Compare commits
15 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 31c1f3255e | |||
| 21d93c140d | |||
| f1c8520146 | |||
| 096827c284 | |||
| 6565d9e33e | |||
| f375ec8440 | |||
| 518369d78c | |||
| 30bad5c492 | |||
| 3fefe271ec | |||
| 6428f1d051 | |||
| 7e1b21daac | |||
| cb3f30c600 | |||
| f3e024bece | |||
| 31d2ab4aff | |||
| eb17212858 |
2
.github/workflows/publish.yml
vendored
2
.github/workflows/publish.yml
vendored
@ -49,7 +49,7 @@ jobs:
|
||||
matrix:
|
||||
os: ['ubuntu-20.04']
|
||||
python-version: ['3.8', '3.9', '3.10', '3.11']
|
||||
pytorch-version: ['2.1.0']
|
||||
pytorch-version: ['2.1.1']
|
||||
cuda-version: ['11.8', '12.1']
|
||||
|
||||
steps:
|
||||
|
||||
@ -75,7 +75,7 @@ ENTRYPOINT ["python3", "-m", "vllm.entrypoints.api_server"]
|
||||
FROM vllm-base AS vllm-openai
|
||||
# install additional dependencies for openai api server
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install accelerate fschat
|
||||
pip install accelerate
|
||||
|
||||
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
|
||||
COPY vllm vllm
|
||||
|
||||
@ -47,12 +47,12 @@ RUN mkdir libs \
|
||||
COPY ./ /app/vllm
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN pip install xformers==0.0.22.post7 --no-deps
|
||||
RUN pip install xformers==0.0.23 --no-deps
|
||||
|
||||
RUN cd /app \
|
||||
&& cd vllm \
|
||||
&& pip install -U -r requirements-rocm.txt \
|
||||
&& bash patch_xformers-0.0.22.post7.rocm.sh \
|
||||
&& bash patch_xformers-0.0.23.rocm.sh \
|
||||
&& python3 setup.py install \
|
||||
&& cd ..
|
||||
|
||||
|
||||
@ -72,10 +72,6 @@ Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/get
|
||||
```bash
|
||||
pip install vllm
|
||||
```
|
||||
**NOTE:** The Mixtral model additionally requires `megablocks` which can be installed with pip or [from source](https://github.com/stanford-futuredata/megablocks) on **Python 3.10**:
|
||||
```bash
|
||||
pip install megablocks
|
||||
```
|
||||
|
||||
## Getting Started
|
||||
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
Installation with ROCm
|
||||
======================
|
||||
|
||||
vLLM 0.2.x onwards supports model inferencing and serving on AMD GPUs with ROCm.
|
||||
vLLM 0.2.4 onwards supports model inferencing and serving on AMD GPUs with ROCm.
|
||||
At the moment AWQ quantization is not supported in ROCm, but SqueezeLLM quantization has been ported.
|
||||
Data types currently supported in ROCm are FP16 and BF16.
|
||||
|
||||
@ -29,7 +29,7 @@ Installation options:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ docker pull embeddedllminfo/vllm-rocm:vllm-v0.2.3
|
||||
$ docker pull embeddedllminfo/vllm-rocm:vllm-v0.2.4
|
||||
$ docker run -it \
|
||||
--network=host \
|
||||
--group-add=video \
|
||||
@ -70,12 +70,12 @@ You can build and install vLLM from source:
|
||||
- ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention.
|
||||
- You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`)
|
||||
|
||||
2. Setup `xformers==0.0.22.post7` without dependencies, and apply patches to adapt for ROCm flash attention
|
||||
2. Setup `xformers==0.0.23` without dependencies, and apply patches to adapt for ROCm flash attention
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip install xformers==0.0.22.post7 --no-deps
|
||||
$ bash patch_xformers-0.0.22.post7.rocm.sh
|
||||
$ pip install xformers==0.0.23 --no-deps
|
||||
$ bash patch_xformers.rocm.sh
|
||||
|
||||
3. Build vLLM.
|
||||
|
||||
@ -127,12 +127,12 @@ Alternatively, if you plan to install vLLM-ROCm on a local machine or start from
|
||||
- ROCm's Flash-attention-2 (v2.0.4) does not support sliding windows attention.
|
||||
- You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`)
|
||||
|
||||
2. Setup `xformers==0.0.22.post7` without dependencies, and apply patches to adapt for ROCm flash attention
|
||||
2. Setup `xformers==0.0.23` without dependencies, and apply patches to adapt for ROCm flash attention
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip install xformers==0.0.22.post7 --no-deps
|
||||
$ bash patch_xformers-0.0.22.post7.rocm.sh
|
||||
$ pip install xformers==0.0.23 --no-deps
|
||||
$ bash patch_xformers.rocm.sh
|
||||
|
||||
3. Build vLLM.
|
||||
|
||||
|
||||
@ -20,7 +20,7 @@ You can install vLLM using pip:
|
||||
.. code-block:: console
|
||||
|
||||
$ # (Optional) Create a new conda environment.
|
||||
$ conda create -n myenv python=3.8 -y
|
||||
$ conda create -n myenv python=3.9 -y
|
||||
$ conda activate myenv
|
||||
|
||||
$ # Install vLLM with CUDA 12.1.
|
||||
@ -34,8 +34,9 @@ You can install vLLM using pip:
|
||||
.. code-block:: console
|
||||
|
||||
$ # Install vLLM with CUDA 11.8.
|
||||
$ # Replace `cp310` with your Python version (e.g., `cp38`, `cp39`, `cp311`).
|
||||
$ pip install https://github.com/vllm-project/vllm/releases/download/v0.2.2/vllm-0.2.2+cu118-cp310-cp310-manylinux1_x86_64.whl
|
||||
$ export VLLM_VERSION=0.2.4
|
||||
$ export PYTHON_VERSION=39
|
||||
$ pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl
|
||||
|
||||
$ # Re-install PyTorch with CUDA 11.8.
|
||||
$ pip uninstall torch -y
|
||||
|
||||
@ -73,6 +73,9 @@ If your model uses one of the above model architectures, you can seamlessly run
|
||||
Otherwise, please refer to :ref:`Adding a New Model <adding_a_new_model>` for instructions on how to implement support for your model.
|
||||
Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-project/vllm/issues>`_ project.
|
||||
|
||||
.. note::
|
||||
Currently, the ROCm version of vLLM supports Mistral and Mixtral only for context lengths up to 4096.
|
||||
|
||||
.. tip::
|
||||
The easiest way to check if your model is supported is to run the program below:
|
||||
|
||||
@ -84,12 +87,17 @@ Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-pr
|
||||
output = llm.generate("Hello, my name is")
|
||||
print(output)
|
||||
|
||||
To use model from www.modelscope.cn
|
||||
If vLLM successfully generates text, it indicates that your model is supported.
|
||||
|
||||
.. tip::
|
||||
To use models from `ModelScope <www.modelscope.cn>`_ instead of HuggingFace Hub, set an environment variable:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
$ export VLLM_USE_MODELSCOPE=True
|
||||
|
||||
And use with :code:`trust_remote_code=True`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from vllm import LLM
|
||||
@ -97,5 +105,3 @@ Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-pr
|
||||
llm = LLM(model=..., revision=..., trust_remote_code=True) # Name or path of your model
|
||||
output = llm.generate("Hello, my name is")
|
||||
print(output)
|
||||
|
||||
If vLLM successfully generates text, it indicates that your model is supported.
|
||||
|
||||
@ -1,21 +1,32 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
XFORMERS_VERSION="0.0.23"
|
||||
|
||||
export XFORMERS_INSTALLED_VERSION=$(python -c 'import xformers; print(xformers.__version__)')
|
||||
|
||||
if [ "$XFORMERS_INSTALLED_VERSION" != "$XFORMERS_VERSION" ]; then
|
||||
echo "ERROR: xformers version must be ${XFORMERS_VERSION}. ${XFORMERS_INSTALLED_VERSION} is installed"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
export XFORMERS_FMHA_FLASH_PATH=$(python -c 'from xformers import ops as xops; print(xops.fmha.flash.__file__)')
|
||||
export XFORMERS_FMHA_COMMON_PATH=$(python -c 'from xformers import ops as xops; print(xops.fmha.common.__file__)')
|
||||
|
||||
echo $XFORMERS_FMHA_FLASH_PATH
|
||||
echo $XFORMERS_FMHA_COMMON_PATH
|
||||
echo "XFORMERS_FMHA_FLASH_PATH = ${XFORMERS_FMHA_FLASH_PATH}"
|
||||
echo "XFORMERS_FMHA_COMMON_PATH = ${XFORMERS_FMHA_COMMON_PATH}"
|
||||
|
||||
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-0.0.22.post7.rocm.patch"; then
|
||||
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-${XFORMERS_VERSION}.rocm.patch"; then
|
||||
echo "Applying patch to ${XFORMERS_FMHA_FLASH_PATH}"
|
||||
patch -p0 $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-0.0.22.post7.rocm.patch"
|
||||
patch -p0 $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-${XFORMERS_VERSION}.rocm.patch"
|
||||
echo "Successfully patch ${XFORMERS_FMHA_FLASH_PATH}"
|
||||
else
|
||||
echo "${XFORMERS_FMHA_FLASH_PATH} was patched before"
|
||||
fi
|
||||
|
||||
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-0.0.22.post7.rocm.patch"; then
|
||||
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-${XFORMERS_VERSION}.rocm.patch"; then
|
||||
echo "Applying patch to ${XFORMERS_FMHA_COMMON_PATH}"
|
||||
patch -p0 $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-0.0.22.post7.rocm.patch"
|
||||
patch -p0 $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-${XFORMERS_VERSION}.rocm.patch"
|
||||
echo "Successfully patch ${XFORMERS_FMHA_COMMON_PATH}"
|
||||
else
|
||||
echo "${XFORMERS_FMHA_COMMON_PATH} was patched before"
|
||||
@ -4,7 +4,7 @@ requires = [
|
||||
"ninja",
|
||||
"packaging",
|
||||
"setuptools >= 49.4.0",
|
||||
"torch >= 2.1.0",
|
||||
"torch >= 2.1.1",
|
||||
"wheel",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
@ -8,9 +8,7 @@ pyarrow # Required for Ray data.
|
||||
sentencepiece # Required for LLaMA tokenizer.
|
||||
numpy
|
||||
tokenizers>=0.15.0
|
||||
huggingface_hub<0.18,>=0.16.4
|
||||
einops # Required for phi-1_5
|
||||
transformers >= 4.34.0 # Required for Mistral.
|
||||
transformers >= 4.36.0 # Required for Mixtral.
|
||||
fastapi
|
||||
uvicorn[standard]
|
||||
pydantic == 1.10.13 # Required for OpenAI server.
|
||||
|
||||
@ -5,10 +5,9 @@ pandas # Required for Ray data.
|
||||
pyarrow # Required for Ray data.
|
||||
sentencepiece # Required for LLaMA tokenizer.
|
||||
numpy
|
||||
einops # Required for phi-1_5
|
||||
torch >= 2.1.0
|
||||
transformers >= 4.34.0 # Required for Mistral.
|
||||
xformers >= 0.0.22.post7 # Required for CUDA 12.1.
|
||||
torch >= 2.1.1
|
||||
transformers >= 4.36.0 # Required for Mixtral.
|
||||
xformers >= 0.0.23 # Required for CUDA 12.1.
|
||||
fastapi
|
||||
uvicorn[standard]
|
||||
pydantic == 1.10.13 # Required for OpenAI server.
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
--- /opt/conda/envs/py_3.10/lib/python3.10/site-packages/xformers/ops/fmha/flash.py 2023-11-29 03:17:03.930103539 +0000
|
||||
+++ flash.py 2023-11-28 16:14:25.206128903 +0000
|
||||
@@ -31,39 +31,39 @@
|
||||
--- flash_ori.py 2023-12-13 05:43:31.530752623 +0000
|
||||
+++ flash_patch.py 2023-12-13 06:00:45.962403104 +0000
|
||||
@@ -36,44 +36,44 @@
|
||||
|
||||
FLASH_VERSION = "0.0.0"
|
||||
try:
|
||||
@ -15,9 +15,12 @@
|
||||
- from flash_attn.flash_attn_interface import flash_attn_cuda as _C_flashattention
|
||||
-
|
||||
- FLASH_VERSION = flash_attn.__version__
|
||||
- flash_ver_parsed = tuple(int(s) for s in FLASH_VERSION.split(".")[:2])
|
||||
- if flash_ver_parsed < (2, 3):
|
||||
- raise ImportError("Requires 2.3 for sliding window support")
|
||||
- flash_ver_parsed = tuple(int(s) for s in FLASH_VERSION.split(".")[:3])
|
||||
- if (
|
||||
- flash_ver_parsed != (2, 3, 6)
|
||||
- and os.environ.get("XFORMERS_IGNORE_FLASH_VERSION_CHECK", "0") != "1"
|
||||
- ):
|
||||
- raise ImportError("Requires Flash attention 2.3.6 for varlen_fwd api")
|
||||
+ #try:
|
||||
+ # from ... import _C_flashattention # type: ignore[attr-defined]
|
||||
+ # from ..._cpp_lib import _build_metadata
|
||||
@ -29,35 +32,41 @@
|
||||
+ from flash_attn.flash_attn_interface import flash_attn_cuda as _C_flashattention
|
||||
+
|
||||
+ FLASH_VERSION = flash_attn.__version__
|
||||
+ # flash_ver_parsed = tuple(int(s) for s in FLASH_VERSION.split(".")[:2])
|
||||
+ # if flash_ver_parsed < (2, 3):
|
||||
+ # raise ImportError("Requires 2.3 for sliding window support")
|
||||
+ # flash_ver_parsed = tuple(int(s) for s in FLASH_VERSION.split(".")[:3])
|
||||
+ # if (
|
||||
+ # flash_ver_parsed != (2, 3, 6)
|
||||
+ # and os.environ.get("XFORMERS_IGNORE_FLASH_VERSION_CHECK", "0") != "1"
|
||||
+ # ):
|
||||
+ # raise ImportError("Requires Flash attention 2.3.6 for varlen_fwd api")
|
||||
|
||||
# create library so that flash-attn goes through the PyTorch Dispatcher
|
||||
- _flash_lib = torch.library.Library("xformers_flash", "DEF")
|
||||
+ #_flash_lib = torch.library.Library("xformers_flash", "DEF")
|
||||
|
||||
-
|
||||
- _flash_lib.define(
|
||||
- "flash_fwd(Tensor query, Tensor key, Tensor value, "
|
||||
- "Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, "
|
||||
- "Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, Tensor? seqused_k, "
|
||||
- "int max_seqlen_q, int max_seqlen_k, "
|
||||
- "float p, float softmax_scale, "
|
||||
- "bool is_causal, int window_size, bool return_softmax) -> (Tensor, Tensor, Tensor)"
|
||||
- "bool is_causal, int window_left, "
|
||||
- "int window_right, bool return_softmax) -> (Tensor, Tensor, Tensor)"
|
||||
- )
|
||||
-
|
||||
+ #_flash_lib = torch.library.Library("xformers_flash", "DEF")
|
||||
|
||||
- _flash_lib.define(
|
||||
- "flash_bwd(Tensor dout, Tensor query, Tensor key, Tensor value, "
|
||||
- "Tensor out, Tensor softmax_lse_, Tensor dq, Tensor dk, Tensor dv, "
|
||||
- "Tensor cu_seqlens_q, Tensor cu_seqlens_k, "
|
||||
- "int max_seqlen_q, int max_seqlen_k, "
|
||||
- "float p, float softmax_scale, bool is_causal, int window_size, Tensor rng_state) -> (Tensor, Tensor, Tensor)"
|
||||
- "float p, float softmax_scale, bool is_causal, "
|
||||
- "int window_left, int window_right, Tensor rng_state) -> (Tensor, Tensor, Tensor)"
|
||||
- )
|
||||
+ #_flash_lib.define(
|
||||
+ # "flash_fwd(Tensor query, Tensor key, Tensor value, "
|
||||
+ # "Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, "
|
||||
+ # "Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, Tensor? seqused_k, "
|
||||
+ # "int max_seqlen_q, int max_seqlen_k, "
|
||||
+ # "float p, float softmax_scale, "
|
||||
+ # "bool is_causal, int window_size, bool return_softmax) -> (Tensor, Tensor, Tensor)"
|
||||
+ # "bool is_causal, int window_left, "
|
||||
+ # "int window_right, bool return_softmax) -> (Tensor, Tensor, Tensor)"
|
||||
+ #)
|
||||
+
|
||||
+ #_flash_lib.define(
|
||||
@ -65,52 +74,61 @@
|
||||
+ # "Tensor out, Tensor softmax_lse_, Tensor dq, Tensor dk, Tensor dv, "
|
||||
+ # "Tensor cu_seqlens_q, Tensor cu_seqlens_k, "
|
||||
+ # "int max_seqlen_q, int max_seqlen_k, "
|
||||
+ # "float p, float softmax_scale, bool is_causal, int window_size, Tensor rng_state) -> (Tensor, Tensor, Tensor)"
|
||||
+ # "float p, float softmax_scale, bool is_causal, "
|
||||
+ # "int window_left, int window_right, Tensor rng_state) -> (Tensor, Tensor, Tensor)"
|
||||
+ #)
|
||||
|
||||
def _flash_fwd(
|
||||
query,
|
||||
@@ -98,8 +98,8 @@
|
||||
@@ -111,8 +111,8 @@
|
||||
p,
|
||||
softmax_scale,
|
||||
is_causal,
|
||||
- window_size - 1, # window_size_left
|
||||
- -1, # window_size_right
|
||||
+ # window_size - 1, # window_size_left
|
||||
+ # -1, # window_size_right
|
||||
- window_left, # window_size_left
|
||||
- window_right, # window_size_right
|
||||
+ # window_left, # window_size_left
|
||||
+ # window_right, # window_size_right
|
||||
return_softmax,
|
||||
None, # rng
|
||||
)
|
||||
@@ -127,8 +127,8 @@
|
||||
@@ -134,15 +134,15 @@
|
||||
out,
|
||||
cu_seq_lens_q,
|
||||
cu_seq_lens_k,
|
||||
- seqused_k,
|
||||
+ # seqused_k,
|
||||
max_seq_len_q,
|
||||
max_seq_len_k,
|
||||
p,
|
||||
softmax_scale,
|
||||
False,
|
||||
is_causal,
|
||||
- window_size - 1, # window_size_left
|
||||
- -1, # window_size_right
|
||||
+ # window_size - 1, # window_size_left
|
||||
+ # -1, # window_size_right
|
||||
- window_left,
|
||||
- window_right,
|
||||
+ # window_left,
|
||||
+ # window_right,
|
||||
return_softmax,
|
||||
None,
|
||||
)
|
||||
@@ -169,8 +169,8 @@
|
||||
@@ -184,8 +184,8 @@
|
||||
p,
|
||||
softmax_scale,
|
||||
is_causal,
|
||||
- window_size - 1, # window_size_left
|
||||
- -1, # window_size_right
|
||||
+ # window_size - 1, # window_size_left
|
||||
+ # -1, # window_size_right
|
||||
- window_left,
|
||||
- window_right,
|
||||
+ # window_left,
|
||||
+ # window_right,
|
||||
None,
|
||||
rng_state,
|
||||
)
|
||||
@@ -193,15 +193,15 @@
|
||||
@@ -208,15 +208,15 @@
|
||||
softmax_scale,
|
||||
False, # zero_tensors
|
||||
is_causal,
|
||||
- window_size - 1, # window_size_left
|
||||
- -1, # window_size_right
|
||||
+ # window_size - 1, # window_size_left
|
||||
+ # -1, # window_size_right
|
||||
- window_left,
|
||||
- window_right,
|
||||
+ # window_left,
|
||||
+ # window_right,
|
||||
None,
|
||||
rng_state,
|
||||
)
|
||||
@ -123,7 +141,7 @@
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
@@ -348,7 +348,7 @@
|
||||
@@ -400,7 +400,7 @@
|
||||
implementation.
|
||||
"""
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
import os
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import pytest
|
||||
@ -7,21 +8,32 @@ from transformers import AutoModelForCausalLM
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
_TEST_PROMPTS = [
|
||||
"vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs.",
|
||||
"Briefly describe the major milestones in the development of artificial intelligence from 1950 to 2020.",
|
||||
"Compare and contrast artificial intelligence with human intelligence in terms of processing information.",
|
||||
"Describe the basic components of a neural network and how it can be trained.",
|
||||
"Write a short story about a robot that dreams for the first time.",
|
||||
"Analyze the impact of the COVID-19 pandemic on global economic structures and future business models.",
|
||||
"Explain the cultural significance of the Mona Lisa painting, and how its perception might vary in Western versus Eastern societies.",
|
||||
"Translate the following English sentence into Japanese, French, and Swahili: 'The early bird catches the worm.'",
|
||||
]
|
||||
_TEST_PROMPTS = ["prompts/example.txt"]
|
||||
_LONG_PROMPTS = ["prompts/summary.txt"]
|
||||
|
||||
|
||||
def _read_prompts(filename: str) -> str:
|
||||
prompts = []
|
||||
with open(filename, "r") as f:
|
||||
prompt = f.readline()
|
||||
prompts.append(prompt)
|
||||
return prompts
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def example_prompts() -> List[str]:
|
||||
return _TEST_PROMPTS
|
||||
prompts = []
|
||||
for filename in _TEST_PROMPTS:
|
||||
prompts += _read_prompts(os.path.join("tests", filename))
|
||||
return prompts
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def example_long_prompts() -> List[str]:
|
||||
prompts = []
|
||||
for filename in _LONG_PROMPTS:
|
||||
prompts += _read_prompts(os.path.join("tests", filename))
|
||||
return prompts
|
||||
|
||||
|
||||
_STR_DTYPE_TO_TORCH_DTYPE = {
|
||||
|
||||
37
tests/models/test_mistral.py
Normal file
37
tests/models/test_mistral.py
Normal file
@ -0,0 +1,37 @@
|
||||
"""Compare the outputs of HF and vLLM for Mistral models using greedy sampling.
|
||||
|
||||
Run `pytest tests/models/test_mistral.py --forked`.
|
||||
"""
|
||||
import pytest
|
||||
|
||||
MODELS = [
|
||||
"mistralai/Mistral-7B-Instruct-v0.1",
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
||||
@pytest.mark.parametrize("max_tokens", [128])
|
||||
def test_models(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
example_long_prompts,
|
||||
model: str,
|
||||
dtype: str,
|
||||
max_tokens: int,
|
||||
) -> None:
|
||||
hf_model = hf_runner(model, dtype=dtype)
|
||||
hf_outputs = hf_model.generate_greedy(example_long_prompts, max_tokens)
|
||||
del hf_model
|
||||
|
||||
vllm_model = vllm_runner(model, dtype=dtype)
|
||||
vllm_outputs = vllm_model.generate_greedy(example_long_prompts, max_tokens)
|
||||
del vllm_model
|
||||
|
||||
for i in range(len(example_long_prompts)):
|
||||
hf_output_ids, hf_output_str = hf_outputs[i]
|
||||
vllm_output_ids, vllm_output_str = vllm_outputs[i]
|
||||
assert hf_output_str == vllm_output_str, (
|
||||
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
|
||||
assert hf_output_ids == vllm_output_ids, (
|
||||
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
|
||||
8
tests/prompts/example.txt
Normal file
8
tests/prompts/example.txt
Normal file
@ -0,0 +1,8 @@
|
||||
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs.
|
||||
Briefly describe the major milestones in the development of artificial intelligence from 1950 to 2020.
|
||||
Compare and contrast artificial intelligence with human intelligence in terms of processing information.
|
||||
Describe the basic components of a neural network and how it can be trained.
|
||||
Write a short story about a robot that dreams for the first time.
|
||||
Analyze the impact of the COVID-19 pandemic on global economic structures and future business models.
|
||||
Explain the cultural significance of the Mona Lisa painting, and how its perception might vary in Western versus Eastern societies.
|
||||
Translate the following English sentence into Japanese, French, and Swahili: 'The early bird catches the worm.'
|
||||
1
tests/prompts/summary.txt
Normal file
1
tests/prompts/summary.txt
Normal file
File diff suppressed because one or more lines are too long
@ -8,7 +8,7 @@ from vllm.entrypoints.llm import LLM
|
||||
from vllm.outputs import CompletionOutput, RequestOutput
|
||||
from vllm.sampling_params import SamplingParams
|
||||
|
||||
__version__ = "0.2.4"
|
||||
__version__ = "0.2.5"
|
||||
|
||||
__all__ = [
|
||||
"LLM",
|
||||
|
||||
@ -120,14 +120,16 @@ class ModelConfig:
|
||||
if load_format == "auto":
|
||||
load_format = "pt"
|
||||
|
||||
# FIXME(woosuk): This is a temporary hack. Support safetensor weights.
|
||||
# TODO: Remove this check once HF updates the pt weights of Mixtral.
|
||||
architectures = getattr(self.hf_config, "architectures", [])
|
||||
if "MixtralForCausalLM" in architectures and load_format != "pt":
|
||||
logger.info(
|
||||
"Currently, only 'pt' format is supported for Mixtral. "
|
||||
"Changing the format to 'pt'. This may re-download the "
|
||||
"weights if you have downloaded the safetensor weights.")
|
||||
load_format = "pt"
|
||||
if "MixtralForCausalLM" in architectures:
|
||||
if load_format == "pt":
|
||||
raise ValueError(
|
||||
"Currently, the 'pt' format is not supported for Mixtral. "
|
||||
"Please use the 'safetensors' format instead. ")
|
||||
elif load_format == "auto":
|
||||
# Do not fall back to pt weights.
|
||||
load_format = "safetensors"
|
||||
|
||||
self.load_format = load_format
|
||||
|
||||
|
||||
@ -138,7 +138,8 @@ class PagedAttention(nn.Module):
|
||||
input_metadata.attn_bias = attn_bias
|
||||
else:
|
||||
input_metadata.attn_bias = _make_alibi_bias(
|
||||
self.alibi_slopes, batch_size, seq_len, query.dtype)
|
||||
self.alibi_slopes, self.num_kv_heads, batch_size,
|
||||
seq_len, query.dtype)
|
||||
|
||||
# TODO(woosuk): Too many view operations. Let's try to reduce them
|
||||
# in the future for code readability.
|
||||
@ -180,31 +181,34 @@ class PagedAttention(nn.Module):
|
||||
|
||||
def _make_alibi_bias(
|
||||
alibi_slopes: torch.Tensor,
|
||||
num_kv_heads: int,
|
||||
batch_size: int,
|
||||
seq_len: int,
|
||||
dtype: torch.dtype,
|
||||
) -> LowerTriangularMaskWithTensorBias:
|
||||
bias = torch.arange(seq_len, dtype=dtype)
|
||||
bias = torch.arange(seq_len, dtype=dtype, device="cuda")
|
||||
# NOTE(zhuohan): HF uses
|
||||
# `bias = bias[None, :].repeat(prompt_len, 1)`
|
||||
# here. We find that both biases give the same results, but
|
||||
# the bias below more accurately follows the original ALiBi
|
||||
# paper.
|
||||
bias = bias[None, :] - bias[:, None]
|
||||
bias = bias.to(alibi_slopes.device)
|
||||
|
||||
# When using custom attention bias, xformers requires the bias to
|
||||
# be sliced from a tensor whose length is a multiple of 8.
|
||||
padded_len = (seq_len + 7) // 8 * 8
|
||||
num_heads = alibi_slopes.shape[0]
|
||||
bias = torch.empty(
|
||||
batch_size,
|
||||
alibi_slopes.shape[0],
|
||||
num_heads,
|
||||
seq_len,
|
||||
padded_len,
|
||||
device=alibi_slopes.device,
|
||||
dtype=dtype,
|
||||
)[:, :, :, :seq_len].copy_(bias)
|
||||
bias.mul_(alibi_slopes[:, None, None])
|
||||
if num_heads != num_kv_heads:
|
||||
bias = bias.unflatten(1, (num_kv_heads, num_heads // num_kv_heads))
|
||||
attn_bias = LowerTriangularMaskWithTensorBias(bias)
|
||||
return attn_bias
|
||||
|
||||
|
||||
@ -7,54 +7,9 @@ import torch.nn as nn
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm.config import ModelConfig
|
||||
from vllm.model_executor.models import *
|
||||
from vllm.model_executor.models import ModelRegistry
|
||||
from vllm.model_executor.weight_utils import (get_quant_config,
|
||||
initialize_dummy_weights)
|
||||
from vllm.utils import is_hip
|
||||
from vllm.logger import init_logger
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
# TODO(woosuk): Lazy-load the model classes.
|
||||
_MODEL_REGISTRY = {
|
||||
"AquilaModel": AquilaForCausalLM,
|
||||
"AquilaForCausalLM": AquilaForCausalLM, # AquilaChat2
|
||||
"BaiChuanForCausalLM": BaiChuanForCausalLM, # baichuan-7b
|
||||
"BaichuanForCausalLM": BaichuanForCausalLM, # baichuan-13b
|
||||
"BloomForCausalLM": BloomForCausalLM,
|
||||
"ChatGLMModel": ChatGLMForCausalLM,
|
||||
"ChatGLMForConditionalGeneration": ChatGLMForCausalLM,
|
||||
"FalconForCausalLM": FalconForCausalLM,
|
||||
"GPT2LMHeadModel": GPT2LMHeadModel,
|
||||
"GPTBigCodeForCausalLM": GPTBigCodeForCausalLM,
|
||||
"GPTJForCausalLM": GPTJForCausalLM,
|
||||
"GPTNeoXForCausalLM": GPTNeoXForCausalLM,
|
||||
"InternLMForCausalLM": InternLMForCausalLM,
|
||||
"LlamaForCausalLM": LlamaForCausalLM,
|
||||
"LLaMAForCausalLM": LlamaForCausalLM, # For decapoda-research/llama-*
|
||||
"MistralForCausalLM": MistralForCausalLM,
|
||||
"MixtralForCausalLM": MixtralForCausalLM,
|
||||
# transformers's mpt class has lower case
|
||||
"MptForCausalLM": MPTForCausalLM,
|
||||
"MPTForCausalLM": MPTForCausalLM,
|
||||
"OPTForCausalLM": OPTForCausalLM,
|
||||
"PhiForCausalLM": PhiForCausalLM,
|
||||
"QWenLMHeadModel": QWenLMHeadModel,
|
||||
"RWForCausalLM": FalconForCausalLM,
|
||||
"YiForCausalLM": YiForCausalLM,
|
||||
}
|
||||
|
||||
# Models to be disabled in ROCm
|
||||
_ROCM_UNSUPPORTED_MODELS = []
|
||||
if is_hip():
|
||||
for rocm_model in _ROCM_UNSUPPORTED_MODELS:
|
||||
del _MODEL_REGISTRY[rocm_model]
|
||||
|
||||
# Models partially supported in ROCm
|
||||
_ROCM_PARTIALLY_SUPPORTED_MODELS = {
|
||||
"MistralForCausalLM":
|
||||
"Sliding window attention is not supported in ROCm's flash attention",
|
||||
}
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
@ -69,19 +24,12 @@ def _set_default_torch_dtype(dtype: torch.dtype):
|
||||
def _get_model_architecture(config: PretrainedConfig) -> Type[nn.Module]:
|
||||
architectures = getattr(config, "architectures", [])
|
||||
for arch in architectures:
|
||||
if arch in _MODEL_REGISTRY:
|
||||
if is_hip() and arch in _ROCM_PARTIALLY_SUPPORTED_MODELS:
|
||||
logger.warning(
|
||||
f"{arch} is not fully supported in ROCm. Reason: "
|
||||
f"{_ROCM_PARTIALLY_SUPPORTED_MODELS[arch]}")
|
||||
return _MODEL_REGISTRY[arch]
|
||||
elif arch in _ROCM_UNSUPPORTED_MODELS:
|
||||
raise ValueError(
|
||||
f"Model architecture {arch} is not supported by ROCm for now. \n"
|
||||
f"Supported architectures {list(_MODEL_REGISTRY.keys())}")
|
||||
model_cls = ModelRegistry.load_model_cls(arch)
|
||||
if model_cls is not None:
|
||||
return model_cls
|
||||
raise ValueError(
|
||||
f"Model architectures {architectures} are not supported for now. "
|
||||
f"Supported architectures: {list(_MODEL_REGISTRY.keys())}")
|
||||
f"Supported architectures: {ModelRegistry.get_supported_archs()}")
|
||||
|
||||
|
||||
def get_model(model_config: ModelConfig) -> nn.Module:
|
||||
|
||||
@ -1,41 +1,82 @@
|
||||
from vllm.model_executor.models.aquila import AquilaForCausalLM
|
||||
from vllm.model_executor.models.baichuan import (BaiChuanForCausalLM,
|
||||
BaichuanForCausalLM)
|
||||
from vllm.model_executor.models.bloom import BloomForCausalLM
|
||||
from vllm.model_executor.models.falcon import FalconForCausalLM
|
||||
from vllm.model_executor.models.gpt2 import GPT2LMHeadModel
|
||||
from vllm.model_executor.models.gpt_bigcode import GPTBigCodeForCausalLM
|
||||
from vllm.model_executor.models.gpt_j import GPTJForCausalLM
|
||||
from vllm.model_executor.models.gpt_neox import GPTNeoXForCausalLM
|
||||
from vllm.model_executor.models.internlm import InternLMForCausalLM
|
||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||
from vllm.model_executor.models.mistral import MistralForCausalLM
|
||||
from vllm.model_executor.models.mixtral import MixtralForCausalLM
|
||||
from vllm.model_executor.models.mpt import MPTForCausalLM
|
||||
from vllm.model_executor.models.opt import OPTForCausalLM
|
||||
from vllm.model_executor.models.phi_1_5 import PhiForCausalLM
|
||||
from vllm.model_executor.models.qwen import QWenLMHeadModel
|
||||
from vllm.model_executor.models.chatglm import ChatGLMForCausalLM
|
||||
from vllm.model_executor.models.yi import YiForCausalLM
|
||||
import importlib
|
||||
from typing import List, Optional, Type
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import is_hip
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
# Architecture -> (module, class).
|
||||
_MODELS = {
|
||||
"AquilaModel": ("aquila", "AquilaForCausalLM"),
|
||||
"AquilaForCausalLM": ("aquila", "AquilaForCausalLM"), # AquilaChat2
|
||||
"BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b
|
||||
"BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b
|
||||
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
|
||||
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
|
||||
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
|
||||
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||
"GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"),
|
||||
"GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"),
|
||||
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),
|
||||
"GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"),
|
||||
"InternLMForCausalLM": ("internlm", "InternLMForCausalLM"),
|
||||
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
# For decapoda-research/llama-*
|
||||
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
"MistralForCausalLM": ("mistral", "MistralForCausalLM"),
|
||||
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
|
||||
# transformers's mpt class has lower case
|
||||
"MptForCausalLM": ("mpt", "MPTForCausalLM"),
|
||||
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
|
||||
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
|
||||
"PhiForCausalLM": ("phi_1_5", "PhiForCausalLM"),
|
||||
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
|
||||
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||
"YiForCausalLM": ("yi", "YiForCausalLM"),
|
||||
}
|
||||
|
||||
# Models not supported by ROCm.
|
||||
_ROCM_UNSUPPORTED_MODELS = []
|
||||
|
||||
# Models partially supported by ROCm.
|
||||
# Architecture -> Reason.
|
||||
_ROCM_PARTIALLY_SUPPORTED_MODELS = {
|
||||
"MistralForCausalLM":
|
||||
"Sliding window attention is not yet supported in ROCm's flash attention",
|
||||
"MixtralForCausalLM":
|
||||
"Sliding window attention is not yet supported in ROCm's flash attention",
|
||||
}
|
||||
|
||||
|
||||
class ModelRegistry:
|
||||
|
||||
@staticmethod
|
||||
def load_model_cls(model_arch: str) -> Optional[Type[nn.Module]]:
|
||||
if model_arch not in _MODELS:
|
||||
return None
|
||||
if is_hip():
|
||||
if model_arch in _ROCM_UNSUPPORTED_MODELS:
|
||||
raise ValueError(
|
||||
f"Model architecture {model_arch} is not supported by "
|
||||
"ROCm for now.")
|
||||
if model_arch in _ROCM_PARTIALLY_SUPPORTED_MODELS:
|
||||
logger.warning(
|
||||
f"Model architecture {model_arch} is partially supported "
|
||||
"by ROCm: " + _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch])
|
||||
|
||||
module_name, model_cls_name = _MODELS[model_arch]
|
||||
module = importlib.import_module(
|
||||
f"vllm.model_executor.models.{module_name}")
|
||||
return getattr(module, model_cls_name, None)
|
||||
|
||||
@staticmethod
|
||||
def get_supported_archs() -> List[str]:
|
||||
return list(_MODELS.keys())
|
||||
|
||||
|
||||
__all__ = [
|
||||
"AquilaForCausalLM",
|
||||
"BaiChuanForCausalLM",
|
||||
"BaichuanForCausalLM",
|
||||
"BloomForCausalLM",
|
||||
"ChatGLMForCausalLM",
|
||||
"FalconForCausalLM",
|
||||
"GPT2LMHeadModel",
|
||||
"GPTBigCodeForCausalLM",
|
||||
"GPTJForCausalLM",
|
||||
"GPTNeoXForCausalLM",
|
||||
"InternLMForCausalLM",
|
||||
"LlamaForCausalLM",
|
||||
"MPTForCausalLM",
|
||||
"OPTForCausalLM",
|
||||
"PhiForCausalLM",
|
||||
"QWenLMHeadModel",
|
||||
"MistralForCausalLM",
|
||||
"MixtralForCausalLM",
|
||||
"YiForCausalLM",
|
||||
"ModelRegistry",
|
||||
]
|
||||
|
||||
@ -29,25 +29,13 @@ import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch import nn
|
||||
from transformers import MistralConfig
|
||||
|
||||
try:
|
||||
import megablocks.ops as ops
|
||||
except ImportError:
|
||||
print(
|
||||
"MegaBlocks not found. Please install it by `pip install megablocks`. "
|
||||
"Note that MegaBlocks depends on mosaicml-turbo, which only supports "
|
||||
"Python 3.10 for now.")
|
||||
try:
|
||||
import stk
|
||||
except ImportError:
|
||||
print(
|
||||
"STK not found: please see https://github.com/stanford-futuredata/stk")
|
||||
from transformers import MixtralConfig
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
ReplicatedLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
@ -67,8 +55,134 @@ from vllm.sequence import SamplerOutput
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
def promote_scalar(x: torch.Tensor) -> torch.Tensor:
|
||||
return x.view(1) if len(x.size()) == 0 else x
|
||||
class MixtralMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_experts: int,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.num_experts = num_experts
|
||||
self.ffn_dim = intermediate_size
|
||||
self.hidden_dim = hidden_size
|
||||
|
||||
self.w1 = ReplicatedLinear(self.hidden_dim,
|
||||
self.ffn_dim,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.w2 = ReplicatedLinear(self.ffn_dim,
|
||||
self.hidden_dim,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.w3 = ReplicatedLinear(self.hidden_dim,
|
||||
self.ffn_dim,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
|
||||
# TODO: Use vllm's SiluAndMul
|
||||
self.act_fn = nn.SiLU()
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
w1_out, _ = self.w1(hidden_states)
|
||||
w1_out = self.act_fn(w1_out)
|
||||
w3_out, _ = self.w3(hidden_states)
|
||||
current_hidden_states = w1_out * w3_out
|
||||
current_hidden_states, _ = self.w2(current_hidden_states)
|
||||
return current_hidden_states
|
||||
|
||||
|
||||
class DummyModule(nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.w1 = nn.Linear(0, 0, bias=False)
|
||||
self.w2 = nn.Linear(0, 0, bias=False)
|
||||
self.w3 = nn.Linear(0, 0, bias=False)
|
||||
|
||||
set_weight_attrs(self.w1.weight,
|
||||
{"weight_loader": self.dummy_weight_loader})
|
||||
set_weight_attrs(self.w2.weight,
|
||||
{"weight_loader": self.dummy_weight_loader})
|
||||
set_weight_attrs(self.w3.weight,
|
||||
{"weight_loader": self.dummy_weight_loader})
|
||||
|
||||
def forward(self, *args, **kwargs) -> None:
|
||||
raise NotImplementedError()
|
||||
|
||||
def dummy_weight_loader(self, *args, **kwargs) -> None: # pylint: disable=unused-argument
|
||||
# Noop
|
||||
return
|
||||
|
||||
|
||||
class MixtralMoE(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MixtralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.rank = get_tensor_model_parallel_rank()
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.num_total_experts = config.num_local_experts
|
||||
self.top_k = config.num_experts_per_tok
|
||||
if self.tp_size > self.num_total_experts:
|
||||
raise ValueError(
|
||||
f"Tensor parallel size {self.tp_size} is greater than "
|
||||
f"the number of experts {self.num_total_experts}.")
|
||||
# Split experts equally between ranks
|
||||
self.expert_indicies = np.array_split(range(
|
||||
self.num_total_experts), self.tp_size)[self.rank].tolist()
|
||||
if not self.expert_indicies:
|
||||
raise ValueError(
|
||||
f"Rank {self.rank} has no experts assigned to it.")
|
||||
|
||||
self.experts = nn.ModuleList([
|
||||
MixtralMLP(self.num_total_experts,
|
||||
config.hidden_size,
|
||||
config.intermediate_size,
|
||||
linear_method=linear_method)
|
||||
if idx in self.expert_indicies else DummyModule()
|
||||
for idx in range(self.num_total_experts)
|
||||
])
|
||||
self.gate = ReplicatedLinear(config.hidden_size,
|
||||
self.num_total_experts,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
||||
hidden_states = hidden_states.view(-1, hidden_dim)
|
||||
# router_logits: (batch * sequence_length, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
|
||||
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
||||
routing_weights, selected_experts = torch.topk(routing_weights,
|
||||
self.top_k,
|
||||
dim=-1)
|
||||
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
||||
|
||||
final_hidden_states = None
|
||||
for expert_idx in self.expert_indicies:
|
||||
expert_layer = self.experts[expert_idx]
|
||||
expert_mask = (selected_experts == expert_idx)
|
||||
expert_weights = (routing_weights * expert_mask).sum(dim=-1,
|
||||
keepdim=True)
|
||||
|
||||
current_hidden_states = expert_layer(hidden_states).mul_(
|
||||
expert_weights)
|
||||
if final_hidden_states is None:
|
||||
final_hidden_states = current_hidden_states
|
||||
else:
|
||||
final_hidden_states.add_(current_hidden_states)
|
||||
|
||||
return tensor_model_parallel_all_reduce(final_hidden_states).view(
|
||||
batch_size, sequence_length, hidden_dim)
|
||||
|
||||
|
||||
class MixtralAttention(nn.Module):
|
||||
@ -79,6 +193,7 @@ class MixtralAttention(nn.Module):
|
||||
num_kv_heads: int,
|
||||
max_position: int = 4096 * 32,
|
||||
rope_theta: float = 10000,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
sliding_window: Optional[int] = None) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
@ -103,24 +218,26 @@ class MixtralAttention(nn.Module):
|
||||
self.rope_theta = rope_theta
|
||||
self.sliding_window = sliding_window
|
||||
|
||||
self.wqkv = QKVParallelLinear(
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.wo = RowParallelLinear(
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position,
|
||||
base=int(self.rope_theta),
|
||||
is_neox_style=False, # weights not in HF format
|
||||
is_neox_style=True,
|
||||
)
|
||||
self.attn = PagedAttention(
|
||||
self.num_heads,
|
||||
@ -138,334 +255,93 @@ class MixtralAttention(nn.Module):
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.wqkv(hidden_states)
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
|
||||
cache_event)
|
||||
output, _ = self.wo(attn_output)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class BlockSparseMoE(nn.Module):
|
||||
"""
|
||||
Built on the paper and library Megablocks as described in
|
||||
https://arxiv.org/abs/2211.15841. This implementation is
|
||||
strictly equivalent to standard MoE with full capacity (no
|
||||
dropped tokens). It's faster since it formulates MoE operations
|
||||
in terms of block-sparse operations to accomodate imbalanced
|
||||
assignments of tokens to experts, whereas standard MoE either
|
||||
(1) drop tokens at the cost of reduced performance or (2) set
|
||||
capacity factor to number of experts and thus waste computation
|
||||
and memory on padding.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim: int, ffn_dim: int, num_experts: int,
|
||||
top_k: int):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_dim
|
||||
self.ffn_dim = ffn_dim
|
||||
self.num_experts = num_experts
|
||||
self.top_k = top_k
|
||||
|
||||
# gating
|
||||
self.gate = nn.Linear(self.hidden_dim,
|
||||
self.num_experts,
|
||||
bias=False,
|
||||
device=torch.cuda.current_device())
|
||||
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
assert self.ffn_dim % tp_size == 0
|
||||
self.ffn_dim_per_partition = self.ffn_dim // tp_size
|
||||
# merged expert weights, all of size (ffn_dim * n_experts, model_dim)
|
||||
self.w1 = nn.Parameter(
|
||||
torch.empty(self.ffn_dim_per_partition * self.num_experts,
|
||||
self.hidden_dim,
|
||||
device=torch.cuda.current_device()))
|
||||
set_weight_attrs(self.w1, {"weight_loader": self.moe_weight_loader})
|
||||
self.w2 = nn.Parameter(
|
||||
torch.empty(self.ffn_dim_per_partition * self.num_experts,
|
||||
self.hidden_dim,
|
||||
device=torch.cuda.current_device()))
|
||||
set_weight_attrs(self.w2, {"weight_loader": self.moe_weight_loader})
|
||||
self.w3 = nn.Parameter(
|
||||
torch.empty(self.ffn_dim_per_partition * self.num_experts,
|
||||
self.hidden_dim,
|
||||
device=torch.cuda.current_device()))
|
||||
set_weight_attrs(self.w3, {"weight_loader": self.moe_weight_loader})
|
||||
|
||||
# Calculate the number of bits needed to represent the expert indices
|
||||
# so that we can pass it to radix sort.
|
||||
self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1)
|
||||
self.blocking = 128
|
||||
self.quantize_scatter_num_bits = -1
|
||||
|
||||
# Calculate the number of bits needed to represent the column indices
|
||||
# in the intermediate sparse matrix.
|
||||
max_column_index = (self.ffn_dim * self.num_experts) // self.blocking
|
||||
self.transpose_sort_end_bit = max(
|
||||
int(np.ceil(np.log2(max_column_index))), 1)
|
||||
|
||||
def moe_weight_loader(self, param: nn.Parameter,
|
||||
loaded_weight: torch.Tensor) -> None:
|
||||
"""
|
||||
Load the weights for the MoE linear layer.
|
||||
"""
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
shard_size = self.ffn_dim_per_partition
|
||||
loaded_weight = loaded_weight.view(self.num_experts, self.ffn_dim, -1)
|
||||
loaded_weight = loaded_weight[:, shard_size * tp_rank:shard_size *
|
||||
(tp_rank + 1)]
|
||||
loaded_weight = loaded_weight.reshape_as(param)
|
||||
param.data.copy_(loaded_weight)
|
||||
|
||||
def sparse_transpose(
|
||||
self, size: int, row_indices,
|
||||
column_indices) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
block_columns = size[1] // self.blocking
|
||||
|
||||
# Sort row indices by column indices to get the transposed matrix's
|
||||
# column indices.
|
||||
#
|
||||
# NOTE: Our sort operation uses the same width indices as the input
|
||||
# values. To avoid overflow when we have large activation matrices
|
||||
# we cast to 32-bit before sorting.
|
||||
_, gather_indices = ops.sort(column_indices.int(),
|
||||
self.transpose_sort_end_bit)
|
||||
|
||||
# There are a constant number of blocks in every row of the sparse
|
||||
# matrix. A blocks offset is:
|
||||
#
|
||||
# row_index * blocks_per_row + column_index % blocks_per_row
|
||||
#
|
||||
# Once we have the block offsets ordered for transposition we can
|
||||
# divide by blocks_per_row to get the transposed column indices.
|
||||
column_indices_t = row_indices.gather(0, gather_indices.long())
|
||||
block_offsets_t = gather_indices.int()
|
||||
|
||||
zero = torch.zeros((1, ), dtype=torch.int32, device=row_indices.device)
|
||||
nnz_per_column = ops.histogram(column_indices, block_columns)
|
||||
nnz_per_column = ops.inclusive_cumsum(nnz_per_column, 0)
|
||||
offsets_t = torch.cat([zero, nnz_per_column])
|
||||
return column_indices_t, offsets_t, block_offsets_t
|
||||
|
||||
def topology(self, x: torch.Tensor,
|
||||
padded_bins: torch.Tensor) -> "stk.Matrix":
|
||||
padded_tokens, _ = x.size()
|
||||
assert padded_tokens % self.blocking == 0
|
||||
assert self.ffn_dim_per_partition % self.blocking == 0
|
||||
|
||||
# Offsets for the sparse matrix. All rows have the
|
||||
# same number of nonzero blocks dictated by the
|
||||
# dimensionality of a single expert.
|
||||
block_rows = padded_tokens // self.blocking
|
||||
blocks_per_row = self.ffn_dim_per_partition // self.blocking
|
||||
offsets = torch.arange(
|
||||
0,
|
||||
block_rows * blocks_per_row + 1,
|
||||
blocks_per_row,
|
||||
dtype=torch.int32,
|
||||
device=x.device,
|
||||
)
|
||||
|
||||
# Indices for the sparse matrix. The indices for
|
||||
# the intermediate matrix are dynamic depending
|
||||
# on the mapping of tokens to experts.
|
||||
column_indices = ops.topology(padded_bins, self.blocking, block_rows,
|
||||
blocks_per_row)
|
||||
|
||||
# TODO(tgale): This is unused. Remove the need for this in stk.
|
||||
# For now, use meta init to save the device memory.
|
||||
data = torch.empty(
|
||||
column_indices.numel(),
|
||||
self.blocking,
|
||||
self.blocking,
|
||||
dtype=x.dtype,
|
||||
device="meta",
|
||||
)
|
||||
shape = (padded_tokens, self.ffn_dim_per_partition * self.num_experts)
|
||||
row_indices = stk.ops.row_indices(shape, data, offsets, column_indices)
|
||||
column_indices_t, offsets_t, block_offsets_t = self.sparse_transpose(
|
||||
shape, row_indices, column_indices)
|
||||
return stk.Matrix(
|
||||
shape,
|
||||
data,
|
||||
row_indices,
|
||||
column_indices,
|
||||
offsets,
|
||||
column_indices_t,
|
||||
offsets_t,
|
||||
block_offsets_t,
|
||||
)
|
||||
|
||||
def indices_and_padded_bins(
|
||||
self, selected_experts: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
|
||||
torch.Tensor]:
|
||||
# Sort the expert ids to produce the scatter/gather
|
||||
# indices for the permutation.
|
||||
selected_experts = selected_experts.int()
|
||||
bin_ids, indices = ops.sort(selected_experts, self.sort_end_bit)
|
||||
|
||||
# Histogram the expert ids to identify the number of
|
||||
# tokens routed to each expert.
|
||||
tokens_per_expert = ops.histogram(selected_experts, self.num_experts)
|
||||
|
||||
# Round the token counts up to the block size used in
|
||||
# the matrix muliplications. Caculate the starting
|
||||
# position of each bin.
|
||||
padded_tokens_per_expert = ops.round_up(tokens_per_expert,
|
||||
self.blocking)
|
||||
padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0)
|
||||
padded_bins = promote_scalar(padded_bins)
|
||||
|
||||
# Calculate the bin bounds for the sorted tokens.
|
||||
bins = ops.inclusive_cumsum(tokens_per_expert, 0)
|
||||
bins = promote_scalar(bins)
|
||||
return indices, bin_ids, bins, padded_bins, tokens_per_expert
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
x: (sequence_length, model_dim)
|
||||
gate_logits: (sequence_length, n_experts)
|
||||
"""
|
||||
# optional reshape
|
||||
input_shape = x.shape
|
||||
x = x.view(-1, input_shape[-1])
|
||||
|
||||
# gate_logits: (sequence_length, n_experts)
|
||||
gate_logits = self.gate(x)
|
||||
# all_probs: (sequence_length, n_experts) and upcast for softmax
|
||||
all_probs = F.softmax(gate_logits, dim=1, dtype=torch.float)
|
||||
# weights, selected_experts: (sequence_length, top-k)
|
||||
weights, selected_experts = torch.topk(all_probs, self.top_k, dim=-1)
|
||||
weights /= weights.sum(dim=-1, keepdim=True)
|
||||
weights = weights.flatten().to(x.dtype)
|
||||
selected_experts = selected_experts.flatten()
|
||||
|
||||
(indices, bin_ids, bins, padded_bins,
|
||||
_) = self.indices_and_padded_bins(selected_experts)
|
||||
|
||||
# Permute tokens and pad to prepare expert computation
|
||||
# (top_k * sequence_length + padding, model_dim)
|
||||
x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins,
|
||||
self.top_k)
|
||||
|
||||
# Create the sparse matrix topology
|
||||
with torch.no_grad():
|
||||
topo = self.topology(x, padded_bins)
|
||||
|
||||
# Perform the expert computation
|
||||
# First Dense x Dense -> Sparse for w1 and w3,
|
||||
# (top_k * sequence_length + padding, ffn_dim * n_experts)
|
||||
x = stk.Matrix(
|
||||
topo.size(),
|
||||
F.silu(stk.ops.sdd(x, self.w1.t(), topo).data) *
|
||||
stk.ops.sdd(x, self.w3.t(), topo).data,
|
||||
topo.row_indices,
|
||||
topo.column_indices,
|
||||
topo.offsets,
|
||||
topo.column_indices_t,
|
||||
topo.offsets_t,
|
||||
topo.block_offsets_t,
|
||||
)
|
||||
|
||||
# Then Sparse x Dense -> Dense for w2
|
||||
# (top_k * sequence_length + padding, model_dim)
|
||||
x = stk.ops.dsd(x, self.w2)
|
||||
|
||||
x = tensor_model_parallel_all_reduce(x)
|
||||
|
||||
# Permute back and remove padding
|
||||
# (top_k * sequence_length, model_dim)
|
||||
x = ops.padded_scatter(
|
||||
x,
|
||||
indices,
|
||||
bin_ids,
|
||||
weights,
|
||||
bins,
|
||||
padded_bins,
|
||||
self.top_k,
|
||||
self.quantize_scatter_num_bits,
|
||||
)
|
||||
return x.view(*input_shape)
|
||||
|
||||
|
||||
class MixtralDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MistralConfig,
|
||||
config: MixtralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
# Requires transformers > 4.32.0
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
self.attention = MixtralAttention(
|
||||
self.self_attn = MixtralAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
max_position=config.max_position_embeddings,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
sliding_window=config.sliding_window)
|
||||
self.block_sparse_moe = BlockSparseMoE(
|
||||
hidden_dim=self.hidden_size,
|
||||
ffn_dim=config.intermediate_size,
|
||||
num_experts=config.num_local_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
)
|
||||
self.attention_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
sliding_window=config.sliding_window,
|
||||
linear_method=linear_method)
|
||||
self.block_sparse_moe = MixtralMoE(config=config,
|
||||
linear_method=linear_method)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
x: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
r = self.attention(
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=self.attention_norm(x),
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
h = x + r
|
||||
r = self.block_sparse_moe(self.ffn_norm(h))
|
||||
out = h + r
|
||||
return out
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.block_sparse_moe(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class MixtralForCausalLM(nn.Module):
|
||||
class MixtralModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MistralConfig,
|
||||
config: MixtralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
assert linear_method is None
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.tok_embeddings = VocabParallelEmbedding(
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.output = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
self.layers = nn.ModuleList([
|
||||
MixtralDecoderLayer(config)
|
||||
MixtralDecoderLayer(config, linear_method=linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -475,20 +351,42 @@ class MixtralForCausalLM(nn.Module):
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> SamplerOutput:
|
||||
hidden_states = self.tok_embeddings(input_ids)
|
||||
|
||||
# forward
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
cache_event = None if cache_events is None else cache_events[i]
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
hidden_states, residual = layer(positions, hidden_states,
|
||||
kv_caches[i], input_metadata,
|
||||
cache_event, residual)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MixtralForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MixtralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.model = MixtralModel(config, linear_method)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata, cache_events)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
@ -496,7 +394,7 @@ class MixtralForCausalLM(nn.Module):
|
||||
hidden_states: Optional[torch.Tensor],
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> SamplerOutput:
|
||||
next_tokens = self.sampler(self.output.weight, hidden_states,
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
@ -507,10 +405,11 @@ class MixtralForCausalLM(nn.Module):
|
||||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("wqkv", "wq", "q"),
|
||||
("wqkv", "wk", "k"),
|
||||
("wqkv", "wv", "v"),
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
]
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
|
||||
@ -50,9 +50,14 @@ class MPTAttention(nn.Module):
|
||||
super().__init__()
|
||||
self.d_model = config.d_model
|
||||
self.total_num_heads = config.n_heads
|
||||
self.head_dim = self.d_model // self.total_num_heads
|
||||
self.clip_qkv = config.attn_config["clip_qkv"]
|
||||
self.qk_ln = config.attn_config["qk_ln"]
|
||||
self.alibi_bias_max = config.attn_config["alibi_bias_max"]
|
||||
if "kv_n_heads" in config.attn_config:
|
||||
self.total_num_kv_heads = config.attn_config['kv_n_heads']
|
||||
else:
|
||||
self.total_num_kv_heads = self.total_num_heads
|
||||
assert not config.attn_config["prefix_lm"]
|
||||
assert config.attn_config["alibi"]
|
||||
|
||||
@ -61,6 +66,7 @@ class MPTAttention(nn.Module):
|
||||
self.d_model,
|
||||
self.d_model // self.total_num_heads,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=not config.no_bias,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
@ -78,6 +84,17 @@ class MPTAttention(nn.Module):
|
||||
assert self.total_num_heads % tp_world_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_world_size
|
||||
|
||||
if self.total_num_kv_heads >= tp_world_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_world_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_world_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
# Create the alibi slopes and slice them.
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
head_start = tp_rank * self.num_heads
|
||||
@ -91,7 +108,8 @@ class MPTAttention(nn.Module):
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
scaling,
|
||||
alibi_slopes=alibi_slopes)
|
||||
alibi_slopes=alibi_slopes,
|
||||
num_kv_heads=self.num_kv_heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -105,7 +123,7 @@ class MPTAttention(nn.Module):
|
||||
qkv, _ = self.Wqkv(hidden_states)
|
||||
if self.clip_qkv is not None:
|
||||
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
if self.qk_ln:
|
||||
q = self.q_ln(q)
|
||||
k = self.k_ln(k)
|
||||
|
||||
@ -40,11 +40,6 @@ def get_max_shared_memory_bytes(gpu: int = 0) -> int:
|
||||
return int(max_shared_mem)
|
||||
|
||||
|
||||
def get_gpu_memory(gpu: int = 0) -> int:
|
||||
"""Returns the total memory of the GPU in bytes."""
|
||||
return torch.cuda.get_device_properties(gpu).total_memory
|
||||
|
||||
|
||||
def get_cpu_memory() -> int:
|
||||
"""Returns the total CPU memory of the node in bytes."""
|
||||
return psutil.virtual_memory().total
|
||||
|
||||
@ -134,14 +134,14 @@ class ModelRunner:
|
||||
generation_token = seq_data.get_last_token_id()
|
||||
input_tokens.append([generation_token])
|
||||
|
||||
context_len = seq_data.get_len()
|
||||
if self.sliding_window is not None:
|
||||
context_len = min(context_len, self.sliding_window)
|
||||
context_lens.append(context_len)
|
||||
|
||||
position = context_len - 1
|
||||
seq_len = seq_data.get_len()
|
||||
position = seq_len - 1
|
||||
input_positions.append([position])
|
||||
|
||||
context_len = seq_len if self.sliding_window is None else min(
|
||||
seq_len, self.sliding_window)
|
||||
context_lens.append(context_len)
|
||||
|
||||
block_table = seq_group_metadata.block_tables[seq_id]
|
||||
block_number = block_table[position // self.block_size]
|
||||
block_offset = position % self.block_size
|
||||
|
||||
@ -13,7 +13,6 @@ from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
|
||||
from vllm.worker.cache_engine import CacheEngine
|
||||
from vllm.worker.model_runner import ModelRunner
|
||||
from vllm.utils import get_gpu_memory
|
||||
|
||||
|
||||
class Worker:
|
||||
@ -81,7 +80,6 @@ class Worker:
|
||||
# Profile the memory usage of the model and get the maximum number of
|
||||
# cache blocks that can be allocated with the remaining free memory.
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
# Execute a forward pass with dummy inputs to profile the memory usage
|
||||
# of the model.
|
||||
@ -90,8 +88,9 @@ class Worker:
|
||||
# Calculate the number of blocks that can be allocated with the
|
||||
# profiled peak memory.
|
||||
torch.cuda.synchronize()
|
||||
peak_memory = torch.cuda.max_memory_allocated()
|
||||
total_gpu_memory = get_gpu_memory()
|
||||
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
|
||||
peak_memory = total_gpu_memory - free_gpu_memory
|
||||
|
||||
cache_block_size = CacheEngine.get_cache_block_size(
|
||||
block_size, self.model_config, self.parallel_config)
|
||||
num_gpu_blocks = int(
|
||||
|
||||
Reference in New Issue
Block a user