Compare commits

...

58 Commits

Author SHA1 Message Date
44d638a896 merge
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-25 10:26:20 -07:00
0a049c7d86 [CI/Build] Add tests for the V1 tpu_model_runner. (#14843)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-03-25 12:27:16 -04:00
d0cfec7ab9 [bugfix] fix inductor cache on max_position_embeddings (#15436)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-25 07:05:39 -07:00
a608160027 [Kernel] Fix conflicting macro names for gguf kernels (#15456)
Signed-off-by: SzymonOzog <szymon.ozog@gmail.com>
2025-03-25 13:50:49 +00:00
3f04a7fbf2 [Doc] Update V1 user guide for multi-modality (#15460)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-25 11:01:58 +00:00
5994430b84 [Misc] Remove redundant num_embeds (#15443)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-25 18:27:57 +08:00
a9e879b316 [Misc] Clean up MiniCPM-V/O code (#15337)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-25 10:22:52 +00:00
3e2f37a69a Dockerfile.ppc64le changes to move to UBI (#15402)
Signed-off-by: Md. Shafi Hussain <Md.Shafi.Hussain@ibm.com>
2025-03-25 10:15:14 +00:00
4f044b1d67 [Kernel][CPU] CPU MLA (#14744)
Signed-off-by: Thien Tran <gau.nernst@yahoo.com.sg>
2025-03-25 09:34:59 +00:00
4157f563b4 [Hardware][TPU][Bugfix] Fix v1 mp profiler (#15409)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-03-25 01:43:00 -07:00
051da7efe3 Fix CUDA kernel index data type in vllm/csrc/quantization/gptq_marlin/awq_marlin_repack.cu +10 (#15160)
Signed-off-by: Lu Fang <lufang@fb.com>
Co-authored-by: Richard Barnes <rbarnes@meta.com>
2025-03-25 15:36:45 +08:00
25f560a62c [V1][Spec Decode] Update target_logits in place for rejection sampling (#15427)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-24 21:04:41 -07:00
a09ad90a72 [V1] guidance backend for structured output + auto fallback mode (#14779)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Loc Huynh <jc1da.3011@gmail.com>
Co-authored-by: Michal Moskal <michal@moskal.me>
2025-03-24 21:02:33 -07:00
10b34e36b9 [Bugfix] Fixed the issue of not being able to input video and image simultaneously (#15387)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-03-25 03:48:08 +00:00
b5269db959 Revert "Fix non-contiguous input passed to Marlin kernel (#15319)" (#15398) 2025-03-24 20:43:51 -07:00
6db94571d7 [Misc] Remove LoRA log (#15388)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-03-24 20:43:48 -07:00
97cfa65df7 Add pipeline parallel support to TransformersModel (#12832)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-03-25 10:41:45 +08:00
911c8eb000 [Minor][Spec Decode] Remove compiled_softmax (#15416)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-24 19:09:04 -07:00
ebcebeeb6b [V1][Spec Decode] Enable spec decode for top-p & top-k sampling (#15063)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-24 17:16:46 -07:00
f533b5837f [ROCm][Kernel] MoE weights padding (#14454)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: charlifu <charlifu@amd.com>
Co-authored-by: charlifu <charlifu@amd.com>
2025-03-24 23:45:30 +00:00
8279201ce6 [Build] Cython compilation support fix (#14296)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-03-24 23:37:54 +00:00
23fdab00a8 [Hardware][TPU] Skip failed compilation test (#15421)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-03-24 23:28:57 +00:00
623e2ed29f [BugFix][V1] Quick fix for min_tokens with multiple EOS (#15407)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-24 15:58:59 -07:00
9d72daf4ce [V1][Perf] Simpler request output queues (#15156)
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Co-authored-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-03-24 22:44:08 +00:00
6dd55af6c9 [Doc] Update docs on handling OOM (#15357)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-24 14:29:34 -07:00
3eb08ed9b1 [DOC] Add Kubernetes deployment guide with CPUs (#14865) 2025-03-24 10:48:43 -07:00
5eeadc2642 [Hardware][Gaudi][Feature] Enable Dynamic MoE for Mixtral (#12303)
Signed-off-by: zhenwei <zhenweiliu@habana.ai>
2025-03-24 09:48:40 -07:00
3aee6573dc [V1] Aggregate chunked prompt logprobs in model runner (#14875)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-03-24 12:27:57 -04:00
9cc645141d [MISC] Refine no available block debug msg (#15076)
Signed-off-by: Yi Liu <yiliu4@habana.ai>
Signed-off-by: yiliu30 <yi4.liu@intel.com>
Co-authored-by: Yi Liu <yiliu4@habana.ai>
2025-03-25 00:01:10 +08:00
0893567db9 [V1][Minor] fix comments (#15392)
Signed-off-by: chenjincong <chenjincong@baidu.com>
Signed-off-by: Chen-0210 <chenjincong11@gmail.com>
Co-authored-by: chenjincong <chenjincong@baidu.com>
2025-03-24 08:45:32 -07:00
8abe69b499 [Core] Don't force uppercase for VLLM_LOGGING_LEVEL (#15306)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-24 08:27:30 -07:00
761702fd19 [Core] Integrate fastsafetensors loader for loading model weights (#10647)
Signed-off-by: Manish Sethi <Manish.sethi1@ibm.com>
2025-03-24 08:08:02 -07:00
9606d572ed [distributed] fix dp group (#15355)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-24 14:54:27 +00:00
cbcdf2c609 [Bugfix] Fix chat template loading (#15143)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-24 13:50:09 +00:00
038de04d7b Fix zmq IPv6 URL format error (#15341)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-03-24 09:30:41 -04:00
6b3cc75be0 [Kernel] allow non-contiguous input for marlin kernel (#14658)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
2025-03-24 09:21:33 -04:00
7ffcccfa5c Revert "[CI/Build] Use uv python for docker rather than ppa:deadsnakess/ppa (#13569)" (#15377)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-03-24 05:53:10 -07:00
cc8accfd53 [Misc] Update guided decoding logs to debug (#15310)
Signed-off-by: Benjamin Merkel <benjamin.merkel@tngtech.com>
Co-authored-by: Benjamin Merkel <benjamin.merkel@tngtech.com>
2025-03-24 04:25:20 -07:00
948ab03e7e [Bugfix][V1] Avoid importing PreTrainedModel (#15366)
Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-03-24 10:33:12 +00:00
5797fb97e9 [Misc] Remove ignore_reinit_error for ray.init() (#15373) 2025-03-24 07:41:53 +00:00
3892e58ad7 [Misc] Upgrade BNB version (#15183) 2025-03-24 05:51:42 +00:00
d20e261199 Fix non-contiguous input passed to Marlin kernel (#15319) 2025-03-24 03:09:44 +00:00
f622dbcf39 [Fix] [torch.compile] Improve UUID system for custom passes (#15249)
Signed-off-by: luka <luka@neuralmagic.com>
2025-03-24 01:54:07 +00:00
dccf535f8e [V1] Enable V1 Fp8 cache for FA3 in the oracle (#15191)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-03-23 15:07:04 -07:00
9c5c81b0da [Misc][Doc] Add note regarding loading generation_config by default (#15281)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-03-23 14:00:55 -07:00
d6cd59f122 [Frontend] Support tool calling and reasoning parser (#14511)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-03-23 14:00:07 -07:00
bc8ed3c4ba [V1][Spec Decode] Use better defaults for N-gram (#15358)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-23 10:52:30 -07:00
b9bd76ca14 [V1][Spec Decode] Respect prompt_lookup_max (#15348)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-03-23 10:41:44 -07:00
6ebaf9ac71 [Bugfix] consider related env vars for torch.compiled cache hash (#14953)
Signed-off-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2025-03-23 15:53:09 +00:00
f90d34b498 [Misc] Add tuned R1 w8a8 and MoE configs for NVIDIA L20 (#15322)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-03-23 01:10:10 -07:00
f68cce8e64 [ci/build] fix broken tests in LLM.collective_rpc (#15350)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-23 14:49:48 +08:00
09b6a95551 [ci/build] update torch nightly version for GH200 (#15135)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-03-23 14:04:13 +08:00
50c9636d87 [V1][Usage] Refactor speculative decoding configuration and tests (#14434)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-03-22 19:28:10 -10:00
0661cfef7a Fix v1 supported oracle for worker-cls and worker-extension-cls (#15324)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-03-23 10:23:35 +08:00
a827aa815d [doc] Add back previous news (#15331)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-03-22 17:38:33 -07:00
caacd1ddfb Merge branch 'main' into v1-block-table-opt 2025-01-23 22:59:55 -08:00
e68f63ef83 Simplify
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-01-15 02:31:16 -08:00
223e17424c working
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-01-15 01:24:45 -08:00
181 changed files with 7427 additions and 2553 deletions

View File

@ -38,6 +38,8 @@ function cpu_tests() {
set -e
pip install -r vllm/requirements/test.txt
pip install -r vllm/requirements/cpu.txt
pytest -v -s tests/kernels/test_cache.py -m cpu_model
pytest -v -s tests/kernels/test_mla_decode_cpu.py -m cpu_model
pytest -v -s tests/models/decoder_only/language -m cpu_model
pytest -v -s tests/models/embedding/language -m cpu_model
pytest -v -s tests/models/encoder_decoder/language -m cpu_model

View File

@ -14,6 +14,7 @@ DOCKER_BUILDKIT=1 docker build . \
-t gh200-test \
--build-arg max_jobs=66 \
--build-arg nvcc_threads=2 \
--build-arg RUN_WHEEL_CHECK=false \
--build-arg torch_cuda_arch_list="9.0+PTX" \
--build-arg vllm_fa_cmake_gpu_arches="90-real"
@ -23,6 +24,6 @@ trap remove_docker_container EXIT
remove_docker_container
# Run the image and test offline inference
docker run -e HF_TOKEN -v /root/.cache/huggingface:/root/.cache/huggingface --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
docker run -e HF_TOKEN -e VLLM_WORKER_MULTIPROC_METHOD=spawn -v /root/.cache/huggingface:/root/.cache/huggingface --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
python3 examples/offline_inference/basic/generate.py --model meta-llama/Llama-3.2-1B
'

View File

@ -22,7 +22,7 @@ docker run --privileged --net host --shm-size=16G -it \
&& export VLLM_USE_V1=1 \
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
&& echo TEST_1 \
&& python3 /workspace/vllm/tests/tpu/test_compilation.py \
&& pytest /workspace/vllm/tests/tpu/test_compilation.py \
&& echo TEST_2 \
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_basic.py \
&& echo TEST_3 \
@ -30,7 +30,9 @@ docker run --privileged --net host --shm-size=16G -it \
&& echo TEST_4 \
&& pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
&& echo TEST_5 \
&& python3 /workspace/vllm/examples/offline_inference/tpu.py" \
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
&& echo TEST_6 \
&& pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py" \
# TODO: This test fails because it uses RANDOM_SEED sampling

View File

@ -118,7 +118,7 @@ steps:
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/correctness/
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/
- pytest -v -s entrypoints/test_chat_utils.py
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
@ -148,8 +148,8 @@ steps:
# TODO: create a dedicated test section for multi-GPU example tests
# when we have multiple distributed example tests
- pushd ../examples/offline_inference
- python3 rlhf.py
- RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- VLLM_ENABLE_V1_MULTIPROCESSING=0 python3 rlhf.py
- VLLM_ENABLE_V1_MULTIPROCESSING=0 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: Metrics, Tracing Test # 10min
@ -515,7 +515,7 @@ steps:
- vllm/worker/model_runner.py
- entrypoints/llm/test_collective_rpc.py
commands:
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- VLLM_ENABLE_V1_MULTIPROCESSING=0 pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'

3
.gitignore vendored
View File

@ -2,7 +2,8 @@
/vllm/_version.py
# vllm-flash-attn built from source
vllm/vllm_flash_attn/
vllm/vllm_flash_attn/*
!vllm/vllm_flash_attn/fa_utils.py
# Byte-compiled / optimized / DLL files
__pycache__/

View File

@ -228,6 +228,7 @@ endif()
set(VLLM_EXT_SRC
"csrc/cache_kernels.cu"
"csrc/block_table.cu"
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
"csrc/pos_encoding_kernels.cu"

View File

@ -14,17 +14,22 @@ ARG PYTHON_VERSION=3.12
ARG TARGETPLATFORM
ENV DEBIAN_FRONTEND=noninteractive
# Install minimal dependencies and uv
RUN apt-get update -y \
&& apt-get install -y ccache git curl wget sudo \
&& curl -LsSf https://astral.sh/uv/install.sh | sh
# Add uv to PATH
ENV PATH="/root/.local/bin:$PATH"
# Create venv with specified Python and activate by placing at the front of path
ENV VIRTUAL_ENV="/opt/venv"
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# Install Python and other dependencies
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl sudo \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Install uv for faster pip installs
RUN --mount=type=cache,target=/root/.cache/uv \
python3 -m pip install uv
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
@ -46,19 +51,22 @@ RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
WORKDIR /workspace
# install build and runtime dependencies
# arm64 (GH200) build follows the practice of "use existing pytorch" build,
# we need to install torch and torchvision from the nightly builds first,
# pytorch will not appear as a vLLM dependency in all of the following steps
# after this step
RUN --mount=type=cache,target=/root/.cache/uv \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
uv pip install --index-url https://download.pytorch.org/whl/nightly/cu126 "torch==2.7.0.dev20250121+cu126" "torchvision==0.22.0.dev20250121"; \
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 "torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319"; \
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 --pre pytorch_triton==3.3.0+gitab727c40; \
fi
COPY requirements/common.txt requirements/common.txt
COPY requirements/cuda.txt requirements/cuda.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -r requirements/cuda.txt
uv pip install --system -r requirements/cuda.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
@ -83,7 +91,7 @@ COPY requirements/build.txt requirements/build.txt
ENV UV_HTTP_TIMEOUT=500
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -r requirements/build.txt
uv pip install --system -r requirements/build.txt
COPY . .
ARG GIT_REPO_CHECK=0
@ -155,7 +163,7 @@ COPY requirements/lint.txt requirements/lint.txt
COPY requirements/test.txt requirements/test.txt
COPY requirements/dev.txt requirements/dev.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -r requirements/dev.txt
uv pip install --system -r requirements/dev.txt
#################### DEV IMAGE ####################
#################### vLLM installation IMAGE ####################
@ -171,18 +179,23 @@ ARG TARGETPLATFORM
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
# Install minimal dependencies and uv
RUN apt-get update -y \
&& apt-get install -y ccache git curl wget sudo vim \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 libibverbs-dev \
&& curl -LsSf https://astral.sh/uv/install.sh | sh
# Add uv to PATH
ENV PATH="/root/.local/bin:$PATH"
# Create venv with specified Python and activate by placing at the front of path
ENV VIRTUAL_ENV="/opt/venv"
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# Install Python and other dependencies
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl wget sudo vim python3-pip \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Install uv for faster pip installs
RUN --mount=type=cache,target=/root/.cache/uv \
python3 -m pip install uv
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
@ -200,13 +213,14 @@ RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
# after this step
RUN --mount=type=cache,target=/root/.cache/uv \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
uv pip install --index-url https://download.pytorch.org/whl/nightly/cu124 "torch==2.6.0.dev20241210+cu124" "torchvision==0.22.0.dev20241215"; \
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 "torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319"; \
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 --pre pytorch_triton==3.3.0+gitab727c40; \
fi
# Install vllm wheel first, so that torch etc will be installed.
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/uv \
uv pip install dist/*.whl --verbose
uv pip install --system dist/*.whl --verbose
# If we need to build FlashInfer wheel before its release:
# $ export FLASHINFER_ENABLE_AOT=1
@ -221,8 +235,9 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
# $ # upload the wheel to a public location, e.g. https://wheels.vllm.ai/flashinfer/524304395bd1d8cd7d07db083859523fcaa246a4/flashinfer_python-0.2.1.post1+cu124torch2.5-cp38-abi3-linux_x86_64.whl
RUN --mount=type=cache,target=/root/.cache/uv \
. /etc/environment && \
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \
uv pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.1.post2/flashinfer_python-0.2.1.post2+cu124torch2.6-cp38-abi3-linux_x86_64.whl ; \
uv pip install --system https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.1.post2/flashinfer_python-0.2.1.post2+cu124torch2.6-cp38-abi3-linux_x86_64.whl ; \
fi
COPY examples examples
@ -232,7 +247,7 @@ COPY examples examples
# TODO: Remove this once FlashInfer AOT wheel is fixed
COPY requirements/build.txt requirements/build.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -r requirements/build.txt
uv pip install --system -r requirements/build.txt
#################### vLLM installation IMAGE ####################
@ -249,15 +264,15 @@ ENV UV_HTTP_TIMEOUT=500
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -r requirements/dev.txt
uv pip install --system -r requirements/dev.txt
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -e tests/vllm_test_utils
uv pip install --system -e tests/vllm_test_utils
# enable fast downloads from hf (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install hf_transfer
uv pip install --system hf_transfer
ENV HF_HUB_ENABLE_HF_TRANSFER 1
# Copy in the v1 package for testing (it isn't distributed yet)
@ -282,9 +297,9 @@ ENV UV_HTTP_TIMEOUT=500
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/uv \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
uv pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
else \
uv pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.3' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
fi
ENV VLLM_USAGE_SOURCE production-docker-image

View File

@ -1,37 +1,267 @@
FROM mambaorg/micromamba
ARG MAMBA_DOCKERFILE_ACTIVATE=1
USER root
ARG BASE_UBI_IMAGE_TAG=9.5-1741850109
ENV PATH="/usr/local/cargo/bin:$PATH:/opt/conda/bin/"
###############################################################
# base stage with basic dependencies
###############################################################
RUN apt-get update -y && apt-get install -y git wget kmod curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1 libssl-dev
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS base-builder
# Some packages in requirements/cpu are installed here
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
# Currently these may not be available for venv or pip directly
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 rust && micromamba clean --all --yes
ARG PYTHON_VERSION=3.12
ARG OPENBLAS_VERSION=0.3.29
# Set Environment Variables for venv, cargo & openblas
ENV VIRTUAL_ENV=/opt/vllm
ENV PATH=${VIRTUAL_ENV}/bin:/root/.cargo/bin:$PATH
ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig/
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib64:/usr/local/lib:/usr/lib64:/usr/lib
ENV UV_LINK_MODE=copy
# install gcc-13, python, rust, openblas
# Note: A symlink for libatomic.so is created for gcc-13 (linker fails to find libatomic otherwise - reqd. for sentencepiece)
# Note: A dummy file 'control' is created in /tmp/ to artificially create dependencies between stages when building stages in parallel
# when `--jobs=<N>` is passed with podman build command
RUN microdnf install -y openssl-devel dnf \
&& dnf install -y https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os/Packages/centos-gpg-keys-9.0-24.el9.noarch.rpm \
https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os/Packages/centos-stream-repos-9.0-24.el9.noarch.rpm \
https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm \
&& dnf config-manager --add-repo https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os \
&& dnf config-manager --add-repo https://mirror.stream.centos.org/9-stream/AppStream/`arch`/os \
&& dnf config-manager --set-enabled crb \
&& dnf install -y \
git tar gcc-toolset-13 automake libtool numactl-devel lapack-devel \
pkgconfig xsimd zeromq-devel kmod findutils protobuf* \
libtiff-devel libjpeg-devel openjpeg2-devel zlib-devel \
freetype-devel lcms2-devel libwebp-devel tcl-devel tk-devel \
harfbuzz-devel fribidi-devel libraqm-devel libimagequant-devel libxcb-devel \
python${PYTHON_VERSION}-devel python${PYTHON_VERSION}-pip \
&& dnf clean all \
&& ln -sf /usr/lib64/libatomic.so.1 /usr/lib64/libatomic.so \
&& python${PYTHON_VERSION} -m venv ${VIRTUAL_ENV} \
&& python -m pip install -U pip uv \
&& uv pip install wheel build "setuptools<70" setuptools_scm setuptools_rust meson-python cmake ninja cython scikit_build_core scikit_build \
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
&& curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y \
&& cd /tmp && touch control
###############################################################
# Stage to build torch family
###############################################################
FROM base-builder AS torch-builder
ARG MAX_JOBS
ARG TORCH_VERSION=2.6.0
ARG _GLIBCXX_USE_CXX11_ABI=1
RUN --mount=type=cache,target=/root/.cache/uv \
source /opt/rh/gcc-toolset-13/enable && \
git clone --recursive https://github.com/pytorch/pytorch.git -b v${TORCH_VERSION} && \
cd pytorch && \
uv pip install -r requirements.txt && \
python setup.py develop && \
rm -f dist/torch*+git*whl && \
MAX_JOBS=${MAX_JOBS:-$(nproc)} \
PYTORCH_BUILD_VERSION=${TORCH_VERSION} PYTORCH_BUILD_NUMBER=1 uv build --wheel --out-dir /torchwheels/
ARG TORCHVISION_VERSION=0.21.0
ARG TORCHVISION_USE_NVJPEG=0
ARG TORCHVISION_USE_FFMPEG=0
RUN --mount=type=cache,target=/root/.cache/uv \
source /opt/rh/gcc-toolset-13/enable && \
git clone --recursive https://github.com/pytorch/vision.git -b v${TORCHVISION_VERSION} && \
cd vision && \
MAX_JOBS=${MAX_JOBS:-$(nproc)} \
BUILD_VERSION=${TORCHVISION_VERSION} \
uv build --wheel --out-dir /torchwheels/ --no-build-isolation
ARG TORCHAUDIO_VERSION=2.6.0
ARG BUILD_SOX=1
ARG BUILD_KALDI=1
ARG BUILD_RNNT=1
ARG USE_FFMPEG=0
ARG USE_ROCM=0
ARG USE_CUDA=0
ARG TORCHAUDIO_TEST_ALLOW_SKIP_IF_NO_FFMPEG=1
RUN --mount=type=cache,target=/root/.cache/uv \
source /opt/rh/gcc-toolset-13/enable && \
git clone --recursive https://github.com/pytorch/audio.git -b v${TORCHAUDIO_VERSION} && \
cd audio && \
MAX_JOBS=${MAX_JOBS:-$(nproc)} \
BUILD_VERSION=${TORCHAUDIO_VERSION} \
uv build --wheel --out-dir /torchwheels/ --no-build-isolation
###############################################################
# Stage to build pyarrow
###############################################################
FROM base-builder AS arrow-builder
ARG MAX_JOBS
ARG PYARROW_PARALLEL
ARG PYARROW_VERSION=19.0.1
RUN --mount=type=cache,target=/root/.cache/uv \
source /opt/rh/gcc-toolset-13/enable && \
git clone --recursive https://github.com/apache/arrow.git -b apache-arrow-${PYARROW_VERSION} && \
cd arrow/cpp && \
mkdir build && cd build && \
cmake -DCMAKE_BUILD_TYPE=release \
-DCMAKE_INSTALL_PREFIX=/usr/local \
-DARROW_PYTHON=ON \
-DARROW_BUILD_TESTS=OFF \
-DARROW_JEMALLOC=ON \
-DARROW_BUILD_STATIC="OFF" \
-DARROW_PARQUET=ON \
.. && \
make install -j ${MAX_JOBS:-$(nproc)} && \
cd ../../python/ && \
uv pip install -v -r requirements-wheel-build.txt && \
PYARROW_PARALLEL=${PYARROW_PARALLEL:-$(nproc)} \
python setup.py build_ext \
--build-type=release --bundle-arrow-cpp \
bdist_wheel --dist-dir /arrowwheels/
###############################################################
# Stage to build opencv
###############################################################
FROM base-builder AS cv-builder
ARG MAX_JOBS
ARG OPENCV_VERSION=84
ARG ENABLE_HEADLESS=1
RUN --mount=type=cache,target=/root/.cache/uv \
source /opt/rh/gcc-toolset-13/enable && \
git clone --recursive https://github.com/opencv/opencv-python.git -b ${OPENCV_VERSION} && \
cd opencv-python && \
sed -i 's/"setuptools==59.2.0",/"setuptools<70.0",/g' pyproject.toml && \
python -m build --wheel --installer=uv --outdir /opencvwheels/
###############################################################
# Stage to build vllm - this stage builds and installs
# vllm, tensorizer and vllm-tgis-adapter and builds uv cache
# for transitive dependencies - eg. grpcio
###############################################################
FROM base-builder AS vllmcache-builder
COPY --from=torch-builder /tmp/control /dev/null
COPY --from=arrow-builder /tmp/control /dev/null
COPY --from=cv-builder /tmp/control /dev/null
ARG VLLM_TARGET_DEVICE=cpu
# this step installs vllm and populates uv cache
# with all the transitive dependencies
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=torch-builder,source=/torchwheels/,target=/torchwheels/,ro \
--mount=type=bind,from=arrow-builder,source=/arrowwheels/,target=/arrowwheels/,ro \
--mount=type=bind,from=cv-builder,source=/opencvwheels/,target=/opencvwheels/,ro \
--mount=type=bind,src=.,dst=/src/,rw \
source /opt/rh/gcc-toolset-13/enable && \
uv pip install /opencvwheels/*.whl /arrowwheels/*.whl /torchwheels/*.whl && \
sed -i -e 's/.*torch.*//g' /src/pyproject.toml /src/requirements/*.txt && \
uv pip install pandas pythran pybind11 && \
# sentencepiece.pc is in some pkgconfig inside uv cache
export PKG_CONFIG_PATH=$(find / -type d -name "pkgconfig" 2>/dev/null | tr '\n' ':') && \
uv pip install -r /src/requirements/common.txt -r /src/requirements/cpu.txt -r /src/requirements/build.txt --no-build-isolation && \
cd /src/ && \
uv build --wheel --out-dir /vllmwheel/ --no-build-isolation && \
uv pip install /vllmwheel/*.whl
###############################################################
# Stage to build numactl
###############################################################
FROM base-builder AS numa-builder
# Note: Building numactl with gcc-11. Compiling with gcc-13 in this builder stage will
# trigger recompilation with gcc-11 (and require libtool) in the final stage where we do not have gcc-13
ARG MAX_JOBS
ARG NUMACTL_VERSION=2.0.19
RUN git clone --recursive https://github.com/numactl/numactl.git -b v${NUMACTL_VERSION} \
&& cd numactl \
&& autoreconf -i && ./configure \
&& make -j ${MAX_JOBS:-$(nproc)}
###############################################################
# Stage to build lapack
###############################################################
FROM base-builder AS lapack-builder
ARG MAX_JOBS
ARG LAPACK_VERSION=3.12.1
RUN git clone --recursive https://github.com/Reference-LAPACK/lapack.git -b v${LAPACK_VERSION} \
&& cd lapack && source /opt/rh/gcc-toolset-13/enable \
&& cmake -B build -S . \
&& cmake --build build -j ${MAX_JOBS:-$(nproc)}
###############################################################
# FINAL VLLM IMAGE STAGE #
###############################################################
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS vllm-openai
ARG PYTHON_VERSION=3.12
ARG OPENBLAS_VERSION=0.3.29
# Set Environment Variables for venv & openblas
ENV VIRTUAL_ENV=/opt/vllm
ENV PATH=${VIRTUAL_ENV}/bin:$PATH
ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig/
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib64:/usr/local/lib:/usr/lib64:/usr/lib
ENV UV_LINK_MODE=copy
# create artificial dependencies between stages for independent stages to build in parallel
COPY --from=torch-builder /tmp/control /dev/null
COPY --from=arrow-builder /tmp/control /dev/null
COPY --from=cv-builder /tmp/control /dev/null
COPY --from=vllmcache-builder /tmp/control /dev/null
COPY --from=numa-builder /tmp/control /dev/null
COPY --from=lapack-builder /tmp/control /dev/null
# install gcc-11, python, openblas, numactl, lapack
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=numa-builder,source=/numactl/,target=/numactl/,rw \
--mount=type=bind,from=lapack-builder,source=/lapack/,target=/lapack/,rw \
rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm && \
microdnf install --nodocs -y \
tar findutils openssl \
pkgconfig xsimd g++ gcc-fortran libsndfile \
libtiff libjpeg openjpeg2 zlib zeromq \
freetype lcms2 libwebp tcl tk utf8proc \
harfbuzz fribidi libraqm libimagequant libxcb \
python${PYTHON_VERSION}-devel python${PYTHON_VERSION}-pip \
&& microdnf clean all \
&& python${PYTHON_VERSION} -m venv ${VIRTUAL_ENV} \
&& python -m pip install -U pip uv --no-cache \
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
&& make -C /numactl install \
&& uv pip install cmake \
&& cmake --install /lapack/build \
&& uv pip uninstall cmake
# consume previously built wheels (including vllm)
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=torch-builder,source=/torchwheels/,target=/torchwheels/,ro \
--mount=type=bind,from=arrow-builder,source=/arrowwheels/,target=/arrowwheels/,ro \
--mount=type=bind,from=cv-builder,source=/opencvwheels/,target=/opencvwheels/,ro \
--mount=type=bind,from=vllmcache-builder,source=/vllmwheel/,target=/vllmwheel/,ro \
HOME=/root uv pip install /opencvwheels/*.whl /arrowwheels/*.whl /torchwheels/*.whl /vllmwheel/*.whl
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
RUN --mount=type=cache,target=/root/.cache/pip \
RUSTFLAGS='-L /opt/conda/lib' pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
-r requirements/cpu.txt \
xformers uvloop==0.20.0
RUN --mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py install
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -e tests/vllm_test_utils
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["/opt/conda/bin/python3", "-m", "vllm.entrypoints.openai.api_server"]
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -40,7 +40,7 @@ ARG USE_CYTHON
RUN cd vllm \
&& python3 -m pip install -r requirements/rocm.txt \
&& python3 setup.py clean --all \
&& if [ ${USE_CYTHON} -eq "1" ]; then python3 setup_cython.py build_ext --inplace; fi \
&& if [ ${USE_CYTHON} -eq "1" ]; then python3 tests/build_cython.py build_ext --inplace; fi \
&& python3 setup.py bdist_wheel --dist-dir=dist
FROM scratch AS export_vllm
ARG COMMON_WORKDIR

View File

@ -28,10 +28,27 @@ Easy, fast, and cheap LLM serving for everyone
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
- [2024/12] vLLM joins [PyTorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
<details>
<summary>Previous News</summary>
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
- [2024/09] We hosted [the sixth vLLM meetup](https://lu.ma/87q3nvnh) with NVIDIA! Please find the meetup slides [here](https://docs.google.com/presentation/d/1wrLGwytQfaOTd5wCGSPNhoaW3nq0E-9wqyP7ny93xRs/edit?usp=sharing).
- [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing).
- [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html).
- [2024/06] We hosted [the fourth vLLM meetup](https://lu.ma/agivllm) with Cloudflare and BentoML! Please find the meetup slides [here](https://docs.google.com/presentation/d/1iJ8o7V2bQEi0BFEljLTwc5G1S10_Rhv3beed5oB0NJ4/edit?usp=sharing).
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) with IBM! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) with a16z! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
</details>
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.

View File

@ -0,0 +1,420 @@
# SPDX-License-Identifier: Apache-2.0
# Adapted from sglang quantization/tuning_block_wise_kernel.py
import argparse
import json
import multiprocessing as mp
import os
import time
from datetime import datetime
from typing import Any
import torch
import tqdm
import triton
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
mp.set_start_method("spawn", force=True)
assert current_platform.is_cuda(
), "Only support tune w8a8 block fp8 kernel on CUDA device."
DTYPE_MAP = {
"float32": torch.float32,
"float16": torch.float16,
"half": torch.half,
"bfloat16": torch.bfloat16,
}
def w8a8_block_matmul(
A: torch.Tensor,
B: torch.Tensor,
As: torch.Tensor,
Bs: torch.Tensor,
block_size: list[int],
config: dict[str, Any],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
"""This function performs matrix multiplication with
block-wise quantization.
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
The output is returned in the specified `output_dtype`.
Args:
A: The input tensor, e.g., activation.
B: The input tensor, e.g., weight.
As: The per-token-group quantization scale for `A`.
Bs: The per-block quantization scale for `B`.
block_size: The block size for per-block quantization.
It should be 2-dim, e.g., [128, 128].
output_dytpe: The dtype of the returned tensor.
Returns:
torch.Tensor: The result of matmul.
"""
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert A.shape[-1] == B.shape[-1]
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
M = A.numel() // A.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
N, K = B.shape
assert triton.cdiv(N, block_n) == Bs.shape[0]
assert triton.cdiv(K, block_k) == Bs.shape[1]
C_shape = A.shape[:-1] + (N, )
C = A.new_empty(C_shape, dtype=output_dtype)
def grid(META):
return (triton.cdiv(M, META["BLOCK_SIZE_M"]) *
triton.cdiv(N, META["BLOCK_SIZE_N"]), )
if A.dtype == torch.float8_e4m3fn:
kernel = _w8a8_block_fp8_matmul
else:
raise RuntimeError(
"Currently, only support tune w8a8 block fp8 kernel.")
kernel[grid](
A,
B,
C,
As,
Bs,
M,
N,
K,
block_n,
block_k,
A.stride(-2),
A.stride(-1),
B.stride(1),
B.stride(0),
C.stride(-2),
C.stride(-1),
As.stride(-2),
As.stride(-1),
Bs.stride(1),
Bs.stride(0),
**config,
)
return C
def get_configs_compute_bound():
configs = []
for num_stages in [2, 3, 4, 5]:
for block_m in [16, 32, 64, 128, 256]:
for block_k in [64, 128]:
for block_n in [32, 64, 128, 256]:
for num_warps in [4, 8]:
for group_size in [1, 16, 32, 64]:
configs.append({
"BLOCK_SIZE_M": block_m,
"BLOCK_SIZE_N": block_n,
"BLOCK_SIZE_K": block_k,
"GROUP_SIZE_M": group_size,
"num_warps": num_warps,
"num_stages": num_stages,
})
return configs
def get_weight_shapes(tp_size):
# NOTE(HandH1998): The weight shapes only works for DeepSeek-V3.
# Modify them, if you tune for another different model.
# cannot TP
total = [
(512 + 64, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(7168, 16384),
(7168, 18432),
]
# N can TP
n_tp = [
(18432 * 2, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(24576, 1536),
(12288, 7168),
(4096, 7168),
]
# K can TP
k_tp = [(7168, 18432), (7168, 16384), (7168, 2048)]
weight_shapes = []
for t in total:
weight_shapes.append(t)
for n_t in n_tp:
new_t = (n_t[0] // tp_size, n_t[1])
weight_shapes.append(new_t)
for k_t in k_tp:
new_t = (k_t[0], k_t[1] // tp_size)
weight_shapes.append(new_t)
return weight_shapes
def benchmark_config(A,
B,
As,
Bs,
block_size,
config,
out_dtype=torch.float16,
num_iters=10):
def run():
w8a8_block_matmul(A, B, As, Bs, block_size, config, out_dtype)
torch.cuda.synchronize()
# JIT complication & warmup
for _ in range(5):
run()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
torch.cuda.synchronize()
start_event.record()
run()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
return avg
def tune(M, N, K, block_size, out_dtype, search_space, input_type):
factor_for_scale = 1e-2
if input_type == "fp8":
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
A_fp32 = (
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
fp8_max)
A = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
fp8_max)
B = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
else:
raise RuntimeError(
"Currently, only support tune w8a8 block fp8 kernel.")
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32,
device="cuda") * factor_for_scale
Bs = (torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda") *
factor_for_scale)
best_config = None
best_time = float("inf")
for config in tqdm(search_space):
try:
kernel_time = benchmark_config(
A,
B,
As,
Bs,
block_size,
config,
out_dtype,
num_iters=10,
)
except triton.runtime.autotuner.OutOfResources:
# Some configurations may be invalid and fail to compile.
continue
if kernel_time < best_time:
best_time = kernel_time
best_config = config
now = datetime.now()
print(f"{now.ctime()}] Completed tuning for batch_size={M}")
assert best_config is not None
return best_config
def save_configs(
N,
K,
block_n,
block_k,
configs,
save_path,
input_type="fp8",
) -> None:
os.makedirs(save_path, exist_ok=True)
device_name = current_platform.get_device_name().replace(" ", "_")
json_file_name = (
f"N={N},K={K},device_name={device_name},dtype={input_type}_w8a8,"
f"block_shape=[{block_n},{block_k}].json")
config_file_path = os.path.join(save_path, json_file_name)
print(f"Writing best config to {config_file_path}...")
with open(config_file_path, "w") as f:
json.dump(configs, f, indent=4)
f.write("\n")
def tune_on_gpu(args_dict):
"""Run tuning on a specific GPU."""
gpu_id = args_dict["gpu_id"]
batch_sizes = args_dict["batch_sizes"]
weight_shapes = args_dict["weight_shapes"]
args = args_dict["args"]
torch.cuda.set_device(gpu_id)
print(f"Starting tuning on GPU {gpu_id} with batch sizes {batch_sizes}")
block_n = args.block_n
block_k = args.block_k
out_dtype = DTYPE_MAP[args.out_dtype]
save_path = args.save_path
input_type = args.input_type
search_space = get_configs_compute_bound()
search_space = [
config for config in search_space
if block_k % config["BLOCK_SIZE_K"] == 0
]
start = time.time()
for shape in tqdm(weight_shapes, desc=f"GPU {gpu_id} - Shapes"):
N, K = shape[0], shape[1]
print(f"[GPU {gpu_id}] Tune for weight shape of `N: {N}, K: {K}`")
benchmark_results = [
tune(
batch_size,
N,
K,
[block_n, block_k],
out_dtype,
search_space,
input_type,
) for batch_size in tqdm(batch_sizes,
desc=f"GPU {gpu_id} - Batch sizes")
]
best_configs = {
M: config
for M, config in zip(batch_sizes, benchmark_results)
}
save_configs(N, K, block_n, block_k, best_configs, save_path,
input_type)
end = time.time()
print(f"Tuning on GPU {gpu_id} took {end - start:.2f} seconds")
def distribute_batch_sizes(batch_sizes, num_gpus):
"""Distribute batch sizes across available GPUs."""
batches_per_gpu = []
for i in range(num_gpus):
start_idx = i * len(batch_sizes) // num_gpus
end_idx = (i + 1) * len(batch_sizes) // num_gpus
batches_per_gpu.append(batch_sizes[start_idx:end_idx])
return batches_per_gpu
def main(args):
print(args)
num_gpus = torch.cuda.device_count()
if num_gpus == 0:
raise RuntimeError("No GPU available for tuning")
print(f"Found {num_gpus} GPUs for parallel tuning")
torch.cuda.init()
if args.batch_size is None:
batch_sizes = [
1,
2,
4,
8,
16,
24,
32,
48,
64,
96,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]
else:
batch_sizes = [args.batch_size]
num_gpus = 1 # If only one batch size, use only one GPU
weight_shapes = get_weight_shapes(args.tp_size)
batches_per_gpu = distribute_batch_sizes(batch_sizes, num_gpus)
process_args = []
for gpu_id in range(num_gpus):
process_args.append({
"gpu_id": gpu_id,
"batch_sizes": batches_per_gpu[gpu_id],
"weight_shapes":
weight_shapes, # Each GPU processes all weight shapes
"args": args,
})
ctx = mp.get_context("spawn")
with ctx.Pool(num_gpus) as pool:
pool.map(tune_on_gpu, process_args)
print("Multi-GPU tuning completed")
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="""
Tune triton w8a8 block fp8 for DeepSeek-V3/DeepSeek-R1:
python3 benchmark_w8a8_block_fp8.py --tp-size 8 --input-type fp8
Then copy to model_executor/layers/quantization/utils/configs
""",
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--tp-size", "-tp", type=int, default=8)
parser.add_argument("--input-type",
type=str,
choices=["fp8"],
default="fp8")
parser.add_argument(
"--out-dtype",
type=str,
choices=["float32", "float16", "bfloat16", "half"],
default="float16",
)
parser.add_argument("--block-n", type=int, default=128)
parser.add_argument("--block-k", type=int, default=128)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--save-path", type=str, default="./")
args = parser.parse_args()
main(args)

View File

@ -190,6 +190,7 @@ set(VLLM_EXT_SRC
"csrc/cpu/cache.cpp"
"csrc/cpu/utils.cpp"
"csrc/cpu/layernorm.cpp"
"csrc/cpu/mla_decode.cpp"
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/torch_bindings.cpp")

92
csrc/block_table.cu Normal file
View File

@ -0,0 +1,92 @@
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
namespace vllm {
__global__ void append_kernel(const int* __restrict__ row_indices,
const int* __restrict__ cu_num_appends,
const int* __restrict__ block_ids,
int* __restrict__ block_table,
int max_num_blocks_per_row) {
int bid = blockIdx.x;
int tgt_row = row_indices[2 * bid];
int tgt_offset = row_indices[2 * bid + 1];
int start = cu_num_appends[bid];
int end = cu_num_appends[bid + 1];
int length = end - start;
int tid = threadIdx.x;
int64_t offset = tgt_row * max_num_blocks_per_row + tgt_offset;
for (int i = tid; i < length; i += blockDim.x) {
block_table[offset + i] = block_ids[start + i];
}
}
__global__ void move_kernel(const int* __restrict__ src_dst_n,
int* __restrict__ block_table,
int max_num_blocks_per_row) {
int bid = blockIdx.x;
int src_row = src_dst_n[3 * bid];
int tgt_row = src_dst_n[3 * bid + 1];
int num_blocks = src_dst_n[3 * bid + 2];
int tid = threadIdx.x;
for (int i = tid; i < num_blocks; i += blockDim.x) {
block_table[tgt_row * max_num_blocks_per_row + i] =
block_table[src_row * max_num_blocks_per_row + i];
}
}
} // namespace vllm
void block_table_appends(
torch::Tensor& append_row_indices,
torch::Tensor& append_row_indices_cpu,
torch::Tensor& append_cumsums,
torch::Tensor& append_cumsums_cpu,
torch::Tensor& append_block_ids,
torch::Tensor& append_block_ids_cpu,
torch::Tensor& block_table,
int64_t num_appends,
int64_t total_num_append_blocks) {
int* append_row_indices_ptr = append_row_indices.data_ptr<int>();
const int* append_row_indices_cpu_ptr = append_row_indices_cpu.data_ptr<int>();
int* append_cumsums_ptr = append_cumsums.data_ptr<int>();
const int* append_cumsums_cpu_ptr = append_cumsums_cpu.data_ptr<int>();
int* append_block_ids_ptr = append_block_ids.data_ptr<int>();
const int* append_block_ids_cpu_ptr = append_block_ids_cpu.data_ptr<int>();
int* block_table_ptr = block_table.data_ptr<int>();
const at::cuda::OptionalCUDAGuard device_guard(device_of(block_table));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaMemcpyAsync(append_row_indices_ptr, append_row_indices_cpu_ptr,
num_appends * 2 * sizeof(int), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(append_cumsums_ptr, append_cumsums_cpu_ptr,
(num_appends + 1) * sizeof(int), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(append_block_ids_ptr, append_block_ids_cpu_ptr,
total_num_append_blocks * sizeof(int), cudaMemcpyHostToDevice, stream);
int64_t max_num_blocks_per_row = block_table.size(1);
vllm::append_kernel<<<num_appends, 1024, 0, stream>>>(
append_row_indices_ptr, append_cumsums_ptr, append_block_ids_ptr,
block_table_ptr, max_num_blocks_per_row);
}
void block_table_moves(
torch::Tensor& src_dst_n,
torch::Tensor& src_dst_n_cpu,
torch::Tensor& block_table,
int64_t num_moves) {
int* src_dst_n_ptr = src_dst_n.data_ptr<int>();
const int* src_dst_n_cpu_ptr = src_dst_n_cpu.data_ptr<int>();
int* block_table_ptr = block_table.data_ptr<int>();
const at::cuda::OptionalCUDAGuard device_guard(device_of(block_table));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaMemcpyAsync(src_dst_n_ptr, src_dst_n_cpu_ptr,
num_moves * 3 * sizeof(int), cudaMemcpyHostToDevice, stream);
int64_t max_num_blocks_per_row = block_table.size(1);
vllm::move_kernel<<<num_moves, 1024, 0, stream>>>(
src_dst_n_ptr, block_table_ptr, max_num_blocks_per_row);
}

View File

@ -88,6 +88,48 @@ void reshape_and_cache_cpu_impl(
}
}; // namespace
template <typename scalar_t>
void concat_and_cache_mla_cpu_impl(
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
scalar_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
// + pe_dim)]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int num_tokens, //
const int block_stride, //
const int entry_stride, //
const int kv_c_stride, //
const int k_pe_stride, //
const int kv_lora_rank, //
const int pe_dim, //
const int block_size //
) {
#pragma omp parallel for
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
continue;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
auto copy = [&](const scalar_t* __restrict__ src,
scalar_t* __restrict__ dst, int src_stride, int dst_stride,
int size, int offset) {
for (int i = 0; i < size; i++) {
const int64_t src_idx = token_idx * src_stride + i;
const int64_t dst_idx =
block_idx * block_stride + block_offset * entry_stride + i + offset;
dst[dst_idx] = src[src_idx];
}
};
copy(kv_c, kv_cache, kv_c_stride, block_stride, kv_lora_rank, 0);
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
}
}
// Note: the key_caches and value_caches vectors are constant but
// not the Tensors they contain. The vectors need to be const refs
// in order to satisfy pytorch's C++ operator registration code.
@ -134,6 +176,38 @@ void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
});
}
void concat_and_cache_mla(
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
torch::Tensor& k_pe, // [num_tokens, pe_dim]
torch::Tensor& kv_cache, // [num_blocks, block_size, (kv_lora_rank +
// pe_dim)]
torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens]
const std::string& kv_cache_dtype, torch::Tensor& scale) {
int num_tokens = slot_mapping.size(0);
int kv_lora_rank = kv_c.size(1);
int pe_dim = k_pe.size(1);
int block_size = kv_cache.size(1);
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
TORCH_CHECK(kv_cache_dtype != "fp8");
int kv_c_stride = kv_c.stride(0);
int k_pe_stride = k_pe.stride(0);
int block_stride = kv_cache.stride(0);
int entry_stride = kv_cache.stride(1);
VLLM_DISPATCH_FLOATING_TYPES(
kv_c.scalar_type(), "concat_and_cache_mla_cpu_impl", [&] {
CPU_KERNEL_GUARD_IN(concat_and_cache_mla_cpu_impl)
concat_and_cache_mla_cpu_impl<scalar_t>(
kv_c.data_ptr<scalar_t>(), k_pe.data_ptr<scalar_t>(),
kv_cache.data_ptr<scalar_t>(), slot_mapping.data_ptr<int64_t>(),
num_tokens, block_stride, entry_stride, kv_c_stride, k_pe_stride,
kv_lora_rank, pe_dim, block_size);
CPU_KERNEL_GUARD_OUT(concat_and_cache_mla_cpu_impl)
});
}
void swap_blocks(torch::Tensor& src, torch::Tensor& dst,
const torch::Tensor& block_mapping) {
TORCH_CHECK(false, "swap_blocks is unsupported on CPU.")

View File

@ -130,6 +130,8 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
__m512i reg;
explicit BF16Vec32() : reg(_mm512_setzero_si512()) {}
explicit BF16Vec32(const void* ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {}
explicit BF16Vec32(__m512i data) : reg(data) {}

393
csrc/cpu/mla_decode.cpp Normal file
View File

@ -0,0 +1,393 @@
#include "cpu_types.hpp"
#include <float.h>
namespace {
template <typename scalar_t>
struct KernelVecType {
using qk_load_vec_type = void;
using qk_vec_type = void;
using v_load_vec_type = void;
};
template <>
struct KernelVecType<float> {
using qk_load_vec_type = vec_op::FP32Vec16;
using qk_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP32Vec16;
};
template <>
struct KernelVecType<c10::Half> {
#if defined(__powerpc64__) || defined(__s390x__)
// Power and s390x architecture-specific vector types
using qk_load_vec_type = vec_op::FP32Vec16;
using qk_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP32Vec16;
#else
// Fallback for other architectures, including x86
using qk_load_vec_type = vec_op::FP16Vec16;
using qk_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP16Vec16;
#endif
};
#ifdef __AVX512BF16__
template <>
struct KernelVecType<c10::BFloat16> {
using qk_load_vec_type = vec_op::BF16Vec32;
using qk_vec_type = vec_op::BF16Vec32;
using v_load_vec_type = vec_op::BF16Vec16;
};
#elif defined(__aarch64__) && !defined(ARM_BF16_SUPPORT)
// pass
#else
template <>
struct KernelVecType<c10::BFloat16> {
using qk_load_vec_type = vec_op::BF16Vec16;
using qk_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#endif
template <int HEAD_DIM, int V_HEAD_DIM, int BLOCK_SIZE, int HEAD_UNROLL,
typename qk_vec_type>
void mla_decode_block_head(
const qk_vec_type* __restrict__ q_vecs, // [HEAD_UNROLL, head_dim]
const qk_vec_type* __restrict__ k_vecs, // [block_size, head_dim]
const vec_op::FP32Vec16* __restrict v_vecs_f32, // [block_size, v_head_dim]
float* __restrict__ acc_out, // [HEAD_UNROLL, v_head_dim]
float* __restrict__ acc_lse, // [HEAD_UNROLL]
const float scale, const int num_tokens) {
using f32_vec_type = vec_op::FP32Vec16;
constexpr int QK_NUM_ELEM = qk_vec_type::VEC_ELEM_NUM;
constexpr int V_NUM_ELEM = f32_vec_type::VEC_ELEM_NUM;
float logits[BLOCK_SIZE][HEAD_UNROLL] = {}; // initialize to zeros
float max_val[HEAD_UNROLL];
std::fill(max_val, max_val + HEAD_UNROLL, -FLT_MAX);
f32_vec_type acc_vec[BLOCK_SIZE][HEAD_UNROLL];
for (int i = 0; i < HEAD_DIM; i += QK_NUM_ELEM) {
// load to registers
qk_vec_type q_vec[HEAD_UNROLL];
#pragma unroll
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll)
q_vec[unroll] =
qk_vec_type{q_vecs[(i + unroll * HEAD_DIM) / QK_NUM_ELEM]};
for (int block_offset = 0; block_offset < num_tokens; ++block_offset) {
qk_vec_type k_vec(k_vecs[(block_offset * HEAD_DIM + i) / QK_NUM_ELEM]);
#pragma unroll
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll)
vec_op::fma(acc_vec[block_offset][unroll], q_vec[unroll], k_vec);
}
}
for (int block_offset = 0; block_offset < num_tokens; ++block_offset) {
#pragma unroll
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll) {
const float acc = acc_vec[block_offset][unroll].reduce_sum() * scale;
logits[block_offset][unroll] = acc;
max_val[unroll] = std::max(max_val[unroll], acc);
}
}
float sum_exp[HEAD_UNROLL] = {};
for (int block_offset = 0; block_offset < num_tokens; ++block_offset) {
#pragma unroll
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll) {
const float val =
std::exp(logits[block_offset][unroll] - max_val[unroll]);
logits[block_offset][unroll] = val;
sum_exp[unroll] += val;
}
}
f32_vec_type this_out[V_HEAD_DIM / V_NUM_ELEM][HEAD_UNROLL];
for (int block_offset = 0; block_offset < num_tokens; ++block_offset) {
// load to registers
f32_vec_type scale_[HEAD_UNROLL];
#pragma unroll
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll)
scale_[unroll] =
f32_vec_type{logits[block_offset][unroll] / sum_exp[unroll]};
for (int i = 0; i < V_HEAD_DIM; i += V_NUM_ELEM) {
f32_vec_type v_vec(
v_vecs_f32[(block_offset * HEAD_DIM + i) / V_NUM_ELEM]);
#pragma unroll
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll)
vec_op::fma(this_out[i / V_NUM_ELEM][unroll], v_vec, scale_[unroll]);
}
}
// merge attention state
// section 2.2 in https://arxiv.org/pdf/2501.01005
f32_vec_type prev_scale[HEAD_UNROLL];
f32_vec_type curr_scale[HEAD_UNROLL];
#pragma unroll
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll) {
const float prev_lse = acc_lse[unroll];
const float curr_lse = std::log(sum_exp[unroll]) +
max_val[unroll]; // add back max_val to get true lse
// softmax trick
const float max_lse = std::max(prev_lse, curr_lse);
const float prev_sum_exp = std::exp(prev_lse - max_lse);
const float curr_sum_exp = std::exp(curr_lse - max_lse);
const float new_sum_exp = prev_sum_exp + curr_sum_exp;
acc_lse[unroll] = std::log(new_sum_exp) + max_lse;
prev_scale[unroll] = f32_vec_type{prev_sum_exp / new_sum_exp};
curr_scale[unroll] = f32_vec_type{curr_sum_exp / new_sum_exp};
}
for (int i = 0; i < V_HEAD_DIM; i += V_NUM_ELEM) {
#pragma unroll
for (int unroll = 0; unroll < HEAD_UNROLL; ++unroll) {
f32_vec_type o_vec(acc_out + i + V_HEAD_DIM * unroll);
o_vec = o_vec * prev_scale[unroll] +
this_out[i / V_NUM_ELEM][unroll] * curr_scale[unroll];
o_vec.save(acc_out + i + V_HEAD_DIM * unroll);
}
}
q_vecs += HEAD_DIM / QK_NUM_ELEM * HEAD_UNROLL;
acc_out += V_HEAD_DIM * HEAD_UNROLL;
}
template <typename scalar_t, int HEAD_DIM, int V_HEAD_DIM, int BLOCK_SIZE,
typename qk_vec_type>
void mla_decode_block(
const qk_vec_type* __restrict__ q_vecs, // [num_heads, head_dim]
const scalar_t* __restrict__ kv_cache, // [block_size, head_dim]
float* __restrict__ acc_out, // [num_heads, v_head_dim]
float* __restrict__ acc_lse, // [num_heads]
const int num_heads, const float scale, const int num_tokens) {
using qk_load_vec_type = typename KernelVecType<scalar_t>::qk_load_vec_type;
static_assert(
std::is_same<qk_vec_type,
typename KernelVecType<scalar_t>::qk_vec_type>::value);
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
using f32_vec_type = vec_op::FP32Vec16;
static_assert(qk_load_vec_type::VEC_ELEM_NUM == qk_vec_type::VEC_ELEM_NUM);
static_assert(v_load_vec_type::VEC_ELEM_NUM == f32_vec_type::VEC_ELEM_NUM);
constexpr int QK_NUM_ELEM = qk_vec_type::VEC_ELEM_NUM;
constexpr int V_NUM_ELEM = v_load_vec_type::VEC_ELEM_NUM;
const qk_vec_type* k_vecs;
const f32_vec_type* v_vecs_f32;
float* kv_cache_f32 = nullptr;
if constexpr (!std::is_same<scalar_t, float>::value) {
// convert KV cache block to FP32 to reuse it across query heads and
// attn @ V computation, since FP16/BF16->FP32 is expensive.
// TODO: move malloc outside of this fn to reuse across iterations.
const int nbytes = BLOCK_SIZE * HEAD_DIM * sizeof(float);
kv_cache_f32 = static_cast<float*>(std::aligned_alloc(64, nbytes));
for (int block_offset = 0; block_offset < num_tokens; ++block_offset)
for (int i = 0; i < HEAD_DIM; i += V_NUM_ELEM) {
v_load_vec_type kv_load_vec(kv_cache + block_offset * HEAD_DIM + i);
f32_vec_type kv_vec_f32(kv_load_vec);
kv_vec_f32.save(kv_cache_f32 + block_offset * HEAD_DIM + i);
}
if constexpr (std::is_same<qk_load_vec_type, qk_vec_type>::value) {
// for AVX512_BF16, Q @ K.T uses BF16 for K (no conversion)
// NOTE: in this case, we only need to convert the V section to FP32.
// But for simplicity, we will convert the whole KV block to FP32.
k_vecs = reinterpret_cast<const qk_vec_type*>(kv_cache);
} else {
k_vecs = reinterpret_cast<const qk_vec_type*>(kv_cache_f32);
}
// attn @ V always use FP32 for V, since attn is FP32.
v_vecs_f32 = reinterpret_cast<const f32_vec_type*>(kv_cache_f32);
} else {
// KV cache is FP32. don't need to do anything.
k_vecs = reinterpret_cast<const qk_vec_type*>(kv_cache);
v_vecs_f32 = reinterpret_cast<const f32_vec_type*>(kv_cache);
}
// compute 2 heads at the same time to improve ILP and
// take advantage of register cache for K and V.
constexpr int HEAD_UNROLL = 2;
for (int iter = 0; iter < num_heads / HEAD_UNROLL; ++iter) {
mla_decode_block_head<HEAD_DIM, V_HEAD_DIM, BLOCK_SIZE, HEAD_UNROLL>(
q_vecs, k_vecs, v_vecs_f32, acc_out, acc_lse, scale, num_tokens);
q_vecs += HEAD_UNROLL * HEAD_DIM / QK_NUM_ELEM;
acc_out += HEAD_UNROLL * V_HEAD_DIM;
acc_lse += HEAD_UNROLL;
}
// take care of the remaining heads
for (int iter = 0; iter < num_heads % HEAD_UNROLL; ++iter) {
mla_decode_block_head<HEAD_DIM, V_HEAD_DIM, BLOCK_SIZE, 1>(
q_vecs, k_vecs, v_vecs_f32, acc_out, acc_lse, scale, num_tokens);
q_vecs += HEAD_DIM / QK_NUM_ELEM;
acc_out += V_HEAD_DIM;
acc_lse += 1;
}
if (kv_cache_f32 != nullptr) {
std::free(kv_cache_f32);
}
}
} // namespace
template <typename scalar_t, int HEAD_DIM, int V_HEAD_DIM, int BLOCK_SIZE>
void mla_decode_kvcache_cpu_impl(
scalar_t* __restrict__ out, // [num_seqs, num_heads, v_head_dim]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_dim]
const scalar_t* __restrict__ kv_cache, // [num_blocks, block_size,
// head_dim]
const int num_heads, const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq, const int o_stride, const int q_stride,
const int kv_stride, const int num_seqs) {
using qk_load_vec_type = typename KernelVecType<scalar_t>::qk_load_vec_type;
using qk_vec_type = typename KernelVecType<scalar_t>::qk_vec_type;
constexpr int QK_NUM_ELEM = qk_vec_type::VEC_ELEM_NUM;
// shared across threads
const int max_threads = omp_get_max_threads();
const int acc_out_nbytes =
max_threads * num_heads * V_HEAD_DIM * sizeof(float);
float* acc_out = static_cast<float*>(std::aligned_alloc(64, acc_out_nbytes));
std::vector<float> acc_lse(max_threads * num_heads);
// allocate memory to pre-convert query to FP32 later
float* q_f32;
constexpr bool PRE_CONVERT_QUERY =
!std::is_same<scalar_t, float>::value &&
std::is_same<qk_vec_type, vec_op::FP32Vec16>::value;
if constexpr (PRE_CONVERT_QUERY) {
const int q_f32_nbytes = num_heads * HEAD_DIM * sizeof(float);
q_f32 = static_cast<float*>(std::aligned_alloc(64, q_f32_nbytes));
}
#pragma omp parallel
{
const int num_threads = omp_get_num_threads();
const int thread_id = omp_get_thread_num();
float* __restrict__ acc_out_thread =
acc_out + thread_id * num_heads * V_HEAD_DIM;
float* __restrict__ acc_lse_thread = acc_lse.data() + thread_id * num_heads;
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
// reset accumulator
std::fill(acc_out_thread, acc_out_thread + num_heads * V_HEAD_DIM, 0.0f);
std::fill(acc_lse_thread, acc_lse_thread + num_heads, -FLT_MAX);
const int seq_len = seq_lens[seq_idx];
const int block_num = (seq_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
const int last_block_size = seq_len - (block_num - 1) * BLOCK_SIZE;
const qk_vec_type* q_vecs;
if constexpr (PRE_CONVERT_QUERY) {
// pre-convert query to FP32 since FP16/BF16->FP32 is slow.
#pragma omp for
for (int i = 0; i < num_heads * HEAD_DIM; i += QK_NUM_ELEM) {
qk_load_vec_type q_load_vec(q + seq_idx * q_stride + i);
qk_vec_type q_vec(q_load_vec);
q_vec.save(q_f32 + i);
}
q_vecs = reinterpret_cast<const qk_vec_type*>(q_f32);
} else {
q_vecs = reinterpret_cast<const qk_vec_type*>(q + seq_idx * q_stride);
}
#pragma omp for
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int physical_block_idx =
block_tables[seq_idx * max_num_blocks_per_seq + block_idx];
const int num_tokens =
block_idx < block_num - 1 ? BLOCK_SIZE : last_block_size;
mla_decode_block<scalar_t, HEAD_DIM, V_HEAD_DIM, BLOCK_SIZE>(
q_vecs, kv_cache + physical_block_idx * kv_stride, acc_out_thread,
acc_lse_thread, num_heads, scale, num_tokens);
}
// merge attention states across threads
// section 2.2 in https://arxiv.org/pdf/2501.01005
// each thread is responsible for 1 head
#pragma omp for
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
float* acc_lse_head = acc_lse.data() + head_idx;
float* acc_out_head = acc_out + head_idx * V_HEAD_DIM;
float max_val = -FLT_MAX;
for (int thread_id_ = 0; thread_id_ < num_threads; ++thread_id_) {
max_val = std::max(max_val, acc_lse_head[thread_id_ * num_heads]);
}
float sum_exp = 0.0f;
for (int thread_id_ = 0; thread_id_ < num_threads; ++thread_id_) {
float val = std::exp(acc_lse_head[thread_id_ * num_heads] - max_val);
acc_lse_head[thread_id_ * num_heads] = val;
sum_exp += val;
}
float inv_sum = 1.0f / sum_exp;
float out_head[V_HEAD_DIM] = {};
for (int thread_id_ = 0; thread_id_ < num_threads; ++thread_id_) {
float scale_ = acc_lse_head[thread_id_ * num_heads] * inv_sum;
for (int i = 0; i < V_HEAD_DIM; ++i) {
out_head[i] +=
acc_out_head[thread_id_ * num_heads * V_HEAD_DIM + i] * scale_;
}
}
for (int i = 0; i < V_HEAD_DIM; ++i) {
vec_op::storeFP32(out_head[i], out + seq_idx * o_stride +
head_idx * V_HEAD_DIM + i);
}
}
}
}
if (PRE_CONVERT_QUERY) {
std::free(q_f32);
}
std::free(acc_out);
}
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
torch::Tensor& kv_cache, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens) {
const int num_seqs = query.size(0);
const int num_heads = query.size(1);
const int head_dim = query.size(2);
const int block_size = kv_cache.size(1);
const int v_head_dim = out.size(2);
const int max_num_blocks_per_seq = block_tables.size(1);
const int o_stride = out.stride(0);
const int q_stride = query.stride(0);
const int kv_stride = kv_cache.stride(0);
VLLM_DISPATCH_FLOATING_TYPES(
query.scalar_type(), "mla_decode_kvcache_cpu_impl", [&] {
CPU_KERNEL_GUARD_IN(mla_decode_kvcache_cpu_impl)
if (head_dim == 576 && v_head_dim == 512 && block_size == 16)
mla_decode_kvcache_cpu_impl<scalar_t, 576, 512, 16>(
out.data_ptr<scalar_t>(), query.data_ptr<scalar_t>(),
kv_cache.data_ptr<scalar_t>(), num_heads, scale,
block_tables.data_ptr<int>(), seq_lens.data_ptr<int>(),
max_num_blocks_per_seq, o_stride, q_stride, kv_stride, num_seqs);
else
TORCH_CHECK(false, "Unsupported block size: ", block_size);
CPU_KERNEL_GUARD_OUT(mla_decode_kvcache_cpu_impl)
});
}

View File

@ -18,6 +18,10 @@ void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a,
const std::optional<torch::Tensor>& azp,
const std::optional<torch::Tensor>& bias);
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
torch::Tensor& kv_cache, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens);
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// vLLM custom ops
@ -150,6 +154,14 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
" str kv_cache_dtype,"
" Tensor k_scale, Tensor v_scale) -> ()");
cache_ops.impl("reshape_and_cache", torch::kCPU, &reshape_and_cache);
cache_ops.def(
"concat_and_cache_mla(Tensor kv_c, Tensor k_pe,"
" Tensor! kv_cache,"
" Tensor slot_mapping,"
" str kv_cache_dtype,"
" Tensor scale) -> ()");
cache_ops.impl("concat_and_cache_mla", torch::kCPU, &concat_and_cache_mla);
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _utils), utils) {
@ -157,4 +169,12 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _utils), utils) {
utils.def("init_cpu_threads_env(str cpu_ids) -> str", &init_cpu_threads_env);
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cpu), cpu_ops) {
cpu_ops.def(
"mla_decode_kvcache("
" Tensor! out, Tensor query, Tensor kv_cache,"
" float scale, Tensor block_tables, Tensor seq_lens) -> ()");
cpu_ops.impl("mla_decode_kvcache", torch::kCPU, &mla_decode_kvcache);
}
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)

View File

@ -119,6 +119,18 @@ void advance_step_flashinfer(
torch::Tensor& paged_kv_indices, torch::Tensor& paged_kv_indptr,
torch::Tensor& paged_kv_last_page_len, torch::Tensor& block_table_bounds);
void block_table_appends(torch::Tensor& append_row_indices,
torch::Tensor& append_row_indices_cpu,
torch::Tensor& append_cumsums,
torch::Tensor& append_cumsums_cpu,
torch::Tensor& append_block_ids,
torch::Tensor& append_block_ids_cpu,
torch::Tensor& block_table, int64_t num_appends,
int64_t total_num_append_blocks);
void block_table_moves(torch::Tensor& src_dst_n, torch::Tensor& src_dst_n_cpu,
torch::Tensor& block_table, int64_t num_moves);
#ifndef USE_ROCM
torch::Tensor aqlm_gemm(const torch::Tensor& input, const torch::Tensor& codes,
const torch::Tensor& codebooks,

View File

@ -375,25 +375,25 @@ torch::Tensor ggml_moe_a8(torch::Tensor X, // input
int64_t ggml_moe_get_block_size(int64_t type) {
switch (type) {
case 2:
return MMQ_X_Q4_0;
return MOE_X_Q4_0;
case 3:
return MMQ_X_Q4_1;
return MOE_X_Q4_1;
case 6:
return MMQ_X_Q5_0;
return MOE_X_Q5_0;
case 7:
return MMQ_X_Q5_1;
return MOE_X_Q5_1;
case 8:
return MMQ_X_Q8_0;
return MOE_X_Q8_0;
case 10:
return MMQ_X_Q2_K;
return MOE_X_Q2_K;
case 11:
return MMQ_X_Q3_K;
return MOE_X_Q3_K;
case 12:
return MMQ_X_Q4_K;
return MOE_X_Q4_K;
case 13:
return MMQ_X_Q5_K;
return MOE_X_Q5_K;
case 14:
return MMQ_X_Q6_K;
return MOE_X_Q6_K;
}
return 0;
}

View File

@ -129,12 +129,12 @@ static __device__ __forceinline__ void moe_q(
}
#if defined(USE_ROCM)
#define MMQ_X_Q4_0 64
#define MMQ_Y_Q4_0 128
#define MOE_X_Q4_0 64
#define MOE_Y_Q4_0 128
#define NWARPS_Q4_0 8
#else
#define MMQ_X_Q4_0 4
#define MMQ_Y_Q4_0 32
#define MOE_X_Q4_0 4
#define MOE_Y_Q4_0 32
#define NWARPS_Q4_0 4
#endif
@ -149,8 +149,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q4_0, 2)
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q4_0;
const int mmq_y = MMQ_Y_Q4_0;
const int mmq_x = MOE_X_Q4_0;
const int mmq_y = MOE_Y_Q4_0;
const int nwarps = NWARPS_Q4_0;
moe_q<scalar_t, QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps,
@ -167,8 +167,8 @@ static void ggml_moe_q4_0_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
int mmq_x = MMQ_X_Q4_0;
int mmq_y = MMQ_Y_Q4_0;
int mmq_x = MOE_X_Q4_0;
int mmq_y = MOE_Y_Q4_0;
int nwarps = NWARPS_Q4_0;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -190,12 +190,12 @@ static void ggml_moe_q4_0_q8_1_cuda(
}
#if defined(USE_ROCM)
#define MMQ_X_Q4_1 64
#define MMQ_Y_Q4_1 128
#define MOE_X_Q4_1 64
#define MOE_Y_Q4_1 128
#define NWARPS_Q4_1 8
#else
#define MMQ_X_Q4_1 4
#define MMQ_Y_Q4_1 32
#define MOE_X_Q4_1 4
#define MOE_Y_Q4_1 32
#define NWARPS_Q4_1 4
#endif
@ -210,8 +210,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q4_1, 2)
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q4_1;
const int mmq_y = MMQ_Y_Q4_1;
const int mmq_x = MOE_X_Q4_1;
const int mmq_y = MOE_Y_Q4_1;
const int nwarps = NWARPS_Q4_1;
moe_q<scalar_t, QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps,
@ -228,8 +228,8 @@ static void ggml_moe_q4_1_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
int mmq_x = MMQ_X_Q4_1;
int mmq_y = MMQ_Y_Q4_1;
int mmq_x = MOE_X_Q4_1;
int mmq_y = MOE_Y_Q4_1;
int nwarps = NWARPS_Q4_1;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -251,12 +251,12 @@ static void ggml_moe_q4_1_q8_1_cuda(
}
#if defined(USE_ROCM)
#define MMQ_X_Q5_0 64
#define MMQ_Y_Q5_0 128
#define MOE_X_Q5_0 64
#define MOE_Y_Q5_0 128
#define NWARPS_Q5_0 8
#else
#define MMQ_X_Q5_0 4
#define MMQ_Y_Q5_0 32
#define MOE_X_Q5_0 4
#define MOE_Y_Q5_0 32
#define NWARPS_Q5_0 4
#endif
@ -271,8 +271,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q5_0, 2)
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q5_0;
const int mmq_y = MMQ_Y_Q5_0;
const int mmq_x = MOE_X_Q5_0;
const int mmq_y = MOE_Y_Q5_0;
const int nwarps = NWARPS_Q5_0;
moe_q<scalar_t, QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps,
@ -289,8 +289,8 @@ static void ggml_moe_q5_0_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
const int mmq_x = MMQ_X_Q5_0;
const int mmq_y = MMQ_Y_Q5_0;
const int mmq_x = MOE_X_Q5_0;
const int mmq_y = MOE_Y_Q5_0;
const int nwarps = NWARPS_Q5_0;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -312,12 +312,12 @@ static void ggml_moe_q5_0_q8_1_cuda(
}
#if defined(USE_ROCM)
#define MMQ_X_Q5_1 64
#define MMQ_Y_Q5_1 128
#define MOE_X_Q5_1 64
#define MOE_Y_Q5_1 128
#define NWARPS_Q5_1 8
#else
#define MMQ_X_Q5_1 4
#define MMQ_Y_Q5_1 32
#define MOE_X_Q5_1 4
#define MOE_Y_Q5_1 32
#define NWARPS_Q5_1 4
#endif
@ -332,8 +332,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q5_1, 2)
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q5_1;
const int mmq_y = MMQ_Y_Q5_1;
const int mmq_x = MOE_X_Q5_1;
const int mmq_y = MOE_Y_Q5_1;
const int nwarps = NWARPS_Q5_1;
moe_q<scalar_t, QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps,
@ -350,8 +350,8 @@ static void ggml_moe_q5_1_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
const int mmq_x = MMQ_X_Q5_1;
const int mmq_y = MMQ_Y_Q5_1;
const int mmq_x = MOE_X_Q5_1;
const int mmq_y = MOE_Y_Q5_1;
const int nwarps = NWARPS_Q5_1;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -373,12 +373,12 @@ static void ggml_moe_q5_1_q8_1_cuda(
}
#if defined(USE_ROCM)
#define MMQ_X_Q8_0 64
#define MMQ_Y_Q8_0 128
#define MOE_X_Q8_0 64
#define MOE_Y_Q8_0 128
#define NWARPS_Q8_0 8
#else
#define MMQ_X_Q8_0 4
#define MMQ_Y_Q8_0 32
#define MOE_X_Q8_0 4
#define MOE_Y_Q8_0 32
#define NWARPS_Q8_0 4
#endif
@ -393,8 +393,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q8_0, 2)
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q8_0;
const int mmq_y = MMQ_Y_Q8_0;
const int mmq_x = MOE_X_Q8_0;
const int mmq_y = MOE_Y_Q8_0;
const int nwarps = NWARPS_Q8_0;
moe_q<scalar_t, QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps,
@ -411,8 +411,8 @@ static void ggml_moe_q8_0_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
const int mmq_x = MMQ_X_Q8_0;
const int mmq_y = MMQ_Y_Q8_0;
const int mmq_x = MOE_X_Q8_0;
const int mmq_y = MOE_Y_Q8_0;
const int nwarps = NWARPS_Q8_0;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -434,12 +434,12 @@ static void ggml_moe_q8_0_q8_1_cuda(
}
#if defined(USE_ROCM)
#define MMQ_X_Q2_K 64
#define MMQ_Y_Q2_K 128
#define MOE_X_Q2_K 64
#define MOE_Y_Q2_K 128
#define NWARPS_Q2_K 8
#else
#define MMQ_X_Q2_K 4
#define MMQ_Y_Q2_K 32
#define MOE_X_Q2_K 4
#define MOE_Y_Q2_K 32
#define NWARPS_Q2_K 4
#endif
@ -454,8 +454,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q2_K, 2)
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q2_K;
const int mmq_y = MMQ_Y_Q2_K;
const int mmq_x = MOE_X_Q2_K;
const int mmq_y = MOE_Y_Q2_K;
const int nwarps = NWARPS_Q2_K;
moe_q<scalar_t, QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps,
@ -472,8 +472,8 @@ static void ggml_moe_q2_K_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
const int mmq_x = MMQ_X_Q2_K;
const int mmq_y = MMQ_Y_Q2_K;
const int mmq_x = MOE_X_Q2_K;
const int mmq_y = MOE_Y_Q2_K;
const int nwarps = NWARPS_Q2_K;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -495,12 +495,12 @@ static void ggml_moe_q2_K_q8_1_cuda(
}
#if defined(USE_ROCM)
#define MMQ_X_Q3_K 64
#define MMQ_Y_Q3_K 128
#define MOE_X_Q3_K 64
#define MOE_Y_Q3_K 128
#define NWARPS_Q3_K 8
#else
#define MMQ_X_Q3_K 4
#define MMQ_Y_Q3_K 32
#define MOE_X_Q3_K 4
#define MOE_Y_Q3_K 32
#define NWARPS_Q3_K 4
#endif
@ -516,8 +516,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q3_K, 2)
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q3_K;
const int mmq_y = MMQ_Y_Q3_K;
const int mmq_x = MOE_X_Q3_K;
const int mmq_y = MOE_Y_Q3_K;
const int nwarps = NWARPS_Q3_K;
moe_q<scalar_t, QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps,
@ -533,8 +533,8 @@ static void ggml_moe_q3_K_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
const int mmq_x = MMQ_X_Q3_K;
const int mmq_y = MMQ_Y_Q3_K;
const int mmq_x = MOE_X_Q3_K;
const int mmq_y = MOE_Y_Q3_K;
const int nwarps = NWARPS_Q3_K;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -556,12 +556,12 @@ static void ggml_moe_q3_K_q8_1_cuda(
}
#if defined(USE_ROCM)
#define MMQ_X_Q4_K 64
#define MMQ_Y_Q4_K 128
#define MOE_X_Q4_K 64
#define MOE_Y_Q4_K 128
#define NWARPS_Q4_K 8
#else
#define MMQ_X_Q4_K 4
#define MMQ_Y_Q4_K 32
#define MOE_X_Q4_K 4
#define MOE_Y_Q4_K 32
#define NWARPS_Q4_K 4
#endif
@ -576,8 +576,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q4_K, 2)
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q4_K;
const int mmq_y = MMQ_Y_Q4_K;
const int mmq_x = MOE_X_Q4_K;
const int mmq_y = MOE_Y_Q4_K;
const int nwarps = NWARPS_Q4_K;
moe_q<scalar_t, QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps,
@ -594,8 +594,8 @@ static void ggml_moe_q4_K_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
const int mmq_x = MMQ_X_Q4_K;
const int mmq_y = MMQ_Y_Q4_K;
const int mmq_x = MOE_X_Q4_K;
const int mmq_y = MOE_Y_Q4_K;
const int nwarps = NWARPS_Q4_K;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -617,12 +617,12 @@ static void ggml_moe_q4_K_q8_1_cuda(
}
#if defined(USE_ROCM)
#define MMQ_X_Q5_K 64
#define MMQ_Y_Q5_K 128
#define MOE_X_Q5_K 64
#define MOE_Y_Q5_K 128
#define NWARPS_Q5_K 8
#else
#define MMQ_X_Q5_K 4
#define MMQ_Y_Q5_K 32
#define MOE_X_Q5_K 4
#define MOE_Y_Q5_K 32
#define NWARPS_Q5_K 4
#endif
@ -637,8 +637,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q5_K, 2)
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q5_K;
const int mmq_y = MMQ_Y_Q5_K;
const int mmq_x = MOE_X_Q5_K;
const int mmq_y = MOE_Y_Q5_K;
const int nwarps = NWARPS_Q5_K;
moe_q<scalar_t, QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps,
@ -655,8 +655,8 @@ static void ggml_moe_q5_K_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
const int mmq_x = MMQ_X_Q5_K;
const int mmq_y = MMQ_Y_Q5_K;
const int mmq_x = MOE_X_Q5_K;
const int mmq_y = MOE_Y_Q5_K;
const int nwarps = NWARPS_Q5_K;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -678,12 +678,12 @@ static void ggml_moe_q5_K_q8_1_cuda(
}
#if defined(USE_ROCM)
#define MMQ_X_Q6_K 64
#define MMQ_Y_Q6_K 128
#define MOE_X_Q6_K 64
#define MOE_Y_Q6_K 128
#define NWARPS_Q6_K 8
#else
#define MMQ_X_Q6_K 4
#define MMQ_Y_Q6_K 32
#define MOE_X_Q6_K 4
#define MOE_Y_Q6_K 32
#define NWARPS_Q6_K 4
#endif
@ -698,8 +698,8 @@ __launch_bounds__(WARP_SIZE_GGUF* NWARPS_Q6_K, 2)
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst,
const int top_k) {
const int mmq_x = MMQ_X_Q6_K;
const int mmq_y = MMQ_Y_Q6_K;
const int mmq_x = MOE_X_Q6_K;
const int mmq_y = MOE_Y_Q6_K;
const int nwarps = NWARPS_Q6_K;
moe_q<scalar_t, QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps,
@ -716,8 +716,8 @@ static void ggml_moe_q6_K_q8_1_cuda(
const int exp_stride, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, const int top_k,
const int tokens_post_padded, cudaStream_t stream) {
const int mmq_x = MMQ_X_Q6_K;
const int mmq_y = MMQ_Y_Q6_K;
const int mmq_x = MOE_X_Q6_K;
const int mmq_y = MOE_Y_Q6_K;
const int nwarps = NWARPS_Q6_K;
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;

View File

@ -14,7 +14,7 @@ __global__ void awq_marlin_repack_kernel(
int n_tiles = size_n / tile_n_size;
int block_k_tiles = div_ceil(k_tiles, gridDim.x);
int start_k_tile = blockIdx.x * block_k_tiles;
auto start_k_tile = blockIdx.x * block_k_tiles;
if (start_k_tile >= k_tiles) {
return;
}
@ -51,8 +51,8 @@ __global__ void awq_marlin_repack_kernel(
int4* sh_ptr = sh + stage_size * pipe;
if (threadIdx.x < stage_size) {
int k_id = threadIdx.x / stage_n_threads;
int n_id = threadIdx.x % stage_n_threads;
auto k_id = threadIdx.x / stage_n_threads;
auto n_id = threadIdx.x % stage_n_threads;
int first_k = k_tile_id * tile_k_size;
@ -70,8 +70,8 @@ __global__ void awq_marlin_repack_kernel(
return;
}
int warp_id = threadIdx.x / 32;
int th_id = threadIdx.x % 32;
auto warp_id = threadIdx.x / 32;
auto th_id = threadIdx.x % 32;
if (warp_id >= 4) {
return;
@ -265,4 +265,4 @@ TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, Meta, m) {
m.impl("awq_marlin_repack", &awq_marlin_repack_meta);
}
}

View File

@ -42,7 +42,7 @@ namespace marlin {
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr, int size_m,
int size_k, int block_rows) {}
int size_k, int lda, int block_rows) {}
template <typename scalar_t, // compute dtype, half or nv_float16
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
@ -459,29 +459,32 @@ __device__ inline void barrier_release(int* lock, bool reset = false) {
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr, int size_m,
int size_k, int block_rows) {
int start_row = block_rows * blockIdx.x;
int size_k, int lda, int block_rows) {
auto start_row = block_rows * blockIdx.x;
int finish_row = start_row + block_rows;
if (finish_row > size_m) {
finish_row = size_m;
}
int cur_block_rows = finish_row - start_row;
int row_stride = size_k * sizeof(half) / 16;
int input_row_stride = lda * sizeof(half) / 16;
int output_row_stride = size_k * sizeof(half) / 16;
auto permute_row = [&](int row) {
int iters = size_k / default_threads;
int rest = size_k % default_threads;
int offset = row * row_stride;
int input_offset = row * input_row_stride;
int output_offset = row * output_row_stride;
half const* a_row_half = reinterpret_cast<half const*>(a_int4_ptr + offset);
half* out_half = reinterpret_cast<half*>(out_int4_ptr + offset);
half const* a_row_half =
reinterpret_cast<half const*>(a_int4_ptr + input_offset);
half* out_half = reinterpret_cast<half*>(out_int4_ptr + output_offset);
int base_k = 0;
for (int i = 0; i < iters; i++) {
int cur_k = base_k + threadIdx.x;
auto cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
@ -491,7 +494,7 @@ __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
if (rest) {
if (threadIdx.x < rest) {
int cur_k = base_k + threadIdx.x;
auto cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
@ -537,6 +540,7 @@ __global__ void Marlin(
int prob_m, // batch dimension m
int prob_n, // output dimension n
int prob_k, // reduction dimension k
int lda, // A.stride(0), equal to prob_k is A is contiguous
int* locks, // extra global storage for barrier synchronization
bool use_atomic_add, // whether to use atomic add to reduce
bool use_fp32_reduce // whether to use fp32 global reduce
@ -600,7 +604,7 @@ __global__ void Marlin(
// We can easily implement parallel problem execution by just remapping
// indices and advancing global pointers
if (slice_col_par >= n_tiles) {
A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 8;
A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * lda / 8;
C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8;
locks += (slice_col_par / n_tiles) * n_tiles;
slice_col = slice_col_par % n_tiles;
@ -631,7 +635,7 @@ __global__ void Marlin(
}
}
if (slice_col == n_tiles) {
A += 16 * thread_m_blocks * prob_k / 8;
A += 16 * thread_m_blocks * lda / 8;
C += 16 * thread_m_blocks * prob_n / 8;
locks += n_tiles;
slice_col = 0;
@ -643,7 +647,7 @@ __global__ void Marlin(
// A sizes/strides
// stride of the A matrix in global memory
int a_gl_stride = prob_k / 8;
int a_gl_stride = lda / 8;
// stride of an A matrix tile in shared memory
constexpr int a_sh_stride = 16 * thread_k_blocks / 8;
// delta between subsequent A tiles in global memory
@ -719,8 +723,8 @@ __global__ void Marlin(
(threadIdx.x % b_sh_stride_threads) * b_thread_vecs;
b_gl_rd += b_sh_stride * slice_col;
b_gl_rd += b_gl_rd_delta_o * slice_row;
int b_sh_wr = threadIdx.x * b_thread_vecs;
int b_sh_rd = threadIdx.x * b_thread_vecs;
auto b_sh_wr = threadIdx.x * b_thread_vecs;
auto b_sh_rd = threadIdx.x * b_thread_vecs;
// For act_order
constexpr int k_iter_size = tb_k / b_sh_wr_iters;
@ -739,7 +743,7 @@ __global__ void Marlin(
s_sh_stride * slice_col + threadIdx.x;
}
}
int s_sh_wr = threadIdx.x;
auto s_sh_wr = threadIdx.x;
bool s_sh_wr_pred = threadIdx.x < s_sh_stride;
// Zero-points
@ -752,7 +756,7 @@ __global__ void Marlin(
zp_sh_stride * slice_col + threadIdx.x;
}
}
int zp_sh_wr = threadIdx.x;
auto zp_sh_wr = threadIdx.x;
bool zp_sh_wr_pred = threadIdx.x < zp_sh_stride;
// We use a different scale layout for grouped and column-wise quantization as
@ -1043,7 +1047,7 @@ __global__ void Marlin(
int4* sh_s_stage = sh_s + s_sh_stage * pipe;
reinterpret_cast<int4*>(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd];
} else {
int warp_id = threadIdx.x / 32;
auto warp_id = threadIdx.x / 32;
int n_warps = thread_n_blocks / 4;
int warp_row = warp_id / n_warps;
@ -1081,7 +1085,7 @@ __global__ void Marlin(
// Determine "position" inside the thread-block (based on warp and
// thread-id)
int warp_id = threadIdx.x / 32;
auto warp_id = threadIdx.x / 32;
int n_warps =
thread_n_blocks / 4; // Each warp processes 4 16-size tiles over N
@ -1090,7 +1094,7 @@ __global__ void Marlin(
cur_k += warp_row * 16;
int th_id = threadIdx.x % 32;
auto th_id = threadIdx.x % 32;
cur_k += (th_id % 4) * 2; // Due to tensor-core layout for fp16 B matrix
int s_col_shift =
@ -1155,7 +1159,7 @@ __global__ void Marlin(
(reinterpret_cast<int*>(sh_zp_stage))[zp_sh_rd + i];
}
} else {
int warp_id = threadIdx.x / 32;
auto warp_id = threadIdx.x / 32;
int n_warps = thread_n_blocks / 4;
int warp_row = warp_id / n_warps;
@ -1193,7 +1197,7 @@ __global__ void Marlin(
(pipe / (group_blocks / thread_k_blocks)));
reinterpret_cast<int4*>(&frag_zpf[k % 2])[0] = sh_zp_stage[zp_sh_rd];
} else {
int warp_id = threadIdx.x / 32;
auto warp_id = threadIdx.x / 32;
int n_warps = thread_n_blocks / 4;
int warp_row = warp_id / n_warps;
@ -1319,7 +1323,7 @@ __global__ void Marlin(
auto thread_block_reduce = [&]() {
constexpr int red_off = threads / b_sh_stride_threads / 2;
if (red_off >= 1) {
int red_idx = threadIdx.x / b_sh_stride_threads;
auto red_idx = threadIdx.x / b_sh_stride_threads;
constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2;
constexpr int red_sh_delta = b_sh_stride_threads;
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) +
@ -1386,7 +1390,7 @@ __global__ void Marlin(
4 * (threadIdx.x / 32) + threadIdx.x % 4;
c_gl_wr += (2 * thread_n_blocks) * slice_col;
constexpr int c_sh_wr_delta = active_threads;
int c_sh_wr = threadIdx.x;
auto c_sh_wr = threadIdx.x;
int row = (threadIdx.x % 32) / 4;
@ -1780,8 +1784,8 @@ __global__ void Marlin(
HAS_ZP, GROUP_BLOCKS, IS_ZP_FLOAT> \
<<<blocks, NUM_THREADS, max_shared_mem, stream>>>( \
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, zp_ptr, g_idx_ptr, \
num_groups, prob_m, prob_n, prob_k, locks, use_atomic_add, \
use_fp32_reduce); \
num_groups, prob_m, prob_n, prob_k, lda, locks, \
use_atomic_add, use_fp32_reduce); \
} \
}
@ -2071,7 +2075,7 @@ exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k,
template <typename scalar_t>
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
void* zp, void* g_idx, void* perm, void* a_tmp, int prob_m,
int prob_n, int prob_k, void* workspace,
int prob_n, int prob_k, int lda, void* workspace,
vllm::ScalarType const& q_type, bool has_act_order,
bool is_k_full, bool has_zp, int num_groups, int group_size,
int dev, cudaStream_t stream, int thread_k, int thread_n,
@ -2184,8 +2188,9 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
// Permute A columns
int block_rows = div_ceil(prob_m, blocks);
permute_cols_kernel<<<blocks, default_threads, 0, stream>>>(
A_ptr, perm_ptr, a_tmp_ptr, prob_m, prob_k, block_rows);
A_ptr, perm_ptr, a_tmp_ptr, prob_m, prob_k, lda, block_rows);
A_ptr = a_tmp_ptr;
lda = prob_k;
}
// If we have a full K, then we can run the non-act-order version of Marlin
@ -2244,7 +2249,7 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
", num_bits = ", num_bits);
}
A_ptr += 16 * thread_m_blocks * (prob_k / 8) * par;
A_ptr += 16 * thread_m_blocks * (lda / 8) * par;
C_ptr += 16 * thread_m_blocks * (prob_n / 8) * par;
}
}
@ -2300,7 +2305,10 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
// Verify device and strides
TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
TORCH_CHECK(a.is_contiguous(), "A is not contiguous");
TORCH_CHECK(a.stride(1) == 1, "A.stride(1) is not 1");
// We use int4 (16 bytes) to load A, so A must aligned to 16 bytes
TORCH_CHECK(a.stride(0) % 8 == 0, "A.stride(0) must divisible by 8");
TORCH_CHECK(((uint64_t)a.data_ptr()) % 16 == 0, "A must aligned to 16 bytes");
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
@ -2432,7 +2440,7 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
c_tmp.data_ptr<float>(), b_scales.data_ptr<at::Half>(),
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k,
a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k, a.stride(0),
workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
thread_k, thread_n, sms, marlin::max_par, use_atomic_add,
@ -2443,10 +2451,10 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(),
b_scales.data_ptr<at::BFloat16>(), b_zeros.data_ptr(), g_idx.data_ptr(),
perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(), size_m, size_n, size_k,
workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
thread_k, thread_n, sms, marlin::max_par, use_atomic_add,
use_fp32_reduce, is_zp_float);
a.stride(0), workspace.data_ptr(), b_q_type, has_act_order, is_k_full,
has_zp, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
marlin::max_par, use_atomic_add, use_fp32_reduce, is_zp_float);
} else {
TORCH_CHECK(false, "gpt_marlin_gemm only supports bfloat16 and float16");
}

View File

@ -15,7 +15,7 @@ __global__ void gptq_marlin_repack_kernel(
int n_tiles = size_n / tile_n_size;
int block_k_tiles = div_ceil(k_tiles, gridDim.x);
int start_k_tile = blockIdx.x * block_k_tiles;
auto start_k_tile = blockIdx.x * block_k_tiles;
if (start_k_tile >= k_tiles) {
return;
}
@ -71,8 +71,8 @@ __global__ void gptq_marlin_repack_kernel(
if constexpr (has_perm) {
if (threadIdx.x < stage_size) {
int k_id = threadIdx.x / stage_n_threads;
int n_id = threadIdx.x % stage_n_threads;
auto k_id = threadIdx.x / stage_n_threads;
auto n_id = threadIdx.x % stage_n_threads;
uint32_t const* sh_perm_int_ptr =
reinterpret_cast<uint32_t const*>(sh_perm_ptr);
@ -88,8 +88,8 @@ __global__ void gptq_marlin_repack_kernel(
} else {
if (threadIdx.x < stage_size) {
int k_id = threadIdx.x / stage_n_threads;
int n_id = threadIdx.x % stage_n_threads;
auto k_id = threadIdx.x / stage_n_threads;
auto n_id = threadIdx.x % stage_n_threads;
int first_k = k_tile_id * tile_k_size;
int first_k_packed = first_k / pack_factor;
@ -109,8 +109,8 @@ __global__ void gptq_marlin_repack_kernel(
return;
}
int warp_id = threadIdx.x / 32;
int th_id = threadIdx.x % 32;
auto warp_id = threadIdx.x / 32;
auto th_id = threadIdx.x % 32;
if (warp_id >= 4) {
return;
@ -339,4 +339,4 @@ TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, Meta, m) {
m.impl("gptq_marlin_repack", &gptq_marlin_repack_meta);
}
}

View File

@ -277,12 +277,12 @@ __global__ void Marlin(
b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride);
b_gl_rd += b_sh_stride * slice_col;
b_gl_rd += b_gl_rd_delta_o * slice_row;
int b_sh_wr = threadIdx.x;
int b_sh_rd = threadIdx.x;
auto b_sh_wr = threadIdx.x;
auto b_sh_rd = threadIdx.x;
int s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
s_sh_stride * slice_col + threadIdx.x;
int s_sh_wr = threadIdx.x;
auto s_sh_wr = threadIdx.x;
int s_sh_rd;
// We use a different scale layout for grouped and column-wise quantization as
// we scale a `half2` tile in column-major layout in the former and in
@ -455,7 +455,7 @@ __global__ void Marlin(
auto thread_block_reduce = [&]() {
constexpr int red_off = threads / b_sh_stride / 2;
if (red_off >= 1) {
int red_idx = threadIdx.x / b_sh_stride;
auto red_idx = threadIdx.x / b_sh_stride;
constexpr int red_sh_stride = b_sh_stride * 4 * 2;
constexpr int red_sh_delta = b_sh_stride;
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) +
@ -522,7 +522,7 @@ __global__ void Marlin(
4 * (threadIdx.x / 32) + threadIdx.x % 4;
c_gl_wr += (2 * thread_n_blocks) * slice_col;
constexpr int c_sh_wr_delta = active_threads;
int c_sh_wr = threadIdx.x;
auto c_sh_wr = threadIdx.x;
int row = (threadIdx.x % 32) / 4;

View File

@ -353,10 +353,10 @@ __global__ void Marlin(
b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride);
b_gl_rd += b_sh_stride * slice_col;
b_gl_rd += b_gl_rd_delta_o * slice_row;
int b_sh_wr = threadIdx.x;
int b_sh_rd = threadIdx.x;
auto b_sh_wr = threadIdx.x;
auto b_sh_rd = threadIdx.x;
int s_tok_gl_rd = threadIdx.x;
auto s_tok_gl_rd = threadIdx.x;
// NOTE(HandH1998): activation scale s_tok need shuffle to [0, 8, 1, 9, 2, 10,
// 3, 11, 4, 12, 5, 13, 6, 14, 7, 15] for example, 0, 8 row scales serve for
// thread 0, 1, 2, 3. For more details, refer to mma operand A layout as
@ -368,8 +368,8 @@ __global__ void Marlin(
int s_tok_sh_rd = (threadIdx.x % 32) / 4;
bool s_tok_sh_wr_pred = threadIdx.x < prob_m;
int s_ch_gl_rd = s_ch_sh_stride * slice_col + threadIdx.x;
int s_ch_sh_wr = threadIdx.x;
auto s_ch_gl_rd = s_ch_sh_stride * slice_col + threadIdx.x;
auto s_ch_sh_wr = threadIdx.x;
int s_ch_sh_rd = 16 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
2 * ((threadIdx.x % 32) % 4);
bool s_ch_sh_wr_pred = threadIdx.x < s_ch_sh_stride;
@ -558,7 +558,7 @@ __global__ void Marlin(
auto thread_block_reduce = [&]() {
constexpr int red_off = threads / b_sh_stride / 2;
if (red_off >= 1) {
int red_idx = threadIdx.x / b_sh_stride;
auto red_idx = threadIdx.x / b_sh_stride;
constexpr int red_sh_stride = b_sh_stride * 4 * 2;
constexpr int red_sh_delta = b_sh_stride;
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) +
@ -628,7 +628,7 @@ __global__ void Marlin(
8 * (threadIdx.x / 32) + (threadIdx.x % 4) * 2;
c_gl_wr += (4 * thread_n_blocks) * slice_col;
constexpr int c_sh_wr_delta = active_threads * 2;
int c_sh_wr = 2 * threadIdx.x;
auto c_sh_wr = 2 * threadIdx.x;
int row = (threadIdx.x % 32) / 4;

View File

@ -273,15 +273,15 @@ __global__ void Marlin_24(
(threadIdx.x % b_sh_stride_threads) * b_thread_vecs;
b_gl_rd += b_sh_stride * slice_col;
b_gl_rd += b_gl_rd_delta_o * slice_row;
int b_sh_wr = threadIdx.x * b_thread_vecs;
int b_sh_rd = threadIdx.x * b_thread_vecs;
auto b_sh_wr = threadIdx.x * b_thread_vecs;
auto b_sh_rd = threadIdx.x * b_thread_vecs;
int m_gl_rd = m_gl_stride * (threadIdx.x / (m_sh_stride)) +
(threadIdx.x % (m_sh_stride));
m_gl_rd += (m_sh_stride)*slice_col;
m_gl_rd += m_gl_rd_delta_o * slice_row;
int m_sh_wr = threadIdx.x;
int m_sh_rd = threadIdx.x % 16 + (threadIdx.x / 32) * 16;
auto m_sh_wr = threadIdx.x;
auto m_sh_rd = threadIdx.x % 16 + (threadIdx.x / 32) * 16;
int s_gl_rd;
if constexpr (group_blocks == -1) {
@ -291,7 +291,7 @@ __global__ void Marlin_24(
s_sh_stride * slice_col + threadIdx.x;
}
int s_sh_wr = threadIdx.x;
auto s_sh_wr = threadIdx.x;
int s_sh_rd;
// We use a different scale layout for grouped and column-wise quantization as
// we scale a `half2` tile in column-major layout in the former and in
@ -516,7 +516,7 @@ __global__ void Marlin_24(
auto thread_block_reduce = [&]() {
constexpr int red_off = threads / b_sh_stride_threads / 2;
if (red_off >= 1) {
int red_idx = threadIdx.x / b_sh_stride_threads;
auto red_idx = threadIdx.x / b_sh_stride_threads;
constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2;
constexpr int red_sh_delta = b_sh_stride_threads;
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) +
@ -583,7 +583,7 @@ __global__ void Marlin_24(
8 * (threadIdx.x / 32) + (threadIdx.x % 32) / 4;
c_gl_wr += (2 * thread_n_blocks) * slice_col;
constexpr int c_sh_wr_delta = active_threads;
int c_sh_wr = threadIdx.x;
auto c_sh_wr = threadIdx.x;
int col = 2 * ((threadIdx.x % 32) % 4);

View File

@ -284,18 +284,18 @@ __launch_bounds__(NUM_THREADS, 5) void paged_attention_ll4mi_QKV_mfma16_kernel(
int max_ctx_blocks, const float* k_scale, const float* v_scale) {
// clang-format on
constexpr int NWARPS = NUM_THREADS / WARP_SIZE;
const int warpid = threadIdx.x / WARP_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const auto warpid = threadIdx.x / WARP_SIZE;
const auto laneid = threadIdx.x % WARP_SIZE;
const int lane4id = laneid % 4;
const int lane16id = laneid % 16;
const int rowid = laneid / 16;
const int seq_idx = blockIdx.x;
const int partition_idx = blockIdx.y;
const auto seq_idx = blockIdx.x;
const auto partition_idx = blockIdx.y;
constexpr int T_PAR_SIZE = 256; // token partition size set to 256
const int max_num_partitions = gridDim.y;
const auto max_num_partitions = gridDim.y;
const int context_len = context_lens[seq_idx];
@ -346,9 +346,9 @@ __launch_bounds__(NUM_THREADS, 5) void paged_attention_ll4mi_QKV_mfma16_kernel(
// can be interpreted as B8x16 for 8 bit types
_B16x8 Klocal[TLOOP][QKHELOOP];
const int wg_start_head_idx = blockIdx.z * GQA_RATIO;
const int wg_start_kv_head_idx = blockIdx.z;
const int total_num_heads = gridDim.z * GQA_RATIO;
const auto wg_start_head_idx = blockIdx.z * GQA_RATIO;
const auto wg_start_kv_head_idx = blockIdx.z;
const auto total_num_heads = gridDim.z * GQA_RATIO;
// for QK mfma, tokens in multiples of TOKENS_PER_WARP are spread across warps
// each mfma takes QH16xT16x16HE across warp
@ -789,14 +789,14 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
int max_ctx_blocks, const float* k_scale, const float* v_scale) {
// clang-format on
constexpr int NWARPS = NUM_THREADS / WARP_SIZE;
const int warpid = threadIdx.x / WARP_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const auto warpid = threadIdx.x / WARP_SIZE;
const auto laneid = threadIdx.x % WARP_SIZE;
const int lane4id = laneid % 4;
const int seq_idx = blockIdx.x;
const int partition_idx = blockIdx.y;
const int partition_size = blockDim.x;
const int max_num_partitions = gridDim.y;
const auto seq_idx = blockIdx.x;
const auto partition_idx = blockIdx.y;
const auto partition_size = blockDim.x;
const auto max_num_partitions = gridDim.y;
const int context_len = context_lens[seq_idx];
const int partition_start_token_idx = partition_idx * partition_size;
@ -838,8 +838,8 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
qk_max[h] = -FLT_MAX;
}
const int wg_start_head_idx = blockIdx.z * GQA_RATIO;
const int wg_start_kv_head_idx = blockIdx.z;
const auto wg_start_head_idx = blockIdx.z * GQA_RATIO;
const auto wg_start_kv_head_idx = blockIdx.z;
const int warp_start_token_idx =
partition_start_token_idx + warpid * WARP_SIZE;
@ -857,7 +857,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
// token id within partition
const int local_token_idx = threadIdx.x;
const auto local_token_idx = threadIdx.x;
// token id within sequence
const int global_token_idx = partition_start_token_idx + local_token_idx;
@ -1126,7 +1126,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
__syncthreads();
const int num_heads = gridDim.z * GQA_RATIO;
const auto num_heads = gridDim.z * GQA_RATIO;
float* max_logits_ptr =
max_logits + seq_idx * num_heads * max_num_partitions + partition_idx;
float* exp_sums_ptr =
@ -1268,14 +1268,14 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
// max_num_partitions, head_size]
const int* __restrict__ context_lens, // [num_seqs]
const int max_num_partitions) {
const int num_heads = gridDim.x;
const int head_idx = blockIdx.x;
const int seq_idx = blockIdx.y;
const auto num_heads = gridDim.x;
const auto head_idx = blockIdx.x;
const auto seq_idx = blockIdx.y;
const int context_len = context_lens[seq_idx];
const int num_partitions = DIVIDE_ROUND_UP(context_len, PARTITION_SIZE);
[[maybe_unused]] constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
const int warpid = threadIdx.x / WARP_SIZE;
[[maybe_unused]] const int laneid = threadIdx.x % WARP_SIZE;
const auto warpid = threadIdx.x / WARP_SIZE;
[[maybe_unused]] const auto laneid = threadIdx.x % WARP_SIZE;
__shared__ float shared_global_exp_sum;
// max num partitions supported is warp_size * NPAR_LOOPS
@ -1294,7 +1294,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
#pragma unroll
for (int i = 0; i < NPAR_LOOPS; i++) {
const int partition_no = i * WARP_SIZE + threadIdx.x;
const auto partition_no = i * WARP_SIZE + threadIdx.x;
valid_partition[i] =
(partition_no < num_partitions) ? partition_no : last_valid_partition;
}
@ -1324,7 +1324,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
}
#pragma unroll
for (int i = 0; i < NPAR_LOOPS; i++) {
const int partition_no = i * WARP_SIZE + threadIdx.x;
const auto partition_no = i * WARP_SIZE + threadIdx.x;
rescaled_exp_sum[i] *= (partition_no < num_partitions)
? expf(reg_max_logit[i] - max_logit)
: 0.0f;
@ -1336,7 +1336,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
}
#pragma unroll
for (int i = 0; i < NPAR_LOOPS; i++) {
const int partition_no = i * WARP_SIZE + threadIdx.x;
const auto partition_no = i * WARP_SIZE + threadIdx.x;
shared_exp_sums[partition_no] = rescaled_exp_sum[i];
}

View File

@ -111,6 +111,19 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
") -> ()");
ops.impl("advance_step_flashinfer", torch::kCUDA, &advance_step_flashinfer);
ops.def(
"block_table_appends(Tensor append_row_indices, "
"Tensor append_row_indices_cpu, Tensor append_cumsums, "
"Tensor append_cumsums_cpu, Tensor append_block_ids, "
"Tensor append_block_ids_cpu, Tensor! block_table, int num_appends, "
"int total_num_append_blocks) -> ()");
ops.impl("block_table_appends", torch::kCUDA, &block_table_appends);
ops.def(
"block_table_moves(Tensor src_dst_n, Tensor src_dst_n_cpu, "
"Tensor! block_table, int num_moves) -> ()");
ops.impl("block_table_moves", torch::kCUDA, &block_table_moves);
// Layernorm
// Apply Root Mean Square (RMS) Normalization to the input tensor.
ops.def(

View File

@ -85,6 +85,7 @@ html_static_path = ["_static"]
html_js_files = ["custom.js"]
html_css_files = ["custom.css"]
myst_heading_anchors = 2
myst_url_schemes = {
'http': None,
'https': None,

View File

@ -4,6 +4,9 @@
Deploying vLLM on Kubernetes is a scalable and efficient way to serve machine learning models. This guide walks you through deploying vLLM using native Kubernetes.
* [Deployment with CPUs](#deployment-with-cpus)
* [Deployment with GPUs](#deployment-with-gpus)
Alternatively, you can deploy vLLM to Kubernetes using any of the following:
* [Helm](frameworks/helm.md)
* [InftyAI/llmaz](integrations/llmaz.md)
@ -14,11 +17,107 @@ Alternatively, you can deploy vLLM to Kubernetes using any of the following:
* [vllm-project/aibrix](https://github.com/vllm-project/aibrix)
* [vllm-project/production-stack](integrations/production-stack.md)
## Pre-requisite
## Deployment with CPUs
Ensure that you have a running [Kubernetes cluster with GPUs](https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/).
:::{note}
The use of CPUs here is for demonstration and testing purposes only and its performance will not be on par with GPUs.
:::
## Deployment using native K8s
First, create a Kubernetes PVC and Secret for downloading and storing Hugging Face model:
```bash
cat <<EOF |kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: vllm-models
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 50Gi
---
apiVersion: v1
kind: Secret
metadata:
name: hf-token-secret
type: Opaque
data:
token: $(HF_TOKEN)
```
Next, start the vLLM server as a Kubernetes Deployment and Service:
```bash
cat <<EOF |kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
name: vllm-server
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: vllm
template:
metadata:
labels:
app.kubernetes.io/name: vllm
spec:
containers:
- name: vllm
image: vllm/vllm-openai:latest
command: ["/bin/sh", "-c"]
args: [
"vllm serve meta-llama/Llama-3.2-1B-Instruct"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
volumeMounts:
- name: llama-storage
mountPath: /root/.cache/huggingface
volumes:
- name: llama-storage
persistentVolumeClaim:
claimName: vllm-models
---
apiVersion: v1
kind: Service
metadata:
name: vllm-server
spec:
selector:
app.kubernetes.io/name: vllm
ports:
- protocol: TCP
port: 8000
targetPort: 8000
type: ClusterIP
EOF
```
We can verify that the vLLM server has started successfully via the logs (this might take a couple of minutes to download the model):
```console
kubectl logs -l app.kubernetes.io/name=vllm
...
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
```
## Deployment with GPUs
**Pre-requisite**: Ensure that you have a running [Kubernetes cluster with GPUs](https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/).
1. Create a PVC, Secret and Deployment for vLLM

View File

@ -9,7 +9,7 @@ Compared to other quantization methods, BitsAndBytes eliminates the need for cal
Below are the steps to utilize BitsAndBytes with vLLM.
```console
pip install bitsandbytes>=0.45.0
pip install bitsandbytes>=0.45.3
```
vLLM reads the model's config file and supports both in-flight quantization and pre-quantized checkpoint.

View File

@ -10,10 +10,10 @@ Reasoning models return a additional `reasoning_content` field in their outputs,
vLLM currently supports the following reasoning models:
| Model Series | Parser Name | Structured Output Support |
|--------------|-------------|------------------|
| [DeepSeek R1 series](https://huggingface.co/collections/deepseek-ai/deepseek-r1-678e1e131c0169c0bc89728d) | `deepseek_r1` | `guided_json`, `guided_regex` |
| [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) | `deepseek_r1` | `guided_json`, `guided_regex` |
| Model Series | Parser Name | Structured Output Support | Tool Calling |
|--------------|-------------|------------------|-------------|
| [DeepSeek R1 series](https://huggingface.co/collections/deepseek-ai/deepseek-r1-678e1e131c0169c0bc89728d) | `deepseek_r1` | `guided_json`, `guided_regex` | ❌ |
| [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) | `deepseek_r1` | `guided_json`, `guided_regex` | ✅ |
## Quickstart
@ -170,10 +170,51 @@ print("reasoning_content: ", completion.choices[0].message.reasoning_content)
print("content: ", completion.choices[0].message.content)
```
## Tool Calling
The reasoning content is also available when both tool calling and the reasoning parser are enabled. Additionally, tool calling only parses functions from the `content` field, not from the `reasoning_content`.
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location", "unit"]
}
}
}]
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
tools=tools,
tool_choice="auto"
)
print(response)
tool_call = response.choices[0].message.tool_calls[0].function
print(f"reasoning_content: {response.choices[0].message.reasoning_content}")
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")
```
For more examples, please refer to <gh-file:examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py> .
## Limitations
- The reasoning content is only available for online serving's chat completion endpoint (`/v1/chat/completions`).
- It is not compatible with [`tool_calling`](#tool_calling).
## How to support a new reasoning model

View File

@ -30,8 +30,10 @@ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(
model="facebook/opt-6.7b",
tensor_parallel_size=1,
speculative_model="facebook/opt-125m",
num_speculative_tokens=5,
speculative_config={
"model": "facebook/opt-125m",
"num_speculative_tokens": 5,
},
)
outputs = llm.generate(prompts, sampling_params)
@ -45,10 +47,14 @@ To perform the same with an online mode launch the server:
```bash
python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 8000 --model facebook/opt-6.7b \
--seed 42 -tp 1 --speculative_model facebook/opt-125m \
--num_speculative_tokens 5 --gpu_memory_utilization 0.8
--seed 42 -tp 1 --gpu_memory_utilization 0.8 \
--speculative_config '{"model": "facebook/opt-125m", "num_speculative_tokens": 5}'
```
:::{warning}
Note: Please use `--speculative_config` to set all configurations related to speculative decoding. The previous method of specifying the model through `--speculative_model` and adding related parameters (e.g., `--num_speculative_tokens`) separately will be deprecated in the next release.
:::
Then use a client:
```python
@ -101,9 +107,11 @@ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(
model="facebook/opt-6.7b",
tensor_parallel_size=1,
speculative_model="[ngram]",
num_speculative_tokens=5,
ngram_prompt_lookup_max=4,
speculative_config={
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 4,
},
)
outputs = llm.generate(prompts, sampling_params)
@ -131,8 +139,10 @@ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(
model="meta-llama/Meta-Llama-3.1-70B-Instruct",
tensor_parallel_size=4,
speculative_model="ibm-ai-platform/llama3-70b-accelerator",
speculative_draft_tensor_parallel_size=1,
speculative_config={
"model": "ibm-ai-platform/llama3-70b-accelerator",
"draft_tensor_parallel_size": 1,
},
)
outputs = llm.generate(prompts, sampling_params)
@ -175,8 +185,10 @@ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(
model="meta-llama/Meta-Llama-3-8B-Instruct",
tensor_parallel_size=4,
speculative_model="yuhuili/EAGLE-LLaMA3-Instruct-8B",
speculative_draft_tensor_parallel_size=1,
speculative_config={
"model": "yuhuili/EAGLE-LLaMA3-Instruct-8B",
"draft_tensor_parallel_size": 1,
},
)
outputs = llm.generate(prompts, sampling_params)
@ -194,11 +206,10 @@ A few important things to consider when using the EAGLE based draft models:
be able to be loaded and used directly by vLLM after [PR 12304](https://github.com/vllm-project/vllm/pull/12304).
If you are using vllm version before [PR 12304](https://github.com/vllm-project/vllm/pull/12304), please use the
[script](https://gist.github.com/abhigoyal1997/1e7a4109ccb7704fbc67f625e86b2d6d) to convert the speculative model,
and specify `speculative_model="path/to/modified/eagle/model"`. If weight-loading problems still occur when using
the latest version of vLLM, please leave a comment or raise an issue.
and specify `"model": "path/to/modified/eagle/model"` in `speculative_config`. If weight-loading problems still occur when using the latest version of vLLM, please leave a comment or raise an issue.
2. The EAGLE based draft models need to be run without tensor parallelism
(i.e. speculative_draft_tensor_parallel_size is set to 1), although
(i.e. draft_tensor_parallel_size is set to 1 in `speculative_config`), although
it is possible to run the main model using tensor parallelism (see example above).
3. When using EAGLE-based speculators with vLLM, the observed speedup is lower than what is

View File

@ -193,7 +193,7 @@ vLLM CPU backend supports the following vLLM features:
## Related runtime environment variables
- `VLLM_CPU_KVCACHE_SPACE`: specify the KV Cache size (e.g, `VLLM_CPU_KVCACHE_SPACE=40` means 40 GB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.
- `VLLM_CPU_KVCACHE_SPACE`: specify the KV Cache size (e.g, `VLLM_CPU_KVCACHE_SPACE=40` means 40 GiB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.
- `VLLM_CPU_OMP_THREADS_BIND`: specify the CPU cores dedicated to the OpenMP threads. For example, `VLLM_CPU_OMP_THREADS_BIND=0-31` means there will be 32 OpenMP threads bound on 0-31 CPU cores. `VLLM_CPU_OMP_THREADS_BIND=0-31|32-63` means there will be 2 tensor parallel processes, 32 OpenMP threads of rank0 are bound on 0-31 CPU cores, and the OpenMP threads of rank1 are bound on 32-63 CPU cores.
- `VLLM_CPU_MOE_PREPACK`: whether to use prepack for MoE layer. This will be passed to `ipex.llm.modules.GatedMLPMOE`. Default is `1` (True). On unsupported CPUs, you might need to set this to `0` (False).

View File

@ -58,6 +58,11 @@ from vllm import LLM, SamplingParams
```
The next section defines a list of input prompts and sampling parameters for text generation. The [sampling temperature](https://arxiv.org/html/2402.05201v1) is set to `0.8` and the [nucleus sampling probability](https://en.wikipedia.org/wiki/Top-p_sampling) is set to `0.95`. You can find more information about the sampling parameters [here](#sampling-params).
:::{important}
By default, vLLM will use sampling parameters recommended by model creator by applying the `generation_config.json` from the Hugging Face model repository if it exists. In most cases, this will provide you with the best results by default if {class}`~vllm.SamplingParams` is not specified.
However, if vLLM's default sampling parameters are preferred, please set `generation_config="vllm"` when creating the {class}`~vllm.LLM` instance.
:::
```python
prompts = [
@ -76,7 +81,7 @@ llm = LLM(model="facebook/opt-125m")
```
:::{note}
By default, vLLM downloads models from [HuggingFace](https://huggingface.co/). If you would like to use models from [ModelScope](https://www.modelscope.cn), set the environment variable `VLLM_USE_MODELSCOPE` before initializing the engine.
By default, vLLM downloads models from [Hugging Face](https://huggingface.co/). If you would like to use models from [ModelScope](https://www.modelscope.cn), set the environment variable `VLLM_USE_MODELSCOPE` before initializing the engine.
:::
Now, the fun part! The outputs are generated using `llm.generate`. It adds the input prompts to the vLLM engine's waiting queue and executes the vLLM engine to generate the outputs with high throughput. The outputs are returned as a list of `RequestOutput` objects, which include all of the output tokens.
@ -107,6 +112,11 @@ vllm serve Qwen/Qwen2.5-1.5B-Instruct
By default, the server uses a predefined chat template stored in the tokenizer.
You can learn about overriding it [here](#chat-template).
:::
:::{important}
By default, the server applies `generation_config.json` from the huggingface model repository if it exists. This means the default values of certain sampling parameters can be overridden by those recommended by the model creator.
To disable this behavior, please pass `--generation-config vllm` when launching the server.
:::
This server can be queried in the same format as OpenAI API. For example, to list the models:

View File

@ -129,6 +129,9 @@ in progress.
- **Spec Decode**: Currently, only ngram-based spec decode is supported in V1. There
will be follow-up work to support other types of spec decode (e.g., see [PR #13933](https://github.com/vllm-project/vllm/pull/13933)). We will prioritize the support for Eagle, MTP compared to draft model based spec decode.
- **Multimodal Models**: V1 is almost fully compatible with V0 except that interleaved modality input is not supported yet.
See [here](https://github.com/orgs/vllm-project/projects/8) for the status of upcoming features and optimizations.
#### Features to Be Supported
- **FP8 KV Cache**: While vLLM V1 introduces new FP8 kernels for model weight quantization, support for an FP8 keyvalue cache is not yet available. Users must continue using FP16 (or other supported precisions) for the KV cache.
@ -156,6 +159,9 @@ vLLM V1 is currently optimized for decoder-only transformers. Models requiring
For a complete list of supported models, see the [list of supported models](https://docs.vllm.ai/en/latest/models/supported_models.html).
## FAQ
## Frequently Asked Questions
TODO
**I'm using vLLM V1 and I'm getting CUDA OOM errors. What should I do?**
The default `max_num_seqs` has been raised from `256` in V0 to `1024` in V1. If you encounter CUDA OOM only when using V1 engine, try setting a lower value of `max_num_seqs` or `gpu_memory_utilization`.
On the other hand, if you get an error about insufficient memory for the cache blocks, you should increase `gpu_memory_utilization` as this indicates that your GPU has sufficient memory but you're not allocating enough to vLLM for KV cache blocks.

View File

@ -0,0 +1,5 @@
Loading Model weights with fastsafetensors
===================================================================
Using fastsafetensor library enables loading model weights to GPU memory by leveraging GPU direct storage. See https://github.com/foundation-model-stack/fastsafetensors for more details.
For enabling this feature, set the environment variable ``USE_FASTSAFETENSOR`` to ``true``

View File

@ -5,4 +5,5 @@
runai_model_streamer
tensorizer
fastsafetensor
:::

View File

@ -46,6 +46,11 @@ for output in outputs:
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
:::{important}
By default, vLLM will use sampling parameters recommended by model creator by applying the `generation_config.json` from the huggingface model repository if it exists. In most cases, this will provide you with the best results by default if {class}`~vllm.SamplingParams` is not specified.
However, if vLLM's default sampling parameters are preferred, please pass `generation_config="vllm"` when creating the {class}`~vllm.LLM` instance.
:::
A code example can be found here: <gh-file:examples/offline_inference/basic/basic.py>
### `LLM.beam_search`

View File

@ -73,7 +73,7 @@ The Transformers fallback explicitly supports the following features:
- <project:#quantization-index> (except GGUF)
- <project:#lora-adapter>
- <project:#distributed-serving> (pipeline parallel coming soon <gh-pr:12832>!)
- <project:#distributed-serving> (requires `transformers>=4.49.0`)
#### Remote code

View File

@ -2,7 +2,12 @@
# Engine Arguments
Below, you can find an explanation of every engine argument for vLLM:
Engine arguments control the behavior of the vLLM engine.
- For [offline inference](#offline-inference), they are part of the arguments to `LLM` class.
- For [online serving](#openai-compatible-server), they are part of the arguments to `vllm serve`.
Below, you can find an explanation of every engine argument:
<!--- pyml disable-num-lines 7 no-space-in-emphasis -->
```{eval-rst}
@ -15,7 +20,7 @@ Below, you can find an explanation of every engine argument for vLLM:
## Async Engine Arguments
Below are the additional arguments related to the asynchronous engine:
Additional arguments are available to the asynchronous engine which is used for online serving:
<!--- pyml disable-num-lines 7 no-space-in-emphasis -->
```{eval-rst}

View File

@ -97,6 +97,13 @@ llm = LLM(model="adept/fuyu-8b",
max_num_seqs=2)
```
#### Adjust cache size
If you run out of CPU RAM, try the following options:
- (Multi-modal models only) you can set the size of multi-modal input cache using `VLLM_MM_INPUT_CACHE_GIB` environment variable (default 4 GiB).
- (CPU backend only) you can set the size of KV cache using `VLLM_CPU_KVCACHE_SPACE` environment variable (default 4 GiB).
### Performance optimization and tuning
You can potentially improve the performance of vLLM by finetuning various options.

View File

@ -33,7 +33,11 @@ print(completion.choices[0].message)
vLLM supports some parameters that are not supported by OpenAI, `top_k` for example.
You can pass these parameters to vLLM using the OpenAI client in the `extra_body` parameter of your requests, i.e. `extra_body={"top_k": 50}` for `top_k`.
:::
:::{important}
By default, the server applies `generation_config.json` from the Hugging Face model repository if it exists. This means the default values of certain sampling parameters can be overridden by those recommended by the model creator.
To disable this behavior, please pass `--generation-config vllm` when launching the server.
:::
## Supported APIs
We currently support the following OpenAI APIs:

View File

@ -50,7 +50,9 @@ if __name__ == "__main__":
# Create an LLM with spec decoding
llm = LLM(
model="meta-llama/Llama-2-13b-chat-hf",
speculative_model="ibm-ai-platform/llama-13b-accelerator",
speculative_config={
"model": "ibm-ai-platform/llama-13b-accelerator",
},
)
print("With speculation")

View File

@ -361,6 +361,7 @@ def run_llava_next_video(questions: list[str],
engine_args = EngineArgs(
model="llava-hf/LLaVA-NeXT-Video-7B-hf",
max_model_len=8192,
max_num_seqs=2,
disable_mm_preprocessor_cache=args.disable_mm_preprocessor_cache,
)

View File

@ -0,0 +1,177 @@
# SPDX-License-Identifier: Apache-2.0
"""
An example demonstrates how to use tool calling with reasoning models
like QwQ-32B. The reasoning_content will not be parsed by the tool
calling process; only the final output will be parsed.
To run this example, you need to start the vLLM server with both
the reasoning parser and tool calling enabled.
```bash
vllm serve Qwen/QwQ-32B \
--enable-reasoning --reasoning-parser deepseek_r1 \
--enable-auto-tool-choice --tool-call-parser hermes
```
"""
from openai import OpenAI
# Now, simulate a tool call
def get_current_weather(city: str, state: str, unit: 'str'):
return ("The weather in Dallas, Texas is 85 degrees fahrenheit. It is "
"partly cloudly, with highs in the 90's.")
available_tools = {"get_current_weather": get_current_weather}
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]
messages = [{
"role": "user",
"content": "Hi! How are you doing today?"
}, {
"role": "assistant",
"content": "I'm doing well! How can I help you?"
}, {
"role":
"user",
"content":
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
}]
def extract_reasoning_and_calls(chunks: list):
reasoning_content = ""
tool_call_idx = -1
arguments = []
function_names = []
for chunk in chunks:
if chunk.choices[0].delta.tool_calls:
tool_call = chunk.choices[0].delta.tool_calls[0]
if tool_call.index != tool_call_idx:
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
arguments.append("")
function_names.append("")
if tool_call.function:
if tool_call.function.name:
function_names[tool_call_idx] = tool_call.function.name
if tool_call.function.arguments:
arguments[tool_call_idx] += tool_call.function.arguments
else:
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content += chunk.choices[0].delta.reasoning_content
return reasoning_content, arguments, function_names
print("---------Full Generate With Automatic Function Calling-------------")
tool_calls = client.chat.completions.create(messages=messages,
model=model,
tools=tools)
print(f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}")
print(f"function name: "
f"{tool_calls.choices[0].message.tool_calls[0].function.name}")
print(f"function arguments: "
f"{tool_calls.choices[0].message.tool_calls[0].function.arguments}")
print("----------Stream Generate With Automatic Function Calling-----------")
tool_calls_stream = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
stream=True)
chunks = []
for chunk in tool_calls_stream:
chunks.append(chunk)
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
chunks)
print(f"reasoning_content: {reasoning_content}")
print(f"function name: {function_names[0]}")
print(f"function arguments: {arguments[0]}")
print("----------Full Generate With Named Function Calling-----------------")
tool_calls = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
tool_choice={
"type": "function",
"function": {
"name":
"get_current_weather"
}
})
tool_call = tool_calls.choices[0].message.tool_calls[0].function
print(f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}")
print(f"function name: {tool_call.name}")
print(f"function arguments: {tool_call.arguments}")
print("----------Stream Generate With Named Function Calling--------------")
tool_calls_stream = client.chat.completions.create(
messages=messages,
model=model,
tools=tools,
tool_choice={
"type": "function",
"function": {
"name": "get_current_weather"
}
},
stream=True)
chunks = []
for chunk in tool_calls_stream:
chunks.append(chunk)
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
chunks)
print(f"reasoning_content: {reasoning_content}")
print(f"function name: {function_names[0]}")
print(f"function arguments: {arguments[0]}")
print("\n\n")

View File

@ -86,6 +86,7 @@ exclude = [
"vllm/triton_utils/**/*.py" = ["UP006", "UP035"]
"vllm/vllm_flash_attn/**/*.py" = ["UP006", "UP035"]
"vllm/worker/**/*.py" = ["UP006", "UP035"]
"vllm/utils.py" = ["UP006", "UP035"]
[tool.ruff.lint]
select = [

View File

@ -18,7 +18,7 @@ pillow # Required for image processing
prometheus-fastapi-instrumentator >= 7.0.0
tiktoken >= 0.6.0 # Required for DBRX tokenizer
lm-format-enforcer >= 0.10.11, < 0.11
llguidance >= 0.7.2, < 0.8.0; platform_machine == "x86_64" or platform_machine == "arm64" or platform_machine == "aarch64"
llguidance >= 0.7.9, < 0.8.0; platform_machine == "x86_64" or platform_machine == "arm64" or platform_machine == "aarch64"
outlines == 0.1.11
lark == 1.2.2
xgrammar == 0.1.16; platform_machine == "x86_64" or platform_machine == "aarch64"

View File

@ -4,14 +4,14 @@
# Dependencies for CPUs
torch==2.6.0+cpu; platform_machine == "x86_64"
torch==2.6.0; platform_system == "Darwin"
torch==2.5.1; platform_machine == "ppc64le" or platform_machine == "aarch64"
torch==2.6.0; platform_machine == "ppc64le" or platform_machine == "aarch64"
torch==2.7.0.dev20250304; platform_machine == "s390x"
# required for the image processor of minicpm-o-2_6, this must be updated alongside torch
torchaudio; platform_machine != "ppc64le" and platform_machine != "s390x"
torchaudio==2.5.1; platform_machine == "ppc64le"
torchaudio==2.6.0; platform_machine == "ppc64le"
# required for the image processor of phi3v, this must be updated alongside torch
torchvision; platform_machine != "ppc64le" and platform_machine != "s390x"
torchvision==0.20.1; platform_machine == "ppc64le"
torchvision==0.21.0; platform_machine == "ppc64le"
datasets # for benchmark scripts

View File

@ -41,3 +41,4 @@ tritonclient==2.51.0
numpy < 2.0.0
runai-model-streamer==0.11.0
runai-model-streamer-s3==0.11.0
fastsafetensors>=0.1.10

View File

@ -67,6 +67,7 @@ click==8.1.7
# jiwer
# nltk
# ray
# typer
colorama==0.4.6
# via
# awscli
@ -122,6 +123,8 @@ fastparquet==2024.11.0
# via genai-perf
fastrlock==0.8.2
# via cupy-cuda12x
fastsafetensors==0.1.10
# via -r requirements/test.in
filelock==3.16.1
# via
# datasets
@ -505,7 +508,9 @@ requests==2.32.3
responses==0.25.3
# via genai-perf
rich==13.9.4
# via genai-perf
# via
# genai-perf
# typer
rouge-score==0.1.2
# via lm-eval
rpds-py==0.20.1
@ -550,6 +555,8 @@ setuptools==75.8.0
# via
# pytablewriter
# torch
shellingham==1.5.4
# via typer
six==1.16.0
# via
# python-dateutil
@ -600,6 +607,7 @@ torch==2.6.0
# accelerate
# bitsandbytes
# encodec
# fastsafetensors
# lm-eval
# peft
# runai-model-streamer
@ -654,6 +662,8 @@ typepy==1.3.2
# dataproperty
# pytablewriter
# tabledata
typer==0.15.2
# via fastsafetensors
typing-extensions==4.12.2
# via
# huggingface-hub
@ -663,6 +673,7 @@ typing-extensions==4.12.2
# pydantic
# pydantic-core
# torch
# typer
tzdata==2024.2
# via pandas
urllib3==2.2.3

View File

@ -680,6 +680,7 @@ setup(
install_requires=get_requirements(),
extras_require={
"tensorizer": ["tensorizer>=2.9.0"],
"fastsafetensors": ["fastsafetensors >= 0.1.10"],
"runai": ["runai-model-streamer", "runai-model-streamer-s3", "boto3"],
"audio": ["librosa", "soundfile"], # Required for audio processing
"video": ["decord"] # Required for video processing

38
tests/build_cython.py Normal file
View File

@ -0,0 +1,38 @@
# SPDX-License-Identifier: Apache-2.0
import Cython.Compiler.Options
from Cython.Build import cythonize
from setuptools import setup
Cython.Compiler.Options.annotate = True
infiles = []
infiles += [
"vllm/engine/llm_engine.py",
"vllm/transformers_utils/detokenizer.py",
"vllm/engine/output_processor/single_step.py",
"vllm/outputs.py",
"vllm/engine/output_processor/stop_checker.py",
]
infiles += [
"vllm/core/scheduler.py",
"vllm/sequence.py",
"vllm/core/block_manager.py",
]
infiles += [
"vllm/model_executor/layers/sampler.py",
"vllm/sampling_params.py",
"vllm/utils.py",
]
setup(ext_modules=cythonize(infiles,
annotate=False,
force=True,
compiler_directives={
'language_level': "3",
'infer_types': True
}))
# example usage: python3 build_cython.py build_ext --inplace

View File

@ -1,6 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import pickle
import copy
import pytest
import torch
@ -10,32 +9,63 @@ from vllm.compilation.pass_manager import PostGradPassManager
from vllm.config import CompilationConfig
# dummy custom pass that doesn't inherit
def simple_callable(graph: torch.fx.Graph):
pass
callable_uuid = CallableInductorPass(simple_callable,
InductorPass.hash_source(__file__))
@pytest.mark.parametrize(
"works, callable",
[
(False, simple_callable),
(True, callable_uuid),
(True, CallableInductorPass(simple_callable)),
],
)
def test_pass_manager(works: bool, callable):
# Should fail to add directly to the pass manager
def test_bad_callable():
config = CompilationConfig().pass_config
pass_manager = PostGradPassManager()
pass_manager.configure(config)
# Try to add the callable to the pass manager
if works:
pass_manager.add(callable)
pickle.dumps(pass_manager)
else:
with pytest.raises(AssertionError):
pass_manager.add(callable)
with pytest.raises(AssertionError):
pass_manager.add(simple_callable) # noqa, type wrong on purpose
# Pass that inherits from InductorPass
class ProperPass(InductorPass):
def __call__(self, graph: torch.fx.graph.Graph) -> None:
pass
@pytest.mark.parametrize(
"callable",
[
ProperPass(),
# Can also wrap callables in CallableInductorPass for compliance
CallableInductorPass(simple_callable),
CallableInductorPass(simple_callable,
InductorPass.hash_source(__file__))
],
)
def test_pass_manager_uuid(callable):
config = CompilationConfig().pass_config
pass_manager = PostGradPassManager()
pass_manager.configure(config)
# Check that UUID is different if the same pass is added 2x
pass_manager.add(callable)
uuid1 = pass_manager.uuid()
pass_manager.add(callable)
uuid2 = pass_manager.uuid()
assert uuid1 != uuid2
# UUID should be the same as the original one,
# as we constructed in the same way.
pass_manager2 = PostGradPassManager()
pass_manager2.configure(config)
pass_manager2.add(callable)
assert uuid1 == pass_manager2.uuid()
# UUID should be different due to config change
config2 = copy.deepcopy(config)
config2.enable_fusion = not config2.enable_fusion
pass_manager3 = PostGradPassManager()
pass_manager3.configure(config2)
pass_manager3.add(callable)
assert uuid1 != pass_manager3.uuid()

View File

@ -175,6 +175,8 @@ TEXT_GENERATION_MODELS = {
"inceptionai/jais-13b-chat": PPTestSettings.fast(),
"ai21labs/Jamba-tiny-dev": PPTestSettings.fast(),
"meta-llama/Llama-3.2-1B-Instruct": PPTestSettings.detailed(),
# Tests TransformersModel
"ArthurZ/Ilama-3.2-1B": PPTestSettings.fast(),
"openbmb/MiniCPM-2B-sft-bf16": PPTestSettings.fast(),
"openbmb/MiniCPM3-4B": PPTestSettings.fast(),
# Uses Llama
@ -243,6 +245,7 @@ TEST_MODELS = [
# [LANGUAGE GENERATION]
"microsoft/Phi-3.5-MoE-instruct",
"meta-llama/Llama-3.2-1B-Instruct",
# "ArthurZ/Ilama-3.2-1B", NOTE: Uncomment after #13905
"ibm/PowerLM-3b",
# [LANGUAGE EMBEDDING]
"intfloat/e5-mistral-7b-instruct",

View File

@ -21,18 +21,9 @@ def test_collective_rpc(tp_size, backend):
def echo_rank(self):
return self.rank
from vllm.worker.worker import Worker
class MyWorker(Worker):
def echo_rank(self):
return self.rank
llm = LLM(model="meta-llama/Llama-3.2-1B-Instruct",
enforce_eager=True,
load_format="dummy",
tensor_parallel_size=tp_size,
distributed_executor_backend=backend,
worker_cls=MyWorker)
for method in ["echo_rank", echo_rank]:
assert llm.collective_rpc(method) == list(range(tp_size))
distributed_executor_backend=backend)
assert llm.collective_rpc(echo_rank) == list(range(tp_size))

View File

@ -107,8 +107,10 @@ def test_get_gen_prompt(model, template, add_generation_prompt,
# Call the function and get the result
result = apply_hf_chat_template(
tokenizer,
trust_remote_code=True,
conversation=mock_request.messages,
chat_template=mock_request.chat_template or template_content,
tools=None,
add_generation_prompt=mock_request.add_generation_prompt,
continue_final_message=mock_request.continue_final_message,
)

View File

@ -0,0 +1,145 @@
# SPDX-License-Identifier: Apache-2.0
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
from ...utils import RemoteOpenAIServer
# a reasoning and tool calling model
MODEL_NAME = "Qwen/QwQ-32B"
@pytest.fixture(scope="module")
def server(): # noqa: F811
args = [
"--max-model-len", "8192", "--enforce-eager", "--enable-reasoning",
"--reasoning-parser", "deepseek_r1", "--enable-auto-tool-choice",
"--tool-call-parser", "hermes"
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
TOOLS = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]
MESSAGES = [{
"role": "user",
"content": "Hi! How are you doing today?"
}, {
"role": "assistant",
"content": "I'm doing well! How can I help you?"
}, {
"role":
"user",
"content":
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
}]
FUNC_NAME = "get_current_weather"
FUNC_ARGS = """{"city": "Dallas", "state": "TX", "unit": "fahrenheit"}"""
def extract_reasoning_and_calls(chunks: list):
reasoning_content = ""
tool_call_idx = -1
arguments = []
function_names = []
for chunk in chunks:
if chunk.choices[0].delta.tool_calls:
tool_call = chunk.choices[0].delta.tool_calls[0]
if tool_call.index != tool_call_idx:
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
arguments.append("")
function_names.append("")
if tool_call.function:
if tool_call.function.name:
function_names[tool_call_idx] = tool_call.function.name
if tool_call.function.arguments:
arguments[tool_call_idx] += tool_call.function.arguments
else:
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content += chunk.choices[0].delta.reasoning_content
return reasoning_content, arguments, function_names
# test streaming
@pytest.mark.asyncio
async def test_chat_streaming_of_tool_and_reasoning(
client: openai.AsyncOpenAI):
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES,
tools=TOOLS,
temperature=0.0,
stream=True,
)
chunks = []
async for chunk in stream:
chunks.append(chunk)
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
chunks)
assert len(reasoning_content) > 0
assert len(function_names) > 0 and function_names[0] == FUNC_NAME
assert len(arguments) > 0 and arguments[0] == FUNC_ARGS
# test full generate
@pytest.mark.asyncio
async def test_chat_full_of_tool_and_reasoning(client: openai.AsyncOpenAI):
tool_calls = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES,
tools=TOOLS,
temperature=0.0,
stream=False,
)
assert len(tool_calls.choices[0].message.reasoning_content) > 0
assert tool_calls.choices[0].message.tool_calls[0].function.name \
== FUNC_NAME
assert tool_calls.choices[0].message.tool_calls[0].function.arguments \
== FUNC_ARGS

View File

@ -87,7 +87,7 @@ async def test_single_chat_session_video(client: openai.AsyncOpenAI,
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=6299, total_tokens=6309)
completion_tokens=10, prompt_tokens=6287, total_tokens=6297)
message = choice.message
message = chat_completion.choices[0].message
@ -180,7 +180,7 @@ async def test_single_chat_session_video_base64encoded(
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=6299, total_tokens=6309)
completion_tokens=10, prompt_tokens=6287, total_tokens=6297)
message = choice.message
message = chat_completion.choices[0].message

View File

@ -4,10 +4,13 @@ import warnings
from typing import Optional
import pytest
from packaging.version import Version
from transformers import __version__ as TRANSFORMERS_VERSION
from vllm.assets.image import ImageAsset
from vllm.config import ModelConfig
from vllm.entrypoints.chat_utils import (_try_extract_ast, load_chat_template,
from vllm.entrypoints.chat_utils import (_resolve_hf_chat_template,
_try_extract_ast, load_chat_template,
parse_chat_messages,
parse_chat_messages_futures,
resolve_chat_template_content_format)
@ -23,8 +26,10 @@ EXAMPLES_DIR = VLLM_PATH / "examples"
PHI3V_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
ULTRAVOX_MODEL_ID = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
QWEN2VL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
QWEN25VL_MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
MLLAMA_MODEL_ID = "meta-llama/Llama-3.2-11B-Vision-Instruct"
LLAMA_GUARD_MODEL_ID = "meta-llama/Llama-Guard-3-1B"
HERMES_MODEL_ID = "NousResearch/Hermes-3-Llama-3.1-8B"
@pytest.fixture(scope="function")
@ -703,25 +708,27 @@ def test_multimodal_image_parsing_matches_hf(model, image_url):
vllm_result = apply_hf_chat_template(
tokenizer,
trust_remote_code=model_config.trust_remote_code,
conversation=conversation,
chat_template=None,
tools=None,
add_generation_prompt=True,
)
assert hf_result == vllm_result
# yapf: disable
@pytest.mark.parametrize(
("model", "expected_format"),
[(PHI3V_MODEL_ID, "string"),
(QWEN2VL_MODEL_ID, "openai"),
(ULTRAVOX_MODEL_ID, "string"),
(MLLAMA_MODEL_ID, "openai"),
(LLAMA_GUARD_MODEL_ID, "openai")],
)
# yapf: enable
def test_resolve_content_format_hf_defined(model, expected_format):
"model",
[
QWEN2VL_MODEL_ID, # tokenizer.chat_template is of type str
HERMES_MODEL_ID, # tokenizer.chat_template is of type dict
])
@pytest.mark.parametrize("use_tools", [True, False])
def test_resolve_hf_chat_template(sample_json_schema, model, use_tools):
"""checks that chat_template is a dict type for HF models."""
# Build the tokenizer group and grab the underlying tokenizer
tokenizer_group = TokenizerGroup(
model,
enable_lora=False,
@ -730,7 +737,56 @@ def test_resolve_content_format_hf_defined(model, expected_format):
)
tokenizer = tokenizer_group.tokenizer
chat_template = tokenizer.chat_template
tools = [{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema
}
}] if use_tools else None
# Test detecting the tokenizer's chat_template
chat_template = _resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=tools,
trust_remote_code=True,
)
assert isinstance(chat_template, str)
# yapf: disable
@pytest.mark.parametrize(
("model", "expected_format"),
[(PHI3V_MODEL_ID, "string"),
(QWEN2VL_MODEL_ID, "openai"),
(QWEN25VL_MODEL_ID, "openai"),
(ULTRAVOX_MODEL_ID, "string"),
(MLLAMA_MODEL_ID, "openai"),
(LLAMA_GUARD_MODEL_ID, "openai")],
)
# yapf: enable
def test_resolve_content_format_hf_defined(model, expected_format):
if model == QWEN25VL_MODEL_ID and Version(TRANSFORMERS_VERSION) < Version(
"4.49.0"):
pytest.skip("Qwen2.5-VL requires transformers>=4.49.0")
tokenizer_group = TokenizerGroup(
model,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
tokenizer = tokenizer_group.tokenizer
# Test detecting the tokenizer's chat_template
chat_template = _resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=None,
trust_remote_code=True,
)
assert isinstance(chat_template, str)
print("[TEXT]")
@ -740,8 +796,10 @@ def test_resolve_content_format_hf_defined(model, expected_format):
resolved_format = resolve_chat_template_content_format(
None, # Test detecting the tokenizer's chat_template
None,
"auto",
tokenizer,
trust_remote_code=True,
)
assert resolved_format == expected_format
@ -791,8 +849,10 @@ def test_resolve_content_format_examples(template_path, expected_format):
resolved_format = resolve_chat_template_content_format(
chat_template,
None,
"auto",
dummy_tokenizer,
trust_remote_code=True,
)
assert resolved_format == expected_format

View File

View File

@ -0,0 +1,22 @@
# SPDX-License-Identifier: Apache-2.0
from vllm import SamplingParams
from vllm.config import LoadFormat
test_model = "openai-community/gpt2"
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, seed=0)
def test_model_loader_download_files(vllm_runner):
with vllm_runner(test_model,
load_format=LoadFormat.FASTSAFETENSORS) as llm:
deserialized_outputs = llm.generate(prompts, sampling_params)
assert deserialized_outputs

View File

@ -0,0 +1,46 @@
# SPDX-License-Identifier: Apache-2.0
import glob
import tempfile
import huggingface_hub.constants
import torch
from vllm.model_executor.model_loader.weight_utils import (
download_weights_from_hf, fastsafetensors_weights_iterator,
safetensors_weights_iterator)
def test_fastsafetensors_model_loader():
with tempfile.TemporaryDirectory() as tmpdir:
huggingface_hub.constants.HF_HUB_OFFLINE = False
download_weights_from_hf("openai-community/gpt2",
allow_patterns=["*.safetensors"],
cache_dir=tmpdir)
safetensors = glob.glob(f"{tmpdir}/**/*.safetensors", recursive=True)
assert len(safetensors) > 0
fastsafetensors_tensors = {}
hf_safetensors_tensors = {}
for name, tensor in fastsafetensors_weights_iterator(
safetensors, True):
fastsafetensors_tensors[name] = tensor
for name, tensor in safetensors_weights_iterator(safetensors, True):
hf_safetensors_tensors[name] = tensor
assert len(fastsafetensors_tensors) == len(hf_safetensors_tensors)
for name, fastsafetensors_tensor in fastsafetensors_tensors.items():
fastsafetensors_tensor = fastsafetensors_tensor.to('cpu')
assert fastsafetensors_tensor.dtype == hf_safetensors_tensors[
name].dtype
assert fastsafetensors_tensor.shape == hf_safetensors_tensors[
name].shape
assert torch.all(
fastsafetensors_tensor.eq(hf_safetensors_tensors[name]))
if __name__ == "__main__":
test_fastsafetensors_model_loader()

View File

@ -749,3 +749,72 @@ def test_gather_cache_mla(kv_lora_rank, qk_rope_head_dim, block_size,
ops.gather_cache(src_cache, dst, block_table, cu_seq_lens, batch_size)
torch.testing.assert_close(dst, expected)
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS_MLA)
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS_MLA)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.cpu_model
@pytest.mark.skipif(not current_platform.is_cpu(), reason="CPU only")
@torch.inference_mode()
def test_concat_and_cache_mla_cpu(
kv_lora_rank: int,
qk_rope_head_dim: int,
num_tokens: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
) -> None:
device = "cpu"
kv_cache_dtype = "auto"
current_platform.seed_everything(seed)
torch.set_default_device(device)
total_slots = num_blocks * block_size
slot_mapping_lst = random.sample(range(total_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst,
dtype=torch.long,
device=device)
kv_c = torch.randn(num_tokens, kv_lora_rank, dtype=dtype, device=device)
k_pe = torch.randn(num_tokens,
qk_rope_head_dim,
dtype=dtype,
device=device)
entry_size = kv_lora_rank + qk_rope_head_dim
scale = torch.tensor(0.1, dtype=torch.float32, device=device)
kv_cache = _create_mla_cache(num_blocks, block_size, entry_size, dtype,
kv_cache_dtype, device)
ref_temp = torch.zeros(*kv_cache.shape, dtype=dtype, device=device)
for i in range(num_tokens):
slot = slot_mapping[i].item()
block_idx = slot // block_size
block_offset = slot % block_size
ref_temp[block_idx, block_offset, :kv_lora_rank] = kv_c[i]
ref_temp[block_idx, block_offset, kv_lora_rank:] = k_pe[i]
if kv_cache_dtype == "fp8":
ref_kv_cache = torch.empty_like(ref_temp, dtype=kv_cache.dtype)
ops.convert_fp8(ref_kv_cache,
ref_temp,
scale.item(),
kv_dtype=kv_cache_dtype)
else:
ref_kv_cache = ref_temp
opcheck(
torch.ops._C_cache_ops.concat_and_cache_mla,
(kv_c, k_pe, kv_cache, slot_mapping, kv_cache_dtype, scale),
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
)
ops.concat_and_cache_mla(kv_c, k_pe, kv_cache, slot_mapping,
kv_cache_dtype, scale)
torch.testing.assert_close(kv_cache, ref_kv_cache)

View File

@ -606,6 +606,51 @@ def test_marlin_qqq_gemm(
assert max_diff < 0.04
def test_marlin_gemm_subset_input():
quant_type = scalar_types.uint4b8
group_size = 128
size_m, size_k, size_n = 32, 1024, 2048
big_m = size_m * 2
big_k = size_k * 2
a_input = rand_data((big_m, big_k))[8:size_m + 8, 8:size_k + 8]
b_weight = rand_data((size_k, size_n))
w_ref, marlin_q_w, marlin_s, g_idx, sort_indices, _ = marlin_quantize(
b_weight, quant_type, group_size, False)
marlin_zp = marlin_make_empty_g_idx(marlin_s.device)
workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)
output = ops.gptq_marlin_gemm(
a_input,
marlin_q_w,
marlin_s,
marlin_zp,
g_idx,
sort_indices,
workspace.scratch,
quant_type,
a_input.shape[0],
b_weight.shape[1],
a_input.shape[1],
is_k_full=True,
has_zp=False,
use_atomic_add=False,
use_fp32_reduce=True,
is_zp_float=False,
)
output_ref = torch.matmul(a_input, w_ref)
torch.cuda.synchronize()
max_diff = compute_max_diff(output, output_ref)
assert max_diff < 0.04
def test_marlin_gemm_opcheck():
size_m = 2048
size_n = 4096

View File

@ -0,0 +1,94 @@
# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
import torch.nn.functional as F
from torch import Tensor
import vllm._custom_ops as ops
from vllm.platforms import current_platform
def cdiv(a, b):
return (a + b - 1) // b
def ref_mla(
out: Tensor, # (bs, num_heads, v_head_dim)
query: Tensor, # (bs, num_heads, head_dim)
kv_cache: Tensor, # (num_blocks, block_size, head_dim)
scale: float,
block_tables: Tensor, # (bs, max_num_blocks)
seq_lens: Tensor, # (bs,)
):
bs, num_heads, v_head_dim = out.shape
head_dim = query.shape[2]
for i in range(bs):
# gather and flatten KV-cache
kv = kv_cache[
block_tables[i]] # (max_num_blocks, block_size, head_dim)
kv = kv.view(1, -1,
head_dim)[:, :seq_lens[i]] # (1, seq_len, head_dim)
v = kv[:, :, :v_head_dim]
q = query[i].view(num_heads, 1, head_dim)
o = F.scaled_dot_product_attention(q,
kv,
v,
scale=scale,
enable_gqa=True)
out[i] = o.view(num_heads, v_head_dim)
return out
@pytest.mark.parametrize("bs", [4])
@pytest.mark.parametrize("mean_seq_len", [256])
@pytest.mark.parametrize("h_q", [16])
@pytest.mark.parametrize("d", [576])
@pytest.mark.parametrize("dv", [512])
@pytest.mark.parametrize("block_size", [16])
@pytest.mark.parametrize("dtype", [torch.float, torch.half, torch.bfloat16])
@pytest.mark.parametrize("varlen", [False, True])
@pytest.mark.cpu_model
@pytest.mark.skipif(not current_platform.is_cpu(), reason="CPU only")
def test_mla_decode_cpu(
bs: int,
mean_seq_len: int,
h_q: int,
d: int,
dv: int,
block_size: int,
dtype: torch.dtype,
varlen: bool,
):
torch.set_default_dtype(dtype)
torch.manual_seed(0)
scale = d**(-0.5)
if varlen:
seq_lens = torch.empty(bs).normal_(mean_seq_len, mean_seq_len / 2)
seq_lens = seq_lens.clip(2).to(torch.int32)
else:
seq_lens = torch.full((bs, ), mean_seq_len, dtype=torch.int32)
max_seq_len = seq_lens.max().item()
seqlen_pad = cdiv(max_seq_len, 256) * 256 # is this necessary?
q = torch.randn(bs, h_q, d)
block_table = torch.arange(bs * seqlen_pad // block_size,
dtype=torch.int32)
block_table = block_table.view(bs, seqlen_pad // block_size)
kv_cache = torch.randn(block_table.numel(), block_size, d)
for i, seq_len in enumerate(seq_lens.tolist()):
kv_cache.view(bs, seqlen_pad, d)[i, seq_len:] = float("nan")
out_mla = q.new_zeros(bs, h_q, dv)
ops.mla_decode_kvcache_cpu(out_mla, q, kv_cache, scale, block_table,
seq_lens)
out_ref = q.new_zeros(bs, h_q, dv)
ref_mla(out_ref, q, kv_cache, scale, block_table, seq_lens)
assert not out_mla.isnan().any(), "Likely read out of bounds"
torch.testing.assert_close(out_mla, out_ref)

View File

@ -3,8 +3,11 @@
Run `pytest tests/kernels/test_moe.py`.
"""
import pytest
import torch
from torch.nn import Parameter
from torch.nn import functional as F
from transformers import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
@ -37,6 +40,7 @@ TOP_KS = [2, 6]
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("ep_size", EP_SIZE)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("padding", [True, False])
def test_fused_moe(
m: int,
n: int,
@ -45,6 +49,7 @@ def test_fused_moe(
topk: int,
ep_size: int,
dtype: torch.dtype,
padding: bool,
):
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
@ -65,16 +70,7 @@ def test_fused_moe(
else:
e_map = None
triton_output = fused_moe(a,
w1,
w2,
score,
topk,
global_num_experts=e,
expert_map=e_map,
renormalize=False)
torch_output = torch_moe(a, w1, w2, score, topk, e_map)
torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)
iterative_output = iterative_moe(a,
w1,
w2,
@ -83,6 +79,23 @@ def test_fused_moe(
global_num_experts=e,
expert_map=e_map,
renormalize=False)
# Pad the weight if moe padding is enabled
if padding:
w1 = F.pad(w1, (0, 128), "constant", 0)[..., 0:-128]
torch.cuda.empty_cache()
w2 = F.pad(w2, (0, 128), "constant", 0)[..., 0:-128]
torch.cuda.empty_cache()
triton_output = fused_moe(a,
w1,
w2,
score,
topk,
global_num_experts=e,
expert_map=e_map,
renormalize=False)
torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)
torch.testing.assert_close(iterative_output,
torch_output,
atol=2e-2,
@ -202,8 +215,9 @@ def test_fused_moe_wn16(m: int, n: int, k: int, e: int, topk: int,
@pytest.mark.parametrize("dtype",
[torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("padding", [True, False])
@torch.inference_mode()
def test_mixtral_moe(dtype: torch.dtype):
def test_mixtral_moe(dtype: torch.dtype, padding: bool):
"""Make sure our Mixtral MoE implementation agrees with the one from
huggingface."""
@ -233,6 +247,17 @@ def test_mixtral_moe(dtype: torch.dtype):
# vLLM uses 1D query [num_tokens, hidden_dim]
vllm_inputs = hf_inputs.flatten(0, 1)
# Pad the weight if moe padding is enabled
if padding:
vllm_moe.experts.w13_weight = Parameter(F.pad(
vllm_moe.experts.w13_weight, (0, 128), "constant", 0)[..., 0:-128],
requires_grad=False)
torch.cuda.empty_cache()
vllm_moe.experts.w2_weight = Parameter(F.pad(
vllm_moe.experts.w2_weight, (0, 128), "constant", 0)[..., 0:-128],
requires_grad=False)
torch.cuda.empty_cache()
# Run forward passes for both MoE blocks
hf_states, _ = hf_moe.forward(hf_inputs)
vllm_states = vllm_moe.forward(vllm_inputs)

View File

@ -163,24 +163,24 @@ VLM_TEST_SETTINGS = {
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
#### Extended model tests
# "aria": VLMTestInfo(
# models=["rhymes-ai/Aria"],
# test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
# prompt_formatter=lambda img_prompt: f"<|im_start|>user\n{img_prompt}<|im_end|>\n<|im_start|>assistant\n ", # noqa: E501
# img_idx_to_prompt=lambda idx: "<fim_prefix><|img|><fim_suffix>\n",
# max_model_len=4096,
# max_num_seqs=2,
# auto_cls=AutoModelForImageTextToText,
# single_image_prompts=IMAGE_ASSETS.prompts({
# "stop_sign": "<vlm_image>Please describe the image shortly.",
# "cherry_blossom": "<vlm_image>Please infer the season with reason.", # noqa: E501
# }),
# multi_image_prompt="<vlm_image><vlm_image>Describe the two images shortly.", # noqa: E501
# stop_str=["<|im_end|>"],
# image_size_factors=[(0.10, 0.15)],
# max_tokens=64,
# marks=[large_gpu_mark(min_gb=64)],
# ),
"aria": VLMTestInfo(
models=["rhymes-ai/Aria"],
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
prompt_formatter=lambda img_prompt: f"<|im_start|>user\n{img_prompt}<|im_end|>\n<|im_start|>assistant\n ", # noqa: E501
img_idx_to_prompt=lambda idx: "<fim_prefix><|img|><fim_suffix>\n",
max_model_len=4096,
max_num_seqs=2,
auto_cls=AutoModelForImageTextToText,
single_image_prompts=IMAGE_ASSETS.prompts({
"stop_sign": "<vlm_image>Please describe the image shortly.",
"cherry_blossom": "<vlm_image>Please infer the season with reason.", # noqa: E501
}),
multi_image_prompt="<vlm_image><vlm_image>Describe the two images shortly.", # noqa: E501
stop_str=["<|im_end|>"],
image_size_factors=[(0.10, 0.15)],
max_tokens=64,
marks=[large_gpu_mark(min_gb=64)],
),
"blip2": VLMTestInfo(
models=["Salesforce/blip2-opt-2.7b"],
test_type=VLMTestType.IMAGE,
@ -352,6 +352,7 @@ VLM_TEST_SETTINGS = {
prompt_formatter=lambda vid_prompt: f"USER: {vid_prompt} ASSISTANT:",
num_video_frames=16,
max_model_len=4096,
max_num_seqs=2,
auto_cls=AutoModelForVision2Seq,
vllm_output_post_proc=model_utils.llava_video_vllm_to_hf_output,
),
@ -384,7 +385,7 @@ VLM_TEST_SETTINGS = {
),
"minicpmo_26": VLMTestInfo(
models=["openbmb/MiniCPM-o-2_6"],
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
test_type=(VLMTestType.IMAGE),
prompt_formatter=lambda img_prompt: f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{img_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
img_idx_to_prompt=lambda idx: "(<image>./</image>)\n",
max_model_len=4096,
@ -393,9 +394,21 @@ VLM_TEST_SETTINGS = {
hf_output_post_proc=model_utils.minicpmv_trunc_hf_output,
patch_hf_runner=model_utils.minicpmo_26_patch_hf_runner,
),
"minicpmo_26_multi_image": VLMTestInfo(
models=["openbmb/MiniCPM-o-2_6"],
test_type=(VLMTestType.MULTI_IMAGE),
prompt_formatter=lambda img_prompt: f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{img_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
img_idx_to_prompt=lambda idx: "(<image>./</image>)\n",
max_model_len=4096,
max_num_seqs=2,
get_stop_token_ids=lambda tok: tok.convert_tokens_to_ids(['<|im_end|>', '<|endoftext|>']), # noqa: E501
hf_output_post_proc=model_utils.minicpmv_trunc_hf_output,
patch_hf_runner=model_utils.minicpmo_26_patch_hf_runner,
marks=[large_gpu_mark(min_gb=32)],
),
"minicpmv_26": VLMTestInfo(
models=["openbmb/MiniCPM-V-2_6"],
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
test_type=(VLMTestType.IMAGE),
prompt_formatter=lambda img_prompt: f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{img_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
img_idx_to_prompt=lambda idx: "(<image>./</image>)\n",
max_model_len=4096,
@ -404,6 +417,18 @@ VLM_TEST_SETTINGS = {
hf_output_post_proc=model_utils.minicpmv_trunc_hf_output,
patch_hf_runner=model_utils.minicpmv_26_patch_hf_runner,
),
"minicpmv_26_multi_image": VLMTestInfo(
models=["openbmb/MiniCPM-V-2_6"],
test_type=(VLMTestType.MULTI_IMAGE),
prompt_formatter=lambda img_prompt: f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{img_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
img_idx_to_prompt=lambda idx: "(<image>./</image>)\n",
max_model_len=4096,
max_num_seqs=2,
get_stop_token_ids=lambda tok: tok.convert_tokens_to_ids(['<|im_end|>', '<|endoftext|>']), # noqa: E501
hf_output_post_proc=model_utils.minicpmv_trunc_hf_output,
patch_hf_runner=model_utils.minicpmv_26_patch_hf_runner,
marks=[large_gpu_mark(min_gb=32)],
),
"molmo": VLMTestInfo(
models=["allenai/Molmo-7B-D-0924"],
test_type=(VLMTestType.IMAGE),

View File

@ -1,6 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
import copy
from functools import partial
from typing import Optional, Union
@ -29,7 +28,7 @@ def _test_processing_correctness(
hit_rate: float,
num_batches: int,
simplify_rate: float,
ignore_mm_keys: Optional[list[str]] = None,
ignore_mm_keys: Optional[set[str]] = None,
):
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id)
model_info.check_available_online(on_fail="skip")
@ -145,7 +144,7 @@ def _test_processing_correctness_hf(
baseline_processor: BaseMultiModalProcessor,
cached_processor: BaseMultiModalProcessor,
batch_idx: int,
ignore_mm_keys: Optional[list[str]] = None,
ignore_mm_keys: Optional[set[str]] = None,
):
if model_config.hf_config.model_type in ("mllama", "whisper", "ultravox"):
# For some multimodal models, tokenizer will always add bos_token
@ -167,11 +166,12 @@ def _test_processing_correctness_hf(
hf_processor_mm_kwargs={},
)
assert _inputs_equal(
_assert_inputs_equal(
baseline_result,
cached_result,
ignore_mm_keys,
), f"Failed ({batch_idx=}, {prompt=}, {mm_data=})"
ignore_mm_keys=ignore_mm_keys,
msg=f"Failed ({batch_idx=}, {prompt=}, {mm_data=})",
)
baseline_tokenized_result = baseline_processor.apply(
token_prompt,
@ -179,11 +179,12 @@ def _test_processing_correctness_hf(
hf_processor_mm_kwargs={},
)
assert _inputs_equal(
_assert_inputs_equal(
baseline_result,
baseline_tokenized_result,
ignore_mm_keys,
), f"Failed ({batch_idx=}, {prompt=}, {mm_data=})"
ignore_mm_keys=ignore_mm_keys,
msg=f"Failed ({batch_idx=}, {prompt=}, {mm_data=})",
)
cached_tokenized_result = cached_processor.apply(
token_prompt,
@ -191,11 +192,12 @@ def _test_processing_correctness_hf(
hf_processor_mm_kwargs={},
)
assert _inputs_equal(
_assert_inputs_equal(
cached_result,
cached_tokenized_result,
ignore_mm_keys,
), f"Failed ({batch_idx=}, {prompt=}, {mm_data=})"
ignore_mm_keys=ignore_mm_keys,
msg=f"Failed ({batch_idx=}, {prompt=}, {mm_data=})",
)
def _test_processing_correctness_mistral(
@ -206,7 +208,7 @@ def _test_processing_correctness_mistral(
baseline_processor: BaseMultiModalProcessor,
cached_processor: BaseMultiModalProcessor,
batch_idx: int,
ignore_mm_keys: Optional[list[str]] = None,
ignore_mm_keys: Optional[set[str]] = None,
):
images = mm_data.get("image", [])
if not isinstance(images, list):
@ -233,11 +235,12 @@ def _test_processing_correctness_mistral(
hf_processor_mm_kwargs={},
)
assert _inputs_equal(
_assert_inputs_equal(
baseline_tokenized_result,
cached_tokenized_result,
ignore_mm_keys,
), f"Failed ({batch_idx=}, {prompt=}, {mm_data=})"
ignore_mm_keys=ignore_mm_keys,
msg=f"Failed ({batch_idx=}, {prompt=}, {mm_data=})",
)
# yapf: disable
@ -261,6 +264,7 @@ def _test_processing_correctness_mistral(
"TIGER-Lab/Mantis-8B-siglip-llama3",
"mistralai/Pixtral-12B-2409",
"mistral-community/pixtral-12b",
"openbmb/MiniCPM-Llama3-V-2_5",
"openbmb/MiniCPM-o-2_6",
"openbmb/MiniCPM-V-2_6",
"allenai/Molmo-7B-D-0924",
@ -290,7 +294,7 @@ def test_processing_correctness(
# In Ultravox, the audio_features can be different depending on padding
# The slight difference should not be a problem though, since
# attention_mask lets us ignore the difference.
ignore_mm_keys = ['audio_features']
ignore_mm_keys = {"audio_features"}
_test_processing_correctness(
model_id,
@ -328,38 +332,26 @@ def test_processing_correctness_phi3v(
)
def _inputs_equal(
def _assert_inputs_equal(
a: MultiModalInputs,
b: MultiModalInputs,
ignore_mm_keys: Optional[list[str]] = None,
*,
ignore_mm_keys: Optional[set[str]] = None,
msg: str = "",
):
return _drop_mm_kwargs_keys(a, ignore_mm_keys) == _drop_mm_kwargs_keys(
b, ignore_mm_keys)
if ignore_mm_keys is None:
ignore_mm_keys = set()
if msg is None:
assert "mm_kwargs" in a and "mm_kwargs" in b
else:
assert "mm_kwargs" in a and "mm_kwargs" in b, msg
def _drop_mm_kwargs_keys(
result: MultiModalInputs,
ignore_mm_keys: Optional[list[str]] = None,
) -> MultiModalInputs:
"""Drop specified keys from result['mm_kwargs'].
for key in ignore_mm_keys:
a["mm_kwargs"].pop(key, None)
b["mm_kwargs"].pop(key, None)
This is mainly to avoid doing exact match of audio_features in ultravox.
Args:
result: Result to drop keys from
ignore_mm_keys: List of keys to ignore, e.g. ['audio_features']
"""
if not ignore_mm_keys:
return result
if 'mm_kwargs' in result:
result = copy.deepcopy(result)
mm_kwargs = result['mm_kwargs']
for key in ignore_mm_keys:
mm_kwargs.pop(key, None)
for items in mm_kwargs._items_by_modality.values():
for item in items:
for key in ignore_mm_keys:
item.pop(key, None)
return result
if msg is None:
assert a == b
else:
assert a == b, msg

View File

@ -56,7 +56,7 @@ def test_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
def maybe_assert_ngram_worker(llm):
# Verify the proposer worker is ngram if ngram is specified.
if (llm.llm_engine.speculative_config is not None
and llm.llm_engine.speculative_config.ngram_prompt_lookup_max > 0):
and llm.llm_engine.speculative_config.method == "ngram"):
from vllm.spec_decode.ngram_worker import NGramWorker
assert isinstance(
llm.llm_engine.model_executor.driver_worker.proposer_worker,

View File

@ -7,28 +7,39 @@ from vllm import SamplingParams
from .conftest import get_output_from_llm_generator
@pytest.mark.parametrize("common_llm_kwargs", [{
"model": "meta-llama/Llama-3.2-1B-Instruct",
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
}])
@pytest.mark.parametrize("common_llm_kwargs",
[{
"model": "meta-llama/Llama-3.2-1B-Instruct",
}])
@pytest.mark.parametrize(
"per_test_common_llm_kwargs",
[
{
# Speculative max model len > overridden max model len should raise.
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"max_model_len": 129,
},
"max_model_len": 128,
"speculative_max_model_len": 129,
},
{
# Speculative max model len > draft max model len should raise.
# https://huggingface.co/JackFram/llama-68m/blob/3b606af5198a0b26762d589a3ee3d26ee6fa6c85/config.json#L12
"speculative_max_model_len": 2048 + 1,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"max_model_len": 2048 + 1,
},
},
{
# Speculative max model len > target max model len should raise.
# https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct/blob/9213176726f574b556790deb65791e0c5aa438b6/config.json#L18
"speculative_max_model_len": 131072 + 1,
# https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/9213176726f574b556790deb65791e0c5aa438b6/config.json#L18
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"max_model_len": 131072 + 1,
},
},
])
@pytest.mark.parametrize("test_llm_kwargs", [{}])

View File

@ -57,8 +57,10 @@ PRECISION = "float32"
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -95,18 +97,19 @@ def test_eagle_e2e_greedy_correctness(vllm_runner, common_llm_kwargs,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs_during_spec_decoding": False,
"disable_logprobs": False,
},
{
"speculative_model": SPEC_MODEL,
}, {
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs_during_spec_decoding": True,
"disable_logprobs": True,
},
])
}])
@pytest.mark.parametrize("output_len", [
128,
])
@ -119,18 +122,19 @@ def test_eagle_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
batch_size: int, output_len: int, seed: int,
logprobs: int):
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])
run_equality_correctness_test(
vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs["speculative_config"]
["disable_logprobs"])
@pytest.mark.parametrize(
@ -151,8 +155,10 @@ def test_eagle_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -193,8 +199,10 @@ def test_eagle_e2e_greedy_correctness_cuda_graph(
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize(
@ -236,8 +244,10 @@ def test_eagle_e2e_greedy_correctness_with_preemption(
"test_llm_kwargs",
[
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": k,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": k,
},
}
# Try a range of num. speculative tokens
for k in range(1, 1 + MAX_SPEC_TOKENS)
@ -277,12 +287,13 @@ def test_eagle_different_k(vllm_runner, common_llm_kwargs,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_disable_by_batch_size": 4
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_by_batch_size": 4,
},
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",
@ -324,8 +335,10 @@ def test_eagle_disable_queue(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "yuhuili/EAGLE-llama2-chat-7B",
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"model": "yuhuili/EAGLE-llama2-chat-7B",
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize(
@ -372,8 +385,10 @@ def test_llama2_eagle_e2e_greedy_correctness(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "yuhuili/EAGLE-LLaMA3-Instruct-8B",
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"model": "yuhuili/EAGLE-LLaMA3-Instruct-8B",
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize(
@ -420,8 +435,10 @@ def test_llama3_eagle_e2e_greedy_correctness(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "yuhuili/EAGLE-Qwen2-7B-Instruct",
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"model": "yuhuili/EAGLE-Qwen2-7B-Instruct",
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize(

View File

@ -23,8 +23,10 @@ MAIN_MODEL = "JackFram/llama-68m"
[
{
# Identical models.
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@ -57,26 +59,33 @@ def test_spec_decode_cuda_graph(vllm_runner, common_llm_kwargs,
# Skip cuda graph recording for fast test.
"enforce_eager": True,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [
{
"speculative_model": "LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [])
@pytest.mark.parametrize(
"test_llm_kwargs",
[
# Explicitly specify draft model quantization
{
"speculative_model_quantization": "gptq",
"speculative_config": {
"model": "LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit",
"num_speculative_tokens": 5,
"quantization": "gptq",
},
},
# Explicitly specify GPTQ-based draft model to use marlin quantization
{
"speculative_model_quantization": "marlin",
"speculative_config": {
"model": "LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit",
"num_speculative_tokens": 5,
"quantization": "marlin",
},
},
# Not explicitly specify draft model quantization
{
"speculative_model_quantization": None,
"speculative_config": {
"model": "LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit",
"num_speculative_tokens": 5,
"quantization": None,
},
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@ -107,15 +116,16 @@ def test_speculative_model_quantization_config(vllm_runner, common_llm_kwargs,
# Skip cuda graph recording for fast test.
"enforce_eager": True,
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_disable_mqa_scorer": True,
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"disable_mqa_scorer": True,
},
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",
@ -127,7 +137,7 @@ def test_speculative_model_quantization_config(vllm_runner, common_llm_kwargs,
def test_mqa_scorer(vllm_runner, common_llm_kwargs, per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs, batch_size: int,
output_len: int, seed: int):
"""Verify that ngram speculative decoding generates the same output
"""Verify that speculative decoding generates the same output
with batch expansion scorer and mqa scorer.
"""
run_equality_correctness_test(vllm_runner,

View File

@ -27,18 +27,19 @@ from .conftest import run_equality_correctness_test_tp
@pytest.mark.parametrize("baseline_llm_kwargs", [[]])
@pytest.mark.parametrize("test_llm_kwargs", [
[
"--speculative-model",
"JackFram/llama-68m",
"--num-speculative-tokens",
"3",
"--speculative_config",
str({
"model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
}),
],
[
"--speculative-model",
"[ngram]",
"--num-speculative-tokens",
"5",
"--ngram-prompt-lookup-max",
"3",
"--speculative_config",
str({
"model": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
}),
],
])
@pytest.mark.parametrize("batch_size", [2])
@ -83,23 +84,24 @@ def test_target_model_tp_gt_1(common_llm_kwargs, per_test_common_llm_kwargs,
]])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [[]])
@pytest.mark.parametrize("baseline_llm_kwargs", [[]])
@pytest.mark.parametrize("model, test_llm_kwargs",
[("JackFram/llama-68m", [
"--speculative-model",
"JackFram/llama-68m",
"--num_speculative-tokens",
"5",
"--speculative-draft-tensor-parallel-size",
"1",
]),
("ibm-granite/granite-3b-code-instruct", [
"--speculative-model",
"ibm-granite/granite-3b-code-instruct",
"--num_speculative-tokens",
"5",
"--speculative-draft-tensor-parallel-size",
"1",
])])
@pytest.mark.parametrize(
"model, test_llm_kwargs",
[("JackFram/llama-68m", [
"--speculative_config",
str({
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"draft_tensor_parallel_size": 1,
}),
]),
("ibm-granite/granite-3b-code-instruct", [
"--speculative_config",
str({
"model": "ibm-granite/granite-3b-code-instruct",
"num_speculative_tokens": 5,
"draft_tensor_parallel_size": 1,
}),
])])
@pytest.mark.parametrize("batch_size", [2])
@pytest.mark.parametrize("seed", [1])
def test_draft_model_tp_lt_target_model_tp2(model, common_llm_kwargs,
@ -144,18 +146,19 @@ def test_draft_model_tp_lt_target_model_tp2(model, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [[]])
@pytest.mark.parametrize("model, test_llm_kwargs",
[("JackFram/llama-68m", [
"--speculative-model",
"JackFram/llama-68m",
"--num_speculative-tokens",
"3",
"--speculative_config",
str({
"model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
}),
]),
("JackFram/llama-68m", [
"--speculative-model",
"JackFram/llama-68m",
"--num_speculative-tokens",
"3",
"--speculative-draft-tensor-parallel-size",
"1",
"--speculative_config",
str({
"model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"draft_tensor_parallel_size": 1,
}),
])])
@pytest.mark.parametrize("logprobs", [None, 2])
@pytest.mark.parametrize("batch_size", [2])

View File

@ -24,12 +24,7 @@ SPEC_MODEL = "JackFram/llama-68m"
"4",
]])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [
[
"--speculative-model",
f"{SPEC_MODEL}",
"--num-speculative-tokens",
"5",
],
[],
])
@pytest.mark.parametrize("baseline_llm_kwargs", [[]])
@pytest.mark.parametrize(
@ -37,8 +32,12 @@ SPEC_MODEL = "JackFram/llama-68m"
[
#TODO(wooyeon): add spec_draft_dp=2 case
[
"--speculative-draft-tensor-parallel-size",
"1",
"--speculative_config",
str({
"model": f"{SPEC_MODEL}",
"num_speculative_tokens": 5,
"draft_tensor_parallel_size": 1,
}),
],
])
@pytest.mark.parametrize("batch_size", [2])
@ -78,15 +77,14 @@ def test_draft_model_tp_lt_target_model_tp4(common_llm_kwargs,
"test_llm_kwargs",
[
[
"--speculative-model",
f"{SPEC_MODEL}",
"--num-speculative-tokens",
"5",
# Artificially limit the draft model max model len; this forces vLLM
# to skip speculation once the sequences grow beyond 32-k tokens.
"--speculative-max-model-len",
"32",
"--speculative_config",
str({
"model": f"{SPEC_MODEL}",
"num_speculative_tokens": 5,
"max_model_len": 32,
}),
],
])
@pytest.mark.parametrize("batch_size", [8])

View File

@ -20,16 +20,19 @@ from .conftest import run_equality_correctness_test
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"disable_logprobs_during_spec_decoding": False,
}, {
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"disable_logprobs_during_spec_decoding": True,
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"disable_logprobs": False,
},
}, {
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"disable_logprobs": True,
},
}])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize(
"output_len",
@ -48,19 +51,20 @@ def test_logprobs_equality(vllm_runner, common_llm_kwargs,
as well as with and without chunked prefill.
"""
maybe_enable_chunked_prefill(prefill_chunk_size, common_llm_kwargs)
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
temperature=0.0,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])
run_equality_correctness_test(
vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
temperature=0.0,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs["speculative_config"]
["disable_logprobs"])
@pytest.mark.parametrize(
@ -73,16 +77,19 @@ def test_logprobs_equality(vllm_runner, common_llm_kwargs,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": "JackFram/llama-160m",
"num_speculative_tokens": 3,
"disable_logprobs_during_spec_decoding": False,
}, {
"speculative_model": "JackFram/llama-160m",
"num_speculative_tokens": 6,
"disable_logprobs_during_spec_decoding": False,
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": "JackFram/llama-160m",
"num_speculative_tokens": 3,
"disable_logprobs": False,
},
}, {
"speculative_config": {
"model": "JackFram/llama-160m",
"num_speculative_tokens": 6,
"disable_logprobs": False,
},
}])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize(
"output_len",
@ -98,18 +105,19 @@ def test_logprobs_different_k(vllm_runner, common_llm_kwargs,
output_len: int, seed: int, logprobs: int):
"""Veriy logprob greedy equality with different speculation lens.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
temperature=0.0,
logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])
run_equality_correctness_test(
vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
temperature=0.0,
logprobs=logprobs,
disable_logprobs=test_llm_kwargs["speculative_config"]
["disable_logprobs"])
@pytest.mark.parametrize(
@ -125,13 +133,15 @@ def test_logprobs_different_k(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize(
"test_llm_kwargs",
[{
"speculative_model": "JackFram/llama-160m",
"num_speculative_tokens": 3,
"disable_logprobs_during_spec_decoding": False,
# Artificially limit the draft model max model len; this forces vLLM
# to skip speculation once the sequences grow beyond 32-k tokens.
"speculative_max_model_len": 32,
"speculative_config": {
"model": "JackFram/llama-160m",
"num_speculative_tokens": 3,
"disable_logprobs": False,
# Artificially limit the draft model max model len; this forces
# vLLM to skip speculation once the sequences grow beyond 32-k
# tokens.
"max_model_len": 32,
},
}])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize(
@ -149,18 +159,19 @@ def test_logprobs_when_skip_speculation(vllm_runner, common_llm_kwargs,
seed: int, logprobs: int):
"""Verify logprobs greedy equality when some sequences skip speculation.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
temperature=0.0,
logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])
run_equality_correctness_test(
vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
temperature=0.0,
logprobs=logprobs,
disable_logprobs=test_llm_kwargs["speculative_config"]
["disable_logprobs"])
@pytest.mark.parametrize(
@ -173,12 +184,13 @@ def test_logprobs_when_skip_speculation(vllm_runner, common_llm_kwargs,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": "JackFram/llama-160m",
"num_speculative_tokens": 3,
"disable_logprobs_during_spec_decoding": False,
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": "JackFram/llama-160m",
"num_speculative_tokens": 3,
"disable_logprobs": False,
},
}])
@pytest.mark.parametrize("batch_size", [1])
@pytest.mark.parametrize(
"output_len",
@ -248,12 +260,13 @@ def test_logprobs_temp_1(vllm_runner, common_llm_kwargs,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"disable_logprobs_during_spec_decoding": True,
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"disable_logprobs": True,
},
}])
@pytest.mark.parametrize("seed", [1])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize(
@ -270,15 +283,16 @@ def test_logprobs_disabled(vllm_runner, common_llm_kwargs,
"""Check the behavior when logprobs are disabled.
Token choices should match with the base model.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
temperature=0.0,
logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])
run_equality_correctness_test(
vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
temperature=0.0,
logprobs=logprobs,
disable_logprobs=test_llm_kwargs["speculative_config"]
["disable_logprobs"])

View File

@ -60,8 +60,10 @@ PRECISION = "float32"
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -107,14 +109,18 @@ def test_medusa_e2e_greedy_correctness(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs_during_spec_decoding": False,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs": False,
},
},
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs_during_spec_decoding": True,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs": True,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -132,19 +138,20 @@ def test_medusa_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
prefill_chunk_size: int):
"""Verify greedy equality with different batch size."""
maybe_enable_chunked_prefill(prefill_chunk_size, test_llm_kwargs)
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])
run_equality_correctness_test(
vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs["speculative_config"]
["disable_logprobs"])
@pytest.mark.parametrize(
@ -165,8 +172,10 @@ def test_medusa_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -214,8 +223,10 @@ def test_medusa_e2e_greedy_correctness_cuda_graph(
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize(
@ -264,8 +275,10 @@ def test_medusa_e2e_greedy_correctness_with_preemption(
"test_llm_kwargs",
[
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": k,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": k,
},
}
# Try a range of num. speculative tokens
for k in range(1, 1 + MAX_SPEC_TOKENS)
@ -312,12 +325,13 @@ def test_medusa_different_k(vllm_runner, common_llm_kwargs,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_disable_by_batch_size": 4
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_by_batch_size": 4,
},
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",
@ -359,16 +373,17 @@ def test_medusa_disable_queue(vllm_runner, common_llm_kwargs,
# Main model
"model_name": MAIN_MODEL,
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_disable_by_batch_size": 4
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_disable_mqa_scorer": True,
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_by_batch_size": 4,
"disable_mqa_scorer": True,
},
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",

View File

@ -62,7 +62,9 @@ PRECISION = "float32"
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"speculative_config": {
"model": SPEC_MODEL,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -108,12 +110,16 @@ def test_mlp_e2e_greedy_correctness(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"disable_logprobs_during_spec_decoding": False,
"speculative_config": {
"model": SPEC_MODEL,
"disable_logprobs": False,
},
},
{
"speculative_model": SPEC_MODEL,
"disable_logprobs_during_spec_decoding": True,
"speculative_config": {
"model": SPEC_MODEL,
"disable_logprobs": True,
},
},
])
@pytest.mark.parametrize("output_len", [8])
@ -133,19 +139,20 @@ def test_mlp_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
# up sampling different tokens at the tail (ie top tokens don't change).
# TL;DR: sd+cp == org+cp but sd+cp != org..is this expected?
maybe_enable_chunked_prefill(prefill_chunk_size, baseline_llm_kwargs)
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])
run_equality_correctness_test(
vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs["speculative_config"]
["disable_logprobs"])
@pytest.mark.parametrize(
@ -167,7 +174,9 @@ def test_mlp_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"speculative_config": {
"model": SPEC_MODEL,
},
},
])
@pytest.mark.parametrize("output_len", [2048])
@ -209,8 +218,10 @@ def test_mlp_e2e_acceptance_rate(vllm_runner, common_llm_kwargs,
# Main model
"model_name": MAIN_MODEL,
# Speculative model
"speculative_model": SPEC_MODEL,
# Speculative config
"speculative_config": {
"model": SPEC_MODEL,
},
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{"seed": 1}])
@ -274,7 +285,9 @@ def test_mlp_e2e_seeded_correctness(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"speculative_config": {
"model": SPEC_MODEL,
},
},
])
@pytest.mark.parametrize(
@ -326,7 +339,9 @@ def test_mlp_e2e_greedy_correctness_with_preemption(
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"speculative_config": {
"model": SPEC_MODEL,
},
},
])
@pytest.mark.parametrize(
@ -382,8 +397,10 @@ def test_mlp_e2e_greedy_correctness_with_padding(
"test_llm_kwargs",
[
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": k,
"speculative_config": {
"model": SPEC_MODEL,
"num_speculative_tokens": k,
},
}
# Try a range of num. speculative tokens
for k in range(1, 1 + MAX_SPEC_TOKENS)
@ -430,11 +447,12 @@ def test_mlp_different_k(vllm_runner, common_llm_kwargs,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": SPEC_MODEL,
"speculative_disable_by_batch_size": 4
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": SPEC_MODEL,
"disable_by_batch_size": 4,
},
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",
@ -475,14 +493,15 @@ def test_mlp_disable_queue(vllm_runner, common_llm_kwargs,
# Skip cuda graph recording for fast test.
"enforce_eager": True,
"speculative_model": SPEC_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_disable_mqa_scorer": True,
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": SPEC_MODEL,
"disable_mqa_scorer": True,
},
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",

View File

@ -57,7 +57,9 @@ PRECISION = "bfloat16"
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -99,12 +101,16 @@ def test_mtp_e2e_greedy_correctness(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs_during_spec_decoding": False,
"speculative_config": {
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs": False,
},
},
{
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs_during_spec_decoding": True,
"speculative_config": {
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_logprobs": True,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -119,18 +125,19 @@ def test_mtp_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
batch_size: int, output_len: int, seed: int,
logprobs: int):
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])
run_equality_correctness_test(
vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
output_len,
seed,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs["speculative_config"]
["disable_logprobs"])
@pytest.mark.parametrize(
@ -152,7 +159,9 @@ def test_mtp_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -198,7 +207,9 @@ def test_mtp_e2e_greedy_correctness_cuda_graph(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_config": {
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
},
])
@pytest.mark.parametrize(
@ -243,7 +254,9 @@ def test_mtp_e2e_greedy_correctness_with_preemption(
"test_llm_kwargs",
[
{
"num_speculative_tokens": k,
"speculative_config": {
"num_speculative_tokens": k,
},
}
# Try a range of num. speculative tokens
for k in range(1, 1 + MAX_SPEC_TOKENS)
@ -286,11 +299,12 @@ def test_mtp_different_k(vllm_runner, common_llm_kwargs,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_disable_by_batch_size": 4
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"num_speculative_tokens": MAX_SPEC_TOKENS,
"disable_by_batch_size": 4
},
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",

View File

@ -61,15 +61,19 @@ from .conftest import (get_output_from_llm_generator,
"per_test_common_llm_kwargs",
[
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": False,
},
{
# Chunked prefill enabled with small value
# to make sure we get mixed batches.
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
@ -148,20 +152,23 @@ def test_spec_decode_e2e_with_detokenization(test_llm_generator,
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"enable_chunked_prefill": False,
"disable_logprobs_during_spec_decoding": False
}, {
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4,
"disable_logprobs_during_spec_decoding": False
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"disable_logprobs": False,
},
"enable_chunked_prefill": False,
}, {
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
"disable_logprobs": False,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4,
}])
@pytest.mark.parametrize(
"output_len",
[
@ -184,7 +191,7 @@ def test_spec_decode_e2e_greedy_correctness_tiny_model_bs1(
whether all speculative tokens are accepted.
"""
ensure_all_accepted = per_test_common_llm_kwargs.get(
"model_name") == test_llm_kwargs.get("speculative_model")
"model_name") == test_llm_kwargs.get("speculative_config")["model"]
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
@ -224,13 +231,17 @@ def test_spec_decode_e2e_greedy_correctness_tiny_model_bs1(
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": False,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
@ -283,13 +294,17 @@ def test_spec_decode_e2e_greedy_correctness_tiny_model_large_bs(
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": False,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
@ -336,13 +351,17 @@ def test_spec_decode_e2e_greedy_correctness_tiny_model_large_bs_diff_output_len(
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": False,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
@ -391,13 +410,17 @@ def test_spec_decode_e2e_greedy_correctness_real_model_bs1(
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": False,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
@ -449,13 +472,17 @@ def test_spec_decode_e2e_greedy_correctness_real_model_large_bs(
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": False,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
@ -514,13 +541,17 @@ def test_spec_decode_e2e_greedy_correctness_with_preemption(
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": False,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
@ -567,21 +598,25 @@ def test_spec_decode_different_block_size(vllm_runner, common_llm_kwargs,
"test_llm_kwargs",
[
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
# Artificially limit the draft model max model len; this forces vLLM
# to skip speculation once the sequences grow beyond 32-k tokens.
"speculative_max_model_len": 32,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"max_model_len": 32,
},
"enable_chunked_prefill": False,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"max_model_len": 32,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4,
"speculative_max_model_len": 32,
},
])
@pytest.mark.parametrize("batch_size", [8])
@ -627,15 +662,19 @@ def test_skip_speculation(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_disable_by_batch_size": 2,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"disable_by_batch_size": 2,
},
"enable_chunked_prefill": False,
},
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"speculative_disable_by_batch_size": 2,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
"disable_by_batch_size": 2,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4,
@ -676,15 +715,19 @@ def test_disable_speculation(vllm_runner, common_llm_kwargs,
"test_llm_kwargs",
[
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": k,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": k,
},
"enable_chunked_prefill": False,
}
# Try a range of common k, as well as large speculation.
for k in [1, 2, 3, 4, 5, 6, 7, 8, 9, 63]
] + [{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": k,
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": k,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4,
@ -729,17 +772,21 @@ def test_many_k(vllm_runner, common_llm_kwargs, per_test_common_llm_kwargs,
"test_llm_kwargs",
[
{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": k,
"spec_decoding_acceptance_method": "typical_acceptance_sampler",
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": k,
"acceptance_method": "typical_acceptance_sampler",
},
"enable_chunked_prefill": False
}
# Try a range of common k.
for k in [1, 2, 3]
] + [{
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": k,
"spec_decoding_acceptance_method": "typical_acceptance_sampler",
"speculative_config": {
"model": "JackFram/llama-68m",
"num_speculative_tokens": k,
"acceptance_method": "typical_acceptance_sampler",
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4

View File

@ -48,16 +48,20 @@ from .conftest import run_equality_correctness_test
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "[ngram]",
"num_speculative_tokens": 5,
"ngram_prompt_lookup_max": 3,
"speculative_disable_mqa_scorer": False,
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
"disable_mqa_scorer": False,
},
},
{
"speculative_model": "[ngram]",
"num_speculative_tokens": 5,
"ngram_prompt_lookup_max": 3,
"speculative_disable_mqa_scorer": True,
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
"disable_mqa_scorer": True,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -101,16 +105,20 @@ def test_ngram_e2e_greedy_correctness(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "[ngram]",
"num_speculative_tokens": 5,
"ngram_prompt_lookup_max": 3,
"disable_logprobs_during_spec_decoding": False,
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
"disable_logprobs": False,
},
},
{
"speculative_model": "[ngram]",
"num_speculative_tokens": 5,
"ngram_prompt_lookup_max": 3,
"disable_logprobs_during_spec_decoding": True,
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
"disable_logprobs": True,
},
},
])
@pytest.mark.parametrize("output_len", [
@ -125,19 +133,20 @@ def test_ngram_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
batch_size: int, output_len: int, seed: int,
logprobs: int):
"""Verify greedy equality on a tiny model with different batch size."""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs[
'disable_logprobs_during_spec_decoding'])
run_equality_correctness_test(
vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0,
logprobs=logprobs,
prompt_logprobs=logprobs,
disable_logprobs=test_llm_kwargs["speculative_config"]
["disable_logprobs"])
@pytest.mark.parametrize(
@ -159,17 +168,21 @@ def test_ngram_e2e_greedy_logprobs(vllm_runner, common_llm_kwargs,
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": "[ngram]",
"num_speculative_tokens": 5,
"ngram_prompt_lookup_max": 3,
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
},
"enable_chunked_prefill": False,
},
{
"speculative_model": "[ngram]",
"num_speculative_tokens": 5,
"ngram_prompt_lookup_max": 3,
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
"disable_mqa_scorer": True,
},
"enable_chunked_prefill": True,
"speculative_disable_mqa_scorer": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
},
@ -214,17 +227,21 @@ def test_ngram_e2e_greedy_correctness_with_preemption(
"test_llm_kwargs",
[
{
"speculative_model": "[ngram]",
"num_speculative_tokens": k,
"ngram_prompt_lookup_max": 3,
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": k,
"prompt_lookup_max": 3,
},
}
# Try a range of common k, as well as large speculation.
for k in [1, 3, 5]
] + [
{
"speculative_model": "[ngram]",
"num_speculative_tokens": k,
"ngram_prompt_lookup_max": 1,
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": k,
"prompt_lookup_max": 1,
},
}
# Try a range of common k, as well as large speculation.
for k in [1, 3, 5]
@ -243,7 +260,7 @@ def test_ngram_different_k(vllm_runner, common_llm_kwargs,
seed: int):
"""Verify that ngram speculative decoding produces exact equality
to without spec decode with many different values of k and
different ngram_prompt_lookup_max.
different ngram prompt_lookup_max.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
@ -266,22 +283,25 @@ def test_ngram_different_k(vllm_runner, common_llm_kwargs,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": "[ngram]",
"num_speculative_tokens": 5,
"ngram_prompt_lookup_max": 3,
"speculative_disable_by_batch_size": 4
}, {
"speculative_model": "[ngram]",
"num_speculative_tokens": 5,
"ngram_prompt_lookup_max": 3,
"speculative_disable_by_batch_size": 4,
"enable_chunked_prefill": True,
"speculative_disable_mqa_scorer": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
"disable_by_batch_size": 4
},
}, {
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
"disable_by_batch_size": 4,
"disable_mqa_scorer": True,
},
"enable_chunked_prefill": True,
"max_num_batched_tokens": 4,
"max_num_seqs": 4
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",
@ -296,7 +316,7 @@ def test_ngram_disable_queue(vllm_runner, common_llm_kwargs,
seed: int):
"""Verify that ngram speculative decoding produces exact equality
to without spec decode with many different values of k and
different ngram_prompt_lookup_max.
different ngram prompt_lookup_max.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
@ -316,18 +336,17 @@ def test_ngram_disable_queue(vllm_runner, common_llm_kwargs,
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"speculative_model": "[ngram]",
"num_speculative_tokens": 5,
"ngram_prompt_lookup_max": 3,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_disable_mqa_scorer": True,
}])
@pytest.mark.parametrize("test_llm_kwargs", [{
"speculative_config": {
"method": "ngram",
"num_speculative_tokens": 5,
"prompt_lookup_max": 3,
"disable_mqa_scorer": True,
},
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",

View File

@ -19,11 +19,11 @@ SPEC_MODEL = "JackFram/llama-160m"
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# speculative model
"speculative_model": "JackFram/llama-160m",
# num speculative tokens
"num_speculative_tokens": 3,
# speculative config
"speculative_config": {
"model": "JackFram/llama-160m",
"num_speculative_tokens": 3,
},
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{"seed": 1}])

View File

@ -39,7 +39,10 @@ def ensure_system_prompt(messages: list[dict[str, Any]],
# universal args for all models go here. also good if you need to test locally
# and change type or KV cache quantization or something.
ARGS: list[str] = ["--enable-auto-tool-choice", "--max-model-len", "1024"]
ARGS: list[str] = [
"--enable-auto-tool-choice", "--max-model-len", "1024", "--max-num-seqs",
"256"
]
CONFIGS: dict[str, ServerConfig] = {
"hermes": {

View File

@ -5,92 +5,96 @@ import os
import tempfile
import depyf
import pytest
from vllm.config import CompilationLevel
temp_dir = tempfile.mkdtemp()
with depyf.prepare_debug(temp_dir):
from vllm import LLM, SamplingParams
prompts = [
"A robot may not injure a human being",
"It is only with the heart that one can see rightly;",
"The greatest glory in living lies not in never falling,",
]
answers = [
" or, through inaction, allow a human being to come to harm.",
" what is essential is invisible to the eye.",
" but in rising every time we fall.",
]
N = 1
# Currently, top-p sampling is disabled. `top_p` should be 1.0.
sampling_params = SamplingParams(temperature=0.7,
top_p=1.0,
n=N,
max_tokens=16)
@pytest.mark.skip(reason="Not working; needs investigation.")
def test_tpu_compilation():
temp_dir = tempfile.mkdtemp()
with depyf.prepare_debug(temp_dir):
from vllm import LLM, SamplingParams
# Set `enforce_eager=True` to avoid ahead-of-time compilation.
# In real workloads, `enforace_eager` should be `False`.
prompts = [
"A robot may not injure a human being",
"It is only with the heart that one can see rightly;",
"The greatest glory in living lies not in never falling,",
]
answers = [
" or, through inaction, allow a human being to come to harm.",
" what is essential is invisible to the eye.",
" but in rising every time we fall.",
]
N = 1
# Currently, top-p sampling is disabled. `top_p` should be 1.0.
sampling_params = SamplingParams(temperature=0.7,
top_p=1.0,
n=N,
max_tokens=16)
# disable custom dispatcher, let Dynamo takes over
# all the control
llm = LLM(model="Qwen/Qwen2.5-1.5B-Instruct",
max_model_len=512,
max_num_seqs=64,
enforce_eager=True,
compilation_config={"level": CompilationLevel.DYNAMO_AS_IS})
outputs = llm.generate(prompts, sampling_params)
for output, answer in zip(outputs, answers):
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
assert generated_text.startswith(answer)
# Set `enforce_eager=True` to avoid ahead-of-time compilation.
# In real workloads, `enforace_eager` should be `False`.
compiled_codes = sorted(
glob.glob(os.path.join(temp_dir, "__transformed_code*.py")))
# disable custom dispatcher, let Dynamo takes over
# all the control
llm = LLM(model="Qwen/Qwen2.5-1.5B-Instruct",
max_model_len=512,
max_num_seqs=64,
enforce_eager=True,
compilation_config={"level": CompilationLevel.DYNAMO_AS_IS})
outputs = llm.generate(prompts, sampling_params)
for output, answer in zip(outputs, answers):
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
assert generated_text.startswith(answer)
for i, compiled_code in enumerate(compiled_codes):
print("{} file: {}".format(i + 1, compiled_code))
compiled_codes = sorted(
glob.glob(os.path.join(temp_dir, "__transformed_code*.py")))
# We should only trigger Dynamo compilation 4 times:
# 1. forward pass (symbolic)
# 2. compute_logits (symbolic)
# 3. forward pass (shape 16)
# 4. forward pass (shape 32)
# and later calls should not trigger Dynamo compilation again.
# NOTE: It might still trigger XLA compilation.
for i, compiled_code in enumerate(compiled_codes):
print("{} file: {}".format(i + 1, compiled_code))
# Check we have 4 compiled codes
assert len(compiled_codes) == 4
# We should only trigger Dynamo compilation 4 times:
# 1. forward pass (symbolic)
# 2. compute_logits (symbolic)
# 3. forward pass (shape 16)
# 4. forward pass (shape 32)
# and later calls should not trigger Dynamo compilation again.
# NOTE: It might still trigger XLA compilation.
kv_cache_prefix = "kv_cache"
attn_prefix = "ragged_paged_attention"
# Check we have 4 compiled codes
assert len(compiled_codes) == 4
# Check all the compilations are as expected
compiled_fns = sorted(
glob.glob(os.path.join(temp_dir, "__compiled_fn*Captured*.py")))
kv_cache_prefix = "kv_cache"
attn_prefix = "ragged_paged_attention"
for i, compiled_fn in enumerate(compiled_fns):
print("{} file: {}".format(i + 1, compiled_fn))
# Check all the compilations are as expected
compiled_fns = sorted(
glob.glob(os.path.join(temp_dir, "__compiled_fn*Captured*.py")))
# The first compilation is symbolic, so it should not have any kv_caches
with open(compiled_fns[0]) as f:
content = f.read()
assert kv_cache_prefix not in content
for i, compiled_fn in enumerate(compiled_fns):
print("{} file: {}".format(i + 1, compiled_fn))
# The second compilation is symbolic, so it should not have any kv_caches
with open(compiled_fns[1]) as f:
content = f.read()
assert kv_cache_prefix not in content
# The first compilation is symbolic, so it should not have any kv_caches
with open(compiled_fns[0]) as f:
content = f.read()
assert kv_cache_prefix not in content
# The third compilation is shape 16, so it should have kv_caches and the
# ragged_paged_attention
with open(compiled_fns[2]) as f:
content = f.read()
assert (kv_cache_prefix in content and attn_prefix in content)
# The second compilation is symbolic, so it should not have any kv_caches
with open(compiled_fns[1]) as f:
content = f.read()
assert kv_cache_prefix not in content
# The forth compilation is shape 32, so it should have kv_caches and the
# ragged_paged_attention
with open(compiled_fns[3]) as f:
content = f.read()
assert (kv_cache_prefix in content and attn_prefix in content)
# The third compilation is shape 16, so it should have kv_caches and the
# ragged_paged_attention
with open(compiled_fns[2]) as f:
content = f.read()
assert (kv_cache_prefix in content and attn_prefix in content)
# The forth compilation is shape 32, so it should have kv_caches and the
# ragged_paged_attention
with open(compiled_fns[3]) as f:
content = f.read()
assert (kv_cache_prefix in content and attn_prefix in content)

View File

@ -70,12 +70,16 @@ def test_ngram_correctness(
ref_outputs = ref_llm.chat(test_prompts, sampling_config)
del ref_llm
spec_llm = LLM(model=model_name,
speculative_model='[ngram]',
ngram_prompt_lookup_max=5,
ngram_prompt_lookup_min=3,
num_speculative_tokens=3,
max_model_len=1024)
spec_llm = LLM(
model=model_name,
speculative_config={
"method": "ngram",
"prompt_lookup_max": 5,
"prompt_lookup_min": 3,
"num_speculative_tokens": 3,
},
max_model_len=1024,
)
spec_outputs = spec_llm.chat(test_prompts, sampling_config)
matches = 0
misses = 0

View File

@ -11,11 +11,13 @@ from tests.v1.engine.utils import (NUM_PROMPT_LOGPROBS_UNDER_TEST,
STOP_STRINGS,
DummyOutputProcessorTestVectors,
MockEngineCore)
from vllm.outputs import CompletionOutput, RequestOutput
from vllm.sampling_params import RequestOutputKind, SamplingParams
from vllm.sequence import PromptLogprobs, SampleLogprobs
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.output_processor import OutputProcessor
from vllm.v1.engine.output_processor import (OutputProcessor,
RequestOutputCollector)
from vllm.v1.metrics.stats import IterationStats
@ -834,3 +836,88 @@ def test_iteration_stats(dummy_test_vectors):
assert iteration_stats.num_prompt_tokens == 0
assert iteration_stats.num_generation_tokens == num_active
@pytest.mark.asyncio
async def test_request_output_collector():
NUM_REQS = 3
TEXT = "a"
def make_outputs() -> list[RequestOutput]:
return [
RequestOutput(
request_id="my-request-id",
prompt=None,
prompt_token_ids=[1, 2, 3],
prompt_logprobs=None,
outputs=[
CompletionOutput(
index=0,
text=TEXT,
token_ids=[idx],
cumulative_logprob=(idx + 1 * 1.0),
logprobs=[{
"a": idx,
"b": idx
}],
finish_reason="length" if
(idx == NUM_REQS - 1) else None,
)
],
finished=(idx == NUM_REQS - 1),
) for idx in range(NUM_REQS)
]
collector = RequestOutputCollector(RequestOutputKind.DELTA)
# CASE 1: Put then get.
outputs = make_outputs()
collector.put(outputs[0])
output = await collector.get()
assert not collector.ready.is_set()
assert collector.output is None
assert output.outputs[0].text == "a"
assert output.outputs[0].token_ids == [0]
# CASE 2: 2 puts then get.
num_to_put = 2
outputs = make_outputs()
for i in range(num_to_put):
collector.put(outputs[i])
output = await collector.get()
assert not collector.ready.is_set()
assert collector.output is None
assert not output.finished
# Text, token_ids, and logprobs should get merged.
assert output.outputs[0].text == TEXT * num_to_put
for tok_0, tok_1 in zip(output.outputs[0].token_ids,
list(range(num_to_put))):
assert tok_0 == tok_1
assert len(output.outputs[0].logprobs) == num_to_put
# Cumulative logprobs should be the last one.
cumulative_logprob_expected = 1.0 * num_to_put
assert output.outputs[0].cumulative_logprob == cumulative_logprob_expected
# CASE 3: Put all 3 (including a finished).
num_to_put = 3
outputs = make_outputs()
for i in range(num_to_put):
collector.put(outputs[i])
output = await collector.get()
assert not collector.ready.is_set()
assert collector.output is None
assert output.finished
assert output.outputs[0].finish_reason == "length"
# Text, token_ids, and logprobs should get merged.
assert output.outputs[0].text == TEXT * num_to_put
for tok_0, tok_1 in zip(output.outputs[0].token_ids,
list(range(num_to_put))):
assert tok_0 == tok_1
assert len(output.outputs[0].logprobs) == num_to_put
# Cumulative logprobs should be the last one.
cumulative_logprob_expected = 1.0 * num_to_put
assert output.outputs[0].cumulative_logprob == cumulative_logprob_expected

View File

@ -13,7 +13,7 @@ from vllm.entrypoints.llm import LLM
from vllm.outputs import RequestOutput
from vllm.sampling_params import GuidedDecodingParams, SamplingParams
GUIDED_DECODING_BACKENDS_V1 = ["xgrammar"]
GUIDED_DECODING_BACKENDS_V1 = ["xgrammar", "guidance"]
MODELS_TO_TEST = [
"Qwen/Qwen2.5-1.5B-Instruct", "mistralai/Ministral-8B-Instruct-2410"
]
@ -30,12 +30,13 @@ def test_guided_json_completion(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
json=sample_json_schema,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=sample_json_schema))
outputs = llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {sample_json_schema}"
@ -111,13 +112,14 @@ def test_guided_json_object(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=1.0,
max_tokens=100,
n=2,
guided_decoding=GuidedDecodingParams(
json_object=True,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=100,
n=2,
guided_decoding=GuidedDecodingParams(json_object=True))
outputs = llm.generate(
prompts=("Generate a JSON object with curly braces for a person with "
@ -137,12 +139,20 @@ def test_guided_json_object(
# Parse to verify it is valid JSON
parsed_json = json.loads(generated_text)
assert isinstance(parsed_json, dict)
allowed_types: tuple[type, ...] = (dict, )
if guided_decoding_backend == "xgrammar":
# TODO - we are currently too permissive with xgrammar and
# allow # any valid json (typically comes back as a list or
# object). We can fix this by specifying a jsonschema of
# {"type": "object"}, # but we need this fix in a release
# first: https://github.com/mlc-ai/xgrammar/pull/264
allowed_types = (dict, list)
assert isinstance(parsed_json, allowed_types)
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
GUIDED_DECODING_BACKENDS_V1 + ["auto"])
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_json_unsupported_schema(
monkeypatch: pytest.MonkeyPatch,
@ -151,21 +161,43 @@ def test_guided_json_unsupported_schema(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
json=unsupported_json_schema,
backend=guided_decoding_backend))
with pytest.raises(ValueError,
match="The provided JSON schema contains features "
"not supported by xgrammar."):
llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {unsupported_json_schema}"
] * 2,
sampling_params=sampling_params,
use_tqdm=True)
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=unsupported_json_schema))
if guided_decoding_backend == "xgrammar":
with pytest.raises(ValueError,
match="The provided JSON schema contains features "
"not supported by xgrammar."):
llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {unsupported_json_schema}"
] * 2,
sampling_params=sampling_params,
use_tqdm=True)
else:
# This should work for both "guidance" and "auto".
outputs = llm.generate(
prompts=("Give an example JSON object for a grade "
"that fits this schema: "
f"{unsupported_json_schema}"),
sampling_params=sampling_params,
use_tqdm=True)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
generated_text = output.outputs[0].text
assert generated_text is not None
print(generated_text)
# Parse to verify it is valid JSON
parsed_json = json.loads(generated_text)
assert isinstance(parsed_json, dict)
@pytest.mark.skip_global_cleanup
@ -179,13 +211,14 @@ def test_guided_grammar_ebnf(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
grammar=sample_sql_ebnf,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar=sample_sql_ebnf))
outputs = llm.generate(
prompts=("Generate a sql statement that selects col_1 from "
"table_1 where it is equal to 1"),
@ -222,13 +255,14 @@ def test_guided_grammar_lark(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
grammar=sample_sql_lark,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar=sample_sql_lark))
outputs = llm.generate(
prompts=("Generate a sql statement that selects col_1 from "
"table_1 where it is equal to 1"),
@ -269,16 +303,15 @@ def test_guided_grammar_ebnf_invalid(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
grammar="not a grammar",
backend=guided_decoding_backend))
with pytest.raises(ValueError,
match="Failed to convert the grammar "
"from Lark to EBNF."):
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar="not a grammar"))
with pytest.raises(ValueError, match="Failed to convert the grammar "):
llm.generate(
prompts=("Generate a sql statement that selects col_1 from "
"table_1 where it is equal to 1"),
@ -298,12 +331,13 @@ def test_guided_regex(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(
regex=sample_regex,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(regex=sample_regex))
outputs = llm.generate(
prompts=[
f"Give an example IPv4 address with this regex: {sample_regex}"
@ -335,12 +369,13 @@ def test_guided_choice_completion(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(
choice=sample_guided_choice,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(choice=sample_guided_choice))
outputs = llm.generate(
prompts="The best language for type-safe systems programming is ",
sampling_params=sampling_params,

View File

@ -36,6 +36,8 @@ def create_logits_tensor(output_token_ids: list[list[int]],
def create_sampling_metadata(
all_greedy: bool,
temperature: Optional[torch.Tensor] = None,
top_k: Optional[torch.Tensor] = None,
top_p: Optional[torch.Tensor] = None,
generators: Optional[dict[int, Any]] = None,
) -> SamplingMetadata:
"""Create a v1 sampling metadata object with all_greedy set
@ -52,8 +54,8 @@ def create_sampling_metadata(
temperature=temperature,
all_greedy=all_greedy,
all_random=not all_greedy,
top_p=None,
top_k=None,
top_p=top_p,
top_k=top_k,
min_p=torch.empty(1, ),
generators=generators,
max_num_logprobs=0,
@ -462,3 +464,147 @@ def estimate_rejection_sampling_pdf(
density=True)
return hist.hist
def _test_masked_logits(
rejection_sampler,
batch_size: int,
num_draft_tokens: int,
vocab_size: int,
target_logits: torch.Tensor,
unmasked_indices: torch.Tensor,
sampling_metadata: SamplingMetadata,
):
# Set up test parameters
num_tokens = batch_size * num_draft_tokens
# Create random draft probabilities.
draft_probs = torch.rand((num_tokens, vocab_size),
dtype=torch.float32,
device=DEVICE)
draft_probs = F.softmax(draft_probs, dim=-1)
# Randomly sample draft token ids from draft probs
draft_token_ids = torch.multinomial(draft_probs, num_samples=1)
draft_token_ids = draft_token_ids.reshape(batch_size, num_draft_tokens)
draft_token_ids = draft_token_ids.tolist()
# Bonus tokens not used but required
bonus_token_ids = torch.zeros((batch_size, 1),
dtype=torch.int64,
device=DEVICE)
# Create spec decode metadata
spec_decode_metadata = SpecDecodeMetadata.make_dummy(
draft_token_ids,
device=DEVICE,
)
# Run rejection sampling
output_token_ids = rejection_sampler(
spec_decode_metadata,
draft_probs=draft_probs,
target_logits=target_logits,
bonus_token_ids=bonus_token_ids,
sampling_metadata=sampling_metadata,
)
# Remove bonus tokens and reshape
output_token_ids = output_token_ids[:, :-1].flatten().tolist()
# Check that all sampled tokens are within the unmasked indices.
for i in range(num_tokens):
token_id = output_token_ids[i]
if token_id == PLACEHOLDER_TOKEN_ID:
continue
assert token_id in unmasked_indices[i]
@pytest.mark.parametrize("top_k", [1, 5, 99])
def test_top_k(rejection_sampler, top_k):
"""Test rejection sampling with top-k sampling"""
vocab_size = 100
batch_size = 100
num_draft_tokens = 3
num_tokens = batch_size * num_draft_tokens
# Randomly create top-k indices.
top_k_indices = [
torch.randperm(vocab_size, device=DEVICE)[:top_k]
for _ in range(num_tokens)
]
top_k_indices = torch.stack(top_k_indices)
# Create logits with the uniform distribution.
target_logits = torch.zeros((num_tokens, vocab_size), device=DEVICE)
# Increment the logits for top-k indices, a little bit more than the other
# ones. If the masking is effective, the non-topk indices will never be
# sampled despite the small difference in logits.
for i in range(num_tokens):
target_logits[i, top_k_indices[i]] += 0.1
# Create sampling metadata
temperature = torch.ones(batch_size, dtype=torch.float32, device=DEVICE)
sampling_metadata = create_sampling_metadata(
all_greedy=False,
temperature=temperature,
top_k=torch.tensor([top_k] * batch_size,
device=DEVICE,
dtype=torch.int64),
)
_test_masked_logits(
rejection_sampler,
batch_size=batch_size,
num_draft_tokens=num_draft_tokens,
vocab_size=vocab_size,
target_logits=target_logits,
unmasked_indices=top_k_indices,
sampling_metadata=sampling_metadata,
)
@pytest.mark.parametrize("top_p", [0.5, 0.9, 0.99])
def test_top_p(rejection_sampler, top_p):
"""Test rejection sampling with top-p sampling"""
vocab_size = 100
batch_size = 100
num_draft_tokens = 3
num_tokens = batch_size * num_draft_tokens
# Create logits with the uniform distribution.
target_logits = torch.randn((num_tokens, vocab_size), device=DEVICE)
temperature = torch.ones(batch_size, dtype=torch.float32, device=DEVICE)
rescaled_logits = target_logits / temperature
logits_sort, logits_idx = rescaled_logits.sort(dim=-1, descending=False)
probs_sort = logits_sort.softmax(dim=-1)
probs_sum = probs_sort.cumsum(dim=-1)
top_p_mask = probs_sum <= 1 - top_p
# at least one
top_p_mask[:, -1] = False
# Get the top-p indices.
top_p_indices = []
for i in range(num_tokens):
top_p_indices.append(logits_idx[i][~top_p_mask[i]].tolist())
# Create sampling metadata
sampling_metadata = create_sampling_metadata(
all_greedy=False,
temperature=temperature,
top_p=torch.tensor([top_p] * batch_size,
device=DEVICE,
dtype=torch.float32),
)
_test_masked_logits(
rejection_sampler,
batch_size=batch_size,
num_draft_tokens=num_draft_tokens,
vocab_size=vocab_size,
target_logits=target_logits,
unmasked_indices=top_p_indices,
sampling_metadata=sampling_metadata,
)

View File

@ -2,7 +2,8 @@
import numpy as np
from vllm.v1.spec_decode.ngram_proposer import (_find_subarray_kmp,
from vllm.v1.spec_decode.ngram_proposer import (NgramProposer,
_find_subarray_kmp,
_kmp_lps_array)
@ -35,3 +36,53 @@ def test_find_subarray_kmp():
# Return on the first match
np.testing.assert_array_equal(_find_subarray_kmp(X, 1, 3),
np.array([6, 2, 3]))
def test_ngram_proposer():
proposer = NgramProposer()
# No match.
result = proposer.propose(
context_token_ids=np.array([1, 2, 3, 4, 5]),
min_n=2,
max_n=2,
k=2,
)
assert result is None
# No match for 4-gram.
result = proposer.propose(
context_token_ids=np.array([1, 2, 3, 4, 1, 2, 3]),
min_n=4,
max_n=4,
k=2,
)
assert result is None
# No match for 4-gram but match for 3-gram.
result = proposer.propose(
context_token_ids=np.array([1, 2, 3, 4, 1, 2, 3]),
min_n=3,
max_n=4,
k=2,
)
assert np.array_equal(result, np.array([4, 1]))
# Match for both 4-gram and 3-gram.
# In this case, the proposer should return the 4-gram match.
result = proposer.propose(
context_token_ids=np.array([2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 4]),
min_n=3,
max_n=4,
k=2,
)
assert np.array_equal(result, np.array([1, 2])) # Not [5, 1]
# Match for 2-gram and 3-gram, but not 4-gram.
result = proposer.propose(
context_token_ids=np.array([3, 4, 5, 2, 3, 4, 1, 2, 3, 4]),
min_n=2,
max_n=4,
k=2,
)
assert np.array_equal(result, np.array([1, 2])) # Not [5, 2]

View File

View File

@ -0,0 +1,307 @@
# SPDX-License-Identifier: Apache-2.0
import unittest.mock as mock
import pytest
from vllm.config import CacheConfig, ModelConfig, SchedulerConfig, VllmConfig
from vllm.sampling_params import SamplingParams
from vllm.v1.core.sched.output import (CachedRequestData, NewRequestData,
SchedulerOutput)
from vllm.v1.sample.metadata import SamplingMetadata
from vllm.v1.worker.tpu_model_runner import TPUModelRunner
# Mock torch_xla module since it may not be available in the test environments
torch_xla_patcher = mock.patch.dict(
"sys.modules", {
"torch_xla": mock.MagicMock(),
"torch_xla.core.xla_model": mock.MagicMock(),
"torch_xla.runtime": mock.MagicMock(),
})
torch_xla_patcher.start()
# Mock the PallasAttentionBackend
pallas_attention_backend_patcher = mock.patch(
"vllm.v1.worker.tpu_model_runner.PallasAttentionBackend", )
pallas_attention_backend_patcher.start()
@pytest.fixture
def model_runner():
# Patchers have already been started at module level.
scheduler_config = SchedulerConfig(
max_num_seqs=10,
max_num_batched_tokens=512,
max_model_len=512,
)
model_config = ModelConfig(
model="facebook/opt-125m",
task="generate",
tokenizer="facebook/opt-125m",
tokenizer_mode="auto",
trust_remote_code=True,
dtype="bfloat16", # TPUs typically use bfloat16
seed=42,
)
cache_config = CacheConfig(
block_size=16,
gpu_memory_utilization=0.9,
swap_space=0,
cache_dtype="auto",
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
)
device = "xla:0" # Mocking TPU device
with mock.patch("vllm.v1.worker.tpu_model_runner.torch"), \
mock.patch("vllm.v1.worker.tpu_model_runner.xm"), \
mock.patch("vllm.v1.worker.tpu_model_runner.xr"):
return TPUModelRunner(vllm_config, device)
@pytest.fixture(autouse=True, scope="session")
def cleanup_patches():
yield
torch_xla_patcher.stop()
pallas_attention_backend_patcher.stop()
def _schedule_new_request(*req_ids: str) -> SchedulerOutput:
new_reqs = []
num_scheduled_tokens = {}
total_num_scheduled_tokens = 0
for req_id in req_ids:
new_reqs.append(
NewRequestData(
req_id=req_id,
prompt_token_ids=[1, 2, 3],
prompt="test",
mm_inputs=[],
mm_hashes=[],
mm_positions=[],
sampling_params=SamplingParams(),
block_ids=[0],
num_computed_tokens=0,
lora_request=None,
))
num_scheduled_tokens[req_id] = 3
total_num_scheduled_tokens += num_scheduled_tokens[req_id]
return SchedulerOutput(
scheduled_new_reqs=new_reqs,
scheduled_cached_reqs=[],
num_scheduled_tokens=num_scheduled_tokens,
total_num_scheduled_tokens=total_num_scheduled_tokens,
scheduled_spec_decode_tokens={},
scheduled_encoder_inputs={},
num_common_prefix_blocks=0,
finished_req_ids=set(),
free_encoder_input_ids=[],
structured_output_request_ids={},
grammar_bitmask=None,
)
def _is_req_scheduled(model_runner, req_id: str) -> bool:
return req_id in model_runner.input_batch.req_id_to_index
def _is_req_added(model_runner, req_id: str) -> bool:
return req_id in model_runner.requests
def _is_sampling_metadata_changed(model_runner,
sampling_metadata_before: SamplingMetadata):
return model_runner.input_batch.sampling_metadata is not (
sampling_metadata_before)
def _is_req_state_block_table_match(model_runner, req_id: str) -> bool:
req_index = model_runner.input_batch.req_id_to_index[req_id]
block_table = model_runner.input_batch.block_table
req_state = model_runner.requests[req_id]
if block_table.num_blocks_per_row[req_index] != len(req_state.block_ids):
return False
num_blocks = block_table.num_blocks_per_row[req_index]
return (block_table.block_table_np[req_index, :num_blocks] ==
req_state.block_ids).all()
def test_update_states_new_request(model_runner):
req_id = "req_0"
# new req
scheduler_output = _schedule_new_request(req_id)
metadata_before = model_runner.input_batch.sampling_metadata
model_runner._update_states(scheduler_output)
assert _is_sampling_metadata_changed(model_runner, metadata_before)
assert _is_req_added(model_runner, req_id)
assert _is_req_scheduled(model_runner, req_id)
assert _is_req_state_block_table_match(model_runner, req_id)
def test_update_states_request_finished(model_runner):
req_id = "req_0"
# new req
scheduler_output = _schedule_new_request(req_id)
model_runner._update_states(scheduler_output)
assert _is_req_added(model_runner, req_id)
assert _is_req_scheduled(model_runner, req_id)
# finish req
scheduler_output = SchedulerOutput(
scheduled_new_reqs=[],
scheduled_cached_reqs=[],
num_scheduled_tokens={},
total_num_scheduled_tokens=0,
scheduled_spec_decode_tokens={},
scheduled_encoder_inputs={},
num_common_prefix_blocks=0,
finished_req_ids={req_id},
free_encoder_input_ids=[],
structured_output_request_ids={},
grammar_bitmask=None,
)
metadata_before = model_runner.input_batch.sampling_metadata
model_runner._update_states(scheduler_output)
assert _is_sampling_metadata_changed(model_runner, metadata_before)
assert not _is_req_added(model_runner, req_id)
assert not _is_req_scheduled(model_runner, req_id)
def test_update_states_request_resumed(model_runner):
req_id = "req_0"
# new req
scheduler_output = _schedule_new_request(req_id)
model_runner._update_states(scheduler_output)
assert _is_req_added(model_runner, req_id)
assert _is_req_scheduled(model_runner, req_id)
# unschedule req
scheduler_output = SchedulerOutput(
scheduled_new_reqs=[],
scheduled_cached_reqs=[],
num_scheduled_tokens={},
total_num_scheduled_tokens=0,
scheduled_spec_decode_tokens={},
scheduled_encoder_inputs={},
num_common_prefix_blocks=0,
finished_req_ids=set(),
free_encoder_input_ids=[],
structured_output_request_ids={},
grammar_bitmask=None,
)
model_runner._update_states(scheduler_output)
assert _is_req_added(model_runner, req_id)
assert not _is_req_scheduled(model_runner, req_id)
# resume req
cached_req_data = CachedRequestData(
req_id=req_id,
resumed_from_preemption=False,
new_token_ids=[],
new_block_ids=[],
num_computed_tokens=0,
)
scheduler_output = SchedulerOutput(
scheduled_new_reqs=[],
scheduled_cached_reqs=[cached_req_data],
num_scheduled_tokens={req_id: 1},
total_num_scheduled_tokens=1,
scheduled_spec_decode_tokens={},
scheduled_encoder_inputs={},
num_common_prefix_blocks=0,
finished_req_ids=set(),
free_encoder_input_ids=[],
structured_output_request_ids={},
grammar_bitmask=None,
)
metadata_before = model_runner.input_batch.sampling_metadata
model_runner._update_states(scheduler_output)
assert _is_sampling_metadata_changed(model_runner, metadata_before)
assert _is_req_added(model_runner, req_id)
assert _is_req_scheduled(model_runner, req_id)
assert _is_req_state_block_table_match(model_runner, req_id)
def test_update_states_no_changes(model_runner):
req_id = "req_0"
# new req
scheduler_output = _schedule_new_request(req_id)
model_runner._update_states(scheduler_output)
assert _is_req_added(model_runner, req_id)
assert _is_req_scheduled(model_runner, req_id)
# schedule req
scheduler_output = SchedulerOutput(
scheduled_new_reqs=[],
scheduled_cached_reqs=[],
num_scheduled_tokens={req_id: 1},
total_num_scheduled_tokens=1,
scheduled_spec_decode_tokens={},
scheduled_encoder_inputs={},
num_common_prefix_blocks=0,
finished_req_ids=set(),
free_encoder_input_ids=[],
structured_output_request_ids={},
grammar_bitmask=None,
)
metadata_before = model_runner.input_batch.sampling_metadata
model_runner._update_states(scheduler_output)
assert not _is_sampling_metadata_changed(model_runner, metadata_before)
assert _is_req_added(model_runner, req_id)
assert _is_req_scheduled(model_runner, req_id)
assert _is_req_state_block_table_match(model_runner, req_id)
def test_update_states_request_unscheduled(model_runner):
req_ids = ("req_0", "req_1")
# new reqs
scheduler_output = _schedule_new_request(*req_ids)
model_runner._update_states(scheduler_output)
assert _is_req_added(model_runner, req_ids[0])
assert _is_req_scheduled(model_runner, req_ids[0])
assert _is_req_added(model_runner, req_ids[1])
assert _is_req_scheduled(model_runner, req_ids[1])
# unschedule req_1
scheduler_output = SchedulerOutput(
scheduled_new_reqs=[],
scheduled_cached_reqs=[],
num_scheduled_tokens={req_ids[0]: 1},
total_num_scheduled_tokens=1,
scheduled_spec_decode_tokens={},
scheduled_encoder_inputs={},
num_common_prefix_blocks=0,
finished_req_ids=set(),
free_encoder_input_ids=[],
structured_output_request_ids={},
grammar_bitmask=None,
)
metadata_before = model_runner._update_states(scheduler_output)
assert _is_sampling_metadata_changed(model_runner, metadata_before)
assert _is_req_added(model_runner, req_ids[0])
assert _is_req_scheduled(model_runner, req_ids[0])
assert _is_req_added(model_runner, req_ids[1])
assert not _is_req_scheduled(model_runner, req_ids[1])

View File

@ -124,6 +124,18 @@ def paged_attention_rocm(
kv_cache_dtype, k_scale, v_scale)
def mla_decode_kvcache_cpu(
out: torch.Tensor,
query: torch.Tensor,
kv_cache: torch.Tensor,
scale: float,
block_tables: torch.Tensor,
seq_lens: torch.Tensor,
) -> None:
torch.ops._C_cpu.mla_decode_kvcache(out, query, kv_cache, scale,
block_tables, seq_lens)
# pos encoding ops
def rotary_embedding(
positions: torch.Tensor,
@ -190,6 +202,33 @@ def advance_step_flashinfer(num_seqs: int, num_queries: int, block_size: int,
block_table_bound)
def block_table_appends(
append_row_indices: torch.Tensor,
append_row_indices_cpu: torch.Tensor,
append_cumsums: torch.Tensor,
append_cumsums_cpu: torch.Tensor,
append_block_ids: torch.Tensor,
append_block_ids_cpu: torch.Tensor,
block_table: torch.Tensor,
num_appends: int,
total_num_append_blocks: int,
) -> None:
torch.ops._C.block_table_appends.default(
append_row_indices, append_row_indices_cpu, append_cumsums,
append_cumsums_cpu, append_block_ids, append_block_ids_cpu,
block_table, num_appends, total_num_append_blocks)
def block_table_moves(
src_dst_n: torch.Tensor,
src_dst_n_cpu: torch.Tensor,
block_table: torch.Tensor,
num_moves: int,
) -> None:
torch.ops._C.block_table_moves.default(src_dst_n, src_dst_n_cpu,
block_table, num_moves)
# fused quant layer norm ops
def rms_norm_dynamic_per_token_quant(
input: torch.Tensor,

View File

@ -187,15 +187,28 @@ class ipex_ops:
gen_: torch.Generator,
logits_soft_cap: float,
) -> None:
ipex.llm.functional.varlen_attention(query.contiguous(),
key.contiguous(),
value.contiguous(), out,
seqlen_q.int(), seqlen_k.int(),
max_seqlen_q, max_seqlen_k,
pdropout, softmax_scale,
zero_tensors, is_causal,
return_softmax, gen_,
logits_soft_cap)
if ipex.__version__.endswith("cpu"):
if logits_soft_cap != 0.0:
raise ValueError("IPEX CPU does not support logits_soft_cap")
ipex.llm.functional.varlen_attention(query.contiguous(),
key.contiguous(),
value.contiguous(), out,
seqlen_q.int(),
seqlen_k.int(), max_seqlen_q,
max_seqlen_k, pdropout,
softmax_scale, zero_tensors,
is_causal, return_softmax,
gen_)
else: # XPU build
ipex.llm.functional.varlen_attention(query.contiguous(),
key.contiguous(),
value.contiguous(), out,
seqlen_q.int(),
seqlen_k.int(), max_seqlen_q,
max_seqlen_k, pdropout,
softmax_scale, zero_tensors,
is_causal, return_softmax,
gen_, logits_soft_cap)
@staticmethod
def reshape_and_cache(

View File

@ -0,0 +1,303 @@
# SPDX-License-Identifier: Apache-2.0
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import vllm._custom_ops as ops
from vllm._ipex_ops import ipex_ops
from vllm.attention.backends.abstract import (AttentionBackend,
AttentionMetadataBuilder,
AttentionType,
is_quantized_kv_cache)
from vllm.attention.backends.mla.common import MLACommonImpl, MLACommonState
from vllm.attention.backends.torch_sdpa import TorchSDPAMetadata
from vllm.utils import make_tensor_with_pad
from vllm.worker.cpu_model_runner import ModelInputForCPUBuilder
class CPUMLABackend(AttentionBackend):
@staticmethod
def get_name() -> str:
return "CPU_MLA"
@staticmethod
def get_metadata_cls() -> Type["CPUMLAMetadata"]:
return CPUMLAMetadata
@staticmethod
def get_builder_cls() -> Type["CPUMLAMetadataBuilder"]:
return CPUMLAMetadataBuilder
@staticmethod
def get_state_cls() -> Type["MLACommonState"]:
return MLACommonState
@staticmethod
def get_impl_cls() -> Type["CPUMLAImpl"]:
return CPUMLAImpl
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int, # assumed to be 1 for MLA
head_size: int,
) -> Tuple[int, ...]:
return (num_blocks, block_size, head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
ops.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: torch.Tensor,
) -> None:
ops.copy_blocks_mla(kv_caches, src_to_dists)
@staticmethod
def get_supported_head_sizes() -> List[int]:
return [576]
@dataclass
class CPUMLAMetadata(TorchSDPAMetadata):
# New for MLA
# Input positions for rotrary embeddings since for MLA the rotary
# position embeddings are applied inside the attention backend
input_positions: torch.Tensor = None
# required by MLACommonImpl
is_profile_run: bool = False
class CPUMLAMetadataBuilder(AttentionMetadataBuilder[CPUMLAMetadata]):
def __init__(self, input_builder: ModelInputForCPUBuilder) -> None:
self.chunked_prefill = input_builder.chunked_prefill
self.input_builder = input_builder
assert not self.chunked_prefill, \
"chunked prefill is currently not supported"
def prepare(self):
self.input_data = self.input_builder.input_data
def build(self, seq_lens, query_lens, cuda_graph_pad_size, batch_size):
input_data = self.input_data
prefill_seq_lens = seq_lens[0:input_data.num_prefills]
prefill_query_lens = query_lens[0:input_data.num_prefills]
slot_mapping = torch.tensor(input_data.slot_mapping,
dtype=torch.long,
device="cpu")
# metadata for prefill
if input_data.num_prefills > 0:
query_lens_tensor = torch.tensor(prefill_query_lens,
dtype=torch.int32,
device="cpu")
kv_lens_tensor = torch.tensor(prefill_seq_lens,
dtype=torch.int32,
device="cpu")
query_start_loc = torch.zeros(input_data.num_prefills + 1,
dtype=torch.int32,
device="cpu")
kv_start_loc = torch.zeros(input_data.num_prefills + 1,
dtype=torch.int32,
device="cpu")
torch.cumsum(query_lens_tensor,
dim=0,
dtype=torch.int32,
out=query_start_loc[1:])
torch.cumsum(kv_lens_tensor,
dim=0,
dtype=torch.int32,
out=kv_start_loc[1:])
max_query_len = max(prefill_query_lens)
max_kv_len = max(prefill_seq_lens)
# for chunked-prefill
if self.chunked_prefill:
prefill_block_tables = make_tensor_with_pad(
self.input_data.prefill_block_tables,
pad=0,
dtype=torch.int32,
device="cpu",
)
else:
prefill_block_tables = None
else:
query_start_loc = None
kv_start_loc = None
max_query_len = None
max_kv_len = None
prefill_block_tables = None
# metadata for decode
if input_data.num_decode_tokens != 0:
seq_lens_tensor = torch.tensor(
input_data.seq_lens[input_data.num_prefills:],
dtype=torch.int32,
device="cpu",
)
block_tables = make_tensor_with_pad(
self.input_data.decode_block_tables,
pad=0,
dtype=torch.int32,
device="cpu",
)
else:
block_tables = torch.tensor([])
seq_lens_tensor = torch.tensor(
input_data.seq_lens[:input_data.num_prefills],
dtype=torch.int32,
device="cpu",
)
# For multi-modal models
placeholder_index_maps = None
if len(input_data.multi_modal_inputs_list) != 0:
placeholder_index_maps = {
modality: placeholder_map.index_map()
for modality, placeholder_map in
input_data.multi_modal_placeholder_maps.items()
}
return CPUMLAMetadata(
chunked_prefill=self.chunked_prefill,
seq_lens=prefill_seq_lens,
seq_lens_tensor=seq_lens_tensor,
max_query_len=max_query_len,
max_kv_len=max_kv_len,
query_start_loc=query_start_loc,
kv_start_loc=kv_start_loc,
max_decode_seq_len=input_data.max_decode_seq_len,
num_prefills=input_data.num_prefills,
num_prefill_tokens=input_data.num_prefill_tokens,
num_decode_tokens=input_data.num_decode_tokens,
block_tables=block_tables,
prefill_block_tables=prefill_block_tables,
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=placeholder_index_maps,
enable_kv_scales_calculation=False,
input_positions=torch.tensor([self.input_data.input_positions]))
class CPUMLAImpl(MLACommonImpl[CPUMLAMetadata]):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
# MLA Specific Arguments
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap, attn_type,
**mla_args)
unsupported_features = [
alibi_slopes, sliding_window, blocksparse_params, logits_soft_cap
]
if any(unsupported_features):
raise NotImplementedError(
"CPUMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, blocksparse_params, "
"logits_soft_cap")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"CPUMLAImpl")
# states is implemented.
if is_quantized_kv_cache(self.kv_cache_dtype):
raise NotImplementedError(
"CPUMLAImpl with FP8 KV cache not yet supported")
def _forward_prefill(
self,
q: torch.Tensor,
kv_c_normed: torch.Tensor,
k_pe: torch.Tensor,
kv_c_and_k_pe_cache: torch.Tensor,
attn_metadata: CPUMLAMetadata, # type: ignore[override]
) -> torch.Tensor:
prefill_metadata = attn_metadata.prefill_metadata
assert prefill_metadata is not None
kv_nope = self.kv_b_proj(kv_c_normed)[0].view(\
-1, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = kv_nope\
.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k = torch.cat((k_nope, k_pe.expand((*k_nope.shape[:-1], -1))), dim=-1)
# For MLA the v head dim is smaller than qk head dim so we pad out
# v with 0s to match the qk head dim
v_padded = torch.nn.functional.pad(v, [0, q.shape[-1] - v.shape[-1]],
value=0)
output = torch.empty_like(q)
ipex_ops.varlen_attention(
query=q,
key=k,
value=v_padded,
out=output,
seqlen_q=prefill_metadata.query_start_loc,
seqlen_k=prefill_metadata.query_start_loc,
max_seqlen_q=prefill_metadata.max_query_len,
max_seqlen_k=prefill_metadata.max_query_len,
pdropout=0.0,
softmax_scale=self.scale,
zero_tensors=False,
is_causal=True,
return_softmax=False,
gen_=None,
logits_soft_cap=0.0,
)
# remove padding
output = output.view(-1, self.num_heads,
q.shape[-1])[..., :v.shape[-1]]
output = output.reshape(-1, self.num_heads * v.shape[-1])
return self.o_proj(output)[0]
def _forward_decode(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
kv_c_and_k_pe_cache: torch.Tensor,
attn_metadata: CPUMLAMetadata, # type: ignore[override]
) -> torch.Tensor:
assert kv_c_and_k_pe_cache.numel() > 0
decode_meta = attn_metadata.decode_metadata
assert decode_meta is not None
q = torch.cat([q_nope, q_pe], dim=-1)
o = q.new_empty(q.shape[0], self.num_heads, self.kv_lora_rank)
# Run MQA
ops.mla_decode_kvcache_cpu(o, q, kv_c_and_k_pe_cache, self.scale,
decode_meta.block_tables,
decode_meta.seq_lens_tensor)
return self._v_up_proj_and_o_proj(o)

View File

@ -22,12 +22,13 @@ from vllm.attention.backends.utils import (
compute_slot_mapping_start_idx, get_num_prefill_decode_query_kv_tokens,
get_seq_len_block_table_args, is_all_cross_attn_metadata_set,
is_all_encoder_attn_metadata_set, is_block_tables_empty)
from vllm.fa_utils import get_flash_attn_version
from vllm.logger import init_logger
from vllm.multimodal import MultiModalPlaceholderMap
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
flash_attn_with_kvcache)
from vllm.vllm_flash_attn.fa_utils import (flash_attn_supports_fp8,
get_flash_attn_version)
if TYPE_CHECKING:
from vllm.worker.model_runner import (ModelInputForGPUBuilder,
@ -632,10 +633,13 @@ class FlashAttentionImpl(AttentionImpl):
self.kv_cache_dtype = kv_cache_dtype
self.vllm_flash_attn_version = get_flash_attn_version(
requires_alibi=self.alibi_slopes is not None)
if (is_quantized_kv_cache(self.kv_cache_dtype)
and self.vllm_flash_attn_version != 3):
if is_quantized_kv_cache(self.kv_cache_dtype) and (
not self.kv_cache_dtype.startswith("fp8")
or not flash_attn_supports_fp8()):
raise NotImplementedError(
"Only FlashAttention3 supports FP8 KV cache")
f"FlashAttention does not support {self.kv_cache_dtype} "
"kv-cache on this device "
f"(FA supports fp8 = {flash_attn_supports_fp8()}).")
if logits_soft_cap is None:
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
logits_soft_cap = 0
@ -704,6 +708,10 @@ class FlashAttentionImpl(AttentionImpl):
logits_soft_cap: Optional[float] = self.logits_soft_cap
fp8_attention = kv_cache_dtype.startswith("fp8")
if fp8_attention and not flash_attn_supports_fp8():
raise NotImplementedError(
"FlashAttention does not support FP8 kv-cache on this device.")
if kv_cache.numel() > 0:
key_cache = kv_cache[0]
value_cache = kv_cache[1]

View File

@ -204,8 +204,6 @@ from vllm.attention.backends.abstract import (AttentionBackend, AttentionLayer,
from vllm.attention.backends.utils import (PAD_SLOT_ID, compute_slot_mapping,
compute_slot_mapping_start_idx,
is_block_tables_empty)
from vllm.attention.ops.triton_merge_attn_states import merge_attn_states
from vllm.fa_utils import get_flash_attn_version
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearBase, RowParallelLinear,
UnquantizedLinearMethod)
@ -213,17 +211,27 @@ from vllm.model_executor.layers.rotary_embedding import (
DeepseekScalingRotaryEmbedding, RotaryEmbedding)
from vllm.multimodal import MultiModalPlaceholderMap
from vllm.platforms import current_platform
from vllm.triton_utils import HAS_TRITON
from vllm.utils import async_tensor_h2d, cdiv, make_tensor_with_pad, round_down
from vllm.vllm_flash_attn.fa_utils import get_flash_attn_version
if HAS_TRITON:
from vllm.attention.ops.triton_flash_attention import triton_attention
from vllm.attention.ops.triton_merge_attn_states import merge_attn_states
else:
merge_attn_states = None
triton_attention = None
try:
from vllm.vllm_flash_attn import flash_attn_varlen_func
is_vllm_fa = True
except ImportError:
# For rocm use upstream flash attention
from flash_attn import flash_attn_varlen_func
is_vllm_fa = False
from vllm.attention.ops.triton_flash_attention import triton_attention
try:
# For rocm use upstream flash attention
from flash_attn import flash_attn_varlen_func
except ImportError:
flash_attn_varlen_func = None
if TYPE_CHECKING:
from vllm.worker.model_runner import (ModelInputForGPUBuilder,

View File

@ -357,6 +357,11 @@ class VllmBackend:
# graph.
factors = []
# 0. factors come from the env, for example, The values of
# VLLM_PP_LAYER_PARTITION will affects the computation graph.
env_hash = envs.compute_hash()
factors.append(env_hash)
# 1. factors come from the vllm_config (it mainly summarizes how the
# model is created)
config_hash = vllm_config.compute_hash()

View File

@ -1,26 +1,29 @@
# SPDX-License-Identifier: Apache-2.0
import hashlib
import importlib.metadata
import inspect
import json
import types
from abc import ABC, abstractmethod
from typing import Any, Callable, Optional, Union
from typing import Any, Callable, Dict, Optional, Union
import torch
from packaging.version import Version
from torch import fx
if Version(importlib.metadata.version('torch')) >= Version("2.6"):
from torch._inductor.custom_graph_pass import CustomGraphPass
else:
# CustomGraphPass is not present in 2.5 or lower, import our version
from .torch25_custom_graph_pass import ( # noqa: yapf
Torch25CustomGraphPass as CustomGraphPass)
class InductorPass(ABC):
"""
General custom inductor pass interface.
"""
@abstractmethod
def __call__(self, graph: torch.fx.Graph):
"""
Execute the pass on the given graph.
"""
raise NotImplementedError
class InductorPass(CustomGraphPass):
"""
A custom graph pass that uses a hash of its source as the UUID.
This is defined as a convenience and should work in most cases.
"""
def uuid(self) -> Any:
"""
@ -48,7 +51,16 @@ class InductorPass(ABC):
else:
src_str = inspect.getsource(src.__class__)
hasher.update(src_str.encode("utf-8"))
return hasher.digest()
return hasher.hexdigest()
@staticmethod
def hash_dict(dict_: Dict[Any, Any]):
"""
Utility method to hash a dictionary, can alternatively be used for uuid.
:return: A sha256 hash of the json rep of the dictionary.
"""
encoded = json.dumps(dict_, sort_keys=True).encode("utf-8")
return hashlib.sha256(encoded).hexdigest()
class CallableInductorPass(InductorPass):
@ -61,25 +73,10 @@ class CallableInductorPass(InductorPass):
callable: Callable[[fx.Graph], None],
uuid: Optional[Any] = None):
self.callable = callable
if uuid is None:
uuid = InductorPass.hash_source(callable)
self._uuid = uuid
self._uuid = self.hash_source(callable) if uuid is None else uuid
def __call__(self, graph: torch.fx.Graph):
self.callable(graph)
def uuid(self) -> Any:
return self._uuid
def __getstate__(self):
"""
Pickling occurs in the Inductor code cache if a pass is not given to
the pass manager but is instead directly added to config as a pass.
See PostGradPassManager for more.
TODO(torch==2.6), use the `uuid` method in CustomGraphPass instead.
"""
return self._uuid
def __setstate__(self, state):
raise ValueError("Cannot unpickle CallableInductorPass")

View File

@ -1,8 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
from typing import Any, Dict, List
from typing import List
import torch
from torch import fx as fx
from vllm.config import CompilationConfig
@ -10,29 +9,18 @@ from vllm.logger import init_logger
from .fix_functionalization import FixFunctionalizationPass
from .fusion import FusionPass
from .inductor_pass import InductorPass
from .inductor_pass import CustomGraphPass, InductorPass
from .noop_elimination import NoOpEliminationPass
logger = init_logger(__name__)
class PlaceHolder:
pass
if torch.__version__ < "2.6":
Parent = PlaceHolder # type: ignore
else:
Parent = torch._inductor.custom_graph_pass.CustomGraphPass # type: ignore
class PostGradPassManager(Parent):
class PostGradPassManager(CustomGraphPass):
"""
The pass manager for post-grad passes.
It handles configuration, adding custom passes, and running passes.
It also supports pickling, which is used by the Inductor code cache.
TODO(torch==2.6), use CustomGraphPass
(torch._inductor.custom_graph_pass.CustomGraphPass)
It supports uuid for the Inductor code cache. That includes torch<2.6
support using pickling (in .inductor_pass.CustomGraphPass).
The order of the post-grad post-passes is:
1. passes (constructor parameter)
@ -67,27 +55,13 @@ class PostGradPassManager(Parent):
self.passes.append(pass_)
def uuid(self):
return self.__getstate__()
def __getstate__(self) -> Dict[str, List[Any]]:
"""
Custom pickling for the pass manager, as some passes cannot be pickled.
Pickling occurs because the pass manager is set as the value of
`config["post_grad_custom_post_pass"]` in the Inductor config.
The config is pickled to act as a key in the Inductor code cache.
Any other passes in the config are pickled as well.
TODO(torch==2.6), use the `uuid` method in CustomGraphPass instead.
The PostGradPassManager is set as a custom pass in the Inductor and
affects compilation caching. Its uuid depends on the UUIDs of all
dependent passes and the pass config. See InductorPass for more info.
"""
state = {"pass_config": self.pass_config.uuid(), "passes": []}
for pass_ in self.passes:
state["passes"].append(pass_.uuid())
state["passes"].append(self.fix_functionalization.uuid())
return state
def __setstate__(self, state):
"""
Do not allow unpickling of the pass manager.
If this is needed in the future, it should properly pickle the passes.
"""
raise ValueError("Cannot unpickle PostGradPassManager")
return InductorPass.hash_dict(state)

View File

@ -0,0 +1,41 @@
# SPDX-License-Identifier: Apache-2.0
from abc import ABC, abstractmethod
from typing import Any, Optional
import torch
class Torch25CustomGraphPass(ABC): # noqa (redefinition)
"""
This class replaces CustomGraphPass from torch==2.6 when using torch<2.6.
It conforms to the 2.6 interface but also supports pickling, as that's what
the inductor code cache uses to determine the cache key before 2.6.
(in 2.6 and above, uuid() is used.)
Subclasses can just "pretend" that uuid is used.
"""
@abstractmethod
def __call__(self, graph: torch.fx.graph.Graph) -> None:
"""
Implementation of the custom pass.
"""
@abstractmethod
def uuid(self) -> Optional[Any]:
"""
Return an ID to uniquely identify your custom pass implementation.
Return None to skip inductor code caching entirely.
"""
def __getstate__(self):
"""
Pickling is used instead of uuid() in torch<2.6. Just return uuid()
to enable subclasses to only have to implement uuid.
"""
return self.uuid()
def __setstate__(self, state):
raise ValueError("Cannot unpickle CustomGraphPass because pickling"
" is used for cache key uuid. Use torch>=2.6 with"
" native uuid support for custom passes.")

Some files were not shown because too many files have changed in this diff Show More