Compare commits

..

1 Commits

Author SHA1 Message Date
4a0d6ac40b updated
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-09-24 14:41:00 -04:00
394 changed files with 6438 additions and 11182 deletions

View File

@ -76,7 +76,7 @@ steps:
queue: arm64_cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# Add job to create multi-arch manifest

View File

@ -58,8 +58,11 @@ function cpu_tests() {
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
pytest -x -v -s tests/models/language/generation -m cpu_model
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model
# Note: disable Bart until supports V1
pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
pytest -x -v -s tests/models/language/pooling -m cpu_model
pytest -x -v -s tests/models/multimodal/generation \

View File

@ -35,7 +35,7 @@ docker run \
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine
@ -44,6 +44,7 @@ docker run \
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
pytest -v -s v1/test_metrics
pytest -v -s v1/test_serial_utils.py
pytest -v -s v1/test_utils.py
pytest -v -s v1/test_metrics_reader.py
'

View File

@ -159,7 +159,10 @@ steps:
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/distributed
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/test_internal_lb_dp.py
- tests/v1/test_hybrid_lb_dp.py
- tests/v1/engine/test_engine_core_client.py
- tests/distributed/test_symm_mem_allreduce.py
commands:
@ -177,10 +180,10 @@ steps:
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
@ -297,9 +300,10 @@ steps:
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/metrics
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_request.py
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_metrics_reader.py
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
@ -459,19 +463,30 @@ steps:
commands:
- pytest -v -s kernels/mamba
- label: Model Executor Test # 23min
timeout_in_minutes: 35
- label: Tensorizer Test # 14min
timeout_in_minutes: 25
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor
- tests/model_executor
- vllm/model_executor/model_loader
- tests/tensorizer_loader
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s model_executor
- pytest -v -s tensorizer_loader
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Model Executor Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor
- tests/model_executor
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s model_executor
- label: Benchmarks # 11min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
@ -505,7 +520,7 @@ steps:
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
# we can only upgrade after this is resolved
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
@ -755,9 +770,8 @@ steps:
- pytest -v -s tests/models/multimodal/processing/
- pytest -v -s tests/models/multimodal/test_mapping.py
- python3 examples/offline_inference/basic/chat.py
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
# Whisper needs spawn method to avoid deadlock
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
@ -813,23 +827,6 @@ steps:
- uv pip install --system 'gpt-oss[eval]==0.0.5'
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58 --server-args '--tensor-parallel-size 2'
- label: Blackwell Quantized MoE Test
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
gpu: b200
source_file_dependencies:
- tests/quantization/test_blackwell_moe.py
- vllm/model_executor/models/deepseek_v2.py
- vllm/model_executor/models/gpt_oss.py
- vllm/model_executor/models/llama4.py
- vllm/model_executor/layers/fused_moe
- vllm/model_executor/layers/quantization/compressed_tensors
- vllm/model_executor/layers/quantization/modelopt.py
- vllm/model_executor/layers/quantization/mxfp4.py
- vllm/v1/attention/backends/flashinfer.py
commands:
- pytest -s -v tests/quantization/test_blackwell_moe.py
##### 1 GPU test #####
##### multi gpus test #####
@ -872,58 +869,48 @@ steps:
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- label: Distributed Tests (2 GPUs) # 68min
timeout_in_minutes: 90
- label: Distributed Tests (2 GPUs) # 110min
timeout_in_minutes: 150
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/compilation/
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
- vllm/compilation
- vllm/worker/worker_base.py
- entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- vllm/v1/engine/
- vllm/v1/worker/
- tests/compile/test_basic_correctness.py
- tests/compile/test_wrapper.py
- tests/distributed/
- tests/entrypoints/llm/test_collective_rpc.py
- tests/v1/distributed
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- tests/v1/shutdown
- tests/v1/worker/test_worker_memory_snapshot.py
commands:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- pytest -v -s distributed/test_sequence_parallel.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
- label: Distributed Model Tests (2 GPUs) # 37min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/model_executor/model_loader/sharded_state_loader.py
- vllm/model_executor/models/
- tests/basic_correctness/
- tests/model_executor/model_loader/test_sharded_state_loader.py
- tests/models/
commands:
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s model_executor/model_loader/test_sharded_state_loader.py
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)' --ignore models/multimodal/generation/test_whisper.py
- VLLM_WORKER_MULTIPROC_METHOD=spawn pytest models/multimodal/generation/test_whisper.py -v -s -m 'distributed(num_gpus=2)'
# test sequence parallel
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
# TODO: investigate and fix
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s models/multimodal/generation/test_maverick.py
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
- label: Plugin Tests (2 GPUs) # 40min
timeout_in_minutes: 60

10
.github/CODEOWNERS vendored
View File

@ -12,6 +12,8 @@
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
/vllm/v1/attention @LucasWilkinson
/vllm/v1/sample @22quinn @houseroad
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm @chaunceyjiang
@ -26,13 +28,11 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/attention @LucasWilkinson
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/attention/backends/flashinfer.py @mgoin
/vllm/v1/attention/backends/triton_attn.py @tdoublep
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/vllm/v1/sample @22quinn @houseroad @njhill
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/kv_cache_interface.py @heheda12345
/vllm/v1/offloading @ApostaC
@ -54,7 +54,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/lora @jeejeelee
/tests/models/language/generation/test_hybrid.py @tdoublep
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector @ApostaC
/tests/v1/offloading @ApostaC

2
.github/mergify.yml vendored
View File

@ -274,7 +274,7 @@ pull_request_rules:
- files~=^vllm/model_executor/model_loader/tensorizer.py
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
- files~=^tests/model_executor/model_loader/tensorizer_loader/
- files~=^tests/tensorizer_loader/
actions:
assign:
users:

View File

@ -13,7 +13,6 @@ build:
mkdocs:
configuration: mkdocs.yaml
fail_on_warning: true
# Optionally declare the Python requirements required to build your docs
python:

View File

@ -21,7 +21,6 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
*Latest News* 🔥
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).

View File

@ -1,31 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import time
from unittest import mock
import numpy as np
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.config import (
CacheConfig,
DeviceConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
SchedulerConfig,
SpeculativeConfig,
VllmConfig,
)
from vllm.platforms import current_platform
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
from vllm.utils import FlexibleArgumentParser
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
from vllm.v1.worker.gpu_input_batch import InputBatch
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
def benchmark_propose(args):
def main(args):
rows = []
for max_ngram in args.max_ngram:
collector = TimeCollector(TimeCollector.US)
@ -83,88 +69,10 @@ def benchmark_propose(args):
)
def benchmark_batched_propose(args):
NUM_SPECULATIVE_TOKENS_NGRAM = 10
PROMPT_LOOKUP_MIN = 5
PROMPT_LOOKUP_MAX = 15
MAX_MODEL_LEN = int(1e7)
DEVICE = current_platform.device_type
model_config = ModelConfig(model="facebook/opt-125m", runner="generate")
speculative_config = SpeculativeConfig(
target_model_config=model_config,
target_parallel_config=ParallelConfig(),
method="ngram",
num_speculative_tokens=NUM_SPECULATIVE_TOKENS_NGRAM,
prompt_lookup_max=PROMPT_LOOKUP_MAX,
prompt_lookup_min=PROMPT_LOOKUP_MIN,
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=CacheConfig(),
speculative_config=speculative_config,
device_config=DeviceConfig(device=current_platform.device_type),
parallel_config=ParallelConfig(),
load_config=LoadConfig(),
scheduler_config=SchedulerConfig(),
)
# monkey patch vllm.v1.worker.gpu_model_runner.get_pp_group
mock_pp_group = mock.MagicMock()
mock_pp_group.world_size = 1
with mock.patch(
"vllm.v1.worker.gpu_model_runner.get_pp_group", return_value=mock_pp_group
):
runner = GPUModelRunner(vllm_config, DEVICE)
# hack max model len
runner.max_model_len = MAX_MODEL_LEN
runner.drafter.max_model_len = MAX_MODEL_LEN
dummy_input_batch = InputBatch(
max_num_reqs=args.num_req,
max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=args.num_req * args.num_token,
device=DEVICE,
pin_memory=False,
vocab_size=256000,
block_sizes=[16],
)
dummy_input_batch._req_ids = list(str(id) for id in range(args.num_req))
dummy_input_batch.spec_decode_unsupported_reqs = ()
dummy_input_batch.num_tokens_no_spec = [args.num_token] * args.num_req
dummy_input_batch.token_ids_cpu = np.random.randint(
0, 20, (args.num_req, args.num_token)
)
runner.input_batch = dummy_input_batch
sampled_token_ids = [[0]] * args.num_req
print("Starting benchmark")
# first run is warmup so ignore it
for _ in range(args.num_iteration):
start = time.time()
runner.drafter.propose(
sampled_token_ids,
dummy_input_batch.req_ids,
dummy_input_batch.num_tokens_no_spec,
dummy_input_batch.token_ids_cpu,
dummy_input_batch.spec_decode_unsupported_reqs,
)
end = time.time()
print(f"Iteration time (s): {end - start}")
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of N-gram speculative decode drafting"
)
parser.add_argument(
"--batched", action="store_true", help="consider time to prepare batch"
) # noqa: E501
parser.add_argument(
"--num-iteration",
type=int,
@ -197,17 +105,8 @@ def invoke_main() -> None:
help="Number of speculative tokens to generate",
)
args = parser.parse_args()
if not args.batched:
benchmark_propose(args)
else:
benchmark_batched_propose(args)
main(args)
"""
# Example command lines:
# time python3 benchmarks/benchmark_ngram_proposer.py
# time python3 benchmarks/benchmark_ngram_proposer.py --batched --num-iteration 4 --num-token 1000000 --num-req 128
""" # noqa: E501
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -17,7 +17,7 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul,
w8a8_triton_block_scaled_mm,
)
from vllm.utils import FlexibleArgumentParser, cdiv
@ -158,7 +158,7 @@ def bench_fp8(
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
),
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_triton_block_scaled_mm(
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
),
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(

View File

@ -3,7 +3,6 @@
import argparse
import copy
import itertools
import os
import torch
from weight_shapes import WEIGHT_SHAPES
@ -24,45 +23,21 @@ PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"nvfp4": dict(no_a_quant=False, enabled=True),
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
"fbgemm-nvfp4": dict(fbgemm=True, no_a_quant=False, enabled=True),
"fbgemm-nvfp4-noquant": dict(fbgemm=True, no_a_quant=True, enabled=True),
}
_needs_fbgemm = any(
v.get("fbgemm", False) for v in PROVIDER_CFGS.values() if v.get("enabled", False)
)
if _needs_fbgemm:
try:
from fbgemm_gpu.experimental.gemm.triton_gemm.fp4_quantize import (
triton_scale_nvfp4_quant,
)
except ImportError:
print(
"WARNING: FBGEMM providers are enabled but fbgemm_gpu is not installed. "
"These providers will be skipped. Please install fbgemm_gpu with: "
"'pip install fbgemm-gpu-genai' to run them."
)
# Disable FBGEMM providers so the benchmark can run.
for cfg in PROVIDER_CFGS.values():
if cfg.get("fbgemm"):
cfg["enabled"] = False
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_nvfp4(b: torch.Tensor, device: str, cfg):
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
# Compute global scale for weight
b_amax = torch.abs(b).max().to(torch.float32)
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
if "fbgemm" in cfg and cfg["fbgemm"]:
b_fp4, scale_b_fp4 = triton_scale_nvfp4_quant(b, b_global_scale)
else:
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
return b_fp4, scale_b_fp4, b_global_scale
def build_nvfp4_runner(cfg, a, b, dtype, device):
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device, cfg)
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
# Compute global scale for activation
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
@ -71,35 +46,6 @@ def build_nvfp4_runner(cfg, a, b, dtype, device):
# Alpha for the GEMM operation
alpha = 1.0 / (a_global_scale * b_global_scale)
if "fbgemm" in cfg and cfg["fbgemm"]:
if cfg["no_a_quant"]:
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
def run():
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
else:
def run():
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
if cfg["no_a_quant"]:
# Pre-quantize activation
@ -184,13 +130,10 @@ if __name__ == "__main__":
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
save_dir = f"bench_nvfp4_res_n{N}_k{K}"
os.makedirs(save_dir, exist_ok=True)
benchmark.run(
print_data=True,
show_plots=True,
save_path=save_dir,
save_path=f"bench_nvfp4_res_n{N}_k{K}",
N=N,
K=K,
)

View File

@ -79,9 +79,9 @@ def make_rand_lora_weight_tensor(
def make_rand_tensors(
a_shape: tuple[int, ...],
b_shape: tuple[int, ...],
c_shape: tuple[int, ...],
a_shape: tuple[int],
b_shape: tuple[int],
c_shape: tuple[int],
a_dtype: torch.dtype,
b_dtype: torch.dtype,
c_dtype: torch.dtype,
@ -243,7 +243,7 @@ class OpType(Enum):
lora_rank: int,
num_loras: int,
num_slices: int,
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
) -> tuple[tuple[int], tuple[int], tuple[int]]:
"""
Given num_slices, return the shapes of the A, B, and C matrices
in A x B = C, for the op_type

View File

@ -8,16 +8,12 @@ import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
get_col_major_tma_aligned_tensor,
per_token_group_quant_fp8,
w8a8_block_fp8_matmul,
w8a8_triton_block_scaled_mm,
)
from vllm.triton_utils import triton
from vllm.utils.deep_gemm import (
calc_diff,
fp8_gemm_nt,
get_col_major_tma_aligned_tensor,
per_block_cast_to_fp8,
)
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
def benchmark_shape(m: int,
@ -63,7 +59,7 @@ def benchmark_shape(m: int,
# === vLLM Triton Implementation ===
def vllm_triton_gemm():
return w8a8_block_fp8_matmul(A_vllm,
return w8a8_triton_block_scaled_mm(A_vllm,
B_vllm,
A_scale_vllm,
B_scale_vllm,

View File

@ -101,7 +101,6 @@ else()
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
find_isa(${CPUINFO} "S390" S390_FOUND)
find_isa(${CPUINFO} "v" RVV_FOUND) # Check for RISC-V RVV support
endif()
if (AVX512_FOUND AND NOT AVX512_DISABLED)
@ -178,14 +177,8 @@ elseif (S390_FOUND)
"-mzvector"
"-march=native"
"-mtune=native")
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "riscv64")
if(RVV_FOUND)
message(FAIL_ERROR "Can't support rvv now.")
else()
list(APPEND CXX_COMPILE_FLAGS "-march=rv64gc")
endif()
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
endif()
#

View File

@ -1,16 +0,0 @@
#pragma once
#include <cstdlib>
#include <string>
#include <cctype>
namespace vllm {
// vllm_kernel_override_batch_invariant(); returns true
// if env VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT=1
inline bool vllm_kernel_override_batch_invariant() {
std::string env_key = "VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT";
const char* val = std::getenv(env_key.c_str());
return (val && std::atoi(val) != 0) ? 1 : 0;
}
} // namespace vllm

View File

@ -14,8 +14,7 @@
// arm implementation
#include "cpu_types_arm.hpp"
#else
#warning "unsupported vLLM cpu implementation, vLLM will compile with scalar"
#include "cpu_types_scalar.hpp"
#warning "unsupported vLLM cpu implementation"
#endif
#ifdef _OPENMP

View File

@ -1,513 +0,0 @@
#include <cmath>
#include <cstdint>
#include <cstring>
#include <torch/all.h>
#include "float_convert.hpp"
namespace vec_op {
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#ifndef CPU_OP_GUARD
#define CPU_KERNEL_GUARD_IN(NAME)
#define CPU_KERNEL_GUARD_OUT(NAME)
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) \
std::cout << #NAME << " exit." << std::endl;
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
#define __max(a, b) ((a) > (b) ? (a) : (b))
#define __min(a, b) ((a) < (b) ? (a) : (b))
#define __abs(a) ((a) < (0) ? (0 - a) : (a))
typedef struct f16x8_t {
uint16_t val[8];
} f16x8_t;
typedef struct f16x16_t {
uint16_t val[16];
} f16x16_t;
typedef struct f16x32_t {
uint16_t val[32];
} f16x32_t;
typedef struct f32x4_t {
float val[4];
} f32x4_t;
typedef struct f32x8_t {
float val[8];
} f32x8_t;
typedef struct f32x16_t {
float val[16];
} f32x16_t;
namespace {
template <typename T, T... indexes, typename F>
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
(f(std::integral_constant<T, indexes>{}), ...);
};
}; // namespace
template <typename T, T count, typename F,
typename = std::enable_if_t<std::is_invocable_v<F, T> > >
constexpr void unroll_loop(F&& f) {
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
}
template <typename T>
struct Vec {
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
};
struct FP32Vec8;
struct FP32Vec16;
struct FP16Vec8 : public Vec<FP16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f16x8_t reg;
explicit FP16Vec8(const void* ptr)
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
explicit FP16Vec8(const FP32Vec8&);
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
};
struct FP16Vec16 : public Vec<FP16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f16x16_t reg;
explicit FP16Vec16(const void* ptr)
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
explicit FP16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
void save(void* ptr, const int elem_num) const {
int num = __min(elem_num, VEC_ELEM_NUM);
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
}
};
struct BF16Vec8 : public Vec<BF16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f16x8_t reg;
explicit BF16Vec8(const void* ptr)
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
explicit BF16Vec8(const FP32Vec8&);
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
};
struct BF16Vec16 : public Vec<BF16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f16x16_t reg;
explicit BF16Vec16(const void* ptr)
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
explicit BF16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
void save(void* ptr, const int elem_num) const {
int num = __min(elem_num, VEC_ELEM_NUM);
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
}
};
struct BF16Vec32 : public Vec<BF16Vec32> {
constexpr static int VEC_ELEM_NUM = 32;
f16x32_t reg;
explicit BF16Vec32(const void* ptr)
: reg(*reinterpret_cast<const f16x32_t*>(ptr)) {};
explicit BF16Vec32(f16x32_t data) : reg(data) {};
explicit BF16Vec32(BF16Vec8& vec8_data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = vec8_data.reg.val[i % BF16Vec8::VEC_ELEM_NUM];
}
}
void save(void* ptr) const { *reinterpret_cast<f16x32_t*>(ptr) = reg; }
};
struct FP32Vec4 : public Vec<FP32Vec4> {
constexpr static int VEC_ELEM_NUM = 4;
f32x4_t reg;
explicit FP32Vec4(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec4() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec4(const float* ptr)
: reg(*reinterpret_cast<const f32x4_t*>(ptr)) {};
explicit FP32Vec4(f32x4_t data) : reg(data) {};
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {};
};
struct FP32Vec8 : public Vec<FP32Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f32x8_t reg;
explicit FP32Vec8(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec8() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec8(const float* ptr)
: reg(*reinterpret_cast<const f32x8_t*>(ptr)) {};
explicit FP32Vec8(f32x8_t data) : reg(data) {};
explicit FP32Vec8(const FP32Vec8& data) : reg(data.reg) {};
explicit FP32Vec8(const FP16Vec8& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = fp16_to_float(v.reg.val[i]);
}
}
FP32Vec8(const BF16Vec8& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = bf16_to_float(v.reg.val[i]);
}
}
float reduce_sum() const {
float result = 0;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result += reg.val[i];
}
return result;
}
FP32Vec8 exp() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = expf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 tanh() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = tanhf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 er() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = erf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 operator*(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] * b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator+(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] + b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator-(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] - b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator/(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] / b.reg.val[i];
}
return FP32Vec8(ret);
}
void save(void* ptr) const { *reinterpret_cast<f32x8_t*>(ptr) = reg; }
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f32x16_t reg;
explicit FP32Vec16(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec16() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec16(const float* ptr)
: reg(*reinterpret_cast<const f32x16_t*>(ptr)) {};
explicit FP32Vec16(f32x16_t data) : reg(data) {};
FP32Vec16(const FP32Vec4& data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = data.reg.val[i % FP32Vec4::VEC_ELEM_NUM];
}
}
FP32Vec16(const FP32Vec8& data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = data.reg.val[i % FP32Vec8::VEC_ELEM_NUM];
}
}
FP32Vec16(const FP32Vec16& data) : reg(data.reg) {};
explicit FP32Vec16(const FP16Vec16& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = fp16_to_float(v.reg.val[i]);
}
}
explicit FP32Vec16(const BF16Vec16& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = bf16_to_float(v.reg.val[i]);
}
}
explicit FP32Vec16(const FP16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
FP32Vec16 operator*(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] * b.reg.val[i];
}
return result;
}
FP32Vec16 operator+(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] + b.reg.val[i];
}
return result;
}
FP32Vec16 operator-(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] - b.reg.val[i];
}
return result;
}
FP32Vec16 operator/(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] / b.reg.val[i];
}
return result;
}
FP32Vec16 max(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __max(reg.val[i], b.reg.val[i]);
}
return result;
}
FP32Vec16 min(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __min(reg.val[i], b.reg.val[i]);
}
return result;
}
FP32Vec16 abs() const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __abs(reg.val[i]);
}
return result;
}
float reduce_sum() const {
float result = 0.0f;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result += reg.val[i];
}
return result;
}
float reduce_max() const {
float result = reg.val[0];
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result = __max(reg.val[i], result);
}
return result;
}
float reduce_min() const {
float result = reg.val[0];
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result = __min(reg.val[i], result);
}
return result;
}
template <int group_size>
float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
float sum = 0.0;
int start = idx * group_size;
int end = (idx + 1) * group_size;
for (; (start < VEC_ELEM_NUM) && (start < end); ++start) {
sum += reg.val[start];
}
return sum;
}
void save(void* ptr) const { *reinterpret_cast<f32x16_t*>(ptr) = reg; }
};
template <typename T>
struct VecType {
using vec_type = void;
};
template <typename T>
using vec_t = typename VecType<T>::vec_type;
template <>
struct VecType<float> {
using vec_type = FP32Vec8;
};
template <>
struct VecType<c10::Half> {
using vec_type = FP16Vec8;
};
template <>
struct VecType<c10::BFloat16> {
using vec_type = BF16Vec8;
};
template <typename T>
void storeFP32(float v, T* ptr) {
*ptr = v;
}
/*
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
c10::Half __attribute__((__may_alias__)) *v_ptr =
reinterpret_cast<c10::Half *>(&v);
*ptr = *(v_ptr + 1);
}
*/
template <>
inline void storeFP32<c10::Half>(float v, c10::Half* ptr) {
uint16_t fp16 = float_to_fp16(v);
*reinterpret_cast<uint16_t*>(ptr) = fp16;
}
template <>
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
c10::BFloat16 __attribute__((__may_alias__))* v_ptr =
reinterpret_cast<c10::BFloat16*>(&v);
*ptr = *(v_ptr + 1);
}
inline FP16Vec16::FP16Vec16(const FP32Vec16& v) {
int i = 0;
for (i = 0; i < FP16Vec16::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_fp16(v.reg.val[i]);
}
}
inline FP16Vec8 ::FP16Vec8(const FP32Vec8& v) {
int i = 0;
for (i = 0; i < FP16Vec8::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_fp16(v.reg.val[i]);
}
}
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
acc = acc + a * b;
}
inline BF16Vec8::BF16Vec8(const FP32Vec8& v) {
int i = 0;
for (i = 0; i < BF16Vec8::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_bf16(v.reg.val[i]);
}
}
inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
int i = 0;
for (i = 0; i < BF16Vec16::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_bf16(v.reg.val[i]);
}
}
inline void prefetch(const void* addr) { __builtin_prefetch(addr, 0, 3); }
}; // namespace vec_op

View File

@ -1,106 +0,0 @@
static float bf16_to_float(uint16_t bf16) {
uint32_t bits = static_cast<uint32_t>(bf16) << 16;
float fp32;
std::memcpy(&fp32, &bits, sizeof(fp32));
return fp32;
}
static uint16_t float_to_bf16(float fp32) {
uint32_t bits;
std::memcpy(&bits, &fp32, sizeof(fp32));
return static_cast<uint16_t>(bits >> 16);
}
/************************************************
* Copyright (c) 2015 Princeton Vision Group
* Licensed under the MIT license.
* Codes below copied from
* https://github.com/PrincetonVision/marvin/tree/master/tools/tensorIO_matlab
*************************************************/
static uint16_t float_to_fp16(float fp32) {
uint16_t fp16;
unsigned x;
unsigned u, remainder, shift, lsb, lsb_s1, lsb_m1;
unsigned sign, exponent, mantissa;
std::memcpy(&x, &fp32, sizeof(fp32));
u = (x & 0x7fffffff);
// Get rid of +NaN/-NaN case first.
if (u > 0x7f800000) {
fp16 = 0x7fffU;
return fp16;
}
sign = ((x >> 16) & 0x8000);
// Get rid of +Inf/-Inf, +0/-0.
if (u > 0x477fefff) {
fp16 = sign | 0x7c00U;
return fp16;
}
if (u < 0x33000001) {
fp16 = (sign | 0x0000);
return fp16;
}
exponent = ((u >> 23) & 0xff);
mantissa = (u & 0x7fffff);
if (exponent > 0x70) {
shift = 13;
exponent -= 0x70;
} else {
shift = 0x7e - exponent;
exponent = 0;
mantissa |= 0x800000;
}
lsb = (1 << shift);
lsb_s1 = (lsb >> 1);
lsb_m1 = (lsb - 1);
// Round to nearest even.
remainder = (mantissa & lsb_m1);
mantissa >>= shift;
if (remainder > lsb_s1 || (remainder == lsb_s1 && (mantissa & 0x1))) {
++mantissa;
if (!(mantissa & 0x3ff)) {
++exponent;
mantissa = 0;
}
}
fp16 = (sign | (exponent << 10) | mantissa);
return fp16;
}
static float fp16_to_float(uint16_t fp16) {
unsigned sign = ((fp16 >> 15) & 1);
unsigned exponent = ((fp16 >> 10) & 0x1f);
unsigned mantissa = ((fp16 & 0x3ff) << 13);
int temp;
float fp32;
if (exponent == 0x1f) { /* NaN or Inf */
mantissa = (mantissa ? (sign = 0, 0x7fffff) : 0);
exponent = 0xff;
} else if (!exponent) { /* Denorm or Zero */
if (mantissa) {
unsigned int msb;
exponent = 0x71;
do {
msb = (mantissa & 0x400000);
mantissa <<= 1; /* normalize */
--exponent;
} while (!msb);
mantissa &= 0x7fffff; /* 1.mantissa is implicit */
}
} else {
exponent += 0x70;
}
temp = ((sign << 31) | (exponent << 23) | mantissa);
std::memcpy(&fp32, &temp, sizeof(temp));
return fp32;
}

View File

@ -1,7 +1,6 @@
#include "type_convert.cuh"
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -414,9 +413,7 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
wt_ptr % req_alignment_bytes == 0;
bool offsets_are_multiple_of_vector_width =
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
!batch_invariant_launch) {
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);
@ -462,8 +459,7 @@ void poly_norm(torch::Tensor& out, // [..., hidden_size]
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
if (ptrs_are_aligned && hidden_size % 8 == 0) {
LAUNCH_FUSED_POLY_NORM(8);
} else {
LAUNCH_FUSED_POLY_NORM(0);

View File

@ -9,7 +9,6 @@
#include "quantization/fp8/common.cuh"
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -241,9 +240,7 @@ void fused_add_rms_norm_static_fp8_quant(
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned =
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
!batch_invariant_launch) {
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);

View File

@ -44,9 +44,6 @@ __global__ void moe_align_block_size_kernel(
for (size_t i = tid; i < numel; i += stride) {
int expert_id = topk_ids[i];
if (expert_id >= num_experts) {
continue;
}
int warp_idx = expert_id / experts_per_warp;
int expert_offset = expert_id % experts_per_warp;
atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset], 1);
@ -98,15 +95,12 @@ template <typename scalar_t>
__global__ void count_and_sort_expert_tokens_kernel(
const scalar_t* __restrict__ topk_ids,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
size_t numel, int32_t num_experts) {
size_t numel) {
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = blockDim.x * gridDim.x;
for (size_t i = tid; i < numel; i += stride) {
int32_t expert_id = topk_ids[i];
if (expert_id >= num_experts) {
continue;
}
int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
sorted_token_ids[rank_post_pad] = i;
}
@ -275,7 +269,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel(), num_experts);
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel());
}
});
}

View File

@ -21,7 +21,6 @@
#include <c10/cuda/CUDAGuard.h>
#include "../cuda_compat.h"
#include "../cub_helpers.h"
#include "../core/batch_invariant.hpp"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -406,8 +405,7 @@ void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, f
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
const int num_warps = batch_invariant_launch ? 32 : (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);

View File

@ -6,11 +6,11 @@ torch::Tensor LLMM1(at::Tensor& in_a, at::Tensor& in_b,
const int64_t rows_per_block);
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
const std::optional<at::Tensor>& in_bias,
const c10::optional<at::Tensor>& in_bias,
const int64_t CuCount);
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const c10::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const at::Tensor& scale_a, const at::Tensor& scale_b,
const int64_t CuCount);

View File

@ -1271,7 +1271,7 @@ int mindiv(int N, int div1, int div2) {
}
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
const std::optional<at::Tensor>& in_bias,
const c10::optional<at::Tensor>& in_bias,
const int64_t CuCount) {
auto M_in = in_a.size(0);
auto K_in = in_a.size(1);
@ -1729,7 +1729,7 @@ __global__ void wvSplitKQ_hf_(const int K, const int Kp, const int M,
#endif // defined(__HIP__MI3XX__) TODO: Add NAVI support
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const c10::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const at::Tensor& scale_a, const at::Tensor& scale_b,
const int64_t CuCount) {
static c10::ScalarType kFp8Type = is_fp8_ocp()

View File

@ -391,32 +391,19 @@ RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
git clone --depth 1 --recursive --shallow-submodules \
--branch ${FLASHINFER_GIT_REF} \
${FLASHINFER_GIT_REPO} flashinfer
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
fi
pushd flashinfer
if [[ "${CUDA_VERSION}" == 12.8.* ]] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then
# NOTE: To make new precompiled wheels, see tools/flashinfer-build.sh
echo "🏗️ Installing FlashInfer from pre-compiled wheel"
uv pip install --system https://wheels.vllm.ai/flashinfer-python/flashinfer_python-0.3.1-cp39-abi3-manylinux1_x86_64.whl \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
# Download pre-compiled cubins
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer --download-cubin || echo "WARNING: Failed to download flashinfer cubins."
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
fi
elif [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
echo "🏗️ Installing FlashInfer with AOT compilation for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
export FLASHINFER_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}"
# HACK: We need these to run flashinfer.aot before installing flashinfer, get from the package in the future
uv pip install --system cuda-python==$(echo $CUDA_VERSION | cut -d. -f1,2) pynvml==$(echo $CUDA_VERSION | cut -d. -f1) nvidia-nvshmem-cu$(echo $CUDA_VERSION | cut -d. -f1)
# Build AOT kernels
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer.aot
@ -546,7 +533,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
else \
BITSANDBYTES_VERSION="0.46.1"; \
fi; \
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3]>=0.14.0'
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' boto3 runai-model-streamer runai-model-streamer[s3]
ENV VLLM_USAGE_SOURCE production-docker-image

View File

@ -114,6 +114,9 @@ WORKDIR /workspace/vllm
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
cp requirements/test.in requirements/cpu-test.in && \
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
sed -i 's/^torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
RUN --mount=type=cache,target=/root/.cache/uv \

View File

@ -2,7 +2,6 @@
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:
- [vLLM Toronto Meetup](https://luma.com/e80e0ymm), September 25th 2025. [[Slides]](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing)
- [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ), August 30th 2025. [[Slides]](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA)
- [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet), August 27th 2025. [[Slides]](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing)
- [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg), August 23rd 2025. [[Slides]](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH)

View File

@ -139,9 +139,9 @@ there is relatively little gain from TP. On the other hand, TP incurs significan
overhead because of all-reduce being performed after every layer.
Given this, it may be advantageous to instead shard the batched input data using TP, essentially
performing batch-level DP. This has been shown to improve the throughput and TTFT by around 10% for
performing batch-level DP. This has been shown to improve the throughput by around 10% for
`tensor_parallel_size=8`. For vision encoders that use hardware-unoptimized Conv3D operations,
batch-level DP can provide another 40% improvement compared to regular TP.
batch-level DP can provide another 40% increase to throughput compared to regular TP.
Nevertheless, since the weights of the multi-modal encoder are replicated across each TP rank,
there will be a minor increase in memory consumption and may cause OOM if you can barely fit the model already.
@ -172,15 +172,14 @@ Batch-level DP needs to be implemented on a per-model basis,
and enabled by setting `supports_encoder_tp_data = True` in the model class.
Regardless, you need to set `mm_encoder_tp_mode="data"` in engine arguments to use this feature.
Known supported models (with corresponding benchmarks):
Known supported models:
- dots_ocr (<gh-pr:25466>)
- GLM-4.1V or above (<gh-pr:23168>)
- GLM-4.5V GLM-4.1V (<gh-pr:23168>)
- InternVL (<gh-pr:23909>)
- Kimi-VL (<gh-pr:23817>)
- Llama4 (<gh-pr:18368>)
- MiniCPM-V-2.5 or above (<gh-pr:23327>, <gh-pr:23948>)
- Qwen2-VL or above (<gh-pr:22742>, <gh-pr:24955>, <gh-pr:25445>)
- Qwen2.5-VL (<gh-pr:22742>)
- Step3 (<gh-pr:22697>)
## Input Processing

View File

@ -66,12 +66,35 @@ Further update the model as follows:
!!! important
The returned `multimodal_embeddings` must be either a **3D [torch.Tensor][]** of shape `(num_items, feature_size, hidden_size)`, or a **list / tuple of 2D [torch.Tensor][]'s** of shape `(feature_size, hidden_size)`, so that `multimodal_embeddings[i]` retrieves the embeddings generated from the `i`-th multimodal data item (e.g, image) of the request.
!!! note
By default, vLLM merges the multimodal embeddings into text embeddings depending on the information of their locations defined in
[PlaceholderRange][vllm.multimodal.inputs.PlaceholderRange] from input processing.
This logic can be found at [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings].
- Implement [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings] to merge `multimodal_embeddings` with text embeddings from the `input_ids`. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.
You may override this method if additional logic is required for your model when merging embeddings.
??? code
```python
from .utils import merge_multimodal_embeddings
class YourModelForImage2Seq(nn.Module):
...
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
# `get_input_embeddings` should already be implemented for the language
# model as one of the requirements of basic vLLM model implementation.
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
multimodal_embeddings=multimodal_embeddings,
placeholder_token_id=self.config.image_token_index)
return inputs_embeds
```
- Implement [get_language_model][vllm.model_executor.models.interfaces.SupportsMultiModal.get_language_model] getter to provide stable access to the underlying language model.

View File

@ -6,10 +6,6 @@ This page teaches you how to pass multi-modal inputs to [multi-modal models][sup
We are actively iterating on multi-modal support. See [this RFC](gh-issue:4194) for upcoming changes,
and [open an issue on GitHub](https://github.com/vllm-project/vllm/issues/new/choose) if you have any feedback or feature requests.
!!! tip
When serving multi-modal models, consider setting `--allowed-media-domains` to restrict domain that vLLM can access to prevent it from accessing arbitrary endpoints that can potentially be vulnerable to Server-Side Request Forgery (SSRF) attacks. You can provide a list of domains for this arg. For example: `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`
This restriction is especially important if you run vLLM in a containerized environment where the vLLM pods may have unrestricted access to internal networks.
## Offline Inference
To input multi-modal data, follow this schema in [vllm.inputs.PromptType][]:

View File

@ -9,7 +9,7 @@ NixlConnector is a high-performance KV cache transfer connector for vLLM's disag
Install the NIXL library: `uv pip install nixl`, as a quick start.
- Refer to [NIXL official repository](https://github.com/ai-dynamo/nixl) for more installation instructions
- The specified required NIXL version can be found in [requirements/kv_connectors.txt](gh-file:requirements/kv_connectors.txt) and other relevant config files
- The specified required NIXL version can be found in [requirements/kv_connectors.txt](../../requirements/kv_connectors.txt) and other relevant config files
### Transport Configuration
@ -154,6 +154,6 @@ python tests/v1/kv_connector/nixl_integration/toy_proxy_server.py \
Refer to these example scripts in the vLLM repository:
- [run_accuracy_test.sh](gh-file:tests/v1/kv_connector/nixl_integration/run_accuracy_test.sh)
- [toy_proxy_server.py](gh-file:tests/v1/kv_connector/nixl_integration/toy_proxy_server.py)
- [test_accuracy.py](gh-file:tests/v1/kv_connector/nixl_integration/test_accuracy.py)
- [run_accuracy_test.sh](../../tests/v1/kv_connector/nixl_integration/run_accuracy_test.sh)
- [toy_proxy_server.py](../../tests/v1/kv_connector/nixl_integration/toy_proxy_server.py)
- [test_accuracy.py](../../tests/v1/kv_connector/nixl_integration/test_accuracy.py)

View File

@ -6,17 +6,6 @@ vLLM supports the generation of structured outputs using
This document shows you some examples of the different options that are
available to generate structured outputs.
!!! warning
If you are still using the following deprecated API fields, please update your code to use `structured_outputs` as demonstrated in the rest of this document:
- `guided_json` -> `{"structured_outputs": {"json": ...}}` or `StructuredOutputsParams(json=...)`
- `guided_regex` -> `{"structured_outputs": {"regex": ...}}` or `StructuredOutputsParams(regex=...)`
- `guided_choice` -> `{"structured_outputs": {"choice": ...}}` or `StructuredOutputsParams(choice=...)`
- `guided_grammar` -> `{"structured_outputs": {"grammar": ...}}` or `StructuredOutputsParams(grammar=...)`
- `guided_whitespace_pattern` -> `{"structured_outputs": {"whitespace_pattern": ...}}` or `StructuredOutputsParams(whitespace_pattern=...)`
- `structural_tag` -> `{"structured_outputs": {"structural_tag": ...}}` or `StructuredOutputsParams(structural_tag=...)`
- `guided_decoding_backend` -> Remove this field from your request
## Online Serving (OpenAI API)
You can generate structured outputs using the OpenAI's [Completions](https://platform.openai.com/docs/api-reference/completions) and [Chat](https://platform.openai.com/docs/api-reference/chat) API.

View File

@ -310,15 +310,6 @@ Flags:
* For non-reasoning: `--tool-call-parser hunyuan_a13b`
* For reasoning: `--tool-call-parser hunyuan_a13b --reasoning-parser hunyuan_a13b --enable_reasoning`
### LongCat-Flash-Chat Models (`longcat`)
Supported models:
* `meituan-longcat/LongCat-Flash-Chat`
* `meituan-longcat/LongCat-Flash-Chat-FP8`
Flags: `--tool-call-parser longcat`
### GLM-4.5 Models (`glm45`)
Supported models:

View File

@ -20,80 +20,7 @@ vLLM supports basic model inferencing and serving on x86 CPU platform, with data
# --8<-- [end:pre-built-wheels]
# --8<-- [start:build-wheel-from-source]
Install recommended compiler. We recommend to use `gcc/g++ >= 12.3.0` as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run:
```bash
sudo apt-get update -y
sudo apt-get install -y gcc-12 g++-12 libnuma-dev python3-dev
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
```
Clone the vLLM project:
```bash
git clone https://github.com/vllm-project/vllm.git vllm_source
cd vllm_source
```
Install the required dependencies:
```bash
uv pip install -r requirements/cpu-build.txt --torch-backend cpu
uv pip install -r requirements/cpu.txt --torch-backend cpu
```
??? console "pip"
```bash
pip install --upgrade pip
pip install -v -r requirements/cpu-build.txt --extra-index-url https://download.pytorch.org/whl/cpu
pip install -v -r requirements/cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
```
Build and install vLLM:
```bash
VLLM_TARGET_DEVICE=cpu uv pip install . --no-build-isolation
```
If you want to develop vLLM, install it in editable mode instead.
```bash
VLLM_TARGET_DEVICE=cpu uv pip install -e . --no-build-isolation
```
Optionally, build a portable wheel which you can then install elsewhere:
```bash
VLLM_TARGET_DEVICE=cpu uv build --wheel
```
```bash
uv pip install dist/*.whl
```
??? console "pip"
```bash
VLLM_TARGET_DEVICE=cpu python -m build --wheel --no-isolation
```
```bash
pip install dist/*.whl
```
!!! example "Troubleshooting"
- **NumPy ≥2.0 error**: Downgrade using `pip install "numpy<2.0"`.
- **CMake picks up CUDA**: Add `CMAKE_DISABLE_FIND_PACKAGE_CUDA=ON` to prevent CUDA detection during CPU builds, even if CUDA is installed.
- `AMD` requies at least 4th gen processors (Zen 4/Genoa) or higher to support [AVX512](https://www.phoronix.com/review/amd-zen4-avx512) to run vLLM on CPU.
- If you receive an error such as: `Could not find a version that satisfies the requirement torch==X.Y.Z+cpu+cpu`, consider updating [pyproject.toml](https://github.com/vllm-project/vllm/blob/main/pyproject.toml) to help pip resolve the dependency.
```toml title="pyproject.toml"
[build-system]
requires = [
"cmake>=3.26.1",
...
"torch==X.Y.Z+cpu" # <-------
]
```
- If you are building vLLM from source and not using the pre-built images, remember to set `LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:$LD_PRELOAD"` on x86 machines before running vLLM.
--8<-- "docs/getting_started/installation/cpu/build.inc.md"
# --8<-- [end:build-wheel-from-source]
# --8<-- [start:pre-built-images]
@ -130,4 +57,4 @@ docker run --rm \
# --8<-- [end:build-image-from-source]
# --8<-- [start:extra-information]
# --8<-- [end:extra-information]
# --8<-- [end:extra-information]

View File

@ -32,9 +32,8 @@ def auto_mock(module, attr, max_mocks=50):
for _ in range(max_mocks):
try:
# First treat attr as an attr, then as a submodule
with patch("importlib.metadata.version", return_value="0.0.0"):
return getattr(importlib.import_module(module), attr,
importlib.import_module(f"{module}.{attr}"))
return getattr(importlib.import_module(module), attr,
importlib.import_module(f"{module}.{attr}"))
except importlib.metadata.PackageNotFoundError as e:
raise e
except ModuleNotFoundError as e:
@ -168,5 +167,5 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
doc_path = ARGPARSE_DOC_DIR / f"{stem}.md"
# Specify encoding for building on Windows
with open(doc_path, "w", encoding="utf-8") as f:
f.write(super(type(parser), parser).format_help())
f.write(parser.format_help())
logger.info("Argparse generated: %s", doc_path.relative_to(ROOT_DIR))

View File

@ -4,7 +4,7 @@ vLLM provides first-class support for generative models, which covers most of LL
In vLLM, generative models implement the[VllmModelForTextGeneration][vllm.model_executor.models.VllmModelForTextGeneration] interface.
Based on the final hidden states of the input, these models output log probabilities of the tokens to generate,
which are then passed through [Sampler][vllm.v1.sample.sampler.Sampler] to obtain the final text.
which are then passed through [Sampler][vllm.model_executor.layers.sampler.Sampler] to obtain the final text.
## Configuration

View File

@ -29,7 +29,7 @@ _*Vision-language models currently accept only image inputs. Support for video i
If the Transformers model implementation follows all the steps in [writing a custom model](#writing-custom-models) then, when used with the Transformers backend, it will be compatible with the following features of vLLM:
- All the features listed in the [compatibility matrix](../features/README.md#feature-x-feature)
- All the features listed in the [compatibility matrix](../features/compatibility_matrix.md#feature-x-feature)
- Any combination of the following vLLM parallelisation schemes:
- Pipeline parallel
- Tensor parallel
@ -428,7 +428,6 @@ th {
| `MiniMaxM1ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-M1-40k`, `MiniMaxAI/MiniMax-M1-80k`, etc. | | | ✅︎ |
| `MiniMaxText01ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-Text-01`, etc. | | | ✅︎ |
| `Zamba2ForCausalLM` | Zamba2 | `Zyphra/Zamba2-7B-instruct`, `Zyphra/Zamba2-2.7B-instruct`, `Zyphra/Zamba2-1.2B-instruct`, etc. | | | ✅︎ |
| `LongcatFlashForCausalLM` | LongCat-Flash | `meituan-longcat/LongCat-Flash-Chat`, `meituan-longcat/LongCat-Flash-Chat-FP8` | ✅︎ |✅︎ | ✅︎ |
Some models are supported only via the [Transformers backend](#transformers). The purpose of the table below is to acknowledge models which we officially support in this way. The logs will say that the Transformers backend is being used, and you will see no warning that this is fallback behaviour. This means that, if you have issues with any of the models listed below, please [make an issue](https://github.com/vllm-project/vllm/issues/new/choose) and we'll do our best to fix it!

View File

@ -1,6 +1,6 @@
# Using vLLM
First, vLLM must be [installed](../getting_started/installation/) for your chosen device in either a Python or Docker environment.
First, vLLM must be [installed](../getting_started/installation) for your chosen device in either a Python or Docker environment.
Then, vLLM supports the following usage patterns:

View File

@ -60,12 +60,6 @@ Key points from the PyTorch security guide:
- Implement proper authentication and authorization for management interfaces
- Follow the principle of least privilege for all system components
### 4. **Restrict Domains Access for Media URLs:**
Restrict domains that vLLM can access for media URLs by setting
`--allowed-media-domains` to prevent Server-Side Request Forgery (SSRF) attacks.
(e.g. `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`)
## Security and Firewalls: Protecting Exposed vLLM Systems
While vLLM is designed to allow unsafe network services to be isolated to

View File

@ -87,7 +87,6 @@ def main(args: dict):
use_tqdm=False,
chat_template=chat_template,
)
print_outputs(outputs)
if __name__ == "__main__":

View File

@ -54,7 +54,6 @@ def parse_args():
"--method",
type=str,
default="eagle",
choices=["ngram", "eagle", "eagle3", "mtp"],
)
parser.add_argument("--num-spec-tokens", type=int, default=2)
parser.add_argument("--prompt-lookup-max", type=int, default=5)
@ -119,9 +118,9 @@ def main(args):
"prompt_lookup_max": args.prompt_lookup_max,
"prompt_lookup_min": args.prompt_lookup_min,
}
elif args.method == "mtp":
elif args.method.endswith("mtp"):
speculative_config = {
"method": "mtp",
"method": args.method,
"num_speculative_tokens": args.num_spec_tokens,
}
else:

View File

@ -11,9 +11,9 @@ vLLM performance and metrics.
## Dashboard Descriptions
- **performance_statistics.json**: Tracks performance metrics including latency and
- **[performance_statistics.json](./performance_statistics.json)**: Tracks performance metrics including latency and
throughput for your vLLM service.
- **query_statistics.json**: Tracks query performance, request volume, and key
- **[query_statistics.json](./query_statistics.json)**: Tracks query performance, request volume, and key
performance indicators for your vLLM service.
## Deployment Options

View File

@ -21,9 +21,9 @@ deployment methods:
## Dashboard Descriptions
- **performance_statistics.yaml**: Performance metrics with aggregated latency
- **[performance_statistics.yaml](./performance_statistics.yaml)**: Performance metrics with aggregated latency
statistics
- **query_statistics.yaml**: Query performance and deployment metrics
- **[query_statistics.yaml](./query_statistics.yaml)**: Query performance and deployment metrics
## Deployment Options

View File

@ -38,13 +38,11 @@ client = OpenAI(
base_url=openai_api_base,
)
headers = {"User-Agent": "vLLM Example Client"}
def encode_base64_content_from_url(content_url: str) -> str:
"""Encode a content retrieved from a remote url to base64 format."""
with requests.get(content_url, headers=headers) as response:
with requests.get(content_url) as response:
response.raise_for_status()
result = base64.b64encode(response.content).decode("utf-8")
@ -52,19 +50,19 @@ def encode_base64_content_from_url(content_url: str) -> str:
# Text-only inference
def run_text_only(model: str, max_completion_tokens: int) -> None:
def run_text_only(model: str) -> None:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "What's the capital of France?"}],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion.choices[0].message.content
print("Chat completion output:\n", result)
print("Chat completion output:", result)
# Single-image input inference
def run_single_image(model: str, max_completion_tokens: int) -> None:
def run_single_image(model: str) -> None:
## Use image url in the payload
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
chat_completion_from_url = client.chat.completions.create(
@ -81,11 +79,11 @@ def run_single_image(model: str, max_completion_tokens: int) -> None:
}
],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:\n", result)
print("Chat completion output from image url:", result)
## Use base64 encoded image in the payload
image_base64 = encode_base64_content_from_url(image_url)
@ -103,7 +101,7 @@ def run_single_image(model: str, max_completion_tokens: int) -> None:
}
],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion_from_base64.choices[0].message.content
@ -111,7 +109,7 @@ def run_single_image(model: str, max_completion_tokens: int) -> None:
# Multi-image input inference
def run_multi_image(model: str, max_completion_tokens: int) -> None:
def run_multi_image(model: str) -> None:
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
chat_completion_from_url = client.chat.completions.create(
@ -132,15 +130,15 @@ def run_multi_image(model: str, max_completion_tokens: int) -> None:
}
],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output:\n", result)
print("Chat completion output:", result)
# Video input inference
def run_video(model: str, max_completion_tokens: int) -> None:
def run_video(model: str) -> None:
video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"
video_base64 = encode_base64_content_from_url(video_url)
@ -159,11 +157,11 @@ def run_video(model: str, max_completion_tokens: int) -> None:
}
],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from video url:\n", result)
print("Chat completion output from image url:", result)
## Use base64 encoded video in the payload
chat_completion_from_base64 = client.chat.completions.create(
@ -180,15 +178,15 @@ def run_video(model: str, max_completion_tokens: int) -> None:
}
],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from base64 encoded video:\n", result)
print("Chat completion output from base64 encoded image:", result)
# Audio input inference
def run_audio(model: str, max_completion_tokens: int) -> None:
def run_audio(model: str) -> None:
from vllm.assets.audio import AudioAsset
audio_url = AudioAsset("winning_call").url
@ -213,11 +211,11 @@ def run_audio(model: str, max_completion_tokens: int) -> None:
}
],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:\n", result)
print("Chat completion output from input audio:", result)
# HTTP URL
chat_completion_from_url = client.chat.completions.create(
@ -237,11 +235,11 @@ def run_audio(model: str, max_completion_tokens: int) -> None:
}
],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from audio url:\n", result)
print("Chat completion output from audio url:", result)
# base64 URL
chat_completion_from_base64 = client.chat.completions.create(
@ -261,14 +259,14 @@ def run_audio(model: str, max_completion_tokens: int) -> None:
}
],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from base64 encoded audio:\n", result)
print("Chat completion output from base64 encoded audio:", result)
def run_multi_audio(model: str, max_completion_tokens: int) -> None:
def run_multi_audio(model: str) -> None:
from vllm.assets.audio import AudioAsset
# Two different audios to showcase batched inference.
@ -302,11 +300,11 @@ def run_multi_audio(model: str, max_completion_tokens: int) -> None:
}
],
model=model,
max_completion_tokens=max_completion_tokens,
max_completion_tokens=64,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:\n", result)
print("Chat completion output from input audio:", result)
example_function_map = {
@ -332,20 +330,13 @@ def parse_args():
choices=list(example_function_map.keys()),
help="Conversation type with multimodal data.",
)
parser.add_argument(
"--max-completion-tokens",
"-n",
type=int,
default=128,
help="Maximum number of tokens to generate for each completion.",
)
return parser.parse_args()
def main(args) -> None:
chat_type = args.chat_type
model = get_first_model(client)
example_function_map[chat_type](model, args.max_completion_tokens)
example_function_map[chat_type](model)
if __name__ == "__main__":

View File

@ -1,11 +1,12 @@
# Temporarily used for x86 CPU backend to avoid performance regression of torch>2.6.0+cpu,
# see https://github.com/pytorch/pytorch/pull/151218
cmake>=3.26.1
ninja
packaging>=24.2
setuptools>=77.0.3,<80.0.0
setuptools-scm>=8
--extra-index-url https://download.pytorch.org/whl/cpu
torch==2.8.0+cpu; platform_machine == "x86_64"
torch==2.8.0; platform_machine == "ppc64le" or platform_machine == "aarch64" or platform_system == "Darwin"
torch==2.6.0+cpu
wheel
jinja2>=3.1.6
regex

View File

@ -8,7 +8,7 @@ numba == 0.61.2; python_version > '3.9' and platform_machine != "s390x"
packaging>=24.2
setuptools>=77.0.3,<80.0.0
--extra-index-url https://download.pytorch.org/whl/cpu
torch==2.8.0+cpu; platform_machine == "x86_64"
torch==2.6.0+cpu; platform_machine == "x86_64" # torch>2.6.0+cpu has performance regression on x86 platform, see https://github.com/pytorch/pytorch/pull/151218
torch==2.8.0; platform_system == "Darwin"
torch==2.8.0; platform_machine == "ppc64le" or platform_machine == "aarch64"
@ -23,7 +23,7 @@ datasets # for benchmark scripts
# Intel Extension for PyTorch, only for x86_64 CPUs
intel-openmp==2024.2.1; platform_machine == "x86_64"
intel_extension_for_pytorch==2.8.0; platform_machine == "x86_64"
intel_extension_for_pytorch==2.6.0; platform_machine == "x86_64" # torch>2.6.0+cpu has performance regression on x86 platform, see https://github.com/pytorch/pytorch/pull/151218
triton==3.2.0; platform_machine == "x86_64" # Triton is required for torch 2.6+cpu, as it is imported in torch.compile.
# Use this to gather CPU info and optimize based on ARM Neoverse cores

View File

@ -43,6 +43,7 @@ tritonclient==2.51.0
numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Required for N-gram speculative decoding
numba == 0.61.2; python_version > '3.9'
numpy
runai-model-streamer[s3]==0.14.0
runai-model-streamer==0.11.0
runai-model-streamer-s3==0.11.0
fastsafetensors>=0.1.10
pydantic>=2.10 # 2.9 leads to error on python 3.10

View File

@ -5,6 +5,8 @@ numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Req
numba == 0.61.2; python_version > '3.9'
# Dependencies for AMD GPUs
boto3
botocore
datasets
ray[cgraph]>=2.48.0 # Ray Compiled Graph, required for pipeline parallelism in V1.
peft
@ -13,6 +15,7 @@ tensorizer==2.10.1
packaging>=24.2
setuptools>=77.0.3,<80.0.0
setuptools-scm>=8
runai-model-streamer[s3]==0.14.0
runai-model-streamer==0.11.0
runai-model-streamer-s3==0.11.0
conch-triton-kernels==1.2.1
timm>=1.0.17

View File

@ -51,7 +51,8 @@ tritonclient==2.51.0
numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Required for N-gram speculative decoding
numba == 0.61.2; python_version > '3.9'
numpy
runai-model-streamer[s3]==0.14.0
runai-model-streamer==0.11.0
runai-model-streamer-s3==0.11.0
fastsafetensors>=0.1.10
pydantic>=2.10 # 2.9 leads to error on python 3.10
decord==0.6.0

View File

@ -72,9 +72,7 @@ blobfile==3.0.0
bm25s==0.2.13
# via mteb
boto3==1.35.57
# via
# runai-model-streamer-s3
# tensorizer
# via tensorizer
botocore==1.35.57
# via
# boto3
@ -927,10 +925,10 @@ rsa==4.9.1
# via google-auth
rtree==1.4.0
# via torchgeo
runai-model-streamer==0.14.0
runai-model-streamer==0.11.0
# via -r requirements/test.in
runai-model-streamer-s3==0.11.0
# via -r requirements/test.in
runai-model-streamer-s3==0.14.0
# via runai-model-streamer
s3transfer==0.10.3
# via boto3
sacrebleu==2.4.3

View File

@ -654,7 +654,10 @@ setup(
"bench": ["pandas", "datasets"],
"tensorizer": ["tensorizer==2.10.1"],
"fastsafetensors": ["fastsafetensors >= 0.1.10"],
"runai": ["runai-model-streamer[s3,gcs] >= 0.14.0"],
"runai": [
"runai-model-streamer >= 0.14.0", "runai-model-streamer-gcs",
"google-cloud-storage", "runai-model-streamer-s3", "boto3"
],
"audio": ["librosa", "soundfile",
"mistral_common[audio]"], # Required for audio processing
"video": [], # Kept for backwards compatibility

View File

@ -3,11 +3,12 @@
import contextlib
import os
import weakref
from dataclasses import dataclass
from typing import Optional
import pytest
from tests.utils import wait_for_gpu_memory_to_clear
from tests.v1.attention.utils import full_cg_backend_configs as backend_configs
from vllm import LLM, SamplingParams
from vllm.config import CompilationConfig
from vllm.platforms import current_platform
@ -32,6 +33,89 @@ def temporary_environ(env_vars):
os.environ[k] = v
@dataclass
class BackendConfig:
name: str
env_vars: dict
comp_config: dict
specific_gpu_arch: Optional[tuple] = None
# Define all backend configurations of full cudagraph to be tested
backend_configs = {
# FA3 on Hopper
"FA3":
BackendConfig(name="FA3",
env_vars={
"VLLM_FLASH_ATTN_VERSION": "3",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL",
},
specific_gpu_arch=(9, 0)),
# FlashMLA on Hopper
"FlashMLA":
BackendConfig(name="FlashMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASHMLA",
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
},
specific_gpu_arch=(9, 0)),
# FlashAttention MLA on Hopper
"FlashAttentionMLA":
BackendConfig(name="FlashAttentionMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN_MLA",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL_DECODE_ONLY",
},
specific_gpu_arch=(9, 0)),
# Cutlass MLA on Blackwell
"CutlassMLA":
BackendConfig(
name="CutlassMLA",
env_vars={
"VLLM_USE_V1": "1",
"VLLM_ATTENTION_BACKEND": "CUTLASS_MLA",
"FORCE_NUM_KV_SPLITS":
"1", # TODO: remove this when hang issue is fixed
},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
"cudagraph_capture_sizes": [16, 32, 64, 128, 256, 512],
},
specific_gpu_arch=(10, 0)),
# FA2
"FA2":
BackendConfig(name="FA2",
env_vars={
"VLLM_FLASH_ATTN_VERSION": "2",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL",
}),
# Triton Attention
"TritonAttn":
BackendConfig(name="TritonAttn",
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN_VLLM_V1"},
comp_config={
"cudagraph_mode": "FULL",
}),
# FlashInfer
"FlashInfer":
BackendConfig(name="FlashInfer",
env_vars={"VLLM_ATTENTION_BACKEND": "FLASHINFER"},
comp_config={
"cudagraph_mode": "FULL_AND_PIECEWISE",
}),
}
test_params_full_cudagraph = []
# deepseek-ai/DeepSeek-V2-Lite with MLA

View File

@ -4,7 +4,7 @@ import pytest
import vllm
from vllm.compilation.counter import compilation_counter
from vllm.config import CompilationConfig, CUDAGraphMode, VllmConfig
from vllm.config import CompilationConfig, VllmConfig
from vllm.utils import _is_torch_equal_or_newer
@ -106,6 +106,7 @@ def test_dynamo_as_is(vllm_runner, monkeypatch):
def test_no_compilation(vllm_runner, monkeypatch):
# Disable multiprocessing so that the counter is in the same process
monkeypatch.setenv('VLLM_ENABLE_V1_MULTIPROCESSING', '0')
with (
compilation_counter.expect(num_graphs_seen=0,
dynamo_as_is_count=0),
@ -130,67 +131,3 @@ def test_enforce_eager(vllm_runner, monkeypatch):
enforce_eager=True,
gpu_memory_utilization=0.4) as _):
pass
def test_splitting_ops_dynamic():
# Default config
config = VllmConfig()
assert config.compilation_config.cudagraph_mode == \
CUDAGraphMode.FULL_AND_PIECEWISE
assert config.compilation_config.splitting_ops_contain_attention()
# When use_inductor_graph_partition=True
if _is_torch_equal_or_newer('2.9.0.dev'):
# inductor graph partition is only available in PyTorch 2.9+.
# this is a fast config check so we are not using pytest.skip.
config = VllmConfig(compilation_config=CompilationConfig(
use_inductor_graph_partition=True,
splitting_ops=["silly_attention"]))
# should ignore splitting_ops
assert config.compilation_config.splitting_ops == []
# When attn_fusion pass enabled.
config = VllmConfig(compilation_config=CompilationConfig(
pass_config={
"enable_attn_fusion": True,
"enable_noop": True
},
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
))
assert config.compilation_config.splitting_ops == []
# cudagraph mode also fall back to FULL
assert config.compilation_config.cudagraph_mode == \
CUDAGraphMode.FULL
# splitting_ops can not contain attention ops when attn_fusion
# pass enabled.
with pytest.raises(AssertionError):
config = VllmConfig(compilation_config=CompilationConfig(
pass_config={
"enable_attn_fusion": True,
"enable_noop": True
},
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
# work around for accessing all attntion ops
splitting_ops=CompilationConfig()._attention_ops,
))
# When both use_inductor_graph_partition and attn_fusion pass enabled.
if _is_torch_equal_or_newer('2.9.0.dev'):
config = VllmConfig(compilation_config=CompilationConfig(
use_inductor_graph_partition=True,
pass_config={
"enable_attn_fusion": True,
"enable_noop": True
},
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
))
assert config.compilation_config.splitting_ops == []
# enable_attn_fusion is directly support under
# use_inductor_graph_partition=True, and cudagraph_mode
# is unchanged.
assert config.compilation_config.cudagraph_mode == \
CUDAGraphMode.PIECEWISE

View File

@ -338,7 +338,7 @@ else:
@pytest.mark.parametrize("model_name, model_class", MODELS)
@pytest.mark.parametrize("backend",
[_Backend.FLASHINFER] if current_platform.is_cuda()
else [_Backend.TRITON_ATTN])
else [_Backend.TRITON_ATTN_VLLM_V1])
@pytest.mark.parametrize(
"split_attention",
[False, True] if current_platform.is_rocm() else [False])

View File

@ -50,11 +50,8 @@ def test_is_type(type_hint, type, expected):
@pytest.mark.parametrize(("type_hints", "type", "expected"), [
({float, int}, int, True),
({int, tuple}, int, True),
({int, tuple[int]}, int, True),
({int, tuple[int, ...]}, int, True),
({int, tuple[int]}, float, False),
({int, tuple[int, ...]}, float, False),
({str, Literal["x", "y"]}, Literal, True),
])
def test_contains_type(type_hints, type, expected):

View File

@ -15,7 +15,7 @@ from transformers import AutoConfig
from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "facebook/opt-125m"
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
CONFIG = AutoConfig.from_pretrained(MODEL_NAME)
@ -27,7 +27,7 @@ def default_server_args() -> list[str]:
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"8192",
"--max-num-seqs",
"128",
"--enforce-eager",
@ -36,27 +36,6 @@ def default_server_args() -> list[str]:
]
EXAMPLE_PROMPTS = [
"Hello, my name is",
"What is an LLM?",
]
def _encode_embeds(embeds: torch.Tensor):
buffer = io.BytesIO()
torch.save(embeds, buffer)
return base64.b64encode(buffer.getvalue()).decode('utf-8')
@pytest.fixture(scope="module")
def example_prompt_embeds(hf_runner):
"""Create example embeddings and return them as base64 encoded string."""
with hf_runner(MODEL_NAME) as hf_model:
example_embeddings = hf_model.get_prompt_embeddings(EXAMPLE_PROMPTS)
return [_encode_embeds(item) for item in example_embeddings]
@pytest.fixture(scope="module",
params=["", "--disable-frontend-multiprocessing"])
def server_with_prompt_embeds(default_server_args, request):
@ -73,16 +52,21 @@ async def client_with_prompt_embeds(server_with_prompt_embeds):
yield async_client
def create_dummy_embeds(num_tokens: int = 5) -> str:
"""Create dummy embeddings and return them as base64 encoded string."""
dummy_embeds = torch.randn(num_tokens, CONFIG.hidden_size)
buffer = io.BytesIO()
torch.save(dummy_embeds, buffer)
return base64.b64encode(buffer.getvalue()).decode('utf-8')
@pytest.mark.skip("This test is skipped because it is flaky.")
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_completions_with_prompt_embeds(
example_prompt_embeds,
client_with_prompt_embeds: openai.AsyncOpenAI,
model_name: str,
):
encoded_embeds, encoded_embeds2 = example_prompt_embeds
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
# Test case: Single prompt embeds input
encoded_embeds = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -93,6 +77,7 @@ async def test_completions_with_prompt_embeds(
assert completion.choices[0].prompt_logprobs is None
# Test case: batch completion with prompt_embeds
encoded_embeds2 = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -104,6 +89,7 @@ async def test_completions_with_prompt_embeds(
assert len(completion.choices[1].text) >= 1
# Test case: streaming with prompt_embeds
encoded_embeds = create_dummy_embeds()
single_completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -131,6 +117,7 @@ async def test_completions_with_prompt_embeds(
assert "".join(chunks) == single_output
# Test case: batch streaming with prompt_embeds
encoded_embeds2 = create_dummy_embeds()
stream = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -152,6 +139,7 @@ async def test_completions_with_prompt_embeds(
assert len(chunks_stream_embeds[1]) > 0
# Test case: mixed text and prompt_embeds
encoded_embeds = create_dummy_embeds()
completion_mixed = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="This is a prompt",
@ -196,14 +184,10 @@ async def test_completions_errors_with_prompt_embeds(
@pytest.mark.parametrize("logprobs_arg", [1, 0])
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_completions_with_logprobs_and_prompt_embeds(
example_prompt_embeds,
client_with_prompt_embeds: openai.AsyncOpenAI,
logprobs_arg: int,
model_name: str,
):
encoded_embeds, encoded_embeds2 = example_prompt_embeds
client_with_prompt_embeds: openai.AsyncOpenAI, logprobs_arg: int,
model_name: str):
# Test case: Logprobs using prompt_embeds
encoded_embeds = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -223,6 +207,7 @@ async def test_completions_with_logprobs_and_prompt_embeds(
assert len(logprobs.tokens) == 5
# Test case: Log probs with batch completion and prompt_embeds
encoded_embeds2 = create_dummy_embeds()
completion = await client_with_prompt_embeds.completions.create(
model=model_name,
prompt="", # Add empty prompt as required parameter
@ -247,12 +232,9 @@ async def test_completions_with_logprobs_and_prompt_embeds(
@pytest.mark.asyncio
async def test_prompt_logprobs_raises_error(
example_prompt_embeds,
client_with_prompt_embeds: openai.AsyncOpenAI,
):
encoded_embeds, _ = example_prompt_embeds
client_with_prompt_embeds: openai.AsyncOpenAI):
with pytest.raises(BadRequestError, match="not compatible"):
encoded_embeds = create_dummy_embeds()
await client_with_prompt_embeds.completions.create(
model=MODEL_NAME,
prompt="",

View File

@ -45,7 +45,6 @@ class MockModelConfig:
logits_processor_pattern: Optional[str] = None
diff_sampling_param: Optional[dict] = None
allowed_local_media_path: str = ""
allowed_media_domains: Optional[list[str]] = None
encoder_config = None
generation_config: str = "auto"
skip_tokenizer_init: bool = False

View File

@ -68,7 +68,7 @@ def default_server_args(with_tool_parser: bool):
def gptoss_server(monkeypatch_module: pytest.MonkeyPatch,
default_server_args: list[str]):
with monkeypatch_module.context() as m:
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN")
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN_VLLM_V1")
with RemoteOpenAIServer(GPT_OSS_MODEL_NAME,
default_server_args) as remote_server:
yield remote_server
@ -240,7 +240,6 @@ class MockModelConfig:
logits_processor_pattern = None
diff_sampling_param: Optional[dict] = None
allowed_local_media_path: str = ""
allowed_media_domains: Optional[list[str]] = None
encoder_config = None
generation_config: str = "auto"
media_io_kwargs: dict[str, dict[str, Any]] = field(default_factory=dict)

View File

@ -19,7 +19,6 @@ from vllm.entrypoints.chat_utils import (_try_extract_ast, load_chat_template,
parse_chat_messages,
parse_chat_messages_futures,
resolve_chat_template_content_format,
resolve_chat_template_kwargs,
resolve_hf_chat_template)
from vllm.multimodal import MultiModalDataDict, MultiModalUUIDDict
from vllm.multimodal.utils import (encode_audio_base64, encode_image_base64,
@ -38,7 +37,6 @@ QWEN2AUDIO_MODEL_ID = "Qwen/Qwen2-Audio-7B-Instruct"
QWEN2VL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
QWEN25VL_MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
QWEN25OMNI_MODEL_ID = "Qwen/Qwen2.5-Omni-7B"
QWEN3_MODEL_ID = "Qwen/Qwen3-8B"
LLAMA_GUARD_MODEL_ID = "meta-llama/Llama-Guard-3-1B"
HERMES_MODEL_ID = "NousResearch/Hermes-3-Llama-3.1-8B"
MISTRAL_MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
@ -2257,89 +2255,6 @@ def test_resolve_hf_chat_template(sample_json_schema, model, use_tools):
assert isinstance(chat_template, str)
@pytest.mark.parametrize(
"model, expected_kwargs",
[
(
QWEN2VL_MODEL_ID,
{
"add_vision_id", "add_generation_prompt",
"continue_final_message", "tools"
},
),
(
QWEN3_MODEL_ID,
{
"enable_thinking", "add_generation_prompt",
"continue_final_message", "tools"
},
),
],
)
def test_resolve_hf_chat_template_kwargs(sample_json_schema, model,
expected_kwargs):
"""checks that chat_template is a dict type for HF models."""
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
model_info.check_available_online(on_fail="skip")
tools = ([{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema,
},
}])
chat_template_kwargs = {
# both unused
"unsed_kwargs_1": 123,
"unsed_kwargs_2": "abc",
# should not appear
"chat_template": "{% Hello world! %}",
# used by tokenizer
"continue_final_message": True,
"tools": tools,
# both used by Qwen2-VL and Qwen3
"add_generation_prompt": True,
# only used by Qwen2-VL
"add_vision_id": True,
# only used by Qwen3
"enable_thinking": True,
}
model_config = ModelConfig(
model,
tokenizer=model_info.tokenizer or model,
tokenizer_mode=model_info.tokenizer_mode,
revision=model_info.revision,
trust_remote_code=model_info.trust_remote_code,
hf_overrides=model_info.hf_overrides,
skip_tokenizer_init=model_info.skip_tokenizer_init,
enforce_eager=model_info.enforce_eager,
dtype=model_info.dtype)
# Build the tokenizer
tokenizer = get_tokenizer(
model,
trust_remote_code=model_config.trust_remote_code,
)
# Test detecting the tokenizer's chat_template
chat_template = resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=tools,
model_config=model_config,
)
resolved_chat_template_kwargs = resolve_chat_template_kwargs(
tokenizer,
chat_template=chat_template,
chat_template_kwargs=chat_template_kwargs,
)
assert set(resolved_chat_template_kwargs.keys()) == expected_kwargs
# NOTE: Qwen2-Audio default chat template is specially defined inside
# processor class instead of using `tokenizer_config.json`
# yapf: disable

View File

@ -31,7 +31,7 @@ DEVICE_MLA_BACKENDS = {
}
DEVICE_REGULAR_ATTN_BACKENDS = {
"cuda": ["XFORMERS", "FLASHINFER", "FLASH_ATTN"],
"cuda": ["XFORMERS", "FLASHINFER"],
"hip": ["ROCM_FLASH"],
"cpu": ["TORCH_SDPA"],
}
@ -86,7 +86,7 @@ def test_env(
with patch("vllm.attention.selector.current_platform",
CpuPlatform()):
backend = get_attn_backend(16, torch.float16, None, block_size)
assert backend.get_name() == "TORCH_SDPA"
assert backend.get_name() == "TORCH_SDPA_VLLM_V1"
elif device == "hip":
with patch("vllm.attention.selector.current_platform",
@ -125,7 +125,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = name
expected = f"{name}_VLLM_V1"
assert backend.get_name() == expected
else:
backend = get_attn_backend(16,
@ -133,7 +133,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = "TRITON_ATTN"
expected = "TRITON_ATTN_VLLM_V1"
assert backend.get_name() == expected
elif device == "cuda":
@ -160,7 +160,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = "CUTLASS_MLA"
expected = "CUTLASS_MLA_VLLM_V1"
assert backend.get_name() == expected
elif name == "FLASHINFER_MLA":
if block_size not in [32, 64]:
@ -193,7 +193,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = name
expected = f"{name}_VLLM_V1"
assert backend.get_name() == expected
elif name == "FLASH_ATTN_MLA":
backend = get_attn_backend(16,
@ -210,7 +210,7 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = "TRITON_MLA"
expected = "TRITON_MLA_VLLM_V1"
assert backend.get_name() == expected
elif name == "FLASHINFER":
backend = get_attn_backend(16,
@ -218,24 +218,25 @@ def test_env(
None,
block_size,
use_mla=use_mla)
expected = "FLASHINFER"
expected = "FLASHINFER_VLLM_V1"
assert backend.get_name() == expected
elif name == "XFORMERS":
else:
backend = get_attn_backend(32,
torch.float16,
None,
block_size,
use_mla=use_mla)
expected = "XFORMERS"
expected = "FLASH_ATTN_VLLM_V1"
assert backend.get_name() == expected
elif name == "FLASH_ATTN":
backend = get_attn_backend(32,
backend = get_attn_backend(16,
torch.float16,
None,
block_size,
use_mla=use_mla)
expected = "FLASH_ATTN"
assert backend.get_name() == expected
assert backend.get_name() == "FLEX_ATTENTION", (
"Should fallback to FlexAttention if head size is "
"not supported by FlashAttention")
@pytest.mark.parametrize("device", ["cpu", "cuda"])
@ -251,7 +252,7 @@ def test_fp32_fallback(
with patch("vllm.attention.selector.current_platform",
CpuPlatform()):
backend = get_attn_backend(16, torch.float32, None, 16)
assert backend.get_name() == "TORCH_SDPA"
assert backend.get_name() == "TORCH_SDPA_VLLM_V1"
elif device == "cuda":
with patch("vllm.attention.selector.current_platform",
@ -265,9 +266,6 @@ def test_flash_attn(monkeypatch: pytest.MonkeyPatch):
# TODO: When testing for v1, pipe in `use_v1` as an argument to
# get_attn_backend
pytest.skip("Skipping as current backend selector does not " \
"handle fallbacks when a backend is set via env var.")
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, STR_FLASH_ATTN_VAL)

View File

@ -28,7 +28,7 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
# Test standard ROCm attention
backend = get_attn_backend(16, torch.float16, torch.float16, 16, False)
assert (backend.get_name() == "ROCM_FLASH"
or backend.get_name() == "TRITON_ATTN")
or backend.get_name() == "TRITON_ATTN_VLLM_V1")
# MLA test for deepseek related
@ -40,7 +40,8 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
16,
False,
use_mla=True)
assert backend.get_name() == "TRITON_MLA"
assert (backend.get_name() == "TRITON_MLA"
or backend.get_name() == "TRITON_MLA_VLLM_V1")
# If attention backend is None
# If use_mla is true
@ -52,7 +53,8 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
16,
False,
use_mla=True)
assert backend.get_name() == "TRITON_MLA"
assert (backend.get_name() == "TRITON_MLA"
or backend.get_name() == "TRITON_MLA_VLLM_V1")
# change the attention backend to AITER MLA
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_AITER_MLA")
@ -62,7 +64,8 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
1,
False,
use_mla=True)
assert backend.get_name() == "ROCM_AITER_MLA"
assert (backend.get_name() == "ROCM_AITER_MLA"
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")
# If attention backend is None
# If use_mla is true
@ -76,4 +79,5 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
1,
False,
use_mla=True)
assert backend.get_name() == "ROCM_AITER_MLA"
assert (backend.get_name() == "ROCM_AITER_MLA"
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")

View File

@ -46,8 +46,6 @@ def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
# o will have the same shape as q
o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
lse = torch.zeros(B, H_Q, dtype=dtype, device="cuda")
b_seq_len = torch.full((B, ), seq_len, device="cuda")
attn_logits = torch.empty(
@ -62,7 +60,6 @@ def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
k_buffer,
v_buffer,
o,
lse,
req_to_token,
b_seq_len,
attn_logits,
@ -75,14 +72,12 @@ def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
v_buffer = v_buffer.view(CACHE_SIZE // PAGE_SIZE, PAGE_SIZE, H_KV, D_V)
o1 = torch.zeros_like(o)
lse1 = torch.zeros_like(lse)
decode_attention_fwd(
q,
k_buffer,
v_buffer,
o1,
lse1,
req_to_page,
b_seq_len,
attn_logits,

View File

@ -60,7 +60,7 @@ TENSORS_SHAPES_FN = [
@torch.inference_mode()
def test_rotary_embedding(
is_neox_style: bool,
tensor_shape_fn: Callable[[int, int, int, int], tuple[int, ...]],
tensor_shape_fn: Callable[[int, int, int, int], tuple[int]],
batch_size: int,
seq_len: int,
num_heads: int,

View File

@ -7,7 +7,7 @@ import torch.nn.functional as F
from einops import rearrange, repeat
from vllm.model_executor.layers.mamba.ops.ssd_combined import (
mamba_chunk_scan_combined_varlen)
mamba_chunk_scan_combined)
from vllm.platforms import current_platform
from vllm.v1.attention.backends.mamba2_attn import (
_query_start_loc_to_chunk_indices_offsets)
@ -185,14 +185,9 @@ def generate_continuous_batched_examples(example_lens_by_batch,
IND_S = [x % full_length for x in IND_E]
IND_E = [end_boundary(x + y) for x, y in zip(IND_S, spec)]
# varlen has implicit batch=1
dt2 = dt2.squeeze(0)
X2 = X2.squeeze(0)
B2 = B2.squeeze(0)
C2 = C2.squeeze(0)
yield ([Y_min[s, IND_S[s]:IND_E[s]]
for s in range(num_examples)] if return_naive_ref else None,
cu_seqlens, seq_idx, (A, dt2, X2, B2, C2))
cu_seqlens, seq_idx.unsqueeze(0), (A, dt2, X2, B2, C2))
@pytest.mark.parametrize("itype",
@ -203,7 +198,7 @@ def generate_continuous_batched_examples(example_lens_by_batch,
def test_mamba_chunk_scan_single_example(d_head, n_heads, seq_len_chunk_size,
itype):
# this tests the kernels on a single example (bs=1)
# this tests the kernels on a single example (no batching)
# TODO: the bfloat16 case requires higher thresholds. To be investigated
@ -224,40 +219,23 @@ def test_mamba_chunk_scan_single_example(d_head, n_heads, seq_len_chunk_size,
Y_min, final_state_min = ssd_minimal_discrete(X * dt.unsqueeze(-1), A * dt,
B, C, chunk_size)
cu_seqlens = torch.tensor((0, seqlen), device='cuda').cumsum(dim=0)
seq_idx = torch.zeros(seqlen, dtype=torch.int32, device=cu_seqlens.device)
chunk_indices, chunk_offsets = \
_query_start_loc_to_chunk_indices_offsets(
cu_seqlens, chunk_size, cu_seqlens[-1])
# varlen has implicit batch=1
X = X.squeeze(0)
dt = dt.squeeze(0)
A = A.squeeze(0)
B = B.squeeze(0)
C = C.squeeze(0)
Y = torch.empty_like(X)
final_state = mamba_chunk_scan_combined_varlen(X,
dt,
A,
B,
C,
chunk_size,
D=None,
cu_seqlens=cu_seqlens,
seq_idx=seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
out=Y)
final_state = mamba_chunk_scan_combined(X,
dt,
A,
B,
C,
chunk_size,
D=None,
return_final_states=True,
out=Y)
# just test the last in sequence
torch.testing.assert_close(Y[-1], Y_min[0, -1], atol=atol, rtol=rtol)
torch.testing.assert_close(Y[:, -1], Y_min[:, -1], atol=atol, rtol=rtol)
# just test the last head
# NOTE, in the kernel we always cast states to fp32
torch.testing.assert_close(final_state[:, -1].to(torch.float32),
torch.testing.assert_close(final_state[:, -1],
final_state_min[:, -1].to(torch.float32),
atol=atol,
rtol=rtol)
@ -322,7 +300,7 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
cu_seqlens, chunk_size, cu_seqlens[-1])
Y = torch.empty_like(X)
new_states = mamba_chunk_scan_combined_varlen(
new_states = mamba_chunk_scan_combined(
X,
dt,
A,
@ -334,6 +312,7 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
seq_idx=seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=states,
out=Y,
)
@ -342,7 +321,7 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
for i in range(num_examples):
# just test one dim and dstate
Y_eg = Y[cu_seqlens[i]:cu_seqlens[i + 1], 0, 0]
Y_eg = Y[0, cu_seqlens[i]:cu_seqlens[i + 1], 0, 0]
Y_min_eg = Y_min[i][:, 0, 0]
torch.testing.assert_close(Y_eg, Y_min_eg, atol=atol, rtol=rtol)
@ -407,7 +386,7 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
_query_start_loc_to_chunk_indices_offsets(
cu_seqlens, chunk_size, cu_seqlens[-1])
Y_ref = torch.empty_like(X)
state_ref = mamba_chunk_scan_combined_varlen(
state_ref = mamba_chunk_scan_combined(
X,
dt,
A,
@ -419,6 +398,7 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
seq_idx=seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=None,
out=Y_ref,
)
@ -434,27 +414,27 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
chunked_seq_idx = torch.repeat_interleave(
torch.arange(len(chunked_seqlens), device=device),
chunked_seqlens,
output_size=chunked_cu_seqlens[-1]).to(torch.int32)
output_size=chunked_cu_seqlens[-1]).unsqueeze(0).to(torch.int32)
chunked_input_seq_len = chunked_cu_seqlens[-1]
X_chunked = torch.zeros_like(X)[:chunked_input_seq_len, ...]
dt_chunked = torch.zeros_like(dt)[:chunked_input_seq_len, ...]
B_chunked = torch.zeros_like(B)[:chunked_input_seq_len, ...]
C_chunked = torch.zeros_like(C)[:chunked_input_seq_len, ...]
X_chunked = torch.zeros_like(X)[:, :chunked_input_seq_len, ...]
dt_chunked = torch.zeros_like(dt)[:, :chunked_input_seq_len, ...]
B_chunked = torch.zeros_like(B)[:, :chunked_input_seq_len, ...]
C_chunked = torch.zeros_like(C)[:, :chunked_input_seq_len, ...]
for i in range(num_sequences):
# fmt: off
chunk_f = lambda x, i: x[cu_seqlens[i]:cu_seqlens[i] + chunked_seqlens[i], ...] # noqa: E501
chunk_f = lambda x, i: x[:, cu_seqlens[i]:cu_seqlens[i] + chunked_seqlens[i], ...] # noqa: E501
X_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(X, i) # noqa: E501
dt_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(dt, i) # noqa: E501
B_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(B, i) # noqa: E501
C_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(C, i) # noqa: E501
X_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(X, i) # noqa: E501
dt_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(dt, i) # noqa: E501
B_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(B, i) # noqa: E501
C_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(C, i) # noqa: E501
# fmt: on
chunk_indices, chunk_offsets = \
_query_start_loc_to_chunk_indices_offsets(
chunked_cu_seqlens, chunk_size, chunked_cu_seqlens[-1])
Y_partial = torch.empty_like(X_chunked)
partial_state = mamba_chunk_scan_combined_varlen(
partial_state = mamba_chunk_scan_combined(
X_chunked,
dt_chunked,
A,
@ -466,6 +446,7 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
seq_idx=chunked_seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=None,
out=Y_partial,
)
@ -480,28 +461,29 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
remaining_chunked_seq_idx = torch.repeat_interleave(
torch.arange(len(remaining_chunked_seqlens), device=device),
remaining_chunked_seqlens,
output_size=remaining_chunked_cu_seqlens[-1]).to(torch.int32)
output_size=remaining_chunked_cu_seqlens[-1]).unsqueeze(0).to(
torch.int32)
remaining_chunked_input_seq_len = remaining_chunked_cu_seqlens[-1]
# fmt: off
remaining_X_chunked = torch.zeros_like(X)[:remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_dt_chunked = torch.zeros_like(dt)[:remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_B_chunked = torch.zeros_like(B)[:remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_C_chunked = torch.zeros_like(C)[:remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_X_chunked = torch.zeros_like(X)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_dt_chunked = torch.zeros_like(dt)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_B_chunked = torch.zeros_like(B)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_C_chunked = torch.zeros_like(C)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
for i in range(num_sequences):
remaining_chunk_f = lambda x, i: x[cu_seqlens[i] + chunked_seqlens[i]:cu_seqlens[i+1], ...] # noqa: E501
remaining_chunk_f = lambda x, i: x[:, cu_seqlens[i] + chunked_seqlens[i]:cu_seqlens[i+1], ...] # noqa: E501
remaining_X_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(X, i) # noqa: E501
remaining_dt_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(dt, i) # noqa: E501
remaining_B_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(B, i) # noqa: E501
remaining_C_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(C, i) # noqa: E501
remaining_X_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(X, i) # noqa: E501
remaining_dt_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(dt, i) # noqa: E501
remaining_B_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(B, i) # noqa: E501
remaining_C_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(C, i) # noqa: E501
# assert input chunking is correct
concat_chunk_f = lambda pt1, pt2, i: torch.cat([
pt1[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1],...],
pt2[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1],...],
pt1[:,chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1],...],
pt2[:,remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1],...],
],
dim=0)
concat_batch_f = lambda pt1, pt2: torch.cat([concat_chunk_f(pt1, pt2, i) for i in range(num_sequences)], dim=0) # noqa: E501
dim=1)
concat_batch_f = lambda pt1, pt2: torch.cat([concat_chunk_f(pt1, pt2, i) for i in range(num_sequences)], dim=1) # noqa: E501
# fmt: on
assert concat_batch_f(X_chunked, remaining_X_chunked).equal(X)
@ -516,7 +498,7 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
remaining_chunked_cu_seqlens[-1])
Y_chunked = torch.empty_like(remaining_X_chunked)
state_chunked = mamba_chunk_scan_combined_varlen(
state_chunked = mamba_chunk_scan_combined(
remaining_X_chunked,
remaining_dt_chunked,
A,
@ -528,6 +510,7 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
seq_idx=remaining_chunked_seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=partial_state,
out=Y_chunked,
)
@ -535,17 +518,17 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
# kernel chunked is same as kernel overall
for i in range(num_sequences):
Y_seq = Y[cu_seqlens[i]:cu_seqlens[i + 1], ...]
Y_ref_seq = Y_ref[cu_seqlens[i]:cu_seqlens[i + 1], ...]
Y_seq = Y[:, cu_seqlens[i]:cu_seqlens[i + 1], ...]
Y_ref_seq = Y_ref[:, cu_seqlens[i]:cu_seqlens[i + 1], ...]
torch.testing.assert_close(
Y_seq[:chunked_seqlens[i], ...],
Y_ref_seq[:chunked_seqlens[i], ...],
Y_seq[:, :chunked_seqlens[i], ...],
Y_ref_seq[:, :chunked_seqlens[i], ...],
atol=atol,
rtol=rtol,
msg=lambda x: f"seq{i} output part1 " + x) # noqa: B023
torch.testing.assert_close(
Y_seq[chunked_seqlens[i]:, ...],
Y_ref_seq[chunked_seqlens[i]:, ...],
Y_seq[:, chunked_seqlens[i]:, ...],
Y_ref_seq[:, chunked_seqlens[i]:, ...],
atol=atol,
rtol=rtol,
msg=lambda x: f"seq{i} output part2 " + x) # noqa: B023

View File

@ -138,7 +138,7 @@ def test_flashinfer_per_tensor_moe_fp8_no_graph(
td = TestData.make_moe_tensors_8bit(m, k, n, e, reorder=True)
score = torch.randn((m, e), device="cuda", dtype=torch.bfloat16)
topk_weights, topk_ids, _ = FusedMoE.select_experts(
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=td.hidden_states,
router_logits=score,
use_grouped_topk=False,
@ -206,7 +206,7 @@ def test_flashinfer_cutlass_moe_fp8_no_graph(
td = TestData.make_moe_tensors_8bit(m, k, n, e, reorder=False)
score = torch.randn((m, e), device="cuda", dtype=torch.bfloat16)
topk_weights, topk_ids, _ = FusedMoE.select_experts(
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=td.hidden_states,
router_logits=score,
use_grouped_topk=False,

View File

@ -11,12 +11,11 @@ from tests.kernels.quant_utils import (native_per_token_group_quant_fp8,
native_w8a8_block_matmul)
from vllm.config import VllmConfig
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
cutlass_scaled_mm, per_token_group_quant_fp8, w8a8_block_fp8_matmul)
cutlass_scaled_mm, get_col_major_tma_aligned_tensor,
per_token_group_quant_fp8, w8a8_triton_block_scaled_mm)
from vllm.platforms import current_platform
from vllm.utils import has_deep_gemm
from vllm.utils.deep_gemm import (fp8_gemm_nt,
get_col_major_tma_aligned_tensor,
per_block_cast_to_fp8)
from vllm.utils.deep_gemm import fp8_gemm_nt, per_block_cast_to_fp8
if current_platform.get_device_capability() < (9, 0):
pytest.skip("FP8 Triton requires CUDA 9.0 or higher",
@ -91,7 +90,8 @@ def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed):
ref_out = native_w8a8_block_matmul(A_fp8, B_fp8, As, Bs, block_size,
out_dtype)
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
out = w8a8_triton_block_scaled_mm(A_fp8, B_fp8, As, Bs, block_size,
out_dtype)
rel_diff = (torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /

View File

@ -20,9 +20,11 @@ from vllm.platforms import current_platform
(8, 513, 64), # Non-divisible (native only)
])
@pytest.mark.parametrize("seed", [42])
@pytest.mark.parametrize("use_ue8m0", [True, False])
@torch.inference_mode()
def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
group_size: int, seed: int) -> None:
group_size: int, seed: int,
use_ue8m0: bool) -> None:
"""Test QuantFP8 group quantization with various configurations.
Tests both CUDA and native implementations, column-major scales,
@ -38,7 +40,8 @@ def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
group_shape = GroupShape(1, group_size)
quant_op = QuantFP8(static=False,
group_shape=group_shape,
column_major_scales=False)
column_major_scales=False,
use_ue8m0=use_ue8m0)
# 1. Test native implementation (always available)
x_quant_native, scales_native = quant_op.forward_native(x.clone())
@ -48,9 +51,15 @@ def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
# 2. Test column-major scales configuration
quant_op_col = QuantFP8(static=False,
group_shape=group_shape,
column_major_scales=True)
column_major_scales=True,
use_ue8m0=use_ue8m0)
_, scales_col = quant_op_col.forward_native(x.clone())
assert scales_col.shape == (expected_num_groups, batch_size)
assert scales_col.shape == (batch_size, expected_num_groups)
assert scales_col.stride(0) == 1
assert scales_col.stride(1) == batch_size
# Test column-major scales consistency
assert torch.allclose(scales_col, scales_native, rtol=1e-9, atol=1e-8)
# 3. Test CUDA implementation (only for divisible dimensions)
if is_divisible:
@ -68,8 +77,9 @@ def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
@pytest.mark.parametrize("seed", [42])
@pytest.mark.parametrize("use_ue8m0", [True, False])
@torch.inference_mode()
def test_quantfp8_group_multidimensional(seed: int) -> None:
def test_quantfp8_group_multidimensional(seed: int, use_ue8m0: bool) -> None:
current_platform.seed_everything(seed)
group_size = 64
@ -82,7 +92,8 @@ def test_quantfp8_group_multidimensional(seed: int) -> None:
group_shape = GroupShape(1, group_size)
quant_op = QuantFP8(static=False,
group_shape=group_shape,
column_major_scales=False)
column_major_scales=False,
use_ue8m0=use_ue8m0)
x_quant, scales = quant_op.forward_native(x_3d.clone())
assert x_quant.shape == x_3d.shape
@ -91,7 +102,8 @@ def test_quantfp8_group_multidimensional(seed: int) -> None:
# Test column_major_scales with multi-dim
quant_op_col = QuantFP8(static=False,
group_shape=group_shape,
column_major_scales=True)
column_major_scales=True,
use_ue8m0=use_ue8m0)
_, scales_col = quant_op_col.forward_native(x_3d.clone())
assert scales_col.shape == (batch1, hidden_dim // group_size, batch2)

View File

@ -165,7 +165,7 @@ def onednn_gemm_test_helper(primitive_cache_size: int,
def test_onednn_int8_scaled_gemm(
n: int,
k: int,
m_list: tuple[int, ...],
m_list: tuple[int],
per_tensor_a_scale: bool,
per_tensor_b_scale: bool,
use_bias: bool,
@ -196,7 +196,7 @@ def test_onednn_int8_scaled_gemm(
def test_onednn_gemm(
n: int,
k: int,
m_list: tuple[int, ...],
m_list: tuple[int],
use_bias: bool,
use_stride: bool,
dtype: torch.dtype,

View File

@ -524,14 +524,14 @@ def make_backend(backend_name: str) -> AttentionBackend:
* Backend instance
'''
if backend_name == STR_XFORMERS_ATTN_VAL:
if backend_name in (STR_XFORMERS_ATTN_VAL, "XFORMERS_VLLM_V1"):
from vllm.v1.attention.backends.xformers import (
XFormersAttentionBackend)
return XFormersAttentionBackend()
if backend_name == STR_FLASH_ATTN_VAL:
if backend_name in (STR_FLASH_ATTN_VAL, "FLASH_ATTN_VLLM_V1"):
from vllm.v1.attention.backends.flash_attn import FlashAttentionBackend
return FlashAttentionBackend()
if backend_name == "TRITON_ATTN":
if backend_name == "TRITON_ATTN_VLLM_V1":
from vllm.v1.attention.backends.triton_attn import (
TritonAttentionBackend)
return TritonAttentionBackend()
@ -539,7 +539,7 @@ def make_backend(backend_name: str) -> AttentionBackend:
from vllm.v1.attention.backends.flex_attention import (
FlexAttentionBackend)
return FlexAttentionBackend()
if backend_name == "TORCH_SDPA":
if backend_name in ("TORCH_SDPA", "TORCH_SDPA_VLLM_V1"):
from vllm.v1.attention.backends.cpu_attn import TorchSDPABackend
return TorchSDPABackend()
if backend_name == "FLASHINFER":

View File

@ -0,0 +1,52 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
@pytest.fixture
def sample_regex():
return (r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}"
r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)")
@pytest.fixture
def sample_json_schema():
return {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"age": {
"type": "integer"
},
"skills": {
"type": "array",
"items": {
"type": "string",
"maxLength": 10
},
"minItems": 3
},
"work_history": {
"type": "array",
"items": {
"type": "object",
"properties": {
"company": {
"type": "string"
},
"duration": {
"type": "number"
},
"position": {
"type": "string"
}
},
"required": ["company", "position"]
}
}
},
"required": ["name", "age", "skills", "work_history"]
}

View File

@ -17,8 +17,6 @@ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
from vllm.model_executor.layers.layernorm import (RMSNorm,
dispatch_rocm_rmsnorm_func,
fused_add_rms_norm, rms_norm)
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
cutlass_scaled_mm, dispatch_w8a8_blockscale_func, w8a8_block_fp8_matmul)
from vllm.platforms import current_platform
RMS_NORM_SUPPORTED_DTYPES = [torch.float16, torch.bfloat16]
@ -111,34 +109,6 @@ def test_enabled_ops_invalid(env: str):
RMSNorm(1024).enabled()
@pytest.mark.skipif(
not current_platform.is_rocm() or not current_platform.is_fp8_fnuz(),
reason="AITER is a feature exclusive for ROCm and FP8_FNUZ")
@pytest.mark.parametrize("use_cutlass", [True, False])
@pytest.mark.parametrize("use_rocm_aiter", ["0", "1"])
@pytest.mark.parametrize("use_rocm_aiter_gemm_w8a8_blockscale", ["0", "1"])
def test_w8a8_blockscale_dispatch(use_cutlass: bool, use_rocm_aiter: str,
use_rocm_aiter_gemm_w8a8_blockscale: str,
monkeypatch):
monkeypatch.setenv("VLLM_ROCM_USE_AITER", use_rocm_aiter)
monkeypatch.setenv("VLLM_ROCM_USE_AITER_LINEAR",
use_rocm_aiter_gemm_w8a8_blockscale)
use_aiter_and_is_supported = (bool(int(use_rocm_aiter)) and bool(
int(use_rocm_aiter_gemm_w8a8_blockscale)))
block_scale_func = dispatch_w8a8_blockscale_func(
use_cutlass, use_aiter_and_is_supported=use_aiter_and_is_supported)
if use_cutlass:
assert block_scale_func == cutlass_scaled_mm
elif current_platform.is_rocm() and int(use_rocm_aiter) and int(
use_rocm_aiter_gemm_w8a8_blockscale):
assert block_scale_func == (
torch.ops.vllm.rocm_aiter_gemm_w8a8_blockscale)
else:
assert block_scale_func == w8a8_block_fp8_matmul
@pytest.mark.parametrize("use_rocm_aiter", ["0", "1"])
def test_topk_dispatch(use_rocm_aiter: str, monkeypatch):
monkeypatch.setenv("VLLM_ROCM_USE_AITER", use_rocm_aiter)

View File

@ -1,132 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm.multimodal.video import sample_frames_from_video
from ....conftest import VIDEO_ASSETS
models = ["Qwen/Qwen2.5-VL-3B-Instruct"]
target_dtype = "bfloat16"
VIDEO_PLACEHOLDER = "<|vision_start|><|video_pad|><|vision_end|>"
def qwen2_5_vl_chat_template(*query):
return f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{''.join(query)}<|im_end|><|im_start|>assistant\n" # noqa: E501
VIDEO_PROMPTS = VIDEO_ASSETS.prompts({
"baby_reading":
qwen2_5_vl_chat_template(
VIDEO_PLACEHOLDER,
"Describe this video with a short sentence ",
"(no more than 20 words)",
),
})
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("video_pruning_rate", [0.0, 0.75])
@pytest.mark.parametrize("num_frames", [16])
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
def test_qwen2_5_vl_evs_functionality(vllm_runner, video_assets, model,
video_pruning_rate: float,
num_frames: int, dtype: str,
max_tokens: int) -> None:
"""Test EVS (Efficient Video Sampling) functionality with different
pruning rates.
"""
# Sample frames from video assets
sampled_vids = [
sample_frames_from_video(asset.np_ndarrays, num_frames)
for asset in video_assets
]
prompts = [VIDEO_PROMPTS[0]]
videos = [sampled_vids[0]]
# Initialize model with EVS configuration
with vllm_runner(model,
runner="generate",
max_model_len=4000,
max_num_seqs=1,
dtype=dtype,
limit_mm_per_prompt={"video": 1},
tensor_parallel_size=1,
video_pruning_rate=video_pruning_rate) as vllm_model:
# Generate output - this should not crash
outputs = vllm_model.generate_greedy(prompts,
max_tokens,
videos=videos)
# Basic validation that we got a response
assert len(outputs) == 1
output_ids, output_text = outputs[0]
# Ensure we got some output
assert len(output_ids) > 0
assert len(output_text) > 0
# Ensure the output is a string
assert isinstance(output_text, str)
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("video_pruning_rate", [0.0, 0.75])
@pytest.mark.parametrize("num_frames", [16])
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
def test_qwen2_5_vl_evs_batched_videos(vllm_runner, video_assets, model,
video_pruning_rate: float,
num_frames: int, dtype: str,
max_tokens: int) -> None:
"""Test EVS functionality with batched videos.
This test validates that:
1. The model handles batched video inputs correctly with EVS
2. Both pruning configurations work with multiple videos
3. The model doesn't crash when processing multiple videos simultaneously
"""
# Sample frames from video assets
sampled_vids = [
sample_frames_from_video(asset.np_ndarrays, num_frames)
for asset in video_assets
]
# Test batched videos
prompts = [VIDEO_PROMPTS[0], VIDEO_PROMPTS[0]]
videos = [sampled_vids[0],
sampled_vids[0]] # Use same video twice for testing
# Initialize model with EVS configuration
with vllm_runner(model,
runner="generate",
max_model_len=4000,
max_num_seqs=2,
dtype=dtype,
limit_mm_per_prompt={"video": 2},
tensor_parallel_size=1,
video_pruning_rate=video_pruning_rate) as vllm_model:
# Generate output - this should not crash
outputs = vllm_model.generate_greedy(prompts,
max_tokens,
videos=videos)
# Basic validation that we got responses for both videos
assert len(outputs) == 2
for output_ids, output_text in outputs:
# Ensure we got some output for each video
assert len(output_ids) > 0
assert len(output_text) > 0
# Ensure the output is a string
assert isinstance(output_text, str)

View File

@ -101,7 +101,7 @@ class VLMTestInfo(NamedTuple):
# Function for converting ImageAssets to image embeddings;
# We need to define this explicitly for embedding tests
convert_assets_to_embeddings: Optional[Callable[[ImageTestAssets],
list[torch.Tensor]]] = None
torch.Tensor]] = None
# Exposed options for vLLM runner; we change these in a several tests,
# but the defaults are derived from VllmRunner & the engine defaults
@ -137,12 +137,12 @@ class VLMTestInfo(NamedTuple):
# Default expandable params per test; these defaults can be overridden in
# instances of this object; the complete set of test cases for the model
# is all combinations of .models + all fields below
max_tokens: int = 128
num_logprobs: int = 5
dtype: str = "auto"
distributed_executor_backend: Optional[str] = None
max_tokens: Union[int, tuple[int]] = 128
num_logprobs: Union[int, tuple[int]] = 5
dtype: Union[str, Union[list[str], tuple[str, ...]]] = "auto"
distributed_executor_backend: Optional[Union[str, Iterable[str]]] = None
# Only expanded in video tests
num_video_frames: int = 16
num_video_frames: Union[int, tuple[int]] = 16
# Fixed image sizes / image size factors; most tests use image_size_factors
# The values provided for these two fields will be stacked and expanded

View File

@ -213,7 +213,6 @@ _IGNORE_MM_KEYS = {
MM_DATA_PATCHES = {
# GLM4.1V and Qwen3-VL requires video metadata to be included in the input
"glm4v": glm4_1v_patch_mm_data,
"glm4v_moe": glm4_1v_patch_mm_data,
"qwen3_vl": qwen3_vl_patch_mm_data,
"qwen3_vl_moe": qwen3_vl_patch_mm_data,
}

View File

@ -19,8 +19,6 @@ from vllm.distributed import (cleanup_dist_env_and_memory,
init_distributed_environment,
initialize_model_parallel)
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.model_executor.models.interfaces import (SupportsMultiModal,
supports_multimodal)
from vllm.multimodal import MULTIMODAL_REGISTRY, BatchedTensorInputs
from vllm.multimodal.processing import (BaseMultiModalProcessor,
InputProcessingContext)
@ -90,7 +88,6 @@ def resize_mm_data(
def create_batched_mm_kwargs(
model_cls: type[SupportsMultiModal],
model_config: ModelConfig,
processor: BaseMultiModalProcessor,
size_factors: tuple[float, ...] = (1.0, 0.5, 0.25),
@ -130,22 +127,16 @@ def create_batched_mm_kwargs(
mm_data=resized_mm_data,
hf_processor_mm_kwargs=processor_inputs.hf_processor_mm_kwargs,
tokenization_kwargs=processor_inputs.tokenization_kwargs,
)["mm_kwargs"].require_data()
)["mm_kwargs"]
items = [
item for modality in supported_mm_limits
for item in mm_kwargs[modality]
]
return group_mm_kwargs_by_modality(
items,
merge_by_field_config=model_cls.merge_by_field_config,
)
return group_mm_kwargs_by_modality(items)
@contextmanager
def initialize_dummy_model(
model_cls: type[nn.Module],
model_config: ModelConfig,
):
def initialize_dummy_model(model_cls: nn.Module, model_config: ModelConfig):
temp_file = tempfile.mkstemp()[1]
init_distributed_environment(
world_size=1,
@ -207,12 +198,8 @@ def test_model_tensor_schema(model_arch: str, model_id: str):
hf_overrides=hf_overrides_fn,
skip_tokenizer_init=model_info.skip_tokenizer_init,
enforce_eager=model_info.enforce_eager,
dtype=model_info.dtype,
)
dtype=model_info.dtype)
model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config)
assert supports_multimodal(model_cls)
factories = MULTIMODAL_REGISTRY._processor_factories[model_cls]
inputs_parse_methods = []
@ -241,7 +228,7 @@ def test_model_tensor_schema(model_arch: str, model_id: str):
with initialize_dummy_model(model_cls, model_config) as model:
for modality, _, mm_kwargs in create_batched_mm_kwargs(
model_cls, model_config, processor):
model_config, processor):
for method_name in inputs_parse_methods:
print(f"Testing `{method_name}` with modality={modality} "
f"and mm_kwargs{list(mm_kwargs.keys())}")

View File

@ -196,9 +196,6 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
trust_remote_code=True),
"Cohere2ForCausalLM": _HfExamplesInfo("CohereForAI/c4ai-command-r7b-12-2024", # noqa: E501
trust_remote_code=True),
"CwmForCausalLM": _HfExamplesInfo("facebook/cwm", # noqa: E501
trust_remote_code=True,
is_available_online=False),
"DbrxForCausalLM": _HfExamplesInfo("databricks/dbrx-instruct"),
"DeciLMForCausalLM": _HfExamplesInfo("nvidia/Llama-3_3-Nemotron-Super-49B-v1", # noqa: E501
trust_remote_code=True),
@ -276,8 +273,6 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
is_available_online=False),
"Llama4ForCausalLM": _HfExamplesInfo("meta-llama/Llama-4-Scout-17B-16E-Instruct", # noqa: E501
is_available_online=False),
"LongcatFlashForCausalLM": _HfExamplesInfo
("meituan-longcat/LongCat-Flash-Chat", trust_remote_code=True),
"MambaForCausalLM": _HfExamplesInfo("state-spaces/mamba-130m-hf"),
"Mamba2ForCausalLM": _HfExamplesInfo("mistralai/Mamba-Codestral-7B-v0.1",
min_transformers_version="4.55.3",
@ -531,7 +526,7 @@ _MULTIMODAL_EXAMPLE_MODELS = {
trust_remote_code=True),
"Llama_Nemotron_Nano_VL" : _HfExamplesInfo("nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1", # noqa: E501
trust_remote_code=True),
"NemotronH_Nano_VL_V2": _HfExamplesInfo("nano_vl_dummy",
"NemotronH_Nano_VL": _HfExamplesInfo("nano_vl_dummy",
is_available_online=False,
trust_remote_code=True),
"Ovis": _HfExamplesInfo("AIDC-AI/Ovis2-1B", trust_remote_code=True,
@ -644,16 +639,9 @@ _SPECULATIVE_DECODING_EXAMPLE_MODELS = {
speculative_model="zai-org/GLM-4.5",
min_transformers_version="4.54",
is_available_online=False),
"LongCatFlashMTPModel": _HfExamplesInfo(
"meituan-longcat/LongCat-Flash-Chat",
trust_remote_code=True,
speculative_model="meituan-longcat/LongCat-Flash-Chat"),
"MiMoMTPModel": _HfExamplesInfo("XiaomiMiMo/MiMo-7B-RL",
trust_remote_code=True,
speculative_model="XiaomiMiMo/MiMo-7B-RL"),
"Eagle3Qwen2_5vlForCausalLM": _HfExamplesInfo(
"Qwen/Qwen2.5-VL-7B-Instruct",
speculative_model="Rayzl/qwen2.5-vl-7b-eagle3-sgl"),
"Qwen3NextMTP": _HfExamplesInfo("Qwen/Qwen3-Next-80B-A3B-Instruct",
min_transformers_version="4.56.3"),
}

View File

@ -84,7 +84,7 @@ def can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch,
# FIXME: A hack to bypass FA3 assertion because our CI's L4 GPU
# has cc==8.9 which hasn't supported FA3 yet. Remove this hack when
# L4 supports FA3.
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN")
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN_VLLM_V1")
if model_arch == "WhisperForConditionalGeneration":
m.setenv("VLLM_WORKER_MULTIPROC_METHOD", "spawn")
LLM(

View File

@ -100,9 +100,10 @@ def test_distributed(
kwargs_test=kwargs)
@pytest.mark.skipif(
current_platform.is_rocm(),
reason="bitsandbytes quantization is currently not supported in rocm.")
@pytest.mark.parametrize("model, quantization_kwargs", [
("TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ", {}),
("TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ", {}),
(
"meta-llama/Llama-3.2-1B-Instruct",
{
@ -120,11 +121,6 @@ def test_quantization(
max_tokens: int,
num_logprobs: int,
) -> None:
if (current_platform.is_rocm()
and quantization_kwargs.get("quantization", "") == "bitsandbytes"):
pytest.skip(
"bitsandbytes quantization is currently not supported in rocm.")
with vllm_runner(
model, model_impl="auto", enforce_eager=True,
**quantization_kwargs) as vllm_model: # type: ignore[arg-type]

View File

@ -428,8 +428,9 @@ def dummy_hf_overrides(
num_hidden_layers = (3 if model_arch
== "Gemma3nForConditionalGeneration" else 1)
update_dict = {
text_config.update({
"num_layers": num_layers,
"num_hidden_layers": num_hidden_layers,
"num_experts": num_experts,
"num_experts_per_tok": 2,
"num_local_experts": num_experts,
@ -439,14 +440,7 @@ def dummy_hf_overrides(
"n_routed_experts": num_experts,
# For Gemma-3n
"num_kv_shared_layers": 1,
}
# Update num_hidden_layers for non-Longcat architectures
if model_arch != "LongcatFlashForCausalLM" \
and model_arch != "LongCatFlashMTPModel":
update_dict["num_hidden_layers"] = num_hidden_layers
text_config.update(update_dict)
})
if hasattr(hf_config, "vision_config"):
hf_config.vision_config.update({

View File

@ -5,6 +5,7 @@ import base64
import mimetypes
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
from typing import TYPE_CHECKING, NamedTuple
import numpy as np
import pytest
@ -14,6 +15,9 @@ from vllm.multimodal.image import convert_image_mode
from vllm.multimodal.inputs import PlaceholderRange
from vllm.multimodal.utils import MediaConnector, argsort_mm_positions
if TYPE_CHECKING:
from vllm.multimodal.inputs import MultiModalPlaceholderDict
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_ASSETS = [
"2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", # "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
@ -66,12 +70,7 @@ async def test_fetch_image_http(image_url: str):
@pytest.mark.parametrize("suffix", get_supported_suffixes())
async def test_fetch_image_base64(url_images: dict[str, Image.Image],
raw_image_url: str, suffix: str):
connector = MediaConnector(
# Domain restriction should not apply to data URLs.
allowed_media_domains=[
"www.bogotobogo.com",
"github.com",
])
connector = MediaConnector()
url_image = url_images[raw_image_url]
try:
@ -219,13 +218,18 @@ async def test_fetch_video_http_with_dynamic_loader(
assert metadata_sync["video_backend"] == "opencv_dynamic"
# yapf: disable
@pytest.mark.parametrize(
"case",
[
# Used for `test_argsort_mm_positions`.
class TestCase(NamedTuple):
mm_positions: "MultiModalPlaceholderDict"
expected_modality_idxs: list[tuple[str, int]]
def test_argsort_mm_positions():
test_cases = [
# Single modality
## Internally sorted
dict(
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
@ -238,7 +242,7 @@ async def test_fetch_video_http_with_dynamic_loader(
],
),
## Internally unsorted
dict(
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=3, length=2),
@ -253,7 +257,7 @@ async def test_fetch_video_http_with_dynamic_loader(
# Two modalities
## Internally sorted
dict(
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=7, length=4),
@ -272,7 +276,7 @@ async def test_fetch_video_http_with_dynamic_loader(
],
),
## Interleaved, internally sorted
dict(
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=4),
@ -291,7 +295,7 @@ async def test_fetch_video_http_with_dynamic_loader(
],
),
## Interleaved, internally unsorted
dict(
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=8, length=2),
@ -312,7 +316,7 @@ async def test_fetch_video_http_with_dynamic_loader(
# Three modalities
## Internally sorted
dict(
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=15, length=7),
@ -337,7 +341,7 @@ async def test_fetch_video_http_with_dynamic_loader(
],
),
## Interleaved, internally sorted
dict(
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
@ -359,8 +363,8 @@ async def test_fetch_video_http_with_dynamic_loader(
("image", 2),
],
),
## Interleaved, internally unsorted
dict(
## Interleaved, internally sunorted
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
@ -382,39 +386,9 @@ async def test_fetch_video_http_with_dynamic_loader(
("image", 1),
],
),
],
)
# yapf: enable
def test_argsort_mm_positions(case):
mm_positions = case["mm_positions"]
expected_modality_idxs = case["expected_modality_idxs"]
]
modality_idxs = argsort_mm_positions(mm_positions)
for mm_positions, expected_modality_idxs in test_cases:
modality_idxs = argsort_mm_positions(mm_positions)
assert modality_idxs == expected_modality_idxs
@pytest.mark.asyncio
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
@pytest.mark.parametrize("num_frames", [-1, 32, 1800])
async def test_allowed_media_domains(video_url: str, num_frames: int):
connector = MediaConnector(
media_io_kwargs={"video": {
"num_frames": num_frames,
}},
allowed_media_domains=[
"www.bogotobogo.com",
"github.com",
])
video_sync, metadata_sync = connector.fetch_video(video_url)
video_async, metadata_async = await connector.fetch_video_async(video_url)
assert np.array_equal(video_sync, video_async)
assert metadata_sync == metadata_async
disallowed_url = "https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstration_1.png"
with pytest.raises(ValueError):
_, _ = connector.fetch_video(disallowed_url)
with pytest.raises(ValueError):
_, _ = await connector.fetch_video_async(disallowed_url)
assert modality_idxs == expected_modality_idxs

View File

@ -1,132 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import os
import pytest
from tests.utils import RemoteOpenAIServer
from vllm.platforms import current_platform
if not current_platform.is_device_capability(100):
pytest.skip("This test only runs on Blackwell GPUs (SM100).",
allow_module_level=True)
os.environ["FLASHINFER_NVCC_THREADS"] = "16"
# dummy_hf_overrides = {"num_layers": 4, "num_hidden_layers": 4,
# "text_config": {"num_layers": 4, "num_hidden_layers": 4}}
dummy_hf_overrides = {"num_layers": 4, "num_hidden_layers": 4}
def can_initialize(model: str, extra_args: list[str]):
# Server arguments
server_args = [
"--max-model-len",
"2048",
"--max-num-batched-tokens",
"256",
"--load-format",
"dummy",
"--trust-remote-code",
"--limit-mm-per-prompt",
json.dumps({"image": 0}),
*extra_args,
]
# Launch server and make a simple request
with RemoteOpenAIServer(
model,
server_args,
max_wait_seconds=1000, # Due to FlashInfer compile
override_hf_configs=dummy_hf_overrides) as server:
client = server.get_client()
# Make a simple request to verify the server works
completion = client.completions.create(
model=model,
prompt=["Hello, World!"],
temperature=0,
max_tokens=2,
)
print(completion)
assert completion.choices[0].text is not None
## Llama4 ##
@pytest.mark.skip(reason=(
"RuntimeError: run_moe() Expected a value of type "
"'Optional[List[Tensor]]' for argument '_9' but instead found type "
"'list'."))
def test_llama4_fp8_tensor_moe_flashinfer_cutlass(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP8", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "throughput")
can_initialize("nvidia/Llama-4-Scout-17B-16E-Instruct-FP8", [])
@pytest.mark.skip(reason="Works, but takes too long to run")
def test_llama4_fp8_tensor_moe_flashinfer_trtllm(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP8", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "latency")
can_initialize("nvidia/Llama-4-Scout-17B-16E-Instruct-FP8", [])
@pytest.mark.skip(reason="Works, but takes too long to run")
def test_llama4_nvfp4_moe_flashinfer_cutlass(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP4", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "throughput")
can_initialize("nvidia/Llama-4-Scout-17B-16E-Instruct-FP4", [])
@pytest.mark.skip(reason="RuntimeError: No kernel found for the given options")
def test_llama4_nvfp4_moe_flashinfer_trtllm(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP4", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "latency")
can_initialize("nvidia/Llama-4-Scout-17B-16E-Instruct-FP4", [])
## DeepSeekV3 ##
def test_deepseek_fp8_block_moe_deep_gemm(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_DEEP_GEMM", "1")
can_initialize("deepseek-ai/DeepSeek-V3.1", [])
def test_deepseek_nvfp4_moe_flashinfer_cutlass(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP4", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "throughput")
can_initialize("nvidia/DeepSeek-R1-0528-FP4-v2", [])
@pytest.mark.skip(reason="RuntimeError: No kernel found for the given options")
def test_deepseek_nvfp4_moe_flashinfer_trtllm(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP4", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", "latency")
can_initialize("nvidia/DeepSeek-R1-0528-FP4-v2", [])
## GPT-OSS ##
def test_gptoss_mxfp4bf16_moe_flashinfer(monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16", "1")
can_initialize("openai/gpt-oss-20b", [])
def test_gptoss_mxfp4mxfp8_moe_flashinfer_cutlass(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS", "1")
can_initialize("openai/gpt-oss-20b", [])
def test_gptoss_mxfp4mxfp8_moe_flashinfer_trtllm(
monkeypatch: pytest.MonkeyPatch):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8", "1")
can_initialize("openai/gpt-oss-20b", [])

View File

@ -18,6 +18,9 @@ from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tenso
CompressedTensorsW4A16Fp4, CompressedTensorsW4A16Sparse24,
CompressedTensorsW8A8Fp8, CompressedTensorsW8A8Int8,
CompressedTensorsW8A16Fp8, CompressedTensorsWNA16)
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
W8A8BlockFp8LinearOp)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
cutlass_fp4_supported)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
@ -742,3 +745,35 @@ def test_compressed_tensors_transforms_perplexity(vllm_runner, model, prompt,
perplexity = llm.generate_prompt_perplexity([prompt])[0]
print(perplexity)
assert perplexity <= exp_perplexity
def test_compressed_tensors_fp8_block_enabled(vllm_runner):
model_path = "RedHatAI/Qwen3-0.6B-FP8-BLOCK"
with vllm_runner(model_path) as llm:
fp8_dtype = current_platform.fp8_dtype()
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Fp8)
assert isinstance(qkv_proj.scheme.w8a8_block_fp8_linear,
W8A8BlockFp8LinearOp)
assert qkv_proj.weight.dtype is fp8_dtype
assert qkv_proj.weight_scale.dtype is torch.float32
assert len(qkv_proj.weight.shape) == 2
assert len(qkv_proj.weight_scale.shape) == 2
input_quant_op = \
qkv_proj.scheme.w8a8_block_fp8_linear.input_quant_op
assert isinstance(input_quant_op, QuantFP8)
assert input_quant_op._forward_method == input_quant_op.forward_cuda
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output

View File

@ -1,203 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from transformers import AutoTokenizer
from tests.reasoning.utils import run_reasoning_extraction
from vllm.reasoning import ReasoningParser, ReasoningParserManager
parser_name = "glm45"
start_token = "<think>"
end_token = "</think>"
REASONING_MODEL_NAME = "zai-org/GLM-4.5"
@pytest.fixture(scope="module")
def glm45_tokenizer():
return AutoTokenizer.from_pretrained(REASONING_MODEL_NAME)
WITH_THINK = {
"output": "<think>This is a reasoning section</think>This is the rest",
"reasoning_content": "This is a reasoning section",
"content": "This is the rest",
"is_reasoning_end": True,
}
WITH_THINK_STREAM = {
"output": "<think>This is a reasoning section</think>This is the rest",
"reasoning_content": "This is a reasoning section",
"content": "This is the rest",
"is_reasoning_end": True,
}
WITHOUT_THINK = {
"output": "This is the rest",
"reasoning_content": None,
"content": "This is the rest",
"is_reasoning_end": False,
}
WITHOUT_THINK_STREAM = {
"output": "This is the rest",
"reasoning_content": None,
"content": "This is the rest",
"is_reasoning_end": False,
}
COMPLETE_REASONING = {
"output": "<think>This is a reasoning section</think>",
"reasoning_content": "This is a reasoning section",
"content": None,
"is_reasoning_end": True,
}
MULTILINE_REASONING = {
"output":
"<think>This is a reasoning\nsection</think>This is the rest\nThat",
"reasoning_content": "This is a reasoning\nsection",
"content": "This is the rest\nThat",
"is_reasoning_end": True,
}
ONLY_OPEN_TAG = {
"output": "<think>This is a reasoning section",
"reasoning_content": None,
"content": "<think>This is a reasoning section",
"is_reasoning_end": False,
}
ONLY_OPEN_TAG_STREAM = {
"output": "<think>This is a reasoning section",
"reasoning_content": "This is a reasoning section",
"content": None,
"is_reasoning_end": False,
}
TEST_CASES = [
pytest.param(
False,
WITH_THINK,
id="with_think",
),
pytest.param(
True,
WITH_THINK_STREAM,
id="with_think_stream",
),
pytest.param(
False,
WITHOUT_THINK,
id="without_think",
),
pytest.param(
True,
WITHOUT_THINK_STREAM,
id="without_think_stream",
),
pytest.param(
False,
COMPLETE_REASONING,
id="complete_reasoning",
),
pytest.param(
True,
COMPLETE_REASONING,
id="complete_reasoning_stream",
),
pytest.param(
False,
MULTILINE_REASONING,
id="multiline_reasoning",
),
pytest.param(
True,
MULTILINE_REASONING,
id="multiline_reasoning_stream",
),
pytest.param(
False,
ONLY_OPEN_TAG,
id="only_open_tag",
),
pytest.param(
True,
ONLY_OPEN_TAG_STREAM,
id="only_open_tag_stream",
),
]
STILL_REASONING_PROMPT = """[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
What is the capital of France?<|assistant|>
<think>The user is asking for the capital of"""
DONE_REASONING_PROMPT = """[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
What is the capital of France?<|assistant|>
<think>The user is asking for the capital of France.</think>
The capital of France is Paris."""
MULTI_TURN_STILL_REASONING_PROMPT = """[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
What is the capital of France?<|assistant|>
<think></think>
The capital of France is Paris.<|user|>
What about Chile?<|assistant|>
<think>The user is asking for the capital of"""
MULTI_TURN_DONE_REASONING_PROMPT = """[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
What is the capital of France?<|assistant|>
<think></think>
The capital of France is Paris.<|user|>
What about Chile?<|assistant|>
<think>The user is asking for the capital of Chile.</think>
The capital of Chile is Santiago."""
REASONING_END_TEST_CASES = [
pytest.param(STILL_REASONING_PROMPT, False, id="still_reasoning"),
pytest.param(DONE_REASONING_PROMPT, True, id="done_reasoning"),
pytest.param(MULTI_TURN_STILL_REASONING_PROMPT,
False,
id="multi_turn_still_reasoning"),
pytest.param(MULTI_TURN_DONE_REASONING_PROMPT,
True,
id="multi_turn_done_reasoning")
]
@pytest.mark.parametrize("streaming, param_dict", TEST_CASES)
def test_reasoning(
streaming: bool,
param_dict: dict,
glm45_tokenizer,
):
output = glm45_tokenizer.tokenize(param_dict["output"])
output_tokens: list[str] = [
glm45_tokenizer.convert_tokens_to_string([token]) for token in output
]
parser: ReasoningParser = ReasoningParserManager.get_reasoning_parser(
parser_name)(glm45_tokenizer)
reasoning, content = run_reasoning_extraction(parser,
output_tokens,
streaming=streaming)
assert reasoning == param_dict["reasoning_content"]
assert content == param_dict["content"]
output_ids = glm45_tokenizer.convert_tokens_to_ids(output)
is_reasoning_end = parser.is_reasoning_end(output_ids)
assert is_reasoning_end == param_dict["is_reasoning_end"]
@pytest.mark.parametrize("prompt, is_reasoning_end", REASONING_END_TEST_CASES)
def test_is_reasoning_end_full_prompt(prompt: str, is_reasoning_end: bool,
glm45_tokenizer):
parser: ReasoningParser = ReasoningParserManager.get_reasoning_parser(
parser_name)(glm45_tokenizer)
tokens = glm45_tokenizer.tokenize(prompt)
token_ids = glm45_tokenizer.convert_tokens_to_ids(tokens)
check_is_reasoning_end = parser.is_reasoning_end(token_ids)
assert check_is_reasoning_end == is_reasoning_end

View File

@ -14,7 +14,6 @@ import pytest
import torch
import vllm.model_executor.model_loader.tensorizer
from tests.utils import VLLM_PATH, RemoteOpenAIServer
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
# yapf: disable
@ -28,6 +27,7 @@ from vllm.model_executor.model_loader.tensorizer_loader import (
# yapf: enable
from vllm.utils import PlaceholderModule
from ..utils import VLLM_PATH, RemoteOpenAIServer
from .conftest import DummyExecutor, assert_from_collective_rpc
try:

View File

@ -97,6 +97,7 @@ def test_auto_task(model_id, expected_runner_type, expected_convert_type,
assert config.runner_type == expected_runner_type
assert config.convert_type == expected_convert_type
assert expected_task in config.supported_tasks
# Can remove once --task option is fully deprecated
@ -119,6 +120,7 @@ def test_score_task(model_id, expected_runner_type, expected_convert_type,
assert config.runner_type == expected_runner_type
assert config.convert_type == expected_convert_type
assert expected_task in config.supported_tasks
# Can remove once --task option is fully deprecated
@ -135,6 +137,7 @@ def test_transcription_task(model_id, expected_runner_type,
assert config.runner_type == expected_runner_type
assert config.convert_type == expected_convert_type
assert expected_task in config.supported_tasks
@pytest.mark.parametrize(

View File

@ -96,7 +96,7 @@ def test_routing_strategy_integration(monkeypatch, device):
envs.environment_variables[env_name] = lambda s=strategy: s
# Test the select_experts method
topk_weights, topk_ids, _ = FusedMoE.select_experts(
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=hidden_states,
router_logits=router_logits,
top_k=top_k,

View File

@ -91,7 +91,8 @@ def _run_generate(input_dir, queue: mp.Queue, **kwargs):
@pytest.mark.parametrize("enable_lora", [False, True])
@pytest.mark.parametrize("tp_size", [1, 2])
def test_sharded_state_loader(enable_lora, tp_size, num_gpus_available,
llama_3p2_1b_files):
llama_3p2_1b_files,
monkeypatch: pytest.MonkeyPatch):
if num_gpus_available < tp_size:
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")

61
tests/test_test.py Normal file
View File

@ -0,0 +1,61 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm import LLM, envs
from vllm.sampling_params import SamplingParams
if not envs.VLLM_USE_V1:
pytest.skip(
"Skipping V1 tests. Rerun with `VLLM_USE_V1=1` to test.",
allow_module_level=True,
)
@pytest.mark.parametrize("model_name", ["Qwen/Qwen2.5-1.5B-Instruct"])
# TODO TPU will appear busy if we fan-out test params here
@pytest.mark.parametrize("n_prompts", [1])
def test_logprobs(model_name: str, n_prompts: int):
"""
Request top logprobs with different sampling settings and check
that results contains the requested number, ordered ascendingly.
"""
def check_num_logprobs(logprobs, expected_num: int):
for step in logprobs:
prev_logp = 1.0
# order by rank
sorted_step = dict(
sorted(step.items(), key=lambda item: item[1].rank))
if len(step) != expected_num:
print("watch out", sorted_step)
# check results are ordered by prob value
# assert len(step) == expected_num
for rankno, (tid, logp) in enumerate(sorted_step.items()):
assert logp.logprob <= prev_logp
prev_logp = logp.logprob
assert logp.rank == rankno + 1
llm = LLM(model_name,
enforce_eager=False,
max_num_seqs=1,
max_model_len=128,
max_num_batched_tokens=128)
prompts = [
"Write a short story about a robot that dreams for the first time."
] * n_prompts
greedy_sampling_params = SamplingParams(temperature=0.0, max_tokens=64,\
logprobs=4)
regular_sampling_params = SamplingParams(temperature=0.4, max_tokens=64,\
logprobs=4)
topkp_sampling_params = SamplingParams(temperature=0.4, max_tokens=64,\
logprobs=4, top_k=12, top_p=0.5)
for sp in [greedy_sampling_params, regular_sampling_params, \
topkp_sampling_params]:
output = llm.generate(prompts, sp)
for o in output:
check_num_logprobs(o.outputs[0].logprobs, 4)

View File

@ -69,8 +69,6 @@ def test_triton_placeholder_language():
assert lang.constexpr is None
assert lang.dtype is None
assert lang.int64 is None
assert lang.int32 is None
assert lang.tensor is None
def test_triton_placeholder_language_from_parent():

View File

@ -91,10 +91,8 @@ class RemoteOpenAIServer:
env['VLLM_WORKER_MULTIPROC_METHOD'] = 'spawn'
if env_dict is not None:
env.update(env_dict)
serve_cmd = ["vllm", "serve", model, *vllm_serve_args]
print(f"Launching RemoteOpenAIServer with: {' '.join(serve_cmd)}")
self.proc: subprocess.Popen = subprocess.Popen(
serve_cmd,
["vllm", "serve", model, *vllm_serve_args],
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
@ -1133,14 +1131,14 @@ def has_module_attribute(module_name, attribute_name):
def get_attn_backend_list_based_on_platform() -> list[str]:
if current_platform.is_cuda():
return ["FLASH_ATTN", "TRITON_ATTN", "TREE_ATTN"]
return ["FLASH_ATTN_VLLM_V1", "TRITON_ATTN_VLLM_V1", "TREE_ATTN"]
elif current_platform.is_rocm():
attn_backend_list = ["TRITON_ATTN"]
attn_backend_list = ["TRITON_ATTN_VLLM_V1"]
try:
import aiter # noqa: F401
attn_backend_list.append("FLASH_ATTN")
attn_backend_list.append("FLASH_ATTN_VLLM_V1")
except Exception:
print("Skip FLASH_ATTN on ROCm as aiter is not installed")
print("Skip FLASH_ATTN_VLLM_V1 on ROCm as aiter is not installed")
return attn_backend_list
else:

View File

@ -23,16 +23,15 @@ from vllm_test_utils.monitor import monitor
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.transformers_utils.detokenizer_utils import (
convert_ids_list_to_tokens)
from vllm.utils import (CacheInfo, FlexibleArgumentParser, LRUCache,
MemorySnapshot, PlaceholderModule, StoreBoolean,
bind_kv_cache, common_broadcastable_dtype,
current_stream, deprecate_kwargs, get_open_port,
get_tcp_uri, is_lossless_cast, join_host_port,
make_zmq_path, make_zmq_socket, memory_profiling,
merge_async_iterators, sha256, split_host_port,
split_zmq_path, supports_kw, swap_dict_values)
# isort: off
from vllm.utils import (
CacheInfo, FlexibleArgumentParser, LRUCache, MemorySnapshot,
PlaceholderModule, bind_kv_cache, common_broadcastable_dtype,
current_stream, deprecate_kwargs, get_open_port, get_tcp_uri,
is_lossless_cast, join_host_port, make_zmq_path, make_zmq_socket,
memory_profiling, merge_async_iterators, sha256, split_host_port,
split_zmq_path, supports_kw, swap_dict_values, unique_filepath)
# isort: on
from ..utils import create_new_process_for_each_test, error_on_warning
@ -1033,15 +1032,3 @@ def test_load_config_file(tmp_path):
# Assert that the processed arguments match the expected output
assert processed_args == expected_args
os.remove(str(config_file_path))
def test_unique_filepath():
temp_dir = tempfile.mkdtemp()
path_fn = lambda i: Path(temp_dir) / f"file_{i}.txt"
paths = set()
for i in range(10):
path = unique_filepath(path_fn)
path.write_text("test")
paths.add(path)
assert len(paths) == 10
assert len(list(Path(temp_dir).glob("*.txt"))) == 10

Some files were not shown because too many files have changed in this diff Show More