<T>>::type;
|
||||
}
|
||||
|
||||
class DNNLScratchPadManager {
|
||||
public:
|
||||
static constexpr size_t allocation_unit = 4 * 1024 * 1024; // 4KB
|
||||
|
||||
static DNNLScratchPadManager* get_dnnl_scratchpad_manager();
|
||||
|
||||
DNNLScratchPadManager();
|
||||
|
||||
template <typename T>
|
||||
T* get_data() {
|
||||
return reinterpret_cast<T*>(ptr_);
|
||||
}
|
||||
|
||||
static size_t round(size_t size) {
|
||||
return ((size + allocation_unit - 1) / allocation_unit) * allocation_unit;
|
||||
}
|
||||
|
||||
void realloc(size_t new_size);
|
||||
|
||||
private:
|
||||
size_t size_;
|
||||
void* ptr_;
|
||||
};
|
||||
|
||||
class DNNLMatMulPrimitiveHandler {
|
||||
public:
|
||||
virtual ~DNNLMatMulPrimitiveHandler() = default;
|
||||
@ -166,4 +190,54 @@ class W8A8MatMulPrimitiveHandler : public DNNLMatMulPrimitiveHandler {
|
||||
std::shared_ptr<MSizeCache> m_size_cache_;
|
||||
};
|
||||
|
||||
class MatMulPrimitiveHandler : public DNNLMatMulPrimitiveHandler {
|
||||
public:
|
||||
struct Args : public DNNLMatMulPrimitiveHandler::Args {
|
||||
dnnl::memory::data_type ab_type;
|
||||
};
|
||||
|
||||
struct ClassMatmulCacheKey {
|
||||
dnnl_dim_t b_n_size;
|
||||
dnnl_dim_t b_k_size;
|
||||
|
||||
friend bool operator==(const ClassMatmulCacheKey& l,
|
||||
const ClassMatmulCacheKey& r);
|
||||
};
|
||||
|
||||
struct MSizeCacheKey {
|
||||
dnnl_dim_t a_m_size;
|
||||
dnnl_dim_t a_m_stride;
|
||||
bool use_bias;
|
||||
dnnl::memory::data_type bias_type;
|
||||
|
||||
friend bool operator==(const MSizeCacheKey& l, const MSizeCacheKey& r);
|
||||
};
|
||||
|
||||
using MSizeCache = DNNLPrimitiveCache<MSizeCacheKey, dnnl::matmul>;
|
||||
using ClassMatmulCache =
|
||||
DNNLPrimitiveCache<ClassMatmulCacheKey, std::shared_ptr<MSizeCache>>;
|
||||
|
||||
struct ExecArgs : public MSizeCacheKey {
|
||||
const void* a_ptr;
|
||||
const void* bias_ptr;
|
||||
void* c_ptr;
|
||||
};
|
||||
|
||||
public:
|
||||
MatMulPrimitiveHandler(const Args& args);
|
||||
|
||||
void execute(ExecArgs& args);
|
||||
|
||||
private:
|
||||
dnnl::matmul::primitive_desc create_primitive_desc(const MSizeCacheKey& key,
|
||||
bool first_time);
|
||||
|
||||
void init_runtime_memory_cache(const Args& args);
|
||||
|
||||
dnnl::matmul get_matmul_cache(const MSizeCacheKey& key);
|
||||
|
||||
private:
|
||||
std::shared_ptr<MSizeCache> m_size_cache_;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
@ -145,7 +145,8 @@ void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
|
||||
}
|
||||
}
|
||||
|
||||
float scale_val, azp_val;
|
||||
float scale_val;
|
||||
float azp_val = 0.0f;
|
||||
if constexpr (AZP) {
|
||||
float max_scalar = max_value.reduce_max();
|
||||
float min_scalar = min_value.reduce_min();
|
||||
@ -379,6 +380,7 @@ void onednn_scaled_mm(
|
||||
exec_args.a_ptr = a.data_ptr<int8_t>();
|
||||
exec_args.a_m_size = a.size(0);
|
||||
exec_args.bias_ptr = nullptr;
|
||||
exec_args.bias_type = get_dnnl_type<void>();
|
||||
exec_args.use_bias = false;
|
||||
exec_args.a_scales_ptr = nullptr;
|
||||
exec_args.a_zero_points_ptr = nullptr;
|
||||
@ -492,3 +494,56 @@ void dynamic_scaled_int8_quant(
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
int64_t create_onednn_mm_handler(const torch::Tensor& b,
|
||||
int64_t primitive_cache_size) {
|
||||
TORCH_CHECK(b.dim() == 2);
|
||||
|
||||
MatMulPrimitiveHandler::Args args;
|
||||
args.primitive_cache_size = primitive_cache_size;
|
||||
|
||||
args.b_k_size = b.size(0);
|
||||
args.b_k_stride = b.stride(0);
|
||||
args.b_n_size = b.size(1);
|
||||
args.b_n_stride = b.stride(1);
|
||||
args.b_ptr = b.data_ptr();
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(b.scalar_type(), "create_onednn_mm_handler",
|
||||
[&] {
|
||||
args.c_type = get_dnnl_type<scalar_t>();
|
||||
args.ab_type = get_dnnl_type<scalar_t>();
|
||||
});
|
||||
|
||||
return reinterpret_cast<int64_t>(new MatMulPrimitiveHandler(args));
|
||||
}
|
||||
|
||||
void onednn_mm(torch::Tensor& c, // [M, OC], row-major
|
||||
const torch::Tensor& a, // [M, IC], row-major
|
||||
const std::optional<torch::Tensor>& bias, int64_t handler) {
|
||||
CPU_KERNEL_GUARD_IN(onednn_mm)
|
||||
TORCH_CHECK(a.dim() == 2);
|
||||
TORCH_CHECK(a.stride(-1) == 1);
|
||||
TORCH_CHECK(c.is_contiguous());
|
||||
MatMulPrimitiveHandler* ptr =
|
||||
reinterpret_cast<MatMulPrimitiveHandler*>(handler);
|
||||
|
||||
MatMulPrimitiveHandler::ExecArgs exec_args;
|
||||
exec_args.a_m_size = a.size(0);
|
||||
exec_args.a_m_stride = a.stride(0);
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(a.scalar_type(), "onednn_mm", [&] {
|
||||
if (bias.has_value()) {
|
||||
exec_args.use_bias = true;
|
||||
exec_args.bias_type = get_dnnl_type<scalar_t>();
|
||||
exec_args.bias_ptr = bias->data_ptr<scalar_t>();
|
||||
} else {
|
||||
exec_args.use_bias = false;
|
||||
exec_args.bias_type = get_dnnl_type<void>();
|
||||
exec_args.bias_ptr = nullptr;
|
||||
}
|
||||
exec_args.a_ptr = a.data_ptr<scalar_t>();
|
||||
exec_args.c_ptr = c.data_ptr<scalar_t>();
|
||||
|
||||
ptr->execute(exec_args);
|
||||
});
|
||||
}
|
||||
|
||||
@ -21,6 +21,12 @@ void onednn_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
|
||||
const std::optional<torch::Tensor>& bias,
|
||||
int64_t handler);
|
||||
|
||||
int64_t create_onednn_mm_handler(const torch::Tensor& b,
|
||||
int64_t primitive_cache_size);
|
||||
|
||||
void onednn_mm(torch::Tensor& c, const torch::Tensor& a,
|
||||
const std::optional<torch::Tensor>& bias, int64_t handler);
|
||||
|
||||
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
|
||||
torch::Tensor& kv_cache, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens);
|
||||
@ -153,6 +159,18 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.def("release_dnnl_matmul_handler(int handler) -> ()",
|
||||
&release_dnnl_matmul_handler);
|
||||
|
||||
// Create oneDNN GEMM handler
|
||||
ops.def(
|
||||
"create_onednn_mm_handler(Tensor b, int "
|
||||
"primitive_cache_size) -> int",
|
||||
&create_onednn_mm_handler);
|
||||
|
||||
// oneDNN GEMM
|
||||
ops.def(
|
||||
"onednn_mm(Tensor! c, Tensor a, Tensor? bias, "
|
||||
"int handler) -> ()");
|
||||
ops.impl("onednn_mm", torch::kCPU, &onednn_mm);
|
||||
|
||||
// Create oneDNN W8A8 handler
|
||||
ops.def(
|
||||
"create_onednn_scaled_mm_handler(Tensor b, Tensor b_scales, ScalarType "
|
||||
|
||||
@ -19,6 +19,13 @@
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
||||
|
||||
#define VLLM_DISPATCH_CASE_HALF_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
|
||||
|
||||
#define VLLM_DISPATCH_HALF_TYPES(TYPE, NAME, ...) \
|
||||
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_HALF_TYPES(__VA_ARGS__))
|
||||
|
||||
// ROCm devices might use either fn or fnuz, so set up dispatch table for both.
|
||||
// A host-based check at runtime will create a preferred FP8 type for ROCm
|
||||
// such that the correct kernel is dispatched.
|
||||
|
||||
@ -27,11 +27,12 @@
|
||||
|
||||
template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
|
||||
bool kIsVariableB_, bool kIsVariableC_,
|
||||
bool kHasZ_, bool kVarlen_, typename input_t_, typename weight_t_>
|
||||
bool kHasZ_, bool kVarlen_, typename input_t_, typename weight_t_, typename state_t_>
|
||||
struct Selective_Scan_fwd_kernel_traits {
|
||||
static_assert(kNItems_ % 4 == 0);
|
||||
using input_t = input_t_;
|
||||
using weight_t = weight_t_;
|
||||
using state_t = state_t_;
|
||||
static constexpr int kNThreads = kNThreads_;
|
||||
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
|
||||
static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
|
||||
@ -132,7 +133,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
|
||||
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + sequence_start_index * params.B_batch_stride + group_id * params.B_group_stride;
|
||||
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
|
||||
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + sequence_start_index * params.C_batch_stride + group_id * params.C_group_stride;
|
||||
input_t *ssm_states = reinterpret_cast<input_t *>(params.ssm_states_ptr) +
|
||||
typename Ktraits::state_t *ssm_states = reinterpret_cast<typename Ktraits::state_t *>(params.ssm_states_ptr) +
|
||||
cache_index * params.ssm_states_batch_stride +
|
||||
dim_id * kNRows * params.ssm_states_dim_stride;
|
||||
|
||||
@ -261,7 +262,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
|
||||
if (threadIdx.x == 0) {
|
||||
smem_running_prefix[state_idx] = prefix_op.running_prefix;
|
||||
if (chunk == n_chunks - 1) {
|
||||
ssm_states[state_idx * params.ssm_states_dstate_stride] = input_t(prefix_op.running_prefix.y);
|
||||
ssm_states[state_idx * params.ssm_states_dstate_stride] = typename Ktraits::state_t(prefix_op.running_prefix.y);
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
@ -310,7 +311,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
|
||||
}
|
||||
}
|
||||
|
||||
template<int kNThreads, int kNItems, typename input_t, typename weight_t>
|
||||
template<int kNThreads, int kNItems, typename input_t, typename weight_t, typename state_t>
|
||||
void selective_scan_fwd_launch(SSMParamsBase ¶ms, cudaStream_t stream) {
|
||||
// Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
|
||||
// processing 1 row.
|
||||
@ -321,7 +322,7 @@ void selective_scan_fwd_launch(SSMParamsBase ¶ms, cudaStream_t stream) {
|
||||
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
|
||||
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
|
||||
BOOL_SWITCH(params.query_start_loc_ptr != nullptr , kVarlen, [&] {
|
||||
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t>;
|
||||
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t, state_t>;
|
||||
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
|
||||
dim3 grid(params.batch, params.dim / kNRows);
|
||||
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
|
||||
@ -341,59 +342,78 @@ void selective_scan_fwd_launch(SSMParamsBase ¶ms, cudaStream_t stream) {
|
||||
});
|
||||
}
|
||||
|
||||
template<typename input_t, typename weight_t>
|
||||
template<typename input_t, typename weight_t, typename state_t>
|
||||
void selective_scan_fwd_cuda(SSMParamsBase ¶ms, cudaStream_t stream) {
|
||||
|
||||
#ifndef USE_ROCM
|
||||
if (params.seqlen <= 128) {
|
||||
selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
|
||||
selective_scan_fwd_launch<32, 4, input_t, weight_t, state_t>(params, stream);
|
||||
} else if (params.seqlen <= 256) {
|
||||
selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
|
||||
selective_scan_fwd_launch<32, 8, input_t, weight_t, state_t>(params, stream);
|
||||
} else if (params.seqlen <= 512) {
|
||||
selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
|
||||
selective_scan_fwd_launch<32, 16, input_t, weight_t, state_t>(params, stream);
|
||||
} else if (params.seqlen <= 1024) {
|
||||
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
|
||||
selective_scan_fwd_launch<64, 16, input_t, weight_t, state_t>(params, stream);
|
||||
} else {
|
||||
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
|
||||
selective_scan_fwd_launch<128, 16, input_t, weight_t, state_t>(params, stream);
|
||||
}
|
||||
#else
|
||||
if (params.seqlen <= 256) {
|
||||
selective_scan_fwd_launch<64, 4, input_t, weight_t>(params, stream);
|
||||
selective_scan_fwd_launch<64, 4, input_t, weight_t, state_t>(params, stream);
|
||||
} else if (params.seqlen <= 512) {
|
||||
selective_scan_fwd_launch<64, 8, input_t, weight_t>(params, stream);
|
||||
selective_scan_fwd_launch<64, 8, input_t, weight_t, state_t>(params, stream);
|
||||
} else if (params.seqlen <= 1024) {
|
||||
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
|
||||
selective_scan_fwd_launch<64, 16, input_t, weight_t, state_t>(params, stream);
|
||||
} else {
|
||||
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
|
||||
selective_scan_fwd_launch<128, 16, input_t, weight_t, state_t>(params, stream);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template void selective_scan_fwd_cuda<at::BFloat16, float>(SSMParamsBase ¶ms, cudaStream_t stream);
|
||||
template void selective_scan_fwd_cuda<at::Half, float>(SSMParamsBase ¶ms, cudaStream_t stream);
|
||||
template void selective_scan_fwd_cuda<float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
|
||||
template void selective_scan_fwd_cuda<at::BFloat16, float, at::BFloat16>(SSMParamsBase ¶ms, cudaStream_t stream);
|
||||
template void selective_scan_fwd_cuda<at::BFloat16, float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
|
||||
template void selective_scan_fwd_cuda<at::Half, float, at::Half>(SSMParamsBase ¶ms, cudaStream_t stream);
|
||||
template void selective_scan_fwd_cuda<at::Half, float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
|
||||
template void selective_scan_fwd_cuda<float, float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
|
||||
|
||||
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
|
||||
|
||||
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
|
||||
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, STYPE, NAME, ...) \
|
||||
if (ITYPE == at::ScalarType::Half) { \
|
||||
using input_t = at::Half; \
|
||||
using weight_t = float; \
|
||||
__VA_ARGS__(); \
|
||||
if (STYPE == at::ScalarType::Half) { \
|
||||
using state_t = at::Half; \
|
||||
__VA_ARGS__(); \
|
||||
} else if (STYPE == at::ScalarType::Float) { \
|
||||
using state_t = float; \
|
||||
__VA_ARGS__(); \
|
||||
} else { \
|
||||
AT_ERROR(#NAME, " not implemented for state type '", toString(STYPE), "'"); \
|
||||
} \
|
||||
} else if (ITYPE == at::ScalarType::BFloat16) { \
|
||||
using input_t = at::BFloat16; \
|
||||
using weight_t = float; \
|
||||
__VA_ARGS__(); \
|
||||
if (STYPE == at::ScalarType::BFloat16) { \
|
||||
using state_t = at::BFloat16; \
|
||||
__VA_ARGS__(); \
|
||||
} else if (STYPE == at::ScalarType::Float) { \
|
||||
using state_t = float; \
|
||||
__VA_ARGS__(); \
|
||||
} else { \
|
||||
AT_ERROR(#NAME, " not implemented for state type '", toString(STYPE), "'"); \
|
||||
} \
|
||||
} else if (ITYPE == at::ScalarType::Float) { \
|
||||
using input_t = float; \
|
||||
using weight_t = float; \
|
||||
using state_t = float; \
|
||||
__VA_ARGS__(); \
|
||||
} else { \
|
||||
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
|
||||
}
|
||||
|
||||
|
||||
template<typename input_t, typename weight_t>
|
||||
template<typename input_t, typename weight_t, typename state_t>
|
||||
void selective_scan_fwd_cuda(SSMParamsBase ¶ms, cudaStream_t stream);
|
||||
|
||||
void set_ssm_params_fwd(SSMParamsBase ¶ms,
|
||||
@ -648,7 +668,9 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
|
||||
|
||||
// Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
|
||||
at::Tensor out = delta;
|
||||
TORCH_CHECK(ssm_states.scalar_type() == input_type);
|
||||
// ssm_states can now be either the same as input_type or float32
|
||||
auto state_type = ssm_states.scalar_type();
|
||||
TORCH_CHECK(state_type == input_type || state_type == at::ScalarType::Float);
|
||||
TORCH_CHECK(ssm_states.is_cuda());
|
||||
TORCH_CHECK(ssm_states.stride(-1) == 1);
|
||||
|
||||
@ -670,7 +692,7 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
|
||||
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(u));
|
||||
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
|
||||
selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
|
||||
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), ssm_states.scalar_type(), "selective_scan_fwd", [&] {
|
||||
selective_scan_fwd_cuda<input_t, weight_t, state_t>(params, stream);
|
||||
});
|
||||
}
|
||||
|
||||
758
csrc/moe/grouped_topk_kernels.cu
Normal file
758
csrc/moe/grouped_topk_kernels.cu
Normal file
@ -0,0 +1,758 @@
|
||||
/*
|
||||
* Adapted from
|
||||
* https://github.com/NVIDIA/TensorRT-LLM/blob/v0.21.0/cpp/tensorrt_llm/kernels/noAuxTcKernels.cu
|
||||
* Copyright (c) 2025, The vLLM team.
|
||||
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
|
||||
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <c10/cuda/CUDAStream.h>
|
||||
#include <torch/all.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_bf16.h>
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
namespace vllm {
|
||||
namespace moe {
|
||||
|
||||
constexpr float kNegInfinity = INFINITY * -1;
|
||||
constexpr unsigned FULL_WARP_MASK = 0xffffffff;
|
||||
constexpr int32_t WARP_SIZE = 32;
|
||||
constexpr int32_t BLOCK_SIZE = 512;
|
||||
constexpr int32_t NUM_WARPS_PER_BLOCK = BLOCK_SIZE / WARP_SIZE;
|
||||
|
||||
namespace warp_topk {
|
||||
|
||||
template <int size, typename T>
|
||||
__host__ __device__ constexpr T round_up_to_multiple_of(T len) {
|
||||
if (len == 0) {
|
||||
return 0;
|
||||
}
|
||||
return ((len - 1) / size + 1) * size;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr __host__ __device__ bool isPowerOf2(T v) {
|
||||
return (v && !(v & (v - 1)));
|
||||
}
|
||||
|
||||
template <bool greater, typename T>
|
||||
__forceinline__ __device__ bool is_better_than(T val, T baseline) {
|
||||
return (val > baseline && greater) || (val < baseline && !greater);
|
||||
}
|
||||
|
||||
template <bool greater, typename T, typename idxT>
|
||||
__forceinline__ __device__ bool is_better_than(T val, T baseline, idxT index,
|
||||
idxT baseline_index) {
|
||||
bool res = (val > baseline && greater) || (val < baseline && !greater);
|
||||
if (val == baseline) {
|
||||
res = (index < baseline_index && greater) ||
|
||||
(index < baseline_index && !greater);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename T, typename idxT>
|
||||
int calc_smem_size_for_block_wide(int num_of_warp, int64_t k) {
|
||||
int64_t cache_topk = (sizeof(T) + sizeof(idxT)) * num_of_warp * k;
|
||||
int64_t n = std::max<int>(num_of_warp / 2 * k, num_of_warp * WARP_SIZE);
|
||||
return max(cache_topk,
|
||||
round_up_to_multiple_of<256>(n * sizeof(T)) + n * sizeof(idxT));
|
||||
}
|
||||
|
||||
template <int size, bool ascending, bool reverse, typename T, typename idxT,
|
||||
bool is_stable>
|
||||
struct BitonicMerge {
|
||||
// input should be a bitonic sequence, and sort it to be a monotonic sequence
|
||||
__device__ static void merge(T* __restrict__ val_arr,
|
||||
idxT* __restrict__ idx_arr) {
|
||||
static_assert(isPowerOf2(size));
|
||||
static_assert(size >= 2 * WARP_SIZE);
|
||||
constexpr int arr_len = size / WARP_SIZE;
|
||||
|
||||
constexpr int stride = arr_len / 2;
|
||||
for (int i = 0; i < stride; ++i) {
|
||||
int const other_i = i + stride;
|
||||
T& val = val_arr[i];
|
||||
T& other_val = val_arr[other_i];
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
is_better = is_better_than<ascending>(val, other_val, idx_arr[i],
|
||||
idx_arr[other_i]);
|
||||
} else {
|
||||
is_better = is_better_than<ascending>(val, other_val);
|
||||
}
|
||||
|
||||
if (is_better) {
|
||||
T tmp = val;
|
||||
val = other_val;
|
||||
other_val = tmp;
|
||||
|
||||
idxT tmp2 = idx_arr[i];
|
||||
idx_arr[i] = idx_arr[other_i];
|
||||
idx_arr[other_i] = tmp2;
|
||||
}
|
||||
}
|
||||
|
||||
BitonicMerge<size / 2, ascending, reverse, T, idxT, is_stable>::merge(
|
||||
val_arr, idx_arr);
|
||||
BitonicMerge<size / 2, ascending, reverse, T, idxT, is_stable>::merge(
|
||||
val_arr + arr_len / 2, idx_arr + arr_len / 2);
|
||||
}
|
||||
};
|
||||
|
||||
template <int size, bool ascending, typename T, typename idxT, bool is_stable>
|
||||
struct BitonicSort {
|
||||
__device__ static void sort(T* __restrict__ val_arr,
|
||||
idxT* __restrict__ idx_arr) {
|
||||
static_assert(isPowerOf2(size));
|
||||
static_assert(size >= 2 * WARP_SIZE);
|
||||
constexpr int arr_len = size / WARP_SIZE;
|
||||
|
||||
BitonicSort<size / 2, true, T, idxT, is_stable>::sort(val_arr, idx_arr);
|
||||
BitonicSort<size / 2, false, T, idxT, is_stable>::sort(
|
||||
val_arr + arr_len / 2, idx_arr + arr_len / 2);
|
||||
BitonicMerge<size, ascending, ascending, T, idxT, is_stable>::merge(
|
||||
val_arr, idx_arr);
|
||||
}
|
||||
};
|
||||
|
||||
template <bool ascending, typename T, typename idxT, bool is_stable>
|
||||
struct BitonicSort<32, ascending, T, idxT, is_stable> {
|
||||
__device__ static void sort(T* __restrict__ val_arr,
|
||||
idxT* __restrict__ idx_arr) {
|
||||
int const lane = threadIdx.x % WARP_SIZE;
|
||||
|
||||
// ascending doesn't matter before merging since all we need is a bitonic
|
||||
// sequence
|
||||
for (int stage = 0; stage < 4; ++stage) {
|
||||
for (int stride = (1 << stage); stride > 0; stride /= 2) {
|
||||
bool reverse = (lane >> stage) & 2;
|
||||
bool is_second = lane & stride;
|
||||
|
||||
T other = __shfl_xor_sync(FULL_WARP_MASK, *val_arr, stride);
|
||||
idxT other_idx = __shfl_xor_sync(FULL_WARP_MASK, *idx_arr, stride);
|
||||
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
if constexpr (ascending) {
|
||||
is_better = ((*val_arr > other) ||
|
||||
((*val_arr == other) && (*idx_arr < other_idx))) !=
|
||||
(reverse != is_second);
|
||||
} else {
|
||||
is_better = ((*val_arr > other) ||
|
||||
((*val_arr == other) && (*idx_arr > other_idx))) !=
|
||||
(reverse != is_second);
|
||||
}
|
||||
} else {
|
||||
is_better = (*val_arr != other &&
|
||||
(*val_arr > other) != (reverse != is_second));
|
||||
}
|
||||
if (is_better) {
|
||||
*val_arr = other;
|
||||
*idx_arr = other_idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BitonicMerge<32, ascending, ascending, T, idxT, is_stable>::merge(val_arr,
|
||||
idx_arr);
|
||||
}
|
||||
};
|
||||
|
||||
template <bool ascending, bool reverse, typename T, typename idxT,
|
||||
bool is_stable>
|
||||
struct BitonicMerge<32, ascending, reverse, T, idxT, is_stable> {
|
||||
__device__ static void merge(T* __restrict__ val_arr,
|
||||
idxT* __restrict__ idx_arr) {
|
||||
int const lane = threadIdx.x % WARP_SIZE;
|
||||
for (int stride = WARP_SIZE / 2; stride > 0; stride /= 2) {
|
||||
bool is_second = lane & stride;
|
||||
T& val = *val_arr;
|
||||
T other = __shfl_xor_sync(FULL_WARP_MASK, val, stride);
|
||||
idxT& idx = *idx_arr;
|
||||
idxT other_idx = __shfl_xor_sync(FULL_WARP_MASK, idx, stride);
|
||||
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
if constexpr (ascending) {
|
||||
is_better = ((*val_arr > other) ||
|
||||
((*val_arr == other) && (*idx_arr < other_idx))) ==
|
||||
(reverse != is_second); // for min
|
||||
} else {
|
||||
is_better = ((*val_arr > other) ||
|
||||
((*val_arr == other) && (*idx_arr > other_idx))) ==
|
||||
(reverse != is_second); // for max
|
||||
}
|
||||
} else {
|
||||
is_better =
|
||||
(val != other && ((val > other) == (ascending != is_second)));
|
||||
}
|
||||
|
||||
if (is_better) {
|
||||
val = other;
|
||||
idx = other_idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <int capacity, bool greater, typename T, typename idxT, bool is_stable>
|
||||
class WarpSort {
|
||||
public:
|
||||
__device__ WarpSort(idxT k, T dummy)
|
||||
: lane_(threadIdx.x % WARP_SIZE), k_(k), dummy_(dummy) {
|
||||
static_assert(capacity >= WARP_SIZE && isPowerOf2(capacity));
|
||||
|
||||
for (int i = 0; i < max_arr_len_; ++i) {
|
||||
val_arr_[i] = dummy_;
|
||||
idx_arr_[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// load and merge k sorted values
|
||||
__device__ void load_sorted(T const* __restrict__ in,
|
||||
idxT const* __restrict__ in_idx, idxT start) {
|
||||
idxT idx = start + WARP_SIZE - 1 - lane_;
|
||||
for (int i = max_arr_len_ - 1; i >= 0; --i, idx += WARP_SIZE) {
|
||||
if (idx < start + k_) {
|
||||
T t = in[idx];
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
is_better =
|
||||
is_better_than<greater>(t, val_arr_[i], in_idx[idx], idx_arr_[i]);
|
||||
} else {
|
||||
is_better = is_better_than<greater>(t, val_arr_[i]);
|
||||
}
|
||||
if (is_better) {
|
||||
val_arr_[i] = t;
|
||||
idx_arr_[i] = in_idx[idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BitonicMerge<capacity, greater, !greater, T, idxT, is_stable>::merge(
|
||||
val_arr_, idx_arr_);
|
||||
}
|
||||
|
||||
__device__ void dump(T* __restrict__ out, idxT* __restrict__ out_idx) const {
|
||||
for (int i = 0; i < max_arr_len_; ++i) {
|
||||
idxT out_i = i * WARP_SIZE + lane_;
|
||||
if (out_i < k_) {
|
||||
out[out_i] = val_arr_[i];
|
||||
out_idx[out_i] = idx_arr_[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__device__ void dumpIdx(idxT* __restrict__ out_idx) const {
|
||||
for (int i = 0; i < max_arr_len_; ++i) {
|
||||
idxT out_i = i * WARP_SIZE + lane_;
|
||||
if (out_i < k_) {
|
||||
out_idx[out_i] = idx_arr_[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
static constexpr int max_arr_len_ = capacity / WARP_SIZE;
|
||||
|
||||
T val_arr_[max_arr_len_];
|
||||
idxT idx_arr_[max_arr_len_];
|
||||
|
||||
int const lane_;
|
||||
idxT const k_;
|
||||
T const dummy_;
|
||||
|
||||
}; // end class WarpSort
|
||||
|
||||
template <int capacity, bool greater, typename T, typename idxT, bool is_stable>
|
||||
class WarpSelect : public WarpSort<capacity, greater, T, idxT, is_stable> {
|
||||
public:
|
||||
__device__ WarpSelect(idxT k, T dummy)
|
||||
: WarpSort<capacity, greater, T, idxT, is_stable>(k, dummy),
|
||||
k_th_(dummy),
|
||||
k_th_lane_((k - 1) % WARP_SIZE) {
|
||||
extern __shared__ char smem_buf[]; // extern __shared__ T smem_buf[];
|
||||
|
||||
int const num_of_warp = blockDim.x / WARP_SIZE;
|
||||
int const warp_id = threadIdx.x / WARP_SIZE;
|
||||
val_smem_ = reinterpret_cast<T*>(smem_buf);
|
||||
val_smem_ += warp_id * WARP_SIZE;
|
||||
idx_smem_ = reinterpret_cast<idxT*>(
|
||||
smem_buf +
|
||||
round_up_to_multiple_of<256>(num_of_warp * sizeof(T) * WARP_SIZE));
|
||||
idx_smem_ += warp_id * WARP_SIZE;
|
||||
}
|
||||
|
||||
__device__ void add(T const* in, idxT start, idxT end) {
|
||||
idxT const end_for_fullwarp =
|
||||
round_up_to_multiple_of<WARP_SIZE>(end - start) + start;
|
||||
for (idxT i = start + lane_; i < end_for_fullwarp; i += WARP_SIZE) {
|
||||
T val = (i < end) ? in[i] : dummy_;
|
||||
add(val, i);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ void add(T val, idxT idx) {
|
||||
bool do_add;
|
||||
if constexpr (is_stable) {
|
||||
do_add = is_better_than<greater>(val, k_th_, idx, k_th_idx_);
|
||||
} else {
|
||||
do_add = is_better_than<greater>(val, k_th_);
|
||||
}
|
||||
|
||||
uint32_t mask = __ballot_sync(FULL_WARP_MASK, do_add);
|
||||
if (mask == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
int pos = smem_buf_len_ + __popc(mask & ((0x1u << lane_) - 1));
|
||||
if (do_add && pos < WARP_SIZE) {
|
||||
val_smem_[pos] = val;
|
||||
idx_smem_[pos] = idx;
|
||||
do_add = false;
|
||||
}
|
||||
smem_buf_len_ += __popc(mask);
|
||||
if (smem_buf_len_ >= WARP_SIZE) {
|
||||
__syncwarp();
|
||||
merge_buf_(val_smem_[lane_], idx_smem_[lane_]);
|
||||
smem_buf_len_ -= WARP_SIZE;
|
||||
}
|
||||
if (do_add) {
|
||||
pos -= WARP_SIZE;
|
||||
val_smem_[pos] = val;
|
||||
idx_smem_[pos] = idx;
|
||||
}
|
||||
__syncwarp();
|
||||
}
|
||||
|
||||
__device__ void done() {
|
||||
if (smem_buf_len_) {
|
||||
T val = (lane_ < smem_buf_len_) ? val_smem_[lane_] : dummy_;
|
||||
idxT idx = (lane_ < smem_buf_len_) ? idx_smem_[lane_] : 0;
|
||||
merge_buf_(val, idx);
|
||||
}
|
||||
|
||||
// after done(), smem is used for merging results among warps
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
private:
|
||||
__device__ void set_k_th_() {
|
||||
k_th_ = __shfl_sync(FULL_WARP_MASK, val_arr_[max_arr_len_ - 1], k_th_lane_);
|
||||
if constexpr (is_stable) {
|
||||
k_th_idx_ =
|
||||
__shfl_sync(FULL_WARP_MASK, idx_arr_[max_arr_len_ - 1], k_th_lane_);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ void merge_buf_(T val, idxT idx) {
|
||||
BitonicSort<WARP_SIZE, greater, T, idxT, is_stable>::sort(&val, &idx);
|
||||
|
||||
T& old = val_arr_[max_arr_len_ - 1];
|
||||
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
is_better =
|
||||
is_better_than<greater>(val, old, idx, idx_arr_[max_arr_len_ - 1]);
|
||||
} else {
|
||||
is_better = is_better_than<greater>(val, old);
|
||||
}
|
||||
|
||||
if (is_better) {
|
||||
old = val;
|
||||
idx_arr_[max_arr_len_ - 1] = idx;
|
||||
}
|
||||
|
||||
BitonicMerge<capacity, greater, !greater, T, idxT, is_stable>::merge(
|
||||
val_arr_, idx_arr_);
|
||||
|
||||
set_k_th_();
|
||||
}
|
||||
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::max_arr_len_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::val_arr_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::idx_arr_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::lane_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::k_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::dummy_;
|
||||
|
||||
T* val_smem_;
|
||||
idxT* idx_smem_;
|
||||
int smem_buf_len_ = 0;
|
||||
|
||||
T k_th_;
|
||||
idxT k_th_idx_;
|
||||
int const k_th_lane_;
|
||||
}; // end class WarpSelect
|
||||
} // namespace warp_topk
|
||||
|
||||
template <typename T_OUT, typename T_IN>
|
||||
__device__ inline T_OUT cuda_cast(T_IN val) {
|
||||
return val;
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ inline float cuda_cast<float, __nv_bfloat16>(__nv_bfloat16 val) {
|
||||
return __bfloat162float(val);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ void topk_with_k2(T* output, T const* input,
|
||||
cg::thread_block_tile<32> const& tile,
|
||||
int32_t const lane_id,
|
||||
int const num_experts_per_group) {
|
||||
// Get the top2 per thread
|
||||
T largest = -INFINITY;
|
||||
T second_largest = -INFINITY;
|
||||
|
||||
if (num_experts_per_group > WARP_SIZE) {
|
||||
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
|
||||
T value = input[i];
|
||||
if (value > largest) {
|
||||
second_largest = largest;
|
||||
largest = value;
|
||||
} else if (value > second_largest) {
|
||||
second_largest = value;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
|
||||
largest = input[i];
|
||||
}
|
||||
}
|
||||
|
||||
__syncwarp(); // Ensure all threads have valid data before reduction
|
||||
// Get the top2 warpwise
|
||||
T max1 = cg::reduce(tile, largest, cg::greater<T>());
|
||||
|
||||
T max2 = max1;
|
||||
bool equal_to_max1 = (max1 == largest);
|
||||
|
||||
int count_max1 = __popc(__ballot_sync(FULL_WARP_MASK, equal_to_max1));
|
||||
|
||||
if (count_max1 == 1) {
|
||||
largest = (largest == max1) ? second_largest : largest;
|
||||
max2 = cg::reduce(tile, largest, cg::greater<T>());
|
||||
}
|
||||
|
||||
if (lane_id == 0) {
|
||||
*output = max1 + max2;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void topk_with_k2_kernel(T* output, T* input,
|
||||
int64_t const num_tokens,
|
||||
int64_t const num_cases,
|
||||
int64_t const n_group,
|
||||
int64_t const num_experts_per_group) {
|
||||
int32_t warp_id = threadIdx.x / WARP_SIZE;
|
||||
int32_t lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
int32_t case_id = blockIdx.x * NUM_WARPS_PER_BLOCK + warp_id;
|
||||
if (case_id < num_cases) {
|
||||
input += case_id * num_experts_per_group;
|
||||
output += case_id;
|
||||
|
||||
cg::thread_block block = cg::this_thread_block();
|
||||
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(block);
|
||||
|
||||
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
||||
asm volatile("griddepcontrol.wait;");
|
||||
#endif
|
||||
topk_with_k2(output, input, tile, lane_id, num_experts_per_group);
|
||||
}
|
||||
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
||||
asm volatile("griddepcontrol.launch_dependents;");
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T, typename IdxT>
|
||||
__global__ void group_idx_and_topk_idx_kernel(
|
||||
T* scores, T const* group_scores, T* topk_values, IdxT* topk_indices,
|
||||
T* scores_with_bias, int64_t const num_tokens, int64_t const n_group,
|
||||
int64_t const topk_group, int64_t const topk, int64_t const num_experts,
|
||||
int64_t const num_experts_per_group, bool renormalize,
|
||||
double routed_scaling_factor) {
|
||||
int32_t warp_id = threadIdx.x / WARP_SIZE;
|
||||
int32_t lane_id = threadIdx.x % WARP_SIZE;
|
||||
int32_t case_id =
|
||||
blockIdx.x * NUM_WARPS_PER_BLOCK + warp_id; // one per token
|
||||
scores_with_bias += case_id * num_experts;
|
||||
scores += case_id * num_experts;
|
||||
group_scores += case_id * n_group;
|
||||
topk_values += case_id * topk;
|
||||
topk_indices += case_id * topk;
|
||||
|
||||
int32_t align_num_experts_per_group =
|
||||
warp_topk::round_up_to_multiple_of<WARP_SIZE>(num_experts_per_group);
|
||||
|
||||
cg::thread_block block = cg::this_thread_block();
|
||||
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(block);
|
||||
|
||||
extern __shared__ char smem_buf[]; // NOTE: reuse the shared memory here to
|
||||
// store the target topk idx
|
||||
int32_t* s_topk_idx = reinterpret_cast<int32_t*>(smem_buf);
|
||||
T* s_topk_value =
|
||||
reinterpret_cast<T*>(s_topk_idx + NUM_WARPS_PER_BLOCK * topk) +
|
||||
warp_id * topk;
|
||||
s_topk_idx += warp_id * topk;
|
||||
|
||||
T value = kNegInfinity;
|
||||
T topk_group_value = kNegInfinity;
|
||||
int32_t num_equalto_topkth_group;
|
||||
|
||||
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
||||
asm volatile("griddepcontrol.wait;"); // I think all prolog can be put before
|
||||
// acqbulk because it's ptr arithmetic
|
||||
#endif
|
||||
|
||||
if (case_id < num_tokens) {
|
||||
// calculate group_idx
|
||||
int32_t target_num_min = WARP_SIZE - n_group + topk_group;
|
||||
if (lane_id < n_group &&
|
||||
(isfinite(cuda_cast<float, T>(
|
||||
group_scores[lane_id])))) // The check is necessary to avoid
|
||||
// abnormal input
|
||||
{
|
||||
value = group_scores[lane_id];
|
||||
}
|
||||
|
||||
int count_equal_to_top_value = WARP_SIZE - n_group;
|
||||
int pre_count_equal_to_top_value = 0;
|
||||
// Use loop to find the largset top_group
|
||||
while (count_equal_to_top_value < target_num_min) {
|
||||
__syncwarp(); // Ensure all threads have valid data before reduction
|
||||
topk_group_value = cg::reduce(tile, value, cg::greater<T>());
|
||||
if (value == topk_group_value) {
|
||||
value = kNegInfinity;
|
||||
}
|
||||
pre_count_equal_to_top_value = count_equal_to_top_value;
|
||||
count_equal_to_top_value = __popc(__ballot_sync(
|
||||
FULL_WARP_MASK, (value == cuda_cast<T, float>(kNegInfinity))));
|
||||
}
|
||||
num_equalto_topkth_group = target_num_min - pre_count_equal_to_top_value;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
warp_topk::WarpSelect</*capability*/ WARP_SIZE, /*greater*/ true, T, int32_t,
|
||||
/* is_stable */ true>
|
||||
queue((int32_t)topk, -INFINITY);
|
||||
|
||||
int count_equalto_topkth_group = 0;
|
||||
bool if_proceed_next_topk =
|
||||
(topk_group_value != cuda_cast<T, float>(kNegInfinity));
|
||||
if (case_id < num_tokens && if_proceed_next_topk) {
|
||||
for (int i_group = 0; i_group < n_group; i_group++) {
|
||||
if ((group_scores[i_group] > topk_group_value) ||
|
||||
((group_scores[i_group] == topk_group_value) &&
|
||||
(count_equalto_topkth_group < num_equalto_topkth_group))) {
|
||||
int32_t offset = i_group * num_experts_per_group;
|
||||
for (int32_t i = lane_id; i < align_num_experts_per_group;
|
||||
i += WARP_SIZE) {
|
||||
T candidates =
|
||||
(i < num_experts_per_group) && isfinite(cuda_cast<float, T>(
|
||||
scores_with_bias[offset + i]))
|
||||
? scores_with_bias[offset + i]
|
||||
: cuda_cast<T, float>(kNegInfinity);
|
||||
queue.add(candidates, offset + i);
|
||||
}
|
||||
if (group_scores[i_group] == topk_group_value) {
|
||||
count_equalto_topkth_group++;
|
||||
}
|
||||
}
|
||||
}
|
||||
queue.done();
|
||||
__syncwarp();
|
||||
// Get the topk_idx
|
||||
queue.dumpIdx(s_topk_idx);
|
||||
__syncwarp();
|
||||
}
|
||||
|
||||
// Load the valid score value
|
||||
// Calculate the summation
|
||||
float topk_sum = 1e-20;
|
||||
if (case_id < num_tokens && if_proceed_next_topk) {
|
||||
for (int i = lane_id;
|
||||
i < warp_topk::round_up_to_multiple_of<WARP_SIZE>(topk);
|
||||
i += WARP_SIZE) {
|
||||
T value =
|
||||
i < topk
|
||||
? scores[s_topk_idx[i]]
|
||||
: cuda_cast<T, float>(0.0f); // Load the valid value of expert
|
||||
if (i < topk) {
|
||||
s_topk_value[i] = value;
|
||||
}
|
||||
topk_sum += reduce(tile, cuda_cast<float, T>(value), cg::plus<float>());
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (case_id < num_tokens) {
|
||||
if (if_proceed_next_topk) {
|
||||
for (int i = lane_id; i < topk; i += WARP_SIZE) {
|
||||
float value;
|
||||
if (renormalize) {
|
||||
value = cuda_cast<float, T>(s_topk_value[i]) / topk_sum *
|
||||
routed_scaling_factor;
|
||||
} else {
|
||||
value = cuda_cast<float, T>(s_topk_value[i]) * routed_scaling_factor;
|
||||
}
|
||||
topk_indices[i] = s_topk_idx[i];
|
||||
topk_values[i] = cuda_cast<T, float>(value);
|
||||
}
|
||||
} else {
|
||||
for (int i = lane_id; i < topk; i += WARP_SIZE) {
|
||||
topk_indices[i] = i;
|
||||
topk_values[i] = cuda_cast<T, float>(1.0f / topk);
|
||||
}
|
||||
}
|
||||
// Note: when if_proceed_next_topk==false, choose the first 8 experts as the
|
||||
// default result.
|
||||
}
|
||||
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
||||
asm volatile("griddepcontrol.launch_dependents;");
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T, typename IdxT>
|
||||
void invokeNoAuxTc(T* scores, T* group_scores, T* topk_values,
|
||||
IdxT* topk_indices, T* scores_with_bias,
|
||||
int64_t const num_tokens, int64_t const num_experts,
|
||||
int64_t const n_group, int64_t const topk_group,
|
||||
int64_t const topk, bool const renormalize,
|
||||
double const routed_scaling_factor, bool enable_pdl = false,
|
||||
cudaStream_t const stream = 0) {
|
||||
int64_t num_cases = num_tokens * n_group;
|
||||
int64_t topk_with_k2_num_blocks = (num_cases - 1) / NUM_WARPS_PER_BLOCK + 1;
|
||||
auto* kernel_instance1 = &topk_with_k2_kernel<T>;
|
||||
cudaLaunchConfig_t config;
|
||||
config.gridDim = topk_with_k2_num_blocks;
|
||||
config.blockDim = BLOCK_SIZE;
|
||||
config.dynamicSmemBytes = 0;
|
||||
config.stream = stream;
|
||||
cudaLaunchAttribute attrs[1];
|
||||
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
|
||||
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
|
||||
config.numAttrs = 1;
|
||||
config.attrs = attrs;
|
||||
cudaLaunchKernelEx(&config, kernel_instance1, group_scores, scores_with_bias,
|
||||
num_tokens, num_cases, n_group, num_experts / n_group);
|
||||
|
||||
int64_t topk_with_k_group_num_blocks =
|
||||
(num_tokens - 1) / NUM_WARPS_PER_BLOCK + 1;
|
||||
size_t dynamic_smem_in_bytes =
|
||||
warp_topk::calc_smem_size_for_block_wide<T, int32_t>(NUM_WARPS_PER_BLOCK,
|
||||
topk);
|
||||
auto* kernel_instance2 = &group_idx_and_topk_idx_kernel<T, IdxT>;
|
||||
config.gridDim = topk_with_k_group_num_blocks;
|
||||
config.blockDim = BLOCK_SIZE;
|
||||
config.dynamicSmemBytes = dynamic_smem_in_bytes;
|
||||
config.stream = stream;
|
||||
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
|
||||
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
|
||||
config.numAttrs = 1;
|
||||
config.attrs = attrs;
|
||||
cudaLaunchKernelEx(&config, kernel_instance2, scores, group_scores,
|
||||
topk_values, topk_indices, scores_with_bias, num_tokens,
|
||||
n_group, topk_group, topk, num_experts,
|
||||
num_experts / n_group, renormalize, routed_scaling_factor);
|
||||
}
|
||||
|
||||
#define INSTANTIATE_NOAUX_TC(T, IdxT) \
|
||||
template void invokeNoAuxTc<T, IdxT>( \
|
||||
T * scores, T * group_scores, T * topk_values, IdxT * topk_indices, \
|
||||
T * scores_with_bias, int64_t const num_tokens, \
|
||||
int64_t const num_experts, int64_t const n_group, \
|
||||
int64_t const topk_group, int64_t const topk, bool const renormalize, \
|
||||
double const routed_scaling_factor, bool enable_pdl, \
|
||||
cudaStream_t const stream);
|
||||
|
||||
INSTANTIATE_NOAUX_TC(float, int32_t);
|
||||
INSTANTIATE_NOAUX_TC(half, int32_t);
|
||||
INSTANTIATE_NOAUX_TC(__nv_bfloat16, int32_t);
|
||||
} // end namespace moe
|
||||
} // namespace vllm
|
||||
|
||||
std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
|
||||
torch::Tensor const& scores, torch::Tensor const& scores_with_bias,
|
||||
int64_t n_group, int64_t topk_group, int64_t topk, bool renormalize,
|
||||
double routed_scaling_factor) {
|
||||
auto data_type = scores_with_bias.scalar_type();
|
||||
auto input_size = scores_with_bias.sizes();
|
||||
int64_t num_tokens = input_size[0];
|
||||
int64_t num_experts = input_size[1];
|
||||
TORCH_CHECK(input_size.size() == 2, "scores_with_bias must be a 2D Tensor");
|
||||
TORCH_CHECK(num_experts % n_group == 0,
|
||||
"num_experts should be divisible by n_group");
|
||||
TORCH_CHECK(n_group <= 32,
|
||||
"n_group should be smaller than or equal to 32 for now");
|
||||
TORCH_CHECK(topk <= 32, "topk should be smaller than or equal to 32 for now");
|
||||
|
||||
torch::Tensor group_scores = torch::empty(
|
||||
{num_tokens, n_group}, torch::dtype(data_type).device(torch::kCUDA));
|
||||
torch::Tensor topk_values = torch::empty(
|
||||
{num_tokens, topk}, torch::dtype(data_type).device(torch::kCUDA));
|
||||
torch::Tensor topk_indices = torch::empty(
|
||||
{num_tokens, topk}, torch::dtype(torch::kInt32).device(torch::kCUDA));
|
||||
|
||||
auto stream = c10::cuda::getCurrentCUDAStream(scores_with_bias.get_device());
|
||||
|
||||
switch (data_type) {
|
||||
case torch::kFloat16:
|
||||
// Handle Float16
|
||||
vllm::moe::invokeNoAuxTc<half, int32_t>(
|
||||
reinterpret_cast<half*>(scores.mutable_data_ptr()),
|
||||
reinterpret_cast<half*>(group_scores.mutable_data_ptr()),
|
||||
reinterpret_cast<half*>(topk_values.mutable_data_ptr()),
|
||||
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
|
||||
reinterpret_cast<half*>(scores_with_bias.data_ptr()), num_tokens,
|
||||
num_experts, n_group, topk_group, topk, renormalize,
|
||||
routed_scaling_factor, false, stream);
|
||||
break;
|
||||
case torch::kFloat32:
|
||||
// Handle Float32
|
||||
vllm::moe::invokeNoAuxTc<float, int32_t>(
|
||||
reinterpret_cast<float*>(scores.mutable_data_ptr()),
|
||||
reinterpret_cast<float*>(group_scores.mutable_data_ptr()),
|
||||
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
|
||||
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
|
||||
reinterpret_cast<float*>(scores_with_bias.data_ptr()), num_tokens,
|
||||
num_experts, n_group, topk_group, topk, renormalize,
|
||||
routed_scaling_factor, false, stream);
|
||||
break;
|
||||
case torch::kBFloat16:
|
||||
// Handle BFloat16
|
||||
vllm::moe::invokeNoAuxTc<__nv_bfloat16, int32_t>(
|
||||
reinterpret_cast<__nv_bfloat16*>(scores.mutable_data_ptr()),
|
||||
reinterpret_cast<__nv_bfloat16*>(group_scores.mutable_data_ptr()),
|
||||
reinterpret_cast<__nv_bfloat16*>(topk_values.mutable_data_ptr()),
|
||||
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
|
||||
reinterpret_cast<__nv_bfloat16*>(scores_with_bias.data_ptr()),
|
||||
num_tokens, num_experts, n_group, topk_group, topk, renormalize,
|
||||
routed_scaling_factor, false, stream);
|
||||
break;
|
||||
default:
|
||||
// Handle other data types
|
||||
throw std::invalid_argument(
|
||||
"Invalid dtype, only supports float16, float32, and bfloat16");
|
||||
break;
|
||||
}
|
||||
return {topk_values, topk_indices};
|
||||
}
|
||||
@ -22,6 +22,11 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
|
||||
torch::Tensor num_tokens_post_pad, int64_t top_k,
|
||||
int64_t BLOCK_SIZE_M, int64_t BLOCK_SIZE_N,
|
||||
int64_t BLOCK_SIZE_K, int64_t bit);
|
||||
|
||||
std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
|
||||
torch::Tensor const& scores, torch::Tensor const& scores_with_bias,
|
||||
int64_t n_group, int64_t topk_group, int64_t topk, bool renormalize,
|
||||
double routed_scaling_factor);
|
||||
#endif
|
||||
|
||||
bool moe_permute_unpermute_supported();
|
||||
|
||||
@ -573,7 +573,7 @@ void topk_softmax(
|
||||
stream);
|
||||
}
|
||||
else {
|
||||
assert(topk_indices.scalar_type() == at::ScalarType::Int64);
|
||||
TORCH_CHECK(topk_indices.scalar_type() == at::ScalarType::Long);
|
||||
vllm::moe::topkGatingSoftmaxKernelLauncher(
|
||||
gating_output.data_ptr<float>(),
|
||||
topk_weights.data_ptr<float>(),
|
||||
|
||||
@ -78,6 +78,12 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
|
||||
"output_tensor) -> ()");
|
||||
m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
|
||||
|
||||
// Apply grouped topk routing to select experts.
|
||||
m.def(
|
||||
"grouped_topk(Tensor scores, Tensor scores_with_bias, int n_group, int "
|
||||
"topk_group, int topk, bool renormalize, float "
|
||||
"routed_scaling_factor) -> (Tensor, Tensor)");
|
||||
m.impl("grouped_topk", torch::kCUDA, &grouped_topk);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@ -130,6 +130,13 @@ void silu_and_mul(torch::Tensor& out, torch::Tensor& input);
|
||||
void silu_and_mul_quant(torch::Tensor& out, torch::Tensor& input,
|
||||
torch::Tensor& scale);
|
||||
|
||||
#ifndef USE_ROCM
|
||||
void silu_and_mul_nvfp4_quant(torch::Tensor& out,
|
||||
torch::Tensor& output_block_scale,
|
||||
torch::Tensor& input,
|
||||
torch::Tensor& input_global_scale);
|
||||
#endif
|
||||
|
||||
void mul_and_silu(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
void gelu_and_mul(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
424
csrc/quantization/cutlass_w4a8/w4a8_mm_entry.cu
Normal file
424
csrc/quantization/cutlass_w4a8/w4a8_mm_entry.cu
Normal file
@ -0,0 +1,424 @@
|
||||
//
|
||||
// Based off of:
|
||||
// https://github.com/NVIDIA/cutlass/blob/main/examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu
|
||||
//
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <torch/all.h>
|
||||
#include "cutlass_extensions/torch_utils.hpp"
|
||||
|
||||
#include "core/registration.h"
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include <limits>
|
||||
|
||||
#include "cute/tensor.hpp"
|
||||
#include "cutlass/gemm/collective/collective_builder.hpp"
|
||||
#include "cutlass/epilogue/collective/collective_builder.hpp"
|
||||
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
||||
#include "cutlass/gemm/kernel/gemm_universal.hpp"
|
||||
|
||||
#include "cutlass/util/packed_stride.hpp"
|
||||
#include "cutlass/util/mixed_dtype_utils.hpp"
|
||||
|
||||
#include "cutlass_extensions/common.hpp"
|
||||
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
|
||||
|
||||
namespace vllm::cutlass_w4a8 {
|
||||
|
||||
using namespace cute;
|
||||
|
||||
// -------------------------------------------------------------------------------------
|
||||
// Static configuration shared across all instantiations
|
||||
// -------------------------------------------------------------------------------------
|
||||
using MmaType = cutlass::float_e4m3_t; // A/scale element type
|
||||
using QuantType = cutlass::int4b_t; // B element type (packed int4)
|
||||
|
||||
static int constexpr TileShapeK = 128 * 8 / sizeof_bits<MmaType>::value;
|
||||
static int constexpr ScalePackSize = 8; // pack 8 scale elements together
|
||||
static int constexpr PackFactor = 8; // 8 4-bit packed into int32
|
||||
|
||||
// A matrix configuration
|
||||
using ElementA = MmaType; // Element type for A matrix operand
|
||||
using LayoutA = cutlass::layout::RowMajor; // Layout type for A matrix operand
|
||||
using LayoutA_Transpose =
|
||||
typename cutlass::layout::LayoutTranspose<LayoutA>::type;
|
||||
constexpr int AlignmentA =
|
||||
128 / cutlass::sizeof_bits<
|
||||
ElementA>::value; // Memory access granularity/alignment of A
|
||||
// matrix in units of elements (up to 16 bytes)
|
||||
using StrideA = cutlass::detail::TagToStrideA_t<LayoutA>;
|
||||
|
||||
// B matrix configuration
|
||||
using ElementB = QuantType; // Element type for B matrix operand
|
||||
using LayoutB =
|
||||
cutlass::layout::ColumnMajor; // Layout type for B matrix operand
|
||||
using LayoutB_Transpose =
|
||||
typename cutlass::layout::LayoutTranspose<LayoutB>::type;
|
||||
constexpr int AlignmentB =
|
||||
128 / cutlass::sizeof_bits<
|
||||
ElementB>::value; // Memory access granularity/alignment of B
|
||||
// matrix in units of elements (up to 16 bytes)
|
||||
using StrideB = cutlass::detail::TagToStrideB_t<LayoutB>;
|
||||
|
||||
// Define the CuTe layout for reordered quantized tensor B
|
||||
// LayoutAtomQuant places values that will be read by the same thread in
|
||||
// contiguous locations in global memory. It specifies the reordering within a
|
||||
// single warp's fragment
|
||||
using LayoutAtomQuant =
|
||||
decltype(cutlass::compute_memory_reordering_atom<MmaType>());
|
||||
using LayoutB_Reordered = decltype(cute::tile_to_shape(
|
||||
LayoutAtomQuant{}, Layout<Shape<int, int, int>, StrideB>{}));
|
||||
|
||||
// Group-wise scales
|
||||
using ElementScale = MmaType;
|
||||
using LayoutScale = cutlass::layout::RowMajor;
|
||||
|
||||
// Per-tok, per-chan scales
|
||||
using ElementSChannel = float;
|
||||
|
||||
// C/D matrix configuration
|
||||
using ElementC =
|
||||
cutlass::bfloat16_t; // Element type for C and D matrix operands
|
||||
using LayoutC =
|
||||
cutlass::layout::RowMajor; // Layout type for C and D matrix operands
|
||||
constexpr int AlignmentC =
|
||||
128 / cutlass::sizeof_bits<
|
||||
ElementC>::value; // Memory access granularity/alignment of C
|
||||
// matrix in units of elements (up to 16 bytes)
|
||||
|
||||
using ElementD = ElementC;
|
||||
using LayoutD = LayoutC;
|
||||
constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
|
||||
|
||||
// Core kernel configurations
|
||||
using ElementAccumulator = float; // Element type for internal accumulation
|
||||
using ElementCompute = float; // Element type for epilogue computation
|
||||
using ArchTag = cutlass::arch::Sm90; // Tag indicating the minimum SM that
|
||||
// supports the intended feature
|
||||
using OperatorClass = cutlass::arch::OpClassTensorOp; // Operator class tag
|
||||
using KernelSchedule =
|
||||
cutlass::gemm::KernelTmaWarpSpecializedCooperative; // Kernel to launch
|
||||
// based on the default
|
||||
// setting in the
|
||||
// Collective Builder
|
||||
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecializedCooperative;
|
||||
using EpilogueTileType = cutlass::epilogue::collective::EpilogueTileAuto;
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Kernel template — Tile/Cluster shapes
|
||||
// ----------------------------------------------------------------------------
|
||||
template <class TileShape_MN, class ClusterShape_MNK>
|
||||
struct W4A8GemmKernel {
|
||||
using TileShape =
|
||||
decltype(cute::append(TileShape_MN{}, cute::Int<TileShapeK>{}));
|
||||
using ClusterShape = ClusterShape_MNK;
|
||||
|
||||
// Epilogue per-tok, per-chan scales
|
||||
using ChTokScalesEpilogue =
|
||||
typename vllm::c3x::ScaledEpilogue<ElementAccumulator, ElementD,
|
||||
TileShape>;
|
||||
using EVTCompute = typename ChTokScalesEpilogue::EVTCompute;
|
||||
using CollectiveEpilogue =
|
||||
typename cutlass::epilogue::collective::CollectiveBuilder<
|
||||
ArchTag, OperatorClass, TileShape, ClusterShape, EpilogueTileType,
|
||||
ElementAccumulator, ElementSChannel,
|
||||
// Transpose layout of D here since we use explicit swap + transpose
|
||||
// the void type for C tells the builder to allocate 0 smem for the C
|
||||
// matrix. We can enable this if beta == 0 by changing ElementC to
|
||||
// void below.
|
||||
ElementC, typename cutlass::layout::LayoutTranspose<LayoutC>::type,
|
||||
AlignmentC, ElementD,
|
||||
typename cutlass::layout::LayoutTranspose<LayoutD>::type, AlignmentD,
|
||||
EpilogueSchedule, // This is the only epi supporting the required
|
||||
// swap + transpose.
|
||||
EVTCompute>::CollectiveOp;
|
||||
|
||||
// The Scale information must get paired with the operand that will be scaled.
|
||||
// In this example, B is scaled so we make a tuple of B's information and the
|
||||
// scale information.
|
||||
using CollectiveMainloopShuffled =
|
||||
typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag, OperatorClass,
|
||||
cute::tuple<ElementB, cutlass::Array<ElementScale, ScalePackSize>>,
|
||||
LayoutB_Reordered, AlignmentB, ElementA, LayoutA_Transpose,
|
||||
AlignmentA, ElementAccumulator, TileShape, ClusterShape,
|
||||
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
|
||||
sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
||||
KernelSchedule>::CollectiveOp;
|
||||
|
||||
using GemmKernelShuffled = cutlass::gemm::kernel::GemmUniversal<
|
||||
Shape<int, int, int, int>, // Indicates ProblemShape
|
||||
CollectiveMainloopShuffled, CollectiveEpilogue>;
|
||||
using GemmShuffled =
|
||||
cutlass::gemm::device::GemmUniversalAdapter<GemmKernelShuffled>;
|
||||
|
||||
using StrideC = typename GemmKernelShuffled::StrideC;
|
||||
using StrideD = typename GemmKernelShuffled::StrideD;
|
||||
using StrideS = typename CollectiveMainloopShuffled::StrideScale;
|
||||
|
||||
static torch::Tensor mm(torch::Tensor const& A,
|
||||
torch::Tensor const& B, // already packed
|
||||
torch::Tensor const& group_scales, // already packed
|
||||
int64_t group_size,
|
||||
torch::Tensor const& channel_scales,
|
||||
torch::Tensor const& token_scales,
|
||||
std::optional<at::ScalarType> const& maybe_out_type) {
|
||||
// TODO: param validation
|
||||
int m = A.size(0);
|
||||
int k = A.size(1);
|
||||
int n = B.size(1);
|
||||
|
||||
// safely cast group_size to int
|
||||
TORCH_CHECK(group_size > 0 && group_size <= std::numeric_limits<int>::max(),
|
||||
"group_size out of supported range for int: ", group_size);
|
||||
int const group_size_int = static_cast<int>(group_size);
|
||||
|
||||
// Allocate output
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
|
||||
auto device = A.device();
|
||||
auto stream = at::cuda::getCurrentCUDAStream(device.index());
|
||||
torch::Tensor D =
|
||||
torch::empty({m, n}, torch::TensorOptions()
|
||||
.dtype(equivalent_scalar_type_v<ElementD>)
|
||||
.device(device));
|
||||
// prepare arg pointers
|
||||
auto A_ptr = static_cast<MmaType const*>(A.const_data_ptr());
|
||||
auto B_ptr = static_cast<QuantType const*>(B.const_data_ptr());
|
||||
auto D_ptr = static_cast<ElementD*>(D.data_ptr());
|
||||
// can we avoid hardcode the 8 here
|
||||
auto S_ptr =
|
||||
static_cast<cutlass::Array<ElementScale, ScalePackSize> const*>(
|
||||
group_scales.const_data_ptr());
|
||||
|
||||
// runtime layout for B
|
||||
auto shape_B = cute::make_shape(n, k, 1);
|
||||
LayoutB_Reordered layout_B_reordered =
|
||||
cute::tile_to_shape(LayoutAtomQuant{}, shape_B);
|
||||
|
||||
// strides
|
||||
int const scale_k = cutlass::ceil_div(k, group_size_int);
|
||||
StrideA stride_A =
|
||||
cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(m, k, 1));
|
||||
// Reverse stride here due to swap and transpose
|
||||
StrideD stride_D =
|
||||
cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(n, m, 1));
|
||||
StrideS stride_S = cutlass::make_cute_packed_stride(
|
||||
StrideS{}, cute::make_shape(n, scale_k, 1));
|
||||
|
||||
// Create a structure of gemm kernel arguments suitable for invoking an
|
||||
// instance of Gemm auto arguments =
|
||||
// args_from_options<GemmShuffled>(options);
|
||||
/// Populates a Gemm::Arguments structure from the given arguments
|
||||
/// Swap the A and B tensors, as well as problem shapes here.
|
||||
using Args = typename GemmShuffled::Arguments;
|
||||
using MainloopArguments = typename GemmKernelShuffled::MainloopArguments;
|
||||
using EpilogueArguments = typename GemmKernelShuffled::EpilogueArguments;
|
||||
|
||||
MainloopArguments mainloop_arguments{
|
||||
B_ptr, layout_B_reordered, A_ptr, stride_A,
|
||||
S_ptr, stride_S, group_size_int};
|
||||
|
||||
EpilogueArguments epilogue_arguments{
|
||||
ChTokScalesEpilogue::prepare_args(channel_scales, token_scales),
|
||||
nullptr,
|
||||
{}, // no C
|
||||
D_ptr,
|
||||
stride_D};
|
||||
|
||||
Args arguments{cutlass::gemm::GemmUniversalMode::kGemm,
|
||||
{n, m, k, 1}, // shape
|
||||
mainloop_arguments,
|
||||
epilogue_arguments};
|
||||
|
||||
// Workspace
|
||||
size_t workspace_size = GemmShuffled::get_workspace_size(arguments);
|
||||
torch::Tensor workspace =
|
||||
torch::empty(workspace_size,
|
||||
torch::TensorOptions().dtype(torch::kU8).device(device));
|
||||
|
||||
// Run GEMM
|
||||
GemmShuffled gemm;
|
||||
CUTLASS_CHECK(gemm.can_implement(arguments));
|
||||
CUTLASS_CHECK(gemm.initialize(arguments, workspace.data_ptr(), stream));
|
||||
CUTLASS_CHECK(gemm.run(stream));
|
||||
|
||||
return D;
|
||||
}
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Kernel instantiations and dispatch logic
|
||||
// ----------------------------------------------------------------------------
|
||||
using Kernel_256x128_1x1x1 =
|
||||
W4A8GemmKernel<Shape<_256, _128>, Shape<_1, _1, _1>>;
|
||||
using Kernel_256x64_1x1x1 = W4A8GemmKernel<Shape<_256, _64>, Shape<_1, _1, _1>>;
|
||||
using Kernel_256x32_1x1x1 = W4A8GemmKernel<Shape<_256, _32>, Shape<_1, _1, _1>>;
|
||||
using Kernel_256x16_1x1x1 = W4A8GemmKernel<Shape<_256, _16>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x256_2x1x1 =
|
||||
W4A8GemmKernel<Shape<_128, _256>, Shape<_2, _1, _1>>;
|
||||
using Kernel_128x256_1x1x1 =
|
||||
W4A8GemmKernel<Shape<_128, _256>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x128_1x1x1 =
|
||||
W4A8GemmKernel<Shape<_128, _128>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x64_1x1x1 = W4A8GemmKernel<Shape<_128, _64>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x32_1x1x1 = W4A8GemmKernel<Shape<_128, _32>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x16_1x1x1 = W4A8GemmKernel<Shape<_128, _16>, Shape<_1, _1, _1>>;
|
||||
|
||||
torch::Tensor mm_dispatch(torch::Tensor const& A,
|
||||
torch::Tensor const& B, // already packed
|
||||
torch::Tensor const& group_scales, // already packed
|
||||
int64_t group_size,
|
||||
torch::Tensor const& channel_scales,
|
||||
torch::Tensor const& token_scales,
|
||||
std::optional<at::ScalarType> const& maybe_out_type,
|
||||
const std::string& schedule) {
|
||||
if (schedule == "256x128_1x1x1") {
|
||||
return Kernel_256x128_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "256x64_1x1x1") {
|
||||
return Kernel_256x64_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "256x32_1x1x1") {
|
||||
return Kernel_256x32_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "256x16_1x1x1") {
|
||||
return Kernel_256x16_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x256_2x1x1") {
|
||||
return Kernel_128x256_2x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x256_1x1x1") {
|
||||
return Kernel_128x256_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x128_1x1x1") {
|
||||
return Kernel_128x128_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x64_1x1x1") {
|
||||
return Kernel_128x64_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x32_1x1x1") {
|
||||
return Kernel_128x32_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x16_1x1x1") {
|
||||
return Kernel_128x16_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
}
|
||||
TORCH_CHECK(false, "Unknown W4A8 schedule: ", schedule);
|
||||
return {};
|
||||
}
|
||||
|
||||
torch::Tensor mm(torch::Tensor const& A,
|
||||
torch::Tensor const& B, // already packed
|
||||
torch::Tensor const& group_scales, // already packed
|
||||
int64_t group_size, torch::Tensor const& channel_scales,
|
||||
torch::Tensor const& token_scales,
|
||||
std::optional<at::ScalarType> const& maybe_out_type,
|
||||
std::optional<std::string> maybe_schedule) {
|
||||
// requested a specific schedule
|
||||
if (maybe_schedule) {
|
||||
return mm_dispatch(A, B, group_scales, group_size, channel_scales,
|
||||
token_scales, maybe_out_type, *maybe_schedule);
|
||||
}
|
||||
std::string schedule;
|
||||
int M = A.size(0);
|
||||
int K = A.size(1);
|
||||
int N = B.size(1);
|
||||
// heuristic
|
||||
if (M <= 16) {
|
||||
schedule = (K == 16384 && N == 18432) ? "256x16_1x1x1" : "128x16_1x1x1";
|
||||
} else if (M <= 32) {
|
||||
schedule = (K == 16384 && N == 18432) ? "256x32_1x1x1" : "128x32_1x1x1";
|
||||
} else if (M <= 64) {
|
||||
if (K == 16384 && N == 18432)
|
||||
schedule = "256x64_1x1x1";
|
||||
else if (N <= 8192 && K <= 8192)
|
||||
schedule = "128x32_1x1x1";
|
||||
else
|
||||
schedule = "128x64_1x1x1";
|
||||
} else if (M <= 128) {
|
||||
if (K == 16384 && N == 18432)
|
||||
schedule = "256x128_1x1x1";
|
||||
else if (N <= 8192)
|
||||
schedule = "128x64_1x1x1";
|
||||
else
|
||||
schedule = "128x128_1x1x1";
|
||||
} else if (M <= 256) {
|
||||
if (N <= 4096)
|
||||
schedule = "128x64_1x1x1";
|
||||
else if (N <= 8192)
|
||||
schedule = "128x128_1x1x1";
|
||||
else
|
||||
schedule = "128x256_1x1x1";
|
||||
} else if (M <= 512 && N <= 4096) {
|
||||
schedule = "128x128_1x1x1";
|
||||
} else if (M <= 1024) {
|
||||
schedule = "128x256_1x1x1";
|
||||
} else {
|
||||
schedule = "128x256_2x1x1";
|
||||
}
|
||||
return mm_dispatch(A, B, group_scales, group_size, channel_scales,
|
||||
token_scales, maybe_out_type, schedule);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Pre-processing utils
|
||||
// ----------------------------------------------------------------------------
|
||||
torch::Tensor pack_scale_fp8(torch::Tensor const& scales) {
|
||||
TORCH_CHECK(scales.dtype() == torch::kFloat8_e4m3fn);
|
||||
TORCH_CHECK(scales.is_contiguous());
|
||||
TORCH_CHECK(scales.is_cuda());
|
||||
|
||||
auto packed_scales = torch::empty(
|
||||
{scales.numel() * ScalePackSize},
|
||||
torch::TensorOptions().dtype(scales.dtype()).device(scales.device()));
|
||||
auto scales_ptr = static_cast<MmaType const*>(scales.const_data_ptr());
|
||||
auto packed_scales_ptr =
|
||||
static_cast<cutlass::Array<ElementScale, ScalePackSize>*>(
|
||||
packed_scales.data_ptr());
|
||||
|
||||
cutlass::pack_scale_fp8(scales_ptr, packed_scales_ptr, scales.numel());
|
||||
|
||||
return packed_scales;
|
||||
}
|
||||
|
||||
torch::Tensor encode_and_reorder_int4b(torch::Tensor const& B) {
|
||||
TORCH_CHECK(B.dtype() == torch::kInt32);
|
||||
TORCH_CHECK(B.dim() == 2);
|
||||
|
||||
torch::Tensor B_packed = torch::empty_like(B);
|
||||
|
||||
int k = B.size(0) * PackFactor; // logical k
|
||||
int n = B.size(1);
|
||||
|
||||
auto B_ptr = static_cast<QuantType const*>(B.const_data_ptr());
|
||||
auto B_packed_ptr = static_cast<QuantType*>(B_packed.data_ptr());
|
||||
auto shape_B = cute::make_shape(n, k, 1);
|
||||
auto layout_B = make_layout(shape_B, LayoutRight{}); // row major
|
||||
LayoutB_Reordered layout_B_reordered =
|
||||
cute::tile_to_shape(LayoutAtomQuant{}, shape_B);
|
||||
|
||||
cutlass::unified_encode_int4b(B_ptr, B_packed_ptr, n * k);
|
||||
cutlass::reorder_tensor(B_packed_ptr, layout_B, layout_B_reordered);
|
||||
|
||||
return B_packed;
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
|
||||
m.impl("cutlass_w4a8_mm", &mm);
|
||||
m.impl("cutlass_pack_scale_fp8", &pack_scale_fp8);
|
||||
m.impl("cutlass_encode_and_reorder_int4b", &encode_and_reorder_int4b);
|
||||
}
|
||||
|
||||
} // namespace vllm::cutlass_w4a8
|
||||
212
csrc/quantization/fp4/activation_nvfp4_quant_fusion_kernels.cu
Normal file
212
csrc/quantization/fp4/activation_nvfp4_quant_fusion_kernels.cu
Normal file
@ -0,0 +1,212 @@
|
||||
/*
|
||||
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <torch/all.h>
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include <cuda_fp8.h>
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "nvfp4_utils.cuh"
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template <class Type>
|
||||
__inline__ __device__ PackedVec<Type> compute_silu(PackedVec<Type>& vec,
|
||||
PackedVec<Type>& vec2) {
|
||||
PackedVec<Type> result;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; ++i) {
|
||||
if constexpr (std::is_same_v<Type, half>) {
|
||||
half2 val(0.5f, 0.5f);
|
||||
half2 t0 = __hmul2(vec.elts[i], val);
|
||||
half2 t1 = __hfma2(h2tanh(t0), val, val);
|
||||
half2 t2 = __hmul2(vec.elts[i], t1);
|
||||
result.elts[i] = __hmul2(t2, vec2.elts[i]);
|
||||
} else {
|
||||
__nv_bfloat162 val(0.5f, 0.5f);
|
||||
__nv_bfloat162 t0 = __hmul2(vec.elts[i], val);
|
||||
__nv_bfloat162 t1 = __hfma2(h2tanh(t0), val, val);
|
||||
__nv_bfloat162 t2 = __hmul2(vec.elts[i], t1);
|
||||
result.elts[i] = __hmul2(t2, vec2.elts[i]);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// Quantizes the provided PackedVec into the uint32_t output
|
||||
template <class Type, bool UE8M0_SF = false>
|
||||
__device__ uint32_t silu_and_cvt_warp_fp16_to_fp4(PackedVec<Type>& vec,
|
||||
PackedVec<Type>& vec2,
|
||||
float SFScaleVal,
|
||||
uint8_t* SFout) {
|
||||
PackedVec<Type> out_silu = compute_silu(vec, vec2);
|
||||
// Get absolute maximum values among the local 8 values.
|
||||
auto localMax = __habs2(out_silu.elts[0]);
|
||||
|
||||
// Local maximum value.
|
||||
#pragma unroll
|
||||
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
|
||||
localMax = __hmax2(localMax, __habs2(out_silu.elts[i]));
|
||||
}
|
||||
|
||||
// Get the absolute maximum among all 16 values (two threads).
|
||||
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
|
||||
// Get the final absolute maximum values.
|
||||
float vecMax = float(__hmax(localMax.x, localMax.y));
|
||||
|
||||
// Get the SF (max value of the vector / max value of e2m1).
|
||||
// maximum value of e2m1 = 6.0.
|
||||
// TODO: use half as compute data type.
|
||||
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
|
||||
// 8 bits representation of the SF.
|
||||
uint8_t fp8SFVal;
|
||||
// Write the SF to global memory (STG.8).
|
||||
if constexpr (UE8M0_SF) {
|
||||
// Extract the 8 exponent bits from float32.
|
||||
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
|
||||
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
|
||||
fp8SFVal = tmp & 0xff;
|
||||
// Convert back to fp32.
|
||||
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
|
||||
} else {
|
||||
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
|
||||
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
|
||||
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
|
||||
// Convert back to fp32.
|
||||
SFValue = float(tmp);
|
||||
}
|
||||
// Get the output scale.
|
||||
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
|
||||
// reciprocal(SFScaleVal))
|
||||
float outputScale =
|
||||
SFValue != 0 ? reciprocal_approximate_ftz(
|
||||
SFValue * reciprocal_approximate_ftz(SFScaleVal))
|
||||
: 0.0f;
|
||||
|
||||
if (SFout) {
|
||||
// Write the SF to global memory (STG.8).
|
||||
*SFout = fp8SFVal;
|
||||
}
|
||||
|
||||
// Convert the input to float.
|
||||
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
|
||||
if constexpr (std::is_same_v<Type, half>) {
|
||||
fp2Vals[i] = __half22float2(out_silu.elts[i]);
|
||||
} else {
|
||||
fp2Vals[i] = __bfloat1622float2(out_silu.elts[i]);
|
||||
}
|
||||
fp2Vals[i].x *= outputScale;
|
||||
fp2Vals[i].y *= outputScale;
|
||||
}
|
||||
|
||||
// Convert to e2m1 values.
|
||||
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
|
||||
|
||||
// Write the e2m1 values to global memory.
|
||||
return e2m1Vec;
|
||||
}
|
||||
|
||||
// Use UE4M3 by default.
|
||||
template <class Type, bool UE8M0_SF = false>
|
||||
__global__ void __launch_bounds__(1024, 4)
|
||||
silu_and_cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
|
||||
float const* SFScale, uint32_t* out,
|
||||
uint32_t* SFout) {
|
||||
using PackedVec = PackedVec<Type>;
|
||||
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
|
||||
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
|
||||
static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD,
|
||||
"Vec size is not matched.");
|
||||
|
||||
// Get the global scaling factor, which will be applied to the SF.
|
||||
// Note SFScale is the same as next GEMM's alpha, which is
|
||||
// (448.f / (Alpha_A / 6.f)).
|
||||
float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[0];
|
||||
|
||||
// Input tensor row/col loops.
|
||||
for (int rowIdx = blockIdx.x; rowIdx < numRows; rowIdx += gridDim.x) {
|
||||
for (int colIdx = threadIdx.x; colIdx < numCols / CVT_FP4_ELTS_PER_THREAD;
|
||||
colIdx += blockDim.x) {
|
||||
int64_t inOffset =
|
||||
rowIdx * (numCols * 2 / CVT_FP4_ELTS_PER_THREAD) + colIdx;
|
||||
int64_t inOffset2 = rowIdx * (numCols * 2 / CVT_FP4_ELTS_PER_THREAD) +
|
||||
numCols / CVT_FP4_ELTS_PER_THREAD + colIdx;
|
||||
PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
|
||||
PackedVec in_vec2 = reinterpret_cast<PackedVec const*>(in)[inOffset2];
|
||||
|
||||
// Get the output tensor offset.
|
||||
// Same as inOffset because 8 elements are packed into one uint32_t.
|
||||
int64_t outOffset = rowIdx * (numCols / CVT_FP4_ELTS_PER_THREAD) + colIdx;
|
||||
;
|
||||
auto& out_pos = out[outOffset];
|
||||
|
||||
auto sf_out =
|
||||
cvt_quant_to_fp4_get_sf_out_offset<uint32_t,
|
||||
CVT_FP4_NUM_THREADS_PER_SF>(
|
||||
rowIdx, colIdx, numCols, SFout);
|
||||
|
||||
out_pos = silu_and_cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(
|
||||
in_vec, in_vec2, SFScaleVal, sf_out);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output, // [..., d]
|
||||
torch::Tensor& output_sf,
|
||||
torch::Tensor& input, // [..., 2 * d]
|
||||
torch::Tensor& input_sf) {
|
||||
int32_t m = input.size(0);
|
||||
int32_t n = input.size(1) / 2;
|
||||
|
||||
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
|
||||
TORCH_CHECK(input.scalar_type() == at::ScalarType::Half ||
|
||||
input.scalar_type() == at::ScalarType::BFloat16,
|
||||
"Unsupported input data type for quantize_to_fp4.");
|
||||
|
||||
int multiProcessorCount =
|
||||
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
|
||||
|
||||
auto input_sf_ptr = static_cast<float const*>(input_sf.data_ptr());
|
||||
auto sf_out = static_cast<int32_t*>(output_sf.data_ptr());
|
||||
auto output_ptr = static_cast<int64_t*>(output.data_ptr());
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
|
||||
dim3 block(std::min(int(n / ELTS_PER_THREAD), 1024));
|
||||
int const numBlocksPerSM = 2048 / block.x;
|
||||
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
|
||||
|
||||
VLLM_DISPATCH_HALF_TYPES(
|
||||
input.scalar_type(), "silu_and_mul_nvfp4_quant_kernel", [&] {
|
||||
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
|
||||
auto input_ptr = static_cast<cuda_type const*>(input.data_ptr());
|
||||
vllm::silu_and_cvt_fp16_to_fp4<cuda_type><<<grid, block, 0, stream>>>(
|
||||
m, n, input_ptr, input_sf_ptr,
|
||||
reinterpret_cast<uint32_t*>(output_ptr),
|
||||
reinterpret_cast<uint32_t*>(sf_out));
|
||||
});
|
||||
}
|
||||
@ -1,3 +1,19 @@
|
||||
/*
|
||||
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <torch/all.h>
|
||||
#include <cutlass/arch/arch.h>
|
||||
|
||||
|
||||
@ -1,247 +1,42 @@
|
||||
/*
|
||||
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <torch/all.h>
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda_fp8.h>
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
template <typename T>
|
||||
struct TypeConverter {
|
||||
using Type = half2;
|
||||
}; // keep for generality
|
||||
#include "nvfp4_utils.cuh"
|
||||
|
||||
template <>
|
||||
struct TypeConverter<half2> {
|
||||
using Type = half;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct TypeConverter<half> {
|
||||
using Type = half2;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct TypeConverter<__nv_bfloat162> {
|
||||
using Type = __nv_bfloat16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct TypeConverter<__nv_bfloat16> {
|
||||
using Type = __nv_bfloat162;
|
||||
};
|
||||
|
||||
#define ELTS_PER_THREAD 8
|
||||
|
||||
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
|
||||
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
|
||||
|
||||
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
|
||||
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
uint32_t val;
|
||||
asm volatile(
|
||||
"{\n"
|
||||
".reg .b8 byte0;\n"
|
||||
".reg .b8 byte1;\n"
|
||||
".reg .b8 byte2;\n"
|
||||
".reg .b8 byte3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
|
||||
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
|
||||
"}"
|
||||
: "=r"(val)
|
||||
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
|
||||
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
|
||||
return val;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
|
||||
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
uint32_t val;
|
||||
asm volatile(
|
||||
"{\n"
|
||||
".reg .b8 byte0;\n"
|
||||
".reg .b8 byte1;\n"
|
||||
".reg .b8 byte2;\n"
|
||||
".reg .b8 byte3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
|
||||
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
|
||||
"}"
|
||||
: "=r"(val)
|
||||
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
|
||||
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
|
||||
return val;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Fast reciprocal.
|
||||
inline __device__ float reciprocal_approximate_ftz(float a) {
|
||||
float b;
|
||||
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
|
||||
return b;
|
||||
}
|
||||
|
||||
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
|
||||
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
|
||||
int numCols,
|
||||
SFType* SFout) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
|
||||
CVT_FP4_NUM_THREADS_PER_SF == 2);
|
||||
|
||||
// One pair of threads write one SF to global memory.
|
||||
// TODO: stage through smem for packed STG.32
|
||||
// is it better than STG.8 from 4 threads ?
|
||||
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
|
||||
// SF vector index (16 elements share one SF in the K dimension).
|
||||
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
|
||||
int32_t mIdx = rowIdx;
|
||||
|
||||
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
|
||||
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
|
||||
|
||||
int32_t mTileIdx = mIdx / (32 * 4);
|
||||
// SF vector size 16.
|
||||
int factor = CVT_FP4_SF_VEC_SIZE * 4;
|
||||
int32_t numKTiles = (numCols + factor - 1) / factor;
|
||||
int64_t mTileStride = numKTiles * 32 * 4 * 4;
|
||||
|
||||
int32_t kTileIdx = (kIdx / 4);
|
||||
int64_t kTileStride = 32 * 4 * 4;
|
||||
|
||||
// M tile layout [32, 4] is column-major.
|
||||
int32_t outerMIdx = (mIdx % 32);
|
||||
int64_t outerMStride = 4 * 4;
|
||||
|
||||
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
|
||||
int64_t innerMStride = 4;
|
||||
|
||||
int32_t innerKIdx = (kIdx % 4);
|
||||
int64_t innerKStride = 1;
|
||||
|
||||
// Compute the global offset.
|
||||
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
|
||||
outerMIdx * outerMStride + innerMIdx * innerMStride +
|
||||
innerKIdx * innerKStride;
|
||||
|
||||
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
|
||||
}
|
||||
#endif
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Define a 16 bytes packed data type.
|
||||
template <class Type>
|
||||
struct PackedVec {
|
||||
typename TypeConverter<Type>::Type elts[4];
|
||||
};
|
||||
|
||||
template <>
|
||||
struct PackedVec<__nv_fp8_e4m3> {
|
||||
__nv_fp8x2_e4m3 elts[8];
|
||||
};
|
||||
|
||||
// Quantizes the provided PackedVec into the uint32_t output
|
||||
template <class Type, bool UE8M0_SF = false>
|
||||
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
|
||||
uint8_t* SFout) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
// Get absolute maximum values among the local 8 values.
|
||||
auto localMax = __habs2(vec.elts[0]);
|
||||
|
||||
// Local maximum value.
|
||||
#pragma unroll
|
||||
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
|
||||
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
|
||||
}
|
||||
|
||||
// Get the absolute maximum among all 16 values (two threads).
|
||||
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
|
||||
// Get the final absolute maximum values.
|
||||
float vecMax = float(__hmax(localMax.x, localMax.y));
|
||||
|
||||
// Get the SF (max value of the vector / max value of e2m1).
|
||||
// maximum value of e2m1 = 6.0.
|
||||
// TODO: use half as compute data type.
|
||||
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
|
||||
// 8 bits representation of the SF.
|
||||
uint8_t fp8SFVal;
|
||||
// Write the SF to global memory (STG.8).
|
||||
if constexpr (UE8M0_SF) {
|
||||
// Extract the 8 exponent bits from float32.
|
||||
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
|
||||
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
|
||||
fp8SFVal = tmp & 0xff;
|
||||
// Convert back to fp32.
|
||||
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
|
||||
} else {
|
||||
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
|
||||
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
|
||||
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
|
||||
// Convert back to fp32.
|
||||
SFValue = float(tmp);
|
||||
}
|
||||
// Get the output scale.
|
||||
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
|
||||
// reciprocal(SFScaleVal))
|
||||
float outputScale =
|
||||
SFValue != 0 ? reciprocal_approximate_ftz(
|
||||
SFValue * reciprocal_approximate_ftz(SFScaleVal))
|
||||
: 0.0f;
|
||||
|
||||
if (SFout) {
|
||||
// Write the SF to global memory (STG.8).
|
||||
*SFout = fp8SFVal;
|
||||
}
|
||||
|
||||
// Convert the input to float.
|
||||
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
|
||||
if constexpr (std::is_same_v<Type, half>) {
|
||||
fp2Vals[i] = __half22float2(vec.elts[i]);
|
||||
} else {
|
||||
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
|
||||
}
|
||||
fp2Vals[i].x *= outputScale;
|
||||
fp2Vals[i].y *= outputScale;
|
||||
}
|
||||
|
||||
// Convert to e2m1 values.
|
||||
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
|
||||
|
||||
// Write the e2m1 values to global memory.
|
||||
return e2m1Vec;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
namespace vllm {
|
||||
|
||||
// Use UE4M3 by default.
|
||||
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
|
||||
__global__ void
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
|
||||
#else
|
||||
cvt_fp16_to_fp4(
|
||||
#endif
|
||||
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
|
||||
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
|
||||
uint32_t* output_scale_offset_by_experts, int n_experts, bool low_latency) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
__global__ void __launch_bounds__(512, 4)
|
||||
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
|
||||
float const* SFScale, uint32_t* out, uint32_t* SFout,
|
||||
uint32_t* input_offset_by_experts,
|
||||
uint32_t* output_scale_offset_by_experts, int n_experts,
|
||||
bool low_latency) {
|
||||
using PackedVec = PackedVec<Type>;
|
||||
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
|
||||
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
|
||||
@ -299,8 +94,8 @@ cvt_fp16_to_fp4(
|
||||
&input_offset_by_experts[chunk_start + 12]));
|
||||
local_offsets[16] = __ldca(&input_offset_by_experts[chunk_start + 16]);
|
||||
|
||||
// Check against the 16 loaded offsets
|
||||
#pragma unroll
|
||||
// Check against the 16 loaded offsets
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 16; i++) {
|
||||
if (rowIdx >= local_offsets[i] && rowIdx < local_offsets[i + 1]) {
|
||||
rowIdx_in_expert = rowIdx - local_offsets[i];
|
||||
@ -330,21 +125,15 @@ cvt_fp16_to_fp4(
|
||||
|
||||
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
|
||||
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
|
||||
__global__ void
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
__launch_bounds__(1024, 4) cvt_fp16_to_fp4(
|
||||
#else
|
||||
cvt_fp16_to_fp4(
|
||||
#endif
|
||||
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
|
||||
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
|
||||
uint32_t* output_scale_offset_by_experts, int n_experts) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
__global__ void __launch_bounds__(1024, 4)
|
||||
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
|
||||
float const* SFScale, uint32_t* out, uint32_t* SFout,
|
||||
uint32_t* input_offset_by_experts,
|
||||
uint32_t* output_scale_offset_by_experts, int n_experts) {
|
||||
using PackedVec = PackedVec<Type>;
|
||||
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
|
||||
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
|
||||
@ -425,7 +214,6 @@ cvt_fp16_to_fp4(
|
||||
|
||||
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
@ -501,6 +289,8 @@ void quant_impl(void* output, void* output_scale, void* input,
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
/*Quantization entry for fp4 experts quantization*/
|
||||
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, "must be a CUDA tensor")
|
||||
#define CHECK_CONTIGUOUS(x, m) \
|
||||
@ -560,23 +350,17 @@ void scaled_fp4_experts_quant_sm100a(
|
||||
// 4 means 4 fp8 values are packed into one int32
|
||||
TORCH_CHECK(output_scale.size(1) * 4 == padded_k);
|
||||
|
||||
auto in_dtype = input.dtype();
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream =
|
||||
at::cuda::getCurrentCUDAStream(input.get_device());
|
||||
if (in_dtype == at::ScalarType::Half) {
|
||||
quant_impl<half>(output.data_ptr(), output_scale.data_ptr(),
|
||||
input.data_ptr(), input_global_scale.data_ptr(),
|
||||
input_offset_by_experts.data_ptr(),
|
||||
output_scale_offset_by_experts.data_ptr(), m_topk, k,
|
||||
n_experts, stream);
|
||||
} else if (in_dtype == at::ScalarType::BFloat16) {
|
||||
quant_impl<__nv_bfloat16>(output.data_ptr(), output_scale.data_ptr(),
|
||||
input.data_ptr(), input_global_scale.data_ptr(),
|
||||
input_offset_by_experts.data_ptr(),
|
||||
output_scale_offset_by_experts.data_ptr(), m_topk,
|
||||
k, n_experts, stream);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Expected input data type to be half or bfloat16");
|
||||
}
|
||||
|
||||
VLLM_DISPATCH_HALF_TYPES(
|
||||
input.scalar_type(), "nvfp4_experts_quant_kernel", [&] {
|
||||
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
|
||||
vllm::quant_impl<cuda_type>(
|
||||
output.data_ptr(), output_scale.data_ptr(), input.data_ptr(),
|
||||
input_global_scale.data_ptr(), input_offset_by_experts.data_ptr(),
|
||||
output_scale_offset_by_experts.data_ptr(), m_topk, k, n_experts,
|
||||
stream);
|
||||
});
|
||||
}
|
||||
|
||||
@ -32,6 +32,14 @@ void scaled_fp4_experts_quant_sm100a(
|
||||
torch::Tensor const& output_scale_offset_by_experts);
|
||||
#endif
|
||||
|
||||
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
|
||||
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
|
||||
void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output,
|
||||
torch::Tensor& output_sf,
|
||||
torch::Tensor& input,
|
||||
torch::Tensor& input_sf);
|
||||
#endif
|
||||
|
||||
void scaled_fp4_quant(torch::Tensor& output, torch::Tensor const& input,
|
||||
torch::Tensor& output_sf, torch::Tensor const& input_sf) {
|
||||
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
|
||||
@ -54,3 +62,13 @@ void scaled_fp4_experts_quant(
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false,
|
||||
"No compiled nvfp4 experts quantization kernel");
|
||||
}
|
||||
|
||||
void silu_and_mul_nvfp4_quant(torch::Tensor& output, torch::Tensor& output_sf,
|
||||
torch::Tensor& input, torch::Tensor& input_sf) {
|
||||
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
|
||||
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
|
||||
return silu_and_mul_nvfp4_quant_sm1xxa(output, output_sf, input, input_sf);
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false, "No compiled silu_and_mul nvfp4 quantization kernel");
|
||||
}
|
||||
|
||||
@ -23,245 +23,18 @@
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include <cuda_fp8.h>
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "nvfp4_utils.cuh"
|
||||
|
||||
// Get type2 from type or vice versa (applied to half and bfloat16)
|
||||
template <typename T>
|
||||
struct TypeConverter {
|
||||
using Type = half2;
|
||||
}; // keep for generality
|
||||
|
||||
template <>
|
||||
struct TypeConverter<half2> {
|
||||
using Type = half;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct TypeConverter<half> {
|
||||
using Type = half2;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct TypeConverter<__nv_bfloat162> {
|
||||
using Type = __nv_bfloat16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct TypeConverter<__nv_bfloat16> {
|
||||
using Type = __nv_bfloat162;
|
||||
};
|
||||
|
||||
#define ELTS_PER_THREAD 8
|
||||
|
||||
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
|
||||
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
|
||||
|
||||
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
|
||||
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
uint32_t val;
|
||||
asm volatile(
|
||||
"{\n"
|
||||
".reg .b8 byte0;\n"
|
||||
".reg .b8 byte1;\n"
|
||||
".reg .b8 byte2;\n"
|
||||
".reg .b8 byte3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
|
||||
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
|
||||
"}"
|
||||
: "=r"(val)
|
||||
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
|
||||
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
|
||||
return val;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
|
||||
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
uint32_t val;
|
||||
asm volatile(
|
||||
"{\n"
|
||||
".reg .b8 byte0;\n"
|
||||
".reg .b8 byte1;\n"
|
||||
".reg .b8 byte2;\n"
|
||||
".reg .b8 byte3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
|
||||
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
|
||||
"}"
|
||||
: "=r"(val)
|
||||
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
|
||||
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
|
||||
return val;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Fast reciprocal.
|
||||
inline __device__ float reciprocal_approximate_ftz(float a) {
|
||||
float b;
|
||||
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
|
||||
return b;
|
||||
}
|
||||
|
||||
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
|
||||
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
|
||||
int numCols,
|
||||
SFType* SFout) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
|
||||
CVT_FP4_NUM_THREADS_PER_SF == 2);
|
||||
|
||||
// One pair of threads write one SF to global memory.
|
||||
// TODO: stage through smem for packed STG.32
|
||||
// is it better than STG.8 from 4 threads ?
|
||||
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
|
||||
// SF vector index (16 elements share one SF in the K dimension).
|
||||
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
|
||||
int32_t mIdx = rowIdx;
|
||||
|
||||
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
|
||||
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
|
||||
|
||||
int32_t mTileIdx = mIdx / (32 * 4);
|
||||
// SF vector size 16.
|
||||
int factor = CVT_FP4_SF_VEC_SIZE * 4;
|
||||
int32_t numKTiles = (numCols + factor - 1) / factor;
|
||||
int64_t mTileStride = numKTiles * 32 * 4 * 4;
|
||||
|
||||
int32_t kTileIdx = (kIdx / 4);
|
||||
int64_t kTileStride = 32 * 4 * 4;
|
||||
|
||||
// M tile layout [32, 4] is column-major.
|
||||
int32_t outerMIdx = (mIdx % 32);
|
||||
int64_t outerMStride = 4 * 4;
|
||||
|
||||
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
|
||||
int64_t innerMStride = 4;
|
||||
|
||||
int32_t innerKIdx = (kIdx % 4);
|
||||
int64_t innerKStride = 1;
|
||||
|
||||
// Compute the global offset.
|
||||
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
|
||||
outerMIdx * outerMStride + innerMIdx * innerMStride +
|
||||
innerKIdx * innerKStride;
|
||||
|
||||
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
|
||||
}
|
||||
#endif
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Define a 16 bytes packed data type.
|
||||
template <class Type>
|
||||
struct PackedVec {
|
||||
typename TypeConverter<Type>::Type elts[4];
|
||||
};
|
||||
|
||||
template <>
|
||||
struct PackedVec<__nv_fp8_e4m3> {
|
||||
__nv_fp8x2_e4m3 elts[8];
|
||||
};
|
||||
|
||||
// Quantizes the provided PackedVec into the uint32_t output
|
||||
template <class Type, bool UE8M0_SF = false>
|
||||
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
|
||||
uint8_t* SFout) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
// Get absolute maximum values among the local 8 values.
|
||||
auto localMax = __habs2(vec.elts[0]);
|
||||
|
||||
// Local maximum value.
|
||||
#pragma unroll
|
||||
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
|
||||
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
|
||||
}
|
||||
|
||||
// Get the absolute maximum among all 16 values (two threads).
|
||||
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
|
||||
// Get the final absolute maximum values.
|
||||
float vecMax = float(__hmax(localMax.x, localMax.y));
|
||||
|
||||
// Get the SF (max value of the vector / max value of e2m1).
|
||||
// maximum value of e2m1 = 6.0.
|
||||
// TODO: use half as compute data type.
|
||||
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
|
||||
// 8 bits representation of the SF.
|
||||
uint8_t fp8SFVal;
|
||||
// Write the SF to global memory (STG.8).
|
||||
if constexpr (UE8M0_SF) {
|
||||
// Extract the 8 exponent bits from float32.
|
||||
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
|
||||
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
|
||||
fp8SFVal = tmp & 0xff;
|
||||
// Convert back to fp32.
|
||||
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
|
||||
} else {
|
||||
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
|
||||
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
|
||||
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
|
||||
// Convert back to fp32.
|
||||
SFValue = float(tmp);
|
||||
}
|
||||
// Get the output scale.
|
||||
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
|
||||
// reciprocal(SFScaleVal))
|
||||
float outputScale =
|
||||
SFValue != 0 ? reciprocal_approximate_ftz(
|
||||
SFValue * reciprocal_approximate_ftz(SFScaleVal))
|
||||
: 0.0f;
|
||||
|
||||
if (SFout) {
|
||||
// Write the SF to global memory (STG.8).
|
||||
*SFout = fp8SFVal;
|
||||
}
|
||||
|
||||
// Convert the input to float.
|
||||
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
|
||||
if constexpr (std::is_same_v<Type, half>) {
|
||||
fp2Vals[i] = __half22float2(vec.elts[i]);
|
||||
} else {
|
||||
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
|
||||
}
|
||||
fp2Vals[i].x *= outputScale;
|
||||
fp2Vals[i].y *= outputScale;
|
||||
}
|
||||
|
||||
// Convert to e2m1 values.
|
||||
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
|
||||
|
||||
// Write the e2m1 values to global memory.
|
||||
return e2m1Vec;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
namespace vllm {
|
||||
|
||||
// Use UE4M3 by default.
|
||||
template <class Type, bool UE8M0_SF = false>
|
||||
__global__ void
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
|
||||
#else
|
||||
cvt_fp16_to_fp4(
|
||||
#endif
|
||||
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
|
||||
uint32_t* out, uint32_t* SFout) {
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
|
||||
__global__ void __launch_bounds__(512, 4)
|
||||
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
|
||||
float const* SFScale, uint32_t* out, uint32_t* SFout) {
|
||||
using PackedVec = PackedVec<Type>;
|
||||
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
|
||||
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
|
||||
@ -293,7 +66,6 @@ cvt_fp16_to_fp4(
|
||||
cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
@ -332,6 +104,8 @@ template void invokeFP4Quantization(int m, int n, __nv_bfloat16 const* input,
|
||||
int multiProcessorCount,
|
||||
cudaStream_t stream);
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
|
||||
torch::Tensor const& input,
|
||||
torch::Tensor const& output_sf,
|
||||
@ -340,6 +114,9 @@ void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
|
||||
int32_t n = input.size(1);
|
||||
|
||||
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
|
||||
TORCH_CHECK(input.scalar_type() == at::ScalarType::Half ||
|
||||
input.scalar_type() == at::ScalarType::BFloat16,
|
||||
"Unsupported input data type for quantize_to_fp4.");
|
||||
|
||||
int multiProcessorCount =
|
||||
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
|
||||
@ -353,24 +130,10 @@ void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
|
||||
// We don't support e8m0 scales at this moment.
|
||||
bool useUE8M0 = false;
|
||||
|
||||
switch (input.scalar_type()) {
|
||||
case torch::kHalf: {
|
||||
auto input_ptr = reinterpret_cast<half const*>(input.data_ptr());
|
||||
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
|
||||
useUE8M0, multiProcessorCount, stream);
|
||||
break;
|
||||
}
|
||||
case torch::kBFloat16: {
|
||||
auto input_ptr = reinterpret_cast<__nv_bfloat16 const*>(input.data_ptr());
|
||||
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
|
||||
useUE8M0, multiProcessorCount, stream);
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
std::cerr << "Observing: " << input.scalar_type()
|
||||
<< " for the input datatype which is invalid";
|
||||
throw std::runtime_error(
|
||||
"Unsupported input data type for quantize_to_fp4.");
|
||||
}
|
||||
}
|
||||
VLLM_DISPATCH_HALF_TYPES(input.scalar_type(), "nvfp4_quant_kernel", [&] {
|
||||
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
|
||||
auto input_ptr = static_cast<cuda_type const*>(input.data_ptr());
|
||||
vllm::invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr,
|
||||
sf_out, useUE8M0, multiProcessorCount, stream);
|
||||
});
|
||||
}
|
||||
|
||||
251
csrc/quantization/fp4/nvfp4_utils.cuh
Normal file
251
csrc/quantization/fp4/nvfp4_utils.cuh
Normal file
@ -0,0 +1,251 @@
|
||||
/*
|
||||
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda_fp8.h>
|
||||
|
||||
#define ELTS_PER_THREAD 8
|
||||
|
||||
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
|
||||
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Convert PyTorch cpp type to CUDA type
|
||||
template <typename T>
|
||||
struct CUDATypeConverter {
|
||||
using Type = T;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct CUDATypeConverter<at::Half> {
|
||||
using Type = half;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct CUDATypeConverter<at::BFloat16> {
|
||||
using Type = __nv_bfloat16;
|
||||
};
|
||||
|
||||
// Get type2 from type or vice versa (applied to half and bfloat16)
|
||||
template <typename T>
|
||||
struct TypeConverter {
|
||||
using Type = half2;
|
||||
}; // keep for generality
|
||||
|
||||
template <>
|
||||
struct TypeConverter<half2> {
|
||||
using Type = half;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct TypeConverter<half> {
|
||||
using Type = half2;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct TypeConverter<__nv_bfloat162> {
|
||||
using Type = __nv_bfloat16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct TypeConverter<__nv_bfloat16> {
|
||||
using Type = __nv_bfloat162;
|
||||
};
|
||||
|
||||
// Define a 16 bytes packed data type.
|
||||
template <class Type>
|
||||
struct PackedVec {
|
||||
typename TypeConverter<Type>::Type elts[4];
|
||||
};
|
||||
|
||||
template <>
|
||||
struct PackedVec<__nv_fp8_e4m3> {
|
||||
__nv_fp8x2_e4m3 elts[8];
|
||||
};
|
||||
|
||||
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
|
||||
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
|
||||
uint32_t val;
|
||||
asm volatile(
|
||||
"{\n"
|
||||
".reg .b8 byte0;\n"
|
||||
".reg .b8 byte1;\n"
|
||||
".reg .b8 byte2;\n"
|
||||
".reg .b8 byte3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
|
||||
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
|
||||
"}"
|
||||
: "=r"(val)
|
||||
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
|
||||
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
|
||||
return val;
|
||||
}
|
||||
|
||||
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
|
||||
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
|
||||
uint32_t val;
|
||||
asm volatile(
|
||||
"{\n"
|
||||
".reg .b8 byte0;\n"
|
||||
".reg .b8 byte1;\n"
|
||||
".reg .b8 byte2;\n"
|
||||
".reg .b8 byte3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
|
||||
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
|
||||
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
|
||||
"}"
|
||||
: "=r"(val)
|
||||
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
|
||||
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
|
||||
return val;
|
||||
}
|
||||
|
||||
// Fast reciprocal.
|
||||
inline __device__ float reciprocal_approximate_ftz(float a) {
|
||||
float b;
|
||||
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
|
||||
return b;
|
||||
}
|
||||
|
||||
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
|
||||
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
|
||||
int numCols,
|
||||
SFType* SFout) {
|
||||
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
|
||||
CVT_FP4_NUM_THREADS_PER_SF == 2);
|
||||
|
||||
// One pair of threads write one SF to global memory.
|
||||
// TODO: stage through smem for packed STG.32
|
||||
// is it better than STG.8 from 4 threads ?
|
||||
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
|
||||
// SF vector index (16 elements share one SF in the K dimension).
|
||||
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
|
||||
int32_t mIdx = rowIdx;
|
||||
|
||||
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
|
||||
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
|
||||
|
||||
int32_t mTileIdx = mIdx / (32 * 4);
|
||||
// SF vector size 16.
|
||||
int factor = CVT_FP4_SF_VEC_SIZE * 4;
|
||||
int32_t numKTiles = (numCols + factor - 1) / factor;
|
||||
int64_t mTileStride = numKTiles * 32 * 4 * 4;
|
||||
|
||||
int32_t kTileIdx = (kIdx / 4);
|
||||
int64_t kTileStride = 32 * 4 * 4;
|
||||
|
||||
// M tile layout [32, 4] is column-major.
|
||||
int32_t outerMIdx = (mIdx % 32);
|
||||
int64_t outerMStride = 4 * 4;
|
||||
|
||||
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
|
||||
int64_t innerMStride = 4;
|
||||
|
||||
int32_t innerKIdx = (kIdx % 4);
|
||||
int64_t innerKStride = 1;
|
||||
|
||||
// Compute the global offset.
|
||||
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
|
||||
outerMIdx * outerMStride + innerMIdx * innerMStride +
|
||||
innerKIdx * innerKStride;
|
||||
|
||||
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Quantizes the provided PackedVec into the uint32_t output
|
||||
template <class Type, bool UE8M0_SF = false>
|
||||
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
|
||||
uint8_t* SFout) {
|
||||
// Get absolute maximum values among the local 8 values.
|
||||
auto localMax = __habs2(vec.elts[0]);
|
||||
|
||||
// Local maximum value.
|
||||
#pragma unroll
|
||||
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
|
||||
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
|
||||
}
|
||||
|
||||
// Get the absolute maximum among all 16 values (two threads).
|
||||
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
|
||||
// Get the final absolute maximum values.
|
||||
float vecMax = float(__hmax(localMax.x, localMax.y));
|
||||
|
||||
// Get the SF (max value of the vector / max value of e2m1).
|
||||
// maximum value of e2m1 = 6.0.
|
||||
// TODO: use half as compute data type.
|
||||
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
|
||||
// 8 bits representation of the SF.
|
||||
uint8_t fp8SFVal;
|
||||
// Write the SF to global memory (STG.8).
|
||||
if constexpr (UE8M0_SF) {
|
||||
// Extract the 8 exponent bits from float32.
|
||||
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
|
||||
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
|
||||
fp8SFVal = tmp & 0xff;
|
||||
// Convert back to fp32.
|
||||
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
|
||||
} else {
|
||||
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
|
||||
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
|
||||
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
|
||||
// Convert back to fp32.
|
||||
SFValue = float(tmp);
|
||||
}
|
||||
// Get the output scale.
|
||||
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
|
||||
// reciprocal(SFScaleVal))
|
||||
float outputScale =
|
||||
SFValue != 0 ? reciprocal_approximate_ftz(
|
||||
SFValue * reciprocal_approximate_ftz(SFScaleVal))
|
||||
: 0.0f;
|
||||
|
||||
if (SFout) {
|
||||
// Write the SF to global memory (STG.8).
|
||||
*SFout = fp8SFVal;
|
||||
}
|
||||
|
||||
// Convert the input to float.
|
||||
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
|
||||
if constexpr (std::is_same_v<Type, half>) {
|
||||
fp2Vals[i] = __half22float2(vec.elts[i]);
|
||||
} else {
|
||||
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
|
||||
}
|
||||
fp2Vals[i].x *= outputScale;
|
||||
fp2Vals[i].y *= outputScale;
|
||||
}
|
||||
|
||||
// Convert to e2m1 values.
|
||||
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
|
||||
|
||||
// Write the e2m1 values to global memory.
|
||||
return e2m1Vec;
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
@ -417,7 +417,7 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
|
||||
))
|
||||
|
||||
def prepacked_type_key(prepack_type: PrepackTypeConfig):
|
||||
# For now we we can just use the first accumulator type seen since
|
||||
# For now, we can just use the first accumulator type seen since
|
||||
# the tensor core shapes/layouts don't vary based on accumulator
|
||||
# type so we can generate less code this way
|
||||
return (prepack_type.a, prepack_type.b_num_bits, prepack_type.convert)
|
||||
|
||||
@ -115,6 +115,13 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
"silu_and_mul_quant(Tensor! result, Tensor input, Tensor scale) -> ()");
|
||||
ops.impl("silu_and_mul_quant", torch::kCUDA, &silu_and_mul_quant);
|
||||
|
||||
#ifndef USE_ROCM
|
||||
ops.def(
|
||||
"silu_and_mul_nvfp4_quant(Tensor! result, Tensor! result_block_scale, "
|
||||
"Tensor input, Tensor input_global_scale) -> ()");
|
||||
ops.impl("silu_and_mul_nvfp4_quant", torch::kCUDA, &silu_and_mul_nvfp4_quant);
|
||||
#endif
|
||||
|
||||
ops.def("mul_and_silu(Tensor! out, Tensor input) -> ()");
|
||||
ops.impl("mul_and_silu", torch::kCUDA, &mul_and_silu);
|
||||
|
||||
@ -309,6 +316,26 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
"awq_marlin_repack(Tensor b_q_weight, SymInt size_k, "
|
||||
"SymInt size_n, int num_bits) -> Tensor");
|
||||
// conditionally compiled so impl registrations are in source file
|
||||
|
||||
// CUTLASS w4a8 GEMM
|
||||
ops.def(
|
||||
"cutlass_w4a8_mm("
|
||||
" Tensor A,"
|
||||
" Tensor B,"
|
||||
" Tensor group_scales,"
|
||||
" int group_size,"
|
||||
" Tensor channel_scales,"
|
||||
" Tensor token_scales,"
|
||||
" ScalarType? out_type,"
|
||||
" str? maybe_schedule"
|
||||
") -> Tensor",
|
||||
{stride_tag});
|
||||
// pack scales
|
||||
ops.def("cutlass_pack_scale_fp8(Tensor scales) -> Tensor");
|
||||
// encode and reorder weight matrix
|
||||
ops.def("cutlass_encode_and_reorder_int4b(Tensor B) -> Tensor");
|
||||
// conditionally compiled so impl registration is in source file
|
||||
|
||||
#endif
|
||||
|
||||
// Dequantization for GGML.
|
||||
@ -489,10 +516,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
|
||||
// SM100 CUTLASS MLA decode
|
||||
ops.def(
|
||||
"sm100_cutlass_mla_decode(Tensor! out, Tensor q_nope, Tensor q_pe,"
|
||||
" Tensor kv_c_and_k_pe_cache, Tensor seq_lens,"
|
||||
" Tensor page_table, Tensor workspace, float "
|
||||
"scale,"
|
||||
"sm100_cutlass_mla_decode(Tensor! out, Tensor! lse, Tensor q_nope,"
|
||||
" Tensor q_pe, Tensor kv_c_and_k_pe_cache,"
|
||||
" Tensor seq_lens, Tensor page_table,"
|
||||
" Tensor workspace, float scale,"
|
||||
" int num_kv_splits) -> ()");
|
||||
// conditionally compiled so impl in source file
|
||||
|
||||
@ -672,11 +699,21 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
"str kv_cache_dtype) -> ()");
|
||||
cache_ops.impl("convert_fp8", torch::kCUDA, &convert_fp8);
|
||||
|
||||
// Gather cache blocks from src_cache to dst.
|
||||
// Gather cache blocks from src_cache to dst, dequantizing from
|
||||
// src_cache's dtype to dst's dtype if necessary.
|
||||
cache_ops.def(
|
||||
"gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
|
||||
"gather_and_maybe_dequant_cache(Tensor src_cache, Tensor! dst, "
|
||||
" Tensor block_table, Tensor cu_seq_lens, "
|
||||
" int batch_size, "
|
||||
" str kv_cache_dtype, "
|
||||
" Tensor scale, Tensor? seq_starts) -> ()");
|
||||
cache_ops.impl("gather_and_maybe_dequant_cache", torch::kCUDA,
|
||||
&gather_and_maybe_dequant_cache);
|
||||
|
||||
cache_ops.def(
|
||||
"cp_gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
|
||||
"Tensor cu_seq_lens, int batch_size, Tensor? seq_starts) -> ()");
|
||||
cache_ops.impl("gather_cache", torch::kCUDA, &gather_cache);
|
||||
cache_ops.impl("cp_gather_cache", torch::kCUDA, &cp_gather_cache);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {
|
||||
|
||||
@ -237,7 +237,7 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
# Check the size of the wheel if RUN_WHEEL_CHECK is true
|
||||
COPY .buildkite/check-wheel-size.py check-wheel-size.py
|
||||
# sync the default value with .buildkite/check-wheel-size.py
|
||||
ARG VLLM_MAX_SIZE_MB=400
|
||||
ARG VLLM_MAX_SIZE_MB=450
|
||||
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
|
||||
ARG RUN_WHEEL_CHECK=true
|
||||
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
|
||||
@ -261,6 +261,8 @@ ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
# Install libnuma-dev, required by fastsafetensors (fixes #20384)
|
||||
RUN apt-get update && apt-get install -y libnuma-dev && rm -rf /var/lib/apt/lists/*
|
||||
COPY requirements/lint.txt requirements/lint.txt
|
||||
COPY requirements/test.txt requirements/test.txt
|
||||
COPY requirements/dev.txt requirements/dev.txt
|
||||
@ -373,7 +375,7 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
|
||||
# Install FlashInfer from source
|
||||
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
|
||||
# Keep this in sync with "flashinfer" extra in setup.py
|
||||
ARG FLASHINFER_GIT_REF="v0.2.12"
|
||||
ARG FLASHINFER_GIT_REF="v0.3.0"
|
||||
# Flag to control whether to compile FlashInfer AOT kernels
|
||||
# Set to "true" to enable AOT compilation:
|
||||
# docker build --build-arg FLASHINFER_AOT_COMPILE=true ...
|
||||
@ -432,31 +434,18 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
|
||||
# Install DeepGEMM from source
|
||||
ARG DEEPGEMM_GIT_REPO="https://github.com/deepseek-ai/DeepGEMM.git"
|
||||
ARG DEEPGEMM_GIT_REF="7b6b5563b9d4c1ae07ffbce7f78ad3ac9204827c"
|
||||
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
|
||||
. /etc/environment
|
||||
CUDA_MAJOR="${CUDA_VERSION%%.*}"
|
||||
CUDA_MINOR="${CUDA_VERSION#${CUDA_MAJOR}.}"
|
||||
CUDA_MINOR="${CUDA_MINOR%%.*}"
|
||||
if [ "$CUDA_MAJOR" -ge 12 ] && [ "$CUDA_MINOR" -ge 8 ]; then
|
||||
git clone --recursive --shallow-submodules \
|
||||
${DEEPGEMM_GIT_REPO} deepgemm
|
||||
echo "🏗️ Building DeepGEMM"
|
||||
pushd deepgemm
|
||||
git checkout ${DEEPGEMM_GIT_REF}
|
||||
# Build DeepGEMM
|
||||
# (Based on https://github.com/deepseek-ai/DeepGEMM/blob/main/install.sh)
|
||||
rm -rf build dist
|
||||
rm -rf *.egg-info
|
||||
python3 setup.py bdist_wheel
|
||||
uv pip install --system dist/*.whl
|
||||
popd
|
||||
rm -rf deepgemm
|
||||
else
|
||||
echo "Skipping DeepGEMM installation (requires CUDA 12.8+ but got ${CUDA_VERSION})"
|
||||
fi
|
||||
BASH
|
||||
ARG DEEPGEMM_GIT_REF
|
||||
COPY tools/install_deepgemm.sh /tmp/install_deepgemm.sh
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
VLLM_DOCKER_BUILD_CONTEXT=1 /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
|
||||
|
||||
# Install EP kernels(pplx-kernels and DeepEP), NixL
|
||||
COPY tools/ep_kernels/install_python_libraries.sh install_python_libraries.sh
|
||||
COPY tools/install_nixl.sh install_nixl.sh
|
||||
ENV CUDA_HOME=/usr/local/cuda
|
||||
RUN export TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST:-9.0a+PTX}" \
|
||||
&& bash install_python_libraries.sh \
|
||||
&& bash install_nixl.sh --force
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
|
||||
@ -1,56 +0,0 @@
|
||||
# default base image
|
||||
# https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
|
||||
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.6.0-neuronx-py310-sdk2.23.0-ubuntu22.04"
|
||||
|
||||
FROM $BASE_IMAGE
|
||||
|
||||
RUN echo "Base image is $BASE_IMAGE"
|
||||
|
||||
# Install some basic utilities
|
||||
RUN apt-get update && \
|
||||
apt-get install -y \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
ffmpeg libsm6 libxext6 libgl1
|
||||
|
||||
### Mount Point ###
|
||||
# When launching the container, mount the code directory to /workspace
|
||||
ARG APP_MOUNT=/workspace
|
||||
VOLUME [ ${APP_MOUNT} ]
|
||||
WORKDIR ${APP_MOUNT}/vllm
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas tenacity
|
||||
RUN python3 -m pip install neuronx-cc==2.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install pytest
|
||||
|
||||
# uninstall transformers-neuronx package explicitly to avoid version conflict
|
||||
RUN python3 -m pip uninstall -y transformers-neuronx
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
RUN python3 -m pip install -U \
|
||||
'cmake>=3.26.1' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
|
||||
-r requirements/neuron.txt
|
||||
|
||||
ENV VLLM_TARGET_DEVICE neuron
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
pip install --no-build-isolation -v -e .
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
# install transformers-neuronx package as an optional dependencies (for V0)
|
||||
# FIXME: `--no-deps` argument is temporarily added to resolve transformers package version conflict
|
||||
RUN python3 -m pip install transformers-neuronx==0.13.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U --no-deps
|
||||
|
||||
RUN python3 -m pip install sentencepiece transformers==4.48.0 -U
|
||||
|
||||
# overwrite entrypoint to run bash script
|
||||
RUN echo "import subprocess; import sys; subprocess.check_call(sys.argv[1:])" > /usr/local/bin/dockerd-entrypoint.py
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
@ -71,7 +71,7 @@ COPY --from=build_vllm ${COMMON_WORKDIR}/vllm /vllm-workspace
|
||||
RUN cd /vllm-workspace \
|
||||
&& rm -rf vllm \
|
||||
&& python3 -m pip install -e tests/vllm_test_utils \
|
||||
&& python3 -m pip install lm-eval[api]==0.4.4 \
|
||||
&& python3 -m pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api] \
|
||||
&& python3 -m pip install pytest-shard
|
||||
|
||||
# -----------------------
|
||||
|
||||
@ -16,7 +16,8 @@ ENV LANG=C.UTF-8 \
|
||||
RUN microdnf install -y \
|
||||
which procps findutils tar vim git gcc gcc-gfortran g++ make patch zlib-devel \
|
||||
libjpeg-turbo-devel libtiff-devel libpng-devel libwebp-devel freetype-devel harfbuzz-devel \
|
||||
openssl-devel openblas openblas-devel autoconf automake libtool cmake numpy libsndfile && \
|
||||
openssl-devel openblas openblas-devel autoconf automake libtool cmake numpy libsndfile \
|
||||
clang llvm-devel llvm-static clang-devel && \
|
||||
microdnf clean all
|
||||
|
||||
# Python Installation
|
||||
@ -191,7 +192,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
-DCOMPILER_RT_BUILD_ORC=OFF \
|
||||
-DCOMPILER_RT_INCLUDE_TESTS=OFF \
|
||||
${CMAKE_ARGS} -GNinja ../llvm \
|
||||
|
||||
&& ninja install . && \
|
||||
# build llvmlite
|
||||
cd ../../llvmlite && python setup.py bdist_wheel && \
|
||||
@ -200,6 +200,45 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
sed -i '/#include "internal\/pycore_atomic.h"/i\#include "dynamic_annotations.h"' numba/_dispatcher.cpp; \
|
||||
fi && python setup.py bdist_wheel
|
||||
|
||||
# Edit aws-lc-sys to support s390x
|
||||
FROM python-install AS aws-lc-sys-editor
|
||||
WORKDIR /tmp
|
||||
ENV CARGO_HOME=/root/.cargo
|
||||
ENV RUSTUP_HOME=/root/.rustup
|
||||
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
|
||||
ARG AWS_LC_VERSION=v0.30.0
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
|
||||
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
|
||||
git clone --recursive https://github.com/aws/aws-lc-rs.git && \
|
||||
cd aws-lc-rs && \
|
||||
git checkout tags/aws-lc-sys/${AWS_LC_VERSION} && \
|
||||
git submodule sync && \
|
||||
git submodule update --init --recursive && \
|
||||
cd aws-lc-sys && \
|
||||
sed -i '682 s/strncmp(buf, "-----END ", 9)/memcmp(buf, "-----END ", 9)/' aws-lc/crypto/pem/pem_lib.c && \
|
||||
sed -i '712 s/strncmp(buf, "-----END ", 9)/memcmp(buf, "-----END ", 9)/' aws-lc/crypto/pem/pem_lib.c && \
|
||||
sed -i '747 s/strncmp(buf, "-----END ", 9)/memcmp(buf, "-----END ", 9)/' aws-lc/crypto/pem/pem_lib.c
|
||||
|
||||
# Build Outlines Core
|
||||
FROM python-install AS outlines-core-builder
|
||||
WORKDIR /tmp
|
||||
ENV CARGO_HOME=/root/.cargo
|
||||
ENV RUSTUP_HOME=/root/.rustup
|
||||
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
|
||||
ARG OUTLINES_CORE_VERSION=0.2.10
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
|
||||
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
|
||||
--mount=type=bind,from=aws-lc-sys-editor,source=/tmp/aws-lc-rs/aws-lc-sys,target=/tmp/aws-lc-sys,rw \
|
||||
git clone https://github.com/dottxt-ai/outlines-core.git && \
|
||||
cd outlines-core && \
|
||||
git checkout tags/${OUTLINES_CORE_VERSION} && \
|
||||
sed -i "s/version = \"0.0.0\"/version = \"${OUTLINES_CORE_VERSION}\"/" Cargo.toml && \
|
||||
echo '[patch.crates-io]' >> Cargo.toml && \
|
||||
echo 'aws-lc-sys = { path = "/tmp/aws-lc-sys" }' >> Cargo.toml && \
|
||||
uv pip install maturin && \
|
||||
python -m maturin build --release --out dist
|
||||
|
||||
# Final build stage
|
||||
FROM python-install AS vllm-cpu
|
||||
@ -230,6 +269,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=torch,source=/tmp/pytorch/dist,target=/tmp/torch-wheels/ \
|
||||
--mount=type=bind,from=numba-builder,source=/tmp/llvmlite/dist,target=/tmp/llvmlite-wheels/ \
|
||||
--mount=type=bind,from=numba-builder,source=/tmp/numba/dist,target=/tmp/numba-wheels/ \
|
||||
--mount=type=bind,from=outlines-core-builder,source=/tmp/outlines-core/dist,target=/tmp/outlines-core/dist/ \
|
||||
sed -i '/^torch/d' requirements/build.txt && \
|
||||
ARROW_WHL_FILE=$(ls /tmp/arrow-wheels/pyarrow-*.whl) && \
|
||||
VISION_WHL_FILE=$(ls /tmp/vision-wheels/*.whl) && \
|
||||
@ -237,6 +277,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
TORCH_WHL_FILE=$(ls /tmp/torch-wheels/*.whl) && \
|
||||
LLVM_WHL_FILE=$(ls /tmp/llvmlite-wheels/*.whl) && \
|
||||
NUMBA_WHL_FILE=$(ls /tmp/numba-wheels/*.whl) && \
|
||||
OUTLINES_CORE_WHL_FILE=$(ls /tmp/outlines-core/dist/*.whl) && \
|
||||
uv pip install -v \
|
||||
$ARROW_WHL_FILE \
|
||||
$VISION_WHL_FILE \
|
||||
@ -244,6 +285,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
$TORCH_WHL_FILE \
|
||||
$LLVM_WHL_FILE \
|
||||
$NUMBA_WHL_FILE \
|
||||
$OUTLINES_CORE_WHL_FILE \
|
||||
--index-strategy unsafe-best-match \
|
||||
-r requirements/build.txt \
|
||||
-r requirements/cpu.txt
|
||||
|
||||
@ -1,12 +1,10 @@
|
||||
FROM intel/deep-learning-essentials:2025.1.3-0-devel-ubuntu24.04 AS vllm-base
|
||||
|
||||
RUN rm /etc/apt/sources.list.d/intel-graphics.list
|
||||
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && \
|
||||
echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list && \
|
||||
add-apt-repository -y ppa:kobuk-team/intel-graphics
|
||||
|
||||
RUN apt clean && apt-get update -y && \
|
||||
apt-get install -y software-properties-common && \
|
||||
add-apt-repository ppa:deadsnakes/ppa && \
|
||||
apt-get install -y python3.10 python3.10-distutils && \
|
||||
curl -sS https://bootstrap.pypa.io/get-pip.py | python3.10 && \
|
||||
apt-get install -y --no-install-recommends --fix-missing \
|
||||
curl \
|
||||
ffmpeg \
|
||||
@ -17,17 +15,29 @@ RUN apt clean && apt-get update -y && \
|
||||
libgl1 \
|
||||
lsb-release \
|
||||
numactl \
|
||||
python3.10-dev \
|
||||
wget
|
||||
wget \
|
||||
vim \
|
||||
python3.12 \
|
||||
python3.12-dev \
|
||||
python3-pip
|
||||
|
||||
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.12 1
|
||||
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.12 1
|
||||
|
||||
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1
|
||||
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1
|
||||
RUN apt install -y libze1 libze-dev libze-intel-gpu1 intel-opencl-icd libze-intel-gpu-raytracing
|
||||
|
||||
RUN wget https://github.com/uxlfoundation/oneCCL/releases/download/2021.15.4/intel-oneccl-2021.15.4.11_offline.sh
|
||||
RUN bash intel-oneccl-2021.15.4.11_offline.sh -a --silent --eula accept && echo "source /opt/intel/oneapi/setvars.sh --force" >> /root/.bashrc
|
||||
SHELL ["bash", "-c"]
|
||||
CMD ["bash", "-c", "source /root/.bashrc && exec bash"]
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
COPY requirements/xpu.txt /workspace/vllm/requirements/xpu.txt
|
||||
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
|
||||
|
||||
# suppress the python externally managed environment error
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install --no-cache-dir \
|
||||
-r requirements/xpu.txt
|
||||
@ -54,8 +64,9 @@ FROM vllm-base AS vllm-openai
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install accelerate hf_transfer pytest pytest_asyncio lm_eval[api] modelscope
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image \
|
||||
TRITON_XPU_PROFILE 1
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip uninstall oneccl oneccl-devel -y
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
|
||||
@ -32,10 +32,7 @@ nav:
|
||||
- models/pooling_models.md
|
||||
- models/extensions
|
||||
- Hardware Supported Models: models/hardware_supported_models
|
||||
- Features:
|
||||
- features/compatibility_matrix.md
|
||||
- features/*
|
||||
- features/quantization
|
||||
- Features: features
|
||||
- Developer Guide:
|
||||
- contributing/README.md
|
||||
- General:
|
||||
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 24 KiB |
BIN
docs/assets/design/hybrid_kv_cache_manager/full_attn.png
Normal file
BIN
docs/assets/design/hybrid_kv_cache_manager/full_attn.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 4.0 KiB |
BIN
docs/assets/design/hybrid_kv_cache_manager/memory_layout.png
Normal file
BIN
docs/assets/design/hybrid_kv_cache_manager/memory_layout.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 62 KiB |
BIN
docs/assets/design/hybrid_kv_cache_manager/overview.png
Normal file
BIN
docs/assets/design/hybrid_kv_cache_manager/overview.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 39 KiB |
BIN
docs/assets/design/hybrid_kv_cache_manager/sw_attn.png
Normal file
BIN
docs/assets/design/hybrid_kv_cache_manager/sw_attn.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 4.5 KiB |
@ -2,6 +2,10 @@
|
||||
|
||||
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:
|
||||
|
||||
- [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ), August 30th 2025. [[Slides]](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA)
|
||||
- [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet), August 27th 2025. [[Slides]](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing)
|
||||
- [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg), August 23rd 2025. [[Slides]](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH)
|
||||
- [vLLM Korea Meetup](https://luma.com/cgcgprmh), August 19th 2025. [[Slides]](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
|
||||
- [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA), August 2nd 2025. [[Slides]](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) [[Recording]](https://www.chaspark.com/#/live/1166916873711665152).
|
||||
- [NYC vLLM Meetup](https://lu.ma/c1rqyf1f), May 7th, 2025. [[Slides]](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing)
|
||||
- [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day), April 3rd 2025. [[Slides]](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
|
||||
|
||||
@ -86,7 +86,7 @@ llm = LLM(model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
|
||||
If you run out of CPU RAM, try the following options:
|
||||
|
||||
- (Multi-modal models only) you can set the size of multi-modal processor cache by setting `mm_processor_cache_gb` engine argument (default 4 GiB per API process + 4 GiB per engine core process)
|
||||
- (Multi-modal models only) you can set the size of multi-modal cache by setting `mm_processor_cache_gb` engine argument (default 4 GiB).
|
||||
- (CPU backend only) you can set the size of KV cache using `VLLM_CPU_KVCACHE_SPACE` environment variable (default 4 GiB).
|
||||
|
||||
## Multi-modal input limits
|
||||
|
||||
@ -164,14 +164,20 @@ llm = LLM(
|
||||
)
|
||||
```
|
||||
|
||||
!! important
|
||||
!!! important
|
||||
Batch-level DP is not to be confused with API request-level DP
|
||||
(which is instead controlled by `data_parallel_size`).
|
||||
|
||||
The availablilty of batch-level DP is based on model implementation.
|
||||
Currently, the following models support `mm_encoder_tp_mode="data"`:
|
||||
Batch-level DP needs to be implemented on a per-model basis,
|
||||
and enabled by setting `supports_encoder_tp_data = True` in the model class.
|
||||
Regardless, you need to set `mm_encoder_tp_mode="data"` in engine arguments to use this feature.
|
||||
|
||||
Known supported models:
|
||||
|
||||
- GLM-4.5V GLM-4.1V (<gh-pr:23168>)
|
||||
- Kimi-VL (<gh-pr:23817>)
|
||||
- Llama4 (<gh-pr:18368>)
|
||||
- MiniCPM-V-2.5 or above (<gh-pr:23327>, <gh-pr:23948>)
|
||||
- Qwen2.5-VL (<gh-pr:22742>)
|
||||
- Step3 (<gh-pr:22697>)
|
||||
|
||||
@ -195,21 +201,41 @@ vllm serve Qwen/Qwen2.5-VL-3B-Instruct --api-server-count 4 -dp 2
|
||||
!!! note
|
||||
API server scale-out is only available for online inference.
|
||||
|
||||
!!! warning
|
||||
By default, 8 CPU threads are used in each API server to load media items (e.g. images)
|
||||
from request data.
|
||||
|
||||
If you apply API server scale-out, consider adjusting `VLLM_MEDIA_LOADING_THREAD_COUNT`
|
||||
to avoid CPU resource exhaustion.
|
||||
|
||||
!!! note
|
||||
[Multi-modal processor cache](#processor-cache) is disabled when API server scale-out is enabled
|
||||
because it requires a one-to-one correspondance between API and engine core processes.
|
||||
API server scale-out disables [multi-modal IPC caching](#ipc-caching)
|
||||
because it requires a one-to-one correspondence between API and engine core processes.
|
||||
|
||||
This does not impact [multi-modal processor caching](#processor-caching).
|
||||
|
||||
## Multi-Modal Caching
|
||||
|
||||
### Processor Cache
|
||||
|
||||
By default, the multi-modal processor cache is enabled to avoid repeatedly processing
|
||||
the same multi-modal inputs via Hugging Face `AutoProcessor`,
|
||||
Multi-modal caching avoids repeated transfer or processing of the same multi-modal data,
|
||||
which commonly occurs in multi-turn conversations.
|
||||
|
||||
You can adjust the size of the cache by setting the value of `mm_processor_cache_gb`
|
||||
(default 4 GiB per API process + 4 GiB per engine core process).
|
||||
If you do not benefit much from the cache, you can disable it completely via `mm_processor_cache_gb=0`.
|
||||
### Processor Caching
|
||||
|
||||
Multi-modal processor caching is automatically enabled
|
||||
to avoid repeatedly processing the same multi-modal inputs in `BaseMultiModalProcessor`.
|
||||
|
||||
### IPC Caching
|
||||
|
||||
Multi-modal IPC caching is automatically enabled when
|
||||
there is a one-to-one correspondence between API (`P0`) and engine core (`P1`) processes,
|
||||
to avoid repeatedly transferring the same multi-modal inputs between them.
|
||||
|
||||
### Configuration
|
||||
|
||||
You can adjust the size of the cache by setting the value of `mm_processor_cache_gb` (default 4 GiB).
|
||||
|
||||
If you do not benefit much from the cache, you can disable both IPC
|
||||
and processor caching completely via `mm_processor_cache_gb=0`.
|
||||
|
||||
Examples:
|
||||
|
||||
@ -222,3 +248,16 @@ llm = LLM(model="Qwen/Qwen2.5-VL-3B-Instruct",
|
||||
llm = LLM(model="Qwen/Qwen2.5-VL-3B-Instruct",
|
||||
mm_processor_cache_gb=0)
|
||||
```
|
||||
|
||||
### Cache Placement
|
||||
|
||||
Based on the configuration, the content of the multi-modal caches on `P0` and `P1` are as follows:
|
||||
|
||||
| Processor Caching | IPC Caching | `P0` Cache | `P1` Cache | Max. Memory |
|
||||
|-------------------|-------------|------------|------------|-------------|
|
||||
| ✅ | ✅ | K | K + V | `mm_processor_cache_gb * data_parallel_size` |
|
||||
| ✅ | ❌ | K + V | N/A | `mm_processor_cache_gb * api_server_count` |
|
||||
| ❌ | ❌ | N/A | N/A | `0` |
|
||||
|
||||
K: Stores the hashes of multi-modal items
|
||||
V: Stores the processed tensor data of multi-modal items
|
||||
|
||||
@ -45,32 +45,32 @@ This initial compilation time ranges significantly and is impacted by many of th
|
||||
|
||||
### Optimize based on your data
|
||||
|
||||
#### max model len vs. most model len
|
||||
#### max-model-len vs. most-model-len
|
||||
|
||||

|
||||
|
||||
If most of your requests are shorter than the maximum model length but you still need to accommodate occasional longer requests, setting a high maximum model length can negatively impact performance. In these cases, you can try introducing most model len by specifying the `VLLM_TPU_MOST_MODEL_LEN` environment variable.
|
||||
If most of your requests are shorter than the maximum model length but you still need to accommodate occasional longer requests, setting a high maximum model length can negatively impact performance. In these cases, you can try introducing most-model-len by specifying the `VLLM_TPU_MOST_MODEL_LEN` environment variable.
|
||||
|
||||
For example, 1% requests are 32k length and 99% requests are 2k length. You can pass 32k into `--max-model-len 32768` and use `VLLM_TPU_MOST_MODEL_LEN=2048`.
|
||||
|
||||
The requests get subdivided into max-model-len and most-model-len categories, for the latter category, we can gain better performance since the server can process more requests at a time.
|
||||
The requests get subdivided into max-model-len and most-model-len categories, for the latter category, you can gain better performance since the server can process more requests at a time.
|
||||
|
||||
#### Padding
|
||||
|
||||
For online serving with latency requirements, consider switching to bucket padding by setting the `VLLM_TPU_BUCKET_PADDING_GAP` environment variable. Because of the layout of the TPU, try using increments of 128: 128, 256, etc.
|
||||
For online serving with latency requirements, consider switching to bucket padding by setting the `VLLM_TPU_BUCKET_PADDING_GAP` environment variable. Because of the layout of the TPU, try using increments of 128 (e.g., 128, 256, etc.)
|
||||
|
||||
The server pads the requests into fixed lengths before sending them to the model to avoid recompilation. To read more about tpu padding, see [here](https://cloud.google.com/tpu/docs/performance-guide#xla-efficiencies). Currently, there are 2 ways to pad the requests:
|
||||
The server pads the requests into fixed lengths before sending them to the model to avoid recompilation. To read more about TPU padding, see [here](https://cloud.google.com/tpu/docs/performance-guide#xla-efficiencies). Currently, there are 2 ways to pad the requests:
|
||||
|
||||
1) the default exponential padding (pad to the nearest power of 2)
|
||||
2) bucket padding (pad to the nearest linearly increasing bucket).
|
||||
1. the default exponential padding (pad to the nearest power of 2)
|
||||
2. bucket padding (pad to the nearest linearly increasing bucket).
|
||||
|
||||
When using bucket padding, the buckets start from 16, end at max_model_len, and increment by `VLLM_TPU_BUCKET_PADDING_GAP`.
|
||||
|
||||
For example, max_model_len=512, padding_gap=64, the buckets will be [16, 32, 64, 128, 192, 256, 320, 384, 448, 512].
|
||||
|
||||
The fewer tokens we pad, the less unnecessary computation TPU does, the better performance we can get. For example, if num_tokens=300, with exponential padding, we pad to 512, with the bucket_padding above, we pad to 320.
|
||||
The fewer tokens you pad, the less unnecessary computation TPU does, the better performance you can get. For example, if num_tokens=300, with exponential padding, you pad to 512, with the bucket_padding above, you pad to 320.
|
||||
|
||||
However, you need to be careful to choose the padding gap. If the gap is too small, it means the number of buckets is large, leading to increased warmup (precompile) time and higher memory to store the compiled graph. Too many compilaed graphs may lead to HBM OOM. Conversely, an overly large gap yields no performance improvement compared to the default exponential padding.
|
||||
However, you need to be careful to choose the padding gap. If the gap is too small, it means the number of buckets is large, leading to increased warmup (precompile) time and higher memory to store the compiled graph. Too many compiled graphs may lead to HBM OOM. Conversely, an overly large gap yields no performance improvement compared to the default exponential padding.
|
||||
|
||||
#### Quantization
|
||||
|
||||
|
||||
@ -11,9 +11,39 @@ vLLM contains two sets of benchmarks:
|
||||
|
||||
The performance benchmarks are used for development to confirm whether new changes improve performance under various workloads. They are triggered on every commit with both the `perf-benchmarks` and `ready` labels, and when a PR is merged into vLLM.
|
||||
|
||||
### Manually Trigger the benchmark
|
||||
|
||||
Use [vllm-ci-test-repo images](https://gallery.ecr.aws/q9t5s3a7/vllm-ci-test-repo) with vLLM benchmark suite.
|
||||
For CPU environment, please use the image with "-cpu" postfix.
|
||||
|
||||
Here is an example for docker run command for CPU.
|
||||
|
||||
```bash
|
||||
docker run -it --entrypoint /bin/bash -v /data/huggingface:/root/.cache/huggingface -e HF_TOKEN='' --shm-size=16g --name vllm-cpu-ci public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:1da94e673c257373280026f75ceb4effac80e892-cpu
|
||||
```
|
||||
|
||||
Then, run below command inside the docker instance.
|
||||
|
||||
```bash
|
||||
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
```
|
||||
|
||||
When run, benchmark script generates results under **benchmark/results** folder, along with the benchmark_results.md and benchmark_results.json.
|
||||
|
||||
#### Runtime environment variables
|
||||
|
||||
- `ON_CPU`: set the value to '1' on Intel® Xeon® Processors. Default value is 0.
|
||||
- `SERVING_JSON`: JSON file to use for the serving tests. Default value is empty string (use default file).
|
||||
- `LATENCY_JSON`: JSON file to use for the latency tests. Default value is empty string (use default file).
|
||||
- `THROUGHPUT_JSON`: JSON file to use for the throughout tests. Default value is empty string (use default file).
|
||||
- `REMOTE_HOST`: IP for the remote vLLM service to benchmark. Default value is empty string.
|
||||
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
|
||||
|
||||
For more results visualization, check the [visualizing the results](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md#visualizing-the-results).
|
||||
|
||||
The latest performance results are hosted on the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
|
||||
|
||||
More information on the performance benchmarks and their parameters can be found [here](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
|
||||
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
|
||||
|
||||
[](){ #nightly-benchmarks }
|
||||
|
||||
|
||||
@ -90,7 +90,7 @@ address the long build time at its source, the current workaround is to set `VLL
|
||||
to a custom branch provided by @khluu (`VLLM_CI_BRANCH=khluu/use_postmerge_q`)
|
||||
when manually triggering a build on Buildkite. This branch accomplishes two things:
|
||||
|
||||
1. Increase the timeout limit to 10 hours so that the build doesn't timeout.
|
||||
1. Increase the timeout limit to 10 hours so that the build doesn't time out.
|
||||
2. Allow the compiled artifacts to be written to the vLLM sccache S3 bucket
|
||||
to warm it up so that future builds are faster.
|
||||
|
||||
|
||||
65
docs/contributing/intermediate_logging.md
Normal file
65
docs/contributing/intermediate_logging.md
Normal file
@ -0,0 +1,65 @@
|
||||
# Intermediate Tensor Logging
|
||||
|
||||
This document provides guidance on using the intermediate tensor logging feature in vLLM, which allows you to capture and save intermediate tensors during model execution.
|
||||
|
||||
## Overview
|
||||
|
||||
The intermediate tensor logging feature enables you to:
|
||||
|
||||
- Log input and output tensors from a configured set of filters
|
||||
- Filter modules by name using regex patterns
|
||||
- Filter module fwd call index (e.g. dump 2nd call of forward pass on same module)
|
||||
- Filter tensors by device
|
||||
- Filter whole model fwd step id
|
||||
|
||||
## Usage
|
||||
|
||||
### Enabling via parameters or config file
|
||||
|
||||
**Offline Inference example**
|
||||
|
||||
Dump all modules, all devices for step 0 (default behavior)
|
||||
|
||||
```bash
|
||||
python3 ./examples/offline_inference/llm_engine_example.py --model "meta-llama/Llama-3.1-8B-Instruct" --enforce-eager --intermediate-log-config '{"enabled": true}'
|
||||
```
|
||||
|
||||
Dump first layers module, all devices for step 0
|
||||
|
||||
```bash
|
||||
python3 ./examples/offline_inference/llm_engine_example.py --model "meta-llama/Llama-3.1-8B-Instruct" --enforce-eager --intermediate-log-config '{"enabled": true, "module_call_match": "layers\\.0\\."}'
|
||||
```
|
||||
|
||||
|
||||
#### Configuration Parameters
|
||||
|
||||
| Parameter | Type | Description | Default |
|
||||
|-----------|------|-------------|---------|
|
||||
| `output_dir` | string | Directory where to save the intermediate tensors | `/tmp/vllm_intermediates` |
|
||||
| `module_call_match` | array | Regex patterns to filter module names, if limti to ith call only, add `:i` | `null` (log all modules) |
|
||||
| `log_step_ids` | array | List of step IDs to log | `[0]` |
|
||||
| `max_tensor_size` | integer | Maximum number of elements in tensors to log | `null` (no limit) |
|
||||
| `device_names` | array | List of device names to log | `[]` (log all devices) |
|
||||
|
||||
### Output Directory Structure
|
||||
|
||||
When you enable intermediate logging, the system creates a timestamped directory under your specified `output_dir`. This helps organize multiple logging sessions:
|
||||
|
||||
```
|
||||
/tmp/vllm_intermediates/010fed05-4a36-4c19-ab44-7cd67e3f63ce/
|
||||
└── step_0
|
||||
├── model.embed_tokens
|
||||
│ ├── inputs_0_cuda_0.pt
|
||||
│ ├── inputs.json
|
||||
│ ├── outputs_cuda_0.pt
|
||||
│ └── outputs.json
|
||||
├── model.layers.0.input_layernorm
|
||||
│ ├── inputs_0_cuda_0.pt
|
||||
│ ├── inputs.json
|
||||
│ ├── outputs_cuda_0.pt
|
||||
│ └── outputs.json
|
||||
└── step_1/
|
||||
└── ...
|
||||
```
|
||||
|
||||
Each tensor is saved in a `.pt` file containing the full PyTorch tensors (can be loaded with `torch.load()`)
|
||||
@ -121,3 +121,31 @@ To support a model with interleaving sliding windows, we need to take care of th
|
||||
- In the modeling code, parse the correct sliding window value for every layer, and pass it to the attention layer's `per_layer_sliding_window` argument. For reference, check [this line](https://github.com/vllm-project/vllm/blob/996357e4808ca5eab97d4c97c7d25b3073f46aab/vllm/model_executor/models/llama.py#L171).
|
||||
|
||||
With these two steps, interleave sliding windows should work with the model.
|
||||
|
||||
### How to support models that use Mamba?
|
||||
|
||||
We consider 3 different scenarios:
|
||||
|
||||
1. Models that use Mamba layers (either Mamba-1 or Mamba-2) but do not use attention layers.
|
||||
2. Models that combine Mamba layers (either Mamba-1 or Mamba-2) together with attention layers.
|
||||
3. Models that combine Mamba-like mechanisms (e.g., Linear Attention, ShortConv) together with attention layers.
|
||||
|
||||
For case (1), we recommend looking at the implementation of [`MambaForCausalLM`](gh-file:vllm/model_executor/models/mamba.py) (for Mamba-1) or [`Mamba2ForCausalLM`](gh-file:vllm/model_executor/models/mamba2.py) (for Mamba-2) as a reference.
|
||||
The model should inherit protocol `IsAttentionFree` and also implement class methods `get_mamba_state_dtype_from_config` and `get_mamba_state_shape_from_config` to calculate the state shapes and data types from the config.
|
||||
For the mamba layers themselves, please use the [`MambaMixer`](gh-file:vllm/model_executor/layers/mamba/mamba_mixer.py) (for Mamba-1) or [`MambaMixer2`](gh-file:vllm/model_executor/layers/mamba/mamba_mixer2.py) (for Mamba-2) classes.
|
||||
Please *do not* use the `MambaCacheManager` (deprecated in V1) or replicate any of the V0-specific code paths in the existing model implementations.
|
||||
V0-only classes and code will be removed in the very near future.
|
||||
The model should also be added to the `MODELS_CONFIG_MAP` dictionary in <gh-file:vllm/model_executor/models/config.py> to ensure that the runtime defaults are optimized.
|
||||
|
||||
For case (2), we recommend using as a reference the implementation of [`JambaForCausalLM`](gh-file:vllm/model_executor/models/jamba.py) (for an example of a model that uses Mamba-1 and attention together) or [`BambaForCausalLM`](gh-file:vllm/model_executor/models/bamba.py) (for an example of a model that uses Mamba-2 and attention together).
|
||||
These models should follow the same instructions as case (1), but they should inherit protocol `IsHybrid` (instead of `IsAttentionFree`) and it is *not* necessary to add them to the `MODELS_CONFIG_MAP` (their runtime defaults will be inferred from the protocol).
|
||||
|
||||
For case (3), we recommend looking at the implementation of [`MiniMaxText01ForCausalLM`](gh-file:vllm/model_executor/models/minimax_text_01.py) or [`Lfm2ForCausalLM`](gh-file:vllm/model_executor/models/lfm2.py) as a reference, which use custom "mamba-like" layers `MiniMaxText01LinearAttention` and `ShortConv` respectively.
|
||||
Please follow the same guidelines as case (2) for implementing these models.
|
||||
We use "mamba-like" to refer to layers that posses a state that is updated in-place, rather than being appended-to (like KV cache for attention).
|
||||
For implementing new custom mamba-like layers, one should inherit from `MambaBase` and implement the methods `get_state_dtype`, `get_state_shape` to calculate the data types and state shapes at runtime, as well as `mamba_type` and `get_attn_backend`.
|
||||
It is also necessary to implement the "attention meta-data" class which handles the meta-data that is common across all layers.
|
||||
Please see [`LinearAttentionMetadata`](gh-file:vllm/v1/attention/backends/linear_attn.py) or [`ShortConvAttentionMetadata`](gh-file:v1/attention/backends/short_conv_attn.py) for examples of this.
|
||||
Finally, if one wants to support torch compile and CUDA graphs, it necessary to wrap the call to the mamba-like layer inside a custom op and register it.
|
||||
Please see the calls to `direct_register_custom_op` in <gh-file:vllm/model_executor/models/minimax_text_01.py> or <gh-file:vllm/model_executor/layers/mamba/short_conv.py> for examples of this.
|
||||
The new custom op should then be added to the list `_attention_ops` in <gh-file:vllm/config/compilation.py> to ensure that piecewise CUDA graphs works as intended.
|
||||
|
||||
@ -855,7 +855,7 @@ Examples:
|
||||
|
||||
### Custom HF processor
|
||||
|
||||
Some models don't define a HF processor class on HF Hub. In that case, you can define a custom HF processor that has the same call signature as HF processors and pass it to [_call_hf_processor][vllm.multimodal.processing.BaseMultiModalProcessor._call_hf_processor].
|
||||
Some models don't define an HF processor class on HF Hub. In that case, you can define a custom HF processor that has the same call signature as HF processors and pass it to [_call_hf_processor][vllm.multimodal.processing.BaseMultiModalProcessor._call_hf_processor].
|
||||
|
||||
Examples:
|
||||
|
||||
|
||||
@ -19,7 +19,7 @@ When using `vllm bench serve`, you can enable profiling by passing the `--profil
|
||||
Traces can be visualized using <https://ui.perfetto.dev/>.
|
||||
|
||||
!!! tip
|
||||
You can directly call bench module without installing vllm using `python -m vllm.entrypoints.cli.main bench`.
|
||||
You can directly call bench module without installing vLLM using `python -m vllm.entrypoints.cli.main bench`.
|
||||
|
||||
!!! tip
|
||||
Only send a few requests through vLLM when profiling, as the traces can get quite large. Also, no need to untar the traces, they can be viewed directly.
|
||||
@ -73,6 +73,8 @@ apt install nsight-systems-cli
|
||||
|
||||
### Example commands and usage
|
||||
|
||||
When profiling with `nsys`, it is advisable to set the environment variable `VLLM_WORKER_MULTIPROC_METHOD=spawn`. The default is to use the `fork` method instead of `spawn`. More information on the topic can be found in the [Nsight Systems release notes](https://docs.nvidia.com/nsight-systems/ReleaseNotes/index.html#general-issues).
|
||||
|
||||
#### Offline Inference
|
||||
|
||||
For basic usage, you can just append `nsys profile -o report.nsys-rep --trace-fork-before-exec=true --cuda-graph-trace=node` before any existing script you would run for offline inference.
|
||||
|
||||
@ -18,7 +18,7 @@ vllm serve Qwen/Qwen1.5-32B-Chat-AWQ --max-model-len 4096
|
||||
|
||||
- Download and install [Anything LLM desktop](https://anythingllm.com/desktop).
|
||||
|
||||
- On the bottom left of open settings, AI Prooviders --> LLM:
|
||||
- On the bottom left of open settings, AI Providers --> LLM:
|
||||
- LLM Provider: Generic OpenAI
|
||||
- Base URL: http://{vllm server host}:{vllm server port}/v1
|
||||
- Chat Model Name: `Qwen/Qwen1.5-32B-Chat-AWQ`
|
||||
|
||||
@ -6,6 +6,6 @@ Supports speech-synthesis, multi-modal, and extensible (function call) plugin sy
|
||||
|
||||
One-click FREE deployment of your private OpenAI ChatGPT/Claude/Gemini/Groq/Ollama chat application.
|
||||
|
||||
It supports vLLM as a AI model provider to efficiently serve large language models.
|
||||
It supports vLLM as an AI model provider to efficiently serve large language models.
|
||||
|
||||
For details, see the tutorial [Using vLLM in LobeChat](https://lobehub.com/docs/usage/providers/vllm).
|
||||
|
||||
@ -22,7 +22,7 @@ Deploy the following yaml file `lws.yaml`
|
||||
metadata:
|
||||
name: vllm
|
||||
spec:
|
||||
replicas: 2
|
||||
replicas: 1
|
||||
leaderWorkerTemplate:
|
||||
size: 2
|
||||
restartPolicy: RecreateGroupOnPodRestart
|
||||
@ -41,7 +41,7 @@ Deploy the following yaml file `lws.yaml`
|
||||
- sh
|
||||
- -c
|
||||
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=$(LWS_GROUP_SIZE);
|
||||
python3 -m vllm.entrypoints.openai.api_server --port 8080 --model meta-llama/Meta-Llama-3.1-405B-Instruct --tensor-parallel-size 8 --pipeline_parallel_size 2"
|
||||
vllm serve meta-llama/Meta-Llama-3.1-405B-Instruct --port 8080 --tensor-parallel-size 8 --pipeline_parallel_size 2"
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: "8"
|
||||
@ -126,8 +126,6 @@ Should get an output similar to this:
|
||||
NAME READY STATUS RESTARTS AGE
|
||||
vllm-0 1/1 Running 0 2s
|
||||
vllm-0-1 1/1 Running 0 2s
|
||||
vllm-1 1/1 Running 0 2s
|
||||
vllm-1-1 1/1 Running 0 2s
|
||||
```
|
||||
|
||||
Verify that the distributed tensor-parallel inference works:
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# Llama Stack
|
||||
|
||||
vLLM is also available via [Llama Stack](https://github.com/meta-llama/llama-stack) .
|
||||
vLLM is also available via [Llama Stack](https://github.com/llamastack/llama-stack).
|
||||
|
||||
To install Llama Stack, run
|
||||
|
||||
@ -8,9 +8,9 @@ To install Llama Stack, run
|
||||
pip install llama-stack -q
|
||||
```
|
||||
|
||||
## Inference using OpenAI Compatible API
|
||||
## Inference using OpenAI-Compatible API
|
||||
|
||||
Then start Llama Stack server pointing to your vLLM server with the following configuration:
|
||||
Then start the Llama Stack server and configure it to point to your vLLM server with the following settings:
|
||||
|
||||
```yaml
|
||||
inference:
|
||||
@ -20,15 +20,15 @@ inference:
|
||||
url: http://127.0.0.1:8000
|
||||
```
|
||||
|
||||
Please refer to [this guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/remote-vllm.html) for more details on this remote vLLM provider.
|
||||
Please refer to [this guide](https://llama-stack.readthedocs.io/en/latest/providers/inference/remote_vllm.html) for more details on this remote vLLM provider.
|
||||
|
||||
## Inference via Embedded vLLM
|
||||
## Inference using Embedded vLLM
|
||||
|
||||
An [inline vLLM provider](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/inline/inference/vllm)
|
||||
An [inline provider](https://github.com/llamastack/llama-stack/tree/main/llama_stack/providers/inline/inference)
|
||||
is also available. This is a sample of configuration using that method:
|
||||
|
||||
```yaml
|
||||
inference
|
||||
inference:
|
||||
- provider_type: vllm
|
||||
config:
|
||||
model: Llama3.1-8B-Instruct
|
||||
|
||||
@ -380,7 +380,7 @@ INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
|
||||
|
||||
### Startup Probe or Readiness Probe Failure, container log contains "KeyboardInterrupt: terminated"
|
||||
|
||||
If the startup or readiness probe failureThreshold is too low for the time needed to startup the server, Kubernetes scheduler will kill the container. A couple of indications that this has happened:
|
||||
If the startup or readiness probe failureThreshold is too low for the time needed to start up the server, Kubernetes scheduler will kill the container. A couple of indications that this has happened:
|
||||
|
||||
1. container log contains "KeyboardInterrupt: terminated"
|
||||
2. `kubectl get events` shows message `Container $NAME failed startup probe, will be restarted`
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user