Compare commits
1511 Commits
v0.6.4
...
bind_kv_ca
| Author | SHA1 | Date | |
|---|---|---|---|
| bfff9bcd1d | |||
| 257e200a25 | |||
| 47d4a7e004 | |||
| 7f89a594dd | |||
| 961644e6a8 | |||
| 8d6cd32b7b | |||
| ec79b67c77 | |||
| 32985bed7c | |||
| dae9ec464c | |||
| 6eaf93020d | |||
| 72c62eae5f | |||
| 0a995d5434 | |||
| ade3f7d988 | |||
| 0df25101d6 | |||
| e123aafdf0 | |||
| 5b143d33be | |||
| eb59b5a6cb | |||
| fbfc3ee37e | |||
| 3e1d223626 | |||
| 4f5b059f14 | |||
| 288ca110f6 | |||
| c2bd2196fc | |||
| 550c7ba3dc | |||
| e5b2f1601a | |||
| 9badee53de | |||
| beebf4742a | |||
| f89978ad7c | |||
| b3cf368d79 | |||
| c8525f06fc | |||
| 5db6b2c961 | |||
| 6247bae6c6 | |||
| 3610fb4930 | |||
| 71c4b40562 | |||
| ac65bc92df | |||
| f78c0be80a | |||
| 66233af7b6 | |||
| bf13d40972 | |||
| 989f4f430c | |||
| bb5b640359 | |||
| c060b71408 | |||
| 79e4937c65 | |||
| cd1d3c3df8 | |||
| 19d98e0c7d | |||
| 2b04c209ee | |||
| ae122b1cbd | |||
| 872db2be0e | |||
| 2dfdfed8a0 | |||
| c41d27156b | |||
| 91373a0d15 | |||
| 848a6438ae | |||
| 98175b2816 | |||
| 4167252eaf | |||
| f35f8e2242 | |||
| b87c21fc89 | |||
| e584b85afd | |||
| 09e56f9262 | |||
| cf069aa8aa | |||
| bf33700ecd | |||
| bc6ccb9878 | |||
| 82fbeae92b | |||
| cc5e8f6db8 | |||
| d54990da47 | |||
| b9f1d4294e | |||
| b28246f6ff | |||
| 3b5567a209 | |||
| fdcc405346 | |||
| 8994dabc22 | |||
| 02296f420d | |||
| 6a92ff93e1 | |||
| 6a84164add | |||
| f64ffa8c25 | |||
| bd56c983d6 | |||
| 084bbac8cc | |||
| 28943d36ce | |||
| b526ca6726 | |||
| e7bd944e08 | |||
| c3b6559a10 | |||
| 4be4b26cb7 | |||
| 2aed2c9fa7 | |||
| 9b61dd41e7 | |||
| f7bee5c815 | |||
| e0734387fb | |||
| f58f8b5c96 | |||
| b3f7aaccd0 | |||
| b91660ddb8 | |||
| 76c89fcadd | |||
| b9e41734c5 | |||
| 1088f06242 | |||
| 73e0225ee9 | |||
| 6c85da3a18 | |||
| 67fc426845 | |||
| 9804145cac | |||
| 2e94b9cfbb | |||
| 8294773e48 | |||
| cd813c6d4d | |||
| 38acae6e97 | |||
| a2dd48c386 | |||
| 126f6beeb4 | |||
| 58d1b2aa77 | |||
| f1579b229d | |||
| 7864875879 | |||
| 1dd422b64a | |||
| 06c8f8d885 | |||
| 5677c9bb3e | |||
| 512d77d582 | |||
| 7f0be2aa24 | |||
| edf309ebbe | |||
| 788f284b53 | |||
| 4b1d141f49 | |||
| 10c3b8c1cf | |||
| a7f37314b7 | |||
| cd711c48b2 | |||
| 378b3ef6f8 | |||
| c9944acbf9 | |||
| ca377cf1b9 | |||
| a31614e386 | |||
| f95903909f | |||
| b382a7f28f | |||
| 4cb6fa0a9c | |||
| d08b285adf | |||
| b27122acc2 | |||
| 934bb99c71 | |||
| 3f808cc044 | |||
| ec8a5e5386 | |||
| 215bf150a6 | |||
| 0ecdd98031 | |||
| 7b700ec8c8 | |||
| 7ca1da020f | |||
| 5157338ed9 | |||
| e206b54331 | |||
| 1d35662e6d | |||
| e656f638de | |||
| 145944cb94 | |||
| 094b7d9496 | |||
| e1fe7591f2 | |||
| 5629f26df7 | |||
| 9ba28043b5 | |||
| 24679788ed | |||
| 07c4353057 | |||
| 34e3494e70 | |||
| f75aa72732 | |||
| 340e39e387 | |||
| f4133ce4e5 | |||
| 6522d55b6f | |||
| 6ff518626c | |||
| fa82074167 | |||
| 75e9d49796 | |||
| 32c3b6bfd1 | |||
| 37b6cb4985 | |||
| aabeb2688f | |||
| 2f42a4888c | |||
| 3173c3b34e | |||
| 2d87d7d1ac | |||
| aab392774b | |||
| 6724e79164 | |||
| 03f48b3db6 | |||
| 4d251ad00e | |||
| 18e505930d | |||
| 4a8cfc7551 | |||
| bc32bc73aa | |||
| ab1091d5f2 | |||
| 1e15aaef56 | |||
| 51010a1807 | |||
| 7196a3b1db | |||
| cdc1fa12eb | |||
| f61528d46d | |||
| 1f0ae3ed0a | |||
| db986c19ea | |||
| 227578480d | |||
| befc402d34 | |||
| 444b0f0f62 | |||
| ccc00515fd | |||
| 781096e385 | |||
| 7940d8a6a7 | |||
| c0e3ecd6d2 | |||
| 23eca9cf68 | |||
| 437b76ff59 | |||
| f90a375593 | |||
| e7ef74e26e | |||
| cbae7af552 | |||
| eb24dc4a45 | |||
| 9bebc9512f | |||
| 5a2ba16f5c | |||
| ba5106e519 | |||
| d5ca2110f1 | |||
| 2c5e637b57 | |||
| 322d2a27d6 | |||
| 82e0d601fc | |||
| 78ac0f591d | |||
| b56155e7f3 | |||
| 382f66fb08 | |||
| 8354f6640c | |||
| c904fdddf6 | |||
| 558db8083c | |||
| e109e598c7 | |||
| 8db1b9d0a1 | |||
| 2382ad29d1 | |||
| 3e472d882a | |||
| 7f6bae561c | |||
| 105b8ce4c0 | |||
| 2cb8c1540e | |||
| 1cd981da4f | |||
| fca20841c2 | |||
| da31b5333e | |||
| bb78fb318e | |||
| 8aca27fa11 | |||
| 95c617e04b | |||
| 9a1f1da5d1 | |||
| 68d630a0c7 | |||
| 68d535ef44 | |||
| c6ed93860f | |||
| 0ffdf8ce0c | |||
| 8c0dd3d4df | |||
| ada7c780d5 | |||
| 288cc6c234 | |||
| 900edbfa48 | |||
| b2c3fc5d65 | |||
| 839b27c6cc | |||
| 34ad27fe83 | |||
| 1c3c975766 | |||
| 1cdc88614a | |||
| 31aa045c11 | |||
| a30c093502 | |||
| c7b07a95a6 | |||
| 27a09dc52c | |||
| 981f3c831e | |||
| 44c33f01f3 | |||
| 33170081f1 | |||
| 71face8540 | |||
| bfbc0b32c6 | |||
| 6a417b8600 | |||
| d3ea50113c | |||
| 34aad515c8 | |||
| ed6e9075d3 | |||
| 992e5c3d34 | |||
| b69692a2d8 | |||
| a64a84433d | |||
| aa1e62d0db | |||
| 497bc83124 | |||
| 3738e6fa80 | |||
| 0023cd2b9d | |||
| 041e294716 | |||
| 9621667874 | |||
| 8c755c3b6d | |||
| ba81163997 | |||
| 0d243f2a54 | |||
| 88f6ba3281 | |||
| 512368e34a | |||
| 473f51cfd9 | |||
| a4c402a756 | |||
| 550d97eb58 | |||
| fbbe1fbac6 | |||
| 01c184b8f3 | |||
| ad5a35c21b | |||
| 5ae9f26a5a | |||
| 377d10bd14 | |||
| 52ce14d31f | |||
| 81dabf24a8 | |||
| 423330263b | |||
| caf7ff4456 | |||
| f525c0be8b | |||
| 983a40a8bb | |||
| fdc5df6f54 | |||
| 3b05cd4555 | |||
| d5d214ac7f | |||
| fd84857f64 | |||
| 8aada19dfc | |||
| 9aa95b0e6a | |||
| d0a7a2769d | |||
| 00b69c2d27 | |||
| 4c82229898 | |||
| c8d70e2437 | |||
| 30172b4947 | |||
| a4d577b379 | |||
| 7b203b7694 | |||
| 4fb8142a0e | |||
| a02c86b4dd | |||
| 3809458456 | |||
| d3231cb436 | |||
| 435b502a6e | |||
| 29fc5772c4 | |||
| 2358ca527b | |||
| 8cf97f8661 | |||
| e2603fefb8 | |||
| b53d79983c | |||
| 9915912f7f | |||
| d1b649f1ef | |||
| ac19b519ed | |||
| a1074b3efe | |||
| 00294e1bc6 | |||
| 88787bce1d | |||
| 932b51cedd | |||
| 7c7adf81fc | |||
| 67ef8f666a | |||
| efbe854448 | |||
| b3942e157e | |||
| cd4a72a28d | |||
| 6ac485a953 | |||
| 4c21ce9eba | |||
| ce77eb9410 | |||
| 30513d1cb6 | |||
| 1f69c4a892 | |||
| 7b623fca0b | |||
| 238dfc8ac3 | |||
| 45186834a0 | |||
| f857311d13 | |||
| 46cdd59577 | |||
| 2010f04c17 | |||
| 69e1d23e1e | |||
| d67cc21b78 | |||
| e18227b04a | |||
| 7b89386553 | |||
| da833b0aee | |||
| 5d2965b7d7 | |||
| a0231b7c25 | |||
| 124776ebd5 | |||
| b7d309860e | |||
| dc0f7ccf8b | |||
| d3d547e057 | |||
| 12913d17ba | |||
| 80f63a3966 | |||
| 367cb8ce8c | |||
| 54ed913f34 | |||
| 9206b3d7ec | |||
| ed0de3e4b8 | |||
| 2ad1bc7afe | |||
| 7fdaaf48ef | |||
| 067fa2255b | |||
| 9076325677 | |||
| 97a3d6d995 | |||
| 579d7a63b2 | |||
| c9f9d5b397 | |||
| 0c73026844 | |||
| 6a854c7a2b | |||
| e7eea5a520 | |||
| a12934d3ec | |||
| 3bcb8c75da | |||
| 5e5c8e091e | |||
| c9e2d644e7 | |||
| 7734e9a291 | |||
| 6224a9f620 | |||
| 085b7b2d6c | |||
| 4da1f667e9 | |||
| 556ef7f714 | |||
| 83481ceb49 | |||
| 185cc19f92 | |||
| 45f90bcbba | |||
| b0ccfc565a | |||
| ba59b78a9c | |||
| cbc40128eb | |||
| f0b2da72a8 | |||
| f2b20fe491 | |||
| 40932d7a05 | |||
| 84683fa271 | |||
| 067678262a | |||
| 09545c0a94 | |||
| dd5ede4440 | |||
| 8c32b08a86 | |||
| 410886950a | |||
| e38be640e6 | |||
| c1e37bf71b | |||
| 2344192a55 | |||
| bffddd9a05 | |||
| d84cef76eb | |||
| 37dfa60037 | |||
| 1bc3b5e71b | |||
| 02ed8a1fbe | |||
| 2092a6fa7d | |||
| c9d3ecf016 | |||
| fdcf64d3c6 | |||
| 578087e56c | |||
| fa253f1a70 | |||
| 9605c1256e | |||
| 0ccd8769fb | |||
| cb944d5818 | |||
| d46d490c27 | |||
| 04f50ad9d1 | |||
| 60c68df6d1 | |||
| 009439caeb | |||
| bc55d13070 | |||
| d88c8666a1 | |||
| 4fc5c23bb6 | |||
| 9f9704dca6 | |||
| 8eafe5eaea | |||
| 4c0d93f4b2 | |||
| 14b7899d10 | |||
| 09972e716c | |||
| 36a08630e8 | |||
| 2c2b560f48 | |||
| 042c3419fa | |||
| 82cabf53a3 | |||
| 314cfade02 | |||
| 985b4a2b19 | |||
| f4d97e4fc2 | |||
| f1042e86f0 | |||
| 7c4033acd4 | |||
| d59def4730 | |||
| 0c7d9effce | |||
| dd3b4a01f8 | |||
| a0597c6b75 | |||
| e92694b6fe | |||
| 842b0fd402 | |||
| 974dfd4971 | |||
| 3ee696a63d | |||
| 72c2b68dc9 | |||
| 14ecab5be2 | |||
| deb6c1c6b4 | |||
| 565c1efa65 | |||
| 2b25b7d2e1 | |||
| 6c4dbe23eb | |||
| 21f5d50fa5 | |||
| bf3e05215c | |||
| ad9776353e | |||
| 75e6e14516 | |||
| 110f59a33e | |||
| 2e3b969ec0 | |||
| da317197dd | |||
| 7539bbc6a6 | |||
| 9cf4759493 | |||
| 41c5dd45b9 | |||
| fc6485d277 | |||
| 78a141d768 | |||
| c320ca8edd | |||
| 58047c6f04 | |||
| cb080f32e3 | |||
| 2c0f58203c | |||
| 2ff4857678 | |||
| 91e876750e | |||
| 08b2d845d6 | |||
| 2ae889052c | |||
| 51f0b5f7f6 | |||
| fde71262e0 | |||
| 243137143c | |||
| b2496bb07f | |||
| 44607e07d3 | |||
| 67c4637ccf | |||
| aa0ca5ebb7 | |||
| 59fff4a01a | |||
| 29f1d47e73 | |||
| cf797aa856 | |||
| 24700c346b | |||
| d366ccc4e3 | |||
| 870c37481e | |||
| 86222a3dab | |||
| fe743b798d | |||
| 913df14da3 | |||
| 8a69e0e20e | |||
| 4c8dd12ef3 | |||
| 256a2d29dc | |||
| c45d398e6f | |||
| 011e612d92 | |||
| 7e1837676a | |||
| 2880e21e3d | |||
| 407b5537db | |||
| 4ea48fb35c | |||
| e31498bdcb | |||
| 91dd8f7aa6 | |||
| d01f66b039 | |||
| cc01223f3b | |||
| 306923da82 | |||
| 3243158336 | |||
| b21f0f9d17 | |||
| 45cbc4991d | |||
| 932c6b7461 | |||
| eaa92d4437 | |||
| 0630d4537a | |||
| 538fab93cd | |||
| ce26b16268 | |||
| 1918aa1b80 | |||
| 6e1fc61f0f | |||
| aa375dca9f | |||
| 433c4a4923 | |||
| ef533d25fb | |||
| b260782357 | |||
| 741429a4cd | |||
| aff404571b | |||
| 467a96a541 | |||
| 8108ac841d | |||
| afe74f7a96 | |||
| 09b95e36ab | |||
| 85ac82d228 | |||
| 1e57b1ee63 | |||
| e152f29502 | |||
| c786e757fa | |||
| cefd56ee35 | |||
| 7ca9934fe7 | |||
| 0408efc6d0 | |||
| 449d1bce02 | |||
| 1a6fcad4c9 | |||
| 56534cd577 | |||
| d88506dda4 | |||
| 9cdea30b4f | |||
| 76abd0c881 | |||
| 5b19b93082 | |||
| 75404d041b | |||
| bf3b79efb8 | |||
| 9a5b1554b4 | |||
| a4ce74c14a | |||
| 3b2005e1db | |||
| af8486de49 | |||
| 4c3aac51e1 | |||
| bc1bdecebf | |||
| 022bcc701a | |||
| c53dc466b1 | |||
| 3d09e592a8 | |||
| fcf2e3d7fc | |||
| 58b218d7ae | |||
| 7ff7a638b6 | |||
| 686006a220 | |||
| 98fd089fc9 | |||
| 249824c3bf | |||
| 64862d106e | |||
| b3a0d01e45 | |||
| 75e94309e8 | |||
| 233df6f5c4 | |||
| 18016a5e62 | |||
| 649550f27e | |||
| 62467a834a | |||
| 6469038b14 | |||
| 815079de8e | |||
| 18a88fcccc | |||
| d1ca7df84d | |||
| 96b23621c1 | |||
| c36ac98d01 | |||
| 4896d0c2dd | |||
| bb392af434 | |||
| 5d98d56089 | |||
| 73b35cca7f | |||
| 5095e96606 | |||
| cf58b9c4ca | |||
| 4797dad3ec | |||
| 6dd5e52823 | |||
| c11de33dad | |||
| 33e0602e59 | |||
| a1a2aaadb9 | |||
| 1298a400e8 | |||
| ad4a9dc817 | |||
| b9986454fe | |||
| c5932e5dac | |||
| 20579c0fae | |||
| 95460fc513 | |||
| 326fcc8b9f | |||
| e64330910b | |||
| e489ad7a21 | |||
| f256ebe4df | |||
| f8ece6e17f | |||
| abfcdcdf27 | |||
| e497f33491 | |||
| baaa2b24da | |||
| b4e5c03306 | |||
| 3194039c0e | |||
| 4f4d427ac2 | |||
| 1e3698393f | |||
| baeded2569 | |||
| 3e1c76cf3a | |||
| cfa134d247 | |||
| 35b7a05507 | |||
| 1867c258bd | |||
| cb3e73e4c8 | |||
| b1340f9d55 | |||
| 44bbca78d7 | |||
| 60808bd4c7 | |||
| fc542144c4 | |||
| eb5741ad42 | |||
| 145c2ff648 | |||
| 415f19474d | |||
| 89003c4082 | |||
| 60bcef000e | |||
| 847f883232 | |||
| 325f679f32 | |||
| e3f7ff65e7 | |||
| 7a8987dac5 | |||
| cabaf4eff3 | |||
| a1fc18c030 | |||
| 9798b2fb00 | |||
| 4078052f09 | |||
| bd2107e30a | |||
| 9b0c4bab36 | |||
| 41bf5612f5 | |||
| a2769032ca | |||
| f17f1d4608 | |||
| 1c1bb0bbf2 | |||
| e0cc5f259a | |||
| 73aa6cfdf7 | |||
| 27b78c73ca | |||
| b02fd288b2 | |||
| ff7424f491 | |||
| d93bf4da85 | |||
| 036ca94c25 | |||
| ef001d98ef | |||
| 5f671cb4c3 | |||
| bd02164cf9 | |||
| 46fb056749 | |||
| dd6a3a02cb | |||
| a7e3eba66f | |||
| fbb5bd4cef | |||
| 80fcc3ed1c | |||
| c386c43ca3 | |||
| f26d790718 | |||
| 0f657bdc52 | |||
| 3fd1fb63ef | |||
| 925d2f1908 | |||
| 8f58a51358 | |||
| 2079e43bee | |||
| e29d4358ef | |||
| 8cbc424975 | |||
| dd66fd2b01 | |||
| 0f465ab533 | |||
| 23a7cbc88b | |||
| 426a5c3625 | |||
| ddee88d0ff | |||
| 823ab79633 | |||
| 6116ca8cd7 | |||
| 2bc3fbba0c | |||
| 3f1fc7425a | |||
| 01ba927040 | |||
| 103bd17ac5 | |||
| ce69f7f754 | |||
| 624a1e4711 | |||
| 372bf0890b | |||
| 5204ff5c3f | |||
| 0cc6b383d7 | |||
| 28e0750847 | |||
| 582cf78798 | |||
| 0034b09ceb | |||
| 72bac73067 | |||
| 68f11149d8 | |||
| 72f4880425 | |||
| aa2cd2c43d | |||
| 9ddc35220b | |||
| a5255270c3 | |||
| 0ee349b553 | |||
| fa63e710c7 | |||
| 2a0309a646 | |||
| 324960a95c | |||
| f1fc0510df | |||
| bf21481dde | |||
| fb30ee92ee | |||
| 221d388cc5 | |||
| 3132a933b6 | |||
| df5dafaa5b | |||
| ab5bbf5ae3 | |||
| 3bb8e2c9a2 | |||
| e784c6b998 | |||
| 9a0f3bdbe5 | |||
| c7c9851036 | |||
| 3c818bdb42 | |||
| 6dd94dbe94 | |||
| 0e74d797ce | |||
| 55ef66edf4 | |||
| 5e5630a478 | |||
| d3d6bb13fb | |||
| 24b0205f58 | |||
| c5cffcd0cd | |||
| 682b55bc07 | |||
| 9726ad676d | |||
| eb5cb5e528 | |||
| 2cbeedad09 | |||
| 2c85529bfc | |||
| e97f802b2d | |||
| 6e650f56a1 | |||
| 3f50c148fd | |||
| 8c01b8022c | |||
| 99d01a5e3d | |||
| d07efb31c5 | |||
| 978b45f399 | |||
| c5b4b11d7f | |||
| 8ae5ff2009 | |||
| 511627445e | |||
| f0ef37233e | |||
| 7551a34032 | |||
| 01a55941f5 | |||
| 8d7aa9de71 | |||
| 68c4421b6d | |||
| aea94362c9 | |||
| 7206ce4ce1 | |||
| 96f6a7596f | |||
| 84bee4bd5c | |||
| fc66dee76d | |||
| 6609cdf019 | |||
| 16366ee8bb | |||
| 528dbcac7d | |||
| cd7b6f0857 | |||
| 68ad4e3a8d | |||
| 4004f144f3 | |||
| 66818e5b63 | |||
| 222a9dc350 | |||
| cbdc4ad5a5 | |||
| 016e3676e7 | |||
| 64ea24d0b3 | |||
| df76e5af26 | |||
| 09ccc9c8f7 | |||
| 69196a9bc7 | |||
| 2acba47d9b | |||
| 9c485d9e25 | |||
| fa9ee08121 | |||
| 347eeebe3b | |||
| 18fd4a8331 | |||
| 132a132100 | |||
| 1e60f87bb3 | |||
| 9705b90bcf | |||
| 3aec49e56f | |||
| c64612802b | |||
| 9a7c3a0042 | |||
| b197a5ccfd | |||
| c81081fece | |||
| a94eee4456 | |||
| f2e9f2a3be | |||
| 1f1542afa9 | |||
| 96912550c8 | |||
| 2fc6944c5e | |||
| 5fe6bf29d6 | |||
| d4b62d4641 | |||
| ecf67814f1 | |||
| 750f4cabfa | |||
| 06a760d6e8 | |||
| da7512215f | |||
| af69a6aded | |||
| 7bd3630067 | |||
| 96663699b2 | |||
| 18572e3384 | |||
| 86bfb6dba7 | |||
| 5f0ec3935a | |||
| c222f47992 | |||
| 170eb35079 | |||
| b37d82791e | |||
| 3127e975fb | |||
| 4001ea1266 | |||
| 5c89a29c22 | |||
| 59a0192fb9 | |||
| 83609791d2 | |||
| 0974c9bc5c | |||
| d2643128f7 | |||
| c5c06209ec | |||
| 3ea7b94523 | |||
| 51ef828f10 | |||
| df450aa567 | |||
| bbe5f9de7d | |||
| 81763c58a0 | |||
| edaae198e7 | |||
| 936db119ed | |||
| e66faf4809 | |||
| 630eb5b5ce | |||
| 4e94951bb1 | |||
| 7a8a48d51e | |||
| 32eb0da808 | |||
| 6d0e3d3724 | |||
| 02798ecabe | |||
| 813f249f02 | |||
| da02cb4b27 | |||
| c09503ddd6 | |||
| 2b83503227 | |||
| 7b98a65ae6 | |||
| b5b57e301e | |||
| 54cacf008f | |||
| 58fd57ff1d | |||
| 87a0c076af | |||
| d4e6194570 | |||
| 07934cc237 | |||
| 69d765f5a5 | |||
| 8027a72461 | |||
| d75ab55f10 | |||
| d1adb9b403 | |||
| b8bfa46a18 | |||
| 1475847a14 | |||
| fead53ba78 | |||
| ebc73f2828 | |||
| d06e824006 | |||
| 62b06ba23d | |||
| 5fd24ec02e | |||
| 874f7c292a | |||
| 92e793d91a | |||
| bf53e0c70b | |||
| dd7c9ad870 | |||
| 9aa1519f08 | |||
| f8ef146f03 | |||
| fa0050db08 | |||
| cd9d06fb8d | |||
| ebd8c669ef | |||
| 70755e819e | |||
| edce722eaa | |||
| 57e729e874 | |||
| de0526f668 | |||
| 5ecf3e0aaf | |||
| 97eb97b5a4 | |||
| 3adf0ffda8 | |||
| ad388d25a8 | |||
| cbe94391eb | |||
| 994fc655b7 | |||
| 3f9b7ab9f5 | |||
| ad34c0df0f | |||
| f218f9c24d | |||
| 0794e7446e | |||
| b7ee940a82 | |||
| 9ddac56311 | |||
| 1a51b9f872 | |||
| 42f5e7c52a | |||
| a3a3ee4e6f | |||
| 87054a57ab | |||
| c9d6ff530b | |||
| a2d2acb4c8 | |||
| 2e0e017610 | |||
| 1f18adb245 | |||
| bb354e6b2d | |||
| ff39141a49 | |||
| 8a1f938e6f | |||
| 078da31903 | |||
| 1a401252b5 | |||
| f35ec461fc | |||
| 289b5191d5 | |||
| c6db21313c | |||
| a7d59688fb | |||
| 458e63a2c6 | |||
| e8c23ff989 | |||
| cd8249903f | |||
| 0f8cafe2d1 | |||
| 5340a30d01 | |||
| 89ce62a316 | |||
| c3f05b09a0 | |||
| cf6bbcb493 | |||
| 80ea3af1a0 | |||
| 9dd02d85ca | |||
| f7b3ba82c3 | |||
| 619ae268c3 | |||
| d14e98d924 | |||
| 9597a095f2 | |||
| 263a870ee1 | |||
| 8bddb73512 | |||
| f967e51f38 | |||
| 43f3d9e699 | |||
| b25cfab9a0 | |||
| 4b657d3292 | |||
| d697dc01b4 | |||
| a991f7d508 | |||
| 7a3a83e3b8 | |||
| c32a7c7c0c | |||
| 2118d0565c | |||
| 899136b857 | |||
| c9f09a4fe8 | |||
| d45cbe70f5 | |||
| 8a579408f3 | |||
| 46fa98ccad | |||
| aa1e77a19c | |||
| 5959564f94 | |||
| f33e033e27 | |||
| 482cdc494e | |||
| 20410b2fda | |||
| 12664ddda5 | |||
| 241ad7b301 | |||
| d85c47d6ad | |||
| ef725feafc | |||
| d907be7dc7 | |||
| d53575a5f0 | |||
| 61af633256 | |||
| ac2f3f7fee | |||
| cf5f000d21 | |||
| 3de2b1eafb | |||
| b844b99ad3 | |||
| c3cf54dda4 | |||
| 36f5303578 | |||
| 9a228348d2 | |||
| bd82872211 | |||
| 405eb8e396 | |||
| 65097ca0af | |||
| 1d967acb45 | |||
| 0bd1ff4346 | |||
| 310aca88c9 | |||
| a732900efc | |||
| d848800e88 | |||
| 730e9592e9 | |||
| 1fe554bac3 | |||
| 615e4a5401 | |||
| 3db0cafdf1 | |||
| 526de822d5 | |||
| 56fe4c297c | |||
| 47de8821d3 | |||
| 5984499e47 | |||
| ca47e176af | |||
| 78f4590b60 | |||
| 2f7024987e | |||
| 6cd40a5bfe | |||
| aba8d6ee00 | |||
| 2a0596bc48 | |||
| f12141170a | |||
| cfd3219f58 | |||
| a1b2b8606e | |||
| ad9f1aa679 | |||
| 889e662eae | |||
| ef68eb28d8 | |||
| 259abd8953 | |||
| f645eb6954 | |||
| f4923cb8bc | |||
| b640b19cc0 | |||
| dc71af0a71 | |||
| 4d29e91be8 | |||
| 91445c7bc8 | |||
| 5950f555a1 | |||
| a4e2b26856 | |||
| 973f5dc581 | |||
| c994223d56 | |||
| 869579a702 | |||
| c0efe92d8b | |||
| d9fa1c05ad | |||
| 2de197bdd4 | |||
| 869e829b85 | |||
| 8f37be38eb | |||
| 8082ad7950 | |||
| 1e4ce295ae | |||
| ce1917fcf2 | |||
| e512f76a89 | |||
| 898cdf033e | |||
| 0f3f3c86ec | |||
| b278557935 | |||
| 8ceffbf315 | |||
| d93d2d74fd | |||
| d0169e1b0f | |||
| 08fb75c72e | |||
| 91b361ae89 | |||
| e20c92bb61 | |||
| 32c9eff2ff | |||
| 4ca5d40adc | |||
| 9279b9f83d | |||
| ee77fdb5de | |||
| 996357e480 | |||
| 2a622d704a | |||
| 9c749713f6 | |||
| 022c5c6944 | |||
| f8fcca100b | |||
| 06bfb51963 | |||
| 408e560015 | |||
| 402d378360 | |||
| 9e764e7b10 | |||
| 33fc1e2e86 | |||
| eba17173d3 | |||
| 635b897246 | |||
| 4068f4b5b5 | |||
| 47831430cc | |||
| 65c08928c2 | |||
| ba214dffbe | |||
| eed11ebee9 | |||
| 300acb8347 | |||
| d91457d529 | |||
| fbf2564554 | |||
| d1d49397e7 | |||
| 9c93636d84 | |||
| e5d7ed0c53 | |||
| ad0d567e1c | |||
| bf0d97d786 | |||
| a655eb3025 | |||
| 1543914c04 | |||
| 61fed92c7e | |||
| 80c751e7f6 | |||
| e1a5c2f0a1 | |||
| fd3a62a122 | |||
| 07064cb1d4 | |||
| 2f1e8e8f54 | |||
| 68d37809b9 | |||
| 5dba257506 | |||
| 187e32997c | |||
| b55ed6ef8a | |||
| 2f385183f3 | |||
| 84c35c374a | |||
| 8c38ee7007 | |||
| b6087a6bee | |||
| 23c1b10a4c | |||
| a115ac46b5 | |||
| 73001445fb | |||
| 6d70198b17 | |||
| f962f426bc | |||
| 11d8a091c6 | |||
| 365801fedd | |||
| 4db72e57f6 | |||
| 0c6f998554 | |||
| e7c7c5e822 | |||
| 8c3230d8c1 | |||
| 2c5718809b | |||
| 82c49d3260 | |||
| 74fa1d123c | |||
| a2a40bcd0d | |||
| ccb1aabcca | |||
| 36e7670045 | |||
| 5886aa496e | |||
| 8d9b6721e7 | |||
| b12e87f942 | |||
| 5dbf854553 | |||
| 970d6d0776 | |||
| 628ec6c17b | |||
| 3682e33f9f | |||
| 0aa38d16f5 | |||
| faef77c0d6 | |||
| dba4d9dec6 | |||
| 32b4c63f02 | |||
| 4fb8e329fd | |||
| 328841d002 | |||
| d427e5cfda | |||
| 42bb201fd6 | |||
| 59d6bb4c86 | |||
| b7dcc003dc | |||
| d34be24bb1 | |||
| b5cbe8eeb3 | |||
| df04dffade | |||
| a60731247f | |||
| ac79799403 | |||
| dde1fa18c9 | |||
| 0240402c46 | |||
| 55509c2114 | |||
| 101418096f | |||
| 5ce4627a7e | |||
| 7af553ea30 | |||
| 2c9b8ea2b0 | |||
| d003f3ea39 | |||
| 6c6f7fe8a8 | |||
| 2339d59f92 | |||
| 1b875a0ef3 | |||
| eb881ed006 | |||
| 46d4359450 | |||
| 81b979f2a8 | |||
| 371d04d39b | |||
| 0c0c2015c5 | |||
| 82d24f7aac | |||
| f49777ba62 | |||
| 55fb97f7bd | |||
| 2072924d14 | |||
| 720b10fdc6 | |||
| b85a977822 | |||
| eec906d811 | |||
| f57ee5650d | |||
| dcb1a944d4 | |||
| 7492a36207 | |||
| aa25985bd1 | |||
| dbeac95dbb | |||
| 51a624bf02 | |||
| 6ad909fdda | |||
| b689ada91e | |||
| fc601665eb | |||
| 9832e5572a | |||
| 3f3e92e1f2 | |||
| 409475a827 | |||
| 196c34b0ac | |||
| 5c7963249d | |||
| 461cde2080 | |||
| 7a5286cc04 | |||
| b1b1038fbd | |||
| 9edca6bf8f | |||
| 4f074fbf53 | |||
| a491d6f535 | |||
| 32aa2059ad | |||
| 94d545a1a1 | |||
| 60fb4f3bcf | |||
| 63afbe9215 | |||
| 8cef6e02dc | |||
| b866cdbd05 | |||
| 2e726680b3 | |||
| 5bfb30a529 | |||
| e51719ae72 | |||
| f30581c518 | |||
| 048fc57a0f | |||
| f1d1bf6288 | |||
| 72d9c316d3 | |||
| 4a9139780a | |||
| 29c748930e | |||
| c2d1b075ba | |||
| 584f0ae40d | |||
| 51ff216d85 | |||
| dd2b5633dd | |||
| 47a0b615b4 | |||
| 5d2248d81a | |||
| d573aeadcc | |||
| 995f56236b | |||
| 7c7aa37c69 | |||
| 04139ade59 | |||
| 1ecc645b8f | |||
| c954f21ac0 | |||
| 86c2d8fd1c | |||
| b880ffb87e | |||
| 7801f56ed7 | |||
| 48edab8041 | |||
| a985f7af9f | |||
| e461c262f0 | |||
| 276738ce0f | |||
| cdf22afdda | |||
| e24113a8fe | |||
| 7379b3d4b2 | |||
| 6c7f881541 | |||
| a0f7d53beb | |||
| 5aef49806d | |||
| 98356735ac | |||
| f26c4aeecb | |||
| 8936316d58 | |||
| 6142ef0ada | |||
| c6b0a7d3ba | |||
| a30482f054 | |||
| 17ca964273 | |||
| 5a9da2e6e9 | |||
| fdea8ec167 | |||
| ca5f54a9b9 | |||
| f954fe0e65 | |||
| 362cff1eb3 | |||
| 996aa70f00 | |||
| 60508ffda9 | |||
| f04e407e6b | |||
| 8b79f9e107 | |||
| 866fa4550d | |||
| bf8717ebae | |||
| c77eb8a33c | |||
| 2d1b9baa8f | |||
| f9ecbb18bf | |||
| 02222a0256 | |||
| 2bfdbf2a36 | |||
| e88db68cf5 | |||
| 59c9b6ebeb | |||
| 66d4b16724 | |||
| 0064f697d3 | |||
| 35bae114a8 | |||
| 88a412ed3d | |||
| c301616ed2 | |||
| 35ffa682b1 | |||
| 551603feff | |||
| efbce85f4d | |||
| 2ca830dbaa | |||
| d927dbcd88 | |||
| bddbbcb132 | |||
| b3b1526f03 | |||
| 17138af7c4 | |||
| 69ba344de8 | |||
| da6f409246 | |||
| 25ebed2f8c | |||
| d263bd9df7 | |||
| 38e599d6a8 | |||
| 96d673e0f8 | |||
| b10609e6a1 | |||
| a1c02058ba | |||
| 15859f2357 | |||
| 886936837c | |||
| 6d917d0eeb | |||
| 93abf23a64 | |||
| 9c3dadd1c9 | |||
| 3cb5769883 | |||
| ea7bd68d10 | |||
| 48259264a4 | |||
| 24a3d12b82 | |||
| 9855aea21b | |||
| 4b5b8a6a3b | |||
| 4863e5fba5 | |||
| 0d8451c3a4 | |||
| 0a56bcc03d | |||
| 0920ab9131 | |||
| 238c0d93b4 | |||
| 5b0ed8391d | |||
| c31d4a57a6 | |||
| d1fa714cb1 | |||
| 969da7d70b | |||
| eeec9e3390 | |||
| f93bf2b189 | |||
| 7cd7409142 | |||
| be39e3cd18 | |||
| 34f1a806d5 | |||
| 00c1bde5d8 | |||
| 3989a79824 | |||
| 1efce68605 | |||
| 30870b4f66 | |||
| 78ed8f57d8 | |||
| db6c264a1e | |||
| 9f3974a319 | |||
| 2c97eca1ff | |||
| 5d712571af | |||
| d4d5291cc2 | |||
| 4816d20aa4 | |||
| 85362f028c | |||
| 62de37a38e | |||
| 8195824206 | |||
| f092153fbe | |||
| 1da8f0e1dd | |||
| ccede2b264 | |||
| 24a36d6d5f | |||
| 8fb26dac61 | |||
| 7439a8b5fc | |||
| 4e11683368 | |||
| 452a723bf2 | |||
| d1e21a979b | |||
| 72ff3a9686 | |||
| 66aaa7722d | |||
| d643c2aba1 | |||
| 91642db952 | |||
| fd22220687 | |||
| b2f775456e | |||
| cad5c0a6ed | |||
| 8f10d5e393 | |||
| 40766ca1b8 | |||
| 2e32f5d28d | |||
| 61b1d2f6ae | |||
| 9974fca047 | |||
| 3fb4b4f163 | |||
| 2e33fe4191 | |||
| e39400a4b6 | |||
| ffa48c9146 | |||
| d5c5154fcf | |||
| 9a93973708 | |||
| 134810b3d9 | |||
| 75f89dc44c | |||
| e739194926 | |||
| 250ee65d72 | |||
| 9b9cef3145 | |||
| d05f88679b | |||
| beb16b2c81 | |||
| fe2e10c71b | |||
| 82c73fd510 | |||
| bfd610430c | |||
| e35879c276 | |||
| ebf778061d | |||
| 28b3a1c7e5 | |||
| bc192a2b09 | |||
| 980ad394a8 | |||
| 391d7b2763 | |||
| d1f6d1c8af | |||
| 6d525288c1 | |||
| 6faec54505 | |||
| 5ed5d5f128 | |||
| b63ba84832 | |||
| 9c6459e4cb | |||
| 1a2f8fb828 | |||
| cbcbdb1ceb | |||
| a811dd6608 | |||
| ca871491ed | |||
| 3b61cb450d | |||
| edc4fa3188 | |||
| 25b79d9fd3 | |||
| aea2fc38c3 | |||
| e691b26f6f | |||
| c690357928 | |||
| d1c2e15eb3 | |||
| af7c4a92e6 | |||
| 46004e83a2 | |||
| 43b05fa314 | |||
| a11f326528 | |||
| fd57d2b534 | |||
| 7be15d9356 | |||
| 1b62745b1d | |||
| 78029b34ed | |||
| c889d5888b | |||
| 39e227c7ae | |||
| 1c768fe537 | |||
| bf0e382e16 | |||
| b26b4cd03c | |||
| f13cf9ad50 | |||
| 955fa9533a | |||
| acf092d348 | |||
| 69d357ba12 | |||
| dcdc3fafe5 | |||
| c05cfb67da | |||
| 7406274041 | |||
| 8b59631855 | |||
| a1887f2c96 | |||
| 222f5b082a | |||
| b031a455a9 | |||
| db87eb6c67 | |||
| 9743d64e4e | |||
| a43065272f | |||
| 998eeafe58 | |||
| 571da8fc43 | |||
| 39c89e71a8 | |||
| 1f958a7d52 | |||
| aa39a8e175 | |||
| 8d370e91cb | |||
| 7883c2bbe7 | |||
| 2a56e1264f | |||
| e4c34c23de | |||
| 82eb5ea8f3 | |||
| 10398b4706 | |||
| 01d079fd8e | |||
| c92acb9693 | |||
| 8db957ee3a | |||
| c9ca4fce3f | |||
| fa2dea61df | |||
| b5b647b084 | |||
| d2bd88b122 | |||
| 381ac93bb5 | |||
| a061fe601e | |||
| 7c32b6861e | |||
| 7090c27bb2 | |||
| 2f2cdc745a | |||
| 3bc94cab69 | |||
| f6084f6324 | |||
| 9323a3153b | |||
| 3257d449fa | |||
| ef51831ee8 | |||
| dc5ce861bf | |||
| 21fe7b481a | |||
| a4cf256159 | |||
| d746268e92 | |||
| 4433195ab7 | |||
| 4c05edb33a | |||
| 9b14d978aa | |||
| 519cc6ca12 | |||
| b45f0d7946 | |||
| a4c4daf364 | |||
| e95f275f57 | |||
| ef31eabc68 | |||
| 995a148575 | |||
| 63a164172d | |||
| e25810ae29 | |||
| 073a4bd1c0 | |||
| b7954776fd | |||
| b18c9bbaba | |||
| 0590ec3fd9 | |||
| c11f172187 | |||
| 169a0ff911 | |||
| d2f058e76c | |||
| f877a7d12a | |||
| 133707123e | |||
| 7e4bbda573 | |||
| e7cfc4ef4c | |||
| 16ee07f22a | |||
| 40bc242579 | |||
| 661175bc82 | |||
| 3132aac043 | |||
| c82b432d4a | |||
| fa6ecb9aa7 | |||
| c83919c7a6 | |||
| 98f47f2a40 | |||
| 8c1e77fb58 | |||
| 5fc5ce0fe4 | |||
| 3ed5e73146 | |||
| 9a8bff0285 | |||
| a79b122400 | |||
| d9b4b3f069 | |||
| 278be671a3 | |||
| 70dc14fbd0 | |||
| cb4e1c3f3a | |||
| 395b1c7454 | |||
| 9b4b150395 | |||
| 197b4484a3 | |||
| b98c62ba49 | |||
| c411def234 | |||
| 308cc5e21e | |||
| 9e0a147d50 | |||
| 418cb3b93f | |||
| 1209261e93 | |||
| e2251109c7 | |||
| 15cc2a9f1a | |||
| e85250b1d1 | |||
| cfb3bf25fb | |||
| 1bf905ddaa | |||
| 0a4d968500 | |||
| 0a71900bc9 | |||
| 2f0a0a17a4 | |||
| 7576cd38df | |||
| 9a99273b48 | |||
| f5792c7c4a | |||
| db66e018ea | |||
| 1f6584ee85 | |||
| 334d64d1e8 | |||
| 940635343a | |||
| 9a88f89799 | |||
| 519e8e4182 | |||
| a6760f6456 | |||
| 45ac4ff270 | |||
| 6e9ff050c8 | |||
| 9db713a1dc | |||
| 1b583cfefa | |||
| cf73f0c95e | |||
| b1d920531f | |||
| 452a4e80c3 | |||
| c27df94e1f | |||
| d04b13a380 | |||
| 2b0879bfc2 | |||
| ed46f14321 | |||
| 05d1f8c9c6 | |||
| 25d806e953 | |||
| 65813781a2 | |||
| 7c2134beda | |||
| a30a605d21 | |||
| 571841b7fc | |||
| 7ea3cd7c3e | |||
| 214efc2c3c | |||
| 49628fe13e | |||
| e4fbb14414 | |||
| c055747867 | |||
| eda2b3589c | |||
| 1c445dca51 | |||
| 1700c543a5 | |||
| 17d8fc1806 | |||
| 04668ebe7a | |||
| 651f6c31ac | |||
| 86a44fb896 | |||
| 4cfe5d2bca | |||
| c8acd80548 | |||
| 4634a89d18 | |||
| 7c25fe45a6 | |||
| 02a43f82a9 | |||
| cfea9c04ef | |||
| 7d8ffb344f | |||
| 4aba6e3d1a | |||
| 978b39744b | |||
| ebda51968b | |||
| 9195dbdbca | |||
| d559979c54 | |||
| d345f409b7 | |||
| 28598f3939 | |||
| 948c859571 | |||
| 97814fbf0f | |||
| eebad39f26 | |||
| db100c5cde | |||
| 11fcf0e066 | |||
| b6374e09b0 | |||
| a111d0151f | |||
| 446c7806b2 | |||
| 33e0a2540a | |||
| aed074860a | |||
| 9afa014552 | |||
| 46fe9b46d8 | |||
| cf656f5a02 | |||
| edec3385b6 | |||
| f9310cbd0c | |||
| 7560ae5caf | |||
| e7a8341c7c | |||
| c51e397fe8 | |||
| 2385b60d83 | |||
| da7e702c6f | |||
| 4d676f0852 | |||
| d5ec121f95 | |||
| 8a93a598d9 | |||
| 1cfde82ffd | |||
| f0e0238016 | |||
| aaddce5d26 | |||
| 3430857b64 | |||
| 8b0fe06c89 | |||
| 9d827170a3 | |||
| 6c1208d083 | |||
| 388ee3de66 | |||
| 2f77b6cfec | |||
| c68f7ede6a | |||
| 0cd3d9717e | |||
| 5f1d6af2b6 | |||
| 772a66732d | |||
| 63f1fde277 | |||
| d5b28447e0 | |||
| 09dbf9ff16 | |||
| 343041c4c4 | |||
| ed701ca963 | |||
| 7629a9c6e5 | |||
| 709c9f1f25 | |||
| b4be5a8adb | |||
| ad44437ba3 | |||
| 9e05252b46 | |||
| d200972e7f | |||
| d5b68aba2f | |||
| a324d3a1a7 | |||
| b00b33d77e | |||
| efa9084628 | |||
| 803f37eaaa | |||
| fd9f124971 | |||
| 1ea291a417 | |||
| 11fd7ea639 | |||
| f028dff33d | |||
| b4614656b8 | |||
| 25f9c78961 | |||
| 5390d6664f | |||
| 382b6a4852 | |||
| 272e31c0bd | |||
| 74f8c2cf5f | |||
| 8c1fb50705 | |||
| 7eb719df13 | |||
| 284203f171 | |||
| 90a6c759ca | |||
| 2298e69b5f | |||
| a03ea40792 | |||
| 96d999fbe8 | |||
| c2170a5b39 | |||
| 6b2d25efc7 | |||
| 281cc4b3cd | |||
| 4f686d139f | |||
| 31894a2155 | |||
| 7851b45196 | |||
| 4186be8111 | |||
| e7ebb662d7 | |||
| 5be4e52b65 | |||
| 01aae1cc68 | |||
| c7dec926f6 | |||
| 51bb12d17b | |||
| 47826cacf0 | |||
| c4e464333e | |||
| d1557e66d3 | |||
| 80d85c5d7b | |||
| 76aab90ab6 | |||
| 8d74b5aee9 | |||
| cf349c4a97 | |||
| 905d0f0af4 | |||
| 643ecf7b11 | |||
| 4fd9375028 | |||
| 661a34fd4f | |||
| 361c29e174 | |||
| b98d89efd4 | |||
| 8b6725b0cf | |||
| 1d75472626 | |||
| 2f427c2d16 | |||
| 755b85359b | |||
| 32e46e000f | |||
| 4f168f69a3 | |||
| 3e8d14d8a1 | |||
| a067f85e08 | |||
| c76ac49d26 | |||
| a6221a144a | |||
| 79ee45b428 | |||
| 691a3ec047 | |||
| 3a763ba0c3 | |||
| f2056f726d | |||
| 1d65ec7eeb | |||
| 26908554b2 | |||
| b311efd0bd | |||
| 3d158cdc8d |
@ -1,9 +1,14 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
import sys
|
||||
import zipfile
|
||||
|
||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 250 MB
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 250))
|
||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 400 MiB
|
||||
# Note that we have 400 MiB quota, please use it wisely.
|
||||
# See https://github.com/pypi/support/issues/3792 .
|
||||
# Please also sync the value with the one in Dockerfile.
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 400))
|
||||
|
||||
|
||||
def print_top_10_largest_files(zip_file):
|
||||
|
||||
26
.buildkite/generate_index.py
Normal file
26
.buildkite/generate_index.py
Normal file
@ -0,0 +1,26 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
template = """<!DOCTYPE html>
|
||||
<html>
|
||||
<body>
|
||||
<h1>Links for vLLM</h1/>
|
||||
<a href="../{wheel_html_escaped}">{wheel}</a><br/>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--wheel", help="The wheel path.", required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
filename = os.path.basename(args.wheel)
|
||||
|
||||
with open("index.html", "w") as f:
|
||||
print(f"Generated index.html for {args.wheel}")
|
||||
# cloudfront requires escaping the '+' character
|
||||
f.write(
|
||||
template.format(wheel=filename,
|
||||
wheel_html_escaped=filename.replace("+", "%2B")))
|
||||
@ -0,0 +1,11 @@
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM -b "auto" -t 2
|
||||
model_name: "nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.6353
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.637
|
||||
limit: null
|
||||
num_fewshot: null
|
||||
@ -1,3 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
LM eval harness on model to compare vs HF baseline computed offline.
|
||||
Configs are found in configs/$MODEL.yaml
|
||||
|
||||
@ -1,15 +1,13 @@
|
||||
# vLLM benchmark suite
|
||||
|
||||
|
||||
## Introduction
|
||||
|
||||
This directory contains two sets of benchmark for vllm.
|
||||
|
||||
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
|
||||
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
|
||||
|
||||
|
||||
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
|
||||
|
||||
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
|
||||
|
||||
## Performance benchmark quick overview
|
||||
|
||||
@ -19,17 +17,14 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performan
|
||||
|
||||
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
|
||||
|
||||
|
||||
## Nightly benchmark quick overview
|
||||
|
||||
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
|
||||
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
|
||||
|
||||
**Benchmarking engines**: vllm, TGI, trt-llm and lmdeploy.
|
||||
|
||||
**Benchmarking Duration**: about 3.5hrs.
|
||||
|
||||
|
||||
|
||||
## Trigger the benchmark
|
||||
|
||||
Performance benchmark will be triggered when:
|
||||
@ -39,16 +34,11 @@ Performance benchmark will be triggered when:
|
||||
Nightly benchmark will be triggered when:
|
||||
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
|
||||
|
||||
|
||||
|
||||
|
||||
## Performance benchmark details
|
||||
|
||||
|
||||
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
|
||||
|
||||
|
||||
#### Latency test
|
||||
### Latency test
|
||||
|
||||
Here is an example of one test inside `latency-tests.json`:
|
||||
|
||||
@ -68,23 +58,25 @@ Here is an example of one test inside `latency-tests.json`:
|
||||
```
|
||||
|
||||
In this example:
|
||||
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
|
||||
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
|
||||
|
||||
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
|
||||
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
|
||||
|
||||
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.
|
||||
|
||||
WARNING: The benchmarking script will save json results by itself, so please do not configure `--output-json` parameter in the json file.
|
||||
|
||||
### Throughput test
|
||||
|
||||
#### Throughput test
|
||||
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
|
||||
|
||||
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
|
||||
|
||||
#### Serving test
|
||||
### Serving test
|
||||
|
||||
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
|
||||
|
||||
```
|
||||
```json
|
||||
[
|
||||
{
|
||||
"test_name": "serving_llama8B_tp1_sharegpt",
|
||||
@ -109,6 +101,7 @@ We test the throughput by using `benchmark_serving.py` with request rate = inf t
|
||||
```
|
||||
|
||||
Inside this example:
|
||||
|
||||
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
|
||||
- The `server-parameters` includes the command line arguments for vLLM server.
|
||||
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
|
||||
@ -118,36 +111,33 @@ The number of this test is less stable compared to the delay and latency benchma
|
||||
|
||||
WARNING: The benchmarking script will save json results by itself, so please do not configure `--save-results` or other results-saving-related parameters in `serving-tests.json`.
|
||||
|
||||
#### Visualizing the results
|
||||
### Visualizing the results
|
||||
|
||||
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
|
||||
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
|
||||
If you do not see the table, please wait till the benchmark finish running.
|
||||
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
|
||||
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
|
||||
|
||||
|
||||
|
||||
## Nightly test details
|
||||
|
||||
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
|
||||
|
||||
### Workflow
|
||||
|
||||
#### Workflow
|
||||
|
||||
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
|
||||
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
|
||||
- Inside each container, we run [run-nightly-suite.sh](run-nightly-suite.sh), which will probe the serving engine of the current container.
|
||||
- The `run-nightly-suite.sh` will redirect the request to `tests/run-[llm serving engine name]-nightly.sh`, which parses the workload described in [nightly-tests.json](tests/nightly-tests.json) and performs the benchmark.
|
||||
- At last, we run [scripts/plot-nightly-results.py](scripts/plot-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
|
||||
|
||||
#### Nightly tests
|
||||
### Nightly tests
|
||||
|
||||
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
|
||||
|
||||
#### Docker containers
|
||||
### Docker containers
|
||||
|
||||
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
|
||||
|
||||
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `tests/run-[llm serving engine name]-nightly.sh`.
|
||||
|
||||
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).
|
||||
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
steps:
|
||||
- label: "Wait for container to be ready"
|
||||
key: wait-for-container-image
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
@ -9,10 +10,102 @@ steps:
|
||||
- image: badouralix/curl-jq
|
||||
command:
|
||||
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
|
||||
- wait
|
||||
- label: "Cleanup H100"
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: ~
|
||||
command: docker system prune -a --volumes --force
|
||||
|
||||
- label: "A100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: A100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch == "main"
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
priorityClassName: perf-benchmark
|
||||
containers:
|
||||
- image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 8
|
||||
volumeMounts:
|
||||
- name: devshm
|
||||
mountPath: /dev/shm
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
nodeSelector:
|
||||
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
|
||||
volumes:
|
||||
- name: devshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
|
||||
- label: "H200"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H200
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch == "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: 4,5,6,7
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
#- block: "Run H100 Benchmark"
|
||||
#key: block-h100
|
||||
#depends_on: ~
|
||||
|
||||
- label: "H100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch == "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
# Premerge benchmark
|
||||
- label: "A100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: A100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch != "main"
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
@ -41,20 +134,51 @@ steps:
|
||||
- name: devshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
# - label: "H100"
|
||||
# agents:
|
||||
# queue: H100
|
||||
# plugins:
|
||||
# - docker#v5.11.0:
|
||||
# image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
# command:
|
||||
# - bash
|
||||
# - .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
|
||||
# mount-buildkite-agent: true
|
||||
# propagate-environment: true
|
||||
# ipc: host
|
||||
# gpus: all
|
||||
# environment:
|
||||
# - VLLM_USAGE_SOURCE
|
||||
# - HF_TOKEN
|
||||
|
||||
- label: "H200"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H200
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch != "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: 4,5,6,7
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
#- block: "Run H100 Benchmark"
|
||||
#key: block-h100
|
||||
#depends_on: ~
|
||||
|
||||
- label: "H100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch != "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
@ -9,20 +9,19 @@ This file contains the downloading link for benchmarking results.
|
||||
|
||||
Please download the visualization scripts in the post
|
||||
|
||||
|
||||
## Results reproduction
|
||||
|
||||
- Find the docker we use in `benchmarking pipeline`
|
||||
- Deploy the docker, and inside the docker:
|
||||
- Download `nightly-benchmarks.zip`.
|
||||
- In the same folder, run the following code
|
||||
```
|
||||
export HF_TOKEN=<your HF token>
|
||||
apt update
|
||||
apt install -y git
|
||||
unzip nightly-benchmarks.zip
|
||||
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
|
||||
```
|
||||
- Download `nightly-benchmarks.zip`.
|
||||
- In the same folder, run the following code:
|
||||
|
||||
```console
|
||||
export HF_TOKEN=<your HF token>
|
||||
apt update
|
||||
apt install -y git
|
||||
unzip nightly-benchmarks.zip
|
||||
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
|
||||
```
|
||||
|
||||
And the results will be inside `./benchmarks/results`.
|
||||
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
# Nightly benchmark
|
||||
|
||||
This benchmark aims to:
|
||||
|
||||
- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload.
|
||||
- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions.
|
||||
|
||||
@ -9,7 +10,6 @@ Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html)
|
||||
|
||||
Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
|
||||
|
||||
|
||||
## Setup
|
||||
|
||||
- Docker images:
|
||||
@ -33,7 +33,7 @@ Latest reproduction guilde: [github issue link](https://github.com/vllm-project/
|
||||
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
|
||||
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
|
||||
|
||||
# Known issues
|
||||
## Known issues
|
||||
|
||||
- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105).
|
||||
- TGI does not support `ignore-eos` flag.
|
||||
- TGI does not support `ignore-eos` flag.
|
||||
|
||||
@ -7,10 +7,8 @@
|
||||
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
||||
- Evaluation metrics: end-to-end latency (mean, median, p99).
|
||||
|
||||
|
||||
{latency_tests_markdown_table}
|
||||
|
||||
|
||||
## Throughput tests
|
||||
|
||||
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
|
||||
@ -19,10 +17,8 @@
|
||||
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
||||
- Evaluation metrics: throughput.
|
||||
|
||||
|
||||
{throughput_tests_markdown_table}
|
||||
|
||||
|
||||
## Serving tests
|
||||
|
||||
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
|
||||
@ -33,13 +29,11 @@
|
||||
- We also added a speculative decoding test for llama-3 70B, under QPS 2
|
||||
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
|
||||
|
||||
|
||||
{serving_tests_markdown_table}
|
||||
|
||||
|
||||
## json version of the benchmarking tables
|
||||
|
||||
This section contains the data of the markdown tables above in JSON format.
|
||||
This section contains the data of the markdown tables above in JSON format.
|
||||
You can load the benchmarking tables into pandas dataframes as follows:
|
||||
|
||||
```python
|
||||
@ -54,9 +48,9 @@ serving_results = pd.DataFrame.from_dict(benchmarking_results["serving"])
|
||||
```
|
||||
|
||||
The json string for all benchmarking tables:
|
||||
|
||||
```json
|
||||
{benchmarking_results_in_json_string}
|
||||
```
|
||||
|
||||
You can also check the raw experiment data in the Artifact tab of the Buildkite page.
|
||||
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
@ -82,8 +84,13 @@ if __name__ == "__main__":
|
||||
# this result is generated via `benchmark_serving.py`
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
try:
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
except OSError as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
raw_result.update(command)
|
||||
|
||||
# update the test name of this result
|
||||
@ -97,8 +104,13 @@ if __name__ == "__main__":
|
||||
# this result is generated via `benchmark_latency.py`
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
try:
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
except OSError as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
raw_result.update(command)
|
||||
|
||||
# update the test name of this result
|
||||
@ -119,8 +131,13 @@ if __name__ == "__main__":
|
||||
# this result is generated via `benchmark_throughput.py`
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
try:
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
except OSError as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
raw_result.update(command)
|
||||
|
||||
# update the test name of this result
|
||||
@ -157,6 +174,18 @@ if __name__ == "__main__":
|
||||
throughput_results,
|
||||
serving_results)
|
||||
|
||||
for df in [latency_results, serving_results, throughput_results]:
|
||||
if df.empty:
|
||||
continue
|
||||
|
||||
# Sort all dataframes by their respective "Test name" columns
|
||||
df.sort_values(by="Test name", inplace=True)
|
||||
|
||||
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
|
||||
# we want to turn it into "8xGPUTYPE"
|
||||
df["GPU"] = df["GPU"].apply(
|
||||
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}")
|
||||
|
||||
# get markdown tables
|
||||
latency_md_table = tabulate(latency_results,
|
||||
headers='keys',
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
api_client = APIClient("http://localhost:8000")
|
||||
|
||||
@ -43,7 +43,7 @@ main() {
|
||||
|
||||
|
||||
|
||||
# The figures should be genereated by a separate process outside the CI/CD pipeline
|
||||
# The figures should be generated by a separate process outside the CI/CD pipeline
|
||||
|
||||
# # generate figures
|
||||
# python3 -m pip install tabulate pandas matplotlib
|
||||
|
||||
@ -301,6 +301,104 @@ run_serving_tests() {
|
||||
kill_gpu_processes
|
||||
}
|
||||
|
||||
run_genai_perf_tests() {
|
||||
# run genai-perf tests
|
||||
|
||||
# $1: a json file specifying genai-perf test cases
|
||||
local genai_perf_test_file
|
||||
genai_perf_test_file=$1
|
||||
|
||||
# Iterate over genai-perf tests
|
||||
jq -c '.[]' "$genai_perf_test_file" | while read -r params; do
|
||||
# get the test name, and append the GPU type back to it.
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
||||
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
||||
echo "Skip test case $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
# prepend the current serving engine to the test name
|
||||
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
|
||||
|
||||
# get common parameters
|
||||
common_params=$(echo "$params" | jq -r '.common_parameters')
|
||||
model=$(echo "$common_params" | jq -r '.model')
|
||||
tp=$(echo "$common_params" | jq -r '.tp')
|
||||
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
|
||||
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
|
||||
port=$(echo "$common_params" | jq -r '.port')
|
||||
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
|
||||
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
|
||||
|
||||
# get client and server arguments
|
||||
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
|
||||
qps_list=$(echo "$params" | jq -r '.qps_list')
|
||||
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
||||
echo "Running over qps list $qps_list"
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
if [[ $gpu_count -lt $tp ]]; then
|
||||
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
if [[ $reuse_server == "true" ]]; then
|
||||
echo "Reuse previous server for test case $test_name"
|
||||
else
|
||||
kill_gpu_processes
|
||||
bash "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh" \
|
||||
"$server_params" "$common_params"
|
||||
fi
|
||||
|
||||
if wait_for_server; then
|
||||
echo ""
|
||||
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
|
||||
else
|
||||
echo ""
|
||||
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
|
||||
break
|
||||
fi
|
||||
|
||||
# iterate over different QPS
|
||||
for qps in $qps_list; do
|
||||
# remove the surrounding single quote from qps
|
||||
if [[ "$qps" == *"inf"* ]]; then
|
||||
echo "qps was $qps"
|
||||
qps=$num_prompts
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
backend=$CURRENT_LLM_SERVING_ENGINE
|
||||
|
||||
if [[ "$backend" == *"vllm"* ]]; then
|
||||
backend="vllm"
|
||||
fi
|
||||
#TODO: add output dir.
|
||||
client_command="genai-perf profile \
|
||||
-m $model \
|
||||
--service-kind openai \
|
||||
--backend vllm \
|
||||
--endpoint-type chat \
|
||||
--streaming \
|
||||
--url localhost:$port \
|
||||
--request-rate $qps \
|
||||
--num-prompts $num_prompts \
|
||||
"
|
||||
|
||||
echo "Client command: $client_command"
|
||||
|
||||
eval "$client_command"
|
||||
|
||||
#TODO: process/record outputs
|
||||
done
|
||||
done
|
||||
|
||||
kill_gpu_processes
|
||||
|
||||
}
|
||||
|
||||
prepare_dataset() {
|
||||
|
||||
@ -328,12 +426,17 @@ main() {
|
||||
|
||||
pip install -U transformers
|
||||
|
||||
pip install -r requirements-dev.txt
|
||||
which genai-perf
|
||||
|
||||
# check storage
|
||||
df -h
|
||||
|
||||
ensure_installed wget
|
||||
ensure_installed curl
|
||||
ensure_installed jq
|
||||
# genai-perf dependency
|
||||
ensure_installed libb64-0d
|
||||
|
||||
prepare_dataset
|
||||
|
||||
@ -345,6 +448,10 @@ main() {
|
||||
# run the test
|
||||
run_serving_tests "$BENCHMARK_ROOT/tests/nightly-tests.json"
|
||||
|
||||
# run genai-perf tests
|
||||
run_genai_perf_tests "$BENCHMARK_ROOT/tests/genai-perf-tests.json"
|
||||
mv artifacts/ $RESULTS_FOLDER/
|
||||
|
||||
# upload benchmark results to buildkite
|
||||
python3 -m pip install tabulate pandas
|
||||
python3 "$BENCHMARK_ROOT/scripts/summary-nightly-results.py"
|
||||
|
||||
@ -6,6 +6,7 @@
|
||||
|
||||
# Do not set -e, as the mixtral 8x22B model tends to crash occasionally
|
||||
# and we still want to see other benchmarking results even when mixtral crashes.
|
||||
set -x
|
||||
set -o pipefail
|
||||
|
||||
check_gpus() {
|
||||
@ -85,11 +86,7 @@ kill_gpu_processes() {
|
||||
|
||||
ps -aux
|
||||
lsof -t -i:8000 | xargs -r kill -9
|
||||
pkill -f pt_main_thread
|
||||
# this line doesn't work now
|
||||
# ps aux | grep python | grep openai | awk '{print $2}' | xargs -r kill -9
|
||||
pkill -f python3
|
||||
pkill -f /usr/bin/python3
|
||||
pgrep python3 | xargs -r kill -9
|
||||
|
||||
|
||||
# wait until GPU memory usage smaller than 1GB
|
||||
@ -289,7 +286,7 @@ run_serving_tests() {
|
||||
# run the server
|
||||
echo "Running test case $test_name"
|
||||
echo "Server command: $server_command"
|
||||
eval "$server_command" &
|
||||
bash -c "$server_command" &
|
||||
server_pid=$!
|
||||
|
||||
# wait until the server is alive
|
||||
@ -312,17 +309,20 @@ run_serving_tests() {
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
|
||||
# pass the tensor parallel size to the client so that it can be displayed
|
||||
# on the benchmark dashboard
|
||||
client_command="python3 benchmark_serving.py \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
--metadata "tensor_parallel_size=$tp" \
|
||||
$client_args"
|
||||
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
echo "Client command: $client_command"
|
||||
|
||||
eval "$client_command"
|
||||
bash -c "$client_command"
|
||||
|
||||
# record the benchmarking commands
|
||||
jq_output=$(jq -n \
|
||||
@ -348,6 +348,11 @@ main() {
|
||||
check_gpus
|
||||
check_hf_token
|
||||
|
||||
# Set to v1 to run v1 benchmark
|
||||
if [[ "${ENGINE_VERSION:-v0}" == "v1" ]]; then
|
||||
export VLLM_USE_V1=1
|
||||
fi
|
||||
|
||||
# dependencies
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
(which jq) || (apt-get update && apt-get -y install jq)
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
|
||||
@ -1,6 +1,10 @@
|
||||
#!/bin/sh
|
||||
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-test-repo:pull" | jq -r .token)
|
||||
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
|
||||
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-postmerge-repo:pull" | jq -r .token)
|
||||
if [[ "$BUILDKITE_BRANCH" == "main" ]]; then
|
||||
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-postmerge-repo/manifests/$BUILDKITE_COMMIT"
|
||||
else
|
||||
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
|
||||
fi
|
||||
|
||||
TIMEOUT_SECONDS=10
|
||||
|
||||
|
||||
23
.buildkite/nightly-benchmarks/tests/genai-perf-tests.json
Normal file
23
.buildkite/nightly-benchmarks/tests/genai-perf-tests.json
Normal file
@ -0,0 +1,23 @@
|
||||
[
|
||||
{
|
||||
"test_name": "llama8B_tp1_genai_perf",
|
||||
"qps_list": [4,8,16,32],
|
||||
"common_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
"tp": 1,
|
||||
"port": 8000,
|
||||
"num_prompts": 500,
|
||||
"reuse_server": false
|
||||
},
|
||||
"vllm_server_parameters": {
|
||||
"disable_log_stats": "",
|
||||
"disable_log_requests": "",
|
||||
"gpu_memory_utilization": 0.9,
|
||||
"num_scheduler_steps": 10,
|
||||
"max_num_seqs": 512,
|
||||
"dtype": "bfloat16"
|
||||
},
|
||||
"genai_perf_input_parameters": {
|
||||
}
|
||||
}
|
||||
]
|
||||
@ -29,4 +29,4 @@
|
||||
"num-iters": 15
|
||||
}
|
||||
}
|
||||
]
|
||||
]
|
||||
|
||||
@ -66,8 +66,7 @@
|
||||
"swap_space": 16,
|
||||
"speculative_model": "turboderp/Qwama-0.5B-Instruct",
|
||||
"num_speculative_tokens": 4,
|
||||
"speculative_draft_tensor_parallel_size": 1,
|
||||
"use_v2_block_manager": ""
|
||||
"speculative_draft_tensor_parallel_size": 1
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
|
||||
@ -32,4 +32,4 @@
|
||||
"backend": "vllm"
|
||||
}
|
||||
}
|
||||
]
|
||||
]
|
||||
|
||||
@ -1,7 +1,18 @@
|
||||
steps:
|
||||
- label: "Build wheel - CUDA 12.4"
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- label: "Build wheel - CUDA 12.1"
|
||||
agents:
|
||||
queue: cpu_queue
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "mkdir artifacts"
|
||||
@ -18,7 +29,7 @@ steps:
|
||||
- label: "Build wheel - CUDA 11.8"
|
||||
# depends_on: block-build-cu118-wheel
|
||||
agents:
|
||||
queue: cpu_queue
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "mkdir artifacts"
|
||||
@ -26,3 +37,52 @@ steps:
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build release image"
|
||||
depends_on: ~
|
||||
key: block-release-image-build
|
||||
|
||||
- label: "Build release image"
|
||||
depends_on: block-release-image-build
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Build and publish TPU release image"
|
||||
depends_on: ~
|
||||
if: build.env("NIGHTLY") == "1"
|
||||
agents:
|
||||
queue: tpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f Dockerfile.tpu ."
|
||||
- "docker push vllm/vllm-tpu:nightly"
|
||||
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
|
||||
plugins:
|
||||
- docker-login#v3.0.0:
|
||||
username: vllm
|
||||
password-env: DOCKERHUB_TOKEN
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- input: "Provide Release version here"
|
||||
fields:
|
||||
- text: "What is the release version?"
|
||||
key: "release-version"
|
||||
|
||||
- block: "Build CPU release image"
|
||||
key: block-cpu-release-image-build
|
||||
depends_on: ~
|
||||
|
||||
- label: "Build and publish CPU release image"
|
||||
depends_on: block-cpu-release-image-build
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --progress plain -f Dockerfile.cpu ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -77,7 +77,6 @@ echo "Commands:$commands"
|
||||
#ignore certain kernels tests
|
||||
if [[ $commands == *" kernels "* ]]; then
|
||||
commands="${commands} \
|
||||
--ignore=kernels/test_attention.py \
|
||||
--ignore=kernels/test_attention_selector.py \
|
||||
--ignore=kernels/test_blocksparse_attention.py \
|
||||
--ignore=kernels/test_causal_conv1d.py \
|
||||
@ -85,7 +84,6 @@ if [[ $commands == *" kernels "* ]]; then
|
||||
--ignore=kernels/test_encoder_decoder_attn.py \
|
||||
--ignore=kernels/test_flash_attn.py \
|
||||
--ignore=kernels/test_flashinfer.py \
|
||||
--ignore=kernels/test_gguf.py \
|
||||
--ignore=kernels/test_int8_quant.py \
|
||||
--ignore=kernels/test_machete_gemm.py \
|
||||
--ignore=kernels/test_mamba_ssm.py \
|
||||
@ -93,7 +91,14 @@ if [[ $commands == *" kernels "* ]]; then
|
||||
--ignore=kernels/test_moe.py \
|
||||
--ignore=kernels/test_prefix_prefill.py \
|
||||
--ignore=kernels/test_rand.py \
|
||||
--ignore=kernels/test_sampler.py"
|
||||
--ignore=kernels/test_sampler.py \
|
||||
--ignore=kernels/test_cascade_flash_attn.py \
|
||||
--ignore=kernels/test_mamba_mixer2.py \
|
||||
--ignore=kernels/test_aqlm.py \
|
||||
--ignore=kernels/test_machete_mm.py \
|
||||
--ignore=kernels/test_mha_attn.py \
|
||||
--ignore=kernels/test_block_fp8.py \
|
||||
--ignore=kernels/test_permute_cols.py"
|
||||
fi
|
||||
|
||||
#ignore certain Entrypoints tests
|
||||
@ -122,6 +127,8 @@ if [[ $commands == *"--shard-id="* ]]; then
|
||||
--rm \
|
||||
-e HIP_VISIBLE_DEVICES="${GPU}" \
|
||||
-e HF_TOKEN \
|
||||
-e AWS_ACCESS_KEY_ID \
|
||||
-e AWS_SECRET_ACCESS_KEY \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
--name "${container_name}_${GPU}" \
|
||||
@ -149,6 +156,8 @@ else
|
||||
--rm \
|
||||
-e HIP_VISIBLE_DEVICES=0 \
|
||||
-e HF_TOKEN \
|
||||
-e AWS_ACCESS_KEY_ID \
|
||||
-e AWS_SECRET_ACCESS_KEY \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
--name "${container_name}" \
|
||||
|
||||
@ -4,49 +4,11 @@
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t cpu-test -f Dockerfile.ppc64le .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f cpu-test || true; }
|
||||
remove_docker_container() { docker rm -f cpu-test || true; docker system prune -f; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
source /etc/environment
|
||||
#docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN="$HF_TOKEN" --name cpu-test cpu-test
|
||||
# Try building the docker image
|
||||
docker build -t cpu-test -f Dockerfile.ppc64le .
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test bash -c "
|
||||
set -e
|
||||
pip install pytest pytest-asyncio \
|
||||
decord einops librosa peft Pillow sentence-transformers soundfile \
|
||||
transformers_stream_generator matplotlib datamodel_code_generator
|
||||
pip install torchvision --index-url https://download.pytorch.org/whl/cpu
|
||||
pytest -v -s tests/models/decoder_only/language -m cpu_model
|
||||
pytest -v -s tests/models/embedding/language -m cpu_model
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
|
||||
|
||||
# online inference
|
||||
docker exec cpu-test bash -c "
|
||||
set -e
|
||||
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m &
|
||||
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--dataset-name random \
|
||||
--model facebook/opt-125m \
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions \
|
||||
--tokenizer facebook/opt-125m"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 25 mins.
|
||||
export -f cpu_tests
|
||||
timeout 25m bash -c "cpu_tests"
|
||||
|
||||
@ -9,35 +9,33 @@ CORE_RANGE=${CORE_RANGE:-48-95}
|
||||
NUMA_NODE=${NUMA_NODE:-1}
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test -f Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test-"$BUILDKITE_BUILD_NUMBER" -f Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 -f Dockerfile.cpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f cpu-test cpu-test-avx2 || true; }
|
||||
remove_docker_container() { set -e; docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
export NUMA_NODE=$2
|
||||
|
||||
# offline inference
|
||||
docker exec cpu-test-avx2 bash -c "
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference.py"
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test bash -c "
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pip install pytest pytest-asyncio \
|
||||
decord einops librosa peft Pillow sentence-transformers soundfile \
|
||||
transformers_stream_generator matplotlib datamodel_code_generator
|
||||
pip install torchvision --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r vllm/requirements-test.txt
|
||||
pytest -v -s tests/models/decoder_only/language -m cpu_model
|
||||
pytest -v -s tests/models/embedding/language -m cpu_model
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
|
||||
@ -45,20 +43,26 @@ function cpu_tests() {
|
||||
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
|
||||
|
||||
# Run compressed-tensor test
|
||||
docker exec cpu-test bash -c "
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
|
||||
|
||||
# Run AWQ test
|
||||
docker exec cpu-test bash -c "
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_ipex_quant.py"
|
||||
|
||||
# online inference
|
||||
docker exec cpu-test bash -c "
|
||||
# Run chunked-prefill and prefix-cache test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v -k cpu_model \
|
||||
tests/basic_correctness/test_chunked_prefill.py"
|
||||
|
||||
# online serving
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
export VLLM_CPU_KVCACHE_SPACE=10
|
||||
export VLLM_CPU_OMP_THREADS_BIND=$1
|
||||
@ -71,8 +75,14 @@ function cpu_tests() {
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions \
|
||||
--tokenizer facebook/opt-125m"
|
||||
|
||||
# Run multi-lora tests
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/lora/test_qwen2vl.py"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 25 mins.
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
export -f cpu_tests
|
||||
timeout 25m bash -c "cpu_tests $CORE_RANGE"
|
||||
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
|
||||
|
||||
28
.buildkite/run-gh200-test.sh
Normal file
28
.buildkite/run-gh200-test.sh
Normal file
@ -0,0 +1,28 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the GH200 docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Skip the new torch installation during build since we are using the specified version for arm64 in the Dockerfile
|
||||
python3 use_existing_torch.py
|
||||
|
||||
# Try building the docker image
|
||||
DOCKER_BUILDKIT=1 docker build . \
|
||||
--target vllm-openai \
|
||||
--platform "linux/arm64" \
|
||||
-t gh200-test \
|
||||
--build-arg max_jobs=66 \
|
||||
--build-arg nvcc_threads=2 \
|
||||
--build-arg torch_cuda_arch_list="9.0+PTX" \
|
||||
--build-arg vllm_fa_cmake_gpu_arches="90-real"
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f gh200-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and test offline inference
|
||||
docker run -e HF_TOKEN -v /root/.cache/huggingface:/root/.cache/huggingface --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
|
||||
python3 examples/offline_inference/basic/generate.py --model meta-llama/Llama-3.2-1B
|
||||
'
|
||||
@ -8,9 +8,17 @@ set -ex
|
||||
docker build -t hpu-test-env -f Dockerfile.hpu .
|
||||
|
||||
# Setup cleanup
|
||||
# certain versions of HPU software stack have a bug that can
|
||||
# override the exit code of the script, so we need to use
|
||||
# separate remove_docker_container and remove_docker_container_and_exit
|
||||
# functions, while other platforms only need one remove_docker_container
|
||||
# function.
|
||||
EXITCODE=1
|
||||
remove_docker_container() { docker rm -f hpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container_and_exit() { remove_docker_container; exit $EXITCODE; }
|
||||
trap remove_docker_container_and_exit EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --runtime=habana --name=hpu-test --network=host -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference.py
|
||||
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
EXITCODE=$?
|
||||
|
||||
@ -3,6 +3,18 @@
|
||||
# This script build the Neuron docker image and run the API server inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -e
|
||||
set -v
|
||||
|
||||
image_name="neuron/vllm-ci"
|
||||
container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
|
||||
HF_CACHE="$(realpath ~)/huggingface"
|
||||
mkdir -p "${HF_CACHE}"
|
||||
HF_MOUNT="/root/.cache/huggingface"
|
||||
|
||||
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
|
||||
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
|
||||
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
|
||||
|
||||
# Try building the docker image
|
||||
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
|
||||
@ -13,41 +25,30 @@ if [ -f /tmp/neuron-docker-build-timestamp ]; then
|
||||
last_build=$(cat /tmp/neuron-docker-build-timestamp)
|
||||
current_time=$(date +%s)
|
||||
if [ $((current_time - last_build)) -gt 86400 ]; then
|
||||
docker system prune -f
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune -f
|
||||
echo "$current_time" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
else
|
||||
date "+%s" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
|
||||
docker build -t neuron -f Dockerfile.neuron .
|
||||
docker build -t "${image_name}" -f Dockerfile.neuron .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f neuron || true; }
|
||||
remove_docker_container() {
|
||||
docker image rm -f "${image_name}" || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image
|
||||
docker run --device=/dev/neuron0 --device=/dev/neuron1 --network host --name neuron neuron python3 -m vllm.entrypoints.api_server \
|
||||
--model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --max-num-seqs 8 --max-model-len 128 --block-size 128 --device neuron --tensor-parallel-size 2 &
|
||||
|
||||
# Wait for the server to start
|
||||
wait_for_server_to_start() {
|
||||
timeout=300
|
||||
counter=0
|
||||
|
||||
while [ "$(curl -s -o /dev/null -w '%{http_code}' localhost:8000/health)" != "200" ]; do
|
||||
sleep 1
|
||||
counter=$((counter + 1))
|
||||
if [ $counter -ge $timeout ]; then
|
||||
echo "Timeout after $timeout seconds"
|
||||
break
|
||||
fi
|
||||
done
|
||||
}
|
||||
wait_for_server_to_start
|
||||
|
||||
# Test a simple prompt
|
||||
curl -X POST -H "Content-Type: application/json" \
|
||||
localhost:8000/generate \
|
||||
-d '{"prompt": "San Francisco is a"}'
|
||||
docker run --rm -it --device=/dev/neuron0 --device=/dev/neuron1 --network host \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
--name "${container_name}" \
|
||||
${image_name} \
|
||||
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py && python3 -m pytest /workspace/vllm/tests/neuron/ -v --capture=tee-sys"
|
||||
|
||||
@ -13,4 +13,4 @@ trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference.py
|
||||
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
|
||||
11
.buildkite/run-tpu-test.sh
Normal file → Executable file
11
.buildkite/run-tpu-test.sh
Normal file → Executable file
@ -14,4 +14,13 @@ remove_docker_container
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it -e "HF_TOKEN=$HF_TOKEN" --name tpu-test vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git && python3 -m pip install pytest && python3 -m pip install lm_eval[api]==0.4.4 && pytest -v -s /workspace/vllm/tests/entrypoints/openai/test_accuracy.py && pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py && python3 /workspace/vllm/tests/tpu/test_compilation.py && python3 /workspace/vllm/examples/offline_inference_tpu.py"
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& pytest -v -s /workspace/vllm/tests/entrypoints/openai/test_accuracy.py \
|
||||
&& pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_compilation.py \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
|
||||
&& python3 /workspace/vllm/examples/offline_inference/tpu.py"
|
||||
|
||||
@ -12,5 +12,8 @@ remove_docker_container() { docker rm -f xpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --network host --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test python3 examples/offline_inference.py
|
||||
# Run the image and test offline inference/tensor parallel
|
||||
docker run --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test sh -c '
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
|
||||
'
|
||||
|
||||
@ -2,21 +2,20 @@
|
||||
# adding a new command to an existing step. See different options here for examples.
|
||||
|
||||
# This script will be feed into Jinja template in `test-template-aws.j2` at
|
||||
# https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2
|
||||
# https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2
|
||||
# to generate the final pipeline yaml file.
|
||||
|
||||
# Documentation
|
||||
# label(str): the name of the test. emoji allowed.
|
||||
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
|
||||
# fast_check_only(bool): run this test on fastcheck pipeline only
|
||||
# nightly(bool): run this test in nightly pipeline only
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually)
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
|
||||
# command(str): the single command to run for tests. incompatible with commands.
|
||||
# commands(list): the list of commands to run for test. incompatbile with command.
|
||||
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
|
||||
# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100
|
||||
# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4.
|
||||
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
|
||||
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
|
||||
# in this case, commands must be specified. the first command runs on first host, the second
|
||||
# command runs on the second host.
|
||||
# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests
|
||||
@ -25,8 +24,8 @@
|
||||
# When adding a test
|
||||
# - If the test belong to an existing group, add it there
|
||||
# - If the test is short, add to any existing step
|
||||
# - If the test takes more than 10min, then it is okay to create a new step.
|
||||
# Note that all steps execute in parallel.
|
||||
# - If the test takes more than 10min, then it is okay to create a new step.
|
||||
# Note that all steps execute in parallel.
|
||||
|
||||
steps:
|
||||
##### fast check tests #####
|
||||
@ -39,7 +38,7 @@ steps:
|
||||
- pip install -r requirements-docs.txt
|
||||
- SPHINXOPTS=\"-W\" make html
|
||||
# Check API reference (if it fails, you may have missing mock imports)
|
||||
- grep \"sig sig-object py\" build/html/dev/sampling_params.html
|
||||
- grep \"sig sig-object py\" build/html/api/inference_params.html
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test # 24min
|
||||
fast_check: true
|
||||
@ -51,7 +50,9 @@ steps:
|
||||
- tests/multimodal
|
||||
- tests/test_utils
|
||||
- tests/worker
|
||||
- tests/standalone_tests/lazy_imports.py
|
||||
commands:
|
||||
- python3 standalone_tests/lazy_imports.py
|
||||
- pytest -v -s mq_llm_engine # MQLLMEngine
|
||||
- pytest -v -s async_engine # AsyncLLMEngine
|
||||
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
|
||||
@ -60,6 +61,13 @@ steps:
|
||||
- pytest -v -s test_utils.py # Utils
|
||||
- pytest -v -s worker # Worker
|
||||
|
||||
- label: Python-only Installation Test
|
||||
source_file_dependencies:
|
||||
- tests/standalone_tests/python_only_compile.sh
|
||||
- setup.py
|
||||
commands:
|
||||
- bash standalone_tests/python_only_compile.sh
|
||||
|
||||
- label: Basic Correctness Test # 30min
|
||||
#mirror_hardwares: [amd]
|
||||
fast_check: true
|
||||
@ -68,7 +76,9 @@ steps:
|
||||
- tests/basic_correctness/test_basic_correctness
|
||||
- tests/basic_correctness/test_cpu_offload
|
||||
- tests/basic_correctness/test_preemption
|
||||
- tests/basic_correctness/test_cumem.py
|
||||
commands:
|
||||
- pytest -v -s basic_correctness/test_cumem.py
|
||||
- pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
@ -97,15 +107,17 @@ steps:
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/entrypoints/llm
|
||||
- tests/entrypoints/openai
|
||||
- tests/entrypoints/test_chat_utils
|
||||
- tests/entrypoints/offline_mode
|
||||
commands:
|
||||
- pip install -e ./plugins/vllm_add_dummy_model
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py
|
||||
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/correctness/
|
||||
- pytest -v -s entrypoints/test_chat_utils.py
|
||||
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
@ -116,24 +128,33 @@ steps:
|
||||
source_file_dependencies:
|
||||
- vllm/distributed/
|
||||
- vllm/core/
|
||||
- tests/distributed
|
||||
- tests/distributed/test_utils
|
||||
- tests/distributed/test_pynccl
|
||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||
- tests/compile
|
||||
- tests/compile/test_basic_correctness
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
commands:
|
||||
- VLLM_USE_V1=1 python3 ../examples/offline_inference/data_parallel.py
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- python3 ../examples/offline_inference/rlhf.py
|
||||
- RAY_DEDUP_LOGS=0 python3 ../examples/offline_inference/rlhf_colocate.py
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
num_gpus: 2
|
||||
num_gpus: 2
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/metrics
|
||||
- tests/tracing
|
||||
commands:
|
||||
- pytest -v -s metrics
|
||||
- pytest -v -s metrics
|
||||
- "pip install \
|
||||
'opentelemetry-sdk>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-api>=1.26.0,<1.27.0' \
|
||||
@ -160,6 +181,9 @@ steps:
|
||||
- vllm/
|
||||
- tests/engine
|
||||
- tests/tokenization
|
||||
- tests/test_sequence
|
||||
- tests/test_config
|
||||
- tests/test_logger
|
||||
commands:
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
|
||||
# OOM in the CI unless we run this separately
|
||||
@ -171,29 +195,44 @@ steps:
|
||||
- vllm/
|
||||
- tests/v1
|
||||
commands:
|
||||
- pytest -v -s v1
|
||||
# split the test to avoid interference
|
||||
- VLLM_USE_V1=1 pytest -v -s v1/core
|
||||
- VLLM_USE_V1=1 pytest -v -s v1/engine
|
||||
- VLLM_USE_V1=1 pytest -v -s v1/sample
|
||||
- VLLM_USE_V1=1 pytest -v -s v1/worker
|
||||
- VLLM_USE_V1=1 pytest -v -s v1/test_stats.py
|
||||
- VLLM_USE_V1=1 pytest -v -s v1/test_utils.py
|
||||
# TODO: accuracy does not match, whether setting
|
||||
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
|
||||
- VLLM_USE_V1=1 pytest -v -s v1/e2e
|
||||
# Integration test for streaming correctness (requires special branch).
|
||||
- pip install -U git+https://github.com/robertgshaw2-neuralmagic/lm-evaluation-harness.git@streaming-api
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
|
||||
- label: Examples Test # 15min
|
||||
- label: Examples Test # 25min
|
||||
working_dir: "/vllm-workspace/examples"
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/entrypoints
|
||||
- examples/
|
||||
commands:
|
||||
- pip install awscli tensorizer # for llava example and tensorizer test
|
||||
- python3 offline_inference.py
|
||||
- python3 cpu_offload.py
|
||||
- python3 offline_inference_chat.py
|
||||
- python3 offline_inference_with_prefix.py
|
||||
- python3 llm_engine_example.py
|
||||
- python3 offline_inference_vision_language.py
|
||||
- python3 offline_inference_vision_language_multi_image.py
|
||||
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference_encoder_decoder.py
|
||||
- python3 offline_profile.py --model facebook/opt-125m
|
||||
- pip install tensorizer # for tensorizer test
|
||||
- python3 offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
- python3 offline_inference/basic/generate.py --model meta-llama/Llama-2-13b-chat-hf --cpu-offload-gb 10
|
||||
- python3 offline_inference/basic/chat.py
|
||||
- python3 offline_inference/prefix_caching.py
|
||||
- python3 offline_inference/llm_engine_example.py
|
||||
- python3 offline_inference/vision_language.py
|
||||
- python3 offline_inference/vision_language_multi_image.py
|
||||
- python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference/encoder_decoder.py
|
||||
- python3 offline_inference/basic/classify.py
|
||||
- python3 offline_inference/basic/embed.py
|
||||
- python3 offline_inference/basic/score.py
|
||||
- python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
|
||||
- label: Prefix Caching Test # 9min
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/prefix_caching
|
||||
@ -205,6 +244,7 @@ steps:
|
||||
- vllm/model_executor/layers
|
||||
- vllm/sampling_metadata.py
|
||||
- tests/samplers
|
||||
- tests/conftest.py
|
||||
commands:
|
||||
- pytest -v -s samplers
|
||||
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
|
||||
@ -213,26 +253,32 @@ steps:
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers
|
||||
- vllm/model_executor/guided_decoding
|
||||
- tests/test_logits_processor
|
||||
command: pytest -v -s test_logits_processor.py
|
||||
- tests/model_executor/test_guided_processors
|
||||
commands:
|
||||
- pytest -v -s test_logits_processor.py
|
||||
- pytest -v -s model_executor/test_guided_processors.py
|
||||
|
||||
- label: Speculative decoding tests # 30min
|
||||
- label: Speculative decoding tests # 40min
|
||||
source_file_dependencies:
|
||||
- vllm/spec_decode
|
||||
- tests/spec_decode
|
||||
- vllm/model_executor/models/eagle.py
|
||||
commands:
|
||||
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py --ignore=spec_decode/e2e/test_mtp_correctness.py
|
||||
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
|
||||
|
||||
- label: LoRA Test %N # 15min each
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py --ignore=lora/test_transfomers_model.py
|
||||
parallelism: 4
|
||||
|
||||
- label: "PyTorch Fullgraph Smoke Test" # 9min
|
||||
- label: PyTorch Fullgraph Smoke Test # 9min
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -243,7 +289,7 @@ steps:
|
||||
- pytest -v -s compile/piecewise/test_simple.py
|
||||
- pytest -v -s compile/piecewise/test_toy_llama.py
|
||||
|
||||
- label: "PyTorch Fullgraph Test" # 18min
|
||||
- label: PyTorch Fullgraph Test # 18min
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/compile
|
||||
@ -295,6 +341,14 @@ steps:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- bash ./run-tests.sh -c configs/models-small.txt -t 1
|
||||
|
||||
- label: OpenAI API correctness
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/entrypoints/openai/
|
||||
- vllm/model_executor/models/whisper.py
|
||||
commands: # LMEval+Transcription WER check
|
||||
- pytest -s entrypoints/openai/correctness/
|
||||
|
||||
- label: Encoder Decoder tests # 5min
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -313,17 +367,16 @@ steps:
|
||||
|
||||
##### models test #####
|
||||
|
||||
- label: Basic Models Test # 30min
|
||||
- label: Basic Models Test # 24min
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models
|
||||
commands:
|
||||
- pip install -e ./plugins/vllm_add_dummy_model
|
||||
- pytest -v -s models/test_oot_registration.py # it needs a clean process
|
||||
- pytest -v -s models/test_transformers.py
|
||||
- pytest -v -s models/test_registry.py
|
||||
- pytest -v -s models/test_initialization.py
|
||||
|
||||
- label: Language Models Test (Standard) # 42min
|
||||
- label: Language Models Test (Standard) # 32min
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -333,10 +386,9 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/language -m core_model
|
||||
- pytest -v -s models/embedding/vision_language -m core_model
|
||||
|
||||
- label: Language Models Test (Extended) # 50min
|
||||
nightly: true
|
||||
- label: Language Models Test (Extended) # 1h10min
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/decoder_only/language
|
||||
@ -345,24 +397,28 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/embedding/language -m 'not core_model'
|
||||
- pytest -v -s models/embedding/vision_language -m 'not core_model'
|
||||
|
||||
- label: Multi-Modal Models Test (Standard) # 26min
|
||||
- label: Multi-Modal Models Test (Standard) # 40min
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/decoder_only/audio_language
|
||||
- tests/models/decoder_only/vision_language
|
||||
- tests/models/embedding/vision_language
|
||||
- tests/models/encoder_decoder/audio_language
|
||||
- tests/models/encoder_decoder/vision_language
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/audio_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m core_model
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) # 1h15m
|
||||
nightly: true
|
||||
- label: Multi-Modal Models Test (Extended) 1 # 48m
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/decoder_only/audio_language
|
||||
@ -370,14 +426,26 @@ steps:
|
||||
- tests/models/embedding/vision_language
|
||||
- tests/models/encoder_decoder/vision_language
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
|
||||
# HACK - run phi3v tests separately to sidestep this transformers bug
|
||||
# https://github.com/huggingface/transformers/issues/34307
|
||||
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 2 # 38m
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/decoder_only/vision_language
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=1) and not core_model and not quant_model'
|
||||
|
||||
# This test is used only in PR development phase to test individual models and should never run on main
|
||||
- label: Custom Models Test
|
||||
optional: true
|
||||
@ -412,11 +480,11 @@ steps:
|
||||
- tests/distributed/
|
||||
commands:
|
||||
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed'
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py
|
||||
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
|
||||
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed'
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
|
||||
- label: Distributed Tests (2 GPUs) # 40min
|
||||
#mirror_hardwares: [amd]
|
||||
@ -429,19 +497,48 @@ steps:
|
||||
- vllm/model_executor/models/
|
||||
- tests/distributed/
|
||||
- vllm/compilation
|
||||
- vllm/worker/worker_base.py
|
||||
- vllm/worker/worker.py
|
||||
- vllm/worker/model_runner.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
commands:
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- VLLM_USE_V1=1 torchrun --nproc-per-node=2 distributed/test_torchrun_example.py
|
||||
- torchrun --nproc-per-node=2 distributed/test_torchrun_example.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep -q 'Same node test passed'
|
||||
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m distributed_2_gpus
|
||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
|
||||
# Avoid importing model tests that cause CUDA reinitialization error
|
||||
- pytest models/encoder_decoder/language/test_bart.py -v -s -m distributed_2_gpus
|
||||
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m distributed_2_gpus
|
||||
- pytest models/decoder_only/vision_language/test_models.py -v -s -m distributed_2_gpus
|
||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
|
||||
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
|
||||
# this test fails consistently.
|
||||
# TODO: investigate and fix
|
||||
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/disagg_test.py
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/plugins/
|
||||
- tests/plugins/
|
||||
commands:
|
||||
# begin platform plugin tests, all the code in-between runs on dummy platform
|
||||
- pip install -e ./plugins/vllm_add_dummy_platform
|
||||
- pytest -v -s plugins_tests/test_platform_plugins.py
|
||||
- pip uninstall vllm_add_dummy_platform -y
|
||||
# end platform plugin tests
|
||||
# other tests continue here:
|
||||
- pytest -v -s plugins_tests/test_scheduler_plugins.py
|
||||
- pip install -e ./plugins/vllm_add_dummy_model
|
||||
- pytest -v -s distributed/test_distributed_oot.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
|
||||
- pytest -v -s models/test_oot_registration.py # it needs a clean process
|
||||
|
||||
- label: Multi-step Tests (4 GPUs) # 36min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
@ -458,7 +555,9 @@ steps:
|
||||
- vllm/engine
|
||||
- tests/multi_step
|
||||
commands:
|
||||
- pytest -v -s multi_step/test_correctness_async_llm.py
|
||||
# this test is quite flaky
|
||||
# TODO: investigate and fix.
|
||||
# - pytest -v -s multi_step/test_correctness_async_llm.py
|
||||
- pytest -v -s multi_step/test_correctness_llm.py
|
||||
|
||||
- label: Pipeline Parallelism Test # 45min
|
||||
@ -474,18 +573,24 @@ steps:
|
||||
- pytest -v -s distributed/test_pp_cudagraph.py
|
||||
- pytest -v -s distributed/test_pipeline_parallel.py
|
||||
|
||||
- label: LoRA Long Context (Distributed) # 11min
|
||||
# This test runs llama 13B, so it is required to run on 4 GPUs.
|
||||
- label: LoRA TP Test (Distributed)
|
||||
num_gpus: 4
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora/test_long_context
|
||||
- tests/lora
|
||||
commands:
|
||||
# FIXIT: find out which code initialize cuda before running the test
|
||||
# before the fix, we need to use spawn to test it
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
# This test runs llama 13B, so it is required to run on 4 GPUs.
|
||||
- pytest -v -s -x lora/test_long_context.py
|
||||
# There is some Tensor Parallelism related processing logic in LoRA that
|
||||
# requires multi-GPU testing for validation.
|
||||
- pytest -v -s -x lora/test_chatglm3_tp.py
|
||||
- pytest -v -s -x lora/test_llama_tp.py
|
||||
- pytest -v -s -x lora/test_minicpmv_tp.py
|
||||
- pytest -v -s -x lora/test_transfomers_model.py
|
||||
|
||||
|
||||
- label: Weight Loading Multiple GPU Test # 33min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
@ -505,7 +610,7 @@ steps:
|
||||
- vllm/
|
||||
- tests/weight_loading
|
||||
commands:
|
||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
||||
|
||||
|
||||
##### multi gpus test #####
|
||||
@ -513,19 +618,21 @@ steps:
|
||||
|
||||
- label: Distributed Tests (A100) # optional
|
||||
gpu: a100
|
||||
optional: true
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
commands:
|
||||
commands:
|
||||
# NOTE: don't test llama model here, it seems hf implementation is buggy
|
||||
# see https://github.com/vllm-project/vllm/pull/5689 for details
|
||||
- pytest -v -s distributed/test_custom_all_reduce.py
|
||||
- torchrun --nproc_per_node=2 distributed/test_ca_buffer_sharing.py
|
||||
- TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m distributed_2_gpus
|
||||
- TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest -v -s -x lora/test_mixtral.py
|
||||
|
||||
- label: LM Eval Large Models # optional
|
||||
gpu: a100
|
||||
optional: true
|
||||
num_gpus: 4
|
||||
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
|
||||
source_file_dependencies:
|
||||
|
||||
@ -23,16 +23,55 @@ wheel="$new_wheel"
|
||||
version=$(unzip -p "$wheel" '**/METADATA' | grep '^Version: ' | cut -d' ' -f2)
|
||||
echo "Version: $version"
|
||||
|
||||
normal_wheel="$wheel" # Save the original wheel filename
|
||||
|
||||
# If the version contains "dev", rename it to v1.0.0.dev for consistency
|
||||
if [[ $version == *dev* ]]; then
|
||||
new_version="1.0.0.dev"
|
||||
suffix="${version##*.}"
|
||||
if [[ $suffix == cu* ]]; then
|
||||
new_version="1.0.0.dev+${suffix}"
|
||||
else
|
||||
new_version="1.0.0.dev"
|
||||
fi
|
||||
new_wheel="${wheel/$version/$new_version}"
|
||||
mv -- "$wheel" "$new_wheel"
|
||||
# use cp to keep both files in the artifacts directory
|
||||
cp -- "$wheel" "$new_wheel"
|
||||
wheel="$new_wheel"
|
||||
version="$new_version"
|
||||
fi
|
||||
|
||||
# Upload the wheel to S3
|
||||
python3 .buildkite/generate_index.py --wheel "$normal_wheel"
|
||||
|
||||
# generate index for this commit
|
||||
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
||||
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
||||
|
||||
if [[ $normal_wheel == *"cu118"* ]]; then
|
||||
# if $normal_wheel matches cu118, do not upload the index.html
|
||||
echo "Skipping index files for cu118 wheels"
|
||||
elif [[ $normal_wheel == *"cu121"* ]]; then
|
||||
# if $normal_wheel matches cu121, do not upload the index.html
|
||||
echo "Skipping index files for cu121 wheels"
|
||||
else
|
||||
# only upload index.html for cu124 wheels (default wheels)
|
||||
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
|
||||
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
|
||||
fi
|
||||
|
||||
# generate index for nightly
|
||||
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
|
||||
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
|
||||
|
||||
if [[ $normal_wheel == *"cu118"* ]]; then
|
||||
# if $normal_wheel matches cu118, do not upload the index.html
|
||||
echo "Skipping index files for cu118 wheels"
|
||||
elif [[ $normal_wheel == *"cu121"* ]]; then
|
||||
# if $normal_wheel matches cu121, do not upload the index.html
|
||||
echo "Skipping index files for cu121 wheels"
|
||||
else
|
||||
# only upload index.html for cu124 wheels (default wheels)
|
||||
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
|
||||
fi
|
||||
|
||||
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
|
||||
30
.github/CODEOWNERS
vendored
30
.github/CODEOWNERS
vendored
@ -2,29 +2,35 @@
|
||||
# for more info about CODEOWNERS file
|
||||
|
||||
# This lists cover the "core" components of vLLM that require careful review
|
||||
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
|
||||
/vllm/core @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
|
||||
/vllm/engine/llm_engine.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
|
||||
/vllm/executor/executor_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
|
||||
/vllm/worker/worker_base.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
|
||||
/vllm/worker/worker.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
|
||||
/vllm/model_executor/layers/sampler.py @WoosukKwon @zhuohan123 @youkaichao @alexm-neuralmagic @comaniac @njhill
|
||||
CMakeLists.txt @tlrmchlsmth @WoosukKwon
|
||||
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
|
||||
/vllm/model_executor/guided_decoding @mgoin
|
||||
/vllm/multimodal @DarkLight1337 @ywang96
|
||||
CMakeLists.txt @tlrmchlsmth
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
|
||||
# Test ownership
|
||||
/tests/async_engine @njhill @robertgshaw2-neuralmagic @simon-mo
|
||||
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
|
||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-neuralmagic @simon-mo
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
|
||||
/tests/models @DarkLight1337 @ywang96
|
||||
/tests/multimodal @DarkLight1337 @ywang96
|
||||
/tests/prefix_caching @comaniac @KuntaiDu
|
||||
/tests/spec_decode @njhill @LiuXiaoxuanPKU
|
||||
/tests/kernels @tlrmchlsmth @WoosukKwon
|
||||
/tests/quantization @mgoin @robertgshaw2-neuralmagic
|
||||
/tests/quantization @mgoin @robertgshaw2-redhat
|
||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
||||
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
||||
/tests/distributed/test_same_node.py @youkaichao
|
||||
/tests/multi_step @alexm-neuralmagic @comaniac
|
||||
/tests/multi_step @alexm-redhat @comaniac
|
||||
/tests/weight_loading @mgoin @youkaichao
|
||||
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac
|
||||
|
||||
2
.github/FUNDING.yml
vendored
2
.github/FUNDING.yml
vendored
@ -1,2 +1,2 @@
|
||||
github: [vllm-project]
|
||||
open_collective: [vllm]
|
||||
open_collective: vllm
|
||||
|
||||
@ -30,15 +30,6 @@ body:
|
||||
</details>
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Model Input Dumps
|
||||
description: |
|
||||
If you are facing crashing due to illegal memory access or other issues with model execution, vLLM may dump the problematic input of the model. In this case, you will see the message `Error in model execution (input dumped to /tmp/err_xxx.pkl)`. If you see this message, please zip the file (because GitHub doesn't support .pkl file format) and upload it here. This will help us to reproduce the issue and facilitate the debugging process.
|
||||
placeholder: |
|
||||
Upload the dumped input file.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 🐛 Describe the bug
|
||||
@ -9,7 +9,7 @@ body:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/models/adding_model.html first to understand how to add a new model.
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/adding_model.html first to understand how to add a new model.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: The model to consider.
|
||||
72
.github/PULL_REQUEST_TEMPLATE.md
vendored
72
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -2,73 +2,5 @@ FILL IN THE PR DESCRIPTION HERE
|
||||
|
||||
FIX #xxxx (*link existing issues this PR will resolve*)
|
||||
|
||||
**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**
|
||||
|
||||
---
|
||||
|
||||
<details>
|
||||
<!-- inside this <details> section, markdown rendering does not work, so we use raw html here. -->
|
||||
<summary><b> PR Checklist (Click to Expand) </b></summary>
|
||||
|
||||
<p>Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.</p>
|
||||
|
||||
<h3>PR Title and Classification</h3>
|
||||
<p>Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:</p>
|
||||
<ul>
|
||||
<li><code>[Bugfix]</code> for bug fixes.</li>
|
||||
<li><code>[CI/Build]</code> for build or continuous integration improvements.</li>
|
||||
<li><code>[Doc]</code> for documentation fixes and improvements.</li>
|
||||
<li><code>[Model]</code> for adding a new model or improving an existing model. Model name should appear in the title.</li>
|
||||
<li><code>[Frontend]</code> For changes on the vLLM frontend (e.g., OpenAI API server, <code>LLM</code> class, etc.) </li>
|
||||
<li><code>[Kernel]</code> for changes affecting CUDA kernels or other compute kernels.</li>
|
||||
<li><code>[Core]</code> for changes in the core vLLM logic (e.g., <code>LLMEngine</code>, <code>AsyncLLMEngine</code>, <code>Scheduler</code>, etc.)</li>
|
||||
<li><code>[Hardware][Vendor]</code> for hardware-specific changes. Vendor name should appear in the prefix (e.g., <code>[Hardware][AMD]</code>).</li>
|
||||
<li><code>[Misc]</code> for PRs that do not fit the above categories. Please use this sparingly.</li>
|
||||
</ul>
|
||||
<p><strong>Note:</strong> If the PR spans more than one category, please include all relevant prefixes.</p>
|
||||
|
||||
<h3>Code Quality</h3>
|
||||
|
||||
<p>The PR need to meet the following code quality standards:</p>
|
||||
|
||||
<ul>
|
||||
<li>We adhere to <a href="https://google.github.io/styleguide/pyguide.html">Google Python style guide</a> and <a href="https://google.github.io/styleguide/cppguide.html">Google C++ style guide</a>.</li>
|
||||
<li>Pass all linter checks. Please use <a href="https://github.com/vllm-project/vllm/blob/main/format.sh"><code>format.sh</code></a> to format your code.</li>
|
||||
<li>The code need to be well-documented to ensure future contributors can easily understand the code.</li>
|
||||
<li>Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.</li>
|
||||
<li>Please add documentation to <code>docs/source/</code> if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.</li>
|
||||
</ul>
|
||||
|
||||
<h3>Adding or changing kernels</h3>
|
||||
<p>Each custom kernel needs a schema and one or more implementations to be registered with PyTorch.</p>
|
||||
<ul>
|
||||
<li>Make sure custom ops are registered following PyTorch guidelines: <a href="https://pytorch.org/tutorials/advanced/cpp_custom_ops.html#cpp-custom-ops-tutorial">Custom C++ and CUDA Operators</a> and <a href="https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU">The Custom Operators Manual</a></li>
|
||||
<li>Custom operations that return <code>Tensors</code> require meta-functions. Meta-functions should be implemented and registered in python so that dynamic dims can be handled automatically. See above documents for a description of meta-functions.</li>
|
||||
<li>Use <a href="https://pytorch.org/docs/stable/library.html#torch.library.opcheck"><code>torch.libary.opcheck()</code></a> to test the function registration and meta-function for any registered ops. See <code>tests/kernels</code> for examples.</li>
|
||||
<li>When changing the C++ signature of an existing op, the schema must be updated to reflect the changes.</li>
|
||||
<li>If a new custom type is needed, see the following document: <a href="https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA">Custom Class Support in PT2</a>.
|
||||
</ul>
|
||||
|
||||
<h3>Notes for Large Changes</h3>
|
||||
<p>Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with <code>rfc-required</code> and might not go through the PR.</p>
|
||||
|
||||
<h3>What to Expect for the Reviews</h3>
|
||||
|
||||
<p>The goal of the vLLM team is to be a <i>transparent reviewing machine</i>. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process: </p>
|
||||
|
||||
<ul>
|
||||
<li> After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.</li>
|
||||
<li> After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.</li>
|
||||
<li> After the review, the reviewer will put an <code> action-required</code> label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.</li>
|
||||
<li> Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<h3>Thank You</h3>
|
||||
|
||||
<p> Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone! </p>
|
||||
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<!--- pyml disable-next-line no-emphasis-as-heading -->
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>**
|
||||
|
||||
7
.github/dependabot.yml
vendored
7
.github/dependabot.yml
vendored
@ -15,18 +15,17 @@ updates:
|
||||
allow:
|
||||
- dependency-type: "all"
|
||||
ignore:
|
||||
- dependency-name: "*"
|
||||
update-types: ["version-update:semver-patch"]
|
||||
- dependency-name: "torch"
|
||||
- dependency-name: "torchvision"
|
||||
- dependency-name: "xformers"
|
||||
- dependency-name: "lm-format-enforcer"
|
||||
- dependency-name: "gguf"
|
||||
- dependency-name: "compressed-tensors"
|
||||
- dependency-name: "ray[adag]"
|
||||
- dependency-name: "ray[cgraph]" # Ray Compiled Graph
|
||||
- dependency-name: "lm-eval"
|
||||
groups:
|
||||
patch-update:
|
||||
applies-to: version-updates
|
||||
update-types: ["patch"]
|
||||
minor-update:
|
||||
applies-to: version-updates
|
||||
update-types: ["minor"]
|
||||
|
||||
38
.github/mergify.yml
vendored
38
.github/mergify.yml
vendored
@ -5,6 +5,7 @@ pull_request_rules:
|
||||
- or:
|
||||
- files~=^[^/]+\.md$
|
||||
- files~=^docs/
|
||||
- files~=^examples/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
@ -35,6 +36,43 @@ pull_request_rules:
|
||||
add:
|
||||
- frontend
|
||||
|
||||
- name: label-structured-output
|
||||
description: Automatically apply structured-output label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^vllm/model_executor/guided_decoding/
|
||||
- files=tests/model_executor/test_guided_processors.py
|
||||
- files=tests/entrypoints/llm/test_guided_generate.py
|
||||
- files=benchmarks/benchmark_serving_guided.py
|
||||
- files=benchmarks/benchmark_guided.py
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- structured-output
|
||||
|
||||
- name: label-speculative-decoding
|
||||
description: Automatically apply speculative-decoding label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^vllm/spec_decode/
|
||||
- files=vllm/model_executor/layers/spec_decode_base_sampler.py
|
||||
- files~=^tests/spec_decode/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- speculative-decoding
|
||||
|
||||
- name: label-v1
|
||||
description: Automatically apply v1 label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^vllm/v1/
|
||||
- files~=^tests/v1/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- v1
|
||||
|
||||
- name: ping author on conflicts and add 'needs-rebase' label
|
||||
conditions:
|
||||
- conflict
|
||||
|
||||
25
.github/scripts/cleanup_pr_body.sh
vendored
25
.github/scripts/cleanup_pr_body.sh
vendored
@ -15,19 +15,36 @@ NEW=/tmp/new_pr_body.txt
|
||||
gh pr view --json body --template "{{.body}}" "${PR_NUMBER}" > "${OLD}"
|
||||
cp "${OLD}" "${NEW}"
|
||||
|
||||
# Remove all lines after and including "**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**"
|
||||
sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE\*\*/,$d' "${NEW}"
|
||||
|
||||
# Remove "FIX #xxxx (*link existing issues this PR will resolve*)"
|
||||
sed -i '/FIX #xxxx.*$/d' "${NEW}"
|
||||
|
||||
# Remove "FILL IN THE PR DESCRIPTION HERE"
|
||||
sed -i '/FILL IN THE PR DESCRIPTION HERE/d' "${NEW}"
|
||||
|
||||
# Remove all lines after and including "**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**"
|
||||
sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ.*\*\*/,$d' "${NEW}"
|
||||
|
||||
# Remove HTML <details> section that includes <summary> text of "PR Checklist (Click to Expand)"
|
||||
python3 - <<EOF
|
||||
import re
|
||||
|
||||
with open("${NEW}", "r") as file:
|
||||
content = file.read()
|
||||
|
||||
pattern = re.compile(r'(---\n\n)?<details>.*?<summary>.*?PR Checklist \(Click to Expand\).*?</summary>.*?</details>', re.DOTALL)
|
||||
content = re.sub(pattern, '', content)
|
||||
|
||||
with open("${NEW}", "w") as file:
|
||||
file.write(content)
|
||||
EOF
|
||||
|
||||
# Run this only if ${NEW} is different than ${OLD}
|
||||
if ! cmp -s "${OLD}" "${NEW}"; then
|
||||
echo "Updating PR body"
|
||||
gh pr edit --body-file "${NEW}" "${PR_NUMBER}"
|
||||
echo
|
||||
echo "Updated PR body:"
|
||||
echo
|
||||
cat "${NEW}"
|
||||
else
|
||||
echo "No changes needed"
|
||||
fi
|
||||
|
||||
40
.github/workflows/actionlint.yml
vendored
40
.github/workflows/actionlint.yml
vendored
@ -1,40 +0,0 @@
|
||||
name: Lint GitHub Actions workflows
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '.github/workflows/*.ya?ml'
|
||||
- '.github/workflows/actionlint.*'
|
||||
- '.github/workflows/matchers/actionlint.json'
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '.github/workflows/*.ya?ml'
|
||||
- '.github/workflows/actionlint.*'
|
||||
- '.github/workflows/matchers/actionlint.json'
|
||||
|
||||
env:
|
||||
LC_ALL: en_US.UTF-8
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
actionlint:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: "Checkout"
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: "Run actionlint"
|
||||
run: |
|
||||
echo "::add-matcher::.github/workflows/matchers/actionlint.json"
|
||||
tools/actionlint.sh -color
|
||||
53
.github/workflows/clang-format.yml
vendored
53
.github/workflows/clang-format.yml
vendored
@ -1,53 +0,0 @@
|
||||
name: clang-format
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- '**/*.h'
|
||||
- '**/*.cpp'
|
||||
- '**/*.cu'
|
||||
- '**/*.cuh'
|
||||
- '.github/workflows/clang-format.yml'
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- '**/*.h'
|
||||
- '**/*.cpp'
|
||||
- '**/*.cu'
|
||||
- '**/*.cuh'
|
||||
- '.github/workflows/clang-format.yml'
|
||||
|
||||
jobs:
|
||||
clang-format:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.11"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install clang-format==18.1.5
|
||||
- name: Running clang-format
|
||||
run: |
|
||||
EXCLUDES=(
|
||||
'csrc/moe/topk_softmax_kernels.cu'
|
||||
'csrc/quantization/gguf/ggml-common.h'
|
||||
'csrc/quantization/gguf/dequantize.cuh'
|
||||
'csrc/quantization/gguf/vecdotq.cuh'
|
||||
'csrc/quantization/gguf/mmq.cuh'
|
||||
'csrc/quantization/gguf/mmvq.cuh'
|
||||
)
|
||||
find csrc/ \( -name '*.h' -o -name '*.cpp' -o -name '*.cu' -o -name '*.cuh' \) -print \
|
||||
| grep -vFf <(printf "%s\n" "${EXCLUDES[@]}") \
|
||||
| xargs clang-format --dry-run --Werror
|
||||
2
.github/workflows/cleanup_pr_body.yml
vendored
2
.github/workflows/cleanup_pr_body.yml
vendored
@ -16,7 +16,7 @@ jobs:
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
|
||||
45
.github/workflows/codespell.yml
vendored
45
.github/workflows/codespell.yml
vendored
@ -1,45 +0,0 @@
|
||||
name: codespell
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- "**/*.md"
|
||||
- "**/*.rst"
|
||||
- pyproject.toml
|
||||
- requirements-lint.txt
|
||||
- .github/workflows/codespell.yml
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- "**/*.md"
|
||||
- "**/*.rst"
|
||||
- pyproject.toml
|
||||
- requirements-lint.txt
|
||||
- .github/workflows/codespell.yml
|
||||
|
||||
jobs:
|
||||
codespell:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements-lint.txt
|
||||
- name: Spelling check with codespell
|
||||
run: |
|
||||
codespell --toml pyproject.toml
|
||||
82
.github/workflows/lint-and-deploy.yaml
vendored
Normal file
82
.github/workflows/lint-and-deploy.yaml
vendored
Normal file
@ -0,0 +1,82 @@
|
||||
name: Lint and Deploy Charts
|
||||
|
||||
on: pull_request
|
||||
|
||||
jobs:
|
||||
lint-and-deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Helm
|
||||
uses: azure/setup-helm@b9e51907a09c216f16ebe8536097933489208112 # v4.3.0
|
||||
with:
|
||||
version: v3.14.4
|
||||
|
||||
#Python is required because ct lint runs Yamale and yamllint which require Python.
|
||||
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
|
||||
with:
|
||||
python-version: '3.13'
|
||||
|
||||
- name: Set up chart-testing
|
||||
uses: helm/chart-testing-action@0d28d3144d3a25ea2cc349d6e59901c4ff469b3b # v2.7.0
|
||||
with:
|
||||
version: v3.10.1
|
||||
|
||||
- name: Run chart-testing (lint)
|
||||
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/online_serving/chart-helm --charts examples/online_serving/chart-helm
|
||||
|
||||
- name: Setup minio
|
||||
run: |
|
||||
docker network create vllm-net
|
||||
docker run -d -p 9000:9000 --name minio --net vllm-net \
|
||||
-e "MINIO_ACCESS_KEY=minioadmin" \
|
||||
-e "MINIO_SECRET_KEY=minioadmin" \
|
||||
-v /tmp/data:/data \
|
||||
-v /tmp/config:/root/.minio \
|
||||
minio/minio server /data
|
||||
export AWS_ACCESS_KEY_ID=minioadmin
|
||||
export AWS_SECRET_ACCESS_KEY=minioadmin
|
||||
export AWS_EC2_METADATA_DISABLED=true
|
||||
mkdir opt-125m
|
||||
cd opt-125m && curl -O -Ls "https://huggingface.co/facebook/opt-125m/resolve/main/{pytorch_model.bin,config.json,generation_config.json,merges.txt,special_tokens_map.json,tokenizer_config.json,vocab.json}" && cd ..
|
||||
aws --endpoint-url http://127.0.0.1:9000/ s3 mb s3://testbucket
|
||||
aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive
|
||||
|
||||
- name: Create kind cluster
|
||||
uses: helm/kind-action@a1b0e391336a6ee6713a0583f8c6240d70863de3 # v1.12.0
|
||||
|
||||
- name: Build the Docker image vllm cpu
|
||||
run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env .
|
||||
|
||||
- name: Configuration of docker images, network and namespace for the kind cluster
|
||||
run: |
|
||||
docker pull amazon/aws-cli:2.6.4
|
||||
kind load docker-image amazon/aws-cli:2.6.4 --name chart-testing
|
||||
kind load docker-image vllm-cpu-env:latest --name chart-testing
|
||||
docker network connect vllm-net "$(docker ps -aqf "name=chart-testing-control-plane")"
|
||||
kubectl create ns ns-vllm
|
||||
|
||||
- name: Run chart-testing (install)
|
||||
run: |
|
||||
export AWS_ACCESS_KEY_ID=minioadmin
|
||||
export AWS_SECRET_ACCESS_KEY=minioadmin
|
||||
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
|
||||
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
|
||||
|
||||
- name: curl test
|
||||
run: |
|
||||
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
|
||||
sleep 10
|
||||
CODE="$(curl -v -f --location http://localhost:8001/v1/completions \
|
||||
--header "Content-Type: application/json" \
|
||||
--data '{
|
||||
"model": "opt-125m",
|
||||
"prompt": "San Francisco is a",
|
||||
"max_tokens": 7,
|
||||
"temperature": 0
|
||||
}'):$CODE"
|
||||
echo "$CODE"
|
||||
17
.github/workflows/matchers/ruff.json
vendored
17
.github/workflows/matchers/ruff.json
vendored
@ -1,17 +0,0 @@
|
||||
{
|
||||
"problemMatcher": [
|
||||
{
|
||||
"owner": "ruff",
|
||||
"pattern": [
|
||||
{
|
||||
"regexp": "^(.+?):(\\d+):(\\d+): (\\w+): (.+)$",
|
||||
"file": 1,
|
||||
"line": 2,
|
||||
"column": 3,
|
||||
"code": 4,
|
||||
"message": 5
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
51
.github/workflows/mypy.yaml
vendored
51
.github/workflows/mypy.yaml
vendored
@ -1,51 +0,0 @@
|
||||
name: mypy
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- '**/*.py'
|
||||
- '.github/workflows/mypy.yaml'
|
||||
- 'tools/mypy.sh'
|
||||
- 'pyproject.toml'
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
# This workflow is only relevant when one of the following files changes.
|
||||
# However, we have github configured to expect and require this workflow
|
||||
# to run and pass before github with auto-merge a pull request. Until github
|
||||
# allows more flexible auto-merge policy, we can just run this on every PR.
|
||||
# It doesn't take that long to run, anyway.
|
||||
#paths:
|
||||
# - '**/*.py'
|
||||
# - '.github/workflows/mypy.yaml'
|
||||
# - 'tools/mypy.sh'
|
||||
# - 'pyproject.toml'
|
||||
|
||||
jobs:
|
||||
mypy:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install mypy==1.11.1
|
||||
pip install types-setuptools
|
||||
pip install types-PyYAML
|
||||
pip install types-requests
|
||||
pip install types-setuptools
|
||||
- name: Mypy
|
||||
run: |
|
||||
echo "::add-matcher::.github/workflows/matchers/mypy.json"
|
||||
tools/mypy.sh 1 ${{ matrix.python-version }}
|
||||
20
.github/workflows/pre-commit.yml
vendored
Normal file
20
.github/workflows/pre-commit.yml
vendored
Normal file
@ -0,0 +1,20 @@
|
||||
name: pre-commit
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
jobs:
|
||||
pre-commit:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
|
||||
with:
|
||||
python-version: "3.12"
|
||||
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"
|
||||
- run: echo "::add-matcher::.github/workflows/matchers/mypy.json"
|
||||
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
|
||||
with:
|
||||
extra_args: --all-files --hook-stage manual
|
||||
105
.github/workflows/publish.yml
vendored
105
.github/workflows/publish.yml
vendored
@ -39,67 +39,68 @@ jobs:
|
||||
const script = require('.github/workflows/scripts/create_release.js')
|
||||
await script(github, context, core)
|
||||
|
||||
wheel:
|
||||
name: Build Wheel
|
||||
runs-on: ${{ matrix.os }}
|
||||
needs: release
|
||||
# NOTE(simon): No longer build wheel using Github Actions. See buildkite's release workflow.
|
||||
# wheel:
|
||||
# name: Build Wheel
|
||||
# runs-on: ${{ matrix.os }}
|
||||
# needs: release
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: ['ubuntu-20.04']
|
||||
python-version: ['3.9', '3.10', '3.11', '3.12']
|
||||
pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements-cuda.txt.
|
||||
cuda-version: ['11.8', '12.1']
|
||||
# strategy:
|
||||
# fail-fast: false
|
||||
# matrix:
|
||||
# os: ['ubuntu-20.04']
|
||||
# python-version: ['3.9', '3.10', '3.11', '3.12']
|
||||
# pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements-cuda.txt.
|
||||
# cuda-version: ['11.8', '12.1']
|
||||
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
# steps:
|
||||
# - name: Checkout
|
||||
# uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Setup ccache
|
||||
uses: hendrikmuhs/ccache-action@ed74d11c0b343532753ecead8a951bb09bb34bc9 # v1.2.14
|
||||
with:
|
||||
create-symlink: true
|
||||
key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
|
||||
# - name: Setup ccache
|
||||
# uses: hendrikmuhs/ccache-action@ed74d11c0b343532753ecead8a951bb09bb34bc9 # v1.2.14
|
||||
# with:
|
||||
# create-symlink: true
|
||||
# key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
|
||||
|
||||
- name: Set up Linux Env
|
||||
if: ${{ runner.os == 'Linux' }}
|
||||
run: |
|
||||
bash -x .github/workflows/scripts/env.sh
|
||||
# - name: Set up Linux Env
|
||||
# if: ${{ runner.os == 'Linux' }}
|
||||
# run: |
|
||||
# bash -x .github/workflows/scripts/env.sh
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
# - name: Set up Python
|
||||
# uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
# with:
|
||||
# python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install CUDA ${{ matrix.cuda-version }}
|
||||
run: |
|
||||
bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
|
||||
# - name: Install CUDA ${{ matrix.cuda-version }}
|
||||
# run: |
|
||||
# bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
|
||||
|
||||
- name: Install PyTorch ${{ matrix.pytorch-version }} with CUDA ${{ matrix.cuda-version }}
|
||||
run: |
|
||||
bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.pytorch-version }} ${{ matrix.cuda-version }}
|
||||
# - name: Install PyTorch ${{ matrix.pytorch-version }} with CUDA ${{ matrix.cuda-version }}
|
||||
# run: |
|
||||
# bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.pytorch-version }} ${{ matrix.cuda-version }}
|
||||
|
||||
- name: Build wheel
|
||||
shell: bash
|
||||
env:
|
||||
CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
|
||||
run: |
|
||||
bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
|
||||
wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename)
|
||||
asset_name=${wheel_name//"linux"/"manylinux1"}
|
||||
echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV"
|
||||
echo "asset_name=${asset_name}" >> "$GITHUB_ENV"
|
||||
# - name: Build wheel
|
||||
# shell: bash
|
||||
# env:
|
||||
# CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
|
||||
# run: |
|
||||
# bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
|
||||
# wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename)
|
||||
# asset_name=${wheel_name//"linux"/"manylinux1"}
|
||||
# echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV"
|
||||
# echo "asset_name=${asset_name}" >> "$GITHUB_ENV"
|
||||
|
||||
- name: Upload Release Asset
|
||||
uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 # v1.0.2
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
upload_url: ${{ needs.release.outputs.upload_url }}
|
||||
asset_path: ./dist/${{ env.wheel_name }}
|
||||
asset_name: ${{ env.asset_name }}
|
||||
asset_content_type: application/*
|
||||
# - name: Upload Release Asset
|
||||
# uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 # v1.0.2
|
||||
# env:
|
||||
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
# with:
|
||||
# upload_url: ${{ needs.release.outputs.upload_url }}
|
||||
# asset_path: ./dist/${{ env.wheel_name }}
|
||||
# asset_name: ${{ env.asset_name }}
|
||||
# asset_content_type: application/*
|
||||
|
||||
# (Danielkinz): This last step will publish the .whl to pypi. Warning: untested
|
||||
# - name: Publish package
|
||||
|
||||
8
.github/workflows/reminder_comment.yml
vendored
8
.github/workflows/reminder_comment.yml
vendored
@ -2,7 +2,6 @@ name: PR Reminder Comment Bot
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened]
|
||||
|
||||
jobs:
|
||||
pr_reminder:
|
||||
runs-on: ubuntu-latest
|
||||
@ -15,7 +14,12 @@ jobs:
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
body: '👋 Hi! Thank you for contributing to the vLLM project.\n Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org. \n\nOnce the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n To run CI, PR reviewers can do one of these:\n- Add `ready` label to the PR\n- Enable auto-merge.\n\n🚀'
|
||||
body: '👋 Hi! Thank you for contributing to the vLLM project.\n\n' +
|
||||
'💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.\n\n' +
|
||||
'Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org.\n\n' +
|
||||
'Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n' +
|
||||
'To run CI, PR reviewers can either: Add `ready` label to the PR or enable auto-merge.\n\n' +
|
||||
'🚀'
|
||||
})
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
52
.github/workflows/ruff.yml
vendored
52
.github/workflows/ruff.yml
vendored
@ -1,52 +0,0 @@
|
||||
name: ruff
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- pyproject.toml
|
||||
- requirements-lint.txt
|
||||
- .github/workflows/matchers/ruff.json
|
||||
- .github/workflows/ruff.yml
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
# This workflow is only relevant when one of the following files changes.
|
||||
# However, we have github configured to expect and require this workflow
|
||||
# to run and pass before github with auto-merge a pull request. Until github
|
||||
# allows more flexible auto-merge policy, we can just run this on every PR.
|
||||
# It doesn't take that long to run, anyway.
|
||||
#paths:
|
||||
# - "**/*.py"
|
||||
# - pyproject.toml
|
||||
# - requirements-lint.txt
|
||||
# - .github/workflows/matchers/ruff.json
|
||||
# - .github/workflows/ruff.yml
|
||||
|
||||
jobs:
|
||||
ruff:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements-lint.txt
|
||||
- name: Analysing the code with ruff
|
||||
run: |
|
||||
echo "::add-matcher::.github/workflows/matchers/ruff.json"
|
||||
ruff check --output-format github .
|
||||
- name: Run isort
|
||||
run: |
|
||||
isort . --check-only
|
||||
37
.github/workflows/shellcheck.yml
vendored
37
.github/workflows/shellcheck.yml
vendored
@ -1,37 +0,0 @@
|
||||
name: Lint shell scripts
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '**/*.sh'
|
||||
- '.github/workflows/shellcheck.yml'
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '**/*.sh'
|
||||
- '.github/workflows/shellcheck.yml'
|
||||
|
||||
env:
|
||||
LC_ALL: en_US.UTF-8
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
shellcheck:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: "Checkout"
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: "Check shell scripts"
|
||||
run: |
|
||||
tools/shellcheck.sh
|
||||
2
.github/workflows/stale.yml
vendored
2
.github/workflows/stale.yml
vendored
@ -13,7 +13,7 @@ jobs:
|
||||
actions: write
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@28ca1036281a5e5922ead5184a1bbf96e5fc984e # v9.0.0
|
||||
- uses: actions/stale@5bef64f19d7facfb25b37b414482c7164d639639 # v9.1.0
|
||||
with:
|
||||
# Increasing this value ensures that changes to this workflow
|
||||
# propagate to all issues and PRs in days rather than months
|
||||
|
||||
38
.github/workflows/yapf.yml
vendored
38
.github/workflows/yapf.yml
vendored
@ -1,38 +0,0 @@
|
||||
name: yapf
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- .github/workflows/yapf.yml
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- .github/workflows/yapf.yml
|
||||
|
||||
jobs:
|
||||
yapf:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install yapf==0.32.0
|
||||
pip install toml==0.10.2
|
||||
- name: Running yapf
|
||||
run: |
|
||||
yapf --diff --recursive .
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@ -79,8 +79,7 @@ instance/
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
docs/source/getting_started/examples/*.rst
|
||||
!**/*.template.rst
|
||||
docs/source/getting_started/examples/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
|
||||
129
.pre-commit-config.yaml
Normal file
129
.pre-commit-config.yaml
Normal file
@ -0,0 +1,129 @@
|
||||
default_stages:
|
||||
- pre-commit # Run locally
|
||||
- manual # Run in CI
|
||||
exclude: 'vllm/third_party/.*'
|
||||
repos:
|
||||
- repo: https://github.com/google/yapf
|
||||
rev: v0.43.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
additional_dependencies: [toml] # TODO: Remove when yapf is upgraded
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.9.3
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--output-format, github, --fix]
|
||||
- repo: https://github.com/codespell-project/codespell
|
||||
rev: v2.4.0
|
||||
hooks:
|
||||
- id: codespell
|
||||
additional_dependencies: ['tomli']
|
||||
args: ['--toml', 'pyproject.toml']
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 0a0b7a830386ba6a31c2ec8316849ae4d1b8240d # 6.0.0
|
||||
hooks:
|
||||
- id: isort
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v19.1.7
|
||||
hooks:
|
||||
- id: clang-format
|
||||
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
|
||||
types_or: [c++, cuda]
|
||||
args: [--style=file, --verbose]
|
||||
- repo: https://github.com/jackdewinter/pymarkdown
|
||||
rev: v0.9.27
|
||||
hooks:
|
||||
- id: pymarkdown
|
||||
args: [fix]
|
||||
- repo: https://github.com/rhysd/actionlint
|
||||
rev: v1.7.7
|
||||
hooks:
|
||||
- id: actionlint
|
||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||
rev: 0.6.2
|
||||
hooks:
|
||||
- id: pip-compile
|
||||
args: [requirements-test.in, -o, requirements-test.txt]
|
||||
files: ^requirements-test\.(in|txt)$
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: mypy-local
|
||||
name: Run mypy for local Python installation
|
||||
entry: tools/mypy.sh 0 "local"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-setuptools, types-PyYAML, types-requests]
|
||||
stages: [pre-commit] # Don't run in CI
|
||||
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.9
|
||||
entry: tools/mypy.sh 1 "3.9"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
stages: [manual] # Only run in CI
|
||||
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.10
|
||||
entry: tools/mypy.sh 1 "3.10"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
stages: [manual] # Only run in CI
|
||||
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.11
|
||||
entry: tools/mypy.sh 1 "3.11"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
stages: [manual] # Only run in CI
|
||||
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.12
|
||||
entry: tools/mypy.sh 1 "3.12"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
stages: [manual] # Only run in CI
|
||||
- id: shellcheck
|
||||
name: Lint shell scripts
|
||||
entry: tools/shellcheck.sh
|
||||
language: script
|
||||
types: [shell]
|
||||
- id: png-lint
|
||||
name: Lint PNG exports from excalidraw
|
||||
entry: tools/png-lint.sh
|
||||
language: script
|
||||
types: [png]
|
||||
- id: signoff-commit
|
||||
name: Sign-off Commit
|
||||
entry: bash
|
||||
args:
|
||||
- -c
|
||||
- |
|
||||
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" .git/COMMIT_EDITMSG; then
|
||||
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> .git/COMMIT_EDITMSG
|
||||
fi
|
||||
language: system
|
||||
verbose: true
|
||||
stages: [commit-msg]
|
||||
- id: check-spdx-header
|
||||
name: Check SPDX headers
|
||||
entry: python tools/check_spdx_header.py
|
||||
language: python
|
||||
types: [python]
|
||||
- id: check-filenames
|
||||
name: Check for spaces in all filenames
|
||||
entry: bash
|
||||
args:
|
||||
- -c
|
||||
- 'git ls-files | grep " " && echo "Filenames should not contain spaces!" && exit 1 || exit 0'
|
||||
language: system
|
||||
always_run: true
|
||||
pass_filenames: false
|
||||
# Keep `suggestion` last
|
||||
- id: suggestion
|
||||
name: Suggestion
|
||||
entry: bash -c 'echo "To bypass pre-commit hooks, add --no-verify to git commit."'
|
||||
language: system
|
||||
verbose: true
|
||||
pass_filenames: false
|
||||
# Insert new entries above the `suggestion` entry
|
||||
254
CMakeLists.txt
254
CMakeLists.txt
@ -24,9 +24,6 @@ include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
|
||||
# Suppress potential warnings about unused manually-specified variables
|
||||
set(ignoreMe "${VLLM_PYTHON_PATH}")
|
||||
|
||||
# Prevent installation of dependencies (cutlass) by default.
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
|
||||
#
|
||||
# Supported python versions. These versions will be searched in order, the
|
||||
# first match will be selected. These should be kept in sync with setup.py.
|
||||
@ -34,10 +31,10 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
|
||||
|
||||
# Supported NVIDIA architectures.
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101")
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101")
|
||||
|
||||
#
|
||||
# Supported/expected torch versions for CUDA/ROCm.
|
||||
@ -177,10 +174,54 @@ include(FetchContent)
|
||||
file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists
|
||||
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
|
||||
|
||||
#
|
||||
# Set rocm version dev int.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
#
|
||||
# Overriding the default -O set up by cmake, adding ggdb3 for the most verbose devug info
|
||||
#
|
||||
set(CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG "${CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
|
||||
|
||||
#
|
||||
# Certain HIP functions are marked as [[nodiscard]], yet vllm ignores the result which generates
|
||||
# a lot of warnings that always mask real issues. Suppressing until this is properly addressed.
|
||||
#
|
||||
set(CMAKE_${VLLM_GPU_LANG}_FLAGS "${CMAKE_${VLLM_GPU_LANG}_FLAGS} -Wno-unused-result")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-unused-result")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Define other extension targets
|
||||
#
|
||||
|
||||
#
|
||||
# cumem_allocator extension
|
||||
#
|
||||
|
||||
set(VLLM_CUMEM_EXT_SRC
|
||||
"csrc/cumem_allocator.cpp")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${VLLM_CUMEM_EXT_SRC}"
|
||||
CUDA_ARCHS "${CUDA_ARCHS}")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
message(STATUS "Enabling cumem allocator extension.")
|
||||
# link against cuda driver library
|
||||
list(APPEND CUMEM_LIBS CUDA::cuda_driver)
|
||||
define_gpu_extension_target(
|
||||
cumem_allocator
|
||||
DESTINATION vllm
|
||||
LANGUAGE CXX
|
||||
SOURCES ${VLLM_CUMEM_EXT_SRC}
|
||||
LIBRARIES ${CUMEM_LIBS}
|
||||
USE_SABI 3.8
|
||||
WITH_SOABI)
|
||||
endif()
|
||||
|
||||
#
|
||||
# _C extension
|
||||
#
|
||||
@ -196,6 +237,8 @@ set(VLLM_EXT_SRC
|
||||
"csrc/quantization/gptq/q_gemm.cu"
|
||||
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
|
||||
"csrc/quantization/fp8/common.cu"
|
||||
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
|
||||
"csrc/quantization/gguf/gguf_kernel.cu"
|
||||
"csrc/cuda_utils_kernels.cu"
|
||||
"csrc/prepare_inputs/advance_step.cu"
|
||||
"csrc/torch_bindings.cpp")
|
||||
@ -204,19 +247,34 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
|
||||
|
||||
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
|
||||
set(CUTLASS_REVISION "v3.5.1" CACHE STRING "CUTLASS revision to use")
|
||||
# Please keep this in sync with FetchContent_Declare line below.
|
||||
set(CUTLASS_REVISION "v3.8.0" CACHE STRING "CUTLASS revision to use")
|
||||
|
||||
FetchContent_Declare(
|
||||
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
|
||||
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
|
||||
set(VLLM_CUTLASS_SRC_DIR $ENV{VLLM_CUTLASS_SRC_DIR})
|
||||
endif()
|
||||
|
||||
if(VLLM_CUTLASS_SRC_DIR)
|
||||
if(NOT IS_ABSOLUTE VLLM_CUTLASS_SRC_DIR)
|
||||
get_filename_component(VLLM_CUTLASS_SRC_DIR "${VLLM_CUTLASS_SRC_DIR}" ABSOLUTE)
|
||||
endif()
|
||||
message(STATUS "The VLLM_CUTLASS_SRC_DIR is set, using ${VLLM_CUTLASS_SRC_DIR} for compilation")
|
||||
FetchContent_Declare(cutlass SOURCE_DIR ${VLLM_CUTLASS_SRC_DIR})
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
cutlass
|
||||
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
|
||||
GIT_TAG v3.5.1
|
||||
# Please keep this in sync with CUTLASS_REVISION line above.
|
||||
GIT_TAG v3.8.0
|
||||
GIT_PROGRESS TRUE
|
||||
|
||||
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
|
||||
# Important: If GIT_SHALLOW is enabled then GIT_TAG works only with branch names and tags.
|
||||
# So if the GIT_TAG above is updated to a commit hash, GIT_SHALLOW must be set to FALSE
|
||||
GIT_SHALLOW TRUE
|
||||
)
|
||||
)
|
||||
endif()
|
||||
FetchContent_MakeAvailable(cutlass)
|
||||
|
||||
list(APPEND VLLM_EXT_SRC
|
||||
@ -224,10 +282,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
|
||||
"csrc/quantization/aqlm/gemm_kernels.cu"
|
||||
"csrc/quantization/awq/gemm_kernels.cu"
|
||||
"csrc/quantization/gguf/gguf_kernel.cu"
|
||||
"csrc/custom_all_reduce.cu"
|
||||
"csrc/permute_cols.cu"
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu")
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||
"csrc/cutlass_extensions/common.cpp")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${VLLM_EXT_SRC}"
|
||||
@ -236,7 +297,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# Only build Marlin kernels if we are building for at least some compatible archs.
|
||||
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
|
||||
# are not supported by Machete yet.
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.9;9.0" ${CUDA_ARCHS})
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
if (MARLIN_ARCHS)
|
||||
set(MARLIN_SRCS
|
||||
"csrc/quantization/fp8/fp8_marlin.cu"
|
||||
@ -256,12 +317,32 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
" in CUDA target architectures")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Only build AllSpark kernels if we are building for at least some compatible archs.
|
||||
cuda_archs_loose_intersection(ALLSPARK_ARCHS "8.0;8.6;8.7;8.9" "${CUDA_ARCHS}")
|
||||
if (${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND ALLSPARK_ARCHS)
|
||||
set(ALLSPARK_SRCS
|
||||
"csrc/quantization/gptq_allspark/allspark_repack.cu"
|
||||
"csrc/quantization/gptq_allspark/allspark_qgemm_w8a16.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${ALLSPARK_SRCS}"
|
||||
CUDA_ARCHS "${ALLSPARK_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${ALLSPARK_SRCS}")
|
||||
message(STATUS "Building AllSpark kernels for archs: ${ALLSPARK_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building AllSpark kernels as no compatible archs found"
|
||||
" in CUDA target architectures, or CUDA not >= 12.0")
|
||||
endif()
|
||||
|
||||
# The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require
|
||||
# CUDA 12.0 or later (and only work on Hopper, 9.0/9.0a for now).
|
||||
cuda_archs_loose_intersection(SCALED_MM_3X_ARCHS "9.0;9.0a" "${CUDA_ARCHS}")
|
||||
# CUDA 12.0 or later (and only work on Hopper, 9.0a for now).
|
||||
cuda_archs_loose_intersection(SCALED_MM_3X_ARCHS "9.0a;10.0a;10.1a;12.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu")
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_int8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_azp_sm90_int8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm90_fp8.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
|
||||
@ -288,7 +369,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
|
||||
# kernels for the remaining archs that are not already built for 3x.
|
||||
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
|
||||
"7.5;8.0;8.6;8.9;9.0" "${CUDA_ARCHS}")
|
||||
"7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
# subtract out the archs that are already built for 3x
|
||||
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
||||
if (SCALED_MM_2X_ARCHS)
|
||||
@ -309,7 +390,64 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#
|
||||
# 2:4 Sparse Kernels
|
||||
|
||||
# The 2:4 sparse kernels cutlass_scaled_sparse_mm and cutlass_compressor
|
||||
# require CUDA 12.2 or later (and only work on Hopper and Blackwell).
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_3X_ARCHS)
|
||||
set(SRCS "csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SPARSE_SCALED_MM_C3X=1")
|
||||
message(STATUS "Building sparse_scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}")
|
||||
else()
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_3X_ARCHS)
|
||||
message(STATUS "Not building sparse_scaled_mm_c3x kernels as CUDA Compiler version is "
|
||||
"not >= 12.2, we recommend upgrading to CUDA 12.2 or later "
|
||||
"if you intend on running FP8 sparse quantized models on Hopper.")
|
||||
else()
|
||||
message(STATUS "Not building sparse_scaled_mm_c3x as no compatible archs found "
|
||||
"in CUDA target architectures")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# FP4 Archs and flags
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${FP4_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4=1")
|
||||
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building NVFP4 as no compatible archs were found.")
|
||||
# clear FP4_ARCHS
|
||||
set(FP4_ARCHS)
|
||||
endif()
|
||||
|
||||
# FP8 Blackwell Archs
|
||||
cuda_archs_loose_intersection(BLACKWELL_ARCHS "10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND BLACKWELL_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
|
||||
)
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${BLACKWELL_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
message(STATUS "Building FP8 for archs: ${BLACKWELL_ARCHS}")
|
||||
else()
|
||||
# clear BLACKWELL_ARCHS
|
||||
set(BLACKWELL_ARCHS)
|
||||
endif()
|
||||
|
||||
#
|
||||
# Machete kernels
|
||||
|
||||
@ -391,6 +529,7 @@ define_gpu_extension_target(
|
||||
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
||||
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
|
||||
INCLUDE_DIRECTORIES ${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
@ -414,7 +553,7 @@ set_gencode_flags_for_srcs(
|
||||
CUDA_ARCHS "${CUDA_ARCHS}")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.9;9.0" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
if (MARLIN_MOE_ARCHS)
|
||||
set(MARLIN_MOE_SRC
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel.h"
|
||||
@ -468,79 +607,8 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
WITH_SOABI)
|
||||
endif()
|
||||
|
||||
# vllm-flash-attn currently only supported on CUDA
|
||||
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda")
|
||||
return()
|
||||
# For CUDA we also build and ship some external projects.
|
||||
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
include(cmake/external_projects/flashmla.cmake)
|
||||
include(cmake/external_projects/vllm_flash_attn.cmake)
|
||||
endif ()
|
||||
|
||||
# vLLM flash attention requires VLLM_GPU_ARCHES to contain the set of target
|
||||
# arches in the CMake syntax (75-real, 89-virtual, etc), since we clear the
|
||||
# arches in the CUDA case (and instead set the gencodes on a per file basis)
|
||||
# we need to manually set VLLM_GPU_ARCHES here.
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
foreach(_ARCH ${CUDA_ARCHS})
|
||||
string(REPLACE "." "" _ARCH "${_ARCH}")
|
||||
list(APPEND VLLM_GPU_ARCHES "${_ARCH}-real")
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
#
|
||||
# Build vLLM flash attention from source
|
||||
#
|
||||
# IMPORTANT: This has to be the last thing we do, because vllm-flash-attn uses the same macros/functions as vLLM.
|
||||
# Because functions all belong to the global scope, vllm-flash-attn's functions overwrite vLLMs.
|
||||
# They should be identical but if they aren't, this is a massive footgun.
|
||||
#
|
||||
# The vllm-flash-attn install rules are nested under vllm to make sure the library gets installed in the correct place.
|
||||
# To only install vllm-flash-attn, use --component vllm_flash_attn_c.
|
||||
# If no component is specified, vllm-flash-attn is still installed.
|
||||
|
||||
# If VLLM_FLASH_ATTN_SRC_DIR is set, vllm-flash-attn is installed from that directory instead of downloading.
|
||||
# This is to enable local development of vllm-flash-attn within vLLM.
|
||||
# It can be set as an environment variable or passed as a cmake argument.
|
||||
# The environment variable takes precedence.
|
||||
if (DEFINED ENV{VLLM_FLASH_ATTN_SRC_DIR})
|
||||
set(VLLM_FLASH_ATTN_SRC_DIR $ENV{VLLM_FLASH_ATTN_SRC_DIR})
|
||||
endif()
|
||||
|
||||
if(VLLM_FLASH_ATTN_SRC_DIR)
|
||||
FetchContent_Declare(vllm-flash-attn SOURCE_DIR ${VLLM_FLASH_ATTN_SRC_DIR})
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG 5259c586c403a4e4d8bf69973c159b40cc346fb9
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
)
|
||||
endif()
|
||||
|
||||
# Set the parent build flag so that the vllm-flash-attn library does not redo compile flag and arch initialization.
|
||||
set(VLLM_PARENT_BUILD ON)
|
||||
|
||||
# Ensure the vllm/vllm_flash_attn directory exists before installation
|
||||
install(CODE "file(MAKE_DIRECTORY \"\${CMAKE_INSTALL_PREFIX}/vllm/vllm_flash_attn\")" COMPONENT vllm_flash_attn_c)
|
||||
|
||||
# Make sure vllm-flash-attn install rules are nested under vllm/
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY FALSE)" COMPONENT vllm_flash_attn_c)
|
||||
install(CODE "set(OLD_CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c)
|
||||
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}/vllm/\")" COMPONENT vllm_flash_attn_c)
|
||||
|
||||
# Fetch the vllm-flash-attn library
|
||||
FetchContent_MakeAvailable(vllm-flash-attn)
|
||||
message(STATUS "vllm-flash-attn is available at ${vllm-flash-attn_SOURCE_DIR}")
|
||||
|
||||
# Restore the install prefix
|
||||
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${OLD_CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c)
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" COMPONENT vllm_flash_attn_c)
|
||||
|
||||
# Copy over the vllm-flash-attn python files
|
||||
install(
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm/vllm_flash_attn
|
||||
COMPONENT vllm_flash_attn_c
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
)
|
||||
|
||||
# Nothing after vllm-flash-attn, see comment about macros above
|
||||
|
||||
@ -61,7 +61,7 @@ representative at an online or offline/IRL event.
|
||||
|
||||
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
||||
reported to the community leaders responsible for enforcement in the #code-of-conduct
|
||||
channel in the [vLLM Discord](https://discord.com/invite/jz7wjKhh6g).
|
||||
channel in the [vLLM Slack](https://slack.vllm.ai).
|
||||
All complaints will be reviewed and investigated promptly and fairly.
|
||||
|
||||
All community leaders are obligated to respect the privacy and security of the
|
||||
@ -125,4 +125,3 @@ Community Impact Guidelines were inspired by
|
||||
For answers to common questions about this code of conduct, see the
|
||||
[Contributor Covenant FAQ](https://www.contributor-covenant.org/faq). Translations are available at
|
||||
[Contributor Covenant translations](https://www.contributor-covenant.org/translations).
|
||||
|
||||
|
||||
130
Dockerfile
130
Dockerfile
@ -2,8 +2,8 @@
|
||||
# to run the OpenAI compatible server.
|
||||
|
||||
# Please update any changes made here to
|
||||
# docs/source/dev/dockerfile/dockerfile.rst and
|
||||
# docs/source/assets/dev/dockerfile-stages-dependency.png
|
||||
# docs/source/contributing/dockerfile/dockerfile.md and
|
||||
# docs/source/assets/contributing/dockerfile-stages-dependency.png
|
||||
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
@ -11,6 +11,7 @@ ARG CUDA_VERSION=12.4.1
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ARG TARGETPLATFORM
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install Python and other dependencies
|
||||
@ -26,6 +27,9 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
|
||||
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
|
||||
# as it was causing spam when compiling the CUTLASS kernels
|
||||
@ -44,11 +48,20 @@ RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
||||
WORKDIR /workspace
|
||||
|
||||
# install build and runtime dependencies
|
||||
|
||||
# arm64 (GH200) build follows the practice of "use existing pytorch" build,
|
||||
# we need to install torch and torchvision from the nightly builds first,
|
||||
# pytorch will not appear as a vLLM dependency in all of the following steps
|
||||
# after this step
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu126 "torch==2.7.0.dev20250121+cu126" "torchvision==0.22.0.dev20250121"; \
|
||||
fi
|
||||
|
||||
COPY requirements-common.txt requirements-common.txt
|
||||
COPY requirements-cuda.txt requirements-cuda.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -r requirements-cuda.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements-cuda.txt
|
||||
|
||||
# cuda arch list used by torch
|
||||
# can be useful for both `dev` and `test`
|
||||
@ -63,12 +76,13 @@ ENV VLLM_FA_CMAKE_GPU_ARCHES=${vllm_fa_cmake_gpu_arches}
|
||||
|
||||
#################### WHEEL BUILD IMAGE ####################
|
||||
FROM base AS build
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
# install build dependencies
|
||||
COPY requirements-build.txt requirements-build.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -r requirements-build.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements-build.txt
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
@ -87,7 +101,7 @@ ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
|
||||
ARG SCCACHE_REGION_NAME=us-west-2
|
||||
ARG SCCACHE_S3_NO_CREDENTIALS=0
|
||||
# if USE_SCCACHE is set, use sccache to speed up compilation
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" = "1" ]; then \
|
||||
echo "Installing sccache..." \
|
||||
@ -107,7 +121,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" != "1" ]; then \
|
||||
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
|
||||
@ -115,8 +129,8 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
|
||||
# Check the size of the wheel if RUN_WHEEL_CHECK is true
|
||||
COPY .buildkite/check-wheel-size.py check-wheel-size.py
|
||||
# Default max size of the wheel is 250MB
|
||||
ARG VLLM_MAX_SIZE_MB=250
|
||||
# sync the default value with .buildkite/check-wheel-size.py
|
||||
ARG VLLM_MAX_SIZE_MB=400
|
||||
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
|
||||
ARG RUN_WHEEL_CHECK=true
|
||||
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
|
||||
@ -132,17 +146,19 @@ FROM base as dev
|
||||
COPY requirements-lint.txt requirements-lint.txt
|
||||
COPY requirements-test.txt requirements-test.txt
|
||||
COPY requirements-dev.txt requirements-dev.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -r requirements-dev.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements-dev.txt
|
||||
#################### DEV IMAGE ####################
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
# image with vLLM installed
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base
|
||||
# TODO: Restore to base image after FlashInfer AOT wheel fixed
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS vllm-base
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
WORKDIR /vllm-workspace
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
|
||||
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
|
||||
@ -151,7 +167,7 @@ RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
|
||||
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo vim python3-pip \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim python3-pip \
|
||||
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
@ -161,6 +177,9 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
|
||||
# Workaround for https://github.com/openai/triton/issues/2507 and
|
||||
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
||||
@ -168,17 +187,48 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
# or future versions of triton.
|
||||
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
||||
|
||||
# install vllm wheel first, so that torch etc will be installed
|
||||
# arm64 (GH200) build follows the practice of "use existing pytorch" build,
|
||||
# we need to install torch and torchvision from the nightly builds first,
|
||||
# pytorch will not appear as a vLLM dependency in all of the following steps
|
||||
# after this step
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu124 "torch==2.6.0.dev20241210+cu124" "torchvision==0.22.0.dev20241215"; \
|
||||
fi
|
||||
|
||||
# Install vllm wheel first, so that torch etc will be installed.
|
||||
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
|
||||
--mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install dist/*.whl --verbose
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system dist/*.whl --verbose
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
. /etc/environment && \
|
||||
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl
|
||||
# If we need to build FlashInfer wheel before its release:
|
||||
# $ export FLASHINFER_ENABLE_AOT=1
|
||||
# $ # Note we remove 7.0 from the arch list compared to the list below, since FlashInfer only supports sm75+
|
||||
# $ export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.6 8.9 9.0+PTX'
|
||||
# $ git clone https://github.com/flashinfer-ai/flashinfer.git --recursive
|
||||
# $ cd flashinfer
|
||||
# $ git checkout 524304395bd1d8cd7d07db083859523fcaa246a4
|
||||
# $ rm -rf build
|
||||
# $ python3 setup.py bdist_wheel --dist-dir=dist --verbose
|
||||
# $ ls dist
|
||||
# $ # upload the wheel to a public location, e.g. https://wheels.vllm.ai/flashinfer/524304395bd1d8cd7d07db083859523fcaa246a4/flashinfer_python-0.2.1.post1+cu124torch2.5-cp38-abi3-linux_x86_64.whl
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
. /etc/environment && \
|
||||
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \
|
||||
uv pip install --system https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.1.post1/flashinfer_python-0.2.1.post1+cu124torch2.5-cp38-abi3-linux_x86_64.whl ; \
|
||||
fi
|
||||
COPY examples examples
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
# Although we build Flashinfer with AOT mode, there's still
|
||||
# some issues w.r.t. JIT compilation. Therefore we need to
|
||||
# install build dependencies for JIT compilation.
|
||||
# TODO: Remove this once FlashInfer AOT wheel is fixed
|
||||
COPY requirements-build.txt requirements-build.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements-build.txt
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
#################### TEST IMAGE ####################
|
||||
# image to run unit testing suite
|
||||
@ -188,12 +238,16 @@ FROM vllm-base AS test
|
||||
ADD . /vllm-workspace/
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -r requirements-dev.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements-dev.txt
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -e tests/vllm_test_utils
|
||||
|
||||
# enable fast downloads from hf (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install hf_transfer
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system hf_transfer
|
||||
ENV HF_HUB_ENABLE_HF_TRANSFER 1
|
||||
|
||||
# Copy in the v1 package for testing (it isn't distributed yet)
|
||||
@ -205,18 +259,30 @@ COPY vllm/v1 /usr/local/lib/python3.12/dist-packages/vllm/v1
|
||||
RUN mkdir test_docs
|
||||
RUN mv docs test_docs/
|
||||
RUN mv vllm test_docs/
|
||||
|
||||
#################### TEST IMAGE ####################
|
||||
|
||||
#################### OPENAI API SERVER ####################
|
||||
# openai api server alternative
|
||||
FROM vllm-base AS vllm-openai
|
||||
# base openai image with additional requirements, for any subsequent openai-style images
|
||||
FROM vllm-base AS vllm-openai-base
|
||||
|
||||
# install additional dependencies for openai api server
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.44.0' timm==0.9.10
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
|
||||
else \
|
||||
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
|
||||
fi
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image
|
||||
|
||||
# define sagemaker first, so it is not default from `docker build`
|
||||
FROM vllm-openai-base AS vllm-sagemaker
|
||||
|
||||
COPY examples/online_serving/sagemaker-entrypoint.sh .
|
||||
RUN chmod +x sagemaker-entrypoint.sh
|
||||
ENTRYPOINT ["./sagemaker-entrypoint.sh"]
|
||||
|
||||
FROM vllm-openai-base AS vllm-openai
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
#################### OPENAI API SERVER ####################
|
||||
|
||||
62
Dockerfile.arm
Normal file
62
Dockerfile.arm
Normal file
@ -0,0 +1,62 @@
|
||||
# This vLLM Dockerfile is used to construct an image that can build and run vLLM on ARM CPU platform.
|
||||
|
||||
FROM ubuntu:22.04 AS cpu-test-arm
|
||||
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
|
||||
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
|
||||
|
||||
RUN --mount=type=cache,target=/var/cache/apt \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
|
||||
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
|
||||
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
|
||||
# tcmalloc provides better memory allocation efficiency, e.g., holding memory in caches to speed up access of commonly-used objects.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install py-cpuinfo # Use this to gather CPU info and optimize based on ARM Neoverse cores
|
||||
|
||||
# Set LD_PRELOAD for tcmalloc on ARM
|
||||
ENV LD_PRELOAD="/usr/lib/aarch64-linux-gnu/libtcmalloc_minimal.so.4"
|
||||
|
||||
RUN echo 'ulimit -c 0' >> ~/.bashrc
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
|
||||
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
|
||||
pip install --upgrade pip && \
|
||||
pip install -r requirements-build.txt
|
||||
|
||||
FROM cpu-test-arm AS build
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements-common.txt,target=requirements-common.txt \
|
||||
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
|
||||
pip install -v -r requirements-cpu.txt
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
# Disabling AVX512 specific optimizations for ARM
|
||||
ARG VLLM_CPU_DISABLE_AVX512="true"
|
||||
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
|
||||
pip install dist/*.whl && \
|
||||
rm -rf dist
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
@ -16,7 +16,7 @@ RUN --mount=type=cache,target=/var/cache/apt \
|
||||
# intel-openmp provides additional performance improvement vs. openmp
|
||||
# tcmalloc provides better memory allocation efficiency, e.g, holding memory in caches to speed up access of commonly-used objects.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install intel-openmp
|
||||
pip install intel-openmp==2025.0.1
|
||||
|
||||
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so"
|
||||
|
||||
@ -62,4 +62,8 @@ WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -e tests/vllm_test_utils
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
FROM vault.habana.ai/gaudi-docker/1.18.0/ubuntu22.04/habanalabs/pytorch-installer-2.4.0:latest
|
||||
FROM vault.habana.ai/gaudi-docker/1.19.1/ubuntu22.04/habanalabs/pytorch-installer-2.5.1:latest
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
||||
@ -11,6 +11,9 @@ ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
|
||||
|
||||
RUN VLLM_TARGET_DEVICE=hpu python3 setup.py install
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
# default base image
|
||||
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.1.2-neuronx-py310-sdk2.20.0-ubuntu20.04"
|
||||
# https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
|
||||
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.5.1-neuronx-py310-sdk2.21.0-ubuntu22.04"
|
||||
|
||||
FROM $BASE_IMAGE
|
||||
|
||||
@ -14,16 +15,19 @@ RUN apt-get update && \
|
||||
ffmpeg libsm6 libxext6 libgl1
|
||||
|
||||
### Mount Point ###
|
||||
# When launching the container, mount the code directory to /app
|
||||
ARG APP_MOUNT=/app
|
||||
# When launching the container, mount the code directory to /workspace
|
||||
ARG APP_MOUNT=/workspace
|
||||
VOLUME [ ${APP_MOUNT} ]
|
||||
WORKDIR ${APP_MOUNT}/vllm
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
|
||||
RUN python3 -m pip install sentencepiece transformers==4.36.2 -U
|
||||
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install --pre neuronx-cc==2.15.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install sentencepiece transformers==4.45.2 -U
|
||||
RUN python3 -m pip install neuronx-cc==2.16.345.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install pytest
|
||||
|
||||
# uninstall transformers-neuronx package explicitly to avoid version conflict
|
||||
RUN python3 -m pip uninstall -y transformers-neuronx
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
@ -38,4 +42,14 @@ ENV VLLM_TARGET_DEVICE neuron
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
pip install --no-build-isolation -v -e .
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
# install transformers-neuronx package as an optional dependencies (for V0)
|
||||
# FIXME: `--no-deps` argument is temporarily added to resolve transformers package version conflict
|
||||
RUN python3 -m pip install transformers-neuronx==0.13.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U --no-deps
|
||||
|
||||
# overwrite entrypoint to run bash script
|
||||
RUN echo "import subprocess; import sys; subprocess.check_call(sys.argv[1:])" > /usr/local/bin/dockerd-entrypoint.py
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@ -14,6 +14,7 @@ ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
RUN python3 -m pip install -U pip
|
||||
# install build requirements
|
||||
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/requirements-build.txt
|
||||
# build vLLM with OpenVINO backend
|
||||
@ -22,4 +23,7 @@ RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVIC
|
||||
COPY examples/ /workspace/examples
|
||||
COPY benchmarks/ /workspace/benchmarks
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@ -4,12 +4,12 @@ USER root
|
||||
|
||||
ENV PATH="/usr/local/cargo/bin:$PATH:/opt/conda/bin/"
|
||||
|
||||
RUN apt-get update -y && apt-get install -y git wget curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1
|
||||
RUN apt-get update -y && apt-get install -y git wget kmod curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1 libssl-dev
|
||||
|
||||
# Some packages in requirements-cpu are installed here
|
||||
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
|
||||
# Currently these may not be available for venv or pip directly
|
||||
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 torchvision-cpu=0.16.2 rust && micromamba clean --all --yes
|
||||
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 rust && micromamba clean --all --yes
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
||||
@ -18,17 +18,18 @@ ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
|
||||
|
||||
# These packages will be in rocketce eventually
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
|
||||
RUSTFLAGS='-L /opt/conda/lib' pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
|
||||
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
|
||||
torch==2.3.1 \
|
||||
-r requirements-cpu.txt \
|
||||
xformers uvloop==0.20.0
|
||||
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py install
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
256
Dockerfile.rocm
256
Dockerfile.rocm
@ -1,171 +1,119 @@
|
||||
# Default ROCm 6.2 base image
|
||||
ARG BASE_IMAGE="rocm/pytorch:rocm6.2_ubuntu20.04_py3.9_pytorch_release_2.3.0"
|
||||
# default base image
|
||||
ARG REMOTE_VLLM="0"
|
||||
ARG USE_CYTHON="0"
|
||||
ARG BUILD_RPD="1"
|
||||
ARG COMMON_WORKDIR=/app
|
||||
ARG BASE_IMAGE=rocm/vllm-dev:base
|
||||
|
||||
# Default ROCm ARCHes to build vLLM for.
|
||||
ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
|
||||
# Whether to install CK-based flash-attention
|
||||
# If 0, will not install flash-attention
|
||||
ARG BUILD_FA="1"
|
||||
ARG FA_GFX_ARCHS="gfx90a;gfx942"
|
||||
ARG FA_BRANCH="3cea2fb"
|
||||
|
||||
# Whether to build triton on rocm
|
||||
ARG BUILD_TRITON="1"
|
||||
ARG TRITON_BRANCH="e192dba"
|
||||
|
||||
### Base image build stage
|
||||
FROM $BASE_IMAGE AS base
|
||||
|
||||
# Import arg(s) defined before this build stage
|
||||
ARG PYTORCH_ROCM_ARCH
|
||||
ARG ARG_PYTORCH_ROCM_ARCH
|
||||
ENV PYTORCH_ROCM_ARCH=${ARG_PYTORCH_ROCM_ARCH:-${PYTORCH_ROCM_ARCH}}
|
||||
|
||||
# Install some basic utilities
|
||||
RUN apt-get update && apt-get install python3 python3-pip -y
|
||||
RUN apt-get update && apt-get install -y \
|
||||
curl \
|
||||
ca-certificates \
|
||||
sudo \
|
||||
git \
|
||||
bzip2 \
|
||||
libx11-6 \
|
||||
build-essential \
|
||||
wget \
|
||||
unzip \
|
||||
tmux \
|
||||
ccache \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# When launching the container, mount the code directory to /vllm-workspace
|
||||
ARG APP_MOUNT=/vllm-workspace
|
||||
WORKDIR ${APP_MOUNT}
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
# Remove sccache so it doesn't interfere with ccache
|
||||
# TODO: implement sccache support across components
|
||||
RUN apt-get update -q -y && apt-get install -q -y \
|
||||
sqlite3 libsqlite3-dev libfmt-dev libmsgpack-dev libsuitesparse-dev
|
||||
# Remove sccache
|
||||
RUN python3 -m pip install --upgrade pip && pip install setuptools_scm
|
||||
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
|
||||
ARG COMMON_WORKDIR
|
||||
WORKDIR ${COMMON_WORKDIR}
|
||||
|
||||
# Install torch == 2.6.0 on ROCm
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
|
||||
*"rocm-6.2"*) \
|
||||
python3 -m pip uninstall -y torch torchvision \
|
||||
&& python3 -m pip install --pre \
|
||||
torch==2.6.0.dev20240918 \
|
||||
'setuptools-scm>=8' \
|
||||
torchvision==0.20.0.dev20240918 \
|
||||
--extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2;; \
|
||||
|
||||
# -----------------------
|
||||
# vLLM fetch stages
|
||||
FROM base AS fetch_vllm_0
|
||||
ONBUILD COPY ./ vllm/
|
||||
FROM base AS fetch_vllm_1
|
||||
ARG VLLM_REPO="https://github.com/vllm-project/vllm.git"
|
||||
ARG VLLM_BRANCH="main"
|
||||
ONBUILD RUN git clone ${VLLM_REPO} \
|
||||
&& cd vllm \
|
||||
&& git checkout ${VLLM_BRANCH}
|
||||
FROM fetch_vllm_${REMOTE_VLLM} AS fetch_vllm
|
||||
|
||||
# -----------------------
|
||||
# vLLM build stages
|
||||
FROM fetch_vllm AS build_vllm
|
||||
ARG USE_CYTHON
|
||||
# Build vLLM
|
||||
RUN cd vllm \
|
||||
&& python3 -m pip install -r requirements-rocm.txt \
|
||||
&& python3 setup.py clean --all \
|
||||
&& if [ ${USE_CYTHON} -eq "1" ]; then python3 setup_cython.py build_ext --inplace; fi \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=dist
|
||||
FROM scratch AS export_vllm
|
||||
ARG COMMON_WORKDIR
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/dist/*.whl /
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/requirements*.txt /
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/benchmarks /benchmarks
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/tests /tests
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/examples /examples
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/.buildkite /.buildkite
|
||||
|
||||
# -----------------------
|
||||
# Test vLLM image
|
||||
FROM base AS test
|
||||
|
||||
RUN python3 -m pip install --upgrade pip && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install vLLM
|
||||
RUN --mount=type=bind,from=export_vllm,src=/,target=/install \
|
||||
cd /install \
|
||||
&& pip install -U -r requirements-rocm.txt \
|
||||
&& pip uninstall -y vllm \
|
||||
&& pip install *.whl
|
||||
|
||||
WORKDIR /vllm-workspace
|
||||
ARG COMMON_WORKDIR
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm /vllm-workspace
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN cd /vllm-workspace \
|
||||
&& rm -rf vllm \
|
||||
&& python3 -m pip install -e tests/vllm_test_utils \
|
||||
&& python3 -m pip install lm-eval[api]==0.4.4 \
|
||||
&& python3 -m pip install pytest-shard
|
||||
|
||||
# -----------------------
|
||||
# Final vLLM image
|
||||
FROM base AS final
|
||||
|
||||
RUN python3 -m pip install --upgrade pip && rm -rf /var/lib/apt/lists/*
|
||||
# Error related to odd state for numpy 1.20.3 where there is no METADATA etc, but an extra LICENSES_bundled.txt.
|
||||
# Manually remove it so that later steps of numpy upgrade can continue
|
||||
RUN case "$(which python3)" in \
|
||||
*"/opt/conda/envs/py_3.9"*) \
|
||||
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/;; \
|
||||
*) ;; esac
|
||||
|
||||
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
|
||||
ENV PATH=$PATH:/opt/rocm/bin:/libtorch/bin:
|
||||
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/libtorch/lib:
|
||||
ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include/:/opt/rocm/include/:
|
||||
RUN python3 -m pip install --upgrade huggingface-hub[cli]
|
||||
ARG BUILD_RPD
|
||||
RUN if [ ${BUILD_RPD} -eq "1" ]; then \
|
||||
git clone -b nvtx_enabled https://github.com/ROCm/rocmProfileData.git \
|
||||
&& cd rocmProfileData/rpd_tracer \
|
||||
&& pip install -r requirements.txt && cd ../ \
|
||||
&& make && make install \
|
||||
&& cd hipMarker && python3 setup.py install ; fi
|
||||
|
||||
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
# Install vLLM
|
||||
RUN --mount=type=bind,from=export_vllm,src=/,target=/install \
|
||||
cd /install \
|
||||
&& pip install -U -r requirements-rocm.txt \
|
||||
&& pip uninstall -y vllm \
|
||||
&& pip install *.whl
|
||||
|
||||
ARG COMMON_WORKDIR
|
||||
|
||||
### AMD-SMI build stage
|
||||
FROM base AS build_amdsmi
|
||||
# Build amdsmi wheel always
|
||||
RUN cd /opt/rocm/share/amd_smi \
|
||||
&& python3 -m pip wheel . --wheel-dir=/install
|
||||
# Copy over the benchmark scripts as well
|
||||
COPY --from=export_vllm /benchmarks ${COMMON_WORKDIR}/vllm/benchmarks
|
||||
COPY --from=export_vllm /examples ${COMMON_WORKDIR}/vllm/examples
|
||||
|
||||
|
||||
### Flash-Attention wheel build stage
|
||||
FROM base AS build_fa
|
||||
ARG BUILD_FA
|
||||
ARG FA_GFX_ARCHS
|
||||
ARG FA_BRANCH
|
||||
# Build ROCm flash-attention wheel if `BUILD_FA = 1`
|
||||
RUN --mount=type=cache,target=${CCACHE_DIR} \
|
||||
if [ "$BUILD_FA" = "1" ]; then \
|
||||
mkdir -p libs \
|
||||
&& cd libs \
|
||||
&& git clone https://github.com/ROCm/flash-attention.git \
|
||||
&& cd flash-attention \
|
||||
&& git checkout "${FA_BRANCH}" \
|
||||
&& git submodule update --init \
|
||||
&& GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \
|
||||
# Create an empty directory otherwise as later build stages expect one
|
||||
else mkdir -p /install; \
|
||||
fi
|
||||
|
||||
|
||||
### Triton wheel build stage
|
||||
FROM base AS build_triton
|
||||
ARG BUILD_TRITON
|
||||
ARG TRITON_BRANCH
|
||||
# Build triton wheel if `BUILD_TRITON = 1`
|
||||
RUN --mount=type=cache,target=${CCACHE_DIR} \
|
||||
if [ "$BUILD_TRITON" = "1" ]; then \
|
||||
mkdir -p libs \
|
||||
&& cd libs \
|
||||
&& python3 -m pip install ninja cmake wheel pybind11 \
|
||||
&& git clone https://github.com/OpenAI/triton.git \
|
||||
&& cd triton \
|
||||
&& git checkout "${TRITON_BRANCH}" \
|
||||
&& cd python \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=/install; \
|
||||
# Create an empty directory otherwise as later build stages expect one
|
||||
else mkdir -p /install; \
|
||||
fi
|
||||
|
||||
|
||||
### Final vLLM build stage
|
||||
FROM base AS final
|
||||
# Import the vLLM development directory from the build context
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
|
||||
# Package upgrades for useful functionality or to avoid dependency issues
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install --upgrade numba scipy huggingface-hub[cli] pytest-shard
|
||||
|
||||
|
||||
# Workaround for ray >= 2.10.0
|
||||
ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
|
||||
# Silences the HF Tokenizers warning
|
||||
ENV TOKENIZERS_PARALLELISM=false
|
||||
|
||||
RUN --mount=type=cache,target=${CCACHE_DIR} \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
--mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -Ur requirements-rocm.txt \
|
||||
&& python3 setup.py clean --all \
|
||||
&& python3 setup.py develop
|
||||
|
||||
# Copy amdsmi wheel into final image
|
||||
RUN --mount=type=bind,from=build_amdsmi,src=/install,target=/install \
|
||||
mkdir -p libs \
|
||||
&& cp /install/*.whl libs \
|
||||
# Preemptively uninstall to avoid same-version no-installs
|
||||
&& python3 -m pip uninstall -y amdsmi;
|
||||
|
||||
# Copy triton wheel(s) into final image if they were built
|
||||
RUN --mount=type=bind,from=build_triton,src=/install,target=/install \
|
||||
mkdir -p libs \
|
||||
&& if ls /install/*.whl; then \
|
||||
cp /install/*.whl libs \
|
||||
# Preemptively uninstall to avoid same-version no-installs
|
||||
&& python3 -m pip uninstall -y triton; fi
|
||||
|
||||
# Copy flash-attn wheel(s) into final image if they were built
|
||||
RUN --mount=type=bind,from=build_fa,src=/install,target=/install \
|
||||
mkdir -p libs \
|
||||
&& if ls /install/*.whl; then \
|
||||
cp /install/*.whl libs \
|
||||
# Preemptively uninstall to avoid same-version no-installs
|
||||
&& python3 -m pip uninstall -y flash-attn; fi
|
||||
|
||||
# Install wheels that were built to the final image
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
if ls libs/*.whl; then \
|
||||
python3 -m pip install libs/*.whl; fi
|
||||
# Performance environment variable.
|
||||
ENV HIP_FORCE_DEV_KERNARG=1
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
|
||||
158
Dockerfile.rocm_base
Normal file
158
Dockerfile.rocm_base
Normal file
@ -0,0 +1,158 @@
|
||||
ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:6.3.1-complete
|
||||
ARG HIPBLASLT_BRANCH="4d40e36"
|
||||
ARG HIPBLAS_COMMON_BRANCH="7c1566b"
|
||||
ARG LEGACY_HIPBLASLT_OPTION=
|
||||
ARG RCCL_BRANCH="648a58d"
|
||||
ARG RCCL_REPO="https://github.com/ROCm/rccl"
|
||||
ARG TRITON_BRANCH="e5be006"
|
||||
ARG TRITON_REPO="https://github.com/triton-lang/triton.git"
|
||||
ARG PYTORCH_BRANCH="3a585126"
|
||||
ARG PYTORCH_VISION_BRANCH="v0.19.1"
|
||||
ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git"
|
||||
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
|
||||
ARG FA_BRANCH="b7d29fb"
|
||||
ARG FA_REPO="https://github.com/ROCm/flash-attention.git"
|
||||
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
|
||||
ENV PATH=/opt/rocm/llvm/bin:$PATH
|
||||
ENV ROCM_PATH=/opt/rocm
|
||||
ENV LD_LIBRARY_PATH=/opt/rocm/lib:/usr/local/lib:
|
||||
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942
|
||||
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
|
||||
|
||||
ARG PYTHON_VERSION=3.12
|
||||
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install Python and other dependencies
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y software-properties-common git curl sudo vim less \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
python${PYTHON_VERSION}-lib2to3 python-is-python3 \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
RUN pip install -U packaging cmake ninja wheel setuptools pybind11 Cython
|
||||
|
||||
FROM base AS build_hipblaslt
|
||||
ARG HIPBLASLT_BRANCH
|
||||
ARG HIPBLAS_COMMON_BRANCH
|
||||
# Set to "--legacy_hipblas_direct" for ROCm<=6.2
|
||||
ARG LEGACY_HIPBLASLT_OPTION
|
||||
RUN git clone https://github.com/ROCm/hipBLAS-common.git
|
||||
RUN cd hipBLAS-common \
|
||||
&& git checkout ${HIPBLAS_COMMON_BRANCH} \
|
||||
&& mkdir build \
|
||||
&& cd build \
|
||||
&& cmake .. \
|
||||
&& make package \
|
||||
&& dpkg -i ./*.deb
|
||||
RUN git clone https://github.com/ROCm/hipBLASLt
|
||||
RUN cd hipBLASLt \
|
||||
&& git checkout ${HIPBLASLT_BRANCH} \
|
||||
&& ./install.sh -d --architecture ${PYTORCH_ROCM_ARCH} ${LEGACY_HIPBLASLT_OPTION} \
|
||||
&& cd build/release \
|
||||
&& make package
|
||||
RUN mkdir -p /app/install && cp /app/hipBLASLt/build/release/*.deb /app/hipBLAS-common/build/*.deb /app/install
|
||||
|
||||
FROM base AS build_rccl
|
||||
ARG RCCL_BRANCH
|
||||
ARG RCCL_REPO
|
||||
RUN git clone ${RCCL_REPO}
|
||||
RUN cd rccl \
|
||||
&& git checkout ${RCCL_BRANCH} \
|
||||
&& ./install.sh -p --amdgpu_targets ${PYTORCH_ROCM_ARCH}
|
||||
RUN mkdir -p /app/install && cp /app/rccl/build/release/*.deb /app/install
|
||||
|
||||
FROM base AS build_triton
|
||||
ARG TRITON_BRANCH
|
||||
ARG TRITON_REPO
|
||||
RUN git clone ${TRITON_REPO}
|
||||
RUN cd triton \
|
||||
&& git checkout ${TRITON_BRANCH} \
|
||||
&& cd python \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=dist
|
||||
RUN mkdir -p /app/install && cp /app/triton/python/dist/*.whl /app/install
|
||||
|
||||
FROM base AS build_amdsmi
|
||||
RUN cd /opt/rocm/share/amd_smi \
|
||||
&& pip wheel . --wheel-dir=dist
|
||||
RUN mkdir -p /app/install && cp /opt/rocm/share/amd_smi/dist/*.whl /app/install
|
||||
|
||||
FROM base AS build_pytorch
|
||||
ARG PYTORCH_BRANCH
|
||||
ARG PYTORCH_VISION_BRANCH
|
||||
ARG PYTORCH_REPO
|
||||
ARG PYTORCH_VISION_REPO
|
||||
ARG FA_BRANCH
|
||||
ARG FA_REPO
|
||||
RUN git clone ${PYTORCH_REPO} pytorch
|
||||
RUN cd pytorch && git checkout ${PYTORCH_BRANCH} && \
|
||||
pip install -r requirements.txt && git submodule update --init --recursive \
|
||||
&& python3 tools/amd_build/build_amd.py \
|
||||
&& CMAKE_PREFIX_PATH=$(python3 -c 'import sys; print(sys.prefix)') python3 setup.py bdist_wheel --dist-dir=dist \
|
||||
&& pip install dist/*.whl
|
||||
RUN git clone ${PYTORCH_VISION_REPO} vision
|
||||
RUN cd vision && git checkout ${PYTORCH_VISION_BRANCH} \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=dist \
|
||||
&& pip install dist/*.whl
|
||||
RUN git clone ${FA_REPO}
|
||||
RUN cd flash-attention \
|
||||
&& git checkout ${FA_BRANCH} \
|
||||
&& git submodule update --init \
|
||||
&& MAX_JOBS=64 GPU_ARCHS=${PYTORCH_ROCM_ARCH} python3 setup.py bdist_wheel --dist-dir=dist
|
||||
RUN mkdir -p /app/install && cp /app/pytorch/dist/*.whl /app/install \
|
||||
&& cp /app/vision/dist/*.whl /app/install \
|
||||
&& cp /app/flash-attention/dist/*.whl /app/install
|
||||
|
||||
FROM base AS final
|
||||
RUN --mount=type=bind,from=build_hipblaslt,src=/app/install/,target=/install \
|
||||
dpkg -i /install/*deb \
|
||||
&& sed -i 's/, hipblaslt-dev \(.*\), hipcub-dev/, hipcub-dev/g' /var/lib/dpkg/status \
|
||||
&& sed -i 's/, hipblaslt \(.*\), hipfft/, hipfft/g' /var/lib/dpkg/status
|
||||
RUN --mount=type=bind,from=build_rccl,src=/app/install/,target=/install \
|
||||
dpkg -i /install/*deb \
|
||||
&& sed -i 's/, rccl-dev \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status \
|
||||
&& sed -i 's/, rccl \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status
|
||||
RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
|
||||
ARG BASE_IMAGE
|
||||
ARG HIPBLASLT_BRANCH
|
||||
ARG LEGACY_HIPBLASLT_OPTION
|
||||
ARG RCCL_BRANCH
|
||||
ARG RCCL_REPO
|
||||
ARG TRITON_BRANCH
|
||||
ARG TRITON_REPO
|
||||
ARG PYTORCH_BRANCH
|
||||
ARG PYTORCH_VISION_BRANCH
|
||||
ARG PYTORCH_REPO
|
||||
ARG PYTORCH_VISION_REPO
|
||||
ARG FA_BRANCH
|
||||
ARG FA_REPO
|
||||
RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
|
||||
&& echo "HIPBLAS_COMMON_BRANCH: ${HIPBLAS_COMMON_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "HIPBLASLT_BRANCH: ${HIPBLASLT_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "LEGACY_HIPBLASLT_OPTION: ${LEGACY_HIPBLASLT_OPTION}" >> /app/versions.txt \
|
||||
&& echo "RCCL_BRANCH: ${RCCL_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "RCCL_REPO: ${RCCL_REPO}" >> /app/versions.txt \
|
||||
&& echo "TRITON_BRANCH: ${TRITON_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "TRITON_REPO: ${TRITON_REPO}" >> /app/versions.txt \
|
||||
&& echo "PYTORCH_BRANCH: ${PYTORCH_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "PYTORCH_VISION_BRANCH: ${PYTORCH_VISION_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "PYTORCH_REPO: ${PYTORCH_REPO}" >> /app/versions.txt \
|
||||
&& echo "PYTORCH_VISION_REPO: ${PYTORCH_VISION_REPO}" >> /app/versions.txt \
|
||||
&& echo "FA_BRANCH: ${FA_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "FA_REPO: ${FA_REPO}" >> /app/versions.txt
|
||||
@ -1,4 +1,4 @@
|
||||
ARG NIGHTLY_DATE="20241017"
|
||||
ARG NIGHTLY_DATE="20250124"
|
||||
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
|
||||
|
||||
FROM $BASE_IMAGE
|
||||
@ -22,4 +22,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
-r requirements-tpu.txt
|
||||
RUN python3 setup.py develop
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@ -64,5 +64,6 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image \
|
||||
TRITON_XPU_PROFILE 1
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
|
||||
66
README.md
66
README.md
@ -10,15 +10,27 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
</h3>
|
||||
|
||||
<p align="center">
|
||||
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
|
||||
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
|
||||
</p>
|
||||
|
||||
---
|
||||
|
||||
We’re excited to invite you to the first **vLLM China Meetup** on **March 16** in **Beijing**!
|
||||
|
||||
Join us to connect with the **vLLM team** and explore how vLLM is leveraged in **post-training, fine-tuning, and deployment**, including [verl](https://github.com/volcengine/verl), [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory), and [vllm-ascend](https://github.com/vllm-project/vllm-ascend).
|
||||
|
||||
👉 **[Register Now](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)** to be part of the discussion!
|
||||
|
||||
---
|
||||
|
||||
*Latest News* 🔥
|
||||
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing).
|
||||
|
||||
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
|
||||
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
|
||||
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
|
||||
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
|
||||
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
|
||||
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://raysummit.anyscale.com/flow/anyscale/raysummit2024/landing/page/sessioncatalog?tab.day=20241001&search.sessiontracks=1719251906298001uzJ2) from other vLLM contributors and users!
|
||||
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
|
||||
- [2024/09] We hosted [the sixth vLLM meetup](https://lu.ma/87q3nvnh) with NVIDIA! Please find the meetup slides [here](https://docs.google.com/presentation/d/1wrLGwytQfaOTd5wCGSPNhoaW3nq0E-9wqyP7ny93xRs/edit?usp=sharing).
|
||||
- [2024/07] We hosted [the fifth vLLM meetup](https://lu.ma/lp0gyjqr) with AWS! Please find the meetup slides [here](https://docs.google.com/presentation/d/1RgUD8aCfcHocghoP3zmXzck9vX3RCI9yfUAB2Bbcl4Y/edit?usp=sharing).
|
||||
- [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post [here](https://blog.vllm.ai/2024/07/23/llama31.html).
|
||||
@ -30,13 +42,17 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
|
||||
|
||||
---
|
||||
|
||||
## About
|
||||
|
||||
vLLM is a fast and easy-to-use library for LLM inference and serving.
|
||||
|
||||
Originally developed in the [Sky Computing Lab](https://sky.cs.berkeley.edu) at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry.
|
||||
|
||||
vLLM is fast with:
|
||||
|
||||
- State-of-the-art serving throughput
|
||||
- Efficient management of attention key and value memory with **PagedAttention**
|
||||
- Efficient management of attention key and value memory with [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html)
|
||||
- Continuous batching of incoming requests
|
||||
- Fast model execution with CUDA/HIP graph
|
||||
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), INT4, INT8, and FP8.
|
||||
@ -59,7 +75,7 @@ vLLM is flexible and easy to use with:
|
||||
|
||||
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
|
||||
- Transformer-like LLMs (e.g., Llama)
|
||||
- Mixture-of-Expert LLMs (e.g., Mixtral)
|
||||
- Mixture-of-Expert LLMs (e.g., Mixtral, Deepseek-V2 and V3)
|
||||
- Embedding Models (e.g. E5-Mistral)
|
||||
- Multi-modal LLMs (e.g., LLaVA)
|
||||
|
||||
@ -67,16 +83,16 @@ Find the full list of supported models [here](https://docs.vllm.ai/en/latest/mod
|
||||
|
||||
## Getting Started
|
||||
|
||||
Install vLLM with `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
|
||||
Install vLLM with `pip` or [from source](https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source):
|
||||
|
||||
```bash
|
||||
pip install vllm
|
||||
```
|
||||
|
||||
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to learn more.
|
||||
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
|
||||
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
|
||||
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
|
||||
Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
|
||||
- [Installation](https://docs.vllm.ai/en/latest/getting_started/installation/index.html)
|
||||
- [Quickstart](https://docs.vllm.ai/en/latest/getting_started/quickstart.html)
|
||||
- [List of Supported Models](https://docs.vllm.ai/en/latest/models/supported_models.html)
|
||||
|
||||
## Contributing
|
||||
|
||||
@ -89,33 +105,40 @@ vLLM is a community project. Our compute resources for development and testing a
|
||||
|
||||
<!-- Note: Please sort them in alphabetical order. -->
|
||||
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->
|
||||
|
||||
Cash Donations:
|
||||
- a16z
|
||||
- Dropbox
|
||||
- Sequoia Capital
|
||||
- Skywork AI
|
||||
- ZhenFund
|
||||
|
||||
Compute Resources:
|
||||
- AMD
|
||||
- Anyscale
|
||||
- AWS
|
||||
- Crusoe Cloud
|
||||
- Databricks
|
||||
- DeepInfra
|
||||
- Dropbox
|
||||
- Google Cloud
|
||||
- Lambda Lab
|
||||
- Nebius
|
||||
- Novita AI
|
||||
- NVIDIA
|
||||
- Replicate
|
||||
- Roblox
|
||||
- RunPod
|
||||
- Sequoia Capital
|
||||
- Skywork AI
|
||||
- Trainy
|
||||
- UC Berkeley
|
||||
- UC San Diego
|
||||
- ZhenFund
|
||||
|
||||
Slack Sponsor: Anyscale
|
||||
|
||||
We also have an official fundraising venue through [OpenCollective](https://opencollective.com/vllm). We plan to use the fund to support the development, maintenance, and adoption of vLLM.
|
||||
|
||||
## Citation
|
||||
|
||||
If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
|
||||
|
||||
```bibtex
|
||||
@inproceedings{kwon2023efficient,
|
||||
title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
|
||||
@ -127,8 +150,11 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
|
||||
|
||||
## Contact Us
|
||||
|
||||
* For technical questions and feature requests, please use Github issues or discussions.
|
||||
* For discussing with fellow users, please use Discord.
|
||||
* For coordinating contributions and development, please use Slack.
|
||||
* For security disclosures, please use Github's security advisory feature.
|
||||
* For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.
|
||||
- For technical questions and feature requests, please use Github issues or discussions.
|
||||
- For discussing with fellow users and coordinating contributions and development, please use Slack.
|
||||
- For security disclosures, please use Github's security advisory feature.
|
||||
- For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.
|
||||
|
||||
## Media Kit
|
||||
|
||||
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).
|
||||
|
||||
54
RELEASE.md
Normal file
54
RELEASE.md
Normal file
@ -0,0 +1,54 @@
|
||||
# Releasing vLLM
|
||||
|
||||
vLLM releases offer a reliable version of the code base, packaged into a binary format that can be conveniently accessed via PyPI. These releases also serve as key milestones for the development team to communicate with the community about newly available features, improvements, and upcoming changes that could affect users, including potential breaking changes.
|
||||
|
||||
## Release Versioning
|
||||
|
||||
vLLM uses a “right-shifted” versioning scheme where a new patch release is out every 2 weeks. And patch releases contain features and bug fixes (as opposed to semver where patch release contains only backwards-compatible bug fixes). When critical fixes need to be made, special release post1 is released.
|
||||
|
||||
* _major_ major architectural milestone and when incompatible API changes are made, similar to PyTorch 2.0.
|
||||
* _minor_ major features
|
||||
* _patch_ features and backwards-compatible bug fixes
|
||||
* _post1_ or _patch-1_ backwards-compatible bug fixes, either explicit or implicit post release
|
||||
|
||||
## Release Cadence
|
||||
|
||||
Patch release is released on bi-weekly basis. Post release 1-3 days after patch release and uses same branch as patch release.
|
||||
Following is the release cadence for year 2025. All future release dates below are tentative. Please note: Post releases are optional.
|
||||
|
||||
| Release Date | Patch release versions | Post Release versions |
|
||||
| --- | --- | --- |
|
||||
| Jan 2025 | 0.7.0 | --- |
|
||||
| Feb 2025 | 0.7.1, 0.7.2, 0.7.3 | --- |
|
||||
| Mar 2025 | 0.7.4, 0.7.5 | --- |
|
||||
| Apr 2025 | 0.7.6, 0.7.7 | --- |
|
||||
| May 2025 | 0.7.8, 0.7.9 | --- |
|
||||
| Jun 2025 | 0.7.10, 0.7.11 | --- |
|
||||
| Jul 2025 | 0.7.12, 0.7.13 | --- |
|
||||
| Aug 2025 | 0.7.14, 0.7.15 | --- |
|
||||
| Sep 2025 | 0.7.16, 0.7.17 | --- |
|
||||
| Oct 2025 | 0.7.18, 0.7.19 | --- |
|
||||
| Nov 2025 | 0.7.20, 0.7.21 | --- |
|
||||
| Dec 2025 | 0.7.22, 0.7.23 | --- |
|
||||
|
||||
## Release branch
|
||||
|
||||
Each release is built from a dedicated release branch.
|
||||
|
||||
* For _major_, _minor_, _patch_ releases, the release branch cut is performed 1-2 days before release is live.
|
||||
* For post releases, previously cut release branch is reused
|
||||
* Release builds are triggered via push to RC tag like vX.Y.Z-rc1 . This enables us to build and test multiple RCs for each release.
|
||||
* Final tag : vX.Y.Z does not trigger the build but used for Release notes and assets.
|
||||
* After branch cut is created we monitor the main branch for any reverts and apply these reverts to a release branch.
|
||||
|
||||
## Release Cherry-Pick Criteria
|
||||
|
||||
After branch cut, we approach finalizing the release branch with clear criteria on what cherry picks are allowed in. Note: a cherry pick is a process to land a PR in the release branch after branch cut. These are typically limited to ensure that the team has sufficient time to complete a thorough round of testing on a stable code base.
|
||||
|
||||
* Regression fixes - that address functional/performance regression against the most recent release (e.g. 0.7.0 for 0.7.1 release)
|
||||
* Critical fixes - critical fixes for severe issue such as silent incorrectness, backwards compatibility, crashes, deadlocks, (large) memory leaks
|
||||
* Fixes to new features introduced in the most recent release (e.g. 0.7.0 for 0.7.1 release)
|
||||
* Documentation improvements
|
||||
* Release branch specific changes (e.g. change version identifiers or CI fixes)
|
||||
|
||||
Please note: **No feature work allowed for cherry picks**. All PRs that are considered for cherry-picks need to be merged on trunk, the only exception are Release branch specific changes.
|
||||
@ -4,7 +4,7 @@
|
||||
|
||||
If you believe you have found a security vulnerability in vLLM, we encourage you to let us know right away. We will investigate all legitimate reports and do our best to quickly fix the problem.
|
||||
|
||||
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new).
|
||||
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new). Reports will then be triaged by the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html).
|
||||
|
||||
---
|
||||
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
## Downloading the ShareGPT dataset
|
||||
|
||||
You can download the dataset by running:
|
||||
|
||||
```bash
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
```
|
||||
@ -11,9 +12,18 @@ wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/r
|
||||
|
||||
The json file refers to several image datasets (coco, llava, etc.). The benchmark scripts
|
||||
will ignore a datapoint if the referred image is missing.
|
||||
|
||||
```bash
|
||||
wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/resolve/main/sharegpt4v_instruct_gpt4-vision_cap100k.json
|
||||
mkdir coco -p
|
||||
wget http://images.cocodataset.org/zips/train2017.zip -O coco/train2017.zip
|
||||
unzip coco/train2017.zip -d coco/
|
||||
```
|
||||
|
||||
# Downloading the BurstGPT dataset
|
||||
|
||||
You can download the BurstGPT v1.1 dataset by running:
|
||||
|
||||
```bash
|
||||
wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv
|
||||
```
|
||||
|
||||
@ -1,10 +1,12 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import aiohttp
|
||||
import huggingface_hub.constants
|
||||
@ -12,6 +14,8 @@ from tqdm.asyncio import tqdm
|
||||
from transformers import (AutoTokenizer, PreTrainedTokenizer,
|
||||
PreTrainedTokenizerFast)
|
||||
|
||||
from vllm.model_executor.model_loader.weight_utils import get_lock
|
||||
|
||||
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
|
||||
|
||||
|
||||
@ -22,8 +26,10 @@ class RequestFuncInput:
|
||||
prompt_len: int
|
||||
output_len: int
|
||||
model: str
|
||||
model_name: Optional[str] = None
|
||||
best_of: int = 1
|
||||
logprobs: Optional[int] = None
|
||||
extra_body: Optional[dict] = None
|
||||
multi_modal_content: Optional[dict] = None
|
||||
ignore_eos: bool = False
|
||||
|
||||
@ -33,9 +39,11 @@ class RequestFuncOutput:
|
||||
generated_text: str = ""
|
||||
success: bool = False
|
||||
latency: float = 0.0
|
||||
output_tokens: int = 0
|
||||
ttft: float = 0.0 # Time to first token
|
||||
itl: List[float] = field(
|
||||
default_factory=list) # List of inter-token latencies
|
||||
itl: list[float] = field(
|
||||
default_factory=list) # list of inter-token latencies
|
||||
tpot: float = 0.0 # avg next-token latencies
|
||||
prompt_len: int = 0
|
||||
error: str = ""
|
||||
|
||||
@ -47,13 +55,15 @@ async def async_request_tgi(
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
params = {
|
||||
"best_of": request_func_input.best_of,
|
||||
"max_new_tokens": request_func_input.output_len,
|
||||
"do_sample": True,
|
||||
"temperature": 0.01, # TGI does not accept 0.0 temperature.
|
||||
"top_p": 0.99, # TGI does not accept 1.0 top_p.
|
||||
"truncate": request_func_input.prompt_len,
|
||||
# TGI does not accept ignore_eos flag.
|
||||
}
|
||||
payload = {
|
||||
@ -75,7 +85,7 @@ async def async_request_tgi(
|
||||
continue
|
||||
chunk_bytes = chunk_bytes.decode("utf-8")
|
||||
|
||||
#NOTE: Sometimes TGI returns a ping response without
|
||||
# NOTE: Sometimes TGI returns a ping response without
|
||||
# any data, we should skip it.
|
||||
if chunk_bytes.startswith(":"):
|
||||
continue
|
||||
@ -118,7 +128,8 @@ async def async_request_trt_llm(
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
assert request_func_input.best_of == 1
|
||||
payload = {
|
||||
"accumulate_tokens": True,
|
||||
@ -152,7 +163,7 @@ async def async_request_trt_llm(
|
||||
timestamp = time.perf_counter()
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = time.perf_counter() - st
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
@ -182,7 +193,8 @@ async def async_request_deepspeed_mii(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
assert request_func_input.best_of == 1
|
||||
|
||||
payload = {
|
||||
@ -230,17 +242,25 @@ async def async_request_openai_completions(
|
||||
("completions", "profile")
|
||||
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
payload = {
|
||||
"model": request_func_input.model,
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"prompt": request_func_input.prompt,
|
||||
"temperature": 0.0,
|
||||
"best_of": request_func_input.best_of,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"logprobs": request_func_input.logprobs,
|
||||
"stream": True,
|
||||
"ignore_eos": request_func_input.ignore_eos,
|
||||
"stream_options": {
|
||||
"include_usage": True,
|
||||
},
|
||||
}
|
||||
if request_func_input.ignore_eos:
|
||||
payload["ignore_eos"] = request_func_input.ignore_eos
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
|
||||
}
|
||||
@ -249,7 +269,6 @@ async def async_request_openai_completions(
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
generated_text = ""
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
@ -264,15 +283,16 @@ async def async_request_openai_completions(
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
if chunk == "[DONE]":
|
||||
latency = time.perf_counter() - st
|
||||
else:
|
||||
if chunk != "[DONE]":
|
||||
data = json.loads(chunk)
|
||||
|
||||
# NOTE: Some completion API might have a last
|
||||
# usage summary response without a token so we
|
||||
# want to check a token was generated
|
||||
if data["choices"][0]["text"]:
|
||||
if choices := data.get("choices"):
|
||||
# Note that text could be empty here
|
||||
# e.g. for special tokens
|
||||
text = choices[0].get("text")
|
||||
timestamp = time.perf_counter()
|
||||
# First token
|
||||
if not first_chunk_received:
|
||||
@ -286,7 +306,10 @@ async def async_request_openai_completions(
|
||||
most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
generated_text += data["choices"][0]["text"]
|
||||
generated_text += text or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
if first_chunk_received:
|
||||
output.success = True
|
||||
else:
|
||||
@ -295,7 +318,7 @@ async def async_request_openai_completions(
|
||||
"Never received a valid chunk to calculate TTFT."
|
||||
"This response will be marked as failed!")
|
||||
output.generated_text = generated_text
|
||||
output.latency = latency
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
@ -318,12 +341,14 @@ async def async_request_openai_chat_completions(
|
||||
"chat/completions"
|
||||
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
|
||||
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
if request_func_input.multi_modal_content:
|
||||
content.append(request_func_input.multi_modal_content)
|
||||
payload = {
|
||||
"model": request_func_input.model,
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
@ -333,8 +358,14 @@ async def async_request_openai_chat_completions(
|
||||
"temperature": 0.0,
|
||||
"max_completion_tokens": request_func_input.output_len,
|
||||
"stream": True,
|
||||
"ignore_eos": request_func_input.ignore_eos,
|
||||
"stream_options": {
|
||||
"include_usage": True,
|
||||
},
|
||||
}
|
||||
if request_func_input.ignore_eos:
|
||||
payload["ignore_eos"] = request_func_input.ignore_eos
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
@ -358,17 +389,15 @@ async def async_request_openai_chat_completions(
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
if chunk == "[DONE]":
|
||||
latency = time.perf_counter() - st
|
||||
else:
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
delta = data["choices"][0]["delta"]
|
||||
if delta.get("content", None):
|
||||
if choices := data.get("choices"):
|
||||
content = choices[0]["delta"].get("content")
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = time.perf_counter() - st
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
@ -376,13 +405,16 @@ async def async_request_openai_chat_completions(
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
|
||||
generated_text += delta["content"]
|
||||
generated_text += content or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.generated_text = generated_text
|
||||
output.success = True
|
||||
output.latency = latency
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
@ -400,24 +432,48 @@ def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
|
||||
from modelscope import snapshot_download
|
||||
|
||||
model_path = snapshot_download(
|
||||
model_id=pretrained_model_name_or_path,
|
||||
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
|
||||
# Use file lock to prevent multiple processes from
|
||||
# downloading the same model weights at the same time.
|
||||
with get_lock(pretrained_model_name_or_path):
|
||||
model_path = snapshot_download(
|
||||
model_id=pretrained_model_name_or_path,
|
||||
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
|
||||
|
||||
return model_path
|
||||
return model_path
|
||||
return pretrained_model_name_or_path
|
||||
|
||||
|
||||
def get_tokenizer(
|
||||
pretrained_model_name_or_path: str, trust_remote_code: bool
|
||||
pretrained_model_name_or_path: str,
|
||||
tokenizer_mode: str = "auto",
|
||||
trust_remote_code: bool = False,
|
||||
**kwargs,
|
||||
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
||||
if pretrained_model_name_or_path is not None and not os.path.exists(
|
||||
pretrained_model_name_or_path):
|
||||
pretrained_model_name_or_path = get_model(
|
||||
pretrained_model_name_or_path)
|
||||
return AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
|
||||
trust_remote_code=trust_remote_code)
|
||||
if tokenizer_mode == "slow":
|
||||
if kwargs.get("use_fast", False):
|
||||
raise ValueError(
|
||||
"Cannot use the fast tokenizer in slow tokenizer mode.")
|
||||
kwargs["use_fast"] = False
|
||||
if tokenizer_mode == "mistral":
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import MistralTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError("MistralTokenizer requires vllm package.\n"
|
||||
"Please install it with `pip install vllm` "
|
||||
"to use mistral tokenizer mode.") from e
|
||||
return MistralTokenizer.from_pretrained(
|
||||
str(pretrained_model_name_or_path))
|
||||
else:
|
||||
return AutoTokenizer.from_pretrained(
|
||||
pretrained_model_name_or_path,
|
||||
trust_remote_code=trust_remote_code,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
ASYNC_REQUEST_FUNCS = {
|
||||
|
||||
507
benchmarks/benchmark_guided.py
Normal file
507
benchmarks/benchmark_guided.py
Normal file
@ -0,0 +1,507 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Benchmark guided decoding throughput."""
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
|
||||
import datasets
|
||||
import pandas as pd
|
||||
import uvloop
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
|
||||
from vllm.entrypoints.openai.api_server import (
|
||||
build_async_engine_client_from_engine_args)
|
||||
from vllm.sampling_params import GuidedDecodingParams
|
||||
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SampleRequest:
|
||||
"""A class representing a single inference request for benchmarking.
|
||||
|
||||
Attributes:
|
||||
prompt: The input text prompt for the model.
|
||||
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
|
||||
images).
|
||||
prompt_len: The length of the prompt in tokens.
|
||||
expected_output_len: The expected length of the output in tokens.
|
||||
"""
|
||||
prompt: str
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
schema: dict
|
||||
structure_type: str = 'json'
|
||||
completion: str = None
|
||||
|
||||
|
||||
def run_vllm(requests: list[SampleRequest],
|
||||
engine_args: EngineArgs,
|
||||
n: int,
|
||||
guided_decoding_rate: float = 1.0,
|
||||
warmup: bool = False) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(**vars(engine_args))
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (
|
||||
request.prompt_len + request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests.")
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts: list[str] = []
|
||||
sampling_params: list[SamplingParams] = []
|
||||
# create a list containing random selected true or false
|
||||
guided_decoding_req_idx = random.sample(
|
||||
range(len(requests)), int(len(requests) * guided_decoding_rate))
|
||||
|
||||
if warmup:
|
||||
print(">>>>> Running warmup prompt, for the first 5")
|
||||
# We setup the first 5 requests to warmup FSM
|
||||
# if using xgrammar dataset, we will skip warmup
|
||||
warmup_requests = requests[:5]
|
||||
for i, request in enumerate(warmup_requests):
|
||||
prompts.append(request.prompt)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
guided_decoding=GuidedDecodingParams(json=request.schema)
|
||||
if guided_decoding_rate > 0 else None,
|
||||
))
|
||||
llm.generate(prompts, sampling_params, use_tqdm=False)
|
||||
|
||||
print(">>>>> Benchmark started...")
|
||||
prompts = []
|
||||
sampling_params = []
|
||||
for i, request in enumerate(requests):
|
||||
prompts.append(request.prompt)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
guided_decoding=GuidedDecodingParams(
|
||||
**{request.structure_type: request.schema})
|
||||
if i in guided_decoding_req_idx else None,
|
||||
))
|
||||
|
||||
start = time.perf_counter()
|
||||
outputs = llm.generate(prompts, sampling_params, use_tqdm=False)
|
||||
ret = []
|
||||
for output, request in zip(outputs, requests):
|
||||
generated_text = output.outputs[0].text
|
||||
ret.append({
|
||||
"generated": generated_text,
|
||||
"expected": request.completion
|
||||
})
|
||||
end = time.perf_counter()
|
||||
return end - start, ret
|
||||
|
||||
|
||||
async def run_vllm_async(
|
||||
requests: list[SampleRequest],
|
||||
engine_args: AsyncEngineArgs,
|
||||
n: int,
|
||||
guided_decoding_rate: float = 1.0,
|
||||
warmup: bool = False,
|
||||
disable_frontend_multiprocessing: bool = False) -> float:
|
||||
from vllm import SamplingParams
|
||||
|
||||
async with build_async_engine_client_from_engine_args(
|
||||
engine_args, disable_frontend_multiprocessing) as llm:
|
||||
|
||||
assert all(
|
||||
llm.model_config.max_model_len >= (request.prompt_len +
|
||||
request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests.")
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts: list[str] = []
|
||||
sampling_params: list[SamplingParams] = []
|
||||
guided_decoding_req_idx = random.sample(
|
||||
range(len(requests)), int(len(requests) * guided_decoding_rate))
|
||||
|
||||
if warmup:
|
||||
print(">>>>>> Running warmup prompt, for the first 5")
|
||||
# We setup the first 5 requests to warmup FSM
|
||||
# if using xgrammar dataset, we will skip warmup
|
||||
warmup_requests = requests[:5]
|
||||
for i, request in enumerate(warmup_requests):
|
||||
prompts.append(request.prompt)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
guided_decoding=GuidedDecodingParams(
|
||||
json=request.schema)
|
||||
if guided_decoding_rate > 0 else None,
|
||||
))
|
||||
generators = []
|
||||
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
|
||||
generator = llm.generate(prompt, sp, request_id=f"test{i}")
|
||||
generators.append(generator)
|
||||
all_gens = merge_async_iterators(*generators)
|
||||
async for i, res in all_gens:
|
||||
pass
|
||||
|
||||
print(">>>>> Benchmark started...")
|
||||
prompts = []
|
||||
sampling_params = []
|
||||
for i, request in enumerate(requests):
|
||||
prompts.append(request.prompt)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
guided_decoding=GuidedDecodingParams(json=request.schema)
|
||||
if i in guided_decoding_req_idx else None,
|
||||
))
|
||||
|
||||
generators = []
|
||||
start_time = []
|
||||
latencies = []
|
||||
start = time.perf_counter()
|
||||
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
|
||||
generator = llm.generate(prompt, sp, request_id=f"test{i}")
|
||||
generators.append(generator)
|
||||
start_time.append(time.perf_counter())
|
||||
latencies.append([])
|
||||
all_gens = merge_async_iterators(*generators)
|
||||
generated_texts = [''] * len(requests)
|
||||
async for i, res in all_gens:
|
||||
generated_texts[i] = res.outputs[0].text
|
||||
lat = time.perf_counter() - start_time[i]
|
||||
latencies[i].append(lat)
|
||||
ret = [{
|
||||
'generated': gt,
|
||||
'expected': req.completion
|
||||
} for gt, req in zip(generated_texts, requests)]
|
||||
end = time.perf_counter()
|
||||
first_latency = pd.Series([lat[0] * 1000 for lat in latencies])
|
||||
next_latency = pd.Series([(lat[-1] - lat[0]) / len(lat[1:]) * 1000
|
||||
for lat in latencies])
|
||||
return end - start, ret, (first_latency, next_latency)
|
||||
|
||||
|
||||
def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
args: argparse.Namespace) -> list[SampleRequest]:
|
||||
if args.dataset == 'json':
|
||||
if args.json_schema_path is None:
|
||||
dir_path = os.path.dirname(os.path.realpath(__file__))
|
||||
args.json_schema_path = os.path.join(dir_path,
|
||||
"structured_schemas",
|
||||
"structured_schema_1.json")
|
||||
with open(args.json_schema_path) as f:
|
||||
schema = json.load(f)
|
||||
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "grammar":
|
||||
schema = """
|
||||
?start: select_statement
|
||||
|
||||
?select_statement: "SELECT " column_list " FROM " table_name
|
||||
|
||||
?column_list: column_name ("," column_name)*
|
||||
|
||||
?table_name: identifier
|
||||
|
||||
?column_name: identifier
|
||||
|
||||
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
|
||||
"""
|
||||
prompt = "Generate an SQL query to show the 'username' \
|
||||
and 'email' from the 'users' table."
|
||||
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "regex":
|
||||
regex = r"\w+@\w+\.com\n"
|
||||
args.regex = regex
|
||||
prompt = "Generate an email address for Alan Turing, \
|
||||
who works in Enigma. End in .com and new line. \
|
||||
Example result: alan.turing@enigma.com\n"
|
||||
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=regex,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "choice":
|
||||
choice = ["Positive", "Negative"]
|
||||
args.choice = choice
|
||||
prompt = "Classify this sentiment: vLLM is wonderful!"
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=choice,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "xgrammar_bench":
|
||||
args.warmup = False
|
||||
requests: list[SampleRequest] = []
|
||||
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
|
||||
split="train")
|
||||
print(f"dataset has {len(dataset)} entries")
|
||||
len_dataset = len(dataset)
|
||||
for data_point_idx in range(args.num_prompts):
|
||||
idx = data_point_idx
|
||||
while idx >= len_dataset:
|
||||
idx -= len_dataset
|
||||
schema = dataset["schema"][idx]
|
||||
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
|
||||
tokenize=False)
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
completion = dataset["completion"][idx]
|
||||
|
||||
requests.append(
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
completion=completion))
|
||||
|
||||
return requests
|
||||
|
||||
|
||||
def evaluate(ret, args):
|
||||
|
||||
def _eval_correctness_json(expected, actual):
|
||||
# extract json string from string using regex
|
||||
import re
|
||||
actual = actual.replace('\n', '').replace(' ', '').strip()
|
||||
try:
|
||||
actual = re.search(r'\{.*\}', actual).group()
|
||||
actual = json.loads(actual)
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def _eval_correctness_choice(expected, actual):
|
||||
return actual in args.choice
|
||||
|
||||
def _eval_correctness_regex(expected, actual):
|
||||
import re
|
||||
return re.match(args.regex, actual) is not None
|
||||
|
||||
def _eval_correctness(expected, actual):
|
||||
if args.structure_type == 'json':
|
||||
return _eval_correctness_json(expected, actual)
|
||||
elif args.structure_type == 'regex':
|
||||
return _eval_correctness_regex(expected, actual)
|
||||
elif args.structure_type == 'choice':
|
||||
return _eval_correctness_choice(expected, actual)
|
||||
else:
|
||||
return None
|
||||
|
||||
scores = []
|
||||
for res in ret:
|
||||
score = _eval_correctness(res['expected'], res['generated'])
|
||||
res['correctness'] = score
|
||||
scores.append(score)
|
||||
|
||||
not_none_scores = [score for score in scores if score is not None]
|
||||
|
||||
return (sum(not_none_scores) / len(not_none_scores) *
|
||||
100) if len(not_none_scores) > 0 else None
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
|
||||
# async engine is working for 'regex', 'choice' and 'grammar'
|
||||
if args.dataset == 'grammar':
|
||||
args.structure_type = 'grammar'
|
||||
args.async_engine = False
|
||||
elif args.dataset == 'regex':
|
||||
args.structure_type = 'regex'
|
||||
args.async_engine = False
|
||||
elif args.dataset == 'choice':
|
||||
args.structure_type = 'choice'
|
||||
args.async_engine = False
|
||||
else:
|
||||
args.structure_type = 'json'
|
||||
|
||||
if args.no_guided_decoding:
|
||||
args.guided_decoding_ratio = 0
|
||||
if args.save_results:
|
||||
result_file_name = f'{args.guided_decoding_ratio}guided'
|
||||
result_file_name += f"_{args.model.split('/')[-1]}"
|
||||
result_file_name += f"_{args.dataset}"
|
||||
result_file_name += f"_{args.num_prompts}"
|
||||
result_file_name += f"_out{args.output_len}"
|
||||
result_file_name += f"_async{args.async_engine}"
|
||||
result_file_name += f"_warmup{args.warmup}"
|
||||
result_file_name += f"_chunkedprefill{args.enable_chunked_prefill}"
|
||||
result_file_name += ".txt"
|
||||
else:
|
||||
result_file_name = None
|
||||
|
||||
# Synthesize a prompt with the given input length.
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
requests = sample_requests(tokenizer, args)
|
||||
|
||||
if args.async_engine:
|
||||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||||
elapsed_time, ret, (first_latency, next_latency) = uvloop.run(
|
||||
run_vllm_async(requests, engine_args, args.n,
|
||||
args.guided_decoding_ratio, args.warmup,
|
||||
args.disable_frontend_multiprocessing))
|
||||
else:
|
||||
engine_args = EngineArgs.from_cli_args(args)
|
||||
elapsed_time, ret = run_vllm(requests, engine_args, args.n,
|
||||
args.guided_decoding_ratio, args.warmup)
|
||||
first_latency, next_latency = None, None
|
||||
|
||||
score = evaluate(ret, args)
|
||||
total_num_tokens = sum(request.prompt_len + request.expected_output_len
|
||||
for request in requests)
|
||||
total_output_tokens = sum(request.expected_output_len
|
||||
for request in requests)
|
||||
if first_latency is not None:
|
||||
latency_breakdown = "\nFirst token latency(msecs):\n"
|
||||
latency_breakdown += f"{first_latency.describe()}"
|
||||
latency_breakdown += "\nNext token latency(msecs):\n"
|
||||
latency_breakdown += f"{next_latency.describe()}"
|
||||
print(
|
||||
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
|
||||
f"{total_output_tokens / elapsed_time:.2f} output tokens/s",
|
||||
f"Correct rate is {score} %",
|
||||
f"{latency_breakdown if first_latency is not None else ''}")
|
||||
|
||||
# Output JSON results if specified
|
||||
if args.output_json or result_file_name:
|
||||
results = {
|
||||
"elapsed_time": elapsed_time,
|
||||
"num_requests": len(requests),
|
||||
"total_num_tokens": total_num_tokens,
|
||||
"total_output_tokens": total_output_tokens,
|
||||
"requests_per_second": len(requests) / elapsed_time,
|
||||
"tokens_per_second": f"{total_num_tokens / elapsed_time:.2f}",
|
||||
"output_tokens_per_second":
|
||||
f"{total_output_tokens / elapsed_time:.2f}",
|
||||
"correct_rate(%)": score
|
||||
}
|
||||
results = {"outputs": ret, **results}
|
||||
if first_latency is not None:
|
||||
results["first_token_latency(msecs)"] = first_latency.describe(
|
||||
).to_dict()
|
||||
results["next_token_latency(msecs)"] = next_latency.describe(
|
||||
).to_dict()
|
||||
if args.output_json:
|
||||
with open(args.output_json, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
elif result_file_name:
|
||||
with open(result_file_name, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(description="Benchmark guided decoding.")
|
||||
parser = AsyncEngineArgs.add_cli_args(parser)
|
||||
|
||||
parser.add_argument("--output-len",
|
||||
type=int,
|
||||
default=512,
|
||||
help="Output length for each request. Overrides the "
|
||||
"output length from the dataset.")
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default='json',
|
||||
choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench'])
|
||||
parser.add_argument("--json_schema_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to json schema.")
|
||||
parser.add_argument("--n",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of generated sequences per prompt.")
|
||||
parser.add_argument("--num-prompts",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of prompts to process.")
|
||||
parser.add_argument(
|
||||
'--output-json',
|
||||
type=str,
|
||||
default=None,
|
||||
help='Path to save the throughput results in JSON format.')
|
||||
parser.add_argument("--async-engine",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Use vLLM async engine rather than LLM class.")
|
||||
parser.add_argument("--no-guided-decoding",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Whether to disable JSON decoding or not.")
|
||||
parser.add_argument("--guided-decoding-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Ratio of Guided Decoding requests")
|
||||
parser.add_argument("--disable-frontend-multiprocessing",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Disable decoupled async engine frontend.")
|
||||
parser.add_argument("--warmup",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Run warmup prompts before benchmark.")
|
||||
parser.add_argument("--save-results",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="save output results.")
|
||||
args = parser.parse_args()
|
||||
if args.tokenizer is None:
|
||||
args.tokenizer = args.model
|
||||
main(args)
|
||||
@ -1,21 +1,38 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Benchmark the latency of processing a single batch of requests."""
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from tqdm import tqdm
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.inputs import PromptType
|
||||
from vllm.sampling_params import BeamSearchParams
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
results: dict[str, Any]) -> None:
|
||||
pt_records = convert_to_pytorch_benchmark_format(
|
||||
args=args,
|
||||
metrics={"latency": results["latencies"]},
|
||||
extra_info={k: results[k]
|
||||
for k in ["avg_latency", "percentiles"]})
|
||||
if pt_records:
|
||||
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
|
||||
write_to_json(pt_file, pt_records)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
|
||||
@ -24,6 +41,10 @@ def main(args: argparse.Namespace):
|
||||
# NOTE(woosuk): If the request cannot be processed in a single batch,
|
||||
# the engine will automatically process the request in multiple batches.
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
assert llm.llm_engine.model_config.max_model_len >= (
|
||||
args.input_len +
|
||||
args.output_len), ("Please ensure that max_model_len is greater than"
|
||||
" the sum of input_len and output_len.")
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=args.n,
|
||||
@ -36,10 +57,25 @@ def main(args: argparse.Namespace):
|
||||
dummy_prompt_token_ids = np.random.randint(10000,
|
||||
size=(args.batch_size,
|
||||
args.input_len))
|
||||
dummy_prompts: List[PromptType] = [{
|
||||
dummy_prompts: list[PromptType] = [{
|
||||
"prompt_token_ids": batch
|
||||
} for batch in dummy_prompt_token_ids.tolist()]
|
||||
|
||||
def llm_generate():
|
||||
if not args.use_beam_search:
|
||||
llm.generate(dummy_prompts,
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=False)
|
||||
else:
|
||||
llm.beam_search(
|
||||
dummy_prompts,
|
||||
BeamSearchParams(
|
||||
beam_width=args.n,
|
||||
max_tokens=args.output_len,
|
||||
ignore_eos=True,
|
||||
),
|
||||
)
|
||||
|
||||
def run_to_completion(profile_dir: Optional[str] = None):
|
||||
if profile_dir:
|
||||
with torch.profiler.profile(
|
||||
@ -48,16 +84,13 @@ def main(args: argparse.Namespace):
|
||||
torch.profiler.ProfilerActivity.CUDA,
|
||||
],
|
||||
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
||||
str(profile_dir))) as p:
|
||||
llm.generate(dummy_prompts,
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=False)
|
||||
print(p.key_averages())
|
||||
str(profile_dir)),
|
||||
) as p:
|
||||
llm_generate()
|
||||
print(p.key_averages().table(sort_by="self_cuda_time_total"))
|
||||
else:
|
||||
start_time = time.perf_counter()
|
||||
llm.generate(dummy_prompts,
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=False)
|
||||
llm_generate()
|
||||
end_time = time.perf_counter()
|
||||
latency = end_time - start_time
|
||||
return latency
|
||||
@ -69,9 +102,8 @@ def main(args: argparse.Namespace):
|
||||
if args.profile:
|
||||
profile_dir = args.profile_result_dir
|
||||
if not profile_dir:
|
||||
profile_dir = Path(
|
||||
"."
|
||||
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
|
||||
profile_dir = (Path(".") / "vllm_benchmark_result" /
|
||||
f"latency_result_{time.time()}")
|
||||
print(f"Profiling (results will be saved to '{profile_dir}')...")
|
||||
run_to_completion(profile_dir=profile_dir)
|
||||
return
|
||||
@ -83,9 +115,9 @@ def main(args: argparse.Namespace):
|
||||
latencies = np.array(latencies)
|
||||
percentages = [10, 25, 50, 75, 90, 99]
|
||||
percentiles = np.percentile(latencies, percentages)
|
||||
print(f'Avg latency: {np.mean(latencies)} seconds')
|
||||
print(f"Avg latency: {np.mean(latencies)} seconds")
|
||||
for percentage, percentile in zip(percentages, percentiles):
|
||||
print(f'{percentage}% percentile latency: {percentile} seconds')
|
||||
print(f"{percentage}% percentile latency: {percentile} seconds")
|
||||
|
||||
# Output JSON results if specified
|
||||
if args.output_json:
|
||||
@ -96,43 +128,51 @@ def main(args: argparse.Namespace):
|
||||
}
|
||||
with open(args.output_json, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
save_to_pytorch_benchmark_format(args, results)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description='Benchmark the latency of processing a single batch of '
|
||||
'requests till completion.')
|
||||
parser.add_argument('--input-len', type=int, default=32)
|
||||
parser.add_argument('--output-len', type=int, default=128)
|
||||
parser.add_argument('--batch-size', type=int, default=8)
|
||||
parser.add_argument('--n',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Number of generated sequences per prompt.')
|
||||
parser.add_argument('--use-beam-search', action='store_true')
|
||||
parser.add_argument('--num-iters-warmup',
|
||||
type=int,
|
||||
default=10,
|
||||
help='Number of iterations to run for warmup.')
|
||||
parser.add_argument('--num-iters',
|
||||
description="Benchmark the latency of processing a single batch of "
|
||||
"requests till completion.")
|
||||
parser.add_argument("--input-len", type=int, default=32)
|
||||
parser.add_argument("--output-len", type=int, default=128)
|
||||
parser.add_argument("--batch-size", type=int, default=8)
|
||||
parser.add_argument(
|
||||
"--n",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of generated sequences per prompt.",
|
||||
)
|
||||
parser.add_argument("--use-beam-search", action="store_true")
|
||||
parser.add_argument(
|
||||
"--num-iters-warmup",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of iterations to run for warmup.",
|
||||
)
|
||||
parser.add_argument("--num-iters",
|
||||
type=int,
|
||||
default=30,
|
||||
help='Number of iterations to run.')
|
||||
help="Number of iterations to run.")
|
||||
parser.add_argument(
|
||||
'--profile',
|
||||
action='store_true',
|
||||
help='profile the generation process of a single batch')
|
||||
"--profile",
|
||||
action="store_true",
|
||||
help="profile the generation process of a single batch",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--profile-result-dir',
|
||||
"--profile-result-dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help=('path to save the pytorch profiler output. Can be visualized '
|
||||
'with ui.perfetto.dev or Tensorboard.'))
|
||||
help=("path to save the pytorch profiler output. Can be visualized "
|
||||
"with ui.perfetto.dev or Tensorboard."),
|
||||
)
|
||||
parser.add_argument(
|
||||
'--output-json',
|
||||
"--output-json",
|
||||
type=str,
|
||||
default=None,
|
||||
help='Path to save the latency results in JSON format.')
|
||||
help="Path to save the latency results in JSON format.",
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
184
benchmarks/benchmark_long_document_qa_throughput.py
Normal file
184
benchmarks/benchmark_long_document_qa_throughput.py
Normal file
@ -0,0 +1,184 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
Offline benchmark to test the long document QA throughput.
|
||||
|
||||
Example usage:
|
||||
# This workload samples 8 different prompts with a default input
|
||||
# length of 20000 tokens, then replicates each prompt 2 times
|
||||
# in random order.
|
||||
python benchmark_long_document_qa_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-documents 8 \
|
||||
--repeat-count 2
|
||||
|
||||
Commandline arguments:
|
||||
--num-documents: The number of documents to sample prompts from.
|
||||
|
||||
--document-length: The length of each document in tokens.
|
||||
(Optional, default: 20000)
|
||||
|
||||
--output-len: The number of tokens to generate for each prompt.
|
||||
(Optional, default: 10)
|
||||
|
||||
--repeat-count: The number of times to repeat each prompt.
|
||||
(Optional, default: 2)
|
||||
|
||||
--repeat-mode: The mode to repeat prompts. The supported modes are:
|
||||
- 'random': shuffle the prompts randomly. (Default)
|
||||
- 'tile': the entire prompt list is repeated in sequence. (Potentially
|
||||
lowest cache hit)
|
||||
- 'interleave': each prompt is repeated consecutively before
|
||||
moving to the next element. (Highest cache hit)
|
||||
|
||||
--shuffle-seed: Random seed when the repeat mode is "random".
|
||||
(Optional, default: 0)
|
||||
|
||||
In the meantime, it also supports all the vLLM engine args to initialize the
|
||||
LLM engine. You can refer to the `vllm.engine.arg_utils.EngineArgs` for more
|
||||
details.
|
||||
"""
|
||||
|
||||
import dataclasses
|
||||
import random
|
||||
import time
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
def test_long_document_qa(llm=None, sampling_params=None, prompts=None):
|
||||
"""
|
||||
Test long document QA with the given prompts and sampling parameters.
|
||||
Print the time spent in processing all the prompts.
|
||||
|
||||
Args:
|
||||
llm: The language model used for generating responses.
|
||||
sampling_params: Sampling parameter used to generate the response.
|
||||
prompts: A list of prompt strings to be processed by the LLM.
|
||||
"""
|
||||
start_time = time.time()
|
||||
llm.generate(prompts, sampling_params=sampling_params)
|
||||
end_time = time.time()
|
||||
print(f"Time to execute all requests: {end_time - start_time:.4f} secs")
|
||||
|
||||
|
||||
def repeat_prompts(prompts, repeat_count, mode: str):
|
||||
"""
|
||||
Repeat each prompt in the list for a specified number of times.
|
||||
The order of prompts in the output list depends on the mode.
|
||||
|
||||
Args:
|
||||
prompts: A list of prompts to be repeated.
|
||||
repeat_count: The number of times each prompt is repeated.
|
||||
mode: The mode of repetition. Supported modes are:
|
||||
- 'random': Shuffle the prompts randomly after repetition.
|
||||
- 'tile': Repeat the entire prompt list in sequence.
|
||||
Example: [1, 2, 3] -> [1, 2, 3, 1, 2, 3].
|
||||
- 'interleave': Repeat each prompt consecutively before moving to
|
||||
the next. Example: [1, 2, 3] -> [1, 1, 2, 2, 3, 3].
|
||||
|
||||
Returns:
|
||||
A list of repeated prompts in the specified order.
|
||||
|
||||
Raises:
|
||||
ValueError: If an invalid mode is provided.
|
||||
"""
|
||||
print("Repeat mode: ", mode)
|
||||
if mode == 'random':
|
||||
repeated_prompts = prompts * repeat_count
|
||||
random.shuffle(repeated_prompts)
|
||||
return repeated_prompts
|
||||
elif mode == 'tile':
|
||||
return prompts * repeat_count
|
||||
elif mode == 'interleave':
|
||||
repeated_prompts = []
|
||||
for prompt in prompts:
|
||||
repeated_prompts.extend([prompt] * repeat_count)
|
||||
return repeated_prompts
|
||||
else:
|
||||
raise ValueError(f"Invalid mode: {mode}, only support "
|
||||
"'random', 'tile', 'interleave'")
|
||||
|
||||
|
||||
def main(args):
|
||||
random.seed(args.shuffle_seed)
|
||||
|
||||
# Prepare the prompts:
|
||||
# we append the document id at the beginning to avoid any of the document
|
||||
# being the prefix of other documents
|
||||
prompts = [
|
||||
str(i) + ' '.join(['hi'] * args.document_length)
|
||||
for i in range(args.num_documents)
|
||||
]
|
||||
|
||||
prompts = repeat_prompts(prompts, args.repeat_count, mode=args.repeat_mode)
|
||||
|
||||
warmup_prompts = [
|
||||
"This is warm up request " + str(i) + \
|
||||
' '.join(['hi'] * args.document_length)
|
||||
for i in range(args.num_documents)]
|
||||
|
||||
# Create the LLM engine
|
||||
engine_args = EngineArgs.from_cli_args(args)
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
|
||||
|
||||
print("------warm up------")
|
||||
test_long_document_qa(
|
||||
llm=llm,
|
||||
prompts=warmup_prompts,
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
|
||||
print("------start generating------")
|
||||
test_long_document_qa(
|
||||
llm=llm,
|
||||
prompts=prompts,
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description=
|
||||
'Benchmark the performance with or without automatic prefix caching.')
|
||||
|
||||
parser.add_argument(
|
||||
'--document-length',
|
||||
type=int,
|
||||
# Roughly the number of tokens for a system paper,
|
||||
# excluding images
|
||||
default=20000,
|
||||
help='Range of input lengths for sampling prompts,'
|
||||
'specified as "min:max" (e.g., "128:256").')
|
||||
|
||||
parser.add_argument('--num-documents',
|
||||
type=int,
|
||||
default=8,
|
||||
help='Range of input lengths for sampling prompts,'
|
||||
'specified as "min:max" (e.g., "128:256").')
|
||||
|
||||
parser.add_argument('--output-len', type=int, default=10)
|
||||
|
||||
parser.add_argument('--repeat-count',
|
||||
type=int,
|
||||
default=2,
|
||||
help='Number of times to repeat each prompt')
|
||||
|
||||
parser.add_argument("--repeat-mode",
|
||||
type=str,
|
||||
default='random',
|
||||
help='The mode to repeat prompts. The supported '
|
||||
'modes are "random", "tile", and "interleave". '
|
||||
'See repeat_prompts() in the source code for details.')
|
||||
|
||||
parser.add_argument("--shuffle-seed",
|
||||
type=int,
|
||||
default=0,
|
||||
help='Random seed when the repeat mode is "random"')
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
@ -1,3 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
Benchmark the efficiency of prefix caching.
|
||||
|
||||
@ -10,7 +11,8 @@ Fixed example usage:
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-prompts 1 \
|
||||
--repeat-count 100
|
||||
--repeat-count 100 \
|
||||
--input-length-range 128:256
|
||||
|
||||
ShareGPT example usage:
|
||||
# This command samples 20 prompts with input lengths
|
||||
@ -29,7 +31,7 @@ import dataclasses
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from typing import List, Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
@ -54,13 +56,30 @@ def test_prefix(llm=None, sampling_params=None, prompts=None):
|
||||
print(f"cost time {end_time - start_time}")
|
||||
|
||||
|
||||
def sample_requests(
|
||||
@dataclasses.dataclass
|
||||
class Request:
|
||||
prompt: str
|
||||
prompt_len: int
|
||||
output_len: int
|
||||
|
||||
|
||||
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> str:
|
||||
vocab = tokenizer.get_vocab()
|
||||
# Remove the special tokens.
|
||||
vocab = {
|
||||
k: v
|
||||
for k, v in vocab.items() if k not in tokenizer.all_special_ids
|
||||
}
|
||||
return random.choices(list(vocab.values()), k=length)
|
||||
|
||||
|
||||
def sample_requests_from_dataset(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_length_range: Tuple[int, int],
|
||||
input_length_range: tuple[int, int],
|
||||
fixed_output_len: Optional[int],
|
||||
) -> List[Tuple[str, int, int]]:
|
||||
) -> list[Request]:
|
||||
if fixed_output_len is not None and fixed_output_len < 4:
|
||||
raise ValueError("output_len too small")
|
||||
|
||||
@ -77,39 +96,63 @@ def sample_requests(
|
||||
random.shuffle(dataset)
|
||||
|
||||
min_len, max_len = input_length_range
|
||||
assert min_len >= 0 and max_len >= min_len, "input_length_range too small"
|
||||
|
||||
# Filter out sequences that are too long or too short
|
||||
filtered_dataset: List[Tuple[str, int, int]] = []
|
||||
filtered_requests: list[Request] = []
|
||||
|
||||
for i in range(len(dataset)):
|
||||
if len(filtered_dataset) == num_requests:
|
||||
if len(filtered_requests) == num_requests:
|
||||
break
|
||||
|
||||
# Tokenize the prompts and completions.
|
||||
prompt = dataset[i][0]
|
||||
prompt_token_ids = tokenizer(prompt).input_ids
|
||||
prompt_token_ids = tokenizer(dataset[i][0]).input_ids
|
||||
prompt = tokenizer.decode(prompt_token_ids)
|
||||
completion = dataset[i][1]
|
||||
completion_token_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_token_ids)
|
||||
output_len = len(completion_token_ids
|
||||
) if fixed_output_len is None else fixed_output_len
|
||||
if prompt_len < 4 or output_len < 4:
|
||||
# Prune too short sequences.
|
||||
continue
|
||||
output_len = (len(completion_token_ids)
|
||||
if fixed_output_len is None else fixed_output_len)
|
||||
if min_len <= prompt_len <= max_len:
|
||||
filtered_dataset.append((prompt, prompt_len, output_len))
|
||||
filtered_requests.append(Request(prompt, prompt_len, output_len))
|
||||
|
||||
return filtered_dataset
|
||||
return filtered_requests
|
||||
|
||||
|
||||
def repeat_and_sort_requests(requests: List[Tuple[str, int, int]],
|
||||
def sample_requests_from_random(
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_length_range: tuple[int, int],
|
||||
fixed_output_len: Optional[int],
|
||||
prefix_len: int,
|
||||
) -> list[Request]:
|
||||
|
||||
requests = []
|
||||
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
|
||||
min_len, max_len = input_length_range
|
||||
|
||||
for i in range(num_requests):
|
||||
unique_part_token_ids = sample_tokens(
|
||||
tokenizer,
|
||||
random.randint(min_len - prefix_len, max_len - prefix_len))
|
||||
prompt_token_ids = prefix_token_ids + unique_part_token_ids
|
||||
prompt = tokenizer.decode(prompt_token_ids)
|
||||
prompt_len = len(prompt_token_ids)
|
||||
assert (min_len <= prompt_len <= max_len
|
||||
), f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
|
||||
requests.append(Request(prompt, prompt_len, fixed_output_len))
|
||||
return requests
|
||||
|
||||
|
||||
def repeat_and_sort_requests(requests: list[Request],
|
||||
repeat_count: int,
|
||||
sort: bool = False) -> List[str]:
|
||||
sort: bool = False) -> list[str]:
|
||||
repeated_requests = requests * repeat_count
|
||||
if sort:
|
||||
repeated_requests.sort(key=lambda x: x[1])
|
||||
else:
|
||||
random.shuffle(repeated_requests)
|
||||
return [req[0] for req in repeated_requests]
|
||||
return [req.prompt for req in repeated_requests]
|
||||
|
||||
|
||||
def main(args):
|
||||
@ -117,9 +160,12 @@ def main(args):
|
||||
input_length_range = tuple(map(int, args.input_length_range.split(':')))
|
||||
random.seed(args.seed)
|
||||
if args.dataset_path is not None:
|
||||
print(f"Start to sample {args.num_prompts} prompts"
|
||||
if args.prefix_len > 0:
|
||||
raise ValueError("prefix-len is not supported when "
|
||||
"dataset-path is provided.")
|
||||
print(f"Start to sample {args.num_prompts} prompts "
|
||||
f"from {args.dataset_path}")
|
||||
filtered_datasets = sample_requests(
|
||||
filtered_requests = sample_requests_from_dataset(
|
||||
dataset_path=args.dataset_path,
|
||||
num_requests=args.num_prompts,
|
||||
tokenizer=tokenizer,
|
||||
@ -127,9 +173,22 @@ def main(args):
|
||||
fixed_output_len=args.output_len,
|
||||
)
|
||||
else:
|
||||
prompt_len = len(tokenizer(PROMPT).input_ids)
|
||||
filtered_datasets = [(PROMPT, prompt_len, args.output_len)
|
||||
] * args.num_prompts
|
||||
print(f"Start to sample {args.num_prompts} prompts from random")
|
||||
filtered_requests = sample_requests_from_random(
|
||||
num_requests=args.num_prompts,
|
||||
tokenizer=tokenizer,
|
||||
input_length_range=input_length_range,
|
||||
fixed_output_len=args.output_len,
|
||||
prefix_len=args.prefix_len,
|
||||
)
|
||||
|
||||
# Print some helpful stats of the requests.
|
||||
print(f"Sampled {len(filtered_requests)} requests.")
|
||||
prompt_lens = [req.prompt_len for req in filtered_requests]
|
||||
print(f"Average input length: {sum(prompt_lens) / len(prompt_lens)}")
|
||||
print(f"P50 input length: {sorted(prompt_lens)[len(prompt_lens) // 2]}")
|
||||
print(f"Min Prompt Length: {min(prompt_lens)}")
|
||||
print(f"Max Prompt Length: {max(prompt_lens)}")
|
||||
|
||||
engine_args = EngineArgs.from_cli_args(args)
|
||||
|
||||
@ -137,8 +196,8 @@ def main(args):
|
||||
|
||||
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
|
||||
|
||||
print("Testing filtered datasets")
|
||||
prompts = repeat_and_sort_requests(filtered_datasets,
|
||||
print("Testing filtered requests")
|
||||
prompts = repeat_and_sort_requests(filtered_requests,
|
||||
repeat_count=args.repeat_count,
|
||||
sort=args.sort)
|
||||
|
||||
@ -161,20 +220,29 @@ if __name__ == "__main__":
|
||||
parser.add_argument('--output-len', type=int, default=10)
|
||||
parser.add_argument('--num-prompts',
|
||||
type=int,
|
||||
default=1,
|
||||
required=True,
|
||||
help="Number of the prompts sampled from dataset")
|
||||
parser.add_argument('--repeat-count',
|
||||
type=int,
|
||||
default=100,
|
||||
default=1,
|
||||
help='Number of times to repeat each prompt')
|
||||
parser.add_argument('--sort',
|
||||
action='store_true',
|
||||
help='Sort prompts by input length')
|
||||
parser.add_argument('--input-length-range',
|
||||
type=str,
|
||||
default='128:256',
|
||||
required=True,
|
||||
help='Range of input lengths for sampling prompts,'
|
||||
'specified as "min:max" (e.g., "128:256").')
|
||||
parser.add_argument(
|
||||
"--prefix-len",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Specifies the length of a common prefix to be "
|
||||
"added to the input prompt. The input-length-range will "
|
||||
"subtract this length when filtering prompts. Only used "
|
||||
"when dataset-path is not provided.",
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -1,10 +1,11 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Benchmark offline prioritization."""
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from typing import List, Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||
|
||||
@ -12,12 +13,17 @@ from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
#Select a equi-probable random priority
|
||||
def get_random_flag():
|
||||
return 0 if random.random() < 0.5 else 1
|
||||
|
||||
|
||||
def sample_requests(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
fixed_output_len: Optional[int],
|
||||
) -> List[Tuple[str, int, int]]:
|
||||
) -> list[tuple[str, int, int]]:
|
||||
if fixed_output_len is not None and fixed_output_len < 4:
|
||||
raise ValueError("output_len too small")
|
||||
|
||||
@ -34,7 +40,7 @@ def sample_requests(
|
||||
random.shuffle(dataset)
|
||||
|
||||
# Filter out sequences that are too long or too short
|
||||
filtered_dataset: List[Tuple[str, int, int]] = []
|
||||
filtered_dataset: list[tuple[str, int, int]] = []
|
||||
for i in range(len(dataset)):
|
||||
if len(filtered_dataset) == num_requests:
|
||||
break
|
||||
@ -54,8 +60,7 @@ def sample_requests(
|
||||
# Prune too long sequences.
|
||||
continue
|
||||
|
||||
#Select a equi-probable random priority
|
||||
priority = 0 if random.random() < 0.5 else 1
|
||||
priority = get_random_flag()
|
||||
|
||||
filtered_dataset.append((prompt, prompt_len, output_len, priority))
|
||||
|
||||
@ -63,13 +68,19 @@ def sample_requests(
|
||||
|
||||
|
||||
def run_vllm(
|
||||
requests: List[Tuple[str, int, int]],
|
||||
requests: list[tuple[str, int, int]],
|
||||
n: int,
|
||||
engine_args: EngineArgs,
|
||||
) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (request[1] + request[2])
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" input_len and output_len for all requests.")
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts = []
|
||||
sampling_params = []
|
||||
@ -102,8 +113,8 @@ def main(args: argparse.Namespace):
|
||||
if args.dataset is None:
|
||||
# Synthesize a prompt with the given input length.
|
||||
prompt = "hi" * (args.input_len - 1)
|
||||
requests = [(prompt, args.input_len, args.output_len)
|
||||
for _ in range(args.num_prompts)]
|
||||
requests = [(prompt, args.input_len, args.output_len,
|
||||
get_random_flag()) for _ in range(args.num_prompts)]
|
||||
else:
|
||||
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
|
||||
args.output_len)
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
r"""Benchmark online serving throughput.
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
@ -25,17 +26,20 @@ On the client side, run:
|
||||
import argparse
|
||||
import asyncio
|
||||
import base64
|
||||
import gc
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
import warnings
|
||||
from collections.abc import AsyncGenerator, Collection
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any, AsyncGenerator, Collection, Dict, List, Optional, Tuple
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
|
||||
RequestFuncOutput)
|
||||
from datasets import load_dataset
|
||||
@ -53,6 +57,8 @@ try:
|
||||
except ImportError:
|
||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||
|
||||
|
||||
@ -68,22 +74,22 @@ class BenchmarkMetrics:
|
||||
mean_ttft_ms: float
|
||||
median_ttft_ms: float
|
||||
std_ttft_ms: float
|
||||
percentiles_ttft_ms: List[Tuple[float, float]]
|
||||
percentiles_ttft_ms: list[tuple[float, float]]
|
||||
mean_tpot_ms: float
|
||||
median_tpot_ms: float
|
||||
std_tpot_ms: float
|
||||
percentiles_tpot_ms: List[Tuple[float, float]]
|
||||
percentiles_tpot_ms: list[tuple[float, float]]
|
||||
mean_itl_ms: float
|
||||
median_itl_ms: float
|
||||
std_itl_ms: float
|
||||
percentiles_itl_ms: List[Tuple[float, float]]
|
||||
percentiles_itl_ms: list[tuple[float, float]]
|
||||
# E2EL stands for end-to-end latency per request.
|
||||
# It is the time taken on the client side from sending
|
||||
# a request to receiving a complete response.
|
||||
mean_e2el_ms: float
|
||||
median_e2el_ms: float
|
||||
std_e2el_ms: float
|
||||
percentiles_e2el_ms: List[Tuple[float, float]]
|
||||
percentiles_e2el_ms: list[tuple[float, float]]
|
||||
|
||||
|
||||
def sample_sharegpt_requests(
|
||||
@ -91,7 +97,7 @@ def sample_sharegpt_requests(
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
fixed_output_len: Optional[int] = None,
|
||||
) -> List[Tuple[str, int, int, None]]:
|
||||
) -> list[tuple[str, int, int, None]]:
|
||||
# Load the dataset.
|
||||
with open(dataset_path, encoding='utf-8') as f:
|
||||
dataset = json.load(f)
|
||||
@ -105,7 +111,7 @@ def sample_sharegpt_requests(
|
||||
random.shuffle(dataset)
|
||||
|
||||
# Filter out sequences that are too long or too short
|
||||
filtered_dataset: List[Tuple[str, int, int]] = []
|
||||
filtered_dataset: list[tuple[str, int, int]] = []
|
||||
for i in range(len(dataset)):
|
||||
if len(filtered_dataset) == num_requests:
|
||||
break
|
||||
@ -129,6 +135,35 @@ def sample_sharegpt_requests(
|
||||
return filtered_dataset
|
||||
|
||||
|
||||
def sample_burstgpt_requests(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
random_seed: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
) -> list[tuple[str, int, int, None]]:
|
||||
df = pd.read_csv(dataset_path)
|
||||
gpt4_df = df[df["Model"] == "GPT-4"]
|
||||
# Remove the failed requests (i.e., response length is 0)
|
||||
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
|
||||
# Randomly sample num_requests from the dataset
|
||||
if num_requests <= len(gpt4_df):
|
||||
gpt4_df = gpt4_df.sample(n=num_requests, random_state=random_seed)
|
||||
else:
|
||||
gpt4_df = gpt4_df.sample(n=num_requests,
|
||||
random_state=random_seed,
|
||||
replace=True)
|
||||
# Convert the dataframe to a list of tuples
|
||||
dataset = gpt4_df.values.tolist()
|
||||
input_requests = []
|
||||
for i in range(num_requests):
|
||||
input_len = int(dataset[i][2])
|
||||
output_len = int(dataset[i][3])
|
||||
prompt = tokenizer.decode([(i + j) % tokenizer.vocab_size
|
||||
for j in range(input_len)])
|
||||
input_requests.append((prompt, input_len, output_len, None))
|
||||
return input_requests
|
||||
|
||||
|
||||
def sample_sonnet_requests(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
@ -136,7 +171,7 @@ def sample_sonnet_requests(
|
||||
output_len: int,
|
||||
prefix_len: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
) -> List[Tuple[str, str, int, int, None]]:
|
||||
) -> list[tuple[str, str, int, int, None]]:
|
||||
assert (
|
||||
input_len > prefix_len
|
||||
), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."
|
||||
@ -177,7 +212,7 @@ def sample_sonnet_requests(
|
||||
prefix_lines = poem_lines[:num_prefix_lines]
|
||||
|
||||
# Sample the rest of lines per request.
|
||||
sampled_requests: List[Tuple[str, int, int]] = []
|
||||
sampled_requests: list[tuple[str, int, int]] = []
|
||||
for _ in range(num_requests):
|
||||
num_lines_needed = num_input_lines - num_prefix_lines
|
||||
sampled_lines = "".join(prefix_lines +
|
||||
@ -199,15 +234,72 @@ def sample_sonnet_requests(
|
||||
return sampled_requests
|
||||
|
||||
|
||||
def sample_vision_arena_requests(
|
||||
dataset,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
fixed_output_len: Optional[int] = None,
|
||||
) -> list[tuple[str, str, int, Optional[dict[str, Collection[str]]]]]:
|
||||
sampled_requests: list[tuple[str, int, int, dict[str,
|
||||
Collection[str]]]] = []
|
||||
for data in dataset:
|
||||
if len(sampled_requests) == num_requests:
|
||||
break
|
||||
|
||||
prompt = data["turns"][0][0]['content']
|
||||
|
||||
prompt_token_ids = tokenizer(prompt).input_ids
|
||||
if fixed_output_len is None:
|
||||
# Default max output len is set to 128
|
||||
print("--hf-output-len is not provided. Using default value 128.")
|
||||
fixed_output_len = 128
|
||||
|
||||
prompt_len = len(prompt_token_ids)
|
||||
output_len = fixed_output_len
|
||||
|
||||
assert isinstance(
|
||||
data["images"][0],
|
||||
Image), ("Input image format must be `PIL.Image.Image`, "
|
||||
f"given {type(data['image'])}.")
|
||||
image: Image = data["images"][0]
|
||||
image = image.convert("RGB")
|
||||
image_data = io.BytesIO()
|
||||
image.save(image_data, format='JPEG')
|
||||
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
|
||||
mm_content = {
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
},
|
||||
}
|
||||
|
||||
sampled_requests.append((prompt, prompt_len, output_len, mm_content))
|
||||
|
||||
return sampled_requests
|
||||
|
||||
|
||||
def sample_hf_requests(
|
||||
dataset_path: str,
|
||||
dataset_subset: str,
|
||||
dataset_subset: Optional[str],
|
||||
dataset_split: str,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
random_seed: int,
|
||||
fixed_output_len: Optional[int] = None,
|
||||
) -> List[Tuple[str, str, int, Optional[Dict[str, Collection[str]]]]]:
|
||||
) -> list[tuple[str, str, int, Optional[dict[str, Collection[str]]]]]:
|
||||
|
||||
# Special case for vision_arena dataset
|
||||
if dataset_path == 'lmarena-ai/vision-arena-bench-v0.1' \
|
||||
and dataset_subset is None:
|
||||
assert dataset_split == "train"
|
||||
dataset = load_dataset(dataset_path,
|
||||
name=dataset_subset,
|
||||
split=dataset_split,
|
||||
streaming=True)
|
||||
dataset = dataset.shuffle(seed=random_seed)
|
||||
return sample_vision_arena_requests(dataset, num_requests, tokenizer,
|
||||
fixed_output_len)
|
||||
|
||||
dataset = load_dataset(dataset_path,
|
||||
name=dataset_subset,
|
||||
split=dataset_split,
|
||||
@ -216,7 +308,7 @@ def sample_hf_requests(
|
||||
"HF Dataset must have 'conversations' column.")
|
||||
filter_func = lambda x: len(x["conversations"]) >= 2
|
||||
filtered_dataset = dataset.shuffle(seed=random_seed).filter(filter_func)
|
||||
sampled_requests: List[Tuple[str, int, int, Dict[str,
|
||||
sampled_requests: list[tuple[str, int, int, dict[str,
|
||||
Collection[str]]]] = []
|
||||
for data in filtered_dataset:
|
||||
if len(sampled_requests) == num_requests:
|
||||
@ -251,6 +343,19 @@ def sample_hf_requests(
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
},
|
||||
}
|
||||
elif "image" in data and isinstance(data["image"], str):
|
||||
if (data["image"].startswith("http://") or \
|
||||
data["image"].startswith("file://")):
|
||||
image_url = data["image"]
|
||||
else:
|
||||
image_url = f"file://{data['image']}"
|
||||
|
||||
mm_content = {
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": image_url
|
||||
},
|
||||
}
|
||||
else:
|
||||
mm_content = None
|
||||
|
||||
@ -266,7 +371,7 @@ def sample_random_requests(
|
||||
num_prompts: int,
|
||||
range_ratio: float,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
) -> List[Tuple[str, int, int]]:
|
||||
) -> list[tuple[str, int, int]]:
|
||||
prefix_token_ids = np.random.randint(0,
|
||||
tokenizer.vocab_size,
|
||||
size=prefix_len).tolist()
|
||||
@ -295,26 +400,26 @@ def sample_random_requests(
|
||||
|
||||
|
||||
async def get_request(
|
||||
input_requests: List[Tuple[str, int, int]],
|
||||
input_requests: list[tuple[str, int, int]],
|
||||
request_rate: float,
|
||||
burstiness: float = 1.0,
|
||||
) -> AsyncGenerator[Tuple[str, int, int], None]:
|
||||
) -> AsyncGenerator[tuple[str, int, int], None]:
|
||||
"""
|
||||
Asynchronously generates requests at a specified rate
|
||||
Asynchronously generates requests at a specified rate
|
||||
with OPTIONAL burstiness.
|
||||
|
||||
|
||||
Args:
|
||||
input_requests:
|
||||
input_requests:
|
||||
A list of input requests, each represented as a tuple.
|
||||
request_rate:
|
||||
request_rate:
|
||||
The rate at which requests are generated (requests/s).
|
||||
burstiness (optional):
|
||||
The burstiness factor of the request generation.
|
||||
burstiness (optional):
|
||||
The burstiness factor of the request generation.
|
||||
Only takes effect when request_rate is not inf.
|
||||
Default value is 1, which follows a Poisson process.
|
||||
Otherwise, the request intervals follow a gamma distribution.
|
||||
A lower burstiness value (0 < burstiness < 1) results
|
||||
in more bursty requests, while a higher burstiness value
|
||||
A lower burstiness value (0 < burstiness < 1) results
|
||||
in more bursty requests, while a higher burstiness value
|
||||
(burstiness > 1) results in a more uniform arrival of requests.
|
||||
"""
|
||||
input_requests = iter(input_requests)
|
||||
@ -339,38 +444,42 @@ async def get_request(
|
||||
|
||||
|
||||
def calculate_metrics(
|
||||
input_requests: List[Tuple[str, int, int]],
|
||||
outputs: List[RequestFuncOutput],
|
||||
input_requests: list[tuple[str, int, int]],
|
||||
outputs: list[RequestFuncOutput],
|
||||
dur_s: float,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
selected_percentile_metrics: List[str],
|
||||
selected_percentiles: List[float],
|
||||
gootput_config_dict: Dict[str, float],
|
||||
) -> Tuple[BenchmarkMetrics, List[int]]:
|
||||
actual_output_lens: List[int] = []
|
||||
selected_percentile_metrics: list[str],
|
||||
selected_percentiles: list[float],
|
||||
goodput_config_dict: dict[str, float],
|
||||
) -> tuple[BenchmarkMetrics, list[int]]:
|
||||
actual_output_lens: list[int] = []
|
||||
total_input = 0
|
||||
completed = 0
|
||||
good_completed = 0
|
||||
itls: List[float] = []
|
||||
tpots: List[float] = []
|
||||
all_tpots: List[float] = []
|
||||
ttfts: List[float] = []
|
||||
e2els: List[float] = []
|
||||
itls: list[float] = []
|
||||
tpots: list[float] = []
|
||||
all_tpots: list[float] = []
|
||||
ttfts: list[float] = []
|
||||
e2els: list[float] = []
|
||||
for i in range(len(outputs)):
|
||||
if outputs[i].success:
|
||||
# We use the tokenizer to count the number of output tokens for all
|
||||
# serving backends instead of looking at len(outputs[i].itl) since
|
||||
# multiple output tokens may be bundled together
|
||||
# Note : this may inflate the output token count slightly
|
||||
output_len = len(
|
||||
tokenizer(outputs[i].generated_text,
|
||||
add_special_tokens=False).input_ids)
|
||||
output_len = outputs[i].output_tokens
|
||||
|
||||
if output_len is None:
|
||||
# We use the tokenizer to count the number of output tokens
|
||||
# for some serving backends instead of looking at
|
||||
# len(outputs[i].itl) since multiple output tokens may be
|
||||
# bundled together
|
||||
# Note : this may inflate the output token count slightly
|
||||
output_len = len(
|
||||
tokenizer(outputs[i].generated_text,
|
||||
add_special_tokens=False).input_ids)
|
||||
actual_output_lens.append(output_len)
|
||||
total_input += input_requests[i][1]
|
||||
tpot = 0
|
||||
if output_len > 1:
|
||||
tpot = (outputs[i].latency - outputs[i].ttft) / (output_len -
|
||||
1)
|
||||
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
|
||||
tpot = latency_minus_ttft / (output_len - 1)
|
||||
tpots.append(tpot)
|
||||
# Note: if output_len <= 1, we regard tpot as 0 for goodput
|
||||
all_tpots.append(tpot)
|
||||
@ -381,21 +490,21 @@ def calculate_metrics(
|
||||
else:
|
||||
actual_output_lens.append(0)
|
||||
|
||||
if gootput_config_dict:
|
||||
if goodput_config_dict:
|
||||
valid_metrics = []
|
||||
slo_values = []
|
||||
|
||||
if "ttft" in gootput_config_dict:
|
||||
if "ttft" in goodput_config_dict:
|
||||
valid_metrics.append(ttfts)
|
||||
slo_values.append(gootput_config_dict["ttft"] /
|
||||
slo_values.append(goodput_config_dict["ttft"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
if "tpot" in gootput_config_dict:
|
||||
if "tpot" in goodput_config_dict:
|
||||
valid_metrics.append(all_tpots)
|
||||
slo_values.append(gootput_config_dict["tpot"] /
|
||||
slo_values.append(goodput_config_dict["tpot"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
if "e2el" in gootput_config_dict:
|
||||
if "e2el" in goodput_config_dict:
|
||||
valid_metrics.append(e2els)
|
||||
slo_values.append(gootput_config_dict["e2el"] /
|
||||
slo_values.append(goodput_config_dict["e2el"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
|
||||
for req_metric in zip(*valid_metrics):
|
||||
@ -447,19 +556,21 @@ async def benchmark(
|
||||
api_url: str,
|
||||
base_url: str,
|
||||
model_id: str,
|
||||
model_name: str,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_requests: List[Tuple[str, int, int]],
|
||||
input_requests: list[tuple[str, int, int]],
|
||||
logprobs: Optional[int],
|
||||
best_of: int,
|
||||
request_rate: float,
|
||||
burstiness: float,
|
||||
disable_tqdm: bool,
|
||||
profile: bool,
|
||||
selected_percentile_metrics: List[str],
|
||||
selected_percentiles: List[str],
|
||||
selected_percentile_metrics: list[str],
|
||||
selected_percentiles: list[str],
|
||||
ignore_eos: bool,
|
||||
gootput_config_dict: Dict[str, float],
|
||||
goodput_config_dict: dict[str, float],
|
||||
max_concurrency: Optional[int],
|
||||
lora_modules: Optional[list[str]],
|
||||
):
|
||||
if backend in ASYNC_REQUEST_FUNCS:
|
||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||
@ -475,6 +586,7 @@ async def benchmark(
|
||||
"Multi-modal content is only supported on 'openai-chat' backend.")
|
||||
test_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
model_name=model_name,
|
||||
prompt=test_prompt,
|
||||
api_url=api_url,
|
||||
prompt_len=test_prompt_len,
|
||||
@ -484,6 +596,7 @@ async def benchmark(
|
||||
multi_modal_content=test_mm_content,
|
||||
ignore_eos=ignore_eos,
|
||||
)
|
||||
|
||||
test_output = await request_func(request_func_input=test_input)
|
||||
if not test_output.success:
|
||||
raise ValueError(
|
||||
@ -492,9 +605,15 @@ async def benchmark(
|
||||
else:
|
||||
print("Initial test run completed. Starting main benchmark run...")
|
||||
|
||||
if lora_modules:
|
||||
# For each input request, choose a LoRA module at random.
|
||||
lora_modules = iter(
|
||||
[random.choice(lora_modules) for _ in range(len(input_requests))])
|
||||
|
||||
if profile:
|
||||
print("Starting profiler...")
|
||||
profile_input = RequestFuncInput(model=model_id,
|
||||
model_name=model_name,
|
||||
prompt=test_prompt,
|
||||
api_url=base_url + "/start_profile",
|
||||
prompt_len=test_prompt_len,
|
||||
@ -534,10 +653,16 @@ async def benchmark(
|
||||
pbar=pbar)
|
||||
|
||||
benchmark_start_time = time.perf_counter()
|
||||
tasks: List[asyncio.Task] = []
|
||||
tasks: list[asyncio.Task] = []
|
||||
async for request in get_request(input_requests, request_rate, burstiness):
|
||||
prompt, prompt_len, output_len, mm_content = request
|
||||
request_func_input = RequestFuncInput(model=model_id,
|
||||
req_model_id, req_model_name = model_id, model_name
|
||||
if lora_modules:
|
||||
req_lora_module = next(lora_modules)
|
||||
req_model_id, req_model_name = req_lora_module, req_lora_module
|
||||
|
||||
request_func_input = RequestFuncInput(model=req_model_id,
|
||||
model_name=req_model_name,
|
||||
prompt=prompt,
|
||||
api_url=api_url,
|
||||
prompt_len=prompt_len,
|
||||
@ -550,7 +675,7 @@ async def benchmark(
|
||||
asyncio.create_task(
|
||||
limited_request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)))
|
||||
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
|
||||
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
|
||||
|
||||
if profile:
|
||||
print("Stopping profiler...")
|
||||
@ -579,7 +704,7 @@ async def benchmark(
|
||||
tokenizer=tokenizer,
|
||||
selected_percentile_metrics=selected_percentile_metrics,
|
||||
selected_percentiles=selected_percentiles,
|
||||
gootput_config_dict=gootput_config_dict,
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
)
|
||||
|
||||
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
|
||||
@ -591,7 +716,7 @@ async def benchmark(
|
||||
metrics.total_output))
|
||||
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
|
||||
metrics.request_throughput))
|
||||
if gootput_config_dict:
|
||||
if goodput_config_dict:
|
||||
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
|
||||
metrics.request_goodput))
|
||||
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
|
||||
@ -606,7 +731,7 @@ async def benchmark(
|
||||
"total_output_tokens": metrics.total_output,
|
||||
"request_throughput": metrics.request_throughput,
|
||||
"request_goodput:":
|
||||
metrics.request_goodput if gootput_config_dict else None,
|
||||
metrics.request_goodput if goodput_config_dict else None,
|
||||
"output_throughput": metrics.output_throughput,
|
||||
"total_token_throughput": metrics.total_token_throughput,
|
||||
"input_lens": [output.prompt_len for output in outputs],
|
||||
@ -662,11 +787,11 @@ async def benchmark(
|
||||
|
||||
def check_goodput_args(args):
|
||||
# Check and parse goodput arguments
|
||||
gootput_config_dict = {}
|
||||
goodput_config_dict = {}
|
||||
VALID_NAMES = ["ttft", "tpot", "e2el"]
|
||||
if args.goodput:
|
||||
gootput_config_dict = parse_goodput(args.goodput)
|
||||
for slo_name, slo_val in gootput_config_dict.items():
|
||||
goodput_config_dict = parse_goodput(args.goodput)
|
||||
for slo_name, slo_val in goodput_config_dict.items():
|
||||
if slo_name not in VALID_NAMES:
|
||||
raise ValueError(
|
||||
f"Invalid metric name found, {slo_name}: {slo_val}. "
|
||||
@ -677,22 +802,47 @@ def check_goodput_args(args):
|
||||
f"Invalid value found, {slo_name}: {slo_val}. "
|
||||
"The service level objective value should be "
|
||||
"non-negative.")
|
||||
return gootput_config_dict
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
def parse_goodput(slo_pairs):
|
||||
gootput_config_dict = {}
|
||||
goodput_config_dict = {}
|
||||
try:
|
||||
for slo_pair in slo_pairs:
|
||||
slo_name, slo_val = slo_pair.split(":")
|
||||
gootput_config_dict[slo_name] = float(slo_val)
|
||||
goodput_config_dict[slo_name] = float(slo_val)
|
||||
except ValueError as err:
|
||||
raise argparse.ArgumentTypeError(
|
||||
"Invalid format found for service level objectives. "
|
||||
"Specify service level objectives for goodput as \"KEY:VALUE\" "
|
||||
"pairs, where the key is a metric name, and the value is a "
|
||||
"number in milliseconds.") from err
|
||||
return gootput_config_dict
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
results: dict[str, Any],
|
||||
file_name: str) -> None:
|
||||
metrics = [
|
||||
"median_ttft_ms", "mean_ttft_ms", "std_ttft_ms", "p99_ttft_ms",
|
||||
"mean_tpot_ms", "median_tpot_ms", "std_tpot_ms", "p99_tpot_ms",
|
||||
"median_itl_ms", "mean_itl_ms", "std_itl_ms", "p99_itl_ms"
|
||||
]
|
||||
# These raw data might be useful, but they are rather big. They can be added
|
||||
# later if needed
|
||||
ignored_metrics = ["ttfts", "itls", "generated_texts", "errors"]
|
||||
pt_records = convert_to_pytorch_benchmark_format(
|
||||
args=args,
|
||||
metrics={k: [results[k]]
|
||||
for k in metrics},
|
||||
extra_info={
|
||||
k: results[k]
|
||||
for k in results if k not in metrics and k not in ignored_metrics
|
||||
})
|
||||
if pt_records:
|
||||
# Don't use json suffix here as we don't want CI to pick it up
|
||||
pt_file = f"{os.path.splitext(file_name)[0]}.pytorch.json"
|
||||
write_to_json(pt_file, pt_records)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
@ -702,7 +852,9 @@ def main(args: argparse.Namespace):
|
||||
|
||||
backend = args.backend
|
||||
model_id = args.model
|
||||
model_name = args.served_model_name
|
||||
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
|
||||
tokenizer_mode = args.tokenizer_mode
|
||||
|
||||
if args.base_url is not None:
|
||||
api_url = f"{args.base_url}{args.endpoint}"
|
||||
@ -712,20 +864,13 @@ def main(args: argparse.Namespace):
|
||||
base_url = f"http://{args.host}:{args.port}"
|
||||
|
||||
tokenizer = get_tokenizer(tokenizer_id,
|
||||
tokenizer_mode=tokenizer_mode,
|
||||
trust_remote_code=args.trust_remote_code)
|
||||
|
||||
if args.dataset is not None:
|
||||
warnings.warn(
|
||||
"The '--dataset' argument will be deprecated in the next "
|
||||
"release. Please use '--dataset-name' and "
|
||||
"'--dataset-path' in the future runs.",
|
||||
stacklevel=2)
|
||||
input_requests = sample_sharegpt_requests(
|
||||
dataset_path=args.dataset,
|
||||
num_requests=args.num_prompts,
|
||||
tokenizer=tokenizer,
|
||||
fixed_output_len=args.sharegpt_output_len,
|
||||
)
|
||||
if args.dataset_name is None:
|
||||
raise ValueError(
|
||||
"Please specify '--dataset-name' and the corresponding "
|
||||
"'--dataset-path' if required.")
|
||||
|
||||
elif args.dataset_name == "sharegpt":
|
||||
input_requests = sample_sharegpt_requests(
|
||||
@ -735,6 +880,14 @@ def main(args: argparse.Namespace):
|
||||
fixed_output_len=args.sharegpt_output_len,
|
||||
)
|
||||
|
||||
elif args.dataset_name == "burstgpt":
|
||||
input_requests = sample_burstgpt_requests(
|
||||
dataset_path=args.dataset_path,
|
||||
num_requests=args.num_prompts,
|
||||
random_seed=args.seed,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
elif args.dataset_name == "sonnet":
|
||||
# Do not format the prompt, pass to message directly
|
||||
if args.backend == "openai-chat":
|
||||
@ -789,7 +942,11 @@ def main(args: argparse.Namespace):
|
||||
else:
|
||||
raise ValueError(f"Unknown dataset: {args.dataset_name}")
|
||||
|
||||
gootput_config_dict = check_goodput_args(args)
|
||||
goodput_config_dict = check_goodput_args(args)
|
||||
|
||||
# Avoid GC processing "static" data - reduce pause times.
|
||||
gc.collect()
|
||||
gc.freeze()
|
||||
|
||||
benchmark_result = asyncio.run(
|
||||
benchmark(
|
||||
@ -797,6 +954,7 @@ def main(args: argparse.Namespace):
|
||||
api_url=api_url,
|
||||
base_url=base_url,
|
||||
model_id=model_id,
|
||||
model_name=model_name,
|
||||
tokenizer=tokenizer,
|
||||
input_requests=input_requests,
|
||||
logprobs=args.logprobs,
|
||||
@ -810,13 +968,14 @@ def main(args: argparse.Namespace):
|
||||
float(p) for p in args.metric_percentiles.split(",")
|
||||
],
|
||||
ignore_eos=args.ignore_eos,
|
||||
gootput_config_dict=gootput_config_dict,
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
max_concurrency=args.max_concurrency,
|
||||
lora_modules=args.lora_modules,
|
||||
))
|
||||
|
||||
# Save config and results to json
|
||||
if args.save_result:
|
||||
result_json: Dict[str, Any] = {}
|
||||
result_json: dict[str, Any] = {}
|
||||
|
||||
# Setup
|
||||
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
@ -839,8 +998,8 @@ def main(args: argparse.Namespace):
|
||||
)
|
||||
|
||||
# Traffic
|
||||
result_json["request_rate"] = (
|
||||
args.request_rate if args.request_rate < float("inf") else "inf")
|
||||
result_json["request_rate"] = (args.request_rate if args.request_rate
|
||||
< float("inf") else "inf")
|
||||
result_json["burstiness"] = args.burstiness
|
||||
result_json["max_concurrency"] = args.max_concurrency
|
||||
|
||||
@ -858,6 +1017,7 @@ def main(args: argparse.Namespace):
|
||||
file_name = os.path.join(args.result_dir, file_name)
|
||||
with open(file_name, "w", encoding='utf-8') as outfile:
|
||||
json.dump(result_json, outfile)
|
||||
save_to_pytorch_benchmark_format(args, result_json, file_name)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -875,7 +1035,8 @@ if __name__ == "__main__":
|
||||
default=None,
|
||||
help="Server or API base url if not using http host and port.",
|
||||
)
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
|
||||
parser.add_argument("--host", type=str, default="127.0.0.1")
|
||||
parser.add_argument("--port", type=int, default=8000)
|
||||
parser.add_argument(
|
||||
"--endpoint",
|
||||
@ -883,18 +1044,11 @@ if __name__ == "__main__":
|
||||
default="/v1/completions",
|
||||
help="API endpoint.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the ShareGPT dataset, will be deprecated in the "
|
||||
"next release.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
default="sharegpt",
|
||||
choices=["sharegpt", "sonnet", "random", "hf"],
|
||||
choices=["sharegpt", "burstgpt", "sonnet", "random", "hf"],
|
||||
help="Name of the dataset to benchmark on.",
|
||||
)
|
||||
parser.add_argument("--dataset-path",
|
||||
@ -1132,5 +1286,30 @@ if __name__ == "__main__":
|
||||
"from the sampled HF dataset.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--tokenizer-mode',
|
||||
type=str,
|
||||
default="auto",
|
||||
choices=['auto', 'slow', 'mistral', 'custom'],
|
||||
help='The tokenizer mode.\n\n* "auto" will use the '
|
||||
'fast tokenizer if available.\n* "slow" will '
|
||||
'always use the slow tokenizer. \n* '
|
||||
'"mistral" will always use the `mistral_common` tokenizer. \n*'
|
||||
'"custom" will use --tokenizer to select the preregistered tokenizer.')
|
||||
|
||||
parser.add_argument("--served-model-name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The model name used in the API. "
|
||||
"If not specified, the model name will be the "
|
||||
"same as the ``--model`` argument. ")
|
||||
|
||||
parser.add_argument("--lora-modules",
|
||||
nargs='+',
|
||||
default=None,
|
||||
help="A subset of LoRA module names passed in when "
|
||||
"launching the server. For each request, the "
|
||||
"script chooses a LoRA module at random.")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
961
benchmarks/benchmark_serving_guided.py
Normal file
961
benchmarks/benchmark_serving_guided.py
Normal file
@ -0,0 +1,961 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
r"""Benchmark online serving throughput with guided decoding.
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
(vLLM OpenAI API server)
|
||||
vllm serve <your_model> --disable-log-requests
|
||||
|
||||
(TGI backend)
|
||||
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
|
||||
|
||||
On the client side, run:
|
||||
python benchmarks/benchmark_serving_guided.py \
|
||||
--backend <backend> \
|
||||
--model <your_model> \
|
||||
--dataset json \
|
||||
--guided-decoding-ratio 1.0 \
|
||||
--guided-decoding-backend xgrammar \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
|
||||
when using tgi backend, add
|
||||
--endpoint /generate_stream
|
||||
to the end of the command above.
|
||||
"""
|
||||
import argparse
|
||||
import asyncio
|
||||
import dataclasses
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
import warnings
|
||||
from collections.abc import AsyncGenerator
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
|
||||
RequestFuncOutput)
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
except ImportError:
|
||||
from backend_request_func import get_tokenizer
|
||||
|
||||
try:
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
except ImportError:
|
||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||
|
||||
|
||||
@dataclass
|
||||
class BenchmarkMetrics:
|
||||
completed: int
|
||||
total_input: int
|
||||
total_output: int
|
||||
request_throughput: float
|
||||
request_goodput: float
|
||||
output_throughput: float
|
||||
total_token_throughput: float
|
||||
mean_ttft_ms: float
|
||||
median_ttft_ms: float
|
||||
std_ttft_ms: float
|
||||
percentiles_ttft_ms: list[tuple[float, float]]
|
||||
mean_tpot_ms: float
|
||||
median_tpot_ms: float
|
||||
std_tpot_ms: float
|
||||
percentiles_tpot_ms: list[tuple[float, float]]
|
||||
mean_itl_ms: float
|
||||
median_itl_ms: float
|
||||
std_itl_ms: float
|
||||
percentiles_itl_ms: list[tuple[float, float]]
|
||||
# E2EL stands for end-to-end latency per request.
|
||||
# It is the time taken on the client side from sending
|
||||
# a request to receiving a complete response.
|
||||
mean_e2el_ms: float
|
||||
median_e2el_ms: float
|
||||
std_e2el_ms: float
|
||||
percentiles_e2el_ms: list[tuple[float, float]]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SampleRequest:
|
||||
"""A class representing a single inference request for benchmarking.
|
||||
|
||||
Attributes:
|
||||
prompt: The input text prompt for the model.
|
||||
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
|
||||
images).
|
||||
prompt_len: The length of the prompt in tokens.
|
||||
expected_output_len: The expected length of the output in tokens.
|
||||
"""
|
||||
prompt: str
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
schema: dict
|
||||
structure_type: str
|
||||
completion: str = None
|
||||
|
||||
|
||||
def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
args: argparse.Namespace) -> list[SampleRequest]:
|
||||
if args.dataset == 'json':
|
||||
if args.json_schema_path is None:
|
||||
dir_path = os.path.dirname(os.path.realpath(__file__))
|
||||
args.json_schema_path = os.path.join(dir_path,
|
||||
"structured_schemas",
|
||||
"structured_schema_1.json")
|
||||
with open(args.json_schema_path) as f:
|
||||
schema = json.load(f)
|
||||
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "grammar":
|
||||
schema = """
|
||||
?start: select_statement
|
||||
|
||||
?select_statement: "SELECT " column_list " FROM " table_name
|
||||
|
||||
?column_list: column_name ("," column_name)*
|
||||
|
||||
?table_name: identifier
|
||||
|
||||
?column_name: identifier
|
||||
|
||||
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
|
||||
"""
|
||||
prompt = "Generate an SQL query to show the 'username' \
|
||||
and 'email' from the 'users' table."
|
||||
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "regex":
|
||||
regex = r"\w+@\w+\.com\n"
|
||||
args.regex = regex
|
||||
prompt = "Generate an email address for Alan Turing, \
|
||||
who works in Enigma. End in .com and new line. \
|
||||
Example result: alan.turing@enigma.com\n"
|
||||
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=regex,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "choice":
|
||||
choice = ["Positive", "Negative"]
|
||||
args.choice = choice
|
||||
prompt = "Classify this sentiment: vLLM is wonderful!"
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=choice,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "xgrammar_bench":
|
||||
requests: list[SampleRequest] = []
|
||||
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
|
||||
split="train")
|
||||
print(f"dataset has {len(dataset)} entries")
|
||||
len_dataset = len(dataset)
|
||||
for data_point_idx in range(args.num_prompts):
|
||||
idx = data_point_idx
|
||||
while idx >= len_dataset:
|
||||
idx -= len_dataset
|
||||
schema = dataset["schema"][idx]
|
||||
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
|
||||
tokenize=False)
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
completion = dataset["completion"][idx]
|
||||
|
||||
requests.append(
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type,
|
||||
completion=completion))
|
||||
|
||||
return requests
|
||||
|
||||
|
||||
async def get_request(
|
||||
input_requests: list[SampleRequest],
|
||||
request_rate: float,
|
||||
burstiness: float = 1.0,
|
||||
) -> AsyncGenerator[tuple[int, SampleRequest], None]:
|
||||
"""
|
||||
Asynchronously generates requests at a specified rate
|
||||
with OPTIONAL burstiness.
|
||||
|
||||
Args:
|
||||
input_requests:
|
||||
A list of input requests, each represented as a tuple.
|
||||
request_rate:
|
||||
The rate at which requests are generated (requests/s).
|
||||
burstiness (optional):
|
||||
The burstiness factor of the request generation.
|
||||
Only takes effect when request_rate is not inf.
|
||||
Default value is 1, which follows a Poisson process.
|
||||
Otherwise, the request intervals follow a gamma distribution.
|
||||
A lower burstiness value (0 < burstiness < 1) results
|
||||
in more bursty requests, while a higher burstiness value
|
||||
(burstiness > 1) results in a more uniform arrival of requests.
|
||||
"""
|
||||
input_requests = iter(input_requests)
|
||||
|
||||
# Calculate scale parameter theta to maintain the desired request_rate.
|
||||
assert burstiness > 0, (
|
||||
f"A positive burstiness factor is expected, but given {burstiness}.")
|
||||
theta = 1.0 / (request_rate * burstiness)
|
||||
|
||||
for i, request in enumerate(input_requests):
|
||||
yield i, request
|
||||
|
||||
if request_rate == float("inf"):
|
||||
# If the request rate is infinity, then we don't need to wait.
|
||||
continue
|
||||
|
||||
# Sample the request interval from the gamma distribution.
|
||||
# If burstiness is 1, it follows exponential distribution.
|
||||
interval = np.random.gamma(shape=burstiness, scale=theta)
|
||||
# The next request will be sent after the interval.
|
||||
await asyncio.sleep(interval)
|
||||
|
||||
|
||||
def calculate_metrics(
|
||||
input_requests: list[tuple[str, int, int]],
|
||||
outputs: list[RequestFuncOutput],
|
||||
dur_s: float,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
selected_percentile_metrics: list[str],
|
||||
selected_percentiles: list[float],
|
||||
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||
) -> tuple[BenchmarkMetrics, list[int]]:
|
||||
actual_output_lens: list[int] = []
|
||||
total_input = 0
|
||||
completed = 0
|
||||
good_completed = 0
|
||||
itls: list[float] = []
|
||||
tpots: list[float] = []
|
||||
all_tpots: list[float] = []
|
||||
ttfts: list[float] = []
|
||||
e2els: list[float] = []
|
||||
for i in range(len(outputs)):
|
||||
if outputs[i].success:
|
||||
# We use the tokenizer to count the number of output tokens for all
|
||||
# serving backends instead of looking at len(outputs[i].itl) since
|
||||
# multiple output tokens may be bundled together
|
||||
# Note : this may inflate the output token count slightly
|
||||
output_len = len(
|
||||
tokenizer(outputs[i].generated_text,
|
||||
add_special_tokens=False).input_ids)
|
||||
actual_output_lens.append(output_len)
|
||||
total_input += input_requests[i].prompt_len
|
||||
tpot = 0
|
||||
if output_len > 1:
|
||||
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
|
||||
tpot = latency_minus_ttft / (output_len - 1)
|
||||
tpots.append(tpot)
|
||||
outputs[i].tpot = tpot
|
||||
# Note: if output_len <= 1, we regard tpot as 0 for goodput
|
||||
all_tpots.append(tpot)
|
||||
itls += outputs[i].itl
|
||||
ttfts.append(outputs[i].ttft)
|
||||
e2els.append(outputs[i].latency)
|
||||
completed += 1
|
||||
else:
|
||||
actual_output_lens.append(0)
|
||||
|
||||
if goodput_config_dict:
|
||||
valid_metrics = []
|
||||
slo_values = []
|
||||
|
||||
if "ttft" in goodput_config_dict:
|
||||
valid_metrics.append(ttfts)
|
||||
slo_values.append(goodput_config_dict["ttft"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
if "tpot" in goodput_config_dict:
|
||||
valid_metrics.append(all_tpots)
|
||||
slo_values.append(goodput_config_dict["tpot"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
if "e2el" in goodput_config_dict:
|
||||
valid_metrics.append(e2els)
|
||||
slo_values.append(goodput_config_dict["e2el"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
|
||||
for req_metric in zip(*valid_metrics):
|
||||
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
|
||||
if is_good_req:
|
||||
good_completed += 1
|
||||
|
||||
if completed == 0:
|
||||
warnings.warn(
|
||||
"All requests failed. This is likely due to a misconfiguration "
|
||||
"on the benchmark arguments.",
|
||||
stacklevel=2)
|
||||
metrics = BenchmarkMetrics(
|
||||
completed=completed,
|
||||
total_input=total_input,
|
||||
total_output=sum(actual_output_lens),
|
||||
request_throughput=completed / dur_s,
|
||||
request_goodput=good_completed / dur_s,
|
||||
output_throughput=sum(actual_output_lens) / dur_s,
|
||||
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
|
||||
mean_ttft_ms=np.mean(ttfts or 0) *
|
||||
1000, # ttfts is empty if streaming is not supported by backend
|
||||
std_ttft_ms=np.std(ttfts or 0) * 1000,
|
||||
median_ttft_ms=np.median(ttfts or 0) * 1000,
|
||||
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
mean_tpot_ms=np.mean(tpots or 0) * 1000,
|
||||
std_tpot_ms=np.std(tpots or 0) * 1000,
|
||||
median_tpot_ms=np.median(tpots or 0) * 1000,
|
||||
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
mean_itl_ms=np.mean(itls or 0) * 1000,
|
||||
std_itl_ms=np.std(itls or 0) * 1000,
|
||||
median_itl_ms=np.median(itls or 0) * 1000,
|
||||
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
mean_e2el_ms=np.mean(e2els or 0) * 1000,
|
||||
std_e2el_ms=np.std(e2els or 0) * 1000,
|
||||
median_e2el_ms=np.median(e2els or 0) * 1000,
|
||||
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
)
|
||||
|
||||
return metrics, actual_output_lens
|
||||
|
||||
|
||||
async def benchmark(
|
||||
backend: str,
|
||||
api_url: str,
|
||||
base_url: str,
|
||||
model_id: str,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_requests: list[SampleRequest],
|
||||
request_rate: float,
|
||||
burstiness: float,
|
||||
disable_tqdm: bool,
|
||||
profile: bool,
|
||||
selected_percentile_metrics: list[str],
|
||||
selected_percentiles: list[str],
|
||||
ignore_eos: bool,
|
||||
max_concurrency: Optional[int],
|
||||
guided_decoding_ratio: float,
|
||||
guided_decoding_backend: str,
|
||||
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||
):
|
||||
if backend in ASYNC_REQUEST_FUNCS:
|
||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {backend}")
|
||||
|
||||
def prepare_extra_body(request) -> dict:
|
||||
extra_body = {}
|
||||
# Add the schema to the extra_body
|
||||
extra_body[request.structure_type] = request.schema
|
||||
# Add the specific guided_decoding_backend
|
||||
extra_body["guided_decoding_backend"] = guided_decoding_backend
|
||||
return extra_body
|
||||
|
||||
print("Starting initial single prompt test run...")
|
||||
guided_decoding_req_idx = random.sample(
|
||||
range(len(input_requests)),
|
||||
int(len(input_requests) * guided_decoding_ratio))
|
||||
|
||||
test_request = input_requests[0]
|
||||
test_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=test_request.prompt,
|
||||
api_url=api_url,
|
||||
prompt_len=test_request.prompt_len,
|
||||
output_len=test_request.expected_output_len,
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=prepare_extra_body(test_request),
|
||||
)
|
||||
test_output = await request_func(request_func_input=test_input)
|
||||
if not test_output.success:
|
||||
raise ValueError(
|
||||
"Initial test run failed - Please make sure benchmark arguments "
|
||||
f"are correctly specified. Error: {test_output.error}")
|
||||
else:
|
||||
print("Initial test run completed. Starting main benchmark run...")
|
||||
|
||||
if profile:
|
||||
print("Starting profiler...")
|
||||
profile_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=test_request.prompt,
|
||||
api_url=base_url + "/start_profile",
|
||||
prompt_len=test_request.prompt_len,
|
||||
output_len=test_request.expected_output_len,
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=prepare_extra_body(test_request),
|
||||
)
|
||||
profile_output = await request_func(request_func_input=profile_input)
|
||||
if profile_output.success:
|
||||
print("Profiler started")
|
||||
|
||||
if burstiness == 1.0:
|
||||
distribution = "Poisson process"
|
||||
else:
|
||||
distribution = "Gamma distribution"
|
||||
|
||||
print(f"Traffic request rate: {request_rate}")
|
||||
print(f"Burstiness factor: {burstiness} ({distribution})")
|
||||
print(f"Maximum request concurrency: {max_concurrency}")
|
||||
|
||||
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
|
||||
|
||||
# This can be used once the minimum Python version is 3.10 or higher,
|
||||
# and it will simplify the code in limited_request_func.
|
||||
# semaphore = (asyncio.Semaphore(max_concurrency)
|
||||
# if max_concurrency else contextlib.nullcontext())
|
||||
semaphore = (asyncio.Semaphore(max_concurrency)
|
||||
if max_concurrency else None)
|
||||
|
||||
async def limited_request_func(request_func_input, pbar):
|
||||
if semaphore is None:
|
||||
return await request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)
|
||||
async with semaphore:
|
||||
return await request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)
|
||||
|
||||
benchmark_start_time = time.perf_counter()
|
||||
tasks: list[asyncio.Task] = []
|
||||
expected: list[str] = []
|
||||
async for i, request in get_request(input_requests, request_rate,
|
||||
burstiness):
|
||||
extra_body = prepare_extra_body(
|
||||
request) if i in guided_decoding_req_idx else None
|
||||
request_func_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=request.prompt,
|
||||
api_url=api_url,
|
||||
prompt_len=request.prompt_len,
|
||||
output_len=request.expected_output_len,
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
expected.append(request.completion)
|
||||
tasks.append(
|
||||
asyncio.create_task(
|
||||
limited_request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)))
|
||||
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
|
||||
|
||||
if profile:
|
||||
print("Stopping profiler...")
|
||||
profile_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=test_request.prompt,
|
||||
api_url=base_url + "/stop_profile",
|
||||
prompt_len=test_request.prompt_len,
|
||||
output_len=test_request.expected_output_len,
|
||||
extra_body={test_request.structure_type: test_request.schema},
|
||||
)
|
||||
profile_output = await request_func(request_func_input=profile_input)
|
||||
if profile_output.success:
|
||||
print("Profiler stopped")
|
||||
|
||||
if pbar is not None:
|
||||
pbar.close()
|
||||
|
||||
benchmark_duration = time.perf_counter() - benchmark_start_time
|
||||
|
||||
metrics, actual_output_lens = calculate_metrics(
|
||||
input_requests=input_requests,
|
||||
outputs=outputs,
|
||||
dur_s=benchmark_duration,
|
||||
tokenizer=tokenizer,
|
||||
selected_percentile_metrics=selected_percentile_metrics,
|
||||
selected_percentiles=selected_percentiles,
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
)
|
||||
|
||||
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
|
||||
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
|
||||
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
|
||||
benchmark_duration))
|
||||
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
|
||||
print("{:<40} {:<10}".format("Total generated tokens:",
|
||||
metrics.total_output))
|
||||
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
|
||||
metrics.request_throughput))
|
||||
if goodput_config_dict:
|
||||
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
|
||||
metrics.request_goodput))
|
||||
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
|
||||
metrics.output_throughput))
|
||||
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
|
||||
metrics.total_token_throughput))
|
||||
|
||||
result = {
|
||||
"duration":
|
||||
benchmark_duration,
|
||||
"completed":
|
||||
metrics.completed,
|
||||
"total_input_tokens":
|
||||
metrics.total_input,
|
||||
"total_output_tokens":
|
||||
metrics.total_output,
|
||||
"request_throughput":
|
||||
metrics.request_throughput,
|
||||
"output_throughput":
|
||||
metrics.output_throughput,
|
||||
"total_token_throughput":
|
||||
metrics.total_token_throughput,
|
||||
"ttft_description":
|
||||
pd.Series([output.ttft for output in outputs]).describe().to_dict(),
|
||||
"tpot_description":
|
||||
pd.Series([output.tpot for output in outputs]).describe().to_dict(),
|
||||
"input_lens": [output.prompt_len for output in outputs],
|
||||
"output_lens":
|
||||
actual_output_lens,
|
||||
"ttfts": [output.ttft for output in outputs],
|
||||
"itls": [output.itl for output in outputs],
|
||||
"errors": [output.error for output in outputs],
|
||||
}
|
||||
|
||||
ret = [{
|
||||
'generated': output.generated_text,
|
||||
'expected': gt
|
||||
} for output, gt in zip(outputs, expected)]
|
||||
|
||||
def process_one_metric(
|
||||
# E.g., "ttft"
|
||||
metric_attribute_name: str,
|
||||
# E.g., "TTFT"
|
||||
metric_name: str,
|
||||
# E.g., "Time to First Token"
|
||||
metric_header: str,
|
||||
):
|
||||
# This function prints and adds statistics of the specified
|
||||
# metric.
|
||||
if metric_attribute_name not in selected_percentile_metrics:
|
||||
return
|
||||
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
|
||||
print("{:<40} {:<10.2f}".format(
|
||||
f"Mean {metric_name} (ms):",
|
||||
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
|
||||
print("{:<40} {:<10.2f}".format(
|
||||
f"Median {metric_name} (ms):",
|
||||
getattr(metrics, f"median_{metric_attribute_name}_ms")))
|
||||
result[f"mean_{metric_attribute_name}_ms"] = getattr(
|
||||
metrics, f"mean_{metric_attribute_name}_ms")
|
||||
result[f"median_{metric_attribute_name}_ms"] = getattr(
|
||||
metrics, f"median_{metric_attribute_name}_ms")
|
||||
result[f"std_{metric_attribute_name}_ms"] = getattr(
|
||||
metrics, f"std_{metric_attribute_name}_ms")
|
||||
for p, value in getattr(metrics,
|
||||
f"percentiles_{metric_attribute_name}_ms"):
|
||||
p_word = str(int(p)) if int(p) == p else str(p)
|
||||
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
|
||||
value))
|
||||
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
|
||||
|
||||
process_one_metric("ttft", "TTFT", "Time to First Token")
|
||||
process_one_metric("tpot", "TPOT",
|
||||
"Time per Output Token (excl. 1st token)")
|
||||
process_one_metric("itl", "ITL", "Inter-token Latency")
|
||||
process_one_metric("e2el", "E2EL", "End-to-end Latency")
|
||||
|
||||
print("=" * 50)
|
||||
|
||||
return result, ret
|
||||
|
||||
|
||||
def evaluate(ret, args):
|
||||
|
||||
def _eval_correctness_json(expected, actual):
|
||||
# extract json string from string using regex
|
||||
import re
|
||||
actual = actual.replace('\n', '').replace(' ', '').strip()
|
||||
try:
|
||||
actual = re.search(r'\{.*\}', actual).group()
|
||||
actual = json.loads(actual)
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def _eval_correctness_choice(expected, actual):
|
||||
return actual in args.choice
|
||||
|
||||
def _eval_correctness_regex(expected, actual):
|
||||
import re
|
||||
return re.match(args.regex, actual) is not None
|
||||
|
||||
def _eval_correctness(expected, actual):
|
||||
if args.structure_type == 'guided_json':
|
||||
return _eval_correctness_json(expected, actual)
|
||||
elif args.structure_type == 'guided_regex':
|
||||
return _eval_correctness_regex(expected, actual)
|
||||
elif args.structure_type == 'guided_choice':
|
||||
return _eval_correctness_choice(expected, actual)
|
||||
else:
|
||||
return None
|
||||
|
||||
scores = []
|
||||
for res in ret:
|
||||
score = _eval_correctness(res['expected'], res['generated'])
|
||||
res['correctness'] = score
|
||||
scores.append(score)
|
||||
|
||||
not_none_scores = [score for score in scores if score is not None]
|
||||
|
||||
return (sum(not_none_scores) / len(not_none_scores) *
|
||||
100) if len(not_none_scores) > 0 else None
|
||||
|
||||
|
||||
def parse_goodput(slo_pairs):
|
||||
goodput_config_dict = {}
|
||||
try:
|
||||
for slo_pair in slo_pairs:
|
||||
slo_name, slo_val = slo_pair.split(":")
|
||||
goodput_config_dict[slo_name] = float(slo_val)
|
||||
except ValueError as err:
|
||||
raise argparse.ArgumentTypeError(
|
||||
"Invalid format found for service level objectives. "
|
||||
"Specify service level objectives for goodput as \"KEY:VALUE\" "
|
||||
"pairs, where the key is a metric name, and the value is a "
|
||||
"number in milliseconds.") from err
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
def check_goodput_args(args):
|
||||
goodput_config_dict = {}
|
||||
VALID_NAMES = ["ttft", "tpot", "e2el"]
|
||||
if args.goodput:
|
||||
goodput_config_dict = parse_goodput(args.goodput)
|
||||
for slo_name, slo_val in goodput_config_dict.items():
|
||||
if slo_name not in VALID_NAMES:
|
||||
raise ValueError(
|
||||
f"Invalid metric name found, {slo_name}: {slo_val}. "
|
||||
"The service level objective name should be one of "
|
||||
f"{str(VALID_NAMES)}. ")
|
||||
if slo_val < 0:
|
||||
raise ValueError(
|
||||
f"Invalid value found, {slo_name}: {slo_val}. "
|
||||
"The service level objective value should be "
|
||||
"non-negative.")
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
|
||||
backend = args.backend
|
||||
model_id = args.model
|
||||
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
|
||||
|
||||
if args.base_url is not None:
|
||||
api_url = f"{args.base_url}{args.endpoint}"
|
||||
base_url = f"{args.base_url}"
|
||||
else:
|
||||
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
|
||||
base_url = f"http://{args.host}:{args.port}"
|
||||
|
||||
tokenizer = get_tokenizer(tokenizer_id,
|
||||
trust_remote_code=args.trust_remote_code)
|
||||
|
||||
if args.dataset == 'grammar':
|
||||
args.structure_type = 'guided_grammar'
|
||||
elif args.dataset == 'regex':
|
||||
args.structure_type = 'guided_regex'
|
||||
elif args.dataset == 'choice':
|
||||
args.structure_type = 'guided_choice'
|
||||
else:
|
||||
args.structure_type = 'guided_json'
|
||||
|
||||
if args.no_guided_decoding:
|
||||
args.guided_decoding_ratio = 0
|
||||
if args.save_results:
|
||||
result_file_name = f'{args.guided_decoding_ratio}guided'
|
||||
result_file_name += f"_{backend}"
|
||||
result_file_name += f"_{args.request_rate}qps"
|
||||
result_file_name += f"_{args.model.split('/')[-1]}"
|
||||
result_file_name += f"_{args.dataset}"
|
||||
result_file_name += f"_{args.num_prompts}"
|
||||
result_file_name += f"_out{args.output_len}"
|
||||
result_file_name += ".txt"
|
||||
else:
|
||||
result_file_name = None
|
||||
|
||||
input_requests = sample_requests(tokenizer, args)
|
||||
|
||||
goodput_config_dict = check_goodput_args(args)
|
||||
|
||||
benchmark_result, ret = asyncio.run(
|
||||
benchmark(
|
||||
backend=backend,
|
||||
api_url=api_url,
|
||||
base_url=base_url,
|
||||
model_id=model_id,
|
||||
tokenizer=tokenizer,
|
||||
input_requests=input_requests,
|
||||
request_rate=args.request_rate,
|
||||
burstiness=args.burstiness,
|
||||
disable_tqdm=args.disable_tqdm,
|
||||
profile=args.profile,
|
||||
selected_percentile_metrics=args.percentile_metrics.split(","),
|
||||
selected_percentiles=[
|
||||
float(p) for p in args.metric_percentiles.split(",")
|
||||
],
|
||||
ignore_eos=args.ignore_eos,
|
||||
max_concurrency=args.max_concurrency,
|
||||
guided_decoding_ratio=args.guided_decoding_ratio,
|
||||
guided_decoding_backend=args.guided_decoding_backend,
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
))
|
||||
|
||||
# Save config and results to json
|
||||
score = evaluate(ret, args)
|
||||
print("correct_rate(%)", score, '\n')
|
||||
if args.save_results:
|
||||
results = {
|
||||
"backend":
|
||||
backend,
|
||||
"model_id":
|
||||
model_id,
|
||||
"tokenizer_id":
|
||||
tokenizer_id,
|
||||
"num_prompts":
|
||||
args.num_prompts,
|
||||
"request_rate":
|
||||
args.request_rate if args.request_rate < float("inf") else "inf",
|
||||
"burstiness":
|
||||
args.burstiness,
|
||||
"max_concurrency":
|
||||
args.max_concurrency,
|
||||
"correct_rate(%)":
|
||||
score
|
||||
}
|
||||
results = {"outputs": ret, **results, **benchmark_result}
|
||||
|
||||
# Save to file
|
||||
if args.result_filename:
|
||||
result_file_name = args.result_filename
|
||||
if args.result_dir:
|
||||
result_file_name = os.path.join(args.result_dir, result_file_name)
|
||||
with open(result_file_name, "w", encoding='utf-8') as outfile:
|
||||
json.dump(results, outfile, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the online serving throughput.")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
default="vllm",
|
||||
choices=list(ASYNC_REQUEST_FUNCS.keys()),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base-url",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Server or API base url if not using http host and port.",
|
||||
)
|
||||
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
|
||||
parser.add_argument("--host", type=str, default="127.0.0.1")
|
||||
parser.add_argument("--port", type=int, default=8000)
|
||||
parser.add_argument(
|
||||
"--endpoint",
|
||||
type=str,
|
||||
default="/v1/completions",
|
||||
help="API endpoint.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default='json',
|
||||
choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench'])
|
||||
parser.add_argument("--json_schema_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to json schema.")
|
||||
parser.add_argument(
|
||||
"--max-concurrency",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Maximum number of concurrent requests. This can be used "
|
||||
"to help simulate an environment where a higher level component "
|
||||
"is enforcing a maximum number of concurrent requests. While the "
|
||||
"--request-rate argument controls the rate at which requests are "
|
||||
"initiated, this argument will control how many are actually allowed "
|
||||
"to execute at a time. This means that when used in combination, the "
|
||||
"actual request rate may be lower than specified with --request-rate, "
|
||||
"if the server is not processing requests fast enough to keep up.")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Name of the model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer",
|
||||
type=str,
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Number of prompts to process.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-len",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Number of output tokens.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--request-rate",
|
||||
type=float,
|
||||
default=float("inf"),
|
||||
help="Number of requests per second. If this is inf, "
|
||||
"then all the requests are sent at time 0. "
|
||||
"Otherwise, we use Poisson process or gamma distribution "
|
||||
"to synthesize the request arrival times.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--burstiness",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Burstiness factor of the request generation. "
|
||||
"Only take effect when request_rate is not inf. "
|
||||
"Default value is 1, which follows Poisson process. "
|
||||
"Otherwise, the request intervals follow a gamma distribution. "
|
||||
"A lower burstiness value (0 < burstiness < 1) results in more "
|
||||
"bursty requests. A higher burstiness value (burstiness > 1) "
|
||||
"results in a more uniform arrival of requests.",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument(
|
||||
"--trust-remote-code",
|
||||
action="store_true",
|
||||
help="Trust remote code from huggingface",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-tqdm",
|
||||
action="store_true",
|
||||
help="Specify to disable tqdm progress bar.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-results",
|
||||
action="store_true",
|
||||
help="Specify to save benchmark results to a json file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--profile",
|
||||
action="store_true",
|
||||
help="Use Torch Profiler. The endpoint must be launched with "
|
||||
"VLLM_TORCH_PROFILER_DIR to enable profiler.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--result-dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Specify directory to save benchmark json results."
|
||||
"If not specified, results are saved in the current directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--result-filename",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Specify the filename to save benchmark json results."
|
||||
"If not specified, results will be saved in "
|
||||
"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
|
||||
" format.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ignore-eos",
|
||||
action="store_true",
|
||||
help="Set ignore_eos flag when sending the benchmark request."
|
||||
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.")
|
||||
parser.add_argument(
|
||||
"--percentile-metrics",
|
||||
type=str,
|
||||
default="ttft,tpot,itl",
|
||||
help="Comma-seperated list of selected metrics to report percentils. "
|
||||
"This argument specifies the metrics to report percentiles. "
|
||||
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
|
||||
"Default value is \"ttft,tpot,itl\".")
|
||||
parser.add_argument(
|
||||
"--metric-percentiles",
|
||||
type=str,
|
||||
default="99",
|
||||
help="Comma-seperated list of percentiles for selected metrics. "
|
||||
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
|
||||
"Default value is \"99\". "
|
||||
"Use \"--percentile-metrics\" to select metrics.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--goodput",
|
||||
nargs="+",
|
||||
required=False,
|
||||
help="Specify service level objectives for goodput as \"KEY:VALUE\" "
|
||||
"pairs, where the key is a metric name, and the value is in "
|
||||
"milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, "
|
||||
"separated by spaces. Allowed request level metric names are "
|
||||
"\"ttft\", \"tpot\", \"e2el\". For more context on the definition of "
|
||||
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
|
||||
"and the blog: https://hao-ai-lab.github.io/blogs/distserve")
|
||||
|
||||
parser.add_argument("--no-guided-decoding",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Whether to disable JSON decoding or not.")
|
||||
parser.add_argument("--guided-decoding-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Ratio of Guided Decoding requests")
|
||||
parser.add_argument("--guided-decoding-backend",
|
||||
type=str,
|
||||
choices=["outlines", "lm-format-enforcer", "xgrammar"],
|
||||
default="xgrammar",
|
||||
help="Backend to use for guided decoding")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
@ -1,13 +1,17 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Benchmark offline inference throughput."""
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from typing import List, Optional
|
||||
from functools import cache
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
import uvloop
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||
@ -17,8 +21,11 @@ from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
|
||||
from vllm.entrypoints.openai.api_server import (
|
||||
build_async_engine_client_from_engine_args)
|
||||
from vllm.inputs import TextPrompt
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.lora.utils import get_adapter_absolute_path
|
||||
from vllm.multimodal import MultiModalDataDict
|
||||
from vllm.sampling_params import BeamSearchParams
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
|
||||
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
|
||||
|
||||
|
||||
@ -28,15 +35,17 @@ class SampleRequest:
|
||||
|
||||
Attributes:
|
||||
prompt: The input text prompt for the model.
|
||||
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
|
||||
images).
|
||||
prompt_len: The length of the prompt in tokens.
|
||||
expected_output_len: The expected length of the output in tokens.
|
||||
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
|
||||
images).
|
||||
lora_request: Optional LoRARequest specifying the LoRA to use.
|
||||
"""
|
||||
prompt: str
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
multi_modal_data: Optional[MultiModalDataDict] = None
|
||||
lora_request: Optional[LoRARequest] = None
|
||||
|
||||
|
||||
def _get_prompt_for_image_model(question: str, *, model: str) -> str:
|
||||
@ -60,8 +69,30 @@ def _get_prompt_for_image_model(question: str, *, model: str) -> str:
|
||||
raise ValueError(f"Unsupported model {model}")
|
||||
|
||||
|
||||
@cache
|
||||
def lora_path_on_disk(lora_path: str) -> str:
|
||||
return get_adapter_absolute_path(lora_path)
|
||||
|
||||
|
||||
lora_tokenizer_cache: dict[int, AnyTokenizer] = {}
|
||||
|
||||
|
||||
def get_random_lora_request(
|
||||
args: argparse.Namespace
|
||||
) -> tuple[LoRARequest, Optional[AnyTokenizer]]:
|
||||
global lora_tokenizer_cache
|
||||
lora_id = random.randint(1, args.max_loras)
|
||||
lora_request = LoRARequest(lora_name=str(lora_id),
|
||||
lora_int_id=lora_id,
|
||||
lora_path=lora_path_on_disk(args.lora_path))
|
||||
if lora_id not in lora_tokenizer_cache:
|
||||
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
|
||||
return lora_request, lora_tokenizer_cache[lora_id]
|
||||
|
||||
|
||||
def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
args: argparse.Namespace) -> List[SampleRequest]:
|
||||
args: argparse.Namespace) -> list[SampleRequest]:
|
||||
|
||||
dataset_path: str = args.dataset
|
||||
num_requests: int = args.num_prompts
|
||||
fixed_output_len: Optional[int] = args.output_len
|
||||
@ -78,8 +109,10 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
random.shuffle(dataset)
|
||||
|
||||
# Filter out sequences that are too long or too short
|
||||
filtered_dataset: List[SampleRequest] = []
|
||||
for data in dataset:
|
||||
filtered_dataset: list[SampleRequest] = []
|
||||
for data in tqdm(dataset,
|
||||
total=len(filtered_dataset),
|
||||
desc="sampling requests"):
|
||||
if len(filtered_dataset) == num_requests:
|
||||
break
|
||||
|
||||
@ -102,9 +135,16 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
continue
|
||||
prompt = _get_prompt_for_image_model(question=prompt, model=model)
|
||||
|
||||
request_tokenizer = tokenizer
|
||||
lora_request: Optional[LoRARequest] = None
|
||||
if args.enable_lora:
|
||||
lora_request, lora_tokenizer = get_random_lora_request(args)
|
||||
if lora_tokenizer:
|
||||
request_tokenizer = lora_tokenizer
|
||||
|
||||
# Tokenize the prompts and completions.
|
||||
prompt_token_ids = tokenizer(prompt).input_ids
|
||||
completion_token_ids = tokenizer(completion).input_ids
|
||||
prompt_token_ids = request_tokenizer(prompt).input_ids
|
||||
completion_token_ids = request_tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_token_ids)
|
||||
output_len = len(completion_token_ids
|
||||
) if fixed_output_len is None else fixed_output_len
|
||||
@ -118,22 +158,28 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=multi_modal_data))
|
||||
multi_modal_data=multi_modal_data,
|
||||
lora_request=lora_request))
|
||||
|
||||
return filtered_dataset
|
||||
|
||||
|
||||
def run_vllm(
|
||||
requests: List[SampleRequest],
|
||||
requests: list[SampleRequest],
|
||||
n: int,
|
||||
engine_args: EngineArgs,
|
||||
) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (
|
||||
request.prompt_len + request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests.")
|
||||
# Add the requests to the engine.
|
||||
prompts: List[TextPrompt] = []
|
||||
sampling_params: List[SamplingParams] = []
|
||||
prompts: list[TextPrompt] = []
|
||||
sampling_params: list[SamplingParams] = []
|
||||
for request in requests:
|
||||
prompts.append(
|
||||
TextPrompt(prompt=request.prompt,
|
||||
@ -146,14 +192,21 @@ def run_vllm(
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
))
|
||||
lora_requests: Optional[list[LoRARequest]] = None
|
||||
if engine_args.enable_lora:
|
||||
lora_requests = [request.lora_request for request in requests]
|
||||
|
||||
use_beam_search = False
|
||||
|
||||
if not use_beam_search:
|
||||
start = time.perf_counter()
|
||||
llm.generate(prompts, sampling_params, use_tqdm=True)
|
||||
llm.generate(prompts,
|
||||
sampling_params,
|
||||
lora_request=lora_requests,
|
||||
use_tqdm=True)
|
||||
end = time.perf_counter()
|
||||
else:
|
||||
assert lora_requests is None, "BeamSearch API does not support LoRA"
|
||||
prompts = [request.prompt for request in requests]
|
||||
# output_len should be the same for all requests.
|
||||
output_len = requests[0][2]
|
||||
@ -172,7 +225,7 @@ def run_vllm(
|
||||
|
||||
|
||||
async def run_vllm_async(
|
||||
requests: List[SampleRequest],
|
||||
requests: list[SampleRequest],
|
||||
n: int,
|
||||
engine_args: AsyncEngineArgs,
|
||||
disable_frontend_multiprocessing: bool = False,
|
||||
@ -181,10 +234,17 @@ async def run_vllm_async(
|
||||
|
||||
async with build_async_engine_client_from_engine_args(
|
||||
engine_args, disable_frontend_multiprocessing) as llm:
|
||||
assert all(
|
||||
llm.model_config.max_model_len >= (request.prompt_len +
|
||||
request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests.")
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts: List[TextPrompt] = []
|
||||
sampling_params: List[SamplingParams] = []
|
||||
prompts: list[TextPrompt] = []
|
||||
sampling_params: list[SamplingParams] = []
|
||||
lora_requests: list[Optional[LoRARequest]] = []
|
||||
for request in requests:
|
||||
prompts.append(
|
||||
TextPrompt(prompt=request.prompt,
|
||||
@ -197,11 +257,16 @@ async def run_vllm_async(
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
))
|
||||
lora_requests.append(request.lora_request)
|
||||
|
||||
generators = []
|
||||
start = time.perf_counter()
|
||||
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
|
||||
generator = llm.generate(prompt, sp, request_id=f"test{i}")
|
||||
for i, (prompt, sp,
|
||||
lr) in enumerate(zip(prompts, sampling_params, lora_requests)):
|
||||
generator = llm.generate(prompt,
|
||||
sp,
|
||||
lora_request=lr,
|
||||
request_id=f"test{i}")
|
||||
generators.append(generator)
|
||||
all_gens = merge_async_iterators(*generators)
|
||||
async for i, res in all_gens:
|
||||
@ -211,7 +276,7 @@ async def run_vllm_async(
|
||||
|
||||
|
||||
def run_hf(
|
||||
requests: List[SampleRequest],
|
||||
requests: list[SampleRequest],
|
||||
model: str,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
n: int,
|
||||
@ -227,7 +292,7 @@ def run_hf(
|
||||
|
||||
pbar = tqdm(total=len(requests))
|
||||
start = time.perf_counter()
|
||||
batch: List[str] = []
|
||||
batch: list[str] = []
|
||||
max_prompt_len = 0
|
||||
max_output_len = 0
|
||||
for i in range(len(requests)):
|
||||
@ -269,7 +334,7 @@ def run_hf(
|
||||
|
||||
|
||||
def run_mii(
|
||||
requests: List[SampleRequest],
|
||||
requests: list[SampleRequest],
|
||||
model: str,
|
||||
tensor_parallel_size: int,
|
||||
output_len: int,
|
||||
@ -286,6 +351,24 @@ def run_mii(
|
||||
return end - start
|
||||
|
||||
|
||||
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
results: dict[str, Any]) -> None:
|
||||
pt_records = convert_to_pytorch_benchmark_format(
|
||||
args=args,
|
||||
metrics={
|
||||
"requests_per_second": [results["requests_per_second"]],
|
||||
"tokens_per_second": [results["tokens_per_second"]],
|
||||
},
|
||||
extra_info={
|
||||
k: results[k]
|
||||
for k in ["elapsed_time", "num_requests", "total_num_tokens"]
|
||||
})
|
||||
if pt_records:
|
||||
# Don't use json suffix here as we don't want CI to pick it up
|
||||
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
|
||||
write_to_json(pt_file, pt_records)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
@ -294,23 +377,45 @@ def main(args: argparse.Namespace):
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
if args.dataset is None:
|
||||
# Synthesize a prompt with the given input length.
|
||||
# As tokenizer may add additional tokens like BOS, we need to try
|
||||
# different lengths to get the desired input length.
|
||||
for i in range(-10, 10):
|
||||
prompt = "hi " * (args.input_len + i)
|
||||
tokenized_prompt = tokenizer(prompt).input_ids
|
||||
if len(tokenized_prompt) == args.input_len:
|
||||
break
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Failed to synthesize a prompt with {args.input_len} tokens.")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=args.input_len,
|
||||
expected_output_len=args.output_len)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
vocab_size = tokenizer.vocab_size
|
||||
requests = []
|
||||
for _ in range(args.num_prompts):
|
||||
|
||||
request_tokenizer = tokenizer
|
||||
lora_request: Optional[LoRARequest] = None
|
||||
if args.enable_lora:
|
||||
lora_request, lora_tokenizer = get_random_lora_request(args)
|
||||
if lora_tokenizer:
|
||||
request_tokenizer = lora_tokenizer
|
||||
|
||||
# Synthesize a prompt with the given input length.
|
||||
candidate_ids = [
|
||||
random.randint(0, vocab_size - 1)
|
||||
for _ in range(args.input_len)
|
||||
]
|
||||
# As tokenizer may add additional tokens like BOS, we need to try
|
||||
# different lengths to get the desired input length.
|
||||
for _ in range(5): # Max attempts to correct
|
||||
candidate_prompt = request_tokenizer.decode(candidate_ids)
|
||||
tokenized_len = len(request_tokenizer.encode(candidate_prompt))
|
||||
|
||||
if tokenized_len == args.input_len:
|
||||
break
|
||||
|
||||
# Adjust length based on difference
|
||||
diff = args.input_len - tokenized_len
|
||||
if diff > 0:
|
||||
candidate_ids.extend([
|
||||
random.randint(100, vocab_size - 100)
|
||||
for _ in range(diff)
|
||||
])
|
||||
else:
|
||||
candidate_ids = candidate_ids[:diff]
|
||||
requests.append(
|
||||
SampleRequest(prompt=candidate_prompt,
|
||||
prompt_len=args.input_len,
|
||||
expected_output_len=args.output_len,
|
||||
lora_request=lora_request))
|
||||
else:
|
||||
requests = sample_requests(tokenizer, args)
|
||||
|
||||
@ -361,6 +466,7 @@ def main(args: argparse.Namespace):
|
||||
}
|
||||
with open(args.output_json, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
save_to_pytorch_benchmark_format(args, results)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -373,8 +479,8 @@ if __name__ == "__main__":
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the dataset. The dataset is expected to "
|
||||
"be a json in form of List[Dict[..., conversations: "
|
||||
"List[Dict[..., value: <prompt_or_response>]]]]")
|
||||
"be a json in form of list[dict[..., conversations: "
|
||||
"list[dict[..., value: <prompt_or_response>]]]]")
|
||||
parser.add_argument("--input-len",
|
||||
type=int,
|
||||
default=None,
|
||||
@ -409,6 +515,14 @@ if __name__ == "__main__":
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Disable decoupled async engine frontend.")
|
||||
# LoRA
|
||||
parser.add_argument(
|
||||
"--lora-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the lora adapters to use. This can be an absolute path, "
|
||||
"a relative path, or a Hugging Face model identifier.")
|
||||
|
||||
parser = AsyncEngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
if args.tokenizer is None:
|
||||
@ -418,6 +532,8 @@ if __name__ == "__main__":
|
||||
assert args.output_len is not None
|
||||
else:
|
||||
assert args.input_len is None
|
||||
if args.enable_lora:
|
||||
assert args.lora_path is not None
|
||||
|
||||
if args.backend == "vllm":
|
||||
if args.hf_max_batch_size is not None:
|
||||
@ -427,6 +543,9 @@ if __name__ == "__main__":
|
||||
raise ValueError("HF max batch size is required for HF backend.")
|
||||
if args.quantization is not None:
|
||||
raise ValueError("Quantization is only for vLLM backend.")
|
||||
if args.enable_lora is not None:
|
||||
raise ValueError("LoRA benchmarking is only supported for vLLM"
|
||||
" backend")
|
||||
elif args.backend == "mii":
|
||||
if args.dtype != "auto":
|
||||
raise ValueError("dtype must be auto for MII backend.")
|
||||
@ -439,4 +558,7 @@ if __name__ == "__main__":
|
||||
if args.tokenizer != args.model:
|
||||
raise ValueError("Tokenizer must be the same as the model for MII "
|
||||
"backend.")
|
||||
if args.enable_lora is not None:
|
||||
raise ValueError("LoRA benchmarking is only supported for vLLM"
|
||||
" backend")
|
||||
main(args)
|
||||
|
||||
69
benchmarks/benchmark_utils.py
Normal file
69
benchmarks/benchmark_utils.py
Normal file
@ -0,0 +1,69 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
|
||||
def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
metrics: dict[str, list],
|
||||
extra_info: dict[str, Any]) -> list:
|
||||
"""
|
||||
Save the benchmark results in the format used by PyTorch OSS benchmark with
|
||||
on metric per record
|
||||
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database
|
||||
"""
|
||||
records = []
|
||||
if not os.environ.get("SAVE_TO_PYTORCH_BENCHMARK_FORMAT", False):
|
||||
return records
|
||||
|
||||
for name, benchmark_values in metrics.items():
|
||||
record = {
|
||||
"benchmark": {
|
||||
"name": "vLLM benchmark",
|
||||
"extra_info": {
|
||||
"args": vars(args),
|
||||
},
|
||||
},
|
||||
"model": {
|
||||
"name": args.model,
|
||||
},
|
||||
"metric": {
|
||||
"name": name,
|
||||
"benchmark_values": benchmark_values,
|
||||
"extra_info": extra_info,
|
||||
},
|
||||
}
|
||||
|
||||
tp = record["benchmark"]["extra_info"]["args"].get(
|
||||
"tensor_parallel_size")
|
||||
# Save tensor_parallel_size parameter if it's part of the metadata
|
||||
if not tp and "tensor_parallel_size" in extra_info:
|
||||
record["benchmark"]["extra_info"]["args"][
|
||||
"tensor_parallel_size"] = extra_info["tensor_parallel_size"]
|
||||
|
||||
records.append(record)
|
||||
|
||||
return records
|
||||
|
||||
|
||||
class InfEncoder(json.JSONEncoder):
|
||||
|
||||
def clear_inf(self, o: Any):
|
||||
if isinstance(o, dict):
|
||||
return {k: self.clear_inf(v) for k, v in o.items()}
|
||||
elif isinstance(o, list):
|
||||
return [self.clear_inf(v) for v in o]
|
||||
elif isinstance(o, float) and math.isinf(o):
|
||||
return "inf"
|
||||
return o
|
||||
|
||||
def iterencode(self, o: Any, *args, **kwargs) -> Any:
|
||||
return super().iterencode(self.clear_inf(o), *args, **kwargs)
|
||||
|
||||
|
||||
def write_to_json(filename: str, records: list) -> None:
|
||||
with open(filename, "w") as f:
|
||||
json.dump(records, f, cls=InfEncoder)
|
||||
387
benchmarks/cutlass_benchmarks/sparse_benchmarks.py
Normal file
387
benchmarks/cutlass_benchmarks/sparse_benchmarks.py
Normal file
@ -0,0 +1,387 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
import pickle as pkl
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
from torch.utils.benchmark import Measurement as TMeasurement
|
||||
from utils import make_rand_sparse_tensors
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
|
||||
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
|
||||
DEFAULT_TP_SIZES = [1]
|
||||
|
||||
|
||||
# bench
|
||||
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
|
||||
**kwargs) -> TMeasurement:
|
||||
min_run_time = 1
|
||||
|
||||
globals = {
|
||||
"args": args,
|
||||
"kwargs": kwargs,
|
||||
"fn": fn,
|
||||
}
|
||||
return TBenchmark.Timer(
|
||||
stmt="fn(*args, **kwargs)",
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description=description,
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
|
||||
|
||||
def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
assert dtype == torch.int8
|
||||
b_compressed, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k)
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
|
||||
torch.bfloat16)
|
||||
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
|
||||
|
||||
if not torch.allclose(out, out_ref):
|
||||
print("Incorrect results")
|
||||
print(out)
|
||||
print(out_ref)
|
||||
else:
|
||||
print("Correct results")
|
||||
|
||||
timers = []
|
||||
# pytorch impl - bfloat16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm, a.to(dtype=torch.bfloat16),
|
||||
b.to(dtype=torch.bfloat16)))
|
||||
|
||||
# pytorch impl - float16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label,
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
|
||||
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))
|
||||
|
||||
# cutlass impl
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
|
||||
torch.bfloat16))
|
||||
|
||||
# cutlass with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias))
|
||||
|
||||
# cutlass sparse impl
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.bfloat16))
|
||||
|
||||
# cutlass sparse with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.bfloat16, bias))
|
||||
|
||||
return timers
|
||||
|
||||
|
||||
def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
assert dtype == torch.float8_e4m3fn
|
||||
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n,
|
||||
k)
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
|
||||
torch.bfloat16)
|
||||
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
|
||||
|
||||
if not torch.allclose(out, out_ref):
|
||||
print("Incorrect results")
|
||||
print(out)
|
||||
print(out_ref)
|
||||
else:
|
||||
print("Correct results")
|
||||
|
||||
timers = []
|
||||
|
||||
# pytorch impl w. bf16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
|
||||
b.to(dtype=torch.bfloat16, device="cuda")))
|
||||
|
||||
# pytorch impl: bf16 output, without fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16))
|
||||
|
||||
# pytorch impl: bf16 output, with fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16,
|
||||
use_fast_accum=True))
|
||||
|
||||
# pytorch impl: fp16 output, without fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16))
|
||||
|
||||
# pytorch impl: fp16 output, with fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16,
|
||||
use_fast_accum=True))
|
||||
|
||||
# cutlass impl: bf16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
|
||||
torch.bfloat16))
|
||||
|
||||
# cutlass impl: bf16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_sparse_mm",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.bfloat16))
|
||||
|
||||
# cutlass impl: fp16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_sparse_mm",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.float16))
|
||||
|
||||
# cutlass impl: bf16 output, with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label,
|
||||
"cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.bfloat16, bias))
|
||||
|
||||
# cutlass impl: fp16 output, with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label,
|
||||
"cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
|
||||
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
|
||||
scale_b, torch.float16, bias.to(dtype=torch.float16)))
|
||||
|
||||
return timers
|
||||
|
||||
|
||||
def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
if dtype == torch.int8:
|
||||
return bench_int8(dtype, m, k, n, label, sub_label)
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
return bench_fp8(dtype, m, k, n, label, sub_label)
|
||||
raise ValueError("unsupported type")
|
||||
|
||||
|
||||
# runner
|
||||
def print_timers(timers: Iterable[TMeasurement]):
|
||||
compare = TBenchmark.Compare(timers)
|
||||
compare.print()
|
||||
|
||||
|
||||
def run(dtype: torch.dtype,
|
||||
MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
|
||||
results = []
|
||||
for m, k, n in MKNs:
|
||||
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
|
||||
f"MKN=({m}x{k}x{n})")
|
||||
print_timers(timers)
|
||||
results.extend(timers)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
# output makers
|
||||
def make_output(data: Iterable[TMeasurement],
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
base_description: str,
|
||||
timestamp=None):
|
||||
print(f"== All Results {base_description} ====")
|
||||
print_timers(data)
|
||||
|
||||
# pickle all the results
|
||||
timestamp = int(time.time()) if timestamp is None else timestamp
|
||||
with open(f"{base_description}-{timestamp}.pkl", "wb") as f:
|
||||
pkl.dump(data, f)
|
||||
|
||||
|
||||
# argparse runners
|
||||
|
||||
|
||||
def run_square_bench(args):
|
||||
dim_sizes = list(
|
||||
range(args.dim_start, args.dim_end + 1, args.dim_increment))
|
||||
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
|
||||
data = run(args.dtype, MKNs)
|
||||
|
||||
make_output(data, MKNs, f"square_bench-{args.dtype}")
|
||||
|
||||
|
||||
def run_range_bench(args):
|
||||
dim_sizes = list(range(args.dim_start, args.dim_end, args.dim_increment))
|
||||
n = len(dim_sizes)
|
||||
Ms = [args.m_constant] * n if args.m_constant is not None else dim_sizes
|
||||
Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes
|
||||
Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes
|
||||
MKNs = list(zip(Ms, Ks, Ns))
|
||||
data = run(args.dtype, MKNs)
|
||||
|
||||
make_output(data, MKNs, f"range_bench-{args.dtype}")
|
||||
|
||||
|
||||
def run_model_bench(args):
|
||||
print("Benchmarking models:")
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
|
||||
def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]:
|
||||
KNs = []
|
||||
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
|
||||
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
|
||||
KNs.append(KN)
|
||||
return KNs
|
||||
|
||||
model_bench_data = []
|
||||
models_tps = list(itertools.product(args.models, args.tp_sizes))
|
||||
for model, tp_size in models_tps:
|
||||
Ms = args.batch_sizes
|
||||
KNs = model_shapes(model, tp_size)
|
||||
MKNs = []
|
||||
for m in Ms:
|
||||
for k, n in KNs:
|
||||
MKNs.append((m, k, n))
|
||||
|
||||
data = run(args.dtype, MKNs)
|
||||
model_bench_data.append(data)
|
||||
|
||||
# Print all results
|
||||
for data, model_tp in zip(model_bench_data, models_tps):
|
||||
model, tp_size = model_tp
|
||||
print(f"== Results {args.dtype} {model}-TP{tp_size} ====")
|
||||
print_timers(data)
|
||||
|
||||
timestamp = int(time.time())
|
||||
|
||||
all_data = []
|
||||
for d in model_bench_data:
|
||||
all_data.extend(d)
|
||||
# pickle all data
|
||||
with open(f"model_bench-{args.dtype}-{timestamp}.pkl", "wb") as f:
|
||||
pkl.dump(all_data, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
def to_torch_dtype(dt):
|
||||
if dt == "int8":
|
||||
return torch.int8
|
||||
if dt == "fp8":
|
||||
return torch.float8_e4m3fn
|
||||
raise ValueError("unsupported dtype")
|
||||
|
||||
parser = FlexibleArgumentParser(
|
||||
description="""
|
||||
Benchmark Cutlass GEMM.
|
||||
|
||||
To run square GEMMs:
|
||||
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 square_bench --dim-start 128 --dim-end 512 --dim-increment 64
|
||||
|
||||
To run constant N and K and sweep M:
|
||||
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 range_bench --dim-start 128 --dim-end 512 --dim-increment 64 --n-constant 16384 --k-constant 16384
|
||||
|
||||
To run dimensions from a model:
|
||||
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 model_bench --models meta-llama/Llama-2-7b-hf --batch-sizes 16 --tp-sizes 1
|
||||
|
||||
Output:
|
||||
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
|
||||
""", # noqa: E501
|
||||
formatter_class=argparse.RawTextHelpFormatter)
|
||||
|
||||
parser.add_argument("--dtype",
|
||||
type=to_torch_dtype,
|
||||
required=True,
|
||||
help="Available options are ['int8', 'fp8']")
|
||||
subparsers = parser.add_subparsers(dest="cmd")
|
||||
|
||||
square_parser = subparsers.add_parser("square_bench")
|
||||
square_parser.add_argument("--dim-start", type=int, required=True)
|
||||
square_parser.add_argument("--dim-end", type=int, required=True)
|
||||
square_parser.add_argument("--dim-increment", type=int, required=True)
|
||||
square_parser.set_defaults(func=run_square_bench)
|
||||
|
||||
range_parser = subparsers.add_parser("range_bench")
|
||||
range_parser.add_argument("--dim-start", type=int, required=True)
|
||||
range_parser.add_argument("--dim-end", type=int, required=True)
|
||||
range_parser.add_argument("--dim-increment", type=int, required=True)
|
||||
range_parser.add_argument("--m-constant", type=int, default=None)
|
||||
range_parser.add_argument("--n-constant", type=int, default=None)
|
||||
range_parser.add_argument("--k-constant", type=int, default=None)
|
||||
range_parser.set_defaults(func=run_range_bench)
|
||||
|
||||
model_parser = subparsers.add_parser("model_bench")
|
||||
model_parser.add_argument("--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES.keys())
|
||||
model_parser.add_argument("--tp-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_TP_SIZES)
|
||||
model_parser.add_argument("--batch-sizes",
|
||||
nargs="+",
|
||||
type=int,
|
||||
default=DEFAULT_BATCH_SIZES)
|
||||
model_parser.set_defaults(func=run_model_bench)
|
||||
|
||||
args = parser.parse_args()
|
||||
args.func(args)
|
||||
98
benchmarks/cutlass_benchmarks/utils.py
Normal file
98
benchmarks/cutlass_benchmarks/utils.py
Normal file
@ -0,0 +1,98 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# Cutlass bench utils
|
||||
from collections.abc import Iterable
|
||||
|
||||
import torch
|
||||
|
||||
import vllm._custom_ops as ops
|
||||
|
||||
|
||||
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
|
||||
finfo = torch.finfo(torch.float8_e4m3fn)
|
||||
return torch.round(tensor.clamp(
|
||||
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
|
||||
|
||||
|
||||
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
|
||||
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
|
||||
|
||||
|
||||
def to_bf16(tensor: torch.Tensor) -> torch.Tensor:
|
||||
return tensor.to(dtype=torch.bfloat16)
|
||||
|
||||
|
||||
def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
|
||||
return tensor.to(dtype=torch.float16)
|
||||
|
||||
|
||||
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
k: int) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
a = torch.randn((m, k), device='cuda') * 5
|
||||
b = torch.randn((n, k), device='cuda').t() * 5
|
||||
|
||||
if dtype == torch.int8:
|
||||
return to_int8(a), to_int8(b)
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
return to_fp8(a), to_fp8(b)
|
||||
|
||||
raise ValueError("unsupported dtype")
|
||||
|
||||
|
||||
def prune_to_2_4(tensor):
|
||||
# Reshape tensor to [N, 4] where N is number of groups of 4
|
||||
original_shape = tensor.shape
|
||||
reshaped = tensor.reshape(-1, 4)
|
||||
|
||||
# Get indices of top 2 absolute values in each group of 4
|
||||
_, indices = torch.topk(torch.abs(reshaped), k=2, dim=1)
|
||||
|
||||
# Create binary mask
|
||||
mask = torch.zeros_like(reshaped)
|
||||
mask.scatter_(dim=1,
|
||||
index=indices,
|
||||
src=torch.ones_like(indices, dtype=mask.dtype))
|
||||
|
||||
# Apply mask and reshape back
|
||||
pruned = reshaped * mask
|
||||
|
||||
# Turn all -0.0 to 0.0
|
||||
pruned[pruned == -0.0] = 0.0
|
||||
|
||||
return pruned.reshape(original_shape)
|
||||
|
||||
|
||||
def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
k: int) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
a = torch.randn((m, k), device='cuda') * 5
|
||||
b = torch.randn((n, k), device='cuda').t() * 5
|
||||
|
||||
b = prune_to_2_4(b.t()).t()
|
||||
|
||||
if dtype == torch.int8:
|
||||
a, b = to_int8(a), to_int8(b)
|
||||
elif dtype == torch.float8_e4m3fn:
|
||||
a, b = to_fp8(a), to_fp8(b)
|
||||
elif dtype == torch.float16:
|
||||
a, b = to_fp16(a), to_fp16(b)
|
||||
elif dtype == torch.bfloat16:
|
||||
a, b = to_bf16(a), to_bf16(b)
|
||||
else:
|
||||
raise ValueError("unsupported dtype")
|
||||
|
||||
b_compressed, e = ops.cutlass_sparse_compress(b.t())
|
||||
|
||||
# Compressed B, Metadata, Original A, B
|
||||
return b_compressed, e, a, b
|
||||
|
||||
|
||||
def make_n_rand_sparse_tensors(num_tensors: int, dtype: torch.dtype,
|
||||
m: int, n: int, k: int) -> \
|
||||
tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
|
||||
ABs = []
|
||||
for _ in range(num_tensors):
|
||||
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)
|
||||
if b_comp is not None:
|
||||
ABs.append(make_rand_sparse_tensors(dtype, m, n, k))
|
||||
BComps, Es, As, Bs = zip(*ABs)
|
||||
return list(BComps), list(Es), list(As), list(Bs)
|
||||
@ -1,47 +1,28 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
import pickle as pkl
|
||||
import time
|
||||
from typing import Callable, Iterable, List, Tuple
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
from torch.utils.benchmark import Measurement as TMeasurement
|
||||
from utils import make_rand_tensors
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
w8a8_block_fp8_matmul)
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
|
||||
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
|
||||
DEFAULT_TP_SIZES = [1]
|
||||
|
||||
# helpers
|
||||
|
||||
|
||||
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
|
||||
finfo = torch.finfo(torch.float8_e4m3fn)
|
||||
return torch.round(tensor.clamp(
|
||||
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
|
||||
|
||||
|
||||
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
|
||||
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
|
||||
|
||||
|
||||
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
a = torch.randn((m, k), device='cuda') * 5
|
||||
b = torch.randn((n, k), device='cuda').t() * 5
|
||||
|
||||
if dtype == torch.int8:
|
||||
return to_int8(a), to_int8(b)
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
return to_fp8(a), to_fp8(b)
|
||||
|
||||
raise ValueError("unsupported dtype")
|
||||
|
||||
|
||||
# bench
|
||||
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
|
||||
@ -62,8 +43,15 @@ def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
|
||||
|
||||
def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
def bench_int8(
|
||||
dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
"""Benchmark INT8-based kernels."""
|
||||
assert dtype == torch.int8
|
||||
a, b = make_rand_tensors(torch.int8, m, n, k)
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
@ -72,155 +60,132 @@ def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
azp = torch.zeros((m, ), device="cuda", dtype=torch.int32)
|
||||
azp_adj = torch.zeros((n, ), device="cuda", dtype=torch.int32)
|
||||
|
||||
bench_fns = {
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
|
||||
),
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
|
||||
"cutlass_i8_i8_bf16_scaled_mm":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_bias":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_bias":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj, None, bias),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_pt":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj, azp),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj, azp, bias),
|
||||
}
|
||||
|
||||
timers = []
|
||||
# pytorch impl - bfloat16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm, a.to(dtype=torch.bfloat16),
|
||||
b.to(dtype=torch.bfloat16)))
|
||||
|
||||
# pytorch impl - float16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label,
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
|
||||
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))
|
||||
|
||||
# cutlass impl
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
|
||||
torch.bfloat16))
|
||||
|
||||
# cutlass with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias))
|
||||
|
||||
# cutlass with azp per-tensor
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp",
|
||||
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
|
||||
torch.bfloat16, azp_adj))
|
||||
|
||||
# cutlass with azp per-tensor + bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_bias",
|
||||
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
|
||||
torch.bfloat16, azp_adj, None, bias))
|
||||
|
||||
# cutlass with azp per-token
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt",
|
||||
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
|
||||
torch.bfloat16, azp_adj, azp))
|
||||
|
||||
# cutlass with azp per-token + bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias",
|
||||
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
|
||||
torch.bfloat16, azp_adj, azp, bias))
|
||||
for name, fn in bench_fns.items():
|
||||
# If bench_kernels is None, run all. Otherwise, run only exact matches.
|
||||
if bench_kernels is None or name in bench_kernels:
|
||||
print(f"Running {name}")
|
||||
timers.append(bench_fn(label, sub_label, name, fn))
|
||||
|
||||
return timers
|
||||
|
||||
|
||||
def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
def bench_fp8(
|
||||
dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
"""Benchmark FP8-based kernels."""
|
||||
assert dtype == torch.float8_e4m3fn
|
||||
a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k)
|
||||
a_cont = a.contiguous()
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
block_scale_a = torch.rand((m, k // 128),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
block_scale_b = torch.rand((k // 128, n // 128),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
block_scale_a_M_major = block_scale_a.t().contiguous().t()
|
||||
block_scale_b_K_major = block_scale_b.t().contiguous().t()
|
||||
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
print(m, k, n)
|
||||
|
||||
bench_fns = {
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
|
||||
),
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm":
|
||||
lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.float16),
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum":
|
||||
lambda: torch._scaled_mm(a,
|
||||
b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
out_dtype=torch.float16,
|
||||
use_fast_accum=True),
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm":
|
||||
lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.bfloat16),
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum":
|
||||
lambda: torch._scaled_mm(a,
|
||||
b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
out_dtype=torch.bfloat16,
|
||||
use_fast_accum=True),
|
||||
"cutlass_fp8_fp8_bf16_scaled_mm":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16),
|
||||
"cutlass_fp8_fp8_bf16_scaled_mm_bias":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_bias":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16,
|
||||
bias.to(dtype=torch.float16)),
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise":
|
||||
lambda: w8a8_block_fp8_matmul(a_cont, b.t(), block_scale_a,
|
||||
block_scale_b.t(), (128, 128)),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, block_scale_a_M_major,
|
||||
block_scale_b_K_major, torch.float16),
|
||||
}
|
||||
|
||||
timers = []
|
||||
|
||||
# pytorch impl w. bf16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
|
||||
b.to(dtype=torch.bfloat16, device="cuda")))
|
||||
|
||||
# pytorch impl: bf16 output, without fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16))
|
||||
|
||||
# pytorch impl: bf16 output, with fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16,
|
||||
use_fast_accum=True))
|
||||
|
||||
# pytorch impl: fp16 output, without fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16))
|
||||
|
||||
# pytorch impl: fp16 output, with fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16,
|
||||
use_fast_accum=True))
|
||||
|
||||
# cutlass impl: bf16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
|
||||
torch.bfloat16))
|
||||
# cutlass impl: fp16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16))
|
||||
|
||||
# cutlass impl: bf16 output, with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm_bias",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias))
|
||||
|
||||
# cutlass impl: fp16 output, with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm_bias",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16,
|
||||
bias.to(dtype=torch.float16)))
|
||||
for name, fn in bench_fns.items():
|
||||
# If bench_kernels is None, run all. Otherwise, run only exact matches.
|
||||
if bench_kernels is None or name in bench_kernels:
|
||||
print(f"Running {name}")
|
||||
timers.append(bench_fn(label, sub_label, name, fn))
|
||||
|
||||
return timers
|
||||
|
||||
|
||||
def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
def bench(dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
if dtype == torch.int8:
|
||||
return bench_int8(dtype, m, k, n, label, sub_label)
|
||||
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
return bench_fp8(dtype, m, k, n, label, sub_label)
|
||||
return bench_fp8(dtype, m, k, n, label, sub_label, bench_kernels)
|
||||
raise ValueError("unsupported type")
|
||||
|
||||
|
||||
@ -231,20 +196,24 @@ def print_timers(timers: Iterable[TMeasurement]):
|
||||
|
||||
|
||||
def run(dtype: torch.dtype,
|
||||
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
results = []
|
||||
for m, k, n in MKNs:
|
||||
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
|
||||
f"MKN=({m}x{k}x{n})")
|
||||
timers = bench(dtype,
|
||||
m,
|
||||
k,
|
||||
n,
|
||||
f"scaled-{dtype}-gemm",
|
||||
f"MKN=({m}x{k}x{n})",
|
||||
bench_kernels=bench_kernels)
|
||||
print_timers(timers)
|
||||
results.extend(timers)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
# output makers
|
||||
def make_output(data: Iterable[TMeasurement],
|
||||
MKNs: Iterable[Tuple[int, int, int]],
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
base_description: str,
|
||||
timestamp=None):
|
||||
print(f"== All Results {base_description} ====")
|
||||
@ -256,15 +225,11 @@ def make_output(data: Iterable[TMeasurement],
|
||||
pkl.dump(data, f)
|
||||
|
||||
|
||||
# argparse runners
|
||||
|
||||
|
||||
def run_square_bench(args):
|
||||
dim_sizes = list(
|
||||
range(args.dim_start, args.dim_end + 1, args.dim_increment))
|
||||
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
|
||||
data = run(args.dtype, MKNs)
|
||||
|
||||
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
|
||||
make_output(data, MKNs, f"square_bench-{args.dtype}")
|
||||
|
||||
|
||||
@ -275,8 +240,7 @@ def run_range_bench(args):
|
||||
Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes
|
||||
Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes
|
||||
MKNs = list(zip(Ms, Ks, Ns))
|
||||
data = run(args.dtype, MKNs)
|
||||
|
||||
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
|
||||
make_output(data, MKNs, f"range_bench-{args.dtype}")
|
||||
|
||||
|
||||
@ -285,7 +249,7 @@ def run_model_bench(args):
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
|
||||
def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
|
||||
def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]:
|
||||
KNs = []
|
||||
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
|
||||
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
|
||||
@ -302,7 +266,7 @@ def run_model_bench(args):
|
||||
for k, n in KNs:
|
||||
MKNs.append((m, k, n))
|
||||
|
||||
data = run(args.dtype, MKNs)
|
||||
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
|
||||
model_bench_data.append(data)
|
||||
|
||||
# Print all results
|
||||
@ -352,6 +316,15 @@ Benchmark Cutlass GEMM.
|
||||
type=to_torch_dtype,
|
||||
required=True,
|
||||
help="Available options are ['int8', 'fp8']")
|
||||
parser.add_argument(
|
||||
"--kernels",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=None,
|
||||
help=
|
||||
"Exact names of the kernels to benchmark. If not set, runs all kernels."
|
||||
)
|
||||
|
||||
subparsers = parser.add_subparsers(dest="cmd")
|
||||
|
||||
square_parser = subparsers.add_parser("square_bench")
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# Weight Shapes are in the format
|
||||
# ([K, N], TP_SPLIT_DIM)
|
||||
# Example:
|
||||
@ -40,4 +42,4 @@ WEIGHT_SHAPES = {
|
||||
([8192, 57344], 1),
|
||||
([28672, 8192], 0),
|
||||
],
|
||||
}
|
||||
}
|
||||
145
benchmarks/disagg_benchmarks/disagg_overhead_benchmark.sh
Normal file
145
benchmarks/disagg_benchmarks/disagg_overhead_benchmark.sh
Normal file
@ -0,0 +1,145 @@
|
||||
#!/bin/bash
|
||||
|
||||
# benchmark the overhead of disaggregated prefill.
|
||||
# methodology:
|
||||
# - send all request to prefill vLLM instance. It will buffer KV cache.
|
||||
# - then send all request to decode instance.
|
||||
# - The TTFT of decode instance is the overhead.
|
||||
|
||||
set -ex
|
||||
|
||||
kill_gpu_processes() {
|
||||
# kill all processes on GPU.
|
||||
pgrep pt_main_thread | xargs -r kill -9
|
||||
pgrep python3 | xargs -r kill -9
|
||||
sleep 10
|
||||
|
||||
# remove vllm config file
|
||||
rm -rf ~/.config/vllm
|
||||
|
||||
# Print the GPU memory usage
|
||||
# so that we know if all GPU processes are killed.
|
||||
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
|
||||
# The memory usage should be 0 MB.
|
||||
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
|
||||
}
|
||||
|
||||
wait_for_server() {
|
||||
# wait for vllm server to start
|
||||
# return 1 if vllm server crashes
|
||||
local port=$1
|
||||
timeout 1200 bash -c "
|
||||
until curl -s localhost:${port}/v1/completions > /dev/null; do
|
||||
sleep 1
|
||||
done" && return 0 || return 1
|
||||
}
|
||||
|
||||
|
||||
benchmark() {
|
||||
|
||||
export VLLM_LOGGING_LEVEL=DEBUG
|
||||
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
|
||||
|
||||
# compare chunked prefill with disaggregated prefill
|
||||
|
||||
results_folder="./results"
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
dataset_name="sonnet"
|
||||
dataset_path="../sonnet_4x.txt"
|
||||
num_prompts=10
|
||||
qps=$1
|
||||
prefix_len=50
|
||||
input_len=2048
|
||||
output_len=$2
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
wait_for_server 8100
|
||||
wait_for_server 8200
|
||||
|
||||
# let the prefill instance finish prefill
|
||||
python3 ../benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--sonnet-input-len $input_len \
|
||||
--sonnet-output-len "$output_len" \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--num-prompts $num_prompts \
|
||||
--port 8100 \
|
||||
--save-result \
|
||||
--result-dir $results_folder \
|
||||
--result-filename disagg_prefill_tp1.json \
|
||||
--request-rate "inf"
|
||||
|
||||
|
||||
# send the request to decode.
|
||||
# The TTFT of this command will be the overhead of disagg prefill impl.
|
||||
python3 ../benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--sonnet-input-len $input_len \
|
||||
--sonnet-output-len "$output_len" \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--num-prompts $num_prompts \
|
||||
--port 8200 \
|
||||
--save-result \
|
||||
--result-dir $results_folder \
|
||||
--result-filename disagg_prefill_tp1_overhead.json \
|
||||
--request-rate "$qps"
|
||||
kill_gpu_processes
|
||||
|
||||
}
|
||||
|
||||
|
||||
main() {
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
(which jq) || (apt-get -y install jq)
|
||||
(which socat) || (apt-get -y install socat)
|
||||
|
||||
pip install quart httpx datasets
|
||||
|
||||
cd "$(dirname "$0")"
|
||||
|
||||
cd ..
|
||||
# create sonnet-4x.txt
|
||||
echo "" > sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat sonnet.txt >> sonnet_4x.txt
|
||||
done
|
||||
cd disagg_benchmarks
|
||||
|
||||
rm -rf results
|
||||
mkdir results
|
||||
|
||||
default_qps=1
|
||||
default_output_len=1
|
||||
benchmark $default_qps $default_output_len
|
||||
|
||||
}
|
||||
|
||||
|
||||
main "$@"
|
||||
163
benchmarks/disagg_benchmarks/disagg_performance_benchmark.sh
Normal file
163
benchmarks/disagg_benchmarks/disagg_performance_benchmark.sh
Normal file
@ -0,0 +1,163 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Requirement: 2x GPUs.
|
||||
|
||||
|
||||
# Model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
||||
# Query: 1024 input tokens, 6 output tokens, QPS 2/4/6/8, 100 requests
|
||||
# Resource: 2x GPU
|
||||
# Approaches:
|
||||
# 2. Chunked prefill: 2 vllm instance with tp=4, equivalent to 1 tp=4 instance with QPS 4
|
||||
# 3. Disaggregated prefill: 1 prefilling instance and 1 decoding instance
|
||||
# Prefilling instance: max_output_token=1
|
||||
# Decoding instance: force the input tokens be the same across requests to bypass prefilling
|
||||
|
||||
set -ex
|
||||
|
||||
kill_gpu_processes() {
|
||||
# kill all processes on GPU.
|
||||
pgrep pt_main_thread | xargs -r kill -9
|
||||
pgrep python3 | xargs -r kill -9
|
||||
for port in 8000 8100 8200; do lsof -t -i:$port | xargs -r kill -9; done
|
||||
sleep 1
|
||||
}
|
||||
|
||||
wait_for_server() {
|
||||
# wait for vllm server to start
|
||||
# return 1 if vllm server crashes
|
||||
local port=$1
|
||||
timeout 1200 bash -c "
|
||||
until curl -s localhost:${port}/v1/completions > /dev/null; do
|
||||
sleep 1
|
||||
done" && return 0 || return 1
|
||||
}
|
||||
|
||||
|
||||
launch_chunked_prefill() {
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
# disagg prefill
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--enable-chunked-prefill \
|
||||
--gpu-memory-utilization 0.6 &
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--enable-chunked-prefill \
|
||||
--gpu-memory-utilization 0.6 &
|
||||
wait_for_server 8100
|
||||
wait_for_server 8200
|
||||
python3 round_robin_proxy.py &
|
||||
sleep 1
|
||||
}
|
||||
|
||||
|
||||
launch_disagg_prefill() {
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
# disagg prefill
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
wait_for_server 8100
|
||||
wait_for_server 8200
|
||||
python3 disagg_prefill_proxy_server.py &
|
||||
sleep 1
|
||||
}
|
||||
|
||||
|
||||
benchmark() {
|
||||
results_folder="./results"
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
dataset_name="sonnet"
|
||||
dataset_path="../sonnet_4x.txt"
|
||||
num_prompts=100
|
||||
qps=$1
|
||||
prefix_len=50
|
||||
input_len=1024
|
||||
output_len=$2
|
||||
tag=$3
|
||||
|
||||
python3 ../benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--sonnet-input-len $input_len \
|
||||
--sonnet-output-len "$output_len" \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--num-prompts $num_prompts \
|
||||
--port 8000 \
|
||||
--save-result \
|
||||
--result-dir $results_folder \
|
||||
--result-filename "$tag"-qps-"$qps".json \
|
||||
--request-rate "$qps"
|
||||
|
||||
sleep 2
|
||||
}
|
||||
|
||||
|
||||
main() {
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
(which jq) || (apt-get -y install jq)
|
||||
(which socat) || (apt-get -y install socat)
|
||||
(which lsof) || (apt-get -y install lsof)
|
||||
|
||||
pip install quart httpx matplotlib aiohttp datasets
|
||||
|
||||
cd "$(dirname "$0")"
|
||||
|
||||
cd ..
|
||||
# create sonnet-4x.txt so that we can sample 2048 tokens for input
|
||||
echo "" > sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat sonnet.txt >> sonnet_4x.txt
|
||||
done
|
||||
cd disagg_benchmarks
|
||||
|
||||
rm -rf results
|
||||
mkdir results
|
||||
|
||||
default_output_len=6
|
||||
|
||||
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
|
||||
|
||||
launch_chunked_prefill
|
||||
for qps in 2 4 6 8; do
|
||||
benchmark $qps $default_output_len chunked_prefill
|
||||
done
|
||||
kill_gpu_processes
|
||||
|
||||
launch_disagg_prefill
|
||||
for qps in 2 4 6 8; do
|
||||
benchmark $qps $default_output_len disagg_prefill
|
||||
done
|
||||
kill_gpu_processes
|
||||
|
||||
python3 visualize_benchmark_results.py
|
||||
|
||||
}
|
||||
|
||||
|
||||
main "$@"
|
||||
63
benchmarks/disagg_benchmarks/disagg_prefill_proxy_server.py
Normal file
63
benchmarks/disagg_benchmarks/disagg_prefill_proxy_server.py
Normal file
@ -0,0 +1,63 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
import aiohttp
|
||||
from quart import Quart, make_response, request
|
||||
|
||||
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
|
||||
|
||||
app = Quart(__name__)
|
||||
|
||||
|
||||
async def forward_request(url, data):
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
|
||||
}
|
||||
async with session.post(url=url, json=data,
|
||||
headers=headers) as response:
|
||||
if response.status == 200:
|
||||
# if response.headers.get('Transfer-Encoding') == 'chunked':
|
||||
if True:
|
||||
async for chunk_bytes in response.content.iter_chunked(
|
||||
1024):
|
||||
yield chunk_bytes
|
||||
else:
|
||||
content = await response.read()
|
||||
yield content
|
||||
|
||||
|
||||
@app.route('/v1/completions', methods=['POST'])
|
||||
async def handle_request():
|
||||
try:
|
||||
original_request_data = await request.get_json()
|
||||
|
||||
prefill_request = original_request_data.copy()
|
||||
# change max_tokens = 1 to let it only do prefill
|
||||
prefill_request['max_tokens'] = 1
|
||||
|
||||
# finish prefill
|
||||
async for _ in forward_request('http://localhost:8100/v1/completions',
|
||||
prefill_request):
|
||||
continue
|
||||
|
||||
# return decode
|
||||
generator = forward_request('http://localhost:8200/v1/completions',
|
||||
original_request_data)
|
||||
response = await make_response(generator)
|
||||
response.timeout = None
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
import sys
|
||||
import traceback
|
||||
exc_info = sys.exc_info()
|
||||
print("Error occurred in disagg prefill proxy server")
|
||||
print(e)
|
||||
print("".join(traceback.format_exception(*exc_info)))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(port=8000)
|
||||
62
benchmarks/disagg_benchmarks/round_robin_proxy.py
Normal file
62
benchmarks/disagg_benchmarks/round_robin_proxy.py
Normal file
@ -0,0 +1,62 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import asyncio
|
||||
import itertools
|
||||
|
||||
import aiohttp
|
||||
from aiohttp import web
|
||||
|
||||
|
||||
class RoundRobinProxy:
|
||||
|
||||
def __init__(self, target_ports):
|
||||
self.target_ports = target_ports
|
||||
self.port_cycle = itertools.cycle(self.target_ports)
|
||||
|
||||
async def handle_request(self, request):
|
||||
target_port = next(self.port_cycle)
|
||||
target_url = f"http://localhost:{target_port}{request.path_qs}"
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
try:
|
||||
# Forward the request
|
||||
async with session.request(
|
||||
method=request.method,
|
||||
url=target_url,
|
||||
headers=request.headers,
|
||||
data=request.content,
|
||||
) as response:
|
||||
# Start sending the response
|
||||
resp = web.StreamResponse(status=response.status,
|
||||
headers=response.headers)
|
||||
await resp.prepare(request)
|
||||
|
||||
# Stream the response content
|
||||
async for chunk in response.content.iter_any():
|
||||
await resp.write(chunk)
|
||||
|
||||
await resp.write_eof()
|
||||
return resp
|
||||
|
||||
except Exception as e:
|
||||
return web.Response(text=f"Error: {str(e)}", status=500)
|
||||
|
||||
|
||||
async def main():
|
||||
proxy = RoundRobinProxy([8100, 8200])
|
||||
app = web.Application()
|
||||
app.router.add_route('*', '/{path:.*}', proxy.handle_request)
|
||||
|
||||
runner = web.AppRunner(app)
|
||||
await runner.setup()
|
||||
site = web.TCPSite(runner, 'localhost', 8000)
|
||||
await site.start()
|
||||
|
||||
print("Proxy server started on http://localhost:8000")
|
||||
|
||||
# Keep the server running
|
||||
await asyncio.Event().wait()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
asyncio.run(main())
|
||||
48
benchmarks/disagg_benchmarks/visualize_benchmark_results.py
Normal file
48
benchmarks/disagg_benchmarks/visualize_benchmark_results.py
Normal file
@ -0,0 +1,48 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import json
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
data = []
|
||||
for name in ['disagg_prefill', 'chunked_prefill']:
|
||||
for qps in [2, 4, 6, 8]:
|
||||
with open(f"results/{name}-qps-{qps}.json") as f:
|
||||
x = json.load(f)
|
||||
x['name'] = name
|
||||
x['qps'] = qps
|
||||
data.append(x)
|
||||
|
||||
df = pd.DataFrame.from_dict(data)
|
||||
dis_df = df[df['name'] == 'disagg_prefill']
|
||||
chu_df = df[df['name'] == 'chunked_prefill']
|
||||
|
||||
plt.style.use('bmh')
|
||||
plt.rcParams['font.size'] = 20
|
||||
|
||||
for key in [
|
||||
'mean_ttft_ms', 'median_ttft_ms', 'p99_ttft_ms', 'mean_itl_ms',
|
||||
'median_itl_ms', 'p99_itl_ms'
|
||||
]:
|
||||
|
||||
fig, ax = plt.subplots(figsize=(11, 7))
|
||||
plt.plot(dis_df['qps'],
|
||||
dis_df[key],
|
||||
label='disagg_prefill',
|
||||
marker='o',
|
||||
linewidth=4)
|
||||
plt.plot(chu_df['qps'],
|
||||
chu_df[key],
|
||||
label='chunked_prefill',
|
||||
marker='o',
|
||||
linewidth=4)
|
||||
ax.legend()
|
||||
|
||||
ax.set_xlabel('QPS')
|
||||
ax.set_ylabel(key)
|
||||
ax.set_ylim(bottom=0)
|
||||
fig.savefig(f'results/{key}.png')
|
||||
plt.close(fig)
|
||||
176
benchmarks/fused_kernels/layernorm_rms_benchmarks.py
Normal file
176
benchmarks/fused_kernels/layernorm_rms_benchmarks.py
Normal file
@ -0,0 +1,176 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import pickle as pkl
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from dataclasses import dataclass
|
||||
from itertools import product
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
from torch.utils.benchmark import Measurement as TMeasurement
|
||||
from tqdm import tqdm
|
||||
|
||||
import vllm._custom_ops as ops
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
|
||||
|
||||
@dataclass
|
||||
class bench_params_t:
|
||||
num_tokens: int
|
||||
hidden_size: int
|
||||
add_residual: bool
|
||||
dtype: torch.dtype
|
||||
|
||||
def description(self):
|
||||
return (f'N {self.num_tokens} '
|
||||
f'x D {self.hidden_size} '
|
||||
f'x R {self.add_residual} '
|
||||
f'x DT {self.dtype}')
|
||||
|
||||
|
||||
def get_bench_params() -> list[bench_params_t]:
|
||||
## Test Fixtures
|
||||
NUM_TOKENS = [2**x for x in range(11)]
|
||||
HIDDEN_SIZES = list(range(1024, 8129, 1024))
|
||||
ADD_RESIDUAL = [True, False]
|
||||
DTYPES = [torch.bfloat16, torch.float]
|
||||
|
||||
combinations = product(NUM_TOKENS, HIDDEN_SIZES, ADD_RESIDUAL, DTYPES)
|
||||
bench_params = list(map(lambda x: \
|
||||
bench_params_t(x[0], x[1], x[2], x[3]), combinations))
|
||||
return bench_params
|
||||
|
||||
|
||||
# Reference impls
|
||||
def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
quant_dtype: torch.dtype):
|
||||
# Norm
|
||||
torch_out = None
|
||||
if residual is None:
|
||||
torch_out = rms_norm_layer.forward_cuda(x, residual)
|
||||
else:
|
||||
torch_out, _ = rms_norm_layer.forward_cuda(x, residual)
|
||||
|
||||
# Quant
|
||||
torch_out, _, _ = ops.scaled_int8_quant(torch_out)
|
||||
|
||||
|
||||
def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
quant_dtype: torch.dtype):
|
||||
# Norm
|
||||
torch_out = None
|
||||
if residual is None:
|
||||
torch_out = rms_norm_layer.forward_cuda(x, residual)
|
||||
else:
|
||||
torch_out, _ = rms_norm_layer.forward_cuda(x, residual)
|
||||
|
||||
# Quant
|
||||
torch_out, _ = ops.scaled_fp8_quant(torch_out)
|
||||
|
||||
|
||||
def fused_impl(
|
||||
rms_norm_layer: RMSNorm, # this stores the weights
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
quant_dtype: torch.dtype):
|
||||
out, _ = ops.rms_norm_dynamic_per_token_quant(x,
|
||||
rms_norm_layer.weight,
|
||||
1e-6,
|
||||
quant_dtype,
|
||||
residual=residual)
|
||||
|
||||
|
||||
# Bench functions
|
||||
def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor,
|
||||
quant_dtype: torch.dtype, label: str, sub_label: str,
|
||||
fn: Callable, description: str) -> TMeasurement:
|
||||
|
||||
min_run_time = 1
|
||||
|
||||
globals = {
|
||||
"rms_norm_layer": rms_norm_layer,
|
||||
"x": x,
|
||||
"residual": residual,
|
||||
"quant_dtype": quant_dtype,
|
||||
"fn": fn,
|
||||
}
|
||||
return TBenchmark.Timer(
|
||||
stmt="fn(rms_norm_layer, x, residual, quant_dtype)",
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description=description,
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
|
||||
def bench(params: bench_params_t, label: str, sub_label: str) \
|
||||
-> Iterable[TMeasurement]:
|
||||
|
||||
# Make inputs
|
||||
layer = RMSNorm(params.hidden_size, 1e-6).to(dtype=params.dtype)
|
||||
# Make weights
|
||||
layer.weight.data.normal_(mean=1.0, std=0.1)
|
||||
# Make inputs
|
||||
scale = 1 / params.hidden_size
|
||||
x = torch.randn(params.num_tokens,
|
||||
params.hidden_size,
|
||||
dtype=params.dtype,
|
||||
device='cuda') * scale
|
||||
residual = (torch.randn_like(x) * scale).to(device='cuda') \
|
||||
if params.add_residual else None
|
||||
|
||||
timers = []
|
||||
|
||||
# unfused int8 impl.
|
||||
timers.append(
|
||||
bench_fn(layer, x, residual, torch.int8, label, sub_label,
|
||||
unfused_int8_impl, "unfused_int8_impl"))
|
||||
|
||||
# unfused fp8 impl.
|
||||
timers.append(
|
||||
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
|
||||
unfused_fp8_impl, "unfused_fp8_impl"))
|
||||
|
||||
# fused int8 impl.
|
||||
timers.append(
|
||||
bench_fn(layer, x, residual, torch.int8, label, sub_label, fused_impl,
|
||||
"fused_int8_impl"))
|
||||
|
||||
# fused fp8 impl.
|
||||
timers.append(
|
||||
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
|
||||
fused_impl, "fused_fp8_impl"))
|
||||
|
||||
print_timers(timers)
|
||||
|
||||
return timers
|
||||
|
||||
|
||||
# launch bench
|
||||
# runner
|
||||
def print_timers(timers: Iterable[TMeasurement]):
|
||||
compare = TBenchmark.Compare(timers)
|
||||
compare.print()
|
||||
|
||||
|
||||
def main():
|
||||
torch.set_default_device('cuda')
|
||||
bench_params = get_bench_params()
|
||||
|
||||
timers = []
|
||||
for bp in tqdm(bench_params):
|
||||
timers.extend(
|
||||
bench(bp, "rms-norm-dynamic-per-token-quant", bp.description()))
|
||||
print_timers(timers)
|
||||
|
||||
# pickle all the results
|
||||
timestamp = int(time.time())
|
||||
with open(f"rms_norm_dpt_quant-{timestamp}.pkl", "wb") as f:
|
||||
pkl.dump(timers, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@ -1,3 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import Optional
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import time
|
||||
|
||||
import torch
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user