Compare commits

...

260 Commits

Author SHA1 Message Date
ab153be252 take 2
Signed-off-by: Tyler Michael Smith <tysmith@redhat.com>
2025-07-11 14:42:44 +00:00
5e53c89a74 [Bugfix] [CI] Fix Tensorizer LoRA test (#20760)
Signed-off-by: Sanger Steel <sangersteel@gmail.com>
2025-07-10 19:07:06 +00:00
c66e38ea4c [Test] Remove docker build from test. (#20542)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-07-10 11:21:58 -07:00
251595368f Fix DeepSeek-R1-0528 chat template (#20717)
Signed-off-by: Benjamin Merkel <benjamin.merkel@tngtech.com>
Co-authored-by: Benjamin Merkel <benjamin.merkel@tngtech.com>
2025-07-10 17:47:36 +00:00
4bed167768 [Model][VLM] Support JinaVL Reranker (#20260)
Signed-off-by: shineran96 <shinewang96@gmail.com>
2025-07-10 10:43:43 -07:00
b140416abf [Model] Add reason parser for Hunyuan A13B Model. (#20625)
Signed-off-by: Asher Zhang <asherszhang@tencent.com>
2025-07-10 16:33:26 +00:00
5b8366b61a [ROCm][Regression] Remove tensor creation that harms performance on ROCm (#20741)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-07-10 09:22:23 -07:00
c7753a9809 [Hardware][CPU] Vllm int8 quantization enablement for ARM CPU (#14129)
Signed-off-by: nishith-fujitsu <nishith.jaiswal@fujitsu.com>
2025-07-10 15:59:04 +00:00
4b9a9435bb Update Dockerfile FlashInfer to v0.2.8rc1 (#20718)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-10 08:09:02 -07:00
3482fd7e4e [Doc] Add engine args back in to the docs (#20674)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-10 08:02:40 -07:00
77f77a951e [Misc] Clean up mark to fork process in BNB tests (#20692)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-10 13:59:40 +00:00
1a4f35e2ea Normalize lm-eval command between baseline and correctness test (#18560)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-10 13:27:32 +00:00
be1e128dfb [CI Bugfix] Skip failing Tensorizer+LoRA test (#20724) 2025-07-10 21:15:03 +09:00
65393ee064 [doc] fix ordered list (#20749)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-10 03:13:52 -07:00
dc221ad72d [Bugfix][Build][Non-CUDA] Only referencing CMAKE_CUDA_COMPILER_VERSION on CUDA where it is defined (#20738)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-07-10 02:58:11 -07:00
7571a4a7e5 [CI/Build] Fix Basic Models Test (#20728)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-10 09:57:19 +00:00
f67d986dd1 [Misc] loose new-model tagger conditions (#20747)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-10 02:54:47 -07:00
cc876d0f29 [KVConnector] Aggregate finished requests on the scheduler (#19555)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-07-10 09:22:18 +01:00
fdfd409f8f [TPU][Core]Make load weight exceed hbm error more instructive for customers (#20644)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-07-10 07:01:17 +00:00
ffbcc9e757 [BugFix] Fix VllmConfig() construction on all platforms (#20695)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-10 07:00:20 +00:00
59389c927b [BugFix][CPU] Fix CPU worker dependency on cumem_allocator (#20696)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-10 14:24:20 +08:00
8f2720def9 [Frontend] Support Tool Calling with both tool_choice='required' and $defs. (#20629)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-07-10 13:56:35 +08:00
ad6c2e1a0b Correct PPMissingLayer handling in Deepseek-V2-Lite PP deployment (#20665)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
2025-07-09 20:34:40 -07:00
49e8c7ea25 Use NVCC --compress-mode to reduce binary size by 30% (#20694)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-09 18:26:48 -07:00
805d62ca88 [Misc] DP : Add ExpertTokensMetadata (#20332)
Signed-off-by: Varun <vsundarr@redhat.com>
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun <vsundarr@redhat.com>
2025-07-10 00:33:14 +00:00
b7d9e9416f [CI/Build] Fix FlashInfer double build in Dockerfile (#20651)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-09 17:41:56 -06:00
7c12a765aa [Misc] Simplify the prefix caching logic on draft tokens (#20701)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-09 14:48:35 -07:00
cd587c93ef [BugFix]: Properly set engine_id when using multi connector (#19487)
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: leiyiming <leiyiming@kingsoft.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-07-09 20:32:44 +00:00
332d4cb17b [Feature][Quantization] MXFP4 support for MOE models (#17888)
Signed-off-by: Felix Marty <felmarty@amd.com>
Signed-off-by: Bowen Bao <bowenbao@amd.com>
Signed-off-by: Felix Marty <Felix.Marty@amd.com>
Co-authored-by: Bowen Bao <bowenbao@amd.com>
2025-07-09 13:19:02 -07:00
bf03ff3575 [Kernel] Add Conch backend for mixed-precision linear layer (#19818)
Signed-off-by: Jacob Manning <jmanning+oss@stackav.com>
2025-07-09 13:17:55 -07:00
47043eb678 [Kernel] Triton implementation of causal-conv1d for Mamba-based models (#18218)
Signed-off-by: Tuan M. Hoang-Trong <tmhoangt@us.ibm.com>
Co-authored-by: Tuan M. Hoang-Trong <tmhoangt@us.ibm.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-07-09 12:53:55 -07:00
31b96d1c64 Support Llama 4 for cutlass_moe_fp4 (#20453)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-09 15:53:38 -04:00
e59ba9e142 [CI/Build] Enlarge tolerance for a CPU multi-modal test (#20684)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-07-09 17:48:52 +00:00
403b481573 Remove heading form installation inc.md file (#20697)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-09 10:42:51 -07:00
138709f8d1 [Doc] Update CPU doc (#20676)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-09 10:28:30 -07:00
0bbac1c1b4 [Bench] Add NVFP4 GEMM benchmark script (#20578)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-09 13:23:48 -04:00
a3e4e85ece [XPU][CI] enhance xpu test support (#20652)
Signed-off-by: Ma, Liangliang <liangliang.ma@intel.com>
Co-authored-by: zhenwei-intel <zhenweiliu@habana.ai>
2025-07-09 16:53:09 +00:00
eb58f5953d [TPU][Bugfix] fix test_pallas (#20666)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-07-09 09:32:48 -07:00
4ac9c33f78 [Bugfix] Fix handling of Tensorizer arguments for LoadConfig (#20643)
Signed-off-by: Sanger Steel <sangersteel@gmail.com>
2025-07-09 15:36:37 +00:00
efe73d0575 [doc] update doc format (#20673)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-09 08:08:19 -07:00
853487bc1b [Docs] Improve docs for RLHF co-location example (#20599)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-09 08:06:43 -07:00
9ff2af6d2b [Benchmark] Parameterization of streaming loading of multimodal datasets (#20528)
Signed-off-by: wangli <wangli858794774@gmail.com>
2025-07-09 13:35:16 +00:00
70ca5484f5 [Doc] Update notes (#20668)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-09 03:46:36 -07:00
5358cce5ff [V1] [Doc] Update V1 docs for Mamba models (#20499)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-07-09 01:02:41 -07:00
2155e95ef1 [Bugfix] Fix the issue where reasoning_content is None when Thinkng is enabled and tool_choice is set to 'required'. (#20662)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-07-09 07:39:58 +00:00
f95570a52d [Docs] fix minimax tool_calling docs error (#20667)
Signed-off-by: qingjun <qingjun@minimaxi.com>
2025-07-09 00:37:07 -07:00
b6e7e3d58f [Intel GPU] support ray as distributed executor backend for XPU. (#20659)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-07-09 00:36:58 -07:00
e760fcef22 [XPU] Use spawn with XPU multiprocessing (#20649)
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2025-07-09 00:34:28 -07:00
6bbf1795b7 [Misc] Fix the size of batched_dummy_mm_inputs in profile_run (#20434)
Signed-off-by: bk-201 <joy25810@foxmail.com>
2025-07-08 20:15:44 -07:00
9e0ef888f0 Fix bullets in incremental_build.md (#20642) 2025-07-09 11:03:41 +08:00
97abeb1daa [feat] enable SM100 CUTLASS block scaled group gemm for smaller batch sizes (#20640)
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
2025-07-09 11:03:35 +08:00
34dad19e7b [Bugfix] set default set cuda_graph_sizes to min(self.max_num_seqs * 2, 512) (#20628)
Signed-off-by: izhuhaoran <izhuhaoran@qq.com>
2025-07-09 11:02:51 +08:00
6db31e7a27 [Hardware][PPC64LE] Enable V1 for ppc64le and ARM (#20554)
Signed-off-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
Co-authored-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
Co-authored-by: Nikhil Gupta <nikhil.gupta2@arm.com>
2025-07-08 20:00:41 -07:00
977180c912 [Docs] Improve documentation for multi-node service helper script (#20600)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
2025-07-08 19:44:26 -07:00
c40784c794 [BugFix][Intel GPU] Use refactored API for dist_backend in V1 worker (#20596)
Signed-off-by: ratnampa <ratnam.parikh@intel.com>
2025-07-08 19:44:23 -07:00
baed180aa0 [tech debt] Revisit lora request model checker (#20636)
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>
2025-07-09 09:42:41 +08:00
0b407479ef [misc]refactor Platform.set_device method (#20262)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-07-09 01:39:47 +00:00
5eaf570050 Replace multiply_add with homogeneous_multiply_add to Address Clang Template Parameter Issue (#20142)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-07-09 00:30:18 +00:00
d8ee5a2ca4 [TPU][Bugfix] disable phi-3 test (#20632)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-07-08 23:14:26 +00:00
b9fca83256 [Bugfix] Fix GLM-4.1-V video prompt update (#20635)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-08 23:13:58 +00:00
32dffc2772 [Core] Rename get_max_tokens_per_item for backward compatibility (#20630)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-08 23:11:30 +00:00
c438183e99 [Bugfix] Fix topk_ids indices_type for CUTLASS w8a8 FP8 MoE (#20166)
Signed-off-by: Ming Yang <yming@meta.com>
2025-07-08 23:10:57 +00:00
baba0389f7 [CI] Increase the threshold of the MTEB RERANK tests (#20615)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-07-08 08:10:11 -07:00
c6c22f16d3 Revert invalid spellchecker fix on deepseek_vl2 (#20618) 2025-07-08 15:07:14 +00:00
dd382e0fe3 [Model] Implement missing get_language_model for Keye-VL (#20631)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-08 07:47:46 -07:00
849590a2a7 Update torch/xla pin to 20250703 (#20589)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
2025-07-08 07:44:02 -07:00
a4c23314c0 [xpu]feat: support multi-lora on xpu (#20616)
Signed-off-by: yan <yan.ma@intel.com>
2025-07-08 22:07:10 +08:00
b942c094e3 Stop using title frontmatter and fix doc that can only be reached by search (#20623)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-08 03:27:40 -07:00
b4bab81660 Remove unnecessary explicit title anchors and use relative links instead (#20620)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-08 02:49:13 -07:00
b91cb3fa5c [Docs] Improve documentation for Deepseek R1 on Ray Serve LLM (#20601)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
2025-07-08 02:09:06 -07:00
71d1d75b7a [PD][Nixl] Remote consumer READ timeout for clearing request blocks (#20139)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-07-08 08:56:40 +01:00
72d14d0eed [Frontend] [Core] Integrate Tensorizer in to S3 loading machinery, allow passing arbitrary arguments during save/load (#19619)
Signed-off-by: Sanger Steel <sangersteel@gmail.com>
Co-authored-by: Eta <esyra@coreweave.com>
2025-07-07 22:47:43 -07:00
e34d130c16 [TPU] Temporary fix vmem oom for long model len by reducing page size (#20278)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-07-08 05:16:16 +00:00
7721ef1786 [CI/Build][CPU] Fix CPU CI and remove all CPU V0 files (#20560)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-07-07 22:13:44 -07:00
8369b7c2a9 [Misc] improve error msg (#20604)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-07 21:45:18 -07:00
3eb4ad53f3 [Docs] Add Anyscale to frameworks (#20590)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
2025-07-07 20:09:13 -07:00
90a2769f20 [Docs] Add Ray Serve LLM section to openai compatible server guide (#20595)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
2025-07-07 20:08:05 -07:00
e60d422f19 [Docs] Improve docstring for ray data llm example (#20597)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
2025-07-07 20:06:26 -07:00
0d914c81a2 [Docs] Rewrite offline inference guide (#20594)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
2025-07-07 20:06:02 -07:00
6e428cdd7a [Doc] Syntax highlight request responses as JSON instead of bash (#20582)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-07 20:02:45 -07:00
93b9d9f499 [Bugfix]: Fix messy code when using logprobs (#19209)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-07-08 11:02:15 +08:00
af107d5a0e Make distinct code and console admonitions so readers are less likely to miss them (#20585)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-07 19:55:28 -07:00
31c5d0a1b7 [Optimize] Don't send token ids when kv connector is not used (#20586)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-07 19:04:54 -07:00
afb7cff1b9 [Bugfix] Fix Maverick correctness by filling zero to cache space in cutlass_moe (#20167)
Signed-off-by: Ming Yang <yming@meta.com>
2025-07-08 01:07:22 +00:00
d2e841a10a [Misc] Improve logging for dynamic shape cache compilation (#20573)
Signed-off-by: kyolebu <kyu@redhat.com>
2025-07-08 00:48:09 +00:00
14601f5fba [Config] Refactor mistral configs (#20570)
Signed-off-by: Patrick von Platen <patrick.v.platen@gmail.com>
2025-07-07 15:25:10 -07:00
042d131f39 Fix links in multi-modal model contributing page (#18615)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-07 21:13:52 +00:00
8e807cdfa4 [Misc] feat output content in stream response (#19608)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-07-07 20:45:10 +00:00
e601efcb10 [Misc] Add fully interleaved support for multimodal 'string' content format (#14047)
Signed-off-by: drobyshev.anton <drobyshev.anton@wb.ru>
Co-authored-by: drobyshev.anton <drobyshev.anton@wb.ru>
2025-07-07 19:43:08 +00:00
22dd9c2730 [Kernel] Optimize Prefill Attention in Unified Triton Attention Kernel (#20308)
Signed-off-by: Jan van Lunteren <jvl@zurich.ibm.com>
2025-07-07 19:08:12 +00:00
a6d795d593 [DP] Copy environment variables to Ray DPEngineCoreActors (#20344)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-07-07 10:14:22 -07:00
a37d75bbec [Front-end] microbatch tokenization (#19334)
Signed-off-by: zt2370 <ztang2370@gmail.com>
2025-07-07 17:54:10 +01:00
edd270bc78 [Bugfix] Prevent IndexError for cached requests when pipeline parallelism is disabled (#20486)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2025-07-07 09:41:15 -07:00
110df74332 [Model][Last/4] Automatic conversion of CrossEncoding model (#19675)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-07-07 14:46:04 +00:00
1ad69e8375 [Doc] Fix some MkDocs snippets used in the installation docs (#20572)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-07 07:44:34 -07:00
b8a498c9b2 [Doc] Add outline for content tabs (#20571)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-07 07:43:26 -07:00
923147b5e8 [Doc] Fix internal links so they don't always point to latest (#20563)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-07 04:15:50 -07:00
45877ef740 [Doc] Use gh-pr and gh-issue everywhere we can in the docs (#20564)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-07 03:54:22 -07:00
6e4bef1bea [Doc] Remove extra whitespace from CI failures doc (#20565)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-07 03:35:47 -07:00
4ff79a136e [Misc] Set the minimum openai version (#20539)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-07 09:15:26 +00:00
448acad31e [Misc] remove unused jinaai_serving_reranking (#18878)
Signed-off-by: Abirdcfly <fp544037857@gmail.com>
2025-07-07 09:14:12 +00:00
eb0b2d2f08 [Docs] Clean up tables in supported_models.md (#20552)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-07-07 01:46:31 -07:00
3112271f6e [XPU] log clean up for XPU platform (#20553)
Signed-off-by: yan <yan.ma@intel.com>
2025-07-07 01:38:22 -07:00
1fd471e957 Add docstrings to url_schemes.py to improve readability (#20545)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-07-07 08:31:49 +00:00
2c5ebec064 [XPU][CI] add v1/core test in xpu hardware ci (#20537)
Signed-off-by: Ma, Liangliang <liangliang.ma@intel.com>
2025-07-07 01:16:40 -07:00
2e610deb72 [CI/Build] Enable phi2 lora test (#20540)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-07 05:10:41 +00:00
6e2c19ce22 [Refactor]Abstract Platform Interface for Distributed Backend and Add xccl Support for Intel XPU (#19410)
Signed-off-by: dbyoung18 <yang5.yang@intel.com>
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2025-07-07 04:32:32 +00:00
47db8c2c15 [Misc] add a tip for pre-commit (#20536)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-06 19:42:06 -07:00
462b269280 Implement OpenAI Responses API [1/N] (#20504)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-06 18:32:13 -07:00
c18b3b8e8b [Bugfix] Add use_cross_encoder flag to use correct activation in ClassifierPooler (#20527)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-06 14:01:48 -07:00
9528e3a05e [BugFix][Spec Decode] Fix spec token ids in model runner (#20530)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-06 19:44:52 +00:00
9fb52e523a [V1] Support any head size for FlexAttention backend (#20467)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-06 09:54:36 -07:00
e202dd2736 [V0 deprecation] Remove V0 CPU/XPU/TPU backends (#20412)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-07-06 08:48:13 -07:00
43813e6361 [Misc] call the pre-defined func (#20518)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-06 10:25:29 +00:00
cede942b87 [Benchmark] Add support for multiple batch size benchmark through CLI in benchmark_moe.py (#20516)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-07-06 09:20:11 +00:00
fe1e924811 [Frontend] Support image object in llm.chat (#19635)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
Signed-off-by: Flora Feng <4florafeng@gmail.com>
2025-07-06 06:47:13 +00:00
4548c03c50 [TPU][Bugfix] fix the MoE OOM issue (#20339)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-07-05 21:19:09 -07:00
40b86aa05e [BugFix] Fix: ImportError when building on hopper systems (#20513)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-07-06 12:17:30 +08:00
432870829d [Bugfix] Fix missing per_act_token parameter in compressed_tensors_moe (#20509)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-07-06 12:08:30 +08:00
f73d02aadc [BUG] Fix #20484. Support empty sequence in cuda penalty kernel (#20491)
Signed-off-by: Vadim Gimpelson <vadim.gimpelson@centml.ai>
2025-07-05 19:38:02 -07:00
c5ebe040ac test_attention compat with coming xformers change (#20487)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-07-05 19:37:59 -07:00
8d763cb891 [Misc] remove unused import (#20517)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-05 19:17:06 -07:00
cf4cd53982 [Misc] Add logger.exception for TPU information collection failures (#20510)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-05 07:24:32 -07:00
32c9be2200 [v1] Re-add fp32 support to v1 engine through FlexAttention (#19754)
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-07-05 09:41:10 +00:00
8aeaa910a2 Fix unknown attribute of topk_indices_dtype in CompressedTensorsW8A8Fp8MoECutlassMethod (#20507)
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
2025-07-05 14:03:20 +08:00
906e05d840 [Misc] Remove the unused LoRA test code (#20494)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-05 13:48:16 +08:00
ef9a2990ae [doc] small fix (#20506)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-04 20:56:39 -07:00
7e90870491 [Misc] Add security warning for development mode endpoints (#20508)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-04 20:52:13 -07:00
d3f05c9248 [Doc] fix mutltimodal_inputs.md gh examples link (#20497)
Signed-off-by: Guy Stone <guys@spotify.com>
2025-07-04 16:41:35 -07:00
c108781c85 [CI Bugfix] Fix pre-commit failures on main (#20502) 2025-07-04 14:17:30 -07:00
3d184b95b8 [feat]: CUTLASS block scaled group gemm for SM100 (#19757)
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
Co-authored-by: Duncan Moss <dmoss@nvidia.com>
2025-07-04 12:58:04 -06:00
2f35a022e6 Enable V1 for Hybrid SSM/Attention Models (#20016)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Stanislaw Wozniak <stw@zurich.ibm.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
2025-07-04 17:46:53 +00:00
ffe00ef77a [Misc] Small: Remove global media connector. Each test should have its own test connector object. (#20395)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-07-04 08:15:03 -07:00
5561681d04 [CI] add kvcache-connector dependency definition and add into CI build (#18193)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2025-07-04 06:49:18 -07:00
fbd62d8750 [Doc] Fix classification table in list of supported models (#20489)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-04 06:08:02 -07:00
2e26f9156a [Model][3/N] Automatic conversion of CrossEncoding model (#20168)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-07-04 05:47:39 -07:00
9e5452ee34 [Bug][Frontend] Fix structure of transcription's decoder_prompt (#18809)
Signed-off-by: sangbumlikeagod <oironese@naver.com>
2025-07-04 11:28:07 +00:00
0e3fe896e2 Support Llama 4 for fused_marlin_moe (#20457)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-04 07:55:10 +00:00
1caca5a589 [Misc] Add SPDX-FileCopyrightText (#20428)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-04 07:40:42 +00:00
783921d889 [Perf] Optimize Vectorization Utils for Int 8 Quantization Kernels (#20331)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-04 15:06:24 +08:00
4a98edff1f [Structured Outputs][V1] Skipping with models doesn't contain tokenizers (#20365)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-07-04 15:05:49 +08:00
a7bab0c9e5 [Misc] small update (#20462)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-03 20:33:44 -07:00
25950dca9b Add ignore consolidated file in mistral example code (#20420)
Signed-off-by: 汪志鹏 <wangzhipeng628@gmail.com>
2025-07-04 02:55:07 +00:00
a4113b035c [Platform] Add custom default max tokens (#18557)
Signed-off-by: Gabriel Marinho <gmarinho@ibm.com>
2025-07-04 10:50:17 +08:00
7e1665b089 [Misc] Change warn_for_unimplemented_methods to debug (#20455) 2025-07-04 02:35:08 +00:00
8d1096e7db [Bugfix] Register reducer even if transformers_modules not available (#19510)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
2025-07-03 22:08:12 +00:00
8d775dd30a [Misc] Fix Unable to detect current VLLM config. Defaulting to NHD kv cache layout warning (#20400)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-07-03 14:56:09 -07:00
78fe77534b [Kernel] Enable fp8 support for pplx and BatchedTritonExperts. (#18864)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-07-03 14:55:40 -07:00
2f2fcb31b8 [Misc] Remove _maybe_ignore_quant_config from GLM4.1v (#20432)
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
2025-07-03 21:41:13 +00:00
1dba2c4ebe [Misc] adjust for ipv6 for mookcacke url parse (#20107)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-07-03 20:27:17 +00:00
71d6de3a26 [Misc] Clean up InternVL family config registration (#19992)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-03 20:01:47 +00:00
536fd33003 [CI] Trimming some failing test groups from AMDPRODUCTION. (#20390) 2025-07-03 08:21:31 -07:00
619b9f5c7e [Frontend] fix duplicate output for bench subcmd (#20446)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-03 08:02:06 -07:00
d1b689c445 [Bugfix] Fix flaky test_streaming_response test (#20363)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-07-03 14:46:24 +00:00
9854dc9040 [Frontend] improve vllm bench <bench_type> --help display (#20430)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-03 14:22:16 +00:00
ff5c60fad8 [Misc] Automatically tag PRs to add new models (#20222)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-07-03 07:11:03 -07:00
6f1229f91d [Model][2/N] Automatic conversion of CrossEncoding model (#19978)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-07-03 13:59:23 +00:00
1819fbda63 [Quantization] Bump to use latest bitsandbytes (#20424)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-03 21:58:46 +08:00
7f0367109e [CI/Build][CPU] Enable cross compilation in CPU release pipeline (#20423)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-07-03 05:26:12 -07:00
fb14d53cf6 [Kernel] refactor cpu worker v0 cache dtype (#20080)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-07-03 08:39:14 +00:00
b024a42e93 [Core] Move multimodal placeholder from chat utils to model definition (#20355)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-03 08:18:30 +00:00
cb97f2bfc5 [Docs] Replace two list with tables in intel_gaudi.md (#20414)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-07-03 00:48:25 -07:00
359200f6ac [doc] fix link (#20417)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-03 00:21:57 -07:00
220aee902a [Misc] Add rules to label Speculative Decoding Related PRs (#20406)
Signed-off-by: Lifan Shen <lifans@meta.com>
2025-07-02 23:56:49 -07:00
67d25eca05 [Tests] Update online DP tests to verify that requests are balanced (#20157)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-03 14:49:13 +08:00
363528de27 [Feature] Support MiniMax-M1 function calls features (#20297)
Signed-off-by: QscQ <qscqesze@gmail.com>
Signed-off-by: qingjun <qingjun@minimaxi.com>
2025-07-03 06:48:27 +00:00
4ff61ababa [TPU] Add a case to cover RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8 (#20385)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-07-03 06:46:41 +00:00
0ec3779df7 [Bugfix][CI/CD][CPU] Fix CPU CI tests (#20383)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-07-02 20:11:36 -07:00
b616f6a53d [Misc] Small: Fix video loader return type annotations. (#20389)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-07-03 03:10:39 +00:00
2e25bb12a8 [Bugfix] Fix import of CutlassExpertsFp8 in compressed_tensors_moe.py (#20381)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-07-03 02:07:43 +00:00
9965c47d0d Enable CPU nightly performance benchmark and its Markdown report (#18444)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2025-07-02 17:50:25 -07:00
059d4cdb49 [BugFix] Fix DP headless mode arg validation (#20398)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-02 17:15:32 -07:00
bdb84e26b0 [Bugfix] Fixes for FlashInfer's TORCH_CUDA_ARCH_LIST (#20136)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: Tyler Michael Smith <tysmith@redhat.com>
2025-07-02 17:15:11 -07:00
3dd359147d [Docs] Update EAGLE example (#20375)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-07-02 17:13:51 -07:00
657f2f301a [DP] Support external DP Load Balancer mode (#19790)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-02 10:21:52 -07:00
a1aafc827a [ROCm][FEAT] Enable Full Graph Mode in AITER MLA V1 Attn Backend (Decode Phase only) (#20254)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-07-02 16:25:46 +00:00
139508a418 [Misc] add handler HF_TOKEN is emptry string (#20369)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-07-02 09:14:31 -07:00
d265414dbc [Minor] Clean up incorrect comment in test (#20382)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-02 09:13:37 -07:00
48fb076cbc [V1] LogitsProcessor programming model (#16728)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: Andrew Feldman <afeldman@neuralmagic.com>
Signed-off-by: Andrew Feldman <afeldman@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-07-02 09:10:42 -07:00
c1909e7e8c [Kernels] MoE refactor (#19636)
Signed-off-by: Bill Nell <bnell@redhat.com>
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Co-authored-by: ElizaWszola <ewszola@redhat.com>
2025-07-02 06:08:27 -07:00
b95877509b Documentation update tool_calling: mapping back to function from response (#20373) 2025-07-02 05:55:49 -07:00
706ff13224 [Model] Adds support for SlimMoE models Phi-tiny-MoE-instruct (#20286)
Signed-off-by: Zichong Li <t-lizichong@microsoft.com@Reasoning-H100-VM3.drbuo4tcjzruhloch3eo0b25ef.cx.internal.cloudapp.net>
Co-authored-by: Zichong Li <t-lizichong@microsoft.com@Reasoning-H100-VM3.drbuo4tcjzruhloch3eo0b25ef.cx.internal.cloudapp.net>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-07-02 12:54:12 +00:00
ccbfb1d1c9 [Bugfix] Fix the max_seq_len limit of 16384 for DeepSeek models (#20322)
Signed-off-by: Wang Huaqiang <huaqiang.wang@intel.com>
2025-07-02 12:53:36 +00:00
9e5552aa13 [NVIDIA] Support Cutlass w8a8 FP8 for Blackwell Geforce GPUs (sm120) (#17280)
Signed-off-by: kaln27 <liaojuncheng123@foxmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-07-02 06:47:19 -06:00
0c600b9ab6 [Build/CI] Automatically tag DeepSeek related PRs (#20370)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-07-02 04:02:43 -07:00
e303dcf523 [Model] Add Ernie4.5 and Ernie4.5MoE Model Support (#20220)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-07-02 03:37:01 -07:00
ae9c4d416f [Docs] Make TPU ref prettier in google_tpu.md (#20356)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-07-02 02:04:08 -07:00
d853520b3e [Docs] Fix indentations for 2-level items in deprecation_policy.md (#20352)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-07-01 23:50:31 -07:00
ba51aea65e [Bugfix] Keye-VL compatibility with tok_kwargs (#20058) (#20353)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-01 23:46:59 -07:00
8452946c06 [Model][VLM] Support Keye-VL-8B-Preview (#20126)
Signed-off-by: Kwai-Keye <Keye@kuaishou.com>
2025-07-01 23:35:04 -07:00
2e7cbf2d7d [Frontend] Support configurable mm placeholder strings & flexible video sampling policies via CLI flags. (#20105)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-07-01 23:34:03 -07:00
7da296be04 [TPU] kv cache update kernel supports dynamic grid (#20235)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-07-02 06:33:37 +00:00
b205e8467d [Doc][TPU] Add models and features supporting matrix. (#20230)
Signed-off-by: Qiliang Cui <cuiq@google.com>
2025-07-02 06:33:20 +00:00
be0cfb2b68 fix[Docs]: link anchor is incorrect #20309 (#20315)
Signed-off-by: zxw <1020938856@qq.com>
2025-07-02 06:32:34 +00:00
1a03dd496b [Bugfix] Fix dynamic rotary embedding (#20343)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-02 06:31:26 +00:00
27b8017636 [FIX][Intel GPU]fix ipex flash_attn_varlen_func api missing parameter (#20348)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-07-01 22:26:40 -07:00
9ec1e3065a [Misc][Doc] Add missing comment for LLM (#20285)
Signed-off-by: Lifan Shen <lifans@meta.com>
2025-07-01 19:04:24 -07:00
9dae7d46bf [Refactor] Remove Unused Env VLLM_ENABLE_MOE_ALIGN_BLOCK_SIZE_TRITON (#20334)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-01 19:03:43 -07:00
7058d7dd5d [Refactor] Remove duplicate find_free_port (#20333)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-01 19:03:07 -07:00
a0389e0554 [UT][intel GPU] use current_platform instead of device hardcode in v1 tests (#20169)
Signed-off-by: Ma, Liangliang <liangliang.ma@intel.com>
2025-07-02 09:06:04 +08:00
3be8d312a2 [Kernel][Bugfix] Fixup some warnings in nvfp4_blockwise_moe when CUDA < 12.8 (#20324)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-07-01 18:05:47 -07:00
3abfe22154 Enable group size 64 for Machete (#20290)
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
2025-07-01 18:05:44 -07:00
e81fbefe8a [Refactor] Refactor import utils (#20269)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-01 18:05:42 -07:00
9290de5667 remove unused variables in marlin_template.h (#20236) 2025-07-02 00:51:52 +00:00
7f280d69c9 [Optimization] Cache sampled token ids in model runner (#20291)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-01 11:01:31 -07:00
02cabff207 [V1] [ROCm] Enable EP with AITER Fused MoE (#20270)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-07-01 16:48:30 +00:00
3d19d47d91 [Frontend] Expand tools even if tool_choice="none" (#17177)
Signed-off-by: okada shintarou <okada@preferred.jp>
2025-07-01 12:47:38 -04:00
8acb4badee [CUDA graphs] Enable full cuda graphs with FA3 AoT scheduling (#20301)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-01 09:07:36 -07:00
314af8617c [Docs] Update transcriptions API to use openai client with stream=True (#20271)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-07-01 15:47:13 +00:00
0e96cc9b7e [Misc] Minor refactoring for scheduler (#20299)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-01 07:55:32 -07:00
ecad851cbd [Model]Add Tencent HunYuanMoEV1 Model Support (#20114)
Signed-off-by: aiyiwang <aiyiwang@tencent.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: quinnrong <quinnrong@tencent.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-01 07:28:13 -07:00
ed70f3c64f Add GLM4.1V model (Draft) (#19331)
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-07-01 12:48:26 +00:00
650d5dbd04 [Misc] Minor refactor of NIXL background handshake (#20068)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-07-01 12:40:14 +01:00
9025a9a705 [Quant] [Bugfix] Fix quantization config matching with hf_to_vllm_mapper (#20046) 2025-07-01 19:20:34 +09:00
c05596f1a3 [Perf] Validate @config in pre-commit instead of dynamically (#20200)
Signed-off-by: Lionel Villard <villard@us.ibm.com>
2025-07-01 05:10:28 -04:00
787b13389e [doc] fix the incorrect logo in dark mode (#20289)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-01 08:18:09 +00:00
96453cfa83 [BugFix][V1][ROCm] Triton MLA uses V0 backend on V1 engine (#19067)
Signed-off-by: Tianyuan Wu <Tianyuan.Wu@amd.com>
2025-07-01 16:12:19 +08:00
b1c1fe35a5 [Misc] remove redundant char (#20287)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-07-01 15:33:22 +08:00
08d81f1014 [Bugfix] Fix deepep tests (#20288)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-07-01 15:29:08 +08:00
6cc1e7d96d [CPU] Update custom ops for the CPU backend (#20255)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-07-01 07:25:03 +00:00
9909726d2a Enable ZP Support for Machete (#20268)
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
2025-07-01 07:12:20 +00:00
22e9d42040 [Misc] add xgrammar for arm64 (#18359)
Signed-off-by: Prashant Gupta <prashantgupta@us.ibm.com>
2025-07-01 07:02:20 +00:00
86debab54c Fix numel() downcast in vllm/csrc/moe/moe_align_sum_kernels.cu +2 (#17082)
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-07-01 06:48:10 +00:00
be250bbc67 [V1] Only print cudagraph tqdm on rank 0 with is_global_first_rank (#19516)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-01 06:02:09 +00:00
27949354fa [Feature] A calibration-free RTN-based quantization for accurate and accelerated INT4/INT8 inference (#18768)
Signed-off-by: Alex Kogan <alex.kogan@oracle.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-07-01 05:44:38 +00:00
bd5038af07 [Doc] add config and troubleshooting guide for NCCL & GPUDirect RDMA (#15897)
Signed-off-by: Ernest Wong <chwong719@gmail.com>
2025-06-30 21:44:39 -07:00
a2f14dc8f9 [CI][Intel Gaudi][vllm-Plugin]Add CI for hpu-plugin-v1-test (#20196)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2025-07-01 04:17:07 +00:00
92ee7baaf9 [Example] add one-click runnable example for P2P NCCL XpYd (#20246)
Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
2025-06-30 21:03:55 -07:00
7151f92241 [Misc] Fix spec decode example (#20296)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-06-30 21:01:48 -07:00
e28533a16f [Bugfix] Fix include prompt in stream response when echo=true (#15233)
Signed-off-by: Yuan Fang <yuanfang@alauda.io>
2025-07-01 01:30:14 +00:00
6d42ce8315 [CLI] Improve CLI arg parsing for -O/--compilation-config (#20156)
Signed-off-by: luka <luka@neuralmagic.com>
2025-07-01 01:03:13 +00:00
ded1fb635b [Bugfix][V1][P/D]Fix the issue of occasional garbled output for P2pNcclConnector (#20263)
Signed-off-by: Abatom <abzhonghua@gmail.com>
2025-06-30 16:45:14 -07:00
97d9524fe9 [Refactor] Remove useless pdb comment (#20266)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-06-30 18:15:24 +00:00
d8cf819a9a [Core] [Bugfix] [Multimodal] Fix multimodal profiling and generation for SFT/PTQed models (#20058)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-06-30 17:26:49 +00:00
551ef1631a [Unit Test] Add unit test for deep gemm (#20090)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-06-30 10:26:42 -06:00
2863befce3 [Optimization] Use Shared CachedRequestData Instance Across All Requests (#20232)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-06-30 09:07:50 -07:00
2965c99c86 [Spec Decode] Clean up spec decode example (#20240)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-06-30 08:28:13 -07:00
2062c0723d [Spec Decode] Refactor spec decoding into a separate function (#20238)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-06-30 08:13:50 -07:00
1c50e100a9 [Bugfix] fix quark ptpc (#20251)
Signed-off-by: Haoyang Li <Haoyang.Li@amd.com>
Co-authored-by: Haoyang Li <307790822@qq.com>
2025-06-30 22:24:50 +09:00
3ee56e26be [Docs] Fix 1-2-3 list in v1/prefix_caching.md (#20243)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-06-30 11:20:51 +00:00
8fe7fc8634 [Quantization] Improve BitsAndBytesModelLoader (#20242)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-06-30 18:22:09 +08:00
e936e401de [Bugfix] Fix processor initialization in transformers 4.53.0 (#20244)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-06-30 10:16:16 +00:00
f5dfa07531 [Bugfix] Skip loading extra parameters for modelopt Qwen3 MoE model (#19598)
Signed-off-by: noiji <>
2025-06-30 18:21:56 +09:00
022c58b80f [doc] Add Slack and Forum to the top navigation (#20208)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-06-30 07:53:45 +00:00
19108ef311 [Misc] Fix import (#20233)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-06-29 20:34:54 -07:00
5a52f389dd [BUGFIX][DEEPSEEK][MODEL_LOAD] fix w13, w2 weight not initialized assert (#20202)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2025-06-29 19:46:19 -07:00
65b1cbb138 [Model] support dots1 (#18254)
Signed-off-by: redmoe-moutain <agiredmoe@gmail.com>
2025-06-29 19:34:36 -07:00
6c9837a761 Fix cuda_archs_loose_intersection when handling sm_*a (#20207)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-06-29 16:52:34 -07:00
6f2f53a82d [Quantization] Add compressed-tensors NVFP4 MoE Support (#19990)
Signed-off-by: Dipika Sikka <dipikasikka1@gmail.com>
Signed-off-by: Dipika <dipikasikka1@gmail.com>
2025-06-29 22:05:40 +00:00
7b1895e6ce [CI Fix] Try fixing eagle e2e test OOM by reducing block allocation (#20213)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-06-29 10:31:37 +08:00
4d36693687 [Refactor] Create a function util and cache the results for has_deepgemm, has_deepep, has_pplx (#20187)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-06-28 22:06:38 +00:00
daec9dea6e [Bugfix] Correct behavior of GraniteMoeHybrid for TensorParallel execution (#20137)
Signed-off-by: Stanislaw Wozniak <stw@zurich.ibm.com>
2025-06-28 08:16:41 -07:00
daceac57c7 [Frontend] Generalize v1/audio/transcriptions endpoint (#20179)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-06-28 08:15:26 -07:00
8615d9776f [CI/Build] Add new CI job to validate Hybrid Models for every PR (#20147)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-06-27 23:00:25 -07:00
7b460c25f9 [BugFix] Fix the incorrect func name in the comments. (config.py) (#20185) 2025-06-27 22:51:16 -07:00
f719772281 [Bugfix] Properly reject requests with empty list guided_choice (#20195)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-06-27 22:50:52 -07:00
d45417b804 fix ci issue distributed 4 gpu test (#20204)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-06-27 22:50:00 -07:00
a29e62ea34 Fix num_token_padding support for static per-tensor scaled_fp8_quant (#20188)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-06-27 22:48:13 -07:00
e53be6f00a [Misc] Add type assertion of request_id for LLMEngine.add_request (#19700)
Signed-off-by: n2ptr <xuzhanchaomail@163.com>
2025-06-27 22:47:36 -07:00
c329ceca6d [CI Fix] Pin tests/models/registry.py MiniMaxText01ForCausalLM to revision due to model changes (#20199)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-06-28 13:43:06 +08:00
658 changed files with 37410 additions and 15174 deletions

View File

@ -46,6 +46,6 @@ while getopts "m:b:l:f:t:" OPT; do
done
lm_eval --model vllm \
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend=ray,trust_remote_code=true,max_model_len=4096" \
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,add_bos_token=true,trust_remote_code=true,max_model_len=4096" \
--tasks gsm8k --num_fewshot "$FEWSHOT" --limit "$LIMIT" \
--batch_size "$BATCH_SIZE"

View File

@ -18,12 +18,14 @@ RTOL = 0.08
def launch_lm_eval(eval_config, tp_size):
trust_remote_code = eval_config.get("trust_remote_code", False)
max_model_len = eval_config.get("max_model_len", 4096)
model_args = (
f"pretrained={eval_config['model_name']},"
f"tensor_parallel_size={tp_size},"
f"enforce_eager=true,"
f"add_bos_token=true,"
f"trust_remote_code={trust_remote_code}"
f"trust_remote_code={trust_remote_code},"
f"max_model_len={max_model_len}"
)
results = lm_eval.simple_evaluate(
model="vllm",

View File

@ -11,7 +11,7 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performanc
## Performance benchmark quick overview
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!), with different models.
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) and Intel® Xeon® Processors, with different models.
**Benchmarking Duration**: about 1hr.
@ -31,13 +31,27 @@ Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
Manually Trigger the benchmark
```bash
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
```
Runtime environment variables:
- `ON_CPU`: set the value to '1' on Intel® Xeon® Processors. Default value is 0.
- `SERVING_JSON`: JSON file to use for the serving tests. Default value is empty string (use default file).
- `LATENCY_JSON`: JSON file to use for the latency tests. Default value is empty string (use default file).
- `THROUGHPUT_JSON`: JSON file to use for the throughout tests. Default value is empty string (use default file).
- `REMOTE_HOST`: IP for the remote vLLM service to benchmark. Default value is empty string.
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
> NOTE: For Intel® Xeon® Processors, use `tests/latency-tests-cpu.json`, `tests/throughput-tests-cpu.json`, `tests/serving-tests-cpu.json` instead.
### Latency test
Here is an example of one test inside `latency-tests.json`:
@ -119,6 +133,30 @@ If you do not see the table, please wait till the benchmark finish running.
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
The `compare-json-results.py` helps to compare benchmark results JSON files converted using `convert-results-json-to-markdown.py`.
When run, benchmark script generates results under `benchmark/results` folder, along with the `benchmark_results.md` and `benchmark_results.json`.
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
Here is an example using the script to compare result_a and result_b without detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json --ignore_test_name`
| | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|----|----------------------------------------|----------------------------------------|----------|
| 0 | 142.633982 | 156.526018 | 1.097396 |
| 1 | 241.620334 | 294.018783 | 1.216863 |
| 2 | 218.298905 | 262.664916 | 1.203235 |
| 3 | 242.743860 | 299.816190 | 1.235113 |
Here is an example using the script to compare result_a and result_b with detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json`
| | results_a/benchmark_results.json_name | results_a/benchmark_results.json | results_b/benchmark_results.json_name | results_b/benchmark_results.json | perf_ratio |
|---|---------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|----------|
| 0 | serving_llama8B_tp1_sharegpt_qps_1 | 142.633982 | serving_llama8B_tp1_sharegpt_qps_1 | 156.526018 | 1.097396 |
| 1 | serving_llama8B_tp1_sharegpt_qps_16 | 241.620334 | serving_llama8B_tp1_sharegpt_qps_16 | 294.018783 | 1.216863 |
| 2 | serving_llama8B_tp1_sharegpt_qps_4 | 218.298905 | serving_llama8B_tp1_sharegpt_qps_4 | 262.664916 | 1.203235 |
| 3 | serving_llama8B_tp1_sharegpt_qps_inf | 242.743860 | serving_llama8B_tp1_sharegpt_qps_inf | 299.816190 | 1.235113 |
| 4 | serving_llama8B_tp2_random_1024_128_qps_1 | 96.613390 | serving_llama8B_tp4_random_1024_128_qps_1 | 108.404853 | 1.122048 |
## Nightly test details
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.

View File

@ -4,7 +4,8 @@
- Input length: 32 tokens.
- Output length: 128 tokens.
- Batch size: fixed (8).
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- CPU Models: llama-3.1 8B.
- Evaluation metrics: end-to-end latency (mean, median, p99).
{latency_tests_markdown_table}
@ -14,7 +15,8 @@
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm to achieve maximum throughput.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- CPU Models: llama-3.1 8B.
- Evaluation metrics: throughput.
{throughput_tests_markdown_table}
@ -25,12 +27,18 @@
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B, under QPS 2
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B on GPU, under QPS 2
- CPU Models: llama-3.1 8B.
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
- For CPU, we added random dataset tests to benchmark fixed input/output length with 100 prompts.
{serving_tests_markdown_table}
## Platform Information
{platform_markdown_table}
## json version of the benchmarking tables
This section contains the data of the markdown tables above in JSON format.

View File

@ -0,0 +1,66 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import pandas as pd
def compare_data_columns(
files, name_column, data_column, drop_column, ignore_test_name=False
):
print("\ncompare_data_column: " + data_column)
frames = []
compare_frames = []
for file in files:
data_df = pd.read_json(file)
serving_df = data_df.dropna(subset=[drop_column], ignore_index=True)
if ignore_test_name is False:
serving_df = serving_df.rename(columns={name_column: file + "_name"})
frames.append(serving_df[file + "_name"])
serving_df = serving_df.rename(columns={data_column: file})
frames.append(serving_df[file])
compare_frames.append(serving_df[file])
if len(compare_frames) >= 2:
# Compare numbers among two files
ratio_df = compare_frames[1] / compare_frames[0]
frames.append(ratio_df)
compare_frames.pop(1)
concat_df = pd.concat(frames, axis=1)
return concat_df
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-f", "--file", action="append", type=str, help="input file name"
)
parser.add_argument(
"--ignore_test_name", action="store_true", help="ignore_test_name or not"
)
args = parser.parse_args()
files = args.file
print("comparing : " + ", ".join(files))
drop_column = "P99"
name_column = "Test name"
data_cols_to_compare = ["Output Tput (tok/s)", "Median TTFT (ms)", "Median"]
html_msgs_for_data_cols = [
"Compare Output Tokens /n",
"Median TTFT /n",
"Median TPOT /n",
]
ignore_test_name = args.ignore_test_name
with open("perf_comparison.html", "w") as text_file:
for i in range(len(data_cols_to_compare)):
output_df = compare_data_columns(
files,
name_column,
data_cols_to_compare[i],
drop_column,
ignore_test_name=ignore_test_name,
)
print(output_df)
html = output_df.to_html()
text_file.write(html_msgs_for_data_cols[i])
text_file.write(html)

View File

@ -3,9 +3,11 @@
import json
import os
from importlib import util
from pathlib import Path
import pandas as pd
import psutil
from tabulate import tabulate
results_folder = Path("results/")
@ -29,11 +31,11 @@ throughput_results = []
throughput_results_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
# "num_requests": "# of req.",
# "total_num_tokens": "Total # of tokens",
# "elapsed_time": "Elapsed time (s)",
"num_requests": "# of req.",
"total_num_tokens": "Total # of tokens",
"elapsed_time": "Elapsed time (s)",
"requests_per_second": "Tput (req/s)",
# "tokens_per_second": "Tput (tok/s)",
"tokens_per_second": "Tput (tok/s)",
}
# serving results and the keys that will be printed into markdown
@ -41,16 +43,18 @@ serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
# "completed": "# of req.",
"completed": "# of req.",
"request_throughput": "Tput (req/s)",
# "input_throughput": "Input Tput (tok/s)",
# "output_throughput": "Output Tput (tok/s)",
"total_token_throughput": "Total Token Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
"total_input_tokens": "Total input tokens",
"total_output_tokens": "Total output tokens",
"mean_ttft_ms": "Mean TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"p99_ttft_ms": "P99 TTFT (ms)",
# "mean_tpot_ms": "Mean TPOT (ms)",
# "median_tpot_ms": "Median",
# "p99_tpot_ms": "P99",
"mean_tpot_ms": "Mean TPOT (ms)",
"median_tpot_ms": "Median",
"p99_tpot_ms": "P99",
"mean_itl_ms": "Mean ITL (ms)",
"median_itl_ms": "Median ITL (ms)",
"p99_itl_ms": "P99 ITL (ms)",
@ -75,6 +79,20 @@ def results_to_json(latency, throughput, serving):
)
def get_size_with_unit(bytes, suffix="B"):
"""
Scale bytes to its proper format
e.g:
1253656 => '1.20MB'
1253656678 => '1.17GB'
"""
factor = 1024
for unit in ["", "K", "M", "G", "T", "P"]:
if bytes < factor:
return f"{bytes:.2f}{unit}{suffix}"
bytes /= factor
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
@ -155,6 +173,27 @@ if __name__ == "__main__":
serving_results = pd.DataFrame.from_dict(serving_results)
throughput_results = pd.DataFrame.from_dict(throughput_results)
svmem = psutil.virtual_memory()
platform_data = {
"Physical cores": [psutil.cpu_count(logical=False)],
"Total cores": [psutil.cpu_count(logical=True)],
"Total Memory": [get_size_with_unit(svmem.total)],
}
if util.find_spec("numa") is not None:
from numa import info
platform_data["Total NUMA nodes"] = [info.get_num_configured_nodes()]
if util.find_spec("cpuinfo") is not None:
from cpuinfo import get_cpu_info
platform_data["CPU Brand"] = [get_cpu_info()["brand_raw"]]
platform_results = pd.DataFrame.from_dict(
platform_data, orient="index", columns=["Platform Info"]
)
raw_results_json = results_to_json(
latency_results, throughput_results, serving_results
)
@ -200,6 +239,9 @@ if __name__ == "__main__":
throughput_md_table = tabulate(
throughput_results, headers="keys", tablefmt="pipe", showindex=False
)
platform_md_table = tabulate(
platform_results, headers="keys", tablefmt="pipe", showindex=True
)
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:
@ -211,6 +253,7 @@ if __name__ == "__main__":
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,
serving_tests_markdown_table=serving_md_table,
platform_markdown_table=platform_md_table,
benchmarking_results_in_json_string=processed_results_json,
)
f.write(results)

View File

@ -31,6 +31,20 @@ check_gpus() {
echo "GPU type is $gpu_type"
}
check_cpus() {
# check the number of CPUs and NUMA Node and GPU type.
declare -g numa_count=$(python3 -c "from numa import info;numa_size = info.get_num_configured_nodes(); print(numa_size)")
if [[ $numa_count -gt 0 ]]; then
echo "NUMA found."
echo $numa_count
else
echo "Need at least 1 NUMA to run benchmarking."
exit 1
fi
declare -g gpu_type="cpu"
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
@ -69,6 +83,22 @@ json2args() {
echo "$args"
}
json2envs() {
# transforms the JSON string to environment variables.
# example:
# input: { "VLLM_CPU_KVCACHE_SPACE": 5 }
# output: VLLM_CPU_KVCACHE_SPACE=5
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map((.key ) + "=" + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
@ -158,15 +188,24 @@ run_latency_tests() {
# get arguments
latency_params=$(echo "$params" | jq -r '.parameters')
latency_args=$(json2args "$latency_params")
latency_environment_variables=$(echo "$params" | jq -r '.environment_variables')
latency_envs=$(json2envs "$latency_environment_variables")
# check if there is enough GPU to run the test
tp=$(echo "$latency_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
fi
latency_command="python3 benchmark_latency.py \
latency_command=" $latency_envs python3 benchmark_latency.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$latency_args"
@ -216,15 +255,24 @@ run_throughput_tests() {
# get arguments
throughput_params=$(echo "$params" | jq -r '.parameters')
throughput_args=$(json2args "$throughput_params")
throughput_environment_variables=$(echo "$params" | jq -r '.environment_variables')
throughput_envs=$(json2envs "$throughput_environment_variables")
# check if there is enough GPU to run the test
tp=$(echo "$throughput_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
fi
throughput_command="python3 benchmark_throughput.py \
throughput_command=" $throughput_envs python3 benchmark_throughput.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$throughput_args"
@ -272,18 +320,27 @@ run_serving_tests() {
# get client and server arguments
server_params=$(echo "$params" | jq -r '.server_parameters')
server_envs=$(echo "$params" | jq -r '.server_environment_variables')
client_params=$(echo "$params" | jq -r '.client_parameters')
server_args=$(json2args "$server_params")
server_envs=$(json2envs "$server_envs")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
# check if there is enough resources to run the test
tp=$(echo "$server_params" | jq -r '.tensor_parallel_size')
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
fi
# check if server model and client model is aligned
@ -294,23 +351,33 @@ run_serving_tests() {
continue
fi
server_command="python3 \
server_command="$server_envs python3 \
-m vllm.entrypoints.openai.api_server \
$server_args"
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
bash -c "$server_command" &
server_pid=$!
# wait until the server is alive
if wait_for_server; then
echo ""
echo "vllm server is up and running."
# support remote vllm server
client_remote_args=""
if [[ -z "${REMOTE_HOST}" ]]; then
bash -c "$server_command" &
server_pid=$!
# wait until the server is alive
if wait_for_server; then
echo ""
echo "vLLM server is up and running."
else
echo ""
echo "vLLM failed to start within the timeout period."
fi
else
echo ""
echo "vllm failed to start within the timeout period."
server_command="Using Remote Server $REMOTE_HOST $REMOTE_PORT"
if [[ ${REMOTE_PORT} ]]; then
client_remote_args=" --host=$REMOTE_HOST --port=$REMOTE_PORT "
else
client_remote_args=" --host=$REMOTE_HOST "
fi
fi
# iterate over different QPS
@ -332,7 +399,7 @@ run_serving_tests() {
--result-filename ${new_test_name}.json \
--request-rate $qps \
--metadata "tensor_parallel_size=$tp" \
$client_args"
$client_args $client_remote_args "
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
@ -360,7 +427,14 @@ run_serving_tests() {
}
main() {
check_gpus
local ARCH
ARCH=''
if [ "$ON_CPU" == "1" ];then
check_cpus
ARCH='-cpu'
else
check_gpus
fi
check_hf_token
# Set to v1 to run v1 benchmark
@ -386,9 +460,9 @@ main() {
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
# benchmarking
run_serving_tests $QUICK_BENCHMARK_ROOT/tests/serving-tests.json
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/latency-tests.json
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/throughput-tests.json
run_serving_tests $QUICK_BENCHMARK_ROOT/tests/"${SERVING_JSON:-serving-tests$ARCH.json}"
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/"${LATENCY_JSON:-latency-tests$ARCH.json}"
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/"${THROUGHPUT_JSON:-throughput-tests$ARCH.json}"
# postprocess benchmarking results
pip install tabulate pandas

View File

@ -0,0 +1,30 @@
[
{
"test_name": "latency_llama8B_tp1",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
{
"test_name": "latency_llama8B_tp4",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
}
]

View File

@ -0,0 +1,158 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
},
{
"test_name": "serving_llama8B_pp6_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 6,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
}
]

View File

@ -0,0 +1,32 @@
[
{
"test_name": "throughput_llama8B_tp1",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
},
{
"test_name": "throughput_llama8B_tp4",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
}
]

View File

@ -52,7 +52,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Annotate release workflow"
@ -101,7 +101,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --build-arg VLLM_CPU_AVX512BF16=true --build-arg VLLM_CPU_AVX512VNNI=true --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
env:

View File

@ -107,10 +107,9 @@ fi
if [[ $commands == *" kernels/attention"* ]]; then
commands="${commands} \
--ignore=kernels/attention/stest_attention_selector.py \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/test_blocksparse_attention.py \
--ignore=kernels/attention/test_encoder_decoder_attn.py \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/test_flash_attn.py \
--ignore=kernels/attention/test_flashinfer.py \
--ignore=kernels/attention/test_prefix_prefill.py \

View File

@ -48,9 +48,16 @@ function cpu_tests() {
# Run basic model test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
pytest -v -s tests/models/language/generation -m cpu_model
# Note: disable until supports V1
# pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# Note: disable Bart until supports V1
pytest -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
VLLM_CPU_SGL_KERNEL=1 pytest -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
pytest -v -s tests/models/language/pooling -m cpu_model
pytest -v -s tests/models/multimodal/generation \
--ignore=tests/models/multimodal/generation/test_mllama.py \
@ -61,20 +68,14 @@ function cpu_tests() {
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
# Note: disable it until supports V1
# Run AWQ test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
VLLM_USE_V1=0 pytest -s -v \
tests/quantization/test_ipex_quant.py"
# Run chunked-prefill and prefix-cache test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v -k cpu_model \
tests/basic_correctness/test_chunked_prefill.py"
# docker exec cpu-test-"$NUMA_NODE" bash -c "
# set -e
# VLLM_USE_V1=0 pytest -s -v \
# tests/quantization/test_ipex_quant.py"
# online serving
docker exec cpu-test-"$NUMA_NODE" bash -c "
@ -98,4 +99,4 @@ function cpu_tests() {
# All of CPU tests are expected to be finished less than 40 mins.
export -f cpu_tests
timeout 1h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
timeout 1.5h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"

View File

@ -2,10 +2,34 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
set -exuo pipefail
# Try building the docker image
docker build -t hpu-test-env -f docker/Dockerfile.hpu .
cat <<EOF | docker build -t hpu-plugin-v1-test-env -f - .
FROM 1.22-413-pt2.7.1:latest
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
RUN pip install -v -r requirements/hpu.txt
RUN pip install git+https://github.com/vllm-project/vllm-gaudi.git
ENV no_proxy=localhost,127.0.0.1
ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
RUN VLLM_TARGET_DEVICE=hpu python3 setup.py install
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
WORKDIR /workspace/
RUN git clone https://github.com/vllm-project/vllm-gaudi.git
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
EOF
# Setup cleanup
# certain versions of HPU software stack have a bug that can
@ -14,13 +38,21 @@ docker build -t hpu-test-env -f docker/Dockerfile.hpu .
# functions, while other platforms only need one remove_docker_container
# function.
EXITCODE=1
remove_docker_containers() { docker rm -f hpu-test || true; docker rm -f hpu-test-tp2 || true; }
remove_docker_containers_and_exit() { remove_docker_containers; exit $EXITCODE; }
trap remove_docker_containers_and_exit EXIT
remove_docker_containers() { docker rm -f hpu-plugin-v1-test || true; }
trap 'remove_docker_containers; exit $EXITCODE;' EXIT
remove_docker_containers
# Run the image and launch offline inference
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
docker run --runtime=habana --name=hpu-test-tp2 --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --tensor-parallel-size 2
echo "Running HPU plugin v1 test"
docker run --rm --runtime=habana --name=hpu-plugin-v1-test --network=host \
-e HABANA_VISIBLE_DEVICES=all \
hpu-plugin-v1-test-env \
/bin/bash "/workspace/vllm-gaudi/tests/upstream_tests/ci_tests.sh"
EXITCODE=$?
if [ $EXITCODE -eq 0 ]; then
echo "Test with basic model passed"
else
echo "Test with basic model FAILED with exit code: $EXITCODE" >&2
fi
# The trap will handle the container removal and final exit.

View File

@ -11,8 +11,8 @@ container_name="xpu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head
docker build -t ${image_name} -f docker/Dockerfile.xpu .
# Setup cleanup
remove_docker_container() {
docker rm -f "${container_name}" || true;
remove_docker_container() {
docker rm -f "${container_name}" || true;
docker image rm -f "${image_name}" || true;
docker system prune -f || true;
}
@ -26,7 +26,9 @@ docker run \
--name "${container_name}" \
"${image_name}" \
sh -c '
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
cd tests
pytest -v -s v1/core
'

View File

@ -22,16 +22,6 @@ trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# Build docker image.
# TODO: build the image outside the script and share the image with other
# tpu test if building time is too long.
DOCKER_BUILDKIT=1 docker build \
--build-arg max_jobs=16 \
--build-arg USE_SCCACHE=1 \
--build-arg GIT_REPO_CHECK=0 \
--tag vllm/vllm-tpu-bm \
--progress plain -f docker/Dockerfile.tpu .
LOG_ROOT=$(mktemp -d)
# If mktemp fails, set -e will cause the script to exit.
echo "Results will be stored in: $LOG_ROOT"

View File

@ -0,0 +1,14 @@
# Environment config
TEST_NAME=llama8bw8a8
CONTAINER_NAME=vllm-tpu
# vllm config
MODEL=RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8
MAX_NUM_SEQS=128
MAX_NUM_BATCHED_TOKENS=1024
TENSOR_PARALLEL_SIZE=1
MAX_MODEL_LEN=2048
DOWNLOAD_DIR=/mnt/disks/persist
EXPECTED_THROUGHPUT=10.0
INPUT_LEN=1800
OUTPUT_LEN=128

View File

@ -155,6 +155,7 @@ steps:
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/engine/test_engine_core_client.py
commands:
# test with tp=2 and external_dp=2
@ -163,8 +164,9 @@ steps:
# test with tp=2 and pp=2
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
@ -215,7 +217,7 @@ steps:
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/test_regression
@ -225,7 +227,7 @@ steps:
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/engine
@ -280,7 +282,7 @@ steps:
- python3 offline_inference/llm_engine_example.py
- python3 offline_inference/audio_language.py --seed 0
- python3 offline_inference/vision_language.py --seed 0
- python3 offline_inference/vision_language_embedding.py --seed 0
- python3 offline_inference/vision_language_pooling.py --seed 0
- python3 offline_inference/vision_language_multi_image.py --seed 0
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/encoder_decoder.py
@ -338,7 +340,7 @@ steps:
parallelism: 4
- label: PyTorch Compilation Unit Tests
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -420,7 +422,7 @@ steps:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
@ -512,7 +514,7 @@ steps:
##### models test #####
- label: Basic Models Test # 24min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -536,6 +538,17 @@ steps:
- pip freeze | grep -E 'torch'
- pytest -v -s models/language -m core_model
- label: Language Models Test (Hybrid) # 35 min
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models/language/generation
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language/generation -m hybrid_model
- label: Language Models Test (Extended Generation) # 1hr20min
mirror_hardwares: [amdexperimental]
optional: true
@ -545,7 +558,7 @@ steps:
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language/generation -m 'not core_model'
- pytest -v -s models/language/generation -m '(not core_model) and (not hybrid_model)'
- label: Language Models Test (Extended Pooling) # 36min
mirror_hardwares: [amdexperimental]
@ -590,7 +603,7 @@ steps:
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=0) and not core_model'
- label: Multi-Modal Models Test (Extended) 3
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
- vllm/
@ -671,10 +684,12 @@ steps:
- vllm/worker/model_runner.py
- entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- vllm/v1/engine/
commands:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py

2
.github/CODEOWNERS vendored
View File

@ -16,7 +16,7 @@
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
/vllm/entrypoints @aarnphm
CMakeLists.txt @tlrmchlsmth
CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Any change to the VllmConfig changes can have a large user-facing impact,
# so spam a lot of people

35
.github/mergify.yml vendored
View File

@ -27,6 +27,22 @@ pull_request_rules:
add:
- ci/build
- name: label-deepseek
description: Automatically apply deepseek label
conditions:
- or:
- files~=^examples/.*deepseek.*\.py
- files~=^tests/.*deepseek.*\.py
- files~=^vllm/entrypoints/openai/tool_parsers/.*deepseek.*\.py
- files~=^vllm/model_executor/models/.*deepseek.*\.py
- files~=^vllm/reasoning/.*deepseek.*\.py
- files~=^vllm/transformers_utils/.*deepseek.*\.py
- title~=(?i)DeepSeek
actions:
label:
add:
- deepseek
- name: label-frontend
description: Automatically apply frontend label
conditions:
@ -58,14 +74,23 @@ pull_request_rules:
- files~=^vllm/multimodal/
- files~=^tests/multimodal/
- files~=^tests/models/multimodal/
- files~=^tests/models/*/audio_language/
- files~=^tests/models/*/vision_language/
- files=tests/models/test_vision.py
actions:
label:
add:
- multi-modality
- name: label-new-model
description: Automatically apply new-model label
conditions:
- and:
- files~=^vllm/model_executor/models/
- files=vllm/model_executor/models/registry.py
actions:
label:
add:
- new-model
- name: label-performance
description: Automatically apply performance label
conditions:
@ -140,8 +165,14 @@ pull_request_rules:
conditions:
- or:
- files~=^vllm/spec_decode/
- files~=^vllm/v1/spec_decode/
- files=vllm/model_executor/layers/spec_decode_base_sampler.py
- files~=^tests/spec_decode/
- files~=^tests/v1/spec_decode/
- files~=^examples/.*(spec_decode|mlpspeculator|eagle|speculation).*\.py
- files~=^vllm/model_executor/models/.*eagle.*\.py
- files=vllm/model_executor/models/mlp_speculator.py
- files~=^vllm/transformers_utils/configs/(eagle|medusa|mlp_speculator)\.py
actions:
label:
add:

View File

@ -68,7 +68,7 @@ jobs:
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set image.env[2].name=VLLM_CPU_CI_ENV --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string image.env[2].value="1" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |

1
.gitignore vendored
View File

@ -146,6 +146,7 @@ venv.bak/
# mkdocs documentation
/site
docs/argparse
docs/examples
# mypy

View File

@ -160,10 +160,17 @@ repos:
types: [python]
pass_filenames: false
additional_dependencies: [pathspec, regex]
- id: validate-config
name: Validate configuration has default values and that each field has a docstring
entry: python tools/validate_config.py
language: python
types: [python]
pass_filenames: true
files: vllm/config.py|tests/test_config.py
# Keep `suggestion` last
- id: suggestion
name: Suggestion
entry: bash -c 'echo "To bypass pre-commit hooks, add --no-verify to git commit."'
entry: bash -c 'echo "To bypass all the pre-commit hooks, add --no-verify to git commit. To skip a specific hook, prefix the commit command with SKIP=<hook-id>."'
language: system
verbose: true
pass_filenames: false

View File

@ -171,6 +171,15 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Set nvcc fatbin compression.
#
if(VLLM_GPU_LANG STREQUAL "CUDA")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
list(APPEND VLLM_GPU_FLAGS "-Xfatbin" "-compress-all" "-compress-mode=size")
endif()
endif()
#
# Use FetchContent for C++ dependencies that are compiled as part of vLLM's build process.
@ -232,7 +241,6 @@ endif()
set(VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/cache_kernels.cu"
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
@ -259,7 +267,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v3.9.2" CACHE STRING "CUTLASS revision to use")
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -393,7 +401,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.0 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
@ -409,7 +417,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm90 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm90 as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running FP8 quantized models on "
@ -420,10 +428,40 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm120_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_SM120=1")
# Let scaled_mm_c2x know it doesn't need to build these arches
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm120 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm120 as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or "
"later if you intend on running FP8 quantized models on "
"Blackwell.")
else()
message(STATUS "Not building scaled_mm_c3x_120 as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
# require CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
@ -438,7 +476,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm100 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm100 as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or "
"later if you intend on running FP8 quantized models on "
@ -481,7 +519,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The 2:4 sparse kernels cutlass_scaled_sparse_mm and cutlass_compressor
# require CUDA 12.2 or later (and only work on Hopper).
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.2 AND SCALED_MM_ARCHS)
set(SRCS "csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -490,7 +528,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SPARSE_SCALED_MM_C3X=1")
message(STATUS "Building sparse_scaled_mm_c3x for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.2 AND SCALED_MM_ARCHS)
message(STATUS "Not building sparse_scaled_mm_c3x kernels as CUDA Compiler version is "
"not >= 12.2, we recommend upgrading to CUDA 12.2 or later "
"if you intend on running FP8 sparse quantized models on Hopper.")
@ -502,7 +540,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# FP4 Archs and flags
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
@ -523,7 +561,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# CUTLASS MLA Archs and flags
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND MLA_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
set(SRCS
"csrc/attention/mla/cutlass_mla_kernels.cu")
set_gencode_flags_for_srcs(
@ -562,7 +600,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"if you intend on running FP8 quantized MoE models on Hopper.")
else()
message(STATUS "Not building grouped_mm_c3x as no compatible archs found "
"in CUDA target architectures")
"in CUDA target architectures.")
endif()
endif()
@ -574,7 +612,37 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SRCS "${SRCS}"
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
endif()
message(STATUS "Building moe_data for archs: ${CUTLASS_MOE_DATA_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
message(STATUS "Not building moe_data as CUDA Compiler version is "
"not >= 12.3, we recommend upgrading to CUDA 12.3 or later "
"if you intend on running FP8 quantized MoE models on Hopper or Blackwell.")
else()
message(STATUS "Not building moe_data as no compatible archs found "
"in CUDA target architectures.")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
message(STATUS "Building blockwise_scaled_group_mm_sm100 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building blockwise_scaled_group_mm_sm100 kernels as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or later "
"if you intend on running FP8 quantized MoE models on Blackwell.")
else()
message(STATUS "Not building blockwise_scaled_group_mm_sm100 as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
#
# Machete kernels
@ -582,7 +650,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The machete kernels only work on hopper and require CUDA 12.0 or later.
# Only build Machete kernels if we are building for something compatible with sm90a
cuda_archs_loose_intersection(MACHETE_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND MACHETE_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND MACHETE_ARCHS)
#
# For the Machete kernels we automatically generate sources for various
# preselected input type pairs and schedules.
@ -634,7 +702,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
message(STATUS "Building Machete kernels for archs: ${MACHETE_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0
AND MACHETE_ARCHS)
message(STATUS "Not building Machete kernels as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "

View File

@ -701,6 +701,7 @@ class HuggingFaceDataset(BenchmarkDataset):
self,
dataset_path: str,
dataset_split: str,
no_stream: bool = False,
dataset_subset: Optional[str] = None,
**kwargs,
) -> None:
@ -708,6 +709,7 @@ class HuggingFaceDataset(BenchmarkDataset):
self.dataset_split = dataset_split
self.dataset_subset = dataset_subset
self.load_stream = not no_stream
self.load_data()
def load_data(self) -> None:
@ -716,7 +718,7 @@ class HuggingFaceDataset(BenchmarkDataset):
self.dataset_path,
name=self.dataset_subset,
split=self.dataset_split,
streaming=True,
streaming=self.load_stream,
)
self.data = self.data.shuffle(seed=self.random_seed)

View File

@ -551,7 +551,7 @@ async def benchmark(
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"request_goodput:": metrics.request_goodput if goodput_config_dict else None,
"request_goodput": metrics.request_goodput if goodput_config_dict else None,
"output_throughput": metrics.output_throughput,
"total_token_throughput": metrics.total_token_throughput,
"input_lens": [output.prompt_len for output in outputs],
@ -825,6 +825,7 @@ def main(args: argparse.Namespace):
dataset_subset=args.hf_subset,
dataset_split=args.hf_split,
random_seed=args.seed,
no_stream=args.no_stream,
).sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
@ -1033,6 +1034,11 @@ def create_argument_parser():
help="Path to the sharegpt/sonnet dataset. "
"Or the huggingface dataset ID if using HF dataset.",
)
parser.add_argument(
"--no-stream",
action="store_true",
help="Do not load the dataset in streaming mode.",
)
parser.add_argument(
"--max-concurrency",
type=int,

View File

@ -356,6 +356,7 @@ def get_requests(args, tokenizer):
elif args.dataset_name == "burstgpt":
dataset_cls = BurstGPTDataset
elif args.dataset_name == "hf":
common_kwargs["no_stream"] = args.no_stream
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = VisionArenaDataset
common_kwargs["dataset_subset"] = None
@ -610,6 +611,11 @@ def create_argument_parser():
help="Name of the dataset to benchmark on.",
default="sharegpt",
)
parser.add_argument(
"--no-stream",
action="store_true",
help="Do not load the dataset in streaming mode.",
)
parser.add_argument(
"--dataset",
type=str,

View File

@ -1,4 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools

View File

@ -0,0 +1,141 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools
import torch
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
from vllm.triton_utils import triton
if not current_platform.has_device_capability(100):
raise RuntimeError("NVFP4 requires compute capability of 10.0 (Blackwell)")
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max
PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"nvfp4": dict(no_a_quant=False, enabled=True),
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
}
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
# Compute global scale for weight
b_amax = torch.abs(b).max().to(torch.float32)
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
return b_fp4, scale_b_fp4, b_global_scale
def build_nvfp4_runner(cfg, a, b, dtype, device):
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
# Compute global scale for activation
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
a_amax = torch.abs(a).max().to(torch.float32)
a_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / a_amax
# Alpha for the GEMM operation
alpha = 1.0 / (a_global_scale * b_global_scale)
if cfg["no_a_quant"]:
# Pre-quantize activation
a_fp4, scale_a_fp4 = ops.scaled_fp4_quant(a, a_global_scale)
def run():
return ops.cutlass_scaled_fp4_mm(
a_fp4, b_fp4, scale_a_fp4, scale_b_fp4, alpha, dtype
)
return run
# Quantize activation on-the-fly
def run():
a_fp4, scale_a_fp4 = ops.scaled_fp4_quant(a, a_global_scale)
return ops.cutlass_scaled_fp4_mm(
a_fp4, b_fp4, scale_a_fp4, scale_b_fp4, alpha, dtype
)
return run
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=_enabled,
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs NVFP4 GEMMs",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
else:
cfg = PROVIDER_CFGS[provider]
run_quant = build_nvfp4_runner(cfg, a, b, dtype, device)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
def prepare_shapes(args):
out = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN.append(model)
out.append(KN)
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
args = parser.parse_args()
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_nvfp4_res_n{N}_k{K}",
N=N,
K=K,
)
print("Benchmark finished!")

View File

@ -113,6 +113,7 @@ def bench_run(
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
per_act_token: bool,
num_repeats: int,
):
for _ in range(num_repeats):
@ -124,7 +125,8 @@ def bench_run(
topk_ids,
w1_scale,
w2_scale,
a1_scale=a_scale,
per_act_token,
a1_scale=None,
)
def run_cutlass_from_graph(
@ -148,7 +150,8 @@ def bench_run(
topk_ids,
w1_scale,
w2_scale,
a1_scale=a_scale,
per_act_token,
a1_scale=None,
)
def run_triton_from_graph(
@ -227,6 +230,7 @@ def bench_run(
"w2_q": w2_q,
"w1_scale": w1_scale,
"w2_scale": w2_scale,
"per_act_token": per_act_token,
# cuda graph params
"cutlass_graph": cutlass_graph,
"triton_graph": triton_graph,
@ -287,12 +291,13 @@ def bench_run(
w2_scale,
topk_weights,
topk_ids,
per_act_token,
num_warmup,
)
results.append(
benchmark.Timer(
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, num_runs)", # noqa: E501
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, per_act_token, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,

View File

@ -234,8 +234,10 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
fn = lambda: ops.gptq_marlin_gemm(
a=bt.a,
c=None,
b_q_weight=w_q,
b_scales=w_s,
global_scale=None,
b_zeros=w_zp,
g_idx=g_idx,
perm=sort_indices,

View File

@ -620,7 +620,7 @@ def main(args: argparse.Namespace):
4096,
]
else:
batch_sizes = [args.batch_size]
batch_sizes = args.batch_size
use_deep_gemm = bool(args.use_deep_gemm)
@ -728,7 +728,7 @@ if __name__ == "__main__":
)
parser.add_argument("--use-deep-gemm", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--batch-size", type=int, nargs="+", required=False)
parser.add_argument("--tune", action="store_true")
parser.add_argument("--trust-remote-code", action="store_true")
parser.add_argument("--model-prefix", type=str, required=False)

View File

@ -12,9 +12,8 @@ endif()
#
# Define environment variables for special configurations
#
if(DEFINED ENV{VLLM_CPU_AVX512BF16})
set(ENABLE_AVX512BF16 ON)
endif()
set(ENABLE_AVX512BF16 $ENV{VLLM_CPU_AVX512BF16})
set(ENABLE_AVX512VNNI $ENV{VLLM_CPU_AVX512VNNI})
include_directories("${CMAKE_SOURCE_DIR}/csrc")
@ -96,12 +95,30 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
list(APPEND CXX_COMPILE_FLAGS "-mavx512bf16")
set(ENABLE_AVX512BF16 ON)
else()
set(ENABLE_AVX512BF16 OFF)
message(WARNING "Disable AVX512-BF16 ISA support, requires gcc/g++ >= 12.3")
endif()
else()
set(ENABLE_AVX512BF16 OFF)
message(WARNING "Disable AVX512-BF16 ISA support, no avx512_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512BF16=1.")
endif()
find_isa(${CPUINFO} "avx512_vnni" AVX512VNNI_FOUND)
if (AVX512VNNI_FOUND OR ENABLE_AVX512VNNI)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
list(APPEND CXX_COMPILE_FLAGS "-mavx512vnni")
set(ENABLE_AVX512VNNI ON)
else()
set(ENABLE_AVX512VNNI OFF)
message(WARNING "Disable AVX512-VNNI ISA support, requires gcc/g++ >= 12.3")
endif()
else()
set(ENABLE_AVX512VNNI OFF)
message(WARNING "Disable AVX512-VNNI ISA support, no avx512_vnni found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512VNNI=1.")
endif()
elseif (AVX2_FOUND)
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
@ -148,17 +165,32 @@ else()
endif()
#
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 platforms)
#
if (AVX512_FOUND AND NOT AVX512_DISABLED)
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
# Flag to enable ACL kernels for AARCH64 platforms
if ( VLLM_BUILD_ACL STREQUAL "ON")
set(USE_ACL ON)
else()
set(USE_ACL OFF)
endif()
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.7.1
GIT_TAG v3.8.1
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)
if(USE_ACL)
find_library(ARM_COMPUTE_LIBRARY NAMES arm_compute PATHS $ENV{ACL_ROOT_DIR}/build/)
if(NOT ARM_COMPUTE_LIBRARY)
message(FATAL_ERROR "Could not find ARM Compute Library: please set ACL_ROOT_DIR")
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
endif()
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
set(ONEDNN_BUILD_EXAMPLES "OFF")
@ -231,11 +263,29 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
"csrc/cpu/quant.cpp"
"csrc/cpu/shm.cpp"
${VLLM_EXT_SRC})
if (ENABLE_AVX512BF16 AND ENABLE_AVX512VNNI)
set(VLLM_EXT_SRC
"csrc/cpu/sgl-kernels/gemm.cpp"
"csrc/cpu/sgl-kernels/gemm_int8.cpp"
"csrc/cpu/sgl-kernels/gemm_fp8.cpp"
"csrc/cpu/sgl-kernels/moe.cpp"
"csrc/cpu/sgl-kernels/moe_int8.cpp"
"csrc/cpu/sgl-kernels/moe_fp8.cpp"
${VLLM_EXT_SRC})
add_compile_definitions(-DCPU_CAPABILITY_AVX512)
endif()
elseif(POWER10_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
if (ASIMD_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
message(STATUS "CPU extension source files: ${VLLM_EXT_SRC}")
#
# Define extension targets

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 5f3644181c7a15345ce20bfc65af117d3601b524
GIT_TAG 1c2624e53c078854e0637ee566c72fe2107e75f4
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -265,8 +265,8 @@ macro(set_gencode_flags_for_srcs)
endmacro()
#
# For the given `SRC_CUDA_ARCHS` list of gencode versions in the form
# `<major>.<minor>[letter]` compute the "loose intersection" with the
# For the given `SRC_CUDA_ARCHS` list of gencode versions in the form
# `<major>.<minor>[letter]` compute the "loose intersection" with the
# `TGT_CUDA_ARCHS` list of gencodes. We also support the `+PTX` suffix in
# `SRC_CUDA_ARCHS` which indicates that the PTX code should be built when there
# is a CUDA_ARCH in `TGT_CUDA_ARCHS` that is equal to or larger than the
@ -278,7 +278,7 @@ endmacro()
# in `SRC_CUDA_ARCHS` that is less or equal to the version in `TGT_CUDA_ARCHS`.
# We have special handling for x.0a, if x.0a is in `SRC_CUDA_ARCHS` and x.0 is
# in `TGT_CUDA_ARCHS` then we should remove x.0a from `SRC_CUDA_ARCHS` and add
# x.0a to the result (and remove x.0 from TGT_CUDA_ARCHS).
# x.0a to the result (and remove x.0 from TGT_CUDA_ARCHS).
# The result is stored in `OUT_CUDA_ARCHS`.
#
# Example:
@ -313,21 +313,16 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
set(_CUDA_ARCHS)
if ("9.0a" IN_LIST _SRC_CUDA_ARCHS)
list(REMOVE_ITEM _SRC_CUDA_ARCHS "9.0a")
if ("9.0" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "9.0")
set(_CUDA_ARCHS "9.0a")
foreach(_arch ${_SRC_CUDA_ARCHS})
if(_arch MATCHES "\\a$")
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
string(REPLACE "a" "" _base "${_arch}")
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
list(APPEND _CUDA_ARCHS "${_arch}")
endif()
endif()
endif()
if ("10.0a" IN_LIST _SRC_CUDA_ARCHS)
list(REMOVE_ITEM _SRC_CUDA_ARCHS "10.0a")
if ("10.0" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "10.0")
set(_CUDA_ARCHS "10.0a")
endif()
endif()
endforeach()
list(SORT _SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING)
@ -359,7 +354,7 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
endforeach()
list(REMOVE_DUPLICATES _CUDA_ARCHS)
# reapply +PTX suffix to architectures that requested PTX
set(_FINAL_ARCHS)
foreach(_arch ${_CUDA_ARCHS})
@ -370,7 +365,7 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
endif()
endforeach()
set(_CUDA_ARCHS ${_FINAL_ARCHS})
set(${OUT_CUDA_ARCHS} ${_CUDA_ARCHS} PARENT_SCOPE)
endfunction()

View File

@ -33,6 +33,8 @@ namespace vec_op {
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
// Number of elements in single ASIMD vector of given Datatype
#define NUM_ELEMENTS_REG(vec) (sizeof(vec) / sizeof(vec[0]))
namespace {
template <typename T, T... indexes, typename F>
@ -86,8 +88,8 @@ struct FP16Vec16 : public Vec<FP16Vec16> {
}
void save(void* ptr, const int elem_num) const {
int full_blocks = elem_num / 8;
int remainder = elem_num % 8;
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
if (full_blocks > 0) {
vst1q_f16(reinterpret_cast<__fp16*>(ptr), reg.val[0]);
@ -197,6 +199,25 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[2]), v.val[3])}) {};
void save(void* ptr) const { *reinterpret_cast<bfloat16x8x2_t*>(ptr) = reg; };
void save(void* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_bf16(
reinterpret_cast<__bf16*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
bfloat16x8_t temp = reg.val[full_blocks];
bfloat16_t* base = reinterpret_cast<bfloat16_t*>(ptr) + full_blocks * 8;
if (remainder > 0) base[0] = vgetq_lane_bf16(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_bf16(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_bf16(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_bf16(temp, 3);
if (remainder > 4) base[4] = vgetq_lane_bf16(temp, 4);
if (remainder > 5) base[5] = vgetq_lane_bf16(temp, 5);
if (remainder > 6) base[6] = vgetq_lane_bf16(temp, 6);
}
};
};
struct BF16Vec32 : public Vec<BF16Vec32> {
@ -213,6 +234,25 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
: reg({vec8_data.reg, vec8_data.reg, vec8_data.reg, vec8_data.reg}) {};
void save(void* ptr) const { *reinterpret_cast<bfloat16x8x4_t*>(ptr) = reg; };
void save(void* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_bf16(
reinterpret_cast<__bf16*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
bfloat16x8_t temp = reg.val[full_blocks];
bfloat16_t* base = reinterpret_cast<bfloat16_t*>(ptr) + full_blocks * 8;
base[0] = vgetq_lane_bf16(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_bf16(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_bf16(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_bf16(temp, 3);
if (remainder > 4) base[4] = vgetq_lane_bf16(temp, 4);
if (remainder > 5) base[5] = vgetq_lane_bf16(temp, 5);
if (remainder > 6) base[6] = vgetq_lane_bf16(temp, 6);
}
};
};
#endif
@ -372,6 +412,48 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
}
};
struct INT32Vec16 : public Vec<INT32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
int32x4x4_t reg;
int32_t values[VEC_ELEM_NUM];
};
int32x4x4_t reg;
explicit INT32Vec16(const void* ptr) {
reg.val[0] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr));
reg.val[1] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr) + 4);
reg.val[2] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr) + 8);
reg.val[3] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr) + 12);
}
void save(int32_t* ptr) const {
vst1q_s32(ptr, reg.val[0]);
vst1q_s32(ptr + 4, reg.val[1]);
vst1q_s32(ptr + 8, reg.val[2]);
vst1q_s32(ptr + 12, reg.val[3]);
};
void save(int32_t* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_s32(
reinterpret_cast<__int32_t*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
int32x4_t temp = reg.val[full_blocks];
int32_t* base = reinterpret_cast<int32_t*>(ptr) + full_blocks * 4;
if (remainder > 0) base[0] = vgetq_lane_s32(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_s32(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_s32(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_s32(temp, 3);
}
}
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
@ -434,7 +516,12 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
reg.val[2] = vcvt_f32_f16(vget_low_f16(v.reg.val[1]));
reg.val[3] = vcvt_f32_f16(vget_high_f16(v.reg.val[1]));
};
explicit FP32Vec16(const INT32Vec16& v) {
reg.val[0] = vcvtq_f32_s32(v.reg.val[0]);
reg.val[1] = vcvtq_f32_s32(v.reg.val[1]);
reg.val[2] = vcvtq_f32_s32(v.reg.val[2]);
reg.val[3] = vcvtq_f32_s32(v.reg.val[3]);
};
FP32Vec16 operator+(const FP32Vec16& b) const {
return FP32Vec16(float32x4x4_t({vaddq_f32(reg.val[0], b.reg.val[0]),
vaddq_f32(reg.val[1], b.reg.val[1]),
@ -463,6 +550,85 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vdivq_f32(reg.val[3], b.reg.val[3])}));
};
FP32Vec16 clamp(const FP32Vec16& min, const FP32Vec16& max) const {
return FP32Vec16(float32x4x4_t(
{vminq_f32(max.reg.val[0], vmaxq_f32(min.reg.val[0], reg.val[0])),
vminq_f32(max.reg.val[1], vmaxq_f32(min.reg.val[1], reg.val[1])),
vminq_f32(max.reg.val[2], vmaxq_f32(min.reg.val[2], reg.val[2])),
vminq_f32(max.reg.val[3], vmaxq_f32(min.reg.val[3], reg.val[3]))}));
};
FP32Vec16 max(const FP32Vec16& b) const {
return FP32Vec16(float32x4x4_t({vmaxq_f32(b.reg.val[0], reg.val[0]),
vmaxq_f32(b.reg.val[1], reg.val[1]),
vmaxq_f32(b.reg.val[2], reg.val[2]),
vmaxq_f32(b.reg.val[3], reg.val[3])}));
};
FP32Vec16 max(const FP32Vec16& b, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
float32x4x4_t temp;
for (int i = 0; i < full_blocks; i++)
temp.val[i] = vmaxq_f32(b.reg.val[i], reg.val[i]);
if (remainder > 0) {
float max_v = std::max(vgetq_lane_f32(reg.val[full_blocks], 0),
vgetq_lane_f32(b.reg.val[full_blocks], 0));
temp.val[full_blocks] = vsetq_lane_f32(max_v, temp.val[full_blocks], 0);
}
if (remainder > 1) {
float max_v = std::max(vgetq_lane_f32(reg.val[full_blocks], 1),
vgetq_lane_f32(b.reg.val[full_blocks], 1));
temp.val[full_blocks] = vsetq_lane_f32(max_v, temp.val[full_blocks], 1);
}
if (remainder > 2) {
float max_v = std::max(vgetq_lane_f32(reg.val[full_blocks], 2),
vgetq_lane_f32(b.reg.val[full_blocks], 2));
temp.val[full_blocks] = vsetq_lane_f32(max_v, temp.val[full_blocks], 2);
}
return FP32Vec16(temp);
};
FP32Vec16 min(const FP32Vec16& b) const {
return FP32Vec16(float32x4x4_t({
vminq_f32(b.reg.val[0], reg.val[0]),
vminq_f32(b.reg.val[1], reg.val[1]),
vminq_f32(b.reg.val[2], reg.val[2]),
vminq_f32(b.reg.val[3], reg.val[3]),
}));
};
FP32Vec16 min(const FP32Vec16& b, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
const int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
float32x4x4_t temp;
for (int i = 0; i < full_blocks; i++)
temp.val[i] = vminq_f32(b.reg.val[i], reg.val[i]);
if (remainder > 0) {
float min_v = std::min(vgetq_lane_f32(reg.val[full_blocks], 0),
vgetq_lane_f32(b.reg.val[full_blocks], 0));
temp.val[full_blocks] = vsetq_lane_f32(min_v, temp.val[full_blocks], 0);
}
if (remainder > 1) {
float min_v = std::min(vgetq_lane_f32(reg.val[full_blocks], 1),
vgetq_lane_f32(b.reg.val[full_blocks], 1));
temp.val[full_blocks] = vsetq_lane_f32(min_v, temp.val[full_blocks], 1);
}
if (remainder > 2) {
float min_v = std::min(vgetq_lane_f32(reg.val[full_blocks], 2),
vgetq_lane_f32(b.reg.val[full_blocks], 2));
temp.val[full_blocks] = vsetq_lane_f32(min_v, temp.val[full_blocks], 2);
}
return FP32Vec16(temp);
};
FP32Vec16 abs() const {
return FP32Vec16(
float32x4x4_t({vabsq_f32(reg.val[0]), vabsq_f32(reg.val[1]),
vabsq_f32(reg.val[2]), vabsq_f32(reg.val[3])}));
}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
@ -473,6 +639,24 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
return answer;
};
float reduce_max() const {
AliasReg ar;
ar.reg = reg;
float max_v = std::numeric_limits<float>::lowest();
unroll_loop<int, VEC_ELEM_NUM>(
[&max_v, &ar](int i) { max_v = std::max(max_v, ar.values[i]); });
return max_v;
}
float reduce_min() const {
AliasReg ar;
ar.reg = reg;
float min_v = std::numeric_limits<float>::max();
unroll_loop<int, VEC_ELEM_NUM>(
[&min_v, &ar](int i) { min_v = std::min(min_v, ar.values[i]); });
return min_v;
}
template <int group_size>
float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
@ -493,6 +677,83 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vst1q_f32(ptr + 8, reg.val[2]);
vst1q_f32(ptr + 12, reg.val[3]);
};
void save(float* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_f32(
reinterpret_cast<float32_t*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
float32x4_t temp = reg.val[full_blocks];
float* base = reinterpret_cast<float32_t*>(ptr) +
full_blocks * NUM_ELEMENTS_REG(reg.val[0]);
if (remainder > 0) base[0] = vgetq_lane_f32(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_f32(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_f32(temp, 2);
}
}
};
struct INT8Vec16 : public Vec<INT8Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
int8x16_t reg;
int8_t values[VEC_ELEM_NUM];
};
int8x16_t reg;
explicit INT8Vec16(const FP32Vec16& vec) {
// Convert each 128-bit float32 vector to int32
int32x4_t part0 =
vcvtq_s32_f32(vec.reg.val[0]); // Convert first 128-bit block
int32x4_t part1 =
vcvtq_s32_f32(vec.reg.val[1]); // Convert second 128-bit block
int32x4_t part2 =
vcvtq_s32_f32(vec.reg.val[2]); // Convert third 128-bit block
int32x4_t part3 =
vcvtq_s32_f32(vec.reg.val[3]); // Convert fourth 128-bit block
// Narrow each 32-bit vector to 8 bits and combine
int8x8_t lower =
vqmovn_s16(vcombine_s16(vqmovn_s32(part0), vqmovn_s32(part1)));
int8x8_t upper =
vqmovn_s16(vcombine_s16(vqmovn_s32(part2), vqmovn_s32(part3)));
reg = vcombine_s8(lower, upper); // Combine to form a single 128-bit vector
}
void save(int8_t* ptr) const { vst1q_s8(ptr, reg); };
void save(int8_t* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg);
int remainder = elem_num % NUM_ELEMENTS_REG(reg);
for (int i = 0; i < full_blocks; i++)
vst1q_s8(reinterpret_cast<int8_t*>(ptr) + NUM_ELEMENTS_REG(reg) * i, reg);
if (remainder > 0) {
int8x16_t temp = reg;
int8_t* base =
reinterpret_cast<int8_t*>(ptr) + full_blocks * NUM_ELEMENTS_REG(reg);
if (remainder > 0) base[0] = vgetq_lane_s8(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_s8(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_s8(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_s8(temp, 3);
if (remainder > 4) base[4] = vgetq_lane_s8(temp, 4);
if (remainder > 5) base[5] = vgetq_lane_s8(temp, 5);
if (remainder > 6) base[6] = vgetq_lane_s8(temp, 6);
if (remainder > 7) base[7] = vgetq_lane_s8(temp, 7);
if (remainder > 8) base[8] = vgetq_lane_s8(temp, 8);
if (remainder > 9) base[9] = vgetq_lane_s8(temp, 9);
if (remainder > 10) base[10] = vgetq_lane_s8(temp, 10);
if (remainder > 11) base[11] = vgetq_lane_s8(temp, 11);
if (remainder > 12) base[12] = vgetq_lane_s8(temp, 12);
if (remainder > 13) base[13] = vgetq_lane_s8(temp, 13);
if (remainder > 14) base[14] = vgetq_lane_s8(temp, 14);
}
};
};
template <typename T>

View File

@ -57,6 +57,7 @@ class DNNLPrimitiveHelper {
// Note: Due to the limitation of oneDNN
// (https://github.com/oneapi-src/oneDNN/issues/1636), the quantized bias is
// not supported.
template <typename OutputT, typename BiasT>
static void gemm_s8s8_jit(const int8_t* a, const int8_t* b, OutputT* c,
const BiasT* bias, dnnl_dim_t M, dnnl_dim_t N,
@ -90,6 +91,27 @@ class DNNLPrimitiveHelper {
}
dnnl::matmul::primitive_desc matmul_pd;
// Create memory descriptors with format_tag::any for the primitive. This
// enables the matmul primitive to choose memory layouts for an
// optimized primitive implementation, and these layouts may differ from the
// ones provided by the user.
#ifdef __aarch64__
auto mat_src_md = dnnl::memory::desc({M, K}, dnnl::memory::data_type::s8,
dnnl::memory::format_tag::any);
auto mat_weights_md = dnnl::memory::desc(
{K, N}, dnnl::memory::data_type::s8, dnnl::memory::format_tag::any);
auto mat_dst_md =
dnnl::memory::desc({M, N}, OutputType, dnnl::memory::format_tag::any);
if (bias) {
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), mat_src_md,
mat_weights_md, bias_md,
mat_dst_md, attr);
} else {
matmul_pd = dnnl::matmul::primitive_desc(
default_engine(), mat_src_md, mat_weights_md, mat_dst_md, attr);
}
#else
if (bias) {
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
@ -98,6 +120,7 @@ class DNNLPrimitiveHelper {
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
c_md, attr);
}
#endif
dnnl::matmul matmul(matmul_pd);
auto& engine = default_engine();
@ -111,24 +134,34 @@ class DNNLPrimitiveHelper {
(void*)b_scales);
auto& stream = default_stream();
auto mat_src_mem = a_m;
auto mat_weights_mem = b_m;
auto mat_dst_mem = c_m;
#ifdef __aarch64__
if (matmul_pd.weights_desc() != b_m.get_desc()) {
mat_weights_mem = dnnl::memory(matmul_pd.weights_desc(), engine);
dnnl::reorder(b_m, mat_weights_mem).execute(stream, b_m, mat_weights_mem);
}
#endif
if constexpr (InputNoScale) {
if (bias) {
dnnl::memory::desc bias_md({N}, BiasType, {1});
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
}
@ -138,19 +171,19 @@ class DNNLPrimitiveHelper {
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
@ -170,5 +203,4 @@ class DNNLPrimitiveHelper {
return stream;
}
};
#endif

View File

@ -36,7 +36,7 @@ struct KernelVecType<c10::Half> {
using cvt_vec_type = vec_op::FP32Vec16;
};
#ifdef __AVX512F__
#if defined(__AVX512F__) || defined(__aarch64__)
template <bool AZP, typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
@ -598,8 +598,9 @@ void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(
false, "static_scaled_int8_quant_impl requires AVX512/powerpc64 support.")
TORCH_CHECK(false,
"static_scaled_int8_quant_impl requires AVX512/powerpc64/AArch64 "
"support.")
}
template <typename scalar_t>
@ -607,9 +608,9 @@ void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(
false,
"dynamic_scaled_int8_quant_impl requires AVX512/powerpc64 support.")
TORCH_CHECK(false,
"dynamic_scaled_int8_quant_impl requires "
"AVX512/powerpc64/AArch64 support.")
}
template <bool PerChannel, typename scalar_t>
@ -617,7 +618,8 @@ void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "static_quant_epilogue requires AVX512/powerpc64 support.")
TORCH_CHECK(
false, "static_quant_epilogue requires AVX512/powerpc64/AArch64 support.")
}
template <typename scalar_t>
@ -626,8 +628,9 @@ void dynamic_quant_epilogue(const float* input, scalar_t* output,
const int32_t* azp, const int32_t* azp_with_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false,
"dynamic_quant_epilogue requires AVX512/powerpc64 support.")
TORCH_CHECK(
false,
"dynamic_quant_epilogue requires AVX512/powerpc64/AArch64 support.")
}
#endif
} // namespace

View File

@ -0,0 +1,238 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#pragma once
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/record_function.h>
// clang-format off
#if defined(_OPENMP)
#include <omp.h>
#endif
namespace {
// dispatch bool
#define AT_DISPATCH_BOOL(BOOL_V, BOOL_NAME, ...) \
[&] { \
if (BOOL_V) { \
constexpr bool BOOL_NAME = true; \
return __VA_ARGS__(); \
} else { \
constexpr bool BOOL_NAME = false; \
return __VA_ARGS__(); \
} \
}()
// dispatch: bfloat16, float16, int8_t, fp8_e4m3
#define CPU_DISPATCH_PACKED_TYPES(TYPE, ...) \
[&] { \
switch (TYPE) { \
case at::ScalarType::BFloat16 : { \
using packed_t = at::BFloat16; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Half: { \
using packed_t = at::Half; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Char : { \
using packed_t = int8_t; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Float8_e4m3fn : { \
using packed_t = at::Float8_e4m3fn; \
return __VA_ARGS__(); \
} \
default: \
TORCH_CHECK(false, "Unsupported floating data type.\n"); \
} \
}()
#define UNUSED(x) (void)(x)
#define CHECK_CPU(x) TORCH_CHECK(x.device().type() == at::kCPU, #x " must be a CPU tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_LAST_DIM_CONTIGUOUS(x) \
TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimention")
#define CHECK_INPUT(x) \
CHECK_CPU(x); \
CHECK_CONTIGUOUS(x)
#define CHECK_LAST_DIM_CONTIGUOUS_INPUT(x) \
CHECK_CPU(x); \
CHECK_LAST_DIM_CONTIGUOUS(x)
#define CHECK_DIM(d, x) TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")
#define CHECK_EQ(a, b) TORCH_CHECK((a) == (b), "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)
// parallel routines
constexpr int GRAIN_SIZE = 1024;
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
inline T div_up(T x, T y) { return (x + y - 1) / y; }
template <typename T>
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
#if 0
// onednn partition pattern
T& n_my = n_end;
if (nth <= 1 || n == 0) {
n_start = 0;
n_my = n;
} else {
T n1 = div_up(n, nth);
T n2 = n1 - 1;
T T1 = n - n2 * nth;
n_my = ith < T1 ? n1 : n2;
n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
}
n_end += n_start;
#else
// pytorch aten partition pattern
T n_my = div_up(n, nth);
n_start = ith * n_my;
n_end = std::min(n_start + n_my, n);
#endif
}
template <typename func_t>
inline void parallel_for(int n, const func_t& f) {
#if defined(_OPENMP)
#pragma omp parallel
{
int nth = omp_get_num_threads();
int ith = omp_get_thread_num();
int tbegin, tend;
balance211(n, nth, ith, tbegin, tend);
f(tbegin, tend);
}
#else
f(0, n);
#endif
}
// for 1d parallel, use `actual_nth`
// for 2d parallel, use even nths, e.g. 43->42
int inline adjust_num_threads(int m) {
int actual_nth = at::get_num_threads();
if (m == 1) {
return actual_nth;
}
return std::max(1, (actual_nth >> 1) * 2);
}
template <typename func_t>
inline void parallel_2d(int m, int n, const func_t& f) {
// make sure we have even num_threads
int nth = adjust_num_threads(m);
// [NOTE] thread blocking:
//
// 1) prefer square block per thread
// 2) use even number of CPU cores
// 3) use all `num_threads` cores
//
// we have:
// TM * TN = T
// BM / TM = BN / TN
// then:
// TM = ((BM / BN) * T) ^ 0.5
//
float r = float(m) / n;
int nth_m = std::ceil(std::sqrt(r * nth));
int nth_n = 1;
for (; nth_m > 0; --nth_m) {
nth_n = nth / nth_m;
if (nth_m * nth_n == nth) {
break;
}
}
#if defined(_OPENMP)
#pragma omp parallel num_threads(nth)
{
int ith = omp_get_thread_num();
int ith_m = ith / nth_n;
int ith_n = ith % nth_n;
int thread_block_m = div_up(m, nth_m);
int thread_block_n = div_up(n, nth_n);
int begin_m = ith_m * thread_block_m;
int end_m = std::min(m, begin_m + thread_block_m);
int begin_n = ith_n * thread_block_n;
int end_n = std::min(n, begin_n + thread_block_n);
f(begin_m, end_m, begin_n, end_n);
}
#else
f(0, m, 0, n);
#endif
}
template <typename T>
int get_cache_blocks(int BLOCK_SIZE, int K) {
// L2 2MB and ratio of 50%
const int L2_size = 2048 * 1024 >> 1;
return std::max(1, int(L2_size / (BLOCK_SIZE * K * sizeof(T))));
}
// data indexing for dimension collapse
template <typename T>
inline T data_index_init(T offset) {
return offset;
}
template <typename T, typename... Args>
inline T data_index_init(T offset, T& x, const T& X, Args&&... args) {
offset = data_index_init(offset, std::forward<Args>(args)...);
x = offset % X;
return offset / X;
}
inline bool data_index_step() {
return true;
}
template <typename T, typename... Args>
inline bool data_index_step(T& x, const T& X, Args&&... args) {
if (data_index_step(std::forward<Args>(args)...)) {
x = ((x + 1) == X) ? 0 : (x + 1);
return x == 0;
}
return false;
}
// forced unroll for perf critical path
#if __has_attribute(always_inline)
#define ALWAYS_INLINE __attribute__((__always_inline__)) inline
#else
#define ALWAYS_INLINE inline
#endif
template <int n>
struct Unroll {
template <typename Func, typename... Args>
ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
Unroll<n - 1>{}(f, args...);
f(std::integral_constant<int, n - 1>{}, args...);
}
};
template <>
struct Unroll<1> {
template <typename Func, typename... Args>
ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
f(std::integral_constant<int, 0>{}, args...);
}
};
} // anonymous namespace

View File

@ -0,0 +1,464 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "vec.h"
#include "gemm.h"
// clang-format off
namespace {
// packed layout:
// quants {N, K} int8_t
// comp {N} int32_t
template <int BLOCK_N>
inline void s8s8_compensation(int8_t* __restrict__ packed, int K) {
#if defined(CPU_CAPABILITY_AVX512)
constexpr int COLS = BLOCK_N / 16;
__m512i vcomp[COLS];
for (int col = 0; col < COLS; ++col) {
vcomp[col] = _mm512_setzero_si512();
}
const int64_t offset = BLOCK_N * K;
const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80));
for (int k = 0; k < K / 4; ++k) {
for (int col = 0; col < COLS; ++col) {
__m512i vb = _mm512_loadu_si512((const __m512i *)(packed + k * BLOCK_N * 4 + col * 64));
vcomp[col] = _mm512_dpbusd_epi32(vcomp[col], off, vb);
}
}
for (int col = 0; col < COLS; ++col) {
_mm512_storeu_si512((__m512i *)(packed + offset + col * 64), vcomp[col]);
}
#else
TORCH_CHECK(false, "s8s8_compensation not implemented!");
#endif
}
// convert to vnni format
// from [N, K] to [K/2, N, 2] for bfloat16 and float16
template <typename packed_t>
inline void pack_vnni(packed_t* __restrict__ packed, const packed_t* __restrict__ weight, int N, int K) {
const int VNNI_BLK = 2;
for (int n = 0; n < N; ++n) {
for (int k = 0; k < K / VNNI_BLK; ++k) {
for (int d = 0; d < VNNI_BLK; ++d) {
packed[k * N * VNNI_BLK + n * VNNI_BLK + d] = weight[n * K + k * VNNI_BLK + d];
}
}
}
}
template <>
inline void pack_vnni<int8_t>(int8_t* __restrict__ packed, const int8_t* __restrict__ weight, int N, int K) {
constexpr int BLOCK_N = block_size_n();
TORCH_CHECK(N == BLOCK_N);
const int VNNI_BLK = 4;
for (int n = 0; n < N; ++n) {
for (int k = 0; k < K / VNNI_BLK; ++k) {
for (int d = 0; d < VNNI_BLK; ++d) {
packed[k * N * VNNI_BLK + n * VNNI_BLK + d] = weight[n * K + k * VNNI_BLK + d];
}
}
}
s8s8_compensation<BLOCK_N>(packed, K);
}
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const float* __restrict__ input, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d);
fVec data1 = fVec::loadu(input + d + fVec::size());
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d]);
}
}
template <typename scalar_t>
inline void copy_add_stub(scalar_t* __restrict__ out, const float* __restrict__ input, const float* __restrict__ bias, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d) + fVec::loadu(bias + d);
fVec data1 = fVec::loadu(input + d + fVec::size()) + fVec::loadu(bias + d + fVec::size());
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] + bias[d]);
}
}
template <typename scalar_t, bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn {
static inline void apply(
const scalar_t* __restrict__ A, const scalar_t* __restrict__ B, scalar_t* __restrict__ C,
const float* __restrict__ bias, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn<at::BFloat16, has_bias, BLOCK_M, BLOCK_N> {
static inline void apply(
const at::BFloat16* __restrict__ A, const at::BFloat16* __restrict__ B, at::BFloat16* __restrict__ C,
const float* __restrict__ bias, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
// prefetch distance
constexpr int PREFETCH_SIZE_K = 0;
__m512bh va;
__m512bh vb[COLS];
__m512 vc[ROWS * COLS];
auto loadc = [&](auto i) {
constexpr int col = i % COLS;
if constexpr (has_bias) {
vc[i] = _mm512_loadu_ps(bias + col * 16);
} else {
vc[i] = _mm512_set1_ps(0.f);
}
};
Unroll<ROWS * COLS>{}(loadc);
const int64_t K2 = K >> 1;
const int64_t lda2 = lda >> 1;
const int64_t ldb2 = ldb; // ldb * 2 >> 1;
const float* a_ptr = reinterpret_cast<const float*>(A);
const float* b_ptr = reinterpret_cast<const float*>(B);
auto compute = [&](auto i, int64_t k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = (__m512bh)(_mm512_set1_ps(a_ptr[row * lda2 + k]));
}
if constexpr (row == 0) {
vb[col] = (__m512bh)(_mm512_loadu_si512(b_ptr + k * ldb2 + col * 16));
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb2 + col * 16, _MM_HINT_T0);
}
}
vc[i] = _mm512_dpbf16_ps(vc[i], va, vb[col]);
};
for (int64_t k = 0; k < K2; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// for COLS = 2, 4 use 512bit store
// for COLS = 1, 3 use 256bit store
if constexpr (COLS % 2 == 0) {
if constexpr (col % 2 == 0) {
_mm512_storeu_si512(
reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
(__m512i)(_mm512_cvtne2ps_pbh(vc[row * COLS + col + 1], vc[row * COLS + col])));
}
} else {
_mm256_storeu_si256(
reinterpret_cast<__m256i*>(C + row * ldc + col * 16),
(__m256i)(_mm512_cvtneps_pbh(vc[i])));
}
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_NN(MB_SIZE, NB_SIZE) \
tinygemm_kernel_nn<scalar_t, has_bias, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B + nb_start * 2, C + mb_start * ldc + nb_start, \
has_bias ? bias + nb_start : nullptr, K, lda, ldb, ldc);
template <typename scalar_t, bool has_bias>
struct brgemm {
static inline void apply(
const scalar_t* __restrict__ A, const scalar_t* __restrict__ B, scalar_t* __restrict__ C,
float* __restrict__ Ctmp, const float* __restrict__ bias,
int64_t M, int64_t N, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int BLOCK_N = block_size_n();
at::native::cpublas::brgemm(
M, N, K, lda, ldb, BLOCK_N, /* add_C */false,
A, B, Ctmp);
// copy from Ctmp to C
for (int64_t m = 0; m < M; ++m) {
if constexpr (has_bias) {
copy_add_stub(C + m * ldc, Ctmp + m * BLOCK_N, bias, N);
} else {
copy_stub(C + m * ldc, Ctmp + m * BLOCK_N, N);
}
}
}
};
template <typename scalar_t, bool has_bias>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const scalar_t* __restrict__ B,
scalar_t* __restrict__ C,
float* __restrict__ Ctmp,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg) {
if (brg) {
brgemm<scalar_t, has_bias>::apply(
A, B, C, Ctmp, bias,
M, N, K, lda, ldb, ldc);
return;
}
// pattern: 1-4-16
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 64;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
// mb_size = 1
case 0x12: LAUNCH_TINYGEMM_KERNEL_NN(1, 32); break;
case 0x14: LAUNCH_TINYGEMM_KERNEL_NN(1, 64); break;
// mb_size = 2
case 0x22: LAUNCH_TINYGEMM_KERNEL_NN(2, 32); break;
case 0x24: LAUNCH_TINYGEMM_KERNEL_NN(2, 64); break;
// mb_size = 3
case 0x32: LAUNCH_TINYGEMM_KERNEL_NN(3, 32); break;
case 0x34: LAUNCH_TINYGEMM_KERNEL_NN(3, 64); break;
// mb_size = 4
case 0x42: LAUNCH_TINYGEMM_KERNEL_NN(4, 32); break;
case 0x44: LAUNCH_TINYGEMM_KERNEL_NN(4, 64); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
template <typename scalar_t>
void weight_packed_linear_kernel_impl(
scalar_t* __restrict__ out,
const scalar_t* __restrict__ mat1,
const scalar_t* __restrict__ mat2,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K,
int64_t mat1_strideM,
int64_t out_strideM) {
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
// use avx512-bf16 when a) M is small; b) dtype is bfloat16, otherwise use amx
const bool use_brgemm = (M > 4) || (!std::is_same_v<scalar_t, at::BFloat16>);
// l2 cache block for n
int64_t cache_blocks_nb = get_cache_blocks<scalar_t>(BLOCK_N, K);
// parallel on [MB, NB]
AT_DISPATCH_BOOL(bias != nullptr, has_bias, [&] {
parallel_2d(MB, NB, [&](int64_t begin_mb, int64_t end_mb, int64_t begin_nb, int64_t end_nb) {
// for brgemm, use float32 for accumulate
alignas(64) float Ctmp[BLOCK_M * BLOCK_N];
for (int64_t nbb = begin_nb; nbb < end_nb; nbb += cache_blocks_nb) {
for (int64_t mb = begin_mb; mb < end_mb; ++mb) {
for (int64_t nb = nbb; nb < std::min(nbb + cache_blocks_nb, end_nb); ++nb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(M - mb_start, BLOCK_M);
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(N - nb_start, BLOCK_N);
tinygemm_kernel<scalar_t, has_bias>(
/* A */ mat1 + mb_start * mat1_strideM,
/* B */ mat2 + nb_start * K /* nb * BLOCK_N * K */,
/* C */ out + mb_start * out_strideM + nb_start,
/* Ctmp*/ Ctmp,
/* bias*/ bias + nb_start,
/* M */ mb_size,
/* N */ nb_size,
/* K */ K,
/* lda */ mat1_strideM,
/* ldb */ nb_size,
/* ldc */ out_strideM,
/* brg */ use_brgemm);
}}}
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
});
});
}
} // anonymous namespace
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(const scalar_t* __restrict__ A, const scalar_t* __restrict__ B, scalar_t* __restrict__ C,
float* __restrict__ Ctmp, int64_t M, int64_t N, int64_t K, int64_t lda, int64_t ldb, int64_t ldc, bool brg) {
tinygemm_kernel<scalar_t, false>(A, B, C, Ctmp, nullptr, M, N, K, lda, ldb, ldc, brg);
}
#define INSTANTIATE_TINYGEMM_TEMPLATE(TYPE) \
template void tinygemm_kernel<TYPE>( \
const TYPE* __restrict__ A, const TYPE* __restrict__ B, TYPE* __restrict__ C, \
float* __restrict__ Ctmp, int64_t M, int64_t N, int64_t K, int64_t lda, \
int64_t ldb, int64_t ldc, bool brg)
INSTANTIATE_TINYGEMM_TEMPLATE(at::BFloat16);
INSTANTIATE_TINYGEMM_TEMPLATE(at::Half);
at::Tensor convert_weight_packed(at::Tensor& weight) {
// for 3d moe weights
// weight : [E, OC, IC]
// w1 : [E, 2N, K]
// w2 : [E, K, N]
CHECK_INPUT(weight);
const int64_t ndim = weight.ndimension();
TORCH_CHECK(ndim == 2 || ndim == 3, "expect weight to be 2d or 3d, got ", ndim, "d tensor.");
const auto st = weight.scalar_type();
const int64_t E = ndim == 3 ? weight.size(0) : 1;
const int64_t OC = ndim == 3 ? weight.size(1) : weight.size(0);
const int64_t IC = ndim == 3 ? weight.size(2) : weight.size(1);
// we handle 2 TILE_N at a time.
TORCH_CHECK(OC % TILE_N == 0, "invalid weight out features ", OC);
TORCH_CHECK(IC % TILE_K == 0, "invalid weight input features ", IC);
constexpr int64_t BLOCK_N = block_size_n();
const int64_t NB = div_up(OC, BLOCK_N);
// use phony sizes here [E, OC, IC], for each [E], [OC, IC] -> [IC / 2, OC, 2]
auto packed_weight = at::empty({}, weight.options());
const int64_t stride = OC * IC;
TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf || st == at::kChar || st == at::kFloat8_e4m3fn,
"expect weight to be bfloat16, float16, int8 or fp8_e4m3.");
CPU_DISPATCH_PACKED_TYPES(st, [&] {
// adjust most inner dimension size
const int packed_row_size = get_row_size<packed_t>(IC);
auto sizes = weight.sizes().vec();
sizes[ndim - 1] = packed_row_size;
packed_weight.resize_(sizes);
const packed_t* w_data = weight.data_ptr<packed_t>();
packed_t* packed_data = packed_weight.data_ptr<packed_t>();
// parallel on {E, NB}
at::parallel_for(0, E * NB, 0, [&](int64_t begin, int64_t end) {
int64_t e{0}, nb{0};
data_index_init(begin, e, E, nb, NB);
for (int64_t i = begin; i < end; ++i) {
UNUSED(i);
int64_t n = nb * BLOCK_N;
int64_t n_size = std::min(BLOCK_N, OC - n);
pack_vnni<packed_t>(
packed_data + e * OC * packed_row_size + n * packed_row_size,
w_data + e * stride + n * IC,
n_size,
IC);
// move to the next index
data_index_step(e, E, nb, NB);
}
});
});
return packed_weight;
}
// mat1 : [M, K]
// mat2 : [N, K]
// bias : [N]
// out : [M, N]
//
at::Tensor weight_packed_linear(at::Tensor& mat1, at::Tensor& mat2,
const std::optional<at::Tensor>& bias, bool is_vnni) {
RECORD_FUNCTION(
"sgl-kernel::weight_packed_linear", std::vector<c10::IValue>({mat1, mat2, bias}));
auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(mat1);
CHECK_INPUT(mat2);
int64_t M = mat1.size(0);
int64_t N = mat2.size(0);
int64_t K = mat2.size(1);
CHECK_EQ(mat1.size(1), K);
CHECK_DIM(2, mat1);
CHECK_DIM(2, mat2);
auto out = at::empty({M, N}, mat1.options());
// strides
int64_t mat1_strideM = mat1.stride(0);
int64_t out_strideM = out.stride(0);
const bool has_bias = bias.has_value();
const float* bias_data = nullptr;
if (has_bias) {
CHECK_EQ(bias.value().size(0), N);
bias_data = bias.value().data_ptr<float>();
}
AT_DISPATCH_REDUCED_FLOATING_TYPES(mat1.scalar_type(), "weight_packed_linear_kernel_impl", [&] {
weight_packed_linear_kernel_impl<scalar_t>(
out.data_ptr<scalar_t>(),
mat1.data_ptr<scalar_t>(),
packed_w.data_ptr<scalar_t>(),
bias_data,
M,
N,
K,
mat1_strideM,
out_strideM);
});
return out;
}

266
csrc/cpu/sgl-kernels/gemm.h Normal file
View File

@ -0,0 +1,266 @@
#pragma once
#include <ATen/native/CPUBlas.h>
// clang-format off
// amx-bf16
#define TILE_M 16
#define TILE_N 16
#define TILE_K 32
// block size for AMX gemm
constexpr int block_size_m() { return 2 * TILE_M; }
constexpr int block_size_n() { return 2 * TILE_N; }
// define threshold using brgemm (intel AMX)
template <typename T> inline bool can_use_brgemm(int M);
template <> inline bool can_use_brgemm<at::BFloat16>(int M) { return M > 4; }
template <> inline bool can_use_brgemm<at::Half>(int M) { return true; }
// TODO: add u8s8 brgemm, this requires PyTorch 2.7
template <> inline bool can_use_brgemm<int8_t>(int M) { return false; }
template <> inline bool can_use_brgemm<at::Float8_e4m3fn>(int M) { return M > 4; }
template <> inline bool can_use_brgemm<at::quint4x2>(int M) { return M > 4; }
// work around compiler internal error
#define BLOCK_K 128 // 4 * TILE_K
// adjust leading dimension size for K
template <typename T>
inline int64_t get_row_size(int64_t K) {
return K;
}
template <>
inline int64_t get_row_size<int8_t>(int64_t K) {
return K + sizeof(int32_t);
}
inline int64_t get_row_size(int64_t K, bool use_int8_w8a8) {
return use_int8_w8a8 ? K + sizeof(int32_t) : K;
}
// pack weight to vnni format
at::Tensor convert_weight_packed(at::Tensor& weight);
// moe implementations for int8 w8a8
template <typename scalar_t>
void fused_experts_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
uint8_t* __restrict__ A_tmp,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad);
// moe implementations for fp8 w8a16
template <typename scalar_t>
void fused_experts_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
scalar_t* __restrict__ A_tmp,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad);
// moe implementations for int4 w4a16
template <typename scalar_t>
void fused_experts_int4_w4a16_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
scalar_t* __restrict__ A_tmp,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::quint4x2* __restrict__ packed_w1,
const at::quint4x2* __restrict__ packed_w2,
const uint8_t* __restrict__ w1z,
const uint8_t* __restrict__ w2z,
const scalar_t* __restrict__ w1s,
const scalar_t* __restrict__ w2s,
int group_size,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad);
// shared expert implememntation for int8 w8a8
template <typename scalar_t>
void shared_expert_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K);
template <typename scalar_t>
void shared_expert_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K);
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const scalar_t* __restrict__ B,
scalar_t* __restrict__ C,
float* __restrict__ Ctmp,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg);
template <typename scalar_t>
void tinygemm_kernel(
const uint8_t* __restrict__ A,
const int8_t* __restrict__ B,
scalar_t* __restrict__ C,
int32_t* __restrict__ Ctmp,
const float* __restrict__ As,
const float* __restrict__ Bs,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg);
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const at::Float8_e4m3fn* __restrict__ B,
scalar_t* __restrict__ C,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ scale,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg,
int64_t block_size_K);
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const at::quint4x2* __restrict__ B,
scalar_t* __restrict__ C,
const uint8_t* __restrict__ Bz,
const scalar_t* __restrict__ Bs,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
int64_t M,
int64_t N,
int64_t K,
int group_size,
int64_t lda,
int64_t ldb,
int64_t ldc,
int64_t strideBz,
int64_t strideBs,
bool brg);
// TODO: debug print, remove me later
inline void print_16x32i(const __m512i x) {
int32_t a[16];
_mm512_storeu_si512((__m512i *)a, x);
for (int i = 0; i < 16; i++){
std::cout << a[i] << " ";
}
std::cout << std::endl;
}
inline void print_16x32(const __m512 x) {
float a[16];
_mm512_storeu_ps((__m512 *)a, x);
for (int i = 0; i < 16; i++){
std::cout << a[i] << " ";
}
std::cout << std::endl;
}
inline void print_32x8u(const __m256i x) {
uint8_t a[32];
_mm256_storeu_si256((__m256i *)a, x);
for (int i = 0; i < 32; ++i) {
std::cout << int32_t(a[i]) << " ";
}
std::cout << std::endl;
}

View File

@ -0,0 +1,530 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "vec.h"
#include "gemm.h"
// clang-format off
// we use 4x32 for BLOCK_M
#define BLOCK_SIZE_M_SCALE 4
namespace {
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const float* __restrict__ input, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d);
fVec data1 = fVec::loadu(input + d + fVec::size());
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d]);
}
}
template <typename scalar_t>
inline void copy_add_stub(scalar_t* __restrict__ out, const float* __restrict__ input, const float* __restrict__ bias, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d) + fVec::loadu(bias + d);
fVec data1 = fVec::loadu(input + d + fVec::size()) + fVec::loadu(bias + d + fVec::size());
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] + bias[d]);
}
}
inline void unpack_B(
at::BFloat16* __restrict__ Btmp,
const at::Float8_e4m3fn* __restrict__ packed_B,
int N,
int K,
int ldb,
int ldb_tmp,
float scale) {
#if defined(CPU_CAPABILITY_AVX512)
// [K/2, N, 2]
const int K2 = K >> 1;
const int ldb2 = ldb; // ldb * 2 >> 1;
const uint16_t* b_ptr = reinterpret_cast<const uint16_t*>(packed_B);
const __m512 vd = _mm512_set1_ps(scale);
constexpr int BLOCK_N = block_size_n();
static_assert(BLOCK_N == 32);
// prefetch distance
constexpr int PREFETCH_SIZE_K = 64;
#pragma GCC unroll 4
for (int k = 0; k < K2; ++k) {
__m512i b8 = _mm512_loadu_si512(b_ptr + k * ldb2);
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb2, _MM_HINT_T0);
}
__m256i b8_0 = _mm512_extracti32x8_epi32(b8, 0);
__m256i b8_1 = _mm512_extracti32x8_epi32(b8, 1);
__m512bh bf16_0 = CVT_FP8_TO_BF16(b8_0);
__m512bh bf16_1 = CVT_FP8_TO_BF16(b8_1);
// Apply scale
__m512 f0_lo = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_0, 0));
__m512 f0_hi = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_0, 1));
__m512 f1_lo = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_1, 0));
__m512 f1_hi = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_1, 1));
f0_lo = _mm512_mul_ps(f0_lo, vd);
f0_hi = _mm512_mul_ps(f0_hi, vd);
f1_lo = _mm512_mul_ps(f1_lo, vd);
f1_hi = _mm512_mul_ps(f1_hi, vd);
bf16_0 = _mm512_cvtne2ps_pbh(f0_hi, f0_lo);
bf16_1 = _mm512_cvtne2ps_pbh(f1_hi, f1_lo);
_mm512_storeu_si512(Btmp + k * ldb_tmp * 2 + 0, (__m512i)bf16_0);
_mm512_storeu_si512(Btmp + k * ldb_tmp * 2 + 32, (__m512i)bf16_1);
}
#else
TORCH_CHECK(false, "unpack_B: scalar path not implemented!");
#endif
}
template <typename scalar_t, typename packed_t, bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn {
static inline void apply(
const scalar_t* __restrict__ A, const packed_t* __restrict__ B, scalar_t* __restrict__ C,
const float* __restrict__ bias, const float* __restrict__ scale, int K, int lda, int ldb, int ldc, int64_t block_size_K) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn<at::BFloat16, at::Float8_e4m3fn, has_bias, BLOCK_M, BLOCK_N> {
static inline void apply(
const at::BFloat16* __restrict__ A, const at::Float8_e4m3fn* __restrict__ B, at::BFloat16* __restrict__ C,
const float* __restrict__ bias, const float* __restrict__ scale, int K, int lda, int ldb, int ldc, int64_t block_size_K) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
const int KB = div_up(K, BLOCK_K);
// prefetch distance
constexpr int PREFETCH_SIZE_K = 64;
constexpr int PREFETCH_SIZE_KB = 1;
__m512bh va;
__m512bh vb[COLS];
__m512 vc[ROWS * COLS];
__m512 vsum[ROWS * COLS];
// block quant scale
__m512 vscale;
auto loadc = [&](auto i) {
constexpr int col = i % COLS;
if constexpr (has_bias) {
vc[i] = _mm512_loadu_ps(bias + col * 16);
} else {
vc[i] = _mm512_setzero_ps();
}
};
Unroll<ROWS * COLS>{}(loadc);
const int lda2 = lda >> 1;
const int ldb2 = ldb; // ldb * 2 >> 1;
const float* a_ptr = reinterpret_cast<const float*>(A);
const uint16_t* b_ptr = reinterpret_cast<const uint16_t*>(B);
auto compute = [&](auto i, int k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = (__m512bh)(_mm512_set1_ps(a_ptr[row * lda2 + k]));
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(a_ptr + row * lda2 + k + PREFETCH_SIZE_K, _MM_HINT_T0);
}
}
if constexpr (row == 0) {
if constexpr (col % 2 == 0) {
__m512i b8 = _mm512_loadu_si512(b_ptr + k * ldb2 + col * 16);
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb2 + col * 16, _MM_HINT_T0);
}
vb[col + 0] = CVT_FP8_TO_BF16(_mm512_extracti32x8_epi32(b8, 0));
vb[col + 1] = CVT_FP8_TO_BF16(_mm512_extracti32x8_epi32(b8, 1));
}
}
vsum[i] = _mm512_dpbf16_ps(vsum[i], va, vb[col]);
};
constexpr int BLOCK_K2 = BLOCK_K >> 1;
for (int kb = 0; kb < KB; ++kb) {
int kb_start = kb * BLOCK_K2;
int kb_end = std::min(K, kb_start + BLOCK_K2);
// 1. load scale vector
vscale = _mm512_set1_ps(scale[kb]);
if constexpr (PREFETCH_SIZE_KB > 0) {
_mm_prefetch(scale + kb + PREFETCH_SIZE_KB, _MM_HINT_T0);
}
// 2. zero vsum for each block
Unroll<ROWS * COLS>{}([&](auto i) {
vsum[i] = _mm512_setzero_ps();
});
// 3. accumulate across each block
for (int k = kb_start; k < kb_end; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
// 4. apply scale
Unroll<ROWS * COLS>{}([&](auto i) {
vc[i] = _mm512_fmadd_ps(vsum[i], vscale, vc[i]);
});
}
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// for COLS = 2,4 use 512bit store
if constexpr (col % 2 == 0) {
_mm512_storeu_si512(
reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
(__m512i)(_mm512_cvtne2ps_pbh(vc[row * COLS + col + 1], vc[row * COLS + col])));
}
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_NN(MB_SIZE, NB_SIZE) \
tinygemm_kernel_nn<scalar_t, at::Float8_e4m3fn, has_bias, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B + nb_start * 2, C + mb_start * ldc + nb_start, \
has_bias ? bias + nb_start : nullptr, scale, K, lda, ldb, ldc, block_size_K);
template <typename scalar_t, typename packed_t, bool has_bias>
struct brgemm {
static inline void apply(
const scalar_t* __restrict__ A,
const packed_t* __restrict__ B,
scalar_t* __restrict__ C,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ bias,
const float* __restrict__ scale,
int M,
int N,
int K,
int lda,
int ldb,
int ldc) {
TORCH_CHECK(false, "struct brgemm: primary template not implemented!");
}
};
template <bool has_bias>
struct brgemm<at::BFloat16, at::Float8_e4m3fn, has_bias> {
static inline void apply(
const at::BFloat16* __restrict__ A,
const at::Float8_e4m3fn* __restrict__ B,
at::BFloat16* __restrict__ C,
at::BFloat16* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ bias,
const float* __restrict__ scale,
int M,
int N,
int K,
int lda,
int ldb,
int ldc) {
constexpr int BLOCK_N = block_size_n();
// [K, BLOCK_N] -> [K / 2, BLOCK_N * 2]
const int ldb_tmp = BLOCK_N;
for (int k = 0; k < K; k += BLOCK_K) {
int kb_size = std::min(BLOCK_K, K - k);
int idx = k >> 7; // k / BLOCK_K where BLOCK_K = 128
unpack_B(Btmp + k * ldb_tmp, B + k * ldb, N, kb_size, ldb, ldb_tmp, scale[idx]);
}
at::native::cpublas::brgemm(
M, N, K, lda, ldb_tmp, BLOCK_N, /* add_C */ false, A, Btmp, Ctmp);
// copy from Ctmp to C
for (int m = 0; m < M; ++m) {
if constexpr (has_bias) {
copy_add_stub(C + m * ldc, Ctmp + m * BLOCK_N, bias, N);
} else {
copy_stub(C + m * ldc, Ctmp + m * BLOCK_N, N);
}
}
}
};
template <typename scalar_t, bool has_bias>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const at::Float8_e4m3fn* __restrict__ B,
scalar_t* __restrict__ C,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ scale,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg,
int64_t block_size_K) {
if (brg) {
brgemm<scalar_t, at::Float8_e4m3fn, has_bias>::apply(
A, B, C, Btmp, Ctmp, bias, scale, M, N, K, lda, ldb, ldc);
return;
}
// pattern: 1-4-16
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 64;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
case 0x12: LAUNCH_TINYGEMM_KERNEL_NN(1, 32); break;
case 0x22: LAUNCH_TINYGEMM_KERNEL_NN(2, 32); break;
case 0x32: LAUNCH_TINYGEMM_KERNEL_NN(3, 32); break;
case 0x42: LAUNCH_TINYGEMM_KERNEL_NN(4, 32); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
template <typename scalar_t>
void fp8_scaled_mm_kernel_impl(
scalar_t* __restrict__ out,
const scalar_t* __restrict__ mat1,
const at::Float8_e4m3fn* __restrict__ mat2,
const float* __restrict__ scales2,
const float* __restrict__ bias,
scalar_t* __restrict__ buffer,
int64_t M,
int64_t N,
int64_t K,
int64_t mat1_strideM,
int64_t out_strideM,
int64_t block_size_N,
int64_t block_size_K,
int64_t buffer_size_per_thread) {
constexpr int64_t BLOCK_M = block_size_m() * BLOCK_SIZE_M_SCALE;
constexpr int64_t BLOCK_N = block_size_n();
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
const int64_t scale_size_K = div_up(K, block_size_K);
const int64_t blocks_n_per_group = block_size_N / BLOCK_N;
const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(M);
// parallel on [MB, NB]
AT_DISPATCH_BOOL(bias != nullptr, has_bias, [&] {
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
int64_t mb{0}, nb{0};
data_index_init(begin, mb, MB, nb, NB);
int tid = at::get_thread_num();
scalar_t* __restrict__ Btmp = buffer + tid * buffer_size_per_thread;
float* __restrict__ Ctmp = (float*)((void*)(Btmp + BLOCK_N * K));
for (int64_t i = begin; i < end; ++i) {
UNUSED(i);
const float* scale_ptr = scales2 + (nb / blocks_n_per_group) * scale_size_K;
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(M - mb_start, BLOCK_M);
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(N - nb_start, BLOCK_N);
tinygemm_kernel<scalar_t, has_bias>(
/* A */ mat1 + mb_start * mat1_strideM,
/* B */ mat2 + nb_start * K, // nb * BLOCK_N * K
/* C */ out + mb_start * out_strideM + nb_start,
/* Btmp */ Btmp,
/* Ctmp */ Ctmp,
/* scale */ scale_ptr,
/* bias */ bias + nb_start,
/* M */ mb_size,
/* N */ nb_size,
/* K */ K,
/* lda */ mat1_strideM,
/* ldb */ nb_size,
/* ldc */ out_strideM,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
// move to the next index
data_index_step(mb, MB, nb, NB);
}
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
});
});
}
} // anonymous namespace
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const at::Float8_e4m3fn* __restrict__ B,
scalar_t* __restrict__ C,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ scale,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg,
int64_t block_size_K) {
tinygemm_kernel<scalar_t, false>(A, B, C, Btmp, Ctmp, scale, nullptr, M, N, K, lda, ldb, ldc, brg, block_size_K);
}
#define INSTANTIATE_TINYGEMM_TEMPLATE(TYPE) \
template void tinygemm_kernel<TYPE>( \
const TYPE* __restrict__ A, \
const at::Float8_e4m3fn* __restrict__ B, \
TYPE* __restrict__ C, \
TYPE* __restrict__ Btmp, \
float* __restrict__ Ctmp, \
const float* __restrict__ scale, \
int64_t M, \
int64_t N, \
int64_t K, \
int64_t lda, \
int64_t ldb, \
int64_t ldc, \
bool brg, \
int64_t block_size_K)
INSTANTIATE_TINYGEMM_TEMPLATE(at::BFloat16);
INSTANTIATE_TINYGEMM_TEMPLATE(at::Half);
at::Tensor fp8_scaled_mm_cpu(at::Tensor& mat1, at::Tensor& mat2, at::Tensor& scales2,
std::vector<int64_t> block_size, std::optional<at::Tensor>& bias,
at::ScalarType out_dtype, bool is_vnni) {
RECORD_FUNCTION("sgl-kernel::fp8_scaled_mm_cpu", std::vector<c10::IValue>({mat1, mat2, scales2, block_size, bias}));
auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(mat1);
CHECK_INPUT(mat2);
CHECK_INPUT(scales2);
TORCH_CHECK(scales2.scalar_type() == at::kFloat,
"fp8_scaled_mm_cpu: expect scales2 to be float32.");
int64_t M = mat1.size(0);
int64_t N = mat2.size(0);
int64_t K = mat2.size(1);
CHECK_EQ(mat1.size(1), K);
CHECK_DIM(2, mat1);
CHECK_DIM(2, mat2);
TORCH_CHECK(block_size.size() == 2,
"fp8_scaled_mm_cpu: expect block_size.size() to be 2.");
int64_t block_size_N = block_size[0];
int64_t block_size_K = block_size[1];
constexpr int64_t BLOCK_M = block_size_m() * BLOCK_SIZE_M_SCALE;
constexpr int64_t BLOCK_N = block_size_n();
TORCH_CHECK(block_size_N % BLOCK_N == 0, "fp8_scaled_mm_cpu: expect block_size_N to be multiples of BLOCK_N");
TORCH_CHECK(block_size_K == BLOCK_K, "fp8_scaled_mm_cpu: expect block_size_K equals to BLOCK_K");
CHECK_EQ(scales2.size(0), div_up(N, block_size_N));
CHECK_EQ(scales2.size(1), div_up(K, block_size_K));
const auto st = mat1.scalar_type();
TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf,
"fp8_scaled_mm_cpu: expect A to be bfloat16 or half.");
TORCH_CHECK(st == out_dtype,
"fp8_scaled_mm_cpu: expect A has same dtype with out_dtype.");
TORCH_CHECK(mat2.scalar_type() == at::kFloat8_e4m3fn,
"fp8_scaled_mm_cpu: expect mat2 to be fp8_e4m3.");
TORCH_CHECK(scales2.scalar_type() == at::kFloat,
"fp8_scaled_mm_cpu: expect scales to be float32.");
auto out = at::empty({M, N}, mat1.options().dtype(out_dtype));
// strides
int64_t mat1_strideM = mat1.stride(0);
int64_t out_strideM = out.stride(0);
const bool has_bias = bias.has_value();
const float* bias_data = nullptr;
if (has_bias) {
CHECK_EQ(bias.value().size(0), N);
bias_data = bias.value().data_ptr<float>();
}
// Btmp : [T, BLOCK_N * K]
// Ctmp : [T, BLOCK_M * BLOCK_N]
int num_threads = at::get_num_threads();
int64_t size_per_thread = BLOCK_N * K + BLOCK_M * BLOCK_N * 2;
auto buffer = at::empty({num_threads, size_per_thread}, mat1.options());
AT_DISPATCH_REDUCED_FLOATING_TYPES(out_dtype, "fp8_scaled_mm_kernel_impl", [&] {
fp8_scaled_mm_kernel_impl<scalar_t>(
out.data_ptr<scalar_t>(),
mat1.data_ptr<scalar_t>(),
packed_w.data_ptr<at::Float8_e4m3fn>(),
scales2.data_ptr<float>(),
bias_data,
buffer.data_ptr<scalar_t>(),
M,
N,
K,
mat1_strideM,
out_strideM,
block_size_N,
block_size_K,
size_per_thread);
});
return out;
}

View File

@ -0,0 +1,440 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "vec.h"
#include "gemm.h"
// clang-format off
namespace {
template <typename scalar_t, bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, scalar_t* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs, const int32_t* __restrict__ Bcomp,
const float* __restrict__ bias, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn<at::BFloat16, has_bias, BLOCK_M, BLOCK_N> {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, at::BFloat16* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs, const int32_t* __restrict__ Bcomp,
const float* __restrict__ bias, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
static_assert(COLS % 2 == 0);
// prefetch distance
constexpr int PREFETCH_SIZE_K = 0;
__m512i va;
__m512i vb[COLS];
__m512i vc[ROWS * COLS];
__m512i vcomp[COLS];
__m512 vd0;
__m512 vd1[COLS];
// oops! 4x4 spills but luckly we use 4x2
__m512 vbias[COLS];
// [NOTE]: s8s8 igemm compensation in avx512-vnni
//
// avx512-vnni has no s8s8, so we need to change s8s8 to u8s8 with compensate:
//
// a * b = (a + 128) * b - 128 * b
// s s u s u s
//
// 1) 128 * b is pre-computed when packing B to vnni formats
// 2) a + 128 is fused when dynamically quantize A
//
auto loadc = [&](auto i) {
vc[i] = _mm512_set1_epi32(0);
};
Unroll<ROWS * COLS>{}(loadc);
const int64_t K4 = K >> 2;
const int64_t lda4 = lda >> 2;
const int64_t ldb4 = ldb; // ldb * 4 >> 2;
const int32_t* a_ptr = reinterpret_cast<const int32_t*>(A);
const int32_t* b_ptr = reinterpret_cast<const int32_t*>(B);
auto compute = [&](auto i, int64_t k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = _mm512_set1_epi32(a_ptr[row * lda4 + k]);
}
if constexpr (row == 0) {
vb[col] = _mm512_loadu_si512(b_ptr + k * ldb4 + col * 16);
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb4 + col * 16, _MM_HINT_T0);
}
}
vc[i] = _mm512_dpbusd_epi32(vc[i], va, vb[col]);
};
for (int64_t k = 0; k < K4; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// load a scale
if constexpr(col == 0) {
vd0 = _mm512_set1_ps(As[row]);
}
// load b scale and vcomp per 2 vectors
// also load bias if any
if constexpr (row == 0) {
if constexpr (col % 2 == 0) {
vd1[col + 0] = _mm512_loadu_ps(Bs + col * 16);
vd1[col + 1] = _mm512_loadu_ps(Bs + col * 16 + 16);
vcomp[col + 0] = _mm512_loadu_si512(Bcomp + col * 16);
vcomp[col + 1] = _mm512_loadu_si512(Bcomp + col * 16 + 16);
if constexpr (has_bias) {
vbias[col + 0] = _mm512_loadu_ps(bias + col * 16);
vbias[col + 1] = _mm512_loadu_ps(bias + col * 16 + 16);
}
}
}
// for COLS = 2, 4 use 512bit store
if constexpr (col % 2 == 0) {
__m512 vc0 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc[row * COLS + col + 0], vcomp[col + 0]));
__m512 vc1 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc[row * COLS + col + 1], vcomp[col + 1]));
if constexpr (has_bias) {
vc0 = _mm512_fmadd_ps(_mm512_mul_ps(vc0, vd0), vd1[col + 0], vbias[col + 0]);
vc1 = _mm512_fmadd_ps(_mm512_mul_ps(vc1, vd0), vd1[col + 1], vbias[col + 1]);
} else {
vc0 = _mm512_mul_ps(_mm512_mul_ps(vc0, vd0), vd1[col + 0]);
vc1 = _mm512_mul_ps(_mm512_mul_ps(vc1, vd0), vd1[col + 1]);
}
_mm512_storeu_si512(
reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
(__m512i)(_mm512_cvtne2ps_pbh(vc1, vc0)));
}
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_NN(MB_SIZE, NB_SIZE) \
tinygemm_kernel_nn<scalar_t, has_bias, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B + nb_start * 4, C + mb_start * ldc + nb_start, \
As + mb_start, Bs + nb_start, Bcomp + nb_start, \
has_bias ? bias + nb_start : nullptr, K, lda, ldb, ldc);
template <typename scalar_t, bool has_bias>
void tinygemm_kernel(
const uint8_t* __restrict__ A,
const int8_t* __restrict__ B,
scalar_t* __restrict__ C,
int32_t* __restrict__ Ctmp,
const float* __restrict__ As,
const float* __restrict__ Bs,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg) {
// B compensation
const int32_t* Bcomp = reinterpret_cast<const int32_t*>(B + block_size_n() * K);
// pattern: 1-4-16
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 64;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int64_t mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
// mb_size = 1
case 0x12: LAUNCH_TINYGEMM_KERNEL_NN(1, 32); break;
case 0x14: LAUNCH_TINYGEMM_KERNEL_NN(1, 64); break;
// mb_size = 2
case 0x22: LAUNCH_TINYGEMM_KERNEL_NN(2, 32); break;
case 0x24: LAUNCH_TINYGEMM_KERNEL_NN(2, 64); break;
// mb_size = 3
case 0x32: LAUNCH_TINYGEMM_KERNEL_NN(3, 32); break;
case 0x34: LAUNCH_TINYGEMM_KERNEL_NN(3, 64); break;
// mb_size = 4
case 0x42: LAUNCH_TINYGEMM_KERNEL_NN(4, 32); break;
case 0x44: LAUNCH_TINYGEMM_KERNEL_NN(4, 64); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
template<typename scalar_t>
void int8_scaled_mm_kernel_impl(
scalar_t* __restrict__ out,
const uint8_t* __restrict__ mat1,
const int8_t* __restrict__ mat2,
const float* __restrict__ scales1,
const float* __restrict__ scales2,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K) {
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
// TODO: brgemm u8s8 depends on PyTorch 2.7 release.
const bool use_brgemm = false;
// K + 4 after compensation
const int64_t packed_row_size = get_row_size<int8_t>(K);
AT_DISPATCH_BOOL(bias != nullptr, has_bias, [&] {
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
int64_t mb{0}, nb{0};
data_index_init(begin, mb, MB, nb, NB);
// for brgemm, use int32_t for accumulate
alignas(64) int32_t Ctmp[BLOCK_M * BLOCK_N];
for (int i = begin; i < end; ++i) {
UNUSED(i);
int mb_start = mb * BLOCK_M;
int mb_size = std::min(M - mb_start, BLOCK_M);
int nb_start = nb * BLOCK_N;
int nb_size = std::min(N - nb_start, BLOCK_N);
tinygemm_kernel<scalar_t, has_bias>(
/* A */ mat1 + mb_start * K,
/* B */ mat2 + nb_start * packed_row_size /* nb * BLOCK_N * (K + 4) */,
/* C */ out + mb_start * N + nb_start,
/* Ctmp*/ Ctmp,
/* As */ scales1 + mb_start,
/* Bs */ scales2 + nb_start,
/* bias*/ bias + nb_start,
/* M */ mb_size,
/* N */ nb_size,
/* K */ K,
/* lda */ K,
/* ldb */ nb_size,
/* ldc */ N,
/* brg */ use_brgemm);
// move to the next index
data_index_step(mb, MB, nb, NB);
}
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
});
});
}
} // anonymous namespace
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(const uint8_t* __restrict__ A, const int8_t* __restrict__ B, scalar_t* __restrict__ C,
int32_t* __restrict__ Ctmp, const float* __restrict__ As, const float* __restrict__ Bs,
int64_t M, int64_t N, int64_t K, int64_t lda, int64_t ldb, int64_t ldc, bool brg) {
tinygemm_kernel<scalar_t, false>(A, B, C, Ctmp, As, Bs, nullptr, M, N, K, lda, ldb, ldc, brg);
}
#define INSTANTIATE_TINYGEMM_TEMPLATE(TYPE) \
template void tinygemm_kernel<TYPE>( \
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, TYPE* __restrict__ C, \
int32_t* __restrict__ Ctmp, const float* __restrict__ As, const float* __restrict__ Bs, \
int64_t M, int64_t N, int64_t K, int64_t lda, int64_t ldb, int64_t ldc, bool brg)
INSTANTIATE_TINYGEMM_TEMPLATE(at::BFloat16);
INSTANTIATE_TINYGEMM_TEMPLATE(at::Half);
std::tuple<at::Tensor, at::Tensor> per_token_quant_int8_cpu(at::Tensor& A) {
RECORD_FUNCTION("sgl-kernel::per_token_quant_int8_cpu", std::vector<c10::IValue>({A}));
CHECK_LAST_DIM_CONTIGUOUS_INPUT(A);
CHECK_DIM(2, A);
int64_t M = A.size(0);
int64_t K = A.size(1);
int64_t lda = A.stride(0);
const auto st = A.scalar_type();
TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf,
"per_token_quant_int8: expect A to be bfloat16 or half.");
auto Aq = at::empty({M, K}, A.options().dtype(at::kByte));
auto As = at::empty({M}, A.options().dtype(at::kFloat));
AT_DISPATCH_REDUCED_FLOATING_TYPES(st, "per_token_quant_int8", [&] {
uint8_t* __restrict__ Aq_data = Aq.data_ptr<uint8_t>();
float* __restrict__ As_data = As.data_ptr<float>();
const scalar_t* __restrict__ A_data = A.data_ptr<scalar_t>();
at::parallel_for(0, M, 0, [&] (int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_data + m * K,
As_data[m],
A_data + m * lda,
K);
}
});
});
return std::make_tuple(Aq, As);
}
// weight : static, per-channel, symmetric
// activation : dynamic, per-token, symmetric
//
// mat1 : [M, K]
// mat2 : [N, K]
// scales1 : [M]
// scales2 : [N]
// bias : [N]
// out : [M, N]
//
at::Tensor int8_scaled_mm_cpu(at::Tensor& mat1, at::Tensor& mat2,
at::Tensor& scales1, at::Tensor& scales2,
std::optional<at::Tensor>& bias, at::ScalarType out_dtype, bool is_vnni) {
RECORD_FUNCTION("sgl-kernel::int8_scaled_mm_cpu", std::vector<c10::IValue>({mat1, mat2, scales1, scales2, bias}));
auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);
CHECK_INPUT(mat1);
CHECK_INPUT(mat2);
CHECK_INPUT(scales1);
CHECK_INPUT(scales2);
CHECK_DIM(2, mat1);
CHECK_DIM(2, mat2);
int64_t M = mat1.size(0);
int64_t N = mat2.size(0);
int64_t K = mat1.size(1);
// see [NOTE]: s8s8 igemm compensation in avx512-vnni
CHECK_EQ(mat2.size(1), (int64_t)(is_vnni ? K + sizeof(int32_t) : K));
CHECK_EQ(scales1.numel(), M);
CHECK_EQ(scales2.numel(), N);
TORCH_CHECK(mat1.scalar_type() == at::kByte, "int8_scaled_mm: expect mat1 to be uint8.");
TORCH_CHECK(mat2.scalar_type() == at::kChar, "int8_scaled_mm: expect mat2 to be int8.");
TORCH_CHECK(scales1.scalar_type() == at::kFloat && scales2.scalar_type() == at::kFloat,
"int8_scaled_mm: expect scales to be float32.");
auto out = at::empty({M, N}, mat1.options().dtype(out_dtype));
const bool has_bias = bias.has_value();
const float* bias_data = nullptr;
if (has_bias) {
CHECK_EQ(bias.value().size(0), N);
bias_data = bias.value().data_ptr<float>();
}
AT_DISPATCH_REDUCED_FLOATING_TYPES(out_dtype, "int8_scaled_mm_kernel_impl", [&] {
int8_scaled_mm_kernel_impl<scalar_t>(
out.data_ptr<scalar_t>(),
mat1.data_ptr<uint8_t>(),
packed_w.data_ptr<int8_t>(),
scales1.data_ptr<float>(),
scales2.data_ptr<float>(),
bias_data,
M,
N,
K);
});
return out;
}
// fused `per_token_quant_int8_cpu` and `int8_scaled_mm_cpu`
at::Tensor int8_scaled_mm_with_quant(at::Tensor& mat1, at::Tensor& mat2, at::Tensor& scales2,
const std::optional<at::Tensor>& bias, at::ScalarType out_dtype, bool is_vnni) {
RECORD_FUNCTION("sgl-kernel::int8_scaled_mm_cpu", std::vector<c10::IValue>({mat1, mat2, scales2, bias}));
auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(mat1);
CHECK_INPUT(mat2);
CHECK_INPUT(scales2);
CHECK_DIM(2, mat1);
CHECK_DIM(2, mat2);
int64_t M = mat1.size(0);
int64_t N = mat2.size(0);
int64_t K = mat1.size(1);
int64_t lda = mat1.stride(0);
// see [NOTE]: s8s8 igemm compensation in avx512-vnni
CHECK_EQ(mat2.size(1), (int64_t)(is_vnni ? K + sizeof(int32_t) : K));
CHECK_EQ(scales2.numel(), N);
const auto st = mat1.scalar_type();
TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf,
"int8_scaled_mm_with_quant: expect A to be bfloat16 or half.");
TORCH_CHECK(st == out_dtype,
"int8_scaled_mm_with_quant: expect A has same dtype with out_dtype.");
TORCH_CHECK(mat2.scalar_type() == at::kChar,
"int8_scaled_mm_with_quant: expect mat2 to be int8.");
TORCH_CHECK(scales2.scalar_type() == at::kFloat,
"int8_scaled_mm_with_quant: expect scales to be float32.");
const int64_t buffer_size = M * K + M * sizeof(float);
auto buffer = at::empty({buffer_size}, mat1.options().dtype(at::kByte));
auto out = at::empty({M, N}, mat1.options().dtype(out_dtype));
const bool has_bias = bias.has_value();
const float* bias_data = nullptr;
if (has_bias) {
CHECK_EQ(bias.value().size(0), N);
bias_data = bias.value().data_ptr<float>();
}
AT_DISPATCH_REDUCED_FLOATING_TYPES(out_dtype, "int8_scaled_mm_with_quant_kernel_impl", [&] {
uint8_t* __restrict__ Aq_data = buffer.data_ptr<uint8_t>();
float* __restrict__ As_data = (float*)((void*)(Aq_data + M * K));
const scalar_t* __restrict__ A_data = mat1.data_ptr<scalar_t>();
at::parallel_for(0, M, 0, [&] (int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_data + m * K,
As_data[m],
A_data + m * lda,
K);
}
});
int8_scaled_mm_kernel_impl<scalar_t>(
out.data_ptr<scalar_t>(),
Aq_data,
packed_w.data_ptr<int8_t>(),
As_data,
scales2.data_ptr<float>(),
bias_data,
M,
N,
K);
});
return out;
}

1330
csrc/cpu/sgl-kernels/moe.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,502 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "gemm.h"
#include "vec.h"
// clang-format off
namespace {
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t size) {
using Vec = at::vec::Vectorized<scalar_t>;
// no remainder
#pragma GCC unroll 4
for (int64_t d = 0; d < size; d += Vec::size()) {
Vec data = Vec::loadu(input + d);
data.store(out + d);
}
}
template <typename scalar_t>
inline void copy_mul_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, float weight, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
const fVec weight_vec = fVec(weight);
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
bVec x = bVec::loadu(input + d);
fVec x0, x1;
std::tie(x0, x1) = at::vec::convert_to_float(x);
x0 = x0 * weight_vec;
x1 = x1 * weight_vec;
bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] * weight);
}
}
// acc from [topk, K] to [K]
template <typename scalar_t>
inline void sum_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t topk, int64_t K) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
if (topk == 1) {
// do copy for topk = 1
copy_stub(out, input, K);
} else {
// do sum for topk != 1
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= K - kVecSize; d += kVecSize) {
fVec sum_fvec0 = fVec(0.f);
fVec sum_fvec1 = fVec(0.f);
for (int t = 0; t < topk; ++t) {
bVec x_bvec = bVec::loadu(input + t * K + d);
fVec x_fvec0, x_fvec1;
std::tie(x_fvec0, x_fvec1) = at::vec::convert_to_float(x_bvec);
sum_fvec0 += x_fvec0;
sum_fvec1 += x_fvec1;
}
bVec out_bvec = convert_from_float_ext<scalar_t>(sum_fvec0, sum_fvec1);
out_bvec.store(out + d);
}
for (; d < K; ++d) {
float sum_val = 0.f;
for (int t = 0; t < topk; ++t) {
sum_val += static_cast<float>(input[t * K + d]);
}
out[d] = static_cast<scalar_t>(sum_val);
}
}
}
// out = input + input2 * scale
template <typename scalar_t>
inline void add_mul_stub(
scalar_t* __restrict__ out,
const scalar_t* __restrict__ input,
const scalar_t* __restrict__ input2,
float scale,
int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
const fVec s_vec = fVec(scale);
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
bVec x_bvec = bVec::loadu(input + d);
fVec x0, x1;
std::tie(x0, x1) = at::vec::convert_to_float(x_bvec);
bVec y_bvec = bVec::loadu(input2 + d);
fVec y0, y1;
std::tie(y0, y1) = at::vec::convert_to_float(y_bvec);
x0 = x0 + y0 * s_vec;
x1 = x1 + y1 * s_vec;
bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] + float(input2[d]) * scale);
}
}
template <typename scalar_t>
inline void silu_and_mul_stub(
scalar_t* __restrict__ out,
const scalar_t* __restrict__ input,
const scalar_t* __restrict__ input2,
int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
const fVec one = fVec(1.f);
// no remainder
#pragma GCC unroll 4
for (int64_t d = 0; d < size; d += bVec::size()) {
bVec x = bVec::loadu(input + d);
fVec x0, x1;
std::tie(x0, x1) = at::vec::convert_to_float(x);
bVec y = bVec::loadu(input2 + d);
fVec y0, y1;
std::tie(y0, y1) = at::vec::convert_to_float(y);
x0 = x0 / (one + x0.neg().exp_u20());
x1 = x1 / (one + x1.neg().exp_u20());
x0 = x0 * y0;
x1 = x1 * y1;
bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
out_vec.store(out + d);
}
}
} // anonymous namespace
template <typename scalar_t>
void fused_experts_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
scalar_t* __restrict__ A_tmp,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad) {
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
// stage 1: intermediate_cache0 = hidden_states @ w1
const int64_t MB = div_up(num_tokens_post_pad, BLOCK_M);
const int64_t NB = div_up(2 * N, BLOCK_N);
int64_t scale_size_N = div_up(2 * N, block_size_N);
int64_t scale_size_K = div_up(K, block_size_K);
int64_t blocks_n_per_group = block_size_N / BLOCK_N;
const int64_t stride_e = 2 * N * K;
const int64_t stride_n = K;
// here we only parallel on half of 2N to fuse silu_and_mul with gemm
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
// get local pointers
int tid = at::get_thread_num();
scalar_t* __restrict__ A = A_tmp + tid * BLOCK_M * K;
bool is_brgemm_used = false;
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB;
int64_t nb = i % NB;
int64_t n_size = std::min(2 * N - nb * BLOCK_N, BLOCK_N);
// B shape [K, n_size] in vnni format
int32_t expert_id = expert_ids[mb];
const at::Float8_e4m3fn* __restrict__ B = packed_w1 + expert_id * stride_e + nb * BLOCK_N * stride_n;
const float* __restrict__ Bs = w1s + expert_id * scale_size_N * scale_size_K + (nb / blocks_n_per_group) * scale_size_K;
// 1.a load A
const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
int64_t m_size = offsets[mb + 1] - offsets[mb];
const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(m_size);
is_brgemm_used = is_brgemm_used || use_brgemm;
for (int64_t m = 0; m < m_size; ++m) {
int32_t index = A_ids[m] / topk;
copy_stub(A + m * K, input + index * K, K);
}
const int64_t offset = offsets[mb];
tinygemm_kernel<scalar_t>(
/* A */ A,
/* B */ B,
/* C */ ic0 + offset * 2 * N + nb * BLOCK_N,
/* Btmp */ B_tmp + tid * BLOCK_N * std::max(K, N),
/* Ctmp */ C_tmp + tid * 2 * BLOCK_M * BLOCK_N,
/* scale */ Bs,
/* M */ m_size,
/* N */ n_size,
/* K */ K,
/* lda */ K,
/* ldb */ n_size,
/* ldc */ 2 * N,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
}
if (is_brgemm_used) {
at::native::cpublas::brgemm_release();
}
});
// stage 1.5: intermediate_cache1 = silu(intermediate_cache0)
at::parallel_for(0, M * topk, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
silu_and_mul_stub(
ic1 + m * N,
ic0 + m * 2 * N,
ic0 + m * 2 * N + N,
N);
}
});
// stage 2: intermediate_cache2 = intermediate_cache1 @ w2
// w2 : [E, K, N] as [E, OC, IC]
const int64_t OC = K; // rename K as OC
const int64_t IC = N; // rename N as IC
const int64_t MB2 = MB;
const int64_t NB2 = div_up(OC, BLOCK_N);
scale_size_N = div_up(K, block_size_N);
scale_size_K = div_up(N, block_size_K);
const int64_t stride_e2 = OC * IC;
const int64_t stride_oc = IC;
// parallel on [MB2, NB2]
at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
int tid = at::get_thread_num();
alignas(64) scalar_t C[BLOCK_M * BLOCK_K];
bool is_brgemm_used = false;
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB2;
int64_t nb = i % NB2;
int64_t m_size = offsets[mb + 1] - offsets[mb];
int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);
const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(m_size);
is_brgemm_used = is_brgemm_used || use_brgemm;
// A ptr from ic1 of [M * topk, N] in sorted order
// so as to avoid copy A to tmp buffer again
const scalar_t* __restrict__ A = ic1 + offsets[mb] * N;
const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
// B shape [IC, n_size] in vnni format
int32_t expert_id = expert_ids[mb];
const at::Float8_e4m3fn* __restrict__ B = packed_w2 + expert_id * stride_e2 + nb * BLOCK_N * stride_oc;
const float* __restrict__ Bs = w2s + expert_id * scale_size_N * scale_size_K + (nb / blocks_n_per_group) * scale_size_K;
tinygemm_kernel<scalar_t>(
/* A */ A,
/* B */ B,
/* C */ C,
/* Btmp */ B_tmp + tid * BLOCK_N * std::max(K, N),
/* Ctmp */ C_tmp + tid * 2 * BLOCK_M * BLOCK_N,
/* scale */ Bs,
/* M */ m_size,
/* N */ n_size,
/* K */ IC,
/* lda */ IC,
/* ldb */ n_size,
/* ldc */ BLOCK_N,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
// 2.b copy from C to ic2 in original order
// and also mul topk_weights in float32
for (int64_t m = 0; m < m_size; ++m) {
int32_t index = A_ids[m];
float weight = topk_weights[index];
copy_mul_stub(ic2 + index * K + nb * BLOCK_N, C + m * BLOCK_N, weight, n_size);
}
}
if (is_brgemm_used) {
at::native::cpublas::brgemm_release();
}
});
// stage 3: out = intermediate_cache2.sum(dim=1)
// from [M, topk, K] to [M, K]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
sum_stub(output + m * K, ic2 + m * topk * K, topk, K);
}
});
}
#define INSTANTIATE_MOE_FP8_TEMPLATE(TYPE) \
template void fused_experts_fp8_kernel_impl<TYPE>( \
TYPE* __restrict__ output, \
TYPE* __restrict__ ic0, \
TYPE* __restrict__ ic1, \
TYPE* __restrict__ ic2, \
TYPE* __restrict__ A_tmp, \
TYPE* __restrict__ B_tmp, \
float* __restrict__ C_tmp, \
const TYPE* __restrict__ input, \
const at::Float8_e4m3fn* __restrict__ packed_w1, \
const at::Float8_e4m3fn* __restrict__ packed_w2, \
const float* __restrict__ w1s, \
const float* __restrict__ w2s, \
int64_t block_size_N, \
int64_t block_size_K, \
const float* __restrict__ topk_weights, \
const int32_t* __restrict__ sorted_ids, \
const int32_t* __restrict__ expert_ids, \
const int32_t* __restrict__ offsets, \
int64_t M, \
int64_t N, \
int64_t K, \
int64_t E, \
int64_t topk, \
int64_t num_tokens_post_pad)
INSTANTIATE_MOE_FP8_TEMPLATE(at::BFloat16);
INSTANTIATE_MOE_FP8_TEMPLATE(at::Half);
template <typename scalar_t>
void shared_expert_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K) {
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
// stage 1: intermediate_cache0 = hidden_states @ w1
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(2 * N, BLOCK_N);
int64_t scale_size_K = div_up(K, block_size_K);
int64_t blocks_n_per_group = block_size_N / BLOCK_N;
const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(M);
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
int tid = at::get_thread_num();
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB;
int64_t nb = i % NB;
int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
int64_t n_size = std::min(2 * N - nb * BLOCK_N, BLOCK_N);
tinygemm_kernel<scalar_t>(
/* A */ input + mb * BLOCK_M * K,
/* B */ packed_w1 + nb * BLOCK_N * K,
/* C */ ic0 + mb * BLOCK_M * 2 * N + nb * BLOCK_N,
/* Btmp */ B_tmp + tid * BLOCK_N * std::max(K, N),
/* Ctmp */ C_tmp + tid * 2 * BLOCK_M * BLOCK_N,
/* scale */ w1s + (nb / blocks_n_per_group) * scale_size_K,
/* M */ m_size,
/* N */ n_size,
/* K */ K,
/* lda */ K,
/* ldb */ n_size,
/* ldc */ 2 * N,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
}
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
});
// stage 1.5: intermediate_cache1 = silu(intermediate_cache0)
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
silu_and_mul_stub(
ic1 + m * N,
ic0 + m * 2 * N,
ic0 + m * 2 * N + N,
N);
}
});
// stage 2: intermediate_cache2 = intermediate_cache1 @ w2
// w2 : [K, N] as [OC, IC]
const int64_t OC = K; // rename K as OC
const int64_t IC = N; // rename N as IC
const int64_t MB2 = MB;
const int64_t NB2 = div_up(K, BLOCK_N);
scale_size_K = div_up(N, block_size_K);
// parallel on [MB2, NB2]
at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
int tid = at::get_thread_num();
alignas(64) scalar_t C[BLOCK_M * BLOCK_K];
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB2;
int64_t nb = i % NB2;
int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);
// 2.a gemm: C = A @ B
tinygemm_kernel<scalar_t>(
/* A */ ic1 + mb * BLOCK_M * N,
/* B */ packed_w2 + nb * BLOCK_N * N,
/* C */ C,
/* Btmp */ B_tmp + tid * BLOCK_N * std::max(K, N),
/* Ctmp */ C_tmp + tid * 2 * BLOCK_M * BLOCK_N,
/* scale */ w2s + (nb / blocks_n_per_group) * scale_size_K,
/* M */ m_size,
/* N */ n_size,
/* K */ IC,
/* lda */ IC,
/* ldb */ n_size,
/* ldc */ BLOCK_N,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
// 2.b copy from C to output and add fused_experts_out
scalar_t* __restrict__ out = output + mb * BLOCK_M * K + nb * BLOCK_N;
const scalar_t* __restrict__ fused_out = fused_experts_out + mb * BLOCK_M * K + nb * BLOCK_N;
for (int64_t m = 0; m < m_size; ++m) {
add_mul_stub(out + m * K, C + m * BLOCK_N, fused_out + m * K, routed_scaling_factor, n_size);
}
}
});
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
}
#define INSTANTIATE_SHARED_EXPERT_FP8_TEMPLATE(TYPE) \
template void shared_expert_fp8_kernel_impl<TYPE>( \
TYPE* __restrict__ output, \
TYPE* __restrict__ ic0, \
TYPE* __restrict__ ic1, \
TYPE* __restrict__ B_tmp, \
float* __restrict__ C_tmp, \
const TYPE* __restrict__ input, \
const at::Float8_e4m3fn* __restrict__ packed_w1, \
const at::Float8_e4m3fn* __restrict__ packed_w2, \
const float* __restrict__ w1s, \
const float* __restrict__ w2s, \
int64_t block_size_N, \
int64_t block_size_K, \
const TYPE* __restrict__ fused_experts_out, \
float routed_scaling_factor, \
int64_t M, \
int64_t N, \
int64_t K)
INSTANTIATE_SHARED_EXPERT_FP8_TEMPLATE(at::BFloat16);
INSTANTIATE_SHARED_EXPERT_FP8_TEMPLATE(at::Half);

View File

@ -0,0 +1,769 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "vec.h"
#include "gemm.h"
// clang-format off
namespace {
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t size) {
using Vec = at::vec::Vectorized<scalar_t>;
// no remainder
#pragma GCC unroll 4
for (int64_t d = 0; d < size; d += Vec::size()) {
Vec data = Vec::loadu(input + d);
data.store(out + d);
}
}
template <>
inline void copy_stub<uint8_t>(uint8_t* __restrict__ out, const uint8_t* __restrict__ input, int64_t size) {
// size might be 64x + 32
std::memcpy(out, input, size * sizeof(uint8_t));
}
template <typename scalar_t>
inline void copy_mul_stub(scalar_t* __restrict__ out, const float* __restrict__ input, float weight, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
const fVec weight_vec = fVec(weight);
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d) * weight_vec;
fVec data1 = fVec::loadu(input + d + fVec::size()) * weight_vec;
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] * weight);
}
}
// acc from [topk, K] to [K]
template <typename scalar_t>
inline void sum_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t topk, int64_t K) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
if (topk == 1) {
// do copy for topk = 1
copy_stub(out, input, K);
} else {
// do sum for topk != 1
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= K - kVecSize; d += kVecSize) {
fVec sum_fvec0 = fVec(0.f);
fVec sum_fvec1 = fVec(0.f);
for (int t = 0; t < topk; ++t) {
bVec x_bvec = bVec::loadu(input + t * K + d);
fVec x_fvec0, x_fvec1;
std::tie(x_fvec0, x_fvec1) = at::vec::convert_to_float(x_bvec);
sum_fvec0 += x_fvec0;
sum_fvec1 += x_fvec1;
}
bVec out_bvec = convert_from_float_ext<scalar_t>(sum_fvec0, sum_fvec1);
out_bvec.store(out + d);
}
for (; d < K; ++d) {
float sum_val = 0.f;
for (int t = 0; t < topk; ++t) {
sum_val += static_cast<float>(input[t * K + d]);
}
out[d] = static_cast<scalar_t>(sum_val);
}
}
}
// out = input + input2 * scale
template <typename scalar_t>
inline void add_mul_stub(scalar_t* __restrict__ out, const float* __restrict__ input,
const scalar_t* __restrict__ input2, float scale, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
const fVec s_vec = fVec(scale);
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec x0 = fVec::loadu(input + d);
fVec x1 = fVec::loadu(input + d + fVec::size());
bVec y_bvec = bVec::loadu(input2 + d);
fVec y0, y1;
std::tie(y0, y1) = at::vec::convert_to_float(y_bvec);
x0 = x0 + y0 * s_vec;
x1 = x1 + y1 * s_vec;
bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] + float(input2[d]) * scale);
}
}
/// gemm for w13
template <typename scalar_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B0, const int8_t* __restrict__ B1, scalar_t* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs0, const float* __restrict__ Bs1,
const int32_t* __restrict__ Bcomp0, const int32_t* __restrict__ Bcomp1,
int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni<at::BFloat16, BLOCK_M, BLOCK_N> {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B0, const int8_t* __restrict__ B1, at::BFloat16* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs0, const float* __restrict__ Bs1,
const int32_t* __restrict__ Bcomp0, const int32_t* __restrict__ Bcomp1,
int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
static_assert(COLS % 2 == 0);
__m512i va;
__m512i vb0[COLS];
__m512i vb1[COLS];
__m512i vc0[ROWS * COLS];
__m512i vc1[ROWS * COLS];
__m512i vcomp0[COLS];
__m512i vcomp1[COLS];
__m512 was;
__m512 vbs0[COLS];
__m512 vbs1[COLS];
auto loadc = [&](auto i) {
vc0[i] = _mm512_set1_epi32(0);
vc1[i] = _mm512_set1_epi32(0);
};
Unroll<ROWS * COLS>{}(loadc);
const int64_t K4 = K >> 2;
const int64_t lda4 = lda >> 2;
const int64_t ldb4 = ldb; // ldb * 4 >> 2;
const int32_t* a_ptr = reinterpret_cast<const int32_t*>(A);
const int32_t* b0_ptr = reinterpret_cast<const int32_t*>(B0);
const int32_t* b1_ptr = reinterpret_cast<const int32_t*>(B1);
auto compute = [&](auto i, int64_t k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = _mm512_set1_epi32(a_ptr[row * lda4 + k]);
}
if constexpr (row == 0) {
vb0[col] = _mm512_loadu_si512(b0_ptr + k * ldb4 + col * 16);
vb1[col] = _mm512_loadu_si512(b1_ptr + k * ldb4 + col * 16);
}
vc0[i] = _mm512_dpbusd_epi32(vc0[i], va, vb0[col]);
vc1[i] = _mm512_dpbusd_epi32(vc1[i], va, vb1[col]);
};
for (int64_t k = 0; k < K4; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
auto scalec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// load a scale
if constexpr(col == 0) {
was = _mm512_set1_ps(As[row]);
}
// load b scale and vcomp
if constexpr (row == 0) {
vbs0[col] = _mm512_loadu_ps(Bs0 + col * 16);
vbs1[col] = _mm512_loadu_ps(Bs1 + col * 16);
vcomp0[col] = _mm512_loadu_si512(Bcomp0 + col * 16);
vcomp1[col] = _mm512_loadu_si512(Bcomp1 + col * 16);
}
__m512 c0 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc0[i], vcomp0[col]));
__m512 c1 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc1[i], vcomp1[col]));
vc0[i] = _mm512_castps_si512(_mm512_mul_ps(_mm512_mul_ps(c0, was), vbs0[col]));
vc1[i] = _mm512_castps_si512(_mm512_mul_ps(_mm512_mul_ps(c1, was), vbs1[col]));
};
Unroll<ROWS * COLS>{}(scalec);
using Vec = at::vec::Vectorized<float>;
const Vec one = Vec(1.f);
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// for COLS = 2, 4 use 512bit store
if constexpr (col % 2 == 0) {
Vec x0 = _mm512_castsi512_ps(vc0[row * COLS + col + 0]);
Vec x1 = _mm512_castsi512_ps(vc0[row * COLS + col + 1]);
Vec y0 = _mm512_castsi512_ps(vc1[row * COLS + col + 0]);
Vec y1 = _mm512_castsi512_ps(vc1[row * COLS + col + 1]);
// silu
x0 = x0 / (one + x0.neg().exp_u20());
x1 = x1 / (one + x1.neg().exp_u20());
// mul
x0 = x0 * y0;
x1 = x1 * y1;
_mm512_storeu_si512(
reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
(__m512i)(_mm512_cvtne2ps_pbh(__m512(x1), __m512(x0))));
}
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_VNNI(MB_SIZE, NB_SIZE) \
tinygemm_kernel_vnni<scalar_t, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B0 + nb_start * 4, B1 + nb_start * 4, \
C + mb_start * ldc + nb_start, As + mb_start, \
Bs0 + nb_start, Bs1 + nb_start, Bcomp0 + nb_start, Bcomp1 + nb_start,\
K, lda, ldb, ldc);
template <typename scalar_t>
void tinygemm_kernel(
const uint8_t* __restrict__ A,
const int8_t* __restrict__ B0,
const int8_t* __restrict__ B1,
scalar_t* __restrict__ C,
const float* __restrict__ As,
const float* __restrict__ Bs0,
const float* __restrict__ Bs1,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc) {
const int32_t* Bcomp0 = reinterpret_cast<const int32_t*>(B0 + block_size_n() * K);
const int32_t* Bcomp1 = reinterpret_cast<const int32_t*>(B1 + block_size_n() * K);
// pattern: 1-(2+2)-(8+8)
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 32;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
case 0x12: LAUNCH_TINYGEMM_KERNEL_VNNI(1, 32); break;
case 0x22: LAUNCH_TINYGEMM_KERNEL_VNNI(2, 32); break;
case 0x32: LAUNCH_TINYGEMM_KERNEL_VNNI(3, 32); break;
case 0x42: LAUNCH_TINYGEMM_KERNEL_VNNI(4, 32); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
/// gemm for w2
template <typename scalar_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni2 {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, float* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs, const int32_t* __restrict__ Bcomp,
int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni2<at::BFloat16, BLOCK_M, BLOCK_N> {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, float* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs, const int32_t* __restrict__ Bcomp,
int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
static_assert(COLS % 2 == 0);
__m512i va;
__m512i vb[COLS];
__m512i vc[ROWS * COLS];
__m512i vcomp[COLS];
__m512 was;
__m512 vbs[COLS];
auto loadc = [&](auto i) {
vc[i] = _mm512_set1_epi32(0);
};
Unroll<ROWS * COLS>{}(loadc);
const int64_t K4 = K >> 2;
const int64_t lda4 = lda >> 2;
const int64_t ldb4 = ldb; // ldb * 4 >> 2;
const int32_t* a_ptr = reinterpret_cast<const int32_t*>(A);
const int32_t* b_ptr = reinterpret_cast<const int32_t*>(B);
auto compute = [&](auto i, int64_t k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = _mm512_set1_epi32(a_ptr[row * lda4 + k]);
}
if constexpr (row == 0) {
vb[col] = _mm512_loadu_si512(b_ptr + k * ldb4 + col * 16);
}
vc[i] = _mm512_dpbusd_epi32(vc[i], va, vb[col]);
};
for (int64_t k = 0; k < K4; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// load a scale
if constexpr(col == 0) {
was = _mm512_set1_ps(As[row]);
}
// load b scale and vcomp per 2 vectors
// also load bias if any
if constexpr (row == 0) {
if constexpr (col % 2 == 0) {
vbs[col + 0] = _mm512_loadu_ps(Bs + col * 16);
vbs[col + 1] = _mm512_loadu_ps(Bs + col * 16 + 16);
vcomp[col + 0] = _mm512_loadu_si512(Bcomp + col * 16);
vcomp[col + 1] = _mm512_loadu_si512(Bcomp + col * 16 + 16);
}
}
__m512 x = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc[i], vcomp[col]));
x = _mm512_mul_ps(_mm512_mul_ps(x, was), vbs[col]);
_mm512_storeu_ps(reinterpret_cast<__m512*>(C + row * ldc + col * 16), x);
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_VNNI2(MB_SIZE, NB_SIZE) \
tinygemm_kernel_vnni2<scalar_t, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B + nb_start * 4, C + mb_start * ldc + nb_start, \
As + mb_start, Bs + nb_start, Bcomp + nb_start, \
K, lda, ldb, ldc);
template <typename scalar_t>
void tinygemm_kernel(
const uint8_t* __restrict__ A,
const int8_t* __restrict__ B,
float* __restrict__ C,
const float* __restrict__ As,
const float* __restrict__ Bs,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc) {
// B compensation
const int32_t* Bcomp = reinterpret_cast<const int32_t*>(B + block_size_n() * K);
// pattern: 1-4-16
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 64;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int64_t mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
case 0x12: LAUNCH_TINYGEMM_KERNEL_VNNI2(1, 32); break;
case 0x22: LAUNCH_TINYGEMM_KERNEL_VNNI2(2, 32); break;
case 0x32: LAUNCH_TINYGEMM_KERNEL_VNNI2(3, 32); break;
case 0x42: LAUNCH_TINYGEMM_KERNEL_VNNI2(4, 32); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
} // anonymous namespace
template <typename scalar_t>
void fused_experts_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
uint8_t* __restrict__ A_tmp,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad) {
// handle 2 tiles per block
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
// stage 0: quantize input to uint8, [M, K]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_tmp + m * K,
As_tmp[m],
input + m * K,
K);
}
});
// stage 1: intermediate_cache1 = silu(hidden_states @ w1)
const int64_t MB = div_up(num_tokens_post_pad, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
// strides for w1: [E, 2N, K]
TORCH_CHECK(N % BLOCK_N == 0, "Fixme when N is not multiples of ", BLOCK_N);
// K and N are packed for int8
const int64_t packed_K = get_row_size<int8_t>(K);
const int64_t packed_N = get_row_size<int8_t>(N);
const int64_t stride_e = 2 * N * packed_K;
const int64_t stride_n = packed_K;
// here we only parallel on half of 2N to fuse silu_and_mul with gemm
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
// get local pointers
int tid = at::get_thread_num();
uint8_t* __restrict__ A = A_tmp + tid * BLOCK_M * K;
alignas(64) float As[BLOCK_M];
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB;
int64_t nb = i % NB;
// nb0 from top half and nb1 from bottom half
int64_t nb0 = nb, nb1 = nb + NB;
int64_t n_size = std::min(N - nb0 * BLOCK_N, BLOCK_N);
// B shape [K, n_size] in vnni format
int32_t expert_id = expert_ids[mb];
const int8_t* __restrict__ B0 = packed_w1 + expert_id * stride_e + nb0 * BLOCK_N * stride_n;
const int8_t* __restrict__ B1 = packed_w1 + expert_id * stride_e + nb1 * BLOCK_N * stride_n;
const float* __restrict__ Bs0 = w1s + expert_id * 2 * N + nb0 * BLOCK_N;
const float* __restrict__ Bs1 = w1s + expert_id * 2 * N + nb1 * BLOCK_N;
// 1.a load A
const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
int64_t m_size = offsets[mb + 1] - offsets[mb];
for (int64_t m = 0; m < m_size; ++m) {
int32_t index = A_ids[m] / topk;
copy_stub(A + m * K, Aq_tmp + index * K, K);
As[m] = As_tmp[index];
}
// fused 1.b: silu_and_mul(A @ B0, A @ B1)
const int64_t offset = offsets[mb];
tinygemm_kernel(
/* A */ A,
/* B0 */ B0,
/* B1 */ B1,
/* C */ ic1 + offset * N + nb * BLOCK_N,
/* As */ As,
/* Bs0 */ Bs0,
/* Bs1 */ Bs1,
/* M */ m_size,
/* N */ n_size,
/* K */ K,
/* lda */ K,
/* ldb */ n_size,
/* ldc */ N);
}
});
// stage 1.5: quantize ic1 to uint8, [M * topk, N]
at::parallel_for(0, M * topk, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_tmp + m * N,
As_tmp[m],
ic1 + m * N,
N);
}
});
// stage 2: intermediate_cache2 = intermediate_cache1 @ w2
// w2 : [E, K, N] as [E, OC, IC]
const int64_t OC = K; // rename K as OC
const int64_t IC = N; // rename N as IC
const int64_t MB2 = MB;
const int64_t NB2 = div_up(OC, BLOCK_N);
const int64_t stride_e2 = OC * packed_N;
const int64_t stride_oc = packed_N;
// parallel on [MB2, NB2]
at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
// get local pointers
int tid = at::get_thread_num();
// we won't be using C1 for gemm2
float* __restrict__ C = C_tmp + tid * 2 * BLOCK_M * BLOCK_N;
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB2;
int64_t nb = i % NB2;
int64_t m_size = offsets[mb + 1] - offsets[mb];
int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);
// A ptr from ic1 of [M * topk, N] in sorted order
// so as to avoid copy A to tmp buffer again
const uint8_t* __restrict__ A = Aq_tmp + offsets[mb] * N;
const float* __restrict__ As = As_tmp + offsets[mb];
const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
// B shape [IC, n_size] in vnni format
int32_t expert_id = expert_ids[mb];
const int8_t* __restrict__ B = packed_w2 + expert_id * stride_e2 + nb * BLOCK_N * stride_oc;
const float* __restrict__ Bs = w2s + expert_id * K + nb * BLOCK_N;
// 2.a gemm: C = A @ B
tinygemm_kernel<scalar_t>(
/* A */ A,
/* B */ B,
/* C */ C,
/* As */ As,
/* Bs */ Bs,
/* M */ m_size,
/* N */ n_size,
/* K */ IC,
/* lda */ IC,
/* ldb */ n_size,
/* ldc */ BLOCK_N);
// 2.b copy from C to ic2 in original order
// and also mul topk_weights in float32
for (int64_t m = 0; m < m_size; ++m) {
int32_t index = A_ids[m];
float weight = topk_weights[index];
copy_mul_stub(ic2 + index * K + nb * BLOCK_N, C + m * BLOCK_N, weight, n_size);
}
}
});
// stage 3: out = intermediate_cache2.sum(dim=1)
// from [M, topk, K] to [M, K]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
sum_stub(output + m * K, ic2 + m * topk * K, topk, K);
}
});
}
#define INSTANTIATE_MOE_INT8_TEMPLATE(TYPE) \
template void fused_experts_int8_kernel_impl<TYPE> ( \
TYPE* __restrict__ output, TYPE* __restrict__ ic1, \
TYPE* __restrict__ ic2, uint8_t* __restrict__ A_tmp, \
float* __restrict__ C_tmp, uint8_t* __restrict__ Aq_tmp, \
float* __restrict__ As_tmp, const TYPE* __restrict__ input, \
const int8_t* __restrict__ packed_w1, const int8_t* __restrict__ packed_w2, \
const float* __restrict__ w1s, const float* __restrict__ w2s, \
const float* __restrict__ topk_weights, const int32_t* __restrict__ sorted_ids, \
const int32_t* __restrict__ expert_ids, const int32_t* __restrict__ offsets, \
int64_t M, int64_t N, int64_t K, int64_t E, int64_t topk, int64_t num_tokens_post_pad)
INSTANTIATE_MOE_INT8_TEMPLATE(at::BFloat16);
INSTANTIATE_MOE_INT8_TEMPLATE(at::Half);
template <typename scalar_t>
void shared_expert_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K) {
// handle 2 tiles per block
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
// stage 0: quantize input to uint8, [M, K]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_tmp + m * K,
As_tmp[m],
input + m * K,
K);
}
});
// stage 1: intermediate_cache1 = silu(hidden_states @ w1)
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
TORCH_CHECK(N % BLOCK_N == 0, "Fixme when N is not multiples of ", BLOCK_N);
// K and N are packed for int8
const int64_t packed_K = get_row_size<int8_t>(K);
const int64_t packed_N = get_row_size<int8_t>(N);
const int64_t stride_n = packed_K;
// here we only parallel on half of 2N to fuse silu_and_mul with gemm
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB;
int64_t nb = i % NB;
// nb0 from top half and nb1 from bottom half
int64_t nb0 = nb, nb1 = nb + NB;
int64_t n_size = std::min(N - nb0 * BLOCK_N, BLOCK_N);
int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
// A shape [m_size, K]
const uint8_t* A = Aq_tmp + mb * BLOCK_M * K;
const float* As = As_tmp + mb * BLOCK_M;
// B shape [K, n_size] in vnni format
const int8_t* __restrict__ B0 = packed_w1 + nb0 * BLOCK_N * stride_n;
const int8_t* __restrict__ B1 = packed_w1 + nb1 * BLOCK_N * stride_n;
const float* __restrict__ Bs0 = w1s + nb0 * BLOCK_N;
const float* __restrict__ Bs1 = w1s + nb1 * BLOCK_N;
// fused 1.b: silu_and_mul(A @ B0, A @ B1)
tinygemm_kernel(
/* A */ A,
/* B0 */ B0,
/* B1 */ B1,
/* C */ ic1 + mb * BLOCK_M * N + nb * BLOCK_N,
/* As */ As,
/* Bs0 */ Bs0,
/* Bs1 */ Bs1,
/* M */ m_size,
/* N */ n_size,
/* K */ K,
/* lda */ K,
/* ldb */ n_size,
/* ldc */ N);
}
});
// stage 1.5: quantize ic1 to uint8, [M * topk, N]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_tmp + m * N,
As_tmp[m],
ic1 + m * N,
N);
}
});
// stage 2: intermediate_cache2 = intermediate_cache1 @ w2
// w2 : [K, N] as [OC, IC]
const int64_t OC = K; // rename K as OC
const int64_t IC = N; // rename N as IC
const int64_t MB2 = MB;
const int64_t NB2 = div_up(OC, BLOCK_N);
const int64_t stride_oc = packed_N;
// parallel on [MB2, NB2]
at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
// get local pointers
int tid = at::get_thread_num();
// we won't be using C1 for gemm2
float* __restrict__ C = C_tmp + tid * 2 * BLOCK_M * BLOCK_N;
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB2;
int64_t nb = i % NB2;
int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);
// A shape [m_size, IC]
const uint8_t* __restrict__ A = Aq_tmp + mb * BLOCK_M * N;
const float* __restrict__ As = As_tmp + mb * BLOCK_M;
// B shape [IC, n_size] in vnni format
const int8_t* __restrict__ B = packed_w2 + nb * BLOCK_N * stride_oc;
const float* __restrict__ Bs = w2s + nb * BLOCK_N;
// 2.a gemm: C = A @ B
tinygemm_kernel<scalar_t>(
/* A */ A,
/* B */ B,
/* C */ C,
/* As */ As,
/* Bs */ Bs,
/* M */ m_size,
/* N */ n_size,
/* K */ IC,
/* lda */ IC,
/* ldb */ n_size,
/* ldc */ BLOCK_N);
// 2.b copy from C to output and add fused_experts_out
scalar_t* __restrict__ out = output + mb * BLOCK_M * K + nb * BLOCK_N;
const scalar_t* __restrict__ fused_out = fused_experts_out + mb * BLOCK_M * K + nb * BLOCK_N;
for (int64_t m = 0; m < m_size; ++m) {
add_mul_stub(out + m * K, C + m * BLOCK_N, fused_out + m * K, routed_scaling_factor, n_size);
}
}
});
}
#define INSTANTIATE_SHARED_EXPERT_INT8_TEMPLATE(TYPE) \
template void shared_expert_int8_kernel_impl<TYPE> ( \
TYPE* __restrict__ output, TYPE* __restrict__ ic1, \
float* __restrict__ C_tmp, uint8_t* __restrict__ Aq_tmp, \
float* __restrict__ As_tmp, const TYPE* __restrict__ input, \
const int8_t* __restrict__ packed_w1, const int8_t* __restrict__ packed_w2, \
const float* __restrict__ w1s, const float* __restrict__ w2s, \
const TYPE* __restrict__ fused_experts_out, float routed_scaling_factor, \
int64_t M, int64_t N, int64_t K)
INSTANTIATE_SHARED_EXPERT_INT8_TEMPLATE(at::BFloat16);
INSTANTIATE_SHARED_EXPERT_INT8_TEMPLATE(at::Half);

308
csrc/cpu/sgl-kernels/vec.h Normal file
View File

@ -0,0 +1,308 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#pragma once
// clang-format off
#if defined(__AVX512F__) && defined(__AVX512BF16__) && defined(__AMX_BF16__)
#define CPU_CAPABILITY_AVX512
#endif
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
namespace {
using namespace at::vec;
template <typename scalar_t,
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
inline Vectorized<scalar_t> convert_from_float_ext(const Vectorized<float>& a, const Vectorized<float>& b) {
return at::vec::convert_from_float<scalar_t>(a, b);
}
#if defined(CPU_CAPABILITY_AVX512)
// `at::vec::convert_from_float<>` from PyTorch doesn't have avx512-bf16 intrinsics
// use native instruction for bfloat16->float32 conversion
template <>
inline Vectorized<at::BFloat16> convert_from_float_ext<at::BFloat16>(const Vectorized<float>& a, const Vectorized<float>& b) {
return (__m512i)(_mm512_cvtne2ps_pbh(__m512(b), __m512(a)));
}
#define CVT_BF16_TO_FP32(a) \
_mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(a), 16))
#define CVT_FP16_TO_FP32(a) \
_mm512_cvtps_ph(a, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC))
// this doesn't hanel NaN.
inline __m512bh cvt_e4m3_bf16_intrinsic_no_nan(__m256i fp8_vec) {
const __m512i x = _mm512_cvtepu8_epi16(fp8_vec);
const __m512i mant = _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(0x07)), 4);
const __m512i raw_exp = _mm512_srli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(0x78)), 3);
const __m512i exp = _mm512_slli_epi16(_mm512_add_epi16(raw_exp, _mm512_set1_epi16(120)), 7);
const __m512i nonsign = _mm512_or_si512(exp, mant);
const __m512i sign = _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(0x80)), 8);
const __m512i combined = _mm512_or_si512(nonsign, sign);
const __mmask32 is_nonzero = _mm512_cmpneq_epi16_mask(x, _mm512_setzero_si512());
return (__m512bh)_mm512_maskz_mov_epi16(is_nonzero, combined);
}
inline __m512bh cvt_e4m3_bf16_intrinsic_without_denorm(__m256i fp8_vec) {
// The following conversion is without denorm behavior, that is to say,
// Max subnorm : S.0000.111 = 0.875 2**(6)
// Min subnorm : S.0000.001 = 2**(9)
// 0.0019 ~ 0.0137 cannot be converted correctly.
__m512i x = _mm512_cvtepu8_epi16(fp8_vec);
auto mask = _mm512_cmpneq_epi16_mask(
_mm512_and_si512(x, _mm512_set1_epi16(127)),
_mm512_setzero_si512()); // mask = x & 0x7f
auto mask_nan = _mm512_cmpneq_epi16_mask(
_mm512_and_si512(x, _mm512_set1_epi16(127)),
_mm512_set1_epi16(127)); // mask_nan = x & 0x7f
auto mantissa = _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(7)), 4); // mantissa = (x & 7) << 4
auto exponent = _mm512_add_epi16(
_mm512_srli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(120)), 3),
_mm512_set1_epi16(120)); // exponent = (((x >> 3) & 15) + 120)
auto nonsign = _mm512_maskz_mov_epi16(mask, _mm512_or_si512(mantissa, _mm512_slli_epi16(exponent, 7)));
nonsign = _mm512_mask_mov_epi16(_mm512_set1_epi16(0x7fff), mask_nan, nonsign); // deal with Nan
return (__m512bh)(_mm512_or_si512(
nonsign,
_mm512_slli_epi16(
_mm512_and_si512(x, _mm512_set1_epi16(128)),
8))); // add sign (x & 128) << 8
}
inline __m512bh cvt_e4m3_bf16_intrinsic_with_denorm(__m256i fp8_vec) {
__m512i x = _mm512_cvtepu8_epi16(fp8_vec);
__m512i lg2mant = _mm512_mask_mov_epi16(
_mm512_mask_mov_epi16(
_mm512_setzero_si512(), _mm512_test_epi16_mask(x, _mm512_set1_epi16(2)), _mm512_set1_epi16(1)),
_mm512_test_epi16_mask(x, _mm512_set1_epi16(4)),
_mm512_set1_epi16(2));
return (__m512bh)(_mm512_or_si512(
_mm512_maskz_mov_epi16(
_mm512_cmpneq_epi16_mask(_mm512_and_si512(x, _mm512_set1_epi16(127)), _mm512_setzero_si512()),
_mm512_mask_blend_epi16(
_mm512_test_epi16_mask(x, _mm512_set1_epi16(120)),
_mm512_or_si512(
_mm512_and_si512(
_mm512_sllv_epi16(
_mm512_and_si512(x, _mm512_set1_epi16(3)), _mm512_sub_epi16(_mm512_set1_epi16(7), lg2mant)),
_mm512_set1_epi16(0x007f)),
_mm512_slli_epi16(_mm512_add_epi16(lg2mant, _mm512_set1_epi16(118)), 7)),
_mm512_or_si512(
_mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(7)), 4),
_mm512_slli_epi16(
_mm512_add_epi16(
_mm512_srli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(120)), 3), _mm512_set1_epi16(120)),
7)))),
_mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(128)), 8)));
}
inline __m512bh CVT_FP8_TO_BF16(__m256i a) {
#ifdef SGLANG_CPU_FP8_CVT_FTZ
return cvt_e4m3_bf16_intrinsic_no_nan(a);
#else
return cvt_e4m3_bf16_intrinsic_with_denorm(a);
#endif
}
#endif
// vector to scalar reduction
#if defined(CPU_CAPABILITY_AVX512) && 0
inline float vec_reduce_sum(const Vectorized<float>& a) {
return _mm512_reduce_add_ps(__m512(a));
}
inline float vec_reduce_max(const Vectorized<float>& a) {
return _mm512_reduce_max_ps(__m512(a));
}
#else
inline float vec_reduce_sum(const Vectorized<float>& a) {
return vec_reduce_all([](Vectorized<float>& x, Vectorized<float>& y) { return x + y; }, a);
}
inline float vec_reduce_max(const Vectorized<float>& a) {
return vec_reduce_all([](Vectorized<float>& x, Vectorized<float>& y) { return maximum(x, y); }, a);
}
#endif
// https://github.com/InternLM/lmdeploy/blob/086481ed84b59bee3b8e4274e5fc69620040c048/lmdeploy/pytorch/kernels/cuda/w8a8_triton_kernels.py#L282
template <typename scalar_t>
inline void quantize_row_int8(uint8_t* __restrict__ Aq, float& As,
const scalar_t* __restrict__ A, int64_t K, float eps = 1e-7) {
float amax = 0.f; // absolute max
for (int64_t k = 0; k < K; ++k) {
const float val = static_cast<float>(A[k]);
amax = std::max(amax, std::abs(val));
}
amax = std::max(amax, eps);
const float scale = amax / 127;
const float inv_scale = 127 / amax;
for (int64_t k = 0; k < K; ++k) {
const float val = static_cast<float>(A[k]) * inv_scale;
Aq[k] = (uint8_t)(std::round(val)) + 128;
}
As = scale;
}
#if defined(CPU_CAPABILITY_AVX512)
template <>
inline void quantize_row_int8<at::BFloat16>(uint8_t* __restrict__ Aq, float& As,
const at::BFloat16* __restrict__ A, int64_t K, float eps) {
const __m512 signBit = _mm512_set1_ps(-0.0f);
const __m512i off = _mm512_set1_epi32(128);
// K is 32x, no remainder
float amax = 0.f;
__m512 vamax0 = _mm512_set1_ps(0.f);
__m512 vamax1 = _mm512_set1_ps(0.f);
for (int64_t k = 0; k < K; k += 32) {
__m512i va = _mm512_loadu_si512((void*)(A + k));
__m512 va0 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 0));
__m512 va1 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 1));
vamax0 = _mm512_max_ps(vamax0, _mm512_andnot_ps(signBit, va0));
vamax1 = _mm512_max_ps(vamax1, _mm512_andnot_ps(signBit, va1));
}
amax = _mm512_reduce_max_ps(_mm512_max_ps(vamax0, vamax1));
amax = std::max(amax, eps);
const float scale = amax / 127;
const float inv_scale = 127 / amax;
const __m512 vd = _mm512_set1_ps(inv_scale);
for (int64_t k = 0; k < K; k += 32) {
__m512i va = _mm512_loadu_si512((void*)(A + k));
__m512 va0 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 0));
__m512 va1 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 1));
va0 = _mm512_mul_ps(va0, vd);
va1 = _mm512_mul_ps(va1, vd);
va0 = _mm512_roundscale_ps(va0, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
va1 = _mm512_roundscale_ps(va1, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
__m128i i0 = _mm512_cvtepi32_epi8(_mm512_add_epi32(_mm512_cvtps_epi32(va0), off));
__m128i i1 = _mm512_cvtepi32_epi8(_mm512_add_epi32(_mm512_cvtps_epi32(va1), off));
_mm256_storeu_si256(reinterpret_cast<__m256i*>(Aq + k), _mm256_set_m128i(i1, i0));
}
As = scale;
}
#endif
// transpose utils
// taken from my PR in ggml: https://github.com/ggml-org/llama.cpp/pull/8998
#if defined(CPU_CAPABILITY_AVX512)
inline void transpose_16x16_32bit(__m512i * v) {
__m512i v1[16];
v1[0] = _mm512_unpacklo_epi32(v[0], v[1]);
v1[1] = _mm512_unpackhi_epi32(v[0], v[1]);
v1[2] = _mm512_unpacklo_epi32(v[2], v[3]);
v1[3] = _mm512_unpackhi_epi32(v[2], v[3]);
v1[4] = _mm512_unpacklo_epi32(v[4], v[5]);
v1[5] = _mm512_unpackhi_epi32(v[4], v[5]);
v1[6] = _mm512_unpacklo_epi32(v[6], v[7]);
v1[7] = _mm512_unpackhi_epi32(v[6], v[7]);
v1[8] = _mm512_unpacklo_epi32(v[8], v[9]);
v1[9] = _mm512_unpackhi_epi32(v[8], v[9]);
v1[10] = _mm512_unpacklo_epi32(v[10], v[11]);
v1[11] = _mm512_unpackhi_epi32(v[10], v[11]);
v1[12] = _mm512_unpacklo_epi32(v[12], v[13]);
v1[13] = _mm512_unpackhi_epi32(v[12], v[13]);
v1[14] = _mm512_unpacklo_epi32(v[14], v[15]);
v1[15] = _mm512_unpackhi_epi32(v[14], v[15]);
v[0] = _mm512_unpacklo_epi64(v1[0], v1[2]);
v[1] = _mm512_unpackhi_epi64(v1[0], v1[2]);
v[2] = _mm512_unpacklo_epi64(v1[1], v1[3]);
v[3] = _mm512_unpackhi_epi64(v1[1], v1[3]);
v[4] = _mm512_unpacklo_epi64(v1[4], v1[6]);
v[5] = _mm512_unpackhi_epi64(v1[4], v1[6]);
v[6] = _mm512_unpacklo_epi64(v1[5], v1[7]);
v[7] = _mm512_unpackhi_epi64(v1[5], v1[7]);
v[8] = _mm512_unpacklo_epi64(v1[8], v1[10]);
v[9] = _mm512_unpackhi_epi64(v1[8], v1[10]);
v[10] = _mm512_unpacklo_epi64(v1[9], v1[11]);
v[11] = _mm512_unpackhi_epi64(v1[9], v1[11]);
v[12] = _mm512_unpacklo_epi64(v1[12], v1[14]);
v[13] = _mm512_unpackhi_epi64(v1[12], v1[14]);
v[14] = _mm512_unpacklo_epi64(v1[13], v1[15]);
v[15] = _mm512_unpackhi_epi64(v1[13], v1[15]);
v1[0] = _mm512_shuffle_i32x4(v[0], v[4], 0x88);
v1[1] = _mm512_shuffle_i32x4(v[1], v[5], 0x88);
v1[2] = _mm512_shuffle_i32x4(v[2], v[6], 0x88);
v1[3] = _mm512_shuffle_i32x4(v[3], v[7], 0x88);
v1[4] = _mm512_shuffle_i32x4(v[0], v[4], 0xdd);
v1[5] = _mm512_shuffle_i32x4(v[1], v[5], 0xdd);
v1[6] = _mm512_shuffle_i32x4(v[2], v[6], 0xdd);
v1[7] = _mm512_shuffle_i32x4(v[3], v[7], 0xdd);
v1[8] = _mm512_shuffle_i32x4(v[8], v[12], 0x88);
v1[9] = _mm512_shuffle_i32x4(v[9], v[13], 0x88);
v1[10] = _mm512_shuffle_i32x4(v[10], v[14], 0x88);
v1[11] = _mm512_shuffle_i32x4(v[11], v[15], 0x88);
v1[12] = _mm512_shuffle_i32x4(v[8], v[12], 0xdd);
v1[13] = _mm512_shuffle_i32x4(v[9], v[13], 0xdd);
v1[14] = _mm512_shuffle_i32x4(v[10], v[14], 0xdd);
v1[15] = _mm512_shuffle_i32x4(v[11], v[15], 0xdd);
v[0] = _mm512_shuffle_i32x4(v1[0], v1[8], 0x88);
v[1] = _mm512_shuffle_i32x4(v1[1], v1[9], 0x88);
v[2] = _mm512_shuffle_i32x4(v1[2], v1[10], 0x88);
v[3] = _mm512_shuffle_i32x4(v1[3], v1[11], 0x88);
v[4] = _mm512_shuffle_i32x4(v1[4], v1[12], 0x88);
v[5] = _mm512_shuffle_i32x4(v1[5], v1[13], 0x88);
v[6] = _mm512_shuffle_i32x4(v1[6], v1[14], 0x88);
v[7] = _mm512_shuffle_i32x4(v1[7], v1[15], 0x88);
v[8] = _mm512_shuffle_i32x4(v1[0], v1[8], 0xdd);
v[9] = _mm512_shuffle_i32x4(v1[1], v1[9], 0xdd);
v[10] = _mm512_shuffle_i32x4(v1[2], v1[10], 0xdd);
v[11] = _mm512_shuffle_i32x4(v1[3], v1[11], 0xdd);
v[12] = _mm512_shuffle_i32x4(v1[4], v1[12], 0xdd);
v[13] = _mm512_shuffle_i32x4(v1[5], v1[13], 0xdd);
v[14] = _mm512_shuffle_i32x4(v1[6], v1[14], 0xdd);
v[15] = _mm512_shuffle_i32x4(v1[7], v1[15], 0xdd);
}
// remove warning : ignoring attributes on template argument __m512i [-Wignored-attributes]
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wignored-attributes"
// transpose from [2, 32] to [32, 2]
inline std::tuple<__m512i, __m512i> transpose_2x32_16bit(__m512i r0, __m512i r1) {
// r0: {a0, a1, ..., a31}
// r1: {b0, b1, ..., b31}
//
// d0: {a0, b0, ..., a15, b15}
// d1: {a16, b16, ..., a31, b31}
//
__m512i d0 = _mm512_unpacklo_epi16(r0, r1);
__m512i d1 = _mm512_unpackhi_epi16(r0, r1);
r0 = _mm512_shuffle_i32x4(d0, d1, 0x88);
r1 = _mm512_shuffle_i32x4(d0, d1, 0xdd);
d0 = _mm512_shuffle_i32x4(r0, r1, 0x88);
d1 = _mm512_shuffle_i32x4(r0, r1, 0xdd);
return std::make_tuple(d0, d1);
}
#pragma GCC diagnostic pop
#endif
// TODO: debug print, remove me later
template<typename scalar_t>
void print_array(scalar_t* ptr, int size) {
for (int d = 0; d < size; ++d) {
if (d % 16 == 0) { std::cout << std::endl; }
std::cout << ptr[d] << " ";
}
std::cout << std::endl;
}
} // anonymous namespace

View File

@ -7,9 +7,10 @@
namespace {
#define MAX_SHM_RANK_NUM 8
#define MAX_THREAD_NUM 12
#define PER_THREAD_SHM_BUFFER_BYTES (4 * 1024 * 1024)
#define MIN_THREAD_PROCESS_SIZE (8 * 1024)
#define PER_THREAD_SHM_BUFFER_BYTES (2 * 1024 * 1024)
static_assert(PER_THREAD_SHM_BUFFER_BYTES % 2 == 0);
#define PER_THREAD_SHM_BUFFER_OFFSET (PER_THREAD_SHM_BUFFER_BYTES >> 1)
#define MIN_THREAD_PROCESS_SIZE (256)
#define MAX_P2P_SEND_TENSOR_NUM 8
template <typename scalar_t>
@ -32,10 +33,10 @@ struct KernelVecType<c10::Half> {
using scalar_vec_t = vec_op::FP16Vec16;
};
enum class ThreadSHMStat : char { THREAD_READY = 0, SHM_DATA_READY, DONE };
struct ThreadSHMContext {
volatile ThreadSHMStat thread_stats[MAX_SHM_RANK_NUM];
volatile char _curr_thread_stamp;
volatile char _ready_thread_stamp;
char _padding1[6];
int thread_id;
int thread_num;
int rank;
@ -44,14 +45,19 @@ struct ThreadSHMContext {
int swizzled_ranks[MAX_SHM_RANK_NUM];
void* thread_shm_ptrs[MAX_SHM_RANK_NUM];
ThreadSHMContext* shm_contexts[MAX_SHM_RANK_NUM];
size_t _thread_buffer_mask;
char _padding2[56];
ThreadSHMContext(const int thread_id, const int thread_num, const int rank,
const int group_size, void* thread_shm_ptr)
: thread_id(thread_id),
: _curr_thread_stamp(1),
_ready_thread_stamp(0),
thread_id(thread_id),
thread_num(thread_num),
rank(rank),
group_size(group_size),
_spinning_count(0) {
_spinning_count(0),
_thread_buffer_mask(0) {
static_assert(sizeof(ThreadSHMContext) % 64 == 0);
TORCH_CHECK(group_size <= MAX_SHM_RANK_NUM);
TORCH_CHECK((size_t)this % 64 == 0);
@ -60,7 +66,6 @@ struct ThreadSHMContext {
shm_contexts[i] = nullptr;
thread_shm_ptrs[i] = nullptr;
swizzled_ranks[i] = (i + rank) % group_size;
thread_stats[i] = ThreadSHMStat::DONE;
}
set_context(rank, this, thread_shm_ptr);
}
@ -77,59 +82,66 @@ struct ThreadSHMContext {
template <typename T>
T* get_thread_shm_ptr(int rank) {
return reinterpret_cast<T*>(thread_shm_ptrs[rank]);
return reinterpret_cast<T*>(
reinterpret_cast<int8_t*>(thread_shm_ptrs[rank]) +
(PER_THREAD_SHM_BUFFER_OFFSET & _thread_buffer_mask));
}
void next_buffer() { _thread_buffer_mask ^= 0xFFFFFFFFFFFFFFFF; }
char get_curr_stamp() const { return _curr_thread_stamp; }
char get_ready_stamp() const { return _ready_thread_stamp; }
void next_stamp() {
_mm_mfence();
_curr_thread_stamp += 1;
}
void commit_ready_stamp() {
_mm_mfence();
_ready_thread_stamp = _curr_thread_stamp;
}
int get_swizzled_rank(int idx) { return swizzled_ranks[idx]; }
void wait_for_all(ThreadSHMStat prev_stat) {
for (int idx = 0; idx < group_size; ++idx) {
template <typename Cond>
void wait_for_all(Cond&& cond) {
for (int idx = 1; idx < group_size; ++idx) {
int rank = get_swizzled_rank(idx);
while (thread_stats[rank] == prev_stat) {
++_spinning_count;
_mm_pause();
}
wait_for_one(rank, std::forward<Cond>(cond));
}
vec_op::mem_barrier();
}
void wait_for_one(int rank, ThreadSHMStat prev_stat) {
while (thread_stats[rank] == prev_stat) {
template <typename Cond>
void wait_for_one(int rank, Cond&& cond) {
ThreadSHMContext* rank_ctx = shm_contexts[rank];
for (;;) {
char local_curr_stamp = get_curr_stamp();
char local_ready_stamp = get_ready_stamp();
char rank_curr_stamp = rank_ctx->get_curr_stamp();
char rank_ready_stamp = rank_ctx->get_ready_stamp();
if (cond(local_curr_stamp, local_ready_stamp, rank_curr_stamp,
rank_ready_stamp)) {
break;
}
++_spinning_count;
_mm_pause();
}
vec_op::mem_barrier();
}
void set_thread_stat(ThreadSHMStat stat) {
for (int idx = 0; idx < group_size; ++idx) {
int rank = get_swizzled_rank(idx);
shm_contexts[rank]->thread_stats[this->rank] = stat;
}
static bool check_no_buffer_conflict(char local_curr_stamp,
char local_ready_stamp,
char rank_curr_stamp,
char rank_ready_stamp) {
char temp = rank_curr_stamp + 2;
return local_curr_stamp != temp;
}
void set_thread_stat(int target_rank, ThreadSHMStat stat) {
for (int idx = 0; idx < group_size; ++idx) {
int rank = get_swizzled_rank(idx);
shm_contexts[rank]->thread_stats[target_rank] = stat;
}
}
// barrier for all ranks in the group, used for all2all ops
// DONE -> THREAD_READY -> SHM_DATA_READY -> DONE -> ...
void barrier(ThreadSHMStat next_stat) {
if (next_stat == ThreadSHMStat::THREAD_READY) {
set_thread_stat(ThreadSHMStat::THREAD_READY);
wait_for_all(ThreadSHMStat::DONE);
} else if (next_stat == ThreadSHMStat::SHM_DATA_READY) {
set_thread_stat(ThreadSHMStat::SHM_DATA_READY);
wait_for_all(ThreadSHMStat::THREAD_READY);
} else if (next_stat == ThreadSHMStat::DONE) {
set_thread_stat(ThreadSHMStat::DONE);
wait_for_all(ThreadSHMStat::SHM_DATA_READY);
} else {
TORCH_CHECK(false, "Invalid next_stat to barrier.");
}
static bool check_stamp_ready(char local_curr_stamp, char local_ready_stamp,
char rank_curr_stamp, char rank_ready_stamp) {
char temp = local_curr_stamp + 1;
return (local_curr_stamp == rank_ready_stamp) || (temp == rank_ready_stamp);
}
std::string to_string() const {
@ -164,7 +176,7 @@ class SHMManager {
const int group_size)
: _rank(rank),
_group_size(group_size),
_thread_num(std::min(torch::get_num_threads(), MAX_THREAD_NUM)),
_thread_num(torch::get_num_threads()),
_shm_names({""}),
_shared_mem_ptrs({nullptr}),
_shm_ctx(nullptr) {
@ -326,7 +338,8 @@ void shm_cc_loop(ThreadSHMContext* ctx, int64_t elem_num, F&& inner_func) {
(total_units_num + thread_num - 1) / thread_num;
int64_t per_unit_elem_num = MIN_THREAD_PROCESS_SIZE / sizeof(scalar_t);
int64_t max_per_thread_iteration_elem_num =
PER_THREAD_SHM_BUFFER_BYTES / sizeof(scalar_t);
(PER_THREAD_SHM_BUFFER_BYTES >> 1) /
sizeof(scalar_t); // Note: double buffer
int64_t per_thread_elem_num = per_unit_elem_num * per_thread_units_num;
#pragma omp parallel for schedule(static, 1)
@ -336,10 +349,13 @@ void shm_cc_loop(ThreadSHMContext* ctx, int64_t elem_num, F&& inner_func) {
int64_t curr_elem_num =
std::min(max_per_thread_iteration_elem_num, end - offset);
ThreadSHMContext* thread_ctx = ctx + i;
bool fast_mode = ((end - offset) <= max_per_thread_iteration_elem_num);
while (curr_elem_num > 0) {
inner_func(thread_ctx, offset, curr_elem_num);
inner_func(thread_ctx, offset, curr_elem_num, fast_mode);
thread_ctx->next_stamp();
thread_ctx->next_buffer();
offset += max_per_thread_iteration_elem_num;
curr_elem_num = std::min(max_per_thread_iteration_elem_num, end - offset);
}
@ -397,7 +413,7 @@ void all_reduce_sum_impl(ThreadSHMContext* ctx, scalar_t* data,
shm_cc_ops::shm_cc_loop<scalar_t>(
ctx, elem_num,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num) {
int64_t data_elem_num, bool fast_mode) {
int rank = thread_ctx->rank;
scalar_t* thread_shm_ptr =
thread_ctx->get_thread_shm_ptr<scalar_t>(rank);
@ -410,16 +426,17 @@ void all_reduce_sum_impl(ThreadSHMContext* ctx, scalar_t* data,
thread_ctx->get_swizzled_rank(idx + 1));
});
thread_ctx->barrier(ThreadSHMStat::THREAD_READY);
if (!fast_mode) {
thread_ctx->wait_for_all(ThreadSHMContext::check_no_buffer_conflict);
}
shm_cc_ops::memcpy_to_shm(thread_shm_ptr, thread_data_ptr,
thread_data_elem_num);
thread_ctx->barrier(ThreadSHMStat::SHM_DATA_READY);
thread_ctx->commit_ready_stamp();
int64_t aligned_data_elem_num =
(data_elem_num / vec_elem_num) * vec_elem_num;
int64_t i = 0;
thread_ctx->wait_for_all(ThreadSHMContext::check_stamp_ready);
#pragma GCC unroll 4
for (; i < aligned_data_elem_num; i += vec_elem_num) {
vec_t local_data(thread_data_ptr + i); // load from cache
@ -447,8 +464,6 @@ void all_reduce_sum_impl(ThreadSHMContext* ctx, scalar_t* data,
reduced_data.save(thread_data_ptr + i,
data_elem_num - aligned_data_elem_num);
}
thread_ctx->barrier(ThreadSHMStat::DONE);
});
return;
@ -488,18 +503,18 @@ void shm_gather_impl(ThreadSHMContext* ctx, scalar_t* data, size_t elem_num,
shm_cc_ops::shm_cc_loop<scalar_t>(
ctx, elem_num,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num) {
int64_t data_elem_num, bool fast_mode) {
int rank = thread_ctx->rank;
scalar_t* thread_shm_ptr =
thread_ctx->get_thread_shm_ptr<scalar_t>(rank);
thread_ctx->barrier(ThreadSHMStat::THREAD_READY);
shm_cc_ops::memcpy_to_shm(thread_shm_ptr, data + data_offset,
data_elem_num * sizeof(scalar_t));
thread_ctx->barrier(ThreadSHMStat::SHM_DATA_READY);
if (!fast_mode) {
thread_ctx->wait_for_all(ThreadSHMContext::check_no_buffer_conflict);
}
shm_cc_ops::memcpy(thread_shm_ptr, data + data_offset,
data_elem_num * sizeof(scalar_t));
thread_ctx->commit_ready_stamp();
if (rank == dst) {
shm_cc_ops::memcpy(outputs[rank] + data_offset, data + data_offset,
data_elem_num * sizeof(scalar_t));
@ -508,12 +523,12 @@ void shm_gather_impl(ThreadSHMContext* ctx, scalar_t* data, size_t elem_num,
scalar_t* src_ptr =
thread_ctx->get_thread_shm_ptr<scalar_t>(src_rank); // shm
scalar_t* dst_ptr = outputs[src_rank] + data_offset;
shm_cc_ops::memcpy_from_shm(dst_ptr, src_ptr,
data_elem_num * sizeof(scalar_t));
thread_ctx->wait_for_one(src_rank,
ThreadSHMContext::check_stamp_ready);
shm_cc_ops::memcpy(dst_ptr, src_ptr,
data_elem_num * sizeof(scalar_t));
}
}
thread_ctx->barrier(ThreadSHMStat::DONE);
});
return;
@ -599,7 +614,7 @@ struct TensorListMeta {
int8_t _padding[40];
};
void shm_send_tensor_list_impl(ThreadSHMContext* ctx,
void shm_send_tensor_list_impl(ThreadSHMContext* ctx, int64_t dst,
const std::vector<torch::Tensor>& tensor_list) {
CPU_KERNEL_GUARD_IN(shm_send_tensor_list_impl)
std::vector<torch::Tensor> tensor_list_with_metadata;
@ -620,12 +635,11 @@ void shm_send_tensor_list_impl(ThreadSHMContext* ctx,
shm_cc_ops::shm_cc_loop<int8_t>(
ctx, metadata->total_bytes,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num) {
int64_t data_elem_num, bool fast_mode) {
int rank = thread_ctx->rank;
// Wait until the receiver set the stat to DONE
thread_ctx->wait_for_one(rank, ThreadSHMStat::SHM_DATA_READY);
int64_t curr_shm_offset = 0;
thread_ctx->wait_for_one(dst,
ThreadSHMContext::check_no_buffer_conflict);
while (curr_shm_offset < data_elem_num) {
MemPiece frag = metadata->get_data(data_offset + curr_shm_offset);
frag.size = std::min(frag.size, data_elem_num - curr_shm_offset);
@ -634,8 +648,7 @@ void shm_send_tensor_list_impl(ThreadSHMContext* ctx,
frag.ptr, frag.size);
curr_shm_offset += frag.size;
}
thread_ctx->set_thread_stat(rank, ThreadSHMStat::SHM_DATA_READY);
thread_ctx->commit_ready_stamp();
});
}
@ -646,8 +659,7 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
torch::Tensor metadata_tensor =
torch::empty({sizeof(TensorListMeta)}, options);
// Wait until the sender set the stat of the thread 0 to SHM_DATA_READY
ctx->wait_for_one(src, ThreadSHMStat::DONE);
ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
shm_cc_ops::memcpy(metadata_tensor.data_ptr(),
ctx->get_thread_shm_ptr<void>(src),
sizeof(TensorListMeta));
@ -664,9 +676,8 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
shm_cc_ops::shm_cc_loop<int8_t>(
ctx, metadata.total_bytes,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num) {
// Wait until the sender set the stat to SHM_DATA_READY
thread_ctx->wait_for_one(src, ThreadSHMStat::DONE);
int64_t data_elem_num, bool fast_mode) {
ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
int64_t curr_shm_offset = 0;
while (curr_shm_offset < data_elem_num) {
MemPiece frag = metadata.get_data(data_offset + curr_shm_offset);
@ -677,8 +688,6 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
frag.size);
curr_shm_offset += frag.size;
}
thread_ctx->set_thread_stat(src, ThreadSHMStat::DONE);
});
std::vector<torch::Tensor> tensor_list;
@ -756,7 +765,8 @@ void shm_send_tensor_list(int64_t handle,
int64_t dst) {
CPU_KERNEL_GUARD_IN(shm_send_tensor_list)
shm_send_tensor_list_impl(
SHMManager::get_singleton_instance(handle)->get_shm_ctx(), tensor_list);
SHMManager::get_singleton_instance(handle)->get_shm_ctx(), dst,
tensor_list);
CPU_KERNEL_GUARD_OUT(shm_send_tensor_list)
}
@ -778,4 +788,4 @@ std::string join_shm_manager(int64_t handle, const std::string& name) {
TORCH_CHECK(shm_manager);
shm_manager->join(name);
return shm_manager->get_shm_ctx()->to_string();
}
}

View File

@ -50,6 +50,27 @@ void shm_send_tensor_list(int64_t handle,
std::vector<torch::Tensor> shm_recv_tensor_list(int64_t handle, int64_t src);
at::Tensor weight_packed_linear(at::Tensor& mat1, at::Tensor& mat2,
const std::optional<at::Tensor>& bias,
bool is_vnni);
at::Tensor convert_weight_packed(at::Tensor& weight);
at::Tensor fused_experts_cpu(
at::Tensor& hidden_states, at::Tensor& w1, at::Tensor& w2,
at::Tensor& topk_weights, at::Tensor& topk_ids, bool inplace,
bool use_int8_w8a8, bool use_fp8_w8a16,
const std::optional<at::Tensor>& w1_scale,
const std::optional<at::Tensor>& w2_scale,
const std::optional<std::vector<int64_t>> block_size,
const std::optional<at::Tensor>& a1_scale,
const std::optional<at::Tensor>& a2_scale, bool is_vnni);
at::Tensor int8_scaled_mm_with_quant(at::Tensor& mat1, at::Tensor& mat2,
at::Tensor& scales2,
const std::optional<at::Tensor>& bias,
at::ScalarType out_dtype, bool is_vnni);
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// vLLM custom ops
@ -130,8 +151,9 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
// Quantization
#ifdef __AVX512F__
#if defined(__AVX512F__) || defined(__aarch64__)
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
// Compute int8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale,"
@ -214,6 +236,28 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.def("shm_recv_tensor_list(int handle, int src) -> Tensor[](a)",
&shm_recv_tensor_list);
#endif
// sgl-kernels
#if defined(__AVX512BF16__) && defined(__AVX512F__) && defined(__AVX512VNNI__)
ops.def(
"weight_packed_linear(Tensor(a0!) mat1, Tensor(a1!) mat2, Tensor(a2!)? "
"bias, bool is_vnni) -> Tensor");
ops.impl("weight_packed_linear", torch::kCPU, &weight_packed_linear);
ops.def("convert_weight_packed(Tensor! weight) -> Tensor");
ops.impl("convert_weight_packed", torch::kCPU, &convert_weight_packed);
ops.def(
"fused_experts_cpu(Tensor! hidden_states, Tensor w1, Tensor w2, Tensor "
"topk_weights, Tensor topk_ids, bool inplace, bool use_int8_w8a8, bool "
"use_fp8_w8a16, Tensor? w1_scale, Tensor? w2_scale, SymInt[]? "
"block_size, Tensor? a1_scale, Tensor? a2_scale, bool is_vnni) -> "
"Tensor");
ops.impl("fused_experts_cpu", torch::kCPU, &fused_experts_cpu);
ops.def(
"int8_scaled_mm_with_quant(Tensor mat1, Tensor mat2, Tensor scales2, "
"Tensor? bias, ScalarType out_dtype, bool is_vnni) -> Tensor");
ops.impl("int8_scaled_mm_with_quant", torch::kCPU,
&int8_scaled_mm_with_quant);
#endif
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {

View File

@ -153,7 +153,7 @@ struct ScaledEpilogueBias
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -210,7 +210,7 @@ struct ScaledEpilogueBiasAzp
EVTComputeAzp>;
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -288,7 +288,7 @@ struct ScaledEpilogueBiasAzpToken
EVTComputeAcc>;
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:

View File

@ -195,7 +195,7 @@ struct ScaledEpilogueBias
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -238,7 +238,7 @@ struct ScaledEpilogueColumnBias
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -295,7 +295,7 @@ struct ScaledEpilogueBiasAzp
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleB, ScaleB, EVTComputeAzp>;
using ComputeScaleBiasA = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -371,7 +371,7 @@ struct ScaledEpilogueBiasAzpToken
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleB, ScaleB, EVTComputeAcc>;
using ComputeScaleBiasA = cutlass::epilogue::fusion::Sm90Compute<
cutlass::multiply_add, ElementD, float,
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:

View File

@ -45,7 +45,6 @@
#include "cute/algorithm/functional.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cute/algorithm/gemm.hpp"
#include "cute/tensor_predicate.hpp"
#include "cute/numeric/arithmetic_tuple.hpp"
#include "cutlass_extensions/gemm/dispatch_policy.hpp"

View File

@ -1,656 +0,0 @@
// clang-format off
// adapted from https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/causal_conv1d_fwd.cu
// and https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/causal_conv1d_update.cu
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "causal_conv1d.h"
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#ifdef USE_ROCM
namespace cub = hipcub;
#endif
#include "static_switch.h"
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
if (ITYPE == at::ScalarType::Half) { \
using input_t = at::Half; \
using weight_t = at::Half; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::BFloat16) { \
using input_t = at::BFloat16; \
using weight_t = at::BFloat16; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::Float) { \
using input_t = float; \
using weight_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
}
template<typename input_t, typename weight_t>
void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream);
template<typename input_t, typename weight_t>
void causal_conv1d_update_cuda(ConvParamsBase &params, cudaStream_t stream);
void set_conv_params_fwd(ConvParamsBase &params,
// sizes
const size_t batch,
const size_t dim,
const size_t seqlen,
const size_t width,
// device pointers
const at::Tensor x,
const at::Tensor weight,
const at::Tensor out,
const std::optional<at::Tensor>& bias,
bool silu_activation,
int64_t pad_slot_id,
const std::optional<at::Tensor>& query_start_loc = std::nullopt,
const std::optional<at::Tensor>& cache_indices = std::nullopt,
const std::optional<at::Tensor>& has_initial_state = std::nullopt) {
// Reset the parameters
memset(&params, 0, sizeof(params));
params.batch = batch;
params.dim = dim;
params.seqlen = seqlen;
params.width = width;
params.pad_slot_id = pad_slot_id;
params.silu_activation = silu_activation;
// Set the pointers and strides.
params.x_ptr = x.data_ptr();
params.weight_ptr = weight.data_ptr();
params.bias_ptr = bias.has_value() ? bias.value().data_ptr() : nullptr;
params.out_ptr = out.data_ptr();
// All stride are in elements, not bytes.
params.query_start_loc_ptr = query_start_loc.has_value() ? query_start_loc.value().data_ptr() : nullptr;
params.cache_indices_ptr = cache_indices.has_value() ? cache_indices.value().data_ptr() : nullptr;
params.has_initial_state_ptr = has_initial_state.has_value() ? has_initial_state.value().data_ptr() : nullptr;
const bool varlen = params.query_start_loc_ptr != nullptr;
params.x_batch_stride = x.stride(varlen ? 1 : 0);
params.x_c_stride = x.stride(varlen ? 0 : 1);
params.x_l_stride = x.stride(varlen ? 1 : -1);
params.weight_c_stride = weight.stride(0);
params.weight_width_stride = weight.stride(1);
params.out_batch_stride = out.stride(varlen ? 1 : 0);
params.out_c_stride = out.stride(varlen ? 0 : 1);
params.out_l_stride = out.stride(varlen ? 1 : -1);
}
void causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
const std::optional<at::Tensor> &bias_,
const std::optional<at::Tensor> &conv_states,
const std::optional<at::Tensor> &query_start_loc,
const std::optional<at::Tensor> &cache_indices,
const std::optional<at::Tensor> &has_initial_state,
bool silu_activation,
// used to identify padding entries if cache_indices provided
// in case of padding, the kernel will return early
int64_t pad_slot_id) {
auto input_type = x.scalar_type();
auto weight_type = weight.scalar_type();
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
TORCH_CHECK(x.is_cuda());
TORCH_CHECK(weight.is_cuda());
const bool varlen = query_start_loc.has_value() ? true : false;
const auto sizes = x.sizes();
const int batch_size = varlen ? query_start_loc.value().sizes()[0] - 1 : sizes[0];
const int dim = varlen ? sizes[0] : sizes[1];
const int seqlen = varlen ? sizes[1] : sizes[2];
const int width = weight.size(-1);
if (varlen){
CHECK_SHAPE(x, dim, seqlen);
}
else {
CHECK_SHAPE(x, batch_size, dim, seqlen);
}
CHECK_SHAPE(weight, dim, width);
if (bias_.has_value()) {
auto bias = bias_.value();
TORCH_CHECK(bias.scalar_type() == weight_type);
TORCH_CHECK(bias.is_cuda());
TORCH_CHECK(bias.stride(-1) == 1);
CHECK_SHAPE(bias, dim);
}
if (has_initial_state.has_value()) {
auto has_initial_state_ = has_initial_state.value();
TORCH_CHECK(has_initial_state_.scalar_type() == at::ScalarType::Bool);
TORCH_CHECK(has_initial_state_.is_cuda());
CHECK_SHAPE(has_initial_state_, batch_size);
}
if (query_start_loc.has_value()) {
auto query_start_loc_ = query_start_loc.value();
TORCH_CHECK(query_start_loc_.scalar_type() == at::ScalarType::Int);
TORCH_CHECK(query_start_loc_.is_cuda());
}
if (cache_indices.has_value()) {
auto cache_indices_ = cache_indices.value();
TORCH_CHECK(cache_indices_.scalar_type() == at::ScalarType::Int);
TORCH_CHECK(cache_indices_.is_cuda());
CHECK_SHAPE(cache_indices_, batch_size);
}
at::Tensor out = x;
ConvParamsBase params;
set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
bias_,
silu_activation,
pad_slot_id,
query_start_loc,
cache_indices,
has_initial_state
);
if (conv_states.has_value()) {
auto conv_states_ = conv_states.value();
TORCH_CHECK(conv_states_.scalar_type() == input_type);
TORCH_CHECK(conv_states_.is_cuda());
params.conv_states_ptr = conv_states_.data_ptr();
params.conv_states_batch_stride = conv_states_.stride(0);
params.conv_states_c_stride = conv_states_.stride(1);
params.conv_states_l_stride = conv_states_.stride(2);
} else {
params.conv_states_ptr = nullptr;
}
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] {
causal_conv1d_fwd_cuda<input_t, weight_t>(params, stream);
});
}
void causal_conv1d_update(const at::Tensor &x,
const at::Tensor &conv_state,
const at::Tensor &weight,
const std::optional<at::Tensor> &bias_,
bool silu_activation,
const std::optional<at::Tensor> &cache_seqlens_,
const std::optional<at::Tensor> &conv_state_indices_,
// used to identify padding entries if cache_indices provided
// in case of padding, the kernel will return early
int64_t pad_slot_id) {
auto input_type = x.scalar_type();
auto weight_type = weight.scalar_type();
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == input_type, "weight type must equal to input type, other variations are disabled due to binary size limitations");
TORCH_CHECK(conv_state.scalar_type() == input_type);
TORCH_CHECK(x.is_cuda());
TORCH_CHECK(conv_state.is_cuda());
TORCH_CHECK(weight.is_cuda());
const auto sizes = x.sizes();
const int batch_size = sizes[0];
const int dim = sizes[1];
const int seqlen = sizes[2];
const int width = weight.size(-1);
const int conv_state_len = conv_state.size(2);
TORCH_CHECK(conv_state_len >= width - 1);
CHECK_SHAPE(x, batch_size, dim, seqlen);
CHECK_SHAPE(weight, dim, width);
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
if (bias_.has_value()) {
auto bias = bias_.value();
TORCH_CHECK(bias.scalar_type() == weight_type);
TORCH_CHECK(bias.is_cuda());
TORCH_CHECK(bias.stride(-1) == 1);
CHECK_SHAPE(bias, dim);
}
at::Tensor out = x;
ConvParamsBase params;
set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
bias_,
silu_activation,
pad_slot_id);
params.conv_state_ptr = conv_state.data_ptr();
params.conv_state_len = conv_state_len;
// All stride are in elements, not bytes.
params.conv_state_batch_stride = conv_state.stride(0);
params.conv_state_c_stride = conv_state.stride(1);
params.conv_state_l_stride = conv_state.stride(2);
if (cache_seqlens_.has_value()) {
auto cache_seqlens = cache_seqlens_.value();
TORCH_CHECK(cache_seqlens.scalar_type() == torch::kInt32);
TORCH_CHECK(cache_seqlens.is_cuda());
TORCH_CHECK(cache_seqlens.stride(-1) == 1);
CHECK_SHAPE(cache_seqlens, batch_size);
params.cache_seqlens = cache_seqlens.data_ptr<int32_t>();
} else {
params.cache_seqlens = nullptr;
}
if (conv_state_indices_.has_value()) {
auto conv_state_indices = conv_state_indices_.value();
TORCH_CHECK(conv_state_indices.scalar_type() == torch::kInt32)
TORCH_CHECK(conv_state_indices.is_cuda());
TORCH_CHECK(conv_state_indices.stride(0) == 1)
CHECK_SHAPE(conv_state_indices, batch_size);
int conv_state_entries = conv_state.size(0);
CHECK_SHAPE(conv_state, conv_state_entries, dim, conv_state_len);
params.conv_state_indices_ptr = conv_state_indices.data_ptr<int32_t>();
} else {
CHECK_SHAPE(conv_state, batch_size, dim, conv_state_len);
params.conv_state_indices_ptr = nullptr;
}
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] {
causal_conv1d_update_cuda<input_t, weight_t>(params, stream);
});
}
template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
struct Causal_conv1d_fwd_kernel_traits {
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kWidth = kWidth_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
static_assert(kWidth <= kNElts);
static constexpr bool kIsVecLoad = kIsVecLoad_;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
static constexpr int kSmemIOSize = kIsVecLoad
? 0
: custom_max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts;
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize;
};
template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_fwd_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNElts = Ktraits::kNElts;
constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
using input_t = typename Ktraits::input_t;
using vec_t = typename Ktraits::vec_t;
using weight_t = typename Ktraits::weight_t;
// Shared memory.
extern __shared__ char smem_[];
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
const bool kVarlen = params.query_start_loc_ptr != nullptr;
const int tidx = threadIdx.x;
const int batch_id = blockIdx.x;
const int channel_id = blockIdx.y;
const int *query_start_loc = kVarlen ? reinterpret_cast<int *>(params.query_start_loc_ptr) : nullptr;
const int sequence_start_index = kVarlen ? query_start_loc[batch_id] : batch_id;
const int seqlen = kVarlen ? query_start_loc[batch_id + 1] - sequence_start_index : params.seqlen;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + sequence_start_index * params.x_batch_stride
+ channel_id * params.x_c_stride;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + sequence_start_index * params.out_batch_stride
+ channel_id * params.out_c_stride;
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
bool has_initial_state = params.has_initial_state_ptr == nullptr ? false
: reinterpret_cast<bool *>(params.has_initial_state_ptr)[batch_id];
int* cache_indices = params.cache_indices_ptr == nullptr ? nullptr
: reinterpret_cast<int *>(params.cache_indices_ptr);
int cache_index = cache_indices == nullptr ? batch_id : cache_indices[batch_id];
// cache_index == params.pad_slot_id is defined as padding, so we exit early
if (cache_index == params.pad_slot_id){
return;
}
input_t *conv_states = params.conv_states_ptr == nullptr ? nullptr
: reinterpret_cast<input_t *>(params.conv_states_ptr) + cache_index * params.conv_states_batch_stride + channel_id * params.conv_states_c_stride;
// Thread 0 will load the last elements of the previous chunk, so we initialize those to 0.
if (tidx == 0) {
input_t initial_state[kNElts] = {0};
if (has_initial_state) {
#pragma unroll
for (int w = 0; w < kWidth - 1; ++w){ initial_state[kNElts - 1 - (kWidth - 2) + w ] = conv_states[w]; }
}
smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(initial_state)[0];
}
float weight_vals[kWidth];
#pragma unroll
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
constexpr int kChunkSize = kNThreads * kNElts;
const int n_chunks = (seqlen + kChunkSize - 1) / kChunkSize;
for (int chunk = 0; chunk < n_chunks; ++chunk) {
input_t x_vals_load[2 * kNElts] = {0};
if constexpr(kIsVecLoad) {
typename Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (seqlen - chunk * kChunkSize) / kNElts);
} else {
__syncthreads();
typename Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), seqlen - chunk * kChunkSize);
}
x += kChunkSize;
__syncthreads();
// Thread kNThreads - 1 don't write yet, so that thread 0 can read
// the last elements of the previous chunk.
if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
__syncthreads();
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1];
__syncthreads();
// Now thread kNThreads - 1 can write the last elements of the current chunk.
if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
float x_vals[2 * kNElts];
#pragma unroll
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
float out_vals[kNElts];
#pragma unroll
for (int i = 0; i < kNElts; ++i) {
out_vals[i] = bias_val;
#pragma unroll
for (int w = 0; w < kWidth; ++w) {
out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
}
}
if (params.silu_activation) {
#pragma unroll
for (int i = 0; i < kNElts; ++i) {
out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i]));
}
}
input_t out_vals_store[kNElts];
#pragma unroll
for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; }
if constexpr(kIsVecLoad) {
typename Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (seqlen - chunk * kChunkSize) / kNElts);
} else {
typename Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, seqlen - chunk * kChunkSize);
}
out += kChunkSize;
int final_state_position = ((seqlen - (kWidth - 1)) - (n_chunks - 1) * kChunkSize);
// in case the final state is separated between the last "smem_exchange" and
// and the one before it (chunk = n_chunks - 1 and chunk = n_chunks - 2),
// (which occurs when `final_state_position` is a non-positive index)
// we load the correct data from smem_exchange from both chunks, the last chunk iteration and the one before it
if (conv_states != nullptr && final_state_position < 0 && seqlen > kWidth){
input_t vals_load[kNElts] = {0};
if ((chunk == n_chunks - 2) && (tidx == kNThreads - 1)){
// chunk = n_chunks - 2, a segment of the final state sits in the last index
reinterpret_cast<vec_t *>(vals_load)[0] = smem_exchange[kNThreads - 1];
#pragma unroll
for (int w = 0; w < -final_state_position; ++w){
conv_states[w] = vals_load[kNElts + final_state_position + w];
}
}
if ((chunk == n_chunks - 1) && tidx == 0){
// chunk = n_chunks - 1, the second segment of the final state first positions
reinterpret_cast<vec_t *>(vals_load)[0] = smem_exchange[0];
for (int w = -final_state_position; w < kWidth - 1; ++w){
conv_states[w] = vals_load[w + final_state_position];
}
return;
}
}
}
// Final state is stored in the smem_exchange last token slot,
// in case seqlen < kWidth, we would need to take the final state from the
// initial state which is stored in conv_states
// in case seqlen > kWidth, we would need to load the last kWidth - 1 data
// and load it into conv_state accordingly
int last_thread = ((seqlen - (kWidth - 1)) - (n_chunks - 1) * kChunkSize) / kNElts;
if (conv_states != nullptr && tidx == last_thread) {
input_t x_vals_load[kNElts * 2] = {0};
// in case we are on the first kWidth tokens
if (last_thread == 0 && seqlen < kWidth){
// Need to take the initial state
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[0];
const int offset = seqlen - (kWidth - 1);
#pragma unroll
for (int w = 0; w < kWidth - 1; ++w){
// pad the existing state
if ((w - seqlen) >= 0 && has_initial_state) { conv_states[w - seqlen] = conv_states[w]; }
else if ((w - seqlen) >= 0 && !has_initial_state) { conv_states[w - seqlen] = input_t(0.0f); }
}
#pragma unroll
for (int w = 0; w < kWidth - 1; ++w){
if (offset + w >= 0)
conv_states[w] = x_vals_load[offset + w ];
}
}
else {
// in case the final state is in between the threads data
const int offset = ((seqlen - (kWidth - 1)) % (kNElts));
if ((offset + kWidth - 2) >= kNElts && (last_thread + 1 < kNThreads)){
// In case last_thread == kNThreads - 1, accessing last_thread + 1 will result in a
// illegal access error on H100.
// Therefore, we access last_thread + 1, only if the final state data sits there
reinterpret_cast<vec_t *>(x_vals_load)[1] = smem_exchange[last_thread + 1];
}
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[last_thread];
#pragma unroll
for (int w = 0; w < kWidth - 1; ++w){
conv_states[w] = x_vals_load[offset + w ];
}
}
}
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
const bool kVarlen = params.query_start_loc_ptr != nullptr;
BOOL_SWITCH(params.seqlen % kNElts == 0 && !kVarlen, kIsVecLoad, [&] {
using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>;
constexpr int kSmemSize = Ktraits::kSmemSize;
dim3 grid(params.batch, params.dim);
auto kernel = &causal_conv1d_fwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
std::cerr << "Warning (causal_conv1d fwd launch): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl;
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
template<typename input_t, typename weight_t>
void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream);
}
}
template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template<int kNThreads_, int kWidth_, typename input_t_, typename weight_t_>
struct Causal_conv1d_update_kernel_traits {
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kWidth = kWidth_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
};
template<typename Ktraits, bool kIsCircularBuffer>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_update_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
using input_t = typename Ktraits::input_t;
using weight_t = typename Ktraits::weight_t;
const int tidx = threadIdx.x;
const int batch_id = blockIdx.x;
const int channel_id = blockIdx.y * kNThreads + tidx;
if (channel_id >= params.dim) return;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
+ channel_id * params.x_c_stride;
// If params.conv_state_batch_indices is set, then the conv state is gathered from the conv state tensor
// along the batch axis. Otherwise, the conv state coordinate is the same as the batch id.
const int conv_state_batch_coord = params.conv_state_indices_ptr == nullptr
? batch_id
: params.conv_state_indices_ptr[batch_id];
// conv_state_batch_coord == params.pad_slot_id is defined as padding so we exit early
if (conv_state_batch_coord == params.pad_slot_id){
return;
}
input_t *conv_state = reinterpret_cast<input_t *>(params.conv_state_ptr)
+ conv_state_batch_coord * params.conv_state_batch_stride
+ channel_id * params.conv_state_c_stride;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ channel_id * params.out_c_stride;
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
int state_len = params.conv_state_len;
int advance_len = params.seqlen;
int cache_seqlen = kIsCircularBuffer ? params.cache_seqlens[batch_id] % state_len : 0;
int update_idx = cache_seqlen - (kWidth - 1);
update_idx = update_idx < 0 ? update_idx + state_len : update_idx;
float weight_vals[kWidth] = {0};
#pragma unroll
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
float x_vals[kWidth] = {0};
if constexpr (!kIsCircularBuffer) {
#pragma unroll 2
for (int i = 0; i < state_len - advance_len - (kWidth - 1); ++i) {
conv_state[i * params.conv_state_l_stride] = conv_state[(i + advance_len) * params.conv_state_l_stride];
}
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i) {
input_t state_val = conv_state[(state_len - (kWidth - 1) + i) * params.conv_state_l_stride];
if (i < advance_len + (kWidth - 1) && state_len - advance_len - (kWidth - 1) + i >= 0) {
conv_state[(state_len - advance_len - (kWidth - 1) + i) * params.conv_state_l_stride] = state_val;
}
x_vals[i] = float(state_val);
}
} else {
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i, update_idx = update_idx + 1 >= state_len ? update_idx + 1 - state_len : update_idx + 1) {
input_t state_val = conv_state[update_idx * params.conv_state_l_stride];
x_vals[i] = float(state_val);
}
}
#pragma unroll 2
for (int i = 0; i < params.seqlen; ++i) {
input_t x_val = x[i * params.x_l_stride];
if constexpr (!kIsCircularBuffer) {
if (i < advance_len && state_len - advance_len + i >= 0) {
conv_state[(state_len - advance_len + i) * params.conv_state_l_stride] = x_val;
}
} else {
conv_state[update_idx * params.conv_state_l_stride] = x_val;
++update_idx;
update_idx = update_idx >= state_len ? update_idx - state_len : update_idx;
}
x_vals[kWidth - 1] = float(x_val);
float out_val = bias_val;
#pragma unroll
for (int j = 0; j < kWidth; ++j) { out_val += weight_vals[j] * x_vals[j]; }
if (params.silu_activation) { out_val = out_val / (1 + expf(-out_val)); }
out[i * params.out_l_stride] = input_t(out_val);
// Shift the input buffer by 1
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i) { x_vals[i] = x_vals[i + 1]; }
}
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_update_launch(ConvParamsBase &params, cudaStream_t stream) {
using Ktraits = Causal_conv1d_update_kernel_traits<kNThreads, kWidth, input_t, weight_t>;
dim3 grid(params.batch, (params.dim + kNThreads - 1) / kNThreads);
auto kernel = params.cache_seqlens == nullptr
? &causal_conv1d_update_kernel<Ktraits, false>
: &causal_conv1d_update_kernel<Ktraits, true>;
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template<typename input_t, typename weight_t>
void causal_conv1d_update_cuda(ConvParamsBase &params, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_update_launch<64, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_update_launch<64, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_update_launch<64, 4, input_t, weight_t>(params, stream);
}
}
template void causal_conv1d_update_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);

View File

@ -1,159 +0,0 @@
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
// clang-format off
// adapted from https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/causal_conv1d.h
#pragma once
#include <cuda_bf16.h>
#include <cuda_fp16.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
struct ConvParamsBase {
using index_t = uint32_t;
int batch, dim, seqlen, width;
int64_t pad_slot_id;
bool silu_activation;
index_t x_batch_stride;
index_t x_c_stride;
index_t x_l_stride;
index_t weight_c_stride;
index_t weight_width_stride;
index_t out_batch_stride;
index_t out_c_stride;
index_t out_l_stride;
int conv_state_len;
index_t conv_state_batch_stride;
index_t conv_state_c_stride;
index_t conv_state_l_stride;
// Common data pointers.
void *__restrict__ x_ptr;
void *__restrict__ weight_ptr;
void *__restrict__ bias_ptr;
void *__restrict__ out_ptr;
void *__restrict__ conv_state_ptr;
void *__restrict__ query_start_loc_ptr;
void *__restrict__ has_initial_state_ptr;
void *__restrict__ cache_indices_ptr;
int32_t *__restrict__ cache_seqlens;
// For the continuous batching case. Makes it so that the mamba state for
// the current batch doesn't need to be a contiguous tensor.
int32_t *__restrict__ conv_state_indices_ptr;
void *__restrict__ seq_idx_ptr;
// No __restrict__ since initial_states could be the same as final_states.
void * initial_states_ptr;
index_t initial_states_batch_stride;
index_t initial_states_l_stride;
index_t initial_states_c_stride;
void * final_states_ptr;
index_t final_states_batch_stride;
index_t final_states_l_stride;
index_t final_states_c_stride;
void * conv_states_ptr;
index_t conv_states_batch_stride;
index_t conv_states_l_stride;
index_t conv_states_c_stride;
};
#ifndef USE_ROCM
#include <cuda_bf16.h>
template<typename T>
__device__ inline T shuffle_xor(T val, int offset) {
return __shfl_xor_sync(uint32_t(-1), val, offset);
}
constexpr size_t custom_max(std::initializer_list<size_t> ilist)
{
return std::max(ilist);
}
template<typename T>
constexpr T constexpr_min(T a, T b) {
return std::min(a, b);
}
#else
#include <hip/hip_bf16.h>
template<typename T>
__device__ inline T shuffle_xor(T val, int offset) {
return __shfl_xor(val, offset);
}
constexpr size_t custom_max(std::initializer_list<size_t> ilist)
{
return *std::max_element(ilist.begin(), ilist.end());
}
template<typename T>
constexpr T constexpr_min(T a, T b) {
return a < b ? a : b;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int BYTES> struct BytesToType {};
template<> struct BytesToType<16> {
using Type = uint4;
static_assert(sizeof(Type) == 16);
};
template<> struct BytesToType<8> {
using Type = uint64_t;
static_assert(sizeof(Type) == 8);
};
template<> struct BytesToType<4> {
using Type = uint32_t;
static_assert(sizeof(Type) == 4);
};
template<> struct BytesToType<2> {
using Type = uint16_t;
static_assert(sizeof(Type) == 2);
};
template<> struct BytesToType<1> {
using Type = uint8_t;
static_assert(sizeof(Type) == 1);
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct SumOp {
__device__ inline T operator()(T const & x, T const & y) { return x + y; }
};
template<int THREADS>
struct Allreduce {
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
template<typename T, typename Operator>
static __device__ inline T run(T x, Operator &op) {
constexpr int OFFSET = THREADS / 2;
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
return Allreduce<OFFSET>::run(x, op);
}
};
template<>
struct Allreduce<2> {
template<typename T, typename Operator>
static __device__ inline T run(T x, Operator &op) {
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
return x;
}
};

View File

@ -1,28 +0,0 @@
// Inspired by
// https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
// clang-format off
// adapted from https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/static_switch.h
#pragma once
/// @param COND - a boolean expression to switch by
/// @param CONST_NAME - a name given for the constexpr bool variable.
/// @param ... - code to execute for true and false
///
/// Usage:
/// ```
/// BOOL_SWITCH(flag, BoolConst, [&] {
/// some_function<BoolConst>(...);
/// });
/// ```
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
[&] { \
if (COND) { \
static constexpr bool CONST_NAME = true; \
return __VA_ARGS__(); \
} else { \
static constexpr bool CONST_NAME = false; \
return __VA_ARGS__(); \
} \
}()

View File

@ -1255,8 +1255,6 @@ __global__ void Marlin(
if constexpr (has_zp && !is_zp_float) {
if (is_new_zp) {
if constexpr (group_blocks == -1) is_first_matmul_in_slice = false;
FragB frag_zp_0;
FragB frag_zp_1;
int zp_quant_0, zp_quant_1;
if constexpr (w_type.size_bits() == 4) {

View File

@ -239,7 +239,7 @@ void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]
torch::Tensor& output) // [num_tokens, hidden_size]
{
const int hidden_size = input.size(-1);
const int num_tokens = output.numel() / hidden_size;
const auto num_tokens = output.numel() / hidden_size;
const int topk = input.size(1);
dim3 grid(num_tokens);

View File

@ -492,7 +492,7 @@ void topk_softmax(
torch::Tensor& gating_output) // [num_tokens, num_experts]
{
const int num_experts = gating_output.size(-1);
const int num_tokens = gating_output.numel() / num_experts;
const auto num_tokens = gating_output.numel() / num_experts;
const int topk = topk_weights.size(-1);
const bool is_pow_2 = (num_experts != 0) && ((num_experts & (num_experts - 1)) == 0);

View File

@ -326,22 +326,6 @@ void selective_scan_fwd(const torch::Tensor& u, const torch::Tensor& delta,
const std::optional<torch::Tensor>& has_initial_state,
const torch::Tensor& ssm_states, int64_t pad_slot_id);
void causal_conv1d_update(const at::Tensor& x, const at::Tensor& conv_state,
const at::Tensor& weight,
const std::optional<at::Tensor>& bias_,
bool silu_activation,
const std::optional<at::Tensor>& cache_seqlens_,
const std::optional<at::Tensor>& conv_state_indices_,
int64_t pad_slot_id);
void causal_conv1d_fwd(const at::Tensor& x, const at::Tensor& weight,
const std::optional<at::Tensor>& bias_,
const std::optional<at::Tensor>& conv_states,
const std::optional<at::Tensor>& query_start_loc,
const std::optional<at::Tensor>& cache_indices,
const std::optional<at::Tensor>& has_initial_state,
bool silu_activation, int64_t pad_slot_id);
using fptr_t = int64_t;
fptr_t init_custom_ar(const std::vector<int64_t>& fake_ipc_ptrs,
torch::Tensor& rank_data, int64_t rank,

View File

@ -162,10 +162,11 @@ __global__ void dynamic_scaled_int8_quant_kernel(
// calculate for absmax
float thread_max = 0.f;
for (int i = tid; i < hidden_size; i += stride) {
const auto v = fabsf(static_cast<float>(row_in[i]));
thread_max = fmaxf(thread_max, v);
}
vectorize_read_with_alignment<16>(
row_in, hidden_size, tid, stride, [&] __device__(const scalar_t& src) {
const float v = fabsf(static_cast<float>(src));
thread_max = fmaxf(thread_max, v);
});
using BlockReduce = cub::BlockReduce<float, 256>;
__shared__ typename BlockReduce::TempStorage tmp;
float block_max = BlockReduce(tmp).Reduce(thread_max, cub::Max{}, blockDim.x);
@ -232,9 +233,10 @@ __global__ void dynamic_scaled_int8_azp_quant_kernel(
// 1. calculate min & max
MinMax thread_mm;
for (int i = tid; i < hidden_size; i += stride) {
thread_mm += static_cast<float>(row_in[i]);
}
vectorize_read_with_alignment<16>(row_in, hidden_size, tid, stride,
[&] __device__(const scalar_t& src) {
thread_mm += static_cast<float>(src);
});
using BlockReduce = cub::BlockReduce<MinMax, 256>;
__shared__ typename BlockReduce::TempStorage tmp;

View File

@ -51,7 +51,8 @@ struct cutlass_3x_gemm {
// These are the minimum alignments needed for the kernels to compile
static constexpr int AlignmentAB =
128 / cutlass::sizeof_bits<ElementAB>::value;
static constexpr int AlignmentCD = 4;
static constexpr int AlignmentCD =
128 / cutlass::sizeof_bits<ElementD>::value;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
@ -144,4 +145,65 @@ struct cutlass_3x_gemm_sm100 {
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue, void>;
};
template <typename ElementAB_, typename ElementD_,
template <typename, typename, typename> typename Epilogue_,
typename TileShape, typename ClusterShape, typename KernelSchedule,
typename EpilogueSchedule>
struct cutlass_3x_gemm_sm120 {
using ElementAB = ElementAB_;
using LayoutA = cutlass::layout::RowMajor;
static constexpr int AlignmentA =
128 / cutlass::sizeof_bits<ElementAB>::value;
using LayoutB = cutlass::layout::ColumnMajor;
static constexpr int AlignmentB =
128 / cutlass::sizeof_bits<ElementAB>::value;
using ElementC = void;
using LayoutC = cutlass::layout::RowMajor;
static constexpr int AlignmentC =
128 / cutlass::sizeof_bits<ElementD_>::value;
using ElementD = ElementD_;
using LayoutD = cutlass::layout::RowMajor;
static constexpr int AlignmentD = AlignmentC;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using Epilogue = Epilogue_<ElementAcc, ElementD, TileShape>;
// MMA type
using ElementAccumulator = float;
// Epilogue types
using ElementBias = cutlass::half_t;
using ElementCompute = float;
using ElementAux = ElementD;
using LayoutAux = LayoutD;
using ElementAmax = float;
using EVTCompute = typename Epilogue::EVTCompute;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm120, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementCompute, ElementC, LayoutC, AlignmentC,
ElementD, LayoutD, AlignmentD, EpilogueSchedule,
EVTCompute>::CollectiveOp;
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm120, cutlass::arch::OpClassTensorOp, ElementAB,
LayoutA, AlignmentA, ElementAB, LayoutB, AlignmentB,
ElementAccumulator, TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule>::CollectiveOp;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue, void>;
};
} // namespace vllm

View File

@ -36,6 +36,12 @@ void cutlass_scaled_mm_sm100_fp8(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias);
void cutlass_scaled_mm_sm120_fp8(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias);
void cutlass_scaled_mm_blockwise_sm100_fp8(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,

View File

@ -0,0 +1,24 @@
#include "scaled_mm_kernels.hpp"
#include "scaled_mm_sm120_fp8_dispatch.cuh"
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
namespace vllm {
void cutlass_scaled_mm_sm120_fp8(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm120_fp8_epilogue<c3x::ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm120_fp8_epilogue<c3x::ScaledEpilogue>(
out, a, b, a_scales, b_scales);
}
}
} // namespace vllm

View File

@ -0,0 +1,67 @@
#pragma once
#include "scaled_mm.cuh"
#include "cutlass_gemm_caller.cuh"
/**
* This file defines Gemm kernel configurations for SM120 (fp8) based on the
* Gemm shape.
*/
namespace vllm {
using c3x::cutlass_gemm_caller;
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm120_fp8_config_default {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_1, _1, _1>; // Only work with Shape<_1, _1, _1>
using Cutlass3xGemm =
cutlass_3x_gemm_sm120<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
inline void cutlass_gemm_sm120_fp8_dispatch(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
using Cutlass3xGemmDefault =
typename sm120_fp8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
template <template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_scaled_mm_sm120_fp8_epilogue(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_args) {
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm120_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::bfloat16_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm120_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}
} // namespace vllm

View File

@ -0,0 +1,374 @@
#include "core/registration.h"
#include <torch/all.h>
#include <cutlass/arch/arch.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include "cute/tensor.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/group_array_problem_shape.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/gett.hpp"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include <cassert>
using namespace cute;
template <typename ElementAB, typename ElementC, typename ElementAccumulator,
typename LayoutSFA, typename LayoutSFB, typename ScaleConfig>
__global__ void get_ggemm_starts(
int32_t* expert_offsets, ElementAB** a_offsets, ElementAB** b_offsets,
ElementC** out_offsets, ElementAccumulator** a_scale_offsets,
ElementAccumulator** b_scale_offsets, ElementAB* a_base_as_int,
ElementAB* b_base_as_int, ElementC* out_base_as_int,
ElementAccumulator* a_scale_base_as_int,
ElementAccumulator* b_scale_base_as_int, LayoutSFA* layout_sfa_base_as_int,
LayoutSFB* layout_sfb_base_as_int, int* problem_sizes) {
int expert_id = threadIdx.x;
if (expert_id >= gridDim.x * blockDim.x) {
return;
}
int m = problem_sizes[expert_id * 3];
int n = problem_sizes[expert_id * 3 + 1];
int k = problem_sizes[expert_id * 3 + 2];
int32_t expert_offset = expert_offsets[expert_id];
int a_stride = expert_offset * k;
int b_stride = expert_id * k * n;
int a_scale_stride = expert_offset * k / 128;
int b_scale_stride = expert_id * k * n / 128 / 128;
a_offsets[expert_id] = a_base_as_int + a_stride;
b_offsets[expert_id] = b_base_as_int + b_stride;
out_offsets[expert_id] = out_base_as_int + expert_offset * n;
a_scale_offsets[expert_id] = a_scale_base_as_int + a_scale_stride;
b_scale_offsets[expert_id] = b_scale_base_as_int + b_scale_stride;
LayoutSFA* layout_sfa_ptr = layout_sfa_base_as_int + expert_id;
LayoutSFB* layout_sfb_ptr = layout_sfb_base_as_int + expert_id;
*layout_sfa_ptr =
ScaleConfig::tile_atom_to_shape_SFA(cute::make_shape(m, n, k, 1));
*layout_sfb_ptr =
ScaleConfig::tile_atom_to_shape_SFB(cute::make_shape(m, n, k, 1));
}
#define __CALL_GET_STARTS_KERNEL(TENSOR_C_TYPE, C_TYPE, LayoutSFA, LayoutSFB, \
ScaleConfig) \
else if (out_tensors.dtype() == TENSOR_C_TYPE) { \
get_ggemm_starts<cutlass::float_e4m3_t, C_TYPE, float, LayoutSFA, \
LayoutSFB, ScaleConfig><<<1, num_experts, 0, stream>>>( \
static_cast<int32_t*>(expert_offsets.data_ptr()), \
static_cast<cutlass::float_e4m3_t**>(a_ptrs.data_ptr()), \
static_cast<cutlass::float_e4m3_t**>(b_ptrs.data_ptr()), \
static_cast<C_TYPE**>(out_ptrs.data_ptr()), \
static_cast<float**>(a_scales_ptrs.data_ptr()), \
static_cast<float**>(b_scales_ptrs.data_ptr()), \
static_cast<cutlass::float_e4m3_t*>(a_tensors.data_ptr()), \
static_cast<cutlass::float_e4m3_t*>(b_tensors.data_ptr()), \
static_cast<C_TYPE*>(out_tensors.data_ptr()), \
static_cast<float*>(a_scales.data_ptr()), \
static_cast<float*>(b_scales.data_ptr()), \
reinterpret_cast<LayoutSFA*>(layout_sfa.data_ptr()), \
reinterpret_cast<LayoutSFB*>(layout_sfb.data_ptr()), \
static_cast<int*>(problem_sizes.data_ptr())); \
}
template <typename LayoutSFA, typename LayoutSFB, typename ScaleConfig>
void run_get_ggemm_starts(
torch::Tensor const& expert_offsets, torch::Tensor& a_ptrs,
torch::Tensor& b_ptrs, torch::Tensor& out_ptrs,
torch::Tensor& a_scales_ptrs, torch::Tensor& b_scales_ptrs,
torch::Tensor const& a_tensors, torch::Tensor const& b_tensors,
torch::Tensor out_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& layout_sfa,
torch::Tensor const& layout_sfb, torch::Tensor const& problem_sizes) {
TORCH_CHECK(a_tensors.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
TORCH_CHECK(out_tensors.size(1) % 128 == 0 or out_tensors.size(0) % 128 == 0);
TORCH_CHECK(a_tensors.size(1) % 128 == 0 or a_tensors.size(0) % 128 == 0);
int num_experts = (int)expert_offsets.size(0);
auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());
if (false) {
}
__CALL_GET_STARTS_KERNEL(torch::kBFloat16, cutlass::bfloat16_t, LayoutSFA,
LayoutSFB, ScaleConfig)
__CALL_GET_STARTS_KERNEL(torch::kFloat16, cutlass::half_t, LayoutSFA,
LayoutSFB, ScaleConfig)
else {
TORCH_CHECK(false, "Unsupported output tensor type");
}
}
template <typename OutType, typename ScheduleConfig, typename LayoutD>
void run_blockwise_scaled_group_mm(
torch::Tensor& out_ptrs, const torch::Tensor& a_ptrs,
const torch::Tensor& b_ptrs, const torch::Tensor& a_scales_ptrs,
const torch::Tensor& b_scales_ptrs, const torch::Tensor& stride_a,
const torch::Tensor& stride_b, const torch::Tensor& stride_c,
const torch::Tensor& layout_sfa, const torch::Tensor& layout_sfb,
const torch::Tensor& problem_sizes, const torch::Tensor& expert_offsets) {
using ProblemShape = cutlass::gemm::GroupProblemShape<Shape<int, int, int>>;
// Types
using ElementA = cutlass::float_e4m3_t;
using ElementB = cutlass::float_e4m3_t;
using ElementC = OutType;
using ElementD = ElementC;
using ElementAccumulator = float;
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutC = LayoutD;
// Alignments
static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
using ArchTag = cutlass::arch::Sm100;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag, OperatorClass, typename ScheduleConfig::MmaTileShape,
typename ScheduleConfig::ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto, ElementAccumulator,
ElementAccumulator, void, LayoutC*, AlignmentC, ElementD, LayoutC*,
AlignmentC, typename ScheduleConfig::EpilogueSchedule>::CollectiveOp;
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag, OperatorClass, ElementA,
cute::tuple<LayoutA*, typename ScheduleConfig::LayoutSFA*>,
AlignmentA, ElementB,
cute::tuple<LayoutB*, typename ScheduleConfig::LayoutSFB*>,
AlignmentB, ElementAccumulator, typename ScheduleConfig::MmaTileShape,
typename ScheduleConfig::ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
typename ScheduleConfig::KernelSchedule>::CollectiveOp;
using GemmKernel =
cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop,
CollectiveEpilogue, void>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
using StrideA = typename Gemm::GemmKernel::InternalStrideA;
using StrideB = typename Gemm::GemmKernel::InternalStrideB;
using StrideC = typename Gemm::GemmKernel::InternalStrideC;
using StrideD = typename Gemm::GemmKernel::InternalStrideD;
using UnderlyingProblemShape = ProblemShape::UnderlyingProblemShape;
int num_experts = (int)expert_offsets.size(0);
Gemm gemm_op;
// Mainloop Arguments
typename GemmKernel::MainloopArguments mainloop_args{
static_cast<const ElementA**>(a_ptrs.data_ptr()),
static_cast<StrideA*>(stride_a.data_ptr()),
static_cast<const ElementB**>(b_ptrs.data_ptr()),
static_cast<StrideB*>(stride_b.data_ptr()),
static_cast<const ElementAccumulator**>(a_scales_ptrs.data_ptr()),
reinterpret_cast<typename ScheduleConfig::LayoutSFA*>(
layout_sfa.data_ptr()),
static_cast<const ElementAccumulator**>(b_scales_ptrs.data_ptr()),
reinterpret_cast<typename ScheduleConfig::LayoutSFB*>(
layout_sfb.data_ptr())};
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = a_ptrs.get_device();
hw_info.sm_count =
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
hw_info.device_id);
// Epilogue Arguments
typename GemmKernel::EpilogueArguments epilogue_args{
{}, // epilogue.thread
nullptr,
static_cast<StrideC*>(stride_c.data_ptr()),
static_cast<ElementD**>(out_ptrs.data_ptr()),
static_cast<StrideC*>(stride_c.data_ptr())};
UnderlyingProblemShape* problem_sizes_as_shapes =
static_cast<UnderlyingProblemShape*>(problem_sizes.data_ptr());
// Gemm Arguments
typename GemmKernel::Arguments args{
cutlass::gemm::GemmUniversalMode::kGrouped,
{num_experts, problem_sizes_as_shapes, nullptr},
mainloop_args,
epilogue_args,
hw_info};
at::cuda::CUDAGuard device_guard{(char)a_ptrs.device().index()};
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(a_ptrs.get_device());
auto can_implement_status = gemm_op.can_implement(args);
TORCH_CHECK(can_implement_status == cutlass::Status::kSuccess,
"Failed to implement GEMM");
size_t workspace_size = gemm_op.get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a_ptrs.device());
auto workspace = torch::empty(workspace_size, workspace_options);
auto status = gemm_op.initialize(args, workspace.data_ptr(), stream);
TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to initialize GEMM");
status = gemm_op.run(stream);
TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}
template <typename OutType>
void blockwise_scaled_group_mm_dispatch_shape(
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
const torch::Tensor& scales_a, const torch::Tensor& scales_b,
const torch::Tensor& problem_sizes, const torch::Tensor& expert_offsets) {
struct MmaConfig {
using ElementA = cutlass::float_e4m3_t;
using KernelSchedule =
cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise1SmSm100;
using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
using ScaleConfig = cutlass::detail::Sm100BlockwiseScaleConfig<
1, 128, 128, cute::UMMA::Major::K, cute::UMMA::Major::K>;
using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
using LayoutC = cutlass::layout::RowMajor;
using MmaTileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_1, _1, _1>;
};
int num_experts = (int)expert_offsets.size(0);
auto a_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto b_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto out_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto a_scales_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto b_scales_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto layout_sfa = torch::empty(
{num_experts, 5},
torch::TensorOptions().dtype(torch::kInt32).device(a.device()));
auto layout_sfb = torch::empty(
{num_experts, 5},
torch::TensorOptions().dtype(torch::kInt32).device(a.device()));
auto stride_a = torch::full(
{num_experts}, a.size(1),
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto stride_b = torch::full(
{num_experts}, a.size(1),
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto stride_c = torch::full(
{num_experts}, output.size(1),
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
torch::TensorOptions options_int =
torch::TensorOptions().dtype(torch::kInt64).device(a.device());
run_get_ggemm_starts<typename MmaConfig::LayoutSFA,
typename MmaConfig::LayoutSFB,
typename MmaConfig::ScaleConfig>(
expert_offsets, a_ptrs, b_ptrs, out_ptrs, a_scales_ptrs, b_scales_ptrs, a,
b, output, scales_a, scales_b, layout_sfa, layout_sfb, problem_sizes);
run_blockwise_scaled_group_mm<OutType, MmaConfig,
typename MmaConfig::LayoutC>(
out_ptrs, a_ptrs, b_ptrs, a_scales_ptrs, b_scales_ptrs, stride_a,
stride_b, stride_c, layout_sfa, layout_sfb, problem_sizes,
expert_offsets);
}
void cutlass_blockwise_scaled_grouped_mm(
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
const torch::Tensor& scales_a, const torch::Tensor& scales_b,
const torch::Tensor& problem_sizes, const torch::Tensor& expert_offsets) {
TORCH_CHECK(problem_sizes.dim() == 2, "problem_sizes must be 2D tensor");
TORCH_CHECK(problem_sizes.size(1) == 3,
"problem_sizes must have shape (num_experts, 3)");
TORCH_CHECK(problem_sizes.size(0) == expert_offsets.size(0),
"Number of experts in problem_sizes must match expert_offsets");
TORCH_CHECK(problem_sizes.dtype() == torch::kInt32,
"problem_sizes must be int32");
TORCH_CHECK(a.scalar_type() == torch::kFloat8_e4m3fn,
"a must be kFloat8_e4m3fn");
TORCH_CHECK(b.scalar_type() == torch::kFloat8_e4m3fn,
"b must be kFloat8_e4m3fn");
TORCH_CHECK(output.scalar_type() == torch::kBFloat16 ||
output.scalar_type() == torch::kHalf,
"output must be bfloat16 or half");
TORCH_CHECK(scales_a.scalar_type() == torch::kFloat32,
"scales_a must be float32");
TORCH_CHECK(scales_b.scalar_type() == torch::kFloat32,
"scales_b must be float32");
TORCH_CHECK(expert_offsets.scalar_type() == torch::kInt32,
"expert_offsets must be int32");
TORCH_CHECK(output.dim() == 2, "output must be 2D tensor");
TORCH_CHECK(a.dim() == 2, "a must be 2D tensor");
TORCH_CHECK(b.dim() == 3, "b must be 3D tensor");
TORCH_CHECK(scales_a.dim() == 2, "scales_a must be 2D tensor");
TORCH_CHECK(scales_b.dim() == 3, "scales_b must be 3D tensor");
TORCH_CHECK(problem_sizes.dim() == 2, "problem_sizes must be 2D tensor");
TORCH_CHECK(problem_sizes.size(1) == 3,
"problem_sizes must have shape (num_experts, 3)");
TORCH_CHECK(problem_sizes.size(0) == expert_offsets.size(0),
"Number of experts in problem_sizes must match expert_offsets");
TORCH_CHECK(problem_sizes.dtype() == torch::kInt32,
"problem_sizes must be int32");
TORCH_CHECK(expert_offsets.dim() == 1, "expert_offsets must be 1D tensor");
#if defined(ENABLE_CUTLASS_MOE_SM100) && ENABLE_CUTLASS_MOE_SM100
if (output.scalar_type() == torch::kBFloat16) {
blockwise_scaled_group_mm_dispatch_shape<cutlass::bfloat16_t>(
output, a, b, scales_a, scales_b, problem_sizes, expert_offsets);
} else if (output.scalar_type() == torch::kFloat16) {
blockwise_scaled_group_mm_dispatch_shape<cutlass::half_t>(
output, a, b, scales_a, scales_b, problem_sizes, expert_offsets);
} else {
TORCH_CHECK(false, "Unsupported output tensor type");
}
#endif
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("cutlass_blockwise_scaled_grouped_mm",
&cutlass_blockwise_scaled_grouped_mm);
}

View File

@ -7,7 +7,7 @@
constexpr uint64_t THREADS_PER_EXPERT = 512;
__global__ void compute_problem_sizes(const uint32_t* __restrict__ topk_ids,
__global__ void compute_problem_sizes(const int32_t* __restrict__ topk_ids,
int32_t* problem_sizes1,
int32_t* problem_sizes2,
int32_t* atomic_buffer,
@ -62,7 +62,7 @@ __global__ void compute_expert_blockscale_offsets(
}
}
__global__ void compute_arg_sorts(const uint32_t* __restrict__ topk_ids,
__global__ void compute_arg_sorts(const int32_t* __restrict__ topk_ids,
const int32_t* __restrict__ expert_offsets,
int32_t* input_permutation,
int32_t* output_permutation,
@ -103,7 +103,7 @@ void get_cutlass_moe_mm_data_caller(
int num_threads = min(THREADS_PER_EXPERT, topk_ids.numel());
compute_problem_sizes<<<num_experts, num_threads, 0, stream>>>(
static_cast<const uint32_t*>(topk_ids.data_ptr()),
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n, k);
@ -120,7 +120,7 @@ void get_cutlass_moe_mm_data_caller(
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
}
compute_arg_sorts<<<num_experts, num_threads, 0, stream>>>(
static_cast<const uint32_t*>(topk_ids.data_ptr()),
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<const int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(input_permutation.data_ptr()),
static_cast<int32_t*>(output_permutation.data_ptr()),

View File

@ -0,0 +1,34 @@
#include <cudaTypedefs.h>
#include "c3x/scaled_mm_kernels.hpp"
#include "cuda_utils.h"
/*
This file defines quantized GEMM operations using the CUTLASS 3.x API, for
NVIDIA GPUs with sm120 (Blackwell Geforce).
*/
#if defined ENABLE_SCALED_MM_SM120 && ENABLE_SCALED_MM_SM120
void cutlass_scaled_mm_sm120(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
int M = a.size(0), N = b.size(1), K = a.size(1);
TORCH_CHECK(
(a_scales.numel() == 1 || a_scales.numel() == a.size(0)) &&
(b_scales.numel() == 1 || b_scales.numel() == b.size(1)),
"Currently, block scaled fp8 gemm is not implemented for Blackwell");
// Standard per-tensor/per-token/per-channel scaling
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn,
"Currently, only fp8 gemm is implemented for Blackwell");
vllm::cutlass_scaled_mm_sm120_fp8(c, a, b, a_scales, b_scales, bias);
}
#endif

View File

@ -41,6 +41,14 @@ void cutlass_moe_mm_sm90(
#endif
#if defined ENABLE_SCALED_MM_SM120 && ENABLE_SCALED_MM_SM120
void cutlass_scaled_mm_sm120(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias);
#endif
#if defined ENABLE_SCALED_MM_SM100 && ENABLE_SCALED_MM_SM100
void cutlass_scaled_mm_sm100(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
@ -168,8 +176,15 @@ void cutlass_scaled_mm(torch::Tensor& c, torch::Tensor const& a,
at::cuda::OptionalCUDAGuard const device_guard(device_of(a));
int32_t version_num = get_sm_version_num();
#if defined ENABLE_SCALED_MM_SM120 && ENABLE_SCALED_MM_SM120
if (version_num >= 120) {
cutlass_scaled_mm_sm120(c, a, b, a_scales, b_scales, bias);
return;
}
#endif
#if defined ENABLE_SCALED_MM_SM100 && ENABLE_SCALED_MM_SM100
if (version_num >= 100) {
if (version_num >= 100 && version_num < 120) {
cutlass_scaled_mm_sm100(c, a, b, a_scales, b_scales, bias);
return;
}

View File

@ -335,8 +335,10 @@ void run_fp4_blockwise_scaled_group_mm(
TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}
#if defined ENABLE_NVFP4 && ENABLE_NVFP4
constexpr auto FLOAT4_E2M1X2 = at::ScalarType::Byte;
constexpr auto SF_DTYPE = at::ScalarType::Float8_e4m3fn;
#endif
#define CHECK_TYPE(x, st, m) \
TORCH_CHECK(x.scalar_type() == st, ": Inconsistency of Tensor type:", m)

View File

@ -1113,8 +1113,6 @@ __global__ void Marlin(
if constexpr (has_zp && !is_zp_float) {
if (is_new_zp) {
if constexpr (group_blocks == -1) is_first_matmul_in_slice = false;
FragB frag_zp_0;
FragB frag_zp_1;
int zp_quant_0, zp_quant_1;
if constexpr (w_type.size_bits() == 4) {

View File

@ -38,7 +38,6 @@
#include "cute/atom/mma_atom.hpp"
#include "cute/atom/copy_traits_sm90_tma.hpp"
#include "cute/algorithm/gemm.hpp"
#include "cute/tensor_predicate.hpp"
#include "cute/numeric/arithmetic_tuple.hpp"
#include "cutlass/pipeline/pipeline.hpp"
#include "cutlass/transform/collective/sm90_wgmma_transpose.hpp"

View File

@ -27,6 +27,26 @@ __device__ inline void vectorize_with_alignment(
constexpr int WIDTH = VEC_SIZE * sizeof(InT); // eg: 64 B
uintptr_t addr = reinterpret_cast<uintptr_t>(in);
// fast path when the whole region is already aligned
// Note: currently the output is guaranteed to be same as the input, so we
// don't check it here, comments here just for future reference.
bool can_vec = ((addr & (WIDTH - 1)) == 0) && ((len & (VEC_SIZE - 1)) == 0);
if (can_vec) {
int num_vec = len / VEC_SIZE;
using vin_t = vec_n_t<InT, VEC_SIZE>;
using vout_t = vec_n_t<OutT, VEC_SIZE>;
auto* v_in = reinterpret_cast<const vin_t*>(in);
auto* v_out = reinterpret_cast<vout_t*>(out);
for (int i = tid; i < num_vec; i += stride) {
vout_t tmp;
vec_op(tmp, v_in[i]);
v_out[i] = tmp;
}
return;
}
int misalignment_offset = addr & (WIDTH - 1); // addr % 64
int alignment_bytes = WIDTH - misalignment_offset; // 64 - (addr % 64)
int prefix_elems = alignment_bytes & (WIDTH - 1); // handle 64
@ -72,4 +92,81 @@ __device__ __forceinline__ void vectorize_with_alignment(const InT* in,
std::forward<ScaOp>(scalar_op));
}
template <int VEC_SIZE, typename InT, typename ScaOp>
struct DefaultReadVecOp {
ScaOp scalar_op;
__device__ __forceinline__ void operator()(
const vec_n_t<InT, VEC_SIZE>& src) const {
#pragma unroll
for (int i = 0; i < VEC_SIZE; ++i) {
scalar_op(src.val[i]);
}
}
};
// read-only version: iterate over the input with alignment guarantees
template <int VEC_SIZE, typename InT, typename VecOp, typename ScaOp>
__device__ inline void vectorize_read_with_alignment(const InT* in, int len,
int tid, int stride,
VecOp&& vec_op,
ScaOp&& scalar_op) {
static_assert(VEC_SIZE > 0 && (VEC_SIZE & (VEC_SIZE - 1)) == 0,
"VEC_SIZE must be a positive power-of-two");
constexpr int WIDTH = VEC_SIZE * sizeof(InT);
uintptr_t addr = reinterpret_cast<uintptr_t>(in);
// fast path when the whole region is already aligned
bool can_vec = ((addr & (WIDTH - 1)) == 0) && ((len & (VEC_SIZE - 1)) == 0);
if (can_vec) {
int num_vec = len / VEC_SIZE;
using vin_t = vec_n_t<InT, VEC_SIZE>;
auto* v_in = reinterpret_cast<const vin_t*>(in);
for (int i = tid; i < num_vec; i += stride) {
vec_op(v_in[i]);
}
return;
}
int misalignment_offset = addr & (WIDTH - 1);
int alignment_bytes = WIDTH - misalignment_offset;
int prefix_elems = alignment_bytes & (WIDTH - 1);
prefix_elems /= sizeof(InT);
prefix_elems = min(prefix_elems, len);
// 1. handle the possibly unaligned prefix with scalar access.
for (int i = tid; i < prefix_elems; i += stride) {
scalar_op(in[i]);
}
in += prefix_elems;
len -= prefix_elems;
int num_vec = len / VEC_SIZE;
using vin_t = vec_n_t<InT, VEC_SIZE>;
auto* v_in = reinterpret_cast<const vin_t*>(in);
// 2. vectorized traversal of the main aligned region.
for (int i = tid; i < num_vec; i += stride) {
vec_op(v_in[i]);
}
// 3. handle remaining tail elements.
int tail_start = num_vec * VEC_SIZE;
for (int i = tid + tail_start; i < len; i += stride) {
scalar_op(in[i]);
}
}
// overload that requires only a scalar_op
template <int VEC_SIZE, typename InT, typename ScaOp>
__device__ __forceinline__ void vectorize_read_with_alignment(
const InT* in, int len, int tid, int stride, ScaOp&& scalar_op) {
using Vec = DefaultReadVecOp<VEC_SIZE, InT, std::decay_t<ScaOp>>;
vectorize_read_with_alignment<VEC_SIZE>(in, len, tid, stride, Vec{scalar_op},
std::forward<ScaOp>(scalar_op));
}
} // namespace vllm

View File

@ -59,6 +59,8 @@ void apply_repetition_penalties_(
int vocab_size = logits.size(-1);
int num_seqs = logits.size(0);
if (num_seqs == 0) return;
// Get number of SMs on the current device
int sms = 0;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount,

View File

@ -79,7 +79,8 @@ struct cutlass_sparse_3x_gemm {
// These are the minimum alignments needed for the kernels to compile
static constexpr int AlignmentAB =
128 / cutlass::sizeof_bits<ElementAB>::value;
static constexpr int AlignmentCD = 4;
static constexpr int AlignmentCD =
128 / cutlass::sizeof_bits<ElementD>::value;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<

View File

@ -393,6 +393,14 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
{stride_tag});
ops.impl("cutlass_scaled_fp4_mm", torch::kCUDA, &cutlass_scaled_fp4_mm);
// cutlass blockwise scaledgroup GEMM
ops.def(
"cutlass_blockwise_scaled_grouped_mm(Tensor! output, Tensor a, Tensor b, "
"Tensor scales_a, Tensor scales_b, "
"Tensor problem_sizes, Tensor expert_offsets) -> ()",
{stride_tag});
// conditionally compiled so impl registration is in source file
// cutlass nvfp4 block scaled group GEMM
ops.def(
"cutlass_fp4_group_mm(Tensor! out, Tensor a, Tensor b,"
@ -586,28 +594,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"int pad_slot_id) -> ()");
ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd);
ops.def(
"causal_conv1d_update(Tensor! x,"
"Tensor! conv_state,"
"Tensor! weight,"
"Tensor? bias_,"
"bool silu_activation,"
"Tensor? cache_seqlens_,"
"Tensor? conv_state_indices,"
"int pad_slot_id) -> ()");
ops.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update);
ops.def(
"causal_conv1d_fwd(Tensor! x, Tensor! weight,"
"Tensor? bias_,"
"Tensor!? conv_states,"
"Tensor? query_start_loc,"
"Tensor? cache_indices,"
"Tensor? has_initial_state,"
"bool silu_activation,"
"int pad_slot_id) -> ()");
ops.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd);
#ifndef USE_ROCM
// reorder weight for AllSpark Ampere W8A16 Fused Gemm kernel
ops.def(

View File

@ -1,3 +1,4 @@
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
@ -62,12 +63,16 @@ ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL=https://download.pytorch.org/whl/nightly
ARG PIP_KEYRING_PROVIDER=disabled
ARG UV_KEYRING_PROVIDER=${PIP_KEYRING_PROVIDER}
# Flag enables build-in KV-connector dependency libs into docker images
ARG INSTALL_KV_CONNECTORS=false
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM ${BUILD_BASE_IMAGE} AS base
ARG CUDA_VERSION
ARG PYTHON_VERSION
ARG TARGETPLATFORM
ARG INSTALL_KV_CONNECTORS=false
ENV DEBIAN_FRONTEND=noninteractive
ARG DEADSNAKES_MIRROR_URL
@ -276,6 +281,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
FROM ${FINAL_BASE_IMAGE} AS vllm-base
ARG CUDA_VERSION
ARG PYTHON_VERSION
ARG INSTALL_KV_CONNECTORS=false
WORKDIR /vllm-workspace
ENV DEBIAN_FRONTEND=noninteractive
ARG TARGETPLATFORM
@ -373,24 +379,44 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
ARG FLASHINFER_CUDA128_INDEX_URL="https://download.pytorch.org/whl/cu128/flashinfer"
ARG FLASHINFER_CUDA128_WHEEL="flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl"
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
ARG FLASHINFER_GIT_REF="v0.2.6.post1"
RUN --mount=type=cache,target=/root/.cache/uv \
. /etc/environment && \
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \
# FlashInfer already has a wheel for PyTorch 2.7.0 and CUDA 12.8. This is enough for CI use
if [[ "$CUDA_VERSION" == 12.8* ]]; then \
uv pip install --system ${FLASHINFER_CUDA128_INDEX_URL}/${FLASHINFER_CUDA128_WHEEL} ; \
else \
export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0a 10.0a 12.0' && \
git clone ${FLASHINFER_GIT_REPO} --single-branch --branch ${FLASHINFER_GIT_REF} --recursive && \
# Needed to build AOT kernels
(cd flashinfer && \
python3 -m flashinfer.aot && \
uv pip install --system --no-build-isolation . \
) && \
rm -rf flashinfer; \
fi \
fi
ARG FLASHINFER_GIT_REF="v0.2.8rc1"
# Flag to control whether to use pre-built FlashInfer wheels (set to false to force build from source)
# TODO: Currently disabled because the pre-built wheels are not available for FLASHINFER_GIT_REF
ARG USE_FLASHINFER_PREBUILT_WHEEL=false
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
. /etc/environment
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then
# FlashInfer already has a wheel for PyTorch 2.7.0 and CUDA 12.8. This is enough for CI use
if [[ "$CUDA_VERSION" == 12.8* ]] && [[ "$USE_FLASHINFER_PREBUILT_WHEEL" == "true" ]]; then
uv pip install --system ${FLASHINFER_CUDA128_INDEX_URL}/${FLASHINFER_CUDA128_WHEEL}
else
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
fi
echo "🏗️ Building FlashInfer for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
git clone --depth 1 --recursive --shallow-submodules \
--branch ${FLASHINFER_GIT_REF} \
${FLASHINFER_GIT_REPO} flashinfer
# Needed to build AOT kernels
pushd flashinfer
python3 -m flashinfer.aot
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
uv pip install --system --no-build-isolation .
popd
rm -rf flashinfer
fi \
fi
BASH
COPY examples examples
COPY benchmarks benchmarks
COPY ./vllm/collect_env.py .
@ -464,6 +490,7 @@ RUN mv mkdocs.yaml test_docs/
# base openai image with additional requirements, for any subsequent openai-style images
FROM vllm-base AS vllm-openai-base
ARG TARGETPLATFORM
ARG INSTALL_KV_CONNECTORS=false
ARG PIP_INDEX_URL UV_INDEX_URL
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
@ -472,12 +499,17 @@ ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
# Reference: https://github.com/astral-sh/uv/pull/1694
ENV UV_HTTP_TIMEOUT=500
COPY requirements/kv_connectors.txt requirements/kv_connectors.txt
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/uv \
if [ "$INSTALL_KV_CONNECTORS" = "true" ]; then \
uv pip install --system -r requirements/kv_connectors.txt; \
fi; \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
else \
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.3' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.46.1' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
fi
ENV VLLM_USAGE_SOURCE production-docker-image

View File

@ -8,6 +8,8 @@
# Build arguments:
# PYTHON_VERSION=3.12 (default)|3.11|3.10|3.9
# VLLM_CPU_DISABLE_AVX512=false (default)|true
# VLLM_CPU_AVX512BF16=false (default)|true
# VLLM_CPU_AVX512VNNI=false (default)|true
#
######################### BASE IMAGE #########################
@ -25,7 +27,7 @@ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt-get update -y \
&& apt-get install -y --no-install-recommends ccache git curl wget ca-certificates \
gcc-12 g++-12 libtcmalloc-minimal4 libnuma-dev ffmpeg libsm6 libxext6 libgl1 \
gcc-12 g++-12 libtcmalloc-minimal4 libnuma-dev ffmpeg libsm6 libxext6 libgl1 jq lsof \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12 \
&& curl -LsSf https://astral.sh/uv/install.sh | sh
@ -60,8 +62,14 @@ FROM base AS vllm-build
ARG GIT_REPO_CHECK=0
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
ARG VLLM_CPU_DISABLE_AVX512
ARG VLLM_CPU_DISABLE_AVX512=0
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
# Support for building with AVX512BF16 ISA: docker build --build-arg VLLM_CPU_AVX512BF16="true" ...
ARG VLLM_CPU_AVX512BF16=0
ENV VLLM_CPU_AVX512BF16=${VLLM_CPU_AVX512BF16}
# Support for building with AVX512VNNI ISA: docker build --build-arg VLLM_CPU_AVX512VNNI="true" ...
ARG VLLM_CPU_AVX512VNNI=0
ENV VLLM_CPU_AVX512VNNI=${VLLM_CPU_AVX512VNNI}
WORKDIR /workspace/vllm
@ -134,6 +142,7 @@ ADD ./tests/ ./tests/
ADD ./examples/ ./examples/
ADD ./benchmarks/ ./benchmarks/
ADD ./vllm/collect_env.py .
ADD ./.buildkite/ ./.buildkite/
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \

View File

@ -47,7 +47,7 @@ FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer 'modelscope!=1.15.0'
pip install accelerate hf_transfer pytest 'modelscope!=1.15.0'
ENV VLLM_USAGE_SOURCE production-docker-image \
TRITON_XPU_PROFILE 1

View File

@ -39,6 +39,7 @@ nav:
- models/generative_models.md
- models/pooling_models.md
- models/extensions
- Hardware Supported Models: models/hardware_supported_models
- Features:
- features/compatibility_matrix.md
- features/*
@ -54,6 +55,7 @@ nav:
- contributing/model/registration.md
- contributing/model/tests.md
- contributing/model/multimodal.md
- CI: contributing/ci
- Design Documents:
- V0: design
- V1: design/v1

View File

@ -1,7 +1,8 @@
# Welcome to vLLM
<figure markdown="span">
![](./assets/logos/vllm-logo-text-light.png){ align="center" alt="vLLM" class="no-scaled-link" width="60%" }
![](./assets/logos/vllm-logo-text-light.png){ align="center" alt="vLLM Light" class="logo-light" width="60%" }
![](./assets/logos/vllm-logo-text-dark.png){ align="center" alt="vLLM Dark" class="logo-dark" width="60%" }
</figure>
<p style="text-align:center">
@ -47,4 +48,4 @@ For more information, check out the following:
- [vLLM announcing blog post](https://vllm.ai) (intro to PagedAttention)
- [vLLM paper](https://arxiv.org/abs/2309.06180) (SOSP 2023)
- [How continuous batching enables 23x throughput in LLM inference while reducing p50 latency](https://www.anyscale.com/blog/continuous-batching-llm-inference) by Cade Daniel et al.
- [vLLM Meetups][meetups]
- [vLLM Meetups](community/meetups.md)

View File

@ -64,7 +64,7 @@ vLLM provides experimental support for multi-modal models through the [vllm.mult
Multi-modal inputs can be passed alongside text and token prompts to [supported models][supported-mm-models]
via the `multi_modal_data` field in [vllm.inputs.PromptType][].
Looking to add your own multi-modal model? Please follow the instructions listed [here][supports-multimodal].
Looking to add your own multi-modal model? Please follow the instructions listed [here](../contributing/model/multimodal.md).
- [vllm.multimodal.MULTIMODAL_REGISTRY][]

View File

@ -16,7 +16,7 @@ vllm {chat,complete,serve,bench,collect-env,run-batch}
Start the vLLM OpenAI Compatible API server.
??? Examples
??? console "Examples"
```bash
# Start with a model

View File

@ -1,6 +1,3 @@
---
title: Contact Us
---
[](){ #contactus }
# Contact Us
--8<-- "README.md:contact-us"

View File

@ -1,7 +1,4 @@
---
title: Meetups
---
[](){ #meetups }
# Meetups
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:

View File

@ -33,7 +33,7 @@ Quantized models take less memory at the cost of lower precision.
Statically quantized models can be downloaded from HF Hub (some popular ones are available at [Red Hat AI](https://huggingface.co/RedHatAI))
and used directly without extra configuration.
Dynamic quantization is also supported via the `quantization` option -- see [here][quantization-index] for more details.
Dynamic quantization is also supported via the `quantization` option -- see [here](../features/quantization/README.md) for more details.
## Context length and batch size
@ -57,7 +57,7 @@ By default, we optimize model inference using CUDA graphs which take up extra me
You can adjust `compilation_config` to achieve a better balance between inference speed and memory usage:
??? Code
??? code
```python
from vllm import LLM
@ -129,7 +129,7 @@ reduce the size of the processed multi-modal inputs, which in turn saves memory.
Here are some examples:
??? Code
??? code
```python
from vllm import LLM

View File

@ -1,18 +1,20 @@
---
title: Engine Arguments
toc_depth: 3
---
[](){ #engine-args }
# Engine Arguments
Engine arguments control the behavior of the vLLM engine.
- For [offline inference][offline-inference], they are part of the arguments to [LLM][vllm.LLM] class.
- For [online serving][openai-compatible-server], they are part of the arguments to `vllm serve`.
- For [offline inference](../serving/offline_inference.md), they are part of the arguments to [LLM][vllm.LLM] class.
- For [online serving](../serving/openai_compatible_server.md), they are part of the arguments to `vllm serve`.
You can look at [EngineArgs][vllm.engine.arg_utils.EngineArgs] and [AsyncEngineArgs][vllm.engine.arg_utils.AsyncEngineArgs] to see the available engine arguments.
The engine argument classes, [EngineArgs][vllm.engine.arg_utils.EngineArgs] and [AsyncEngineArgs][vllm.engine.arg_utils.AsyncEngineArgs], are a combination of the configuration classes defined in [vllm.config][]. Therefore, if you are interested in developer documentation, we recommend looking at these configuration classes as they are the source of truth for types, defaults and docstrings.
However, these classes are a combination of the configuration classes defined in [vllm.config][]. Therefore, we would recommend you read about them there where they are best documented.
## `EngineArgs`
For offline inference you will have access to these configuration classes and for online serving you can cross-reference the configs with `vllm serve --help`, which has its arguments grouped by config.
--8<-- "docs/argparse/engine_args.md"
!!! note
Additional arguments are available to the [AsyncLLMEngine][vllm.engine.async_llm_engine.AsyncLLMEngine] which is used for online serving. These can be found by running `vllm serve --help`
## `AsyncEngineArgs`
--8<-- "docs/argparse/async_engine_args.md"

View File

@ -7,7 +7,7 @@ vLLM uses the following environment variables to configure the system:
All environment variables used by vLLM are prefixed with `VLLM_`. **Special care should be taken for Kubernetes users**: please do not name the service as `vllm`, otherwise environment variables set by Kubernetes might conflict with vLLM's environment variables, because [Kubernetes sets environment variables for each service with the capitalized service name as the prefix](https://kubernetes.io/docs/concepts/services-networking/service/#environment-variables).
??? Code
??? code
```python
--8<-- "vllm/envs.py:env-vars-definition"

View File

@ -20,4 +20,4 @@ model = LLM(
)
```
Our [list of supported models][supported-models] shows the model architectures that are recognized by vLLM.
Our [list of supported models](../models/supported_models.md) shows the model architectures that are recognized by vLLM.

View File

@ -1,7 +1,4 @@
---
title: Server Arguments
---
[](){ #serve-args }
# Server Arguments
The `vllm serve` command is used to launch the OpenAI-compatible server.
@ -13,7 +10,7 @@ To see the available CLI arguments, run `vllm serve --help`!
## Configuration file
You can load CLI arguments via a [YAML](https://yaml.org/) config file.
The argument names must be the long form of those outlined [above][serve-args].
The argument names must be the long form of those outlined [above](serve_args.md).
For example:

View File

@ -95,7 +95,7 @@ For additional features and advanced configurations, refer to the official [MkDo
## Testing
??? note "Commands"
??? console "Commands"
```bash
pip install -r requirements/dev.txt

View File

@ -1,7 +1,4 @@
---
title: Benchmark Suites
---
[](){ #benchmarks }
# Benchmark Suites
vLLM contains two sets of benchmarks:

View File

@ -6,9 +6,9 @@ the failure?
- Check the dashboard of current CI test failures:
👉 [CI Failures Dashboard](https://github.com/orgs/vllm-project/projects/20)
- If your failure **is already listed**, it's likely unrelated to your PR.
Help fixing it is always welcome!
- Leave comments with links to additional instances of the failure.
- If your failure **is already listed**, it's likely unrelated to your PR.
Help fixing it is always welcome!
- Leave comments with links to additional instances of the failure.
- React with a 👍 to signal how many are affected.
- If your failure **is not listed**, you should **file an issue**.
@ -19,25 +19,25 @@ the failure?
👉 [New CI Failure Report](https://github.com/vllm-project/vllm/issues/new?template=450-ci-failure.yml)
- **Use this title format:**
```
[CI Failure]: failing-test-job - regex/matching/failing:test
```
- **For the environment field:**
```
Still failing on main as of commit abcdef123
```
- **In the description, include failing tests:**
```
FAILED failing/test.py:failing_test1 - Failure description
FAILED failing/test.py:failing_test2 - Failure description
https://github.com/orgs/vllm-project/projects/20
https://github.com/vllm-project/vllm/issues/new?template=400-bug-report.yml
FAILED failing/test.py:failing_test3 - Failure description
FAILED failing/test.py:failing_test1 - Failure description
FAILED failing/test.py:failing_test2 - Failure description
https://github.com/orgs/vllm-project/projects/20
https://github.com/vllm-project/vllm/issues/new?template=400-bug-report.yml
FAILED failing/test.py:failing_test3 - Failure description
```
- **Attach logs** (collapsible section example):
@ -45,17 +45,17 @@ the failure?
<summary>Logs:</summary>
```text
ERROR 05-20 03:26:38 [dump_input.py:68] Dumping input data
ERROR 05-20 03:26:38 [dump_input.py:68] Dumping input data
--- Logging error ---
Traceback (most recent call last):
File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 203, in execute_model
return self.model_executor.execute_model(scheduler_output)
return self.model_executor.execute_model(scheduler_output)
...
FAILED failing/test.py:failing_test1 - Failure description
FAILED failing/test.py:failing_test2 - Failure description
FAILED failing/test.py:failing_test3 - Failure description
FAILED failing/test.py:failing_test1 - Failure description
FAILED failing/test.py:failing_test2 - Failure description
FAILED failing/test.py:failing_test3 - Failure description
```
</details>
## Logs Wrangling
@ -78,7 +78,7 @@ tail -525 ci_build.log | wl-copy
## Investigating a CI Test Failure
1. Go to 👉 [Buildkite main branch](https://buildkite.com/vllm/ci/builds?branch=main)
1. Go to 👉 [Buildkite main branch](https://buildkite.com/vllm/ci/builds?branch=main)
2. Bisect to find the first build that shows the issue.
3. Add your findings to the GitHub issue.
4. If you find a strong candidate PR, mention it in the issue and ping contributors.
@ -97,9 +97,9 @@ CI test failures may be flaky. Use a bash loop to run repeatedly:
If you submit a PR to fix a CI failure:
- Link the PR to the issue:
- Link the PR to the issue:
Add `Closes #12345` to the PR description.
- Add the `ci-failure` label:
- Add the `ci-failure` label:
This helps track it in the [CI Failures GitHub Project](https://github.com/orgs/vllm-project/projects/20).
## Other Resources

View File

@ -1,15 +1,12 @@
---
title: Update PyTorch version on vLLM OSS CI/CD
---
# Update PyTorch version on vLLM OSS CI/CD
vLLM's current policy is to always use the latest PyTorch stable
release in CI/CD. It is standard practice to submit a PR to update the
PyTorch version as early as possible when a new [PyTorch stable
release](https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-cadence) becomes available.
This process is non-trivial due to the gap between PyTorch
releases. Using [#16859](https://github.com/vllm-project/vllm/pull/16859) as
an example, this document outlines common steps to achieve this update along with
a list of potential issues and how to address them.
releases. Using <gh-pr:16859> as an example, this document outlines common steps to achieve this
update along with a list of potential issues and how to address them.
## Test PyTorch release candidates (RCs)
@ -19,11 +16,12 @@ by waiting for the next release or by implementing hacky workarounds in vLLM.
The better solution is to test vLLM with PyTorch release candidates (RC) to ensure
compatibility before each release.
PyTorch release candidates can be downloaded from PyTorch test index at https://download.pytorch.org/whl/test.
For example, torch2.7.0+cu12.8 RC can be installed using the following command:
PyTorch release candidates can be downloaded from [PyTorch test index](https://download.pytorch.org/whl/test).
For example, `torch2.7.0+cu12.8` RC can be installed using the following command:
```
uv pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu128
```bash
uv pip install torch torchvision torchaudio \
--index-url https://download.pytorch.org/whl/test/cu128
```
When the final RC is ready for testing, it will be announced to the community
@ -31,13 +29,28 @@ on the [PyTorch dev-discuss forum](https://dev-discuss.pytorch.org/c/release-ann
After this announcement, we can begin testing vLLM integration by drafting a pull request
following this 3-step process:
1. Update requirements files in https://github.com/vllm-project/vllm/tree/main/requirements
to point to the new releases for torch, torchvision, and torchaudio.
2. Use `--extra-index-url https://download.pytorch.org/whl/test/<PLATFORM>` to
get the final release candidates' wheels. Some common platforms are `cpu`, `cu128`,
and `rocm6.2.4`.
3. As vLLM uses uv, make sure that `unsafe-best-match` strategy is set either
via `UV_INDEX_STRATEGY` env variable or via `--index-strategy unsafe-best-match`.
1. Update [requirements files](https://github.com/vllm-project/vllm/tree/main/requirements)
to point to the new releases for `torch`, `torchvision`, and `torchaudio`.
2. Use the following option to get the final release candidates' wheels. Some common platforms are `cpu`, `cu128`, and `rocm6.2.4`.
```bash
--extra-index-url https://download.pytorch.org/whl/test/<PLATFORM>
```
3. Since vLLM uses `uv`, ensure the following index strategy is applied:
- Via environment variable:
```bash
export UV_INDEX_STRATEGY=unsafe-best-match
```
- Or via CLI flag:
```bash
--index-strategy unsafe-best-match
```
If failures are found in the pull request, raise them as issues on vLLM and
cc the PyTorch release team to initiate discussion on how to address them.
@ -45,20 +58,25 @@ cc the PyTorch release team to initiate discussion on how to address them.
## Update CUDA version
The PyTorch release matrix includes both stable and experimental [CUDA versions](https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-compatibility-matrix). Due to limitations, only the latest stable CUDA version (for example,
torch2.7.0+cu12.6) is uploaded to PyPI. However, vLLM may require a different CUDA version,
`torch2.7.0+cu12.6`) is uploaded to PyPI. However, vLLM may require a different CUDA version,
such as 12.8 for Blackwell support.
This complicates the process as we cannot use the out-of-the-box
`pip install torch torchvision torchaudio` command. The solution is to use
`--extra-index-url` in vLLM's Dockerfiles.
1. Use `--extra-index-url https://download.pytorch.org/whl/cu128` to install torch+cu128.
2. Other important indexes at the moment include:
1. CPU https://download.pytorch.org/whl/cpu
2. ROCm https://download.pytorch.org/whl/rocm6.2.4 and https://download.pytorch.org/whl/rocm6.3
3. XPU https://download.pytorch.org/whl/xpu
3. Update .buildkite/release-pipeline.yaml and .buildkite/scripts/upload-wheels.sh to
match the CUDA version from step 1. This makes sure that the release vLLM wheel is tested
on CI.
- Important indexes at the moment include:
| Platform | `--extra-index-url` |
|----------|-----------------|
| CUDA 12.8| [https://download.pytorch.org/whl/cu128](https://download.pytorch.org/whl/cu128)|
| CPU | [https://download.pytorch.org/whl/cpu](https://download.pytorch.org/whl/cpu)|
| ROCm 6.2 | [https://download.pytorch.org/whl/rocm6.2.4](https://download.pytorch.org/whl/rocm6.2.4) |
| ROCm 6.3 | [https://download.pytorch.org/whl/rocm6.3](https://download.pytorch.org/whl/rocm6.3) |
| XPU | [https://download.pytorch.org/whl/xpu](https://download.pytorch.org/whl/xpu) |
- Update the below files to match the CUDA version from step 1. This makes sure that the release vLLM wheel is tested on CI.
- `.buildkite/release-pipeline.yaml`
- `.buildkite/scripts/upload-wheels.sh`
## Address long vLLM build time
@ -68,8 +86,8 @@ and timeout. Additionally, since vLLM's fastcheck pipeline runs in read-only mod
it doesn't populate the cache, so re-running it to warm up the cache
is ineffective.
While ongoing efforts like [#17419](https://github.com/vllm-project/vllm/issues/17419)
address the long build time at its source, the current workaround is to set VLLM_CI_BRANCH
While ongoing efforts like [#17419](gh-issue:17419)
address the long build time at its source, the current workaround is to set `VLLM_CI_BRANCH`
to a custom branch provided by @khluu (`VLLM_CI_BRANCH=khluu/use_postmerge_q`)
when manually triggering a build on Buildkite. This branch accomplishes two things:
@ -89,17 +107,18 @@ releases (which would take too much time), they can be built from
source to unblock the update process.
### FlashInfer
Here is how to build and install it from source with torch2.7.0+cu128 in vLLM [Dockerfile](https://github.com/vllm-project/vllm/blob/27bebcd89792d5c4b08af7a65095759526f2f9e1/docker/Dockerfile#L259-L271):
Here is how to build and install it from source with `torch2.7.0+cu128` in vLLM [Dockerfile](https://github.com/vllm-project/vllm/blob/27bebcd89792d5c4b08af7a65095759526f2f9e1/docker/Dockerfile#L259-L271):
```bash
export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0 10.0+PTX'
export FLASHINFER_ENABLE_SM90=1
uv pip install --system --no-build-isolation "git+https://github.com/flashinfer-ai/flashinfer@v0.2.6.post1"
uv pip install --system \
--no-build-isolation "git+https://github.com/flashinfer-ai/flashinfer@v0.2.6.post1"
```
One caveat is that building FlashInfer from source adds approximately 30
minutes to the vLLM build time. Therefore, it's preferable to cache the wheel in a
public location for immediate installation, such as https://download.pytorch.org/whl/cu128/flashinfer/flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl. For future releases, contact the PyTorch release
public location for immediate installation, such as [this FlashInfer wheel link](https://download.pytorch.org/whl/cu128/flashinfer/flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl). For future releases, contact the PyTorch release
team if you want to get the package published there.
### xFormers
@ -107,13 +126,15 @@ Similar to FlashInfer, here is how to build and install xFormers from source:
```bash
export TORCH_CUDA_ARCH_LIST='7.0 7.5 8.0 8.9 9.0 10.0+PTX'
MAX_JOBS=16 uv pip install --system --no-build-isolation "git+https://github.com/facebookresearch/xformers@v0.0.30"
MAX_JOBS=16 uv pip install --system \
--no-build-isolation "git+https://github.com/facebookresearch/xformers@v0.0.30"
```
### Mamba
```bash
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
uv pip install --system \
--no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
```
### causal-conv1d
@ -128,7 +149,6 @@ Rather than attempting to update all vLLM platforms in a single pull request, it
to handle some platforms separately. The separation of requirements and Dockerfiles
for different platforms in vLLM CI/CD allows us to selectively choose
which platforms to update. For instance, updating XPU requires the corresponding
release from https://github.com/intel/intel-extension-for-pytorch by Intel.
While https://github.com/vllm-project/vllm/pull/16859 updated vLLM to PyTorch
2.7.0 on CPU, CUDA, and ROCm, https://github.com/vllm-project/vllm/pull/17444
completed the update for XPU.
release from [Intel Extension for PyTorch](https://github.com/intel/intel-extension-for-pytorch) by Intel.
While <gh-pr:16859> updated vLLM to PyTorch 2.7.0 on CPU, CUDA, and ROCm,
<gh-pr:17444> completed the update for XPU.

View File

@ -37,14 +37,14 @@ multiple Y releases:
- **Timeline**: A removal version is explicitly stated in the deprecation
warning (e.g., "This will be removed in v0.10.0").
- **Communication**: Deprecation is noted in the following, as applicable:
- Help strings
- Log output
- API responses
- `/metrics` output (for metrics features)
- User-facing documentation
- Release notes
- GitHub Issue (RFC) for feedback
- Documentation and use of the `@typing_extensions.deprecated` decorator for Python APIs
- Help strings
- Log output
- API responses
- `/metrics` output (for metrics features)
- User-facing documentation
- Release notes
- GitHub Issue (RFC) for feedback
- Documentation and use of the `@typing_extensions.deprecated` decorator for Python APIs
**2.Deprecated (Off By Default)**

View File

@ -1,7 +1,7 @@
# Dockerfile
We provide a <gh-file:docker/Dockerfile> to construct the image for running an OpenAI compatible server with vLLM.
More information about deploying with Docker can be found [here][deployment-docker].
More information about deploying with Docker can be found [here](../../deployment/docker.md).
Below is a visual representation of the multi-stage Dockerfile. The build graph contains the following nodes:

View File

@ -14,7 +14,7 @@ Before setting up the incremental build:
VLLM_USE_PRECOMPILED=1 uv pip install -U -e . --torch-backend=auto
```
2. **CUDA Toolkit:** Verify that the NVIDIA CUDA Toolkit is correctly installed and `nvcc` is accessible in your `PATH`. CMake relies on `nvcc` to compile CUDA code. You can typically find `nvcc` in `$CUDA_HOME/bin/nvcc` or by running `which nvcc`. If you encounter issues, refer to the [official CUDA Toolkit installation guides](https://developer.nvidia.com/cuda-toolkit-archive) and vLLM's main [GPU installation documentation](../getting_started/installation/gpu/cuda.inc.md#troubleshooting) for troubleshooting. The `CMAKE_CUDA_COMPILER` variable in your `CMakeUserPresets.json` should also point to your `nvcc` binary.
2. **CUDA Toolkit:** Verify that the NVIDIA CUDA Toolkit is correctly installed and `nvcc` is accessible in your `PATH`. CMake relies on `nvcc` to compile CUDA code. You can typically find `nvcc` in `$CUDA_HOME/bin/nvcc` or by running `which nvcc`. If you encounter issues, refer to the [official CUDA Toolkit installation guides](https://developer.nvidia.com/cuda-toolkit-archive) and vLLM's main [GPU installation documentation](../getting_started/installation/gpu.md#troubleshooting) for troubleshooting. The `CMAKE_CUDA_COMPILER` variable in your `CMakeUserPresets.json` should also point to your `nvcc` binary.
3. **Build Tools:** It is highly recommended to install `ccache` for fast rebuilds by caching compilation results (e.g., `sudo apt install ccache` or `conda install ccache`). Also, ensure the core build dependencies like `cmake` and `ninja` are installed. These are installable through `requirements/build.txt` or your system's package manager.
@ -84,6 +84,7 @@ Below is an example of what the generated `CMakeUserPresets.json` might look lik
```
**What do the various configurations mean?**
- `CMAKE_CUDA_COMPILER`: Path to your `nvcc` binary. The script attempts to find this automatically.
- `CMAKE_C_COMPILER_LAUNCHER`, `CMAKE_CXX_COMPILER_LAUNCHER`, `CMAKE_CUDA_COMPILER_LAUNCHER`: Setting these to `ccache` (or `sccache`) significantly speeds up rebuilds by caching compilation results. Ensure `ccache` is installed (e.g., `sudo apt install ccache` or `conda install ccache`). The script sets these by default.
- `VLLM_PYTHON_EXECUTABLE`: Path to the Python executable in your vLLM development environment. The script will prompt for this, defaulting to the current Python environment if suitable.
@ -98,16 +99,16 @@ Once your `CMakeUserPresets.json` is configured:
1. **Initialize the CMake build environment:**
This step configures the build system according to your chosen preset (e.g., `release`) and creates the build directory at `binaryDir`
```console
cmake --preset release
```
```console
cmake --preset release
```
2. **Build and install the vLLM components:**
This command compiles the code and installs the resulting binaries into your vLLM source directory, making them available to your editable Python installation.
```console
cmake --build --preset release --target install
```
```console
cmake --build --preset release --target install
```
3. **Make changes and repeat!**
Now you start using your editable install of vLLM, testing and making changes as needed. If you need to build again to update based on changes, simply run the CMake command again to build only the affected files.

View File

@ -1,12 +1,9 @@
---
title: Summary
---
[](){ #new-model }
# Summary
!!! important
Many decoder language models can now be automatically loaded using the [Transformers backend][transformers-backend] without having to implement them in vLLM. See if `vllm serve <model>` works first!
vLLM models are specialized [PyTorch](https://pytorch.org/) models that take advantage of various [features][compatibility-matrix] to optimize their performance.
vLLM models are specialized [PyTorch](https://pytorch.org/) models that take advantage of various [features](../../features/compatibility_matrix.md) to optimize their performance.
The complexity of integrating a model into vLLM depends heavily on the model's architecture.
The process is considerably straightforward if the model shares a similar architecture with an existing model in vLLM.

View File

@ -1,7 +1,4 @@
---
title: Basic Model
---
[](){ #new-model-basic }
# Basic Model
This guide walks you through the steps to implement a basic vLLM model.
@ -27,7 +24,7 @@ All vLLM modules within the model must include a `prefix` argument in their cons
The initialization code should look like this:
??? Code
??? code
```python
from torch import nn
@ -108,7 +105,7 @@ This method should load the weights from the HuggingFace's checkpoint file and a
## 5. Register your model
See [this page][new-model-registration] for instructions on how to register your new model to be used by vLLM.
See [this page](registration.md) for instructions on how to register your new model to be used by vLLM.
## Frequently Asked Questions

View File

@ -1,15 +1,28 @@
---
title: Multi-Modal Support
---
[](){ #supports-multimodal }
# Multi-Modal Support
This document walks you through the steps to extend a basic model so that it accepts [multi-modal inputs][multimodal-inputs].
This document walks you through the steps to extend a basic model so that it accepts [multi-modal inputs](../../features/multimodal_inputs.md).
## 1. Update the base vLLM model
It is assumed that you have already implemented the model in vLLM according to [these steps][new-model-basic].
It is assumed that you have already implemented the model in vLLM according to [these steps](basic.md).
Further update the model as follows:
- Implement [get_placeholder_str][vllm.model_executor.models.interfaces.SupportsMultiModal.get_placeholder_str] to define the placeholder string which is used to represent the multi-modal item in the text prompt. This should be consistent with the chat template of the model.
??? code
```python
class YourModelForImage2Seq(nn.Module):
...
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
if modality.startswith("image"):
return "<image>"
raise ValueError("Only image modality is supported")
```
- Reserve a keyword parameter in [forward][torch.nn.Module.forward] for each input tensor that corresponds to a multi-modal input, as shown in the following example:
```diff
@ -25,7 +38,7 @@ Further update the model as follows:
- Implement [get_multimodal_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_multimodal_embeddings] that returns the embeddings from running the multimodal inputs through the multimodal tokenizer of the model. Below we provide a boilerplate of a typical implementation pattern, but feel free to adjust it to your own needs.
??? Code
??? code
```python
class YourModelForImage2Seq(nn.Module):
@ -55,7 +68,7 @@ Further update the model as follows:
- Implement [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings] to merge `multimodal_embeddings` with text embeddings from the `input_ids`. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.
??? Code
??? code
```python
from .utils import merge_multimodal_embeddings
@ -139,7 +152,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
Looking at the code of HF's `LlavaForConditionalGeneration`:
??? Code
??? code
```python
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
@ -163,7 +176,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
The number of placeholder feature tokens per image is `image_features.shape[1]`.
`image_features` is calculated inside the `get_image_features` method:
??? Code
??? code
```python
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
@ -201,7 +214,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
To find the sequence length, we turn to the code of `CLIPVisionEmbeddings`:
??? Code
??? code
```python
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
@ -228,7 +241,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
Overall, the number of placeholder feature tokens for an image can be calculated as:
??? Code
??? code
```python
def get_num_image_tokens(
@ -253,7 +266,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
Notice that the number of image tokens doesn't depend on the image width and height.
We can simply use a dummy `image_size` to calculate the multimodal profiling data:
??? Code
??? code
```python
# NOTE: In actuality, this is usually implemented as part of the
@ -298,7 +311,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
Looking at the code of HF's `FuyuForCausalLM`:
??? Code
??? code
```python
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/modeling_fuyu.py#L311-L322
@ -328,7 +341,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
In `FuyuImageProcessor.preprocess`, the images are resized and padded to the target `FuyuImageProcessor.size`,
returning the dimensions after resizing (but before padding) as metadata.
??? Code
??? code
```python
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L541-L544
@ -366,7 +379,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
In `FuyuImageProcessor.preprocess_with_tokenizer_info`, the images are split into patches based on this metadata:
??? Code
??? code
```python
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L425
@ -404,7 +417,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
The number of patches is in turn defined by `FuyuImageProcessor.get_num_patches`:
??? Code
??? code
```python
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L552-L562
@ -441,7 +454,7 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
For the multimodal image profiling data, the logic is very similar to LLaVA:
??? Code
??? code
```python
def get_dummy_mm_data(
@ -467,7 +480,7 @@ Afterwards, create a subclass of [BaseMultiModalProcessor][vllm.multimodal.proce
to fill in the missing details about HF processing.
!!! info
[Multi-Modal Data Processing][mm-processing]
[Multi-Modal Data Processing](../../design/mm_processing.md)
### Multi-modal fields
@ -530,7 +543,7 @@ return a schema of the tensors outputted by the HF processor that are related to
In order to support the use of [MultiModalFieldConfig.batched][] like in LLaVA,
we remove the extra batch dimension by overriding [BaseMultiModalProcessor._call_hf_processor][]:
??? Code
??? code
```python
def _call_hf_processor(
@ -538,11 +551,13 @@ return a schema of the tensors outputted by the HF processor that are related to
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature:
processed_outputs = super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
image_patches = processed_outputs.get("image_patches")
@ -566,6 +581,11 @@ return a schema of the tensors outputted by the HF processor that are related to
Our [actual code](gh-file:vllm/model_executor/models/fuyu.py) has special handling
for text-only inputs to prevent unnecessary warnings from HF processor.
!!! note
The `_call_hf_processor` method specifies both `mm_kwargs` and `tok_kwargs` for
processing. `mm_kwargs` is used to both initialize and call the huggingface
processor, whereas `tok_kwargs` is only used to call the huggingface processor.
This lets us override [_get_mm_fields_config][vllm.multimodal.processing.BaseMultiModalProcessor._get_mm_fields_config] as follows:
```python
@ -600,7 +620,7 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
It simply repeats each input `image_token` a number of times equal to the number of placeholder feature tokens (`num_image_tokens`).
Based on this, we override [_get_prompt_updates][vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates] as follows:
??? Code
??? code
```python
def _get_prompt_updates(
@ -645,7 +665,7 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
We define a helper function to return `ncols` and `nrows` directly:
??? Code
??? code
```python
def get_image_feature_grid_size(
@ -675,7 +695,7 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
Based on this, we can initially define our replacement tokens as:
??? Code
??? code
```python
def get_replacement(item_idx: int):
@ -695,7 +715,7 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
However, this is not entirely correct. After `FuyuImageProcessor.preprocess_with_tokenizer_info` is called,
a BOS token (`<s>`) is also added to the promopt:
??? Code
??? code
```python
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L435
@ -722,7 +742,7 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
To assign the vision embeddings to only the image tokens, instead of a string
you can return an instance of [PromptUpdateDetails][vllm.multimodal.processing.PromptUpdateDetails]:
??? Code
??? code
```python
hf_config = self.info.get_hf_config()
@ -749,7 +769,7 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
Finally, noticing that the HF processor removes the `|ENDOFTEXT|` token from the tokenized prompt,
we can search for it to conduct the replacement at the start of the string:
??? Code
??? code
```python
def _get_prompt_updates(
@ -796,7 +816,7 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
After you have defined [BaseProcessingInfo][vllm.multimodal.processing.BaseProcessingInfo] (Step 2),
[BaseDummyInputsBuilder][vllm.multimodal.profiling.BaseDummyInputsBuilder] (Step 3),
and [BaseMultiModalProcessor][vllm.multimodal.processing.BaseMultiModalProcessor] (Step 4),
decorate the model class with {meth}`MULTIMODAL_REGISTRY.register_processor <vllm.multimodal.registry.MultiModalRegistry.register_processor>`
decorate the model class with [MULTIMODAL_REGISTRY.register_processor][vllm.multimodal.processing.MultiModalRegistry.register_processor]
to register them to the multi-modal registry:
```diff
@ -823,7 +843,7 @@ Examples:
### Handling prompt updates unrelated to multi-modal data
[_get_prompt_updates][vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates] assumes that each application of prompt update corresponds to one multi-modal item. If the HF processor performs additional processing regardless of how many multi-modal items there are, you should override [_apply_hf_processor_tokens_only][vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_tokens_only] so that the processed token inputs are consistent with the result of applying the HF processor on text inputs. This is because token inputs bypass the HF processor according to [our design][mm-processing].
[_get_prompt_updates][vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates] assumes that each application of prompt update corresponds to one multi-modal item. If the HF processor performs additional processing regardless of how many multi-modal items there are, you should override [_apply_hf_processor_tokens_only][vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_tokens_only] so that the processed token inputs are consistent with the result of applying the HF processor on text inputs. This is because token inputs bypass the HF processor according to [our design](../../design/mm_processing.md).
Examples:

View File

@ -1,10 +1,7 @@
---
title: Registering a Model
---
[](){ #new-model-registration }
# Registering a Model
vLLM relies on a model registry to determine how to run each model.
A list of pre-registered architectures can be found [here][supported-models].
A list of pre-registered architectures can be found [here](../../models/supported_models.md).
If your model is not on this list, you must register it to vLLM.
This page provides detailed instructions on how to do so.
@ -14,16 +11,16 @@ This page provides detailed instructions on how to do so.
To add a model directly to the vLLM library, start by forking our [GitHub repository](https://github.com/vllm-project/vllm) and then [build it from source][build-from-source].
This gives you the ability to modify the codebase and test your model.
After you have implemented your model (see [tutorial][new-model-basic]), put it into the <gh-dir:vllm/model_executor/models> directory.
After you have implemented your model (see [tutorial](basic.md)), put it into the <gh-dir:vllm/model_executor/models> directory.
Then, add your model class to `_VLLM_MODELS` in <gh-file:vllm/model_executor/models/registry.py> so that it is automatically registered upon importing vLLM.
Finally, update our [list of supported models][supported-models] to promote your model!
Finally, update our [list of supported models](../../models/supported_models.md) to promote your model!
!!! important
The list of models in each section should be maintained in alphabetical order.
## Out-of-tree models
You can load an external model [using a plugin][plugin-system] without modifying the vLLM codebase.
You can load an external model [using a plugin](../../design/plugin_system.md) without modifying the vLLM codebase.
To register the model, use the following code:
@ -51,4 +48,4 @@ def register():
!!! important
If your model is a multimodal model, ensure the model class implements the [SupportsMultiModal][vllm.model_executor.models.interfaces.SupportsMultiModal] interface.
Read more about that [here][supports-multimodal].
Read more about that [here](multimodal.md).

Some files were not shown because too many files have changed in this diff Show More