Compare commits

...

83 Commits

Author SHA1 Message Date
f4331d1b8b updated
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-09-09 03:02:08 +00:00
7742eb6c59 updated
Signed-off-by: Robert Shaw <robshaw@redhat.com>
2025-09-09 02:59:39 +00:00
22a0070530 Bump actions/setup-python from 5.4.0 to 6.0.0 (#24414)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-09 02:54:58 +00:00
170129eb28 [gpt-oss] Harmony changes with container tool support (#23386)
Signed-off-by: zhiweiz <zhiweiz@fb.com>
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
Co-authored-by: zhiweiz <zhiweiz@fb.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
2025-09-08 19:03:50 -07:00
955c624915 [Bugfix][Wide EP] Fix redundant work when using DeepEP, TP Attn, and EP MoE (#24134)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-08 19:01:51 -07:00
4f87abdcc6 Update reviewers for modelopt related files (#24468) 2025-09-09 01:53:13 +00:00
6910b56da2 [CI] Add nightly multiarch manifests to dockerhub (#24102)
Signed-off-by: Sahithi Chigurupati <chigurupati.sahithi@gmail.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-09 01:18:09 +00:00
e10fef0883 [Hardware][IBM Z] Fix Outlines Core issue for s390x (#24034)
Signed-off-by: Rehan Khan <Rehan.Khan7@ibm.com>
2025-09-08 16:50:34 -07:00
e680723eba [Bugfix] Disable the statslogger if the api_server_count is greater than 1 (#22227)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-08 15:28:03 -07:00
620db1fc58 [Attention] FlashAttention MLA cudagraph support (#23958)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-08 22:05:26 +00:00
41183c1fe0 [Spec Decode] Fix offline spec_decode.py (#24257)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 20:44:13 +00:00
43d9ad03ba [Model loader]: support multi-thread model weight loading (#23928)
Signed-off-by: Yang Kaiyong <yangkaiyong.yky@antgroup.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-08 18:49:39 +00:00
7be141b2c5 [CI] Enable encoder model compilation test (#24442)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-08 11:48:06 -07:00
8d7f39b48c [Model] Remove quantized mixtral (#24437)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-08 11:02:14 -07:00
cd08636926 [Spec Decode][Benchmark] Add Blitzedit dataset (#23605)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 10:32:52 -07:00
3feeeb9fea [Spec Decode][Benchmark] Add Spec Bench Dataset for benchmarking (#23563)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-09-08 10:32:42 -07:00
6f4a82f8b5 [Model] Enable BNB support for qwen2_5_omni_thinker (#24420)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-08 09:37:08 -07:00
c44797a4d6 [Docs]add eplb_config param use docs (#24213)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-09-08 09:36:57 -07:00
55be93baf5 [Doc]: fix 2 hyperlinks leading to Ray site after they changed Ray's doc structure (#24438)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 09:36:54 -07:00
717fc00e98 [Docs] Move feature compatibility tables to README (#24431)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 06:45:14 -07:00
01dfb5e982 [Frontend] User-provided uuids for medias in chat. (RFC #22044) (#23449)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Roger Wang <hey@rogerw.me>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-08 06:42:20 -07:00
03dd652c16 Move KVEventsConfig from config/__init__.py to config/kv_events.py (#24433)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 06:41:27 -07:00
9cd76b71ab [Misc] Terratorch related fixes (#24337)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-08 06:40:26 -07:00
e041314184 [Bugfix] Fix mamba2 prefill chunking (#23279)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-08 11:42:41 +00:00
5e537f45b4 [Bugfix] Fix get_quant_config when using modelscope (#24421)
Signed-off-by: wangli <wangli858794774@gmail.com>
2025-09-08 11:03:02 +00:00
c2a8b08fcd [Doc] Fix issues in integrations/llamastack.md (#24428)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-08 02:28:32 -07:00
f4962a6d55 [Doc]: fix typos in Python comments (#24417)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-08 00:22:16 -07:00
2f0b833a05 [Docs] Fix a tip indentation and typo (#24419)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-08 00:19:40 -07:00
425b04b8f4 [gpt-oss][Responses API] Fix the function call id format (#24409)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-08 06:49:52 +00:00
60f0843ef8 [Model] Remove unnecessary CUDA sync of Qwen2VL image and video preprocess (#24334)
Signed-off-by: Win <chatcharinsang@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-07 23:11:12 -07:00
8a46602606 [Model] Remove unnecessary CUDA sync of GLM-4.1V image and video preprocess (#24332)
Signed-off-by: Win <chatcharinsang@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-07 23:10:54 -07:00
61aa4b2901 [P/D] Add a shutdown method to the Connector API (#22699)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-07 23:07:00 -07:00
8c892b1831 [Doc] Fix UTF-8 encoding issues in documentation generation on Windows (#24361)
Signed-off-by: alekramelaheehridoy <aliqramalaheehridoy@gmail.com>
Signed-off-by: alekramelaheehridoy <alekramelaheehridoy@gmail.com>
Co-authored-by: alekramelaheehridoy <alekramelaheehridoy@gmail.com>
2025-09-07 22:33:52 -07:00
3bca396f79 [CI/Build] Fix local image inputs in test_pixtral.py (#24401)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 03:31:35 +00:00
3a3e91bdfe [CI/Build] Disable flaky test_structured_output tests (#24404)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-08 02:51:59 +00:00
b3d7e3c845 [Sampler] Support returning all prompt logprobs (#23868)
Signed-off-by: Xingyu Liu <charlotteliu12x@gmail.com>
Co-authored-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-07 19:34:31 -07:00
67841317d1 [xpu] upgrade ipex/python3.12 for xpu (#23830)
Signed-off-by: Yan Ma <yan.ma@intel.com>
2025-09-08 02:07:16 +00:00
86173ad593 [Kernel] Support decode context parallelism on Blackwell with CUTLASS MLA (#24385)
Signed-off-by: Ming Yang <minos.future@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-08 09:27:12 +08:00
795b6951cd Add @luccafong to codeowner for spec decode (#24397)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-08 08:30:27 +08:00
2e5d21378d Skip MM Encoder for non-first PP ranks (#24387)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-07 09:38:35 -07:00
0661cb9df3 Add renderer-based prompt processing for embedding and classification endpoints (#24356)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-07 08:26:48 +00:00
105d3d62ef [TPU] Remove TopKTopPSampler dependency for TPU sampler (#24391)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-07 01:12:36 -07:00
62f66be1f7 [Bugfix] Fix Qwen3-coder moe tuned config (#24072)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-07 05:19:46 +00:00
81c53ef55c [Misc] collect flashinfer version in collect_env.py (#24378)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-07 03:30:41 +00:00
75334956c2 QWEN3 Thinking Fused MoE kernels Optimization configs (#24330)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-07 03:18:54 +00:00
77aec83b8c [Benchmark] add benchmark for custom activation op (#23908)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-06 20:12:05 -07:00
e67597545b [CI][Fix] deterministic seed for flaky CI runs on structured outputs (#24380)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-09-07 11:10:40 +08:00
37a6fa95fd Migrate Qwen2 inputs to TensorSchema (#23475)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-06 20:07:31 -07:00
558f0907dc [attention][DCP] use AttentionImpl.need_to_return_lse_for_decode (#24372)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-07 01:18:59 +00:00
4172235ab7 [V0 deprecation] Deprecate V0 Neuron backend (#21159)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-06 16:15:18 -07:00
848562bd49 break execute_model in gpu_model_runner into sub-functions for custom scopes (#24265)
Co-authored-by: Bangsheng Tang <bangsheng@meta.com>
2025-09-06 14:02:47 -07:00
e68dc2f014 [Bugfix] Fix unstable silu_mul+nvfp4 quant fusion test (#24370)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-06 20:39:34 +00:00
a3645ed94d [Frontend][Responses API] Support reporting tool output tokens and fix reasoning token count (#24285)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-06 13:27:15 -07:00
fb691ee4e7 [Fix] [gpt-oss] fix non-tool calling path for chat completion (#24324) 2025-09-06 19:10:32 +00:00
6024d115cd Lora bias(enable_lora_bias) deprecate warning (#24339)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-07 00:42:19 +08:00
7555d6b34a [Bugfix] Fix test_mixtral_moe (#24371) 2025-09-06 09:32:03 -07:00
00a4e56d8d [Bugfix] Fix broken deepseek fp8 TP weights loading (#24367)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-06 09:23:12 -07:00
0eadaeff7e [Bugfix] Avoid uninitialized usage of azp_val when AZP is false. (#24335)
Signed-off-by: Mohan Kumar Kumar <mohan.cbein@gmail.com>
Signed-off-by: mohankku <mohan.cbein@gmail.com>
2025-09-06 08:17:03 -07:00
0077c8634e Add @benchislett to codeowner for spec decode and structured outputs (#24362)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-09-06 22:03:35 +08:00
b121ca22ad [CI] Disable flaky structured output test from CI (#24366)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-06 13:31:56 +00:00
eddaafc1c7 [Multimodal] Improve max video embedding length estimation in V1 (#24312)
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-09-06 02:33:19 -07:00
305a1cc0d2 refactor: Turn GPUModelRunner.inputs_embeds to a CpuGpuBuffer (#24345)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-05 23:01:23 -07:00
6d6c6b05d3 [New Model]: google/embeddinggemma-300m (#24318)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-05 22:58:36 -07:00
53b19ccdd5 [Core] Allow disabling TP sharding for parallel Linear layer (#23024)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-05 22:53:58 -07:00
6432739ef1 [Bugfix] Catch and log invalid token ids in detokenizer (#24351)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-05 22:30:22 -07:00
ac201a0eaf [Feature] Support Decode Context Parallel (DCP) for MLA (#23734)
Signed-off-by: hongchao <hongchao@msh.team>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: hongchao <hongchao@msh.team>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-06 13:24:05 +08:00
3c529fc994 [KV Sharing] Raise error if using eagle with fast prefill (#24350)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-05 20:22:40 -07:00
35bf193864 [Doc]: fix typos in Python comments (#24294)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-05 19:41:12 -07:00
35efa70297 Add @22quinn as code reviewer for RL related components (#24346) 2025-09-06 01:56:15 +00:00
cee182b297 [Perf][V1] Fully overlap model execution (#23569)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-09-05 18:20:17 -07:00
c954c6629c [CI] Add timeouts to tests (#24260)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-05 17:26:22 -07:00
9dfbeb41e5 [RFC] allow cancelation after shutdown in blocking collective_rpc (#23390)
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
2025-09-05 14:14:18 -07:00
eedb2a2a10 [Bugfix] Fix silu_mul+quant fusion test (#24341)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-05 20:13:42 +00:00
23a6c5280e [gpt-oss][Bugfix]Fix streamableparser for missing handling of certain token_ids (#24306)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-05 10:26:00 -07:00
7812bcf278 [docs] add shenzhen meetup (#24326)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-05 22:48:42 +08:00
006e7a34ae Adding int4 and int8 models for CPU benchmarking (#23709)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2025-09-05 20:08:50 +08:00
e599e2c65e [XPU][P/D] Add XPU support in NixlConnector (#22436)
Signed-off-by: zhenwei <zhenwei.liu@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-04 21:03:12 -07:00
c29fb540ff [gpt-oss] tool parser supports for /chat/completions [1/n] (#22386)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-04 20:39:12 -07:00
65e038931d [Frontend] Skip unnecessary detokenization when token_id is requested (#24236)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-04 23:04:12 +00:00
886ccbe5ba [CI/Build] Reduce the number of redundant cases to test for LoRA (#24276)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-04 21:58:44 +00:00
adc3ddb430 [Bugfix][Misc] Fix silu_and_mul_nvfp4_quant issue and extract common utils for nvfp4 kernel source files (#23727)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-04 14:25:45 -07:00
60b755cbcb [Misc] Have AsyncLLM custom_stat_loggers extend default logger list (#20952)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-04 14:25:30 -07:00
482e52f56c QWEN3 Coder Fused MoE kernels Optimization configs (#24266)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-04 20:33:43 +00:00
248 changed files with 9962 additions and 8517 deletions

View File

@ -1,6 +1,6 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"test_name": "serving_llama8B_bf16_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -32,7 +32,7 @@
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -64,7 +64,7 @@
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"test_name": "serving_llama8B_bf16_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -96,7 +96,7 @@
}
},
{
"test_name": "serving_llama8B_tp1_random_128_128",
"test_name": "serving_llama8B_bf16_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -131,7 +131,7 @@
}
},
{
"test_name": "serving_llama8B_tp2_random_128_128",
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -166,7 +166,7 @@
}
},
{
"test_name": "serving_llama8B_tp4_random_128_128",
"test_name": "serving_llama8B_bf16_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -198,5 +198,413 @@
"random-output-len": 128,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
}
]

View File

@ -1,6 +1,6 @@
[
{
"test_name": "serving_llama8B_pp1_sharegpt",
"test_name": "serving_llama8B_bf16_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -32,7 +32,39 @@
}
},
{
"test_name": "serving_llama8B_pp3_sharegpt",
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_bf16_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -64,7 +96,7 @@
}
},
{
"test_name": "serving_llama8B_tp2pp3_sharegpt",
"test_name": "serving_llama8B_bf16_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -97,7 +129,7 @@
}
},
{
"test_name": "serving_llama8B_pp1_random_128_128",
"test_name": "serving_llama8B_bf16_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -132,7 +164,42 @@
}
},
{
"test_name": "serving_llama8B_pp3_random_128_128",
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_bf16_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -167,7 +234,7 @@
}
},
{
"test_name": "serving_llama8B_tp2pp3_random_128_128",
"test_name": "serving_llama8B_bf16_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -201,5 +268,553 @@
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
}
]

View File

@ -150,18 +150,24 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- block: "Build Neuron release image"
key: block-neuron-release-image-build
depends_on: ~
- label: "Build and publish Neuron release image"
depends_on: block-neuron-release-image-build
- label: "Build and publish nightly multi-arch image to DockerHub"
depends_on:
- create-multi-arch-manifest
if: build.env("NIGHTLY") == "1"
agents:
queue: neuron-postmerge
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
- "docker push vllm/vllm-openai:nightly"
- "docker push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
# Clean up old nightly builds (keep only last 14)
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
plugins:
- docker-login#v3.0.0:
username: vllmbot
password-env: DOCKERHUB_TOKEN
env:
DOCKER_BUILDKIT: "1"

View File

@ -0,0 +1,97 @@
#!/bin/bash
set -ex
# Clean up old nightly builds from DockerHub, keeping only the last 14 builds
# This script uses DockerHub API to list and delete old tags with "nightly-" prefix
# DockerHub API endpoint for vllm/vllm-openai repository
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
# Get DockerHub token from environment
if [ -z "$DOCKERHUB_TOKEN" ]; then
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
exit 1
fi
# Function to get all tags from DockerHub
get_all_tags() {
local page=1
local all_tags=""
while true; do
local response=$(curl -s -H "Authorization: Bearer $DOCKERHUB_TOKEN" \
"$REPO_API_URL?page=$page&page_size=100")
# Get both last_updated timestamp and tag name, separated by |
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
if [ -z "$tags" ]; then
break
fi
all_tags="$all_tags$tags"$'\n'
page=$((page + 1))
done
# Sort by timestamp (newest first) and extract just the tag names
echo "$all_tags" | sort -r | cut -d'|' -f2
}
delete_tag() {
local tag_name="$1"
echo "Deleting tag: $tag_name"
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
local response=$(curl -s -X DELETE -H "Authorization: Bearer $DOCKERHUB_TOKEN" "$delete_url")
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"
else
echo "Successfully deleted tag: $tag_name"
fi
}
# Get all nightly- prefixed tags, sorted by last_updated timestamp (newest first)
echo "Fetching all tags from DockerHub..."
all_tags=$(get_all_tags)
if [ -z "$all_tags" ]; then
echo "No tags found to clean up"
exit 0
fi
# Count total tags
total_tags=$(echo "$all_tags" | wc -l)
echo "Found $total_tags tags"
# Keep only the last 14 builds (including the current one)
tags_to_keep=14
tags_to_delete=$((total_tags - tags_to_keep))
if [ $tags_to_delete -le 0 ]; then
echo "No tags need to be deleted (only $total_tags tags found, keeping $tags_to_keep)"
exit 0
fi
echo "Will delete $tags_to_delete old tags, keeping the newest $tags_to_keep"
# Get tags to delete (skip the first $tags_to_keep tags)
tags_to_delete_list=$(echo "$all_tags" | tail -n +$((tags_to_keep + 1)))
if [ -z "$tags_to_delete_list" ]; then
echo "No tags to delete"
exit 0
fi
# Delete old tags
echo "Deleting old tags..."
while IFS= read -r tag; do
if [ -n "$tag" ]; then
delete_tag "$tag"
# Add a small delay to avoid rate limiting
sleep 1
fi
done <<< "$tags_to_delete_list"
echo "Cleanup completed successfully"

View File

@ -1,64 +0,0 @@
#!/bin/bash
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
set -v
image_name="neuron/vllm-ci"
container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p "${HF_CACHE}"
HF_MOUNT="/root/.cache/huggingface"
HF_TOKEN=$(aws secretsmanager get-secret-value --secret-id "ci/vllm-neuron/hf-token" --region us-west-2 --query 'SecretString' --output text | jq -r .VLLM_NEURON_CI_HF_TOKEN)
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
# Try building the docker image
aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
if [ -f /tmp/neuron-docker-build-timestamp ]; then
last_build=$(cat /tmp/neuron-docker-build-timestamp)
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune -f
echo "$current_time" > /tmp/neuron-docker-build-timestamp
fi
else
date "+%s" > /tmp/neuron-docker-build-timestamp
fi
docker build -t "${image_name}" -f docker/Dockerfile.neuron .
# Setup cleanup
remove_docker_container() {
docker image rm -f "${image_name}" || true;
}
trap remove_docker_container EXIT
# Run the image
docker run --rm -it --device=/dev/neuron0 --network bridge \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "HF_TOKEN=${HF_TOKEN}" \
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
--name "${container_name}" \
${image_name} \
/bin/bash -c "
set -e; # Exit on first error
python3 /workspace/vllm/examples/offline_inference/neuron.py;
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
echo \"Running test file: \$f\";
python3 -m pytest \$f -v --capture=tee-sys;
done
"

View File

@ -41,7 +41,8 @@ steps:
commands:
- bash standalone_tests/pytorch_nightly_dependency.sh
- label: Async Engine, Inputs, Utils, Worker Test # 24min
- label: Async Engine, Inputs, Utils, Worker Test # 36min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -63,7 +64,8 @@ steps:
- pytest -v -s utils_ # Utils
- pytest -v -s worker # Worker
- label: Python-only Installation Test
- label: Python-only Installation Test # 10min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- tests/standalone_tests/python_only_compile.sh
@ -71,7 +73,8 @@ steps:
commands:
- bash standalone_tests/python_only_compile.sh
- label: Basic Correctness Test # 30min
- label: Basic Correctness Test # 20min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
fast_check: true
torch_nightly: true
@ -88,7 +91,8 @@ steps:
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test # 10min
- label: Core Test # 22min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
fast_check: true
source_file_dependencies:
@ -98,7 +102,8 @@ steps:
commands:
- pytest -v -s core
- label: Entrypoints Test (LLM) # 40min
- label: Entrypoints Test (LLM) # 30min
timeout_in_minutes: 40
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
@ -114,7 +119,8 @@ steps:
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Entrypoints Test (API Server) # 40min
- label: Entrypoints Test (API Server) # 100min
timeout_in_minutes: 130
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
@ -129,7 +135,8 @@ steps:
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_collective_rpc.py
- pytest -v -s entrypoints/test_chat_utils.py
- label: Distributed Tests (4 GPUs) # 10min
- label: Distributed Tests (4 GPUs) # 35min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
@ -172,7 +179,8 @@ steps:
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: EPLB Algorithm Test
- label: EPLB Algorithm Test # 5min
timeout_in_minutes: 15
working_dir: "/vllm-workspace/tests"
source_file_dependencies:
- vllm/distributed/eplb
@ -181,6 +189,7 @@ steps:
- pytest -v -s distributed/test_eplb_algo.py
- label: EPLB Execution Test # 5min
timeout_in_minutes: 15
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -189,7 +198,8 @@ steps:
commands:
- pytest -v -s distributed/test_eplb_execute.py
- label: Metrics, Tracing Test # 10min
- label: Metrics, Tracing Test # 12min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
num_gpus: 2
source_file_dependencies:
@ -208,7 +218,8 @@ steps:
##### fast check tests #####
##### 1 GPU test #####
- label: Regression Test # 5min
- label: Regression Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -218,7 +229,8 @@ steps:
- pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
- label: Engine Test # 25min
timeout_in_minutes: 40
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -233,7 +245,8 @@ steps:
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
- label: V1 Test e2e + engine
- label: V1 Test e2e + engine # 30min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -244,7 +257,8 @@ steps:
- pytest -v -s v1/e2e
- pytest -v -s v1/engine
- label: V1 Test entrypoints
- label: V1 Test entrypoints # 35min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -252,7 +266,8 @@ steps:
commands:
- pytest -v -s v1/entrypoints
- label: V1 Test others
- label: V1 Test others # 42min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -276,7 +291,8 @@ steps:
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: Examples Test # 25min
- label: Examples Test # 30min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/examples"
source_file_dependencies:
@ -301,7 +317,8 @@ steps:
- python3 offline_inference/basic/score.py
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Platform Tests (CUDA)
- label: Platform Tests (CUDA) # 4min
timeout_in_minutes: 15
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -309,7 +326,8 @@ steps:
commands:
- pytest -v -s cuda/test_cuda_context.py
- label: Samplers Test # 36min
- label: Samplers Test # 56min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/layers
@ -320,15 +338,23 @@ steps:
- pytest -v -s samplers
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
- label: LoRA Test %N # 15min each
- label: LoRA Test %N # 20min each
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_llm_with_multi_loras.py
commands:
- pytest -v -s lora \
--shard-id=$$BUILDKITE_PARALLEL_JOB \
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
--ignore=lora/test_chatglm3_tp.py \
--ignore=lora/test_llama_tp.py \
--ignore=lora/test_llm_with_multi_loras.py
parallelism: 4
- label: PyTorch Compilation Unit Tests
- label: PyTorch Compilation Unit Tests # 15min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -344,7 +370,8 @@ steps:
- pytest -v -s compile/test_fusion_all_reduce.py
- pytest -v -s compile/test_decorator.py
- label: PyTorch Fullgraph Smoke Test # 9min
- label: PyTorch Fullgraph Smoke Test # 15min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -358,7 +385,8 @@ steps:
- pytest -v -s compile/piecewise/test_full_cudagraph.py
- pytest -v -s compile/piecewise/test_multiple_graphs.py
- label: PyTorch Fullgraph Test # 18min
- label: PyTorch Fullgraph Test # 20min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -367,7 +395,8 @@ steps:
commands:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Core Operation Test
- label: Kernels Core Operation Test # 48min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -375,7 +404,8 @@ steps:
commands:
- pytest -v -s kernels/core
- label: Kernels Attention Test %N
- label: Kernels Attention Test %N # 23min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/attention/
@ -386,7 +416,8 @@ steps:
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels Quantization Test %N
- label: Kernels Quantization Test %N # 64min
timeout_in_minutes: 90
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/quantization/
@ -396,7 +427,8 @@ steps:
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels MoE Test %N
- label: Kernels MoE Test %N # 40min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/quantization/cutlass_w8a8/moe/
@ -408,7 +440,8 @@ steps:
- pytest -v -s kernels/moe --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels Mamba Test
- label: Kernels Mamba Test # 31min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/mamba/
@ -416,7 +449,8 @@ steps:
commands:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
- label: Tensorizer Test # 14min
timeout_in_minutes: 25
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/model_loader
@ -428,7 +462,8 @@ steps:
- pytest -v -s tensorizer_loader
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Model Executor Test
- label: Model Executor Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor
@ -438,7 +473,8 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s model_executor
- label: Benchmarks # 9min
- label: Benchmarks # 11min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/.buildkite"
source_file_dependencies:
@ -446,7 +482,8 @@ steps:
commands:
- bash scripts/run-benchmarks.sh
- label: Benchmarks CLI Test # 10min
- label: Benchmarks CLI Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -454,7 +491,8 @@ steps:
commands:
- pytest -v -s benchmarks/
- label: Quantization Test
- label: Quantization Test # 70min
timeout_in_minutes: 90
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -467,6 +505,7 @@ steps:
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -474,7 +513,8 @@ steps:
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: OpenAI API correctness
- label: OpenAI API correctness # 22min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -483,7 +523,8 @@ steps:
commands: # LMEval+Transcription WER check
- pytest -s entrypoints/openai/correctness/
- label: Encoder Decoder tests # 5min
- label: Encoder Decoder tests # 12min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -491,7 +532,8 @@ steps:
commands:
- pytest -v -s encoder_decoder
- label: OpenAI-Compatible Tool Use # 20 min
- label: OpenAI-Compatible Tool Use # 23 min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
fast_check: false
source_file_dependencies:
@ -504,7 +546,8 @@ steps:
##### models test #####
- label: Basic Models Test # 24min
- label: Basic Models Test # 57min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -517,7 +560,8 @@ steps:
- pytest -v -s models/test_vision.py
- pytest -v -s models/test_initialization.py
- label: Language Models Test (Standard)
- label: Language Models Test (Standard) # 35min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -528,6 +572,7 @@ steps:
- pytest -v -s models/language -m core_model
- label: Language Models Test (Hybrid) # 35 min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -540,7 +585,8 @@ steps:
- uv pip install --system --no-build-isolation 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.2'
- pytest -v -s models/language/generation -m hybrid_model
- label: Language Models Test (Extended Generation) # 1hr20min
- label: Language Models Test (Extended Generation) # 80min
timeout_in_minutes: 110
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
@ -552,6 +598,7 @@ steps:
- pytest -v -s models/language/generation -m '(not core_model) and (not hybrid_model)'
- label: Language Models Test (Extended Pooling) # 36min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
@ -560,7 +607,8 @@ steps:
commands:
- pytest -v -s models/language/pooling -m 'not core_model'
- label: Multi-Modal Processor Test
- label: Multi-Modal Processor Test # 44min
timeout_in_minutes: 60
source_file_dependencies:
- vllm/
- tests/models/multimodal
@ -568,7 +616,8 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/processing
- label: Multi-Modal Models Test (Standard)
- label: Multi-Modal Models Test (Standard) # 60min
timeout_in_minutes: 80
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -610,7 +659,8 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
- label: Quantized Models Test
- label: Quantized Models Test # 45 min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/layers/quantization
@ -640,7 +690,8 @@ steps:
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
- label: Blackwell Test
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
gpu: b200
# optional: true
@ -666,7 +717,7 @@ steps:
# Quantization
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'
- pytest -v -s tests/kernels/quantization/test_nvfp4_quant.py
# - pytest -v -s tests/kernels/quantization/test_silu_nvfp4_quant_fusion.py
- pytest -v -s tests/kernels/quantization/test_silu_nvfp4_quant_fusion.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
@ -676,12 +727,13 @@ steps:
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
- pytest -v -s tests/kernels/moe/test_flashinfer.py
# - pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
##### 1 GPU test #####
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -693,6 +745,7 @@ steps:
- pytest -v -s distributed/test_shm_broadcast.py
- label: 2 Node Tests (4 GPUs in total) # 16min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -716,7 +769,8 @@ steps:
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- label: Distributed Tests (2 GPUs) # 40min
- label: Distributed Tests (2 GPUs) # 110min
timeout_in_minutes: 150
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -757,6 +811,7 @@ steps:
- pytest -v -s models/multimodal/generation/test_maverick.py
- label: Plugin Tests (2 GPUs) # 40min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -782,7 +837,8 @@ steps:
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
- label: Pipeline Parallelism Test # 45min
- label: Pipeline + Context Parallelism Test # 45min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
@ -795,8 +851,10 @@ steps:
commands:
- pytest -v -s distributed/test_pp_cudagraph.py
- pytest -v -s distributed/test_pipeline_parallel.py
# - pytest -v -s distributed/test_context_parallel.py # TODO: enable it on Hopper runners or add triton MLA support
- label: LoRA TP Test (Distributed)
- label: LoRA TP Test (Distributed) # 17 min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
num_gpus: 4
source_file_dependencies:
@ -814,6 +872,7 @@ steps:
- label: Weight Loading Multiple GPU Test # 33min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2

13
.github/CODEOWNERS vendored
View File

@ -5,13 +5,15 @@
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/v1/sample @22quinn @houseroad
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
@ -25,7 +27,8 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/attention/backends/triton_attn.py @tdoublep
# Test ownership
@ -67,6 +70,9 @@ mkdocs.yaml @hmellor
/vllm/attention/backends/dual_chunk_flash_attn.py @sighingnow
/vllm/model_executor/models/qwen* @sighingnow
# MTP-specific files
/vllm/model_executor/models/deepseek_mtp.py @luccafong
# Mistral-specific files
/vllm/model_executor/models/mistral*.py @patrickvonplaten
/vllm/model_executor/models/mixtral*.py @patrickvonplaten
@ -85,4 +91,3 @@ mkdocs.yaml @hmellor
/vllm/v1/attention/backends/mla/rocm*.py @gshtras
/vllm/attention/ops/rocm*.py @gshtras
/vllm/model_executor/layers/fused_moe/rocm*.py @gshtras

14
.github/mergify.yml vendored
View File

@ -273,6 +273,20 @@ pull_request_rules:
users:
- "sangstar"
- name: assign reviewer for modelopt changes
conditions:
- or:
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
- files~=^tests/models/quantization/test_modelopt\.py$
- files~=^tests/quantization/test_modelopt\.py$
- files~=^tests/models/quantization/test_nvfp4\.py$
- files~=^docs/features/quantization/modelopt\.md$
actions:
assign:
users:
- "Edwardf0t1"
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict

View File

@ -16,7 +16,7 @@ jobs:
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python
uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: '3.12'

View File

@ -17,7 +17,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
- uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: "3.12"
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"

View File

@ -2,7 +2,6 @@ include LICENSE
include requirements/common.txt
include requirements/cuda.txt
include requirements/rocm.txt
include requirements/neuron.txt
include requirements/cpu.txt
include CMakeLists.txt

View File

@ -18,16 +18,17 @@ Easy, fast, and cheap LLM serving for everyone
*Latest News* 🔥
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
- [2025/08] We hosted [vLLM Korea Meetup](https://luma.com/cgcgprmh) with Red Hat and Rebellions! We shared the latest advancements in vLLM along with project spotlights from the vLLM Korea community. Please find the meetup slides [here](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
<details>
<summary>Previous News</summary>
- [2025/08] We hosted [vLLM Korea Meetup](https://luma.com/cgcgprmh) with Red Hat and Rebellions! We shared the latest advancements in vLLM along with project spotlights from the vLLM Korea community. Please find the meetup slides [here](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).

View File

@ -0,0 +1,104 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# benchmark custom activation op performance
import itertools
import torch
import vllm.model_executor.layers.activation # noqa F401
from vllm.model_executor.custom_op import CustomOp
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
batch_size_range = [1, 16, 32, 64, 128]
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
intermediate_size = [3072, 9728, 12288]
configs = list(itertools.product(batch_size_range, seq_len_range, intermediate_size))
def benchmark_activation(
batch_size: int,
seq_len: int,
intermediate_size: int,
provider: str,
func_name: str,
dtype: torch.dtype,
):
device = "cuda"
num_tokens = batch_size * seq_len
dim = intermediate_size
current_platform.seed_everything(42)
torch.set_default_device(device)
if func_name == "gelu_and_mul":
layer = CustomOp.op_registry[func_name](approximate="none")
elif func_name == "gelu_and_mul_tanh":
layer = CustomOp.op_registry["gelu_and_mul"](approximate="tanh")
elif func_name == "fatrelu_and_mul":
threshold = 0.5
layer = CustomOp.op_registry[func_name](threshold)
else:
layer = CustomOp.op_registry[func_name]()
x = torch.randn(num_tokens, dim, dtype=dtype, device=device)
compiled_layer = torch.compile(layer.forward_native)
if provider == "custom":
fn = lambda: layer(x)
elif provider == "compiled":
fn = lambda: compiled_layer(x)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
fn, quantiles=[0.5, 0.2, 0.8]
)
return ms, max_ms, min_ms
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the custom activation op.")
parser.add_argument(
"--func-name",
type=str,
choices=[
"mul_and_silu",
"silu_and_mul",
"gelu_and_mul",
"gelu_and_mul_tanh",
"fatrelu_and_mul",
"swigluoai_and_mul",
"gelu_new",
"gelu_fast",
"quick_gelu",
],
default="silu_and_mul",
)
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
)
args = parser.parse_args()
assert args
func_name = args.func_name
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
perf_report = triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len", "intermediate_size"],
x_vals=configs,
line_arg="provider",
line_vals=["custom", "compiled"],
line_names=["Custom OP", "Compiled"],
styles=[("blue", "-"), ("green", "-")],
ylabel="ms",
plot_name=f"{func_name}-op-performance",
args={},
)
)
perf_report(
lambda batch_size, seq_len, intermediate_size, provider: benchmark_activation(
batch_size, seq_len, intermediate_size, provider, func_name, dtype
)
).run(print_data=True)

View File

@ -678,7 +678,11 @@ def main(args: argparse.Namespace):
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
search_space = get_configs_compute_bound(is_fp16, block_quant_shape)
print(f"Start tuning over {len(search_space)} configurations...")
if use_deep_gemm:
raise ValueError(
"Tuning with --use-deep-gemm is not supported as it only tunes Triton "
"kernels. Please remove the flag."
)
start = time.time()
configs = _distribute(
"tune",

View File

@ -36,6 +36,7 @@ limitations under the License.
#if !defined(CUDA_VERSION) || CUDA_VERSION < 12040
void sm100_cutlass_mla_decode(
torch::Tensor const& out,
torch::Tensor const& lse,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
@ -99,6 +100,7 @@ struct MlaSm100 {
template <typename T>
typename T::Fmha::Arguments args_from_options(
at::Tensor const& out,
at::Tensor const& lse,
at::Tensor const& q_nope,
at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache,
@ -162,7 +164,10 @@ typename T::Fmha::Arguments args_from_options(
stride_PT,
page_count_total,
page_size},
{static_cast<ElementOut*>(out.data_ptr()), stride_O, static_cast<ElementAcc*>(nullptr), stride_LSE},
{static_cast<ElementOut*>(out.data_ptr()),
stride_O,
static_cast<ElementAcc*>(lse.defined() ? lse.data_ptr() : nullptr),
stride_LSE},
hw_info,
// TODO(trevor-m): Change split_kv back to -1 when
// https://github.com/NVIDIA/cutlass/issues/2274 is fixed. Split_kv=1 will
@ -181,6 +186,7 @@ typename T::Fmha::Arguments args_from_options(
template <typename Element, typename ElementOut, bool IsPaged128, typename PersistenceOption>
void runMla(
at::Tensor const& out,
at::Tensor const& lse,
at::Tensor const& q_nope,
at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache,
@ -192,7 +198,7 @@ void runMla(
cudaStream_t stream) {
using MlaSm100Type = MlaSm100<Element, ElementOut, IsPaged128, PersistenceOption>;
typename MlaSm100Type::Fmha fmha;
auto arguments = args_from_options<MlaSm100Type>(out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
auto arguments = args_from_options<MlaSm100Type>(out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
CUTLASS_CHECK(fmha.can_implement(arguments));
@ -214,6 +220,7 @@ void runMla(
void sm100_cutlass_mla_decode(
torch::Tensor const& out,
torch::Tensor const& lse,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
@ -234,13 +241,13 @@ void sm100_cutlass_mla_decode(
DISPATCH_BOOL(num_kv_splits <= 1, NotManualSplitKV, [&] {
if (in_dtype == at::ScalarType::Half) {
runMla<cutlass::half_t, cutlass::half_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
runMla<cutlass::bfloat16_t, cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else if (in_dtype == at::ScalarType::Float8_e4m3fn) {
runMla<cutlass::float_e4m3_t, cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else {
TORCH_CHECK(false, "Unsupported input data type of MLA");
}

View File

@ -36,13 +36,6 @@ void concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe,
const std::string& kv_cache_dtype,
torch::Tensor& scale);
void cp_fused_concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe,
torch::Tensor& cp_local_token_select_indices,
torch::Tensor& kv_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype,
torch::Tensor& scale);
// Just for unittest
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
const double scale, const std::string& kv_cache_dtype);

View File

@ -396,51 +396,6 @@ __global__ void concat_and_cache_mla_kernel(
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
}
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void cp_fused_concat_and_cache_mla_kernel(
const scalar_t* __restrict__ kv_c, // [num_full_tokens, kv_lora_rank]
const scalar_t* __restrict__ k_pe, // [num_full_tokens, pe_dim]
const int64_t* __restrict__ cp_local_token_select_indices, // [num_tokens]
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
// + pe_dim)]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, //
const int entry_stride, //
const int kv_c_stride, //
const int k_pe_stride, //
const int kv_lora_rank, //
const int pe_dim, //
const int block_size, //
const float* scale //
) {
const int64_t token_idx = cp_local_token_select_indices[blockIdx.x];
const int64_t slot_idx = slot_mapping[blockIdx.x];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
auto copy = [&](const scalar_t* __restrict__ src, cache_t* __restrict__ dst,
int src_stride, int dst_stride, int size, int offset) {
for (int i = threadIdx.x; i < size; i += blockDim.x) {
const int64_t src_idx = token_idx * src_stride + i;
const int64_t dst_idx =
block_idx * block_stride + block_offset * entry_stride + i + offset;
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
dst[dst_idx] = src[src_idx];
} else {
dst[dst_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(src[src_idx], *scale);
}
}
};
copy(kv_c, kv_cache, kv_c_stride, block_stride, kv_lora_rank, 0);
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
}
} // namespace vllm
// KV_T is the data type of key and value tensors.
@ -554,20 +509,6 @@ void reshape_and_cache_flash(
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
// KV_T is the data type of key and value tensors.
// CACHE_T is the stored data type of kv-cache.
// KV_DTYPE is the real data type of kv-cache.
#define CALL_CP_FUSED_CONCAT_AND_CACHE_MLA(KV_T, CACHE_T, KV_DTYPE) \
vllm::cp_fused_concat_and_cache_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
cp_local_token_select_indices.data_ptr<int64_t>(), \
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
void concat_and_cache_mla(
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
torch::Tensor& k_pe, // [num_tokens, pe_dim]
@ -606,50 +547,6 @@ void concat_and_cache_mla(
CALL_CONCAT_AND_CACHE_MLA);
}
// Note(hc): cp_fused_concat_and_cache_mla fuses the following three kernel
// calls into one:
// k_c_normed.index_select(0, cp_local_token_select_indices) + \
// k_pe.squeeze(1).index_select(0, cp_local_token_select_indices) + \
// concat_and_cache_mla.
void cp_fused_concat_and_cache_mla(
torch::Tensor& kv_c, // [num_total_tokens, kv_lora_rank]
torch::Tensor& k_pe, // [num_total_tokens, pe_dim]
torch::Tensor& cp_local_token_select_indices, // [num_tokens]
torch::Tensor& kv_cache, // [num_blocks, block_size, (kv_lora_rank +
// pe_dim)]
torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens]
const std::string& kv_cache_dtype, torch::Tensor& scale) {
// NOTE(woosuk): In vLLM V1, key.size(0) can be different from
// slot_mapping.size(0) because of padding for CUDA graphs.
// In vLLM V0, key.size(0) is always equal to slot_mapping.size(0) because
// both include padding.
// In vLLM V1, however, key.size(0) can be larger than slot_mapping.size(0)
// since key includes padding for CUDA graphs, while slot_mapping does not.
// In this case, slot_mapping.size(0) represents the actual number of tokens
// before padding.
// For compatibility with both cases, we use slot_mapping.size(0) as the
// number of tokens.
int num_tokens = slot_mapping.size(0);
int kv_lora_rank = kv_c.size(1);
int pe_dim = k_pe.size(1);
int block_size = kv_cache.size(1);
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
int kv_c_stride = kv_c.stride(0);
int k_pe_stride = k_pe.stride(0);
int block_stride = kv_cache.stride(0);
int entry_stride = kv_cache.stride(1);
dim3 grid(num_tokens);
dim3 block(std::min(kv_lora_rank, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_c));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CP_FUSED_CONCAT_AND_CACHE_MLA);
}
namespace vllm {
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>

View File

@ -145,7 +145,8 @@ void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
}
}
float scale_val, azp_val;
float scale_val;
float azp_val = 0.0f;
if constexpr (AZP) {
float max_scalar = max_value.reduce_max();
float min_scalar = min_value.reduce_min();

View File

@ -52,15 +52,6 @@
#define VLLM_DISPATCH_FP8_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FP8_TYPES(__VA_ARGS__))
#define AT_DISPATCH_BYTE_CASE(enum_type, ...) \
AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, byte_t, __VA_ARGS__)
#define VLLM_DISPATCH_CASE_BYTE_TYPES(...) \
AT_DISPATCH_BYTE_CASE(at::ScalarType::Byte, __VA_ARGS__)
#define VLLM_DISPATCH_BYTE_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_BYTE_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_QUANT_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_QUANT_TYPES(__VA_ARGS__))

View File

@ -130,8 +130,7 @@ void silu_and_mul(torch::Tensor& out, torch::Tensor& input);
void silu_and_mul_quant(torch::Tensor& out, torch::Tensor& input,
torch::Tensor& scale);
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
#ifndef USE_ROCM
void silu_and_mul_nvfp4_quant(torch::Tensor& out,
torch::Tensor& output_block_scale,
torch::Tensor& input,

View File

@ -26,164 +26,17 @@
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "nvfp4_utils.cuh"
namespace vllm {
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = c10::Half;
};
template <>
struct TypeConverter<c10::Half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = c10::BFloat16;
};
template <>
struct TypeConverter<c10::BFloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
template <class Type>
__inline__ __device__ PackedVec<Type> compute_silu(PackedVec<Type>& vec,
PackedVec<Type>& vec2) {
PackedVec<Type> result;
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; ++i) {
if constexpr (std::is_same_v<Type, c10::Half>) {
if constexpr (std::is_same_v<Type, half>) {
half2 val(0.5f, 0.5f);
half2 t0 = __hmul2(vec.elts[i], val);
half2 t1 = __hfma2(h2tanh(t0), val, val);
@ -206,13 +59,12 @@ __device__ uint32_t silu_and_cvt_warp_fp16_to_fp4(PackedVec<Type>& vec,
PackedVec<Type>& vec2,
float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
PackedVec<Type> out_silu = compute_silu(vec, vec2);
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(out_silu.elts[0]);
// Local maximum value.
#pragma unroll
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(out_silu.elts[i]));
}
@ -259,9 +111,9 @@ __device__ uint32_t silu_and_cvt_warp_fp16_to_fp4(PackedVec<Type>& vec,
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, c10::Half>) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(out_silu.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(out_silu.elts[i]);
@ -275,22 +127,14 @@ __device__ uint32_t silu_and_cvt_warp_fp16_to_fp4(PackedVec<Type>& vec,
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(1024, 4) silu_and_cvt_fp16_to_fp4(
#else
silu_and_cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(1024, 4)
silu_and_cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out,
uint32_t* SFout) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -328,22 +172,25 @@ silu_and_cvt_fp16_to_fp4(
in_vec, in_vec2, SFScaleVal, sf_out);
}
}
#endif
}
} // namespace vllm
void silu_and_mul_nvfp4_quant(torch::Tensor& output, // [..., d]
torch::Tensor& output_sf,
torch::Tensor& input, // [..., 2 * d]
torch::Tensor& input_sf) {
TORCH_CHECK(input.dtype() == torch::kFloat16 ||
input.dtype() == torch::kBFloat16);
void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output, // [..., d]
torch::Tensor& output_sf,
torch::Tensor& input, // [..., 2 * d]
torch::Tensor& input_sf) {
int32_t m = input.size(0);
int32_t n = input.size(1) / 2;
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
TORCH_CHECK(input.scalar_type() == at::ScalarType::Half ||
input.scalar_type() == at::ScalarType::BFloat16,
"Unsupported input data type for quantize_to_fp4.");
int multiProcessorCount =
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
auto input_sf_ptr = static_cast<float const*>(input_sf.data_ptr());
auto sf_out = static_cast<int32_t*>(output_sf.data_ptr());
auto output_ptr = static_cast<int64_t*>(output.data_ptr());
@ -352,17 +199,14 @@ void silu_and_mul_nvfp4_quant(torch::Tensor& output, // [..., d]
dim3 block(std::min(int(n / ELTS_PER_THREAD), 1024));
int const numBlocksPerSM = 2048 / block.x;
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
VLLM_DISPATCH_HALF_TYPES(
input.scalar_type(), "act_and_mul_quant_kernel", [&] {
auto input_ptr = reinterpret_cast<scalar_t const*>(input.data_ptr());
VLLM_DISPATCH_BYTE_TYPES(
output.scalar_type(), "fused_act_and_mul_quant_kernel_nvfp4_type",
[&] {
vllm::silu_and_cvt_fp16_to_fp4<scalar_t>
<<<grid, block, 0, stream>>>(
m, n, input_ptr, input_sf_ptr,
reinterpret_cast<uint32_t*>(output_ptr),
reinterpret_cast<uint32_t*>(sf_out));
});
input.scalar_type(), "silu_and_mul_nvfp4_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
auto input_ptr = static_cast<cuda_type const*>(input.data_ptr());
vllm::silu_and_cvt_fp16_to_fp4<cuda_type><<<grid, block, 0, stream>>>(
m, n, input_ptr, input_sf_ptr,
reinterpret_cast<uint32_t*>(output_ptr),
reinterpret_cast<uint32_t*>(sf_out));
});
}

View File

@ -1,3 +1,19 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cutlass/arch/arch.h>

View File

@ -1,247 +1,42 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cuda_runtime_api.h>
#include <cuda_runtime.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_runtime.h>
#include <cuda_fp8.h>
#include "dispatch_utils.h"
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
#include "nvfp4_utils.cuh"
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts, bool low_latency) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(512, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts,
bool low_latency) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -299,8 +94,8 @@ cvt_fp16_to_fp4(
&input_offset_by_experts[chunk_start + 12]));
local_offsets[16] = __ldca(&input_offset_by_experts[chunk_start + 16]);
// Check against the 16 loaded offsets
#pragma unroll
// Check against the 16 loaded offsets
#pragma unroll
for (int i = 0; i < 16; i++) {
if (rowIdx >= local_offsets[i] && rowIdx < local_offsets[i + 1]) {
rowIdx_in_expert = rowIdx - local_offsets[i];
@ -330,21 +125,15 @@ cvt_fp16_to_fp4(
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
#endif
}
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(1024, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(1024, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -425,7 +214,6 @@ cvt_fp16_to_fp4(
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
#endif
}
template <typename T>
@ -501,6 +289,8 @@ void quant_impl(void* output, void* output_scale, void* input,
}
}
} // namespace vllm
/*Quantization entry for fp4 experts quantization*/
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, "must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x, m) \
@ -560,23 +350,17 @@ void scaled_fp4_experts_quant_sm100a(
// 4 means 4 fp8 values are packed into one int32
TORCH_CHECK(output_scale.size(1) * 4 == padded_k);
auto in_dtype = input.dtype();
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(input.get_device());
if (in_dtype == at::ScalarType::Half) {
quant_impl<half>(output.data_ptr(), output_scale.data_ptr(),
input.data_ptr(), input_global_scale.data_ptr(),
input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk, k,
n_experts, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
quant_impl<__nv_bfloat16>(output.data_ptr(), output_scale.data_ptr(),
input.data_ptr(), input_global_scale.data_ptr(),
input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk,
k, n_experts, stream);
} else {
TORCH_CHECK(false, "Expected input data type to be half or bfloat16");
}
VLLM_DISPATCH_HALF_TYPES(
input.scalar_type(), "nvfp4_experts_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
vllm::quant_impl<cuda_type>(
output.data_ptr(), output_scale.data_ptr(), input.data_ptr(),
input_global_scale.data_ptr(), input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk, k, n_experts,
stream);
});
}

View File

@ -32,6 +32,14 @@ void scaled_fp4_experts_quant_sm100a(
torch::Tensor const& output_scale_offset_by_experts);
#endif
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output,
torch::Tensor& output_sf,
torch::Tensor& input,
torch::Tensor& input_sf);
#endif
void scaled_fp4_quant(torch::Tensor& output, torch::Tensor const& input,
torch::Tensor& output_sf, torch::Tensor const& input_sf) {
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
@ -54,3 +62,13 @@ void scaled_fp4_experts_quant(
TORCH_CHECK_NOT_IMPLEMENTED(false,
"No compiled nvfp4 experts quantization kernel");
}
void silu_and_mul_nvfp4_quant(torch::Tensor& output, torch::Tensor& output_sf,
torch::Tensor& input, torch::Tensor& input_sf) {
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
return silu_and_mul_nvfp4_quant_sm1xxa(output, output_sf, input, input_sf);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(
false, "No compiled silu_and_mul nvfp4 quantization kernel");
}

View File

@ -23,245 +23,18 @@
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp8.h>
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "nvfp4_utils.cuh"
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(512, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -293,7 +66,6 @@ cvt_fp16_to_fp4(
cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
}
#endif
}
template <typename T>
@ -332,6 +104,8 @@ template void invokeFP4Quantization(int m, int n, __nv_bfloat16 const* input,
int multiProcessorCount,
cudaStream_t stream);
} // namespace vllm
void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
torch::Tensor const& input,
torch::Tensor const& output_sf,
@ -340,6 +114,9 @@ void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
int32_t n = input.size(1);
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
TORCH_CHECK(input.scalar_type() == at::ScalarType::Half ||
input.scalar_type() == at::ScalarType::BFloat16,
"Unsupported input data type for quantize_to_fp4.");
int multiProcessorCount =
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
@ -353,24 +130,10 @@ void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
// We don't support e8m0 scales at this moment.
bool useUE8M0 = false;
switch (input.scalar_type()) {
case torch::kHalf: {
auto input_ptr = reinterpret_cast<half const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
case torch::kBFloat16: {
auto input_ptr = reinterpret_cast<__nv_bfloat16 const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
default: {
std::cerr << "Observing: " << input.scalar_type()
<< " for the input datatype which is invalid";
throw std::runtime_error(
"Unsupported input data type for quantize_to_fp4.");
}
}
VLLM_DISPATCH_HALF_TYPES(input.scalar_type(), "nvfp4_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
auto input_ptr = static_cast<cuda_type const*>(input.data_ptr());
vllm::invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr,
sf_out, useUE8M0, multiProcessorCount, stream);
});
}

View File

@ -0,0 +1,251 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cuda_runtime.h>
#include <cuda_fp8.h>
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
namespace vllm {
// Convert PyTorch cpp type to CUDA type
template <typename T>
struct CUDATypeConverter {
using Type = T;
};
template <>
struct CUDATypeConverter<at::Half> {
using Type = half;
};
template <>
struct CUDATypeConverter<at::BFloat16> {
using Type = __nv_bfloat16;
};
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
return nullptr;
}
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
}
} // namespace vllm

View File

@ -417,7 +417,7 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
))
def prepacked_type_key(prepack_type: PrepackTypeConfig):
# For now we we can just use the first accumulator type seen since
# For now, we can just use the first accumulator type seen since
# the tensor core shapes/layouts don't vary based on accumulator
# type so we can generate less code this way
return (prepack_type.a, prepack_type.b_num_bits, prepack_type.convert)

View File

@ -115,8 +115,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"silu_and_mul_quant(Tensor! result, Tensor input, Tensor scale) -> ()");
ops.impl("silu_and_mul_quant", torch::kCUDA, &silu_and_mul_quant);
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
#ifndef USE_ROCM
ops.def(
"silu_and_mul_nvfp4_quant(Tensor! result, Tensor! result_block_scale, "
"Tensor input, Tensor input_global_scale) -> ()");
@ -517,10 +516,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// SM100 CUTLASS MLA decode
ops.def(
"sm100_cutlass_mla_decode(Tensor! out, Tensor q_nope, Tensor q_pe,"
" Tensor kv_c_and_k_pe_cache, Tensor seq_lens,"
" Tensor page_table, Tensor workspace, float "
"scale,"
"sm100_cutlass_mla_decode(Tensor! out, Tensor! lse, Tensor q_nope,"
" Tensor q_pe, Tensor kv_c_and_k_pe_cache,"
" Tensor seq_lens, Tensor page_table,"
" Tensor workspace, float scale,"
" int num_kv_splits) -> ()");
// conditionally compiled so impl in source file
@ -694,16 +693,6 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
" Tensor scale) -> ()");
cache_ops.impl("concat_and_cache_mla", torch::kCUDA, &concat_and_cache_mla);
cache_ops.def(
"cp_fused_concat_and_cache_mla(Tensor kv_c, Tensor k_pe,"
" Tensor cp_local_token_select_indices,"
" Tensor! kv_cache,"
" Tensor slot_mapping,"
" str kv_cache_dtype,"
" Tensor scale) -> ()");
cache_ops.impl("cp_fused_concat_and_cache_mla", torch::kCUDA,
&cp_fused_concat_and_cache_mla);
// Convert the key and value cache to fp8 data type.
cache_ops.def(
"convert_fp8(Tensor! dst_cache, Tensor src_cache, float scale, "

View File

@ -1,56 +0,0 @@
# default base image
# https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.6.0-neuronx-py310-sdk2.23.0-ubuntu22.04"
FROM $BASE_IMAGE
RUN echo "Base image is $BASE_IMAGE"
# Install some basic utilities
RUN apt-get update && \
apt-get install -y \
git \
python3 \
python3-pip \
ffmpeg libsm6 libxext6 libgl1
### Mount Point ###
# When launching the container, mount the code directory to /workspace
ARG APP_MOUNT=/workspace
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}/vllm
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas tenacity
RUN python3 -m pip install neuronx-cc==2.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install pytest
# uninstall transformers-neuronx package explicitly to avoid version conflict
RUN python3 -m pip uninstall -y transformers-neuronx
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
RUN python3 -m pip install -U \
'cmake>=3.26.1' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
-r requirements/neuron.txt
ENV VLLM_TARGET_DEVICE neuron
RUN --mount=type=bind,source=.git,target=.git \
pip install --no-build-isolation -v -e .
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
# install transformers-neuronx package as an optional dependencies (for V0)
# FIXME: `--no-deps` argument is temporarily added to resolve transformers package version conflict
RUN python3 -m pip install transformers-neuronx==0.13.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U --no-deps
RUN python3 -m pip install sentencepiece transformers==4.48.0 -U
# overwrite entrypoint to run bash script
RUN echo "import subprocess; import sys; subprocess.check_call(sys.argv[1:])" > /usr/local/bin/dockerd-entrypoint.py
CMD ["/bin/bash"]

View File

@ -16,7 +16,8 @@ ENV LANG=C.UTF-8 \
RUN microdnf install -y \
which procps findutils tar vim git gcc gcc-gfortran g++ make patch zlib-devel \
libjpeg-turbo-devel libtiff-devel libpng-devel libwebp-devel freetype-devel harfbuzz-devel \
openssl-devel openblas openblas-devel autoconf automake libtool cmake numpy libsndfile && \
openssl-devel openblas openblas-devel autoconf automake libtool cmake numpy libsndfile \
clang llvm-devel llvm-static clang-devel && \
microdnf clean all
# Python Installation
@ -191,7 +192,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
-DCOMPILER_RT_BUILD_ORC=OFF \
-DCOMPILER_RT_INCLUDE_TESTS=OFF \
${CMAKE_ARGS} -GNinja ../llvm \
&& ninja install . && \
# build llvmlite
cd ../../llvmlite && python setup.py bdist_wheel && \
@ -200,6 +200,45 @@ RUN --mount=type=cache,target=/root/.cache/uv \
sed -i '/#include "internal\/pycore_atomic.h"/i\#include "dynamic_annotations.h"' numba/_dispatcher.cpp; \
fi && python setup.py bdist_wheel
# Edit aws-lc-sys to support s390x
FROM python-install AS aws-lc-sys-editor
WORKDIR /tmp
ENV CARGO_HOME=/root/.cargo
ENV RUSTUP_HOME=/root/.rustup
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
ARG AWS_LC_VERSION=v0.30.0
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
git clone --recursive https://github.com/aws/aws-lc-rs.git && \
cd aws-lc-rs && \
git checkout tags/aws-lc-sys/${AWS_LC_VERSION} && \
git submodule sync && \
git submodule update --init --recursive && \
cd aws-lc-sys && \
sed -i '682 s/strncmp(buf, "-----END ", 9)/memcmp(buf, "-----END ", 9)/' aws-lc/crypto/pem/pem_lib.c && \
sed -i '712 s/strncmp(buf, "-----END ", 9)/memcmp(buf, "-----END ", 9)/' aws-lc/crypto/pem/pem_lib.c && \
sed -i '747 s/strncmp(buf, "-----END ", 9)/memcmp(buf, "-----END ", 9)/' aws-lc/crypto/pem/pem_lib.c
# Build Outlines Core
FROM python-install AS outlines-core-builder
WORKDIR /tmp
ENV CARGO_HOME=/root/.cargo
ENV RUSTUP_HOME=/root/.rustup
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
ARG OUTLINES_CORE_VERSION=0.2.10
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
--mount=type=bind,from=aws-lc-sys-editor,source=/tmp/aws-lc-rs/aws-lc-sys,target=/tmp/aws-lc-sys,rw \
git clone https://github.com/dottxt-ai/outlines-core.git && \
cd outlines-core && \
git checkout tags/${OUTLINES_CORE_VERSION} && \
sed -i "s/version = \"0.0.0\"/version = \"${OUTLINES_CORE_VERSION}\"/" Cargo.toml && \
echo '[patch.crates-io]' >> Cargo.toml && \
echo 'aws-lc-sys = { path = "/tmp/aws-lc-sys" }' >> Cargo.toml && \
uv pip install maturin && \
python -m maturin build --release --out dist
# Final build stage
FROM python-install AS vllm-cpu
@ -230,6 +269,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=torch,source=/tmp/pytorch/dist,target=/tmp/torch-wheels/ \
--mount=type=bind,from=numba-builder,source=/tmp/llvmlite/dist,target=/tmp/llvmlite-wheels/ \
--mount=type=bind,from=numba-builder,source=/tmp/numba/dist,target=/tmp/numba-wheels/ \
--mount=type=bind,from=outlines-core-builder,source=/tmp/outlines-core/dist,target=/tmp/outlines-core/dist/ \
sed -i '/^torch/d' requirements/build.txt && \
ARROW_WHL_FILE=$(ls /tmp/arrow-wheels/pyarrow-*.whl) && \
VISION_WHL_FILE=$(ls /tmp/vision-wheels/*.whl) && \
@ -237,6 +277,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
TORCH_WHL_FILE=$(ls /tmp/torch-wheels/*.whl) && \
LLVM_WHL_FILE=$(ls /tmp/llvmlite-wheels/*.whl) && \
NUMBA_WHL_FILE=$(ls /tmp/numba-wheels/*.whl) && \
OUTLINES_CORE_WHL_FILE=$(ls /tmp/outlines-core/dist/*.whl) && \
uv pip install -v \
$ARROW_WHL_FILE \
$VISION_WHL_FILE \
@ -244,6 +285,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
$TORCH_WHL_FILE \
$LLVM_WHL_FILE \
$NUMBA_WHL_FILE \
$OUTLINES_CORE_WHL_FILE \
--index-strategy unsafe-best-match \
-r requirements/build.txt \
-r requirements/cpu.txt

View File

@ -1,12 +1,10 @@
FROM intel/deep-learning-essentials:2025.1.3-0-devel-ubuntu24.04 AS vllm-base
RUN rm /etc/apt/sources.list.d/intel-graphics.list
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && \
echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list && \
add-apt-repository -y ppa:kobuk-team/intel-graphics
RUN apt clean && apt-get update -y && \
apt-get install -y software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa && \
apt-get install -y python3.10 python3.10-distutils && \
curl -sS https://bootstrap.pypa.io/get-pip.py | python3.10 && \
apt-get install -y --no-install-recommends --fix-missing \
curl \
ffmpeg \
@ -17,17 +15,29 @@ RUN apt clean && apt-get update -y && \
libgl1 \
lsb-release \
numactl \
python3.10-dev \
wget
wget \
vim \
python3.12 \
python3.12-dev \
python3-pip
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.12 1
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.12 1
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1
RUN apt install -y libze1 libze-dev libze-intel-gpu1 intel-opencl-icd libze-intel-gpu-raytracing
RUN wget https://github.com/uxlfoundation/oneCCL/releases/download/2021.15.4/intel-oneccl-2021.15.4.11_offline.sh
RUN bash intel-oneccl-2021.15.4.11_offline.sh -a --silent --eula accept && echo "source /opt/intel/oneapi/setvars.sh --force" >> /root/.bashrc
SHELL ["bash", "-c"]
CMD ["bash", "-c", "source /root/.bashrc && exec bash"]
WORKDIR /workspace/vllm
COPY requirements/xpu.txt /workspace/vllm/requirements/xpu.txt
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
# suppress the python externally managed environment error
RUN python3 -m pip config set global.break-system-packages true
RUN --mount=type=cache,target=/root/.cache/pip \
pip install --no-cache-dir \
-r requirements/xpu.txt
@ -54,8 +64,9 @@ FROM vllm-base AS vllm-openai
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer pytest pytest_asyncio lm_eval[api] modelscope
ENV VLLM_USAGE_SOURCE production-docker-image \
TRITON_XPU_PROFILE 1
RUN --mount=type=cache,target=/root/.cache/pip \
pip uninstall oneccl oneccl-devel -y
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -32,10 +32,7 @@ nav:
- models/pooling_models.md
- models/extensions
- Hardware Supported Models: models/hardware_supported_models
- Features:
- features/compatibility_matrix.md
- features/*
- features/quantization
- Features: features
- Developer Guide:
- contributing/README.md
- General:

View File

@ -2,6 +2,7 @@
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:
- [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ), August 30th 2025. [[Slides]](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA)
- [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet), August 27th 2025. [[Slides]](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing)
- [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg), August 23rd 2025. [[Slides]](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH)
- [vLLM Korea Meetup](https://luma.com/cgcgprmh), August 19th 2025. [[Slides]](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).

View File

@ -11,9 +11,39 @@ vLLM contains two sets of benchmarks:
The performance benchmarks are used for development to confirm whether new changes improve performance under various workloads. They are triggered on every commit with both the `perf-benchmarks` and `ready` labels, and when a PR is merged into vLLM.
### Manually Trigger the benchmark
Use [vllm-ci-test-repo images](https://gallery.ecr.aws/q9t5s3a7/vllm-ci-test-repo) with vLLM benchmark suite.
For CPU environment, please use the image with "-cpu" postfix.
Here is an example for docker run command for CPU.
```bash
docker run -it --entrypoint /bin/bash -v /data/huggingface:/root/.cache/huggingface -e HF_TOKEN='' --shm-size=16g --name vllm-cpu-ci public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:1da94e673c257373280026f75ceb4effac80e892-cpu
```
Then, run below command inside the docker instance.
```bash
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
```
When run, benchmark script generates results under **benchmark/results** folder, along with the benchmark_results.md and benchmark_results.json.
#### Runtime environment variables
- `ON_CPU`: set the value to '1' on Intel® Xeon® Processors. Default value is 0.
- `SERVING_JSON`: JSON file to use for the serving tests. Default value is empty string (use default file).
- `LATENCY_JSON`: JSON file to use for the latency tests. Default value is empty string (use default file).
- `THROUGHPUT_JSON`: JSON file to use for the throughout tests. Default value is empty string (use default file).
- `REMOTE_HOST`: IP for the remote vLLM service to benchmark. Default value is empty string.
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
For more results visualization, check the [visualizing the results](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md#visualizing-the-results).
The latest performance results are hosted on the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
More information on the performance benchmarks and their parameters can be found [here](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
[](){ #nightly-benchmarks }

View File

@ -19,7 +19,7 @@ When using `vllm bench serve`, you can enable profiling by passing the `--profil
Traces can be visualized using <https://ui.perfetto.dev/>.
!!! tip
You can directly call bench module without installing vllm using `python -m vllm.entrypoints.cli.main bench`.
You can directly call bench module without installing vLLM using `python -m vllm.entrypoints.cli.main bench`.
!!! tip
Only send a few requests through vLLM when profiling, as the traces can get quite large. Also, no need to untar the traces, they can be viewed directly.

View File

@ -1,6 +1,6 @@
# Llama Stack
vLLM is also available via [Llama Stack](https://github.com/meta-llama/llama-stack) .
vLLM is also available via [Llama Stack](https://github.com/llamastack/llama-stack).
To install Llama Stack, run
@ -8,9 +8,9 @@ To install Llama Stack, run
pip install llama-stack -q
```
## Inference using OpenAI Compatible API
## Inference using OpenAI-Compatible API
Then start Llama Stack server pointing to your vLLM server with the following configuration:
Then start the Llama Stack server and configure it to point to your vLLM server with the following settings:
```yaml
inference:
@ -20,15 +20,15 @@ inference:
url: http://127.0.0.1:8000
```
Please refer to [this guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/remote-vllm.html) for more details on this remote vLLM provider.
Please refer to [this guide](https://llama-stack.readthedocs.io/en/latest/providers/inference/remote_vllm.html) for more details on this remote vLLM provider.
## Inference via Embedded vLLM
## Inference using Embedded vLLM
An [inline vLLM provider](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/inline/inference/vllm)
An [inline provider](https://github.com/llamastack/llama-stack/tree/main/llama_stack/providers/inline/inference)
is also available. This is a sample of configuration using that method:
```yaml
inference
inference:
- provider_type: vllm
config:
model: Llama3.1-8B-Instruct

View File

@ -1,4 +1,6 @@
# Compatibility Matrix
# Features
## Compatibility Matrix
The tables below show mutually exclusive features and the support on some hardware.
@ -12,7 +14,7 @@ The symbols used have the following meanings:
!!! note
Check the ❌ or 🟠 with links to see tracking issue for unsupported feature/hardware combination.
## Feature x Feature
### Feature x Feature
<style>
td:not(:first-child) {
@ -56,7 +58,7 @@ th:not(:first-child) {
[](){ #feature-x-hardware }
## Feature x Hardware
### Feature x Hardware
| Feature | Volta | Turing | Ampere | Ada | Hopper | CPU | AMD | TPU |
|-----------------------------------------------------------|---------------------|-----------|-----------|--------|------------|--------------------|--------|-----|

View File

@ -215,19 +215,19 @@ When loading RGBA images (images with transparency), vLLM converts them to RGB f
```python
from vllm import LLM
# Default white background (no configuration needed)
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
# Custom black background for dark theme
llm = LLM(
model="llava-hf/llava-1.5-7b-hf",
media_io_kwargs={"image": {"rgba_background_color": [0, 0, 0]}}
)
# Custom brand color background (e.g., blue)
llm = LLM(
model="llava-hf/llava-1.5-7b-hf",
model="llava-hf/llava-1.5-7b-hf",
media_io_kwargs={"image": {"rgba_background_color": [0, 0, 255]}}
)
```
@ -388,7 +388,7 @@ For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embedd
## Online Serving
Our OpenAI-compatible server accepts multi-modal data via the [Chat Completions API](https://platform.openai.com/docs/api-reference/chat).
Our OpenAI-compatible server accepts multi-modal data via the [Chat Completions API](https://platform.openai.com/docs/api-reference/chat). Media inputs also support optional UUIDs users can provide to uniquely identify each media, which is used to cache the media results across requests.
!!! important
A chat template is **required** to use Chat Completions API.
@ -438,7 +438,13 @@ Then, you can use the OpenAI client as follows:
# NOTE: The prompt formatting with the image token `<image>` is not needed
# since the prompt will be processed automatically by the API server.
{"type": "text", "text": "Whats in this image?"},
{"type": "image_url", "image_url": {"url": image_url}},
{
"type": "image_url",
"image_url": {
url": image_url
},
"uuid": image_url # Optional
},
],
}],
)
@ -454,8 +460,20 @@ Then, you can use the OpenAI client as follows:
"role": "user",
"content": [
{"type": "text", "text": "What are the animals in these images?"},
{"type": "image_url", "image_url": {"url": image_url_duck}},
{"type": "image_url", "image_url": {"url": image_url_lion}},
{
"type": "image_url",
"image_url": {
"url": image_url_duck
},
"uuid": image_url_duck # Optional
},
{
"type": "image_url",
"image_url": {
"url": image_url_lion
},
"uuid": image_url_lion # Optional
},
],
}],
)
@ -522,6 +540,7 @@ Then, you can use the OpenAI client as follows:
"video_url": {
"url": video_url
},
"uuid": video_url # Optional
},
],
}],
@ -613,6 +632,7 @@ Then, you can use the OpenAI client as follows:
"data": audio_base64,
"format": "wav"
},
"uuid": audio_url # Optional
},
],
}],
@ -642,6 +662,7 @@ Alternatively, you can pass `audio_url`, which is the audio counterpart of `imag
"audio_url": {
"url": audio_url
},
"uuid": audio_url # Optional
},
],
}],
@ -695,7 +716,8 @@ The following example demonstrates how to pass image embeddings to the OpenAI se
model = "llava-hf/llava-1.5-7b-hf"
embeds = {
"type": "image_embeds",
"image_embeds": f"{base64_image_embedding}"
"image_embeds": f"{base64_image_embedding}",
"uuid": image_url # Optional
}
# Pass additional parameters (available to Qwen2-VL and MiniCPM-V)
@ -706,6 +728,7 @@ The following example demonstrates how to pass image embeddings to the OpenAI se
"image_embeds": f"{base64_image_embedding}" , # Required
"image_grid_thw": f"{base64_image_grid_thw}" # Required by Qwen/Qwen2-VL-2B-Instruct
},
"uuid": image_url # Optional
}
model = "openbmb/MiniCPM-V-2_6"
embeds = {
@ -714,6 +737,7 @@ The following example demonstrates how to pass image embeddings to the OpenAI se
"image_embeds": f"{base64_image_embedding}" , # Required
"image_sizes": f"{base64_image_sizes}" # Required by openbmb/MiniCPM-V-2_6
},
"uuid": image_url # Optional
}
chat_completion = client.chat.completions.create(
messages=[

View File

@ -180,7 +180,7 @@ Inference batch size is an important parameter for the performance. Larger batch
- Offline Inference: `256 * world_size`
- Online Serving: `128 * world_size`
vLLM CPU supports data parallel (DP), tensor parallel (TP) and pipeline parallel (PP) to leverage multiple CPU sockets and memory nodes. For more details of tuning DP, TP and PP, please refer to [Optimization and Tuning](../../configuration/optimization.md). For vLLM CPU, it is recommend to use DP, TP and PP together if there are enough CPU sockets and memory nodes.
vLLM CPU supports data parallel (DP), tensor parallel (TP) and pipeline parallel (PP) to leverage multiple CPU sockets and memory nodes. For more details of tuning DP, TP and PP, please refer to [Optimization and Tuning](../../configuration/optimization.md). For vLLM CPU, it is recommended to use DP, TP and PP together if there are enough CPU sockets and memory nodes.
### Which quantization configs does vLLM CPU support?

View File

@ -3,13 +3,16 @@
vLLM initially supports basic model inference and serving on Intel GPU platform.
!!! warning
There are no pre-built wheels or images for this device, so you must build vLLM from source.
There are no pre-built wheels for this device, so you need build vLLM from source. Or you can use pre-built images which are based on vLLM released versions.
# --8<-- [end:installation]
# --8<-- [start:requirements]
- Supported Hardware: Intel Data Center GPU, Intel ARC GPU
- OneAPI requirements: oneAPI 2025.0
- OneAPI requirements: oneAPI 2025.1
- Python: 3.12
!!! warning
The provided IPEX whl is Python3.12 specific so this version is a MUST.
# --8<-- [end:requirements]
# --8<-- [start:set-up-using-python]
@ -24,7 +27,7 @@ Currently, there are no pre-built XPU wheels.
# --8<-- [end:pre-built-wheels]
# --8<-- [start:build-wheel-from-source]
- First, install required [driver](https://dgpu-docs.intel.com/driver/installation.html#installing-gpu-drivers) and [Intel OneAPI](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) 2025.0 or later.
- First, install required [driver](https://dgpu-docs.intel.com/driver/installation.html#installing-gpu-drivers) and [Intel OneAPI](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) 2025.1 or later.
- Second, install Python packages for vLLM XPU backend building:
```bash
@ -40,14 +43,10 @@ pip install -v -r requirements/xpu.txt
VLLM_TARGET_DEVICE=xpu python setup.py install
```
!!! note
- FP16 is the default data type in the current XPU backend. The BF16 data
type is supported on Intel Data Center GPU, not supported on Intel Arc GPU yet.
# --8<-- [end:build-wheel-from-source]
# --8<-- [start:pre-built-images]
Currently, there are no pre-built XPU images.
Currently, we release prebuilt XPU images at docker [hub](https://hub.docker.com/r/intel/vllm/tags) based on vLLM released version. For more information, please refer release [note](https://github.com/intel/ai-containers/blob/main/vllm).
# --8<-- [end:pre-built-images]
# --8<-- [start:build-image-from-source]
@ -65,14 +64,14 @@ docker run -it \
# --8<-- [end:build-image-from-source]
# --8<-- [start:supported-features]
XPU platform supports **tensor parallel** inference/serving and also supports **pipeline parallel** as a beta feature for online serving. We require Ray as the distributed runtime backend. For example, a reference execution like following:
XPU platform supports **tensor parallel** inference/serving and also supports **pipeline parallel** as a beta feature for online serving. For **pipeline parallel**, we support it on single node with mp as the backend. For example, a reference execution like following:
```bash
python -m vllm.entrypoints.openai.api_server \
--model=facebook/opt-13b \
--dtype=bfloat16 \
--max_model_len=1024 \
--distributed-executor-backend=ray \
--distributed-executor-backend=mp \
--pipeline-parallel-size=2 \
-tp=8
```

View File

@ -165,6 +165,7 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
# Generate documentation for each parser
for stem, parser in parsers.items():
doc_path = ARGPARSE_DOC_DIR / f"{stem}.md"
with open(doc_path, "w") as f:
# Specify encoding for building on Windows
with open(doc_path, "w", encoding="utf-8") as f:
f.write(parser.format_help())
logger.info("Argparse generated: %s", doc_path.relative_to(ROOT_DIR))

View File

@ -106,7 +106,8 @@ class Example:
def determine_title(self) -> str:
if not self.is_code:
with open(self.main_file) as f:
# Specify encoding for building on Windows
with open(self.main_file, encoding="utf-8") as f:
first_line = f.readline().strip()
match = re.match(r'^#\s+(?P<title>.+)$', first_line)
if match:
@ -174,6 +175,7 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
doc_path = EXAMPLE_DOC_DIR / example.category / example_name
if not doc_path.parent.exists():
doc_path.parent.mkdir(parents=True)
with open(doc_path, "w+") as f:
# Specify encoding for building on Windows
with open(doc_path, "w+", encoding="utf-8") as f:
f.write(example.generate())
logger.debug("Example generated: %s", doc_path.relative_to(ROOT_DIR))

View File

@ -440,6 +440,7 @@ These models primarily support the [`LLM.embed`](./pooling_models.md#llmembed) A
|--------------|--------|-------------------|----------------------|---------------------------|---------------------|
| `BertModel`<sup>C</sup> | BERT-based | `BAAI/bge-base-en-v1.5`, `Snowflake/snowflake-arctic-embed-xs`, etc. | | | ✅︎ |
| `Gemma2Model`<sup>C</sup> | Gemma 2-based | `BAAI/bge-multilingual-gemma2`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Gemma3TextModel`<sup>C</sup> | Gemma 3-based | `google/embeddinggemma-300m`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `GritLM` | GritLM | `parasail-ai/GritLM-7B-vllm`. | ✅︎ | ✅︎ | ✅︎ |
| `GteModel`<sup>C</sup> | Arctic-Embed-2.0-M | `Snowflake/snowflake-arctic-embed-m-v2.0`. | | | ✅︎ |
| `GteNewModel`<sup>C</sup> | mGTE-TRM (see note) | `Alibaba-NLP/gte-multilingual-base`, etc. | | | ✅︎ |

View File

@ -123,12 +123,33 @@ When enabled, vLLM collects load statistics with every forward pass and periodic
### EPLB Parameters
Configure EPLB with the `--eplb-config` argument, which accepts a JSON string. The available keys and their descriptions are:
| Parameter | Description | Default |
|-----------|-------------|---------|
| `--eplb-window-size` | Number of engine steps to track for rebalancing decisions | - |
| `--eplb-step-interval` | Frequency of rebalancing (every N engine steps) | - |
| `--eplb-log-balancedness` | Log balancedness metrics (avg tokens per expert ÷ max tokens per expert) | `false` |
| `--num-redundant-experts` | Additional global experts per EP rank beyond equal distribution | `0` |
| `window_size`| Number of engine steps to track for rebalancing decisions | 1000 |
| `step_interval`| Frequency of rebalancing (every N engine steps) | 3000 |
| `log_balancedness` | Log balancedness metrics (avg tokens per expert ÷ max tokens per expert) | `false` |
| `num_redundant_experts` | Additional global experts per EP rank beyond equal distribution | `0` |
For example:
```bash
vllm serve Qwen/Qwen3-30B-A3B \
--enable-eplb \
--eplb-config '{"window_size":1000,"step_interval":3000,"num_redundant_experts":2,"log_balancedness":true}'
```
??? tip "Prefer individual arguments instead of JSON?"
```bash
vllm serve Qwen/Qwen3-30B-A3B \
--enable-eplb \
--eplb-config.window_size 1000 \
--eplb-config.step_interval 3000 \
--eplb-config.num_redundant_experts 2 \
--eplb-config.log_balancedness true
```
### Expert Distribution Formula
@ -146,12 +167,10 @@ VLLM_ALL2ALL_BACKEND=pplx VLLM_USE_DEEP_GEMM=1 vllm serve deepseek-ai/DeepSeek-V
--data-parallel-size 8 \ # Data parallelism
--enable-expert-parallel \ # Enable EP
--enable-eplb \ # Enable load balancer
--eplb-log-balancedness \ # Log balancing metrics
--eplb-window-size 1000 \ # Track last 1000 engine steps
--eplb-step-interval 3000 # Rebalance every 3000 steps
--eplb-config '{"window_size":1000,"step_interval":3000,"num_redundant_experts":2,"log_balancedness":true}'
```
For multi-node deployment, add these EPLB flags to each node's command. We recommend setting `--num-redundant-experts` to 32 in large scale use cases so the most popular experts are always available.
For multi-node deployment, add these EPLB flags to each node's command. We recommend setting `--eplb-config '{"num_redundant_experts":32}'` to 32 in large scale use cases so the most popular experts are always available.
## Disaggregated Serving (Prefill/Decode Split)

View File

@ -66,7 +66,7 @@ Ray is a distributed computing framework for scaling Python programs. Multi-node
vLLM uses Ray to manage the distributed execution of tasks across multiple nodes and control where execution happens.
Ray also offers high-level APIs for large-scale [offline batch inference](https://docs.ray.io/en/latest/data/working-with-llms.html) and [online serving](https://docs.ray.io/en/latest/serve/llm/serving-llms.html) that can leverage vLLM as the engine. These APIs add production-grade fault tolerance, scaling, and distributed observability to vLLM workloads.
Ray also offers high-level APIs for large-scale [offline batch inference](https://docs.ray.io/en/latest/data/working-with-llms.html) and [online serving](https://docs.ray.io/en/latest/serve/llm) that can leverage vLLM as the engine. These APIs add production-grade fault tolerance, scaling, and distributed observability to vLLM workloads.
For details, see the [Ray documentation](https://docs.ray.io/en/latest/index.html).
@ -104,7 +104,7 @@ Note that `VLLM_HOST_IP` is unique for each worker. Keep the shells running thes
From any node, enter a container and run `ray status` and `ray list nodes` to verify that Ray finds the expected number of nodes and GPUs.
!!! tip
Alternatively, set up the Ray cluster using KubeRay. For more information, see [KubeRay vLLM documentation](https://docs.ray.io/en/latest/cluster/kubernetes/examples/vllm-rayservice.html).
Alternatively, set up the Ray cluster using KubeRay. For more information, see [KubeRay vLLM documentation](https://docs.ray.io/en/latest/cluster/kubernetes/examples/rayserve-llm-example.html).
### Running vLLM on a Ray cluster

View File

@ -143,5 +143,5 @@ outputs = llm.chat(messages, sampling_params, tools=tools)
print(outputs[0].outputs[0].text.strip())
# yields
# 'The weather in Dallas, TX is 85 degrees fahrenheit. '
# 'The weather in Dallas, TX is 85 degrees Fahrenheit. '
# 'It is partly cloudly, with highs in the 90's.'

View File

@ -1,49 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
def main():
# Create an LLM.
llm = LLM(
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
max_num_seqs=8,
# The max_model_len and block_size arguments are required to be same as
# max sequence length when targeting neuron device.
# Currently, this is a known limitation in continuous batching support
# in transformers-neuronx.
# TODO(liangfu): Support paged-attention in transformers-neuronx.
max_model_len=1024,
block_size=1024,
# ruff: noqa: E501
# The device can be automatically detected when AWS Neuron SDK is installed.
# The device argument can be either unspecified for automated detection,
# or explicitly assigned.
device="neuron",
tensor_parallel_size=2,
)
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("-" * 50)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
print("-" * 50)
if __name__ == "__main__":
main()

View File

@ -1,61 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This example shows how to run offline inference with an EAGLE speculative
decoding model on neuron. To use EAGLE speculative decoding, you must use
a draft model that is specifically fine-tuned for EAGLE speculation.
Additionally, to use EAGLE with NxD Inference, the draft model must include
the LM head weights from the target model. These weights are shared between
the draft and target model.
"""
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"What is annapurna labs?",
]
def main():
# Create a sampling params object.
sampling_params = SamplingParams(top_k=1, max_tokens=500, ignore_eos=True)
# Create an LLM.
llm = LLM(
model="/home/ubuntu/model_hf/Meta-Llama-3.1-70B-Instruct",
speculative_config={
"model": "/home/ubuntu/model_hf/Llama-3.1-70B-Instruct-EAGLE-Draft",
"num_speculative_tokens": 5,
"max_model_len": 2048,
},
max_num_seqs=4,
# The max_model_len and block_size arguments are required to be same as
# max sequence length when targeting neuron device.
# Currently, this is a known limitation in continuous batching support
# in neuronx-distributed-inference.
max_model_len=2048,
block_size=2048,
# The device can be automatically detected when AWS Neuron SDK is installed.
# The device argument can be either unspecified for automated detection,
# or explicitly assigned.
device="neuron",
tensor_parallel_size=32,
override_neuron_config={
"enable_eagle_speculation": True,
"enable_fused_speculation": True,
},
)
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, \n\n\n Generated text: {generated_text!r}")
if __name__ == "__main__":
main()

View File

@ -1,63 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from vllm import LLM, SamplingParams
# creates XLA hlo graphs for all the context length buckets.
os.environ["NEURON_CONTEXT_LENGTH_BUCKETS"] = "128,512,1024,2048"
# creates XLA hlo graphs for all the token gen buckets.
os.environ["NEURON_TOKEN_GEN_BUCKETS"] = "128,512,1024,2048"
# Quantizes neuron model weight to int8 ,
# The default config for quantization is int8 dtype.
os.environ["NEURON_QUANT_DTYPE"] = "s8"
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
def main():
# Create an LLM.
llm = LLM(
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
max_num_seqs=8,
# The max_model_len and block_size arguments are required to be same as
# max sequence length when targeting neuron device.
# Currently, this is a known limitation in continuous batching support
# in transformers-neuronx.
# TODO(liangfu): Support paged-attention in transformers-neuronx.
max_model_len=2048,
block_size=2048,
# ruff: noqa: E501
# The device can be automatically detected when AWS Neuron SDK is installed.
# The device argument can be either unspecified for automated detection,
# or explicitly assigned.
device="neuron",
quantization="neuron_quant",
override_neuron_config={
"cast_logits_dtype": "bfloat16",
},
tensor_parallel_size=2,
)
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("-" * 50)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
print("-" * 50)
if __name__ == "__main__":
main()

View File

@ -1,110 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import requests
import torch
from neuronx_distributed_inference.models.mllama.utils import add_instruct
from PIL import Image
from vllm import LLM, SamplingParams, TextPrompt
def get_image(image_url):
image = Image.open(requests.get(image_url, stream=True).raw)
return image
# Model Inputs
PROMPTS = [
"What is in this image? Tell me a story",
"What is the recipe of mayonnaise in two sentences?",
"Describe this image",
"What is the capital of Italy famous for?",
]
IMAGES = [
get_image(
"https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg?auto=compress&cs=tinysrgb&dpr=1&w=500"
),
None,
get_image(
"https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg?auto=compress&cs=tinysrgb&dpr=1&w=500"
),
None,
]
SAMPLING_PARAMS = [
dict(top_k=1, temperature=1.0, top_p=1.0, max_tokens=16)
for _ in range(len(PROMPTS))
]
def get_VLLM_mllama_model_inputs(prompt, single_image, sampling_params):
# Prepare all inputs for mllama generation, including:
# 1. put text prompt into instruct chat template
# 2. compose single text and single image prompt into Vllm's prompt class
# 3. prepare sampling parameters
input_image = single_image
has_image = torch.tensor([1])
if isinstance(single_image, torch.Tensor) and single_image.numel() == 0:
has_image = torch.tensor([0])
instruct_prompt = add_instruct(prompt, has_image)
inputs = TextPrompt(prompt=instruct_prompt)
if input_image is not None:
inputs["multi_modal_data"] = {"image": input_image}
sampling_params = SamplingParams(**sampling_params)
return inputs, sampling_params
def print_outputs(outputs):
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
def main():
assert (
len(PROMPTS) == len(IMAGES) == len(SAMPLING_PARAMS)
), f"""Text, image prompts and sampling parameters should have the
same batch size; but got {len(PROMPTS)}, {len(IMAGES)},
and {len(SAMPLING_PARAMS)}"""
# Create an LLM.
llm = LLM(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
max_num_seqs=1,
max_model_len=4096,
block_size=4096,
device="neuron",
tensor_parallel_size=32,
override_neuron_config={
"sequence_parallel_enabled": False,
"skip_warmup": True,
"save_sharded_checkpoint": True,
"on_device_sampling_config": {
"global_topk": 1,
"dynamic": False,
"deterministic": False,
},
},
)
batched_inputs = []
batched_sample_params = []
for pmpt, img, params in zip(PROMPTS, IMAGES, SAMPLING_PARAMS):
inputs, sampling_params = get_VLLM_mllama_model_inputs(pmpt, img, params)
# test batch-size = 1
outputs = llm.generate(inputs, sampling_params)
print_outputs(outputs)
batched_inputs.append(inputs)
batched_sample_params.append(sampling_params)
# test batch-size = 4
outputs = llm.generate(batched_inputs, batched_sample_params)
print_outputs(outputs)
if __name__ == "__main__":
main()

View File

@ -1,64 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This example shows how to run offline inference with a speculative
decoding model on neuron.
"""
import os
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, I am a language model and I can help",
"The president of the United States is",
"The capital of France is",
]
def config_buckets():
"""Configure context length and token gen buckets."""
# creates XLA hlo graphs for all the context length buckets.
os.environ["NEURON_CONTEXT_LENGTH_BUCKETS"] = "128,512,1024,2048"
# creates XLA hlo graphs for all the token gen buckets.
os.environ["NEURON_TOKEN_GEN_BUCKETS"] = "128,512,1024,2048"
def initialize_llm():
"""Create an LLM with speculative decoding."""
return LLM(
model="openlm-research/open_llama_7b",
speculative_config={
"model": "openlm-research/open_llama_3b",
"num_speculative_tokens": 4,
"max_model_len": 2048,
},
max_num_seqs=4,
max_model_len=2048,
block_size=2048,
device="neuron",
tensor_parallel_size=32,
)
def process_requests(llm: LLM, sampling_params: SamplingParams):
"""Generate texts from prompts and print them."""
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
def main():
"""Main function that sets up the llm and processes prompts."""
config_buckets()
llm = initialize_llm()
# Create a sampling params object.
sampling_params = SamplingParams(max_tokens=100, top_k=1)
process_requests(llm, sampling_params)
if __name__ == "__main__":
main()

View File

@ -18,7 +18,7 @@ from vllm.pooling_params import PoolingParams
def main():
torch.set_default_dtype(torch.float16)
image_url = "https://huggingface.co/christian-pinto/Prithvi-EO-2.0-300M-TL-VLLM/resolve/main/India_900498_S2Hand.tif" # noqa: E501
image_url = "https://huggingface.co/christian-pinto/Prithvi-EO-2.0-300M-TL-VLLM/resolve/main/valencia_example_2024-10-26.tiff" # noqa: E501
img_prompt = dict(
data=image_url,
@ -36,7 +36,7 @@ def main():
# to avoid the model going OOM.
# The maximum number depends on the available GPU memory
max_num_seqs=32,
io_processor_plugin="prithvi_to_tiff_india",
io_processor_plugin="prithvi_to_tiff",
model_impl="terratorch",
)

View File

@ -18,11 +18,11 @@ import requests
# --model-impl terratorch
# --task embed --trust-remote-code
# --skip-tokenizer-init --enforce-eager
# --io-processor-plugin prithvi_to_tiff_india
# --io-processor-plugin prithvi_to_tiff
def main():
image_url = "https://huggingface.co/christian-pinto/Prithvi-EO-2.0-300M-TL-VLLM/resolve/main/India_900498_S2Hand.tif" # noqa: E501
image_url = "https://huggingface.co/christian-pinto/Prithvi-EO-2.0-300M-TL-VLLM/resolve/main/valencia_example_2024-10-26.tiff" # noqa: E501
server_endpoint = "http://localhost:8000/pooling"
request_payload_url = {

View File

@ -20,8 +20,7 @@ prometheus-fastapi-instrumentator >= 7.0.0
tiktoken >= 0.6.0 # Required for DBRX tokenizer
lm-format-enforcer == 0.11.3
llguidance >= 0.7.11, < 0.8.0; platform_machine == "x86_64" or platform_machine == "arm64" or platform_machine == "aarch64"
outlines_core == 0.2.10 ; platform_machine != "s390x"
outlines == 0.1.11 ; platform_machine == "s390x"
outlines_core == 0.2.10
# required for outlines backend disk cache
diskcache == 5.6.3
lark == 1.2.2

View File

@ -1,9 +0,0 @@
# Common dependencies
-r common.txt
# Dependencies for Neuron devices
packaging>=24.2
setuptools>=77.0.3,<80.0.0
torch-neuronx >= 2.5.0
neuronx-cc>=2.0.0a0
torchvision # Required for Llama3.2 multimodal image preprocessing

View File

@ -54,4 +54,4 @@ runai-model-streamer-s3==0.11.0
fastsafetensors>=0.1.10
pydantic>=2.10 # 2.9 leads to error on python 3.10
decord==0.6.0
terratorch==1.1rc3 # required for PrithviMAE test
terratorch @ git+https://github.com/IBM/terratorch.git@1.1.rc3 # required for PrithviMAE test

View File

@ -1042,7 +1042,7 @@ tensorboardx==2.6.4
# via lightning
tensorizer==2.10.1
# via -r requirements/test.in
terratorch==1.1rc3
terratorch @ git+https://github.com/IBM/terratorch.git@07184fcf91a1324f831ff521dd238d97fe350e3e
# via -r requirements/test.in
threadpoolctl==3.5.0
# via scikit-learn

View File

@ -10,10 +10,10 @@ wheel
jinja2>=3.1.6
datasets # for benchmark scripts
numba == 0.60.0 # v0.61 doesn't support Python 3.9. Required for N-gram speculative decoding
--extra-index-url=https://download.pytorch.org/whl/xpu
nixl==0.3.0 # for PD disaggregation
torch==2.8.0+xpu
torchaudio
torchvision
pytorch-triton-xpu
--extra-index-url=https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.8.10+xpu
--extra-index-url=https://download.pytorch.org/whl/xpu
intel-extension-for-pytorch @ https://intel-extension-for-pytorch.s3.us-east-1.amazonaws.com/ipex_dev/xpu/intel_extension_for_pytorch-2.8.10.post0%2Bxpu-cp312-cp312-linux_x86_64.whl

View File

@ -413,8 +413,7 @@ def _no_device() -> bool:
def _is_cuda() -> bool:
has_cuda = torch.version.cuda is not None
return (VLLM_TARGET_DEVICE == "cuda" and has_cuda
and not (_is_neuron() or _is_tpu()))
return (VLLM_TARGET_DEVICE == "cuda" and has_cuda and not _is_tpu())
def _is_hip() -> bool:
@ -422,10 +421,6 @@ def _is_hip() -> bool:
or VLLM_TARGET_DEVICE == "rocm") and torch.version.hip is not None
def _is_neuron() -> bool:
return VLLM_TARGET_DEVICE == "neuron"
def _is_tpu() -> bool:
return VLLM_TARGET_DEVICE == "tpu"
@ -470,25 +465,6 @@ def get_rocm_version():
return None
def get_neuronxcc_version():
import sysconfig
site_dir = sysconfig.get_paths()["purelib"]
version_file = os.path.join(site_dir, "neuronxcc", "version",
"__init__.py")
# Check if the command was executed successfully
with open(version_file) as fp:
content = fp.read()
# Extract the version using a regular expression
match = re.search(r"__version__ = '(\S+)'", content)
if match:
# Return the version string
return match.group(1)
else:
raise RuntimeError("Could not find Neuron version in the output")
def get_nvcc_cuda_version() -> Version:
"""Get the CUDA version from nvcc.
@ -541,12 +517,6 @@ def get_vllm_version() -> str:
rocm_version = get_rocm_version() or torch.version.hip
if rocm_version and rocm_version != MAIN_CUDA_VERSION:
version += f"{sep}rocm{rocm_version.replace('.', '')[:3]}"
elif _is_neuron():
# Get the Neuron version
neuron_version = str(get_neuronxcc_version())
if neuron_version != MAIN_CUDA_VERSION:
neuron_version_str = neuron_version.replace(".", "")[:3]
version += f"{sep}neuron{neuron_version_str}"
elif _is_tpu():
version += f"{sep}tpu"
elif _is_cpu():
@ -591,8 +561,6 @@ def get_requirements() -> list[str]:
requirements = modified_requirements
elif _is_hip():
requirements = _read_requirements("rocm.txt")
elif _is_neuron():
requirements = _read_requirements("neuron.txt")
elif _is_tpu():
requirements = _read_requirements("tpu.txt")
elif _is_cpu():
@ -601,7 +569,7 @@ def get_requirements() -> list[str]:
requirements = _read_requirements("xpu.txt")
else:
raise ValueError(
"Unsupported platform, please use CUDA, ROCm, Neuron, or CPU.")
"Unsupported platform, please use CUDA, ROCm, or CPU.")
return requirements

View File

@ -61,6 +61,16 @@ backend_configs = {
"cudagraph_mode": "FULL_AND_PIECEWISE",
},
specific_gpu_arch=(9, 0)),
# FlashAttention MLA on Hopper
"FlashAttentionMLA":
BackendConfig(name="FlashAttentionMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN_MLA",
},
comp_config={
"cudagraph_mode": "FULL_DECODE_ONLY",
},
specific_gpu_arch=(9, 0)),
# Cutlass MLA on Blackwell
"CutlassMLA":
BackendConfig(
@ -102,7 +112,7 @@ backend_configs = {
test_params_full_cudagraph = []
# deepseek-ai/DeepSeek-V2-Lite with MLA
MLA_backends = ["FlashMLA", "CutlassMLA"]
MLA_backends = ["FlashMLA", "FlashAttentionMLA", "CutlassMLA"]
for mla_backend in MLA_backends:
test_params_full_cudagraph.append(
pytest.param(

View File

@ -62,8 +62,12 @@ class TestSetting:
TestSetting(
model="BAAI/bge-multilingual-gemma2",
model_args=[
"--runner", "pooling", "--dtype", "bfloat16",
"--max-model-len", "2048"
"--runner",
"pooling",
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
],
pp_size=1,
tp_size=1,
@ -71,17 +75,15 @@ class TestSetting:
method="encode",
fullgraph=True,
),
# TODO: bert models are not supported in V1 yet
# # encoder-based embedding model (BERT)
# TestSetting(
# model="BAAI/bge-base-en-v1.5",
# model_args=["--runner", "pooling"],
# pp_size=1,
# tp_size=1,
# attn_backend="XFORMERS",
# method="encode",
# fullgraph=True,
# ),
TestSetting(
model="BAAI/bge-base-en-v1.5",
model_args=["--runner", "pooling"],
pp_size=1,
tp_size=1,
attn_backend="FLASH_ATTN",
method="encode",
fullgraph=True,
),
# vision language model
TestSetting(
model="microsoft/Phi-3.5-vision-instruct",
@ -92,7 +94,8 @@ class TestSetting:
method="generate_with_image",
fullgraph=False,
),
])
],
)
def test_compile_correctness(
monkeypatch: pytest.MonkeyPatch,
test_setting: TestSetting,

View File

@ -1,9 +1,12 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import cast
import pytest
import torch
import vllm.envs as envs
from tests.kernels.quantization.nvfp4_utils import quant_nvfp4_tensor
from vllm._custom_ops import cutlass_scaled_fp4_mm, scaled_fp4_quant
# yapf conflicts with isort for this block
# yapf: disable
@ -64,24 +67,27 @@ class TestSiluMulFp8QuantModel(torch.nn.Module):
class TestSiluMulNvfp4QuantModel(torch.nn.Module):
def __init__(self, hidden_size: int, **kwargs):
def __init__(self, hidden_size: int, x: torch.Tensor, **kwargs):
super().__init__()
self.silu_and_mul = SiluAndMul()
self.w = torch.randint(256, (hidden_size, hidden_size // 2),
dtype=FP4_DTYPE)
self.wscale = torch.randn(hidden_size,
hidden_size // 16).to(dtype=FP8_DTYPE)
self.wscale2 = torch.rand(1, dtype=torch.float32)
self.scale = torch.rand(1, dtype=torch.float32)
# create nvfp4 weight
w = torch.rand((hidden_size, hidden_size))
self.w, self.w_block_scale, self.w_global_scale = quant_nvfp4_tensor(w)
# get global scale offline
_, _, self.y_global_scale = quant_nvfp4_tensor(self.silu_and_mul(x))
self.alpha = 1.0 / (self.w_global_scale * self.y_global_scale)
def forward(self, x):
y = self.silu_and_mul(x)
y_quant, y_block_scale = scaled_fp4_quant(y, 1 / self.scale)
y_quant, y_block_scale = scaled_fp4_quant(y, self.y_global_scale)
out = cutlass_scaled_fp4_mm(a=y_quant,
b=self.w,
block_scale_a=y_block_scale,
block_scale_b=self.wscale,
alpha=self.scale * self.wscale2,
block_scale_b=self.w_block_scale,
alpha=self.alpha,
out_dtype=y.dtype)
return out
@ -95,8 +101,9 @@ class TestSiluMulNvfp4QuantModel(torch.nn.Module):
@pytest.mark.parametrize("num_tokens", [64])
@pytest.mark.parametrize("hidden_size", [128])
@pytest.mark.parametrize(
"model_class", [TestSiluMulFp8QuantModel, TestSiluMulNvfp4QuantModel]
if is_nvfp4_supported() else [TestSiluMulFp8QuantModel])
"model_class",
cast(list[type], [TestSiluMulFp8QuantModel, TestSiluMulNvfp4QuantModel]
if is_nvfp4_supported() else [TestSiluMulFp8QuantModel]))
# cuda_force_torch used to test torch code path on platforms that
# cutlass_fp8_supported() == True.
@pytest.mark.parametrize("cuda_force_torch",
@ -111,6 +118,8 @@ def test_fusion_silu_and_mul_quant(num_tokens, hidden_size, model_class,
torch.set_default_device("cuda")
torch.set_default_dtype(torch.float16)
x = torch.rand(num_tokens, hidden_size * 2)
# Reshape pass is needed for the fusion pass to work
config = VllmConfig()
config.compilation_config = CompilationConfig(
@ -118,10 +127,11 @@ def test_fusion_silu_and_mul_quant(num_tokens, hidden_size, model_class,
fusion_pass = ActivationQuantFusionPass(config)
backend = TestBackend(NoOpEliminationPass(config), fusion_pass)
model = model_class(hidden_size, cuda_force_torch)
model = model_class(hidden_size=hidden_size,
cuda_force_torch=cuda_force_torch,
x=x)
# First dimension dynamic
x = torch.rand(num_tokens, hidden_size * 2)
torch._dynamo.mark_dynamic(x, 0)
result = model(x)
@ -130,10 +140,15 @@ def test_fusion_silu_and_mul_quant(num_tokens, hidden_size, model_class,
result2 = model2(x)
# Check that it gives the same answer
if model_class == TestSiluMulFp8QuantModel:
atol, rtol = 1e-3, 1e-3
elif model_class == TestSiluMulNvfp4QuantModel:
atol, rtol = 1e-1, 1e-1
torch.testing.assert_close(result[0].to(dtype=torch.float16),
result2[0].to(dtype=torch.float16),
atol=1e-3,
rtol=1e-3)
atol=atol,
rtol=rtol)
# In pre-nodes, quant op should be present and fused kernels should not
backend.check_before_ops(model.ops_in_model_before())

View File

@ -8,7 +8,7 @@ import msgspec.msgpack
import pytest
import zmq
from vllm.config import KVEventsConfig
from vllm.config.kv_events import KVEventsConfig
from vllm.distributed.kv_events import EventPublisherFactory
from .test_events import SampleBatch

View File

@ -0,0 +1,263 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
WARNING: This test runs in both single-node (4 GPUs) and multi-node
(2 node with 2 GPUs each) modes. If the test only uses 2 GPUs, it is
important to set the distributed backend to "mp" to avoid Ray scheduling
all workers in a node other than the head node, which can cause the test
to fail.
"""
import json
import os
from dataclasses import dataclass
from typing import Literal, NamedTuple, Optional
import pytest
from vllm.config import RunnerOption
from vllm.logger import init_logger
from ..models.registry import HF_EXAMPLE_MODELS
from ..utils import compare_two_settings, create_new_process_for_each_test
logger = init_logger("test_context_parallel")
VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
class ParallelSetup(NamedTuple):
tp_size: int
pp_size: int
dcp_size: int
eager_mode: bool
chunked_prefill: bool
class CPTestOptions(NamedTuple):
multi_node_only: bool
load_format: Optional[str] = None
@dataclass
class CPTestSettings:
parallel_setups: list[ParallelSetup]
# NOTE: the length of distributed_backends and
# vllm_major_versions should be the same, and they
# are first zipped together to iterate over all
# test settings.
distributed_backends: list[str]
# vllm major version: "0" for V0, "1" for V1
vllm_major_versions: list[str]
runner: RunnerOption
test_options: CPTestOptions
def __post_init__(self):
if len(self.distributed_backends) != len(self.vllm_major_versions):
raise ValueError(
f"Length mismatch: distributed_backends "
f"({len(self.distributed_backends)}) != "
f"vllm_major_versions ({len(self.vllm_major_versions)})")
@staticmethod
def detailed(
*,
tp_base: int = 4,
pp_base: int = 1,
dcp_base: int = 1,
multi_node_only: bool = False,
runner: RunnerOption = "auto",
load_format: Optional[str] = None,
):
parallel_setups = []
for eager_mode_val in [False]:
for pp_multiplier in [1]:
for dcp_multiplier in [2, 4]:
for chunked_prefill_val in [True]:
parallel_setups.append(
ParallelSetup(tp_size=tp_base,
pp_size=pp_multiplier * pp_base,
dcp_size=dcp_multiplier * dcp_base,
eager_mode=eager_mode_val,
chunked_prefill=chunked_prefill_val))
return CPTestSettings(
parallel_setups=parallel_setups,
distributed_backends=["mp"],
vllm_major_versions=["1"],
runner=runner,
test_options=CPTestOptions(multi_node_only=multi_node_only,
load_format=load_format),
)
def iter_params(self, model_id: str):
opts = self.test_options
for parallel_setup in self.parallel_setups:
for backend, vllm_major_version in zip(self.distributed_backends,
self.vllm_major_versions):
yield (model_id, parallel_setup, backend, vllm_major_version,
self.runner, opts)
def _compare_cp_with_tp(
model_id: str,
parallel_setup: ParallelSetup,
distributed_backend: str,
vllm_major_version: str,
runner: RunnerOption,
test_options: CPTestOptions,
num_gpus_available: int,
*,
method: Literal["generate"],
is_multimodal: bool,
):
(
tp_size,
pp_size,
dcp_size,
eager_mode,
chunked_prefill,
) = parallel_setup
multi_node_only, load_format = test_options
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id)
model_info.check_transformers_version(on_fail="skip")
trust_remote_code = model_info.trust_remote_code
tokenizer_mode = model_info.tokenizer_mode
hf_overrides = model_info.hf_overrides
if load_format == "dummy":
# Avoid OOM
text_overrides = {
"num_hidden_layers": 4,
"hidden_size": 512,
"intermediate_size": 800,
"num_attention_heads": 4,
"num_key_value_heads": 1,
}
if is_multimodal:
hf_overrides.update({"text_config": text_overrides})
else:
hf_overrides.update(text_overrides)
else:
model_info.check_available_online(on_fail="skip")
if num_gpus_available < tp_size * pp_size:
pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs")
if VLLM_MULTI_NODE and distributed_backend == "mp":
pytest.skip("Skipping multi-node pipeline parallel test for "
"multiprocessing distributed backend")
if multi_node_only and not VLLM_MULTI_NODE:
pytest.skip("Not in multi-node setting")
common_args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--max-num-seqs",
"8",
]
if chunked_prefill:
common_args.append("--enable-chunked-prefill")
if eager_mode:
common_args.append("--enforce-eager")
if runner != "auto":
common_args.extend(["--runner", runner])
if trust_remote_code:
common_args.append("--trust-remote-code")
if tokenizer_mode:
common_args.extend(["--tokenizer-mode", tokenizer_mode])
if load_format:
common_args.extend(["--load-format", load_format])
if hf_overrides:
common_args.extend(["--hf-overrides", json.dumps(hf_overrides)])
cp_env = tp_env = {
"VLLM_USE_V1":
vllm_major_version, # Note(hc): DCP only support V1 engine only
}
cp_args = [
*common_args,
"--tensor-parallel-size",
str(tp_size),
"--pipeline-parallel-size",
str(pp_size),
"--decode-context-parallel-size",
str(dcp_size),
"--distributed-executor-backend",
distributed_backend,
]
tp_args = [
*common_args,
"--tensor-parallel-size",
str(tp_size),
"--pipeline-parallel-size",
str(pp_size),
"--distributed-executor-backend",
distributed_backend,
]
try:
compare_two_settings(model_id,
cp_args,
tp_args,
cp_env,
tp_env,
method=method,
max_wait_seconds=720)
except Exception:
testing_ray_compiled_graph = cp_env is not None
if testing_ray_compiled_graph and vllm_major_version == "0":
# Ray Compiled Graph tests are flaky for V0,
# so we don't want to fail the test
logger.exception("Ray Compiled Graph tests failed")
else:
raise
CP_TEXT_GENERATION_MODELS = {
# [MLA attention only]
"deepseek-ai/DeepSeek-V2-Lite-Chat": CPTestSettings.detailed(),
}
CP_TEST_MODELS = [
# TODO support other models
# [LANGUAGE GENERATION]
"deepseek-ai/DeepSeek-V2-Lite-Chat",
]
@pytest.mark.parametrize(
("model_id", "parallel_setup", "distributed_backend", "vllm_major_version",
"runner", "test_options"),
[
params for model_id, settings in CP_TEXT_GENERATION_MODELS.items()
for params in settings.iter_params(model_id)
if model_id in CP_TEST_MODELS
],
)
@create_new_process_for_each_test()
def test_cp_generation(
model_id: str,
parallel_setup: ParallelSetup,
distributed_backend: str,
vllm_major_version: str,
runner: RunnerOption,
test_options: CPTestOptions,
num_gpus_available,
):
_compare_cp_with_tp(model_id,
parallel_setup,
distributed_backend,
vllm_major_version,
runner,
test_options,
num_gpus_available,
method="generate",
is_multimodal=False)

View File

@ -287,15 +287,6 @@ def test_prefix_cache_default():
},
"mm-processor-kwargs"
),
(
'{"cast_logits_dtype":"bfloat16","sequence_parallel_norm":true,"sequence_parallel_norm_threshold":2048}',
{
"cast_logits_dtype": "bfloat16",
"sequence_parallel_norm": True,
"sequence_parallel_norm_threshold": 2048,
},
"override-neuron-config"
),
])
# yapf: enable
def test_composite_arg_parser(arg, expected, option):

View File

@ -1,13 +1,16 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from __future__ import annotations
import asyncio
from contextlib import suppress
from dataclasses import dataclass, field
from typing import Any, Optional
from typing import TYPE_CHECKING, Any, Optional
from unittest.mock import MagicMock
import pytest
import pytest_asyncio
from vllm.config import MultiModalConfig
from vllm.engine.multiprocessing.client import MQLLMEngineClient
@ -17,6 +20,198 @@ from vllm.entrypoints.openai.serving_models import (BaseModelPath,
OpenAIServingModels)
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
if TYPE_CHECKING:
from openai import OpenAI
GPT_OSS_MODEL_NAME = "openai/gpt-oss-20b"
@pytest.fixture(scope="module")
def monkeypatch_module():
from _pytest.monkeypatch import MonkeyPatch
mpatch = MonkeyPatch()
yield mpatch
mpatch.undo()
@pytest.fixture(scope="module",
params=[True, False],
ids=["with_tool_parser", "without_tool_parser"])
def with_tool_parser(request) -> bool:
return request.param
@pytest.fixture(scope="module")
def default_server_args(with_tool_parser: bool):
args = [
# use half precision for speed and memory savings in CI environment
"--enforce-eager",
"--max-model-len",
"4096",
"--reasoning-parser",
"openai_gptoss",
"--gpu-memory-utilization",
"0.8",
]
if with_tool_parser:
args.extend([
"--tool-call-parser",
"openai",
"--enable-auto-tool-choice",
])
return args
@pytest.fixture(scope="module")
def gptoss_server(monkeypatch_module: pytest.MonkeyPatch,
default_server_args: list[str]):
with monkeypatch_module.context() as m:
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN_VLLM_V1")
with RemoteOpenAIServer(GPT_OSS_MODEL_NAME,
default_server_args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def gptoss_client(gptoss_server):
async with gptoss_server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
async def test_gpt_oss_chat_tool_call_streaming(gptoss_client: OpenAI,
with_tool_parser: bool):
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string"
},
"state": {
"type": "string"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["city", "state", "unit"],
},
},
}]
messages = [
{
"role": "user",
"content": "What is the weather in Dallas, TX?"
},
]
stream = await gptoss_client.chat.completions.create(
model=GPT_OSS_MODEL_NAME,
messages=messages,
tools=tools if with_tool_parser else None,
stream=True)
name = None
args_buf = ""
content_buf = ""
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.tool_calls:
tc = delta.tool_calls[0]
if tc.function and tc.function.name:
name = tc.function.name
if tc.function and tc.function.arguments:
args_buf += tc.function.arguments
if getattr(delta, "content", None):
content_buf += delta.content
if with_tool_parser:
assert name is not None
assert len(args_buf) > 0
else:
assert name is None
assert len(args_buf) == 0
assert len(content_buf) > 0
@pytest.mark.asyncio
async def test_gpt_oss_multi_turn_chat(gptoss_client: OpenAI,
with_tool_parser: bool):
if not with_tool_parser:
pytest.skip("skip non-tool for multi-turn tests")
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string"
},
"state": {
"type": "string"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["city", "state", "unit"],
},
},
}]
messages = [
{
"role": "system",
"content": "you are a helpful assistant"
},
{
"role": "user",
"content": "What is the weather in Dallas, TX?"
},
]
first = await gptoss_client.chat.completions.create(
model=GPT_OSS_MODEL_NAME,
messages=messages,
tools=tools,
temperature=0.0,
)
first_msg = first.choices[0].message
assert first_msg.tool_calls is not None and len(first_msg.tool_calls) > 0
tc = first_msg.tool_calls[0]
assert tc.function is not None and tc.function.name == "get_current_weather"
args1 = tc.function.arguments
assert args1 is not None and len(args1) > 0
messages.append({"role": "assistant", "content": args1})
messages.append({
"role": "user",
"content": "Now convert to celsius and return JSON only"
})
second = await gptoss_client.chat.completions.create(
model=GPT_OSS_MODEL_NAME,
messages=messages,
tools=tools,
temperature=0.0,
)
second_msg = second.choices[0].message
assert (second_msg.content is not None and len(second_msg.content) > 0) or \
(second_msg.tool_calls is not None and len(second_msg.tool_calls) > 0)
MODEL_NAME = "openai-community/gpt2"
CHAT_TEMPLATE = "Dummy chat template for testing {}"
BASE_MODEL_PATHS = [BaseModelPath(name=MODEL_NAME, model_path=MODEL_NAME)]

View File

@ -11,7 +11,7 @@ import torch
from ...utils import RemoteOpenAIServer
MODEL_NAME = "mgazz/Prithvi-EO-2.0-300M-TL-Sen1Floods11"
MODEL_NAME = "ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11"
DTYPE = "float16"

View File

@ -73,17 +73,11 @@ async def test_zero_truncation_size(client: openai.AsyncOpenAI):
"truncate_prompt_tokens": truncation_size
}
with pytest.raises(openai.BadRequestError) as err:
await client.post(path="embeddings", cast_to=object, body={**kwargs})
response = await client.post(path="embeddings",
cast_to=object,
body={**kwargs})
assert err.value.status_code == 400
error_details = err.value.response.json()["error"]
assert error_details["type"] == "BadRequestError"
assert "This model's maximum context length is" in error_details["message"]
assert "tokens in the input for embedding generation" in error_details[
"message"]
assert "Please reduce the length of the input" in error_details["message"]
assert response["usage"]["prompt_tokens"] == truncation_size
@pytest.mark.asyncio

View File

@ -436,3 +436,132 @@ async def test_multi_image_input(client: openai.AsyncOpenAI, model_name: str,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize(
"image_urls",
[TEST_IMAGE_ASSETS[:i] for i in range(2, len(TEST_IMAGE_ASSETS))],
indirect=True)
async def test_completions_with_image(
client: openai.AsyncOpenAI,
model_name: str,
image_urls: list[str],
):
for image_url in image_urls:
chat_completion = await client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role":
"user",
"content": [
{
"type": "text",
"text": "Describe this image.",
},
{
"type": "image_url",
"image_url": {
"url": image_url,
}
},
],
},
],
model=model_name,
)
assert chat_completion.choices[0].message.content is not None
assert isinstance(chat_completion.choices[0].message.content, str)
assert len(chat_completion.choices[0].message.content) > 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize(
"image_urls",
[TEST_IMAGE_ASSETS[:i] for i in range(2, len(TEST_IMAGE_ASSETS))],
indirect=True)
async def test_completions_with_image_with_uuid(
client: openai.AsyncOpenAI,
model_name: str,
image_urls: list[str],
):
for image_url in image_urls:
chat_completion = await client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role":
"user",
"content": [
{
"type": "text",
"text": "Describe this image.",
},
{
"type": "image_url",
"image_url": {
"url": image_url,
},
"uuid": image_url
},
],
},
],
model=model_name,
)
assert chat_completion.choices[0].message.content is not None
assert isinstance(chat_completion.choices[0].message.content, str)
assert len(chat_completion.choices[0].message.content) > 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize(
"image_urls",
[TEST_IMAGE_ASSETS[:i] for i in range(2, len(TEST_IMAGE_ASSETS))],
indirect=True)
async def test_completions_with_image_with_incorrect_uuid_format(
client: openai.AsyncOpenAI,
model_name: str,
image_urls: list[str],
):
for image_url in image_urls:
chat_completion = await client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role":
"user",
"content": [
{
"type": "text",
"text": "Describe this image.",
},
{
"type": "image_url",
"image_url": {
"url": image_url,
"incorrect_uuid_key": image_url,
},
"also_incorrect_uuid_key": image_url,
},
],
},
],
model=model_name,
)
assert chat_completion.choices[0].message.content is not None
assert isinstance(chat_completion.choices[0].message.content, str)
assert len(chat_completion.choices[0].message.content) > 0

View File

@ -21,7 +21,7 @@ from vllm.entrypoints.chat_utils import (_try_extract_ast, load_chat_template,
resolve_chat_template_content_format,
resolve_hf_chat_template)
from vllm.entrypoints.llm import apply_hf_chat_template
from vllm.multimodal import MultiModalDataDict
from vllm.multimodal import MultiModalDataDict, MultiModalUUIDDict
from vllm.multimodal.utils import (encode_audio_base64, encode_image_base64,
encode_video_base64)
from vllm.transformers_utils.tokenizer_group import TokenizerGroup
@ -179,6 +179,27 @@ def _assert_mm_data_is_image_input(
assert isinstance(image_data, list) and len(image_data) == image_count
def _assert_mm_uuids(
mm_uuids: Optional[MultiModalUUIDDict],
media_count: int,
expected_uuids: list[Optional[str]],
modality: str = "image",
) -> None:
if len(expected_uuids) > 0:
assert mm_uuids is not None
assert modality in mm_uuids
image_uuids = mm_uuids.get(modality)
assert image_uuids is not None
assert isinstance(image_uuids,
list) and len(image_uuids) == media_count
assert image_uuids == expected_uuids
else:
assert mm_uuids is None
ModalityType = Literal["image", "video", "audio"]
MultiModalDataCounts = Mapping[ModalityType, int]
@ -201,7 +222,7 @@ def test_parse_chat_messages_single_image(
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
@ -228,6 +249,260 @@ def test_parse_chat_messages_single_image(
"content": "<|image_1|>\nWhat's in the image?"
}]
_assert_mm_data_is_image_input(mm_data, 1)
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[None])
def test_parse_chat_messages_single_image_with_uuid(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
image_uuid = str(hash(image_url))
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url,
},
"uuid": image_uuid,
},
{
"type": "text",
"text": "What's in the image?"
},
],
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role": "user",
"content": "<|image_1|>\nWhat's in the image?"
}]
_assert_mm_data_is_image_input(mm_data, 1)
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[image_uuid])
def test_parse_chat_messages_single_image_with_bad_uuid_format(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
image_uuid = str(hash(image_url))
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url,
"uuid": image_uuid,
},
"bad_uuid_key": image_uuid,
},
{
"type": "text",
"text": "What's in the image?"
},
],
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role": "user",
"content": "<|image_1|>\nWhat's in the image?"
}]
_assert_mm_data_is_image_input(mm_data, 1)
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[None])
def test_parse_chat_messages_multiple_images_with_uuids(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
image_uuid1 = "my_uuid_1"
image_uuid2 = "my_uuid_2"
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url,
},
"uuid": image_uuid1,
},
{
"type": "image_url",
"image_url": {
"url": image_url,
},
"uuid": image_uuid2,
},
{
"type": "text",
"text": "What's in the image?"
},
],
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in the image?",
}]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid1, image_uuid2])
@pytest.mark.asyncio
async def test_parse_chat_messages_single_image_with_uuid_async(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
image_uuid = str(hash(image_url))
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
[{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": image_uuid,
},
{
"type": "text",
"text": "What's in the image?"
},
],
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role": "user",
"content": "<|image_1|>\nWhat's in the image?"
}]
_assert_mm_data_is_image_input(await mm_future, 1)
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[image_uuid])
@pytest.mark.asyncio
async def test_parse_chat_messages_multiple_images_with_uuids_async(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
image_uuid1 = "my_uuid_1"
image_uuid2 = "my_uuid_2"
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
[{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": image_uuid1,
},
{
"type": "image_pil",
"image_pil": ImageAsset("cherry_blossom").pil_image,
"uuid": image_uuid2,
},
{
"type": "text",
"text": "What's in these images?"
},
],
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in these images?",
}]
_assert_mm_data_is_image_input(await mm_future, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid1, image_uuid2])
@pytest.mark.asyncio
async def test_parse_chat_messages_multiple_images_with_partial_uuids_async(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
image_uuid2 = "my_uuid_2"
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
[{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
},
},
{
"type": "image_pil",
"image_pil": ImageAsset("cherry_blossom").pil_image,
"uuid": image_uuid2,
},
{
"type": "text",
"text": "What's in these images?"
},
],
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in these images?",
}]
_assert_mm_data_is_image_input(await mm_future, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, image_uuid2])
def test_parse_chat_messages_empty_system(
@ -235,7 +510,7 @@ def test_parse_chat_messages_empty_system(
mistral_tokenizer,
):
# Test string format
conversation, _ = parse_chat_messages(
conversation, _, _ = parse_chat_messages(
[
{
"role": "system",
@ -265,7 +540,7 @@ def test_parse_chat_messages_empty_system(
]
# Test openai format
conversation, _ = parse_chat_messages(
conversation, _, _ = parse_chat_messages(
[
{
"role": "system",
@ -307,7 +582,7 @@ async def test_parse_chat_messages_single_image_async(
phi3v_tokenizer,
image_url,
):
conversation, mm_future = parse_chat_messages_futures(
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
[{
"role":
"user",
@ -334,6 +609,7 @@ async def test_parse_chat_messages_single_image_async(
"content": "<|image_1|>\nWhat's in the image?"
}]
_assert_mm_data_is_image_input(await mm_future, 1)
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[None])
def test_parse_chat_messages_multiple_images(
@ -341,7 +617,7 @@ def test_parse_chat_messages_multiple_images(
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
@ -374,6 +650,7 @@ def test_parse_chat_messages_multiple_images(
"<|image_1|>\n<|image_2|>\nWhat's in these images?",
}]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
@pytest.mark.asyncio
@ -382,7 +659,7 @@ async def test_parse_chat_messages_multiple_images_async(
phi3v_tokenizer,
image_url,
):
conversation, mm_future = parse_chat_messages_futures(
conversation, mm_future, mm_uuids = parse_chat_messages_futures(
[{
"role":
"user",
@ -415,6 +692,7 @@ async def test_parse_chat_messages_multiple_images_async(
"<|image_1|>\n<|image_2|>\nWhat's in these images?",
}]
_assert_mm_data_is_image_input(await mm_future, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
def test_parse_chat_messages_placeholder_already_in_prompt(
@ -422,7 +700,7 @@ def test_parse_chat_messages_placeholder_already_in_prompt(
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
@ -458,6 +736,7 @@ def test_parse_chat_messages_placeholder_already_in_prompt(
"What's in <|image_1|> and how does it compare to <|image_2|>?",
}]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
def test_parse_chat_messages_placeholder_one_already_in_prompt(
@ -465,7 +744,7 @@ def test_parse_chat_messages_placeholder_one_already_in_prompt(
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
@ -503,6 +782,7 @@ def test_parse_chat_messages_placeholder_one_already_in_prompt(
"other one?",
}]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
def test_parse_chat_messages_multiple_images_across_messages(
@ -510,7 +790,7 @@ def test_parse_chat_messages_multiple_images_across_messages(
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[
{
"role":
@ -569,13 +849,84 @@ def test_parse_chat_messages_multiple_images_across_messages(
},
]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
def test_parse_chat_messages_multiple_images_with_uuids_across_messages(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
image_uuid = str(hash(image_url))
conversation, mm_data, mm_uuids = parse_chat_messages(
[
{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": image_uuid,
},
{
"type": "text",
"text": "What's in this image?"
},
],
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": image_uuid,
},
{
"type": "text",
"text": "What about this one?"
},
],
},
],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [
{
"role": "user",
"content": "<|image_1|>\nWhat's in this image?"
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role": "user",
"content": "<|image_2|>\nWhat about this one?"
},
]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid, image_uuid])
def test_parse_chat_messages_context_text_format(
phi3v_model_config,
phi3v_tokenizer,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[
{
"role": "user",
@ -621,6 +972,8 @@ def test_parse_chat_messages_context_text_format(
}],
},
]
assert mm_data is None
assert mm_uuids is None
def test_parse_chat_messages_rejects_too_many_images_in_one_message(
@ -736,7 +1089,7 @@ def test_parse_chat_messages_multiple_images_uncommon_input(
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
@ -762,6 +1115,7 @@ def test_parse_chat_messages_multiple_images_uncommon_input(
"<|image_1|>\n<|image_2|>\nWhat's in these images?",
}]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
def test_parse_chat_messages_multiple_images_interleave(
@ -769,7 +1123,7 @@ def test_parse_chat_messages_multiple_images_interleave(
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
@ -813,6 +1167,7 @@ def test_parse_chat_messages_multiple_images_interleave(
"Do they have differences?",
}]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
@pytest.mark.asyncio
@ -821,7 +1176,7 @@ async def test_parse_chat_messages_multiple_images_interleave_async(
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages_futures(
conversation, mm_data, mm_uuids = parse_chat_messages_futures(
[{
"role":
"user",
@ -865,6 +1220,63 @@ async def test_parse_chat_messages_multiple_images_interleave_async(
"Do they have differences?",
}]
_assert_mm_data_is_image_input(await mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
@pytest.mark.asyncio
async def test_parse_chat_messages_multiple_images_with_uuids_interleave_async(
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
image_url,
):
image_uuid = str(hash(image_url))
conversation, mm_data, mm_uuids = parse_chat_messages_futures(
[{
"role":
"user",
"content": [
{
"type": "text",
"text": "I need you to compare this image",
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": image_uuid,
},
{
"type": "text",
"text": "and this one"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": image_uuid,
},
{
"type": "text",
"text": "Do they have differences?"
},
],
}],
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501
"Do they have differences?",
}]
_assert_mm_data_is_image_input(await mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid, image_uuid])
def test_parse_chat_messages_multiple_images_multiple_messages_interleave(
@ -872,7 +1284,7 @@ def test_parse_chat_messages_multiple_images_multiple_messages_interleave(
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[
{
"role":
@ -935,6 +1347,81 @@ def test_parse_chat_messages_multiple_images_multiple_messages_interleave(
},
]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
def test_parse_chat_messages_multiple_images_with_uuids_multiple_messages_interleave( # noqa: E501
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
image_url,
):
image_uuid = str(hash(image_url))
conversation, mm_data, mm_uuids = parse_chat_messages(
[
{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's on this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": image_uuid,
},
{
"type": "text",
"text": "Be accurate."
},
],
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's on this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": image_uuid,
},
],
},
],
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [
{
"role": "user",
"content": "What's on this image?\n<|image_1|>\nBe accurate.",
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role": "user",
"content": "What's on this image?\n<|image_2|>"
},
]
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid, image_uuid])
def test_parse_chat_messages_multiple_modals_multiple_messages_interleave(
@ -944,7 +1431,7 @@ def test_parse_chat_messages_multiple_modals_multiple_messages_interleave(
video_url,
audio_url,
):
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[
{
"role":
@ -1030,6 +1517,229 @@ def test_parse_chat_messages_multiple_modals_multiple_messages_interleave(
]
_assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1})
_assert_mm_uuids(mm_uuids,
2,
modality="image",
expected_uuids=[None, None])
_assert_mm_uuids(mm_uuids, 1, modality="video", expected_uuids=[None])
_assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=[None])
def test_parse_chat_messages_multiple_modals_with_uuids_multiple_messages_interleave( # noqa: E501
qwen25omni_model_config_mm_interleaved,
qwen25omni_tokenizer,
image_url,
video_url,
audio_url,
):
conversation, mm_data, mm_uuids = parse_chat_messages(
[
{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's on this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": "image_123",
},
{
"type": "text",
"text": "Now listen to this audio"
},
{
"type": "audio_url",
"audio_url": {
"url": audio_url
},
"uuid": "audio_123",
},
],
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's on this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": "image_123",
},
{
"type": "text",
"text": "And what's in the video?"
},
{
"type": "video_url",
"video_url": {
"url": video_url
},
"uuid": "video_123",
},
],
},
],
qwen25omni_model_config_mm_interleaved,
qwen25omni_tokenizer,
content_format="string",
)
assert conversation == [
{
"role":
"user",
"content":
"What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n"
"Now listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>", # noqa: E501
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role":
"user",
"content":
"What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n"
"And what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>",
},
]
_assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1})
_assert_mm_uuids(mm_uuids,
2,
modality="image",
expected_uuids=["image_123", "image_123"])
_assert_mm_uuids(mm_uuids,
1,
modality="video",
expected_uuids=["video_123"])
_assert_mm_uuids(mm_uuids,
1,
modality="audio",
expected_uuids=["audio_123"])
def test_parse_chat_messages_multiple_modals_with_partial_uuids_multiple_messages_interleave( # noqa: E501
qwen25omni_model_config_mm_interleaved,
qwen25omni_tokenizer,
image_url,
video_url,
audio_url,
):
conversation, mm_data, mm_uuids = parse_chat_messages(
[
{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's on this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
"uuid": "image_123",
},
{
"type": "text",
"text": "Now listen to this audio"
},
{
"type": "audio_url",
"audio_url": {
"url": audio_url
}
},
],
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's on this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "text",
"text": "And what's in the video?"
},
{
"type": "video_url",
"video_url": {
"url": video_url
},
"uuid": "video_123",
},
],
},
],
qwen25omni_model_config_mm_interleaved,
qwen25omni_tokenizer,
content_format="string",
)
assert conversation == [
{
"role":
"user",
"content":
"What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n"
"Now listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>", # noqa: E501
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role":
"user",
"content":
"What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n"
"And what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>",
},
]
_assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1})
_assert_mm_uuids(mm_uuids,
2,
modality="image",
expected_uuids=["image_123", None])
_assert_mm_uuids(mm_uuids,
1,
modality="video",
expected_uuids=["video_123"])
_assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=[None])
def test_parse_chat_messages_multiple_images_interleave_with_placeholders(
@ -1081,7 +1791,7 @@ def test_mllama_single_image(
image_url,
):
"""Ensures that a single image is parsed correctly mllama."""
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
@ -1100,6 +1810,7 @@ def test_mllama_single_image(
content_format="openai",
)
_assert_mm_data_is_image_input(mm_data, 1)
_assert_mm_uuids(mm_uuids, 1, expected_uuids=[None])
assert conversation == [{
"role":
"user",
@ -1121,7 +1832,7 @@ def test_mllama_interleaved_images(
image_url,
):
"""Ensures that multiple image are parsed as interleaved dicts."""
conversation, mm_data = parse_chat_messages(
conversation, mm_data, mm_uuids = parse_chat_messages(
[{
"role":
"user",
@ -1147,6 +1858,7 @@ def test_mllama_interleaved_images(
content_format="openai",
)
_assert_mm_data_is_image_input(mm_data, 2)
_assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None])
assert conversation == [{
"role":
"user",
@ -1227,7 +1939,7 @@ def test_multimodal_image_parsing_matches_hf(model, image_url):
# Now parse with vLLMs chat utils & apply the template
vllm_conversation = get_conversation(is_hf=False)
conversation, _ = parse_chat_messages(
conversation, _, _ = parse_chat_messages(
vllm_conversation,
model_config,
tokenizer_group,
@ -1518,7 +2230,7 @@ def test_parse_chat_messages_include_thinking_chunk(mistral_model_config,
}],
}]
conversation_with_thinking, _ = parse_chat_messages(
conversation_with_thinking, _, _ = parse_chat_messages(
messages,
mistral_model_config,
mistral_tokenizer,

View File

@ -0,0 +1,425 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from unittest.mock import MagicMock, patch
import pytest
from openai_harmony import StreamState
from vllm.entrypoints.context import HarmonyContext, StreamingHarmonyContext
from vllm.outputs import CompletionOutput, RequestOutput
# Helper function for Python < 3.10 compatibility
async def async_next(async_iterator):
"""Compatibility function equivalent to Python 3.10's anext()."""
return await async_iterator.__anext__()
def create_mock_request_output(
prompt_token_ids=None,
output_token_ids=None,
num_cached_tokens=0,
finished=True,
):
"""Helper function to create a mock RequestOutput object for testing."""
outputs = []
token_ids = output_token_ids if output_token_ids is not None else []
outputs = [
CompletionOutput(
index=0,
text="Test output",
token_ids=token_ids,
cumulative_logprob=0.0,
logprobs=None,
finish_reason=None,
stop_reason=None,
)
]
return RequestOutput(
request_id="test-id",
prompt="Test prompt",
prompt_token_ids=prompt_token_ids,
prompt_logprobs=None,
outputs=outputs,
finished=finished,
num_cached_tokens=num_cached_tokens,
)
async def generate_mock_outputs(num_turns,
prompt_token_counts,
output_token_counts,
cached_token_counts=None):
"""Generate a sequence of mock RequestOutput objects to simulate multiple
turns."""
if cached_token_counts is None:
cached_token_counts = [0] * num_turns
for i in range(num_turns):
# Create mock prompt token IDs and output token IDs
prompt_token_ids = list(range(1, prompt_token_counts[i] + 1))
output_token_ids = list(range(1, output_token_counts[i] + 1))
# Create and yield the RequestOutput
yield create_mock_request_output(
prompt_token_ids=prompt_token_ids,
output_token_ids=output_token_ids,
num_cached_tokens=cached_token_counts[i],
)
@pytest.fixture
def mock_parser():
"""Set up a mock parser for tests."""
with patch("vllm.entrypoints.context.get_streamable_parser_for_assistant"
) as mock_parser_factory:
# Create a mock parser object
parser = MagicMock()
parser.messages = []
parser.current_channel = None
parser.state = StreamState.EXPECT_START
mock_parser_factory.return_value = parser
yield parser
def test_single_turn_token_counting():
"""Test token counting behavior for a single turn."""
# Create a context
context = HarmonyContext(messages=[], available_tools=[])
# Create a mock RequestOutput with specific token counts
mock_output = create_mock_request_output(
prompt_token_ids=[1, 2, 3, 4, 5], # 5 prompt tokens
output_token_ids=[6, 7, 8], # 3 output tokens
num_cached_tokens=2, # 2 cached tokens
)
# Append the output to the context
context.append_output(mock_output)
# Verify the token counts
assert context.num_prompt_tokens == 5
assert context.num_output_tokens == 3
assert context.num_cached_tokens == 2
assert context.num_tool_output_tokens == 0 # No tool tokens in first turn
# Verify internal state tracking
assert not context.is_first_turn
assert context.previous_turn.input_tokens == 5
assert context.previous_turn.output_tokens == 3
@pytest.mark.asyncio
async def test_multi_turn_token_counting():
"""Test token counting behavior across multiple turns with tool output."""
# Create a context
context = HarmonyContext(messages=[], available_tools=["browser"])
# Simulate a conversation with 3 turns
# Turn 1: prefill 5, decode 3, tool 7
# Turn 2: prefill 15, cached 5, decode 4, tool 1
# Turn 3: prefill 20, cached 15, decode 5
prompt_token_counts = [5, 15, 20]
output_token_counts = [3, 4, 5]
cached_token_counts = [0, 5, 15]
mock_generator = generate_mock_outputs(3, prompt_token_counts,
output_token_counts,
cached_token_counts)
# First turn - initial prompt and response
mock_output1 = await async_next(mock_generator)
context.append_output(mock_output1)
# At this point, we should have 5 prompt tokens and 3 output tokens
assert context.num_prompt_tokens == 5
assert context.num_output_tokens == 3
assert context.num_tool_output_tokens == 0
# Second turn - after tool output
mock_output2 = await async_next(mock_generator)
context.append_output(mock_output2)
# Current prompt tokens (15) - last_turn_input_tokens (5) -
# last_turn_output_tokens (3) = 7
expected_tool_output = 7
assert context.num_prompt_tokens == 5 + 15
assert context.num_output_tokens == 3 + 4
assert context.num_tool_output_tokens == expected_tool_output
assert context.num_cached_tokens == 5
# Third turn - final response
mock_output3 = await async_next(mock_generator)
context.append_output(mock_output3)
# Additional tool output tokens from third turn:
# Current prompt (20) - last_turn_input_tokens (15) -
# last_turn_output_tokens (4) = 1
expected_tool_output = 7 + 1
assert context.num_prompt_tokens == 5 + 15 + 20
assert context.num_output_tokens == 3 + 4 + 5
assert context.num_tool_output_tokens == expected_tool_output
assert context.num_cached_tokens == 5 + 15
def test_empty_output_tokens():
"""Test behavior when RequestOutput has empty output tokens."""
context = HarmonyContext(messages=[], available_tools=[])
# Create a RequestOutput with empty output tokens
mock_output = create_mock_request_output(
prompt_token_ids=[1, 2, 3], # 3 prompt tokens
output_token_ids=[], # Empty output tokens list
num_cached_tokens=1,
)
context.append_output(mock_output)
# Should handle empty outputs gracefully
assert context.num_prompt_tokens == 3
assert context.num_output_tokens == 0 # No output tokens
assert context.num_cached_tokens == 1
assert context.num_tool_output_tokens == 0
def test_missing_prompt_token_ids():
"""Test behavior when RequestOutput has None prompt_token_ids."""
context = HarmonyContext(messages=[], available_tools=[])
mock_output = create_mock_request_output(
prompt_token_ids=None, # No prompt token IDs
output_token_ids=[1, 2], # 2 output tokens
num_cached_tokens=0,
)
# Logger.error will be called, but we don't need to check for warnings
# here Just ensure it doesn't raise an exception
context.append_output(mock_output)
# Should handle missing prompt tokens gracefully
assert context.num_prompt_tokens == 0
assert context.num_output_tokens == 2
assert context.num_cached_tokens == 0
assert context.num_tool_output_tokens == 0
def test_reasoning_tokens_counting(mock_parser):
"""Test that reasoning tokens are counted correctly."""
context = HarmonyContext(messages=[], available_tools=[])
# Mock parser to simulate reasoning channel
mock_parser.current_channel = "analysis" # Reasoning channel
mock_output = create_mock_request_output(
prompt_token_ids=[1, 2, 3],
output_token_ids=[4, 5, 6, 7], # 4 tokens, all in reasoning
num_cached_tokens=0,
)
context.append_output(mock_output)
# All output tokens should be counted as reasoning
assert context.num_reasoning_tokens == 4
assert context.num_output_tokens == 4
def test_zero_tokens_edge_case():
"""Test behavior with all zero token counts."""
context = HarmonyContext(messages=[], available_tools=[])
# Create a request with empty lists (not None) for both prompt and
# output tokens
mock_output = create_mock_request_output(
prompt_token_ids=[], # Empty prompt tokens
output_token_ids=[], # Empty output tokens
num_cached_tokens=0,
)
context.append_output(mock_output)
# All counts should be zero
assert context.num_prompt_tokens == 0
assert context.num_output_tokens == 0
assert context.num_cached_tokens == 0
assert context.num_tool_output_tokens == 0
assert context.num_reasoning_tokens == 0
@pytest.mark.asyncio
async def test_single_turn_no_tool_output():
"""Test that first turn never generates tool output tokens."""
context = HarmonyContext(
messages=[],
available_tools=["browser"] # Tools available
)
# Even with large prompt in first turn, no tool tokens should be counted
mock_output = create_mock_request_output(
prompt_token_ids=list(range(100)), # 100 tokens
output_token_ids=[1, 2, 3],
num_cached_tokens=0,
)
context.append_output(mock_output)
# First turn should never have tool output tokens
assert context.num_tool_output_tokens == 0
assert context.is_first_turn is False # Should be updated after first turn
@pytest.mark.asyncio
async def test_negative_tool_tokens_edge_case():
"""Test edge case where calculation could result in negative tool
tokens. We should log an error and clamp the value to 0."""
# Use patch to check if logger.error was called
with patch("vllm.entrypoints.context.logger.error") as mock_log:
context = HarmonyContext(messages=[], available_tools=["browser"])
# First turn
mock_output1 = create_mock_request_output(
prompt_token_ids=list(range(10)), # 10 tokens
output_token_ids=[1, 2, 3, 4, 5], # 5 tokens
)
context.append_output(mock_output1)
# Second turn with fewer new tokens than previous output
# This could happen in edge cases with aggressive caching
mock_output2 = create_mock_request_output(
prompt_token_ids=list(range(12)), # 12 tokens (only 2 new)
output_token_ids=[6, 7], # 2 tokens
)
context.append_output(mock_output2)
# Calculated negative tool tokens (12 - 10 - 5 = -3) should be clamped
# to 0 and an error should be logged
assert context.num_tool_output_tokens == 0
assert context.num_prompt_tokens == 10 + 12
assert context.num_output_tokens == 5 + 2
# Verify the error was logged properly
mock_log.assert_called_once()
# Extract the actual log message and arguments from the call
args, _ = mock_log.call_args
log_message = args[0]
# Check for key parts of the message
assert "Negative tool output tokens calculated" in log_message
assert "-3" in str(args) # Check that -3 is in the arguments
@pytest.mark.asyncio
async def test_streaming_multi_turn_token_counting(mock_parser):
"""Test token counting for streaming multi-turn conversations.
This test focuses on how StreamingHarmonyContext counts tokens in a
multi-turn conversation with streaming (token-by-token) outputs and
message boundaries.
"""
# Create a streaming context
context = StreamingHarmonyContext(messages=[], available_tools=["browser"])
# Simulate three turns of conversation:
# Turn 1: stream tokens one by one, then finish the message
# Turn 2: new prompt, stream more tokens with a reasoning segment
# Turn 3: new prompt with tool output and cached tokens
# First turn: 3 tokens streamed one by one
# First token of first turn
context.append_output(
create_mock_request_output(
prompt_token_ids=[1, 2, 3], # 3 prompt tokens
output_token_ids=[101], # Single token
num_cached_tokens=0,
finished=False, # Not end of message yet
))
# Second token of first turn
context.append_output(
create_mock_request_output(
output_token_ids=[102],
finished=False,
))
# Last token of first turn (finished=True signals end of message)
context.append_output(
create_mock_request_output(
output_token_ids=[103],
finished=True, # End of message
))
# Check token counts after first turn
assert context.num_prompt_tokens == 3 # Initial prompt tokens
assert context.num_output_tokens == 3 # Three output tokens
assert context.num_cached_tokens == 0
assert context.num_tool_output_tokens == 0 # No tool output in first turn
assert context.first_tok_of_message is True # Ready for next message
# Second turn: reasoning tokens in analysis channel
mock_parser.current_channel = "analysis" # Set to reasoning channel
# First token of second turn
context.append_output(
create_mock_request_output(
prompt_token_ids=[1, 2, 3, 101, 102, 103, 4,
5], # 8 tokens (includes previous)
output_token_ids=[201],
num_cached_tokens=3, # Some tokens cached
finished=False,
))
# More tokens in reasoning channel
context.append_output(
create_mock_request_output(
output_token_ids=[202],
finished=False,
))
context.append_output(
create_mock_request_output(
output_token_ids=[203],
finished=True, # End of reasoning message
))
# Check counts after second turn (reasoning message)
assert context.num_prompt_tokens == 3 + 8 # Initial + second prompt
assert context.num_output_tokens == 3 + 3 # First turn + second turn
assert context.num_reasoning_tokens == 3 # All tokens in analysis channel
assert context.num_cached_tokens == 3 # Cached tokens from second turn
# Formula: this turn prompt tokens - last turn prompt - last turn output
expected_tool_tokens = 8 - 3 - 3 # = 2
assert context.num_tool_output_tokens == expected_tool_tokens
# Third turn: regular output channel
mock_parser.current_channel = "final" # Switch back to regular channel
# Third turn (with more cached tokens)
context.append_output(
create_mock_request_output(
prompt_token_ids=[
1, 2, 3, 101, 102, 103, 4, 5, 201, 202, 203, 6, 7
], # 13 tokens
output_token_ids=[301],
num_cached_tokens=8, # More cached tokens
finished=False,
))
context.append_output(
create_mock_request_output(
output_token_ids=[302],
finished=True,
))
# Final token counts check
assert context.num_prompt_tokens == 3 + 8 + 13 # All prompts
assert context.num_output_tokens == 3 + 3 + 2 # All outputs
assert context.num_reasoning_tokens == 3 # Unchanged from second turn
assert context.num_cached_tokens == 3 + 8 # Accumulated cached tokens
# Additional tool tokens from third turn
# Formula: this turn prompt - last turn prompt - last turn output
additional_tool_tokens = 13 - 8 - 3 # = 2
assert context.num_tool_output_tokens == expected_tool_tokens \
+ additional_tool_tokens

View File

@ -130,6 +130,23 @@ class TestRenderPrompt:
assert call_args.kwargs["truncation"] is True
assert call_args.kwargs["max_length"] == 50
@pytest.mark.asyncio
async def test_truncation_negative(self, renderer, mock_async_tokenizer):
# Test that negative truncation uses model's max_model_len
mock_async_tokenizer.return_value = MockTokenizerResult(
[101, 7592, 2088]) # Truncated to max_model_len
renderer.async_tokenizer_pool[
renderer.tokenizer] = mock_async_tokenizer
results = await renderer.render_prompt(prompt_or_prompts="Hello world",
max_length=200,
truncate_prompt_tokens=-1)
assert len(results) == 1
call_args = mock_async_tokenizer.call_args
assert call_args.kwargs["truncation"] is True
assert call_args.kwargs["max_length"] == 100 # model's max_model_len
@pytest.mark.asyncio
async def test_token_truncation_last_elements(self, renderer):
# Test that token truncation keeps the last N elements

View File

@ -115,21 +115,27 @@ def generate_continuous_batched_examples(example_lens_by_batch,
n_heads,
d_head,
itype,
device='cuda'):
device='cuda',
return_naive_ref=True):
# this function generates a random examples of certain length
# and then cut according to "example_lens_by_batch" and feed
# them in continuous batches to the kernels
# them in continuous batches to the kernels.
# If if return_naive_ref=True, the naive torch implementation
# ssd_minimal_discrete will be used to compute and return
# reference output.
# generate the full-length example
A, dt, X, B, C = generate_random_inputs(num_examples, full_length, n_heads,
d_head, itype)
Y_min, final_state_min = ssd_minimal_discrete(X * dt.unsqueeze(-1),
A * dt,
B,
C,
block_len=full_length // 4)
if return_naive_ref:
Y_min, final_state_min = ssd_minimal_discrete(X * dt.unsqueeze(-1),
A * dt,
B,
C,
block_len=full_length //
4)
# internal function that outputs a cont batch of examples
# given a tuple of lengths for each example in the batch
@ -179,7 +185,8 @@ def generate_continuous_batched_examples(example_lens_by_batch,
IND_S = [x % full_length for x in IND_E]
IND_E = [end_boundary(x + y) for x, y in zip(IND_S, spec)]
yield ([Y_min[s, IND_S[s]:IND_E[s]] for s in range(num_examples)],
yield ([Y_min[s, IND_S[s]:IND_E[s]]
for s in range(num_examples)] if return_naive_ref else None,
cu_seqlens, seq_idx.unsqueeze(0), (A, dt2, X2, B2, C2))
@ -324,3 +331,213 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
if clear:
states[i].fill_(0.)
exhausted[i] = False
@pytest.mark.parametrize("chunk_size", [8, 256])
@pytest.mark.parametrize("seqlens", [
(16, 2, 8, 13),
(270, 88, 212, 203),
(16, 20),
])
def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
# This test verifies the correctness of the chunked prefill implementation
# in the mamba2 ssd kernels, by comparing concatenation (in the sequence
# dimension) of chunked results with the full sequence result.
# It is different from test_mamba_chunk_scan_cont_batch by:
# 1. Not using the naive torch implementaion (ssd_minimal_discrete) to get
# reference outputs. Instead, it compares chunked kernel outputs to full
# sequence kernel outputs. This is the most straightforward way to
# assert chunked prefill correctness.
# 2. It focuses on cases where sequences change in the middle of mamba
# chunks, and not necessarily on chunk boundaries.
max_seqlen = max(seqlens)
# This test can have larger error for longer sequences
if max_seqlen > 256:
atol, rtol = 1e-2, 5e-3
else:
atol, rtol = 5e-3, 5e-3
num_sequences = len(seqlens)
n_heads = 16
d_head = 64
itype = torch.float32
# hold state during the cutting process so we know if an
# example has been exhausted and needs to cycle
last_taken: dict = {} # map: eg -> pointer to last taken sample
exhausted: dict = {} # map: eg -> boolean indicating example is exhausted
_, cu_seqlens, seq_idx, (A, dt, X, B, C) = next(
generate_continuous_batched_examples([seqlens],
num_sequences,
max_seqlen,
last_taken,
exhausted,
n_heads,
d_head,
itype,
return_naive_ref=False))
seqlens = torch.tensor(seqlens, dtype=torch.int32, device=X.device)
device = X.device
## full seqlen computation
chunk_indices, chunk_offsets = \
_query_start_loc_to_chunk_indices_offsets(
cu_seqlens, chunk_size, cu_seqlens[-1])
Y_ref = torch.empty_like(X)
state_ref = mamba_chunk_scan_combined(
X,
dt,
A,
B,
C,
chunk_size,
D=None,
cu_seqlens=cu_seqlens,
seq_idx=seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=None,
out=Y_ref,
)
## chunked seqlen computation
# first chunk
chunked_seqlens = seqlens // 2
chunked_cu_seqlens = torch.cat([
torch.tensor([0], device=device),
torch.cumsum(chunked_seqlens, dim=0)
],
dim=0)
chunked_seq_idx = torch.repeat_interleave(
torch.arange(len(chunked_seqlens), device=device),
chunked_seqlens,
output_size=chunked_cu_seqlens[-1]).unsqueeze(0).to(torch.int32)
chunked_input_seq_len = chunked_cu_seqlens[-1]
X_chunked = torch.zeros_like(X)[:, :chunked_input_seq_len, ...]
dt_chunked = torch.zeros_like(dt)[:, :chunked_input_seq_len, ...]
B_chunked = torch.zeros_like(B)[:, :chunked_input_seq_len, ...]
C_chunked = torch.zeros_like(C)[:, :chunked_input_seq_len, ...]
for i in range(num_sequences):
# fmt: off
chunk_f = lambda x, i: x[:, cu_seqlens[i]:cu_seqlens[i] + chunked_seqlens[i], ...] # noqa: E501
X_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(X, i) # noqa: E501
dt_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(dt, i) # noqa: E501
B_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(B, i) # noqa: E501
C_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(C, i) # noqa: E501
# fmt: on
chunk_indices, chunk_offsets = \
_query_start_loc_to_chunk_indices_offsets(
chunked_cu_seqlens, chunk_size, chunked_cu_seqlens[-1])
Y_partial = torch.empty_like(X_chunked)
partial_state = mamba_chunk_scan_combined(
X_chunked,
dt_chunked,
A,
B_chunked,
C_chunked,
chunk_size,
D=None,
cu_seqlens=chunked_cu_seqlens,
seq_idx=chunked_seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=None,
out=Y_partial,
)
# remaining chunk
remaining_chunked_seqlens = seqlens - chunked_seqlens
remaining_chunked_cu_seqlens = torch.cat([
torch.tensor([0], device=device),
torch.cumsum(remaining_chunked_seqlens, dim=0)
],
dim=0)
remaining_chunked_seq_idx = torch.repeat_interleave(
torch.arange(len(remaining_chunked_seqlens), device=device),
remaining_chunked_seqlens,
output_size=remaining_chunked_cu_seqlens[-1]).unsqueeze(0).to(
torch.int32)
remaining_chunked_input_seq_len = remaining_chunked_cu_seqlens[-1]
# fmt: off
remaining_X_chunked = torch.zeros_like(X)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_dt_chunked = torch.zeros_like(dt)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_B_chunked = torch.zeros_like(B)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
remaining_C_chunked = torch.zeros_like(C)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
for i in range(num_sequences):
remaining_chunk_f = lambda x, i: x[:, cu_seqlens[i] + chunked_seqlens[i]:cu_seqlens[i+1], ...] # noqa: E501
remaining_X_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(X, i) # noqa: E501
remaining_dt_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(dt, i) # noqa: E501
remaining_B_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(B, i) # noqa: E501
remaining_C_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(C, i) # noqa: E501
# assert input chunking is correct
concat_chunk_f = lambda pt1, pt2, i: torch.cat([
pt1[:,chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1],...],
pt2[:,remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1],...],
],
dim=1)
concat_batch_f = lambda pt1, pt2: torch.cat([concat_chunk_f(pt1, pt2, i) for i in range(num_sequences)], dim=1) # noqa: E501
# fmt: on
assert concat_batch_f(X_chunked, remaining_X_chunked).equal(X)
assert concat_batch_f(dt_chunked, remaining_dt_chunked).equal(dt)
assert concat_batch_f(B_chunked, remaining_B_chunked).equal(B)
assert concat_batch_f(C_chunked, remaining_C_chunked).equal(C)
chunk_indices, chunk_offsets = \
_query_start_loc_to_chunk_indices_offsets(
remaining_chunked_cu_seqlens,
chunk_size,
remaining_chunked_cu_seqlens[-1])
Y_chunked = torch.empty_like(remaining_X_chunked)
state_chunked = mamba_chunk_scan_combined(
remaining_X_chunked,
remaining_dt_chunked,
A,
remaining_B_chunked,
remaining_C_chunked,
chunk_size,
D=None,
cu_seqlens=remaining_chunked_cu_seqlens,
seq_idx=remaining_chunked_seq_idx,
chunk_indices=chunk_indices,
chunk_offsets=chunk_offsets,
return_varlen_states=True,
initial_states=partial_state,
out=Y_chunked,
)
Y = concat_batch_f(Y_partial, Y_chunked)
# kernel chunked is same as kernel overall
for i in range(num_sequences):
Y_seq = Y[:, cu_seqlens[i]:cu_seqlens[i + 1], ...]
Y_ref_seq = Y_ref[:, cu_seqlens[i]:cu_seqlens[i + 1], ...]
torch.testing.assert_close(
Y_seq[:, :chunked_seqlens[i], ...],
Y_ref_seq[:, :chunked_seqlens[i], ...],
atol=atol,
rtol=rtol,
msg=lambda x: f"seq{i} output part1 " + x) # noqa: B023
torch.testing.assert_close(
Y_seq[:, chunked_seqlens[i]:, ...],
Y_ref_seq[:, chunked_seqlens[i]:, ...],
atol=atol,
rtol=rtol,
msg=lambda x: f"seq{i} output part2 " + x) # noqa: B023
state_seq = state_chunked[i]
state_seq_ref = state_ref[i]
torch.testing.assert_close(
state_seq,
state_seq_ref,
atol=atol,
rtol=rtol,
msg=lambda x: f"seq{i} state " + x) # noqa: B023

View File

@ -371,8 +371,8 @@ def test_fused_moe_wn16(m: int, n: int, k: int, e: int, topk: int,
@pytest.mark.parametrize(
"use_rocm_aiter", [True, False] if current_platform.is_rocm() else [False])
@torch.inference_mode()
def test_mixtral_moe(dtype: torch.dtype, padding: bool, use_rocm_aiter: bool,
monkeypatch):
def test_mixtral_moe(dist_init, dtype: torch.dtype, padding: bool,
use_rocm_aiter: bool, monkeypatch):
"""Make sure our Mixtral MoE implementation agrees with the one from
huggingface."""

View File

@ -2,6 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
from vllm._custom_ops import scaled_fp4_quant
from vllm.scalar_type import scalar_types
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
@ -65,3 +66,10 @@ def break_fp4_bytes(a, dtype):
# Reshape to final form
return values.reshape(m, n * 2).to(dtype=dtype)
def quant_nvfp4_tensor(a: torch.Tensor):
a_global_scale = ((FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) /
torch.abs(a).max().to(torch.float32))
a_quant, a_block_scale = scaled_fp4_quant(a, a_global_scale)
return a_quant, a_block_scale, a_global_scale

View File

@ -8,8 +8,7 @@ from vllm.model_executor.layers.activation import SiluAndMul
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
if not (current_platform.has_device_capability(100)
and hasattr(torch.ops._C, "silu_and_mul_nvfp4_quant")):
if not current_platform.has_device_capability(100):
pytest.skip(reason="Nvfp4 Requires compute capability of 10 or above.",
allow_module_level=True)

View File

@ -2,6 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import math
import random
from typing import Optional
import pytest
import torch
@ -14,14 +15,20 @@ from vllm.triton_utils import triton
def cal_diff(x: torch.Tensor,
y: torch.Tensor,
name: str,
use_fp8: bool = False) -> None:
use_fp8: bool = False,
diff_threshold: Optional[float] = None) -> None:
x, y = x.double(), y.double()
cos_diff = 1 - 2 * (x * y).sum().item() / max(
(x * x + y * y).sum().item(), 1e-12)
if (use_fp8):
assert cos_diff < 1e-4
if diff_threshold is not None:
# directly compare the cos_diff with the threshold
assert cos_diff < diff_threshold
else:
assert cos_diff < 1e-5
# use the default threshold
if (use_fp8):
assert cos_diff < 1e-4
else:
assert cos_diff < 1e-5
CUTLASS_MLA_UNSUPPORTED_REASON = \
@ -118,11 +125,13 @@ def test_cutlass_mla_decode(b, s_q, mean_sk, h_q, h_kv, d, dv, block_size,
dtype=torch.uint8)
out_ans = torch.empty(b, MAX_HEADS, dv, dtype=init_dtype)
ops.sm100_cutlass_mla_decode(out_ans, q_nope, q_pe, kv_cache_flat,
cache_seqlens, block_table, workspace,
scale, 1)
return out_ans[:, :h_q].contiguous()
output_lse = torch.empty((b, MAX_HEADS),
dtype=torch.float32,
device=q_nope.device)
ops.sm100_cutlass_mla_decode(out_ans, output_lse, q_nope, q_pe,
kv_cache_flat, cache_seqlens, block_table,
workspace, scale, 1)
return out_ans[:, :h_q].contiguous(), output_lse[:, :h_q].contiguous()
def scaled_dot_product_attention(query, key, value, is_causal=False):
query = query.float()
@ -165,11 +174,14 @@ def test_cutlass_mla_decode(b, s_q, mean_sk, h_q, h_kv, d, dv, block_size,
lse[i] = lse_i
return out, lse
out_cutlass = cutlass_mla()
out_cutlass, lse_cutlass = cutlass_mla()
out_torch, lse_torch = ref_mla()
# Extract the single token (s_q=1) slice to match cutlass output shape
out_torch_slice = out_torch[:, 0, :, :] # [b, h_q, dv]
lse_torch_slice = lse_torch[:, 0, :] # [b, h_q]
cal_diff(out_cutlass, out_torch_slice, "out", use_fp8)
# lse has larger numerical error, so use a larger threshold
cal_diff(lse_cutlass, lse_torch_slice, "lse", use_fp8, diff_threshold=1e-3)
t = triton.testing.do_bench(cutlass_mla)
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2

View File

@ -60,9 +60,9 @@ DEVICES = ([
# prefill stage(True) or decode stage(False)
STAGES = [True, False]
NUM_RANDOM_SEEDS = 6
NUM_RANDOM_SEEDS = 2
VOCAB_PARALLEL_EMBEDDING_TEST_NUM_RANDOM_SEEDS = 128
VOCAB_PARALLEL_EMBEDDING_TEST_NUM_RANDOM_SEEDS = 2
@pytest.fixture(autouse=True)

View File

@ -10,7 +10,8 @@ import numpy as np
import pytest
import requests
from tests.models.utils import EmbedModelInfo, RerankModelInfo
from tests.models.utils import (EmbedModelInfo, RerankModelInfo,
check_embeddings_close)
# Most embedding models on the STS12 task (See #17175):
# - Model implementation and minor changes in tensor dtype
@ -163,12 +164,14 @@ def mteb_test_embed_models(hf_runner,
model_info: EmbedModelInfo,
vllm_extra_kwargs=None,
hf_model_callback=None,
atol=MTEB_RERANK_TOL):
atol=MTEB_EMBED_TOL):
if not model_info.enable_test:
# A model family has many models with the same architecture,
# and we don't need to test each one.
pytest.skip("Skipping test.")
example_prompts = ["The chef prepared a delicious meal."]
vllm_extra_kwargs = vllm_extra_kwargs or {}
vllm_extra_kwargs["dtype"] = model_info.dtype
@ -191,6 +194,7 @@ def mteb_test_embed_models(hf_runner,
vllm_main_score = run_mteb_embed_task(VllmMtebEncoder(vllm_model),
MTEB_EMBED_TASKS)
vllm_dtype = vllm_model.llm.llm_engine.model_config.dtype
vllm_outputs = vllm_model.embed(example_prompts)
if model_info.mteb_score is None:
with hf_runner(model_info.name,
@ -202,6 +206,16 @@ def mteb_test_embed_models(hf_runner,
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
st_dtype = next(hf_model.model.parameters()).dtype
# Test embed_dims and whether to use normalize
hf_outputs = hf_model.encode(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
else:
st_main_score = model_info.mteb_score
st_dtype = "Constant"

View File

@ -2,7 +2,8 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from ...utils import CLSPoolingEmbedModelInfo, EmbedModelInfo
from ...utils import (CLSPoolingEmbedModelInfo, EmbedModelInfo,
LASTPoolingEmbedModelInfo)
from .mteb_utils import mteb_test_embed_models
# ST models with projector (Dense) layers
@ -13,6 +14,10 @@ ST_PROJECTOR_MODELS = [
mteb_score=0.688611955,
enable_test=True,
),
LASTPoolingEmbedModelInfo("google/embeddinggemma-300m",
architecture="Gemma3TextModel",
mteb_score=0.7473819294684156,
enable_test=True)
]

View File

@ -187,27 +187,19 @@ def test_chat(vllm_runner, max_model_len: int, model: str, dtype: str,
name_1="output")
@pytest.fixture
def prompt(request, local_asset_server) -> TextPrompt:
names = request.param
urls = [local_asset_server.url_for(n) for n in names]
return _create_engine_inputs_hf(urls)
@pytest.mark.parametrize(
"prompt,expected_ranges",
[
pytest.param(IMG_URLS[:1], [PlaceholderRange(offset=11, length=494)]),
pytest.param(IMG_URLS[1:4], [
PlaceholderRange(offset=11, length=266),
PlaceholderRange(offset=277, length=1056),
PlaceholderRange(offset=1333, length=418)
])
],
)
def test_multi_modal_placeholders(vllm_runner, prompt: TextPrompt,
"image_urls,expected_ranges",
[(IMG_URLS[:1], [PlaceholderRange(offset=11, length=494)]),
(IMG_URLS[1:4], [
PlaceholderRange(offset=11, length=266),
PlaceholderRange(offset=277, length=1056),
PlaceholderRange(offset=1333, length=418)
])])
def test_multi_modal_placeholders(vllm_runner, image_urls: list[str],
expected_ranges: list[PlaceholderRange],
monkeypatch) -> None:
local_asset_server, monkeypatch) -> None:
local_image_urls = [local_asset_server.url_for(u) for u in image_urls]
prompt = _create_engine_inputs_hf(local_image_urls)
# This placeholder checking test only works with V0 engine
# where `multi_modal_placeholders` is returned with `RequestOutput`

View File

@ -42,7 +42,7 @@ def run_test(
tensor_parallel_size: int = 1,
vllm_embeddings: Optional[torch.Tensor] = None,
):
"""Modality agnostic test test executor for comparing HF/vLLM outputs."""
"""Modality agnostic test executor for comparing HF/vLLM outputs."""
# In the case of embeddings, vLLM takes separate input tensors
vllm_inputs = vllm_embeddings if vllm_embeddings is not None else inputs

View File

@ -285,7 +285,6 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
"MistralForCausalLM": _HfExamplesInfo("mistralai/Mistral-7B-Instruct-v0.1"),
"MixtralForCausalLM": _HfExamplesInfo("mistralai/Mixtral-8x7B-Instruct-v0.1", # noqa: E501
{"tiny": "TitanML/tiny-mixtral"}), # noqa: E501
"QuantMixtralForCausalLM": _HfExamplesInfo("mistral-community/Mixtral-8x22B-v0.1-AWQ"), # noqa: E501
"MptForCausalLM": _HfExamplesInfo("mpt", is_available_online=False),
"MPTForCausalLM": _HfExamplesInfo("mosaicml/mpt-7b"),
"NemotronForCausalLM": _HfExamplesInfo("nvidia/Minitron-8B-Base"),
@ -352,6 +351,7 @@ _EMBEDDING_EXAMPLE_MODELS = {
# [Text-only]
"BertModel": _HfExamplesInfo("BAAI/bge-base-en-v1.5"),
"Gemma2Model": _HfExamplesInfo("BAAI/bge-multilingual-gemma2"), # noqa: E501
"Gemma3TextModel": _HfExamplesInfo("google/embeddinggemma-300m"),
"GritLM": _HfExamplesInfo("parasail-ai/GritLM-7B-vllm"),
"GteModel": _HfExamplesInfo("Snowflake/snowflake-arctic-embed-m-v2.0",
trust_remote_code=True),
@ -382,7 +382,7 @@ _EMBEDDING_EXAMPLE_MODELS = {
"Phi3VForCausalLM": _HfExamplesInfo("TIGER-Lab/VLM2Vec-Full",
trust_remote_code=True),
"Qwen2VLForConditionalGeneration": _HfExamplesInfo("MrLight/dse-qwen2-2b-mrl-v1"), # noqa: E501
"PrithviGeoSpatialMAE": _HfExamplesInfo("mgazz/Prithvi-EO-2.0-300M-TL-Sen1Floods11", # noqa: E501
"PrithviGeoSpatialMAE": _HfExamplesInfo("ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11", # noqa: E501
dtype=torch.float16,
enforce_eager=True,
skip_tokenizer_init=True,
@ -390,7 +390,7 @@ _EMBEDDING_EXAMPLE_MODELS = {
# going OOM in CI
max_num_seqs=32,
),
"Terratorch": _HfExamplesInfo("mgazz/Prithvi-EO-2.0-300M-TL-Sen1Floods11",
"Terratorch": _HfExamplesInfo("ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11", # noqa: E501
dtype=torch.float16,
enforce_eager=True,
skip_tokenizer_init=True,

View File

@ -11,7 +11,7 @@ from vllm.utils import set_default_torch_num_threads
@pytest.mark.parametrize(
"model",
[
"mgazz/Prithvi-EO-2.0-300M-TL-Sen1Floods11",
"ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11",
"mgazz/Prithvi_v2_eo_300_tl_unet_agb"
],
)

View File

@ -1,43 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
import torch.nn.functional as F
from vllm.model_executor.layers.activation import FastGELU, SiluAndMul
from vllm.platforms import current_platform
@pytest.mark.parametrize("activation", ["silu_and_mul", "gelu_fast"])
@pytest.mark.parametrize("num_tokens,d,dtype", [
(7, 512, torch.half),
(7, 512, torch.float),
(83, 512, torch.half),
])
@torch.inference_mode()
def test_act_and_mul(
activation: str,
num_tokens: int,
d: int,
dtype: torch.dtype,
) -> None:
import torch_xla.core.xla_model as xm
device = xm.xla_device()
current_platform.seed_everything(0)
torch.set_default_device("cpu")
x = torch.randn(num_tokens, 2 * d, dtype=dtype).to(device=device)
if activation == "silu_and_mul":
layer = SiluAndMul()
fn = layer.forward_native
elif activation == "gelu_fast":
layer = FastGELU()
fn = F.gelu
else:
raise NotImplementedError(
f"activation {activation} is not implemented.")
assert x.is_xla, "input tensor under testing is expected to be XLA tensor."
out = layer.to(device=device).forward_neuron(x)
ref_out = fn(x.cpu())
torch.testing.assert_close(out.cpu(), ref_out, atol=0.01, rtol=0.0)

View File

@ -1,154 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import neuronxcc.nki.language as nl
import pytest
import torch
import torch.nn.functional as F
from neuronxcc import nki
from vllm.attention.ops.nki_flash_attn import (
load_block_tables, transform_block_tables_for_indirect_load)
def is_power_of_2(n):
return n > 0 and (n & (n - 1) == 0)
def nki_load_and_transform_block_tables(
block_tables,
num_tiles,
num_blocks_per_tile,
num_head,
head_id,
block_size_tiling_factor,
):
assert is_power_of_2(
num_blocks_per_tile), f"{num_blocks_per_tile=} must be power of 2"
block_tables_sbuf = load_block_tables(block_tables, num_tiles,
num_blocks_per_tile)
# we need to pass an Index as head_id
head_id = nl.arange(1)[None, :] + head_id
block_tables_transposed = transform_block_tables_for_indirect_load(
block_tables_sbuf, block_size_tiling_factor, num_head, head_id)
B_P_SIZE = 128
assert block_tables_transposed.shape[1] == B_P_SIZE
out = nl.ndarray(
block_tables_transposed.shape,
dtype=nl.int32,
buffer=nl.shared_hbm,
)
for i in nl.affine_range(block_tables_transposed.shape[0]):
nl.store(dst=out[i], value=block_tables_transposed[i])
return out
def ref_block_tables_transform(
block_tables,
num_tiles,
num_blocks_per_tile,
num_head,
head_id,
block_size_tiling_factor,
):
assert block_tables.numel() == num_tiles * num_blocks_per_tile
block_tables = block_tables.view(num_tiles, num_blocks_per_tile)
B_F_SIZE = 128
num_tiles_padded = (num_tiles + B_F_SIZE - 1) // B_F_SIZE * B_F_SIZE
block_tables = F.pad(
block_tables,
(0, 0, 0, num_tiles_padded - num_tiles),
"constant",
0,
)
block_tables = block_tables * num_head + head_id
block_tables = block_tables.view(num_tiles_padded, num_blocks_per_tile, 1)
offset = torch.arange(0, block_size_tiling_factor).view(1, 1, -1)
block_tables = block_tables * block_size_tiling_factor + offset
block_tables_transposed = block_tables.view(num_tiles_padded, -1).t()
num_blocks_per_tile = block_tables_transposed.shape[0]
assert num_blocks_per_tile % B_F_SIZE == 0
return block_tables_transposed.view(num_blocks_per_tile // B_F_SIZE,
B_F_SIZE, num_tiles_padded)
@pytest.mark.parametrize(
"q_head_per_kv_head,head_id",
[
(1, 0),
(3, 1),
],
)
@pytest.mark.parametrize(
"num_tiles,num_blocks_per_tile",
[
(1, 1),
(13, 16),
(17, 128),
(35, 512),
(128, 128),
(130, 64),
(280, 256),
(315, 1),
],
)
@torch.inference_mode()
def test_load_and_transform_block_tables(
monkeypatch: pytest.MonkeyPatch,
num_tiles,
num_blocks_per_tile,
q_head_per_kv_head,
head_id,
) -> None:
import torch_xla.core.xla_model as xm
device = xm.xla_device()
compiler_flags_str = " ".join([
"-O1",
"--retry_failed_compilation",
])
with monkeypatch.context() as m:
m.setenv("NEURON_CC_FLAGS", compiler_flags_str)
torch.manual_seed(10000)
torch.set_printoptions(sci_mode=False)
# On Neuron, we need B_P_SIZE = 128 blocks to make DMA efficient
B_P_SIZE = 128
if num_blocks_per_tile < B_P_SIZE:
assert B_P_SIZE % num_blocks_per_tile == 0
block_size_tiling_factor = B_P_SIZE // num_blocks_per_tile
else:
block_size_tiling_factor = 1
max_num_blocks = 100000
block_tables = torch.randint(
0,
max_num_blocks,
(num_tiles * num_blocks_per_tile, ),
dtype=torch.int32,
)
nki_out = nki.jit(nki_load_and_transform_block_tables)[1, 1](
block_tables.to(device=device),
num_tiles,
num_blocks_per_tile,
q_head_per_kv_head,
head_id,
block_size_tiling_factor,
).cpu()
ref_out = ref_block_tables_transform(
block_tables,
num_tiles,
num_blocks_per_tile,
q_head_per_kv_head,
head_id,
block_size_tiling_factor,
)
assert (nki_out.shape == ref_out.shape
), f"{nki_out.shape=} != {ref_out.shape=}"
assert torch.all(nki_out == ref_out)

View File

@ -1,86 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from vllm.attention.ops.nki_flash_attn import reshape_and_cache
@pytest.mark.parametrize(
"num_tokens, n_kv_head, d_head, num_blocks, block_size",
[
# Small model configuration (e.g., GPT-2 small)
(32, 12, 64, 4, 128), # Typical sequence processing
(1, 12, 64, 4, 128), # Single token update
(128, 12, 64, 4, 128), # Longer sequence
# Medium model configuration (e.g., GPT-2 medium)
(64, 16, 96, 8, 256), # Standard batch
(256, 16, 96, 8, 256), # Large batch
# Large model configuration (e.g., GPT-3 style)
(48, 32, 128, 16, 512), # Typical processing window
(512, 32, 128, 16, 512), # Full context window
# Edge cases and stress tests
(1024, 8, 32, 32, 32), # Many tokens, small heads
(16, 64, 256, 4, 64), # Few tokens, many heads
(2048, 24, 128, 64, 128), # Large scale test
# Minimal configurations for debugging
(4, 2, 16, 2, 16), # Tiny test case
(1, 1, 8, 1, 8), # Minimal possible
])
def test_reshape_and_cache(num_tokens, n_kv_head, d_head, num_blocks,
block_size):
# Set random seed for reproducibility
torch.manual_seed(42)
# Create CPU tensors for reference implementation
key_cpu = torch.randn(num_tokens, n_kv_head, d_head) / torch.sqrt(
torch.tensor(d_head))
value_cpu = torch.randn(num_tokens, n_kv_head, d_head) / torch.sqrt(
torch.tensor(d_head))
key_cache_cpu = torch.zeros(num_blocks, n_kv_head, block_size, d_head)
value_cache_cpu = torch.zeros(num_blocks, n_kv_head, block_size, d_head)
slot_mapping_cpu = torch.randperm(num_blocks * block_size)[:num_tokens]
# Run reference implementation on CPU
block_indices = torch.div(slot_mapping_cpu,
block_size,
rounding_mode="floor")
block_offsets = slot_mapping_cpu % block_size
for i in range(num_tokens):
block_idx = block_indices[i]
block_offset = block_offsets[i]
key_cache_cpu[block_idx, :, block_offset, :] = key_cpu[i]
value_cache_cpu[block_idx, :, block_offset, :] = value_cpu[i]
# Create XLA device tensors
device = torch.device('xla')
key = key_cpu.to(device)
value = value_cpu.to(device)
key_cache = torch.zeros_like(key_cache_cpu, device=device)
value_cache = torch.zeros_like(value_cache_cpu, device=device)
slot_mapping = slot_mapping_cpu.to(device)
kv_cache = torch.stack([key_cache, value_cache])
# Run vectorized implementation on XLA device
reshape_and_cache(key, value, kv_cache, slot_mapping)
key_cache, value_cache = torch.unbind(kv_cache, dim=0)
# Move results back to CPU for comparison
key_cache_result = key_cache.cpu()
value_cache_result = value_cache.cpu()
# Assert results match
torch.testing.assert_close(key_cache_result,
key_cache_cpu,
rtol=1e-5,
atol=1e-5)
torch.testing.assert_close(value_cache_result,
value_cache_cpu,
rtol=1e-5,
atol=1e-5)

View File

@ -1,57 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.platforms import current_platform
@pytest.mark.parametrize("num_tokens,hidden_size,add_residual,dtype", [
(7, 8, False, torch.half),
(83, 768, False, torch.half),
(83, 768, True, torch.half),
(83, 768, True, torch.bfloat16),
(83, 768, True, torch.float32),
])
@torch.inference_mode()
def test_rms_norm(
num_tokens: int,
hidden_size: int,
add_residual: bool,
dtype: torch.dtype,
) -> None:
import torch_xla.core.xla_model as xm
device = xm.xla_device()
current_platform.seed_everything(0)
torch.set_default_device("cpu")
layer = RMSNorm(hidden_size).to(dtype=dtype)
layer.weight.data.normal_(mean=1.0, std=0.1)
scale = 1 / (2 * hidden_size)
x = torch.randn(num_tokens, hidden_size, dtype=dtype).to(device=device)
x *= scale
residual = torch.randn_like(x) * scale if add_residual else None
residual_cpu = residual.cpu() if add_residual else None
ref_out = layer.to(device="cpu").forward_native(x.cpu(), residual_cpu)
assert x.is_xla, "input tensor under testing is expected to be XLA tensor."
out = layer.to(device=device)(x, residual)
# NOTE(woosuk): LayerNorm operators (including RMS) typically have larger
# numerical errors than other operators because they involve reductions.
# Therefore, we use a larger tolerance.
if add_residual:
assert out[0].is_xla, "output tensor is expected to be XLA tensor"
torch.testing.assert_close(out[0].cpu(),
ref_out[0],
atol=1e-2,
rtol=1e-2)
torch.testing.assert_close(out[1].cpu(),
ref_out[1],
atol=1e-2,
rtol=1e-2)
else:
assert out.is_xla, "output tensor is expected to be XLA tensor"
torch.testing.assert_close(out.cpu(), ref_out, atol=1e-2, rtol=1e-2)

View File

@ -1,95 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import random
from unittest.mock import patch
import pytest
import torch
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.utils import set_random_seed
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
from vllm.utils import is_pin_memory_available
class MockLogitsProcessor(LogitsProcessor):
def __init__(self, vocab_size: int, scale: float,
fake_logits: torch.Tensor):
super().__init__(vocab_size=vocab_size, scale=scale)
self.fake_logits = fake_logits.clone()
def forward(self, *args, **kwargs):
with patch(
"vllm.model_executor.layers.logits_processor._prune_hidden_states",
lambda x, y: x
), patch(
"vllm.model_executor.layers.logits_processor.LogitsProcessor._get_logits",
lambda *args, **kwargs: self.fake_logits):
return super().forward(*args, **kwargs)
def _prepare_test(
batch_size: int
) -> tuple[torch.Tensor, torch.Tensor, MockLogitsProcessor]:
vocab_size = 32000
input_tensor = torch.rand((batch_size, 1024), dtype=torch.float16)
fake_logits = torch.full((batch_size, vocab_size),
1e-2,
dtype=input_tensor.dtype)
logits_processor = MockLogitsProcessor(32000, 0.5, fake_logits)
return input_tensor, fake_logits, logits_processor
RANDOM_SEEDS = list(range(8))
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_logits_processors(seed: int):
import torch_xla.core.xla_model as xm
device = xm.xla_device()
set_random_seed(seed)
torch.set_default_device("cpu")
batch_size = random.randint(1, 256)
input_tensor, fake_logits, logits_processor = _prepare_test(batch_size)
# This sample logits processor gives infinite score to the i-th token,
# where i is the length of the input sequence.
# We therefore expect the output token sequence to be [0, 1, 2, ...]
def pick_ith(token_ids, logits):
logits[len(token_ids)] = float("inf")
return logits
seq_group_metadata_list = []
seq_lens = []
for i in range(batch_size):
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData.from_seqs([1, 2, 3])},
sampling_params=SamplingParams(temperature=0,
logits_processors=[pick_ith]),
block_tables={0: [1]},
))
seq_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len())
sampling_metadata = SamplingMetadata.prepare(
seq_group_metadata_list,
seq_lens,
query_lens=seq_lens,
device=device,
pin_memory=is_pin_memory_available())
logits_processor_output = logits_processor(
lm_head=None,
hidden_states=input_tensor,
sampling_metadata=sampling_metadata)
fake_logits *= logits_processor.scale
torch.testing.assert_close(logits_processor_output[:, 1],
fake_logits[:, 1],
rtol=1e-4,
atol=0.0)

View File

@ -1,127 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from unittest.mock import MagicMock
from vllm.config import VllmConfig
from vllm.engine.arg_utils import EngineArgs
from vllm.platforms import current_platform
from vllm.platforms.neuron import NeuronFramework
from vllm.sampling_params import SamplingParams
from vllm.sequence import SequenceData, SequenceGroupMetadata
from vllm.worker.neuron_model_runner import NeuronModelRunner
os.environ[
'VLLM_NEURON_FRAMEWORK'] = NeuronFramework.TRANSFORMERS_NEURONX.value
def _create_neuron_model_runner(model: str, *args,
**kwargs) -> NeuronModelRunner:
engine_args = EngineArgs(model, *args, **kwargs)
engine_config = engine_args.create_engine_config()
vllm_config = VllmConfig(
model_config=engine_config.model_config,
parallel_config=engine_config.parallel_config,
scheduler_config=engine_config.scheduler_config,
device_config=engine_config.device_config,
)
neuron_model_runner = NeuronModelRunner(vllm_config=vllm_config)
return neuron_model_runner
def test_update_neuron_sampling_params_not_full_batch():
os.environ["NEURON_ON_DEVICE_SAMPLING_DISABLED"] = "0"
model_runner = _create_neuron_model_runner(
"facebook/opt-125m",
seed=0,
dtype="float16",
max_num_seqs=2,
)
assert not model_runner._on_device_sampling_disabled
# Test sampling param updating only when TNx is framework
# NxDI handles sampling parameter updating inside model
if current_platform.use_transformers_neuronx():
model_mock = MagicMock()
model_runner.model = model_mock
seq_group_metadata_list = [
SequenceGroupMetadata(
request_id="test_0",
is_prompt=True,
seq_data={0: SequenceData.from_seqs([1, 2, 3])},
sampling_params=SamplingParams(temperature=0.5,
top_k=1,
top_p=0.5),
block_tables={0: [1]},
)
]
model_runner.prepare_model_input(seq_group_metadata_list)
# Index neuron sampling parameters based on block_tables indices.
# The first block_id of the sequence 0 is 1, so its parameters are
# placed at index 1. So the sampling parameters will be:
# Index 0: default sampling parameters
# Index 1: sequecne 0's sampling parameters.
neuron_sampling_params = (
model_runner.model_config.neuron_sampling_params)
assert neuron_sampling_params.temperature == [1.0, 0.5]
assert neuron_sampling_params.top_k == [
model_runner._MAX_NEURON_SAMPLING_TOP_K, 1
]
assert neuron_sampling_params.top_p == [1.0, 0.5]
model_mock.model.update_generation_config.assert_called_once_with(
neuron_sampling_params)
def test_update_neuron_sampling_params_full_batch():
os.environ["NEURON_ON_DEVICE_SAMPLING_DISABLED"] = "0"
model_runner = _create_neuron_model_runner(
"facebook/opt-125m",
seed=0,
dtype="float16",
max_num_seqs=2,
)
assert not model_runner._on_device_sampling_disabled
# Test sampling param updating only when TNx is framework
# NxDI handles sampling parameter updating inside model
if current_platform.use_transformers_neuronx():
model_mock = MagicMock()
model_runner.model = model_mock
seq_group_metadata_list = [
SequenceGroupMetadata(
request_id="test_0",
is_prompt=True,
seq_data={0: SequenceData.from_seqs([1, 2, 3])},
sampling_params=SamplingParams(temperature=0.5,
top_k=1,
top_p=0.5),
block_tables={0: [1]},
),
SequenceGroupMetadata(
request_id="test_0",
is_prompt=True,
seq_data={1: SequenceData.from_seqs([4, 5, 6])},
sampling_params=SamplingParams(temperature=0.2,
top_k=2,
top_p=0.2),
block_tables={1: [0]},
)
]
model_runner.prepare_model_input(seq_group_metadata_list)
# Index neuron sampling parameters based on block_tables indices.
# The first block_id of the sequence 0 is 1, so its parameters are
# placed at index 1. So the sampling parameters will be:
# Index 0: sequence 1's sampling parameters
# Index 1: sequecne 0's sampling parameters.
neuron_sampling_params = (
model_runner.model_config.neuron_sampling_params)
assert neuron_sampling_params.temperature == [0.2, 0.5]
assert neuron_sampling_params.top_k == [2, 1]
assert neuron_sampling_params.top_p == [0.2, 0.5]
model_mock.model.update_generation_config.assert_called_once_with(
neuron_sampling_params)

View File

@ -1,12 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.model_executor.layers.quantization.neuron_quant import (
NeuronQuantConfig)
def test_get_supported_act_dtypes():
neuron_quant_config = NeuronQuantConfig()
supported_act_dtypes = neuron_quant_config.get_supported_act_dtypes()
target_list = ["any_dtype1", "any_dtype2"]
for dtype in target_list:
assert dtype in supported_act_dtypes

View File

@ -1,514 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
import pytest
import torch
import torch.nn.functional as F
from vllm.utils import cdiv
class BlockDiagonalCausalFromBottomRightMask:
@staticmethod
def _from_seqlens(query_lens, seq_lens, block_size=None):
from torch import logical_and, logical_or
contexted = block_size is None
context_lens = torch.tensor(seq_lens) - torch.tensor(query_lens)
n_queries = sum(query_lens)
num_seqs = len(query_lens)
if contexted:
key_lens_blockaligned = seq_lens
else:
n_blocks_per_seq = (context_lens + block_size - 1) // block_size
offset_per_seq = n_blocks_per_seq * block_size
key_lens_blockaligned = offset_per_seq[:num_seqs].tolist()
n_keys = sum(key_lens_blockaligned)
a = (torch.arange(n_queries).reshape(n_queries,
1).expand(n_queries, n_keys))
b = torch.arange(n_keys).reshape(1, n_keys).expand(n_queries, n_keys)
q_cumsum = torch.tensor([0] + query_lens).cumsum(dim=0)
k_cumsum = torch.tensor([0] + key_lens_blockaligned).cumsum(dim=0)
prior_mask = torch.zeros(n_queries, n_keys)
new_masks: list[torch.Tensor] = []
for seq_id in range(num_seqs):
ri = q_cumsum[seq_id]
ci = k_cumsum[seq_id]
nr = query_lens[seq_id]
if contexted:
nc = seq_lens[seq_id]
a_offset = ci + nc - ri - nr
new_mask = (a + a_offset) >= b
else:
nc = context_lens[seq_id]
a_offset = ci + nc - 1
new_mask = a_offset >= b
left_mask = b >= ci
top_mask = a >= ri
bottom_mask = a < (ri + nr)
new_mask = logical_and(
logical_and(logical_and(new_mask, left_mask), top_mask),
bottom_mask,
)
prior_mask = logical_or(prior_mask, new_mask)
new_masks = new_masks + [new_mask]
return prior_mask
@staticmethod
def from_seqlens(query_lens, seq_lens, block_size=None):
contexted = block_size is None
if contexted:
prior_mask = BlockDiagonalCausalFromBottomRightMask._from_seqlens(
query_lens, seq_lens)
active_mask = None
else:
prior_mask = BlockDiagonalCausalFromBottomRightMask._from_seqlens(
query_lens, seq_lens, block_size)
active_mask = BlockDiagonalCausalFromBottomRightMask._from_seqlens(
query_lens, query_lens)
return prior_mask, active_mask
def ref_softmax(x: torch.Tensor,
dim: int,
mixed_precision=False,
return_max_reduce=False):
max_value = torch.amax(x, dim=dim, keepdims=True)
exp = torch.exp(x - max_value)
if mixed_precision:
sum_value = torch.sum(exp.astype(torch.float32),
dim=dim,
keepdims=True).astype(x.dtype)
else:
sum_value = torch.sum(exp, dim=dim, keepdims=True)
if return_max_reduce:
return exp / sum_value, max_value, torch.reciprocal(sum_value)
return exp / sum_value
def ref_masked_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
attn_mask: Optional[torch.Tensor] = None,
return_max_reduce: Optional[bool] = False,
) -> torch.Tensor:
scaled_qk = scale * torch.einsum("qhd,khd->hqk", query, key).float()
if attn_mask is not None:
masked_score = scaled_qk + attn_mask.float()
if return_max_reduce:
norm_score, cached_max, cached_sum_reciprocal = ref_softmax(
masked_score, dim=-1, return_max_reduce=True)
else:
norm_score = ref_softmax(masked_score, dim=-1)
out = torch.einsum("hqk,khd->qhd", norm_score.to(value.dtype), value)
if return_max_reduce:
return (
out,
cached_max,
cached_sum_reciprocal,
norm_score,
masked_score,
scaled_qk,
)
else:
return (out, )
def ref_context_attention(
query,
key,
value,
query_lens,
seq_lens,
head_size,
num_queries_per_kv,
return_max_reduce=False,
):
scale = float(1.0 / (head_size**0.5))
if num_queries_per_kv > 1:
# Handle MQA and GQA
key = torch.repeat_interleave(key, num_queries_per_kv, dim=1)
value = torch.repeat_interleave(value, num_queries_per_kv, dim=1)
attn_mask, _ = BlockDiagonalCausalFromBottomRightMask.from_seqlens(
query_lens, seq_lens)
# convert binary mask to -inf values
attn_mask = torch.logical_not(attn_mask)
attn_mask = attn_mask.float() * -30000
output, *debug_tensors = ref_masked_attention(
query,
key,
value,
scale,
attn_mask,
return_max_reduce=return_max_reduce,
)
output = output.unsqueeze(1)
if return_max_reduce:
cached_max, cached_sum_reciprocal, lse, masked_score, scaled_qk = (
debug_tensors)
return (
output,
cached_max,
cached_sum_reciprocal,
lse,
masked_score,
scaled_qk,
)
else:
return output
def sample_inputs(
prefill_batch_size,
decode_batch_size,
min_query_len,
max_query_len,
min_ctx_len,
max_ctx_len,
block_size,
num_heads,
num_kv_heads,
head_size,
dtype,
):
batch_size = prefill_batch_size + decode_batch_size
max_model_len = (max_query_len + max_ctx_len) * 4
max_block_per_request = max_model_len // block_size
cache_size = (batch_size * max_block_per_request) + 2
prefill_ctx_lens = torch.randint(min_ctx_len,
max_ctx_len + 1, (prefill_batch_size, ),
dtype=torch.long).tolist()
decode_ctx_lens = torch.randint(min_ctx_len,
max_ctx_len + 1, (decode_batch_size, ),
dtype=torch.long).tolist()
ctx_lens = prefill_ctx_lens + decode_ctx_lens
query_lens = torch.randint(
min_query_len,
max_query_len + 1,
(prefill_batch_size, ),
dtype=torch.long,
).tolist() + [1 for _ in range(decode_batch_size)]
seq_lens = [a + b for a, b in zip(query_lens, ctx_lens)]
num_tokens = sum(query_lens)
query = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
query.uniform_(-1, 1)
torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
kv = torch.empty(sum(seq_lens), 2, num_kv_heads, head_size, dtype=dtype)
kv.uniform_(-1, 1)
key, value = kv.unbind(dim=1)
k_cache = torch.zeros(cache_size,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
v_cache = torch.zeros(cache_size,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
k = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
v = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
values = torch.arange(0, cache_size, dtype=torch.long)
values = values[torch.randperm(cache_size)]
block_table = values[:batch_size * max_block_per_request].view(
batch_size, max_block_per_request)
b_ctx_len = torch.tensor(ctx_lens, dtype=torch.long)
b_start_loc = torch.cumsum(torch.tensor([0] + query_lens[:-1],
dtype=torch.long),
dim=0)
# copy kv to cache
b_seq_start_loc = torch.cumsum(torch.tensor([0] + seq_lens[:-1],
dtype=torch.long),
dim=0)
for i in range(batch_size):
for j in range(query_lens[i]):
k[b_start_loc[i] + j].copy_(key[b_seq_start_loc[i] + b_ctx_len[i] +
j])
v[b_start_loc[i] + j].copy_(value[b_seq_start_loc[i] +
b_ctx_len[i] + j])
cur_ctx = 0
block_id = 0
while cur_ctx < b_ctx_len[i]:
start_loc = b_seq_start_loc[i] + cur_ctx
if cur_ctx + block_size > b_ctx_len[i]:
end_loc = b_seq_start_loc[i] + b_ctx_len[i]
else:
end_loc = start_loc + block_size
start_slot = block_table[i, block_id] * block_size
end_slot = start_slot + end_loc - start_loc
k_cache.view(-1, num_kv_heads,
head_size)[start_slot:end_slot].copy_(
key[start_loc:end_loc])
v_cache.view(-1, num_kv_heads,
head_size)[start_slot:end_slot].copy_(
value[start_loc:end_loc])
cur_ctx += block_size
block_id += 1
kv_cache = torch.stack([k_cache, v_cache])
return (
query,
k,
v,
kv_cache,
block_table,
key,
value,
query_lens,
seq_lens,
)
def get_active_block_tables(block_tables, query_lens, seq_lens, block_size,
num_blocks):
context_lens = seq_lens - query_lens
blocks_per_seq = (context_lens + block_size - 1) // block_size
num_seqs = len(seq_lens)
active_blocks: list[int] = []
for seq_id in range(num_seqs):
active_blocks = (
active_blocks +
block_tables[seq_id, :blocks_per_seq[seq_id]].tolist())
return F.pad(
torch.tensor(active_blocks, dtype=torch.int32),
(0, num_blocks - len(active_blocks)),
"constant",
0,
)
@pytest.mark.parametrize(
"prefill_batch_size,decode_batch_size,block_size,large_tile_size,num_heads,num_queries_per_kv,head_size,mixed_precision",
[
# Test minimal configurations (small block size)
(1, 199, 1, 512, 4, 2, 8, False
), # minimal block size, small dimensions
(1, 199, 1, 512, 4, 2, 8, True), # same with mixed precision
# Test common/medium configurations
(4, 12, 32, 2048, 32, 8, 64, False), # common case, larger heads
(4, 12, 32, 2048, 16, 4, 32,
True), # medium size, mixed precision, grouped-query attention (GQA)
# Test large configurations
(4, 12, 256, 8192, 8, 1, 128, False), # large blocks, large head size
(4, 12, 256, 8192, 64, 8, 64, True), # large blocks, many heads
# Test asymmetric configurations
(2, 24, 64, 4096, 12, 4, 96, False), # varied batch sizes
(8, 8, 128, 2048, 24, 2, 48, True), # balanced batches
# Test edge cases
(1, 128, 16, 1024, 4, 2, 16, False), # large decode batch
(16, 4, 8, 1024, 4, 2, 128, True), # large prefill batch
(4, 12, 32, 2048, 16, 1, 32, True), # multi-head attention (MHA)
(4, 12, 32, 2048, 16, 16, 32, True), # multi-query attention (MQA)
])
@torch.inference_mode()
def test_contexted_kv_attention(
monkeypatch: pytest.MonkeyPatch,
prefill_batch_size: int,
decode_batch_size: int,
num_heads: int,
num_queries_per_kv: int,
head_size: int,
block_size: int,
large_tile_size,
mixed_precision: bool,
) -> None:
import torch_xla.core.xla_model as xm
from vllm.attention.ops.nki_flash_attn import (flash_attn_varlen_nkifunc,
reorder_context_mask)
assert large_tile_size % block_size == 0
device = xm.xla_device()
compiler_flags_str = " ".join([
"-O1",
"--retry_failed_compilation",
])
with monkeypatch.context() as m:
m.setenv("NEURON_CC_FLAGS", compiler_flags_str)
torch.manual_seed(0)
torch.set_printoptions(sci_mode=False)
torch.set_default_device("cpu")
dtype = torch.float32
min_ctx_len = 32
max_ctx_len = 1024
min_query_len = 16
max_query_len = 512
num_kv_heads = num_heads // num_queries_per_kv
(
query,
k_active,
v_active,
kv_cache,
block_table,
key,
value,
query_lens,
seq_lens,
) = sample_inputs(
prefill_batch_size=prefill_batch_size,
decode_batch_size=decode_batch_size,
min_query_len=min_query_len,
max_query_len=max_query_len,
min_ctx_len=min_ctx_len,
max_ctx_len=max_ctx_len,
block_size=block_size,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
head_size=head_size,
dtype=dtype,
)
output_ref = ref_context_attention(
query,
key,
value,
query_lens,
seq_lens,
head_size,
num_queries_per_kv,
return_max_reduce=False,
)
# build neuron program
B_P_SIZE = 128
assert (large_tile_size >= B_P_SIZE
), f"Expect {large_tile_size=} to be larger than {B_P_SIZE=}"
def pad_to_multiple(a, b):
return cdiv(a, b) * b
def pad_to_next_power_of_2(a):
assert a > 0
return 2**int(a - 1).bit_length()
# calculate input shapes
max_num_queries = pad_to_next_power_of_2(sum(query_lens))
context_lens = torch.tensor(seq_lens) - torch.tensor(query_lens)
num_active_blocks = cdiv(context_lens, block_size).sum().item()
num_active_blocks = pad_to_multiple(num_active_blocks,
large_tile_size // block_size)
context_kv_len = num_active_blocks * block_size
assert (
context_kv_len %
large_tile_size == 0), f"invalid context_kv_len={context_kv_len}"
# pad QKV tensors
pad_dims = (
0,
0,
0,
0,
0,
max_num_queries - query.shape[0],
)
query = F.pad(query, pad_dims, "constant", 0)
k = F.pad(k_active, pad_dims, "constant", 0)
v = F.pad(v_active, pad_dims, "constant", 0)
# permute QKV tensors
# query: (1, n_heads, d, seq_q)
# key: (1, n_kv_heads, d, seq_k)
# value: (1, n_kv_heads, seq_v, d)
query = query.unsqueeze(0).permute(0, 2, 3, 1).contiguous()
k = k.unsqueeze(0).permute(0, 2, 3, 1).contiguous()
v = v.unsqueeze(0).permute(0, 2, 1, 3).contiguous()
kv_cache = kv_cache.permute(0, 1, 3, 2, 4).contiguous()
# transform block table
active_block_table = get_active_block_tables(
block_table.cpu(),
torch.tensor(query_lens).cpu(),
torch.tensor(seq_lens).cpu(),
block_size,
num_active_blocks,
)
# Build attention masks
prior_mask, active_mask = (
BlockDiagonalCausalFromBottomRightMask.from_seqlens(
query_lens, seq_lens, block_size=block_size))
prior_mask_padded = F.pad(
prior_mask,
(
0,
context_kv_len - prior_mask.shape[1],
0,
max_num_queries - prior_mask.shape[0],
),
"constant",
0,
).bool()
active_mask_padded = F.pad(
active_mask,
(
0,
max_num_queries - active_mask.shape[1],
0,
max_num_queries - active_mask.shape[0],
),
"constant",
0,
).bool()
attn_mask = torch.concat([prior_mask_padded, active_mask_padded],
dim=1)
attn_mask = reorder_context_mask(attn_mask, large_tile_size,
block_size)
input_args = (
query.to(device=device),
k.to(device=device),
v.to(device=device),
kv_cache.to(device=device),
active_block_table.to(device=device),
attn_mask.to(device=device),
)
input_kwargs = dict(
n_kv_head=num_kv_heads,
head_size=head_size,
mixed_precision=mixed_precision,
LARGE_TILE_SZ=large_tile_size,
)
output_nki = flash_attn_varlen_nkifunc(*input_args, **input_kwargs)
num_actual_tokens = sum(query_lens)
# - o: shape (bs, n_heads, seq_q, d) -> (bs, seq_q, n_heads, d)
output_nki = output_nki.cpu().permute(0, 2, 1, 3)
output_nki = output_nki[0, :num_actual_tokens, :, :]
output_ref_padded = F.pad(
output_ref,
(0, 0, 0, 0, 0, 0, 0, max_num_queries - output_ref.shape[0]),
"constant",
0,
)
output_ref = output_ref_padded.transpose(
0, 1)[0, :num_actual_tokens, :, :]
torch.testing.assert_close(output_nki, output_ref, atol=1e-2, rtol=0)

View File

@ -1,68 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Tests for miscellaneous utilities
"""
import pytest
import torch
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding
from vllm.platforms import current_platform
@pytest.mark.parametrize(
"max_position,is_neox_style,rotary_dim,head_size,seq_len,use_key", [
(16, False, 32, 32, 1024, True),
(16, False, 32, 128, 1024, True),
(16, True, 32, 32, 1024, True),
(16, True, 32, 128, 1024, True),
(16, False, 32, 128, 1024, False),
(16, True, 32, 128, 1024, False),
])
def test_rotary_embedding_opcheck(max_position, is_neox_style, rotary_dim,
head_size, seq_len, use_key):
import torch_xla.core.xla_model as xm
device = xm.xla_device()
current_platform.seed_everything(0)
torch.set_default_device("cpu")
batch_size = 1
base = 10000
num_heads = 8
rot = RotaryEmbedding(head_size, rotary_dim, max_position, base,
is_neox_style, torch.float32)
positions = torch.randint(0,
max_position, (batch_size, seq_len),
device="cpu")
query = torch.randn(batch_size,
seq_len,
num_heads * head_size,
dtype=torch.float32,
device="cpu")
key = torch.randn_like(query) if use_key else None
assert positions.is_cpu, \
"reference input tensor is expected to be CPU tensor."
ref_query, ref_key = rot.to(device="cpu").forward_native(
positions, query, key)
out_query, out_key = rot.to(device=device).forward_neuron(
positions.to(device=device), query.to(device=device),
key.to(device=device) if key is not None else None)
if use_key:
assert out_query.is_xla and out_key.is_xla, \
"output tensor is expected to be XLA tensor"
torch.testing.assert_close(out_key.cpu(),
ref_key,
atol=1e-2,
rtol=1e-2)
else:
assert out_key is None, "expected returned key to be None"
assert out_query.is_xla, \
"output tensor is expected to be XLA tensor"
torch.testing.assert_close(out_query.cpu(),
ref_query,
atol=1e-2,
rtol=1e-2)

View File

@ -1,101 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import functools
from typing import Callable
from unittest.mock import patch
import pytest
import torch
import torch_xla.distributed.xla_multiprocessing as xmp
from typing_extensions import ParamSpec
from vllm.distributed.communication_op import (
tensor_model_parallel_all_gather, tensor_model_parallel_all_reduce)
from vllm.distributed.parallel_state import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.utils import get_distributed_init_method, get_open_port
_P = ParamSpec("_P")
def reinitialize_neuron_runtime(f: Callable[_P, None]) -> Callable[_P, None]:
"""Decorator to reinitialize the Neuron Runtime before executing a test.
This is necessary for distributed tests which need to reallocate Neuron
Cores to separate subprocesses.
"""
@functools.wraps(f)
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> None:
runtime = torch.classes.neuron.Runtime()
runtime.initialize()
runtime.unsafe_close()
f(*args, **kwargs)
runtime.initialize()
return wrapper
def all_gather_test_worker(index, tp_degree, distributed_init_method):
init_distributed_environment(tp_degree,
index,
distributed_init_method,
index,
backend="xla")
ensure_model_parallel_initialized(tp_degree, 1)
num_dimensions = 3
tensor_size = list(range(2, num_dimensions + 2))
total_size = 1
for s in tensor_size:
total_size *= s
all_gather_dimension = -1
all_tensors = [
torch.arange(total_size, dtype=torch.float32,
device="xla").reshape(tensor_size) * (r + 1)
for r in range(tp_degree)
]
expected = torch.cat(all_tensors, dim=all_gather_dimension)
t = all_tensors[index % tp_degree]
t = tensor_model_parallel_all_gather(t, all_gather_dimension)
torch.testing.assert_close(t, expected)
def all_reduce_test_worker(index, tp_degree, distributed_init_method):
init_distributed_environment(tp_degree,
index,
distributed_init_method,
index,
backend="xla")
ensure_model_parallel_initialized(tp_degree, 1)
num_elements = 8
all_tensors = [
torch.arange(num_elements, dtype=torch.float32, device="xla") * (r + 1)
for r in range(tp_degree)
]
expected = torch.sum(torch.stack(all_tensors, dim=0), dim=0)
t = all_tensors[index % tp_degree]
t = tensor_model_parallel_all_reduce(t)
torch.testing.assert_close(t, expected)
@pytest.mark.parametrize("tp_size", [2])
@pytest.mark.parametrize("test_target",
[all_reduce_test_worker, all_gather_test_worker])
@reinitialize_neuron_runtime
def test_neuron_multi_process_tensor_parallel(monkeypatch, tp_size,
test_target):
with patch('torch_xla._XLAC._xla_runtime_is_initialized',
return_value=False):
distributed_init_method = get_distributed_init_method(
"127.0.0.1", get_open_port())
monkeypatch.setenv("VLLM_USE_V1", "1")
monkeypatch.setenv("NEURONCORE_NUM_DEVICES", str(tp_size))
monkeypatch.setenv("NEURON_PJRT_PROCESSES_NUM_DEVICES",
','.join(['1' for _ in range(tp_size)]))
xmp.spawn(test_target, args=(tp_size, distributed_init_method))

View File

@ -1,83 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import os
import shutil
import tempfile
import torch
from huggingface_hub import snapshot_download
from safetensors import safe_open
from vllm import LLM, SamplingParams
def patch_eagle_draft_with_lm_head(target_model_id: str,
draft_model_id: str) -> str:
# In NxDI, draft model checkpoint must include lm_head weights from target
# model. For more details see https://awsdocs-neuron.readthedocs-hosted.com
# /en/latest/libraries/nxd-inference/developer_guides/feature-guide.html
# #eagle-checkpoint-compatibility
final_draft_dir = "/tmp/patched_eagle_draft"
with tempfile.TemporaryDirectory() as tmp_dir:
target_dir = snapshot_download(repo_id=target_model_id,
local_dir=os.path.join(
tmp_dir, "target"))
draft_dir = snapshot_download(repo_id=draft_model_id,
local_dir=os.path.join(tmp_dir, "draft"))
lm_head_key = "lm_head.weight"
index_path = os.path.join(target_dir, "model.safetensors.index.json")
with open(index_path) as f:
index = json.load(f)
shard_name = index["weight_map"][lm_head_key]
target_safetensor_path = os.path.join(target_dir, shard_name)
with safe_open(target_safetensor_path, framework="pt") as f:
target_lm_head = f.get_tensor(lm_head_key)
draft_path = os.path.join(draft_dir, "pytorch_model.bin")
draft_state_dict = torch.load(draft_path, map_location="cpu")
draft_state_dict[lm_head_key] = target_lm_head.to(torch.float16)
torch.save(draft_state_dict, draft_path)
shutil.copytree(draft_dir, final_draft_dir, dirs_exist_ok=True)
return final_draft_dir
def test_eagle():
patched_draft_path = patch_eagle_draft_with_lm_head(
target_model_id="meta-llama/Llama-2-7b-hf",
draft_model_id="yuhuili/EAGLE-llama2-chat-7B")
llm = LLM(
model="meta-llama/Llama-2-7b-hf",
speculative_config={
"model": patched_draft_path,
"num_speculative_tokens": 5,
"max_model_len": 128
},
max_num_seqs=1,
max_model_len=128,
tensor_parallel_size=2,
override_neuron_config={
"enable_eagle_speculation": True,
"enable_fused_speculation": True,
"fused_qkv": True
},
)
prompts = [
"The president of the United States is",
]
outputs = llm.generate(prompts, SamplingParams(top_k=1))
expected_output = " the head of state and head of government of " \
"the United States. The president direct"
for output in outputs:
generated_text = output.outputs[0].text
print(f"Prompt: {output.prompt!r}, Generated text: {generated_text!r}")
assert (expected_output == generated_text)
print("Neuron Eagle speculation test passed.")

View File

@ -1,64 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm import LLM, SamplingParams
def test_mistral():
llm = LLM(model="mistralai/Mistral-7B-v0.1",
tensor_parallel_size=2,
max_num_seqs=4,
max_model_len=128,
override_neuron_config={
"sequence_parallel_enabled": False,
"skip_warmup": True
})
# Send more prompts than the compiled batch size (4) and request
# varying generation lengths to test accuracy related to Neuron
# specific sequence id sorting.
prompts = [
"The president of the United States is",
"The capital of France is",
"What is Annapurna labs?",
"I believe the meaning of life is",
"Tell me a story about a brave knight",
"Hello, my name is Llama",
]
sampling_params = [
SamplingParams(top_k=1, max_tokens=10),
SamplingParams(top_k=1, max_tokens=20),
SamplingParams(top_k=1, max_tokens=30),
SamplingParams(top_k=1, max_tokens=40),
SamplingParams(top_k=1, max_tokens=50),
SamplingParams(top_k=1, max_tokens=60)
]
outputs = llm.generate(prompts, sampling_params)
expected_outputs = [
" the most powerful person in the world. He is",
" a city of many faces. It is a city of history, culture, art, "
"fashion, and",
"\n\nAnnapurna Labs is a semiconductor company that was founded "
"in 2013 by Amazon. The company is",
" to be happy.\n\nI believe that happiness is a choice.\n\nI "
"believe that happiness is a state of mind.\n\nI believe that "
"happiness is a journey.\n\nI believe",
" who rescued a princess from a dragon.\n\nTell me a story about"
" a princess who rescued herself from a dragon.\n\nTell me a "
"story about a princess who rescued herself from a dragon and "
"then rescued a knight from",
" and I am a 10 year old male. I am a very friendly and "
"affectionate boy who loves to be around people. I am a very "
"active boy who loves to play and run around. I am a very smart "
"boy who loves to learn new things. I am a very loyal boy"
]
for expected_output, output in zip(expected_outputs, outputs):
generated_text = output.outputs[0].text
print(f"Prompt: {output.prompt!r}, Generated text: {generated_text!r}")
assert (expected_output == generated_text)
print("Neuron Mistral test passed.")

View File

@ -1,97 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from huggingface_hub import snapshot_download
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
def test_llama_single_lora():
sql_lora_files = snapshot_download(
repo_id="yard1/llama-2-7b-sql-lora-test")
llm = LLM(model="meta-llama/Llama-2-7b-hf",
tensor_parallel_size=2,
max_num_seqs=4,
max_model_len=512,
override_neuron_config={
"sequence_parallel_enabled": False,
"skip_warmup": True,
"lora_modules": [{
"name": "lora_id_1",
"path": sql_lora_files
}]
},
enable_lora=True,
max_loras=1,
max_lora_rank=256,
device="neuron")
"""For multi-lora requests using NxDI as the backend, only the lora_name
needs to be specified. The lora_id and lora_path are supplied at the LLM
class/server initialization, after which the paths are handled by NxDI"""
lora_req_1 = LoRARequest("lora_id_1", 0, " ")
prompts = [
"The president of the United States is",
"The capital of France is",
]
outputs = llm.generate(prompts,
SamplingParams(top_k=1),
lora_request=[lora_req_1, lora_req_1])
expected_outputs = [
" the head of state and head of government of the United States. "
"The president direct",
" a city of contrasts. The city is home to the Eiffel Tower"
]
for expected_output, output in zip(expected_outputs, outputs):
generated_text = output.outputs[0].text
assert (expected_output == generated_text)
def test_llama_multiple_lora():
sql_lora_files = snapshot_download(
repo_id="yard1/llama-2-7b-sql-lora-test")
llm = LLM(model="meta-llama/Llama-2-7b-hf",
tensor_parallel_size=2,
max_num_seqs=4,
max_model_len=512,
override_neuron_config={
"sequence_parallel_enabled":
False,
"skip_warmup":
True,
"lora_modules": [{
"name": "lora_id_1",
"path": sql_lora_files
}, {
"name": "lora_id_2",
"path": sql_lora_files
}]
},
enable_lora=True,
max_loras=2,
max_lora_rank=256,
device="neuron")
"""For multi-lora requests using NxDI as the backend, only the lora_name
needs to be specified. The lora_id and lora_path are supplied at the LLM
class/server initialization, after which the paths are handled by NxDI"""
lora_req_1 = LoRARequest("lora_id_1", 0, " ")
lora_req_2 = LoRARequest("lora_id_2", 1, " ")
prompts = [
"The president of the United States is",
"The capital of France is",
]
outputs = llm.generate(prompts,
SamplingParams(top_k=1),
lora_request=[lora_req_1, lora_req_2])
expected_outputs = [
" the head of state and head of government of the United States. "
"The president direct",
" a city of contrasts. The city is home to the Eiffel Tower"
]
for expected_output, output in zip(expected_outputs, outputs):
generated_text = output.outputs[0].text
assert (expected_output == generated_text)

View File

@ -1,8 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
def register_prithvi_india():
return "prithvi_io_processor.prithvi_processor.PrithviMultimodalDataProcessorIndia" # noqa: E501
def register_prithvi_valencia():
return "prithvi_io_processor.prithvi_processor.PrithviMultimodalDataProcessorValencia" # noqa: E501
def register_prithvi():
return "prithvi_io_processor.prithvi_processor.PrithviMultimodalDataProcessor" # noqa: E501

View File

@ -234,6 +234,8 @@ def load_image(
class PrithviMultimodalDataProcessor(IOProcessor):
indices = [0, 1, 2, 3, 4, 5]
def __init__(self, vllm_config: VllmConfig):
super().__init__(vllm_config)
@ -412,21 +414,3 @@ class PrithviMultimodalDataProcessor(IOProcessor):
format="tiff",
data=out_data,
request_id=request_id)
class PrithviMultimodalDataProcessorIndia(PrithviMultimodalDataProcessor):
def __init__(self, vllm_config: VllmConfig):
super().__init__(vllm_config)
self.indices = [1, 2, 3, 8, 11, 12]
class PrithviMultimodalDataProcessorValencia(PrithviMultimodalDataProcessor):
def __init__(self, vllm_config: VllmConfig):
super().__init__(vllm_config)
self.indices = [0, 1, 2, 3, 4, 5]

View File

@ -9,8 +9,7 @@ setup(
packages=["prithvi_io_processor"],
entry_points={
"vllm.io_processor_plugins": [
"prithvi_to_tiff_india = prithvi_io_processor:register_prithvi_india", # noqa: E501
"prithvi_to_tiff_valencia = prithvi_io_processor:register_prithvi_valencia", # noqa: E501
"prithvi_to_tiff = prithvi_io_processor:register_prithvi", # noqa: E501
]
},
)

Some files were not shown because too many files have changed in this diff Show More