Compare commits
823 Commits
pil_image
...
fix-precom
| Author | SHA1 | Date | |
|---|---|---|---|
| e17250f0d2 | |||
| 4959915089 | |||
| 8d1e89d946 | |||
| 36239f79dd | |||
| dfada85eee | |||
| ed33349738 | |||
| d49adea1f9 | |||
| 14fdd21d39 | |||
| 04fefe7c9a | |||
| 3b523e38d9 | |||
| 16c16301c8 | |||
| 9206d0ff01 | |||
| a89209b78d | |||
| ffacb222cb | |||
| 12575cfa7a | |||
| 8b6e1d639c | |||
| 735a9de71f | |||
| 257ab95439 | |||
| cca91a7a10 | |||
| f04d604567 | |||
| 19a53b2783 | |||
| eccdc8318c | |||
| 5f52a84685 | |||
| d4629dc43f | |||
| 6e9cc73f67 | |||
| c53711bd63 | |||
| dac8cc49f4 | |||
| a44b1c951d | |||
| b447624ee3 | |||
| cda92307c1 | |||
| bf57ccc5c2 | |||
| ffb2cd6b54 | |||
| ca94d7fa00 | |||
| 5a1c2e15d8 | |||
| 4c8f64faa7 | |||
| 93aee29fdb | |||
| 154d063b9f | |||
| ccd7c05089 | |||
| c48c6c4008 | |||
| aed8468642 | |||
| 5c76b9cdaf | |||
| ddfed314f9 | |||
| 5b3ad5ecf2 | |||
| ede5c4ebdf | |||
| 07334959d8 | |||
| 119f683949 | |||
| 0860087aff | |||
| 6bc7b57315 | |||
| 90f9c2eb5c | |||
| 387bdf0ab9 | |||
| 5e5baa91aa | |||
| 836d4ce140 | |||
| c3fec47bb7 | |||
| 1173804dca | |||
| 4d5424029b | |||
| 3e7506975c | |||
| ee35e96ac3 | |||
| dec66d253b | |||
| 8d120701fd | |||
| f40f763f12 | |||
| 26bc46ef89 | |||
| a77aea59fd | |||
| b692e9cd07 | |||
| 367871a469 | |||
| 92183b41f3 | |||
| c6703d1e0d | |||
| a5e7242d5f | |||
| 91b2c17a55 | |||
| 055915e6ce | |||
| 3d330c4c09 | |||
| 0b73736a0d | |||
| ee1531bc38 | |||
| e13945f9dd | |||
| 08500011d3 | |||
| 861a0a0a39 | |||
| bc956b38d0 | |||
| 294fc1e2c9 | |||
| 2db9044ab6 | |||
| 6fa718a460 | |||
| 06be858828 | |||
| d1e34cc9ac | |||
| bd517eb9fe | |||
| d65668b4e8 | |||
| aafbbd981f | |||
| 0f0874515a | |||
| 3597b06a4f | |||
| 1015296b79 | |||
| ce9dc02c93 | |||
| a24cb91600 | |||
| 7e8d97dd3f | |||
| d70bc7c029 | |||
| ce688ad46e | |||
| cefdb9962d | |||
| ace5cdaff0 | |||
| 6458721108 | |||
| bb4a0decef | |||
| c707cfc12e | |||
| 7b3c9ff91d | |||
| c68698b326 | |||
| e3b12667d4 | |||
| e6aab5de29 | |||
| c57bb199b3 | |||
| dba68f9159 | |||
| a3319f4f04 | |||
| 9d880f594d | |||
| 017ef648e9 | |||
| 4b25ab14e2 | |||
| f98548b9da | |||
| 96846bb360 | |||
| b6efafd9e4 | |||
| 1129e2b1ab | |||
| c742438f8b | |||
| 73e2e0118f | |||
| c9280e6346 | |||
| af09b3f0a0 | |||
| 4f6c42fa0a | |||
| dff680001d | |||
| 2e090bd5df | |||
| 1b0b065eb5 | |||
| d5bdf899e4 | |||
| 7e3e74c97c | |||
| 3f6341bf7f | |||
| e5d35d62f5 | |||
| 2f1c19b245 | |||
| 42f52cc95b | |||
| 97a9465bbc | |||
| c7ea0b56cd | |||
| 29fa5cac1c | |||
| b2d9be6f7d | |||
| 04a55612dd | |||
| 89b0f84e17 | |||
| 497a91e9f7 | |||
| 943ffa5703 | |||
| 5c8d34a42c | |||
| 3c8694eabe | |||
| 7484e1fce2 | |||
| a2142f0196 | |||
| 871d6b7c74 | |||
| 29a38f0352 | |||
| a5115f4ff5 | |||
| 68b4a26149 | |||
| b8e809a057 | |||
| 5039ec2336 | |||
| 7c644ab6d5 | |||
| 2d40665fe8 | |||
| 96ada386b7 | |||
| 1e473b3010 | |||
| 2b1e2111b0 | |||
| a45b979d9f | |||
| 3952731e8f | |||
| 77f0d465d0 | |||
| 22c3c0aa4a | |||
| 33f8dba7c6 | |||
| 5241ca50d6 | |||
| da9b523ce1 | |||
| b6553be1bc | |||
| 64a9af5afa | |||
| e4248849ec | |||
| 467bef18a3 | |||
| 5f1ac1e1d1 | |||
| 9368cc90b2 | |||
| 32b3946bb4 | |||
| 6b1391ca7e | |||
| a3f66e75d1 | |||
| 319cb1e351 | |||
| 1efef71645 | |||
| 646d62f636 | |||
| 6cd4ae8acd | |||
| c016047ed7 | |||
| 9af6d22e4c | |||
| 4589b94032 | |||
| cc867be19c | |||
| 3a7cd627a8 | |||
| 8058c91108 | |||
| 7d44c469fe | |||
| 31f58be96a | |||
| ebb2f383b8 | |||
| c1c7dbbeeb | |||
| 5cf2daea9a | |||
| b8089195b4 | |||
| 770e5dcdb8 | |||
| c57c9415b1 | |||
| 01810f9236 | |||
| 59abbd84f9 | |||
| 95a6568b5c | |||
| 0eca5eacd0 | |||
| 12e5829221 | |||
| 3a4d417707 | |||
| 8335667c22 | |||
| e1c4380d4c | |||
| e31ae3de36 | |||
| 2ffb9b6e07 | |||
| cda10fa3e2 | |||
| c123bc33f9 | |||
| b9a1791e2c | |||
| 989dcee981 | |||
| 3d64d366e0 | |||
| eaa2e51088 | |||
| d77f7fb871 | |||
| 2d8476e465 | |||
| 88be823d57 | |||
| 4e4f63ad45 | |||
| d2f0e7e615 | |||
| 122cdca5f6 | |||
| cf02f9b283 | |||
| c4296b1a27 | |||
| 66c508b137 | |||
| 84166fee97 | |||
| 6e0cd10f72 | |||
| e010688f50 | |||
| 441b65d8c7 | |||
| 46ecc57973 | |||
| b6a3a9f76d | |||
| ca27f0f9c1 | |||
| aad30bd306 | |||
| 94ecee6282 | |||
| 8267f9916f | |||
| 7353492a47 | |||
| 7661e92ef8 | |||
| f168b85725 | |||
| da511d54d8 | |||
| 65c69444b1 | |||
| 94870359cd | |||
| 0d49483ea9 | |||
| 90b78ec5f9 | |||
| 91a2ef98ea | |||
| 3da2313d78 | |||
| b61dc5f972 | |||
| f8a1a2d108 | |||
| 3465b87ef8 | |||
| c8134bea15 | |||
| cb6d572e85 | |||
| 87360308b7 | |||
| aa49f14832 | |||
| 9ef9173cfa | |||
| 85e2b7bb13 | |||
| 61059bee40 | |||
| ec89524f50 | |||
| f20f9f063b | |||
| 9bc8bb07cf | |||
| 1aeb925f34 | |||
| 188a4590d8 | |||
| 18093084be | |||
| da40380214 | |||
| 8fc57501d3 | |||
| af7fc84fd2 | |||
| 0678b52251 | |||
| 25b918eee6 | |||
| a408820f2f | |||
| c56ed8bb0e | |||
| 78dcf56cb3 | |||
| b2fac67130 | |||
| 23027e2daf | |||
| c3fd4d669a | |||
| ef3f98b59f | |||
| 7ee2590478 | |||
| 53a5a0ce30 | |||
| d459fae0a2 | |||
| c8dcc15921 | |||
| 8f4ffbd373 | |||
| 5f2cd251d2 | |||
| 02658c2dfe | |||
| 01dc9a76db | |||
| 35cf32df30 | |||
| 8711bc5e68 | |||
| 2669a0d7b5 | |||
| 8e972d9c44 | |||
| 3336c8cfbe | |||
| b124e1085b | |||
| 41aa578428 | |||
| 8d646c2e53 | |||
| 5d6d1adf15 | |||
| 1409ef9134 | |||
| 4555143ea7 | |||
| 52dceb172d | |||
| abd7df2fca | |||
| b712be98c7 | |||
| a8da78eac9 | |||
| 5d96533e22 | |||
| 4de790fcad | |||
| b5fd9506c1 | |||
| 135cf55cd1 | |||
| 6cac54f4d1 | |||
| 6865fe0074 | |||
| e31446b6c8 | |||
| bdf13965ab | |||
| fa98d77773 | |||
| 01eee40536 | |||
| 19bdaf32b1 | |||
| 02f0c7b220 | |||
| d054da1992 | |||
| 4b7817c119 | |||
| d00dd65cd4 | |||
| d81edded69 | |||
| 476844d44c | |||
| 4e68ae5e59 | |||
| 4e88723f32 | |||
| 118ff92111 | |||
| ec2dcd80bc | |||
| 42243fbda0 | |||
| 6d18ed2a2e | |||
| f32fcd9444 | |||
| d32aa2e670 | |||
| cc977286e7 | |||
| 17430e3653 | |||
| 1282bd812e | |||
| bdce64f236 | |||
| 9e6f61e8c3 | |||
| 8655f47f37 | |||
| 4ce42f9204 | |||
| 8a57872b2a | |||
| 5bc1ad6cee | |||
| 9112b443a0 | |||
| c57d577e8d | |||
| ca2f6b9c30 | |||
| 20133cfee2 | |||
| ebb1ec9318 | |||
| 5b168b6d7a | |||
| 9760fd8f6a | |||
| b9f61e1387 | |||
| d6fd3a33b8 | |||
| 432ec9926e | |||
| 2b102d51ad | |||
| aa54a7bf7b | |||
| 2ad6194a02 | |||
| c594cbf565 | |||
| a35ca765a5 | |||
| 6aa8f9a4e7 | |||
| 1bc86a3da1 | |||
| bbfa0c61d1 | |||
| 20079c6e36 | |||
| 9a1b9b99d7 | |||
| 8bf507d766 | |||
| 306d60401d | |||
| f2c3f66d59 | |||
| 0f5e0d567e | |||
| c55d804672 | |||
| 749f5bdd38 | |||
| 2a50ef5760 | |||
| b8b904795d | |||
| ba5111f237 | |||
| 1e123529d7 | |||
| dff80b0e42 | |||
| 7782464a17 | |||
| 0f71e24034 | |||
| 1dab4d5718 | |||
| 7f21e8052b | |||
| 5a8641638a | |||
| f49239cb45 | |||
| 2dbe8c0774 | |||
| 84ec470fca | |||
| b29ca5c4d5 | |||
| ec6833c5e9 | |||
| e1fadf1197 | |||
| 43ff405b90 | |||
| fba02e3bd1 | |||
| 4577fc9abb | |||
| 5f1d0c8118 | |||
| c3bb9f2331 | |||
| 8f8900cee9 | |||
| 6acb7a6285 | |||
| 4f4a6b844a | |||
| 4d0a1541be | |||
| 77b6e74fe2 | |||
| 5acf828d99 | |||
| 3987e2ae96 | |||
| 77164dad5e | |||
| 3de3eadf5b | |||
| 3132290a14 | |||
| 1aa2f81b43 | |||
| d54af615d5 | |||
| a1cc9f33a3 | |||
| a521ef06e5 | |||
| 64eaf5fe05 | |||
| d1d61f3351 | |||
| 32ce3cf7c9 | |||
| d58f9c7f7a | |||
| c29034037d | |||
| 1b7cfd5a36 | |||
| da4b69d0b4 | |||
| c9479b2920 | |||
| 6f2909405e | |||
| b169d5f7b6 | |||
| f8977c233f | |||
| f274581f44 | |||
| 0b1447f890 | |||
| 24d0ef8970 | |||
| 7fcfd954ff | |||
| e740d07f07 | |||
| a652e71dd0 | |||
| 34d6c447c4 | |||
| 972eddf7c9 | |||
| fd7bb88d72 | |||
| 3c49dbdd03 | |||
| 1661a9c28f | |||
| 8e882ffdc0 | |||
| 26b4fa45be | |||
| 515b413ebf | |||
| 269d901734 | |||
| 7951d78738 | |||
| 6dbe5b5c93 | |||
| 643622ba46 | |||
| a09c7ca9f2 | |||
| 0e98964e94 | |||
| c68b5c63eb | |||
| fced756923 | |||
| 321331b8ae | |||
| 6e4cea1cc5 | |||
| 435fa95444 | |||
| 4c2b38ce9e | |||
| d781930f90 | |||
| ce75efeecb | |||
| aa42561e40 | |||
| de65fc8e1e | |||
| 0c492b7824 | |||
| 0f0926b43f | |||
| 7f2c1a87e9 | |||
| b78f844a67 | |||
| 5e13c07d00 | |||
| 774c5fde30 | |||
| 9a21e331ff | |||
| 3e9ce609bd | |||
| 794ae1f551 | |||
| d73a9457a5 | |||
| a3896c7f02 | |||
| 51e98e4ffd | |||
| e56f44d9ec | |||
| e0cbad4e30 | |||
| b48d5cca16 | |||
| 5873877241 | |||
| 696259ca01 | |||
| 6b6d496114 | |||
| aaa4ac1c95 | |||
| 06a0338015 | |||
| 4318c0559d | |||
| a68e293cb9 | |||
| 6881107948 | |||
| e0f0ff87b8 | |||
| c24b1572ac | |||
| 4693a3438c | |||
| bbd9a84dc5 | |||
| a547aeb828 | |||
| fc6d0c290f | |||
| 753944fa9b | |||
| 25a817f202 | |||
| d260f799a9 | |||
| b50602d5f0 | |||
| 1f1b1bc03b | |||
| 1f88dbd2bb | |||
| 0eebd74842 | |||
| 27bebcd897 | |||
| e7523c2e03 | |||
| a869baca73 | |||
| 82e2339b06 | |||
| 9553fdb41e | |||
| 243eb9199f | |||
| 0665e29998 | |||
| e76be06550 | |||
| 0877750029 | |||
| 6d68030f1c | |||
| 5a2c76cbe1 | |||
| 38b13dfe78 | |||
| 61a45e7a72 | |||
| 65523a0995 | |||
| 4b7740a105 | |||
| 4ea62c0ea0 | |||
| 561b77a0d6 | |||
| abd4030d94 | |||
| 8820821b59 | |||
| fba0642704 | |||
| 6071e989df | |||
| 57fd13a707 | |||
| 3a886bd58c | |||
| 35be8fad62 | |||
| f2faac745d | |||
| 279f854519 | |||
| 624b77a2b3 | |||
| 503f8487c2 | |||
| 44073a7ac3 | |||
| 63934543a0 | |||
| 75f81750f3 | |||
| 6ab681bcbe | |||
| cebc22f3b6 | |||
| 6c6dcd8611 | |||
| 7891fdf0c6 | |||
| 6825d9a998 | |||
| b554ab736e | |||
| 9ea7f1abf3 | |||
| 2807271c86 | |||
| b9018a3f9f | |||
| 4ceafb6299 | |||
| 2e6705784f | |||
| 1cb194a018 | |||
| 2cd4d58df4 | |||
| 6d166a8d35 | |||
| ef1dd6870f | |||
| e77dc4bad8 | |||
| 07458a51ce | |||
| c1e4a4052d | |||
| a859320575 | |||
| 441dc63ac7 | |||
| d55e446d13 | |||
| ec82c3e388 | |||
| 45ab403a1f | |||
| 2b10ba7491 | |||
| 4fc1bf813a | |||
| f2036734fb | |||
| 7d9216495c | |||
| 0ddf88e16e | |||
| 1645b60196 | |||
| 2628a69e35 | |||
| 371f7e4ca2 | |||
| 15b45ffb9a | |||
| 273cb3b4d9 | |||
| 8ddd1cf26a | |||
| 6550114c9c | |||
| 9520a989df | |||
| 3d28ad343f | |||
| 6a7988c55b | |||
| 022d8abe29 | |||
| 5221815a00 | |||
| 1068556b2c | |||
| 2cd1fa4556 | |||
| d4c2919760 | |||
| 6220f3c6b0 | |||
| 52fb23f47e | |||
| 6dd51c7ef1 | |||
| 2edb533af2 | |||
| 38a95cb4a8 | |||
| cd821ea5d2 | |||
| 7ab056c273 | |||
| 6526e05111 | |||
| e493e48524 | |||
| 4ce64e2df4 | |||
| fbb13a2c15 | |||
| a1fe24d961 | |||
| d0bc2f810b | |||
| b046cf792d | |||
| 54af915949 | |||
| 71ea614d4a | |||
| 4c611348a7 | |||
| 60cad94b86 | |||
| 9c1baa5bc6 | |||
| 4be2255c81 | |||
| ed5d408255 | |||
| 583507d130 | |||
| e44d8ce8c7 | |||
| 93ecb8139c | |||
| fae453f8ce | |||
| 4b0da7b60e | |||
| c6b636f9fb | |||
| 04eb88dc80 | |||
| 46791e1b4b | |||
| c32e249a23 | |||
| c91fe7b1b9 | |||
| a04720bc36 | |||
| 7b9d832c80 | |||
| 6e588da0f4 | |||
| f8d2cc5f55 | |||
| 721fb9b181 | |||
| 1f3a1200e4 | |||
| 54631f8262 | |||
| cb506ecb5a | |||
| 93f71673ce | |||
| 3f505233fd | |||
| 4e04eceb58 | |||
| 71075029f2 | |||
| ca86a7cf6e | |||
| a35a494745 | |||
| f6037d1907 | |||
| fa72f9a812 | |||
| ebed81fbf5 | |||
| e2d7d31244 | |||
| 23b67b37b2 | |||
| db5a29ba19 | |||
| 51797775c3 | |||
| cf5984b2fe | |||
| d022115cc6 | |||
| acb54ca8e1 | |||
| 6e0fd34d3c | |||
| 176d62e4ea | |||
| 20bd6f4d2e | |||
| 1f079540db | |||
| 94d8ec8d2b | |||
| bb0a311213 | |||
| dd5fa7e04f | |||
| 2b16104557 | |||
| 371376f996 | |||
| c6c10ca920 | |||
| c154d89306 | |||
| eca18691d2 | |||
| 61acfc45bc | |||
| 107f5fc4cb | |||
| 907f935de9 | |||
| 5d7f545204 | |||
| cd8dfc6dfc | |||
| d06dd72ba9 | |||
| ad0012a0ac | |||
| 92247c522e | |||
| 0c15c2e486 | |||
| 3b17ea26e4 | |||
| 23baa2180b | |||
| 980a172474 | |||
| e1f5a71ed7 | |||
| f4a8a37465 | |||
| 8f55962a7f | |||
| be48360c1f | |||
| 86847700d7 | |||
| d6c86d09ae | |||
| 6b35cb10a0 | |||
| 1b1e8e05ff | |||
| bca55b556f | |||
| d981396778 | |||
| 9609327fa4 | |||
| f07a673eb2 | |||
| d565e0976f | |||
| 258bf621d5 | |||
| dc1440cf9f | |||
| 8171221834 | |||
| 7937c2fd52 | |||
| e2ee1e8e9e | |||
| 20d8ce81eb | |||
| 84ab4feb7e | |||
| 6781af5608 | |||
| 1b15df2546 | |||
| 43b5f61dce | |||
| c5bb0ebdc6 | |||
| d637b96099 | |||
| 275c5daeb0 | |||
| 47fda6d089 | |||
| 27d0952600 | |||
| 221cfc2fea | |||
| 9da1095daf | |||
| d1211f8794 | |||
| b6a6e7a529 | |||
| 4fb349f66a | |||
| 908733aca7 | |||
| 1a8f68bb90 | |||
| 9ab2c02ff8 | |||
| 66e63e86ec | |||
| 9214e60631 | |||
| f880d42582 | |||
| dcfe95234c | |||
| 48ac2bed5b | |||
| 3e0d435027 | |||
| 4ee4826ede | |||
| 60017dc841 | |||
| 55f1a468d9 | |||
| fd195b194e | |||
| fabe89bbc4 | |||
| e73b7dfd69 | |||
| 7fdfa01530 | |||
| aef94c6d07 | |||
| 0ceaebf87b | |||
| 1db4f47f81 | |||
| d3d91b6f71 | |||
| 87d871470d | |||
| a5f8c111c2 | |||
| e23564cb70 | |||
| 390ec88905 | |||
| 541817670c | |||
| 67da5720d4 | |||
| 5c04bb8b86 | |||
| 3d2779c29a | |||
| 6b31c84aff | |||
| b18201fe06 | |||
| f4937a51c1 | |||
| ee659e3b60 | |||
| 4e1c6a0264 | |||
| c7852a6d9b | |||
| 8795eb9975 | |||
| 0b34593017 | |||
| e3f3aee6f4 | |||
| 92540529c0 | |||
| fadb8d5c2d | |||
| 2aa5470ac5 | |||
| 51ff154639 | |||
| 566ec04c3d | |||
| 01c22335ba | |||
| 451da4bcbd | |||
| 07ad27121f | |||
| a9944aabfa | |||
| a8f5aec20a | |||
| de71fec81b | |||
| 70f8b96724 | |||
| dd2a94596a | |||
| 420caf7557 | |||
| 4f07a64075 | |||
| e6b8e65d2d | |||
| 26d0419309 | |||
| 83f74c698f | |||
| 2dff093574 | |||
| afe3236e90 | |||
| 65334ef3b9 | |||
| e60f550b38 | |||
| f25e0d1125 | |||
| 09f106a91e | |||
| 2142035b51 | |||
| 78aa341d12 | |||
| 7974736740 | |||
| 2fc9075b82 | |||
| d93c976a0d | |||
| 749f792553 | |||
| 856865008e | |||
| f9c069c85e | |||
| 418d2f8bfb | |||
| 964472b966 | |||
| 59dd311cf5 | |||
| d066e52013 | |||
| c8ea982d9b | |||
| dc372b9c8a | |||
| 9b5b39b650 | |||
| 9ccc6ded42 | |||
| d62a076e84 | |||
| 259127f8b8 | |||
| 612c2edb4f | |||
| 38fe728d60 | |||
| 82e7f9bb03 | |||
| 63dc3426e0 | |||
| 8f5dc41481 | |||
| 63ad622233 | |||
| e7ef61c1f0 | |||
| d4154c35a2 | |||
| 6685890d11 | |||
| 33011318c2 | |||
| 4f8b373225 | |||
| 7b2f28deba | |||
| 2d912fb66f | |||
| 12e6c0b41c | |||
| 9a2a6357de | |||
| 6266c57bae | |||
| 754b699cbe | |||
| 6e27c6d86b | |||
| d5af47a149 | |||
| 65f0f74b66 | |||
| 176a95c670 | |||
| f2ae883b67 | |||
| 40de1ef455 | |||
| 0189a65a2e | |||
| 55aa7af994 | |||
| 0b217da646 | |||
| 19324d660c | |||
| fc407a1425 | |||
| 009d9e7590 | |||
| b922c2ebd2 | |||
| 00b14e0f16 | |||
| 54e467e6f8 | |||
| 79a1d25bbd | |||
| 9944011b30 | |||
| 8c946cecca | |||
| ff334ca1cd | |||
| 6223dd8114 | |||
| 906f0598fc | |||
| cb528d0585 | |||
| 98fcba1575 | |||
| 23b3134eb5 | |||
| ea6ae8cb45 | |||
| 2ff297dce9 | |||
| 8dd0671bac | |||
| f0d610a8ae | |||
| e57e4d6e9e | |||
| ee5be834e7 | |||
| 48545728d8 | |||
| dc1a821768 | |||
| 61e0a506a3 | |||
| 1df491c522 | |||
| d8487ef557 | |||
| c06af9a959 | |||
| 60f7624334 | |||
| f6518b2b48 | |||
| d67085c2c8 | |||
| 307939f299 | |||
| 9d7ea9dbbf | |||
| acee8f48aa | |||
| f065de4e88 | |||
| dc9905368d | |||
| ebab1ac37c | |||
| 2b0db9b0e2 | |||
| 195adb47c0 | |||
| 302f3aca7e | |||
| e9c730c9bd | |||
| 289199feb6 | |||
| b9fd0d7a69 | |||
| 72a3f6b898 | |||
| 98ea35601c | |||
| d19110204c | |||
| 05a4324f8e | |||
| 7ea6cb28b2 | |||
| 9fbf2bfbd5 | |||
| 3a5ea75129 | |||
| 891b9d33de | |||
| 430783018c | |||
| 19a3c78d1f | |||
| ada50aa295 | |||
| 08bf784078 | |||
| d45fe333fb | |||
| 021c16c7ca | |||
| 7de18d541b | |||
| a810b5b088 | |||
| 009b3d5382 | |||
| e4b8713380 | |||
| 06c0922a69 | |||
| cd3edfc908 | |||
| 9cea90eab4 | |||
| d1110f5b5a | |||
| 8132365b74 | |||
| eea22a56ab | |||
| 9112155283 | |||
| 90d0a74b60 | |||
| d74e5f37bc | |||
| ca66a1674c | |||
| 950751a987 | |||
| 4c31218f80 | |||
| 68311891f5 | |||
| fc4441a4ee | |||
| 246e3e0a36 | |||
| 7042cc96b0 | |||
| 0c0fdae84f | |||
| 3b602cdea7 | |||
| 4b2ed7926a | |||
| 7e3571134f | |||
| ea2236bf95 | |||
| 7d4aedae7c |
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
import sys
|
||||
@ -8,12 +9,12 @@ import zipfile
|
||||
# Note that we have 400 MiB quota, please use it wisely.
|
||||
# See https://github.com/pypi/support/issues/3792 .
|
||||
# Please also sync the value with the one in Dockerfile.
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 400))
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 400))
|
||||
|
||||
|
||||
def print_top_10_largest_files(zip_file):
|
||||
"""Print the top 10 largest files in the given zip file."""
|
||||
with zipfile.ZipFile(zip_file, 'r') as z:
|
||||
with zipfile.ZipFile(zip_file, "r") as z:
|
||||
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
|
||||
file_sizes.sort(key=lambda x: x[1], reverse=True)
|
||||
for f, size in file_sizes[:10]:
|
||||
@ -28,14 +29,18 @@ def check_wheel_size(directory):
|
||||
wheel_path = os.path.join(root, file_name)
|
||||
wheel_size_mb = os.path.getsize(wheel_path) / (1024 * 1024)
|
||||
if wheel_size_mb > VLLM_MAX_SIZE_MB:
|
||||
print(f"Not allowed: Wheel {wheel_path} is larger "
|
||||
f"({wheel_size_mb:.2f} MB) than the limit "
|
||||
f"({VLLM_MAX_SIZE_MB} MB).")
|
||||
print(
|
||||
f"Not allowed: Wheel {wheel_path} is larger "
|
||||
f"({wheel_size_mb:.2f} MB) than the limit "
|
||||
f"({VLLM_MAX_SIZE_MB} MB)."
|
||||
)
|
||||
print_top_10_largest_files(wheel_path)
|
||||
return 1
|
||||
else:
|
||||
print(f"Wheel {wheel_path} is within the allowed size "
|
||||
f"({wheel_size_mb:.2f} MB).")
|
||||
print(
|
||||
f"Wheel {wheel_path} is within the allowed size "
|
||||
f"({wheel_size_mb:.2f} MB)."
|
||||
)
|
||||
return 0
|
||||
|
||||
|
||||
@ -45,4 +50,4 @@ if __name__ == "__main__":
|
||||
sys.exit(1)
|
||||
|
||||
directory = sys.argv[1]
|
||||
sys.exit(check_wheel_size(directory))
|
||||
sys.exit(check_wheel_size(directory))
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import os
|
||||
@ -22,5 +23,5 @@ with open("index.html", "w") as f:
|
||||
print(f"Generated index.html for {args.wheel}")
|
||||
# cloudfront requires escaping the '+' character
|
||||
f.write(
|
||||
template.format(wheel=filename,
|
||||
wheel_html_escaped=filename.replace("+", "%2B")))
|
||||
template.format(wheel=filename, wheel_html_escaped=filename.replace("+", "%2B"))
|
||||
)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
@ -8,11 +9,14 @@ def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--config-list-file",
|
||||
action="store",
|
||||
help="Path to the file listing model config YAMLs (one per line)")
|
||||
parser.addoption("--tp-size",
|
||||
action="store",
|
||||
default="1",
|
||||
help="Tensor parallel size to use for evaluation")
|
||||
help="Path to the file listing model config YAMLs (one per line)",
|
||||
)
|
||||
parser.addoption(
|
||||
"--tp-size",
|
||||
action="store",
|
||||
default="1",
|
||||
help="Tensor parallel size to use for evaluation",
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
@ -33,7 +37,8 @@ def pytest_generate_tests(metafunc):
|
||||
config_dir = config_list_file.parent
|
||||
with open(config_list_file, encoding="utf-8") as f:
|
||||
configs = [
|
||||
config_dir / line.strip() for line in f
|
||||
config_dir / line.strip()
|
||||
for line in f
|
||||
if line.strip() and not line.startswith("#")
|
||||
]
|
||||
metafunc.parametrize("config_filename", configs)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
LM eval harness on model to compare vs HF baseline computed offline.
|
||||
Configs are found in configs/$MODEL.yaml
|
||||
@ -16,19 +17,22 @@ RTOL = 0.08
|
||||
|
||||
|
||||
def launch_lm_eval(eval_config, tp_size):
|
||||
trust_remote_code = eval_config.get('trust_remote_code', False)
|
||||
model_args = f"pretrained={eval_config['model_name']}," \
|
||||
f"tensor_parallel_size={tp_size}," \
|
||||
f"enforce_eager=true," \
|
||||
f"add_bos_token=true," \
|
||||
f"trust_remote_code={trust_remote_code}"
|
||||
trust_remote_code = eval_config.get("trust_remote_code", False)
|
||||
model_args = (
|
||||
f"pretrained={eval_config['model_name']},"
|
||||
f"tensor_parallel_size={tp_size},"
|
||||
f"enforce_eager=true,"
|
||||
f"add_bos_token=true,"
|
||||
f"trust_remote_code={trust_remote_code}"
|
||||
)
|
||||
results = lm_eval.simple_evaluate(
|
||||
model="vllm",
|
||||
model_args=model_args,
|
||||
tasks=[task["name"] for task in eval_config["tasks"]],
|
||||
num_fewshot=eval_config["num_fewshot"],
|
||||
limit=eval_config["limit"],
|
||||
batch_size="auto")
|
||||
batch_size="auto",
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
@ -42,9 +46,10 @@ def test_lm_eval_correctness_param(config_filename, tp_size):
|
||||
for metric in task["metrics"]:
|
||||
ground_truth = metric["value"]
|
||||
measured_value = results["results"][task["name"]][metric["name"]]
|
||||
print(f'{task["name"]} | {metric["name"]}: '
|
||||
f'ground_truth={ground_truth} | measured={measured_value}')
|
||||
success = success and np.isclose(
|
||||
ground_truth, measured_value, rtol=RTOL)
|
||||
print(
|
||||
f"{task['name']} | {metric['name']}: "
|
||||
f"ground_truth={ground_truth} | measured={measured_value}"
|
||||
)
|
||||
success = success and np.isclose(ground_truth, measured_value, rtol=RTOL)
|
||||
|
||||
assert success
|
||||
|
||||
@ -113,7 +113,7 @@ WARNING: The benchmarking script will save json results by itself, so please do
|
||||
|
||||
### Visualizing the results
|
||||
|
||||
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
|
||||
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](performance-benchmarks-descriptions.md) with real benchmarking results.
|
||||
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
|
||||
If you do not see the table, please wait till the benchmark finish running.
|
||||
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import json
|
||||
import os
|
||||
@ -65,18 +66,18 @@ def read_markdown(file):
|
||||
|
||||
|
||||
def results_to_json(latency, throughput, serving):
|
||||
return json.dumps({
|
||||
'latency': latency.to_dict(),
|
||||
'throughput': throughput.to_dict(),
|
||||
'serving': serving.to_dict()
|
||||
})
|
||||
return json.dumps(
|
||||
{
|
||||
"latency": latency.to_dict(),
|
||||
"throughput": throughput.to_dict(),
|
||||
"serving": serving.to_dict(),
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*.json"):
|
||||
|
||||
with open(test_file) as f:
|
||||
raw_result = json.loads(f.read())
|
||||
|
||||
@ -120,7 +121,8 @@ if __name__ == "__main__":
|
||||
for perc in [10, 25, 50, 75, 90, 99]:
|
||||
# Multiply 1000 to convert the time unit from s to ms
|
||||
raw_result.update(
|
||||
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]})
|
||||
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]}
|
||||
)
|
||||
raw_result["avg_latency"] = raw_result["avg_latency"] * 1000
|
||||
|
||||
# add the result to raw_result
|
||||
@ -153,26 +155,27 @@ if __name__ == "__main__":
|
||||
serving_results = pd.DataFrame.from_dict(serving_results)
|
||||
throughput_results = pd.DataFrame.from_dict(throughput_results)
|
||||
|
||||
raw_results_json = results_to_json(latency_results, throughput_results,
|
||||
serving_results)
|
||||
raw_results_json = results_to_json(
|
||||
latency_results, throughput_results, serving_results
|
||||
)
|
||||
|
||||
# remapping the key, for visualization purpose
|
||||
if not latency_results.empty:
|
||||
latency_results = latency_results[list(
|
||||
latency_column_mapping.keys())].rename(
|
||||
columns=latency_column_mapping)
|
||||
latency_results = latency_results[list(latency_column_mapping.keys())].rename(
|
||||
columns=latency_column_mapping
|
||||
)
|
||||
if not serving_results.empty:
|
||||
serving_results = serving_results[list(
|
||||
serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping)
|
||||
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping
|
||||
)
|
||||
if not throughput_results.empty:
|
||||
throughput_results = throughput_results[list(
|
||||
throughput_results_column_mapping.keys())].rename(
|
||||
columns=throughput_results_column_mapping)
|
||||
throughput_results = throughput_results[
|
||||
list(throughput_results_column_mapping.keys())
|
||||
].rename(columns=throughput_results_column_mapping)
|
||||
|
||||
processed_results_json = results_to_json(latency_results,
|
||||
throughput_results,
|
||||
serving_results)
|
||||
processed_results_json = results_to_json(
|
||||
latency_results, throughput_results, serving_results
|
||||
)
|
||||
|
||||
for df in [latency_results, serving_results, throughput_results]:
|
||||
if df.empty:
|
||||
@ -184,38 +187,39 @@ if __name__ == "__main__":
|
||||
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
|
||||
# we want to turn it into "8xGPUTYPE"
|
||||
df["GPU"] = df["GPU"].apply(
|
||||
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}")
|
||||
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}"
|
||||
)
|
||||
|
||||
# get markdown tables
|
||||
latency_md_table = tabulate(latency_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
serving_md_table = tabulate(serving_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
throughput_md_table = tabulate(throughput_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
latency_md_table = tabulate(
|
||||
latency_results, headers="keys", tablefmt="pipe", showindex=False
|
||||
)
|
||||
serving_md_table = tabulate(
|
||||
serving_results, headers="keys", tablefmt="pipe", showindex=False
|
||||
)
|
||||
throughput_md_table = tabulate(
|
||||
throughput_results, headers="keys", tablefmt="pipe", showindex=False
|
||||
)
|
||||
|
||||
# document the result
|
||||
with open(results_folder / "benchmark_results.md", "w") as f:
|
||||
|
||||
results = read_markdown("../.buildkite/nightly-benchmarks/" +
|
||||
"performance-benchmarks-descriptions.md")
|
||||
results = read_markdown(
|
||||
"../.buildkite/nightly-benchmarks/"
|
||||
+ "performance-benchmarks-descriptions.md"
|
||||
)
|
||||
results = results.format(
|
||||
latency_tests_markdown_table=latency_md_table,
|
||||
throughput_tests_markdown_table=throughput_md_table,
|
||||
serving_tests_markdown_table=serving_md_table,
|
||||
benchmarking_results_in_json_string=processed_results_json)
|
||||
benchmarking_results_in_json_string=processed_results_json,
|
||||
)
|
||||
f.write(results)
|
||||
|
||||
# document benchmarking results in json
|
||||
with open(results_folder / "benchmark_results.json", "w") as f:
|
||||
|
||||
results = latency_results.to_dict(
|
||||
orient='records') + throughput_results.to_dict(
|
||||
orient='records') + serving_results.to_dict(orient='records')
|
||||
results = (
|
||||
latency_results.to_dict(orient="records")
|
||||
+ throughput_results.to_dict(orient="records")
|
||||
+ serving_results.to_dict(orient="records")
|
||||
)
|
||||
f.write(json.dumps(results))
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
|
||||
@ -14,15 +15,12 @@ def main(model, cachedir):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Download and save Hugging Face tokenizer")
|
||||
parser.add_argument("--model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Name of the model")
|
||||
parser.add_argument("--cachedir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Directory to save the tokenizer")
|
||||
description="Download and save Hugging Face tokenizer"
|
||||
)
|
||||
parser.add_argument("--model", type=str, required=True, help="Name of the model")
|
||||
parser.add_argument(
|
||||
"--cachedir", type=str, required=True, help="Directory to save the tokenizer"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args.model, args.cachedir)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import json
|
||||
@ -11,33 +12,33 @@ from tabulate import tabulate
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=
|
||||
'Parse command line arguments for summary-nightly-results script.')
|
||||
parser.add_argument('--results-folder',
|
||||
type=str,
|
||||
required=True,
|
||||
help='The folder where the results are stored.')
|
||||
parser.add_argument('--description',
|
||||
type=str,
|
||||
required=True,
|
||||
help='Description of the results.')
|
||||
description="Parse command line arguments for summary-nightly-results script."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--results-folder",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The folder where the results are stored.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--description", type=str, required=True, help="Description of the results."
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def get_perf(df, method, model, metric):
|
||||
|
||||
means = []
|
||||
|
||||
for qps in [2, 4, 8, 16, "inf"]:
|
||||
target = df['Test name'].str.contains(model)
|
||||
target = target & df['Engine'].str.contains(method)
|
||||
target = target & df['Test name'].str.contains("qps_" + str(qps))
|
||||
target = df["Test name"].str.contains(model)
|
||||
target = target & df["Engine"].str.contains(method)
|
||||
target = target & df["Test name"].str.contains("qps_" + str(qps))
|
||||
filtered_df = df[target]
|
||||
|
||||
if filtered_df.empty:
|
||||
means.append(0.)
|
||||
means.append(0.0)
|
||||
else:
|
||||
means.append(filtered_df[metric].values[0])
|
||||
|
||||
@ -45,7 +46,6 @@ def get_perf(df, method, model, metric):
|
||||
|
||||
|
||||
def get_perf_w_std(df, method, model, metric):
|
||||
|
||||
if metric in ["TTFT", "ITL"]:
|
||||
mean = get_perf(df, method, model, "Mean " + metric + " (ms)")
|
||||
mean = mean.tolist()
|
||||
@ -60,7 +60,8 @@ def get_perf_w_std(df, method, model, metric):
|
||||
else:
|
||||
assert metric == "Tput"
|
||||
mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf(
|
||||
df, method, model, "Output Tput (tok/s)")
|
||||
df, method, model, "Output Tput (tok/s)"
|
||||
)
|
||||
mean = mean.tolist()
|
||||
std = None
|
||||
|
||||
@ -80,18 +81,17 @@ def main(args):
|
||||
# generate markdown table
|
||||
df = pd.DataFrame.from_dict(results)
|
||||
|
||||
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
|
||||
md_table = tabulate(df, headers="keys", tablefmt="pipe", showindex=False)
|
||||
|
||||
with open(args.description) as f:
|
||||
description = f.read()
|
||||
|
||||
description = description.format(
|
||||
nightly_results_benchmarking_table=md_table)
|
||||
description = description.format(nightly_results_benchmarking_table=md_table)
|
||||
|
||||
with open("nightly_results.md", "w") as f:
|
||||
f.write(description)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
args = parse_arguments()
|
||||
main(args)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import datetime
|
||||
import json
|
||||
@ -34,10 +35,8 @@ serving_column_mapping = {
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*.json"):
|
||||
|
||||
with open(test_file) as f:
|
||||
raw_result = json.loads(f.read())
|
||||
|
||||
@ -56,17 +55,16 @@ if __name__ == "__main__":
|
||||
serving_results = pd.DataFrame.from_dict(serving_results)
|
||||
|
||||
if not serving_results.empty:
|
||||
serving_results = serving_results[list(
|
||||
serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping)
|
||||
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping
|
||||
)
|
||||
|
||||
serving_md_table_with_headers = tabulate(serving_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
serving_md_table_with_headers = tabulate(
|
||||
serving_results, headers="keys", tablefmt="pipe", showindex=False
|
||||
)
|
||||
# remove the first line of header
|
||||
serving_md_table_lines = serving_md_table_with_headers.split('\n')
|
||||
serving_md_table_without_header = '\n'.join(serving_md_table_lines[2:])
|
||||
serving_md_table_lines = serving_md_table_with_headers.split("\n")
|
||||
serving_md_table_without_header = "\n".join(serving_md_table_lines[2:])
|
||||
|
||||
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
||||
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
|
||||
@ -76,10 +74,9 @@ if __name__ == "__main__":
|
||||
# document results with header.
|
||||
# for those who wants to reproduce our benchmark.
|
||||
f.write(serving_md_table_with_headers)
|
||||
f.write('\n')
|
||||
f.write("\n")
|
||||
|
||||
# document benchmarking results in json
|
||||
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
|
||||
|
||||
results = serving_results.to_dict(orient='records')
|
||||
results = serving_results.to_dict(orient="records")
|
||||
f.write(json.dumps(results))
|
||||
|
||||
46
.buildkite/pyproject.toml
Normal file
46
.buildkite/pyproject.toml
Normal file
@ -0,0 +1,46 @@
|
||||
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||
# following differences:
|
||||
# - ruff line length is overridden to 88
|
||||
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 88
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"vllm/third_party/**" = ["ALL"]
|
||||
"vllm/version.py" = ["F401"]
|
||||
"vllm/_version.py" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
# pycodestyle
|
||||
"E",
|
||||
# Pyflakes
|
||||
"F",
|
||||
# pyupgrade
|
||||
"UP",
|
||||
# flake8-bugbear
|
||||
"B",
|
||||
# flake8-simplify
|
||||
"SIM",
|
||||
# isort
|
||||
"I",
|
||||
# flake8-logging-format
|
||||
"G",
|
||||
]
|
||||
ignore = [
|
||||
# star imports
|
||||
"F405", "F403",
|
||||
# lambda expression assignment
|
||||
"E731",
|
||||
# Loop control variable not used within loop body
|
||||
"B007",
|
||||
# f-string format
|
||||
"UP032",
|
||||
# Can remove once 3.10+ is the minimum Python version
|
||||
"UP007",
|
||||
]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
||||
@ -1,5 +1,6 @@
|
||||
steps:
|
||||
- label: "Build wheel - CUDA 12.8"
|
||||
id: build-wheel-cuda-12-8
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -11,10 +12,11 @@ steps:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- label: "Build wheel - CUDA 12.6"
|
||||
id: build-wheel-cuda-12-6
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
@ -28,10 +30,11 @@ steps:
|
||||
|
||||
- label: "Build wheel - CUDA 11.8"
|
||||
# depends_on: block-build-cu118-wheel
|
||||
id: build-wheel-cuda-11-8
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
@ -44,6 +47,7 @@ steps:
|
||||
|
||||
- label: "Build release image"
|
||||
depends_on: block-release-image-build
|
||||
id: build-release-image
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -51,6 +55,18 @@ steps:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Annotate release workflow"
|
||||
depends_on:
|
||||
- build-release-image
|
||||
- build-wheel-cuda-12-8
|
||||
- build-wheel-cuda-12-6
|
||||
- build-wheel-cuda-11-8
|
||||
id: annotate-release-workflow
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "bash .buildkite/scripts/annotate-release.sh"
|
||||
|
||||
- label: "Build and publish TPU release image"
|
||||
depends_on: ~
|
||||
if: build.env("NIGHTLY") == "1"
|
||||
@ -64,15 +80,16 @@ steps:
|
||||
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
|
||||
plugins:
|
||||
- docker-login#v3.0.0:
|
||||
username: vllm
|
||||
username: vllmbot
|
||||
password-env: DOCKERHUB_TOKEN
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- input: "Provide Release version here"
|
||||
id: input-release-version
|
||||
fields:
|
||||
- text: "What is the release version?"
|
||||
key: "release-version"
|
||||
key: release-version
|
||||
|
||||
- block: "Build CPU release image"
|
||||
key: block-cpu-release-image-build
|
||||
|
||||
31
.buildkite/scripts/annotate-release.sh
Executable file
31
.buildkite/scripts/annotate-release.sh
Executable file
@ -0,0 +1,31 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
# Get release version and strip leading 'v' if present
|
||||
RELEASE_VERSION=$(buildkite-agent meta-data get release-version | sed 's/^v//')
|
||||
|
||||
if [ -z "$RELEASE_VERSION" ]; then
|
||||
echo "Error: RELEASE_VERSION is empty. 'release-version' metadata might not be set or is invalid."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
|
||||
To download the wheel:
|
||||
\`\`\`
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu118/vllm-${RELEASE_VERSION}+cu118-cp38-abi3-manylinux1_x86_64.whl .
|
||||
\`\`\`
|
||||
|
||||
To download and upload the image:
|
||||
|
||||
\`\`\`
|
||||
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}
|
||||
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} vllm/vllm-openai
|
||||
docker tag vllm/vllm-openai vllm/vllm-openai:latest
|
||||
docker tag vllm/vllm-openai vllm/vllm-openai:v${RELEASE_VERSION}
|
||||
docker push vllm/vllm-openai:latest
|
||||
docker push vllm/vllm-openai:v${RELEASE_VERSION}
|
||||
\`\`\`
|
||||
EOF
|
||||
17
.buildkite/scripts/ci-clean-log.sh
Normal file
17
.buildkite/scripts/ci-clean-log.sh
Normal file
@ -0,0 +1,17 @@
|
||||
#!/bin/bash
|
||||
# Usage: ./ci_clean_log.sh ci.log
|
||||
# This script strips timestamps and color codes from CI log files.
|
||||
|
||||
# Check if argument is given
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: $0 ci.log"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
INPUT_FILE="$1"
|
||||
|
||||
# Strip timestamps
|
||||
sed -i 's/^\[[0-9]\{4\}-[0-9]\{2\}-[0-9]\{2\}T[0-9]\{2\}:[0-9]\{2\}:[0-9]\{2\}Z\] //' "$INPUT_FILE"
|
||||
|
||||
# Strip colorization
|
||||
sed -i -r 's/\x1B\[[0-9;]*[mK]//g' "$INPUT_FILE"
|
||||
@ -3,6 +3,9 @@
|
||||
# This script runs test inside the corresponding ROCm docker container.
|
||||
set -o pipefail
|
||||
|
||||
# Export Python path
|
||||
export PYTHONPATH=".."
|
||||
|
||||
# Print ROCm version
|
||||
echo "--- Confirming Clean Initial State"
|
||||
while true; do
|
||||
@ -74,6 +77,27 @@ HF_MOUNT="/root/.cache/huggingface"
|
||||
|
||||
commands=$@
|
||||
echo "Commands:$commands"
|
||||
|
||||
if [[ $commands == *"pytest -v -s basic_correctness/test_basic_correctness.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s basic_correctness/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s basic_correctness/test_basic_correctness.py"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
|
||||
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"pytest -v -s lora"* ]]; then
|
||||
commands=${commands//"pytest -v -s lora"/"VLLM_ROCM_CUSTOM_PAGED_ATTN=0 pytest -v -s lora"}
|
||||
fi
|
||||
|
||||
#ignore certain kernels tests
|
||||
if [[ $commands == *" kernels/core"* ]]; then
|
||||
commands="${commands} \
|
||||
@ -161,6 +185,8 @@ fi
|
||||
|
||||
|
||||
PARALLEL_JOB_COUNT=8
|
||||
MYPYTHONPATH=".."
|
||||
|
||||
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
|
||||
if [[ $commands == *"--shard-id="* ]]; then
|
||||
# assign job count as the number of shards used
|
||||
@ -181,6 +207,7 @@ if [[ $commands == *"--shard-id="* ]]; then
|
||||
-e AWS_SECRET_ACCESS_KEY \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-e "PYTHONPATH=${MYPYTHONPATH}" \
|
||||
--name "${container_name}_${GPU}" \
|
||||
"${image_name}" \
|
||||
/bin/bash -c "${commands_gpu}" \
|
||||
@ -211,6 +238,7 @@ else
|
||||
-e AWS_SECRET_ACCESS_KEY \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-e "PYTHONPATH=${MYPYTHONPATH}" \
|
||||
--name "${container_name}" \
|
||||
"${image_name}" \
|
||||
/bin/bash -c "${commands}"
|
||||
|
||||
@ -7,6 +7,7 @@ set -ex
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
if [[ -n "$container_id" ]]; then
|
||||
podman stop --all -t0
|
||||
podman rm -f "$container_id" || true
|
||||
fi
|
||||
podman system prune -f
|
||||
@ -32,9 +33,12 @@ function cpu_tests() {
|
||||
set -e
|
||||
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
|
||||
pip install sentence-transformers datamodel_code_generator
|
||||
pytest -v -s tests/models/embedding/language/test_cls_models.py::test_classification_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||
pytest -v -s tests/models/embedding/language/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model"
|
||||
pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
|
||||
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
|
||||
@ -6,75 +6,82 @@ set -ex
|
||||
|
||||
# allow to bind to different cores
|
||||
CORE_RANGE=${CORE_RANGE:-48-95}
|
||||
OMP_CORE_RANGE=${OMP_CORE_RANGE:-48-95}
|
||||
NUMA_NODE=${NUMA_NODE:-1}
|
||||
|
||||
export CMAKE_BUILD_PARALLEL_LEVEL=32
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
set -e;
|
||||
docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true;
|
||||
docker image rm cpu-test-"$BUILDKITE_BUILD_NUMBER" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 || true;
|
||||
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$BUILDKITE_BUILD_NUMBER" --target vllm-test -f docker/Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE" --target vllm-test -f docker/Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --env VLLM_CPU_CI_ENV=1 --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --env VLLM_CPU_CI_ENV=1 --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
export NUMA_NODE=$2
|
||||
export BUILDKITE_BUILD_NUMBER=$3
|
||||
|
||||
# list packages
|
||||
docker exec cpu-test-"$NUMA_NODE"-avx2 bash -c "
|
||||
set -e
|
||||
pip list"
|
||||
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pip list"
|
||||
|
||||
# offline inference
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE"-avx2 bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -v -s tests/kernels/test_cache.py -m cpu_model
|
||||
pytest -v -s tests/kernels/test_mla_decode_cpu.py -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/language -m cpu_model
|
||||
pytest -v -s tests/models/embedding/language -m cpu_model
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
|
||||
pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
||||
pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||
pytest -v -s tests/models/language/generation -m cpu_model
|
||||
pytest -v -s tests/models/language/pooling -m cpu_model
|
||||
pytest -v -s tests/models/multimodal/generation \
|
||||
--ignore=tests/models/multimodal/generation/test_mllama.py \
|
||||
--ignore=tests/models/multimodal/generation/test_pixtral.py \
|
||||
-m cpu_model"
|
||||
|
||||
# Run compressed-tensor test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
|
||||
|
||||
# Run AWQ test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
VLLM_USE_V1=0 pytest -s -v \
|
||||
tests/quantization/test_ipex_quant.py"
|
||||
|
||||
# Run chunked-prefill and prefix-cache test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v -k cpu_model \
|
||||
tests/basic_correctness/test_chunked_prefill.py"
|
||||
|
||||
# online serving
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
export VLLM_CPU_KVCACHE_SPACE=10
|
||||
export VLLM_CPU_OMP_THREADS_BIND=$1
|
||||
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
|
||||
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
VLLM_CPU_CI_ENV=0 python3 benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--dataset-name random \
|
||||
--model facebook/opt-125m \
|
||||
@ -83,7 +90,7 @@ function cpu_tests() {
|
||||
--tokenizer facebook/opt-125m"
|
||||
|
||||
# Run multi-lora tests
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/lora/test_qwen2vl.py"
|
||||
@ -91,4 +98,4 @@ function cpu_tests() {
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
export -f cpu_tests
|
||||
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE $BUILDKITE_BUILD_NUMBER"
|
||||
timeout 1h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
|
||||
|
||||
@ -10,15 +10,17 @@ docker build -t hpu-test-env -f docker/Dockerfile.hpu .
|
||||
# Setup cleanup
|
||||
# certain versions of HPU software stack have a bug that can
|
||||
# override the exit code of the script, so we need to use
|
||||
# separate remove_docker_container and remove_docker_container_and_exit
|
||||
# separate remove_docker_containers and remove_docker_containers_and_exit
|
||||
# functions, while other platforms only need one remove_docker_container
|
||||
# function.
|
||||
EXITCODE=1
|
||||
remove_docker_container() { docker rm -f hpu-test || true; }
|
||||
remove_docker_container_and_exit() { remove_docker_container; exit $EXITCODE; }
|
||||
trap remove_docker_container_and_exit EXIT
|
||||
remove_docker_container
|
||||
remove_docker_containers() { docker rm -f hpu-test || true; docker rm -f hpu-test-tp2 || true; }
|
||||
remove_docker_containers_and_exit() { remove_docker_containers; exit $EXITCODE; }
|
||||
trap remove_docker_containers_and_exit EXIT
|
||||
remove_docker_containers
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
docker run --runtime=habana --name=hpu-test-tp2 --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --tensor-parallel-size 2
|
||||
|
||||
EXITCODE=$?
|
||||
|
||||
@ -11,13 +11,14 @@ container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
HF_CACHE="$(realpath ~)/huggingface"
|
||||
mkdir -p "${HF_CACHE}"
|
||||
HF_MOUNT="/root/.cache/huggingface"
|
||||
HF_TOKEN=$(aws secretsmanager get-secret-value --secret-id "ci/vllm-neuron/hf-token" --region us-west-2 --query 'SecretString' --output text | jq -r .VLLM_NEURON_CI_HF_TOKEN)
|
||||
|
||||
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
|
||||
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
|
||||
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
|
||||
|
||||
# Try building the docker image
|
||||
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
|
||||
aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
|
||||
|
||||
# prune old image and containers to save disk space, and only once a day
|
||||
# by using a timestamp file in tmp.
|
||||
@ -47,8 +48,16 @@ trap remove_docker_container EXIT
|
||||
docker run --rm -it --device=/dev/neuron0 --network bridge \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-e "HF_TOKEN=${HF_TOKEN}" \
|
||||
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
--name "${container_name}" \
|
||||
${image_name} \
|
||||
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py && python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys && python3 -m pytest /workspace/vllm/tests/neuron/2_core/ -v --capture=tee-sys"
|
||||
/bin/bash -c "
|
||||
python3 /workspace/vllm/examples/offline_inference/neuron.py;
|
||||
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
|
||||
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
|
||||
echo 'Running test file: '$f;
|
||||
python3 -m pytest \$f -v --capture=tee-sys;
|
||||
done
|
||||
"
|
||||
@ -2,102 +2,184 @@
|
||||
|
||||
set -xu
|
||||
|
||||
|
||||
remove_docker_container() {
|
||||
docker rm -f tpu-test || true;
|
||||
docker rm -f vllm-tpu || true;
|
||||
}
|
||||
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
cleanup_docker() {
|
||||
# Get Docker's root directory
|
||||
docker_root=$(docker info -f '{{.DockerRootDir}}')
|
||||
if [ -z "$docker_root" ]; then
|
||||
echo "Failed to determine Docker root directory."
|
||||
exit 1
|
||||
fi
|
||||
echo "Docker root directory: $docker_root"
|
||||
# Check disk usage of the filesystem where Docker's root directory is located
|
||||
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
|
||||
# Define the threshold
|
||||
threshold=70
|
||||
if [ "$disk_usage" -gt "$threshold" ]; then
|
||||
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune --force --filter "until=72h" --all
|
||||
echo "Docker images and volumes cleanup completed."
|
||||
else
|
||||
echo "Disk usage is below $threshold%. No cleanup needed."
|
||||
fi
|
||||
}
|
||||
cleanup_docker
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& export VLLM_XLA_CACHE_PATH= \
|
||||
&& export VLLM_USE_V1=1 \
|
||||
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
|
||||
&& echo HARDWARE \
|
||||
&& tpu-info \
|
||||
&& { \
|
||||
echo TEST_0: Running test_perf.py; \
|
||||
pytest -s -v /workspace/vllm/tests/tpu/test_perf.py; \
|
||||
echo TEST_0_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
&& { \
|
||||
echo TEST_1: Running test_compilation.py; \
|
||||
pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py; \
|
||||
echo TEST_1_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_2: Running test_basic.py; \
|
||||
pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py; \
|
||||
echo TEST_2_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_3: Running test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
|
||||
pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
|
||||
echo TEST_3_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_4: Running test_quantization_accuracy.py; \
|
||||
pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py; \
|
||||
echo TEST_4_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_5: Running examples/offline_inference/tpu.py; \
|
||||
python3 /workspace/vllm/examples/offline_inference/tpu.py; \
|
||||
echo TEST_5_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
{ \
|
||||
echo TEST_6: Running test_tpu_model_runner.py; \
|
||||
pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py; \
|
||||
echo TEST_6_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
&& { \
|
||||
echo TEST_7: Running test_sampler.py; \
|
||||
pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py; \
|
||||
echo TEST_7_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
&& { \
|
||||
echo TEST_8: Running test_topk_topp_sampler.py; \
|
||||
pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py; \
|
||||
echo TEST_8_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
&& { \
|
||||
echo TEST_9: Running test_multimodal.py; \
|
||||
pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py; \
|
||||
echo TEST_9_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
&& { \
|
||||
echo TEST_10: Running test_pallas.py; \
|
||||
pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py; \
|
||||
echo TEST_10_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
&& { \
|
||||
echo TEST_11: Running test_struct_output_generate.py; \
|
||||
pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py; \
|
||||
echo TEST_11_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
&& { \
|
||||
echo TEST_12: Running test_moe_pallas.py; \
|
||||
pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py; \
|
||||
echo TEST_12_EXIT_CODE: \$?; \
|
||||
} & \
|
||||
# Disable the TPU LoRA tests until the feature is activated
|
||||
# && { \
|
||||
# echo TEST_13: Running test_moe_pallas.py; \
|
||||
# pytest -s -v /workspace/vllm/tests/tpu/lora/; \
|
||||
# echo TEST_13_EXIT_CODE: \$?; \
|
||||
# } & \
|
||||
wait \
|
||||
&& echo 'All tests have attempted to run. Check logs for individual test statuses and exit codes.' \
|
||||
"
|
||||
vllm-tpu /bin/bash -c '
|
||||
set -e # Exit immediately if a command exits with a non-zero status.
|
||||
set -u # Treat unset variables as an error.
|
||||
|
||||
echo "--- Starting script inside Docker container ---"
|
||||
|
||||
# Create results directory
|
||||
RESULTS_DIR=$(mktemp -d)
|
||||
# If mktemp fails, set -e will cause the script to exit.
|
||||
echo "Results will be stored in: $RESULTS_DIR"
|
||||
|
||||
# Install dependencies
|
||||
echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||
export VLLM_XLA_CACHE_PATH=
|
||||
echo "Using VLLM V1"
|
||||
|
||||
echo "--- Hardware Information ---"
|
||||
tpu-info
|
||||
echo "--- Starting Tests ---"
|
||||
set +e
|
||||
overall_script_exit_code=0
|
||||
|
||||
# --- Test Definitions ---
|
||||
# If a test fails, this function will print logs and will not cause the main script to exit.
|
||||
run_test() {
|
||||
local test_num=$1
|
||||
local test_name=$2
|
||||
local test_command=$3
|
||||
local log_file="$RESULTS_DIR/test_${test_num}.log"
|
||||
local actual_exit_code
|
||||
|
||||
echo "--- TEST_$test_num: Running $test_name ---"
|
||||
|
||||
# Execute the test command.
|
||||
eval "$test_command" > >(tee -a "$log_file") 2> >(tee -a "$log_file" >&2)
|
||||
actual_exit_code=$?
|
||||
|
||||
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" # This goes to main log
|
||||
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" >> "$log_file" # Also to per-test log
|
||||
|
||||
if [ "$actual_exit_code" -ne 0 ]; then
|
||||
echo "TEST_$test_num ($test_name) FAILED with exit code $actual_exit_code." >&2
|
||||
echo "--- Log for failed TEST_$test_num ($test_name) ---" >&2
|
||||
if [ -f "$log_file" ]; then
|
||||
cat "$log_file" >&2
|
||||
else
|
||||
echo "Log file $log_file not found for TEST_$test_num ($test_name)." >&2
|
||||
fi
|
||||
echo "--- End of log for TEST_$test_num ($test_name) ---" >&2
|
||||
return "$actual_exit_code" # Return the failure code
|
||||
else
|
||||
echo "TEST_$test_num ($test_name) PASSED."
|
||||
return 0 # Return success
|
||||
fi
|
||||
}
|
||||
|
||||
# Helper function to call run_test and update the overall script exit code
|
||||
run_and_track_test() {
|
||||
local test_num_arg="$1"
|
||||
local test_name_arg="$2"
|
||||
local test_command_arg="$3"
|
||||
|
||||
# Run the test
|
||||
run_test "$test_num_arg" "$test_name_arg" "$test_command_arg"
|
||||
local test_specific_exit_code=$?
|
||||
|
||||
# If the test failed, set the overall script exit code to 1
|
||||
if [ "$test_specific_exit_code" -ne 0 ]; then
|
||||
# No need for extra echo here, run_test already logged the failure.
|
||||
overall_script_exit_code=1
|
||||
fi
|
||||
}
|
||||
|
||||
# --- Actual Test Execution ---
|
||||
run_and_track_test 0 "test_perf.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_perf.py"
|
||||
run_and_track_test 1 "test_compilation.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py"
|
||||
run_and_track_test 2 "test_basic.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py"
|
||||
run_and_track_test 3 "test_accuracy.py::test_lm_eval_accuracy_v1_engine" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine"
|
||||
run_and_track_test 4 "test_quantization_accuracy.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py"
|
||||
run_and_track_test 5 "examples/offline_inference/tpu.py" \
|
||||
"python3 /workspace/vllm/examples/offline_inference/tpu.py"
|
||||
run_and_track_test 6 "test_tpu_model_runner.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py"
|
||||
run_and_track_test 7 "test_sampler.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py"
|
||||
run_and_track_test 8 "test_topk_topp_sampler.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py"
|
||||
run_and_track_test 9 "test_multimodal.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py"
|
||||
run_and_track_test 10 "test_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
|
||||
run_and_track_test 11 "test_struct_output_generate.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
|
||||
run_and_track_test 12 "test_moe_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
|
||||
run_and_track_test 13 "test_lora.py" \
|
||||
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
|
||||
run_and_track_test 14 "test_tpu_qkv_linear.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
|
||||
run_and_track_test 15 "test_spmd_model_weight_loading.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
|
||||
|
||||
# After all tests have been attempted, exit with the overall status.
|
||||
if [ "$overall_script_exit_code" -ne 0 ]; then
|
||||
echo "--- One or more tests FAILED. Overall script exiting with failure code 1. ---"
|
||||
else
|
||||
echo "--- All tests have completed and PASSED. Overall script exiting with success code 0. ---"
|
||||
fi
|
||||
exit "$overall_script_exit_code"
|
||||
' # IMPORTANT: This is the closing single quote for the bash -c "..." command. Ensure it is present and correct.
|
||||
|
||||
# Capture the exit code of the docker run command
|
||||
DOCKER_RUN_EXIT_CODE=$?
|
||||
|
||||
# The trap will run for cleanup.
|
||||
# Exit the main script with the Docker run command's exit code.
|
||||
if [ "$DOCKER_RUN_EXIT_CODE" -ne 0 ]; then
|
||||
echo "Docker run command failed with exit code $DOCKER_RUN_EXIT_CODE."
|
||||
exit "$DOCKER_RUN_EXIT_CODE"
|
||||
else
|
||||
echo "Docker run command completed successfully."
|
||||
exit 0
|
||||
fi
|
||||
# TODO: This test fails because it uses RANDOM_SEED sampling
|
||||
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
# pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
|
||||
18
.buildkite/scripts/rerun-test.sh
Normal file
18
.buildkite/scripts/rerun-test.sh
Normal file
@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage: ./rerun_test.sh path/to/test.py::test_name
|
||||
|
||||
# Check if argument is given
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: $0 path/to/test.py::test_name"
|
||||
echo "Example: $0 tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
TEST=$1
|
||||
COUNT=1
|
||||
|
||||
while pytest -sv "$TEST"; do
|
||||
COUNT=$((COUNT + 1))
|
||||
echo "RUN NUMBER ${COUNT}"
|
||||
done
|
||||
24
.buildkite/scripts/tpu/cleanup_docker.sh
Executable file
24
.buildkite/scripts/tpu/cleanup_docker.sh
Executable file
@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
docker_root=$(docker info -f '{{.DockerRootDir}}')
|
||||
if [ -z "$docker_root" ]; then
|
||||
echo "Failed to determine Docker root directory."
|
||||
exit 1
|
||||
fi
|
||||
echo "Docker root directory: $docker_root"
|
||||
# Check disk usage of the filesystem where Docker's root directory is located
|
||||
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
|
||||
# Define the threshold
|
||||
threshold=70
|
||||
if [ "$disk_usage" -gt "$threshold" ]; then
|
||||
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune --force --filter "until=72h" --all
|
||||
echo "Docker images and volumes cleanup completed."
|
||||
else
|
||||
echo "Disk usage is below $threshold%. No cleanup needed."
|
||||
fi
|
||||
14
.buildkite/scripts/tpu/config_v6e_1.env
Normal file
14
.buildkite/scripts/tpu/config_v6e_1.env
Normal file
@ -0,0 +1,14 @@
|
||||
# Environment config
|
||||
TEST_NAME=llama8b
|
||||
CONTAINER_NAME=vllm-tpu
|
||||
|
||||
# vllm config
|
||||
MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
MAX_NUM_SEQS=512
|
||||
MAX_NUM_BATCHED_TOKENS=512
|
||||
TENSOR_PARALLEL_SIZE=1
|
||||
MAX_MODEL_LEN=2048
|
||||
DOWNLOAD_DIR=/mnt/disks/persist
|
||||
EXPECTED_THROUGHPUT=8.0
|
||||
INPUT_LEN=1800
|
||||
OUTPUT_LEN=128
|
||||
102
.buildkite/scripts/tpu/docker_run_bm.sh
Executable file
102
.buildkite/scripts/tpu/docker_run_bm.sh
Executable file
@ -0,0 +1,102 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ ! -f "$1" ]; then
|
||||
echo "Error: The env file '$1' does not exist."
|
||||
exit 1 # Exit the script with a non-zero status to indicate an error
|
||||
fi
|
||||
|
||||
ENV_FILE=$1
|
||||
|
||||
# For testing on local vm, use `set -a` to export all variables
|
||||
source /etc/environment
|
||||
source $ENV_FILE
|
||||
|
||||
remove_docker_container() {
|
||||
docker rm -f tpu-test || true;
|
||||
docker rm -f vllm-tpu || true;
|
||||
docker rm -f $CONTAINER_NAME || true;
|
||||
}
|
||||
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# Build docker image.
|
||||
# TODO: build the image outside the script and share the image with other
|
||||
# tpu test if building time is too long.
|
||||
DOCKER_BUILDKIT=1 docker build \
|
||||
--build-arg max_jobs=16 \
|
||||
--build-arg USE_SCCACHE=1 \
|
||||
--build-arg GIT_REPO_CHECK=0 \
|
||||
--tag vllm/vllm-tpu-bm \
|
||||
--progress plain -f docker/Dockerfile.tpu .
|
||||
|
||||
LOG_ROOT=$(mktemp -d)
|
||||
# If mktemp fails, set -e will cause the script to exit.
|
||||
echo "Results will be stored in: $LOG_ROOT"
|
||||
|
||||
if [ -z "$HF_TOKEN" ]; then
|
||||
echo "Error: HF_TOKEN is not set or is empty."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Make sure mounted disk or dir exists
|
||||
if [ ! -d "$DOWNLOAD_DIR" ]; then
|
||||
echo "Error: Folder $DOWNLOAD_DIR does not exist. This is useually a mounted drive. If no mounted drive, just create a folder."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Run model $MODEL"
|
||||
echo
|
||||
|
||||
echo "starting docker...$CONTAINER_NAME"
|
||||
echo
|
||||
docker run \
|
||||
-v $DOWNLOAD_DIR:$DOWNLOAD_DIR \
|
||||
--env-file $ENV_FILE \
|
||||
-e HF_TOKEN="$HF_TOKEN" \
|
||||
-e TARGET_COMMIT=$BUILDKITE_COMMIT \
|
||||
-e MODEL=$MODEL \
|
||||
-e WORKSPACE=/workspace \
|
||||
--name $CONTAINER_NAME \
|
||||
-d \
|
||||
--privileged \
|
||||
--network host \
|
||||
-v /dev/shm:/dev/shm \
|
||||
vllm/vllm-tpu-bm tail -f /dev/null
|
||||
|
||||
echo "run script..."
|
||||
echo
|
||||
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/hardware_ci/run_bm.sh"
|
||||
|
||||
echo "copy result back..."
|
||||
VLLM_LOG="$LOG_ROOT/$TEST_NAME"_vllm_log.txt
|
||||
BM_LOG="$LOG_ROOT/$TEST_NAME"_bm_log.txt
|
||||
docker cp "$CONTAINER_NAME:/workspace/vllm_log.txt" "$VLLM_LOG"
|
||||
docker cp "$CONTAINER_NAME:/workspace/bm_log.txt" "$BM_LOG"
|
||||
|
||||
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
|
||||
echo "throughput for $TEST_NAME at $BUILDKITE_COMMIT: $throughput"
|
||||
|
||||
if [ "$BUILDKITE" = "true" ]; then
|
||||
echo "Running inside Buildkite"
|
||||
buildkite-agent artifact upload "$VLLM_LOG"
|
||||
buildkite-agent artifact upload "$BM_LOG"
|
||||
else
|
||||
echo "Not running inside Buildkite"
|
||||
fi
|
||||
|
||||
#
|
||||
# compare the throughput with EXPECTED_THROUGHPUT
|
||||
# and assert meeting the expectation
|
||||
#
|
||||
if [[ -z "$throughput" || ! "$throughput" =~ ^[0-9]+([.][0-9]+)?$ ]]; then
|
||||
echo "Failed to get the throughput"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if (( $(echo "$throughput < $EXPECTED_THROUGHPUT" | bc -l) )); then
|
||||
echo "Error: throughput($throughput) is less than expected($EXPECTED_THROUGHPUT)"
|
||||
exit 1
|
||||
fi
|
||||
94
.buildkite/scripts/tpu/run_bm.sh
Executable file
94
.buildkite/scripts/tpu/run_bm.sh
Executable file
@ -0,0 +1,94 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
VLLM_LOG="$WORKSPACE/vllm_log.txt"
|
||||
BM_LOG="$WORKSPACE/bm_log.txt"
|
||||
|
||||
if [ -n "$TARGET_COMMIT" ]; then
|
||||
head_hash=$(git rev-parse HEAD)
|
||||
if [ "$TARGET_COMMIT" != "$head_hash" ]; then
|
||||
echo "Error: target commit $TARGET_COMMIT does not match HEAD: $head_hash"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
echo "model: $MODEL"
|
||||
echo
|
||||
|
||||
#
|
||||
# create a log folder
|
||||
#
|
||||
mkdir "$WORKSPACE/log"
|
||||
|
||||
# TODO: Move to image building.
|
||||
pip install pandas
|
||||
pip install datasets
|
||||
|
||||
#
|
||||
# create sonnet_4x
|
||||
#
|
||||
echo "Create sonnet_4x.txt"
|
||||
echo "" > benchmarks/sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
|
||||
done
|
||||
|
||||
#
|
||||
# start vllm service in backend
|
||||
#
|
||||
echo "lanching vllm..."
|
||||
echo "logging to $VLLM_LOG"
|
||||
echo
|
||||
|
||||
VLLM_USE_V1=1 vllm serve $MODEL \
|
||||
--seed 42 \
|
||||
--disable-log-requests \
|
||||
--max-num-seqs $MAX_NUM_SEQS \
|
||||
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
|
||||
--tensor-parallel-size $TENSOR_PARALLEL_SIZE \
|
||||
--no-enable-prefix-caching \
|
||||
--download_dir $DOWNLOAD_DIR \
|
||||
--max-model-len $MAX_MODEL_LEN > "$VLLM_LOG" 2>&1 &
|
||||
|
||||
|
||||
echo "wait for 20 minutes.."
|
||||
echo
|
||||
# sleep 1200
|
||||
# wait for 10 minutes...
|
||||
for i in {1..120}; do
|
||||
# TODO: detect other type of errors.
|
||||
if grep -Fq "raise RuntimeError" "$VLLM_LOG"; then
|
||||
echo "Detected RuntimeError, exiting."
|
||||
exit 1
|
||||
elif grep -Fq "Application startup complete" "$VLLM_LOG"; then
|
||||
echo "Application started"
|
||||
break
|
||||
else
|
||||
echo "wait for 10 seconds..."
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
|
||||
#
|
||||
# run test
|
||||
#
|
||||
echo "run benchmark test..."
|
||||
echo "logging to $BM_LOG"
|
||||
echo
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--ignore-eos > "$BM_LOG"
|
||||
|
||||
echo "completed..."
|
||||
echo
|
||||
|
||||
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
|
||||
echo "throughput: $throughput"
|
||||
echo
|
||||
@ -75,3 +75,4 @@ else
|
||||
fi
|
||||
|
||||
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
|
||||
aws s3 cp index.html "s3://vllm-wheels/$version/vllm/index.html"
|
||||
|
||||
@ -32,16 +32,17 @@ steps:
|
||||
##### fast check tests #####
|
||||
|
||||
- label: Documentation Build # 2min
|
||||
working_dir: "/vllm-workspace/test_docs/docs"
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/test_docs"
|
||||
fast_check: true
|
||||
no_gpu: True
|
||||
commands:
|
||||
- pip install -r ../../requirements/docs.txt
|
||||
- SPHINXOPTS=\"-W\" make html
|
||||
# Check API reference (if it fails, you may have missing mock imports)
|
||||
- grep \"sig sig-object py\" build/html/api/vllm/vllm.sampling_params.html
|
||||
- pip install -r ../requirements/docs.txt
|
||||
# TODO: add `--strict` once warnings in docstrings are fixed
|
||||
- mkdocs build
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test # 24min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/mq_llm_engine
|
||||
@ -57,11 +58,13 @@ steps:
|
||||
- pytest -v -s async_engine # AsyncLLMEngine
|
||||
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
|
||||
- pytest -v -s test_inputs.py
|
||||
- pytest -v -s test_outputs.py
|
||||
- pytest -v -s multimodal
|
||||
- pytest -v -s test_utils.py # Utils
|
||||
- pytest -v -s worker # Worker
|
||||
|
||||
- label: Python-only Installation Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- tests/standalone_tests/python_only_compile.sh
|
||||
- setup.py
|
||||
@ -69,7 +72,7 @@ steps:
|
||||
- bash standalone_tests/python_only_compile.sh
|
||||
|
||||
- label: Basic Correctness Test # 30min
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
@ -86,6 +89,7 @@ steps:
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
- label: Chunked Prefill Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_chunked_prefill
|
||||
@ -94,7 +98,7 @@ steps:
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
|
||||
- label: Core Test # 10min
|
||||
mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/core
|
||||
@ -104,10 +108,10 @@ steps:
|
||||
- pytest -v -s core
|
||||
|
||||
- label: Entrypoints Test # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/entrypoints/llm
|
||||
@ -121,11 +125,12 @@ steps:
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_openai_schema.py
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/
|
||||
- pytest -v -s entrypoints/test_chat_utils.py
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
- label: Distributed Tests (4 GPUs) # 10min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
@ -133,32 +138,38 @@ steps:
|
||||
- vllm/core/
|
||||
- tests/distributed/test_utils
|
||||
- tests/distributed/test_pynccl
|
||||
- tests/distributed/test_events
|
||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||
- tests/compile/test_basic_correctness
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/engine/test_engine_core_client.py
|
||||
commands:
|
||||
# test with tp=2 and external_dp=2
|
||||
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with tp=2 and pp=2
|
||||
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with internal dp
|
||||
- python3 ../examples/offline_inference/data_parallel.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
- pytest -v -s distributed/test_events.py
|
||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- pushd ../examples/offline_inference
|
||||
- python3 rlhf.py
|
||||
- RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
|
||||
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 python3 rlhf.py
|
||||
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
|
||||
- popd
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -166,13 +177,18 @@ steps:
|
||||
- tests/tracing
|
||||
commands:
|
||||
- pytest -v -s metrics
|
||||
- "pip install \
|
||||
'opentelemetry-sdk>=1.26.0' \
|
||||
'opentelemetry-api>=1.26.0' \
|
||||
'opentelemetry-exporter-otlp>=1.26.0' \
|
||||
'opentelemetry-semantic-conventions-ai>=0.4.1'"
|
||||
- pytest -v -s tracing
|
||||
|
||||
##### fast check tests #####
|
||||
##### 1 GPU test #####
|
||||
|
||||
- label: Regression Test # 5min
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_regression
|
||||
@ -182,7 +198,7 @@ steps:
|
||||
working_dir: "/vllm-workspace/tests" # optional
|
||||
|
||||
- label: Engine Test # 10min
|
||||
mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/engine
|
||||
@ -190,13 +206,14 @@ steps:
|
||||
- tests/test_sequence
|
||||
- tests/test_config
|
||||
- tests/test_logger
|
||||
- tests/test_vllm_port
|
||||
commands:
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py test_vllm_port.py
|
||||
# OOM in the CI unless we run this separately
|
||||
- pytest -v -s tokenization
|
||||
|
||||
- label: V1 Test
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/v1
|
||||
@ -209,10 +226,11 @@ steps:
|
||||
- pytest -v -s v1/worker
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/kv_connector/unit
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_stats.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
- pytest -v -s v1/test_metrics_reader.py
|
||||
# TODO: accuracy does not match, whether setting
|
||||
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
|
||||
- pytest -v -s v1/e2e
|
||||
@ -221,8 +239,8 @@ steps:
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
|
||||
- label: Examples Test # 25min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/examples"
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/entrypoints
|
||||
- examples/
|
||||
@ -237,7 +255,7 @@ steps:
|
||||
- python3 offline_inference/vision_language.py --seed 0
|
||||
- python3 offline_inference/vision_language_embedding.py --seed 0
|
||||
- python3 offline_inference/vision_language_multi_image.py --seed 0
|
||||
- VLLM_USE_V1=0 python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference/encoder_decoder.py
|
||||
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
|
||||
- python3 offline_inference/basic/classify.py
|
||||
@ -246,7 +264,7 @@ steps:
|
||||
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
|
||||
- label: Prefix Caching Test # 9min
|
||||
mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/prefix_caching
|
||||
@ -254,6 +272,7 @@ steps:
|
||||
- pytest -v -s prefix_caching
|
||||
|
||||
- label: Samplers Test # 36min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers
|
||||
- vllm/sampling_metadata.py
|
||||
@ -263,18 +282,8 @@ steps:
|
||||
- pytest -v -s samplers
|
||||
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
|
||||
|
||||
- label: LogitsProcessor Test # 5min
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers
|
||||
- vllm/model_executor/guided_decoding
|
||||
- tests/test_logits_processor
|
||||
- tests/model_executor/test_guided_processors
|
||||
commands:
|
||||
- pytest -v -s test_logits_processor.py
|
||||
- pytest -v -s model_executor/test_guided_processors.py
|
||||
|
||||
- label: Speculative decoding tests # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/spec_decode
|
||||
- tests/spec_decode
|
||||
@ -285,7 +294,7 @@ steps:
|
||||
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
|
||||
|
||||
- label: LoRA Test %N # 15min each
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
@ -293,6 +302,7 @@ steps:
|
||||
parallelism: 4
|
||||
|
||||
- label: PyTorch Compilation Unit Tests
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -300,9 +310,13 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s compile/test_pass_manager.py
|
||||
- pytest -v -s compile/test_fusion.py
|
||||
- pytest -v -s compile/test_fusion_attn.py
|
||||
- pytest -v -s compile/test_silu_mul_quant_fusion.py
|
||||
- pytest -v -s compile/test_sequence_parallelism.py
|
||||
- pytest -v -s compile/test_async_tp.py
|
||||
|
||||
- label: PyTorch Fullgraph Smoke Test # 9min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -312,8 +326,10 @@ steps:
|
||||
# these tests need to be separated, cannot combine
|
||||
- pytest -v -s compile/piecewise/test_simple.py
|
||||
- pytest -v -s compile/piecewise/test_toy_llama.py
|
||||
- pytest -v -s compile/piecewise/test_full_cudagraph.py
|
||||
|
||||
- label: PyTorch Fullgraph Test # 18min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -322,7 +338,7 @@ steps:
|
||||
- pytest -v -s compile/test_full_graph.py
|
||||
|
||||
- label: Kernels Core Operation Test
|
||||
mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- tests/kernels/core
|
||||
@ -330,7 +346,7 @@ steps:
|
||||
- pytest -v -s kernels/core
|
||||
|
||||
- label: Kernels Attention Test %N
|
||||
mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- csrc/attention/
|
||||
- vllm/attention
|
||||
@ -341,7 +357,7 @@ steps:
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels Quantization Test %N
|
||||
mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/
|
||||
- vllm/model_executor/layers/quantization
|
||||
@ -351,7 +367,7 @@ steps:
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels MoE Test
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/moe/
|
||||
- tests/kernels/moe
|
||||
@ -360,7 +376,7 @@ steps:
|
||||
- pytest -v -s kernels/moe
|
||||
|
||||
- label: Kernels Mamba Test
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
- tests/kernels/mamba
|
||||
@ -368,25 +384,39 @@ steps:
|
||||
- pytest -v -s kernels/mamba
|
||||
|
||||
- label: Tensorizer Test # 11min
|
||||
# mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
- tests/tensorizer_loader
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s tensorizer_loader
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Model Executor Test
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor
|
||||
- tests/model_executor
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s model_executor
|
||||
|
||||
- label: Benchmarks # 9min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
working_dir: "/vllm-workspace/.buildkite"
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- benchmarks/
|
||||
commands:
|
||||
- bash scripts/run-benchmarks.sh
|
||||
|
||||
- label: Benchmarks CLI Test # 10min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/benchmarks/
|
||||
@ -394,14 +424,19 @@ steps:
|
||||
- pytest -v -s benchmarks/
|
||||
|
||||
- label: Quantization Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/quantization
|
||||
commands:
|
||||
# temporary install here since we need nightly, will move to requirements/test.in
|
||||
# after torchao 0.12 release
|
||||
- pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
@ -411,6 +446,7 @@ steps:
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
|
||||
|
||||
- label: OpenAI API correctness
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/entrypoints/openai/
|
||||
@ -419,6 +455,7 @@ steps:
|
||||
- pytest -s entrypoints/openai/correctness/
|
||||
|
||||
- label: Encoder Decoder tests # 5min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/encoder_decoder
|
||||
@ -426,8 +463,8 @@ steps:
|
||||
- pytest -v -s encoder_decoder
|
||||
|
||||
- label: OpenAI-Compatible Tool Use # 20 min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
fast_check: false
|
||||
#mirror_hardwares: [ amd ]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
@ -439,6 +476,7 @@ steps:
|
||||
##### models test #####
|
||||
|
||||
- label: Basic Models Test # 24min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -448,43 +486,55 @@ steps:
|
||||
- pytest -v -s models/test_registry.py
|
||||
- pytest -v -s models/test_utils.py
|
||||
- pytest -v -s models/test_vision.py
|
||||
# V1 Test: https://github.com/vllm-project/vllm/issues/14531
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'llama4'
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'plamo2'
|
||||
- pytest -v -s models/test_initialization.py
|
||||
|
||||
- label: Language Models Test (Standard)
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/language
|
||||
commands:
|
||||
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
|
||||
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
|
||||
- pip freeze | grep -E 'torch'
|
||||
- pytest -v -s models/language -m core_model
|
||||
|
||||
- label: Language Models Test (Extended)
|
||||
- label: Language Models Test (Extended Generation) # 1hr20min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/language
|
||||
- tests/models/language/generation
|
||||
commands:
|
||||
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
|
||||
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
|
||||
- pytest -v -s models/language -m 'not core_model'
|
||||
- pytest -v -s models/language/generation -m 'not core_model'
|
||||
|
||||
- label: Language Models Test (Extended Pooling) # 36min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/language/pooling
|
||||
commands:
|
||||
- pytest -v -s models/language/pooling -m 'not core_model'
|
||||
|
||||
- label: Multi-Modal Models Test (Standard)
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/multimodal
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pip freeze | grep -E 'torch'
|
||||
- pytest -v -s models/multimodal/processing
|
||||
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py models/multimodal -m core_model
|
||||
- cd .. && pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 1
|
||||
mirror_hardwares: [amdexperimental]
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -494,6 +544,7 @@ steps:
|
||||
- pytest -v -s --ignore models/multimodal/generation/test_common.py --ignore models/multimodal/processing models/multimodal -m 'not core_model'
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 2
|
||||
mirror_hardwares: [amdexperimental]
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -503,6 +554,7 @@ steps:
|
||||
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=0) and not core_model'
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 3
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -512,7 +564,7 @@ steps:
|
||||
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
|
||||
|
||||
- label: Quantized Models Test
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/models/quantization
|
||||
@ -521,7 +573,7 @@ steps:
|
||||
|
||||
# This test is used only in PR development phase to test individual models and should never run on main
|
||||
- label: Custom Models Test
|
||||
mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
optional: true
|
||||
commands:
|
||||
- echo 'Testing custom models...'
|
||||
@ -533,7 +585,7 @@ steps:
|
||||
##### multi gpus test #####
|
||||
|
||||
- label: Distributed Comm Ops Test # 7min
|
||||
mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
@ -544,6 +596,7 @@ steps:
|
||||
- pytest -v -s distributed/test_shm_broadcast.py
|
||||
|
||||
- label: 2 Node Tests (4 GPUs in total) # 16min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
num_nodes: 2
|
||||
@ -562,7 +615,7 @@ steps:
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
|
||||
- label: Distributed Tests (2 GPUs) # 40min
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
@ -577,9 +630,11 @@ steps:
|
||||
- vllm/worker/model_runner.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- vllm/v1/engine/
|
||||
commands:
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
@ -599,13 +654,14 @@ steps:
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/plugins/
|
||||
- tests/plugins/
|
||||
commands:
|
||||
# begin platform plugin tests, all the code in-between runs on dummy platform
|
||||
# begin platform plugin and general plugin tests, all the code in-between runs on dummy platform
|
||||
- pip install -e ./plugins/vllm_add_dummy_platform
|
||||
- pytest -v -s plugins_tests/test_platform_plugins.py
|
||||
- pip uninstall vllm_add_dummy_platform -y
|
||||
@ -616,8 +672,10 @@ steps:
|
||||
- pytest -v -s distributed/test_distributed_oot.py
|
||||
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
|
||||
- pytest -v -s models/test_oot_registration.py # it needs a clean process
|
||||
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
|
||||
|
||||
- label: Multi-step Tests (4 GPUs) # 36min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
@ -638,6 +696,7 @@ steps:
|
||||
- pytest -v -s multi_step/test_correctness_llm.py
|
||||
|
||||
- label: Pipeline Parallelism Test # 45min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
@ -651,6 +710,7 @@ steps:
|
||||
- pytest -v -s distributed/test_pipeline_parallel.py
|
||||
|
||||
- label: LoRA TP Test (Distributed)
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
@ -666,6 +726,7 @@ steps:
|
||||
|
||||
|
||||
- label: Weight Loading Multiple GPU Test # 33min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
@ -675,6 +736,7 @@ steps:
|
||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
|
||||
|
||||
- label: Weight Loading Multiple GPU Test - Large Models # optional
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
gpu: a100
|
||||
|
||||
20
.github/CODEOWNERS
vendored
20
.github/CODEOWNERS
vendored
@ -10,14 +10,17 @@
|
||||
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
|
||||
/vllm/model_executor/guided_decoding @mgoin @russellb
|
||||
/vllm/model_executor/guided_decoding @mgoin @russellb @aarnphm
|
||||
/vllm/multimodal @DarkLight1337 @ywang96
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
/vllm/reasoning @aarnphm
|
||||
/vllm/entrypoints @aarnphm
|
||||
CMakeLists.txt @tlrmchlsmth
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm
|
||||
|
||||
# Test ownership
|
||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||
@ -26,8 +29,8 @@ CMakeLists.txt @tlrmchlsmth
|
||||
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
||||
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
||||
/tests/distributed/test_same_node.py @youkaichao
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
|
||||
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm
|
||||
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb @aarnphm
|
||||
/tests/kernels @tlrmchlsmth @WoosukKwon
|
||||
/tests/model_executor/test_guided_processors.py @mgoin @russellb
|
||||
/tests/models @DarkLight1337 @ywang96
|
||||
@ -37,6 +40,11 @@ CMakeLists.txt @tlrmchlsmth
|
||||
/tests/quantization @mgoin @robertgshaw2-redhat
|
||||
/tests/spec_decode @njhill @LiuXiaoxuanPKU
|
||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
|
||||
/tests/v1/structured_output @mgoin @russellb
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
|
||||
/tests/v1/structured_output @mgoin @russellb @aarnphm
|
||||
/tests/weight_loading @mgoin @youkaichao
|
||||
/tests/lora @jeejeelee
|
||||
|
||||
# Docs
|
||||
/docs @hmellor
|
||||
mkdocs.yaml @hmellor
|
||||
|
||||
16
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
16
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
@ -8,6 +8,16 @@ body:
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
⚠️ **SECURITY WARNING:** Please review any text you paste to ensure it does not contain sensitive information such as:
|
||||
- API tokens or keys (e.g., Hugging Face tokens, OpenAI API keys)
|
||||
- Passwords or authentication credentials
|
||||
- Private URLs or endpoints
|
||||
- Personal or confidential data
|
||||
|
||||
Consider redacting or replacing sensitive values with placeholders like `<YOUR_TOKEN_HERE>` when sharing configuration or code examples.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Your current environment
|
||||
@ -81,14 +91,14 @@ body:
|
||||
required: true
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the models' output:
|
||||
value: |
|
||||
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the model's output:
|
||||
|
||||
- Try the counterpart of `transformers` first. If the error appears, please go to [their issues](https://github.com/huggingface/transformers/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc).
|
||||
|
||||
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
|
||||
|
||||
Thanks for contributing 🎉!
|
||||
Thanks for reporting 🙏!
|
||||
- type: checkboxes
|
||||
id: askllm
|
||||
attributes:
|
||||
|
||||
69
.github/ISSUE_TEMPLATE/450-ci-failure.yml
vendored
Normal file
69
.github/ISSUE_TEMPLATE/450-ci-failure.yml
vendored
Normal file
@ -0,0 +1,69 @@
|
||||
name: 🧪 CI failure report
|
||||
description: Report a failing test.
|
||||
title: "[CI Failure]: "
|
||||
labels: ["ci-failure"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Include the name of the failing Buildkite step and test file in the title.
|
||||
- type: input
|
||||
attributes:
|
||||
label: Name of failing test
|
||||
description: |
|
||||
Paste in the fully-qualified name of the failing test from the logs.
|
||||
placeholder: |
|
||||
`path/to/test_file.py::test_name[params]`
|
||||
validations:
|
||||
required: true
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: Basic information
|
||||
description: Select all items that apply to the failing test.
|
||||
options:
|
||||
- label: Flaky test
|
||||
- label: Can reproduce locally
|
||||
- label: Caused by external libraries (e.g. bug in `transformers`)
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 🧪 Describe the failing test
|
||||
description: |
|
||||
Please provide a clear and concise description of the failing test.
|
||||
placeholder: |
|
||||
A clear and concise description of the failing test.
|
||||
|
||||
```
|
||||
The error message you got, with the full traceback and the error logs with [dump_input.py:##] if present.
|
||||
```
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 📝 History of failing test
|
||||
description: |
|
||||
Since when did the test start to fail?
|
||||
You can look up its history via [Buildkite Test Suites](https://buildkite.com/organizations/vllm/analytics/suites/ci-1/tests?branch=main).
|
||||
|
||||
If you have time, identify the PR that caused the test to fail on main. You can do so via the following methods:
|
||||
|
||||
- Use Buildkite Test Suites to find the PR where the test failure first occurred, and reproduce the failure locally.
|
||||
|
||||
- Run [`git bisect`](https://git-scm.com/docs/git-bisect) locally.
|
||||
|
||||
- Manually unblock Buildkite steps for suspected PRs on main and check the results. (authorized users only)
|
||||
placeholder: |
|
||||
Approximate timeline and/or problematic PRs
|
||||
|
||||
A link to the Buildkite analytics of the failing test (if available)
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: CC List.
|
||||
description: >
|
||||
The list of people you want to CC. Usually, this includes those who worked on the PR that failed the test.
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for reporting 🙏!
|
||||
18
.github/PULL_REQUEST_TEMPLATE.md
vendored
18
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -1,6 +1,18 @@
|
||||
FILL IN THE PR DESCRIPTION HERE
|
||||
## Essential Elements of an Effective PR Description Checklist
|
||||
- [ ] The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
|
||||
- [ ] The test plan, such as providing test command.
|
||||
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
|
||||
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
|
||||
|
||||
FIX #xxxx (*link existing issues this PR will resolve*)
|
||||
PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS ABOVE HAVE BEEN CONSIDERED.
|
||||
|
||||
## Purpose
|
||||
|
||||
## Test Plan
|
||||
|
||||
## Test Result
|
||||
|
||||
## (Optional) Documentation Update
|
||||
|
||||
<!--- pyml disable-next-line no-emphasis-as-heading -->
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>** (anything written below this line will be removed by GitHub Actions)
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)
|
||||
|
||||
66
.github/mergify.yml
vendored
66
.github/mergify.yml
vendored
@ -36,6 +36,20 @@ pull_request_rules:
|
||||
add:
|
||||
- frontend
|
||||
|
||||
- name: label-llama
|
||||
description: Automatically apply llama label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^examples/.*llama.*\.py
|
||||
- files~=^tests/.*llama.*\.py
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/llama.*\.py
|
||||
- files~=^vllm/model_executor/models/.*llama.*\.py
|
||||
- files~=^vllm/transformers_utils/configs/.*llama.*\.py
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- llama
|
||||
|
||||
- name: label-multi-modality
|
||||
description: Automatically apply multi-modality label
|
||||
conditions:
|
||||
@ -51,6 +65,41 @@ pull_request_rules:
|
||||
add:
|
||||
- multi-modality
|
||||
|
||||
- name: label-qwen
|
||||
description: Automatically apply qwen label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^examples/.*qwen.*\.py
|
||||
- files~=^tests/.*qwen.*\.py
|
||||
- files~=^vllm/model_executor/models/.*qwen.*\.py
|
||||
- files~=^vllm/reasoning/.*qwen.*\.py
|
||||
- title~=(?i)Qwen
|
||||
- body~=(?i)Qwen
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- qwen
|
||||
|
||||
- name: label-rocm
|
||||
description: Automatically apply rocm label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^csrc/rocm/
|
||||
- files~=^docker/Dockerfile.rocm
|
||||
- files~=^requirements/rocm.*\.txt
|
||||
- files~=^vllm/attention/backends/rocm.*\.py
|
||||
- files~=^vllm/attention/ops/rocm.*\.py
|
||||
- files~=^vllm/model_executor/layers/fused_moe/rocm.*\.py
|
||||
- files~=^vllm/v1/attention/backends/mla/rocm.*\.py
|
||||
- files~=^tests/kernels/.*_rocm.*\.py
|
||||
- files=vllm/platforms/rocm.py
|
||||
- title~=(?i)AMD
|
||||
- title~=(?i)ROCm
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- rocm
|
||||
|
||||
- name: label-structured-output
|
||||
description: Automatically apply structured-output label
|
||||
conditions:
|
||||
@ -58,7 +107,7 @@ pull_request_rules:
|
||||
- files~=^benchmarks/structured_schemas/
|
||||
- files=benchmarks/benchmark_serving_structured_output.py
|
||||
- files=benchmarks/run_structured_output_benchmark.sh
|
||||
- files=docs/source/features/structured_outputs.md
|
||||
- files=docs/features/structured_outputs.md
|
||||
- files=examples/offline_inference/structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
|
||||
@ -135,9 +184,7 @@ pull_request_rules:
|
||||
- files~=^tests/entrypoints/openai/tool_parsers/
|
||||
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/
|
||||
- files=docs/source/features/tool_calling.md
|
||||
- files=docs/source/getting_started/examples/openai_chat_completion_client_with_tools.md
|
||||
- files=docs/source/getting_started/examples/chat_with_tools.md
|
||||
- files=docs/features/tool_calling.md
|
||||
- files~=^examples/tool_chat_*
|
||||
- files=examples/offline_inference/chat_with_tools.py
|
||||
- files=examples/online_serving/openai_chat_completion_client_with_tools_required.py
|
||||
@ -163,6 +210,17 @@ pull_request_rules:
|
||||
|
||||
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
|
||||
|
||||
- name: assign reviewer for tensorizer changes
|
||||
conditions:
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer.py
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
|
||||
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
- files~=^tests/tensorizer_loader/
|
||||
actions:
|
||||
assign:
|
||||
users:
|
||||
- "sangstar"
|
||||
|
||||
- name: remove 'needs-rebase' label when conflict is resolved
|
||||
conditions:
|
||||
- -conflict
|
||||
|
||||
2
.github/scripts/cleanup_pr_body.sh
vendored
2
.github/scripts/cleanup_pr_body.sh
vendored
@ -26,7 +26,7 @@ sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ.*\*\*/,$d' "${NEW}"
|
||||
|
||||
# Remove HTML <details> section that includes <summary> text of "PR Checklist (Click to Expand)"
|
||||
python3 - <<EOF
|
||||
import re
|
||||
import regex as re
|
||||
|
||||
with open("${NEW}", "r") as file:
|
||||
content = file.read()
|
||||
|
||||
2
.github/workflows/add_label_automerge.yml
vendored
2
.github/workflows/add_label_automerge.yml
vendored
@ -1,4 +1,6 @@
|
||||
name: Add label on auto-merge enabled
|
||||
permissions:
|
||||
pull-requests: write
|
||||
on:
|
||||
pull_request_target:
|
||||
types:
|
||||
|
||||
7
.github/workflows/cleanup_pr_body.yml
vendored
7
.github/workflows/cleanup_pr_body.yml
vendored
@ -20,7 +20,12 @@ jobs:
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
python3 -m pip install --upgrade pip
|
||||
python3 -m pip install regex
|
||||
|
||||
- name: Update PR description
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: .github/scripts/cleanup_pr_body.sh "${{ github.event.number }}"
|
||||
run: bash .github/scripts/cleanup_pr_body.sh "${{ github.event.number }}"
|
||||
|
||||
3
.github/workflows/lint-and-deploy.yaml
vendored
3
.github/workflows/lint-and-deploy.yaml
vendored
@ -2,6 +2,9 @@ name: Lint and Deploy Charts
|
||||
|
||||
on: pull_request
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
lint-and-deploy:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
3
.github/workflows/pre-commit.yml
vendored
3
.github/workflows/pre-commit.yml
vendored
@ -5,6 +5,9 @@ on:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
pre-commit:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
2
.github/workflows/reminder_comment.yml
vendored
2
.github/workflows/reminder_comment.yml
vendored
@ -1,4 +1,6 @@
|
||||
name: PR Reminder Comment Bot
|
||||
permissions:
|
||||
pull-requests: write
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened]
|
||||
|
||||
8
.gitignore
vendored
8
.gitignore
vendored
@ -77,11 +77,6 @@ instance/
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
docs/source/getting_started/examples/
|
||||
docs/source/api/vllm
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
@ -151,6 +146,7 @@ venv.bak/
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
docs/examples
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
@ -204,5 +200,5 @@ benchmarks/**/*.json
|
||||
actionlint
|
||||
shellcheck*/
|
||||
|
||||
# Ingore moe/marlin_moe gen code
|
||||
# Ignore moe/marlin_moe gen code
|
||||
csrc/moe/marlin_moe_wna16/kernel_*
|
||||
|
||||
@ -11,17 +11,19 @@ repos:
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
|
||||
exclude: '(.buildkite|benchmarks|build|examples)/.*'
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.7
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--output-format, github, --fix]
|
||||
- repo: https://github.com/codespell-project/codespell
|
||||
rev: v2.4.1
|
||||
- id: ruff-format
|
||||
files: ^(.buildkite|benchmarks|examples)/.*
|
||||
- repo: https://github.com/crate-ci/typos
|
||||
rev: v1.32.0
|
||||
hooks:
|
||||
- id: codespell
|
||||
additional_dependencies: ['tomli']
|
||||
args: ['--toml', 'pyproject.toml']
|
||||
- id: typos
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 6.0.1
|
||||
hooks:
|
||||
@ -37,6 +39,7 @@ repos:
|
||||
rev: v0.9.29
|
||||
hooks:
|
||||
- id: pymarkdown
|
||||
exclude: '.*\.inc\.md'
|
||||
args: [fix]
|
||||
- repo: https://github.com/rhysd/actionlint
|
||||
rev: v1.7.7
|
||||
@ -55,7 +58,7 @@ repos:
|
||||
entry: tools/mypy.sh 0 "local"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
|
||||
stages: [pre-commit] # Don't run in CI
|
||||
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.9
|
||||
@ -125,6 +128,28 @@ repos:
|
||||
name: Update Dockerfile dependency graph
|
||||
entry: tools/update-dockerfile-graph.sh
|
||||
language: script
|
||||
- id: enforce-import-regex-instead-of-re
|
||||
name: Enforce import regex as re
|
||||
entry: python tools/enforce_regex_import.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: false
|
||||
additional_dependencies: [regex]
|
||||
# forbid directly import triton
|
||||
- id: forbid-direct-triton-import
|
||||
name: "Forbid direct 'import triton'"
|
||||
entry: python tools/check_triton_import.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: false
|
||||
additional_dependencies: [regex]
|
||||
- id: check-pickle-imports
|
||||
name: Prevent new pickle/cloudpickle imports
|
||||
entry: python tools/check_pickle_imports.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: false
|
||||
additional_dependencies: [pathspec, regex]
|
||||
# Keep `suggestion` last
|
||||
- id: suggestion
|
||||
name: Suggestion
|
||||
|
||||
@ -8,12 +8,8 @@ build:
|
||||
tools:
|
||||
python: "3.12"
|
||||
|
||||
sphinx:
|
||||
configuration: docs/source/conf.py
|
||||
fail_on_warning: true
|
||||
|
||||
# If using Sphinx, optionally build your docs in additional formats such as PDF
|
||||
formats: []
|
||||
mkdocs:
|
||||
configuration: mkdocs.yaml
|
||||
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
|
||||
@ -23,15 +23,15 @@ include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
|
||||
# Suppress potential warnings about unused manually-specified variables
|
||||
set(ignoreMe "${VLLM_PYTHON_PATH}")
|
||||
|
||||
# Prevent installation of dependencies (cutlass) by default.
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
|
||||
#
|
||||
# Supported python versions. These versions will be searched in order, the
|
||||
# first match will be selected. These should be kept in sync with setup.py.
|
||||
#
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
|
||||
|
||||
# Supported NVIDIA architectures.
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||
|
||||
@ -79,6 +79,15 @@ endif()
|
||||
#
|
||||
find_package(Torch REQUIRED)
|
||||
|
||||
# Supported NVIDIA architectures.
|
||||
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
|
||||
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
else()
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Forward the non-CUDA device extensions to external CMake scripts.
|
||||
#
|
||||
@ -173,9 +182,6 @@ include(FetchContent)
|
||||
file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists
|
||||
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
|
||||
|
||||
#
|
||||
# Set rocm version dev int.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
#
|
||||
# Overriding the default -O set up by cmake, adding ggdb3 for the most verbose devug info
|
||||
@ -183,7 +189,6 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
set(CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG "${CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
|
||||
|
||||
#
|
||||
# Certain HIP functions are marked as [[nodiscard]], yet vllm ignores the result which generates
|
||||
# a lot of warnings that always mask real issues. Suppressing until this is properly addressed.
|
||||
@ -226,14 +231,18 @@ endif()
|
||||
#
|
||||
|
||||
set(VLLM_EXT_SRC
|
||||
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
|
||||
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
|
||||
"csrc/cache_kernels.cu"
|
||||
"csrc/attention/paged_attention_v1.cu"
|
||||
"csrc/attention/paged_attention_v2.cu"
|
||||
"csrc/attention/merge_attn_states.cu"
|
||||
"csrc/attention/vertical_slash_index.cu"
|
||||
"csrc/pos_encoding_kernels.cu"
|
||||
"csrc/activation_kernels.cu"
|
||||
"csrc/layernorm_kernels.cu"
|
||||
"csrc/layernorm_quant_kernels.cu"
|
||||
"csrc/sampler.cu"
|
||||
"csrc/cuda_view.cu"
|
||||
"csrc/quantization/gptq/q_gemm.cu"
|
||||
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
|
||||
@ -280,14 +289,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
FetchContent_MakeAvailable(cutlass)
|
||||
|
||||
list(APPEND VLLM_EXT_SRC
|
||||
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
|
||||
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
|
||||
"csrc/quantization/aqlm/gemm_kernels.cu"
|
||||
"csrc/quantization/awq/gemm_kernels.cu"
|
||||
"csrc/permute_cols.cu"
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||
"csrc/cutlass_extensions/common.cpp"
|
||||
"csrc/attention/mla/cutlass_mla_entry.cu")
|
||||
@ -299,7 +307,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# Only build Marlin kernels if we are building for at least some compatible archs.
|
||||
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
|
||||
# are not supported by Machete yet.
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
# 9.0 for latest bf16 atomicAdd PTX
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
|
||||
if (MARLIN_ARCHS)
|
||||
|
||||
#
|
||||
@ -411,9 +420,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# The cutlass_scaled_mm kernels for Blackwell (c3x, i.e. CUTLASS 3.x) require
|
||||
# CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;12.0a" "${CUDA_ARCHS}")
|
||||
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
|
||||
# require CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
|
||||
@ -443,8 +452,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
#
|
||||
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
|
||||
# kernels for the remaining archs that are not already built for 3x.
|
||||
# (Build 8.9 for FP8)
|
||||
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
|
||||
"7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
"7.5;8.0;8.7;8.9+PTX" "${CUDA_ARCHS}")
|
||||
# subtract out the archs that are already built for 3x
|
||||
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
||||
if (SCALED_MM_2X_ARCHS)
|
||||
@ -495,7 +505,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu")
|
||||
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu"
|
||||
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${FP4_ARCHS}")
|
||||
@ -530,10 +542,10 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# CUTLASS MoE kernels
|
||||
|
||||
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
|
||||
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
|
||||
# to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
||||
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and ONLY works
|
||||
# on Hopper). get_cutlass_(pplx_)moe_mm_data should only be compiled
|
||||
# if it's possible to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
|
||||
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||
@ -671,7 +683,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
CUDA_ARCHS "${CUDA_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
# 9.0 for latest bf16 atomicAdd PTX
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
|
||||
if (MARLIN_MOE_ARCHS)
|
||||
|
||||
#
|
||||
@ -772,5 +785,7 @@ endif()
|
||||
# For CUDA we also build and ship some external projects.
|
||||
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
include(cmake/external_projects/flashmla.cmake)
|
||||
|
||||
# vllm-flash-attn should be last as it overwrites some CMake functions
|
||||
include(cmake/external_projects/vllm_flash_attn.cmake)
|
||||
endif ()
|
||||
|
||||
@ -1,3 +1,3 @@
|
||||
# Contributing to vLLM
|
||||
|
||||
You may find information about contributing to vLLM on [docs.vllm.ai](https://docs.vllm.ai/en/latest/contributing/overview.html).
|
||||
You may find information about contributing to vLLM on [docs.vllm.ai](https://docs.vllm.ai/en/latest/contributing).
|
||||
|
||||
22
README.md
22
README.md
@ -1,7 +1,7 @@
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
|
||||
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-dark.png">
|
||||
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-light.png" width=55%>
|
||||
</picture>
|
||||
</p>
|
||||
|
||||
@ -58,8 +58,8 @@ vLLM is fast with:
|
||||
- Efficient management of attention key and value memory with [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html)
|
||||
- Continuous batching of incoming requests
|
||||
- Fast model execution with CUDA/HIP graph
|
||||
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), INT4, INT8, and FP8.
|
||||
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
|
||||
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [AutoRound](https://arxiv.org/abs/2309.05516), INT4, INT8, and FP8
|
||||
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer
|
||||
- Speculative decoding
|
||||
- Chunked prefill
|
||||
|
||||
@ -72,14 +72,14 @@ vLLM is flexible and easy to use with:
|
||||
- Tensor parallelism and pipeline parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron
|
||||
- Prefix caching support
|
||||
- Multi-lora support
|
||||
- Multi-LoRA support
|
||||
|
||||
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
|
||||
- Transformer-like LLMs (e.g., Llama)
|
||||
- Mixture-of-Expert LLMs (e.g., Mixtral, Deepseek-V2 and V3)
|
||||
- Embedding Models (e.g. E5-Mistral)
|
||||
- Embedding Models (e.g., E5-Mistral)
|
||||
- Multi-modal LLMs (e.g., LLaVA)
|
||||
|
||||
Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).
|
||||
@ -100,14 +100,14 @@ Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
|
||||
## Contributing
|
||||
|
||||
We welcome and value any contributions and collaborations.
|
||||
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/stable/contributing/overview.html) for how to get involved.
|
||||
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/latest/contributing/index.html) for how to get involved.
|
||||
|
||||
## Sponsors
|
||||
|
||||
vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!
|
||||
|
||||
<!-- Note: Please sort them in alphabetical order. -->
|
||||
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->
|
||||
<!-- Note: Please keep these consistent with docs/community/sponsors.md -->
|
||||
Cash Donations:
|
||||
- a16z
|
||||
- Dropbox
|
||||
@ -156,10 +156,10 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
|
||||
|
||||
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues) or [Discussions](https://github.com/vllm-project/vllm/discussions)
|
||||
- For discussing with fellow users, please use the [vLLM Forum](https://discuss.vllm.ai)
|
||||
- coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
|
||||
- For coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
|
||||
- For security disclosures, please use GitHub's [Security Advisories](https://github.com/vllm-project/vllm/security/advisories) feature
|
||||
- For collaborations and partnerships, please contact us at [vllm-questions@lists.berkeley.edu](mailto:vllm-questions@lists.berkeley.edu)
|
||||
|
||||
## Media Kit
|
||||
|
||||
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).
|
||||
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit)
|
||||
|
||||
@ -8,4 +8,6 @@ Please report security issues privately using [the vulnerability submission form
|
||||
|
||||
---
|
||||
|
||||
Please see the [Security Guide in the vLLM documentation](https://docs.vllm.ai/en/latest/usage/security.html) for more information on vLLM's security assumptions and recommendations.
|
||||
|
||||
Please see [PyTorch's Security Policy](https://github.com/pytorch/pytorch/blob/main/SECURITY.md) for more information and recommendations on how to securely interact with models.
|
||||
|
||||
@ -64,6 +64,12 @@ become available.
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Custom</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>Local file: <code>data.jsonl</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
@ -124,6 +130,38 @@ P99 ITL (ms): 8.39
|
||||
==================================================
|
||||
```
|
||||
|
||||
### Custom Dataset
|
||||
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
|
||||
|
||||
```
|
||||
{"prompt": "What is the capital of India?"}
|
||||
{"prompt": "What is the capital of Iran?"}
|
||||
{"prompt": "What is the capital of China?"}
|
||||
```
|
||||
|
||||
```bash
|
||||
# start server
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct --disable-log-requests
|
||||
```
|
||||
|
||||
```bash
|
||||
# run benchmarking script
|
||||
python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detailed \
|
||||
--backend vllm \
|
||||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name custom \
|
||||
--dataset-path <path-to-your-data-jsonl> \
|
||||
--custom-skip-chat-template \
|
||||
--num-prompts 80 \
|
||||
--max-concurrency 1 \
|
||||
--temperature=0.3 \
|
||||
--top-p=0.75 \
|
||||
--result-dir "./log/"
|
||||
```
|
||||
|
||||
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
|
||||
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
|
||||
```bash
|
||||
@ -146,10 +184,9 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
|
||||
``` bash
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--speculative-model "[ngram]" \
|
||||
--ngram_prompt_lookup_min 2 \
|
||||
--ngram-prompt-lookup-max 5 \
|
||||
--num_speculative_tokens 5
|
||||
--speculative-config $'{"method": "ngram",
|
||||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||||
"prompt_lookup_min": 2}'
|
||||
```
|
||||
|
||||
``` bash
|
||||
@ -204,6 +241,16 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--seed 42
|
||||
```
|
||||
|
||||
**`philschmid/mt-bench`**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path philschmid/mt-bench \
|
||||
--num-prompts 80
|
||||
```
|
||||
|
||||
### Running With Sampling Parameters
|
||||
|
||||
When using OpenAI-compatible backends such as `vllm`, optional sampling
|
||||
@ -274,10 +321,9 @@ python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--output-len=100 \
|
||||
--num-prompts=2048 \
|
||||
--async-engine \
|
||||
--speculative-model="[ngram]" \
|
||||
--ngram_prompt_lookup_min=2 \
|
||||
--ngram-prompt-lookup-max=5 \
|
||||
--num_speculative_tokens=5
|
||||
--speculative-config $'{"method": "ngram",
|
||||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||||
"prompt_lookup_min": 2}'
|
||||
```
|
||||
|
||||
```
|
||||
|
||||
@ -10,11 +10,15 @@
|
||||
# 3. Set variables (ALL REQUIRED)
|
||||
# BASE: your directory for vllm repo
|
||||
# MODEL: the model served by vllm
|
||||
# TP: ways of tensor parallelism
|
||||
# DOWNLOAD_DIR: directory to download and load model weights.
|
||||
# INPUT_LEN: request input len
|
||||
# OUTPUT_LEN: request output len
|
||||
# MIN_CACHE_HIT_PCT: prefix cache rate
|
||||
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
|
||||
# NUM_SEQS_LIST: a list of `max-num-seqs` you want to loop with.
|
||||
# NUM_BATCHED_TOKENS_LIST: a list of `max-num-batched-tokens` you want to loop with.
|
||||
# Note that the default NUM_SEQS_LIST and NUM_BATCHED_TOKENS_LIST are set for medium size input/output len, for extra short context (such as 20:20), you might need to include larger numbers in NUM_SEQS_LIST.
|
||||
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
|
||||
# 5. The final result will be saved in RESULT file.
|
||||
|
||||
@ -30,31 +34,27 @@
|
||||
TAG=$(date +"%Y_%m_%d_%H_%M")
|
||||
BASE=""
|
||||
MODEL="meta-llama/Llama-3.1-8B-Instruct"
|
||||
TP=1
|
||||
DOWNLOAD_DIR=""
|
||||
INPUT_LEN=4000
|
||||
OUTPUT_LEN=16
|
||||
MIN_CACHE_HIT_PCT_PCT=0
|
||||
MIN_CACHE_HIT_PCT=0
|
||||
MAX_LATENCY_ALLOWED_MS=100000000000
|
||||
NUM_SEQS_LIST="128 256"
|
||||
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
|
||||
|
||||
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
|
||||
RESULT="$LOG_FOLDER/result.txt"
|
||||
|
||||
echo "result file$ $RESULT"
|
||||
echo "result file: $RESULT"
|
||||
echo "model: $MODEL"
|
||||
echo
|
||||
|
||||
rm -rf $LOG_FOLDER
|
||||
mkdir -p $LOG_FOLDER
|
||||
|
||||
cd "$BASE/vllm"
|
||||
# create sonnet-4x.txt so that we can sample 2048 tokens for input
|
||||
echo "" > benchmarks/sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
|
||||
done
|
||||
|
||||
pip install datasets
|
||||
pip install -q datasets
|
||||
|
||||
current_hash=$(git rev-parse HEAD)
|
||||
echo "hash:$current_hash" >> "$RESULT"
|
||||
@ -64,53 +64,69 @@ best_throughput=0
|
||||
best_max_num_seqs=0
|
||||
best_num_batched_tokens=0
|
||||
best_goodput=0
|
||||
|
||||
start_server() {
|
||||
local gpu_memory_utilization=$1
|
||||
local max_num_seqs=$2
|
||||
local max_num_batched_tokens=$3
|
||||
local vllm_log=$4
|
||||
|
||||
pkill -f vllm
|
||||
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
|
||||
--disable-log-requests \
|
||||
--port 8004 \
|
||||
--gpu-memory-utilization $gpu_memory_utilization \
|
||||
--max-num-seqs $max_num_seqs \
|
||||
--max-num-batched-tokens $max_num_batched_tokens \
|
||||
--tensor-parallel-size $TP \
|
||||
--enable-prefix-caching \
|
||||
--load-format dummy \
|
||||
--download-dir "$DOWNLOAD_DIR" \
|
||||
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
|
||||
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
|
||||
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
|
||||
if [[ "$STATUS_CODE" -eq 200 ]]; then
|
||||
server_started=1
|
||||
break
|
||||
else
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
if (( ! server_started )); then
|
||||
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
|
||||
return 1
|
||||
else
|
||||
return 0
|
||||
fi
|
||||
}
|
||||
|
||||
run_benchmark() {
|
||||
local max_num_seqs=$1
|
||||
local max_num_batched_tokens=$2
|
||||
local gpu_memory_utilization=$3
|
||||
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
|
||||
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
|
||||
echo "vllm_log: $vllm_log"
|
||||
echo
|
||||
rm -f $vllm_log
|
||||
pkill -f vllm
|
||||
|
||||
# start the server
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
|
||||
--disable-log-requests \
|
||||
--port 8004 \
|
||||
--gpu-memory-utilization 0.98 \
|
||||
--max-num-seqs $max_num_seqs \
|
||||
--max-num-batched-tokens $max_num_batched_tokens \
|
||||
--tensor-parallel-size 1 \
|
||||
--enable-prefix-caching \
|
||||
--load-format dummy \
|
||||
--download-dir $DOWNLOAD_DIR \
|
||||
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
|
||||
echo "wait for 10 minutes.."
|
||||
echo
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
if grep -Fq "Application startup complete" "$vllm_log"; then
|
||||
echo "Application started"
|
||||
server_started=1
|
||||
break
|
||||
else
|
||||
# echo "wait for 10 seconds..."
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
|
||||
if (( ! server_started )); then
|
||||
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
|
||||
echo "pkill -f vllm"
|
||||
echo
|
||||
pkill vllm
|
||||
sleep 10
|
||||
return 1
|
||||
echo "starting server..."
|
||||
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log
|
||||
result=$?
|
||||
if [[ "$result" -eq 1 ]]; then
|
||||
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
|
||||
else
|
||||
echo "server started."
|
||||
fi
|
||||
echo
|
||||
|
||||
echo "run benchmark test..."
|
||||
echo
|
||||
meet_latency_requirement=0
|
||||
# get a basic qps by using request-rate inf
|
||||
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
|
||||
@ -118,29 +134,29 @@ run_benchmark() {
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--dataset-name random \
|
||||
--random-input-len $INPUT_LEN \
|
||||
--random-output-len $OUTPUT_LEN \
|
||||
--ignore-eos \
|
||||
--disable-tqdm \
|
||||
--request-rate inf \
|
||||
--percentile-metrics ttft,tpot,itl,e2el \
|
||||
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
|
||||
--num-prompts 100 \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--port 8004 > "$bm_log"
|
||||
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
--num-prompts 1000 \
|
||||
--random-prefix-len $prefix_len \
|
||||
--port 8004 &> "$bm_log"
|
||||
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
|
||||
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
|
||||
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
|
||||
meet_latency_requirement=1
|
||||
request_rate=inf
|
||||
fi
|
||||
|
||||
if (( ! meet_latency_requirement )); then
|
||||
# start from request-rate as int(through_put) + 1
|
||||
request_rate=$((${through_put%.*} + 1))
|
||||
# start from request-rate as int(throughput) + 1
|
||||
request_rate=$((${throughput%.*} + 1))
|
||||
while ((request_rate > 0)); do
|
||||
# clear prefix cache
|
||||
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
|
||||
@ -149,19 +165,18 @@ run_benchmark() {
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--ignore_eos \
|
||||
--dataset-name random \
|
||||
--random-input-len $INPUT_LEN \
|
||||
--random-output-len $OUTPUT_LEN \
|
||||
--ignore-eos \
|
||||
--disable-tqdm \
|
||||
--request-rate $request_rate \
|
||||
--percentile-metrics ttft,tpot,itl,e2el \
|
||||
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
|
||||
--num-prompts 100 \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--port 8004 > "$bm_log"
|
||||
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
--random-prefix-len $prefix_len \
|
||||
--port 8004 &> "$bm_log"
|
||||
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
|
||||
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
|
||||
@ -173,10 +188,10 @@ run_benchmark() {
|
||||
fi
|
||||
# write the results and update the best result.
|
||||
if ((meet_latency_requirement)); then
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
|
||||
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
|
||||
best_throughput=$through_put
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput"
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput" >> "$RESULT"
|
||||
if (( $(echo "$throughput > $best_throughput" | bc -l) )); then
|
||||
best_throughput=$throughput
|
||||
best_max_num_seqs=$max_num_seqs
|
||||
best_num_batched_tokens=$max_num_batched_tokens
|
||||
best_goodput=$goodput
|
||||
@ -188,22 +203,39 @@ run_benchmark() {
|
||||
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
||||
|
||||
echo "pkill -f vllm"
|
||||
echo
|
||||
pkill vllm
|
||||
sleep 10
|
||||
rm -f $vllm_log
|
||||
printf '=%.0s' $(seq 1 20)
|
||||
return 0
|
||||
}
|
||||
|
||||
read -r -a num_seqs_list <<< "$NUM_SEQS_LIST"
|
||||
read -r -a num_batched_tokens_list <<< "$NUM_BATCHED_TOKENS_LIST"
|
||||
|
||||
num_seqs_list="128 256"
|
||||
num_batched_tokens_list="512 1024 2048 4096"
|
||||
for num_seqs in $num_seqs_list; do
|
||||
for num_batched_tokens in $num_batched_tokens_list; do
|
||||
run_benchmark $num_seqs $num_batched_tokens
|
||||
exit 0
|
||||
# first find out the max gpu-memory-utilization without HBM OOM.
|
||||
gpu_memory_utilization=0.98
|
||||
find_gpu_memory_utilization=0
|
||||
while (( $(echo "$gpu_memory_utilization >= 0.9" | bc -l) )); do
|
||||
start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log"
|
||||
result=$?
|
||||
if [[ "$result" -eq 0 ]]; then
|
||||
find_gpu_memory_utilization=1
|
||||
break
|
||||
else
|
||||
gpu_memory_utilization=$(echo "$gpu_memory_utilization - 0.01" | bc)
|
||||
fi
|
||||
done
|
||||
|
||||
if [[ "$find_gpu_memory_utilization" -eq 1 ]]; then
|
||||
echo "Using gpu_memory_utilization=$gpu_memory_utilization to serve model."
|
||||
else
|
||||
echo "Cannot find a proper gpu_memory_utilization over 0.9 to serve the model, please check logs in $LOG_FOLDER."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
for num_seqs in "${num_seqs_list[@]}"; do
|
||||
for num_batched_tokens in "${num_batched_tokens_list[@]}"; do
|
||||
run_benchmark $num_seqs $num_batched_tokens $gpu_memory_utilization
|
||||
done
|
||||
done
|
||||
echo "finish permutations"
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import io
|
||||
import json
|
||||
@ -12,8 +13,7 @@ from typing import Optional, Union
|
||||
import aiohttp
|
||||
import huggingface_hub.constants
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import (AutoTokenizer, PreTrainedTokenizer,
|
||||
PreTrainedTokenizerFast)
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||
|
||||
# NOTE(simon): do not import vLLM here so the benchmark script
|
||||
# can run without vLLM installed.
|
||||
@ -43,8 +43,7 @@ class RequestFuncOutput:
|
||||
latency: float = 0.0
|
||||
output_tokens: int = 0
|
||||
ttft: float = 0.0 # Time to first token
|
||||
itl: list[float] = field(
|
||||
default_factory=list) # list of inter-token latencies
|
||||
itl: list[float] = field(default_factory=list) # list of inter-token latencies
|
||||
tpot: float = 0.0 # avg next-token latencies
|
||||
prompt_len: int = 0
|
||||
error: str = ""
|
||||
@ -57,8 +56,9 @@ async def async_request_tgi(
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
params = {
|
||||
"max_new_tokens": request_func_input.output_len,
|
||||
"do_sample": True,
|
||||
@ -105,8 +105,7 @@ async def async_request_tgi(
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
@ -133,8 +132,9 @@ async def async_request_trt_llm(
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
payload = {
|
||||
"accumulate_tokens": True,
|
||||
"text_input": request_func_input.prompt,
|
||||
@ -159,8 +159,7 @@ async def async_request_trt_llm(
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data:")
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data:")
|
||||
|
||||
data = json.loads(chunk)
|
||||
output.generated_text += data["text_output"]
|
||||
@ -172,8 +171,7 @@ async def async_request_trt_llm(
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
@ -197,9 +195,14 @@ async def async_request_deepspeed_mii(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(("completions", "profile")), (
|
||||
"OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
)
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
payload = {
|
||||
"model": request_func_input.model,
|
||||
"prompt": request_func_input.prompt,
|
||||
@ -207,6 +210,8 @@ async def async_request_deepspeed_mii(
|
||||
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
|
||||
"top_p": 1.0,
|
||||
}
|
||||
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
@ -217,19 +222,21 @@ async def async_request_deepspeed_mii(
|
||||
|
||||
st = time.perf_counter()
|
||||
try:
|
||||
async with session.post(url=request_func_input.api_url,
|
||||
json=payload) as response:
|
||||
async with session.post(
|
||||
url=api_url, json=payload, headers=headers
|
||||
) as response:
|
||||
if response.status == 200:
|
||||
parsed_resp = await response.json()
|
||||
output.latency = time.perf_counter() - st
|
||||
if "choices" in parsed_resp:
|
||||
output.generated_text = parsed_resp["choices"][0][
|
||||
"text"]
|
||||
output.generated_text = parsed_resp["choices"][0]["text"]
|
||||
elif "text" in parsed_resp:
|
||||
output.generated_text = parsed_resp["text"][0]
|
||||
else:
|
||||
output.error = ("Unexpected response format: "
|
||||
"neither 'choices' nor 'text' found")
|
||||
output.error = (
|
||||
"Unexpected response format: "
|
||||
"neither 'choices' nor 'text' found"
|
||||
)
|
||||
output.success = False
|
||||
output.success = True
|
||||
else:
|
||||
@ -250,15 +257,17 @@ async def async_request_openai_completions(
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("completions", "profile")
|
||||
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
assert api_url.endswith(("completions", "profile")), (
|
||||
"OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
)
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
payload = {
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"model": request_func_input.model_name
|
||||
if request_func_input.model_name
|
||||
else request_func_input.model,
|
||||
"prompt": request_func_input.prompt,
|
||||
"temperature": 0.0,
|
||||
"repetition_penalty": 1.0,
|
||||
@ -273,9 +282,7 @@ async def async_request_openai_completions(
|
||||
payload["ignore_eos"] = request_func_input.ignore_eos
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
|
||||
}
|
||||
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
@ -284,8 +291,9 @@ async def async_request_openai_completions(
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload,
|
||||
headers=headers) as response:
|
||||
async with session.post(
|
||||
url=api_url, json=payload, headers=headers
|
||||
) as response:
|
||||
if response.status == 200:
|
||||
first_chunk_received = False
|
||||
async for chunk_bytes in response.content:
|
||||
@ -293,8 +301,7 @@ async def async_request_openai_completions(
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk != "[DONE]":
|
||||
data = json.loads(chunk)
|
||||
|
||||
@ -314,21 +321,20 @@ async def async_request_openai_completions(
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
generated_text += text or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
if usage := data.get("usage"):
|
||||
output.output_tokens = usage.get("completion_tokens")
|
||||
if first_chunk_received:
|
||||
output.success = True
|
||||
else:
|
||||
output.success = False
|
||||
output.error = (
|
||||
"Never received a valid chunk to calculate TTFT."
|
||||
"This response will be marked as failed!")
|
||||
"This response will be marked as failed!"
|
||||
)
|
||||
output.generated_text = generated_text
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
@ -349,23 +355,22 @@ async def async_request_openai_chat_completions(
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("chat/completions", "profile")
|
||||
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
|
||||
assert api_url.endswith(("chat/completions", "profile")), (
|
||||
"OpenAI Chat Completions API URL must end with 'chat/completions'."
|
||||
)
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
if request_func_input.multi_modal_content:
|
||||
content.append(request_func_input.multi_modal_content)
|
||||
payload = {
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"model": request_func_input.model_name
|
||||
if request_func_input.model_name
|
||||
else request_func_input.model,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": content
|
||||
},
|
||||
{"role": "user", "content": content},
|
||||
],
|
||||
"temperature": 0.0,
|
||||
"max_completion_tokens": request_func_input.output_len,
|
||||
@ -391,16 +396,16 @@ async def async_request_openai_chat_completions(
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload,
|
||||
headers=headers) as response:
|
||||
async with session.post(
|
||||
url=api_url, json=payload, headers=headers
|
||||
) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
@ -414,13 +419,11 @@ async def async_request_openai_chat_completions(
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
|
||||
generated_text += content or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
output.output_tokens = usage.get("completion_tokens")
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
@ -446,25 +449,28 @@ async def async_request_openai_audio(
|
||||
) -> RequestFuncOutput:
|
||||
# Lazy import without PlaceholderModule to avoid vllm dep.
|
||||
import soundfile
|
||||
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("transcriptions", "translations"
|
||||
)), "OpenAI Chat Completions API URL must end with 'transcriptions' "
|
||||
assert api_url.endswith(("transcriptions", "translations")), (
|
||||
"OpenAI Chat Completions API URL must end with 'transcriptions' "
|
||||
)
|
||||
"or `translations`."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
payload = {
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"model": request_func_input.model_name
|
||||
if request_func_input.model_name
|
||||
else request_func_input.model,
|
||||
"temperature": 0.0,
|
||||
"max_completion_tokens": request_func_input.output_len,
|
||||
"stream": True,
|
||||
"language": "en",
|
||||
# Flattened due to multipart/form-data
|
||||
"stream_include_usage": True,
|
||||
"stream_continuous_usage_stats": True
|
||||
"stream_continuous_usage_stats": True,
|
||||
}
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
@ -479,9 +485,9 @@ async def async_request_openai_audio(
|
||||
buffer.seek(0)
|
||||
return buffer
|
||||
|
||||
with to_bytes(*request_func_input.multi_modal_content['audio']) as f:
|
||||
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
|
||||
form = aiohttp.FormData()
|
||||
form.add_field('file', f, content_type='audio/wav')
|
||||
form.add_field("file", f, content_type="audio/wav")
|
||||
for key, value in payload.items():
|
||||
form.add_field(key, str(value))
|
||||
|
||||
@ -493,24 +499,22 @@ async def async_request_openai_audio(
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url,
|
||||
data=form,
|
||||
headers=headers) as response:
|
||||
async with session.post(
|
||||
url=api_url, data=form, headers=headers
|
||||
) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
if choices := data.get("choices"):
|
||||
content = choices[0]["delta"].get(
|
||||
"content")
|
||||
content = choices[0]["delta"].get("content")
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = timestamp - st
|
||||
@ -519,12 +523,14 @@ async def async_request_openai_audio(
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(
|
||||
timestamp - most_recent_timestamp)
|
||||
timestamp - most_recent_timestamp
|
||||
)
|
||||
|
||||
generated_text += content or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
"completion_tokens"
|
||||
)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
@ -545,7 +551,7 @@ async def async_request_openai_audio(
|
||||
|
||||
|
||||
def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
|
||||
if os.getenv("VLLM_USE_MODELSCOPE", "False").lower() == "true":
|
||||
from modelscope import snapshot_download
|
||||
|
||||
from vllm.model_executor.model_loader.weight_utils import get_lock
|
||||
@ -556,7 +562,8 @@ def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
model_path = snapshot_download(
|
||||
model_id=pretrained_model_name_or_path,
|
||||
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
|
||||
)
|
||||
|
||||
return model_path
|
||||
return pretrained_model_name_or_path
|
||||
@ -569,23 +576,23 @@ def get_tokenizer(
|
||||
**kwargs,
|
||||
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
||||
if pretrained_model_name_or_path is not None and not os.path.exists(
|
||||
pretrained_model_name_or_path):
|
||||
pretrained_model_name_or_path = get_model(
|
||||
pretrained_model_name_or_path)
|
||||
pretrained_model_name_or_path
|
||||
):
|
||||
pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
|
||||
if tokenizer_mode == "slow":
|
||||
if kwargs.get("use_fast", False):
|
||||
raise ValueError(
|
||||
"Cannot use the fast tokenizer in slow tokenizer mode.")
|
||||
raise ValueError("Cannot use the fast tokenizer in slow tokenizer mode.")
|
||||
kwargs["use_fast"] = False
|
||||
if tokenizer_mode == "mistral":
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import MistralTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError("MistralTokenizer requires vllm package.\n"
|
||||
"Please install it with `pip install vllm` "
|
||||
"to use mistral tokenizer mode.") from e
|
||||
return MistralTokenizer.from_pretrained(
|
||||
str(pretrained_model_name_or_path))
|
||||
raise ImportError(
|
||||
"MistralTokenizer requires vllm package.\n"
|
||||
"Please install it with `pip install vllm` "
|
||||
"to use mistral tokenizer mode."
|
||||
) from e
|
||||
return MistralTokenizer.from_pretrained(str(pretrained_model_name_or_path))
|
||||
else:
|
||||
return AutoTokenizer.from_pretrained(
|
||||
pretrained_model_name_or_path,
|
||||
@ -605,10 +612,11 @@ ASYNC_REQUEST_FUNCS = {
|
||||
"tensorrt-llm": async_request_trt_llm,
|
||||
"scalellm": async_request_openai_completions,
|
||||
"sglang": async_request_openai_completions,
|
||||
"llama.cpp": async_request_openai_completions,
|
||||
}
|
||||
|
||||
OPENAI_COMPATIBLE_BACKENDS = [
|
||||
k for k, v in ASYNC_REQUEST_FUNCS.items()
|
||||
if v in (async_request_openai_completions,
|
||||
async_request_openai_chat_completions)
|
||||
k
|
||||
for k, v in ASYNC_REQUEST_FUNCS.items()
|
||||
if v in (async_request_openai_completions, async_request_openai_chat_completions)
|
||||
]
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
This module defines a framework for sampling benchmark requests from various
|
||||
datasets. Each dataset subclass of BenchmarkDataset must implement sample
|
||||
@ -9,9 +10,6 @@ generation. Supported dataset types include:
|
||||
- BurstGPT
|
||||
- HuggingFace
|
||||
- VisionArena
|
||||
|
||||
TODO: Implement CustomDataset to parse a JSON file and convert its contents into
|
||||
SampleRequest instances, similar to the approach used in ShareGPT.
|
||||
"""
|
||||
|
||||
import base64
|
||||
@ -35,6 +33,7 @@ from transformers import PreTrainedTokenizerBase
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.lora.utils import get_adapter_absolute_path
|
||||
from vllm.multimodal import MultiModalDataDict
|
||||
from vllm.multimodal.image import convert_image_mode
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -82,14 +81,12 @@ class BenchmarkDataset(ABC):
|
||||
self.dataset_path = dataset_path
|
||||
# Set the random seed, ensuring that a None value is replaced with the
|
||||
# default seed.
|
||||
self.random_seed = (random_seed
|
||||
if random_seed is not None else self.DEFAULT_SEED)
|
||||
self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED
|
||||
self.data = None
|
||||
|
||||
def apply_multimodal_chat_transformation(
|
||||
self,
|
||||
prompt: str,
|
||||
mm_content: Optional[MultiModalDataDict] = None) -> list[dict]:
|
||||
self, prompt: str, mm_content: Optional[MultiModalDataDict] = None
|
||||
) -> list[dict]:
|
||||
"""
|
||||
Transform a prompt and optional multimodal content into a chat format.
|
||||
This method is used for chat models that expect a specific conversation
|
||||
@ -111,8 +108,7 @@ class BenchmarkDataset(ABC):
|
||||
NotImplementedError: If a subclass does not implement this method.
|
||||
"""
|
||||
# TODO (jenniferzhao): add support for downloading data
|
||||
raise NotImplementedError(
|
||||
"load_data must be implemented in subclasses.")
|
||||
raise NotImplementedError("load_data must be implemented in subclasses.")
|
||||
|
||||
def get_random_lora_request(
|
||||
self,
|
||||
@ -158,8 +154,9 @@ class BenchmarkDataset(ABC):
|
||||
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int) -> list[SampleRequest]:
|
||||
def sample(
|
||||
self, tokenizer: PreTrainedTokenizerBase, num_requests: int
|
||||
) -> list[SampleRequest]:
|
||||
"""
|
||||
Abstract method to generate sample requests from the dataset.
|
||||
|
||||
@ -177,8 +174,9 @@ class BenchmarkDataset(ABC):
|
||||
"""
|
||||
raise NotImplementedError("sample must be implemented in subclasses.")
|
||||
|
||||
def maybe_oversample_requests(self, requests: list[SampleRequest],
|
||||
num_requests: int) -> None:
|
||||
def maybe_oversample_requests(
|
||||
self, requests: list[SampleRequest], num_requests: int
|
||||
) -> None:
|
||||
"""
|
||||
Oversamples the list of requests if its size is less than the desired
|
||||
number.
|
||||
@ -189,11 +187,9 @@ class BenchmarkDataset(ABC):
|
||||
"""
|
||||
if len(requests) < num_requests:
|
||||
random.seed(self.random_seed)
|
||||
additional = random.choices(requests,
|
||||
k=num_requests - len(requests))
|
||||
additional = random.choices(requests, k=num_requests - len(requests))
|
||||
requests.extend(additional)
|
||||
logger.info("Oversampled requests to reach %d total samples.",
|
||||
num_requests)
|
||||
logger.info("Oversampled requests to reach %d total samples.", num_requests)
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -218,14 +214,14 @@ def is_valid_sequence(
|
||||
"""
|
||||
# Check for invalid conditions
|
||||
prompt_too_short = prompt_len < min_len
|
||||
output_too_short = (not skip_min_output_len_check) and (output_len
|
||||
< min_len)
|
||||
output_too_short = (not skip_min_output_len_check) and (output_len < min_len)
|
||||
prompt_too_long = prompt_len > max_prompt_len
|
||||
combined_too_long = (prompt_len + output_len) > max_total_len
|
||||
|
||||
# Return True if none of the invalid conditions are met
|
||||
return not (prompt_too_short or output_too_short or prompt_too_long
|
||||
or combined_too_long)
|
||||
return not (
|
||||
prompt_too_short or output_too_short or prompt_too_long or combined_too_long
|
||||
)
|
||||
|
||||
|
||||
@cache
|
||||
@ -257,28 +253,28 @@ def process_image(image: Any) -> Mapping[str, Any]:
|
||||
Raises:
|
||||
ValueError: If the input is not a supported type.
|
||||
"""
|
||||
if isinstance(image, dict) and 'bytes' in image:
|
||||
image = Image.open(BytesIO(image['bytes']))
|
||||
if isinstance(image, dict) and "bytes" in image:
|
||||
image = Image.open(BytesIO(image["bytes"]))
|
||||
if isinstance(image, Image.Image):
|
||||
image = image.convert("RGB")
|
||||
image = convert_image_mode(image, "RGB")
|
||||
with io.BytesIO() as image_data:
|
||||
image.save(image_data, format="JPEG")
|
||||
image_base64 = base64.b64encode(
|
||||
image_data.getvalue()).decode("utf-8")
|
||||
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
|
||||
return {
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
},
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
|
||||
}
|
||||
|
||||
if isinstance(image, str):
|
||||
image_url = (image if image.startswith(
|
||||
("http://", "file://")) else f"file://{image}")
|
||||
image_url = (
|
||||
image if image.startswith(("http://", "file://")) else f"file://{image}"
|
||||
)
|
||||
return {"type": "image_url", "image_url": {"url": image_url}}
|
||||
|
||||
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
|
||||
" or str or dictionary with raw image bytes.")
|
||||
raise ValueError(
|
||||
f"Invalid image input {image}. Must be a PIL.Image.Image"
|
||||
" or str or dictionary with raw image bytes."
|
||||
)
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -318,8 +314,11 @@ class RandomDataset(BenchmarkDataset):
|
||||
num_special_tokens = tokenizer.num_special_tokens_to_add()
|
||||
real_input_len = input_len - num_special_tokens
|
||||
|
||||
prefix_token_ids = (np.random.randint(
|
||||
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
|
||||
prefix_token_ids = (
|
||||
np.random.randint(0, vocab_size, size=prefix_len).tolist()
|
||||
if prefix_len > 0
|
||||
else []
|
||||
)
|
||||
|
||||
# New sampling logic: [X * (1 - b), X * (1 + b)]
|
||||
input_low = int(real_input_len * (1 - range_ratio))
|
||||
@ -329,21 +328,17 @@ class RandomDataset(BenchmarkDataset):
|
||||
|
||||
# Add logging for debugging
|
||||
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
|
||||
logger.info("Sampling output_len from [%s, %s]", output_low,
|
||||
output_high)
|
||||
logger.info("Sampling output_len from [%s, %s]", output_low, output_high)
|
||||
|
||||
input_lens = np.random.randint(input_low,
|
||||
input_high + 1,
|
||||
size=num_requests)
|
||||
output_lens = np.random.randint(output_low,
|
||||
output_high + 1,
|
||||
size=num_requests)
|
||||
input_lens = np.random.randint(input_low, input_high + 1, size=num_requests)
|
||||
output_lens = np.random.randint(output_low, output_high + 1, size=num_requests)
|
||||
offsets = np.random.randint(0, vocab_size, size=num_requests)
|
||||
|
||||
requests = []
|
||||
for i in range(num_requests):
|
||||
inner_seq = ((offsets[i] + i + np.arange(input_lens[i])) %
|
||||
vocab_size).tolist()
|
||||
inner_seq = (
|
||||
(offsets[i] + i + np.arange(input_lens[i])) % vocab_size
|
||||
).tolist()
|
||||
token_sequence = prefix_token_ids + inner_seq
|
||||
prompt = tokenizer.decode(token_sequence)
|
||||
# After decoding the prompt we have to encode and decode it again.
|
||||
@ -354,8 +349,9 @@ class RandomDataset(BenchmarkDataset):
|
||||
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
|
||||
# To avoid uncontrolled change of the prompt length,
|
||||
# the encoded sequence is truncated before being decode again.
|
||||
re_encoded_sequence = tokenizer.encode(
|
||||
prompt, add_special_tokens=False)[:input_lens[i]]
|
||||
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
|
||||
: input_lens[i]
|
||||
]
|
||||
prompt = tokenizer.decode(re_encoded_sequence)
|
||||
total_input_len = prefix_len + int(input_lens[i])
|
||||
requests.append(
|
||||
@ -363,7 +359,8 @@ class RandomDataset(BenchmarkDataset):
|
||||
prompt=prompt,
|
||||
prompt_len=total_input_len,
|
||||
expected_output_len=int(output_lens[i]),
|
||||
))
|
||||
)
|
||||
)
|
||||
return requests
|
||||
|
||||
|
||||
@ -390,7 +387,8 @@ class ShareGPTDataset(BenchmarkDataset):
|
||||
self.data = json.load(f)
|
||||
# Filter entries with at least two conversation turns.
|
||||
self.data = [
|
||||
entry for entry in self.data
|
||||
entry
|
||||
for entry in self.data
|
||||
if "conversations" in entry and len(entry["conversations"]) >= 2
|
||||
]
|
||||
random.seed(self.random_seed)
|
||||
@ -416,31 +414,123 @@ class ShareGPTDataset(BenchmarkDataset):
|
||||
)
|
||||
|
||||
lora_request, tokenizer = self.get_random_lora_request(
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
|
||||
)
|
||||
prompt_ids = tokenizer(prompt).input_ids
|
||||
completion_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_ids)
|
||||
new_output_len = (len(completion_ids)
|
||||
if output_len is None else output_len)
|
||||
if not is_valid_sequence(prompt_len,
|
||||
new_output_len,
|
||||
skip_min_output_len_check=output_len
|
||||
is not None):
|
||||
new_output_len = len(completion_ids) if output_len is None else output_len
|
||||
if not is_valid_sequence(
|
||||
prompt_len,
|
||||
new_output_len,
|
||||
skip_min_output_len_check=output_len is not None,
|
||||
):
|
||||
continue
|
||||
if enable_multimodal_chat:
|
||||
prompt = self.apply_multimodal_chat_transformation(
|
||||
prompt, None)
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, None)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=new_output_len,
|
||||
lora_request=lora_request,
|
||||
))
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
return samples
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Custom Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class CustomDataset(BenchmarkDataset):
|
||||
"""
|
||||
Implements the Custom dataset. Loads data from a JSONL file and generates
|
||||
sample requests based on conversation turns. E.g.,
|
||||
```
|
||||
{"prompt": "What is the capital of India?"}
|
||||
{"prompt": "What is the capital of Iran?"}
|
||||
{"prompt": "What is the capital of China?"}
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
# self.data will be a list of dictionaries
|
||||
# e.g., [{"prompt": "What is the capital of India?"}, ...]
|
||||
# This will be the standardized format which load_data()
|
||||
# has to convert into depending on the filetype of dataset_path.
|
||||
# sample() will assume this standardized format of self.data
|
||||
self.data = []
|
||||
|
||||
# Load the JSONL file
|
||||
if self.dataset_path.endswith(".jsonl"):
|
||||
jsonl_data = pd.read_json(path_or_buf=self.dataset_path, lines=True)
|
||||
|
||||
# check if the JSONL file has a 'prompt' column
|
||||
if "prompt" not in jsonl_data.columns:
|
||||
raise ValueError("JSONL file must contain a 'prompt' column.")
|
||||
|
||||
# Convert each row to a dictionary and append to self.data
|
||||
# This will convert the DataFrame to a list of dictionaries
|
||||
# where each dictionary corresponds to a row in the DataFrame.
|
||||
# This is the standardized format we want for self.data
|
||||
for _, row in jsonl_data.iterrows():
|
||||
self.data.append(row.to_dict())
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Only JSONL format is supported for CustomDataset."
|
||||
)
|
||||
|
||||
random.seed(self.random_seed)
|
||||
random.shuffle(self.data)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
skip_chat_template: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = item["prompt"]
|
||||
|
||||
# apply template
|
||||
if not skip_chat_template:
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": prompt}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=False,
|
||||
)
|
||||
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Sonnet Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -482,20 +572,20 @@ class SonnetDataset(BenchmarkDataset):
|
||||
) -> list:
|
||||
# Calculate average token length for a poem line.
|
||||
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
|
||||
avg_len = sum(len(tokens)
|
||||
for tokens in tokenized_lines) / len(tokenized_lines)
|
||||
avg_len = sum(len(tokens) for tokens in tokenized_lines) / len(tokenized_lines)
|
||||
|
||||
# Build the base prompt.
|
||||
base_prompt = "Pick as many lines as you can from these poem lines:\n"
|
||||
base_msg = [{"role": "user", "content": base_prompt}]
|
||||
base_fmt = tokenizer.apply_chat_template(base_msg,
|
||||
add_generation_prompt=True,
|
||||
tokenize=False)
|
||||
base_fmt = tokenizer.apply_chat_template(
|
||||
base_msg, add_generation_prompt=True, tokenize=False
|
||||
)
|
||||
base_offset = len(tokenizer(base_fmt).input_ids)
|
||||
if input_len <= base_offset:
|
||||
raise ValueError(
|
||||
f"'input_len' must be higher than the base prompt length "
|
||||
f"({base_offset}).")
|
||||
f"({base_offset})."
|
||||
)
|
||||
|
||||
# Determine how many poem lines to use.
|
||||
num_input_lines = round((input_len - base_offset) / avg_len)
|
||||
@ -504,21 +594,23 @@ class SonnetDataset(BenchmarkDataset):
|
||||
|
||||
samples = []
|
||||
while len(samples) < num_requests:
|
||||
extra_lines = random.choices(self.data,
|
||||
k=num_input_lines - num_prefix_lines)
|
||||
extra_lines = random.choices(
|
||||
self.data, k=num_input_lines - num_prefix_lines
|
||||
)
|
||||
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
|
||||
msg = [{"role": "user", "content": prompt}]
|
||||
prompt_formatted = tokenizer.apply_chat_template(
|
||||
msg, add_generation_prompt=True, tokenize=False)
|
||||
msg, add_generation_prompt=True, tokenize=False
|
||||
)
|
||||
prompt_len = len(tokenizer(prompt_formatted).input_ids)
|
||||
if prompt_len <= input_len:
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt_formatted
|
||||
if return_prompt_formatted else prompt,
|
||||
prompt=prompt_formatted if return_prompt_formatted else prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
))
|
||||
)
|
||||
)
|
||||
return samples
|
||||
|
||||
|
||||
@ -538,7 +630,9 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self, ):
|
||||
def load_data(
|
||||
self,
|
||||
):
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
@ -552,8 +646,7 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
|
||||
def _sample_loaded_data(self, num_requests: int) -> list:
|
||||
if num_requests <= len(self.data):
|
||||
data = self.data.sample(n=num_requests,
|
||||
random_state=self.random_seed)
|
||||
data = self.data.sample(n=num_requests, random_state=self.random_seed)
|
||||
else:
|
||||
data = self.data.sample(
|
||||
n=num_requests,
|
||||
@ -577,7 +670,8 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
input_len = int(data[i][2])
|
||||
output_len = int(data[i][3])
|
||||
lora_req, tokenizer = self.get_random_lora_request(
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
|
||||
)
|
||||
vocab_size = tokenizer.vocab_size
|
||||
# Generate a synthetic prompt: a list of token IDs computed as (i +
|
||||
# j) modulo vocab_size.
|
||||
@ -589,7 +683,8 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
prompt_len=input_len,
|
||||
expected_output_len=output_len,
|
||||
lora_request=lora_req,
|
||||
))
|
||||
)
|
||||
)
|
||||
return samples
|
||||
|
||||
|
||||
@ -632,20 +727,23 @@ class HuggingFaceDataset(BenchmarkDataset):
|
||||
|
||||
class ConversationDataset(HuggingFaceDataset):
|
||||
"""Dataset for conversation data with multimodal support."""
|
||||
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
|
||||
"lmms-lab/LLaVA-OneVision-Data",
|
||||
"Aeala/ShareGPT_Vicuna_unfiltered",
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
# Filter examples with at least 2 conversations
|
||||
filtered_data = self.data.filter(
|
||||
lambda x: len(x["conversations"]) >= 2)
|
||||
filtered_data = self.data.filter(lambda x: len(x["conversations"]) >= 2)
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
|
||||
@ -661,24 +759,22 @@ class ConversationDataset(HuggingFaceDataset):
|
||||
completion_len = len(completion_ids)
|
||||
output_len = completion_len if dynamic_output else output_len
|
||||
assert isinstance(output_len, int) and output_len > 0
|
||||
if dynamic_output and not is_valid_sequence(
|
||||
prompt_len, completion_len):
|
||||
if dynamic_output and not is_valid_sequence(prompt_len, completion_len):
|
||||
continue
|
||||
mm_content = process_image(
|
||||
item["image"]) if "image" in item else None
|
||||
mm_content = process_image(item["image"]) if "image" in item else None
|
||||
if enable_multimodal_chat:
|
||||
# Note: when chat is enabled the request prompt_len is no longer
|
||||
# accurate and we will be using request output to count the
|
||||
# actual prompt len and output len
|
||||
prompt = self.apply_multimodal_chat_transformation(
|
||||
prompt, mm_content)
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
@ -695,10 +791,8 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"lmarena-ai/VisionArena-Chat":
|
||||
lambda x: x["conversation"][0][0]["content"],
|
||||
"lmarena-ai/vision-arena-bench-v0.1":
|
||||
lambda x: x["turns"][0][0]["content"]
|
||||
"lmarena-ai/VisionArena-Chat": lambda x: x["conversation"][0][0]["content"],
|
||||
"lmarena-ai/vision-arena-bench-v0.1": lambda x: x["turns"][0][0]["content"],
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
@ -710,16 +804,14 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
|
||||
if parser_fn is None:
|
||||
raise ValueError(
|
||||
f"Unsupported dataset path: {self.dataset_path}")
|
||||
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
|
||||
prompt = parser_fn(item)
|
||||
mm_content = process_image(item["images"][0])
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
@ -727,15 +819,15 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
# Note: when chat is enabled the request prompt_len is no longer
|
||||
# accurate and we will be using request output to count the
|
||||
# actual prompt len
|
||||
prompt = self.apply_multimodal_chat_transformation(
|
||||
prompt, mm_content)
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
@ -760,26 +852,36 @@ class InstructCoderDataset(HuggingFaceDataset):
|
||||
"likaixin/InstructCoder",
|
||||
}
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = f"{item['instruction']}:\n{item['input']}"
|
||||
prompt = f"{item['input']}\n\n{item['instruction']} Just output \
|
||||
the code, do not include any explanation."
|
||||
|
||||
# apply template
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": prompt}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=False,
|
||||
)
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
))
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
@ -794,38 +896,38 @@ class MTBenchDataset(HuggingFaceDataset):
|
||||
MT-Bench Dataset.
|
||||
https://huggingface.co/datasets/philschmid/mt-bench
|
||||
|
||||
We create a single turn dataset for MT-Bench.
|
||||
We create a single turn dataset for MT-Bench.
|
||||
This is similar to Spec decoding benchmark setup in vLLM
|
||||
https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
|
||||
""" # noqa: E501
|
||||
""" # noqa: E501
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 256 # avg len used in SD bench in vLLM
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"philschmid/mt-bench",
|
||||
}
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
sampled_requests = []
|
||||
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = item['turns'][0]
|
||||
prompt = item["turns"][0]
|
||||
|
||||
# apply template
|
||||
prompt = tokenizer.apply_chat_template([{
|
||||
"role": "user",
|
||||
"content": prompt
|
||||
}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=False)
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": prompt}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=False,
|
||||
)
|
||||
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
@ -833,7 +935,8 @@ class MTBenchDataset(HuggingFaceDataset):
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
))
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
@ -847,23 +950,27 @@ class AIMODataset(HuggingFaceDataset):
|
||||
"""
|
||||
Dataset class for processing a AIMO dataset with reasoning questions.
|
||||
"""
|
||||
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5",
|
||||
"AI-MO/NuminaMath-CoT"
|
||||
"AI-MO/aimo-validation-aime",
|
||||
"AI-MO/NuminaMath-1.5",
|
||||
"AI-MO/NuminaMath-CoT",
|
||||
}
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
**kwargs) -> list:
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt, completion = item['problem'], item["solution"]
|
||||
prompt, completion = item["problem"], item["solution"]
|
||||
|
||||
prompt_ids = tokenizer(prompt).input_ids
|
||||
completion_ids = tokenizer(completion).input_ids
|
||||
@ -871,10 +978,9 @@ class AIMODataset(HuggingFaceDataset):
|
||||
completion_len = len(completion_ids)
|
||||
output_len = completion_len if dynamic_output else output_len
|
||||
assert isinstance(output_len, int) and output_len > 0
|
||||
if dynamic_output and not is_valid_sequence(prompt_len,
|
||||
completion_len,
|
||||
max_prompt_len=2048,
|
||||
max_total_len=32000):
|
||||
if dynamic_output and not is_valid_sequence(
|
||||
prompt_len, completion_len, max_prompt_len=2048, max_total_len=32000
|
||||
):
|
||||
continue
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
@ -882,7 +988,8 @@ class AIMODataset(HuggingFaceDataset):
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=None,
|
||||
))
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
@ -905,25 +1012,25 @@ You are a code completion assistant and your task is to analyze user edits and t
|
||||
|
||||
### Response:
|
||||
|
||||
""" # noqa: E501
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
def _format_zeta_prompt(
|
||||
sample: dict,
|
||||
original_start_marker: str = "<|editable_region_start|>") -> dict:
|
||||
sample: dict, original_start_marker: str = "<|editable_region_start|>"
|
||||
) -> dict:
|
||||
"""Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
|
||||
|
||||
This function formats examples from the NEP dataset
|
||||
into prompts and expected outputs. It could be
|
||||
|
||||
This function formats examples from the NEP dataset
|
||||
into prompts and expected outputs. It could be
|
||||
further extended to support more NEP datasets.
|
||||
|
||||
|
||||
Args:
|
||||
sample: The dataset sample containing events,
|
||||
sample: The dataset sample containing events,
|
||||
inputs, and outputs.
|
||||
original_start_marker: The marker indicating the
|
||||
start of the editable region. Defaults to
|
||||
original_start_marker: The marker indicating the
|
||||
start of the editable region. Defaults to
|
||||
"<|editable_region_start|>".
|
||||
|
||||
|
||||
Returns:
|
||||
A dictionary with the formatted prompts and expected outputs.
|
||||
"""
|
||||
@ -953,10 +1060,8 @@ class NextEditPredictionDataset(HuggingFaceDataset):
|
||||
"zed-industries/zeta": _format_zeta_prompt,
|
||||
}
|
||||
|
||||
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int,
|
||||
**kwargs):
|
||||
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(
|
||||
self.dataset_path)
|
||||
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int, **kwargs):
|
||||
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(self.dataset_path)
|
||||
if formatting_prompt_func is None:
|
||||
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
|
||||
samples = []
|
||||
@ -967,8 +1072,10 @@ class NextEditPredictionDataset(HuggingFaceDataset):
|
||||
prompt=sample["prompt"],
|
||||
prompt_len=len(tokenizer(sample["prompt"]).input_ids),
|
||||
expected_output_len=len(
|
||||
tokenizer(sample["expected_output"]).input_ids),
|
||||
))
|
||||
tokenizer(sample["expected_output"]).input_ids
|
||||
),
|
||||
)
|
||||
)
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
@ -997,18 +1104,22 @@ class ASRDataset(HuggingFaceDataset):
|
||||
| AMI | Meetings | Spontaneous | ihm, sdm |
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
|
||||
""" # noqa: E501
|
||||
""" # noqa: E501
|
||||
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"openslr/librispeech_asr", "facebook/voxpopuli", "LIUM/tedlium",
|
||||
"edinburghcstr/ami", "speechcolab/gigaspeech", "kensho/spgispeech"
|
||||
"openslr/librispeech_asr",
|
||||
"facebook/voxpopuli",
|
||||
"LIUM/tedlium",
|
||||
"edinburghcstr/ami",
|
||||
"speechcolab/gigaspeech",
|
||||
"kensho/spgispeech",
|
||||
}
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
# TODO Whisper-specific. Abstract interface when more models are supported.
|
||||
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|>"\
|
||||
"<|notimestamps|>"
|
||||
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>"
|
||||
skip_long_audios: bool = True
|
||||
|
||||
def sample(
|
||||
@ -1019,8 +1130,8 @@ class ASRDataset(HuggingFaceDataset):
|
||||
**kwargs,
|
||||
) -> list:
|
||||
import librosa
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests = []
|
||||
@ -1043,10 +1154,14 @@ class ASRDataset(HuggingFaceDataset):
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
)
|
||||
)
|
||||
if skipped:
|
||||
logger.warning("%d samples discarded from dataset due to" \
|
||||
" their length being greater than" \
|
||||
" what Whisper supports.", skipped)
|
||||
logger.warning(
|
||||
"%d samples discarded from dataset due to"
|
||||
" their length being greater than"
|
||||
" what Whisper supports.",
|
||||
skipped,
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Benchmark the latency of processing a single batch of requests."""
|
||||
|
||||
import argparse
|
||||
@ -6,14 +7,13 @@ import dataclasses
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from tqdm import tqdm
|
||||
|
||||
import vllm.envs as envs
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.inputs import PromptType
|
||||
@ -21,13 +21,14 @@ from vllm.sampling_params import BeamSearchParams
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
results: dict[str, Any]) -> None:
|
||||
def save_to_pytorch_benchmark_format(
|
||||
args: argparse.Namespace, results: dict[str, Any]
|
||||
) -> None:
|
||||
pt_records = convert_to_pytorch_benchmark_format(
|
||||
args=args,
|
||||
metrics={"latency": results["latencies"]},
|
||||
extra_info={k: results[k]
|
||||
for k in ["avg_latency", "percentiles"]})
|
||||
extra_info={k: results[k] for k in ["avg_latency", "percentiles"]},
|
||||
)
|
||||
if pt_records:
|
||||
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
|
||||
write_to_json(pt_file, pt_records)
|
||||
@ -42,9 +43,11 @@ def main(args: argparse.Namespace):
|
||||
# the engine will automatically process the request in multiple batches.
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
assert llm.llm_engine.model_config.max_model_len >= (
|
||||
args.input_len +
|
||||
args.output_len), ("Please ensure that max_model_len is greater than"
|
||||
" the sum of input_len and output_len.")
|
||||
args.input_len + args.output_len
|
||||
), (
|
||||
"Please ensure that max_model_len is greater than"
|
||||
" the sum of input_len and output_len."
|
||||
)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=args.n,
|
||||
@ -55,18 +58,16 @@ def main(args: argparse.Namespace):
|
||||
detokenize=not args.disable_detokenize,
|
||||
)
|
||||
print(sampling_params)
|
||||
dummy_prompt_token_ids = np.random.randint(10000,
|
||||
size=(args.batch_size,
|
||||
args.input_len))
|
||||
dummy_prompts: list[PromptType] = [{
|
||||
"prompt_token_ids": batch
|
||||
} for batch in dummy_prompt_token_ids.tolist()]
|
||||
dummy_prompt_token_ids = np.random.randint(
|
||||
10000, size=(args.batch_size, args.input_len)
|
||||
)
|
||||
dummy_prompts: list[PromptType] = [
|
||||
{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()
|
||||
]
|
||||
|
||||
def llm_generate():
|
||||
if not args.use_beam_search:
|
||||
llm.generate(dummy_prompts,
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=False)
|
||||
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False)
|
||||
else:
|
||||
llm.beam_search(
|
||||
dummy_prompts,
|
||||
@ -79,16 +80,9 @@ def main(args: argparse.Namespace):
|
||||
|
||||
def run_to_completion(profile_dir: Optional[str] = None):
|
||||
if profile_dir:
|
||||
with torch.profiler.profile(
|
||||
activities=[
|
||||
torch.profiler.ProfilerActivity.CPU,
|
||||
torch.profiler.ProfilerActivity.CUDA,
|
||||
],
|
||||
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
||||
str(profile_dir)),
|
||||
) as p:
|
||||
llm_generate()
|
||||
print(p.key_averages().table(sort_by="self_cuda_time_total"))
|
||||
llm.start_profile()
|
||||
llm_generate()
|
||||
llm.stop_profile()
|
||||
else:
|
||||
start_time = time.perf_counter()
|
||||
llm_generate()
|
||||
@ -101,10 +95,7 @@ def main(args: argparse.Namespace):
|
||||
run_to_completion(profile_dir=None)
|
||||
|
||||
if args.profile:
|
||||
profile_dir = args.profile_result_dir
|
||||
if not profile_dir:
|
||||
profile_dir = (Path(".") / "vllm_benchmark_result" /
|
||||
f"latency_result_{time.time()}")
|
||||
profile_dir = envs.VLLM_TORCH_PROFILER_DIR
|
||||
print(f"Profiling (results will be saved to '{profile_dir}')...")
|
||||
run_to_completion(profile_dir=profile_dir)
|
||||
return
|
||||
@ -132,10 +123,11 @@ def main(args: argparse.Namespace):
|
||||
save_to_pytorch_benchmark_format(args, results)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def create_argument_parser():
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the latency of processing a single batch of "
|
||||
"requests till completion.")
|
||||
"requests till completion."
|
||||
)
|
||||
parser.add_argument("--input-len", type=int, default=32)
|
||||
parser.add_argument("--output-len", type=int, default=128)
|
||||
parser.add_argument("--batch-size", type=int, default=8)
|
||||
@ -152,22 +144,14 @@ if __name__ == "__main__":
|
||||
default=10,
|
||||
help="Number of iterations to run for warmup.",
|
||||
)
|
||||
parser.add_argument("--num-iters",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of iterations to run.")
|
||||
parser.add_argument(
|
||||
"--num-iters", type=int, default=30, help="Number of iterations to run."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--profile",
|
||||
action="store_true",
|
||||
help="profile the generation process of a single batch",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--profile-result-dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help=("path to save the pytorch profiler output. Can be visualized "
|
||||
"with ui.perfetto.dev or Tensorboard."),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-json",
|
||||
type=str,
|
||||
@ -177,10 +161,26 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
help=(
|
||||
"Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"
|
||||
),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
# V1 enables prefix caching by default which skews the latency
|
||||
# numbers. We need to disable prefix caching by default.
|
||||
parser.set_defaults(enable_prefix_caching=False)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = create_argument_parser()
|
||||
args = parser.parse_args()
|
||||
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
|
||||
raise OSError(
|
||||
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
|
||||
"Please set it to a valid path to use torch profiler."
|
||||
)
|
||||
main(args)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Offline benchmark to test the long document QA throughput.
|
||||
|
||||
@ -76,7 +77,7 @@ def repeat_prompts(prompts, repeat_count, mode: str):
|
||||
- 'random': Shuffle the prompts randomly after repetition.
|
||||
- 'tile': Repeat the entire prompt list in sequence.
|
||||
Example: [1, 2, 3] -> [1, 2, 3, 1, 2, 3].
|
||||
- 'interleave': Repeat each prompt consecutively before moving to
|
||||
- 'interleave': Repeat each prompt consecutively before moving to
|
||||
the next. Example: [1, 2, 3] -> [1, 1, 2, 2, 3, 3].
|
||||
|
||||
Returns:
|
||||
@ -86,20 +87,21 @@ def repeat_prompts(prompts, repeat_count, mode: str):
|
||||
ValueError: If an invalid mode is provided.
|
||||
"""
|
||||
print("Repeat mode: ", mode)
|
||||
if mode == 'random':
|
||||
if mode == "random":
|
||||
repeated_prompts = prompts * repeat_count
|
||||
random.shuffle(repeated_prompts)
|
||||
return repeated_prompts
|
||||
elif mode == 'tile':
|
||||
elif mode == "tile":
|
||||
return prompts * repeat_count
|
||||
elif mode == 'interleave':
|
||||
elif mode == "interleave":
|
||||
repeated_prompts = []
|
||||
for prompt in prompts:
|
||||
repeated_prompts.extend([prompt] * repeat_count)
|
||||
return repeated_prompts
|
||||
else:
|
||||
raise ValueError(f"Invalid mode: {mode}, only support "
|
||||
"'random', 'tile', 'interleave'")
|
||||
raise ValueError(
|
||||
f"Invalid mode: {mode}, only support 'random', 'tile', 'interleave'"
|
||||
)
|
||||
|
||||
|
||||
def main(args):
|
||||
@ -109,16 +111,16 @@ def main(args):
|
||||
# we append the document id at the beginning to avoid any of the document
|
||||
# being the prefix of other documents
|
||||
prompts = [
|
||||
str(i) + ' '.join(['hi'] * args.document_length)
|
||||
str(i) + " ".join(["hi"] * args.document_length)
|
||||
for i in range(args.num_documents)
|
||||
]
|
||||
|
||||
prompts = repeat_prompts(prompts, args.repeat_count, mode=args.repeat_mode)
|
||||
|
||||
warmup_prompts = [
|
||||
"This is warm up request " + str(i) + \
|
||||
' '.join(['hi'] * args.document_length)
|
||||
for i in range(args.num_documents)]
|
||||
"This is warm up request " + str(i) + " ".join(["hi"] * args.document_length)
|
||||
for i in range(args.num_documents)
|
||||
]
|
||||
|
||||
# Create the LLM engine
|
||||
engine_args = EngineArgs.from_cli_args(args)
|
||||
@ -140,45 +142,61 @@ def main(args):
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def create_argument_parser():
|
||||
parser = FlexibleArgumentParser(
|
||||
description=
|
||||
'Benchmark the performance with or without automatic prefix caching.')
|
||||
description="Benchmark the performance with or "
|
||||
"without automatic prefix caching."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--document-length',
|
||||
"--document-length",
|
||||
type=int,
|
||||
# Roughly the number of tokens for a system paper,
|
||||
# excluding images
|
||||
default=20000,
|
||||
help='Range of input lengths for sampling prompts,'
|
||||
'specified as "min:max" (e.g., "128:256").')
|
||||
help="Range of input lengths for sampling prompts, "
|
||||
'specified as "min:max" (e.g., "128:256").',
|
||||
)
|
||||
|
||||
parser.add_argument('--num-documents',
|
||||
type=int,
|
||||
default=8,
|
||||
help='Range of input lengths for sampling prompts,'
|
||||
'specified as "min:max" (e.g., "128:256").')
|
||||
parser.add_argument(
|
||||
"--num-documents",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Range of input lengths for sampling prompts, "
|
||||
'specified as "min:max" (e.g., "128:256").',
|
||||
)
|
||||
|
||||
parser.add_argument('--output-len', type=int, default=10)
|
||||
parser.add_argument("--output-len", type=int, default=10)
|
||||
|
||||
parser.add_argument('--repeat-count',
|
||||
type=int,
|
||||
default=2,
|
||||
help='Number of times to repeat each prompt')
|
||||
parser.add_argument(
|
||||
"--repeat-count",
|
||||
type=int,
|
||||
default=2,
|
||||
help="Number of times to repeat each prompt",
|
||||
)
|
||||
|
||||
parser.add_argument("--repeat-mode",
|
||||
type=str,
|
||||
default='random',
|
||||
help='The mode to repeat prompts. The supported '
|
||||
'modes are "random", "tile", and "interleave". '
|
||||
'See repeat_prompts() in the source code for details.')
|
||||
parser.add_argument(
|
||||
"--repeat-mode",
|
||||
type=str,
|
||||
default="random",
|
||||
help="The mode to repeat prompts. The supported "
|
||||
'modes are "random", "tile", and "interleave". '
|
||||
"See repeat_prompts() in the source code for details.",
|
||||
)
|
||||
|
||||
parser.add_argument("--shuffle-seed",
|
||||
type=int,
|
||||
default=0,
|
||||
help='Random seed when the repeat mode is "random"')
|
||||
parser.add_argument(
|
||||
"--shuffle-seed",
|
||||
type=int,
|
||||
default=0,
|
||||
help='Random seed when the repeat mode is "random"',
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = create_argument_parser()
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Benchmark the efficiency of prefix caching.
|
||||
|
||||
@ -63,8 +64,7 @@ class Request:
|
||||
output_len: int
|
||||
|
||||
|
||||
def sample_tokens(tokenizer: PreTrainedTokenizerBase,
|
||||
length: int) -> list[int]:
|
||||
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> list[int]:
|
||||
vocab = tokenizer.get_vocab()
|
||||
all_special_ids = set(tokenizer.all_special_ids)
|
||||
|
||||
@ -91,8 +91,10 @@ def sample_requests_from_dataset(
|
||||
# Filter out the conversations with less than 2 turns.
|
||||
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
||||
# Only keep the first two turns of each conversation.
|
||||
dataset = [(data["conversations"][0]["value"],
|
||||
data["conversations"][1]["value"]) for data in dataset]
|
||||
dataset = [
|
||||
(data["conversations"][0]["value"], data["conversations"][1]["value"])
|
||||
for data in dataset
|
||||
]
|
||||
|
||||
# Shuffle the dataset.
|
||||
random.shuffle(dataset)
|
||||
@ -113,8 +115,9 @@ def sample_requests_from_dataset(
|
||||
completion = dataset[i][1]
|
||||
completion_token_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_token_ids)
|
||||
output_len = (len(completion_token_ids)
|
||||
if fixed_output_len is None else fixed_output_len)
|
||||
output_len = (
|
||||
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
|
||||
)
|
||||
if min_len <= prompt_len <= max_len:
|
||||
filtered_requests.append(Request(prompt, prompt_len, output_len))
|
||||
|
||||
@ -128,27 +131,27 @@ def sample_requests_from_random(
|
||||
fixed_output_len: Optional[int],
|
||||
prefix_len: int,
|
||||
) -> list[Request]:
|
||||
|
||||
requests = []
|
||||
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
|
||||
min_len, max_len = input_length_range
|
||||
|
||||
for i in range(num_requests):
|
||||
unique_part_token_ids = sample_tokens(
|
||||
tokenizer,
|
||||
random.randint(min_len - prefix_len, max_len - prefix_len))
|
||||
tokenizer, random.randint(min_len - prefix_len, max_len - prefix_len)
|
||||
)
|
||||
prompt_token_ids = prefix_token_ids + unique_part_token_ids
|
||||
prompt = tokenizer.decode(prompt_token_ids)
|
||||
prompt_len = len(prompt_token_ids)
|
||||
assert (min_len <= prompt_len <= max_len
|
||||
), f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
|
||||
assert min_len <= prompt_len <= max_len, (
|
||||
f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
|
||||
)
|
||||
requests.append(Request(prompt, prompt_len, fixed_output_len))
|
||||
return requests
|
||||
|
||||
|
||||
def repeat_and_sort_requests(requests: list[Request],
|
||||
repeat_count: int,
|
||||
sort: bool = False) -> list[str]:
|
||||
def repeat_and_sort_requests(
|
||||
requests: list[Request], repeat_count: int, sort: bool = False
|
||||
) -> list[str]:
|
||||
repeated_requests = requests * repeat_count
|
||||
if sort:
|
||||
repeated_requests.sort(key=lambda x: x[1])
|
||||
@ -159,14 +162,14 @@ def repeat_and_sort_requests(requests: list[Request],
|
||||
|
||||
def main(args):
|
||||
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
|
||||
input_length_range = tuple(map(int, args.input_length_range.split(':')))
|
||||
input_length_range = tuple(map(int, args.input_length_range.split(":")))
|
||||
random.seed(args.seed)
|
||||
if args.dataset_path is not None:
|
||||
if args.prefix_len > 0:
|
||||
raise ValueError("prefix-len is not supported when "
|
||||
"dataset-path is provided.")
|
||||
print(f"Start to sample {args.num_prompts} prompts "
|
||||
f"from {args.dataset_path}")
|
||||
raise ValueError(
|
||||
"prefix-len is not supported when dataset-path is provided."
|
||||
)
|
||||
print(f"Start to sample {args.num_prompts} prompts from {args.dataset_path}")
|
||||
filtered_requests = sample_requests_from_dataset(
|
||||
dataset_path=args.dataset_path,
|
||||
num_requests=args.num_prompts,
|
||||
@ -196,14 +199,16 @@ def main(args):
|
||||
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
sampling_params = SamplingParams(temperature=0,
|
||||
max_tokens=args.output_len,
|
||||
detokenize=not args.disable_detokenize)
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0,
|
||||
max_tokens=args.output_len,
|
||||
detokenize=not args.disable_detokenize,
|
||||
)
|
||||
|
||||
print("Testing filtered requests")
|
||||
prompts = repeat_and_sort_requests(filtered_requests,
|
||||
repeat_count=args.repeat_count,
|
||||
sort=args.sort)
|
||||
prompts = repeat_and_sort_requests(
|
||||
filtered_requests, repeat_count=args.repeat_count, sort=args.sort
|
||||
)
|
||||
|
||||
print("------start generating------")
|
||||
test_prefix(
|
||||
@ -213,31 +218,37 @@ def main(args):
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def create_argument_parser():
|
||||
parser = FlexibleArgumentParser(
|
||||
description=
|
||||
'Benchmark the performance with or without automatic prefix caching.')
|
||||
parser.add_argument("--dataset-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the dataset.")
|
||||
parser.add_argument('--output-len', type=int, default=10)
|
||||
parser.add_argument('--num-prompts',
|
||||
type=int,
|
||||
required=True,
|
||||
help="Number of the prompts sampled from dataset")
|
||||
parser.add_argument('--repeat-count',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Number of times to repeat each prompt')
|
||||
parser.add_argument('--sort',
|
||||
action='store_true',
|
||||
help='Sort prompts by input length')
|
||||
parser.add_argument('--input-length-range',
|
||||
type=str,
|
||||
required=True,
|
||||
help='Range of input lengths for sampling prompts,'
|
||||
'specified as "min:max" (e.g., "128:256").')
|
||||
description="Benchmark the performance with or without "
|
||||
"automatic prefix caching."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-path", type=str, default=None, help="Path to the dataset."
|
||||
)
|
||||
parser.add_argument("--output-len", type=int, default=10)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
type=int,
|
||||
required=True,
|
||||
help="Number of the prompts sampled from dataset",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repeat-count",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of times to repeat each prompt",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sort", action="store_true", help="Sort prompts by input length"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-length-range",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Range of input lengths for sampling prompts,"
|
||||
'specified as "min:max" (e.g., "128:256").',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prefix-len",
|
||||
type=int,
|
||||
@ -248,12 +259,20 @@ if __name__ == "__main__":
|
||||
"when dataset-path is not provided.",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--disable-detokenize',
|
||||
action='store_true',
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=(
|
||||
"Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"
|
||||
),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = create_argument_parser()
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
@ -1,5 +1,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Benchmark offline prioritization."""
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
@ -13,7 +15,7 @@ from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
#Select a equi-probable random priority
|
||||
# Select a equi-probable random priority
|
||||
def get_random_flag():
|
||||
return 0 if random.random() < 0.5 else 1
|
||||
|
||||
@ -33,8 +35,10 @@ def sample_requests(
|
||||
# Filter out the conversations with less than 2 turns.
|
||||
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
||||
# Only keep the first two turns of each conversation.
|
||||
dataset = [(data["conversations"][0]["value"],
|
||||
data["conversations"][1]["value"]) for data in dataset]
|
||||
dataset = [
|
||||
(data["conversations"][0]["value"], data["conversations"][1]["value"])
|
||||
for data in dataset
|
||||
]
|
||||
|
||||
# Shuffle the dataset.
|
||||
random.shuffle(dataset)
|
||||
@ -51,8 +55,9 @@ def sample_requests(
|
||||
completion = dataset[i][1]
|
||||
completion_token_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_token_ids)
|
||||
output_len = len(completion_token_ids
|
||||
) if fixed_output_len is None else fixed_output_len
|
||||
output_len = (
|
||||
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
|
||||
)
|
||||
if prompt_len < 4 or output_len < 4:
|
||||
# Prune too short sequences.
|
||||
continue
|
||||
@ -74,13 +79,16 @@ def run_vllm(
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (request[1] + request[2])
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" input_len and output_len for all requests.")
|
||||
for request in requests
|
||||
), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" input_len and output_len for all requests."
|
||||
)
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts = []
|
||||
@ -97,7 +105,8 @@ def run_vllm(
|
||||
ignore_eos=True,
|
||||
max_tokens=output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
)
|
||||
)
|
||||
|
||||
start = time.perf_counter()
|
||||
llm.generate(prompts, sampling_params, priority=priority, use_tqdm=True)
|
||||
@ -111,26 +120,33 @@ def main(args: argparse.Namespace):
|
||||
|
||||
# Sample the requests.
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code
|
||||
)
|
||||
if args.dataset is None:
|
||||
# Synthesize a prompt with the given input length.
|
||||
prompt = "hi" * (args.input_len - 1)
|
||||
requests = [(prompt, args.input_len, args.output_len,
|
||||
get_random_flag()) for _ in range(args.num_prompts)]
|
||||
requests = [
|
||||
(prompt, args.input_len, args.output_len, get_random_flag())
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
else:
|
||||
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
|
||||
args.output_len)
|
||||
requests = sample_requests(
|
||||
args.dataset, args.num_prompts, tokenizer, args.output_len
|
||||
)
|
||||
|
||||
if args.backend == "vllm":
|
||||
elapsed_time = run_vllm(requests, args.n,
|
||||
EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize)
|
||||
elapsed_time = run_vllm(
|
||||
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {args.backend}")
|
||||
total_num_tokens = sum(prompt_len + output_len
|
||||
for _, prompt_len, output_len, priority in requests)
|
||||
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
|
||||
total_num_tokens = sum(
|
||||
prompt_len + output_len for _, prompt_len, output_len, priority in requests
|
||||
)
|
||||
print(
|
||||
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} tokens/s"
|
||||
)
|
||||
|
||||
# Output JSON results if specified
|
||||
if args.output_json:
|
||||
@ -145,46 +161,55 @@ def main(args: argparse.Namespace):
|
||||
json.dump(results, f, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def create_argument_parser():
|
||||
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
|
||||
parser.add_argument("--backend",
|
||||
type=str,
|
||||
choices=["vllm", "hf", "mii"],
|
||||
default="vllm")
|
||||
parser.add_argument("--dataset",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the dataset.")
|
||||
parser.add_argument("--input-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Input prompt length for each request")
|
||||
parser.add_argument("--output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the "
|
||||
"output length from the dataset.")
|
||||
parser.add_argument("--n",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of generated sequences per prompt.")
|
||||
parser.add_argument("--num-prompts",
|
||||
type=int,
|
||||
default=200,
|
||||
help="Number of prompts to process.")
|
||||
parser.add_argument(
|
||||
'--output-json',
|
||||
"--backend", type=str, choices=["vllm", "hf", "mii"], default="vllm"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset", type=str, default=None, help="Path to the dataset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Input prompt length for each request",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the "
|
||||
"output length from the dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--n", type=int, default=1, help="Number of generated sequences per prompt."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts", type=int, default=200, help="Number of prompts to process."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-json",
|
||||
type=str,
|
||||
default=None,
|
||||
help='Path to save the throughput results in JSON format.')
|
||||
help="Path to save the throughput results in JSON format.",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--disable-detokenize',
|
||||
action='store_true',
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=(
|
||||
"Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"
|
||||
),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = create_argument_parser()
|
||||
args = parser.parse_args()
|
||||
if args.tokenizer is None:
|
||||
args.tokenizer = args.model
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
r"""Benchmark online serving throughput with structured outputs.
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
@ -11,7 +12,6 @@ On the client side, run:
|
||||
--model <your_model> \
|
||||
--dataset json \
|
||||
--structured-output-ratio 1.0 \
|
||||
--structured-output-backend auto \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
|
||||
@ -19,6 +19,7 @@ On the client side, run:
|
||||
--endpoint /generate_stream
|
||||
to the end of the command above.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import copy
|
||||
@ -36,11 +37,15 @@ from typing import Optional
|
||||
import datasets
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
|
||||
RequestFuncOutput)
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
from backend_request_func import (
|
||||
ASYNC_REQUEST_FUNCS,
|
||||
RequestFuncInput,
|
||||
RequestFuncOutput,
|
||||
)
|
||||
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
except ImportError:
|
||||
@ -52,7 +57,8 @@ except ImportError:
|
||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||
|
||||
from vllm.v1.structured_output.backend_xgrammar import (
|
||||
has_xgrammar_unsupported_json_features)
|
||||
has_xgrammar_unsupported_json_features,
|
||||
)
|
||||
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||
|
||||
@ -98,6 +104,7 @@ class SampleRequest:
|
||||
prompt_len: The length of the prompt in tokens.
|
||||
expected_output_len: The expected length of the output in tokens.
|
||||
"""
|
||||
|
||||
prompt: str
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
@ -106,32 +113,28 @@ class SampleRequest:
|
||||
completion: str = None
|
||||
|
||||
|
||||
def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
args: argparse.Namespace) -> list[SampleRequest]:
|
||||
if args.dataset == 'json' or args.dataset == 'json-unique':
|
||||
def sample_requests(
|
||||
tokenizer: PreTrainedTokenizerBase, args: argparse.Namespace
|
||||
) -> list[SampleRequest]:
|
||||
if args.dataset == "json" or args.dataset == "json-unique":
|
||||
if args.json_schema_path is None:
|
||||
dir_path = os.path.dirname(os.path.realpath(__file__))
|
||||
args.json_schema_path = os.path.join(dir_path,
|
||||
"structured_schemas",
|
||||
"structured_schema_1.json")
|
||||
args.json_schema_path = os.path.join(
|
||||
dir_path, "structured_schemas", "structured_schema_1.json"
|
||||
)
|
||||
json_schemas = []
|
||||
with open(args.json_schema_path) as f:
|
||||
schema = json.load(f)
|
||||
|
||||
if args.dataset == 'json-unique':
|
||||
json_schemas = [
|
||||
copy.deepcopy(schema) for _ in range(args.num_prompts)
|
||||
]
|
||||
if args.dataset == "json-unique":
|
||||
json_schemas = [copy.deepcopy(schema) for _ in range(args.num_prompts)]
|
||||
for i in range(len(json_schemas)):
|
||||
if "properties" not in json_schemas[i]:
|
||||
json_schemas[i]["properties"] = {}
|
||||
json_schemas[i]["properties"][
|
||||
f"__optional_field_{uuid.uuid4()}"] = {
|
||||
"type":
|
||||
"string",
|
||||
"description":
|
||||
"An unique optional field to avoid cached schemas"
|
||||
}
|
||||
json_schemas[i]["properties"][f"__optional_field_{uuid.uuid4()}"] = {
|
||||
"type": "string",
|
||||
"description": "An unique optional field to avoid cached schemas",
|
||||
}
|
||||
else:
|
||||
json_schemas = [schema] * args.num_prompts
|
||||
|
||||
@ -142,11 +145,13 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
return json_schemas[index % len(json_schemas)]
|
||||
|
||||
requests = [
|
||||
SampleRequest(prompt=gen_prompt(i),
|
||||
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
|
||||
expected_output_len=args.output_len,
|
||||
schema=get_schema(i),
|
||||
structure_type=args.structure_type)
|
||||
SampleRequest(
|
||||
prompt=gen_prompt(i),
|
||||
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
|
||||
expected_output_len=args.output_len,
|
||||
schema=get_schema(i),
|
||||
structure_type=args.structure_type,
|
||||
)
|
||||
for i in range(args.num_prompts)
|
||||
]
|
||||
|
||||
@ -170,11 +175,13 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type)
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type,
|
||||
)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
@ -188,11 +195,13 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=regex,
|
||||
structure_type=args.structure_type)
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=regex,
|
||||
structure_type=args.structure_type,
|
||||
)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
@ -203,48 +212,55 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=choice,
|
||||
structure_type=args.structure_type)
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=choice,
|
||||
structure_type=args.structure_type,
|
||||
)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "xgrammar_bench":
|
||||
requests: list[SampleRequest] = []
|
||||
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
|
||||
split="train")
|
||||
dataset = datasets.load_dataset("NousResearch/json-mode-eval", split="train")
|
||||
full_dataset_len = len(dataset)
|
||||
|
||||
def _filter_func(item):
|
||||
import json
|
||||
|
||||
schema = json.loads(item["schema"])
|
||||
return not has_xgrammar_unsupported_json_features(schema)
|
||||
|
||||
dataset = dataset.filter(_filter_func)
|
||||
num_filtered_out = full_dataset_len - len(dataset)
|
||||
print(f"dataset has {len(dataset)} entries after filtering "
|
||||
f"out {num_filtered_out} entries with unsupported features")
|
||||
print(
|
||||
f"dataset has {len(dataset)} entries after filtering "
|
||||
f"out {num_filtered_out} entries with unsupported features"
|
||||
)
|
||||
len_dataset = len(dataset)
|
||||
for data_point_idx in range(args.num_prompts):
|
||||
idx = data_point_idx
|
||||
while idx >= len_dataset:
|
||||
idx -= len_dataset
|
||||
schema = dataset["schema"][idx]
|
||||
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
|
||||
tokenize=False,
|
||||
add_generation_prompt=True)
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
dataset["prompt"][idx], tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
completion = dataset["completion"][idx]
|
||||
|
||||
requests.append(
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type,
|
||||
completion=completion))
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type,
|
||||
completion=completion,
|
||||
)
|
||||
)
|
||||
|
||||
return requests
|
||||
|
||||
@ -276,7 +292,8 @@ async def get_request(
|
||||
|
||||
# Calculate scale parameter theta to maintain the desired request_rate.
|
||||
assert burstiness > 0, (
|
||||
f"A positive burstiness factor is expected, but given {burstiness}.")
|
||||
f"A positive burstiness factor is expected, but given {burstiness}."
|
||||
)
|
||||
theta = 1.0 / (request_rate * burstiness)
|
||||
|
||||
for i, request in enumerate(input_requests):
|
||||
@ -318,8 +335,8 @@ def calculate_metrics(
|
||||
# multiple output tokens may be bundled together
|
||||
# Note : this may inflate the output token count slightly
|
||||
output_len = len(
|
||||
tokenizer(outputs[i].generated_text,
|
||||
add_special_tokens=False).input_ids)
|
||||
tokenizer(outputs[i].generated_text, add_special_tokens=False).input_ids
|
||||
)
|
||||
actual_output_lens.append(output_len)
|
||||
total_input += input_requests[i].prompt_len
|
||||
tpot = 0
|
||||
@ -343,16 +360,19 @@ def calculate_metrics(
|
||||
|
||||
if "ttft" in goodput_config_dict:
|
||||
valid_metrics.append(ttfts)
|
||||
slo_values.append(goodput_config_dict["ttft"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
slo_values.append(
|
||||
goodput_config_dict["ttft"] / MILLISECONDS_TO_SECONDS_CONVERSION
|
||||
)
|
||||
if "tpot" in goodput_config_dict:
|
||||
valid_metrics.append(all_tpots)
|
||||
slo_values.append(goodput_config_dict["tpot"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
slo_values.append(
|
||||
goodput_config_dict["tpot"] / MILLISECONDS_TO_SECONDS_CONVERSION
|
||||
)
|
||||
if "e2el" in goodput_config_dict:
|
||||
valid_metrics.append(e2els)
|
||||
slo_values.append(goodput_config_dict["e2el"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
slo_values.append(
|
||||
goodput_config_dict["e2el"] / MILLISECONDS_TO_SECONDS_CONVERSION
|
||||
)
|
||||
|
||||
for req_metric in zip(*valid_metrics):
|
||||
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
|
||||
@ -363,7 +383,8 @@ def calculate_metrics(
|
||||
warnings.warn(
|
||||
"All requests failed. This is likely due to a misconfiguration "
|
||||
"on the benchmark arguments.",
|
||||
stacklevel=2)
|
||||
stacklevel=2,
|
||||
)
|
||||
metrics = BenchmarkMetrics(
|
||||
completed=completed,
|
||||
total_input=total_input,
|
||||
@ -372,27 +393,31 @@ def calculate_metrics(
|
||||
request_goodput=good_completed / dur_s,
|
||||
output_throughput=sum(actual_output_lens) / dur_s,
|
||||
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
|
||||
mean_ttft_ms=np.mean(ttfts or 0) *
|
||||
1000, # ttfts is empty if streaming is not supported by backend
|
||||
mean_ttft_ms=np.mean(ttfts or 0)
|
||||
* 1000, # ttfts is empty if streaming is not supported by backend
|
||||
std_ttft_ms=np.std(ttfts or 0) * 1000,
|
||||
median_ttft_ms=np.median(ttfts or 0) * 1000,
|
||||
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
percentiles_ttft_ms=[
|
||||
(p, np.percentile(ttfts or 0, p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
mean_tpot_ms=np.mean(tpots or 0) * 1000,
|
||||
std_tpot_ms=np.std(tpots or 0) * 1000,
|
||||
median_tpot_ms=np.median(tpots or 0) * 1000,
|
||||
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
percentiles_tpot_ms=[
|
||||
(p, np.percentile(tpots or 0, p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
mean_itl_ms=np.mean(itls or 0) * 1000,
|
||||
std_itl_ms=np.std(itls or 0) * 1000,
|
||||
median_itl_ms=np.median(itls or 0) * 1000,
|
||||
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
percentiles_itl_ms=[
|
||||
(p, np.percentile(itls or 0, p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
mean_e2el_ms=np.mean(e2els or 0) * 1000,
|
||||
std_e2el_ms=np.std(e2els or 0) * 1000,
|
||||
median_e2el_ms=np.median(e2els or 0) * 1000,
|
||||
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
percentiles_e2el_ms=[
|
||||
(p, np.percentile(e2els or 0, p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
)
|
||||
|
||||
return metrics, actual_output_lens
|
||||
@ -429,12 +454,13 @@ async def benchmark(
|
||||
|
||||
print("Starting initial single prompt test run...")
|
||||
structured_output_req_idx = random.sample(
|
||||
range(len(input_requests)),
|
||||
int(len(input_requests) * structured_output_ratio))
|
||||
range(len(input_requests)), int(len(input_requests) * structured_output_ratio)
|
||||
)
|
||||
|
||||
test_request = input_requests[0]
|
||||
test_req_extra_body = (prepare_extra_body(test_request)
|
||||
if 0 in structured_output_req_idx else None)
|
||||
test_req_extra_body = (
|
||||
prepare_extra_body(test_request) if 0 in structured_output_req_idx else None
|
||||
)
|
||||
test_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=test_request.prompt,
|
||||
@ -448,7 +474,8 @@ async def benchmark(
|
||||
if not test_output.success:
|
||||
raise ValueError(
|
||||
"Initial test run failed - Please make sure benchmark arguments "
|
||||
f"are correctly specified. Error: {test_output.error}")
|
||||
f"are correctly specified. Error: {test_output.error}"
|
||||
)
|
||||
else:
|
||||
print("Initial test run completed. Starting main benchmark run...")
|
||||
|
||||
@ -467,10 +494,7 @@ async def benchmark(
|
||||
if profile_output.success:
|
||||
print("Profiler started")
|
||||
|
||||
if burstiness == 1.0:
|
||||
distribution = "Poisson process"
|
||||
else:
|
||||
distribution = "Gamma distribution"
|
||||
distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"
|
||||
|
||||
print(f"Traffic request rate: {request_rate}")
|
||||
print(f"Burstiness factor: {burstiness} ({distribution})")
|
||||
@ -482,24 +506,21 @@ async def benchmark(
|
||||
# and it will simplify the code in limited_request_func.
|
||||
# semaphore = (asyncio.Semaphore(max_concurrency)
|
||||
# if max_concurrency else contextlib.nullcontext())
|
||||
semaphore = (asyncio.Semaphore(max_concurrency)
|
||||
if max_concurrency else None)
|
||||
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
|
||||
|
||||
async def limited_request_func(request_func_input, pbar):
|
||||
if semaphore is None:
|
||||
return await request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)
|
||||
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
async with semaphore:
|
||||
return await request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)
|
||||
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
|
||||
benchmark_start_time = time.perf_counter()
|
||||
tasks: list[asyncio.Task] = []
|
||||
expected: list[str] = []
|
||||
async for i, request in get_request(input_requests, request_rate,
|
||||
burstiness):
|
||||
extra_body = prepare_extra_body(
|
||||
request) if i in structured_output_req_idx else None
|
||||
async for i, request in get_request(input_requests, request_rate, burstiness):
|
||||
extra_body = (
|
||||
prepare_extra_body(request) if i in structured_output_req_idx else None
|
||||
)
|
||||
request_func_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=request.prompt,
|
||||
@ -512,8 +533,9 @@ async def benchmark(
|
||||
expected.append(request.completion)
|
||||
tasks.append(
|
||||
asyncio.create_task(
|
||||
limited_request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)))
|
||||
limited_request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
)
|
||||
)
|
||||
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
|
||||
|
||||
if profile:
|
||||
@ -545,54 +567,58 @@ async def benchmark(
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
)
|
||||
|
||||
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
|
||||
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
|
||||
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
|
||||
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
|
||||
benchmark_duration))
|
||||
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
|
||||
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
|
||||
print("{:<40} {:<10}".format("Total generated tokens:",
|
||||
metrics.total_output))
|
||||
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
|
||||
metrics.request_throughput))
|
||||
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
"Request throughput (req/s):", metrics.request_throughput
|
||||
)
|
||||
)
|
||||
if goodput_config_dict:
|
||||
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
|
||||
metrics.request_goodput))
|
||||
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
|
||||
metrics.output_throughput))
|
||||
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
|
||||
metrics.total_token_throughput))
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
"Request goodput (req/s):", metrics.request_goodput
|
||||
)
|
||||
)
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
"Output token throughput (tok/s):", metrics.output_throughput
|
||||
)
|
||||
)
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
"Total Token throughput (tok/s):", metrics.total_token_throughput
|
||||
)
|
||||
)
|
||||
|
||||
result = {
|
||||
"duration":
|
||||
benchmark_duration,
|
||||
"completed":
|
||||
metrics.completed,
|
||||
"total_input_tokens":
|
||||
metrics.total_input,
|
||||
"total_output_tokens":
|
||||
metrics.total_output,
|
||||
"request_throughput":
|
||||
metrics.request_throughput,
|
||||
"output_throughput":
|
||||
metrics.output_throughput,
|
||||
"total_token_throughput":
|
||||
metrics.total_token_throughput,
|
||||
"ttft_description":
|
||||
pd.Series([output.ttft for output in outputs]).describe().to_dict(),
|
||||
"tpot_description":
|
||||
pd.Series([output.tpot for output in outputs]).describe().to_dict(),
|
||||
"duration": benchmark_duration,
|
||||
"completed": metrics.completed,
|
||||
"total_input_tokens": metrics.total_input,
|
||||
"total_output_tokens": metrics.total_output,
|
||||
"request_throughput": metrics.request_throughput,
|
||||
"output_throughput": metrics.output_throughput,
|
||||
"total_token_throughput": metrics.total_token_throughput,
|
||||
"ttft_description": pd.Series([output.ttft for output in outputs])
|
||||
.describe()
|
||||
.to_dict(),
|
||||
"tpot_description": pd.Series([output.tpot for output in outputs])
|
||||
.describe()
|
||||
.to_dict(),
|
||||
"input_lens": [output.prompt_len for output in outputs],
|
||||
"output_lens":
|
||||
actual_output_lens,
|
||||
"output_lens": actual_output_lens,
|
||||
"ttfts": [output.ttft for output in outputs],
|
||||
"itls": [output.itl for output in outputs],
|
||||
"errors": [output.error for output in outputs],
|
||||
}
|
||||
|
||||
ret = [{
|
||||
'generated': output.generated_text,
|
||||
'expected': gt
|
||||
} for output, gt in zip(outputs, expected)]
|
||||
ret = [
|
||||
{"generated": output.generated_text, "expected": gt}
|
||||
for output, gt in zip(outputs, expected)
|
||||
]
|
||||
|
||||
def process_one_metric(
|
||||
# E.g., "ttft"
|
||||
@ -606,29 +632,35 @@ async def benchmark(
|
||||
# metric.
|
||||
if metric_attribute_name not in selected_percentile_metrics:
|
||||
return
|
||||
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
|
||||
print("{:<40} {:<10.2f}".format(
|
||||
f"Mean {metric_name} (ms):",
|
||||
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
|
||||
print("{:<40} {:<10.2f}".format(
|
||||
f"Median {metric_name} (ms):",
|
||||
getattr(metrics, f"median_{metric_attribute_name}_ms")))
|
||||
print("{s:{c}^{n}}".format(s=metric_header, n=50, c="-"))
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
f"Mean {metric_name} (ms):",
|
||||
getattr(metrics, f"mean_{metric_attribute_name}_ms"),
|
||||
)
|
||||
)
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
f"Median {metric_name} (ms):",
|
||||
getattr(metrics, f"median_{metric_attribute_name}_ms"),
|
||||
)
|
||||
)
|
||||
result[f"mean_{metric_attribute_name}_ms"] = getattr(
|
||||
metrics, f"mean_{metric_attribute_name}_ms")
|
||||
metrics, f"mean_{metric_attribute_name}_ms"
|
||||
)
|
||||
result[f"median_{metric_attribute_name}_ms"] = getattr(
|
||||
metrics, f"median_{metric_attribute_name}_ms")
|
||||
metrics, f"median_{metric_attribute_name}_ms"
|
||||
)
|
||||
result[f"std_{metric_attribute_name}_ms"] = getattr(
|
||||
metrics, f"std_{metric_attribute_name}_ms")
|
||||
for p, value in getattr(metrics,
|
||||
f"percentiles_{metric_attribute_name}_ms"):
|
||||
metrics, f"std_{metric_attribute_name}_ms"
|
||||
)
|
||||
for p, value in getattr(metrics, f"percentiles_{metric_attribute_name}_ms"):
|
||||
p_word = str(int(p)) if int(p) == p else str(p)
|
||||
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
|
||||
value))
|
||||
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", value))
|
||||
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
|
||||
|
||||
process_one_metric("ttft", "TTFT", "Time to First Token")
|
||||
process_one_metric("tpot", "TPOT",
|
||||
"Time per Output Token (excl. 1st token)")
|
||||
process_one_metric("tpot", "TPOT", "Time per Output Token (excl. 1st token)")
|
||||
process_one_metric("itl", "ITL", "Inter-token Latency")
|
||||
process_one_metric("e2el", "E2EL", "End-to-end Latency")
|
||||
|
||||
@ -638,13 +670,13 @@ async def benchmark(
|
||||
|
||||
|
||||
def evaluate(ret, args):
|
||||
|
||||
def _eval_correctness_json(expected, actual):
|
||||
# extract json string from string using regex
|
||||
import re
|
||||
actual = actual.replace('\n', '').replace(' ', '').strip()
|
||||
import regex as re
|
||||
|
||||
actual = actual.replace("\n", "").replace(" ", "").strip()
|
||||
try:
|
||||
actual = re.search(r'\{.*\}', actual).group()
|
||||
actual = re.search(r"\{.*\}", actual).group()
|
||||
actual = json.loads(actual)
|
||||
except Exception:
|
||||
return False
|
||||
@ -655,29 +687,33 @@ def evaluate(ret, args):
|
||||
return actual in args.choice
|
||||
|
||||
def _eval_correctness_regex(expected, actual):
|
||||
import re
|
||||
import regex as re
|
||||
|
||||
return re.match(args.regex, actual) is not None
|
||||
|
||||
def _eval_correctness(expected, actual):
|
||||
if args.structure_type == 'guided_json':
|
||||
if args.structure_type == "guided_json":
|
||||
return _eval_correctness_json(expected, actual)
|
||||
elif args.structure_type == 'guided_regex':
|
||||
elif args.structure_type == "guided_regex":
|
||||
return _eval_correctness_regex(expected, actual)
|
||||
elif args.structure_type == 'guided_choice':
|
||||
elif args.structure_type == "guided_choice":
|
||||
return _eval_correctness_choice(expected, actual)
|
||||
else:
|
||||
return None
|
||||
|
||||
scores = []
|
||||
for res in ret:
|
||||
score = _eval_correctness(res['expected'], res['generated'])
|
||||
res['correctness'] = score
|
||||
score = _eval_correctness(res["expected"], res["generated"])
|
||||
res["correctness"] = score
|
||||
scores.append(score)
|
||||
|
||||
not_none_scores = [score for score in scores if score is not None]
|
||||
|
||||
return (sum(not_none_scores) / len(not_none_scores) *
|
||||
100) if len(not_none_scores) > 0 else None
|
||||
return (
|
||||
(sum(not_none_scores) / len(not_none_scores) * 100)
|
||||
if len(not_none_scores) > 0
|
||||
else None
|
||||
)
|
||||
|
||||
|
||||
def parse_goodput(slo_pairs):
|
||||
@ -689,9 +725,10 @@ def parse_goodput(slo_pairs):
|
||||
except ValueError as err:
|
||||
raise argparse.ArgumentTypeError(
|
||||
"Invalid format found for service level objectives. "
|
||||
"Specify service level objectives for goodput as \"KEY:VALUE\" "
|
||||
'Specify service level objectives for goodput as "KEY:VALUE" '
|
||||
"pairs, where the key is a metric name, and the value is a "
|
||||
"number in milliseconds.") from err
|
||||
"number in milliseconds."
|
||||
) from err
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
@ -705,12 +742,14 @@ def check_goodput_args(args):
|
||||
raise ValueError(
|
||||
f"Invalid metric name found, {slo_name}: {slo_val}. "
|
||||
"The service level objective name should be one of "
|
||||
f"{str(VALID_NAMES)}. ")
|
||||
f"{str(VALID_NAMES)}. "
|
||||
)
|
||||
if slo_val < 0:
|
||||
raise ValueError(
|
||||
f"Invalid value found, {slo_name}: {slo_val}. "
|
||||
"The service level objective value should be "
|
||||
"non-negative.")
|
||||
"non-negative."
|
||||
)
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
@ -736,19 +775,19 @@ def main(args: argparse.Namespace):
|
||||
tokenizer_mode=args.tokenizer_mode,
|
||||
)
|
||||
|
||||
if args.dataset == 'grammar':
|
||||
args.structure_type = 'guided_grammar'
|
||||
elif args.dataset == 'regex':
|
||||
args.structure_type = 'guided_regex'
|
||||
elif args.dataset == 'choice':
|
||||
args.structure_type = 'guided_choice'
|
||||
if args.dataset == "grammar":
|
||||
args.structure_type = "guided_grammar"
|
||||
elif args.dataset == "regex":
|
||||
args.structure_type = "guided_regex"
|
||||
elif args.dataset == "choice":
|
||||
args.structure_type = "guided_choice"
|
||||
else:
|
||||
args.structure_type = 'guided_json'
|
||||
args.structure_type = "guided_json"
|
||||
|
||||
if args.no_structured_output:
|
||||
args.structured_output_ratio = 0
|
||||
if args.save_results:
|
||||
result_file_name = f'{args.structured_output_ratio}guided'
|
||||
result_file_name = f"{args.structured_output_ratio}guided"
|
||||
result_file_name += f"_{backend}"
|
||||
result_file_name += f"_{args.request_rate}qps"
|
||||
result_file_name += f"_{args.model.split('/')[-1]}"
|
||||
@ -776,36 +815,29 @@ def main(args: argparse.Namespace):
|
||||
disable_tqdm=args.disable_tqdm,
|
||||
profile=args.profile,
|
||||
selected_percentile_metrics=args.percentile_metrics.split(","),
|
||||
selected_percentiles=[
|
||||
float(p) for p in args.metric_percentiles.split(",")
|
||||
],
|
||||
selected_percentiles=[float(p) for p in args.metric_percentiles.split(",")],
|
||||
ignore_eos=args.ignore_eos,
|
||||
max_concurrency=args.max_concurrency,
|
||||
structured_output_ratio=args.structured_output_ratio,
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
))
|
||||
)
|
||||
)
|
||||
|
||||
# Save config and results to json
|
||||
score = evaluate(ret, args)
|
||||
print("correct_rate(%)", score, '\n')
|
||||
print("correct_rate(%)", score, "\n")
|
||||
if args.save_results:
|
||||
results = {
|
||||
"backend":
|
||||
backend,
|
||||
"model_id":
|
||||
model_id,
|
||||
"tokenizer_id":
|
||||
tokenizer_id,
|
||||
"num_prompts":
|
||||
args.num_prompts,
|
||||
"request_rate":
|
||||
args.request_rate if args.request_rate < float("inf") else "inf",
|
||||
"burstiness":
|
||||
args.burstiness,
|
||||
"max_concurrency":
|
||||
args.max_concurrency,
|
||||
"correct_rate(%)":
|
||||
score
|
||||
"backend": backend,
|
||||
"model_id": model_id,
|
||||
"tokenizer_id": tokenizer_id,
|
||||
"num_prompts": args.num_prompts,
|
||||
"request_rate": args.request_rate
|
||||
if args.request_rate < float("inf")
|
||||
else "inf",
|
||||
"burstiness": args.burstiness,
|
||||
"max_concurrency": args.max_concurrency,
|
||||
"correct_rate(%)": score,
|
||||
}
|
||||
results = {"outputs": ret, **results, **benchmark_result}
|
||||
|
||||
@ -814,13 +846,14 @@ def main(args: argparse.Namespace):
|
||||
result_file_name = args.result_filename
|
||||
if args.result_dir:
|
||||
result_file_name = os.path.join(args.result_dir, result_file_name)
|
||||
with open(result_file_name, "w", encoding='utf-8') as outfile:
|
||||
with open(result_file_name, "w", encoding="utf-8") as outfile:
|
||||
json.dump(results, outfile, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def create_argument_parser():
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the online serving throughput.")
|
||||
description="Benchmark the online serving throughput."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
@ -842,16 +875,14 @@ if __name__ == "__main__":
|
||||
default="/v1/completions",
|
||||
help="API endpoint.",
|
||||
)
|
||||
parser.add_argument("--dataset",
|
||||
default='json',
|
||||
choices=[
|
||||
'json', 'json-unique', 'grammar', 'regex',
|
||||
'choice', 'xgrammar_bench'
|
||||
])
|
||||
parser.add_argument("--json-schema-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to json schema.")
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default="json",
|
||||
choices=["json", "json-unique", "grammar", "regex", "choice", "xgrammar_bench"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--json-schema-path", type=str, default=None, help="Path to json schema."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-concurrency",
|
||||
type=int,
|
||||
@ -863,7 +894,8 @@ if __name__ == "__main__":
|
||||
"initiated, this argument will control how many are actually allowed "
|
||||
"to execute at a time. This means that when used in combination, the "
|
||||
"actual request rate may be lower than specified with --request-rate, "
|
||||
"if the server is not processing requests fast enough to keep up.")
|
||||
"if the server is not processing requests fast enough to keep up.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
@ -873,15 +905,13 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--tokenizer",
|
||||
type=str,
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer-mode",
|
||||
type=str,
|
||||
default="auto",
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
@ -958,44 +988,56 @@ if __name__ == "__main__":
|
||||
"--ignore-eos",
|
||||
action="store_true",
|
||||
help="Set ignore_eos flag when sending the benchmark request."
|
||||
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.")
|
||||
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--percentile-metrics",
|
||||
type=str,
|
||||
default="ttft,tpot,itl",
|
||||
help="Comma-separated list of selected metrics to report percentils. "
|
||||
"This argument specifies the metrics to report percentiles. "
|
||||
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
|
||||
"Default value is \"ttft,tpot,itl\".")
|
||||
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
|
||||
'Default value is "ttft,tpot,itl".',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--metric-percentiles",
|
||||
type=str,
|
||||
default="99",
|
||||
help="Comma-separated list of percentiles for selected metrics. "
|
||||
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
|
||||
"Default value is \"99\". "
|
||||
"Use \"--percentile-metrics\" to select metrics.",
|
||||
'To report 25-th, 50-th, and 75-th percentiles, use "25,50,75". '
|
||||
'Default value is "99". '
|
||||
'Use "--percentile-metrics" to select metrics.',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--goodput",
|
||||
nargs="+",
|
||||
required=False,
|
||||
help="Specify service level objectives for goodput as \"KEY:VALUE\" "
|
||||
help='Specify service level objectives for goodput as "KEY:VALUE" '
|
||||
"pairs, where the key is a metric name, and the value is in "
|
||||
"milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, "
|
||||
'milliseconds. Multiple "KEY:VALUE" pairs can be provided, '
|
||||
"separated by spaces. Allowed request level metric names are "
|
||||
"\"ttft\", \"tpot\", \"e2el\". For more context on the definition of "
|
||||
'"ttft", "tpot", "e2el". For more context on the definition of '
|
||||
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
|
||||
"and the blog: https://hao-ai-lab.github.io/blogs/distserve")
|
||||
"and the blog: https://hao-ai-lab.github.io/blogs/distserve",
|
||||
)
|
||||
|
||||
parser.add_argument("--no-structured-output",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Whether to disable JSON decoding or not.")
|
||||
parser.add_argument("--structured-output-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Ratio of Structured Outputs requests")
|
||||
parser.add_argument(
|
||||
"--no-structured-output",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Whether to disable JSON decoding or not.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--structured-output-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Ratio of Structured Outputs requests",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = create_argument_parser()
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
@ -1,5 +1,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Benchmark offline inference throughput."""
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
@ -11,18 +13,25 @@ from typing import Any, Optional, Union
|
||||
|
||||
import torch
|
||||
import uvloop
|
||||
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
|
||||
ConversationDataset, InstructCoderDataset,
|
||||
RandomDataset, SampleRequest, ShareGPTDataset,
|
||||
SonnetDataset, VisionArenaDataset)
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from tqdm import tqdm
|
||||
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||
PreTrainedTokenizerBase)
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
|
||||
|
||||
from benchmark_dataset import (
|
||||
AIMODataset,
|
||||
BurstGPTDataset,
|
||||
ConversationDataset,
|
||||
InstructCoderDataset,
|
||||
RandomDataset,
|
||||
SampleRequest,
|
||||
ShareGPTDataset,
|
||||
SonnetDataset,
|
||||
VisionArenaDataset,
|
||||
)
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
|
||||
from vllm.entrypoints.openai.api_server import (
|
||||
build_async_engine_client_from_engine_args)
|
||||
build_async_engine_client_from_engine_args,
|
||||
)
|
||||
from vllm.inputs import TextPrompt, TokensPrompt
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.outputs import RequestOutput
|
||||
@ -37,23 +46,30 @@ def run_vllm(
|
||||
disable_detokenize: bool = False,
|
||||
) -> tuple[float, Optional[list[RequestOutput]]]:
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (
|
||||
request.prompt_len + request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests.")
|
||||
llm.llm_engine.model_config.max_model_len
|
||||
>= (request.prompt_len + request.expected_output_len)
|
||||
for request in requests
|
||||
), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests."
|
||||
)
|
||||
# Add the requests to the engine.
|
||||
prompts: list[Union[TextPrompt, TokensPrompt]] = []
|
||||
sampling_params: list[SamplingParams] = []
|
||||
for request in requests:
|
||||
prompts.append(
|
||||
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
|
||||
multi_modal_data=request.multi_modal_data)
|
||||
if "prompt_token_ids" in request.prompt else \
|
||||
TextPrompt(prompt=request.prompt,
|
||||
multi_modal_data=request.multi_modal_data))
|
||||
TokensPrompt(
|
||||
prompt_token_ids=request.prompt["prompt_token_ids"],
|
||||
multi_modal_data=request.multi_modal_data,
|
||||
)
|
||||
if "prompt_token_ids" in request.prompt
|
||||
else TextPrompt(
|
||||
prompt=request.prompt, multi_modal_data=request.multi_modal_data
|
||||
)
|
||||
)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
@ -62,7 +78,8 @@ def run_vllm(
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
)
|
||||
)
|
||||
lora_requests: Optional[list[LoRARequest]] = None
|
||||
if engine_args.enable_lora:
|
||||
lora_requests = [request.lora_request for request in requests]
|
||||
@ -72,10 +89,9 @@ def run_vllm(
|
||||
outputs = None
|
||||
if not use_beam_search:
|
||||
start = time.perf_counter()
|
||||
outputs = llm.generate(prompts,
|
||||
sampling_params,
|
||||
lora_request=lora_requests,
|
||||
use_tqdm=True)
|
||||
outputs = llm.generate(
|
||||
prompts, sampling_params, lora_request=lora_requests, use_tqdm=True
|
||||
)
|
||||
end = time.perf_counter()
|
||||
else:
|
||||
assert lora_requests is None, "BeamSearch API does not support LoRA"
|
||||
@ -91,30 +107,35 @@ def run_vllm(
|
||||
beam_width=n,
|
||||
max_tokens=output_len,
|
||||
ignore_eos=True,
|
||||
))
|
||||
),
|
||||
)
|
||||
end = time.perf_counter()
|
||||
return end - start, outputs
|
||||
|
||||
|
||||
def run_vllm_chat(
|
||||
requests: list[SampleRequest],
|
||||
n: int,
|
||||
engine_args: EngineArgs,
|
||||
disable_detokenize: bool = False) -> tuple[float, list[RequestOutput]]:
|
||||
requests: list[SampleRequest],
|
||||
n: int,
|
||||
engine_args: EngineArgs,
|
||||
disable_detokenize: bool = False,
|
||||
) -> tuple[float, list[RequestOutput]]:
|
||||
"""
|
||||
Run vLLM chat benchmark. This function is recommended ONLY for benchmarking
|
||||
multimodal models as it properly handles multimodal inputs and chat
|
||||
formatting. For non-multimodal models, use run_vllm() instead.
|
||||
"""
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (
|
||||
request.prompt_len + request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of "
|
||||
"prompt_len and expected_output_len for all requests.")
|
||||
llm.llm_engine.model_config.max_model_len
|
||||
>= (request.prompt_len + request.expected_output_len)
|
||||
for request in requests
|
||||
), (
|
||||
"Please ensure that max_model_len is greater than the sum of "
|
||||
"prompt_len and expected_output_len for all requests."
|
||||
)
|
||||
|
||||
prompts = []
|
||||
sampling_params: list[SamplingParams] = []
|
||||
@ -128,7 +149,8 @@ def run_vllm_chat(
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
)
|
||||
)
|
||||
start = time.perf_counter()
|
||||
outputs = llm.chat(prompts, sampling_params, use_tqdm=True)
|
||||
end = time.perf_counter()
|
||||
@ -145,13 +167,17 @@ async def run_vllm_async(
|
||||
from vllm import SamplingParams
|
||||
|
||||
async with build_async_engine_client_from_engine_args(
|
||||
engine_args, disable_frontend_multiprocessing) as llm:
|
||||
engine_args, disable_frontend_multiprocessing
|
||||
) as llm:
|
||||
model_config = await llm.get_model_config()
|
||||
assert all(
|
||||
llm.model_config.max_model_len >= (request.prompt_len +
|
||||
request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests.")
|
||||
model_config.max_model_len
|
||||
>= (request.prompt_len + request.expected_output_len)
|
||||
for request in requests
|
||||
), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests."
|
||||
)
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts: list[Union[TextPrompt, TokensPrompt]] = []
|
||||
@ -159,11 +185,15 @@ async def run_vllm_async(
|
||||
lora_requests: list[Optional[LoRARequest]] = []
|
||||
for request in requests:
|
||||
prompts.append(
|
||||
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
|
||||
multi_modal_data=request.multi_modal_data)
|
||||
if "prompt_token_ids" in request.prompt else \
|
||||
TextPrompt(prompt=request.prompt,
|
||||
multi_modal_data=request.multi_modal_data))
|
||||
TokensPrompt(
|
||||
prompt_token_ids=request.prompt["prompt_token_ids"],
|
||||
multi_modal_data=request.multi_modal_data,
|
||||
)
|
||||
if "prompt_token_ids" in request.prompt
|
||||
else TextPrompt(
|
||||
prompt=request.prompt, multi_modal_data=request.multi_modal_data
|
||||
)
|
||||
)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
@ -172,17 +202,16 @@ async def run_vllm_async(
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
)
|
||||
)
|
||||
lora_requests.append(request.lora_request)
|
||||
|
||||
generators = []
|
||||
start = time.perf_counter()
|
||||
for i, (prompt, sp,
|
||||
lr) in enumerate(zip(prompts, sampling_params, lora_requests)):
|
||||
generator = llm.generate(prompt,
|
||||
sp,
|
||||
lora_request=lr,
|
||||
request_id=f"test{i}")
|
||||
for i, (prompt, sp, lr) in enumerate(
|
||||
zip(prompts, sampling_params, lora_requests)
|
||||
):
|
||||
generator = llm.generate(prompt, sp, lora_request=lr, request_id=f"test{i}")
|
||||
generators.append(generator)
|
||||
all_gens = merge_async_iterators(*generators)
|
||||
async for i, res in all_gens:
|
||||
@ -201,7 +230,8 @@ def run_hf(
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
llm = AutoModelForCausalLM.from_pretrained(
|
||||
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
|
||||
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code
|
||||
)
|
||||
if llm.config.model_type == "llama":
|
||||
# To enable padding in the HF backend.
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
@ -224,14 +254,15 @@ def run_hf(
|
||||
# Check if we can add more requests to the batch.
|
||||
next_prompt_len = requests[i + 1].prompt_len
|
||||
next_output_len = requests[i + 1].expected_output_len
|
||||
if (max(max_prompt_len, next_prompt_len) +
|
||||
max(max_output_len, next_output_len)) <= 2048:
|
||||
if (
|
||||
max(max_prompt_len, next_prompt_len)
|
||||
+ max(max_output_len, next_output_len)
|
||||
) <= 2048:
|
||||
# We can add more requests to the batch.
|
||||
continue
|
||||
|
||||
# Generate the sequences.
|
||||
input_ids = tokenizer(batch, return_tensors="pt",
|
||||
padding=True).input_ids
|
||||
input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
|
||||
llm_outputs = llm.generate(
|
||||
input_ids=input_ids.cuda(),
|
||||
do_sample=True,
|
||||
@ -261,6 +292,7 @@ def run_mii(
|
||||
output_len: int,
|
||||
) -> float:
|
||||
from mii import client, serve
|
||||
|
||||
llm = serve(model, tensor_parallel=tensor_parallel_size)
|
||||
prompts = [request.prompt for request in requests]
|
||||
|
||||
@ -272,8 +304,9 @@ def run_mii(
|
||||
return end - start
|
||||
|
||||
|
||||
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
results: dict[str, Any]) -> None:
|
||||
def save_to_pytorch_benchmark_format(
|
||||
args: argparse.Namespace, results: dict[str, Any]
|
||||
) -> None:
|
||||
pt_records = convert_to_pytorch_benchmark_format(
|
||||
args=args,
|
||||
metrics={
|
||||
@ -281,9 +314,9 @@ def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
"tokens_per_second": [results["tokens_per_second"]],
|
||||
},
|
||||
extra_info={
|
||||
k: results[k]
|
||||
for k in ["elapsed_time", "num_requests", "total_num_tokens"]
|
||||
})
|
||||
k: results[k] for k in ["elapsed_time", "num_requests", "total_num_tokens"]
|
||||
},
|
||||
)
|
||||
if pt_records:
|
||||
# Don't use json suffix here as we don't want CI to pick it up
|
||||
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
|
||||
@ -315,7 +348,8 @@ def get_requests(args, tokenizer):
|
||||
sample_kwargs["enable_multimodal_chat"] = True
|
||||
elif args.dataset_name == "sonnet":
|
||||
assert tokenizer.chat_template or tokenizer.default_chat_template, (
|
||||
"Tokenizer/model must have chat template for sonnet dataset.")
|
||||
"Tokenizer/model must have chat template for sonnet dataset."
|
||||
)
|
||||
dataset_cls = SonnetDataset
|
||||
sample_kwargs["prefix_len"] = args.prefix_len
|
||||
sample_kwargs["return_prompt_formatted"] = True
|
||||
@ -324,21 +358,21 @@ def get_requests(args, tokenizer):
|
||||
elif args.dataset_name == "hf":
|
||||
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = VisionArenaDataset
|
||||
common_kwargs['dataset_subset'] = None
|
||||
common_kwargs['dataset_split'] = "train"
|
||||
common_kwargs["dataset_subset"] = None
|
||||
common_kwargs["dataset_split"] = "train"
|
||||
sample_kwargs["enable_multimodal_chat"] = True
|
||||
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = InstructCoderDataset
|
||||
common_kwargs['dataset_split'] = "train"
|
||||
common_kwargs["dataset_split"] = "train"
|
||||
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = ConversationDataset
|
||||
common_kwargs['dataset_subset'] = args.hf_subset
|
||||
common_kwargs['dataset_split'] = args.hf_split
|
||||
common_kwargs["dataset_subset"] = args.hf_subset
|
||||
common_kwargs["dataset_split"] = args.hf_split
|
||||
sample_kwargs["enable_multimodal_chat"] = True
|
||||
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = AIMODataset
|
||||
common_kwargs['dataset_subset'] = None
|
||||
common_kwargs['dataset_split'] = "train"
|
||||
common_kwargs["dataset_subset"] = None
|
||||
common_kwargs["dataset_split"] = "train"
|
||||
else:
|
||||
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
|
||||
# Remove None values
|
||||
@ -353,10 +387,10 @@ def main(args: argparse.Namespace):
|
||||
random.seed(args.seed)
|
||||
# Sample the requests.
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code
|
||||
)
|
||||
requests = get_requests(args, tokenizer)
|
||||
is_multi_modal = any(request.multi_modal_data is not None
|
||||
for request in requests)
|
||||
is_multi_modal = any(request.multi_modal_data is not None for request in requests)
|
||||
request_outputs: Optional[list[RequestOutput]] = None
|
||||
if args.backend == "vllm":
|
||||
if args.async_engine:
|
||||
@ -367,23 +401,34 @@ def main(args: argparse.Namespace):
|
||||
AsyncEngineArgs.from_cli_args(args),
|
||||
args.disable_frontend_multiprocessing,
|
||||
args.disable_detokenize,
|
||||
))
|
||||
)
|
||||
)
|
||||
else:
|
||||
elapsed_time, request_outputs = run_vllm(
|
||||
requests, args.n, EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize)
|
||||
requests,
|
||||
args.n,
|
||||
EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize,
|
||||
)
|
||||
elif args.backend == "hf":
|
||||
assert args.tensor_parallel_size == 1
|
||||
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
|
||||
args.hf_max_batch_size, args.trust_remote_code,
|
||||
args.disable_detokenize)
|
||||
elapsed_time = run_hf(
|
||||
requests,
|
||||
args.model,
|
||||
tokenizer,
|
||||
args.n,
|
||||
args.hf_max_batch_size,
|
||||
args.trust_remote_code,
|
||||
args.disable_detokenize,
|
||||
)
|
||||
elif args.backend == "mii":
|
||||
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
|
||||
args.output_len)
|
||||
elapsed_time = run_mii(
|
||||
requests, args.model, args.tensor_parallel_size, args.output_len
|
||||
)
|
||||
elif args.backend == "vllm-chat":
|
||||
elapsed_time, request_outputs = run_vllm_chat(
|
||||
requests, args.n, EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize)
|
||||
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {args.backend}")
|
||||
|
||||
@ -395,28 +440,31 @@ def main(args: argparse.Namespace):
|
||||
for ro in request_outputs:
|
||||
if not isinstance(ro, RequestOutput):
|
||||
continue
|
||||
total_prompt_tokens += len(
|
||||
ro.prompt_token_ids) if ro.prompt_token_ids else 0
|
||||
total_output_tokens += sum(
|
||||
len(o.token_ids) for o in ro.outputs if o)
|
||||
total_prompt_tokens += (
|
||||
len(ro.prompt_token_ids) if ro.prompt_token_ids else 0
|
||||
)
|
||||
total_output_tokens += sum(len(o.token_ids) for o in ro.outputs if o)
|
||||
total_num_tokens = total_prompt_tokens + total_output_tokens
|
||||
else:
|
||||
total_num_tokens = sum(r.prompt_len + r.expected_output_len
|
||||
for r in requests)
|
||||
total_num_tokens = sum(r.prompt_len + r.expected_output_len for r in requests)
|
||||
total_output_tokens = sum(r.expected_output_len for r in requests)
|
||||
total_prompt_tokens = total_num_tokens - total_output_tokens
|
||||
|
||||
if is_multi_modal and args.backend != "vllm-chat":
|
||||
print("\033[91mWARNING\033[0m: Multi-modal request with "
|
||||
f"{args.backend} backend detected. The "
|
||||
"following metrics are not accurate because image tokens are not"
|
||||
" counted. See vllm-project/vllm/issues/9778 for details.")
|
||||
print(
|
||||
"\033[91mWARNING\033[0m: Multi-modal request with "
|
||||
f"{args.backend} backend detected. The "
|
||||
"following metrics are not accurate because image tokens are not"
|
||||
" counted. See vllm-project/vllm/issues/9778 for details."
|
||||
)
|
||||
# TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
|
||||
# vllm-chat backend counts the image tokens now
|
||||
|
||||
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
|
||||
f"{total_output_tokens / elapsed_time:.2f} output tokens/s")
|
||||
print(
|
||||
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
|
||||
f"{total_output_tokens / elapsed_time:.2f} output tokens/s"
|
||||
)
|
||||
print(f"Total num prompt tokens: {total_prompt_tokens}")
|
||||
print(f"Total num output tokens: {total_output_tokens}")
|
||||
|
||||
@ -444,7 +492,8 @@ def validate_args(args):
|
||||
warnings.warn(
|
||||
"The '--dataset' argument will be deprecated in the next release. "
|
||||
"Please use '--dataset-name' and '--dataset-path' instead.",
|
||||
stacklevel=2)
|
||||
stacklevel=2,
|
||||
)
|
||||
args.dataset_path = args.dataset
|
||||
|
||||
if not getattr(args, "tokenizer", None):
|
||||
@ -457,9 +506,8 @@ def validate_args(args):
|
||||
|
||||
# === Dataset Configuration ===
|
||||
if not args.dataset and not args.dataset_path:
|
||||
print(
|
||||
"When dataset path is not set, it will default to random dataset")
|
||||
args.dataset_name = 'random'
|
||||
print("When dataset path is not set, it will default to random dataset")
|
||||
args.dataset_name = "random"
|
||||
if args.input_len is None:
|
||||
raise ValueError("input_len must be provided for a random dataset")
|
||||
|
||||
@ -467,41 +515,55 @@ def validate_args(args):
|
||||
# --hf-subset and --hf-split: only used
|
||||
# when dataset_name is 'hf'
|
||||
if args.dataset_name != "hf" and (
|
||||
getattr(args, "hf_subset", None) is not None
|
||||
or getattr(args, "hf_split", None) is not None):
|
||||
warnings.warn("--hf-subset and --hf-split will be ignored \
|
||||
getattr(args, "hf_subset", None) is not None
|
||||
or getattr(args, "hf_split", None) is not None
|
||||
):
|
||||
warnings.warn(
|
||||
"--hf-subset and --hf-split will be ignored \
|
||||
since --dataset-name is not 'hf'.",
|
||||
stacklevel=2)
|
||||
stacklevel=2,
|
||||
)
|
||||
elif args.dataset_name == "hf":
|
||||
if args.dataset_path in (
|
||||
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
|
||||
| ConversationDataset.SUPPORTED_DATASET_PATHS):
|
||||
assert args.backend == "vllm-chat", f"{args.dataset_path} needs to use vllm-chat as the backend." #noqa: E501
|
||||
elif args.dataset_path in (InstructCoderDataset.SUPPORTED_DATASET_PATHS
|
||||
| AIMODataset.SUPPORTED_DATASET_PATHS):
|
||||
assert args.backend == "vllm", f"{args.dataset_path} needs to use vllm as the backend." #noqa: E501
|
||||
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
|
||||
| ConversationDataset.SUPPORTED_DATASET_PATHS
|
||||
):
|
||||
assert args.backend == "vllm-chat", (
|
||||
f"{args.dataset_path} needs to use vllm-chat as the backend."
|
||||
) # noqa: E501
|
||||
elif args.dataset_path in (
|
||||
InstructCoderDataset.SUPPORTED_DATASET_PATHS
|
||||
| AIMODataset.SUPPORTED_DATASET_PATHS
|
||||
):
|
||||
assert args.backend == "vllm", (
|
||||
f"{args.dataset_path} needs to use vllm as the backend."
|
||||
) # noqa: E501
|
||||
else:
|
||||
raise ValueError(
|
||||
f"{args.dataset_path} is not supported by hf dataset.")
|
||||
raise ValueError(f"{args.dataset_path} is not supported by hf dataset.")
|
||||
|
||||
# --random-range-ratio: only used when dataset_name is 'random'
|
||||
if args.dataset_name != 'random' and args.random_range_ratio is not None:
|
||||
warnings.warn("--random-range-ratio will be ignored since \
|
||||
if args.dataset_name != "random" and args.random_range_ratio is not None:
|
||||
warnings.warn(
|
||||
"--random-range-ratio will be ignored since \
|
||||
--dataset-name is not 'random'.",
|
||||
stacklevel=2)
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
# --prefix-len: only used when dataset_name is 'random', 'sonnet', or not
|
||||
# set.
|
||||
if args.dataset_name not in {"random", "sonnet", None
|
||||
} and args.prefix_len is not None:
|
||||
warnings.warn("--prefix-len will be ignored since --dataset-name\
|
||||
if (
|
||||
args.dataset_name not in {"random", "sonnet", None}
|
||||
and args.prefix_len is not None
|
||||
):
|
||||
warnings.warn(
|
||||
"--prefix-len will be ignored since --dataset-name\
|
||||
is not 'random', 'sonnet', or not set.",
|
||||
stacklevel=2)
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
# === LoRA Settings ===
|
||||
if getattr(args, "enable_lora", False) and args.backend != "vllm":
|
||||
raise ValueError(
|
||||
"LoRA benchmarking is only supported for vLLM backend")
|
||||
raise ValueError("LoRA benchmarking is only supported for vLLM backend")
|
||||
if getattr(args, "enable_lora", False) and args.lora_path is None:
|
||||
raise ValueError("LoRA path must be provided when enable_lora is True")
|
||||
|
||||
@ -511,8 +573,10 @@ def validate_args(args):
|
||||
if args.backend != "hf" and args.hf_max_batch_size is not None:
|
||||
raise ValueError("HF max batch size is only for HF backend.")
|
||||
|
||||
if args.backend in {"hf", "mii"} and getattr(args, "quantization",
|
||||
None) is not None:
|
||||
if (
|
||||
args.backend in {"hf", "mii"}
|
||||
and getattr(args, "quantization", None) is not None
|
||||
):
|
||||
raise ValueError("Quantization is only for vLLM backend.")
|
||||
|
||||
if args.backend == "mii" and args.dtype != "auto":
|
||||
@ -520,29 +584,32 @@ def validate_args(args):
|
||||
if args.backend == "mii" and args.n != 1:
|
||||
raise ValueError("n must be 1 for MII backend.")
|
||||
if args.backend == "mii" and args.tokenizer != args.model:
|
||||
raise ValueError(
|
||||
"Tokenizer must be the same as the model for MII backend.")
|
||||
raise ValueError("Tokenizer must be the same as the model for MII backend.")
|
||||
|
||||
# --data-parallel is not supported currently.
|
||||
# https://github.com/vllm-project/vllm/issues/16222
|
||||
if args.data_parallel_size > 1:
|
||||
raise ValueError(
|
||||
"Data parallel is not supported in offline benchmark, \
|
||||
please use benchmark serving instead")
|
||||
please use benchmark serving instead"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def create_argument_parser():
|
||||
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
|
||||
parser.add_argument("--backend",
|
||||
type=str,
|
||||
choices=["vllm", "hf", "mii", "vllm-chat"],
|
||||
default="vllm")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
choices=["vllm", "hf", "mii", "vllm-chat"],
|
||||
default="vllm",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
|
||||
help="Name of the dataset to benchmark on.",
|
||||
default="sharegpt")
|
||||
default="sharegpt",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
@ -550,57 +617,70 @@ if __name__ == "__main__":
|
||||
help="Path to the ShareGPT dataset, will be deprecated in\
|
||||
the next release. The dataset is expected to "
|
||||
"be a json in form of list[dict[..., conversations: "
|
||||
"list[dict[..., value: <prompt_or_response>]]]]")
|
||||
parser.add_argument("--dataset-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the dataset")
|
||||
parser.add_argument("--input-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Input prompt length for each request")
|
||||
parser.add_argument("--output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the "
|
||||
"output length from the dataset.")
|
||||
parser.add_argument("--n",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of generated sequences per prompt.")
|
||||
parser.add_argument("--num-prompts",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Number of prompts to process.")
|
||||
parser.add_argument("--hf-max-batch-size",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Maximum batch size for HF backend.")
|
||||
"list[dict[..., value: <prompt_or_response>]]]]",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--output-json',
|
||||
"--dataset-path", type=str, default=None, help="Path to the dataset"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Input prompt length for each request",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the "
|
||||
"output length from the dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--n", type=int, default=1, help="Number of generated sequences per prompt."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts", type=int, default=1000, help="Number of prompts to process."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-max-batch-size",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Maximum batch size for HF backend.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-json",
|
||||
type=str,
|
||||
default=None,
|
||||
help='Path to save the throughput results in JSON format.')
|
||||
parser.add_argument("--async-engine",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Use vLLM async engine rather than LLM class.")
|
||||
parser.add_argument("--disable-frontend-multiprocessing",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Disable decoupled async engine frontend.")
|
||||
help="Path to save the throughput results in JSON format.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--async-engine",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Use vLLM async engine rather than LLM class.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-frontend-multiprocessing",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Disable decoupled async engine frontend.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=("Do not detokenize the response (i.e. do not include "
|
||||
"detokenization time in the measurement)"))
|
||||
help=(
|
||||
"Do not detokenize the response (i.e. do not include "
|
||||
"detokenization time in the measurement)"
|
||||
),
|
||||
)
|
||||
# LoRA
|
||||
parser.add_argument(
|
||||
"--lora-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the lora adapters to use. This can be an absolute path, "
|
||||
"a relative path, or a Hugging Face model identifier.")
|
||||
help="Path to the LoRA adapters to use. This can be an absolute path, "
|
||||
"a relative path, or a Hugging Face model identifier.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prefix-len",
|
||||
type=int,
|
||||
@ -614,7 +694,8 @@ if __name__ == "__main__":
|
||||
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
|
||||
"controls how much of the input is fixed lines versus "
|
||||
"random lines, but the total input length remains approximately "
|
||||
"input_len tokens.")
|
||||
"input_len tokens.",
|
||||
)
|
||||
# random dataset
|
||||
parser.add_argument(
|
||||
"--random-range-ratio",
|
||||
@ -628,16 +709,20 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# hf dtaset
|
||||
parser.add_argument("--hf-subset",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Subset of the HF dataset.")
|
||||
parser.add_argument("--hf-split",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Split of the HF dataset.")
|
||||
parser.add_argument(
|
||||
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-split", type=str, default=None, help="Split of the HF dataset."
|
||||
)
|
||||
|
||||
parser = AsyncEngineArgs.add_cli_args(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = create_argument_parser()
|
||||
args = parser.parse_args()
|
||||
if args.tokenizer is None:
|
||||
args.tokenizer = args.model
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import json
|
||||
@ -7,9 +8,9 @@ import os
|
||||
from typing import Any
|
||||
|
||||
|
||||
def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
metrics: dict[str, list],
|
||||
extra_info: dict[str, Any]) -> list:
|
||||
def convert_to_pytorch_benchmark_format(
|
||||
args: argparse.Namespace, metrics: dict[str, list], extra_info: dict[str, Any]
|
||||
) -> list:
|
||||
"""
|
||||
Save the benchmark results in the format used by PyTorch OSS benchmark with
|
||||
on metric per record
|
||||
@ -37,12 +38,12 @@ def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
},
|
||||
}
|
||||
|
||||
tp = record["benchmark"]["extra_info"]["args"].get(
|
||||
"tensor_parallel_size")
|
||||
tp = record["benchmark"]["extra_info"]["args"].get("tensor_parallel_size")
|
||||
# Save tensor_parallel_size parameter if it's part of the metadata
|
||||
if not tp and "tensor_parallel_size" in extra_info:
|
||||
record["benchmark"]["extra_info"]["args"][
|
||||
"tensor_parallel_size"] = extra_info["tensor_parallel_size"]
|
||||
record["benchmark"]["extra_info"]["args"]["tensor_parallel_size"] = (
|
||||
extra_info["tensor_parallel_size"]
|
||||
)
|
||||
|
||||
records.append(record)
|
||||
|
||||
@ -50,7 +51,6 @@ def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
|
||||
|
||||
class InfEncoder(json.JSONEncoder):
|
||||
|
||||
def clear_inf(self, o: Any):
|
||||
if isinstance(o, dict):
|
||||
return {k: self.clear_inf(v) for k, v in o.items()}
|
||||
@ -66,4 +66,9 @@ class InfEncoder(json.JSONEncoder):
|
||||
|
||||
def write_to_json(filename: str, records: list) -> None:
|
||||
with open(filename, "w") as f:
|
||||
json.dump(records, f, cls=InfEncoder)
|
||||
json.dump(
|
||||
records,
|
||||
f,
|
||||
cls=InfEncoder,
|
||||
default=lambda o: f"<{type(o).__name__} object is not JSON serializable>",
|
||||
)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
@ -23,8 +24,9 @@ DEFAULT_TP_SIZES = [1]
|
||||
|
||||
|
||||
# bench
|
||||
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
|
||||
**kwargs) -> TMeasurement:
|
||||
def bench_fn(
|
||||
label: str, sub_label: str, description: str, fn: Callable, *args, **kwargs
|
||||
) -> TMeasurement:
|
||||
min_run_time = 1
|
||||
|
||||
globals = {
|
||||
@ -41,16 +43,18 @@ def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
|
||||
|
||||
def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
def bench_int8(
|
||||
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
|
||||
) -> Iterable[TMeasurement]:
|
||||
assert dtype == torch.int8
|
||||
b_compressed, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k)
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
|
||||
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
|
||||
torch.bfloat16)
|
||||
out = ops.cutlass_scaled_sparse_mm(
|
||||
a, b_compressed, e, scale_a, scale_b, torch.bfloat16
|
||||
)
|
||||
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
|
||||
|
||||
if not torch.allclose(out, out_ref):
|
||||
@ -63,54 +67,107 @@ def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
timers = []
|
||||
# pytorch impl - bfloat16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm, a.to(dtype=torch.bfloat16),
|
||||
b.to(dtype=torch.bfloat16)))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm,
|
||||
a.to(dtype=torch.bfloat16),
|
||||
b.to(dtype=torch.bfloat16),
|
||||
)
|
||||
)
|
||||
|
||||
# pytorch impl - float16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label,
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
|
||||
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales",
|
||||
torch.mm,
|
||||
a.to(dtype=torch.float16),
|
||||
b.to(dtype=torch.float16),
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass impl
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
|
||||
torch.bfloat16))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"cutlass_i8_i8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
torch.bfloat16,
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"cutlass_i8_i8_bf16_scaled_mm_bias",
|
||||
ops.cutlass_scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
torch.bfloat16,
|
||||
bias,
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass sparse impl
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.bfloat16))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"cutlass_i8_i8_bf16_scaled_sparse_mm",
|
||||
ops.cutlass_scaled_sparse_mm,
|
||||
a,
|
||||
b_compressed,
|
||||
e,
|
||||
scale_a,
|
||||
scale_b,
|
||||
torch.bfloat16,
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass sparse with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.bfloat16, bias))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
|
||||
ops.cutlass_scaled_sparse_mm,
|
||||
a,
|
||||
b_compressed,
|
||||
e,
|
||||
scale_a,
|
||||
scale_b,
|
||||
torch.bfloat16,
|
||||
bias,
|
||||
)
|
||||
)
|
||||
|
||||
return timers
|
||||
|
||||
|
||||
def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
def bench_fp8(
|
||||
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
|
||||
) -> Iterable[TMeasurement]:
|
||||
assert dtype == torch.float8_e4m3fn
|
||||
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n,
|
||||
k)
|
||||
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n, k)
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
|
||||
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
|
||||
torch.bfloat16)
|
||||
out = ops.cutlass_scaled_sparse_mm(
|
||||
a, b_compressed, e, scale_a, scale_b, torch.bfloat16
|
||||
)
|
||||
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
|
||||
|
||||
if not torch.allclose(out, out_ref):
|
||||
@ -124,97 +181,165 @@ def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
|
||||
# pytorch impl w. bf16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
|
||||
b.to(dtype=torch.bfloat16, device="cuda")))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm,
|
||||
a.to(dtype=torch.bfloat16, device="cuda"),
|
||||
b.to(dtype=torch.bfloat16, device="cuda"),
|
||||
)
|
||||
)
|
||||
|
||||
# pytorch impl: bf16 output, without fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16,
|
||||
)
|
||||
)
|
||||
|
||||
# pytorch impl: bf16 output, with fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16,
|
||||
use_fast_accum=True))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16,
|
||||
use_fast_accum=True,
|
||||
)
|
||||
)
|
||||
|
||||
# pytorch impl: fp16 output, without fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16,
|
||||
)
|
||||
)
|
||||
|
||||
# pytorch impl: fp16 output, with fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16,
|
||||
use_fast_accum=True))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16,
|
||||
use_fast_accum=True,
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass impl: bf16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
|
||||
torch.bfloat16))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"cutlass_fp8_fp8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
torch.bfloat16,
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass impl: bf16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_sparse_mm",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.bfloat16))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"cutlass_fp8_fp8_bf16_scaled_sparse_mm",
|
||||
ops.cutlass_scaled_sparse_mm,
|
||||
a,
|
||||
b_compressed,
|
||||
e,
|
||||
scale_a,
|
||||
scale_b,
|
||||
torch.bfloat16,
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass impl: fp16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_sparse_mm",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.float16))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"cutlass_fp8_fp8_fp16_scaled_sparse_mm",
|
||||
ops.cutlass_scaled_sparse_mm,
|
||||
a,
|
||||
b_compressed,
|
||||
e,
|
||||
scale_a,
|
||||
scale_b,
|
||||
torch.float16,
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass impl: bf16 output, with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label,
|
||||
"cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.bfloat16, bias))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
|
||||
ops.cutlass_scaled_sparse_mm,
|
||||
a,
|
||||
b_compressed,
|
||||
e,
|
||||
scale_a,
|
||||
scale_b,
|
||||
torch.bfloat16,
|
||||
bias,
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass impl: fp16 output, with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label,
|
||||
"cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.float16, bias.to(dtype=torch.float16)))
|
||||
bench_fn(
|
||||
label,
|
||||
sub_label,
|
||||
"cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
|
||||
ops.cutlass_scaled_sparse_mm,
|
||||
a,
|
||||
b_compressed,
|
||||
e,
|
||||
scale_a,
|
||||
scale_b,
|
||||
torch.float16,
|
||||
bias.to(dtype=torch.float16),
|
||||
)
|
||||
)
|
||||
|
||||
return timers
|
||||
|
||||
|
||||
def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
def bench(
|
||||
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
|
||||
) -> Iterable[TMeasurement]:
|
||||
if dtype == torch.int8:
|
||||
return bench_int8(dtype, m, k, n, label, sub_label)
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
@ -228,12 +353,12 @@ def print_timers(timers: Iterable[TMeasurement]):
|
||||
compare.print()
|
||||
|
||||
|
||||
def run(dtype: torch.dtype,
|
||||
MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
|
||||
def run(
|
||||
dtype: torch.dtype, MKNs: Iterable[tuple[int, int, int]]
|
||||
) -> Iterable[TMeasurement]:
|
||||
results = []
|
||||
for m, k, n in MKNs:
|
||||
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
|
||||
f"MKN=({m}x{k}x{n})")
|
||||
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm", f"MKN=({m}x{k}x{n})")
|
||||
print_timers(timers)
|
||||
results.extend(timers)
|
||||
|
||||
@ -241,10 +366,12 @@ def run(dtype: torch.dtype,
|
||||
|
||||
|
||||
# output makers
|
||||
def make_output(data: Iterable[TMeasurement],
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
base_description: str,
|
||||
timestamp=None):
|
||||
def make_output(
|
||||
data: Iterable[TMeasurement],
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
base_description: str,
|
||||
timestamp=None,
|
||||
):
|
||||
print(f"== All Results {base_description} ====")
|
||||
print_timers(data)
|
||||
|
||||
@ -258,8 +385,7 @@ def make_output(data: Iterable[TMeasurement],
|
||||
|
||||
|
||||
def run_square_bench(args):
|
||||
dim_sizes = list(
|
||||
range(args.dim_start, args.dim_end + 1, args.dim_increment))
|
||||
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
|
||||
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
|
||||
data = run(args.dtype, MKNs)
|
||||
|
||||
@ -319,7 +445,7 @@ def run_model_bench(args):
|
||||
pkl.dump(all_data, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
|
||||
def to_torch_dtype(dt):
|
||||
if dt == "int8":
|
||||
@ -344,12 +470,15 @@ Benchmark Cutlass GEMM.
|
||||
Output:
|
||||
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
|
||||
""", # noqa: E501
|
||||
formatter_class=argparse.RawTextHelpFormatter)
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument("--dtype",
|
||||
type=to_torch_dtype,
|
||||
required=True,
|
||||
help="Available options are ['int8', 'fp8']")
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
type=to_torch_dtype,
|
||||
required=True,
|
||||
help="Available options are ['int8', 'fp8']",
|
||||
)
|
||||
subparsers = parser.add_subparsers(dest="cmd")
|
||||
|
||||
square_parser = subparsers.add_parser("square_bench")
|
||||
@ -368,19 +497,19 @@ Benchmark Cutlass GEMM.
|
||||
range_parser.set_defaults(func=run_range_bench)
|
||||
|
||||
model_parser = subparsers.add_parser("model_bench")
|
||||
model_parser.add_argument("--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES.keys())
|
||||
model_parser.add_argument("--tp-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_TP_SIZES)
|
||||
model_parser.add_argument("--batch-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_BATCH_SIZES)
|
||||
model_parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES.keys(),
|
||||
)
|
||||
model_parser.add_argument(
|
||||
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
|
||||
)
|
||||
model_parser.add_argument(
|
||||
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
|
||||
)
|
||||
model_parser.set_defaults(func=run_model_bench)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Cutlass bench utils
|
||||
from collections.abc import Iterable
|
||||
@ -10,8 +11,9 @@ import vllm._custom_ops as ops
|
||||
|
||||
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
|
||||
finfo = torch.finfo(torch.float8_e4m3fn)
|
||||
return torch.round(tensor.clamp(
|
||||
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
|
||||
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
|
||||
dtype=torch.float8_e4m3fn
|
||||
)
|
||||
|
||||
|
||||
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
|
||||
@ -26,10 +28,11 @@ def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
|
||||
return tensor.to(dtype=torch.float16)
|
||||
|
||||
|
||||
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
k: int) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
a = torch.randn((m, k), device='cuda') * 5
|
||||
b = torch.randn((n, k), device='cuda').t() * 5
|
||||
def make_rand_tensors(
|
||||
dtype: torch.dtype, m: int, n: int, k: int
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
a = torch.randn((m, k), device="cuda") * 5
|
||||
b = torch.randn((n, k), device="cuda").t() * 5
|
||||
|
||||
if dtype == torch.int8:
|
||||
return to_int8(a), to_int8(b)
|
||||
@ -49,9 +52,7 @@ def prune_to_2_4(tensor):
|
||||
|
||||
# Create binary mask
|
||||
mask = torch.zeros_like(reshaped)
|
||||
mask.scatter_(dim=1,
|
||||
index=indices,
|
||||
src=torch.ones_like(indices, dtype=mask.dtype))
|
||||
mask.scatter_(dim=1, index=indices, src=torch.ones_like(indices, dtype=mask.dtype))
|
||||
|
||||
# Apply mask and reshape back
|
||||
pruned = reshaped * mask
|
||||
@ -62,10 +63,11 @@ def prune_to_2_4(tensor):
|
||||
return pruned.reshape(original_shape)
|
||||
|
||||
|
||||
def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
k: int) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
a = torch.randn((m, k), device='cuda') * 5
|
||||
b = torch.randn((n, k), device='cuda').t() * 5
|
||||
def make_rand_sparse_tensors(
|
||||
dtype: torch.dtype, m: int, n: int, k: int
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
a = torch.randn((m, k), device="cuda") * 5
|
||||
b = torch.randn((n, k), device="cuda").t() * 5
|
||||
|
||||
b = prune_to_2_4(b.t()).t()
|
||||
|
||||
@ -86,9 +88,9 @@ def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
return b_compressed, e, a, b
|
||||
|
||||
|
||||
def make_n_rand_sparse_tensors(num_tensors: int, dtype: torch.dtype,
|
||||
m: int, n: int, k: int) -> \
|
||||
tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
|
||||
def make_n_rand_sparse_tensors(
|
||||
num_tensors: int, dtype: torch.dtype, m: int, n: int, k: int
|
||||
) -> tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
|
||||
ABs = []
|
||||
for _ in range(num_tensors):
|
||||
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
@ -16,7 +17,8 @@ from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
w8a8_block_fp8_matmul)
|
||||
w8a8_block_fp8_matmul,
|
||||
)
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
|
||||
@ -25,8 +27,9 @@ DEFAULT_TP_SIZES = [1]
|
||||
|
||||
|
||||
# bench
|
||||
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
|
||||
**kwargs) -> TMeasurement:
|
||||
def bench_fn(
|
||||
label: str, sub_label: str, description: str, fn: Callable, *args, **kwargs
|
||||
) -> TMeasurement:
|
||||
min_run_time = 1
|
||||
|
||||
globals = {
|
||||
@ -44,45 +47,48 @@ def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
|
||||
|
||||
|
||||
def bench_int8(
|
||||
dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None,
|
||||
) -> Iterable[TMeasurement]:
|
||||
"""Benchmark INT8-based kernels."""
|
||||
assert dtype == torch.int8
|
||||
a, b = make_rand_tensors(torch.int8, m, n, k)
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
|
||||
azp = torch.zeros((m, ), device="cuda", dtype=torch.int32)
|
||||
azp_adj = torch.zeros((n, ), device="cuda", dtype=torch.int32)
|
||||
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
|
||||
azp = torch.zeros((m,), device="cuda", dtype=torch.int32)
|
||||
azp_adj = torch.zeros((n,), device="cuda", dtype=torch.int32)
|
||||
|
||||
bench_fns = {
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
|
||||
),
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
|
||||
"cutlass_i8_i8_bf16_scaled_mm":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_bias":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_bias":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj, None, bias),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_pt":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj, azp),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj, azp, bias),
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(
|
||||
a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
|
||||
),
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(
|
||||
a.to(dtype=torch.float16), b.to(dtype=torch.float16)
|
||||
),
|
||||
"cutlass_i8_i8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.bfloat16
|
||||
),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.bfloat16, bias
|
||||
),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp": lambda: ops.cutlass_scaled_mm_azp(
|
||||
a, b, scale_a, scale_b, torch.bfloat16, azp_adj
|
||||
),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_bias": lambda: ops.cutlass_scaled_mm_azp(
|
||||
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, None, bias
|
||||
),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_pt": lambda: ops.cutlass_scaled_mm_azp(
|
||||
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, azp
|
||||
),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias": lambda: ops.cutlass_scaled_mm_azp(
|
||||
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, azp, bias
|
||||
),
|
||||
}
|
||||
|
||||
timers = []
|
||||
@ -96,73 +102,73 @@ def bench_int8(
|
||||
|
||||
|
||||
def bench_fp8(
|
||||
dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None,
|
||||
) -> Iterable[TMeasurement]:
|
||||
"""Benchmark FP8-based kernels."""
|
||||
assert dtype == torch.float8_e4m3fn
|
||||
a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k)
|
||||
a_cont = a.contiguous()
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
block_scale_a = torch.rand((m, k // 128),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
block_scale_b = torch.rand((k // 128, n // 128),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
|
||||
def ceil_div(x: int, y: int) -> int:
|
||||
return (x + y - 1) // y
|
||||
|
||||
block_scale_a = torch.rand(
|
||||
(m, ceil_div(k, 128)), device="cuda", dtype=torch.float32
|
||||
)
|
||||
block_scale_b = torch.rand(
|
||||
ceil_div(k, 128), ceil_div(n, 128), device="cuda", dtype=torch.float32
|
||||
)
|
||||
block_scale_a_M_major = block_scale_a.t().contiguous().t()
|
||||
block_scale_b_K_major = block_scale_b.t().contiguous().t()
|
||||
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
|
||||
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
print(m, k, n)
|
||||
|
||||
bench_fns = {
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
|
||||
),
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm":
|
||||
lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.float16),
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum":
|
||||
lambda: torch._scaled_mm(a,
|
||||
b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
out_dtype=torch.float16,
|
||||
use_fast_accum=True),
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm":
|
||||
lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.bfloat16),
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum":
|
||||
lambda: torch._scaled_mm(a,
|
||||
b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
out_dtype=torch.bfloat16,
|
||||
use_fast_accum=True),
|
||||
"cutlass_fp8_fp8_bf16_scaled_mm":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16),
|
||||
"cutlass_fp8_fp8_bf16_scaled_mm_bias":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_bias":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16,
|
||||
bias.to(dtype=torch.float16)),
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise":
|
||||
lambda: w8a8_block_fp8_matmul(a_cont, b.t(), block_scale_a,
|
||||
block_scale_b.t(), (128, 128)),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, block_scale_a_M_major,
|
||||
block_scale_b_K_major, torch.float16),
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(
|
||||
a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
|
||||
),
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(
|
||||
a.to(dtype=torch.float16), b.to(dtype=torch.float16)
|
||||
),
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm": lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.float16
|
||||
),
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum": lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.float16, use_fast_accum=True
|
||||
),
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm": lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.bfloat16
|
||||
),
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum": lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.bfloat16, use_fast_accum=True
|
||||
),
|
||||
"cutlass_fp8_fp8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.bfloat16
|
||||
),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.float16
|
||||
),
|
||||
"cutlass_fp8_fp8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.bfloat16, bias
|
||||
),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
|
||||
),
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
|
||||
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
|
||||
),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, block_scale_a_M_major, block_scale_b_K_major, torch.float16
|
||||
),
|
||||
}
|
||||
|
||||
timers = []
|
||||
@ -175,13 +181,15 @@ def bench_fp8(
|
||||
return timers
|
||||
|
||||
|
||||
def bench(dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
def bench(
|
||||
dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None,
|
||||
) -> Iterable[TMeasurement]:
|
||||
if dtype == torch.int8:
|
||||
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
@ -195,27 +203,33 @@ def print_timers(timers: Iterable[TMeasurement]):
|
||||
compare.print()
|
||||
|
||||
|
||||
def run(dtype: torch.dtype,
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
def run(
|
||||
dtype: torch.dtype,
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
bench_kernels: Optional[list[str]] = None,
|
||||
) -> Iterable[TMeasurement]:
|
||||
results = []
|
||||
for m, k, n in MKNs:
|
||||
timers = bench(dtype,
|
||||
m,
|
||||
k,
|
||||
n,
|
||||
f"scaled-{dtype}-gemm",
|
||||
f"MKN=({m}x{k}x{n})",
|
||||
bench_kernels=bench_kernels)
|
||||
timers = bench(
|
||||
dtype,
|
||||
m,
|
||||
k,
|
||||
n,
|
||||
f"scaled-{dtype}-gemm",
|
||||
f"MKN=({m}x{k}x{n})",
|
||||
bench_kernels=bench_kernels,
|
||||
)
|
||||
print_timers(timers)
|
||||
results.extend(timers)
|
||||
return results
|
||||
|
||||
|
||||
def make_output(data: Iterable[TMeasurement],
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
base_description: str,
|
||||
timestamp=None):
|
||||
def make_output(
|
||||
data: Iterable[TMeasurement],
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
base_description: str,
|
||||
timestamp=None,
|
||||
):
|
||||
print(f"== All Results {base_description} ====")
|
||||
print_timers(data)
|
||||
|
||||
@ -226,8 +240,7 @@ def make_output(data: Iterable[TMeasurement],
|
||||
|
||||
|
||||
def run_square_bench(args):
|
||||
dim_sizes = list(
|
||||
range(args.dim_start, args.dim_end + 1, args.dim_increment))
|
||||
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
|
||||
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
|
||||
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
|
||||
make_output(data, MKNs, f"square_bench-{args.dtype}")
|
||||
@ -285,7 +298,7 @@ def run_model_bench(args):
|
||||
pkl.dump(all_data, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
|
||||
def to_torch_dtype(dt):
|
||||
if dt == "int8":
|
||||
@ -310,19 +323,21 @@ Benchmark Cutlass GEMM.
|
||||
Output:
|
||||
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
|
||||
""", # noqa: E501
|
||||
formatter_class=argparse.RawTextHelpFormatter)
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument("--dtype",
|
||||
type=to_torch_dtype,
|
||||
required=True,
|
||||
help="Available options are ['int8', 'fp8']")
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
type=to_torch_dtype,
|
||||
required=True,
|
||||
help="Available options are ['int8', 'fp8']",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kernels",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=None,
|
||||
help=
|
||||
"Exact names of the kernels to benchmark. If not set, runs all kernels."
|
||||
help="Exact names of the kernels to benchmark. If not set, runs all kernels.",
|
||||
)
|
||||
|
||||
subparsers = parser.add_subparsers(dest="cmd")
|
||||
@ -343,19 +358,19 @@ Benchmark Cutlass GEMM.
|
||||
range_parser.set_defaults(func=run_range_bench)
|
||||
|
||||
model_parser = subparsers.add_parser("model_bench")
|
||||
model_parser.add_argument("--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES.keys())
|
||||
model_parser.add_argument("--tp-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_TP_SIZES)
|
||||
model_parser.add_argument("--batch-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_BATCH_SIZES)
|
||||
model_parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES.keys(),
|
||||
)
|
||||
model_parser.add_argument(
|
||||
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
|
||||
)
|
||||
model_parser.add_argument(
|
||||
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
|
||||
)
|
||||
model_parser.set_defaults(func=run_model_bench)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Weight Shapes are in the format
|
||||
# ([K, N], TP_SPLIT_DIM)
|
||||
@ -42,4 +43,4 @@ WEIGHT_SHAPES = {
|
||||
([8192, 57344], 1),
|
||||
([28672, 8192], 0),
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
|
||||
@ -12,39 +13,37 @@ app = Quart(__name__)
|
||||
|
||||
async def forward_request(url, data):
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
|
||||
}
|
||||
async with session.post(url=url, json=data,
|
||||
headers=headers) as response:
|
||||
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
||||
async with session.post(url=url, json=data, headers=headers) as response:
|
||||
if response.status == 200:
|
||||
# if response.headers.get('Transfer-Encoding') == 'chunked':
|
||||
if True:
|
||||
async for chunk_bytes in response.content.iter_chunked(
|
||||
1024):
|
||||
async for chunk_bytes in response.content.iter_chunked(1024):
|
||||
yield chunk_bytes
|
||||
else:
|
||||
content = await response.read()
|
||||
yield content
|
||||
|
||||
|
||||
@app.route('/v1/completions', methods=['POST'])
|
||||
@app.route("/v1/completions", methods=["POST"])
|
||||
async def handle_request():
|
||||
try:
|
||||
original_request_data = await request.get_json()
|
||||
|
||||
prefill_request = original_request_data.copy()
|
||||
# change max_tokens = 1 to let it only do prefill
|
||||
prefill_request['max_tokens'] = 1
|
||||
prefill_request["max_tokens"] = 1
|
||||
|
||||
# finish prefill
|
||||
async for _ in forward_request('http://localhost:8100/v1/completions',
|
||||
prefill_request):
|
||||
async for _ in forward_request(
|
||||
"http://localhost:8100/v1/completions", prefill_request
|
||||
):
|
||||
continue
|
||||
|
||||
# return decode
|
||||
generator = forward_request('http://localhost:8200/v1/completions',
|
||||
original_request_data)
|
||||
generator = forward_request(
|
||||
"http://localhost:8200/v1/completions", original_request_data
|
||||
)
|
||||
response = await make_response(generator)
|
||||
response.timeout = None
|
||||
|
||||
@ -53,11 +52,12 @@ async def handle_request():
|
||||
except Exception as e:
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
exc_info = sys.exc_info()
|
||||
print("Error occurred in disagg prefill proxy server")
|
||||
print(e)
|
||||
print("".join(traceback.format_exception(*exc_info)))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
app.run(port=8000)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import asyncio
|
||||
import itertools
|
||||
@ -8,7 +9,6 @@ from aiohttp import web
|
||||
|
||||
|
||||
class RoundRobinProxy:
|
||||
|
||||
def __init__(self, target_ports):
|
||||
self.target_ports = target_ports
|
||||
self.port_cycle = itertools.cycle(self.target_ports)
|
||||
@ -21,14 +21,15 @@ class RoundRobinProxy:
|
||||
try:
|
||||
# Forward the request
|
||||
async with session.request(
|
||||
method=request.method,
|
||||
url=target_url,
|
||||
headers=request.headers,
|
||||
data=request.content,
|
||||
method=request.method,
|
||||
url=target_url,
|
||||
headers=request.headers,
|
||||
data=request.content,
|
||||
) as response:
|
||||
# Start sending the response
|
||||
resp = web.StreamResponse(status=response.status,
|
||||
headers=response.headers)
|
||||
resp = web.StreamResponse(
|
||||
status=response.status, headers=response.headers
|
||||
)
|
||||
await resp.prepare(request)
|
||||
|
||||
# Stream the response content
|
||||
@ -45,11 +46,11 @@ class RoundRobinProxy:
|
||||
async def main():
|
||||
proxy = RoundRobinProxy([8100, 8200])
|
||||
app = web.Application()
|
||||
app.router.add_route('*', '/{path:.*}', proxy.handle_request)
|
||||
app.router.add_route("*", "/{path:.*}", proxy.handle_request)
|
||||
|
||||
runner = web.AppRunner(app)
|
||||
await runner.setup()
|
||||
site = web.TCPSite(runner, 'localhost', 8000)
|
||||
site = web.TCPSite(runner, "localhost", 8000)
|
||||
await site.start()
|
||||
|
||||
print("Proxy server started on http://localhost:8000")
|
||||
@ -58,5 +59,5 @@ async def main():
|
||||
await asyncio.Event().wait()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import json
|
||||
|
||||
@ -6,43 +7,41 @@ import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
data = []
|
||||
for name in ['disagg_prefill', 'chunked_prefill']:
|
||||
for name in ["disagg_prefill", "chunked_prefill"]:
|
||||
for qps in [2, 4, 6, 8]:
|
||||
with open(f"results/{name}-qps-{qps}.json") as f:
|
||||
x = json.load(f)
|
||||
x['name'] = name
|
||||
x['qps'] = qps
|
||||
x["name"] = name
|
||||
x["qps"] = qps
|
||||
data.append(x)
|
||||
|
||||
df = pd.DataFrame.from_dict(data)
|
||||
dis_df = df[df['name'] == 'disagg_prefill']
|
||||
chu_df = df[df['name'] == 'chunked_prefill']
|
||||
dis_df = df[df["name"] == "disagg_prefill"]
|
||||
chu_df = df[df["name"] == "chunked_prefill"]
|
||||
|
||||
plt.style.use('bmh')
|
||||
plt.rcParams['font.size'] = 20
|
||||
plt.style.use("bmh")
|
||||
plt.rcParams["font.size"] = 20
|
||||
|
||||
for key in [
|
||||
'mean_ttft_ms', 'median_ttft_ms', 'p99_ttft_ms', 'mean_itl_ms',
|
||||
'median_itl_ms', 'p99_itl_ms'
|
||||
"mean_ttft_ms",
|
||||
"median_ttft_ms",
|
||||
"p99_ttft_ms",
|
||||
"mean_itl_ms",
|
||||
"median_itl_ms",
|
||||
"p99_itl_ms",
|
||||
]:
|
||||
|
||||
fig, ax = plt.subplots(figsize=(11, 7))
|
||||
plt.plot(dis_df['qps'],
|
||||
dis_df[key],
|
||||
label='disagg_prefill',
|
||||
marker='o',
|
||||
linewidth=4)
|
||||
plt.plot(chu_df['qps'],
|
||||
chu_df[key],
|
||||
label='chunked_prefill',
|
||||
marker='o',
|
||||
linewidth=4)
|
||||
plt.plot(
|
||||
dis_df["qps"], dis_df[key], label="disagg_prefill", marker="o", linewidth=4
|
||||
)
|
||||
plt.plot(
|
||||
chu_df["qps"], chu_df[key], label="chunked_prefill", marker="o", linewidth=4
|
||||
)
|
||||
ax.legend()
|
||||
|
||||
ax.set_xlabel('QPS')
|
||||
ax.set_xlabel("QPS")
|
||||
ax.set_ylabel(key)
|
||||
ax.set_ylim(bottom=0)
|
||||
fig.savefig(f'results/{key}.png')
|
||||
fig.savefig(f"results/{key}.png")
|
||||
plt.close(fig)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import pickle as pkl
|
||||
import time
|
||||
@ -24,10 +25,12 @@ class bench_params_t:
|
||||
dtype: torch.dtype
|
||||
|
||||
def description(self):
|
||||
return (f'N {self.num_tokens} '
|
||||
f'x D {self.hidden_size} '
|
||||
f'x R {self.add_residual} '
|
||||
f'x DT {self.dtype}')
|
||||
return (
|
||||
f"N {self.num_tokens} "
|
||||
f"x D {self.hidden_size} "
|
||||
f"x R {self.add_residual} "
|
||||
f"x DT {self.dtype}"
|
||||
)
|
||||
|
||||
|
||||
def get_bench_params() -> list[bench_params_t]:
|
||||
@ -38,15 +41,19 @@ def get_bench_params() -> list[bench_params_t]:
|
||||
DTYPES = [torch.bfloat16, torch.float]
|
||||
|
||||
combinations = product(NUM_TOKENS, HIDDEN_SIZES, ADD_RESIDUAL, DTYPES)
|
||||
bench_params = list(map(lambda x: \
|
||||
bench_params_t(x[0], x[1], x[2], x[3]), combinations))
|
||||
bench_params = list(
|
||||
map(lambda x: bench_params_t(x[0], x[1], x[2], x[3]), combinations)
|
||||
)
|
||||
return bench_params
|
||||
|
||||
|
||||
# Reference impls
|
||||
def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
quant_dtype: torch.dtype):
|
||||
def unfused_int8_impl(
|
||||
rms_norm_layer: RMSNorm,
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
quant_dtype: torch.dtype,
|
||||
):
|
||||
# Norm
|
||||
torch_out = None
|
||||
if residual is None:
|
||||
@ -58,9 +65,12 @@ def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
|
||||
torch_out, _, _ = ops.scaled_int8_quant(torch_out)
|
||||
|
||||
|
||||
def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
quant_dtype: torch.dtype):
|
||||
def unfused_fp8_impl(
|
||||
rms_norm_layer: RMSNorm,
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
quant_dtype: torch.dtype,
|
||||
):
|
||||
# Norm
|
||||
torch_out = None
|
||||
if residual is None:
|
||||
@ -73,22 +83,27 @@ def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
|
||||
|
||||
|
||||
def fused_impl(
|
||||
rms_norm_layer: RMSNorm, # this stores the weights
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
quant_dtype: torch.dtype):
|
||||
out, _ = ops.rms_norm_dynamic_per_token_quant(x,
|
||||
rms_norm_layer.weight,
|
||||
1e-6,
|
||||
quant_dtype,
|
||||
residual=residual)
|
||||
rms_norm_layer: RMSNorm, # this stores the weights
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
quant_dtype: torch.dtype,
|
||||
):
|
||||
out, _ = ops.rms_norm_dynamic_per_token_quant(
|
||||
x, rms_norm_layer.weight, 1e-6, quant_dtype, residual=residual
|
||||
)
|
||||
|
||||
|
||||
# Bench functions
|
||||
def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor,
|
||||
quant_dtype: torch.dtype, label: str, sub_label: str,
|
||||
fn: Callable, description: str) -> TMeasurement:
|
||||
|
||||
def bench_fn(
|
||||
rms_norm_layer: RMSNorm,
|
||||
x: torch.Tensor,
|
||||
residual: torch.Tensor,
|
||||
quant_dtype: torch.dtype,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
fn: Callable,
|
||||
description: str,
|
||||
) -> TMeasurement:
|
||||
min_run_time = 1
|
||||
|
||||
globals = {
|
||||
@ -106,43 +121,81 @@ def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor,
|
||||
description=description,
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
|
||||
def bench(params: bench_params_t, label: str, sub_label: str) \
|
||||
-> Iterable[TMeasurement]:
|
||||
|
||||
def bench(params: bench_params_t, label: str, sub_label: str) -> Iterable[TMeasurement]:
|
||||
# Make inputs
|
||||
layer = RMSNorm(params.hidden_size, 1e-6).to(dtype=params.dtype)
|
||||
# Make weights
|
||||
layer.weight.data.normal_(mean=1.0, std=0.1)
|
||||
# Make inputs
|
||||
scale = 1 / params.hidden_size
|
||||
x = torch.randn(params.num_tokens,
|
||||
params.hidden_size,
|
||||
dtype=params.dtype,
|
||||
device='cuda') * scale
|
||||
residual = (torch.randn_like(x) * scale).to(device='cuda') \
|
||||
if params.add_residual else None
|
||||
x = (
|
||||
torch.randn(
|
||||
params.num_tokens, params.hidden_size, dtype=params.dtype, device="cuda"
|
||||
)
|
||||
* scale
|
||||
)
|
||||
residual = (
|
||||
(torch.randn_like(x) * scale).to(device="cuda") if params.add_residual else None
|
||||
)
|
||||
|
||||
timers = []
|
||||
|
||||
# unfused int8 impl.
|
||||
timers.append(
|
||||
bench_fn(layer, x, residual, torch.int8, label, sub_label,
|
||||
unfused_int8_impl, "unfused_int8_impl"))
|
||||
bench_fn(
|
||||
layer,
|
||||
x,
|
||||
residual,
|
||||
torch.int8,
|
||||
label,
|
||||
sub_label,
|
||||
unfused_int8_impl,
|
||||
"unfused_int8_impl",
|
||||
)
|
||||
)
|
||||
|
||||
# unfused fp8 impl.
|
||||
timers.append(
|
||||
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
|
||||
unfused_fp8_impl, "unfused_fp8_impl"))
|
||||
bench_fn(
|
||||
layer,
|
||||
x,
|
||||
residual,
|
||||
torch.float8_e4m3fn,
|
||||
label,
|
||||
sub_label,
|
||||
unfused_fp8_impl,
|
||||
"unfused_fp8_impl",
|
||||
)
|
||||
)
|
||||
|
||||
# fused int8 impl.
|
||||
timers.append(
|
||||
bench_fn(layer, x, residual, torch.int8, label, sub_label, fused_impl,
|
||||
"fused_int8_impl"))
|
||||
bench_fn(
|
||||
layer,
|
||||
x,
|
||||
residual,
|
||||
torch.int8,
|
||||
label,
|
||||
sub_label,
|
||||
fused_impl,
|
||||
"fused_int8_impl",
|
||||
)
|
||||
)
|
||||
|
||||
# fused fp8 impl.
|
||||
timers.append(
|
||||
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
|
||||
fused_impl, "fused_fp8_impl"))
|
||||
bench_fn(
|
||||
layer,
|
||||
x,
|
||||
residual,
|
||||
torch.float8_e4m3fn,
|
||||
label,
|
||||
sub_label,
|
||||
fused_impl,
|
||||
"fused_fp8_impl",
|
||||
)
|
||||
)
|
||||
|
||||
print_timers(timers)
|
||||
|
||||
@ -157,13 +210,12 @@ def print_timers(timers: Iterable[TMeasurement]):
|
||||
|
||||
|
||||
def main():
|
||||
torch.set_default_device('cuda')
|
||||
torch.set_default_device("cuda")
|
||||
bench_params = get_bench_params()
|
||||
|
||||
timers = []
|
||||
for bp in tqdm(bench_params):
|
||||
timers.extend(
|
||||
bench(bp, "rms-norm-dynamic-per-token-quant", bp.description()))
|
||||
timers.extend(bench(bp, "rms-norm-dynamic-per-token-quant", bp.description()))
|
||||
print_timers(timers)
|
||||
|
||||
# pickle all the results
|
||||
@ -172,5 +224,5 @@ def main():
|
||||
pkl.dump(timers, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
158
benchmarks/kernels/bench_fp8_gemm.py
Normal file
158
benchmarks/kernels/bench_fp8_gemm.py
Normal file
@ -0,0 +1,158 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
|
||||
from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
PROVIDER_CFGS = {
|
||||
"torch-bf16": dict(enabled=True),
|
||||
"fp8-tensor-w-token-a": dict(
|
||||
w="tensor", a="token", no_a_quant=False, enabled=False
|
||||
),
|
||||
"fp8-tensor-w-tensor-a": dict(
|
||||
w="tensor", a="tensor", no_a_quant=False, enabled=True
|
||||
),
|
||||
"fp8-channel-w-token-a": dict(
|
||||
w="channel", a="token", no_a_quant=False, enabled=True
|
||||
),
|
||||
"fp8-channel-w-tensor-a": dict(
|
||||
w="channel", a="tensor", no_a_quant=False, enabled=False
|
||||
),
|
||||
"fp8-tensor-w-token-a-noquant": dict(
|
||||
w="tensor", a="token", no_a_quant=True, enabled=False
|
||||
),
|
||||
"fp8-tensor-w-tensor-a-noquant": dict(
|
||||
w="tensor", a="tensor", no_a_quant=True, enabled=True
|
||||
),
|
||||
"fp8-channel-w-token-a-noquant": dict(
|
||||
w="channel", a="token", no_a_quant=True, enabled=True
|
||||
),
|
||||
"fp8-channel-w-tensor-a-noquant": dict(
|
||||
w="channel", a="tensor", no_a_quant=True, enabled=False
|
||||
),
|
||||
}
|
||||
|
||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
||||
|
||||
|
||||
def _quant_weight_fp8(b: torch.Tensor, w_type: str, device: str):
|
||||
if w_type == "tensor":
|
||||
scale_b = torch.ones(1, device=device, dtype=torch.float32)
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
|
||||
else:
|
||||
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, use_per_token_if_dynamic=True)
|
||||
return b_fp8.t(), scale_b_fp8
|
||||
|
||||
|
||||
def build_fp8_runner(cfg, a, b, dtype, device):
|
||||
b_fp8, scale_b_fp8 = _quant_weight_fp8(b, cfg["w"], device)
|
||||
|
||||
scale_a_const = (
|
||||
torch.ones(1, device=device, dtype=torch.float32)
|
||||
if cfg["a"] == "tensor"
|
||||
else None
|
||||
)
|
||||
|
||||
if cfg["no_a_quant"]:
|
||||
if cfg["a"] == "tensor":
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a_const)
|
||||
else:
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, use_per_token_if_dynamic=True)
|
||||
|
||||
def run():
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
return run
|
||||
|
||||
if cfg["a"] == "tensor":
|
||||
|
||||
def run():
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a_const)
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
else:
|
||||
|
||||
def run():
|
||||
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, use_per_token_if_dynamic=True)
|
||||
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
|
||||
|
||||
return run
|
||||
|
||||
|
||||
@triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["batch_size"],
|
||||
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
|
||||
x_log=False,
|
||||
line_arg="provider",
|
||||
line_vals=_enabled,
|
||||
line_names=_enabled,
|
||||
ylabel="TFLOP/s (larger is better)",
|
||||
plot_name="BF16 vs FP8 GEMMs",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
def benchmark(batch_size, provider, N, K):
|
||||
M = batch_size
|
||||
device = "cuda"
|
||||
dtype = torch.bfloat16
|
||||
|
||||
a = torch.randn((M, K), device=device, dtype=dtype)
|
||||
b = torch.randn((N, K), device=device, dtype=dtype)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
|
||||
if provider == "torch-bf16":
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
|
||||
)
|
||||
else:
|
||||
cfg = PROVIDER_CFGS[provider]
|
||||
run_quant = build_fp8_runner(cfg, a, b, dtype, device)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: run_quant(), quantiles=quantiles
|
||||
)
|
||||
|
||||
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
|
||||
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
|
||||
|
||||
|
||||
def prepare_shapes(args):
|
||||
out = []
|
||||
for model, tp_size in itertools.product(args.models, args.tp_sizes):
|
||||
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
|
||||
KN[tp_dim] //= tp_size
|
||||
KN.append(model)
|
||||
out.append(KN)
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=["meta-llama/Llama-3.1-8B-Instruct"],
|
||||
choices=list(WEIGHT_SHAPES.keys()),
|
||||
)
|
||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
|
||||
args = parser.parse_args()
|
||||
|
||||
for K, N, model in prepare_shapes(args):
|
||||
print(f"{model}, N={N} K={K}, BF16 vs FP8 GEMMs TFLOP/s:")
|
||||
benchmark.run(
|
||||
print_data=True,
|
||||
show_plots=True,
|
||||
save_path=f"bench_fp8_res_n{N}_k{K}",
|
||||
N=N,
|
||||
K=K,
|
||||
)
|
||||
|
||||
print("Benchmark finished!")
|
||||
169
benchmarks/kernels/bench_int8_gemm.py
Normal file
169
benchmarks/kernels/bench_int8_gemm.py
Normal file
@ -0,0 +1,169 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
|
||||
from vllm._custom_ops import scaled_int8_quant as vllm_scaled_int8_quant
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
PROVIDER_CFGS = {
|
||||
"torch-bf16": dict(enabled=True),
|
||||
"int8-tensor-w-token-a": dict(
|
||||
w="tensor", a="token", no_a_quant=False, enabled=False
|
||||
),
|
||||
"int8-tensor-w-tensor-a": dict(
|
||||
w="tensor", a="tensor", no_a_quant=False, enabled=True
|
||||
),
|
||||
"int8-channel-w-token-a": dict(
|
||||
w="channel", a="token", no_a_quant=False, enabled=True
|
||||
),
|
||||
"int8-channel-w-tensor-a": dict(
|
||||
w="channel", a="tensor", no_a_quant=False, enabled=False
|
||||
),
|
||||
"int8-tensor-w-token-a-noquant": dict(
|
||||
w="tensor", a="token", no_a_quant=True, enabled=False
|
||||
),
|
||||
"int8-tensor-w-tensor-a-noquant": dict(
|
||||
w="tensor", a="tensor", no_a_quant=True, enabled=True
|
||||
),
|
||||
"int8-channel-w-token-a-noquant": dict(
|
||||
w="channel", a="token", no_a_quant=True, enabled=True
|
||||
),
|
||||
"int8-channel-w-tensor-a-noquant": dict(
|
||||
w="channel", a="tensor", no_a_quant=True, enabled=False
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
def _quant_weight(b, w_type, device):
|
||||
if w_type == "tensor":
|
||||
scale_b = torch.ones(1, device=device, dtype=torch.float32)
|
||||
b_int8, scale_b_int8, _ = vllm_scaled_int8_quant(b, scale_b)
|
||||
assert scale_b_int8.numel() == 1
|
||||
else: # channel
|
||||
b_int8, scale_b_int8, _ = vllm_scaled_int8_quant(b)
|
||||
assert scale_b_int8.numel() == b.shape[0]
|
||||
return b_int8.t(), scale_b_int8
|
||||
|
||||
|
||||
def build_int8_runner(cfg, a, b, dtype, device):
|
||||
# quant before running the kernel
|
||||
b_int8, scale_b_int8 = _quant_weight(b, cfg["w"], device)
|
||||
|
||||
scale_a_const = None
|
||||
if cfg["a"] == "tensor":
|
||||
scale_a_const = torch.ones(1, device=device, dtype=torch.float32)
|
||||
|
||||
# no quant, create activation ahead
|
||||
if cfg["no_a_quant"]:
|
||||
if cfg["a"] == "tensor":
|
||||
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a, scale_a_const)
|
||||
else: # token
|
||||
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a)
|
||||
|
||||
def run_quant():
|
||||
return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)
|
||||
|
||||
return run_quant
|
||||
|
||||
# dynamic quant, create activation inside
|
||||
if cfg["a"] == "tensor":
|
||||
|
||||
def run_quant():
|
||||
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a, scale_a_const)
|
||||
return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)
|
||||
|
||||
else: # token
|
||||
|
||||
def run_quant():
|
||||
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a)
|
||||
return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)
|
||||
|
||||
return run_quant
|
||||
|
||||
|
||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v.get("enabled")]
|
||||
|
||||
|
||||
@triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["batch_size"],
|
||||
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
|
||||
x_log=False,
|
||||
line_arg="provider",
|
||||
line_vals=_enabled,
|
||||
line_names=[k for k in _enabled],
|
||||
ylabel="TFLOP/s (larger is better)",
|
||||
plot_name="BF16 vs INT8 GEMMs",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
def benchmark(batch_size, provider, N, K):
|
||||
M = batch_size
|
||||
device = "cuda"
|
||||
dtype = torch.bfloat16
|
||||
a = torch.randn((M, K), device=device, dtype=dtype)
|
||||
b = torch.randn((N, K), device=device, dtype=dtype)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
|
||||
if provider == "torch-bf16":
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
|
||||
)
|
||||
else:
|
||||
cfg = PROVIDER_CFGS[provider]
|
||||
run_quant = build_int8_runner(cfg, a, b, dtype, device)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: run_quant(), quantiles=quantiles
|
||||
)
|
||||
|
||||
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
|
||||
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
|
||||
|
||||
|
||||
def prepare_shapes(args):
|
||||
KN_model_names = []
|
||||
for model, tp_size in itertools.product(args.models, args.tp_sizes):
|
||||
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
|
||||
KN[tp_dim] //= tp_size
|
||||
KN.append(model)
|
||||
KN_model_names.append(KN)
|
||||
return KN_model_names
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=["meta-llama/Llama-3.1-8B-Instruct"],
|
||||
choices=list(WEIGHT_SHAPES.keys()),
|
||||
help="List of models to benchmark",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tp-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=[1],
|
||||
help="List of tensor parallel sizes",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
for K, N, model in prepare_shapes(args):
|
||||
print(f"{model}, N={N} K={K}, BF16 vs INT8 GEMMs TFLOP/s:")
|
||||
benchmark.run(
|
||||
print_data=True,
|
||||
show_plots=True,
|
||||
save_path=f"bench_int8_res_n{N}_k{K}",
|
||||
N=N,
|
||||
K=K,
|
||||
)
|
||||
|
||||
print("Benchmark finished!")
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
import sys
|
||||
@ -9,32 +10,39 @@ import torch.nn.functional as F
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.aqlm import (
|
||||
dequantize_weight, generic_dequantize_gemm, get_int_dtype,
|
||||
optimized_dequantize_gemm)
|
||||
dequantize_weight,
|
||||
generic_dequantize_gemm,
|
||||
get_int_dtype,
|
||||
optimized_dequantize_gemm,
|
||||
)
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
|
||||
|
||||
def torch_mult(
|
||||
input: torch.Tensor, # [..., in_features]
|
||||
weights: torch.Tensor,
|
||||
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
|
||||
# [..., in_features]
|
||||
input: torch.Tensor,
|
||||
weights: torch.Tensor,
|
||||
# [num_out_groups, 1, 1, 1]
|
||||
scales: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
output = F.linear(input, weights)
|
||||
return output
|
||||
|
||||
|
||||
def dequant_out_scale(
|
||||
input: torch.Tensor, # [..., in_features]
|
||||
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
|
||||
codebooks: torch.
|
||||
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
|
||||
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
|
||||
# [..., in_features]
|
||||
input: torch.Tensor,
|
||||
# [num_out_groups, num_in_groups, num_codebooks]
|
||||
codes: torch.IntTensor,
|
||||
# [num_codebooks, codebook_size, out_group_size, in_group_size]
|
||||
codebooks: torch.Tensor,
|
||||
# [num_out_groups, 1, 1, 1]
|
||||
scales: torch.Tensor,
|
||||
output_partition_sizes: torch.IntTensor,
|
||||
bias: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
|
||||
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
|
||||
|
||||
if bias is None:
|
||||
@ -46,40 +54,42 @@ def dequant_out_scale(
|
||||
flattened_output *= b_scales
|
||||
return flattened_output.view(orig_shape)
|
||||
else:
|
||||
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
|
||||
-1, weights.shape[1])
|
||||
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
|
||||
weights *= b_scales
|
||||
return F.linear(input, weights, bias)
|
||||
|
||||
|
||||
def dequant_weight_scale(
|
||||
input: torch.Tensor, # [..., in_features]
|
||||
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
|
||||
codebooks: torch.
|
||||
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
|
||||
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
|
||||
# [..., in_features]
|
||||
input: torch.Tensor,
|
||||
# [num_out_groups, num_in_groups, num_codebooks]
|
||||
codes: torch.IntTensor,
|
||||
# [num_codebooks, codebook_size, out_group_size, in_group_size]
|
||||
codebooks: torch.Tensor,
|
||||
# [num_out_groups, 1, 1, 1]
|
||||
scales: torch.Tensor,
|
||||
output_partition_sizes: torch.IntTensor,
|
||||
bias: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
|
||||
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
|
||||
|
||||
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
|
||||
-1, weights.shape[1])
|
||||
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
|
||||
weights *= b_scales
|
||||
return F.linear(input, weights, bias)
|
||||
|
||||
|
||||
def dequant_no_scale(
|
||||
input: torch.Tensor, # [..., in_features]
|
||||
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
|
||||
codebooks: torch.
|
||||
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
|
||||
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
|
||||
# [..., in_features]
|
||||
input: torch.Tensor,
|
||||
# [num_out_groups, num_in_groups, num_codebooks]
|
||||
codes: torch.IntTensor,
|
||||
# [num_codebooks, codebook_size, out_group_size, in_group_size]
|
||||
codebooks: torch.Tensor,
|
||||
# [num_out_groups, 1, 1, 1]
|
||||
scales: torch.Tensor,
|
||||
output_partition_sizes: torch.IntTensor,
|
||||
bias: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
|
||||
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
|
||||
|
||||
return F.linear(input, weights, bias)
|
||||
@ -89,23 +99,26 @@ def dequant_no_scale(
|
||||
# the generic pytorch version.
|
||||
# Just visual comparison.
|
||||
def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
|
||||
|
||||
n = int(parts.sum().item())
|
||||
|
||||
device = torch.device('cuda:0')
|
||||
device = torch.device("cuda:0")
|
||||
|
||||
code_range = (1 << bits) // 2
|
||||
ingroups = 8
|
||||
|
||||
codes = torch.randint(-code_range,
|
||||
code_range,
|
||||
size=(n, k // ingroups, nbooks),
|
||||
dtype=get_int_dtype(bits),
|
||||
device=device)
|
||||
codes = torch.randint(
|
||||
-code_range,
|
||||
code_range,
|
||||
size=(n, k // ingroups, nbooks),
|
||||
dtype=get_int_dtype(bits),
|
||||
device=device,
|
||||
)
|
||||
|
||||
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
|
||||
dtype=torch.float16,
|
||||
device=device)
|
||||
codebooks = torch.randn(
|
||||
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
|
||||
dtype=torch.float16,
|
||||
device=device,
|
||||
)
|
||||
|
||||
count = 0
|
||||
for index in range(16):
|
||||
@ -138,24 +151,25 @@ def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
parser = FlexibleArgumentParser(description="Benchmark aqlm performance.")
|
||||
|
||||
# Add arguments
|
||||
parser.add_argument("--nbooks",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of codebooks (default: 1)")
|
||||
parser.add_argument("--bits",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of bits per code element (default: 16)")
|
||||
parser.add_argument(
|
||||
"--nbooks", type=int, default=1, help="Number of codebooks (default: 1)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bits",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of bits per code element (default: 16)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Run the decompression/dequant tester rather than benchmarking "
|
||||
"(default: False)")
|
||||
"(default: False)",
|
||||
)
|
||||
|
||||
# Parse the arguments
|
||||
args = parser.parse_args()
|
||||
@ -165,7 +179,7 @@ def main():
|
||||
bits = args.bits
|
||||
|
||||
if args.test:
|
||||
dequant_test(4096, torch.tensor((4096, )), nbooks, bits)
|
||||
dequant_test(4096, torch.tensor((4096,)), nbooks, bits)
|
||||
return
|
||||
|
||||
# Otherwise, benchmark.
|
||||
@ -184,31 +198,54 @@ def main():
|
||||
with open(filename, "w") as f:
|
||||
sys.stdout = f
|
||||
|
||||
print('m | k | n | n parts', end='')
|
||||
print("m | k | n | n parts", end="")
|
||||
for method in methods:
|
||||
print(f" | {method.__name__.replace('_', ' ')} (µs)", end='')
|
||||
print('')
|
||||
print(f" | {method.__name__.replace('_', ' ')} (µs)", end="")
|
||||
print("")
|
||||
|
||||
# These are reasonable prefill sizes.
|
||||
ksandpartions = ((4096, (4096, 4096, 4096)), (4096, (4096, )),
|
||||
(4096, (11008, 11008)), (11008, (4096, )))
|
||||
ksandpartions = (
|
||||
(4096, (4096, 4096, 4096)),
|
||||
(4096, (4096,)),
|
||||
(4096, (11008, 11008)),
|
||||
(11008, (4096,)),
|
||||
)
|
||||
|
||||
# reasonable ranges for m.
|
||||
for m in [
|
||||
1, 2, 4, 8, 10, 12, 14, 16, 24, 32, 48, 52, 56, 64, 96, 112,
|
||||
128, 256, 512, 1024, 1536, 2048, 3072, 4096
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
8,
|
||||
10,
|
||||
12,
|
||||
14,
|
||||
16,
|
||||
24,
|
||||
32,
|
||||
48,
|
||||
52,
|
||||
56,
|
||||
64,
|
||||
96,
|
||||
112,
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
1024,
|
||||
1536,
|
||||
2048,
|
||||
3072,
|
||||
4096,
|
||||
]:
|
||||
print(f'{m}', file=sys.__stdout__)
|
||||
print(f"{m}", file=sys.__stdout__)
|
||||
for ksp in ksandpartions:
|
||||
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits,
|
||||
methods)
|
||||
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits, methods)
|
||||
|
||||
sys.stdout = sys.__stdout__
|
||||
|
||||
|
||||
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int,
|
||||
methods):
|
||||
|
||||
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, methods):
|
||||
# I didn't see visible improvements from increasing these, but feel free :)
|
||||
num_warmup_trials = 1
|
||||
num_trials = 1
|
||||
@ -229,7 +266,7 @@ def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int,
|
||||
)
|
||||
|
||||
n = parts.sum().item()
|
||||
print(f'{m} | {k} | {n} | {parts.tolist()}', end='')
|
||||
print(f"{m} | {k} | {n} | {parts.tolist()}", end="")
|
||||
|
||||
for method in methods:
|
||||
best_time_us = 1e20
|
||||
@ -249,32 +286,36 @@ def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int,
|
||||
if kernel_dur_us < best_time_us:
|
||||
best_time_us = kernel_dur_us
|
||||
|
||||
print(f' | {kernel_dur_us:.0f}', end='')
|
||||
print(f" | {kernel_dur_us:.0f}", end="")
|
||||
|
||||
print('')
|
||||
print("")
|
||||
|
||||
|
||||
def run_timing(num_calls: int, m: int, k: int, parts: torch.Tensor,
|
||||
nbooks: int, bits: int, method) -> float:
|
||||
|
||||
def run_timing(
|
||||
num_calls: int, m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, method
|
||||
) -> float:
|
||||
n = int(parts.sum().item())
|
||||
|
||||
device = torch.device('cuda:0')
|
||||
device = torch.device("cuda:0")
|
||||
|
||||
input = torch.randn((1, m, k), dtype=torch.float16, device=device)
|
||||
|
||||
code_range = (1 << bits) // 2
|
||||
ingroups = 8
|
||||
|
||||
codes = torch.randint(-code_range,
|
||||
code_range,
|
||||
size=(n, k // ingroups, nbooks),
|
||||
dtype=get_int_dtype(bits),
|
||||
device=device)
|
||||
codes = torch.randint(
|
||||
-code_range,
|
||||
code_range,
|
||||
size=(n, k // ingroups, nbooks),
|
||||
dtype=get_int_dtype(bits),
|
||||
device=device,
|
||||
)
|
||||
|
||||
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
|
||||
dtype=torch.float16,
|
||||
device=device)
|
||||
codebooks = torch.randn(
|
||||
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
|
||||
dtype=torch.float16,
|
||||
device=device,
|
||||
)
|
||||
|
||||
scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device)
|
||||
|
||||
|
||||
@ -1,29 +1,36 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
|
||||
MINIMUM_BITBLAS_VERSION)
|
||||
MINIMUM_BITBLAS_VERSION,
|
||||
)
|
||||
|
||||
try:
|
||||
import bitblas
|
||||
|
||||
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
|
||||
raise ImportError("bitblas version is wrong. Please "
|
||||
f"install bitblas>={MINIMUM_BITBLAS_VERSION}")
|
||||
raise ImportError(
|
||||
"bitblas version is wrong. Please "
|
||||
f"install bitblas>={MINIMUM_BITBLAS_VERSION}"
|
||||
)
|
||||
except ImportError as e:
|
||||
bitblas_import_exception = e
|
||||
raise ValueError("Trying to use the bitblas backend, but could not import"
|
||||
f"with the following error: {bitblas_import_exception}. "
|
||||
"Please install bitblas through the following command: "
|
||||
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
|
||||
) from bitblas_import_exception
|
||||
raise ValueError(
|
||||
"Trying to use the bitblas backend, but could not import"
|
||||
f"with the following error: {bitblas_import_exception}. "
|
||||
"Please install bitblas through the following command: "
|
||||
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
|
||||
) from bitblas_import_exception
|
||||
|
||||
from bitblas import Matmul, MatmulConfig, auto_detect_nvidia_target
|
||||
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark BitBLAS int4 on a specific target.")
|
||||
description="Benchmark BitBLAS int4 on a specific target."
|
||||
)
|
||||
|
||||
# Add arguments to the parser
|
||||
parser.add_argument(
|
||||
@ -32,10 +39,9 @@ parser.add_argument(
|
||||
default=auto_detect_nvidia_target(),
|
||||
help="Specify the target device for benchmarking.",
|
||||
)
|
||||
parser.add_argument("--group_size",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Group size for grouped quantization.")
|
||||
parser.add_argument(
|
||||
"--group_size", type=int, default=None, help="Group size for grouped quantization."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--A_dtype",
|
||||
type=str,
|
||||
@ -82,17 +88,17 @@ parser.add_argument(
|
||||
choices=["nt", "nn"],
|
||||
help="Matrix layout, 'nt' for non-transpose A and transpose W.",
|
||||
)
|
||||
parser.add_argument("--with_bias",
|
||||
action="store_true",
|
||||
help="Include bias in the benchmark.")
|
||||
parser.add_argument(
|
||||
"--with_bias", action="store_true", help="Include bias in the benchmark."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--with_scaling",
|
||||
action="store_true",
|
||||
help="Include scaling factor in the quantization.",
|
||||
)
|
||||
parser.add_argument("--with_zeros",
|
||||
action="store_true",
|
||||
help="Include zeros in the quantization.")
|
||||
parser.add_argument(
|
||||
"--with_zeros", action="store_true", help="Include zeros in the quantization."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--zeros_mode",
|
||||
type=str,
|
||||
@ -170,8 +176,7 @@ shapes = [
|
||||
]
|
||||
|
||||
# Build test shapes with all the shared arguments
|
||||
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args))
|
||||
for shape in shapes]
|
||||
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args)) for shape in shapes]
|
||||
|
||||
benchmark_sets = []
|
||||
benchmark_sets.extend(test_shapes)
|
||||
@ -206,12 +211,12 @@ for config_key, values in benchmark_results.items():
|
||||
func_name = args_split[0]
|
||||
input_args_str = "-".join(args_split[1:])
|
||||
col_widths[0] = max(col_widths[0], len(func_name) + 2, len(headers[0]) + 2)
|
||||
col_widths[1] = max(col_widths[1],
|
||||
len(input_args_str) + 2,
|
||||
len(headers[1]) + 2)
|
||||
col_widths[2] = max(col_widths[2],
|
||||
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
|
||||
len(headers[2]) + 2)
|
||||
col_widths[1] = max(col_widths[1], len(input_args_str) + 2, len(headers[1]) + 2)
|
||||
col_widths[2] = max(
|
||||
col_widths[2],
|
||||
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
|
||||
len(headers[2]) + 2,
|
||||
)
|
||||
# break only if you want to measure widths from a single example;
|
||||
# otherwise, let it loop over all items.
|
||||
|
||||
@ -232,5 +237,6 @@ for config_key, values in benchmark_results.items():
|
||||
f"{values['BitBLAS_top20_latency']:.3f} ms",
|
||||
]
|
||||
row_str = "".join(
|
||||
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)])
|
||||
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)]
|
||||
)
|
||||
print(row_str)
|
||||
|
||||
490
benchmarks/kernels/benchmark_cutlass_fp4_moe.py
Normal file
490
benchmarks/kernels/benchmark_cutlass_fp4_moe.py
Normal file
@ -0,0 +1,490 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Benchmark the performance of the cutlass_moe_fp4 kernel vs the triton_moe
|
||||
kernel. The cutlass_moe_fp4 kernel takes in fp4 quantized weights and 16-bit
|
||||
activations. The triton_moe kernel takes in fp8 weights(tensor scaled to fp8)
|
||||
and 16-bit activations.
|
||||
"""
|
||||
|
||||
import nvtx
|
||||
import torch
|
||||
import torch.utils.benchmark as benchmark
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
|
||||
from vllm.scalar_type import scalar_types
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
WEIGHT_SHAPES_MOE = {
|
||||
"nvidia/DeepSeek-R1-FP4": [
|
||||
[256, 8, 2048, 7168],
|
||||
],
|
||||
}
|
||||
|
||||
DEFAULT_MODELS = [
|
||||
"nvidia/DeepSeek-R1-FP4",
|
||||
]
|
||||
|
||||
DEFAULT_BATCH_SIZES = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
|
||||
DEFAULT_TP_SIZES = [1]
|
||||
|
||||
PER_ACT_TOKEN_OPTS = [False]
|
||||
PER_OUT_CH_OPTS = [False]
|
||||
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
|
||||
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max
|
||||
|
||||
|
||||
def to_fp8(tensor: torch.Tensor):
|
||||
finfo = torch.finfo(torch.float8_e4m3fn)
|
||||
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
|
||||
dtype=torch.float8_e4m3fn
|
||||
)
|
||||
|
||||
|
||||
def bench_run(
|
||||
results: list[benchmark.Measurement],
|
||||
model: str,
|
||||
num_experts: int,
|
||||
topk: int,
|
||||
per_act_token: bool,
|
||||
per_out_ch: bool,
|
||||
mkn: tuple[int, int, int],
|
||||
):
|
||||
label = "NVFP4 Blockscaled CUTLASS MOE vs FP8 Tensor Scaled Triton"
|
||||
|
||||
sub_label = (
|
||||
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, MKN=({})".format(
|
||||
model, num_experts, topk, per_act_token, per_out_ch, mkn
|
||||
)
|
||||
)
|
||||
|
||||
print(f"Testing: {sub_label}")
|
||||
|
||||
(m, k, n) = mkn
|
||||
|
||||
dtype = torch.half
|
||||
device = "cuda"
|
||||
a = torch.randn((m, k), device=device, dtype=dtype) / 10
|
||||
w1 = torch.randn((num_experts, 2 * n, k), device=device, dtype=dtype) / 10
|
||||
w2 = torch.randn((num_experts, k, n), device=device, dtype=dtype) / 10
|
||||
|
||||
_, a_fp8_scale = ops.scaled_fp8_quant(a)
|
||||
|
||||
w1_fp8q = torch.empty(
|
||||
(num_experts, 2 * n, k), device=device, dtype=torch.float8_e4m3fn
|
||||
)
|
||||
w2_fp8q = torch.empty((num_experts, k, n), device=device, dtype=torch.float8_e4m3fn)
|
||||
w1_fp8scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
|
||||
w2_fp8scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
|
||||
|
||||
for expert in range(num_experts):
|
||||
w1_fp8q[expert], w1_fp8scale[expert] = ops.scaled_fp8_quant(w1[expert])
|
||||
w2_fp8q[expert], w2_fp8scale[expert] = ops.scaled_fp8_quant(w2[expert])
|
||||
|
||||
w1_fp8q_notransp = w1_fp8q.clone()
|
||||
w2_fp8q_notransp = w2_fp8q.clone()
|
||||
w1_fp8q = w1_fp8q.transpose(1, 2)
|
||||
w2_fp8q = w2_fp8q.transpose(1, 2)
|
||||
|
||||
score = torch.randn((m, num_experts), device=device, dtype=dtype)
|
||||
|
||||
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
|
||||
|
||||
quant_blocksize = 16
|
||||
w1_blockscale = torch.empty(
|
||||
(num_experts, 2 * n, k // quant_blocksize),
|
||||
device=device,
|
||||
dtype=torch.float8_e4m3fn,
|
||||
)
|
||||
w2_blockscale = torch.empty(
|
||||
(num_experts, k, n // quant_blocksize), device=device, dtype=torch.float8_e4m3fn
|
||||
)
|
||||
|
||||
# n_b_scales = 2 * n if per_out_ch else 1
|
||||
# k_b_scales = k if per_out_ch else 1
|
||||
w1_fp4 = torch.empty((num_experts, 2 * n, k // 2), device=device, dtype=torch.uint8)
|
||||
w2_fp4 = torch.empty((num_experts, k, n // 2), device=device, dtype=torch.uint8)
|
||||
|
||||
w1_gs = torch.empty((num_experts,), device=device, dtype=torch.float32)
|
||||
w2_gs = torch.empty((num_experts,), device=device, dtype=torch.float32)
|
||||
a1_gs = torch.ones((num_experts,), device=device, dtype=torch.float32)
|
||||
a2_gs = torch.ones((num_experts,), device=device, dtype=torch.float32)
|
||||
|
||||
for expert in range(num_experts):
|
||||
w1_e = w1[expert]
|
||||
w2_e = w2[expert]
|
||||
w1_amax = torch.abs(w1_e).max().to(torch.float32)
|
||||
w2_amax = torch.abs(w2_e).max().to(torch.float32)
|
||||
w1_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w1_amax
|
||||
w2_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w2_amax
|
||||
|
||||
w1_fp4[expert], w1_blockscale[expert] = ops.scaled_fp4_quant(
|
||||
w1_e, w1_gs[expert]
|
||||
)
|
||||
|
||||
w2_fp4[expert], w2_blockscale[expert] = ops.scaled_fp4_quant(
|
||||
w2_e, w2_gs[expert]
|
||||
)
|
||||
|
||||
def run_triton_moe(
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
a_fp8_scale: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
for _ in range(num_repeats):
|
||||
fused_experts(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_fp8_scale,
|
||||
)
|
||||
|
||||
def run_cutlass_moe_fp4(
|
||||
a: torch.Tensor,
|
||||
w1_fp4: torch.Tensor,
|
||||
w2_fp4: torch.Tensor,
|
||||
w1_blockscale: torch.Tensor,
|
||||
w2_blockscale: torch.Tensor,
|
||||
w1_gs: torch.Tensor,
|
||||
w2_gs: torch.Tensor,
|
||||
a1_gs: torch.Tensor,
|
||||
a2_gs: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
e: int,
|
||||
device: torch.device,
|
||||
num_repeats: int,
|
||||
):
|
||||
for _ in range(num_repeats):
|
||||
with nvtx.annotate("cutlass_moe_fp4", color="green"):
|
||||
cutlass_moe_fp4(
|
||||
a=a,
|
||||
a1_gscale=a1_gs,
|
||||
a2_gscale=a2_gs,
|
||||
w1_fp4=w1_fp4,
|
||||
w1_blockscale=w1_blockscale,
|
||||
w1_alphas=w1_gs,
|
||||
w2_fp4=w2_fp4,
|
||||
w2_blockscale=w2_blockscale,
|
||||
w2_alphas=w2_gs,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
m=m,
|
||||
n=n,
|
||||
k=k,
|
||||
e=num_experts,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def run_cutlass_from_graph(
|
||||
a: torch.Tensor,
|
||||
a1_gscale: torch.Tensor,
|
||||
w1_fp4: torch.Tensor,
|
||||
w1_blockscale: torch.Tensor,
|
||||
w1_alphas: torch.Tensor,
|
||||
a2_gscale: torch.Tensor,
|
||||
w2_fp4: torch.Tensor,
|
||||
w2_blockscale: torch.Tensor,
|
||||
w2_alphas: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
e: int,
|
||||
device: torch.device,
|
||||
):
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
):
|
||||
return cutlass_moe_fp4(
|
||||
a=a,
|
||||
a1_gscale=a1_gs,
|
||||
w1_fp4=w1_fp4,
|
||||
w1_blockscale=w1_blockscale,
|
||||
w1_alphas=w1_alphas,
|
||||
a2_gscale=a2_gs,
|
||||
w2_fp4=w2_fp4,
|
||||
w2_blockscale=w2_blockscale,
|
||||
w2_alphas=w2_alphas,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
m=m,
|
||||
n=n,
|
||||
k=k,
|
||||
e=num_experts,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def run_triton_from_graph(
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
a_fp8_scale: torch.Tensor,
|
||||
):
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
):
|
||||
return fused_experts(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_fp8_scale,
|
||||
)
|
||||
|
||||
def replay_graph(graph, num_repeats):
|
||||
for _ in range(num_repeats):
|
||||
graph.replay()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
cutlass_stream = torch.cuda.Stream()
|
||||
cutlass_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
|
||||
run_cutlass_from_graph(
|
||||
a=a,
|
||||
a1_gscale=a1_gs,
|
||||
w1_fp4=w1_fp4,
|
||||
w1_blockscale=w1_blockscale,
|
||||
w1_alphas=w1_gs,
|
||||
a2_gscale=a2_gs,
|
||||
w2_fp4=w2_fp4,
|
||||
w2_blockscale=w2_blockscale,
|
||||
w2_alphas=w2_gs,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
m=m,
|
||||
n=n,
|
||||
k=k,
|
||||
e=num_experts,
|
||||
device=device,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
triton_stream = torch.cuda.Stream()
|
||||
triton_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(triton_graph, stream=triton_stream):
|
||||
run_triton_from_graph(
|
||||
a,
|
||||
w1_fp8q_notransp,
|
||||
w2_fp8q_notransp,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_fp8scale,
|
||||
w2_fp8scale,
|
||||
a_fp8_scale,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
min_run_time = 5
|
||||
num_warmup = 5
|
||||
num_runs = 25
|
||||
|
||||
globals = {
|
||||
# Baseline params
|
||||
"w1": w1,
|
||||
"w2": w2,
|
||||
"score": score,
|
||||
"topk": topk,
|
||||
"w1_fp8q_notransp": w1_fp8q_notransp,
|
||||
"w2_fp8q_notransp": w2_fp8q_notransp,
|
||||
"w1_fp8scale": w1_fp8scale,
|
||||
"w2_fp8scale": w2_fp8scale,
|
||||
"a_fp8_scale": a_fp8_scale,
|
||||
# Cutlass params
|
||||
"a": a,
|
||||
"a1_gscale": a1_gs,
|
||||
"w1_fp4": w1_fp4,
|
||||
"w1_blockscale": w1_blockscale,
|
||||
"w1_alphas": w1_gs,
|
||||
"a2_gscale": a2_gs,
|
||||
"w2_fp4": w2_fp4,
|
||||
"w2_blockscale": w2_blockscale,
|
||||
"w2_alphas": w2_gs,
|
||||
"topk_weights": topk_weights,
|
||||
"topk_ids": topk_ids,
|
||||
"m": m,
|
||||
"n": n,
|
||||
"k": k,
|
||||
"e": num_experts,
|
||||
"device": device,
|
||||
# cuda graph params
|
||||
"cutlass_graph": cutlass_graph,
|
||||
"triton_graph": triton_graph,
|
||||
# Gen params
|
||||
"num_runs": num_runs,
|
||||
# Kernels
|
||||
"run_triton_moe": run_triton_moe,
|
||||
"run_cutlass_moe_fp4": run_cutlass_moe_fp4,
|
||||
"replay_graph": replay_graph,
|
||||
}
|
||||
|
||||
# Warmup
|
||||
run_triton_moe(
|
||||
a,
|
||||
w1_fp8q_notransp,
|
||||
w2_fp8q_notransp,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_fp8scale,
|
||||
w2_fp8scale,
|
||||
a_fp8_scale,
|
||||
num_warmup,
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="run_triton_moe(a, w1_fp8q_notransp, w2_fp8q_notransp, topk_weights, topk_ids, w1_fp8scale, w2_fp8scale, a_fp8_scale, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="triton_moe",
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
# Warmup
|
||||
replay_graph(triton_graph, num_warmup)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="replay_graph(triton_graph, num_runs)",
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="triton_moe_cuda_graphs",
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
# Warmup
|
||||
|
||||
run_cutlass_moe_fp4(
|
||||
a,
|
||||
w1_fp4,
|
||||
w2_fp4,
|
||||
w1_blockscale,
|
||||
w2_blockscale,
|
||||
w1_gs,
|
||||
w2_gs,
|
||||
a1_gs,
|
||||
a2_gs,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
m,
|
||||
n,
|
||||
k,
|
||||
num_experts,
|
||||
device,
|
||||
num_warmup,
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="run_cutlass_moe_fp4(a, w1_fp4, w2_fp4, w1_blockscale, w2_blockscale, w1_alphas, w2_alphas, a1_gscale, a2_gscale, topk_weights, topk_ids, m, n, k, e, device, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="cutlass_moe_fp4",
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
# Warmup
|
||||
replay_graph(cutlass_graph, num_warmup)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="replay_graph(cutlass_graph, num_runs)",
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="cutlass_moe_fp4_cuda_graphs",
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
|
||||
def main(args):
|
||||
print("Benchmarking models:")
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
|
||||
results: list[benchmark.Measurement] = []
|
||||
|
||||
for model in args.models:
|
||||
for tp in args.tp_sizes:
|
||||
for layer in WEIGHT_SHAPES_MOE[model]:
|
||||
num_experts = layer[0]
|
||||
topk = layer[1]
|
||||
size_k = layer[2]
|
||||
size_n = layer[3] // tp
|
||||
|
||||
if len(args.limit_k) > 0 and size_k not in args.limit_k:
|
||||
continue
|
||||
|
||||
if len(args.limit_n) > 0 and size_n not in args.limit_n:
|
||||
continue
|
||||
|
||||
for per_act_token in PER_ACT_TOKEN_OPTS:
|
||||
for per_out_ch in PER_OUT_CH_OPTS:
|
||||
for size_m in args.batch_sizes:
|
||||
mkn = (size_m, size_k, size_n)
|
||||
bench_run(
|
||||
results,
|
||||
model,
|
||||
num_experts,
|
||||
topk,
|
||||
per_act_token,
|
||||
per_out_ch,
|
||||
mkn,
|
||||
)
|
||||
|
||||
compare = benchmark.Compare(results)
|
||||
compare.print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark NVFP4 CUTLASS MOE across specified models/shapes/batches"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES_MOE.keys(),
|
||||
)
|
||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
|
||||
parser.add_argument(
|
||||
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
|
||||
)
|
||||
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-num-groups", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-per-act-token", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-per-out-ch", nargs="+", type=int, default=[])
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as benchmark
|
||||
@ -6,14 +7,18 @@ from benchmark_shapes import WEIGHT_SHAPES_MOE
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (cutlass_moe_fp8,
|
||||
fused_experts,
|
||||
fused_topk)
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
||||
fused_experts,
|
||||
fused_topk,
|
||||
)
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
DEFAULT_MODELS = [
|
||||
"nm-testing/Mixtral-8x7B-Instruct-v0.1", "nm-testing/deepseekv2-lite",
|
||||
"ibm-granite/granite-3.0-1b-a400m", "ibm-granite/granite-3.0-3b-a800m"
|
||||
"nm-testing/Mixtral-8x7B-Instruct-v0.1",
|
||||
"nm-testing/deepseekv2-lite",
|
||||
"ibm-granite/granite-3.0-1b-a400m",
|
||||
"ibm-granite/granite-3.0-3b-a800m",
|
||||
]
|
||||
DEFAULT_BATCH_SIZES = [1, 4, 8, 16, 32, 64, 128, 256, 512]
|
||||
DEFAULT_TP_SIZES = [1]
|
||||
@ -24,19 +29,27 @@ PER_OUT_CH_OPTS = [False]
|
||||
|
||||
def to_fp8(tensor: torch.Tensor):
|
||||
finfo = torch.finfo(torch.float8_e4m3fn)
|
||||
return torch.round(tensor.clamp(
|
||||
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
|
||||
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
|
||||
dtype=torch.float8_e4m3fn
|
||||
)
|
||||
|
||||
|
||||
def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
num_experts: int, topk: int, per_act_token: bool,
|
||||
per_out_ch: bool, mkn: tuple[int, int, int]):
|
||||
def bench_run(
|
||||
results: list[benchmark.Measurement],
|
||||
model: str,
|
||||
num_experts: int,
|
||||
topk: int,
|
||||
per_act_token: bool,
|
||||
per_out_ch: bool,
|
||||
mkn: tuple[int, int, int],
|
||||
):
|
||||
label = "Quant Matmul"
|
||||
|
||||
sub_label = (
|
||||
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, "
|
||||
"MKN=({})".format(model, num_experts, topk, per_act_token, per_out_ch,
|
||||
mkn))
|
||||
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, MKN=({})".format(
|
||||
model, num_experts, topk, per_act_token, per_out_ch, mkn
|
||||
)
|
||||
)
|
||||
|
||||
print(f"Testing: {sub_label}")
|
||||
|
||||
@ -50,123 +63,118 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
|
||||
_, a_scale = ops.scaled_fp8_quant(a)
|
||||
|
||||
w1_q = torch.empty((num_experts, 2 * n, k),
|
||||
device="cuda",
|
||||
dtype=torch.float8_e4m3fn)
|
||||
w2_q = torch.empty((num_experts, k, n),
|
||||
device="cuda",
|
||||
dtype=torch.float8_e4m3fn)
|
||||
w1_scale = torch.empty((num_experts, 1, 1),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
w2_scale = torch.empty((num_experts, 1, 1),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
|
||||
ab_strides1 = torch.full((num_experts, ),
|
||||
k,
|
||||
device="cuda",
|
||||
dtype=torch.int64)
|
||||
c_strides1 = torch.full((num_experts, ),
|
||||
2 * n,
|
||||
device="cuda",
|
||||
dtype=torch.int64)
|
||||
ab_strides2 = torch.full((num_experts, ),
|
||||
n,
|
||||
device="cuda",
|
||||
dtype=torch.int64)
|
||||
c_strides2 = torch.full((num_experts, ),
|
||||
k,
|
||||
device="cuda",
|
||||
dtype=torch.int64)
|
||||
w1_q = torch.empty(
|
||||
(num_experts, 2 * n, k), device="cuda", dtype=torch.float8_e4m3fn
|
||||
)
|
||||
w2_q = torch.empty((num_experts, k, n), device="cuda", dtype=torch.float8_e4m3fn)
|
||||
w1_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
|
||||
w2_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
|
||||
|
||||
for expert in range(num_experts):
|
||||
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(w1[expert])
|
||||
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(w2[expert])
|
||||
w1_q_notransp = w1_q.clone()
|
||||
w2_q_notransp = w2_q.clone()
|
||||
w1_q = w1_q.transpose(1, 2)
|
||||
w2_q = w2_q.transpose(1, 2)
|
||||
|
||||
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
|
||||
|
||||
topk_weights, topk_ids, token_expert_indices = fused_topk(
|
||||
a, score, topk, renormalize=False)
|
||||
a, score, topk, renormalize=False
|
||||
)
|
||||
|
||||
def run_triton_moe(a: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
|
||||
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
|
||||
a_scale: torch.Tensor, num_repeats: int):
|
||||
def run_triton_moe(
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
a_scale: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
for _ in range(num_repeats):
|
||||
fused_experts(a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale)
|
||||
fused_experts(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
|
||||
def run_cutlass_moe(a: torch.Tensor, a_scale: torch.Tensor,
|
||||
w1: torch.Tensor, w2: torch.Tensor,
|
||||
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor, c_strides2: torch.Tensor,
|
||||
num_repeats: int):
|
||||
def run_cutlass_moe(
|
||||
a: torch.Tensor,
|
||||
a_scale: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
for _ in range(num_repeats):
|
||||
cutlass_moe_fp8(a,
|
||||
w1,
|
||||
w2,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
a1_scale=a_scale)
|
||||
cutlass_moe_fp8(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
|
||||
def run_cutlass_from_graph(
|
||||
a: torch.Tensor, a_scale: torch.Tensor, w1_q: torch.Tensor,
|
||||
w2_q: torch.Tensor, w1_scale: torch.Tensor, w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor, c_strides2: torch.Tensor):
|
||||
a: torch.Tensor,
|
||||
a_scale: torch.Tensor,
|
||||
w1_q: torch.Tensor,
|
||||
w2_q: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
):
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(
|
||||
pipeline_parallel_size=1))):
|
||||
return cutlass_moe_fp8(a,
|
||||
w1_q,
|
||||
w2_q,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
a1_scale=a_scale)
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
):
|
||||
return cutlass_moe_fp8(
|
||||
a,
|
||||
w1_q,
|
||||
w2_q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
|
||||
def run_triton_from_graph(a: torch.Tensor, w1: torch.Tensor,
|
||||
w2: torch.Tensor, topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor, w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor, a_scale: torch.Tensor):
|
||||
def run_triton_from_graph(
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
a_scale: torch.Tensor,
|
||||
):
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(
|
||||
pipeline_parallel_size=1))):
|
||||
return fused_experts(a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale)
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
):
|
||||
return fused_experts(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
|
||||
def replay_graph(graph, num_repeats):
|
||||
for _ in range(num_repeats):
|
||||
@ -176,16 +184,31 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
cutlass_stream = torch.cuda.Stream()
|
||||
cutlass_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
|
||||
run_cutlass_from_graph(a, a_scale, w1_q, w2_q, w1_scale, w2_scale,
|
||||
topk_weights, topk_ids, ab_strides1, c_strides1,
|
||||
ab_strides2, c_strides2)
|
||||
run_cutlass_from_graph(
|
||||
a,
|
||||
a_scale,
|
||||
w1_q,
|
||||
w2_q,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
triton_stream = torch.cuda.Stream()
|
||||
triton_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(triton_graph, stream=triton_stream):
|
||||
run_triton_from_graph(a, w1_q_notransp, w2_q_notransp, topk_weights,
|
||||
topk_ids, w1_scale, w2_scale, a_scale)
|
||||
run_triton_from_graph(
|
||||
a,
|
||||
w1_q,
|
||||
w2_q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
a_scale,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
min_run_time = 5
|
||||
@ -198,18 +221,12 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
"w2": w2,
|
||||
"score": score,
|
||||
"topk": topk,
|
||||
"w1_q_notransp": w1_q_notransp,
|
||||
"w2_q_notransp": w2_q_notransp,
|
||||
# Cutlass params
|
||||
"a_scale": a_scale,
|
||||
"w1_q": w1_q,
|
||||
"w2_q": w2_q,
|
||||
"w1_scale": w1_scale,
|
||||
"w2_scale": w2_scale,
|
||||
"ab_strides1": ab_strides1,
|
||||
"c_strides1": c_strides1,
|
||||
"ab_strides2": ab_strides2,
|
||||
"c_strides2": c_strides2,
|
||||
# cuda graph params
|
||||
"cutlass_graph": cutlass_graph,
|
||||
"triton_graph": triton_graph,
|
||||
@ -225,18 +242,27 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
}
|
||||
|
||||
# Warmup
|
||||
run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids,
|
||||
w1_scale, w2_scale, a_scale, num_warmup)
|
||||
run_triton_moe(
|
||||
a,
|
||||
w1_q,
|
||||
w2_q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
a_scale,
|
||||
num_warmup,
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt=
|
||||
"run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
|
||||
stmt="run_triton_moe(a, w1_q, w2_q, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="triton_moe",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
# Warmup
|
||||
replay_graph(triton_graph, num_warmup)
|
||||
@ -248,22 +274,31 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="triton_moe_cuda_graphs",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
# Warmup
|
||||
run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights,
|
||||
topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2,
|
||||
num_warmup)
|
||||
run_cutlass_moe(
|
||||
a,
|
||||
a_scale,
|
||||
w1_q,
|
||||
w2_q,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
num_warmup,
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt=
|
||||
"run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
|
||||
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="grouped_gemm_moe",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
# Warmup
|
||||
replay_graph(cutlass_graph, num_warmup)
|
||||
@ -275,7 +310,8 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="grouped_gemm_moe_cuda_graphs",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
|
||||
def main(args):
|
||||
@ -303,8 +339,15 @@ def main(args):
|
||||
for per_out_ch in PER_OUT_CH_OPTS:
|
||||
for size_m in DEFAULT_BATCH_SIZES:
|
||||
mkn = (size_m, size_k, size_n)
|
||||
bench_run(results, model, num_experts, topk,
|
||||
per_act_token, per_out_ch, mkn)
|
||||
bench_run(
|
||||
results,
|
||||
model,
|
||||
num_experts,
|
||||
topk,
|
||||
per_act_token,
|
||||
per_out_ch,
|
||||
mkn,
|
||||
)
|
||||
|
||||
compare = benchmark.Compare(results)
|
||||
compare.print()
|
||||
@ -312,7 +355,8 @@ def main(args):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark Marlin across specified models/shapes/batches")
|
||||
description="Benchmark Marlin across specified models/shapes/batches"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
@ -320,21 +364,14 @@ if __name__ == "__main__":
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES_MOE.keys(),
|
||||
)
|
||||
parser.add_argument("--tp-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_TP_SIZES)
|
||||
parser.add_argument("--batch-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_BATCH_SIZES)
|
||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
|
||||
parser.add_argument(
|
||||
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
|
||||
)
|
||||
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-num-groups", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-per-act-token",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=[])
|
||||
parser.add_argument("--limit-per-act-token", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-per-out-ch", nargs="+", type=int, default=[])
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import time
|
||||
|
||||
@ -10,14 +11,16 @@ from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def main(num_tokens: int,
|
||||
hidden_size: int,
|
||||
add_residual: bool,
|
||||
dtype: torch.dtype,
|
||||
seed: int = 0,
|
||||
do_profile: bool = False,
|
||||
num_warmup_iters: int = 5,
|
||||
num_iters: int = 100) -> None:
|
||||
def main(
|
||||
num_tokens: int,
|
||||
hidden_size: int,
|
||||
add_residual: bool,
|
||||
dtype: torch.dtype,
|
||||
seed: int = 0,
|
||||
do_profile: bool = False,
|
||||
num_warmup_iters: int = 5,
|
||||
num_iters: int = 100,
|
||||
) -> None:
|
||||
current_platform.seed_everything(seed)
|
||||
torch.set_default_device("cuda")
|
||||
|
||||
@ -56,33 +59,35 @@ def main(num_tokens: int,
|
||||
print(f"Kernel running time: {latency * 1000000:.3f} us")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the layernorm kernel.")
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(description="Benchmark the layernorm kernel.")
|
||||
parser.add_argument("--num-tokens", type=int, default=4096)
|
||||
parser.add_argument("--hidden-size", type=int, default=8192)
|
||||
parser.add_argument("--add-residual", action="store_true")
|
||||
parser.add_argument("--dtype",
|
||||
type=str,
|
||||
choices=["half", "bfloat16", "float"],
|
||||
default="half")
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--profile", action="store_true")
|
||||
parser.add_argument("--num-warmup-iters", type=int, default=5)
|
||||
parser.add_argument("--num-iters",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of benchmark iterations. "
|
||||
"If --profile is set, this number is ignored")
|
||||
parser.add_argument(
|
||||
"--num-iters",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of benchmark iterations. "
|
||||
"If --profile is set, this number is ignored",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
|
||||
main(num_tokens=args.num_tokens,
|
||||
hidden_size=args.hidden_size,
|
||||
add_residual=args.add_residual,
|
||||
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
|
||||
seed=args.seed,
|
||||
do_profile=args.profile,
|
||||
num_warmup_iters=args.num_warmup_iters,
|
||||
num_iters=args.num_iters)
|
||||
main(
|
||||
num_tokens=args.num_tokens,
|
||||
hidden_size=args.hidden_size,
|
||||
add_residual=args.add_residual,
|
||||
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
|
||||
seed=args.seed,
|
||||
do_profile=args.profile,
|
||||
num_warmup_iters=args.num_warmup_iters,
|
||||
num_iters=args.num_iters,
|
||||
)
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
@ -20,12 +21,18 @@ from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
|
||||
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N, marlin_permute_scales,
|
||||
marlin_zero_points)
|
||||
GPTQ_MARLIN_MAX_PARALLEL,
|
||||
GPTQ_MARLIN_MIN_THREAD_N,
|
||||
marlin_permute_scales,
|
||||
marlin_zero_points,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
|
||||
MarlinWorkspace)
|
||||
MarlinWorkspace,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
||||
pack_rows, quantize_weights)
|
||||
pack_rows,
|
||||
quantize_weights,
|
||||
)
|
||||
from vllm.scalar_type import ScalarType, scalar_types
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
@ -82,12 +89,14 @@ def rand_data(shape, dtype=torch.float16, scale=1):
|
||||
return torch.randint(-15, 15, shape, dtype=dtype, device="cuda")
|
||||
|
||||
|
||||
def quantize_and_pack(atype: torch.dtype,
|
||||
w: torch.Tensor,
|
||||
wtype: ScalarType,
|
||||
stype: Optional[torch.dtype],
|
||||
group_size: Optional[int],
|
||||
zero_points: bool = False):
|
||||
def quantize_and_pack(
|
||||
atype: torch.dtype,
|
||||
w: torch.Tensor,
|
||||
wtype: ScalarType,
|
||||
stype: Optional[torch.dtype],
|
||||
group_size: Optional[int],
|
||||
zero_points: bool = False,
|
||||
):
|
||||
assert wtype.is_integer(), "TODO: support floating point weights"
|
||||
|
||||
w_ref, w_q, w_s, w_zp = quantize_weights(
|
||||
@ -96,21 +105,24 @@ def quantize_and_pack(atype: torch.dtype,
|
||||
group_size=group_size,
|
||||
zero_points=zero_points,
|
||||
# to match how the kernel applies zps
|
||||
ref_zero_points_after_scales=True)
|
||||
ref_zero_points_after_scales=True,
|
||||
)
|
||||
|
||||
w_q = pack_rows(w_q, wtype.size_bits, *w_q.shape)
|
||||
return w_ref, w_q, w_s, w_zp
|
||||
|
||||
|
||||
def create_bench_tensors(shape: tuple[int, int, int], types: TypeConfig,
|
||||
group_size: Optional[int]) -> list[BenchmarkTensors]:
|
||||
def create_bench_tensors(
|
||||
shape: tuple[int, int, int], types: TypeConfig, group_size: Optional[int]
|
||||
) -> list[BenchmarkTensors]:
|
||||
m, n, k = shape
|
||||
|
||||
# we want to make sure that weights don't fit into L2 cache between runs so
|
||||
# we construct enough weights to exceed L2 cache, which is 50mb on a H100
|
||||
# so we target total weight size > 2*50mb
|
||||
num_weights = math.ceil(2 * 50 * 1024**2 * 8 /
|
||||
(k * n * types.weight_type.size_bits))
|
||||
num_weights = math.ceil(
|
||||
2 * 50 * 1024**2 * 8 / (k * n * types.weight_type.size_bits)
|
||||
)
|
||||
|
||||
a = rand_data((m, k), types.act_type, scale=5)
|
||||
|
||||
@ -124,8 +136,13 @@ def create_bench_tensors(shape: tuple[int, int, int], types: TypeConfig,
|
||||
w = w.to(torch.float16)
|
||||
|
||||
w_ref, w_q_packed, w_s, w_zp = quantize_and_pack(
|
||||
a.dtype, w, types.weight_type, types.group_scale_type, group_size,
|
||||
types.group_zero_type is not None)
|
||||
a.dtype,
|
||||
w,
|
||||
types.weight_type,
|
||||
types.group_scale_type,
|
||||
group_size,
|
||||
types.group_zero_type is not None,
|
||||
)
|
||||
|
||||
if not a.dtype.is_floating_point:
|
||||
aiinfo = torch.iinfo(a.dtype)
|
||||
@ -133,21 +150,30 @@ def create_bench_tensors(shape: tuple[int, int, int], types: TypeConfig,
|
||||
|
||||
w_ref = w_ref.to(torch.float32)
|
||||
|
||||
w_ch_s = None if types.channel_scale_type is None else\
|
||||
rand_data((n,), types.channel_scale_type)
|
||||
w_tok_s = None if types.token_scale_type is None else\
|
||||
rand_data((m,), types.token_scale_type)
|
||||
w_ch_s = (
|
||||
None
|
||||
if types.channel_scale_type is None
|
||||
else rand_data((n,), types.channel_scale_type)
|
||||
)
|
||||
w_tok_s = (
|
||||
None
|
||||
if types.token_scale_type is None
|
||||
else rand_data((m,), types.token_scale_type)
|
||||
)
|
||||
|
||||
benchmark_tensors.append(
|
||||
BenchmarkTensors(w_ref=w_ref,
|
||||
a=a,
|
||||
w_q=w_q_packed,
|
||||
wtype=types.weight_type,
|
||||
w_g_s=w_s,
|
||||
w_g_zp=w_zp,
|
||||
group_size=group_size,
|
||||
w_ch_s=w_ch_s,
|
||||
w_tok_s=w_tok_s))
|
||||
BenchmarkTensors(
|
||||
w_ref=w_ref,
|
||||
a=a,
|
||||
w_q=w_q_packed,
|
||||
wtype=types.weight_type,
|
||||
w_g_s=w_s,
|
||||
w_g_zp=w_zp,
|
||||
group_size=group_size,
|
||||
w_ch_s=w_ch_s,
|
||||
w_tok_s=w_tok_s,
|
||||
)
|
||||
)
|
||||
|
||||
return benchmark_tensors
|
||||
|
||||
@ -170,50 +196,57 @@ def cutlass_scaled_mm_create_bench_fn(bt: BenchmarkTensors) -> Callable:
|
||||
scale_b = torch.tensor(1.0, dtype=torch.float32, device=bt.a.device)
|
||||
w_col_major = bt.w_ref.to(bt.a.dtype).t().contiguous().t()
|
||||
return lambda: ops.cutlass_scaled_mm(
|
||||
bt.a, w_col_major, scale_a, scale_b, out_dtype=torch.float16)
|
||||
bt.a, w_col_major, scale_a, scale_b, out_dtype=torch.float16
|
||||
)
|
||||
|
||||
|
||||
def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
|
||||
device = bt.a.device
|
||||
|
||||
workspace = MarlinWorkspace(bt.w_ref.shape[1], GPTQ_MARLIN_MIN_THREAD_N,
|
||||
GPTQ_MARLIN_MAX_PARALLEL)
|
||||
workspace = MarlinWorkspace(
|
||||
bt.w_ref.shape[1], GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
|
||||
)
|
||||
|
||||
if bt.w_g_zp is None:
|
||||
w_zp = torch.empty(0, dtype=torch.int, device=device)
|
||||
else:
|
||||
w_zp = marlin_zero_points(bt.w_g_zp, bt.w_ref.shape[0],
|
||||
bt.w_ref.shape[1], bt.wtype.size_bits)
|
||||
w_zp = marlin_zero_points(
|
||||
bt.w_g_zp, bt.w_ref.shape[0], bt.w_ref.shape[1], bt.wtype.size_bits
|
||||
)
|
||||
|
||||
if bt.group_size is None:
|
||||
w_s = torch.tensor([], device="cuda", dtype=torch.half)
|
||||
else:
|
||||
w_s = marlin_permute_scales(bt.w_g_s, bt.w_ref.shape[0],
|
||||
bt.w_ref.shape[1], bt.group_size)
|
||||
w_s = marlin_permute_scales(
|
||||
bt.w_g_s, bt.w_ref.shape[0], bt.w_ref.shape[1], bt.group_size
|
||||
)
|
||||
|
||||
sort_indices = torch.empty(0, dtype=torch.int, device=device)
|
||||
g_idx = torch.empty(0, dtype=torch.int, device=device)
|
||||
w_q = ops.gptq_marlin_repack(bt.w_q, sort_indices, bt.w_ref.shape[0],
|
||||
bt.w_ref.shape[1], bt.wtype.size_bits)
|
||||
w_q = ops.gptq_marlin_repack(
|
||||
bt.w_q, sort_indices, bt.w_ref.shape[0], bt.w_ref.shape[1], bt.wtype.size_bits
|
||||
)
|
||||
|
||||
if bt.a.dtype.is_floating_point:
|
||||
assert bt.w_ch_s is None
|
||||
assert bt.w_tok_s is None
|
||||
assert bt.group_size is not None
|
||||
|
||||
fn = lambda: ops.gptq_marlin_gemm(a=bt.a,
|
||||
b_q_weight=w_q,
|
||||
b_scales=w_s,
|
||||
b_zeros=w_zp,
|
||||
g_idx=g_idx,
|
||||
perm=sort_indices,
|
||||
workspace=workspace.scratch,
|
||||
b_q_type=bt.wtype,
|
||||
size_m=bt.a.shape[0],
|
||||
size_n=bt.w_ref.shape[1],
|
||||
size_k=bt.w_ref.shape[0],
|
||||
is_k_full=True,
|
||||
is_zp_float=False)
|
||||
fn = lambda: ops.gptq_marlin_gemm(
|
||||
a=bt.a,
|
||||
b_q_weight=w_q,
|
||||
b_scales=w_s,
|
||||
b_zeros=w_zp,
|
||||
g_idx=g_idx,
|
||||
perm=sort_indices,
|
||||
workspace=workspace.scratch,
|
||||
b_q_type=bt.wtype,
|
||||
size_m=bt.a.shape[0],
|
||||
size_n=bt.w_ref.shape[1],
|
||||
size_k=bt.w_ref.shape[0],
|
||||
is_k_full=True,
|
||||
is_zp_float=False,
|
||||
)
|
||||
else:
|
||||
assert bt.a.dtype == torch.int8
|
||||
assert bt.wtype == scalar_types.uint4b8
|
||||
@ -221,36 +254,35 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
|
||||
if bt.w_ch_s is not None:
|
||||
s_ch = bt.w_ch_s.to(torch.float32)
|
||||
else:
|
||||
s_ch = torch.ones(bt.w_ref.shape[1],
|
||||
dtype=torch.float32,
|
||||
device=device)
|
||||
s_ch = torch.ones(bt.w_ref.shape[1], dtype=torch.float32, device=device)
|
||||
|
||||
if bt.w_tok_s is not None:
|
||||
s_tok = bt.w_tok_s.to(torch.float32)
|
||||
else:
|
||||
s_tok = torch.ones(bt.a.shape[0],
|
||||
dtype=torch.float32,
|
||||
device=device)
|
||||
s_tok = torch.ones(bt.a.shape[0], dtype=torch.float32, device=device)
|
||||
|
||||
fn = lambda: ops.marlin_qqq_gemm(a=bt.a,
|
||||
b_q_weight=w_q,
|
||||
s_group=w_s,
|
||||
s_tok=s_tok,
|
||||
s_ch=s_ch,
|
||||
workspace=workspace.scratch,
|
||||
size_m=bt.a.shape[0],
|
||||
size_n=bt.w_ref.shape[1],
|
||||
size_k=bt.w_ref.shape[0])
|
||||
fn = lambda: ops.marlin_qqq_gemm(
|
||||
a=bt.a,
|
||||
b_q_weight=w_q,
|
||||
s_group=w_s,
|
||||
s_tok=s_tok,
|
||||
s_ch=s_ch,
|
||||
workspace=workspace.scratch,
|
||||
size_m=bt.a.shape[0],
|
||||
size_n=bt.w_ref.shape[1],
|
||||
size_k=bt.w_ref.shape[0],
|
||||
)
|
||||
|
||||
return fn
|
||||
|
||||
|
||||
def machete_create_bench_fn(bt: BenchmarkTensors,
|
||||
out_type=torch.dtype,
|
||||
schedule=None) -> Callable:
|
||||
def machete_create_bench_fn(
|
||||
bt: BenchmarkTensors, out_type=torch.dtype, schedule=None
|
||||
) -> Callable:
|
||||
w_q = bt.w_q.t().contiguous().t() # make col major
|
||||
w_q = ops.machete_prepack_B(w_q, bt.a.dtype, bt.wtype,
|
||||
None if bt.w_g_s is None else bt.w_g_s.dtype)
|
||||
w_q = ops.machete_prepack_B(
|
||||
w_q, bt.a.dtype, bt.wtype, None if bt.w_g_s is None else bt.w_g_s.dtype
|
||||
)
|
||||
|
||||
w_g_zp = bt.w_g_zp
|
||||
if w_g_zp is not None:
|
||||
@ -275,26 +307,24 @@ def machete_create_bench_fn(bt: BenchmarkTensors,
|
||||
# bench
|
||||
|
||||
|
||||
def bench_fns(label: str, sub_label: str, description: str,
|
||||
fns: list[Callable]):
|
||||
|
||||
def bench_fns(label: str, sub_label: str, description: str, fns: list[Callable]):
|
||||
min_run_time = 1 if not NVTX_PROFILE else 0.1
|
||||
res = TBenchmark.Timer(
|
||||
stmt="""
|
||||
for fn in fns:
|
||||
fn()
|
||||
""",
|
||||
globals={
|
||||
"fns": fns
|
||||
},
|
||||
globals={"fns": fns},
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description=description,
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
|
||||
if NVTX_PROFILE:
|
||||
with nvtx.annotate("mm-bench"), nvtx.annotate(
|
||||
f"{label}|{sub_label}|{description}"):
|
||||
with (
|
||||
nvtx.annotate("mm-bench"),
|
||||
nvtx.annotate(f"{label}|{sub_label}|{description}"),
|
||||
):
|
||||
fns[0]()
|
||||
|
||||
return res
|
||||
@ -304,19 +334,20 @@ _SWEEP_SCHEDULES_RESULTS: Optional[pd.DataFrame] = None
|
||||
_SWEEP_SCHEDULES_RESULTS_CSV: Optional[str] = None
|
||||
|
||||
|
||||
def bench(types: TypeConfig,
|
||||
group_size: int,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
sweep_schedules: bool = True) -> list[TMeasurement]:
|
||||
def bench(
|
||||
types: TypeConfig,
|
||||
group_size: int,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
sweep_schedules: bool = True,
|
||||
) -> list[TMeasurement]:
|
||||
benchmark_tensors = create_bench_tensors((m, n, k), types, group_size)
|
||||
sub_label += f", L={len(benchmark_tensors)}"
|
||||
|
||||
name_type_string = f"W{types.weight_type}"+\
|
||||
f"-A{terse_type_name(types.act_type)}"
|
||||
name_type_string = f"W{types.weight_type}" + f"-A{terse_type_name(types.act_type)}"
|
||||
if types.group_scale_type is not None:
|
||||
name_type_string += f"-GS{terse_type_name(types.group_scale_type)}"
|
||||
if types.group_zero_type is not None:
|
||||
@ -332,31 +363,45 @@ def bench(types: TypeConfig,
|
||||
# pytorch impl
|
||||
timers.append(
|
||||
bench_fns(
|
||||
label, sub_label, "torch.matmul (fp16)",
|
||||
[torch_matmul_f16_create_bench_fn(bt)
|
||||
for bt in benchmark_tensors]))
|
||||
label,
|
||||
sub_label,
|
||||
"torch.matmul (fp16)",
|
||||
[torch_matmul_f16_create_bench_fn(bt) for bt in benchmark_tensors],
|
||||
)
|
||||
)
|
||||
|
||||
if types.act_type == torch.int8 or types.act_type == torch.float8_e4m3fn:
|
||||
timers.append(
|
||||
bench_fns(
|
||||
label, sub_label,
|
||||
f"cutlass_scaled_mm ({terse_type_name(types.act_type)})", [
|
||||
cutlass_scaled_mm_create_bench_fn(bt)
|
||||
for bt in benchmark_tensors
|
||||
]))
|
||||
label,
|
||||
sub_label,
|
||||
f"cutlass_scaled_mm ({terse_type_name(types.act_type)})",
|
||||
[cutlass_scaled_mm_create_bench_fn(bt) for bt in benchmark_tensors],
|
||||
)
|
||||
)
|
||||
|
||||
if types.act_type != torch.float8_e4m3fn:
|
||||
timers.append(
|
||||
bench_fns(label, sub_label, f"marlin ({name_type_string})",
|
||||
[marlin_create_bench_fn(bt)
|
||||
for bt in benchmark_tensors]))
|
||||
bench_fns(
|
||||
label,
|
||||
sub_label,
|
||||
f"marlin ({name_type_string})",
|
||||
[marlin_create_bench_fn(bt) for bt in benchmark_tensors],
|
||||
)
|
||||
)
|
||||
|
||||
# machete
|
||||
timers.append(
|
||||
bench_fns(label, sub_label, f"machete ({name_type_string})", [
|
||||
machete_create_bench_fn(bt, out_type=types.output_type)
|
||||
for bt in benchmark_tensors
|
||||
]))
|
||||
bench_fns(
|
||||
label,
|
||||
sub_label,
|
||||
f"machete ({name_type_string})",
|
||||
[
|
||||
machete_create_bench_fn(bt, out_type=types.output_type)
|
||||
for bt in benchmark_tensors
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
if sweep_schedules:
|
||||
global _SWEEP_SCHEDULES_RESULTS
|
||||
@ -371,7 +416,8 @@ def bench(types: TypeConfig,
|
||||
group_zeros_type=types.group_zero_type,
|
||||
token_scales_type=types.token_scale_type,
|
||||
channel_scales_type=types.channel_scale_type,
|
||||
out_type=types.output_type)
|
||||
out_type=types.output_type,
|
||||
)
|
||||
|
||||
if schedules is None or len(schedules) == 0:
|
||||
raise ValueError("No schedules found to sweep")
|
||||
@ -383,11 +429,17 @@ def bench(types: TypeConfig,
|
||||
if schedule_M >= 2 * max(m, 16) or schedule_M < m // 4:
|
||||
continue
|
||||
|
||||
res = bench_fns(label, sub_label, "machete_best", [
|
||||
machete_create_bench_fn(
|
||||
bt, out_type=types.output_type, schedule=schedule)
|
||||
for bt in benchmark_tensors
|
||||
])
|
||||
res = bench_fns(
|
||||
label,
|
||||
sub_label,
|
||||
"machete_best",
|
||||
[
|
||||
machete_create_bench_fn(
|
||||
bt, out_type=types.output_type, schedule=schedule
|
||||
)
|
||||
for bt in benchmark_tensors
|
||||
],
|
||||
)
|
||||
|
||||
results_row = {
|
||||
"M": m,
|
||||
@ -398,10 +450,8 @@ def bench(types: TypeConfig,
|
||||
"median": res.median,
|
||||
}
|
||||
if _SWEEP_SCHEDULES_RESULTS is None:
|
||||
_SWEEP_SCHEDULES_RESULTS = pd.DataFrame(
|
||||
columns=results_row.keys())
|
||||
_SWEEP_SCHEDULES_RESULTS.\
|
||||
loc[len(_SWEEP_SCHEDULES_RESULTS)] = results_row
|
||||
_SWEEP_SCHEDULES_RESULTS = pd.DataFrame(columns=results_row.keys())
|
||||
_SWEEP_SCHEDULES_RESULTS.loc[len(_SWEEP_SCHEDULES_RESULTS)] = results_row
|
||||
|
||||
print(f" {res.median:5.5} ", schedule)
|
||||
if not best or res.median < best.median:
|
||||
@ -422,8 +472,9 @@ def print_timers(timers: list[TMeasurement]):
|
||||
def run(args, MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
|
||||
types = TypeConfig(
|
||||
act_type=args.act_type,
|
||||
weight_type=scalar_types.uint4b8 if args.group_zero_type is None \
|
||||
else scalar_types.uint4,
|
||||
weight_type=scalar_types.uint4b8
|
||||
if args.group_zero_type is None
|
||||
else scalar_types.uint4,
|
||||
output_type=args.out_type,
|
||||
group_scale_type=args.group_scale_type,
|
||||
group_zero_type=args.group_zero_type,
|
||||
@ -433,14 +484,16 @@ def run(args, MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
|
||||
|
||||
results: list[TMeasurement] = []
|
||||
for m, k, n in MKNs:
|
||||
timers = bench(types,
|
||||
args.group_size,
|
||||
m,
|
||||
k,
|
||||
n,
|
||||
f"{args.act_type}-gemm",
|
||||
f"MKN=({m}x{k}x{n})",
|
||||
sweep_schedules=args.sweep_schedules)
|
||||
timers = bench(
|
||||
types,
|
||||
args.group_size,
|
||||
m,
|
||||
k,
|
||||
n,
|
||||
f"{args.act_type}-gemm",
|
||||
f"MKN=({m}x{k}x{n})",
|
||||
sweep_schedules=args.sweep_schedules,
|
||||
)
|
||||
print_timers(timers)
|
||||
results.extend(timers)
|
||||
|
||||
@ -454,7 +507,6 @@ def make_output(
|
||||
base_description: str,
|
||||
timestamp=None,
|
||||
):
|
||||
|
||||
print(f"== All Results {base_description} ====")
|
||||
print_timers(data)
|
||||
|
||||
@ -468,8 +520,7 @@ def make_output(
|
||||
|
||||
|
||||
def run_square_bench(args):
|
||||
dim_sizes = list(
|
||||
range(args.dim_start, args.dim_end + 1, args.dim_increment))
|
||||
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
|
||||
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
|
||||
data = run(args.dtype, args.sweep_schedules, MKNs)
|
||||
|
||||
@ -479,8 +530,9 @@ def run_square_bench(args):
|
||||
def run_range_bench(args):
|
||||
m_start, k_start, n_start = (int(x) for x in args.dim_start.split(","))
|
||||
m_end, k_end, n_end = (int(x) for x in args.dim_end.split(","))
|
||||
m_increment, k_increment, n_increment = \
|
||||
(int(x) for x in args.dim_increment.split(","))
|
||||
m_increment, k_increment, n_increment = (
|
||||
int(x) for x in args.dim_increment.split(",")
|
||||
)
|
||||
Ms = list(range(m_start, m_end + 1, m_increment))
|
||||
Ks = list(range(k_start, k_end + 1, k_increment))
|
||||
Ns = list(range(n_start, n_end + 1, n_increment))
|
||||
@ -492,7 +544,6 @@ def run_range_bench(args):
|
||||
|
||||
|
||||
def run_model_bench(args):
|
||||
|
||||
print("Benchmarking models:")
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
@ -535,10 +586,13 @@ def run_model_bench(args):
|
||||
with open(f"model_bench-{type_string}-{timestr}.pkl", "wb") as f:
|
||||
args_dict = vars(args)
|
||||
args_dict.pop("func")
|
||||
pkl.dump({
|
||||
"args": args_dict,
|
||||
"results": all_results,
|
||||
}, f)
|
||||
pkl.dump(
|
||||
{
|
||||
"args": args_dict,
|
||||
"results": all_results,
|
||||
},
|
||||
f,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -554,7 +608,6 @@ if __name__ == "__main__":
|
||||
}[dt]
|
||||
|
||||
class ToTorchDtype(argparse.Action):
|
||||
|
||||
def __call__(self, parser, namespace, values, option_string=None):
|
||||
setattr(namespace, self.dest, to_torch_dtype(values))
|
||||
|
||||
@ -580,32 +633,32 @@ Benchmark Machete GEMM.
|
||||
"--act-type",
|
||||
action=ToTorchDtype,
|
||||
required=True,
|
||||
choices=['bfloat16', 'float16', 'int8', 'float8_e4m3fn'],
|
||||
choices=["bfloat16", "float16", "int8", "float8_e4m3fn"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--group-scale-type",
|
||||
action=ToTorchDtype,
|
||||
choices=['bfloat16', 'float16'],
|
||||
choices=["bfloat16", "float16"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--group-zero-type",
|
||||
type=to_torch_dtype,
|
||||
choices=['bfloat16', 'float16'],
|
||||
choices=["bfloat16", "float16"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--channel-scale-type",
|
||||
action=ToTorchDtype,
|
||||
choices=['float'],
|
||||
choices=["float"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--token-scale-type",
|
||||
action=ToTorchDtype,
|
||||
choices=['float'],
|
||||
choices=["float"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--out-type",
|
||||
action=ToTorchDtype,
|
||||
choices=['bfloat16', 'float16'],
|
||||
choices=["bfloat16", "float16"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--group-size",
|
||||
@ -618,9 +671,11 @@ Benchmark Machete GEMM.
|
||||
action="store_true",
|
||||
help="Run a sweep over all supported schedules",
|
||||
)
|
||||
parser.add_argument("--sweep-csv-out",
|
||||
help="CSV to store sweep results",
|
||||
default="sch_sweep_results.csv")
|
||||
parser.add_argument(
|
||||
"--sweep-csv-out",
|
||||
help="CSV to store sweep results",
|
||||
default="sch_sweep_results.csv",
|
||||
)
|
||||
subparsers = parser.add_subparsers(dest="cmd", required=True)
|
||||
|
||||
square_parser = subparsers.add_parser("square_bench")
|
||||
@ -634,17 +689,20 @@ Benchmark Machete GEMM.
|
||||
"--dim-start",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Start value for M,K,N as common separated list")
|
||||
help="Start value for M,K,N as common separated list",
|
||||
)
|
||||
range_parser.add_argument(
|
||||
"--dim-end",
|
||||
type=str,
|
||||
required=True,
|
||||
help="End value (inclusive) for M,K,N as common separated list")
|
||||
help="End value (inclusive) for M,K,N as common separated list",
|
||||
)
|
||||
range_parser.add_argument(
|
||||
"--dim-increment",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Increment value for M,K,N as common separated list")
|
||||
help="Increment value for M,K,N as common separated list",
|
||||
)
|
||||
range_parser.set_defaults(func=run_range_bench)
|
||||
|
||||
model_parser = subparsers.add_parser("model_bench")
|
||||
@ -655,14 +713,12 @@ Benchmark Machete GEMM.
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES.keys(),
|
||||
)
|
||||
model_parser.add_argument("--tp-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_TP_SIZES)
|
||||
model_parser.add_argument("--batch-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_BATCH_SIZES)
|
||||
model_parser.add_argument(
|
||||
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
|
||||
)
|
||||
model_parser.add_argument(
|
||||
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
|
||||
)
|
||||
model_parser.set_defaults(func=run_model_bench)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as benchmark
|
||||
@ -6,19 +7,34 @@ from benchmark_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
|
||||
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
|
||||
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES)
|
||||
GPTQ_MARLIN_24_MAX_PARALLEL,
|
||||
GPTQ_MARLIN_24_MIN_THREAD_N,
|
||||
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES,
|
||||
GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.allspark_utils import (
|
||||
ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD, ALLSPARK_SUPPORTED_QUANT_TYPES)
|
||||
ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD,
|
||||
ALLSPARK_SUPPORTED_QUANT_TYPES,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
|
||||
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
|
||||
MARLIN_SUPPORTED_GROUP_SIZES, query_marlin_supported_quant_types)
|
||||
GPTQ_MARLIN_MAX_PARALLEL,
|
||||
GPTQ_MARLIN_MIN_THREAD_N,
|
||||
MARLIN_SUPPORTED_GROUP_SIZES,
|
||||
query_marlin_supported_quant_types,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
|
||||
MarlinWorkspace, marlin_quantize)
|
||||
MarlinWorkspace,
|
||||
marlin_quantize,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
|
||||
marlin_24_quantize)
|
||||
marlin_24_quantize,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
||||
gptq_pack, gptq_quantize_weights, quantize_weights, sort_weights)
|
||||
gptq_pack,
|
||||
gptq_quantize_weights,
|
||||
quantize_weights,
|
||||
sort_weights,
|
||||
)
|
||||
from vllm.scalar_type import ScalarType
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
@ -29,22 +45,29 @@ ACT_ORDER_OPTS = [False, True]
|
||||
K_FULL_OPTS = [False, True]
|
||||
|
||||
|
||||
def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
act_order: bool, is_k_full: bool, quant_type: ScalarType,
|
||||
group_size: int, size_m: int, size_k: int, size_n: int):
|
||||
def bench_run(
|
||||
results: list[benchmark.Measurement],
|
||||
model: str,
|
||||
act_order: bool,
|
||||
is_k_full: bool,
|
||||
quant_type: ScalarType,
|
||||
group_size: int,
|
||||
size_m: int,
|
||||
size_k: int,
|
||||
size_n: int,
|
||||
):
|
||||
label = "Quant Matmul"
|
||||
|
||||
sub_label = ("{}, act={} k_full={}, q={}, g={}, "
|
||||
"MKN=({}x{}x{})".format(model, act_order, is_k_full,
|
||||
str(quant_type), group_size, size_m,
|
||||
size_k, size_n))
|
||||
sub_label = "{}, act={} k_full={}, q={}, g={}, MKN=({}x{}x{})".format(
|
||||
model, act_order, is_k_full, str(quant_type), group_size, size_m, size_k, size_n
|
||||
)
|
||||
|
||||
print(f"Testing: {sub_label}")
|
||||
|
||||
a = torch.randn(size_m, size_k).to(torch.half).cuda()
|
||||
b = torch.rand(size_k, size_n).to(torch.half).cuda()
|
||||
|
||||
a_tmp = (torch.zeros(size_m, size_k).to(torch.half).cuda())
|
||||
a_tmp = torch.zeros(size_m, size_k).to(torch.half).cuda()
|
||||
|
||||
# Marlin quant
|
||||
(
|
||||
@ -57,14 +80,16 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
) = marlin_quantize(b, quant_type, group_size, act_order)
|
||||
|
||||
# Marlin_24 quant
|
||||
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta,
|
||||
marlin_24_s) = marlin_24_quantize(b, quant_type, group_size)
|
||||
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s) = (
|
||||
marlin_24_quantize(b, quant_type, group_size)
|
||||
)
|
||||
|
||||
marlin_zp = torch.empty(0, dtype=torch.int, device=b.device)
|
||||
|
||||
# GPTQ quant
|
||||
(w_ref, q_w, s, g_idx,
|
||||
rand_perm) = gptq_quantize_weights(b, quant_type, group_size, act_order)
|
||||
(w_ref, q_w, s, g_idx, rand_perm) = gptq_quantize_weights(
|
||||
b, quant_type, group_size, act_order
|
||||
)
|
||||
q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)
|
||||
|
||||
# For act_order, sort the "weights" and "g_idx"
|
||||
@ -74,32 +99,37 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
(q_w, g_idx, repack_sort_indices) = sort_weights(q_w, g_idx)
|
||||
|
||||
# Prepare
|
||||
marlin_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N,
|
||||
GPTQ_MARLIN_MAX_PARALLEL)
|
||||
marlin_workspace = MarlinWorkspace(
|
||||
size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
|
||||
)
|
||||
|
||||
marlin_24_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_24_MIN_THREAD_N,
|
||||
GPTQ_MARLIN_24_MAX_PARALLEL)
|
||||
marlin_24_workspace = MarlinWorkspace(
|
||||
size_n, GPTQ_MARLIN_24_MIN_THREAD_N, GPTQ_MARLIN_24_MAX_PARALLEL
|
||||
)
|
||||
marlin_zp = torch.zeros_like(marlin_s, dtype=torch.int)
|
||||
|
||||
# AllSpark W8A16 quant
|
||||
as_supported_case = (quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
|
||||
and group_size == -1 and not act_order and is_k_full)
|
||||
as_supported_case = (
|
||||
quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
|
||||
and group_size == -1
|
||||
and not act_order
|
||||
and is_k_full
|
||||
)
|
||||
if as_supported_case:
|
||||
properties = torch.cuda.get_device_properties(b.device.index)
|
||||
sm_count = properties.multi_processor_count
|
||||
sm_version = properties.major * 10 + properties.minor
|
||||
|
||||
supported_arch = (sm_version >= 80 and sm_version < 90)
|
||||
supported_arch = sm_version >= 80 and sm_version < 90
|
||||
as_supported_case = as_supported_case and supported_arch
|
||||
if supported_arch:
|
||||
has_zp = False
|
||||
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size,
|
||||
has_zp)
|
||||
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size, has_zp)
|
||||
qw = qw.to(torch.uint8)
|
||||
|
||||
qw_reorder, s_reorder, zp_reorder = \
|
||||
ops.allspark_repack_weight(
|
||||
qw, s, zp, has_zp)
|
||||
qw_reorder, s_reorder, zp_reorder = ops.allspark_repack_weight(
|
||||
qw, s, zp, has_zp
|
||||
)
|
||||
CUBLAS_M_THRESHOLD = ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD
|
||||
|
||||
globals = {
|
||||
@ -136,8 +166,7 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
"zp_reorder": zp_reorder if as_supported_case else None,
|
||||
"sm_count": sm_count if as_supported_case else None,
|
||||
"sm_version": sm_version if as_supported_case else None,
|
||||
"CUBLAS_M_THRESHOLD":
|
||||
CUBLAS_M_THRESHOLD if as_supported_case else None,
|
||||
"CUBLAS_M_THRESHOLD": CUBLAS_M_THRESHOLD if as_supported_case else None,
|
||||
# Kernels
|
||||
"gptq_marlin_gemm": ops.gptq_marlin_gemm,
|
||||
"gptq_marlin_24_gemm": ops.gptq_marlin_24_gemm,
|
||||
@ -158,60 +187,63 @@ def bench_run(results: list[benchmark.Measurement], model: str,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="pytorch_gemm",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt=
|
||||
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
|
||||
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="gptq_marlin_gemm_fp16",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt=
|
||||
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
|
||||
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="gptq_marlin_gemm_fp32",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
if (quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
|
||||
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES):
|
||||
if (
|
||||
quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
|
||||
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
|
||||
):
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt=
|
||||
"output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
|
||||
stmt="output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="gptq_marlin_24_gemm",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt=
|
||||
"q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
|
||||
stmt="q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="gptq_marlin_repack",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
if as_supported_case:
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt=
|
||||
"output = allspark_w8a16_gemm(a, qw_reorder, s_reorder, zp_reorder, size_n, group_size, sm_count, sm_version, CUBLAS_M_THRESHOLD, False, True)", # noqa: E501
|
||||
stmt="output = allspark_w8a16_gemm(a, qw_reorder, s_reorder, zp_reorder, size_n, group_size, sm_count, sm_version, CUBLAS_M_THRESHOLD, False, True)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="allspark_w8a16_gemm_fp32",
|
||||
).blocked_autorange(min_run_time=min_run_time))
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
|
||||
def main(args):
|
||||
@ -233,37 +265,50 @@ def main(args):
|
||||
continue
|
||||
|
||||
for act_order in ACT_ORDER_OPTS:
|
||||
if len(args.limit_act_order
|
||||
) > 0 and act_order not in args.limit_act_order:
|
||||
if (
|
||||
len(args.limit_act_order) > 0
|
||||
and act_order not in args.limit_act_order
|
||||
):
|
||||
continue
|
||||
|
||||
for is_k_full in K_FULL_OPTS:
|
||||
if len(args.limit_k_full
|
||||
) > 0 and is_k_full not in args.limit_k_full:
|
||||
if (
|
||||
len(args.limit_k_full) > 0
|
||||
and is_k_full not in args.limit_k_full
|
||||
):
|
||||
continue
|
||||
|
||||
for quant_type in query_marlin_supported_quant_types(
|
||||
False):
|
||||
if len(args.limit_num_bits) > 0 and \
|
||||
quant_type.size_bits not in args.limit_num_bits:
|
||||
for quant_type in query_marlin_supported_quant_types(False):
|
||||
if (
|
||||
len(args.limit_num_bits) > 0
|
||||
and quant_type.size_bits not in args.limit_num_bits
|
||||
):
|
||||
continue
|
||||
|
||||
for group_size in MARLIN_SUPPORTED_GROUP_SIZES:
|
||||
if len(
|
||||
args.limit_group_size
|
||||
) > 0 and group_size not in args.limit_group_size:
|
||||
if (
|
||||
len(args.limit_group_size) > 0
|
||||
and group_size not in args.limit_group_size
|
||||
):
|
||||
continue
|
||||
|
||||
# For act_order, the group_size must be less than
|
||||
# size_k
|
||||
if act_order and (group_size == size_k
|
||||
or group_size == -1):
|
||||
if act_order and (group_size == size_k or group_size == -1):
|
||||
continue
|
||||
|
||||
for size_m in args.batch_sizes:
|
||||
bench_run(results, model, act_order, is_k_full,
|
||||
quant_type, group_size, size_m,
|
||||
size_k, size_n)
|
||||
bench_run(
|
||||
results,
|
||||
model,
|
||||
act_order,
|
||||
is_k_full,
|
||||
quant_type,
|
||||
group_size,
|
||||
size_m,
|
||||
size_k,
|
||||
size_n,
|
||||
)
|
||||
|
||||
compare = benchmark.Compare(results)
|
||||
compare.print()
|
||||
@ -274,7 +319,8 @@ def main(args):
|
||||
#
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark Marlin across specified models/shapes/batches")
|
||||
description="Benchmark Marlin across specified models/shapes/batches"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
@ -282,10 +328,9 @@ if __name__ == "__main__":
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES.keys(),
|
||||
)
|
||||
parser.add_argument("--batch-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_BATCH_SIZES)
|
||||
parser.add_argument(
|
||||
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
|
||||
)
|
||||
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-group-size", nargs="+", type=int, default=[])
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import json
|
||||
@ -6,7 +7,6 @@ import time
|
||||
from contextlib import nullcontext
|
||||
from datetime import datetime
|
||||
from itertools import product
|
||||
from types import SimpleNamespace
|
||||
from typing import Any, TypedDict
|
||||
|
||||
import ray
|
||||
@ -31,56 +31,60 @@ class BenchmarkConfig(TypedDict):
|
||||
num_stages: int
|
||||
|
||||
|
||||
def benchmark_config(config: BenchmarkConfig,
|
||||
num_tokens: int,
|
||||
num_experts: int,
|
||||
shard_intermediate_size: int,
|
||||
hidden_size: int,
|
||||
topk: int,
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
block_quant_shape: List[int] = None,
|
||||
use_deep_gemm: bool = False) -> float:
|
||||
def benchmark_config(
|
||||
config: BenchmarkConfig,
|
||||
num_tokens: int,
|
||||
num_experts: int,
|
||||
shard_intermediate_size: int,
|
||||
hidden_size: int,
|
||||
topk: int,
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
block_quant_shape: list[int] = None,
|
||||
use_deep_gemm: bool = False,
|
||||
) -> float:
|
||||
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
|
||||
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
|
||||
if use_int8_w8a16:
|
||||
w1 = torch.randint(-127,
|
||||
127, (
|
||||
num_experts,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
),
|
||||
dtype=torch.int8)
|
||||
w2 = torch.randint(-127,
|
||||
127, (
|
||||
num_experts,
|
||||
hidden_size,
|
||||
shard_intermediate_size // 2,
|
||||
),
|
||||
dtype=torch.int8)
|
||||
w1 = torch.randint(
|
||||
-127,
|
||||
127,
|
||||
(
|
||||
num_experts,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
),
|
||||
dtype=torch.int8,
|
||||
)
|
||||
w2 = torch.randint(
|
||||
-127,
|
||||
127,
|
||||
(
|
||||
num_experts,
|
||||
hidden_size,
|
||||
shard_intermediate_size // 2,
|
||||
),
|
||||
dtype=torch.int8,
|
||||
)
|
||||
else:
|
||||
w1 = torch.randn(num_experts,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
dtype=init_dtype)
|
||||
w2 = torch.randn(num_experts,
|
||||
hidden_size,
|
||||
shard_intermediate_size // 2,
|
||||
dtype=init_dtype)
|
||||
gating_output = torch.randn(num_iters,
|
||||
num_tokens,
|
||||
num_experts,
|
||||
dtype=torch.float32)
|
||||
w1 = torch.randn(
|
||||
num_experts, shard_intermediate_size, hidden_size, dtype=init_dtype
|
||||
)
|
||||
w2 = torch.randn(
|
||||
num_experts, hidden_size, shard_intermediate_size // 2, dtype=init_dtype
|
||||
)
|
||||
gating_output = torch.randn(num_iters, num_tokens, num_experts, dtype=torch.float32)
|
||||
|
||||
w1_scale = None
|
||||
w2_scale = None
|
||||
a1_scale = None
|
||||
a2_scale = None
|
||||
if use_int8_w8a16:
|
||||
w1_scale = torch.randn((num_experts, 2 * shard_intermediate_size),
|
||||
dtype=torch.float32)
|
||||
w1_scale = torch.randn(
|
||||
(num_experts, 2 * shard_intermediate_size), dtype=torch.float32
|
||||
)
|
||||
w2_scale = torch.randn((hidden_size, num_experts), dtype=torch.float32)
|
||||
if use_fp8_w8a8:
|
||||
if block_quant_shape:
|
||||
@ -93,10 +97,14 @@ def benchmark_config(config: BenchmarkConfig,
|
||||
n_tiles_w2 = (K + block_n - 1) // block_n
|
||||
k_tiles_w1 = (K + block_k - 1) // block_k
|
||||
k_tiles_w2 = (N + block_k - 1) // block_k
|
||||
w1_scale = torch.rand((E, n_tiles_w1, k_tiles_w1),
|
||||
dtype=torch.float32) * factor_for_scale
|
||||
w2_scale = torch.rand((E, n_tiles_w2, k_tiles_w2),
|
||||
dtype=torch.float32) * factor_for_scale
|
||||
w1_scale = (
|
||||
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32)
|
||||
* factor_for_scale
|
||||
)
|
||||
w2_scale = (
|
||||
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32)
|
||||
* factor_for_scale
|
||||
)
|
||||
else:
|
||||
w1_scale = torch.randn(num_experts, dtype=torch.float32)
|
||||
w2_scale = torch.randn(num_experts, dtype=torch.float32)
|
||||
@ -114,10 +122,12 @@ def benchmark_config(config: BenchmarkConfig,
|
||||
|
||||
def run():
|
||||
from vllm.model_executor.layers.fused_moe import override_config
|
||||
|
||||
with override_config(config):
|
||||
if use_deep_gemm:
|
||||
topk_weights, topk_ids, token_expert_indices = fused_topk(
|
||||
x, input_gating, topk, False)
|
||||
x, input_gating, topk, False
|
||||
)
|
||||
return fused_experts(
|
||||
x,
|
||||
w1,
|
||||
@ -213,8 +223,7 @@ def get_rocm_tuning_space(use_fp16):
|
||||
return param_ranges
|
||||
|
||||
|
||||
def get_configs_compute_bound(use_fp16,
|
||||
block_quant_shape) -> list[dict[str, int]]:
|
||||
def get_configs_compute_bound(use_fp16, block_quant_shape) -> list[dict[str, int]]:
|
||||
configs: list[BenchmarkConfig] = []
|
||||
|
||||
if current_platform.is_rocm():
|
||||
@ -250,20 +259,25 @@ def get_configs_compute_bound(use_fp16,
|
||||
if block_quant_shape is not None and not use_fp16:
|
||||
block_n, block_k = block_quant_shape[0], block_quant_shape[1]
|
||||
for config in configs[:]:
|
||||
if config["BLOCK_SIZE_K"] % block_k != 0 or config[
|
||||
"BLOCK_SIZE_N"] % block_n != 0:
|
||||
if (
|
||||
config["BLOCK_SIZE_K"] % block_k != 0
|
||||
or config["BLOCK_SIZE_N"] % block_n != 0
|
||||
):
|
||||
configs.remove(config)
|
||||
return configs
|
||||
|
||||
|
||||
def prune_rocm_search_space(num_tokens, shard_intermediate_size, hidden_size,
|
||||
search_space, is_fp16, topk):
|
||||
def prune_rocm_search_space(
|
||||
num_tokens, shard_intermediate_size, hidden_size, search_space, is_fp16, topk
|
||||
):
|
||||
N1, K1 = shard_intermediate_size, hidden_size
|
||||
N2, K2 = hidden_size, shard_intermediate_size // 2
|
||||
pruned_space_1 = prune_rocm_configs(num_tokens * topk, N1, K1,
|
||||
search_space, is_fp16)
|
||||
pruned_space_2 = prune_rocm_configs(num_tokens * topk, N2, K2,
|
||||
search_space, is_fp16)
|
||||
pruned_space_1 = prune_rocm_configs(
|
||||
num_tokens * topk, N1, K1, search_space, is_fp16
|
||||
)
|
||||
pruned_space_2 = prune_rocm_configs(
|
||||
num_tokens * topk, N2, K2, search_space, is_fp16
|
||||
)
|
||||
search_space = merge_unique_dicts(pruned_space_1, pruned_space_2)
|
||||
return search_space
|
||||
|
||||
@ -301,14 +315,14 @@ def prune_rocm_configs(M, N, K, configs, is_fp16=True):
|
||||
SPLIT_K = config.get("SPLIT_K", 1)
|
||||
GROUP_M = config.get("GROUP_SIZE_M")
|
||||
if is_fp16:
|
||||
if (matrix_instr_nonkdim > BLOCK_SIZE_M
|
||||
or matrix_instr_nonkdim > BLOCK_SIZE_N):
|
||||
if (
|
||||
matrix_instr_nonkdim > BLOCK_SIZE_M
|
||||
or matrix_instr_nonkdim > BLOCK_SIZE_N
|
||||
):
|
||||
continue
|
||||
if (matrix_instr_nonkdim >= M
|
||||
and matrix_instr_nonkdim != BLOCK_SIZE_M):
|
||||
if matrix_instr_nonkdim >= M and matrix_instr_nonkdim != BLOCK_SIZE_M:
|
||||
continue
|
||||
if (matrix_instr_nonkdim >= N
|
||||
and matrix_instr_nonkdim != BLOCK_SIZE_N):
|
||||
if matrix_instr_nonkdim >= N and matrix_instr_nonkdim != BLOCK_SIZE_N:
|
||||
continue
|
||||
# Skip BLOCK_SIZE that is too large compare to M/N
|
||||
# unless BLOCK_SIZE is already small enough
|
||||
@ -329,8 +343,10 @@ def prune_rocm_configs(M, N, K, configs, is_fp16=True):
|
||||
continue
|
||||
# out of shared memory resource
|
||||
# TODO (zhanglx): This does not consider the LDS usage in the epilogue
|
||||
LDS = (BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a +
|
||||
BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b)
|
||||
LDS = (
|
||||
BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a
|
||||
+ BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b
|
||||
)
|
||||
if LDS > 65536:
|
||||
continue
|
||||
# Skip small block sizes and num_warps for large gemm
|
||||
@ -364,7 +380,6 @@ def merge_unique_dicts(list1, list2):
|
||||
|
||||
@ray.remote(num_gpus=1)
|
||||
class BenchmarkWorker:
|
||||
|
||||
def __init__(self, seed: int) -> None:
|
||||
torch.set_default_device("cuda")
|
||||
current_platform.seed_everything(seed)
|
||||
@ -384,40 +399,44 @@ class BenchmarkWorker:
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
block_quant_shape: List[int] = None,
|
||||
block_quant_shape: list[int] = None,
|
||||
use_deep_gemm: bool = False,
|
||||
) -> tuple[dict[str, int], float]:
|
||||
current_platform.seed_everything(self.seed)
|
||||
dtype_str = get_config_dtype_str(dtype,
|
||||
use_int8_w8a16=use_int8_w8a16,
|
||||
use_fp8_w8a8=use_fp8_w8a8)
|
||||
dtype_str = get_config_dtype_str(
|
||||
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
|
||||
)
|
||||
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
|
||||
# is the intermediate size after silu_and_mul.
|
||||
op_config = get_moe_configs(num_experts, shard_intermediate_size // 2,
|
||||
dtype_str)
|
||||
op_config = get_moe_configs(
|
||||
num_experts, shard_intermediate_size // 2, dtype_str
|
||||
)
|
||||
if op_config is None:
|
||||
config = get_default_config(num_tokens,
|
||||
num_experts,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype_str,
|
||||
is_marlin=False)
|
||||
config = get_default_config(
|
||||
num_tokens,
|
||||
num_experts,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype_str,
|
||||
is_marlin=False,
|
||||
)
|
||||
else:
|
||||
config = op_config[min(op_config.keys(),
|
||||
key=lambda x: abs(x - num_tokens))]
|
||||
kernel_time = benchmark_config(config,
|
||||
num_tokens,
|
||||
num_experts,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype,
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
num_iters=100,
|
||||
block_quant_shape=block_quant_shape,
|
||||
use_deep_gemm=use_deep_gemm)
|
||||
config = op_config[min(op_config.keys(), key=lambda x: abs(x - num_tokens))]
|
||||
kernel_time = benchmark_config(
|
||||
config,
|
||||
num_tokens,
|
||||
num_experts,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype,
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
num_iters=100,
|
||||
block_quant_shape=block_quant_shape,
|
||||
use_deep_gemm=use_deep_gemm,
|
||||
)
|
||||
return config, kernel_time
|
||||
|
||||
def tune(
|
||||
@ -438,10 +457,14 @@ class BenchmarkWorker:
|
||||
best_time = float("inf")
|
||||
if current_platform.is_rocm():
|
||||
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
|
||||
search_space = prune_rocm_search_space(num_tokens,
|
||||
shard_intermediate_size,
|
||||
hidden_size, search_space,
|
||||
is_fp16, topk)
|
||||
search_space = prune_rocm_search_space(
|
||||
num_tokens,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
search_space,
|
||||
is_fp16,
|
||||
topk,
|
||||
)
|
||||
|
||||
need_device_guard = False
|
||||
if current_platform.is_rocm():
|
||||
@ -449,8 +472,7 @@ class BenchmarkWorker:
|
||||
if visible_device != f"{self.device_id}":
|
||||
need_device_guard = True
|
||||
|
||||
with torch.cuda.device(
|
||||
self.device_id) if need_device_guard else nullcontext():
|
||||
with torch.cuda.device(self.device_id) if need_device_guard else nullcontext():
|
||||
for config in tqdm(search_space):
|
||||
try:
|
||||
kernel_time = benchmark_config(
|
||||
@ -465,7 +487,8 @@ class BenchmarkWorker:
|
||||
use_int8_w8a16,
|
||||
num_iters=20,
|
||||
block_quant_shape=block_quant_shape,
|
||||
use_deep_gemm=use_deep_gemm)
|
||||
use_deep_gemm=use_deep_gemm,
|
||||
)
|
||||
except triton.runtime.autotuner.OutOfResources:
|
||||
# Some configurations may be invalid and fail to compile.
|
||||
continue
|
||||
@ -481,42 +504,44 @@ class BenchmarkWorker:
|
||||
|
||||
def sort_config(config: BenchmarkConfig) -> BenchmarkConfig:
|
||||
return {
|
||||
"BLOCK_SIZE_M":
|
||||
config["BLOCK_SIZE_M"],
|
||||
"BLOCK_SIZE_N":
|
||||
config["BLOCK_SIZE_N"],
|
||||
"BLOCK_SIZE_K":
|
||||
config["BLOCK_SIZE_K"],
|
||||
"GROUP_SIZE_M":
|
||||
config["GROUP_SIZE_M"],
|
||||
"num_warps":
|
||||
config["num_warps"],
|
||||
"num_stages":
|
||||
config["num_stages"],
|
||||
**({
|
||||
"waves_per_eu": config["waves_per_eu"]
|
||||
} if "waves_per_eu" in config else {}),
|
||||
**({
|
||||
"matrix_instr_nonkdim": config["matrix_instr_nonkdim"]
|
||||
} if "matrix_instr_nonkdim" in config else {}),
|
||||
**({
|
||||
"kpack": config["kpack"]
|
||||
} if "kpack" in config else {}),
|
||||
"BLOCK_SIZE_M": config["BLOCK_SIZE_M"],
|
||||
"BLOCK_SIZE_N": config["BLOCK_SIZE_N"],
|
||||
"BLOCK_SIZE_K": config["BLOCK_SIZE_K"],
|
||||
"GROUP_SIZE_M": config["GROUP_SIZE_M"],
|
||||
"num_warps": config["num_warps"],
|
||||
"num_stages": config["num_stages"],
|
||||
**(
|
||||
{"waves_per_eu": config["waves_per_eu"]} if "waves_per_eu" in config else {}
|
||||
),
|
||||
**(
|
||||
{"matrix_instr_nonkdim": config["matrix_instr_nonkdim"]}
|
||||
if "matrix_instr_nonkdim" in config
|
||||
else {}
|
||||
),
|
||||
**({"kpack": config["kpack"]} if "kpack" in config else {}),
|
||||
}
|
||||
|
||||
|
||||
def save_configs(configs: dict[int, BenchmarkConfig], num_experts: int,
|
||||
shard_intermediate_size: int, hidden_size: int, topk: int,
|
||||
dtype: torch.dtype, use_fp8_w8a8: bool, use_int8_w8a16: bool,
|
||||
block_quant_shape: List[int]) -> None:
|
||||
dtype_str = get_config_dtype_str(dtype,
|
||||
use_int8_w8a16=use_int8_w8a16,
|
||||
use_fp8_w8a8=use_fp8_w8a8)
|
||||
def save_configs(
|
||||
configs: dict[int, BenchmarkConfig],
|
||||
num_experts: int,
|
||||
shard_intermediate_size: int,
|
||||
hidden_size: int,
|
||||
topk: int,
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
block_quant_shape: list[int],
|
||||
) -> None:
|
||||
dtype_str = get_config_dtype_str(
|
||||
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
|
||||
)
|
||||
|
||||
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
|
||||
# is the intermediate size after silu_and_mul.
|
||||
filename = get_config_file_name(num_experts, shard_intermediate_size // 2,
|
||||
dtype_str, block_quant_shape)
|
||||
filename = get_config_file_name(
|
||||
num_experts, shard_intermediate_size // 2, dtype_str, block_quant_shape
|
||||
)
|
||||
|
||||
print(f"Writing best config to {filename}...")
|
||||
with open(filename, "w") as f:
|
||||
@ -525,21 +550,18 @@ def save_configs(configs: dict[int, BenchmarkConfig], num_experts: int,
|
||||
|
||||
|
||||
def get_weight_block_size_safety(config, default_value=None):
|
||||
|
||||
quantization_config = getattr(config, 'quantization_config', {})
|
||||
quantization_config = getattr(config, "quantization_config", {})
|
||||
if isinstance(quantization_config, dict):
|
||||
return quantization_config.get('weight_block_size', default_value)
|
||||
return quantization_config.get("weight_block_size", default_value)
|
||||
return default_value
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
|
||||
config = get_config(model=args.model,
|
||||
trust_remote_code=args.trust_remote_code)
|
||||
config = get_config(model=args.model, trust_remote_code=args.trust_remote_code)
|
||||
if args.model_prefix:
|
||||
config = getattr(config, args.model_prefix)
|
||||
config = SimpleNamespace(**config)
|
||||
|
||||
if config.architectures[0] == "DbrxForCausalLM":
|
||||
E = config.ffn_config.moe_num_experts
|
||||
@ -551,14 +573,12 @@ def main(args: argparse.Namespace):
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.intermediate_size
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
elif (config.architectures[0]
|
||||
in ("DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM")):
|
||||
elif config.architectures[0] in ("DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"):
|
||||
E = config.n_routed_experts
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.moe_intermediate_size
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
elif config.architectures[0] in ("Qwen2MoeForCausalLM",
|
||||
"Qwen3MoeForCausalLM"):
|
||||
elif config.architectures[0] in ("Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"):
|
||||
E = config.num_experts
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.moe_intermediate_size
|
||||
@ -573,16 +593,31 @@ def main(args: argparse.Namespace):
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
|
||||
hidden_size = config.hidden_size
|
||||
dtype = torch.float16 if current_platform.is_rocm() else getattr(
|
||||
torch, config.torch_dtype)
|
||||
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||
block_quant_shape = get_weight_block_size_safety(config)
|
||||
|
||||
if args.batch_size is None:
|
||||
batch_sizes = [
|
||||
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
|
||||
2048, 3072, 4096
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
8,
|
||||
16,
|
||||
24,
|
||||
32,
|
||||
48,
|
||||
64,
|
||||
96,
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
1024,
|
||||
1536,
|
||||
2048,
|
||||
3072,
|
||||
4096,
|
||||
]
|
||||
else:
|
||||
batch_sizes = [args.batch_size]
|
||||
@ -593,7 +628,8 @@ def main(args: argparse.Namespace):
|
||||
# Ray will set ROCR_VISIBLE_DEVICES for device visibility
|
||||
logger.warning(
|
||||
"Ray uses ROCR_VISIBLE_DEVICES to control device accessibility."
|
||||
"Replacing HIP_VISIBLE_DEVICES with ROCR_VISIBLE_DEVICES.")
|
||||
"Replacing HIP_VISIBLE_DEVICES with ROCR_VISIBLE_DEVICES."
|
||||
)
|
||||
val = os.environ["HIP_VISIBLE_DEVICES"]
|
||||
os.environ["ROCR_VISIBLE_DEVICES"] = val
|
||||
del os.environ["HIP_VISIBLE_DEVICES"]
|
||||
@ -620,25 +656,59 @@ def main(args: argparse.Namespace):
|
||||
|
||||
start = time.time()
|
||||
configs = _distribute(
|
||||
"tune", [(batch_size, E, shard_intermediate_size, hidden_size,
|
||||
topk, dtype, use_fp8_w8a8, use_int8_w8a16, search_space,
|
||||
block_quant_shape, use_deep_gemm)
|
||||
for batch_size in batch_sizes])
|
||||
"tune",
|
||||
[
|
||||
(
|
||||
batch_size,
|
||||
E,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype,
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
search_space,
|
||||
block_quant_shape,
|
||||
use_deep_gemm,
|
||||
)
|
||||
for batch_size in batch_sizes
|
||||
],
|
||||
)
|
||||
best_configs = {
|
||||
M: sort_config(config)
|
||||
for M, config in zip(batch_sizes, configs)
|
||||
M: sort_config(config) for M, config in zip(batch_sizes, configs)
|
||||
}
|
||||
save_configs(best_configs, E, shard_intermediate_size, hidden_size,
|
||||
topk, dtype, use_fp8_w8a8, use_int8_w8a16,
|
||||
block_quant_shape)
|
||||
save_configs(
|
||||
best_configs,
|
||||
E,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype,
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
block_quant_shape,
|
||||
)
|
||||
end = time.time()
|
||||
print(f"Tuning took {end - start:.2f} seconds")
|
||||
else:
|
||||
outputs = _distribute(
|
||||
"benchmark",
|
||||
[(batch_size, E, shard_intermediate_size, hidden_size, topk, dtype,
|
||||
use_fp8_w8a8, use_int8_w8a16, block_quant_shape, use_deep_gemm)
|
||||
for batch_size in batch_sizes])
|
||||
[
|
||||
(
|
||||
batch_size,
|
||||
E,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype,
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
block_quant_shape,
|
||||
use_deep_gemm,
|
||||
)
|
||||
for batch_size in batch_sizes
|
||||
],
|
||||
)
|
||||
|
||||
for batch_size, (config, kernel_time) in zip(batch_sizes, outputs):
|
||||
print(f"Batch size: {batch_size}, config: {config}")
|
||||
@ -647,18 +717,15 @@ def main(args: argparse.Namespace):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser()
|
||||
parser.add_argument("--model",
|
||||
type=str,
|
||||
default="mistralai/Mixtral-8x7B-Instruct-v0.1")
|
||||
parser.add_argument("--tp-size",
|
||||
"-tp",
|
||||
"--tensor-parallel-size",
|
||||
type=int,
|
||||
default=2)
|
||||
parser.add_argument("--dtype",
|
||||
type=str,
|
||||
choices=["auto", "fp8_w8a8", "int8_w8a16"],
|
||||
default="auto")
|
||||
parser.add_argument(
|
||||
"--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tp-size", "-tp", "--tensor-parallel-size", type=int, default=2
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
|
||||
)
|
||||
parser.add_argument("--use-deep-gemm", action="store_true")
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--batch-size", type=int, required=False)
|
||||
|
||||
159
benchmarks/kernels/benchmark_moe_align_block_size.py
Normal file
159
benchmarks/kernels/benchmark_moe_align_block_size.py
Normal file
@ -0,0 +1,159 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import argparse
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
|
||||
moe_align_block_size_triton,
|
||||
)
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
|
||||
def get_topk_ids(num_tokens: int, num_experts: int, topk: int) -> torch.Tensor:
|
||||
return torch.stack(
|
||||
[
|
||||
torch.randperm(num_experts, dtype=torch.int32, device="cuda")[:topk]
|
||||
for _ in range(num_tokens)
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def check_correctness(num_tokens, num_experts=256, block_size=256, topk=8):
|
||||
"""
|
||||
Verifies vllm vs. Triton
|
||||
"""
|
||||
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
|
||||
|
||||
# 1. malloc space for triton and vllm
|
||||
# malloc enough space (max_num_tokens_padded) for the sorted ids
|
||||
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
|
||||
sorted_ids_triton = torch.empty(
|
||||
(max_num_tokens_padded,), dtype=torch.int32, device="cuda"
|
||||
)
|
||||
sorted_ids_triton.fill_(topk_ids.numel()) # fill with sentinel value
|
||||
expert_ids_triton = torch.zeros(
|
||||
(max_num_tokens_padded // block_size,), dtype=torch.int32, device="cuda"
|
||||
)
|
||||
num_tokens_post_pad_triton = torch.empty((1,), dtype=torch.int32, device="cuda")
|
||||
|
||||
sorted_ids_vllm = torch.empty_like(sorted_ids_triton)
|
||||
sorted_ids_vllm.fill_(topk_ids.numel())
|
||||
expert_ids_vllm = torch.zeros_like(expert_ids_triton)
|
||||
num_tokens_post_pad_vllm = torch.empty_like(num_tokens_post_pad_triton)
|
||||
|
||||
# 2. run implementations
|
||||
moe_align_block_size_triton(
|
||||
topk_ids,
|
||||
num_experts,
|
||||
block_size,
|
||||
sorted_ids_triton,
|
||||
expert_ids_triton,
|
||||
num_tokens_post_pad_triton,
|
||||
)
|
||||
|
||||
ops.moe_align_block_size(
|
||||
topk_ids,
|
||||
num_experts,
|
||||
block_size,
|
||||
sorted_ids_vllm,
|
||||
expert_ids_vllm,
|
||||
num_tokens_post_pad_vllm,
|
||||
)
|
||||
print(f"✅ VLLM implementation works with {num_experts} experts!")
|
||||
|
||||
# 3. compare results
|
||||
if torch.allclose(expert_ids_triton, expert_ids_vllm) and torch.allclose(
|
||||
num_tokens_post_pad_triton, num_tokens_post_pad_vllm
|
||||
):
|
||||
print("✅ Triton and VLLM implementations match.")
|
||||
else:
|
||||
print("❌ Triton and VLLM implementations DO NOT match.")
|
||||
print("Triton expert_ids:", expert_ids_triton)
|
||||
print("VLLM expert_ids:", expert_ids_vllm)
|
||||
print("Triton num_tokens_post_pad:", num_tokens_post_pad_triton)
|
||||
print("VLLM num_tokens_post_pad:", num_tokens_post_pad_vllm)
|
||||
|
||||
|
||||
# test configurations
|
||||
num_tokens_range = [1, 16, 256, 4096]
|
||||
num_experts_range = [16, 64, 224, 256, 280, 512]
|
||||
topk_range = [1, 2, 8]
|
||||
configs = list(itertools.product(num_tokens_range, num_experts_range, topk_range))
|
||||
|
||||
|
||||
@triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["num_tokens", "num_experts", "topk"],
|
||||
x_vals=configs,
|
||||
line_arg="provider",
|
||||
line_vals=["vllm", "triton"], # "triton"
|
||||
line_names=["VLLM", "Triton"], # "Triton"
|
||||
plot_name="moe-align-block-size-performance",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
def benchmark(num_tokens, num_experts, topk, provider):
|
||||
"""Benchmark function for Triton."""
|
||||
block_size = 256
|
||||
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
|
||||
|
||||
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
|
||||
sorted_ids = torch.empty((max_num_tokens_padded,), dtype=torch.int32, device="cuda")
|
||||
sorted_ids.fill_(topk_ids.numel())
|
||||
max_num_m_blocks = max_num_tokens_padded // block_size
|
||||
expert_ids = torch.empty((max_num_m_blocks,), dtype=torch.int32, device="cuda")
|
||||
num_tokens_post_pad = torch.empty((1,), dtype=torch.int32, device="cuda")
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
|
||||
if provider == "vllm":
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(
|
||||
lambda: ops.moe_align_block_size(
|
||||
topk_ids,
|
||||
num_experts,
|
||||
block_size,
|
||||
sorted_ids.clone(),
|
||||
expert_ids.clone(),
|
||||
num_tokens_post_pad.clone(),
|
||||
),
|
||||
quantiles=quantiles,
|
||||
)
|
||||
elif provider == "triton":
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(
|
||||
lambda: moe_align_block_size_triton(
|
||||
topk_ids,
|
||||
num_experts,
|
||||
block_size,
|
||||
sorted_ids.clone(),
|
||||
expert_ids.clone(),
|
||||
num_tokens_post_pad.clone(),
|
||||
),
|
||||
quantiles=quantiles,
|
||||
)
|
||||
|
||||
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--num_experts",
|
||||
type=int,
|
||||
default=64,
|
||||
choices=[8, 16, 32, 64, 128, 256],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--topk",
|
||||
type=int,
|
||||
default=8,
|
||||
choices=[2, 4, 8],
|
||||
help="Top-k value for correctness check.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
print("Running correctness check...")
|
||||
check_correctness(num_tokens=1024, num_experts=args.num_experts, topk=args.topk)
|
||||
benchmark.run(print_data=True, show_plots=True)
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
from typing import Any, TypedDict
|
||||
@ -8,7 +9,9 @@ import torch
|
||||
from transformers import AutoConfig
|
||||
|
||||
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
|
||||
_moe_permute, _moe_unpermute_and_reduce)
|
||||
_moe_permute,
|
||||
_moe_unpermute_and_reduce,
|
||||
)
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import *
|
||||
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import *
|
||||
from vllm.model_executor.layers.fused_moe.utils import _fp8_quantize
|
||||
@ -27,15 +30,17 @@ class BenchmarkConfig(TypedDict):
|
||||
num_stages: int
|
||||
|
||||
|
||||
def benchmark_permute(num_tokens: int,
|
||||
num_experts: int,
|
||||
hidden_size: int,
|
||||
topk: int,
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
use_customized_permute: bool = False) -> float:
|
||||
def benchmark_permute(
|
||||
num_tokens: int,
|
||||
num_experts: int,
|
||||
hidden_size: int,
|
||||
topk: int,
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
use_customized_permute: bool = False,
|
||||
) -> float:
|
||||
# init_dtype = torch.float16 if use_fp8_w8a8 else dtype
|
||||
hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
|
||||
# output_hidden_states = torch.empty_like(hidden_states)
|
||||
@ -46,36 +51,41 @@ def benchmark_permute(num_tokens: int,
|
||||
align_block_size = None
|
||||
qhidden_states = hidden_states
|
||||
|
||||
gating_output = torch.randn(num_iters,
|
||||
num_tokens,
|
||||
num_experts,
|
||||
dtype=torch.float32)
|
||||
gating_output = torch.randn(num_iters, num_tokens, num_experts, dtype=torch.float32)
|
||||
|
||||
input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)
|
||||
topk_weights, topk_ids, token_expert_indices = fused_topk(
|
||||
qhidden_states, input_gating, topk, False)
|
||||
qhidden_states, input_gating, topk, False
|
||||
)
|
||||
|
||||
def prepare(i: int):
|
||||
input_gating.copy_(gating_output[i])
|
||||
|
||||
def run():
|
||||
if use_customized_permute:
|
||||
(permuted_hidden_states, first_token_off, inv_perm_idx,
|
||||
m_indices) = moe_permute(
|
||||
qhidden_states,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
token_expert_indices=token_expert_indices,
|
||||
topk=topk,
|
||||
n_expert=num_experts,
|
||||
n_local_expert=num_experts,
|
||||
expert_map=None,
|
||||
align_block_size=align_block_size,
|
||||
)
|
||||
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
|
||||
moe_permute(
|
||||
qhidden_states,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
token_expert_indices=token_expert_indices,
|
||||
topk=topk,
|
||||
n_expert=num_experts,
|
||||
n_local_expert=num_experts,
|
||||
expert_map=None,
|
||||
align_block_size=align_block_size,
|
||||
)
|
||||
)
|
||||
else:
|
||||
(permuted_hidden_states, a1q_scale, sorted_token_ids, expert_ids,
|
||||
inv_perm) = _moe_permute(qhidden_states, None, topk_ids,
|
||||
num_experts, None, align_block_size)
|
||||
(
|
||||
permuted_hidden_states,
|
||||
a1q_scale,
|
||||
sorted_token_ids,
|
||||
expert_ids,
|
||||
inv_perm,
|
||||
) = _moe_permute(
|
||||
qhidden_states, None, topk_ids, num_experts, None, align_block_size
|
||||
)
|
||||
|
||||
# JIT compilation & warmup
|
||||
run()
|
||||
@ -111,15 +121,17 @@ def benchmark_permute(num_tokens: int,
|
||||
return avg
|
||||
|
||||
|
||||
def benchmark_unpermute(num_tokens: int,
|
||||
num_experts: int,
|
||||
hidden_size: int,
|
||||
topk: int,
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
use_customized_permute: bool = False) -> float:
|
||||
def benchmark_unpermute(
|
||||
num_tokens: int,
|
||||
num_experts: int,
|
||||
hidden_size: int,
|
||||
topk: int,
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
use_customized_permute: bool = False,
|
||||
) -> float:
|
||||
# init_dtype = torch.float16 if use_fp8_w8a8 else dtype
|
||||
hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
|
||||
output_hidden_states = torch.empty_like(hidden_states)
|
||||
@ -133,46 +145,74 @@ def benchmark_unpermute(num_tokens: int,
|
||||
input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)
|
||||
|
||||
topk_weights, topk_ids, token_expert_indices = fused_topk(
|
||||
qhidden_states, input_gating, topk, False)
|
||||
qhidden_states, input_gating, topk, False
|
||||
)
|
||||
|
||||
def prepare():
|
||||
if use_customized_permute:
|
||||
(permuted_hidden_states, first_token_off, inv_perm_idx,
|
||||
m_indices) = moe_permute(
|
||||
qhidden_states,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
token_expert_indices=token_expert_indices,
|
||||
topk=topk,
|
||||
n_expert=num_experts,
|
||||
n_local_expert=num_experts,
|
||||
expert_map=None,
|
||||
align_block_size=align_block_size,
|
||||
)
|
||||
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
|
||||
moe_permute(
|
||||
qhidden_states,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
token_expert_indices=token_expert_indices,
|
||||
topk=topk,
|
||||
n_expert=num_experts,
|
||||
n_local_expert=num_experts,
|
||||
expert_map=None,
|
||||
align_block_size=align_block_size,
|
||||
)
|
||||
)
|
||||
# convert to fp16/bf16 as gemm output
|
||||
return (permuted_hidden_states.to(dtype), first_token_off,
|
||||
inv_perm_idx, m_indices)
|
||||
return (
|
||||
permuted_hidden_states.to(dtype),
|
||||
first_token_off,
|
||||
inv_perm_idx,
|
||||
m_indices,
|
||||
)
|
||||
else:
|
||||
(permuted_qhidden_states, a1q_scale, sorted_token_ids, expert_ids,
|
||||
inv_perm) = _moe_permute(qhidden_states, None, topk_ids,
|
||||
num_experts, None, align_block_size)
|
||||
(
|
||||
permuted_qhidden_states,
|
||||
a1q_scale,
|
||||
sorted_token_ids,
|
||||
expert_ids,
|
||||
inv_perm,
|
||||
) = _moe_permute(
|
||||
qhidden_states, None, topk_ids, num_experts, None, align_block_size
|
||||
)
|
||||
# convert to fp16/bf16 as gemm output
|
||||
return (permuted_qhidden_states.to(dtype), a1q_scale,
|
||||
sorted_token_ids, expert_ids, inv_perm)
|
||||
return (
|
||||
permuted_qhidden_states.to(dtype),
|
||||
a1q_scale,
|
||||
sorted_token_ids,
|
||||
expert_ids,
|
||||
inv_perm,
|
||||
)
|
||||
|
||||
def run(input: tuple):
|
||||
if use_customized_permute:
|
||||
(permuted_hidden_states, first_token_off, inv_perm_idx,
|
||||
m_indices) = input
|
||||
moe_unpermute(permuted_hidden_states, topk_weights, topk_ids,
|
||||
inv_perm_idx, first_token_off, topk, num_experts,
|
||||
num_experts)
|
||||
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = input
|
||||
moe_unpermute(
|
||||
permuted_hidden_states,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inv_perm_idx,
|
||||
first_token_off,
|
||||
topk,
|
||||
num_experts,
|
||||
num_experts,
|
||||
)
|
||||
else:
|
||||
(permuted_hidden_states, a1q_scale, sorted_token_ids, expert_ids,
|
||||
inv_perm) = input
|
||||
_moe_unpermute_and_reduce(output_hidden_states,
|
||||
permuted_hidden_states, inv_perm,
|
||||
topk_weights)
|
||||
(
|
||||
permuted_hidden_states,
|
||||
a1q_scale,
|
||||
sorted_token_ids,
|
||||
expert_ids,
|
||||
inv_perm,
|
||||
) = input
|
||||
_moe_unpermute_and_reduce(
|
||||
output_hidden_states, permuted_hidden_states, inv_perm, topk_weights
|
||||
)
|
||||
|
||||
# JIT compilation & warmup
|
||||
input = prepare()
|
||||
@ -209,7 +249,6 @@ def benchmark_unpermute(num_tokens: int,
|
||||
|
||||
@ray.remote(num_gpus=1)
|
||||
class BenchmarkWorker:
|
||||
|
||||
def __init__(self, seed: int) -> None:
|
||||
torch.set_default_device("cuda")
|
||||
current_platform.seed_everything(seed)
|
||||
@ -241,7 +280,8 @@ class BenchmarkWorker:
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
num_iters=100,
|
||||
use_customized_permute=use_customized_permute)
|
||||
use_customized_permute=use_customized_permute,
|
||||
)
|
||||
unpermute_time = benchmark_unpermute(
|
||||
num_tokens,
|
||||
num_experts,
|
||||
@ -251,15 +291,15 @@ class BenchmarkWorker:
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
num_iters=100,
|
||||
use_customized_permute=use_customized_permute)
|
||||
use_customized_permute=use_customized_permute,
|
||||
)
|
||||
return permute_time, unpermute_time
|
||||
|
||||
|
||||
def get_weight_block_size_safety(config, default_value=None):
|
||||
|
||||
quantization_config = getattr(config, 'quantization_config', {})
|
||||
quantization_config = getattr(config, "quantization_config", {})
|
||||
if isinstance(quantization_config, dict):
|
||||
return quantization_config.get('weight_block_size', default_value)
|
||||
return quantization_config.get("weight_block_size", default_value)
|
||||
return default_value
|
||||
|
||||
|
||||
@ -267,20 +307,21 @@ def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
args.model, trust_remote_code=args.trust_remote_code)
|
||||
args.model, trust_remote_code=args.trust_remote_code
|
||||
)
|
||||
if config.architectures[0] == "DbrxForCausalLM":
|
||||
E = config.ffn_config.moe_num_experts
|
||||
topk = config.ffn_config.moe_top_k
|
||||
elif config.architectures[0] == "JambaForCausalLM":
|
||||
E = config.num_experts
|
||||
topk = config.num_experts_per_tok
|
||||
elif (config.architectures[0] == "DeepseekV3ForCausalLM"
|
||||
or config.architectures[0] == "DeepseekV2ForCausalLM"):
|
||||
elif (
|
||||
config.architectures[0] == "DeepseekV3ForCausalLM"
|
||||
or config.architectures[0] == "DeepseekV2ForCausalLM"
|
||||
):
|
||||
E = config.n_routed_experts
|
||||
topk = config.num_experts_per_tok
|
||||
elif config.architectures[0] in [
|
||||
"Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"
|
||||
]:
|
||||
elif config.architectures[0] in ["Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"]:
|
||||
E = config.num_experts
|
||||
topk = config.num_experts_per_tok
|
||||
|
||||
@ -299,8 +340,24 @@ def main(args: argparse.Namespace):
|
||||
|
||||
if args.batch_size is None:
|
||||
batch_sizes = [
|
||||
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
|
||||
2048, 3072, 4096
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
8,
|
||||
16,
|
||||
24,
|
||||
32,
|
||||
48,
|
||||
64,
|
||||
96,
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
1024,
|
||||
1536,
|
||||
2048,
|
||||
3072,
|
||||
4096,
|
||||
]
|
||||
else:
|
||||
batch_sizes = [args.batch_size]
|
||||
@ -321,9 +378,21 @@ def main(args: argparse.Namespace):
|
||||
return ray.get(outputs)
|
||||
|
||||
outputs = _distribute(
|
||||
"benchmark", [(batch_size, E, hidden_size, topk, dtype, use_fp8_w8a8,
|
||||
use_int8_w8a16, use_customized_permute)
|
||||
for batch_size in batch_sizes])
|
||||
"benchmark",
|
||||
[
|
||||
(
|
||||
batch_size,
|
||||
E,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype,
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
use_customized_permute,
|
||||
)
|
||||
for batch_size in batch_sizes
|
||||
],
|
||||
)
|
||||
|
||||
for batch_size, (permute, unpermute) in zip(batch_sizes, outputs):
|
||||
print(f"Batch size: {batch_size}")
|
||||
@ -333,13 +402,12 @@ def main(args: argparse.Namespace):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser()
|
||||
parser.add_argument("--model",
|
||||
type=str,
|
||||
default="mistralai/Mixtral-8x7B-Instruct-v0.1")
|
||||
parser.add_argument("--dtype",
|
||||
type=str,
|
||||
choices=["auto", "fp8_w8a8", "int8_w8a16"],
|
||||
default="auto")
|
||||
parser.add_argument(
|
||||
"--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
|
||||
)
|
||||
parser.add_argument("--use-customized-permute", action="store_true")
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--batch-size", type=int, required=False)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import random
|
||||
import time
|
||||
@ -9,8 +10,11 @@ import torch
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
|
||||
create_kv_caches_with_random)
|
||||
from vllm.utils import (
|
||||
STR_DTYPE_TO_TORCH_DTYPE,
|
||||
FlexibleArgumentParser,
|
||||
create_kv_caches_with_random,
|
||||
)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
@ -38,19 +42,15 @@ def main(
|
||||
current_platform.seed_everything(seed)
|
||||
|
||||
scale = float(1.0 / (head_size**0.5))
|
||||
query = torch.empty(num_seqs,
|
||||
num_query_heads,
|
||||
head_size,
|
||||
dtype=dtype,
|
||||
device=device)
|
||||
query = torch.empty(
|
||||
num_seqs, num_query_heads, head_size, dtype=dtype, device=device
|
||||
)
|
||||
query.uniform_(-scale, scale)
|
||||
|
||||
assert num_query_heads % num_kv_heads == 0
|
||||
alibi_slopes = None
|
||||
if use_alibi:
|
||||
alibi_slopes = torch.randn(num_query_heads,
|
||||
dtype=torch.float,
|
||||
device=device)
|
||||
alibi_slopes = torch.randn(num_query_heads, dtype=torch.float, device=device)
|
||||
|
||||
seq_lens = [seq_len for _ in range(num_seqs)]
|
||||
max_seq_len = max(seq_lens)
|
||||
@ -61,24 +61,23 @@ def main(
|
||||
block_tables_lst: list[list[int]] = []
|
||||
for _ in range(num_seqs):
|
||||
block_table = [
|
||||
random.randint(0, NUM_BLOCKS - 1)
|
||||
for _ in range(max_num_blocks_per_seq)
|
||||
random.randint(0, NUM_BLOCKS - 1) for _ in range(max_num_blocks_per_seq)
|
||||
]
|
||||
block_tables_lst.append(block_table)
|
||||
|
||||
block_tables = torch.tensor(block_tables_lst,
|
||||
dtype=torch.int,
|
||||
device=device)
|
||||
block_tables = torch.tensor(block_tables_lst, dtype=torch.int, device=device)
|
||||
|
||||
# Create the KV cache.
|
||||
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
|
||||
block_size,
|
||||
1,
|
||||
num_kv_heads,
|
||||
head_size,
|
||||
kv_cache_dtype,
|
||||
dtype,
|
||||
device=device)
|
||||
key_caches, value_caches = create_kv_caches_with_random(
|
||||
NUM_BLOCKS,
|
||||
block_size,
|
||||
1,
|
||||
num_kv_heads,
|
||||
head_size,
|
||||
kv_cache_dtype,
|
||||
dtype,
|
||||
device=device,
|
||||
)
|
||||
key_cache, value_cache = key_caches[0], value_caches[0]
|
||||
|
||||
# Prepare for the paged attention kernel.
|
||||
@ -86,11 +85,11 @@ def main(
|
||||
if version == "v2":
|
||||
if current_platform.is_rocm():
|
||||
global PARTITION_SIZE
|
||||
if not args.custom_paged_attn:
|
||||
if not args.custom_paged_attn and not current_platform.is_navi():
|
||||
PARTITION_SIZE = 1024
|
||||
else:
|
||||
PARTITION_SIZE = PARTITION_SIZE_ROCM
|
||||
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
|
||||
num_partitions = (max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE
|
||||
tmp_output = torch.empty(
|
||||
size=(num_seqs, num_query_heads, num_partitions, head_size),
|
||||
dtype=output.dtype,
|
||||
@ -110,9 +109,7 @@ def main(
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# Using default kv_scale
|
||||
k_scale = v_scale = torch.tensor(1.0,
|
||||
dtype=torch.float32,
|
||||
device=device)
|
||||
k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
|
||||
|
||||
for _ in range(num_iters):
|
||||
if version == "v1":
|
||||
@ -166,6 +163,7 @@ def main(
|
||||
scale,
|
||||
block_tables,
|
||||
seq_lens,
|
||||
None,
|
||||
block_size,
|
||||
max_seq_len,
|
||||
alibi_slopes,
|
||||
@ -195,30 +193,29 @@ def main(
|
||||
print(f"Kernel running time: {latency * 1000000:.3f} us")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
logger.warning("This script benchmarks the paged attention kernel. "
|
||||
"By default this is no longer used in vLLM inference.")
|
||||
if __name__ == "__main__":
|
||||
logger.warning(
|
||||
"This script benchmarks the paged attention kernel. "
|
||||
"By default this is no longer used in vLLM inference."
|
||||
)
|
||||
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the paged attention kernel.")
|
||||
parser.add_argument("--version",
|
||||
type=str,
|
||||
choices=["v1", "v2"],
|
||||
default="v2")
|
||||
parser = FlexibleArgumentParser(description="Benchmark the paged attention kernel.")
|
||||
parser.add_argument("--version", type=str, choices=["v1", "v2"], default="v2")
|
||||
parser.add_argument("--batch-size", type=int, default=8)
|
||||
parser.add_argument("--seq-len", type=int, default=4096)
|
||||
parser.add_argument("--num-query-heads", type=int, default=64)
|
||||
parser.add_argument("--num-kv-heads", type=int, default=8)
|
||||
parser.add_argument("--head-size",
|
||||
type=int,
|
||||
choices=[64, 80, 96, 112, 120, 128, 192, 256],
|
||||
default=128)
|
||||
parser.add_argument(
|
||||
"--head-size",
|
||||
type=int,
|
||||
choices=[64, 80, 96, 112, 120, 128, 192, 256],
|
||||
default=128,
|
||||
)
|
||||
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
|
||||
parser.add_argument("--use-alibi", action="store_true")
|
||||
parser.add_argument("--dtype",
|
||||
type=str,
|
||||
choices=["half", "bfloat16", "float"],
|
||||
default="half")
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--profile", action="store_true")
|
||||
parser.add_argument(
|
||||
@ -228,10 +225,11 @@ if __name__ == '__main__':
|
||||
default="auto",
|
||||
help="Data type for kv cache storage. If 'auto', will use model "
|
||||
"data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. "
|
||||
"ROCm (AMD GPU) supports fp8 (=fp8_e4m3)")
|
||||
parser.add_argument("--custom-paged-attn",
|
||||
action="store_true",
|
||||
help="Use custom paged attention")
|
||||
"ROCm (AMD GPU) supports fp8 (=fp8_e4m3)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--custom-paged-attn", action="store_true", help="Use custom paged attention"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import time
|
||||
|
||||
@ -10,15 +11,17 @@ from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def main(num_tokens: int,
|
||||
hidden_size: int,
|
||||
static_scale: bool,
|
||||
quant_dtype: torch.dtype,
|
||||
dtype: torch.dtype,
|
||||
seed: int = 0,
|
||||
do_profile: bool = False,
|
||||
num_warmup_iters: int = 5,
|
||||
num_iters: int = 100) -> None:
|
||||
def main(
|
||||
num_tokens: int,
|
||||
hidden_size: int,
|
||||
static_scale: bool,
|
||||
quant_dtype: torch.dtype,
|
||||
dtype: torch.dtype,
|
||||
seed: int = 0,
|
||||
do_profile: bool = False,
|
||||
num_warmup_iters: int = 5,
|
||||
num_iters: int = 100,
|
||||
) -> None:
|
||||
current_platform.seed_everything(seed)
|
||||
torch.set_default_device("cuda")
|
||||
|
||||
@ -56,7 +59,7 @@ def main(num_tokens: int,
|
||||
print(f"Kernel running time: {latency * 1000000:.3f} us")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
|
||||
def to_torch_dtype(dt):
|
||||
if dt == "int8":
|
||||
@ -66,37 +69,40 @@ if __name__ == '__main__':
|
||||
raise ValueError(f"Unsupported dtype: {dt}")
|
||||
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the quantization (fp8 or int8) kernel.")
|
||||
description="Benchmark the quantization (fp8 or int8) kernel."
|
||||
)
|
||||
parser.add_argument("--num-tokens", type=int, default=4096)
|
||||
parser.add_argument("--hidden-size", type=int, default=8192)
|
||||
parser.add_argument("--static-scale", action="store_true")
|
||||
parser.add_argument("--quant-dtype",
|
||||
type=str,
|
||||
choices=["fp8", "int8"],
|
||||
default="int8")
|
||||
parser.add_argument("--dtype",
|
||||
type=str,
|
||||
choices=["half", "bfloat16", "float"],
|
||||
default="half")
|
||||
parser.add_argument(
|
||||
"--quant-dtype", type=str, choices=["fp8", "int8"], default="int8"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
|
||||
)
|
||||
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--profile", action="store_true")
|
||||
parser.add_argument("--num-warmup-iters", type=int, default=5)
|
||||
parser.add_argument("--num-iters",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of benchmark iterations. "
|
||||
"If --profile is set, this number is ignored")
|
||||
parser.add_argument(
|
||||
"--num-iters",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of benchmark iterations. "
|
||||
"If --profile is set, this number is ignored",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
|
||||
main(num_tokens=args.num_tokens,
|
||||
hidden_size=args.hidden_size,
|
||||
static_scale=args.static_scale,
|
||||
quant_dtype=to_torch_dtype(args.quant_dtype),
|
||||
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
|
||||
seed=args.seed,
|
||||
do_profile=args.profile,
|
||||
num_warmup_iters=args.num_warmup_iters,
|
||||
num_iters=args.num_iters)
|
||||
main(
|
||||
num_tokens=args.num_tokens,
|
||||
hidden_size=args.hidden_size,
|
||||
static_scale=args.static_scale,
|
||||
quant_dtype=to_torch_dtype(args.quant_dtype),
|
||||
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
|
||||
seed=args.seed,
|
||||
do_profile=args.profile,
|
||||
num_warmup_iters=args.num_warmup_iters,
|
||||
num_iters=args.num_iters,
|
||||
)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import itertools
|
||||
from typing import Optional, Union
|
||||
@ -12,7 +13,6 @@ from vllm.triton_utils import triton
|
||||
|
||||
|
||||
class HuggingFaceRMSNorm(nn.Module):
|
||||
|
||||
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
@ -114,23 +114,19 @@ def rmsnorm_vllm(
|
||||
|
||||
def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
|
||||
dtype = torch.bfloat16
|
||||
x = torch.randn(batch_size,
|
||||
seq_len,
|
||||
hidden_size,
|
||||
dtype=dtype,
|
||||
device="cuda")
|
||||
x = torch.randn(batch_size, seq_len, hidden_size, dtype=dtype, device="cuda")
|
||||
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
|
||||
residual = torch.randn_like(x) if use_residual else None
|
||||
|
||||
output_naive = rmsnorm_naive(
|
||||
x.clone(), weight,
|
||||
residual.clone() if residual is not None else None)
|
||||
x.clone(), weight, residual.clone() if residual is not None else None
|
||||
)
|
||||
output_flashinfer = rmsnorm_flashinfer(
|
||||
x.clone(), weight,
|
||||
residual.clone() if residual is not None else None)
|
||||
x.clone(), weight, residual.clone() if residual is not None else None
|
||||
)
|
||||
output_vllm = rmsnorm_vllm(
|
||||
x.clone(), weight,
|
||||
residual.clone() if residual is not None else None)
|
||||
x.clone(), weight, residual.clone() if residual is not None else None
|
||||
)
|
||||
|
||||
if use_residual:
|
||||
output_naive = output_naive[0]
|
||||
@ -141,9 +137,9 @@ def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
|
||||
print(f"FlashInfer output={output_flashinfer}")
|
||||
print(f"vLLM output={output_vllm}")
|
||||
|
||||
if torch.allclose(output_naive, output_flashinfer, atol=1e-2,
|
||||
rtol=1e-2) and torch.allclose(
|
||||
output_naive, output_vllm, atol=1e-2, rtol=1e-2):
|
||||
if torch.allclose(
|
||||
output_naive, output_flashinfer, atol=1e-2, rtol=1e-2
|
||||
) and torch.allclose(output_naive, output_vllm, atol=1e-2, rtol=1e-2):
|
||||
print("✅ All implementations match")
|
||||
else:
|
||||
print("❌ Implementations differ")
|
||||
@ -152,12 +148,10 @@ def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
|
||||
batch_size_range = [2**i for i in range(0, 7, 2)]
|
||||
seq_length_range = [2**i for i in range(6, 11, 1)]
|
||||
head_num_range = [32, 48]
|
||||
configs = list(
|
||||
itertools.product(head_num_range, batch_size_range, seq_length_range))
|
||||
configs = list(itertools.product(head_num_range, batch_size_range, seq_length_range))
|
||||
|
||||
|
||||
def get_benchmark(use_residual):
|
||||
|
||||
@triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["head_num", "batch_size", "seq_len"],
|
||||
@ -167,19 +161,15 @@ def get_benchmark(use_residual):
|
||||
line_names=["HuggingFace", "FlashInfer", "vLLM"],
|
||||
styles=[("blue", "-"), ("green", "-"), ("red", "-")],
|
||||
ylabel="us",
|
||||
plot_name=
|
||||
f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual",
|
||||
plot_name=f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual",
|
||||
args={},
|
||||
))
|
||||
)
|
||||
)
|
||||
def benchmark(head_num, batch_size, seq_len, provider):
|
||||
dtype = torch.bfloat16
|
||||
hidden_size = head_num * 128 # assuming head_dim = 128
|
||||
|
||||
x = torch.randn(batch_size,
|
||||
seq_len,
|
||||
hidden_size,
|
||||
dtype=dtype,
|
||||
device="cuda")
|
||||
x = torch.randn(batch_size, seq_len, hidden_size, dtype=dtype, device="cuda")
|
||||
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
|
||||
residual = torch.randn_like(x) if use_residual else None
|
||||
|
||||
@ -240,9 +230,9 @@ if __name__ == "__main__":
|
||||
default=4096,
|
||||
help="Hidden size (2nd dimension) of the sequence",
|
||||
)
|
||||
parser.add_argument("--use-residual",
|
||||
action="store_true",
|
||||
help="Whether to use residual connection")
|
||||
parser.add_argument(
|
||||
"--use-residual", action="store_true", help="Whether to use residual connection"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-path",
|
||||
type=str,
|
||||
@ -253,10 +243,12 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
# Run correctness test
|
||||
calculate_diff(batch_size=args.batch_size,
|
||||
seq_len=args.seq_len,
|
||||
hidden_size=args.hidden_size,
|
||||
use_residual=args.use_residual)
|
||||
calculate_diff(
|
||||
batch_size=args.batch_size,
|
||||
seq_len=args.seq_len,
|
||||
hidden_size=args.hidden_size,
|
||||
use_residual=args.use_residual,
|
||||
)
|
||||
|
||||
# Get the benchmark function with proper use_residual setting
|
||||
benchmark = get_benchmark(args.use_residual)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from itertools import accumulate
|
||||
from typing import Optional
|
||||
@ -6,8 +7,7 @@ from typing import Optional
|
||||
import nvtx
|
||||
import torch
|
||||
|
||||
from vllm.model_executor.layers.rotary_embedding import (RotaryEmbedding,
|
||||
get_rope)
|
||||
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding, get_rope
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
@ -23,7 +23,7 @@ def benchmark_rope_kernels_multi_lora(
|
||||
seed: int,
|
||||
device: str,
|
||||
max_position: int = 8192,
|
||||
base: int = 10000,
|
||||
base: float = 10000,
|
||||
) -> None:
|
||||
current_platform.seed_everything(seed)
|
||||
torch.set_default_device(device)
|
||||
@ -32,40 +32,49 @@ def benchmark_rope_kernels_multi_lora(
|
||||
# silulating serving 4 LoRAs
|
||||
scaling_factors = [1, 2, 4, 8]
|
||||
# batched RoPE can take multiple scaling factors
|
||||
batched_rope = get_rope(head_size, rotary_dim, max_position, base,
|
||||
is_neox_style, {
|
||||
"rope_type": "linear",
|
||||
"factor": tuple(scaling_factors)
|
||||
})
|
||||
batched_rope = get_rope(
|
||||
head_size,
|
||||
rotary_dim,
|
||||
max_position,
|
||||
base,
|
||||
is_neox_style,
|
||||
{"rope_type": "linear", "factor": tuple(scaling_factors)},
|
||||
)
|
||||
# non-batched RoPE takes only one scaling factor, we create multiple
|
||||
# instances to simulate the same behavior
|
||||
non_batched_ropes: list[RotaryEmbedding] = []
|
||||
for scaling_factor in scaling_factors:
|
||||
non_batched_ropes.append(
|
||||
get_rope(head_size, rotary_dim, max_position, base, is_neox_style,
|
||||
{
|
||||
"rope_type": "linear",
|
||||
"factor": (scaling_factor, )
|
||||
}))
|
||||
get_rope(
|
||||
head_size,
|
||||
rotary_dim,
|
||||
max_position,
|
||||
base,
|
||||
is_neox_style,
|
||||
{"rope_type": "linear", "factor": (scaling_factor,)},
|
||||
)
|
||||
)
|
||||
|
||||
positions = torch.randint(0, max_position, (batch_size, seq_len))
|
||||
query = torch.randn(batch_size,
|
||||
seq_len,
|
||||
num_heads * head_size,
|
||||
dtype=dtype)
|
||||
query = torch.randn(batch_size, seq_len, num_heads * head_size, dtype=dtype)
|
||||
key = torch.randn_like(query)
|
||||
|
||||
# create query offsets for batched RoPE, we concat multiple kv cache
|
||||
# together and each query needs to find the right kv cache of its type
|
||||
offset_map = torch.tensor(
|
||||
list(
|
||||
accumulate([0] + [
|
||||
max_position * scaling_factor * 2
|
||||
for scaling_factor in scaling_factors[:-1]
|
||||
])))
|
||||
query_types = torch.randint(0,
|
||||
len(scaling_factors), (batch_size, seq_len),
|
||||
device=device)
|
||||
accumulate(
|
||||
[0]
|
||||
+ [
|
||||
max_position * scaling_factor * 2
|
||||
for scaling_factor in scaling_factors[:-1]
|
||||
]
|
||||
)
|
||||
)
|
||||
)
|
||||
query_types = torch.randint(
|
||||
0, len(scaling_factors), (batch_size, seq_len), device=device
|
||||
)
|
||||
# map query types to offsets
|
||||
query_offsets = offset_map[query_types]
|
||||
# the kernel takes flattened offsets
|
||||
@ -86,27 +95,28 @@ def benchmark_rope_kernels_multi_lora(
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the rotary embedding kernels.")
|
||||
description="Benchmark the rotary embedding kernels."
|
||||
)
|
||||
parser.add_argument("--is-neox-style", type=bool, default=True)
|
||||
parser.add_argument("--batch-size", type=int, default=16)
|
||||
parser.add_argument("--seq-len", type=int, default=512)
|
||||
parser.add_argument("--num-heads", type=int, default=8)
|
||||
parser.add_argument("--head-size",
|
||||
type=int,
|
||||
choices=[64, 80, 96, 112, 120, 128, 192, 256],
|
||||
default=128)
|
||||
parser.add_argument(
|
||||
"--head-size",
|
||||
type=int,
|
||||
choices=[64, 80, 96, 112, 120, 128, 192, 256],
|
||||
default=128,
|
||||
)
|
||||
parser.add_argument("--rotary-dim", type=int, choices=[16, 32], default=32)
|
||||
parser.add_argument("--dtype",
|
||||
type=str,
|
||||
choices=["bfloat16", "float"],
|
||||
default="float")
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, choices=["bfloat16", "float"], default="float"
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--device",
|
||||
type=str,
|
||||
choices=["cuda:0", "cuda:1"],
|
||||
default="cuda:0")
|
||||
parser.add_argument(
|
||||
"--device", type=str, choices=["cuda:0", "cuda:1"], default="cuda:0"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
WEIGHT_SHAPES = {
|
||||
"ideal": [[4 * 256 * 32, 256 * 32]],
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# Adapted from sglang quantization/tuning_block_wise_kernel.py
|
||||
|
||||
import argparse
|
||||
@ -14,14 +15,16 @@ import tqdm
|
||||
import triton
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
_w8a8_block_fp8_matmul)
|
||||
_w8a8_block_fp8_matmul,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
mp.set_start_method("spawn", force=True)
|
||||
|
||||
assert current_platform.is_cuda(
|
||||
), "Only support tune w8a8 block fp8 kernel on CUDA device."
|
||||
assert current_platform.is_cuda(), (
|
||||
"Only support tune w8a8 block fp8 kernel on CUDA device."
|
||||
)
|
||||
|
||||
DTYPE_MAP = {
|
||||
"float32": torch.float32,
|
||||
@ -40,7 +43,7 @@ def w8a8_block_matmul(
|
||||
config: dict[str, Any],
|
||||
output_dtype: torch.dtype = torch.float16,
|
||||
) -> torch.Tensor:
|
||||
"""This function performs matrix multiplication with
|
||||
"""This function performs matrix multiplication with
|
||||
block-wise quantization.
|
||||
|
||||
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
|
||||
@ -51,7 +54,7 @@ def w8a8_block_matmul(
|
||||
B: The input tensor, e.g., weight.
|
||||
As: The per-token-group quantization scale for `A`.
|
||||
Bs: The per-block quantization scale for `B`.
|
||||
block_size: The block size for per-block quantization.
|
||||
block_size: The block size for per-block quantization.
|
||||
It should be 2-dim, e.g., [128, 128].
|
||||
output_dytpe: The dtype of the returned tensor.
|
||||
|
||||
@ -71,18 +74,18 @@ def w8a8_block_matmul(
|
||||
assert triton.cdiv(N, block_n) == Bs.shape[0]
|
||||
assert triton.cdiv(K, block_k) == Bs.shape[1]
|
||||
|
||||
C_shape = A.shape[:-1] + (N, )
|
||||
C_shape = A.shape[:-1] + (N,)
|
||||
C = A.new_empty(C_shape, dtype=output_dtype)
|
||||
|
||||
def grid(META):
|
||||
return (triton.cdiv(M, META["BLOCK_SIZE_M"]) *
|
||||
triton.cdiv(N, META["BLOCK_SIZE_N"]), )
|
||||
return (
|
||||
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
|
||||
)
|
||||
|
||||
if A.dtype == torch.float8_e4m3fn:
|
||||
kernel = _w8a8_block_fp8_matmul
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"Currently, only support tune w8a8 block fp8 kernel.")
|
||||
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
|
||||
|
||||
kernel[grid](
|
||||
A,
|
||||
@ -119,14 +122,16 @@ def get_configs_compute_bound():
|
||||
for block_n in [32, 64, 128, 256]:
|
||||
for num_warps in [4, 8]:
|
||||
for group_size in [1, 16, 32, 64]:
|
||||
configs.append({
|
||||
"BLOCK_SIZE_M": block_m,
|
||||
"BLOCK_SIZE_N": block_n,
|
||||
"BLOCK_SIZE_K": block_k,
|
||||
"GROUP_SIZE_M": group_size,
|
||||
"num_warps": num_warps,
|
||||
"num_stages": num_stages,
|
||||
})
|
||||
configs.append(
|
||||
{
|
||||
"BLOCK_SIZE_M": block_m,
|
||||
"BLOCK_SIZE_N": block_n,
|
||||
"BLOCK_SIZE_K": block_k,
|
||||
"GROUP_SIZE_M": group_size,
|
||||
"num_warps": num_warps,
|
||||
"num_stages": num_stages,
|
||||
}
|
||||
)
|
||||
return configs
|
||||
|
||||
|
||||
@ -165,15 +170,9 @@ def get_weight_shapes(tp_size):
|
||||
return weight_shapes
|
||||
|
||||
|
||||
def benchmark_config(A,
|
||||
B,
|
||||
As,
|
||||
Bs,
|
||||
block_size,
|
||||
config,
|
||||
out_dtype=torch.float16,
|
||||
num_iters=10):
|
||||
|
||||
def benchmark_config(
|
||||
A, B, As, Bs, block_size, config, out_dtype=torch.float16, num_iters=10
|
||||
):
|
||||
def run():
|
||||
w8a8_block_matmul(A, B, As, Bs, block_size, config, out_dtype)
|
||||
|
||||
@ -206,26 +205,26 @@ def tune(M, N, K, block_size, out_dtype, search_space, input_type):
|
||||
fp8_max, fp8_min = fp8_info.max, fp8_info.min
|
||||
|
||||
A_fp32 = (
|
||||
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
|
||||
fp8_max)
|
||||
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
|
||||
)
|
||||
A = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||||
|
||||
B_fp32 = (
|
||||
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
|
||||
fp8_max)
|
||||
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
|
||||
)
|
||||
B = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"Currently, only support tune w8a8 block fp8 kernel.")
|
||||
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
|
||||
|
||||
block_n, block_k = block_size[0], block_size[1]
|
||||
n_tiles = (N + block_n - 1) // block_n
|
||||
k_tiles = (K + block_k - 1) // block_k
|
||||
|
||||
As = torch.rand(M, k_tiles, dtype=torch.float32,
|
||||
device="cuda") * factor_for_scale
|
||||
Bs = (torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda") *
|
||||
factor_for_scale)
|
||||
As = torch.rand(M, k_tiles, dtype=torch.float32, device="cuda") * factor_for_scale
|
||||
Bs = (
|
||||
torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda")
|
||||
* factor_for_scale
|
||||
)
|
||||
|
||||
best_config = None
|
||||
best_time = float("inf")
|
||||
@ -267,7 +266,8 @@ def save_configs(
|
||||
device_name = current_platform.get_device_name().replace(" ", "_")
|
||||
json_file_name = (
|
||||
f"N={N},K={K},device_name={device_name},dtype={input_type}_w8a8,"
|
||||
f"block_shape=[{block_n},{block_k}].json")
|
||||
f"block_shape=[{block_n},{block_k}].json"
|
||||
)
|
||||
|
||||
config_file_path = os.path.join(save_path, json_file_name)
|
||||
print(f"Writing best config to {config_file_path}...")
|
||||
@ -295,8 +295,7 @@ def tune_on_gpu(args_dict):
|
||||
|
||||
search_space = get_configs_compute_bound()
|
||||
search_space = [
|
||||
config for config in search_space
|
||||
if block_k % config["BLOCK_SIZE_K"] == 0
|
||||
config for config in search_space if block_k % config["BLOCK_SIZE_K"] == 0
|
||||
]
|
||||
|
||||
start = time.time()
|
||||
@ -312,15 +311,11 @@ def tune_on_gpu(args_dict):
|
||||
out_dtype,
|
||||
search_space,
|
||||
input_type,
|
||||
) for batch_size in tqdm(batch_sizes,
|
||||
desc=f"GPU {gpu_id} - Batch sizes")
|
||||
)
|
||||
for batch_size in tqdm(batch_sizes, desc=f"GPU {gpu_id} - Batch sizes")
|
||||
]
|
||||
best_configs = {
|
||||
M: config
|
||||
for M, config in zip(batch_sizes, benchmark_results)
|
||||
}
|
||||
save_configs(N, K, block_n, block_k, best_configs, save_path,
|
||||
input_type)
|
||||
best_configs = {M: config for M, config in zip(batch_sizes, benchmark_results)}
|
||||
save_configs(N, K, block_n, block_k, best_configs, save_path, input_type)
|
||||
|
||||
end = time.time()
|
||||
print(f"Tuning on GPU {gpu_id} took {end - start:.2f} seconds")
|
||||
@ -376,13 +371,14 @@ def main(args):
|
||||
|
||||
process_args = []
|
||||
for gpu_id in range(num_gpus):
|
||||
process_args.append({
|
||||
"gpu_id": gpu_id,
|
||||
"batch_sizes": batches_per_gpu[gpu_id],
|
||||
"weight_shapes":
|
||||
weight_shapes, # Each GPU processes all weight shapes
|
||||
"args": args,
|
||||
})
|
||||
process_args.append(
|
||||
{
|
||||
"gpu_id": gpu_id,
|
||||
"batch_sizes": batches_per_gpu[gpu_id],
|
||||
"weight_shapes": weight_shapes, # Each GPU processes all weight shapes
|
||||
"args": args,
|
||||
}
|
||||
)
|
||||
|
||||
ctx = mp.get_context("spawn")
|
||||
with ctx.Pool(num_gpus) as pool:
|
||||
@ -398,13 +394,11 @@ Tune triton w8a8 block fp8 for DeepSeek-V3/DeepSeek-R1:
|
||||
python3 benchmark_w8a8_block_fp8.py --tp-size 8 --input-type fp8
|
||||
Then copy to model_executor/layers/quantization/utils/configs
|
||||
""",
|
||||
formatter_class=argparse.RawTextHelpFormatter)
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument("--tp-size", "-tp", type=int, default=8)
|
||||
parser.add_argument("--input-type",
|
||||
type=str,
|
||||
choices=["fp8"],
|
||||
default="fp8")
|
||||
parser.add_argument("--input-type", type=str, choices=["fp8"], default="fp8")
|
||||
parser.add_argument(
|
||||
"--out-dtype",
|
||||
type=str,
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# fmt: off
|
||||
# ruff: noqa: E501
|
||||
import time
|
||||
@ -11,7 +12,9 @@ from deep_gemm import calc_diff, ceil_div, get_col_major_tma_aligned_tensor
|
||||
# Import vLLM functions
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
|
||||
per_token_group_quant_fp8,
|
||||
w8a8_block_fp8_matmul,
|
||||
)
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
|
||||
|
||||
@ -1,12 +1,13 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import math
|
||||
import pickle
|
||||
import re
|
||||
from collections import defaultdict
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import regex as re
|
||||
import seaborn as sns
|
||||
from torch.utils.benchmark import Measurement as TMeasurement
|
||||
|
||||
@ -14,13 +15,14 @@ from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description='Benchmark the latency of processing a single batch of '
|
||||
'requests till completion.')
|
||||
parser.add_argument('filename', type=str)
|
||||
description="Benchmark the latency of processing a single batch of "
|
||||
"requests till completion."
|
||||
)
|
||||
parser.add_argument("filename", type=str)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.filename, 'rb') as f:
|
||||
with open(args.filename, "rb") as f:
|
||||
data = pickle.load(f)
|
||||
raw_results: list[TMeasurement] = data["results"]
|
||||
|
||||
@ -38,11 +40,7 @@ if __name__ == "__main__":
|
||||
raise Exception("MKN not found")
|
||||
|
||||
kernel = v.task_spec.description
|
||||
results[KN].append({
|
||||
"kernel": kernel,
|
||||
"batch_size": M,
|
||||
"median": v.median
|
||||
})
|
||||
results[KN].append({"kernel": kernel, "batch_size": M, "median": v.median})
|
||||
|
||||
rows = int(math.ceil(len(results) / 2))
|
||||
fig, axs = plt.subplots(rows, 2, figsize=(12, 5 * rows))
|
||||
@ -50,14 +48,16 @@ if __name__ == "__main__":
|
||||
for axs_idx, (shape, data) in enumerate(results.items()):
|
||||
plt.sca(axs[axs_idx])
|
||||
df = pd.DataFrame(data)
|
||||
sns.lineplot(data=df,
|
||||
x="batch_size",
|
||||
y="median",
|
||||
hue="kernel",
|
||||
style="kernel",
|
||||
markers=True,
|
||||
dashes=False,
|
||||
palette="Dark2")
|
||||
sns.lineplot(
|
||||
data=df,
|
||||
x="batch_size",
|
||||
y="median",
|
||||
hue="kernel",
|
||||
style="kernel",
|
||||
markers=True,
|
||||
dashes=False,
|
||||
palette="Dark2",
|
||||
)
|
||||
plt.title(f"Shape: {shape}")
|
||||
plt.ylabel("time (median, s)")
|
||||
plt.tight_layout()
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import dataclasses
|
||||
from collections.abc import Iterable
|
||||
@ -23,6 +24,7 @@ class ArgPool:
|
||||
For every invocation during a benchmarking run, it will choose a
|
||||
different value from the list.
|
||||
"""
|
||||
|
||||
values: Iterable[Any]
|
||||
|
||||
def __getitem__(self, index):
|
||||
@ -30,9 +32,7 @@ class ArgPool:
|
||||
|
||||
|
||||
class Bench:
|
||||
|
||||
class ArgsIterator:
|
||||
|
||||
def __init__(self, args_list, kwargs_list):
|
||||
assert len(args_list) == len(kwargs_list)
|
||||
self.args_list = args_list
|
||||
@ -53,10 +53,16 @@ class Bench:
|
||||
def n_args(self):
|
||||
return self.n
|
||||
|
||||
def __init__(self, cuda_graph_params: Optional[CudaGraphBenchParams],
|
||||
label: str, sub_label: str, description: str, fn: Callable,
|
||||
*args, **kwargs):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cuda_graph_params: Optional[CudaGraphBenchParams],
|
||||
label: str,
|
||||
sub_label: str,
|
||||
description: str,
|
||||
fn: Callable,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
self.cuda_graph_params = cuda_graph_params
|
||||
self.use_cuda_graph = self.cuda_graph_params is not None
|
||||
self.label = label
|
||||
@ -67,10 +73,8 @@ class Bench:
|
||||
# Process args
|
||||
self._args = args
|
||||
self._kwargs = kwargs
|
||||
self.args_list, self.kwargs_list = self.collapse_argpool(
|
||||
*args, **kwargs)
|
||||
self.args_iterator = self.ArgsIterator(self.args_list,
|
||||
self.kwargs_list)
|
||||
self.args_list, self.kwargs_list = self.collapse_argpool(*args, **kwargs)
|
||||
self.args_iterator = self.ArgsIterator(self.args_list, self.kwargs_list)
|
||||
|
||||
# Cudagraph runner
|
||||
self.g = None
|
||||
@ -100,16 +104,13 @@ class Bench:
|
||||
|
||||
for i in range(argpool_size):
|
||||
# collapse args; Just pick the ith value
|
||||
args_list[i] = tuple([
|
||||
arg[i] if isinstance(arg, ArgPool) else arg
|
||||
for arg in args_list[i]
|
||||
])
|
||||
args_list[i] = tuple(
|
||||
[arg[i] if isinstance(arg, ArgPool) else arg for arg in args_list[i]]
|
||||
)
|
||||
|
||||
# collapse kwargs
|
||||
kwargs_i = kwargs_list[i]
|
||||
arg_pool_keys = [
|
||||
k for k, v in kwargs_i.items() if isinstance(v, ArgPool)
|
||||
]
|
||||
arg_pool_keys = [k for k, v in kwargs_i.items() if isinstance(v, ArgPool)]
|
||||
for k in arg_pool_keys:
|
||||
# again just pick the ith value
|
||||
kwargs_i[k] = kwargs_i[k][i]
|
||||
@ -142,7 +143,7 @@ class Bench:
|
||||
|
||||
def run_cudagrah(self) -> TMeasurement:
|
||||
assert self.use_cuda_graph
|
||||
globals = {'g': self.g}
|
||||
globals = {"g": self.g}
|
||||
|
||||
return TBenchmark.Timer(
|
||||
stmt="g.replay()",
|
||||
@ -162,15 +163,15 @@ class Bench:
|
||||
|
||||
has_arg_pool = self.args_iterator.n_args > 1
|
||||
if has_arg_pool:
|
||||
setup = '''
|
||||
setup = """
|
||||
args_iterator.reset()
|
||||
args_it = args_iterator.__next__()
|
||||
'''
|
||||
stmt = '''
|
||||
"""
|
||||
stmt = """
|
||||
args, kwargs = next(args_it)
|
||||
fn(*args, **kwargs)
|
||||
'''
|
||||
globals = {'fn': self.fn, 'args_iterator': self.args_iterator}
|
||||
"""
|
||||
globals = {"fn": self.fn, "args_iterator": self.args_iterator}
|
||||
else:
|
||||
# no arg pool. Just use the args and kwargs directly
|
||||
self.args_iterator.reset()
|
||||
@ -178,10 +179,10 @@ class Bench:
|
||||
args, kwargs = next(args_it)
|
||||
|
||||
setup = ""
|
||||
stmt = '''
|
||||
stmt = """
|
||||
fn(*args, **kwargs)
|
||||
'''
|
||||
globals = {'fn': self.fn, 'args': args, 'kwargs': kwargs}
|
||||
"""
|
||||
globals = {"fn": self.fn, "args": args, "kwargs": kwargs}
|
||||
|
||||
return TBenchmark.Timer(
|
||||
stmt=stmt,
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Weight Shapes are in the format
|
||||
# ([K, N], TP_SPLIT_DIM)
|
||||
@ -48,4 +49,50 @@ WEIGHT_SHAPES = {
|
||||
([16384, 106496], 1),
|
||||
([53248, 16384], 0),
|
||||
],
|
||||
"meta-llama/Llama-3.1-8B-Instruct": [
|
||||
([4096, 6144], 1),
|
||||
([4096, 4096], 0),
|
||||
([4096, 28672], 1),
|
||||
([14336, 4096], 0),
|
||||
],
|
||||
"meta-llama/Llama-3.3-70B-Instruct": [
|
||||
([8192, 10240], 1),
|
||||
([8192, 8192], 0),
|
||||
([8192, 57344], 1),
|
||||
([28672, 8192], 0),
|
||||
],
|
||||
"mistralai/Mistral-Large-Instruct-2407": [
|
||||
([12288, 14336], 1),
|
||||
([12288, 12288], 0),
|
||||
([12288, 57344], 1),
|
||||
([28672, 12288], 0),
|
||||
],
|
||||
"Qwen/Qwen2.5-7B-Instruct": [
|
||||
([3584, 4608], 1),
|
||||
([3584, 3584], 0),
|
||||
([3584, 37888], 1),
|
||||
([18944, 3584], 0),
|
||||
],
|
||||
"Qwen/Qwen2.5-32B-Instruct": [
|
||||
([5120, 7168], 1),
|
||||
([5120, 5120], 0),
|
||||
([5120, 55296], 1),
|
||||
([27648, 5120], 0),
|
||||
],
|
||||
"Qwen/Qwen2.5-72B-Instruct": [
|
||||
([8192, 10240], 1),
|
||||
([8192, 8192], 0),
|
||||
([8192, 59136], 1),
|
||||
([29568, 8192], 0),
|
||||
],
|
||||
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [
|
||||
([2048, 3072], 1),
|
||||
([2048, 4096], 1),
|
||||
([2048, 2048], 0),
|
||||
([2048, 576], 0),
|
||||
([2048, 21888], 1),
|
||||
([10944, 2048], 0),
|
||||
([2048, 2816], 1),
|
||||
([1408, 2048], 0),
|
||||
],
|
||||
}
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import cProfile
|
||||
import pstats
|
||||
@ -7,9 +8,8 @@ from vllm import LLM, SamplingParams
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
# A very long prompt, total number of tokens is about 15k.
|
||||
LONG_PROMPT = ["You are an expert in large language models, aren't you?"
|
||||
] * 1000
|
||||
LONG_PROMPT = ' '.join(LONG_PROMPT)
|
||||
LONG_PROMPT = ["You are an expert in large language models, aren't you?"] * 1000
|
||||
LONG_PROMPT = " ".join(LONG_PROMPT)
|
||||
|
||||
|
||||
def main(args):
|
||||
@ -30,32 +30,35 @@ def main(args):
|
||||
|
||||
print("------start generating------")
|
||||
for i in range(3):
|
||||
profiler.runctx('llm.generate(LONG_PROMPT, sampling_params)',
|
||||
globals(), locals())
|
||||
profiler.runctx(
|
||||
"llm.generate(LONG_PROMPT, sampling_params)", globals(), locals()
|
||||
)
|
||||
|
||||
# analyze the runtime of hashing function
|
||||
stats = pstats.Stats(profiler)
|
||||
stats.sort_stats('cumulative')
|
||||
stats.sort_stats("cumulative")
|
||||
total_time = 0
|
||||
total_calls = 0
|
||||
for func in stats.stats:
|
||||
if 'hash_of_block' in func[2]:
|
||||
if "hash_of_block" in func[2]:
|
||||
total_time = stats.stats[func][3]
|
||||
total_calls = stats.stats[func][0]
|
||||
percentage = (total_time / stats.total_tt) * 100
|
||||
print(f"Hashing took {total_time:.2f} seconds,"
|
||||
f"{percentage:.2f}% of the total runtime.")
|
||||
print(
|
||||
f"Hashing took {total_time:.2f} seconds,{percentage:.2f}% of the total runtime."
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description='Benchmark the performance of hashing function in'
|
||||
'automatic prefix caching.')
|
||||
parser.add_argument('--model', type=str, default='lmsys/longchat-7b-16k')
|
||||
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
|
||||
parser.add_argument('--output-len', type=int, default=10)
|
||||
parser.add_argument('--enable-prefix-caching',
|
||||
action='store_true',
|
||||
help='enable prefix caching')
|
||||
description="Benchmark the performance of hashing function in"
|
||||
"automatic prefix caching."
|
||||
)
|
||||
parser.add_argument("--model", type=str, default="lmsys/longchat-7b-16k")
|
||||
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
|
||||
parser.add_argument("--output-len", type=int, default=10)
|
||||
parser.add_argument(
|
||||
"--enable-prefix-caching", action="store_true", help="enable prefix caching"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
49
benchmarks/pyproject.toml
Normal file
49
benchmarks/pyproject.toml
Normal file
@ -0,0 +1,49 @@
|
||||
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||
# following differences:
|
||||
# - ruff line length is overridden to 88
|
||||
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 88
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"vllm/third_party/**" = ["ALL"]
|
||||
"vllm/version.py" = ["F401"]
|
||||
"vllm/_version.py" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
# pycodestyle
|
||||
"E",
|
||||
# Pyflakes
|
||||
"F",
|
||||
# pyupgrade
|
||||
"UP",
|
||||
# flake8-bugbear
|
||||
"B",
|
||||
# flake8-simplify
|
||||
"SIM",
|
||||
# isort
|
||||
"I",
|
||||
# flake8-logging-format
|
||||
"G",
|
||||
]
|
||||
ignore = [
|
||||
# star imports
|
||||
"F405", "F403",
|
||||
# lambda expression assignment
|
||||
"E731",
|
||||
# Loop control variable not used within loop body
|
||||
"B007",
|
||||
# f-string format
|
||||
"UP032",
|
||||
# Can remove once 3.10+ is the minimum Python version
|
||||
"UP007",
|
||||
]
|
||||
|
||||
[tool.ruff.lint.isort]
|
||||
known-first-party = ["vllm"]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
||||
@ -1,32 +1,98 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Define the model to use
|
||||
MODEL=${1:-"Qwen/Qwen2.5-7B-Instruct"}
|
||||
|
||||
# Define the backend to use
|
||||
BACKEND=${2:-"vllm"}
|
||||
|
||||
# Define the dataset to use
|
||||
DATASET=${3:-"xgrammar_bench"}
|
||||
|
||||
# default values
|
||||
MODEL=${MODEL:-"Qwen/Qwen2.5-7B-Instruct"}
|
||||
BACKEND=${BACKEND:-"vllm"}
|
||||
DATASET=${DATASET:-"xgrammar_bench"}
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
OUTPUT_DIR=${4:-"$SCRIPT_DIR/structured_output_benchmark_results"}
|
||||
OUTPUT_DIR=${OUTPUT_DIR:-"$SCRIPT_DIR/structured_output_benchmark_results"}
|
||||
PORT=${PORT:-8000}
|
||||
STRUCTURED_OUTPUT_RATIO=${STRUCTURED_OUTPUT_RATIO:-1}
|
||||
TOTAL_SECONDS=${TOTAL_SECONDS:-90}
|
||||
MAX_NEW_TOKENS=${MAX_NEW_TOKENS:-300}
|
||||
TOKENIZER_MODE=${TOKENIZER_MODE:-"auto"}
|
||||
|
||||
GUIDED_RATIO=${5:-0.5}
|
||||
usage() {
|
||||
echo "Usage: $0 [options]"
|
||||
echo "Options:"
|
||||
echo " --model MODEL Model to benchmark (default: $MODEL)"
|
||||
echo " --backend BACKEND Backend to use (default: $BACKEND)"
|
||||
echo " --dataset DATASET Dataset to use (default: $DATASET)"
|
||||
echo " --max-new-tokens N Maximum number of tokens to generate (default: $MAX_NEW_TOKENS)"
|
||||
echo " --output-dir DIR Output directory for results (default: $OUTPUT_DIR)"
|
||||
echo " --port PORT Port to use (default: $PORT)"
|
||||
echo " --structured-output-ratio N Ratio of structured outputs (default: $STRUCTURED_OUTPUT_RATIO)"
|
||||
echo " --tokenizer-mode MODE Tokenizer mode to use (default: $TOKENIZER_MODE)"
|
||||
echo " --total-seconds N Total seconds to run the benchmark (default: $TOTAL_SECONDS)"
|
||||
echo " -h, --help Show this help message and exit"
|
||||
exit 0
|
||||
}
|
||||
|
||||
# parse command line arguments
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case $1 in
|
||||
--model)
|
||||
MODEL="$2"
|
||||
shift 2
|
||||
;;
|
||||
--backend)
|
||||
BACKEND="$2"
|
||||
shift 2
|
||||
;;
|
||||
--dataset)
|
||||
DATASET="$2"
|
||||
shift 2
|
||||
;;
|
||||
--max-new-tokens)
|
||||
MAX_NEW_TOKENS="$2"
|
||||
shift 2
|
||||
;;
|
||||
--output-dir)
|
||||
OUTPUT_DIR="$2"
|
||||
shift 2
|
||||
;;
|
||||
--port)
|
||||
PORT="$2"
|
||||
shift 2
|
||||
;;
|
||||
--structured-output-ratio)
|
||||
STRUCTURED_OUTPUT_RATIO="$2"
|
||||
shift 2
|
||||
;;
|
||||
--tokenizer-mode)
|
||||
TOKENIZER_MODE="$2"
|
||||
shift 2
|
||||
;;
|
||||
--total-seconds)
|
||||
TOTAL_SECONDS="$2"
|
||||
shift 2
|
||||
;;
|
||||
-h|--help)
|
||||
usage
|
||||
;;
|
||||
*)
|
||||
echo "Unknown argument: $1\n"
|
||||
usage
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
# Create output directory if it doesn't exist
|
||||
mkdir -p "$OUTPUT_DIR"
|
||||
|
||||
# Define QPS values to test
|
||||
QPS_VALUES=(70 60 50 25 20 15 10)
|
||||
QPS_VALUES=(25 20 15 10 5 1)
|
||||
|
||||
# Common parameters
|
||||
COMMON_PARAMS="--backend $BACKEND \
|
||||
--model $MODEL \
|
||||
--dataset $DATASET \
|
||||
--structured-output-ratio $GUIDED_RATIO \
|
||||
--structured-output-ratio $STRUCTURED_OUTPUT_RATIO \
|
||||
--save-results \
|
||||
--result-dir $OUTPUT_DIR"
|
||||
--result-dir $OUTPUT_DIR \
|
||||
--output-len $MAX_NEW_TOKENS \
|
||||
--port $PORT \
|
||||
--tokenizer-mode $TOKENIZER_MODE"
|
||||
|
||||
echo "Starting structured output benchmark with model: $MODEL"
|
||||
echo "Backend: $BACKEND"
|
||||
@ -45,12 +111,15 @@ for qps in "${QPS_VALUES[@]}"; do
|
||||
# Construct filename for this run
|
||||
FILENAME="${BACKEND}_${qps}qps_$(basename $MODEL)_${DATASET}_${GIT_HASH}.json"
|
||||
|
||||
NUM_PROMPTS=$(echo "$TOTAL_SECONDS * $qps" | bc)
|
||||
NUM_PROMPTS=${NUM_PROMPTS%.*} # Remove fractional part
|
||||
echo "Running benchmark with $NUM_PROMPTS prompts"
|
||||
|
||||
# Run the benchmark
|
||||
python "$SCRIPT_DIR/benchmark_serving_structured_output.py" $COMMON_PARAMS \
|
||||
--request-rate $qps \
|
||||
--result-filename "$FILENAME" \
|
||||
--tokenizer-mode ${TOKENIZER_MODE:-"auto"} \
|
||||
--port ${PORT:-8000}
|
||||
--num-prompts $NUM_PROMPTS
|
||||
|
||||
echo "Completed benchmark with QPS: $qps"
|
||||
echo "----------------------------------------"
|
||||
|
||||
@ -75,6 +75,7 @@ if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
|
||||
else()
|
||||
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
|
||||
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
|
||||
find_isa(${CPUINFO} "Power11" POWER11_FOUND)
|
||||
find_isa(${CPUINFO} "POWER10" POWER10_FOUND)
|
||||
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
|
||||
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
||||
@ -106,13 +107,19 @@ elseif (AVX2_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
|
||||
message(WARNING "vLLM CPU backend using AVX2 ISA")
|
||||
|
||||
elseif (POWER9_FOUND OR POWER10_FOUND)
|
||||
elseif (POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
||||
message(STATUS "PowerPC detected")
|
||||
# Check for PowerPC VSX support
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mvsx"
|
||||
"-mcpu=native"
|
||||
"-mtune=native")
|
||||
if (POWER9_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mvsx"
|
||||
"-mcpu=power9"
|
||||
"-mtune=power9")
|
||||
elseif (POWER10_FOUND OR POWER11_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mvsx"
|
||||
"-mcpu=power10"
|
||||
"-mtune=power10")
|
||||
endif()
|
||||
|
||||
elseif (ASIMD_FOUND)
|
||||
message(STATUS "ARMv8 or later architecture detected")
|
||||
|
||||
@ -38,7 +38,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG 8798f27777fb57f447070301bf33a9f9c607f491
|
||||
GIT_TAG 763ad155a1c826f71ff318f41edb1e4e5e376ddb
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
@ -46,22 +46,38 @@ else()
|
||||
endif()
|
||||
|
||||
|
||||
# Ensure the vllm/vllm_flash_attn directory exists before installation
|
||||
install(CODE "file(MAKE_DIRECTORY \"\${CMAKE_INSTALL_PREFIX}/vllm/vllm_flash_attn\")" ALL_COMPONENTS)
|
||||
|
||||
# Make sure vllm-flash-attn install rules are nested under vllm/
|
||||
# This is here to support installing all components under the same prefix with cmake --install.
|
||||
# setup.py installs every component separately but uses the same prefix for all.
|
||||
# ALL_COMPONENTS is used to avoid duplication for FA2 and FA3,
|
||||
# and these statements don't hurt when installing neither component.
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY FALSE)" ALL_COMPONENTS)
|
||||
install(CODE "set(OLD_CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}\")" ALL_COMPONENTS)
|
||||
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}/vllm/\")" ALL_COMPONENTS)
|
||||
|
||||
# Fetch the vllm-flash-attn library
|
||||
FetchContent_MakeAvailable(vllm-flash-attn)
|
||||
message(STATUS "vllm-flash-attn is available at ${vllm-flash-attn_SOURCE_DIR}")
|
||||
|
||||
# Restore the install prefix
|
||||
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${OLD_CMAKE_INSTALL_PREFIX}\")" ALL_COMPONENTS)
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
|
||||
# Copy over the vllm-flash-attn python files (duplicated for fa2 and fa3, in
|
||||
# case only one is built, in the case both are built redundant work is done)
|
||||
install(
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm_flash_attn
|
||||
DESTINATION vllm/vllm_flash_attn
|
||||
COMPONENT _vllm_fa2_C
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
)
|
||||
|
||||
install(
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm_flash_attn
|
||||
DESTINATION vllm/vllm_flash_attn
|
||||
COMPONENT _vllm_fa3_C
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
)
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
#
|
||||
# A command line tool for running pytorch's hipify preprocessor on CUDA
|
||||
|
||||
@ -76,7 +76,7 @@ function (hipify_sources_target OUT_SRCS NAME ORIG_SRCS)
|
||||
set(CSRC_BUILD_DIR ${CMAKE_CURRENT_BINARY_DIR}/csrc)
|
||||
add_custom_target(
|
||||
hipify${NAME}
|
||||
COMMAND ${CMAKE_SOURCE_DIR}/cmake/hipify.py -p ${CMAKE_SOURCE_DIR}/csrc -o ${CSRC_BUILD_DIR} ${SRCS}
|
||||
COMMAND ${Python_EXECUTABLE} ${CMAKE_SOURCE_DIR}/cmake/hipify.py -p ${CMAKE_SOURCE_DIR}/csrc -o ${CSRC_BUILD_DIR} ${SRCS}
|
||||
DEPENDS ${CMAKE_SOURCE_DIR}/cmake/hipify.py ${SRCS}
|
||||
BYPRODUCTS ${HIP_SRCS}
|
||||
COMMENT "Running hipify on ${NAME} extension source files.")
|
||||
@ -122,6 +122,7 @@ function (get_torch_gpu_compiler_flags OUT_GPU_FLAGS GPU_LANG)
|
||||
"-DENABLE_FP8"
|
||||
"-U__HIP_NO_HALF_CONVERSIONS__"
|
||||
"-U__HIP_NO_HALF_OPERATORS__"
|
||||
"-Werror=unused-variable"
|
||||
"-fno-gpu-rdc")
|
||||
|
||||
endif()
|
||||
@ -228,11 +229,26 @@ macro(set_gencode_flags_for_srcs)
|
||||
"${multiValueArgs}" ${ARGN} )
|
||||
|
||||
foreach(_ARCH ${arg_CUDA_ARCHS})
|
||||
string(REPLACE "." "" _ARCH "${_ARCH}")
|
||||
set_gencode_flag_for_srcs(
|
||||
SRCS ${arg_SRCS}
|
||||
ARCH "compute_${_ARCH}"
|
||||
CODE "sm_${_ARCH}")
|
||||
# handle +PTX suffix: generate both sm and ptx codes if requested
|
||||
string(FIND "${_ARCH}" "+PTX" _HAS_PTX)
|
||||
if(NOT _HAS_PTX EQUAL -1)
|
||||
string(REPLACE "+PTX" "" _BASE_ARCH "${_ARCH}")
|
||||
string(REPLACE "." "" _STRIPPED_ARCH "${_BASE_ARCH}")
|
||||
set_gencode_flag_for_srcs(
|
||||
SRCS ${arg_SRCS}
|
||||
ARCH "compute_${_STRIPPED_ARCH}"
|
||||
CODE "sm_${_STRIPPED_ARCH}")
|
||||
set_gencode_flag_for_srcs(
|
||||
SRCS ${arg_SRCS}
|
||||
ARCH "compute_${_STRIPPED_ARCH}"
|
||||
CODE "compute_${_STRIPPED_ARCH}")
|
||||
else()
|
||||
string(REPLACE "." "" _STRIPPED_ARCH "${_ARCH}")
|
||||
set_gencode_flag_for_srcs(
|
||||
SRCS ${arg_SRCS}
|
||||
ARCH "compute_${_STRIPPED_ARCH}"
|
||||
CODE "sm_${_STRIPPED_ARCH}")
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
if (${arg_BUILD_PTX_FOR_ARCH})
|
||||
@ -251,7 +267,10 @@ endmacro()
|
||||
#
|
||||
# For the given `SRC_CUDA_ARCHS` list of gencode versions in the form
|
||||
# `<major>.<minor>[letter]` compute the "loose intersection" with the
|
||||
# `TGT_CUDA_ARCHS` list of gencodes.
|
||||
# `TGT_CUDA_ARCHS` list of gencodes. We also support the `+PTX` suffix in
|
||||
# `SRC_CUDA_ARCHS` which indicates that the PTX code should be built when there
|
||||
# is a CUDA_ARCH in `TGT_CUDA_ARCHS` that is equal to or larger than the
|
||||
# architecture in `SRC_CUDA_ARCHS`.
|
||||
# The loose intersection is defined as:
|
||||
# { max{ x \in tgt | x <= y } | y \in src, { x \in tgt | x <= y } != {} }
|
||||
# where `<=` is the version comparison operator.
|
||||
@ -268,44 +287,63 @@ endmacro()
|
||||
# cuda_archs_loose_intersection(OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_ARCHS)
|
||||
# OUT_CUDA_ARCHS="8.0;8.6;9.0;9.0a"
|
||||
#
|
||||
# Example With PTX:
|
||||
# SRC_CUDA_ARCHS="8.0+PTX"
|
||||
# TGT_CUDA_ARCHS="9.0"
|
||||
# cuda_archs_loose_intersection(OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_ARCHS)
|
||||
# OUT_CUDA_ARCHS="8.0+PTX"
|
||||
#
|
||||
function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_ARCHS)
|
||||
list(REMOVE_DUPLICATES SRC_CUDA_ARCHS)
|
||||
set(TGT_CUDA_ARCHS_ ${TGT_CUDA_ARCHS})
|
||||
set(_SRC_CUDA_ARCHS "${SRC_CUDA_ARCHS}")
|
||||
set(_TGT_CUDA_ARCHS ${TGT_CUDA_ARCHS})
|
||||
|
||||
# handle +PTX suffix: separate base arch for matching, record PTX requests
|
||||
set(_PTX_ARCHS)
|
||||
foreach(_arch ${_SRC_CUDA_ARCHS})
|
||||
if(_arch MATCHES "\\+PTX$")
|
||||
string(REPLACE "+PTX" "" _base "${_arch}")
|
||||
list(APPEND _PTX_ARCHS "${_base}")
|
||||
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
|
||||
list(APPEND _SRC_CUDA_ARCHS "${_base}")
|
||||
endif()
|
||||
endforeach()
|
||||
list(REMOVE_DUPLICATES _PTX_ARCHS)
|
||||
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
|
||||
|
||||
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
|
||||
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
|
||||
set(_CUDA_ARCHS)
|
||||
if ("9.0a" IN_LIST SRC_CUDA_ARCHS)
|
||||
list(REMOVE_ITEM SRC_CUDA_ARCHS "9.0a")
|
||||
if ("9.0" IN_LIST TGT_CUDA_ARCHS_)
|
||||
list(REMOVE_ITEM TGT_CUDA_ARCHS_ "9.0")
|
||||
if ("9.0a" IN_LIST _SRC_CUDA_ARCHS)
|
||||
list(REMOVE_ITEM _SRC_CUDA_ARCHS "9.0a")
|
||||
if ("9.0" IN_LIST TGT_CUDA_ARCHS)
|
||||
list(REMOVE_ITEM _TGT_CUDA_ARCHS "9.0")
|
||||
set(_CUDA_ARCHS "9.0a")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if ("10.0a" IN_LIST SRC_CUDA_ARCHS)
|
||||
list(REMOVE_ITEM SRC_CUDA_ARCHS "10.0a")
|
||||
if ("10.0a" IN_LIST _SRC_CUDA_ARCHS)
|
||||
list(REMOVE_ITEM _SRC_CUDA_ARCHS "10.0a")
|
||||
if ("10.0" IN_LIST TGT_CUDA_ARCHS)
|
||||
list(REMOVE_ITEM TGT_CUDA_ARCHS_ "10.0")
|
||||
list(REMOVE_ITEM _TGT_CUDA_ARCHS "10.0")
|
||||
set(_CUDA_ARCHS "10.0a")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
list(SORT SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING)
|
||||
list(SORT _SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING)
|
||||
|
||||
# for each ARCH in TGT_CUDA_ARCHS find the highest arch in SRC_CUDA_ARCHS that
|
||||
# is less or equal to ARCH (but has the same major version since SASS binary
|
||||
# compatibility is only forward compatible within the same major version).
|
||||
foreach(_ARCH ${TGT_CUDA_ARCHS_})
|
||||
foreach(_ARCH ${_TGT_CUDA_ARCHS})
|
||||
set(_TMP_ARCH)
|
||||
# Extract the major version of the target arch
|
||||
string(REGEX REPLACE "^([0-9]+)\\..*$" "\\1" TGT_ARCH_MAJOR "${_ARCH}")
|
||||
foreach(_SRC_ARCH ${SRC_CUDA_ARCHS})
|
||||
foreach(_SRC_ARCH ${_SRC_CUDA_ARCHS})
|
||||
# Extract the major version of the source arch
|
||||
string(REGEX REPLACE "^([0-9]+)\\..*$" "\\1" SRC_ARCH_MAJOR "${_SRC_ARCH}")
|
||||
# Check major-version match AND version-less-or-equal
|
||||
# Check version-less-or-equal, and allow PTX arches to match across majors
|
||||
if (_SRC_ARCH VERSION_LESS_EQUAL _ARCH)
|
||||
if (SRC_ARCH_MAJOR STREQUAL TGT_ARCH_MAJOR)
|
||||
if (_SRC_ARCH IN_LIST _PTX_ARCHS OR SRC_ARCH_MAJOR STREQUAL TGT_ARCH_MAJOR)
|
||||
set(_TMP_ARCH "${_SRC_ARCH}")
|
||||
endif()
|
||||
else()
|
||||
@ -321,6 +359,18 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
|
||||
endforeach()
|
||||
|
||||
list(REMOVE_DUPLICATES _CUDA_ARCHS)
|
||||
|
||||
# reapply +PTX suffix to architectures that requested PTX
|
||||
set(_FINAL_ARCHS)
|
||||
foreach(_arch ${_CUDA_ARCHS})
|
||||
if(_arch IN_LIST _PTX_ARCHS)
|
||||
list(APPEND _FINAL_ARCHS "${_arch}+PTX")
|
||||
else()
|
||||
list(APPEND _FINAL_ARCHS "${_arch}")
|
||||
endif()
|
||||
endforeach()
|
||||
set(_CUDA_ARCHS ${_FINAL_ARCHS})
|
||||
|
||||
set(${OUT_CUDA_ARCHS} ${_CUDA_ARCHS} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
|
||||
@ -70,6 +70,9 @@ __device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
|
||||
int64_t num_tokens = input.numel() / input.size(-1); \
|
||||
dim3 grid(num_tokens); \
|
||||
dim3 block(std::min(d, 1024)); \
|
||||
if (num_tokens == 0) { \
|
||||
return; \
|
||||
} \
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
||||
VLLM_DISPATCH_FLOATING_TYPES( \
|
||||
|
||||
@ -172,7 +172,7 @@ __device__ void paged_attention_kernel(
|
||||
|
||||
// Load the query to registers.
|
||||
// Each thread in a thread group has a different part of the query.
|
||||
// For example, if the the thread group size is 4, then the first thread in
|
||||
// For example, if the thread group size is 4, then the first thread in
|
||||
// the group has 0, 4, 8, ... th vectors of the query, and the second thread
|
||||
// has 1, 5, 9, ... th vectors of the query, and so on. NOTE(woosuk): Because
|
||||
// q is split from a qkv tensor, it may not be contiguous.
|
||||
@ -259,7 +259,7 @@ __device__ void paged_attention_kernel(
|
||||
|
||||
// Load a key to registers.
|
||||
// Each thread in a thread group has a different part of the key.
|
||||
// For example, if the the thread group size is 4, then the first thread in
|
||||
// For example, if the thread group size is 4, then the first thread in
|
||||
// the group has 0, 4, 8, ... th vectors of the key, and the second thread
|
||||
// has 1, 5, 9, ... th vectors of the key, and so on.
|
||||
for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {
|
||||
|
||||
@ -143,6 +143,14 @@ void merge_attn_states_launcher(torch::Tensor& output,
|
||||
const uint pack_size = 16 / sizeof(scalar_t);
|
||||
TORCH_CHECK(head_size % pack_size == 0,
|
||||
"headsize must be multiple of pack_size:", pack_size);
|
||||
TORCH_CHECK(output.stride(-2) == head_size && output.stride(-1) == 1,
|
||||
"output heads must be contiguous in memory");
|
||||
TORCH_CHECK(
|
||||
prefix_output.stride(-2) == head_size && prefix_output.stride(-1) == 1,
|
||||
"prefix_output heads must be contiguous in memory");
|
||||
TORCH_CHECK(
|
||||
suffix_output.stride(-2) == head_size && suffix_output.stride(-1) == 1,
|
||||
"suffix_output heads must be contiguous in memory");
|
||||
float* output_lse_ptr = nullptr;
|
||||
if (output_lse.has_value()) {
|
||||
output_lse_ptr = output_lse.value().data_ptr<float>();
|
||||
|
||||
@ -119,7 +119,7 @@ typename T::Fmha::Arguments args_from_options(
|
||||
{static_cast<ElementOut*>(out.data_ptr()), stride_O,
|
||||
static_cast<ElementAcc*>(nullptr), stride_LSE},
|
||||
hw_info,
|
||||
-1, // split_kv
|
||||
1, // split_kv
|
||||
nullptr, // is_var_split_kv
|
||||
};
|
||||
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute
|
||||
|
||||
@ -65,9 +65,6 @@ void paged_attention_v1_launcher(
|
||||
int kv_block_stride = key_cache.stride(0);
|
||||
int kv_head_stride = key_cache.stride(1);
|
||||
|
||||
[[maybe_unused]] int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
|
||||
assert(head_size % thread_group_size == 0);
|
||||
|
||||
// NOTE: alibi_slopes is optional.
|
||||
const float* alibi_slopes_ptr =
|
||||
alibi_slopes
|
||||
@ -193,4 +190,4 @@ void paged_attention_v1(
|
||||
#undef WARP_SIZE
|
||||
#undef MAX
|
||||
#undef MIN
|
||||
#undef DIVIDE_ROUND_UP
|
||||
#undef DIVIDE_ROUND_UP
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user