Compare commits

...

5 Commits

Author SHA1 Message Date
98d535eb4f add aggregator interface and abstract common logic
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-22 13:00:53 -07:00
a46e279909 [Misc][DP] support customized global logger for dp
Signed-off-by: Lu Fang <fanglu@fb.com>

fix the test

Signed-off-by: Lu Fang <fanglu@fb.com>

address comments

Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-22 11:27:53 -07:00
064cac7bb7 [fix]: remove data type hardcoding from gptoss model implementation (#23807)
Signed-off-by: Nikhil Gupta <nikhil.gupta2@arm.com>
2025-09-18 18:15:23 +00:00
e19bce40a1 [V0 Deprecation] Remove AsyncLLMEngine (#25025)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-18 11:07:42 -07:00
505805b645 [KV offload][1/N] Introduce an offloading component (#19848)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-18 10:57:07 -07:00
20 changed files with 771 additions and 2017 deletions

View File

@ -280,6 +280,7 @@ steps:
# split the test to avoid interference
- pytest -v -s v1/core
- pytest -v -s v1/executor
- pytest -v -s v1/offloading
- pytest -v -s v1/sample
- pytest -v -s v1/logits_processors
- pytest -v -s v1/worker

View File

@ -1,12 +1,15 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import threading
from typing import Optional
from vllm.config import VllmConfig
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.v1.metrics.loggers import AggregatedStatLogger, LoggingStatLogger
"""
To run this example, run the following commands simultaneously with
@ -22,37 +25,67 @@ send a request to the instance with DP rank 1.
"""
def _do_background_logging(engine, interval, stop_event):
try:
while not stop_event.is_set():
asyncio.run(engine.do_log_stats())
stop_event.wait(interval)
except Exception as e:
print(f"vLLM background logging shutdown: {e}")
pass
async def main():
engine_args = AsyncEngineArgs(
model="ibm-research/PowerMoE-3b",
data_parallel_size=2,
tensor_parallel_size=1,
dtype="auto",
max_model_len=2048,
data_parallel_address="127.0.0.1",
data_parallel_rpc_port=62300,
data_parallel_size_local=1,
enforce_eager=True,
enable_log_requests=True,
disable_custom_all_reduce=True,
)
engine_client = AsyncLLMEngine.from_engine_args(engine_args)
def per_engine_logger_factory(config: VllmConfig, rank: int) -> LoggingStatLogger:
return LoggingStatLogger(config, rank)
engine_client = AsyncLLMEngine.from_engine_args(
engine_args,
# Example: Using both regular loggers and aggregated logger
stat_loggers=[per_engine_logger_factory, AggregatedStatLogger],
)
stop_logging_event = threading.Event()
logging_thread = threading.Thread(
target=_do_background_logging,
args=(engine_client, 5, stop_logging_event),
daemon=True,
)
logging_thread.start()
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=100,
)
num_prompts = 10
for i in range(num_prompts):
prompt = "Who won the 2004 World Series?"
final_output: Optional[RequestOutput] = None
async for output in engine_client.generate(
prompt=prompt,
sampling_params=sampling_params,
request_id=f"abcdef-{i}",
data_parallel_rank=1,
):
final_output = output
if final_output:
print(final_output.outputs[0].text)
prompt = "Who won the 2004 World Series?"
final_output: Optional[RequestOutput] = None
async for output in engine_client.generate(
prompt=prompt,
sampling_params=sampling_params,
request_id="abcdef",
data_parallel_rank=1,
):
final_output = output
if final_output:
print(final_output.outputs[0].text)
stop_logging_event.set()
logging_thread.join()
if __name__ == "__main__":

View File

@ -28,11 +28,9 @@ def monkeypatch_module():
mpatch.undo()
@pytest.fixture(scope="module", params=[False, True])
def server(request, monkeypatch_module, zephyr_lora_files): #noqa: F811
use_v1 = request.param
monkeypatch_module.setenv('VLLM_USE_V1', '1' if use_v1 else '0')
@pytest.fixture(scope="module")
def server(monkeypatch_module, zephyr_lora_files): #noqa: F811
monkeypatch_module.setenv('VLLM_USE_V1', '1')
args = [
# use half precision for speed and memory savings in CI environment
@ -57,13 +55,6 @@ def server(request, monkeypatch_module, zephyr_lora_files): #noqa: F811
yield remote_server
@pytest.fixture
def is_v1_server(server):
import os
assert os.environ['VLLM_USE_V1'] in ['0', '1']
return os.environ['VLLM_USE_V1'] == '1'
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
@ -481,10 +472,9 @@ async def test_chat_completion_stream_options(client: openai.AsyncOpenAI,
@pytest.mark.asyncio
async def test_structured_outputs_choice_chat(
client: openai.AsyncOpenAI, sample_structured_outputs_choices,
is_v1_server: bool):
if not is_v1_server:
pytest.skip("Structured outputs is only supported in v1 engine")
client: openai.AsyncOpenAI,
sample_structured_outputs_choices,
):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -522,12 +512,10 @@ async def test_structured_outputs_choice_chat(
@pytest.mark.asyncio
async def test_structured_outputs_json_chat(client: openai.AsyncOpenAI,
sample_json_schema,
is_v1_server: bool):
if not is_v1_server:
pytest.skip("Structured outputs is only supported in v1 engine")
async def test_structured_outputs_json_chat(
client: openai.AsyncOpenAI,
sample_json_schema,
):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -569,10 +557,10 @@ async def test_structured_outputs_json_chat(client: openai.AsyncOpenAI,
@pytest.mark.asyncio
async def test_structured_outputs_regex_chat(client: openai.AsyncOpenAI,
sample_regex, is_v1_server: bool):
if not is_v1_server:
pytest.skip("Structured outputs is only supported in v1 engine")
async def test_structured_outputs_regex_chat(
client: openai.AsyncOpenAI,
sample_regex,
):
messages = [{
"role": "system",
@ -660,10 +648,10 @@ async def test_structured_outputs_choice_chat_logprobs(
@pytest.mark.asyncio
async def test_named_tool_use(client: openai.AsyncOpenAI, sample_json_schema,
is_v1_server: bool):
if not is_v1_server:
pytest.skip("Tool use is only supported in v1 engine")
async def test_named_tool_use(
client: openai.AsyncOpenAI,
sample_json_schema,
):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -821,11 +809,7 @@ async def test_response_format_json_object(client: openai.AsyncOpenAI):
@pytest.mark.asyncio
async def test_response_format_json_schema(client: openai.AsyncOpenAI,
is_v1_server: bool):
if not is_v1_server:
pytest.skip(
"JSON schema response format is only supported in v1 engine")
async def test_response_format_json_schema(client: openai.AsyncOpenAI):
prompt = 'what is 1+1? The format is "result": 2'
# Check that this prompt cannot lead to a valid JSON without json_schema
for _ in range(2):

View File

@ -1,830 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# imports for structured outputs tests
import json
import os
from typing import Optional
import jsonschema
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import regex as re
import requests
# downloading lora to test lora requests
from openai import BadRequestError
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
# technically these adapters use a different base model,
# but we're not testing generation quality here
@pytest.fixture(scope="module")
def default_server_args(zephyr_lora_files):
return [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--max-num-seqs",
"128",
"--enforce-eager",
# lora config
"--enable-lora",
"--lora-modules",
f"zephyr-lora={zephyr_lora_files}",
"--max-lora-rank",
"64",
"--max-cpu-loras",
"2",
]
@pytest.fixture(scope="module",
params=["", "--disable-frontend-multiprocessing"])
def server(default_server_args, request):
if request.param:
default_server_args.append(request.param)
original_value = os.environ.get('VLLM_USE_V1')
os.environ['VLLM_USE_V1'] = '0'
try:
with RemoteOpenAIServer(MODEL_NAME,
default_server_args) as remote_server:
yield remote_server
finally:
# Restore original env value
if original_value is None:
os.environ.pop('VLLM_USE_V1', None)
else:
os.environ['VLLM_USE_V1'] = original_value
@pytest.fixture
def is_v1_server(server):
import os
# For completion tests, we assume v0 since there's no explicit v1 setup
return os.environ.get('VLLM_USE_V1', '0') == '1'
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize(
# first test base model, then test loras
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_single_completion(client: openai.AsyncOpenAI, model_name: str):
completion = await client.completions.create(model=model_name,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0)
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 1
choice = completion.choices[0]
assert len(choice.text) >= 5
assert choice.finish_reason == "length"
assert completion.usage == openai.types.CompletionUsage(
completion_tokens=5, prompt_tokens=6, total_tokens=11)
# test using token IDs
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
assert len(completion.choices[0].text) >= 1
assert completion.choices[0].prompt_logprobs is None
@pytest.mark.asyncio
async def test_added_lora_tokens_base_model(client: openai.AsyncOpenAI):
# test using token IDs
with pytest.raises(openai.BadRequestError, match="out of vocabulary"):
# Added tokens should be rejected by the base model
await client.completions.create(
model=MODEL_NAME,
prompt=[0, 0, 32000, 32001, 32002],
echo=True,
max_tokens=5,
temperature=0.0,
)
@pytest.mark.asyncio
@pytest.mark.parametrize(
# first test base model, then test loras
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_no_logprobs(client: openai.AsyncOpenAI, model_name: str):
# test using token IDs
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
logprobs=None,
)
choice = completion.choices[0]
assert choice.logprobs is None
@pytest.mark.asyncio
@pytest.mark.parametrize(
# just test 1 lora
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_zero_logprobs(client: openai.AsyncOpenAI, model_name: str):
# test using token IDs
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
logprobs=0,
)
choice = completion.choices[0]
assert choice.logprobs is not None
assert choice.logprobs.token_logprobs is not None
assert choice.logprobs.top_logprobs is not None
assert len(choice.logprobs.top_logprobs[0]) == 1
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_some_logprobs(client: openai.AsyncOpenAI, model_name: str):
# test using token IDs
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
logprobs=5,
)
choice = completion.choices[0]
assert choice.logprobs is not None
assert choice.logprobs.token_logprobs is not None
assert choice.logprobs.top_logprobs is not None
assert 5 <= len(choice.logprobs.top_logprobs[0]) <= 6
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_too_many_completion_logprobs(client: openai.AsyncOpenAI,
model_name: str):
with pytest.raises(
(openai.BadRequestError, openai.APIError)): # test using token IDs
await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
# vLLM has higher default max_logprobs (20 instead of 5) to support
# both Completion API and Chat Completion API
logprobs=21,
)
...
with pytest.raises(
(openai.BadRequestError, openai.APIError)): # test using token IDs
stream = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
# vLLM has higher default max_logprobs (20 instead of 5) to support
# both Completion API and Chat Completion API
logprobs=30,
stream=True,
)
async for chunk in stream:
...
# the server should still work afterwards
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
assert len(completion.choices[0].text) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name, prompt_logprobs", [(MODEL_NAME, -1),
(MODEL_NAME, 0),
(MODEL_NAME, 1),
(MODEL_NAME, None)])
async def test_prompt_logprobs_completion(client: openai.AsyncOpenAI,
model_name: str,
prompt_logprobs: Optional[int]):
params: dict = {
"prompt": ["A robot may not injure another robot", "My name is"],
"model": model_name,
}
if prompt_logprobs is not None:
params["extra_body"] = {"prompt_logprobs": prompt_logprobs}
if prompt_logprobs is not None and prompt_logprobs < 0:
with pytest.raises(BadRequestError):
await client.completions.create(**params)
else:
completion = await client.completions.create(**params)
if prompt_logprobs is not None:
assert completion.choices[0].prompt_logprobs is not None
assert len(completion.choices[0].prompt_logprobs) > 0
assert completion.choices[1].prompt_logprobs is not None
assert len(completion.choices[1].prompt_logprobs) > 0
else:
assert completion.choices[0].prompt_logprobs is None
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_completion_streaming(client: openai.AsyncOpenAI,
model_name: str):
prompt = "What is an LLM?"
single_completion = await client.completions.create(
model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
)
single_output = single_completion.choices[0].text
stream = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True)
chunks: list[str] = []
finish_reason_count = 0
async for chunk in stream:
chunks.append(chunk.choices[0].text)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == "length"
assert chunk.choices[0].text
assert "".join(chunks) == single_output
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_parallel_streaming(client: openai.AsyncOpenAI, model_name: str):
"""Streaming for parallel sampling.
The tokens from multiple samples, are flattened into a single stream,
with an index to indicate which sample the token belongs to.
"""
prompt = "What is an LLM?"
n = 3
max_tokens = 5
stream = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=max_tokens,
n=n,
stream=True)
chunks: list[list[str]] = [[] for i in range(n)]
finish_reason_count = 0
async for chunk in stream:
index = chunk.choices[0].index
text = chunk.choices[0].text
chunks[index].append(text)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
assert finish_reason_count == n
for chunk in chunks:
assert len(chunk) == max_tokens
print("".join(chunk))
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_completion_stream_options(client: openai.AsyncOpenAI,
model_name: str):
prompt = "What is the capital of France?"
# Test stream=True, stream_options=
# {"include_usage": False, "continuous_usage_stats": False}
stream = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True,
stream_options={
"include_usage": False,
"continuous_usage_stats":
False,
})
async for chunk in stream:
assert chunk.usage is None
# Test stream=True, stream_options=
# {"include_usage": False, "continuous_usage_stats": True}
stream = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True,
stream_options={
"include_usage": False,
"continuous_usage_stats":
True,
})
async for chunk in stream:
assert chunk.usage is None
# Test stream=True, stream_options=
# {"include_usage": True, "continuous_usage_stats": False}
stream = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True,
stream_options={
"include_usage": True,
"continuous_usage_stats":
False,
})
async for chunk in stream:
if chunk.choices[0].finish_reason is None:
assert chunk.usage is None
else:
assert chunk.usage is None
final_chunk = await stream.__anext__()
assert final_chunk.usage is not None
assert final_chunk.usage.prompt_tokens > 0
assert final_chunk.usage.completion_tokens > 0
assert final_chunk.usage.total_tokens == (
final_chunk.usage.prompt_tokens +
final_chunk.usage.completion_tokens)
assert final_chunk.choices == []
# Test stream=True, stream_options=
# {"include_usage": True, "continuous_usage_stats": True}
stream = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True,
stream_options={
"include_usage": True,
"continuous_usage_stats":
True,
})
async for chunk in stream:
assert chunk.usage is not None
assert chunk.usage.prompt_tokens > 0
assert chunk.usage.completion_tokens > 0
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
chunk.usage.completion_tokens)
if chunk.choices[0].finish_reason is not None:
final_chunk = await stream.__anext__()
assert final_chunk.usage is not None
assert final_chunk.usage.prompt_tokens > 0
assert final_chunk.usage.completion_tokens > 0
assert final_chunk.usage.total_tokens == (
final_chunk.usage.prompt_tokens +
final_chunk.usage.completion_tokens)
assert final_chunk.choices == []
# Test stream=False, stream_options=
# {"include_usage": None}
with pytest.raises(BadRequestError):
await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=False,
stream_options={"include_usage": None})
# Test stream=False, stream_options=
# {"include_usage": True}
with pytest.raises(BadRequestError):
await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=False,
stream_options={"include_usage": True})
# Test stream=False, stream_options=
# {"continuous_usage_stats": None}
with pytest.raises(BadRequestError):
await client.completions.create(
model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=False,
stream_options={"continuous_usage_stats": None})
# Test stream=False, stream_options=
# {"continuous_usage_stats": True}
with pytest.raises(BadRequestError):
await client.completions.create(
model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=False,
stream_options={"continuous_usage_stats": True})
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_batch_completions(client: openai.AsyncOpenAI, model_name: str):
# test both text and token IDs
for prompts in (["Hello, my name is"] * 2, [[0, 0, 0, 0, 0]] * 2):
# test simple list
batch = await client.completions.create(
model=model_name,
prompt=prompts,
max_tokens=5,
temperature=0.0,
)
assert len(batch.choices) == 2
assert batch.choices[0].text == batch.choices[1].text
# test n = 2
batch = await client.completions.create(
model=model_name,
prompt=prompts,
n=2,
max_tokens=5,
temperature=0.0,
extra_body=dict(
# NOTE: this has to be true for n > 1 in vLLM, but
# not necessary for official client.
use_beam_search=True),
)
assert len(batch.choices) == 4
assert batch.choices[0].text != batch.choices[
1].text, "beam search should be different"
assert batch.choices[0].text == batch.choices[
2].text, "two copies of the same prompt should be the same"
assert batch.choices[1].text == batch.choices[
3].text, "two copies of the same prompt should be the same"
# test streaming
batch = await client.completions.create(
model=model_name,
prompt=prompts,
max_tokens=5,
temperature=0.0,
stream=True,
)
texts = [""] * 2
async for chunk in batch:
assert len(chunk.choices) == 1
choice = chunk.choices[0]
texts[choice.index] += choice.text
assert texts[0] == texts[1]
@pytest.mark.asyncio
async def test_logits_bias(client: openai.AsyncOpenAI):
prompt = "Hello, my name is"
max_tokens = 5
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
# Test exclusive selection
token_id = 1000
completion = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=max_tokens,
temperature=0.0,
logit_bias={str(token_id): 100},
seed=42,
)
assert len(completion.choices[0].text) >= 5
response_tokens = tokenizer(completion.choices[0].text,
add_special_tokens=False)["input_ids"]
expected_tokens = tokenizer(tokenizer.decode([token_id] * 5),
add_special_tokens=False)["input_ids"]
assert all([
response == expected
for response, expected in zip(response_tokens, expected_tokens)
])
# Test ban
completion = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=max_tokens,
temperature=0.0,
)
response_tokens = tokenizer(completion.choices[0].text,
add_special_tokens=False)["input_ids"]
first_response = completion.choices[0].text
completion = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=max_tokens,
temperature=0.0,
logit_bias={str(token): -100
for token in response_tokens},
)
assert first_response != completion.choices[0].text
@pytest.mark.asyncio
async def test_allowed_token_ids(client: openai.AsyncOpenAI):
prompt = "Hello, my name is"
max_tokens = 1
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
# Test exclusive selection
allowed_ids = [21555, 21557, 21558]
completion = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=max_tokens,
temperature=0.0,
seed=42,
extra_body=dict(allowed_token_ids=allowed_ids),
logprobs=1,
)
response_tokens = completion.choices[0].logprobs.tokens
assert len(response_tokens) == 1
assert tokenizer.convert_tokens_to_ids(response_tokens)[0] in allowed_ids
@pytest.mark.asyncio
async def test_structured_outputs_json_completion(
client: openai.AsyncOpenAI,
sample_json_schema,
is_v1_server: bool,
):
if not is_v1_server:
pytest.skip("structured outputs is only supported in v1 engine")
completion = await client.completions.create(
model=MODEL_NAME,
prompt=f"Give an example JSON for an employee profile "
f"that fits this schema: {sample_json_schema}",
n=3,
temperature=1.0,
max_tokens=500,
extra_body=dict(structured_outputs=dict(json=sample_json_schema)))
assert completion.id is not None
assert len(completion.choices) == 3
for i in range(3):
output_json = json.loads(completion.choices[i].text)
jsonschema.validate(instance=output_json, schema=sample_json_schema)
@pytest.mark.asyncio
async def test_structured_outputs_regex_completion(
client: openai.AsyncOpenAI,
sample_regex,
is_v1_server: bool,
):
if not is_v1_server:
pytest.skip("structured outputs is only supported in v1 engine")
completion = await client.completions.create(
model=MODEL_NAME,
prompt=f"Give an example IPv4 address with this regex: {sample_regex}",
n=3,
temperature=1.0,
max_tokens=20,
extra_body=dict(structured_outputs=dict(regex=sample_regex)))
assert completion.id is not None
assert len(completion.choices) == 3
for i in range(3):
assert re.fullmatch(sample_regex,
completion.choices[i].text) is not None
@pytest.mark.asyncio
async def test_structured_outputs_choice_completion(
client: openai.AsyncOpenAI,
sample_structured_outputs_choices,
is_v1_server: bool,
):
if not is_v1_server:
pytest.skip("structured outputs is only supported in v1 engine")
completion = await client.completions.create(
model=MODEL_NAME,
prompt="The best language for type-safe systems programming is ",
n=2,
temperature=1.0,
max_tokens=10,
extra_body=dict(structured_outputs=dict(
choice=sample_structured_outputs_choices)))
assert completion.id is not None
assert len(completion.choices) == 2
for i in range(2):
assert completion.choices[i].text in sample_structured_outputs_choices
@pytest.mark.asyncio
async def test_structured_outputs_grammar(client: openai.AsyncOpenAI,
sample_sql_statements,
is_v1_server: bool):
if not is_v1_server:
pytest.skip("grammar is only supported in v1 engine")
completion = await client.completions.create(
model=MODEL_NAME,
prompt=("Generate a sql state that select col_1 from "
"table_1 where it is equals to 1"),
temperature=1.0,
max_tokens=500,
extra_body=dict(
structured_outputs=dict(grammar=sample_sql_statements), ))
content = completion.choices[0].text
# use Lark to parse the output, and make sure it's a valid parse tree
from lark import Lark
parser = Lark(sample_sql_statements)
parser.parse(content)
# remove spaces for comparison b/c we removed them in the grammar
ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace(" ", "")
assert content.strip() == ground_truth
@pytest.mark.asyncio
@pytest.mark.parametrize(
# first test base model, then test loras
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
@pytest.mark.parametrize("logprobs_arg", [1, 0])
async def test_echo_logprob_completion(client: openai.AsyncOpenAI,
model_name: str, logprobs_arg: int):
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
# test using text and token IDs
for prompt in ("Hello, my name is", [0, 0, 0, 0, 0]):
completion = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
echo=True,
logprobs=logprobs_arg)
prompt_text = tokenizer.decode(prompt) if isinstance(prompt,
list) else prompt
assert re.search(r"^" + prompt_text, completion.choices[0].text)
logprobs = completion.choices[0].logprobs
assert logprobs is not None
assert len(logprobs.text_offset) > 5
assert (len(logprobs.token_logprobs) > 5
and logprobs.token_logprobs[0] is None)
assert (len(logprobs.top_logprobs) > 5
and logprobs.top_logprobs[0] is None)
for top_logprobs in logprobs.top_logprobs[1:]:
assert max(logprobs_arg,
1) <= len(top_logprobs) <= logprobs_arg + 1
assert len(logprobs.tokens) > 5
@pytest.mark.asyncio
async def test_structured_outputs_type_error(client: openai.AsyncOpenAI,
sample_json_schema, sample_regex,
is_v1_server: bool):
if not is_v1_server:
pytest.skip("structured outputs is only supported in v1 engine")
with pytest.raises(openai.BadRequestError):
_ = await client.completions.create(
model=MODEL_NAME,
prompt="Give an example JSON that fits this schema: 42",
extra_body=dict(structured_outputs=dict(json=42)))
with pytest.raises(openai.BadRequestError):
_ = await client.completions.create(
model=MODEL_NAME,
prompt="Give an example string that fits this regex",
extra_body=dict(structured_outputs=dict(
regex=sample_regex,
json=sample_json_schema,
)))
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name,stream,echo",
[
(MODEL_NAME, False, False),
(MODEL_NAME, False, True),
(MODEL_NAME, True, False),
(MODEL_NAME, True, True) # should not raise BadRequestError error
],
)
async def test_echo_stream_completion(client: openai.AsyncOpenAI,
model_name: str, stream: bool,
echo: bool):
saying: str = "Hello, my name is"
result = await client.completions.create(model=model_name,
prompt=saying,
max_tokens=10,
temperature=0.0,
echo=echo,
stream=stream)
stop_reason = "length"
if not stream:
completion = result
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 1
choice = completion.choices[0]
assert len(choice.text) >= 5
assert choice.finish_reason == stop_reason
if echo:
assert choice.text is not None and saying in choice.text
else:
assert choice.text is not None and saying not in choice.text
else:
chunks: list[str] = []
final_finish_reason = None
async for chunk in result:
if chunk.choices and chunk.choices[0].text:
chunks.append(chunk.choices[0].text)
if chunk.choices and chunk.choices[0].finish_reason:
final_finish_reason = chunk.choices[0].finish_reason
assert final_finish_reason == stop_reason
content = "".join(chunks)
if echo:
assert content is not None and saying in content
else:
assert content is not None and saying not in content
@pytest.mark.asyncio
async def test_invocations(server: RemoteOpenAIServer,
client: openai.AsyncOpenAI):
request_args = {
"model": MODEL_NAME,
"prompt": "Hello, my name is",
"max_tokens": 5,
"temperature": 0.0,
"logprobs": None,
}
completion = await client.completions.create(**request_args)
invocation_response = requests.post(server.url_for("invocations"),
json=request_args)
invocation_response.raise_for_status()
completion_output = completion.model_dump()
invocation_output = invocation_response.json()
assert completion_output.keys() == invocation_output.keys()
assert completion_output["choices"] == invocation_output["choices"]

View File

@ -14,6 +14,9 @@ from transformers import AutoConfig
from ...utils import RemoteOpenAIServer
pytest.skip("Skipping prompt_embeds test until V1 supports it.",
allow_module_level=True)
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"

View File

@ -53,12 +53,13 @@ def monkeypatch_module():
mpatch.undo()
@pytest.fixture(scope="module", params=[False, True])
@pytest.fixture(scope="module", params=[True])
def server_with_lora_modules_json(request, monkeypatch_module,
zephyr_lora_files):
use_v1 = request.param
monkeypatch_module.setenv('VLLM_USE_V1', '1' if use_v1 else '0')
assert use_v1
monkeypatch_module.setenv('VLLM_USE_V1', '1')
# Define the json format LoRA module configurations
lora_module_1 = {

View File

@ -22,7 +22,7 @@ MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
PREV_MINOR_VERSION = version._prev_minor_version()
@pytest.fixture(scope="module", params=[True, False])
@pytest.fixture(scope="module", params=[True])
def use_v1(request):
# Module-scoped variant of run_with_both_engines
#

View File

@ -10,8 +10,30 @@ import pytest
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
from .test_completion import default_server_args # noqa: F401
from .test_completion import MODEL_NAME
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
@pytest.fixture(scope="module")
def default_server_args(zephyr_lora_files):
return [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--max-num-seqs",
"128",
"--enforce-eager",
# lora config
"--enable-lora",
"--lora-modules",
f"zephyr-lora={zephyr_lora_files}",
"--max-lora-rank",
"64",
"--max-cpu-loras",
"2",
]
@pytest.fixture(scope="module")

View File

@ -15,14 +15,6 @@ MODEL_NAME = "ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11"
DTYPE = "float16"
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.fixture(scope="module")
def server():
args = [

View File

@ -18,7 +18,7 @@ from vllm.platforms import current_platform
from vllm.sampling_params import RequestOutputKind
from vllm.utils import set_default_torch_num_threads
from vllm.v1.engine.async_llm import AsyncLLM
from vllm.v1.metrics.loggers import LoggingStatLogger
from vllm.v1.metrics.loggers import AggregatedStatLogger, LoggingStatLogger
if not current_platform.is_cuda():
pytest.skip(reason="V1 currently only supported on CUDA.",
@ -389,6 +389,15 @@ class MockLoggingStatLogger(LoggingStatLogger):
self.log = MagicMock()
class MockAggregatedStatLogger(AggregatedStatLogger):
def __init__(self,
vllm_config: VllmConfig,
engine_indexes: Optional[list[int]] = None):
super().__init__(vllm_config, engine_indexes)
self.log = MagicMock()
@pytest.mark.asyncio
async def test_customize_loggers(monkeypatch):
"""Test that we can customize the loggers.
@ -415,6 +424,35 @@ async def test_customize_loggers(monkeypatch):
stat_loggers[0][0].log.assert_called_once()
@pytest.mark.asyncio
async def test_customize_aggregated_loggers(monkeypatch):
"""Test that we can customize the aggregated loggers.
If a customized logger is provided at the init, it should
be added to the default loggers.
"""
with monkeypatch.context() as m, ExitStack() as after:
m.setenv("VLLM_USE_V1", "1")
with set_default_torch_num_threads(1):
engine = AsyncLLM.from_engine_args(
TEXT_ENGINE_ARGS,
stat_loggers=[MockLoggingStatLogger, MockAggregatedStatLogger],
)
after.callback(engine.shutdown)
await engine.do_log_stats()
stat_loggers = engine.logger_manager.per_engine_logger_dict
assert len(stat_loggers) == 1
assert len(
stat_loggers[0]) == 2 # LoggingStatLogger + MockLoggingStatLogger
aggregated_loggers = engine.logger_manager.aggregated_loggers
assert len(aggregated_loggers) == 1
aggregated_loggers[0].log.assert_called_once()
stat_loggers[0][0].log.assert_called_once()
@pytest.mark.asyncio(scope="module")
async def test_dp_rank_argument(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m, ExitStack() as after:

View File

@ -0,0 +1,152 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.v1.offloading.abstract import LoadStoreSpec
from vllm.v1.offloading.worker.worker import (OffloadingHandler,
OffloadingWorker, TransferResult,
TransferSpec)
class LoadStoreSpec1(LoadStoreSpec):
def __init__(self,
submit_success: bool = True,
async_success: bool = True,
exception: bool = False):
self.finished = False
self.submit_success = submit_success
self.async_success = async_success
self.exception = exception
@staticmethod
def medium() -> str:
return "1"
def __repr__(self):
return f"{self.medium()}: {id(self)}"
class LoadStoreSpec2(LoadStoreSpec):
@staticmethod
def medium() -> str:
return "2"
def __repr__(self):
return f"{self.medium()}: {id(self)}"
class OffloadingHandler1To2(OffloadingHandler):
def __init__(self):
self.transfers: dict[int, LoadStoreSpec1] = {}
def transfer_async(self, job_id: int, spec: TransferSpec) -> bool:
src, dst = spec
assert isinstance(src, LoadStoreSpec1)
assert isinstance(dst, LoadStoreSpec2)
if src.exception:
raise Exception("An expected exception. Don't worry!")
if not src.submit_success:
return False
self.transfers[job_id] = src
return True
def get_finished(self) -> list[TransferResult]:
finished = []
for job_id, spec in list(self.transfers.items()):
if spec.finished:
finished.append((job_id, spec.async_success))
del self.transfers[job_id]
return finished
class OffloadingHandler2To1(OffloadingHandler):
def __init__(self):
self.transfers: dict[int, LoadStoreSpec1] = {}
def transfer_async(self, job_id: int, spec: TransferSpec) -> bool:
src, dst = spec
assert isinstance(src, LoadStoreSpec2)
assert isinstance(dst, LoadStoreSpec1)
self.transfers[job_id] = dst
return True
def get_finished(self) -> list[TransferResult]:
finished = []
for job_id, spec in list(self.transfers.items()):
if spec.finished:
finished.append((job_id, spec.async_success))
del self.transfers[job_id]
return finished
def test_offloading_worker():
"""
Tests OffloadingWorker with 2 handlers.
One handler performs 1->2 transfers, and the other handles 2->1.
"""
worker = OffloadingWorker()
handler1to2 = OffloadingHandler1To2()
handler2to1 = OffloadingHandler2To1()
worker.register_handler(LoadStoreSpec1, LoadStoreSpec2, handler1to2)
worker.register_handler(LoadStoreSpec2, LoadStoreSpec1, handler2to1)
# 1st transfer 1->2 (exception)
src1 = LoadStoreSpec1(exception=True)
dst1 = LoadStoreSpec2()
assert not worker.transfer_async(1, (src1, dst1))
# 2ed transfer 1->2 (failure to submit)
src2 = LoadStoreSpec1(submit_success=False)
dst2 = LoadStoreSpec2()
assert not worker.transfer_async(2, (src2, dst2))
# 3rd transfer 1->2 (failure)
src3 = LoadStoreSpec1(async_success=False)
dst3 = LoadStoreSpec2()
assert worker.transfer_async(3, (src3, dst3))
# 4th transfer 1->2 (success)
src4 = LoadStoreSpec1()
dst4 = LoadStoreSpec2()
worker.transfer_async(4, (src4, dst4))
assert set(handler1to2.transfers.keys()) == {3, 4}
# 5th transfer 2->1
src5 = LoadStoreSpec2()
dst5 = LoadStoreSpec1()
worker.transfer_async(5, (src5, dst5))
assert set(handler2to1.transfers.keys()) == {5}
# no transfer completed yet
assert worker.get_finished() == []
# complete 3rd, 4th
src3.finished = True
src4.finished = True
# 6th transfer 1->2
src6 = LoadStoreSpec1()
dst6 = LoadStoreSpec2()
worker.transfer_async(6, (src6, dst6))
# 7th transfer 2->1
src7 = LoadStoreSpec2()
dst7 = LoadStoreSpec1()
worker.transfer_async(7, (src7, dst7))
# 6th and 7th transfers started
assert 6 in handler1to2.transfers
assert 7 in handler2to1.transfers
# verify result of 3rd and 4th transfers
assert (sorted(worker.get_finished()) == [(3, False), (4, True)])
# complete 6th and 7th transfers
src6.finished = True
dst7.finished = True
assert (sorted(worker.get_finished()) == [(6, True), (7, True)])

View File

@ -7,7 +7,6 @@ import pytest
import vllm.envs as envs
from vllm import LLM
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
MODEL = "meta-llama/Llama-3.2-1B-Instruct"
@ -96,20 +95,3 @@ def test_v1_attn_backend(monkeypatch):
_ = AsyncEngineArgs(model=MODEL).create_engine_config()
assert envs.VLLM_USE_V1
m.delenv("VLLM_USE_V1")
def test_reject_using_constructor_directly(monkeypatch):
with monkeypatch.context() as m:
if os.getenv("VLLM_USE_V1", None):
m.delenv("VLLM_USE_V1")
# Sets VLLM_USE_V1=1.
vllm_config = AsyncEngineArgs(model=MODEL).create_engine_config()
# This uses the V0 constructor directly.
with pytest.raises(ValueError):
AsyncLLMEngine(vllm_config,
AsyncLLMEngine._get_executor_cls(vllm_config),
log_stats=True)
m.delenv("VLLM_USE_V1")

File diff suppressed because it is too large Load Diff

View File

@ -11,7 +11,6 @@ import uvicorn
from fastapi import FastAPI, Request, Response
from vllm import envs
from vllm.engine.async_llm_engine import AsyncEngineDeadError
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.constants import (H11_MAX_HEADER_COUNT_DEFAULT,
H11_MAX_INCOMPLETE_EVENT_SIZE_DEFAULT)
@ -154,7 +153,6 @@ def _add_shutdown_handlers(app: FastAPI, server: uvicorn.Server) -> None:
"""
@app.exception_handler(RuntimeError)
@app.exception_handler(AsyncEngineDeadError)
@app.exception_handler(EngineDeadError)
@app.exception_handler(EngineGenerateError)
async def runtime_exception_handler(request: Request, __):

View File

@ -38,7 +38,6 @@ from typing_extensions import assert_never
import vllm.envs as envs
from vllm.config import VllmConfig
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine # type: ignore
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.chat_utils import (load_chat_template,
resolve_hf_chat_template,
@ -201,50 +200,34 @@ async def build_async_engine_client_from_engine_args(
vllm_config = engine_args.create_engine_config(usage_context=usage_context)
# V1 AsyncLLM.
if envs.VLLM_USE_V1:
if disable_frontend_multiprocessing:
logger.warning(
"V1 is enabled, but got --disable-frontend-multiprocessing. "
"To disable frontend multiprocessing, set VLLM_USE_V1=0.")
assert envs.VLLM_USE_V1
from vllm.v1.engine.async_llm import AsyncLLM
async_llm: Optional[AsyncLLM] = None
client_count = client_config.pop(
"client_count") if client_config else 1
client_index = client_config.pop(
"client_index") if client_config else 0
try:
async_llm = AsyncLLM.from_vllm_config(
vllm_config=vllm_config,
usage_context=usage_context,
enable_log_requests=engine_args.enable_log_requests,
disable_log_stats=engine_args.disable_log_stats,
client_addresses=client_config,
client_count=client_count,
client_index=client_index)
if disable_frontend_multiprocessing:
logger.warning(
"V1 is enabled, but got --disable-frontend-multiprocessing. "
"To disable frontend multiprocessing, set VLLM_USE_V1=0.")
# Don't keep the dummy data in memory
await async_llm.reset_mm_cache()
from vllm.v1.engine.async_llm import AsyncLLM
async_llm: Optional[AsyncLLM] = None
client_count = client_config.pop("client_count") if client_config else 1
client_index = client_config.pop("client_index") if client_config else 0
try:
async_llm = AsyncLLM.from_vllm_config(
vllm_config=vllm_config,
usage_context=usage_context,
enable_log_requests=engine_args.enable_log_requests,
disable_log_stats=engine_args.disable_log_stats,
client_addresses=client_config,
client_count=client_count,
client_index=client_index)
yield async_llm
finally:
if async_llm:
async_llm.shutdown()
# Don't keep the dummy data in memory
await async_llm.reset_mm_cache()
# V0 AsyncLLM.
else:
engine_client: Optional[EngineClient] = None
try:
engine_client = AsyncLLMEngine.from_vllm_config(
vllm_config=vllm_config,
usage_context=usage_context,
enable_log_requests=engine_args.enable_log_requests,
disable_log_stats=engine_args.disable_log_stats)
yield engine_client
finally:
if engine_client and hasattr(engine_client, "shutdown"):
engine_client.shutdown()
yield async_llm
finally:
if async_llm:
async_llm.shutdown()
async def validate_json_request(raw_request: Request):

View File

@ -76,7 +76,6 @@ class OAIAttention(nn.Module):
self.sinks = torch.nn.Parameter(
torch.empty(config.num_attention_heads // tp_size,
dtype=torch.bfloat16,
requires_grad=False))
self.q_size = self.num_attention_heads * self.head_dim // tp_size
@ -145,8 +144,7 @@ class MLPBlock(torch.nn.Module):
self.experts_per_token = config.num_experts_per_tok
self.world_size = dist.get_world_size() if dist.is_initialized() else 1
self.router = torch.nn.Linear(config.hidden_size,
config.num_local_experts,
dtype=torch.bfloat16)
config.num_local_experts)
assert config.intermediate_size % self.world_size == 0
self.experts = FusedMoE(num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,

View File

@ -18,7 +18,9 @@ from vllm.v1.spec_decode.metrics import SpecDecodingLogging, SpecDecodingProm
logger = init_logger(__name__)
StatLoggerFactory = Callable[[VllmConfig, int], "StatLoggerBase"]
PerEngineStatLoggerFactory = Callable[[VllmConfig, int], "StatLoggerBase"]
StatLoggerFactory = Union[PerEngineStatLoggerFactory,
type["AggregatedStatLoggerBase"]]
class StatLoggerBase(ABC):
@ -48,6 +50,16 @@ class StatLoggerBase(ABC):
pass
class AggregatedStatLoggerBase(StatLoggerBase):
"""Abstract base class for loggers that
aggregates statistics across multiple engines."""
@abstractmethod
def __init__(self, vllm_config: VllmConfig,
engine_indexes: Optional[list[int]]):
...
class LoggingStatLogger(StatLoggerBase):
def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):
@ -61,6 +73,7 @@ class LoggingStatLogger(StatLoggerBase):
self.spec_decoding_logging = SpecDecodingLogging()
self.last_prompt_throughput: float = 0.0
self.last_generation_throughput: float = 0.0
self.engine_is_idle = False
def _reset(self, now):
self.last_log_time = now
@ -100,25 +113,25 @@ class LoggingStatLogger(StatLoggerBase):
self.last_scheduler_stats = scheduler_stats
def log(self):
def get_log_stats(self):
now = time.monotonic()
prompt_throughput = self._get_throughput(self.num_prompt_tokens, now)
generation_throughput = self._get_throughput(
self.num_generation_tokens, now)
self._reset(now)
scheduler_stats = self.last_scheduler_stats
log_fn = logger.info
if not any(
(prompt_throughput, generation_throughput,
self.last_prompt_throughput, self.last_generation_throughput)):
# Avoid log noise on an idle production system
log_fn = logger.debug
self.last_generation_throughput = generation_throughput
self.last_prompt_throughput = prompt_throughput
self.engine_is_idle = not any(
(prompt_throughput, generation_throughput,
self.last_prompt_throughput, self.last_generation_throughput))
def log(self):
self.get_log_stats()
log_fn = logger.info
if self.engine_is_idle:
# Avoid log noise on an idle production system
log_fn = logger.debug
# Format and print output.
log_fn(
"Engine %03d: "
@ -128,11 +141,11 @@ class LoggingStatLogger(StatLoggerBase):
"GPU KV cache usage: %.1f%%, "
"Prefix cache hit rate: %.1f%%",
self.engine_index,
prompt_throughput,
generation_throughput,
scheduler_stats.num_running_reqs,
scheduler_stats.num_waiting_reqs,
scheduler_stats.kv_cache_usage * 100,
self.last_prompt_throughput,
self.last_generation_throughput,
self.last_scheduler_stats.num_running_reqs,
self.last_scheduler_stats.num_waiting_reqs,
self.last_scheduler_stats.kv_cache_usage * 100,
self.prefix_caching_metrics.hit_rate * 100,
)
self.spec_decoding_logging.log(log_fn=log_fn)
@ -145,7 +158,61 @@ class LoggingStatLogger(StatLoggerBase):
self.vllm_config.cache_config.num_gpu_blocks)
class PrometheusStatLogger(StatLoggerBase):
class AggregatedStatLogger(LoggingStatLogger, AggregatedStatLoggerBase):
def __init__(self,
vllm_config: VllmConfig,
engine_idxs: Optional[list[int]] = None):
if engine_idxs is None:
engine_idxs = [0]
self.engine_idxs = engine_idxs
LoggingStatLogger.__init__(self, vllm_config, engine_index=-1)
def record(
self,
scheduler_stats: Optional[SchedulerStats],
iteration_stats: Optional[IterationStats],
engine_idx: int = 0,
):
if engine_idx not in self.engine_idxs:
logger.warning("Unexpected engine_idx: %d", engine_idx)
return
LoggingStatLogger.record(self, scheduler_stats, iteration_stats,
engine_idx)
def log(self):
self.get_log_stats()
log_fn = logger.info
if self.engine_is_idle:
# Avoid log noise on an idle production system
log_fn = logger.debug
# Format and print output.
log_fn(
"%s Engines Aggregated: "
"Avg prompt throughput: %.1f tokens/s, "
"Avg generation throughput: %.1f tokens/s, "
"Running: %d reqs, Waiting: %d reqs, "
"GPU KV cache usage: %.1f%%, "
"Prefix cache hit rate: %.1f%%",
len(self.engine_idxs),
self.last_prompt_throughput,
self.last_generation_throughput,
self.last_scheduler_stats.num_running_reqs,
self.last_scheduler_stats.num_waiting_reqs,
self.last_scheduler_stats.kv_cache_usage * 100,
self.prefix_caching_metrics.hit_rate * 100,
)
self.spec_decoding_logging.log(log_fn=log_fn)
def log_engine_initialized(self):
if self.vllm_config.cache_config.num_gpu_blocks:
logger.info(
"%d Engines: vllm cache_config_info with initialization "
"after num_gpu_blocks is: %d", len(self.engine_idxs),
self.vllm_config.cache_config.num_gpu_blocks)
class PrometheusStatLogger(AggregatedStatLoggerBase):
_gauge_cls = prometheus_client.Gauge
_counter_cls = prometheus_client.Counter
_histogram_cls = prometheus_client.Histogram
@ -674,23 +741,32 @@ class StatLoggerManager:
# engine_idx: StatLogger
self.per_engine_logger_dict: dict[int, list[StatLoggerBase]] = {}
prometheus_factory = PrometheusStatLogger
self.aggregated_loggers: list[AggregatedStatLoggerBase] = []
aggregated_loggers_factories = set()
for engine_idx in self.engine_idxs:
loggers: list[StatLoggerBase] = []
for logger_factory in factories:
# If we get a custom prometheus logger, use that
# instead. This is typically used for the ray case.
if (isinstance(logger_factory, type)
and issubclass(logger_factory, PrometheusStatLogger)):
prometheus_factory = logger_factory
continue
loggers.append(logger_factory(vllm_config,
engine_idx)) # type: ignore
# If we get a custom prometheus logger or aggregated logger,
# We initialize it separately with all engine idxs.
# A custom prometheus logger is typically used for the ray.
if (isinstance(logger_factory, type) and issubclass(
logger_factory, AggregatedStatLoggerBase)):
aggregated_loggers_factories.add(logger_factory)
else:
loggers.append(logger_factory(vllm_config,
engine_idx)) # type: ignore
self.per_engine_logger_dict[engine_idx] = loggers
# For Prometheus, need to share the metrics between EngineCores.
# If no custom aggregated logger is provide,
# we by default use PrometheusStatLogger
if not aggregated_loggers_factories:
aggregated_loggers_factories.add(PrometheusStatLogger)
# For custom aggregated logger(or default Prometheus Logger)
# need to share the metrics between EngineCores.
# Each EngineCore's metrics are expressed as a unique label.
self.prometheus_logger = prometheus_factory(vllm_config, engine_idxs)
for aggregated_loggers_factory in aggregated_loggers_factories:
self.aggregated_loggers.append(
aggregated_loggers_factory(vllm_config, engine_idxs))
def record(
self,
@ -704,18 +780,19 @@ class StatLoggerManager:
per_engine_loggers = self.per_engine_logger_dict[engine_idx]
for logger in per_engine_loggers:
logger.record(scheduler_stats, iteration_stats, engine_idx)
self.prometheus_logger.record(scheduler_stats, iteration_stats,
engine_idx)
for logger in self.aggregated_loggers:
logger.record(scheduler_stats, iteration_stats, engine_idx)
def log(self):
for per_engine_loggers in self.per_engine_logger_dict.values():
for logger in per_engine_loggers:
logger.log()
for logger in self.aggregated_loggers:
logger.log()
def log_engine_initialized(self):
self.prometheus_logger.log_engine_initialized()
for agg_logger in self.aggregated_loggers:
agg_logger.log_engine_initialized()
for per_engine_loggers in self.per_engine_logger_dict.values():
for logger in per_engine_loggers:
logger.log_engine_initialized()

View File

@ -0,0 +1,165 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
OffloadingManager class for managing KV data offloading in vLLM v1
This class runs in the scheduler, tracks which blocks are offloaded
and their address.
The class provides the following primitives:
lookup() - find the length of the maximal series of blocks,
starting from the first one, that are all offloaded.
prepare_load() - prepare given blocks to be read.
The given blocks will be protected from eviction.
This function returns a LoadSpec which encapsulates
information required for performing the load.
touch() - marks the give blocks as recently used. Can be used
to track block's LRU. This function is separated from the
prepare_load function to allow setting block recency even
for blocks which do not need reading from the cache, such as
blocks that are cached by the GPU prefix cache.
complete_load() - mark blocks which were previously prepared to be
loaded as done loading. This is to re-allow their eviction.
prepare_store() - prepare the given blocks to be written.
Returns a StoreSpec encapsulating offloading information,
as well as a list of blocks that were evicted as a result.
complete_store() - marks a previous store as completed.
Following this call, the given blocks will become loadable.
"""
from abc import ABC, abstractmethod
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Optional
from vllm.v1.core.kv_cache_utils import BlockHash
class LoadStoreSpec(ABC):
"""
Abstract metadata that encapsulates information allowing a worker
to load, and optionally also to store, blocks of KV data.
"""
@staticmethod
@abstractmethod
def medium() -> str:
"""
Returns a string representation of the medium type
this store/load targets.
"""
pass
@dataclass
class PrepareStoreOutput:
block_hashes_to_store: list[BlockHash]
store_spec: LoadStoreSpec
block_hashes_evicted: list[BlockHash]
@dataclass
class OffloadingEvent:
block_hashes: list[BlockHash]
block_size: int
medium: str
# True if blocks are removed, False if stored
removed: bool
class OffloadingManager(ABC):
@abstractmethod
def lookup(self, block_hashes: Iterable[BlockHash]) -> int:
"""
Finds the length of the maximal series of blocks, starting from the
first one, that are all offloaded.
Args:
block_hashes: the hashes identifying the blocks to lookup.
Returns:
An integer representing the maximal number of blocks that
are currently offloaded.
"""
pass
@abstractmethod
def prepare_load(self, block_hashes: Iterable[BlockHash]) -> LoadStoreSpec:
"""
Prepare the given blocks to be read.
The given blocks will be protected from eviction until
complete_load is called.
It assumes all given blocks are offloaded.
Args:
block_hashes: the hashes identifying the blocks.
Returns:
A LoadStoreSpec that can be used by a worker to locate and load
the actual offloaded KV data.
"""
pass
def touch(self, block_hashes: Iterable[BlockHash]):
"""
Mark the given blocks as recently used.
This could in practice mean moving them to the end of an LRU list.
Args:
block_hashes: the hashes identifying the blocks.
"""
return
def complete_load(self, block_hashes: Iterable[BlockHash]):
"""
Marks previous blocks that were prepared to load as done loading.
Args:
block_hashes: the hashes identifying the blocks.
"""
return
@abstractmethod
def prepare_store(
self,
block_hashes: Iterable[BlockHash]) -> Optional[PrepareStoreOutput]:
"""
Prepare the given blocks to be offloaded.
The given blocks will be protected from eviction until
complete_store is called.
Args:
block_hashes: the hashes identifying the blocks.
Returns:
A PrepareStoreOutput indicating which blocks need storing,
where to store them (LoadStoreSpec), and list of blocks that
were evicted as a result.
None is returned if the blocks cannot be stored.
"""
pass
def complete_store(self,
block_hashes: Iterable[BlockHash],
success: bool = True):
"""
Marks blocks which were previously prepared to be stored, as stored.
Following this call, the blocks become loadable.
If if_success is False, blocks that were not marked as stored will be
removed.
Args:
block_hashes: the hashes identifying the blocks.
success: whether the blocks were stored successfully.
"""
return
def take_events(self) -> Iterable[OffloadingEvent]:
"""
Take the offloading events from the manager.
Yields:
New OffloadingEvents collected since the last call.
"""
return ()

View File

@ -0,0 +1,39 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from abc import ABC
import numpy as np
from vllm.v1.offloading.abstract import LoadStoreSpec
class BlockIDsLoadStoreSpec(LoadStoreSpec, ABC):
"""
Spec for loading/storing KV blocks from given block numbers.
"""
def __init__(self, block_ids: list[int]):
self.block_ids = np.array(block_ids, dtype=np.int64)
def __repr__(self) -> str:
return repr(self.block_ids)
class GPULoadStoreSpec(BlockIDsLoadStoreSpec):
"""
Spec for loading/storing a KV block to GPU memory.
"""
@staticmethod
def medium() -> str:
return "GPU"
class CPULoadStoreSpec(BlockIDsLoadStoreSpec):
"""
Spec for loading/storing a KV block to CPU memory.
"""
@staticmethod
def medium() -> str:
return "CPU"

View File

@ -0,0 +1,142 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from abc import ABC, abstractmethod
from vllm.logger import init_logger
from vllm.v1.offloading.abstract import LoadStoreSpec
# a single transfer spec (src_blocks_spec, dst_blocks_spec)
TransferSpec = tuple[LoadStoreSpec, LoadStoreSpec]
# transfers are forwarded to workers by (src_medium, dst_medium)
TransferType = tuple[str, str]
# transfer result (job_id, success)
TransferResult = tuple[int, bool]
logger = init_logger(__name__)
class OffloadingHandler(ABC):
"""
OffloadingHandler class for managing asynchronous KV data transfers
This class runs in the worker.
It kicks off async KV data transfer requests, and allows
collecting back completion statuses.
The class provides the following primitives:
transfer_async() - kicks off a new transfer job
get_finished() - returns a list of newly finished job IDs.
"""
@abstractmethod
def transfer_async(self, job_id: int, spec: TransferSpec) -> bool:
"""
Initiates an asynchronous transfer of KV data.
Args:
job_id: a unique ID that will be used when notifying back on
transfer completion.
spec: the (src, dst) spec of the KV data transfer.
Returns:
True if transfer was submitted successfully.
"""
pass
@abstractmethod
def get_finished(self) -> list[TransferResult]:
"""
Get transfers finished since last call.
Returns:
A list of (job_id, success) of transfers.
"""
pass
class OffloadingWorker:
"""
OffloadingWorker class for managing asynchronous KV data transfers
using multiple OffloadingHandlers
This class runs in the worker.
It kicks off async KV data transfer requests, by delegating
to one of its registered OffloadingHandlers, based on the transfer type.
The class provides the following primitives:
register_handler() - registers a new handler to handle
a specific transfer type
transfer_async() - kicks off a new transfer job
using one of the registered handlers.
get_finished() - returns a list of newly finished job IDs
from all handlers.
"""
def __init__(self):
self.handlers: set[OffloadingHandler] = set()
self.transfer_type_to_handler: dict[TransferType,
OffloadingHandler] = {}
def register_handler(self, src_cls: type[LoadStoreSpec],
dst_cls: type[LoadStoreSpec],
handler: OffloadingHandler) -> None:
"""
Registers a new handler.
Args:
src_cls: the source type of transfers handled by this handler.
dst_cls: the destination type of transfers handled by this handler.
handler: the handler that will handle transfers.
"""
transfer_type = (src_cls.medium(), dst_cls.medium())
assert transfer_type not in self.transfer_type_to_handler
self.handlers.add(handler)
self.transfer_type_to_handler[transfer_type] = handler
def transfer_async(self, job_id: int, spec: TransferSpec) -> bool:
"""
Initiates an asynchronous transfer of KV data.
Args:
job_id: a unique ID that will be used when notifying back on
transfer completion.
spec: the (src, dst) spec of the KV data transfer.
Returns:
True if transfer was submitted successfully.
"""
src, dst = spec
transfer_type = (src.medium(), dst.medium())
handler = self.transfer_type_to_handler.get(transfer_type)
assert handler is not None
try:
success = handler.transfer_async(job_id, spec)
except Exception as e:
logger.warning("Exception in %r transfer %d: %r",
transfer_type,
job_id,
e,
exc_info=True)
return False
if not success:
logger.warning("Failed to submit %r transfer %d", transfer_type,
job_id)
else:
logger.debug("Submitted %r transfer %d: %r", transfer_type, job_id,
spec)
return success
def get_finished(self) -> list[TransferResult]:
"""
Get transfers finished since last call.
Returns:
A list of (job_id, success) of transfers.
"""
finished = []
for handler in self.handlers:
finished.extend(handler.get_finished())
return finished