Compare commits

...

440 Commits

Author SHA1 Message Date
221118dc85 [Bugfix] Use a different prompt for benchmark_serving.py test prompt
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-05-17 18:36:31 +00:00
66e63e86ec [MISC] fix typo (#18305)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-05-17 10:52:09 -07:00
9214e60631 [Model] use AutoWeightsLoader for solar (#18113) 2025-05-17 00:24:17 -07:00
f880d42582 Fixed build on ppc64le due to openssl conflicts (#18262)
Signed-off-by: Nishidha Panpaliya <nishidha.panpaliya@partner.ibm.com>
2025-05-17 00:23:46 -07:00
dcfe95234c Update Dockerfile to build for Blackwell (#18095) 2025-05-17 00:23:25 -07:00
48ac2bed5b [Hardware][TPU] Optionally import for TPU backend (#18269)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
Signed-off-by: Jade Zheng <zheng.shoujian@outlook.com>
Co-authored-by: Carol Zheng <cazheng@google.com>
Co-authored-by: Jade Zheng <zheng.shoujian@outlook.com>
Co-authored-by: Hongmin Fan <fanhongmin@google.com>
2025-05-17 15:23:12 +08:00
3e0d435027 [P/D][V1] Support dynamic loading of external KV connector implementations (#18142)
Signed-off-by: David Ben-David <davidb@pliops.com>
Co-authored-by: David Ben-David <davidb@pliops.com>
2025-05-17 06:40:39 +00:00
4ee4826ede [BugFix] Correct max_model_len derivation from config.json for Mistral format (#17937)
Signed-off-by: 汪志鹏 <wangzhipeng628@gmail.com>
Co-authored-by: tracelogfb <48808670+tracelogfb@users.noreply.github.com>
Co-authored-by: Stephen Chen <tracelog@meta.com>
2025-05-17 04:20:13 +00:00
60017dc841 [Misc] reformat the collect-env output (#18285)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-16 19:46:18 -07:00
55f1a468d9 Move cli args docs to its own page (#18228) (#18264)
Signed-off-by: Trevor Royer <troyer@redhat.com>
2025-05-16 19:43:45 -07:00
fd195b194e [V1][P/D] Local attention optimization for NIXL (#18170)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-16 21:16:33 -04:00
fabe89bbc4 [Spec Decode] Don't fall back to V0 when spec decoding is enabled (#18265) 2025-05-16 16:10:27 -07:00
e73b7dfd69 [Bugfix] fix an illegal memory access was encountered of marlin kernel + act_order (#18245) 2025-05-16 16:02:44 -07:00
7fdfa01530 [Sampler] Adapt to FlashInfer 0.2.3 sampler API (#15777)
Signed-off-by: Bowen Wang <abmfy@icloud.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-05-16 15:14:03 -07:00
aef94c6d07 [CI] Assign reviewer to mergify with changes to Tensorizer files (#18278) 2025-05-16 12:04:14 -07:00
0ceaebf87b [BugFix] Fix ordering of KVConnector finished send/rcv sets (#18211)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-16 09:20:54 -07:00
1db4f47f81 [BugFix] Fix multi async save in MultiConnector (#18246)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-16 08:13:47 -07:00
d3d91b6f71 [Misc][MacOS] fix bfloat16 error (#18249)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-16 15:05:59 +00:00
87d871470d [Model] Use autoweightloader for dbrx (#18251)
Signed-off-by: learner0810 <zhongjun.li@daocloud.io>
2025-05-16 07:54:13 -07:00
a5f8c111c2 [Fix] Fix typo in resolve_hf_chat_template (#18259)
Signed-off-by: Felix Marty <felmarty@amd.com>
2025-05-16 14:52:41 +00:00
e23564cb70 use ceil_div in cutlass block scaling shape check (#17918) 2025-05-16 03:02:58 -07:00
390ec88905 [Misc] Consolidate Audio tests into multimodal common generation tests (#18214)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-16 09:18:08 +00:00
541817670c [Misc] Add Ray Prometheus logger to V1 (#17925)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
2025-05-16 01:02:42 -07:00
67da5720d4 [PERF] Speed up Qwen2.5-VL model by speed up rotary position embedding (#17973)
Signed-off-by: Vadim Gimpelson <vadim.gimpelson@centml.ai>
2025-05-15 23:31:02 -07:00
5c04bb8b86 [doc] fix multimodal example script (#18089)
Signed-off-by: David Xia <david@davidxia.com>
2025-05-16 06:05:34 +00:00
3d2779c29a [Feature] Support Pipeline Parallism in torchrun SPMD offline inference for V1 (#17827)
Signed-off-by: Lucia Fang <fanglu@fb.com>
2025-05-15 22:28:27 -07:00
6b31c84aff Throw better error for when running into k8s service discovery issue (#18209)
Signed-off-by: Will Eaton <weaton@redhat.com>
2025-05-15 21:07:28 -07:00
b18201fe06 Allow users to pass arbitrary JSON keys from CLI (#18208)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-15 21:05:34 -07:00
f4937a51c1 [Model] vLLM v1 supports Medusa (#17956)
Signed-off-by: lisiqi23 <lisiqi23@xiaomi.com>
Signed-off-by: skylee-01 <497627264@qq.com>
Co-authored-by: lisiqi23 <lisiqi23@xiaomi.com>
2025-05-15 21:05:31 -07:00
ee659e3b60 [Bugfix][ROCm] Use chunked_prefill_paged_decode as fallback for V1 attention on ROCm (#18093)
Signed-off-by: kf <kuanfu.liu@embeddedllm.com>
2025-05-15 19:30:17 -07:00
4e1c6a0264 [Bugfix] fix rotary embedding test for _get_padded_tensor_shape (#18229)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-16 01:32:45 +00:00
c7852a6d9b [Build] Allow shipping PTX on a per-file basis (#18155)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-15 16:41:55 -07:00
8795eb9975 [Bugfix] Fix test_eagle test (#18223)
Signed-off-by: Lucia Fang <fanglu@fb.com>
2025-05-15 15:59:42 -07:00
0b34593017 Adding "AMD: Tensorizer Test" to amdproduction. (#18216) 2025-05-15 11:01:25 -07:00
e3f3aee6f4 [Misc] Avoid cuda graph log when sizes still match (#18202)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-05-15 09:59:38 -07:00
92540529c0 [Bugfix] [ROCm]: Remove assertion logic when using AITER fused moe in unquantizedMethod to reenable LLama4 BF16 (#18205)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-05-15 09:53:18 -07:00
fadb8d5c2d [Bugfix]Change the exception thrown by call_hf_processor from RuntimeError to ValueError (#18181)
Signed-off-by: Abatom <abzhonghua@gmail.com>
2025-05-15 09:01:47 -07:00
2aa5470ac5 [Frontend] Fix chat template content format detection (#18190)
Signed-off-by: Sebastian Schönnenbeck <sebastian.schoennenbeck@comma-soft.com>
2025-05-15 09:00:21 -07:00
51ff154639 Improve examples rendering in docs and GitHub (#18203)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-15 15:57:49 +00:00
566ec04c3d Adding "Basic Models Test" and "Multi-Modal Models Test (Extended) 3" in AMD Pipeline (#18106)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-05-15 08:49:23 -07:00
01c22335ba [Kernel] [V1] Fix performance regression for triton unified attention (#18161)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-15 06:39:00 -07:00
451da4bcbd add tools into TokenizeChatRequest (#18187)
Signed-off-by: yangxia <yangxiast@gmail.com>
2025-05-15 04:01:49 -07:00
07ad27121f Update deprecated type hinting in model_loader (#18130)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-15 04:00:21 -07:00
a9944aabfa fix: typos (#18151)
Signed-off-by: omahs <73983677+omahs@users.noreply.github.com>
2025-05-15 02:16:15 -07:00
a8f5aec20a [V1] Update zmq socket creation in nixl connector (#18148)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-14 23:17:57 -07:00
de71fec81b [CI] don't skip fixed test_kv_cache_events() (#18183)
Signed-off-by: David Xia <david@davidxia.com>
2025-05-14 23:17:16 -07:00
70f8b96724 [Bugfix] Fix FusedMoEPrepareAndFinalize for cuda-disalike backends (#18178)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-05-14 23:16:31 -07:00
dd2a94596a [Model] Allow the use of sliding window in Qwen2 (#17772)
Signed-off-by: inkcherry <mingzhi.liu@intel.com>
2025-05-14 22:29:38 -07:00
420caf7557 [UT] Add ut for none hash (#17892)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-05-15 13:28:11 +08:00
4f07a64075 Support custom implementations of VideoLoader backends. (#18091) 2025-05-15 13:26:49 +08:00
e6b8e65d2d [Bugfix] Fix fp8 tests for triton_unified_attention for Triton 3.3 (#18013)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-15 13:26:34 +08:00
26d0419309 Update deprecated type hinting in models (#18132)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-14 22:06:50 -07:00
83f74c698f [Fix][ROCm] Enforce eager for all encoder-decoder models on ROCm (#18154)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
2025-05-14 22:04:43 -07:00
2dff093574 [Misc] add lobe-chat support (#18177)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-15 05:02:23 +00:00
afe3236e90 [Chore] astral's ty (#18116)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-05-15 05:00:43 +00:00
65334ef3b9 [V1][Metrics] Remove unused code (#18158)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-05-14 20:13:17 -07:00
e60f550b38 [v1] Support multiple KV cache groups in GPU model runner (#17945)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-14 18:54:54 -07:00
f25e0d1125 [Bugfix]: make most of test_openai_schema.py pass (#17664) 2025-05-14 17:04:35 -07:00
09f106a91e Upload vllm index for the rc builds (#18173) 2025-05-14 16:35:56 -07:00
2142035b51 [V1] Support multiple kv connectors (#17564)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-05-14 16:28:02 -07:00
78aa341d12 [CI] Fix race condition in test_kv_cache_events test (#18169)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-14 16:27:48 -07:00
7974736740 Add support for loading torchao models with AOPerModuleConfig (#17826)
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
2025-05-14 16:24:59 -07:00
2fc9075b82 [V1] Structured Outputs + Thinking compatibility (#16577)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-05-14 15:45:24 -07:00
d93c976a0d [Kernel] Have rotary embeddings support tensors (#18046)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-14 15:43:55 -07:00
749f792553 [Frontend] decrease import time of vllm.multimodal (#18031)
Co-authored-by: Aaron Pham <Aaronpham0103@gmail.com>
2025-05-14 15:43:32 -07:00
856865008e [CI] Disable Failing Tests (#18165) 2025-05-14 13:49:56 -07:00
f9c069c85e Modularize fused experts and integrate PPLX kernels (#15956) 2025-05-14 13:11:54 -07:00
418d2f8bfb [V1][Spec Decode] Share input embedding of target model with EAGLE draft model to free ~1GB for llama 3 model (#17326)
Co-authored-by: root <root@ekagra-8xh100.us-east5-a.c.serving-efficiency-poc.internal>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-05-14 12:31:46 -07:00
964472b966 [Doc] Update prefix cache metrics to counting tokens (#18138)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-14 15:23:30 +00:00
59dd311cf5 [KVConnector] Keep KVTransferParams as a dict (#18033) 2025-05-14 08:05:57 -07:00
d066e52013 [Bugfix] Fix chat utils tests (#18139)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-14 05:38:21 -07:00
c8ea982d9b Update deprecated type hinting in platform, plugins, triton_utils, vllm_flash_attn (#18129)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-14 05:28:16 -07:00
dc372b9c8a Update deprecated type hinting in vllm/device_allocator and vllm/distributed (#18126)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-14 04:07:57 -07:00
9b5b39b650 Update deprecated type hinting in vllm/lora (#18128)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-14 03:57:59 -07:00
9ccc6ded42 [doc] add missing import (#18133)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-14 10:57:34 +00:00
d62a076e84 [Model] GritLM supports other attention backends (#18109)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-14 03:33:19 -07:00
259127f8b8 [Bugfix] Fix LoRA test (#18123)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-14 10:25:47 +00:00
612c2edb4f [FEAT] [ROCm]: Add AITER CK 2 Stages MoE support (#17110)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-14 03:03:11 -07:00
38fe728d60 [Bugfix] Fix QKVCrossParallelLinear::sync_weight_attrs for PyTorch compile (#17844)
Signed-off-by: Andrzej Kotłowski <akotlowski@habana.ai>
2025-05-14 09:39:51 +00:00
82e7f9bb03 [Misc] replace does not exist model (#18119)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-05-14 02:13:47 -07:00
63dc3426e0 [Model] Add packed_modules_mapping for Qwen3-MOE (#18118)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-14 02:13:19 -07:00
8f5dc41481 [Bugfix] Fix entrypoints audio test failure (#18111)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-14 09:08:07 +00:00
63ad622233 [New Model]: support GTE NewModel (#17986) 2025-05-14 01:31:31 -07:00
e7ef61c1f0 [Bugfix][Example] make lmcache v0 work. (#18051)
Signed-off-by: Ma, Jianpeng <jianpeng.ma@intel.com>
2025-05-13 23:43:44 -07:00
d4154c35a2 [Bugfix] fix moe marlin topk_weight loading (#18080)
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-05-13 23:31:57 -07:00
6685890d11 [Fix] Move "model_config" as keyword args in chat_utils.py (#18098)
Signed-off-by: Linkun <github@lkchen.net>
2025-05-13 23:27:26 -07:00
33011318c2 Fix broken example: examples/offline_inference/profiling at scheduler_config (#18117) 2025-05-13 23:19:14 -07:00
4f8b373225 [BugFix][AMD] Compatible patch for AITER lib after 04/20 (#17912)
Signed-off-by: Qiang Li <qiang.li2@amd.com>
2025-05-13 23:05:20 -07:00
7b2f28deba [AMD][torch.compile] Enable silu+fp8_quant fusion for rocm (#18082)
Signed-off-by: charlifu <charlifu@amd.com>
2025-05-13 22:13:56 -07:00
2d912fb66f [FEAT] [ROCm] [V1]: Add AITER biased group topk for DeepSeekV3 (#17955)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-05-13 22:03:47 -07:00
12e6c0b41c [Bugfix][V1] Fix FlashInfer V1 backend using the wrong VllmConfig (#18086) 2025-05-13 20:36:17 -07:00
9a2a6357de [Bugfix] Fix FP8 Marlin MoE and enable for compressed-tensors models (#18026)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-13 19:48:33 -07:00
6266c57bae [core][distributed] add ep group and all2all interface (#18077)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-05-14 10:46:49 +08:00
754b699cbe [Bug]: Fix S3 model/tokenizer path resolution (#18083)
Signed-off-by: Jon Gill <jon@yurts.ai>
2025-05-13 19:34:17 -07:00
6e27c6d86b [Misc] Remove unused numpy tensor (#18084)
Signed-off-by: Roger Wang <hey@rogerw.me>
2025-05-13 19:33:40 -07:00
d5af47a149 [P/D] Add some more debug logs to NixlConnector (#18102)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-13 19:33:03 -07:00
65f0f74b66 [Hardware/NVIDIA/Modelopt] Fix modelopt forward method for v1 torch.compile (#18101)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-05-13 19:33:00 -07:00
176a95c670 [Fix] Support CUDAGraph capture for encoder-decoder on ROCm (#18104)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
2025-05-13 19:31:42 -07:00
f2ae883b67 [v1][KVCacheManager] pass num_new_computed_tokens to kv cache manager (#18001)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-13 19:09:39 -07:00
40de1ef455 [FEAT] [ROCm]: Add AITER Block-Scaled GEMM Feature (#14968)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-05-13 19:08:20 -07:00
0189a65a2e [Docs] Expand security doc with firewall info (#18081)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-13 19:36:00 +00:00
55aa7af994 [V1] DP scale-out (2/N): Decouple engine process management and comms (#15977)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-13 10:48:21 -07:00
0b217da646 Update deprecated type hinting in vllm/adapter_commons (#18073)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 08:32:51 -07:00
19324d660c Update deprecated type hinting in vllm/compilation (#18072)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 08:32:48 -07:00
fc407a1425 Give auto-merge label workflow permission to add labels to issues (#18078)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 07:53:13 -07:00
009d9e7590 Convert benchmarks to ruff format (#18068)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 13:43:29 +00:00
b922c2ebd2 [Bugfix] Fix entrypoints metrics tests (#18063)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-13 06:42:43 -07:00
00b14e0f16 [CI] set token permissions for pre-commit CI job (#17729)
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
2025-05-13 13:38:30 +00:00
54e467e6f8 [CI] Add token permissions for add-ready-label CI job (#17730)
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
2025-05-13 13:38:13 +00:00
79a1d25bbd [CI] Add workflow permissions for helm CI job (#17727)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
2025-05-13 12:49:07 +00:00
9944011b30 [CI] Set token permissions for reminder comment CI job (#17728)
Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
2025-05-13 12:46:58 +00:00
8c946cecca Update deprecated type hinting in vllm/transformers_utils (#18058)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 04:34:37 -07:00
ff334ca1cd Update deprecated type hinting in vllm/profiler (#18057)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 04:34:34 -07:00
6223dd8114 Update deprecated type hinting in model_executor/layers (#18056)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 04:17:23 -07:00
906f0598fc [doc] add download/list/delete HF model CLI usage (#17940)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-13 11:15:51 +00:00
cb528d0585 [Fix] check to make sure processor has chat templates (#18047)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-05-13 03:04:10 -07:00
98fcba1575 Convert .buildkite to ruff format (#17656)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 09:28:31 +00:00
23b3134eb5 [Benchmarks] Refactor run_structured_output_benchmarks.sh (#17722)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-13 01:47:29 -07:00
ea6ae8cb45 [Bugfix] Fix marlin moe fallback logic for llama4 (#18042)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-13 07:53:28 +00:00
2ff297dce9 [BugFix] Set default random seed to 0 for V1 (#17929)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-05-13 07:52:19 +00:00
8dd0671bac [Bugfix][V1] Only get input embeddings w/ multi-modal models if first PP (#17916)
Signed-off-by: Jin Huang <jinhun@amazon.com>
Co-authored-by: Jin Huang <jinhun@amazon.com>
2025-05-13 15:10:07 +08:00
f0d610a8ae [v1][KVCacheManager] Avoid full cache hit by controlling max_length (#17999)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-05-13 06:50:38 +00:00
e57e4d6e9e Fix Broken macro for cutlass moe (#18049)
Signed-off-by: drisspg <drisspguessous@gmail.com>
2025-05-12 23:31:06 -07:00
ee5be834e7 [BugFix] Fix 4-GPU RLHF tests (#18007)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-12 23:03:55 -07:00
48545728d8 cleanup invalid prints (#18050)
Signed-off-by: calvin chen <120380290@qq.com>
2025-05-12 23:01:57 -07:00
dc1a821768 [Feature][V1] Support tool_choice: required when using Xgrammar as the StructuredOutputBackend. (#17845)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-05-12 23:01:31 -07:00
61e0a506a3 [Bugfix] Avoid repeatedly creating dummy data during engine startup (#17935)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-12 22:40:19 -07:00
1df491c522 [Bugfix] Fixes for new marlin moe usage (#18017)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-13 03:50:04 +00:00
d8487ef557 [ROCm]: Fix build from source failure with gcc14 and ROCm 6.3 (#13779)
Signed-off-by: Arjun Kathuria <arjun.kathuria8@gmail.com>
2025-05-12 20:36:33 -07:00
c06af9a959 [Misc] Slight spelling modification (#18039)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-12 20:36:27 -07:00
60f7624334 Implements dual-chunk-flash-attn backend for dual chunk attention with sparse attention support (#11844) 2025-05-12 19:52:47 -07:00
f6518b2b48 [ROCm] Skip tests for quantizations incompatible with ROCm (#17905)
Signed-off-by: Hissu Hyvarinen <hissu.hyvarinen@amd.com>
2025-05-12 18:39:28 -06:00
d67085c2c8 Remove noisy warnings from SchedulerConfig (#17995)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-13 00:33:45 +00:00
307939f299 Use NVFP4 Marlin for CompressedTensorsW4A16Fp4 (#18000)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Dipika <dipikasikka1@gmail.com>
Co-authored-by: Dipika <dipikasikka1@gmail.com>
2025-05-12 18:07:34 -06:00
9d7ea9dbbf Update some more deprecated type hinting (#17998)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-12 23:49:33 +00:00
acee8f48aa [Model] Support MiMo-7B inference with MTP (#17433)
Signed-off-by: wp-alpha <wangpeng66@xiaomi.com>
Co-authored-by: wangpeng66 <wangpeng66@xiaomi.com>
2025-05-12 23:25:33 +00:00
f065de4e88 Fix FBGEMM integration (#18002)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-12 23:02:07 +00:00
dc9905368d [V1][Spec Decode] Eagle unit tests (#17350)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-05-12 23:01:17 +00:00
ebab1ac37c [CI] Make JSON output tests less likely to fail (#17859)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-12 22:31:54 +00:00
2b0db9b0e2 Enable standard language model for torhc nightly (#18004)
Signed-off-by: Yang Wang <elainewy@meta.com>
2025-05-12 14:00:04 -07:00
195adb47c0 [Chore] Remove unused method (#18024)
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-05-12 13:59:47 -07:00
302f3aca7e [v1][KVCacheManager] Change prefix caching metric from counting blocks to counting tokens (#18003)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-12 13:46:12 -07:00
e9c730c9bd Enabling "Weight Loading Multiple GPU Test - Large Models" (#18020) 2025-05-12 13:05:33 -07:00
289199feb6 [Core] Use platform-agnostic device control for DP engine core (#17245)
Signed-off-by: Jade Zheng <zheng.shoujian@outlook.com>
2025-05-12 12:09:16 -07:00
b9fd0d7a69 [CI/Build] Fix TPU V1 Test mixed use of & and && across tests (#17968) 2025-05-12 12:06:59 -07:00
72a3f6b898 Construct KVTransferConfig properly from Python instead of using JSON blobs without CLI (#17994)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-12 11:25:33 -07:00
98ea35601c [Lora][Frontend]Add default local directory LoRA resolver plugin. (#16855)
Signed-off-by: jberkhahn <jaberkha@us.ibm.com>
2025-05-12 10:39:10 -07:00
d19110204c [P/D] NIXL Integration (#17751)
Signed-off-by: ApostaC <yihua98@uchicago.edu>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Signed-off-by: Robert Shaw <rshaw@neuralmagic.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: Brent Salisbury <bsalisbu@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: ApostaC <yihua98@uchicago.edu>
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
Co-authored-by: Brent Salisbury <bsalisbu@redhat.com>
2025-05-12 09:46:16 -07:00
05a4324f8e Initialize the delta tool call fields explicitly (#17340)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: igmainc <igmainc@icloud.com>
2025-05-12 13:28:58 +00:00
7ea6cb28b2 [Misc] Improve modelscope import error (#17983)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-12 10:46:45 +00:00
9fbf2bfbd5 Correcting testcases in builkite job for IBM Power (#17675)
Signed-off-by: Aaruni Aggarwal <aaruniagg@gmail.com>
2025-05-12 08:11:55 +00:00
3a5ea75129 [Feature] Support DeepSeekV3 Function Call (#17784)
Signed-off-by: 许文卿 <xwq391974@alibaba-inc.com>
Signed-off-by: Xu Wenqing <xuwq1993@qq.com>
2025-05-12 00:45:21 -07:00
891b9d33de [Fix] Benchmark "EngineClient" has no attribute "model_config" (#17976)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-05-11 22:55:53 -07:00
430783018c [Bugfix][TPU] Use np array when updating cache slot_mapping (#17971)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-05-12 12:58:33 +08:00
19a3c78d1f [Bugfix] Fix pydantic.errors.PydanticUserError (#17962)
Signed-off-by: wangli <wangli858794774@gmail.com>
2025-05-12 12:58:23 +08:00
ada50aa295 [bugfix] fix the wrong parser (#17958)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-12 04:58:02 +00:00
08bf784078 [Bugfix] validate grammar and throw 400 error instead of crashing the engine when xgrammar validation fails (#17623)
Signed-off-by: Jason Cheng <jasoncky96@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-05-12 09:06:10 +08:00
d45fe333fb [misc] add instructions on how to install nvshmem/pplx/deepep (#17964)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-05-11 18:02:39 -07:00
021c16c7ca [Model] Broadcast Ovis2 implementation to fit Ovis1.6 (#17861)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-11 17:56:30 -07:00
7de18d541b [BUG] [ROCm] [MLA] Fix variable name bug due to change in variable name in PR #17483 (#17961)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-05-11 09:14:30 -07:00
a810b5b088 [BugFix] [ROCm]: Bugfix and handle addition case of input for rocm_aiter_rms_norm (#17857)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-05-11 04:17:11 -07:00
009b3d5382 [Misc] not show --model in vllm serve --help (#16691)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-11 08:47:58 +00:00
e4b8713380 [New Model]: nomic-embed-text-v2-moe (#17785) 2025-05-11 00:59:43 -07:00
06c0922a69 [FP8][ROCm][Attention] Enable FP8 KV cache on ROCm for V1 (#17870)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-11 15:58:45 +08:00
cd3edfc908 [Misc] Add compressed-tensors NVFP4A16 emulation support (#17914)
Signed-off-by: Dipika Sikka <dipikasikka1@gmail.com>
Signed-off-by: Dipika <dipikasikka1@gmail.com>
2025-05-11 15:58:38 +08:00
9cea90eab4 [Frontend] Add /classify endpoint (#17032)
Signed-off-by: Frieda (Jingying) Huang <jingyingfhuang@gmail.com>
2025-05-11 07:57:07 +00:00
d1110f5b5a [doc] update lora doc (#17936)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-11 15:56:21 +08:00
8132365b74 [Bugfix]: v1 engine - consider lora adapters in allowed_token_ids (#17855)
Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-05-11 00:53:58 -07:00
eea22a56ab fix amd triton mla path (#17871) 2025-05-11 07:53:31 +00:00
9112155283 [Perf] Use small max_num_batched_tokens for A100 (#17885)
Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
2025-05-11 07:53:23 +00:00
90d0a74b60 [Bugfix] Add revision to transformers.Auto*.from_pretrained processors (#17948)
Signed-off-by: Xin Li <xin@centml.ai>
2025-05-11 07:52:44 +00:00
d74e5f37bc [Kernel] fp4 marlin kernel (#17687)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
2025-05-10 19:58:49 -07:00
ca66a1674c [v1] Rename specialized_manager.py to single_type_kv_cache_manager.py (#17946)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-10 16:14:12 -07:00
950751a987 [v1] Pass BlockTable and KVCacheSpec to AttentionMetadataBuilders (#17483)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-10 16:12:04 -07:00
4c31218f80 [Misc] remove --model from vllm serve usage (#17944)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-10 13:23:31 +00:00
68311891f5 Don't default construct ModelConfig when default constructing VllmConfig (#17943)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-10 13:23:00 +00:00
fc4441a4ee Add missing content type headers to /ping and /health (#17036) (#17786)
Signed-off-by: Ximo Guanter <ximo.guanter@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-10 07:13:32 +01:00
246e3e0a36 fix broken test vllm:test_kernels - test_attention_selector.py::test_flash_attn (#17873)
Co-authored-by: Stephen Chen <tracelog@meta.com>
2025-05-10 10:46:54 +08:00
7042cc96b0 [V1][Spec Decoding] Log accumulated metrics after system goes idle (#17913)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-05-09 18:23:07 -07:00
0c0fdae84f [Hardware/NVIDIA/Kernel] Enable nvidia/DeepSeek-R1-FP4 Model (#16362) 2025-05-09 16:24:41 -07:00
3b602cdea7 AMD conditional all test execution // new test groups (#17556)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
Signed-off-by: Yida Wu <yidawu@alumni.cmu.edu>
2025-05-09 15:35:58 -07:00
4b2ed7926a Improve configs - the rest! (#17562)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-09 15:18:44 -07:00
7e3571134f [V1][Spec Decoding] Include bonus tokens in mean acceptance length (#17908)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-05-09 13:32:36 -07:00
ea2236bf95 Add option to use torch._inductor.standalone_compile (#17057)
Signed-off-by: rzou <zou3519@gmail.com>
2025-05-09 12:59:04 -07:00
7d4aedae7c Handle error when str passed to /v1/audio/transcriptions (#17909)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-09 19:23:59 +00:00
22481fbfa3 Update CT WNA16MarlinMoE integration (#16666)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-09 13:19:45 -04:00
5c4c08f6f1 [Misc] Auto fallback to float16 for pre-Ampere GPUs when detected bfloat16 config (#17265)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-09 17:16:12 +00:00
c44c384b1c [Misc] Add references in ray_serve_deepseek example (#17907)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-05-09 16:59:36 +00:00
85b72cb7b1 Revert "[BugFix][AMD] Compatible patch for latest AITER(05/07/2025)" (#17910) 2025-05-09 08:58:18 -07:00
6e5595ca39 [CI/Build] Automatically retry flaky tests (#17856)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-09 09:55:17 -06:00
200da9a517 [v1] Move block management logic from KVCacheManager to SpecializedManager (#17474)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-09 15:25:34 +00:00
9f64e93415 [BugFix][AMD] Compatible patch for latest AITER(05/07/2025) (#17864)
Signed-off-by: Qiang Li <qiang.li2@amd.com>
2025-05-09 08:59:36 -06:00
ec61ea20a8 [Misc] add dify integration (#17895)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-09 03:42:39 -07:00
c6798baa9c Change top_k to be disabled with 0 (still accept -1 for now) (#17773)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-09 10:01:49 +00:00
5b2dcbf0b8 Fix Whisper crash caused by invalid`` max_num_batched_tokens`` config (#17853)
Signed-off-by: inkcherry <mingzhi.liu@intel.com>
2025-05-09 09:16:26 +00:00
6e4a93e3f7 [Bugfix][CPU] Fix broken AVX2 CPU TP support (#17252)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-09 08:55:14 +00:00
217db4baa6 [Bugfix][ROCm] Fix AITER MLA V1 (#17880)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-05-09 08:38:21 +00:00
ff8c400502 [Doc] remove visible token in doc (#17884)
Signed-off-by: yan <yanma1@habana.ai>
2025-05-09 01:21:31 -07:00
89a0315f4c [Doc] Update several links in reasoning_outputs.md (#17846)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-05-09 01:20:55 -07:00
3d1e387652 [Docs] Add Slides from NYC Meetup (#17879)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-05-08 21:46:54 -07:00
d310e6de98 [BUGFIX]: return fast when request requires prompt logprobs (#17251) 2025-05-08 21:25:41 -07:00
5e6f939484 [Attention] MLA move rotary embedding to cuda-graph region (#17668)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-09 11:14:42 +08:00
760e3ecc8f [V1][Structured Output] Update llguidance (>= 0.7.11) to avoid AttributeError (no StructTag) (#17839)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-05-08 20:14:18 -07:00
3c9396a64f [FEAT][ROCm]: Support AITER MLA on V1 Engine (#17523)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: qli88 <qiang.li2@amd.com>
Co-authored-by: Hongxia Yang <62075498+hongxiayang@users.noreply.github.com>
2025-05-09 10:42:05 +08:00
376786fac1 Add cutlass support for blackwell fp8 blockwise gemm (#14383)
Signed-off-by: Shu Wang <shuw@nvidia.com>
2025-05-08 15:09:55 -07:00
4f605a6de5 Fix noisy warning for uncalibrated q_scale/p_scale (#17414)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-08 15:56:59 -04:00
8342e3abd1 [CI] Prune down lm-eval small tests (#17012)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-08 19:00:26 +00:00
a83a0f92b5 [Test] Attempt all TPU V1 tests, even if some of them fail. (#17334)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-05-08 17:20:54 +00:00
226a4272cf [V1] Improve VLLM_ALLOW_INSECURE_SERIALIZATION logging (#17860)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-08 16:57:35 +00:00
ec54d73c31 [CI] Fix test_collective_rpc (#17858)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-08 16:47:12 +00:00
a944f8ede7 [Misc] Delete LoRA-related redundancy code (#17841)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-08 06:02:21 -07:00
015815fe01 [Bugfix] use_fast failing to be propagated to Qwen2-VL image processor (#17838)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-08 05:39:21 -07:00
e4ca6e3a99 Fix transient dependency error in docs build (#17848)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-08 03:42:03 -07:00
53d0cb7423 [Misc] add chatbox integration (#17828)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-08 10:05:26 +00:00
f50dcb7c21 [Easy] Eliminate c10::optional usage in vllm/csrc (#17819) 2025-05-08 03:05:10 -07:00
a1e19b635d [Doc] Fix a typo in the file name (#17836)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-08 18:04:18 +08:00
bb239a730f [Bugfix] Fix quark fp8 format loading on AMD GPUs (#12612)
Signed-off-by: Felix Marty <felmarty@amd.com>
Signed-off-by: kewang2 <kewang2@amd.com>
Co-authored-by: kewang2 <kewang2@amd.com>
2025-05-08 02:53:53 -07:00
a463555dee [TPU] Fix the test_sampler (#17820) 2025-05-08 05:51:33 -04:00
ca04b97c93 [Bugfix] Fix tool call template validation for Mistral models (#17644)
Signed-off-by: Rick Yuan <yuan821120@gmail.com>
Signed-off-by: RIck Yuan <yuan821120@gmail.com>
Co-authored-by: Aaron Pham <Aaronpham0103@gmail.com>
2025-05-08 09:47:19 +00:00
0a9bbaa104 [Misc] support model prefix & add deepseek vl2 tiny fused moe config (#17763)
Signed-off-by: 唯勤 <xsank.mz@alibaba-inc.com>
Co-authored-by: 唯勤 <xsank.mz@alibaba-inc.com>
2025-05-08 07:50:22 +00:00
39956efb3f [Bugfix] Fix bad words for Mistral models (#17753)
Signed-off-by: Qiong Zhou Huang <qiong@phonic.co>
2025-05-07 23:32:10 -07:00
597051e56f [Qwen3]add qwen3-235b-bf16 fused moe config on A100 (#17715) 2025-05-07 23:09:32 -07:00
96722aa81d [Frontend] Chat template fallbacks for multimodal models (#17805)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-07 23:05:54 -07:00
843b222723 [Hardware][Intel-Gaudi] Support Automatic Prefix Caching on HPU (#17648)
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
2025-05-07 22:37:03 -07:00
e515668edf [Hardware][Power] Enable compressed tensor W8A8 INT8 quantization for POWER (#17153)
Signed-off-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
Co-authored-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-05-07 22:35:03 -07:00
5a499e70d5 [Kernel][Hardware][AMD] Bf16 mfma opt for ROCm skinny GEMMs (#17071)
Signed-off-by: Hashem Hashemi <hashem.hashemi@amd.com>
Signed-off-by: charlifu <charlifu@amd.com>
Co-authored-by: charlifu <charlifu@amd.com>
2025-05-07 22:34:49 -07:00
6930a41116 [V1] Add VLLM_ALLOW_INSECURE_SERIALIZATION env var (#17490)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-05-08 13:34:02 +08:00
998eea4a0e Only log non-default CLI args for online serving (#17803)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-07 22:33:29 -07:00
c747d84576 [Installation] OpenTelemetry version update (#17771)
Signed-off-by: Mikhail Podvitskii <podvitskiymichael@gmail.com>
2025-05-07 22:32:49 -07:00
b2da14a05a Improve exception reporting in MP engine (#17800)
Signed-off-by: Vadim Markovtsev <vadim@poolside.ai>
2025-05-08 05:32:39 +00:00
7ea2adb802 [Core] Support full cuda graph in v1 (#16072)
Signed-off-by: Chanh Nguyen <cnguyen@linkedin.com>
Co-authored-by: Chanh Nguyen <cnguyen@linkedin.com>
2025-05-07 22:30:15 -07:00
3d13ca0e24 [BugFix] Fix --disable-log-stats in V1 server mode (#17600)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-08 04:08:15 +00:00
66ab3b13c9 Don't call the venv vllm (#17810)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-08 04:06:39 +00:00
a8238bbdb0 [Chore][Doc] uses model id determined from OpenAI client (#17815)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-05-08 01:48:57 +00:00
d43f914d42 [Core][Feature] Input metadata dump on crash (#13407)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
2025-05-07 22:15:09 +00:00
ed5272cf21 [BugFix] Avoid secondary missing MultiprocExecutor.workers error (#17811)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-07 21:55:04 +00:00
c20ef40fd0 [Hardware][TPU][V1] Multi-LoRA implementation for the V1 TPU backend (#14238)
Signed-off-by: Akshat Tripathi <akshat@krai.ai>
Signed-off-by: Chengji Yao <chengjiyao@google.com>
Co-authored-by: Chengji Yao <chengjiyao@google.com>
2025-05-07 16:28:47 -04:00
db593aa67f [Quantization] Quark MXFP4 format loading (#16943) 2025-05-07 15:05:05 -04:00
f98e307588 [Bugfix] Fix missing lora name mapping for lora without prefix (#17793)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-07 16:17:12 +00:00
646a31e51e Fix and simplify deprecated=True CLI kwarg (#17781)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-07 16:51:06 +01:00
be8ff88e66 [Bugfix] Fix Video IO error for short video (#17791)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-07 15:36:06 +00:00
1a6af1453d Only depend on importlib-metadata for Python < 3.10 (#17776)
Signed-off-by: Christian Heimes <christian@python.org>
2025-05-07 07:51:06 -07:00
32aa74c09c [ROCm][FP8][Kernel] FP8 quantization fused into Custom Paged Attention (#17139)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-07 07:12:35 -07:00
7377dd0307 [doc] update the issue link (#17782)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-07 20:29:05 +08:00
98c89e16ff Make key optional for rotary embedding (#17566)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-05-07 00:11:46 -07:00
324a3119b0 Fix test_memory_usage_no_spec (#17754)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-05-07 00:10:33 -07:00
8a15c2603a [Frontend] Add missing chat templates for various MLLMs (#17758)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-07 00:10:01 -07:00
043e4c4955 Add NeuronxDistributedInference support, Speculative Decoding, Dynamic on-device sampling (#16357)
Signed-off-by: Satyajith Chilappagari <satchill@amazon.com>
Co-authored-by: Aaron Dou <yzdou@amazon.com>
Co-authored-by: Shashwat Srijan <sssrijan@amazon.com>
Co-authored-by: Chongming Ni <chongmni@amazon.com>
Co-authored-by: Amulya Ballakur <amulyaab@amazon.com>
Co-authored-by: Patrick Lange <patlange@amazon.com>
Co-authored-by: Elaine Zhao <elaineyz@amazon.com>
Co-authored-by: Lin Lin Pan <tailinpa@amazon.com>
Co-authored-by: Navyadhara Gogineni <navyadha@amazon.com>
Co-authored-by: Yishan McNabb <yishanm@amazon.com>
Co-authored-by: Mrinal Shukla <181322398+mrinalks@users.noreply.github.com>
2025-05-07 00:07:30 -07:00
ba7703e659 [Misc] Remove qlora_adapter_name_or_path (#17699)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-06 23:10:37 -07:00
f80ae5bdcf [Kernel] Use fused rmsnorm for some models like qwen3 series (#17735)
Signed-off-by: evian <eviantai@u.nus.edu>
Co-authored-by: evian <eviantai@u.nus.edu>
2025-05-06 23:10:02 -07:00
1a45a61387 [Kernel] GGUF MoeVec kernel (#16780)
Signed-off-by: SzymonOzog <szymon.ozog@aleph-alpha.com>
Signed-off-by: SzymonOzog <szymon.ozog@gmail.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-05-06 23:07:23 -07:00
c3e9d5060e [Misc] Use apply_rotary_emb from vllm_flash_attn for Qwen2-VL vision RoPE (#17726)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-07 04:51:33 +00:00
822de7fb94 [Misc] Split model loader (#17712)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-07 12:42:26 +08:00
8d84d836d1 [BugFix][Spec Decode] Fix hidden size mismatch between target and eagle head (#17740)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-05-06 19:51:26 -07:00
950b71186f Replace lm-eval bash script with pytest and use enforce_eager for faster CI (#17717)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-06 18:00:10 -07:00
e50a1f1a9c [TPU] Add kernel test for moe_pallas (#17496)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-05-06 17:59:57 -07:00
a17cef70ea Removed unused marlin cuda code (#17684)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-06 17:59:47 -07:00
18dd5e01f2 [Model] Mamba2 causal conv1d Refactor to Split Prefill and Decode Requests for Corresponding Kernels (#17146)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
2025-05-06 17:59:30 -07:00
6de3e13413 Add logging for torch nightly version (#17669)
Signed-off-by: Yang Wang <elainewy@meta.com>
2025-05-07 00:45:51 +00:00
ed3a1d2106 [ROCm] fix num_stages for default moe config to avoid triton OutOfResource error (#17744)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
2025-05-07 00:39:48 +00:00
022afbeb4e Fix doc build performance (#17748)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-07 00:36:41 +00:00
2f925e5777 [Kernel] Unified Triton kernel that doesn't distinguish between prefill + decode (#16828)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Co-authored-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-06 18:21:48 -04:00
de906b95f9 [Bugfix] Fix for the condition to accept empty encoder inputs for mllama (#17732)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-06 19:59:06 +00:00
d456aea71f [Misc] Add Next Edit Prediction (NEP) datasets support in benchmark_serving.py (#16839)
Signed-off-by: dtransposed <damian@damian-ml-machine.europe-west3-b.c.jetbrains-grazie.internal>
Signed-off-by: dtransposed <>
Co-authored-by: dtransposed <damian@damian-ml-machine.europe-west3-b.c.jetbrains-grazie.internal>
2025-05-06 15:38:45 -04:00
621ca2c0ab [TPU] Increase block size and reset block shapes (#16458) 2025-05-06 13:55:04 -04:00
6115b11582 Make right sidebar more readable in "Supported Models" (#17723)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-06 16:48:26 +00:00
5b8c390747 [Bugfix] Fix modality limits in vision language example (#17721)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-06 16:12:28 +00:00
7525d5f3d5 [doc] Add RAG Integration example (#17692)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-06 16:10:23 +00:00
aabcd2cae3 [v1] Introduce KVCacheBlocks as interface between Scheduler and KVCacheManager (#17479)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-06 08:50:34 -07:00
0d115460a7 [Docs] Use gh-file to add links to tool_calling.md (#17709)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-05-06 15:27:19 +00:00
175bda67a1 [Feat] Add deprecated=True to CLI args (#17426)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-05-06 08:11:27 -07:00
cba31c47c4 [v1] AttentionMetadata for each layer (#17394)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-06 07:58:37 -07:00
a6fed02068 [V1][PP] Support PP for MultiprocExecutor (#14219)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Signed-off-by: jiang.li <jiang1.li@intel.com>
2025-05-06 07:58:05 -07:00
d419aa5dc4 [V1] Enable TPU V1 backend by default (#17673)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-06 06:49:49 -07:00
f9bc5a0693 [Bugfix] Fix triton import with local TritonPlaceholder (#17446)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-05-06 17:53:09 +08:00
05e1f96419 Fix dockerfilegraph pre-commit hook (#17698)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-06 08:56:48 +00:00
6eae34533a [Misc] Fix ScalarType float4 naming (#17690)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-06 01:07:15 -07:00
63ced7b43f [Doc] Update notes for H2O-VL and Gemma3 (#17219)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-06 07:51:02 +00:00
dc47ba32f8 [Bugfix] Fixed prompt length for random dataset (#17408)
Signed-off-by: Mikhail Podvitskii <podvitskiymichael@gmail.com>
2025-05-06 07:00:08 +00:00
edbf2d609e [easy] Fix logspam on PiecewiseBackend errors (#17138)
Signed-off-by: rzou <zou3519@gmail.com>
2025-05-05 23:46:11 -07:00
999328be0d [Model] Add GraniteMoeHybrid 4.0 model (#17497)
Signed-off-by: Thomas Ortner <boh@zurich.ibm.com>
Signed-off-by: Stanislaw Wozniak <stw@zurich.ibm.com>
Co-authored-by: Thomas Ortner <boh@zurich.ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
2025-05-06 12:00:31 +08:00
98834fefaa Update nm to rht in doc links + refine fp8 doc (#17678)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-06 00:41:14 +00:00
90bd2ae172 [Bugfix] LoRA - Retire unused maxnreg LoRA kernel argument (#17677) 2025-05-05 17:34:29 -07:00
5941e0b7ea [TPU][V1] Add support for top-logprobs (#17072)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-05-05 14:20:15 -07:00
9765940824 [TPU] Enable gemma3-27b with TP>1 on multi-chips. (#17335)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
2025-05-05 14:19:58 -07:00
5ea5c514da [BugFix] Increase timeout for startup failure test (#17642)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-05 20:53:19 +00:00
d3efde8176 [Benchmarks] Remove invalid option under V1 engine (#17651)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-05 16:30:22 -04:00
aea302be6c Use git-path commit in hook (#17616)
Signed-off-by: Thomas J. Fan <thomasjpfan@gmail.com>
2025-05-05 17:55:32 +00:00
cc05b90d86 [Doc] Fix broken cuda installation doc rendering (#17654)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-05 17:52:40 +00:00
1d0c9d6b2d [Kernel] some optimizations for dense marlin and moe marlin (#16850)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
2025-05-05 09:39:30 -07:00
f62cad6431 [Build/CI] Upgrade CUTLASS to 3.9.2 (#17641)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-05-04 19:23:17 -07:00
5394ad7387 [Bugfix] fix KeyError on top logprobs are special tokens (#17637)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-05-04 19:22:35 -07:00
68e1ee0072 [Bugfix][Easy] Fix whitespace in shm_broadcast.py logging (#17635)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-05-04 19:20:19 -07:00
2858830c39 [Bugfix] Prioritize dtype in root config before checking text config (#17629)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-04 12:43:05 +00:00
d6484ef3c3 Add full API docs and improve the UX of navigating them (#17485)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-03 19:42:43 -07:00
46fae69cf0 [Misc] V0 fallback for --enable-prompt-embeds (#17615)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-03 22:59:24 +00:00
f66f1e0fa3 [Bugfix] Fix broken Qwen2.5-omni tests (#17613)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-03 17:08:14 +00:00
887d7af882 [Core] Gate prompt_embeds behind a feature flag (#17607)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-04 00:19:20 +08:00
a92842454c [Bugfix][ROCm] Using device_type because on ROCm the API is still torch.cuda (#17601)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-02 22:25:47 -07:00
c8386fa61d [Build/CI] Upgrade CUTLASS to 3.9.1 (#17602)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-05-02 22:25:14 -07:00
87baebebd8 [Frontend][TPU] Add TPU default max-num-batched-tokens based on device name (#17508)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-05-02 21:42:44 -07:00
e3d0a1d190 [Quantizaton] [AMD] Add support for running DeepSeek int8 w8a8 MoE on ROCm (#17558)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-05-02 21:41:10 -07:00
d47b605eca Update test requirements to CUDA 12.8 (#17576)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-05-02 21:40:15 -07:00
22c6f6397f [Neuron][Build] Require setuptools >= 77.0.3 for PEP 639 (#17603)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
2025-05-03 02:41:59 +00:00
3ec97e2cc5 [release] Add command to clean up Docker containers/images in TPU release machine (#17606) 2025-05-02 18:54:34 -07:00
9b103a1d76 fix typo in logging (#17605) 2025-05-02 18:04:40 -07:00
b90b0852e9 [easy] Print number of needed GPUs in skip message (#17594)
Signed-off-by: rzou <zou3519@gmail.com>
2025-05-02 15:27:43 -07:00
9352cdb56d [Hardware][AMD] Improve OAM device ID + llama4 Maverick MOE tuning (#16263)
Signed-off-by: Lu Fang <lufang@fb.com>
Co-authored-by: Lu Fang <lufang@fb.com>
2025-05-02 19:44:19 +00:00
182f40ea8b Add NVIDIA TensorRT Model Optimizer in vLLM documentation (#17561) 2025-05-02 11:36:46 -07:00
3e887d2e0c permute/unpermute kernel for moe optimization (#14568)
Signed-off-by: Caleb_Du <Caleb_Du@zju.edu.cn>
2025-05-02 11:31:55 -07:00
0f87d8f7b2 [BugFix][Attention] Fix sliding window attention in V1 giving incorrect results (#17574)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-02 11:01:38 -07:00
4c33d67321 [Bugfix] fix tmp_out and exp_sums dimensions (#17438)
Signed-off-by: Hui Liu <96135754+hliuca@users.noreply.github.com>
2025-05-02 16:44:07 +00:00
cb234955df [Misc] Clean up input processing (#17582)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-02 08:11:53 -07:00
3a500cd0b6 [doc] miss result (#17589)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-02 07:04:49 -07:00
868c546da4 Support W8A8 INT8 MoE for compressed-tensors (#16745)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-02 10:03:32 -04:00
99404f53c7 [Security] Fix image hash collision (#17378)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-02 08:36:39 -04:00
785d75a03b Automatically tell users that dict args must be valid JSON in CLI (#17577)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-02 05:24:55 -07:00
6d1479ca4b [doc] add the print result (#17584)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-02 05:24:45 -07:00
b8b0859b5c add more pytorch related tests for torch nightly (#17422)
Signed-off-by: Yang Wang <elainewy@meta.com>
2025-05-02 03:29:59 -07:00
d7543862bd [Misc] Rename assets for testing (#17575)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-02 03:29:25 -07:00
c777df79f7 [BugFix] Fix Memory Leak (#17567)
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-05-02 01:07:03 -07:00
cc2a77d7f1 [Core] [Bugfix] Add Input Embeddings (#15428)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: 临景 <linjing.yx@alibaba-inc.com>
Co-authored-by: Bryce1010 <bryceyx@gmail.com>
Co-authored-by: Nan2018 <nan@protopia.ai>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-02 01:06:39 -07:00
9e2de9b9e9 [Bugifx] Remove TritonPlaceholder from sys.modules (#17317)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-02 00:45:01 -07:00
109e15a335 Add pt_load_map_location to allow loading to cuda (#16869)
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
2025-05-01 23:23:42 -07:00
f192ca90e6 Fix PixtralHF missing spatial_merge_size (#17571)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-01 22:14:09 -07:00
f89d0e11bf [Misc] Continue refactoring model tests (#17573)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 22:06:08 -07:00
b4003d11fc Check if bitblas is installed during support check (#17572)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-02 04:32:54 +00:00
292fc59d61 [CI] Actually run tests/kv_transfer/test_disagg.py in CI (#17555)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-02 04:05:04 +00:00
afcb3f8863 [Attention] MLA move o_proj q_proj into cuda-graph region (#17484)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-02 03:16:26 +00:00
afb12e4294 [Doc] note that not all unit tests pass on CPU platforms (#17554)
Signed-off-by: David Xia <david@davidxia.com>
2025-05-02 02:57:21 +00:00
24aebae177 [Bugfix] Disable gptq_bitblas for <SM80 to fix GPTQ on V100/T4 (#17541)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-01 17:59:35 -07:00
39c0813a7f [V1][Spec Decode] Apply torch.compile & cudagraph to EAGLE3 (#17504)
Signed-off-by: qizixi <qizixi@meta.com>
2025-05-01 16:19:30 -07:00
9b70e2b4c1 [Misc][Tools][Benchmark] Publish script to auto tune server parameters (#17207)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-05-01 19:53:03 +00:00
173daac19d [Bug]change the position of cuda_graph_sizes in dataclasses (#17548)
Signed-off-by: CXIAAAAA <cxia0209@gmail.com>
2025-05-01 11:52:37 -07:00
04f2cfc894 Remove duplicate code from dbrx.py (#17550) 2025-05-01 11:51:58 -07:00
811a6c0972 [ROCM] Add gfx950 to the custom attention archs (#16034)
Signed-off-by: jpvillam <Juan.Villamizar@amd.com>
Signed-off-by: seungrokjung <seungrok.jung@amd.com>
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: seungrokjung <seungrok.jung@amd.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-01 11:18:28 -07:00
9b1769dd9a [Bugfix] Fix lint error (#17547)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 11:12:19 -07:00
61c299f81f [Misc]add configurable cuda graph size (#17201)
Signed-off-by: CXIAAAAA <cxia0209@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-01 11:04:50 -07:00
4acfa3354a [ROCm] update installation guide to include build aiter from source instructions (#17542)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-05-01 11:01:28 -07:00
88c8304104 [Model] Refactor Ovis2 to support original tokenizer (#17537)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-01 11:00:53 -07:00
6768ff4a22 Move the last arguments in arg_utils.py to be in their final groups (#17531)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-01 10:31:44 -07:00
f2e7af9b86 [CI/Build] Remove awscli dependency (#17532)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 09:20:54 -07:00
7423cf0a9b [Misc] refactor example - cpu_offload_lmcache (#17460)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-01 15:05:24 +00:00
460a2b1100 [torch.compile] Add torch inductor pass for fusing silu_and_mul with subsequent scaled_fp8_quant operations (#10867)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-05-01 07:59:28 -07:00
28566d73b3 [ROCm] remove unsupported archs from rocm triton flash-attention supported list (#17536)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
2025-05-01 07:54:25 -07:00
98060b001d [Feature][Frontend]: Deprecate --enable-reasoning (#17452)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-05-01 06:46:16 -07:00
f5a3c655b2 [FEAT] [ROCm]: Add Qwen/Qwen3-235B-A22B-FP8 TP4 triton fused moe config (#17535)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-05-01 06:37:17 -07:00
7169f87ad0 [doc] add streamlit integration (#17522)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-01 13:34:02 +00:00
b74d888c63 Fix more broken speculative decode tests (#17450)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-05-01 06:05:58 -07:00
2007d4d54f [FEAT] [ROCm]: Add Qwen/Qwen3-30B-A3B-FP8 fused moe config for MI300X (#17530)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-05-01 06:03:13 -07:00
48e925fab5 [Misc] Clean up test docstrings and names (#17521)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 05:19:32 -07:00
1903c0b8a3 [Frontend] Show progress bar for adding requests (#17525)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 05:15:32 -07:00
86a1f67a3b [Bugfix][Benchmarks] Allow benchmark of deepspeed-mii backend to select a model (#17285)
Signed-off-by: Teruaki Ishizaki <teruaki.ishizaki@ntt.com>
2025-05-01 11:54:51 +00:00
a257d9bccc Improve configs - ObservabilityConfig (#17453)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-01 03:52:05 -07:00
015069b017 [Misc] Optimize the Qwen3_ReasoningParser extract_reasoning_content (#17515)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-05-01 03:29:01 -07:00
fbefc8a78d [Core] Enable IPv6 with vllm.utils.make_zmq_socket() (#16506)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-01 09:38:18 +00:00
26bc4bbcd8 Avoid overwriting vllm_compile_cache.py (#17418)
Signed-off-by: Keyun Tong <tongkeyun@gmail.com>
2025-05-01 07:30:57 +00:00
3c3d767201 [BugFix] Fix mla cpu - missing 3 required positional arguments (#17494)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-01 14:36:52 +08:00
13cf6b6236 [BugFix] fix speculative decoding memory leak when speculation is disabled (#15506)
Signed-off-by: Noah Yoshida <noahcy117@gmail.com>
2025-04-30 23:28:17 -07:00
90d0a54c4d [ROCm] Effort to reduce the number of environment variables in command line (#17229)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
2025-04-30 23:27:06 -07:00
7a0a146c54 [Build] Require setuptools >= 77.0.3 for PEP 639 (#17389)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-30 23:25:36 -07:00
7ab643e425 FIxing the AMD test failures caused by PR#16457 (#17511)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-04-30 23:23:07 -07:00
afb4429b4f [CI/Build] Reorganize models tests (#17459)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-30 23:03:08 -07:00
aa4502e7f3 [CI][Bugfix] Fix failing V1 Test due to missing 'cache_salt' arg (#17500)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-30 21:03:30 -07:00
17b4d85f63 [CI][TPU] Skip structured outputs+spec decode tests on TPU (#17510)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-30 20:36:20 -07:00
1144a8efe7 [Bugfix] Temporarily disable gptq_bitblas on ROCm (#17411)
Signed-off-by: Yan Cangang <nalanzeyu@gmail.com>
2025-04-30 19:51:45 -07:00
08fb5587b4 [Bugfix][ROCm] Fix import error on ROCm (#17495)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-30 19:51:42 -07:00
dbc18e7816 [CI][TPU] Skip Multimodal test (#17488)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-04-30 19:51:39 -07:00
02bd654846 [Misc] Rename Audios -> Audio in Qwen2audio Processing (#17507)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-30 19:51:36 -07:00
200bbf92e8 Bump Compressed Tensors version to 0.9.4 (#17478)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-30 15:24:45 -07:00
81ecf425f0 [v1][Spec Decode] Make sliding window compatible with eagle prefix caching (#17398)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-04-30 18:25:53 +00:00
42d9a2c4c7 doc: fix bug report Github template formatting (#17486)
Signed-off-by: David Xia <david@davidxia.com>
2025-04-30 10:03:20 -07:00
2ac74d098e [doc] add install tips (#17373)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-30 17:02:41 +00:00
584f5fb4c6 [Bugfix][ROCm] Restrict ray version due to a breaking release (#17480)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-30 09:59:06 -07:00
d586ddc691 [BugFix] Fix authorization of openai_transcription_client.py (#17321)
Signed-off-by: zh Wang <rekind133@outlook.com>
2025-04-30 09:51:05 -07:00
0b7e701dd4 [Docs] Update optimization.md doc (#17482)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-30 09:34:02 -07:00
947f2f5375 [V1] Allow turning off pickle fallback in vllm.v1.serial_utils (#17427)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-30 16:10:54 +00:00
739e03b344 [Bugfix] Fixed mistral tokenizer path when pointing to file (#17457)
Signed-off-by: Pete Savage <psavage@redhat.com>
2025-04-30 08:08:37 -07:00
da4e7687b5 [Fix] Support passing args to logger (#17425)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-04-30 08:06:58 -07:00
39317cf42b [Docs] Add command for running mypy tests from CI (#17475)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-30 08:06:09 -07:00
2990cee95b [Feature] The Qwen3 reasoning parser supports guided decoding (#17466)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-30 07:48:21 -07:00
0be6d05b5e [V1][Metrics] add support for kv event publishing (#16750)
Signed-off-by: alec-flowers <aflowers@nvidia.com>
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Co-authored-by: Mark McLoughlin <markmc@redhat.com>
2025-04-30 07:44:45 -07:00
77073c77bc [Core] Prevent side-channel attacks via cache salting (#17045)
Signed-off-by: Marko Rosenmueller <5467316+dr75@users.noreply.github.com>
2025-04-30 20:27:21 +08:00
a7d5b016bd [TPU][V1][CI] Update regression test baseline for v6 CI (#17064)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-30 04:03:22 -07:00
d803786731 [V1][Bugfix]: vllm v1 verison metric num_gpu_blocks is None (#15755)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-30 18:20:39 +08:00
1534d389af [Misc] Remove deprecated files (#17447)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-30 01:52:19 -07:00
ece5a8b0b6 Make the _apply_rotary_emb compatible with dynamo (#17435) 2025-04-30 07:52:48 +00:00
54072f315f [MODEL ADDITION] Ovis2 Model Addition (#15826)
Signed-off-by: Marco <121761685+mlinmg@users.noreply.github.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-04-30 07:33:29 +00:00
be633fba0f [Bugfix] Fix AttributeError: 'State' object has no attribute 'engine_client' (#17434)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-30 00:11:04 -07:00
ed6cfb90c8 [Hardware][Intel GPU] Upgrade to torch 2.7 (#17444)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Qiming Zhang <qiming1.zhang@intel.com>
2025-04-30 00:03:58 -07:00
6ed9f6047e [Intel GPU] [CI]Fix XPU ci, setuptools >=80.0 have build issue (#17298)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-04-29 22:54:10 -07:00
a44c4f1d2f Support LoRA for Mistral3 (#17428)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-29 21:10:30 -07:00
88fcf00dda Fix some speculative decode tests with tl.dot (#17371)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-04-29 19:41:02 -07:00
d1f569b1b9 Fix call to logger.info_once (#17416)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 19:39:18 -07:00
13698db634 Improve configs - ModelConfig (#17130)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-30 10:38:22 +08:00
2c4f59afc3 Update PyTorch to 2.7.0 (#16859) 2025-04-29 19:08:04 -07:00
1c2bc7ead0 Truncation control for embedding models (#14776)
Signed-off-by: Gabriel Marinho <gmarinho@ibm.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
2025-04-30 09:24:57 +08:00
4055130a85 [release] Always git fetch all to get latest tag on TPU release (#17322) 2025-04-29 17:52:11 -07:00
34120f5acd [V1][Feature] Enable Speculative Decoding with Structured Outputs (#14702)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
Signed-off-by: Benjamin Chislett <chislett.ben@gmail.com>
2025-04-30 00:02:10 +00:00
7489ec0bab Remove Bamba 9B from CI (#17407)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 21:10:31 +00:00
70788bdbdc [V1][Spec Decode] Apply torch.compile & cudagraph to EAGLE (#17211)
Signed-off-by: Bryan Lu <yuzhelu@amazon.com>
2025-04-29 21:10:00 +00:00
c9c1b59e59 Fix: Python package installation for opentelmetry (#17049)
Signed-off-by: Dilip Gowda Bhagavan <dilip.bhagavan@ibm.com>
2025-04-29 20:20:24 +00:00
0350809f3a Remove Falcon3 2x7B from CI (#17404)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 19:52:25 +00:00
a6977dbd15 Simplify (and fix) passing of guided decoding backend options (#17008)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 19:02:23 +00:00
2fa2a50bf9 [Bugfix] Fix Minicpm-O-int4 GPTQ model inference (#17397)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-29 18:21:42 +00:00
08e15defa9 [CI/Build] Add retry mechanism for add-apt-repository (#17107)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-29 10:40:52 -07:00
b37685afbb [CI] Uses Python 3.11 for TPU (#17359)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-04-29 17:39:16 +00:00
792595b59d [TPU][V1][CI] Replace python3 setup.py develop with standard pip install --e on TPU (#17374)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-29 10:36:48 -07:00
0c1c788312 [Doc][Typo] Fixing label in new model requests link in overview.md (#17400) 2025-04-29 10:29:48 -07:00
56d64fbe30 [Docs] Propose a deprecation policy for the project (#17063)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-29 10:29:44 -07:00
608968b7c5 Enabling multi-group kernel tests. (#17115)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-04-29 10:27:27 -07:00
06ffc7e1d3 [Misc][ROCm] Exclude cutlass_mla_decode for ROCm build (#17289)
Signed-off-by: Tianyuan Wu <Tianyuan.Wu@amd.com>
2025-04-29 10:26:42 -07:00
d3cf61b89b fix gemma3 results all zero (#17364)
Signed-off-by: mayuyuace <qiming1.zhang@intel.com>
2025-04-29 09:40:25 -07:00
a39203f99e [Bugfix] add qwen3 reasoning-parser fix content is None when disable … (#17369)
Signed-off-by: mofanke <mofanke@gmail.com>
2025-04-29 16:32:40 +00:00
24e6ad3f16 [V1] Remove num_input_tokens from attn_metadata (#17193)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-04-29 09:28:41 -07:00
2ef5d106bb Improve literal dataclass field conversion to argparse argument (#17391)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 16:25:08 +00:00
0ed27ef66c Fix: Spelling of inference (#17387) 2025-04-29 09:23:39 -07:00
900edfa8d4 Transformers backend tweaks (#17365)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 09:08:03 -07:00
88ad9ec6b2 [Frontend] Support chat_template_kwargs in LLM.chat (#17356)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-29 22:03:35 +08:00
40896bdf3f pre-commit autoupdate (#17380)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 06:46:55 -07:00
00ee37efa2 [Bugfix] Clean up MiniMax-VL and fix processing (#17354)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-29 20:42:16 +08:00
890f104cdf [Doc] Fix QWen3MOE info (#17381)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-29 12:38:32 +00:00
4a5e13149a Update docs requirements (#17379)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 11:35:47 +00:00
97cc8729f0 [Model] Ignore rotary embed load for Cohere model (#17319) 2025-04-29 00:30:40 -07:00
4464109219 [Build][Bugfix] Restrict setuptools version to <80 (#17320)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-29 00:17:23 -07:00
193e78e35d [Fix] Documentation spacing in compilation config help text (#17342)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
2025-04-29 00:16:17 -07:00
bdb2cddafc [Misc]Use a platform independent interface to obtain the device attributes (#17100) 2025-04-29 06:59:13 +00:00
ebb3930d28 [Misc] Move config fields to MultiModalConfig (#17343)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-29 06:37:21 +00:00
cde384cd92 [Model] support MiniMax-VL-01 model (#16328)
Signed-off-by: qingjun <qingjun@minimaxi.com>
2025-04-29 12:05:50 +08:00
96e06e3cb7 [Misc] Add a Jinja template to support Mistral3 function calling (#17195)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-28 19:53:44 -07:00
17eb306fcc [Bugfix] Add contiguous call inside rope kernel wrapper (#17091)
Signed-off-by: 苏政渊 <suzhengyuan@moonshot.cn>
Co-authored-by: 苏政渊 <suzhengyuan@moonshot.cn>
2025-04-28 19:24:07 -07:00
165cb56329 Ignore '<string>' filepath (#17330)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-28 19:23:29 -07:00
d6da8a8ff2 [Bugfix] Fix numel() downcast in fused_layernorm_dynamic_per_token_quant.cu (#17316) 2025-04-28 19:23:18 -07:00
b4ac4fa04d [model] make llama4 compatible with pure dense layers (#17315)
Signed-off-by: Lucia Fang <fanglu@fb.com>
2025-04-29 10:22:22 +08:00
e136000595 [V1][Spec Decode] Make Eagle model arch config driven (#17323) 2025-04-29 10:22:02 +08:00
86d9fc29cb implement Structural Tag with Guidance backend (#17333)
Signed-off-by: Michal Moskal <michal@moskal.me>
2025-04-29 02:21:32 +00:00
506475de5f [Optim] Compute multimodal hash only once per item (#17314)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-29 09:40:35 +08:00
cfe4532093 [Benchmark] Add single turn MTBench to Serving Bench (#17202) 2025-04-28 16:46:15 -07:00
8fc88d63f1 [Model] Add tuned triton fused_moe configs for Qwen3Moe (#17328)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-28 15:20:24 -07:00
6e74fd4945 Support loading transformers models with named parameters (#16868)
Signed-off-by: Alex <alexwu@character.ai>
2025-04-28 23:15:58 +01:00
1112 changed files with 60337 additions and 24599 deletions

View File

@ -8,12 +8,12 @@ import zipfile
# Note that we have 400 MiB quota, please use it wisely.
# See https://github.com/pypi/support/issues/3792 .
# Please also sync the value with the one in Dockerfile.
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 400))
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 400))
def print_top_10_largest_files(zip_file):
"""Print the top 10 largest files in the given zip file."""
with zipfile.ZipFile(zip_file, 'r') as z:
with zipfile.ZipFile(zip_file, "r") as z:
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
file_sizes.sort(key=lambda x: x[1], reverse=True)
for f, size in file_sizes[:10]:
@ -28,14 +28,18 @@ def check_wheel_size(directory):
wheel_path = os.path.join(root, file_name)
wheel_size_mb = os.path.getsize(wheel_path) / (1024 * 1024)
if wheel_size_mb > VLLM_MAX_SIZE_MB:
print(f"Not allowed: Wheel {wheel_path} is larger "
f"({wheel_size_mb:.2f} MB) than the limit "
f"({VLLM_MAX_SIZE_MB} MB).")
print(
f"Not allowed: Wheel {wheel_path} is larger "
f"({wheel_size_mb:.2f} MB) than the limit "
f"({VLLM_MAX_SIZE_MB} MB)."
)
print_top_10_largest_files(wheel_path)
return 1
else:
print(f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb:.2f} MB).")
print(
f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb:.2f} MB)."
)
return 0
@ -45,4 +49,4 @@ if __name__ == "__main__":
sys.exit(1)
directory = sys.argv[1]
sys.exit(check_wheel_size(directory))
sys.exit(check_wheel_size(directory))

View File

@ -22,5 +22,5 @@ with open("index.html", "w") as f:
print(f"Generated index.html for {args.wheel}")
# cloudfront requires escaping the '+' character
f.write(
template.format(wheel=filename,
wheel_html_escaped=filename.replace("+", "%2B")))
template.format(wheel=filename, wheel_html_escaped=filename.replace("+", "%2B"))
)

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Llama-3.2-1B-Instruct-FP8 -b "auto" -l 1319 -f 5 -t 1
model_name: "RedHatAI/Llama-3.2-1B-Instruct-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.335
- name: "exact_match,flexible-extract"
value: 0.323
limit: 1319
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2.5-1.5B-Instruct -b auto -l 1319 -f 5 -t 1
model_name: "Qwen/Qwen2.5-1.5B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.54
- name: "exact_match,flexible-extract"
value: 0.59
limit: 1319
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -b auto -l 1319 -f 5 -t 1
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.47
- name: "exact_match,flexible-extract"
value: 0.64
limit: 1319
num_fewshot: 5

View File

@ -3,3 +3,4 @@ Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
Qwen2-57B-A14-Instruct.yaml
DeepSeek-V2-Lite-Chat.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -1,10 +1,6 @@
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
Qwen2.5-1.5B-Instruct.yaml
Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Qwen2.5-VL-3B-Instruct-FP8-dynamic.yaml
Qwen1.5-MoE-W4A16-compressed-tensors.yaml
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
Qwen2-1.5B-Instruct-FP8W8.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -0,0 +1,43 @@
# SPDX-License-Identifier: Apache-2.0
from pathlib import Path
import pytest
def pytest_addoption(parser):
parser.addoption(
"--config-list-file",
action="store",
help="Path to the file listing model config YAMLs (one per line)",
)
parser.addoption(
"--tp-size",
action="store",
default="1",
help="Tensor parallel size to use for evaluation",
)
@pytest.fixture(scope="session")
def config_list_file(pytestconfig, config_dir):
rel_path = pytestconfig.getoption("--config-list-file")
return config_dir / rel_path
@pytest.fixture(scope="session")
def tp_size(pytestconfig):
return pytestconfig.getoption("--tp-size")
def pytest_generate_tests(metafunc):
if "config_filename" in metafunc.fixturenames:
rel_path = metafunc.config.getoption("--config-list-file")
config_list_file = Path(rel_path).resolve()
config_dir = config_list_file.parent
with open(config_list_file, encoding="utf-8") as f:
configs = [
config_dir / line.strip()
for line in f
if line.strip() and not line.startswith("#")
]
metafunc.parametrize("config_filename", configs)

View File

@ -1,59 +0,0 @@
#!/bin/bash
usage() {
echo``
echo "Runs lm eval harness on GSM8k using vllm and compares to "
echo "precomputed baseline (measured by HF transformers.)"
echo
echo "usage: ${0} <options>"
echo
echo " -c - path to the test data config (e.g. configs/small-models.txt)"
echo " -t - tensor parallel size"
echo
}
SUCCESS=0
while getopts "c:t:" OPT; do
case ${OPT} in
c )
CONFIG="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
# Parse list of configs.
IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < "$CONFIG"
for MODEL_CONFIG in "${MODEL_CONFIGS[@]}"
do
LOCAL_SUCCESS=0
echo "=== RUNNING MODEL: $MODEL_CONFIG WITH TP SIZE: $TP_SIZE==="
export LM_EVAL_TEST_DATA_FILE=$PWD/configs/${MODEL_CONFIG}
export LM_EVAL_TP_SIZE=$TP_SIZE
pytest -s test_lm_eval_correctness.py || LOCAL_SUCCESS=$?
if [[ $LOCAL_SUCCESS == 0 ]]; then
echo "=== PASSED MODEL: ${MODEL_CONFIG} ==="
else
echo "=== FAILED MODEL: ${MODEL_CONFIG} ==="
fi
SUCCESS=$((SUCCESS + LOCAL_SUCCESS))
done
if [ "${SUCCESS}" -eq "0" ]; then
exit 0
else
exit 1
fi

View File

@ -3,67 +3,52 @@
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml
* export LM_EVAL_TEST_DATA_FILE=configs/Meta-Llama-3-70B-Instruct.yaml
* export LM_EVAL_TP_SIZE=4
* pytest -s test_lm_eval_correctness.py
pytest -s -v test_lm_eval_correctness.py \
--config-list-file=configs/models-small.txt \
--tp-size=1
"""
import os
from pathlib import Path
import lm_eval
import numpy
import pytest
import numpy as np
import yaml
RTOL = 0.08
TEST_DATA_FILE = os.environ.get(
"LM_EVAL_TEST_DATA_FILE",
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1)
def launch_lm_eval(eval_config):
trust_remote_code = eval_config.get('trust_remote_code', False)
model_args = f"pretrained={eval_config['model_name']}," \
f"tensor_parallel_size={TP_SIZE}," \
f"add_bos_token=true," \
f"trust_remote_code={trust_remote_code}"
def launch_lm_eval(eval_config, tp_size):
trust_remote_code = eval_config.get("trust_remote_code", False)
model_args = (
f"pretrained={eval_config['model_name']},"
f"tensor_parallel_size={tp_size},"
f"enforce_eager=true,"
f"add_bos_token=true,"
f"trust_remote_code={trust_remote_code}"
)
results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
batch_size="auto")
batch_size="auto",
)
return results
def test_lm_eval_correctness():
eval_config = yaml.safe_load(
Path(TEST_DATA_FILE).read_text(encoding="utf-8"))
def test_lm_eval_correctness_param(config_filename, tp_size):
eval_config = yaml.safe_load(config_filename.read_text(encoding="utf-8"))
if eval_config[
"model_name"] == "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform": #noqa: E501
pytest.skip("FBGEMM is currently failing on main.")
results = launch_lm_eval(eval_config, tp_size)
# Launch eval requests.
results = launch_lm_eval(eval_config)
# Confirm scores match ground truth.
success = True
for task in eval_config["tasks"]:
for metric in task["metrics"]:
ground_truth = metric["value"]
measured_value = results["results"][task["name"]][metric["name"]]
print(f'{task["name"]} | {metric["name"]}: '
f'ground_truth={ground_truth} | measured={measured_value}')
success = success and numpy.isclose(
ground_truth, measured_value, rtol=RTOL)
print(
f"{task['name']} | {metric['name']}: "
f"ground_truth={ground_truth} | measured={measured_value}"
)
success = success and np.isclose(ground_truth, measured_value, rtol=RTOL)
# Assert at the end, print all scores even on failure for debugging.
assert success

View File

@ -65,18 +65,18 @@ def read_markdown(file):
def results_to_json(latency, throughput, serving):
return json.dumps({
'latency': latency.to_dict(),
'throughput': throughput.to_dict(),
'serving': serving.to_dict()
})
return json.dumps(
{
"latency": latency.to_dict(),
"throughput": throughput.to_dict(),
"serving": serving.to_dict(),
}
)
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file) as f:
raw_result = json.loads(f.read())
@ -120,7 +120,8 @@ if __name__ == "__main__":
for perc in [10, 25, 50, 75, 90, 99]:
# Multiply 1000 to convert the time unit from s to ms
raw_result.update(
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]})
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]}
)
raw_result["avg_latency"] = raw_result["avg_latency"] * 1000
# add the result to raw_result
@ -153,26 +154,27 @@ if __name__ == "__main__":
serving_results = pd.DataFrame.from_dict(serving_results)
throughput_results = pd.DataFrame.from_dict(throughput_results)
raw_results_json = results_to_json(latency_results, throughput_results,
serving_results)
raw_results_json = results_to_json(
latency_results, throughput_results, serving_results
)
# remapping the key, for visualization purpose
if not latency_results.empty:
latency_results = latency_results[list(
latency_column_mapping.keys())].rename(
columns=latency_column_mapping)
latency_results = latency_results[list(latency_column_mapping.keys())].rename(
columns=latency_column_mapping
)
if not serving_results.empty:
serving_results = serving_results[list(
serving_column_mapping.keys())].rename(
columns=serving_column_mapping)
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
columns=serving_column_mapping
)
if not throughput_results.empty:
throughput_results = throughput_results[list(
throughput_results_column_mapping.keys())].rename(
columns=throughput_results_column_mapping)
throughput_results = throughput_results[
list(throughput_results_column_mapping.keys())
].rename(columns=throughput_results_column_mapping)
processed_results_json = results_to_json(latency_results,
throughput_results,
serving_results)
processed_results_json = results_to_json(
latency_results, throughput_results, serving_results
)
for df in [latency_results, serving_results, throughput_results]:
if df.empty:
@ -184,38 +186,39 @@ if __name__ == "__main__":
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
# we want to turn it into "8xGPUTYPE"
df["GPU"] = df["GPU"].apply(
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}")
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}"
)
# get markdown tables
latency_md_table = tabulate(latency_results,
headers='keys',
tablefmt='pipe',
showindex=False)
serving_md_table = tabulate(serving_results,
headers='keys',
tablefmt='pipe',
showindex=False)
throughput_md_table = tabulate(throughput_results,
headers='keys',
tablefmt='pipe',
showindex=False)
latency_md_table = tabulate(
latency_results, headers="keys", tablefmt="pipe", showindex=False
)
serving_md_table = tabulate(
serving_results, headers="keys", tablefmt="pipe", showindex=False
)
throughput_md_table = tabulate(
throughput_results, headers="keys", tablefmt="pipe", showindex=False
)
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:
results = read_markdown("../.buildkite/nightly-benchmarks/" +
"performance-benchmarks-descriptions.md")
results = read_markdown(
"../.buildkite/nightly-benchmarks/"
+ "performance-benchmarks-descriptions.md"
)
results = results.format(
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,
serving_tests_markdown_table=serving_md_table,
benchmarking_results_in_json_string=processed_results_json)
benchmarking_results_in_json_string=processed_results_json,
)
f.write(results)
# document benchmarking results in json
with open(results_folder / "benchmark_results.json", "w") as f:
results = latency_results.to_dict(
orient='records') + throughput_results.to_dict(
orient='records') + serving_results.to_dict(orient='records')
results = (
latency_results.to_dict(orient="records")
+ throughput_results.to_dict(orient="records")
+ serving_results.to_dict(orient="records")
)
f.write(json.dumps(results))

View File

@ -14,15 +14,12 @@ def main(model, cachedir):
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Download and save Hugging Face tokenizer")
parser.add_argument("--model",
type=str,
required=True,
help="Name of the model")
parser.add_argument("--cachedir",
type=str,
required=True,
help="Directory to save the tokenizer")
description="Download and save Hugging Face tokenizer"
)
parser.add_argument("--model", type=str, required=True, help="Name of the model")
parser.add_argument(
"--cachedir", type=str, required=True, help="Directory to save the tokenizer"
)
args = parser.parse_args()
main(args.model, args.cachedir)

View File

@ -11,33 +11,33 @@ from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description=
'Parse command line arguments for summary-nightly-results script.')
parser.add_argument('--results-folder',
type=str,
required=True,
help='The folder where the results are stored.')
parser.add_argument('--description',
type=str,
required=True,
help='Description of the results.')
description="Parse command line arguments for summary-nightly-results script."
)
parser.add_argument(
"--results-folder",
type=str,
required=True,
help="The folder where the results are stored.",
)
parser.add_argument(
"--description", type=str, required=True, help="Description of the results."
)
args = parser.parse_args()
return args
def get_perf(df, method, model, metric):
means = []
for qps in [2, 4, 8, 16, "inf"]:
target = df['Test name'].str.contains(model)
target = target & df['Engine'].str.contains(method)
target = target & df['Test name'].str.contains("qps_" + str(qps))
target = df["Test name"].str.contains(model)
target = target & df["Engine"].str.contains(method)
target = target & df["Test name"].str.contains("qps_" + str(qps))
filtered_df = df[target]
if filtered_df.empty:
means.append(0.)
means.append(0.0)
else:
means.append(filtered_df[metric].values[0])
@ -45,7 +45,6 @@ def get_perf(df, method, model, metric):
def get_perf_w_std(df, method, model, metric):
if metric in ["TTFT", "ITL"]:
mean = get_perf(df, method, model, "Mean " + metric + " (ms)")
mean = mean.tolist()
@ -60,7 +59,8 @@ def get_perf_w_std(df, method, model, metric):
else:
assert metric == "Tput"
mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf(
df, method, model, "Output Tput (tok/s)")
df, method, model, "Output Tput (tok/s)"
)
mean = mean.tolist()
std = None
@ -80,18 +80,17 @@ def main(args):
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
md_table = tabulate(df, headers="keys", tablefmt="pipe", showindex=False)
with open(args.description) as f:
description = f.read()
description = description.format(
nightly_results_benchmarking_table=md_table)
description = description.format(nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
if __name__ == '__main__':
if __name__ == "__main__":
args = parse_arguments()
main(args)

View File

@ -34,10 +34,8 @@ serving_column_mapping = {
}
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file) as f:
raw_result = json.loads(f.read())
@ -56,17 +54,16 @@ if __name__ == "__main__":
serving_results = pd.DataFrame.from_dict(serving_results)
if not serving_results.empty:
serving_results = serving_results[list(
serving_column_mapping.keys())].rename(
columns=serving_column_mapping)
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
columns=serving_column_mapping
)
serving_md_table_with_headers = tabulate(serving_results,
headers='keys',
tablefmt='pipe',
showindex=False)
serving_md_table_with_headers = tabulate(
serving_results, headers="keys", tablefmt="pipe", showindex=False
)
# remove the first line of header
serving_md_table_lines = serving_md_table_with_headers.split('\n')
serving_md_table_without_header = '\n'.join(serving_md_table_lines[2:])
serving_md_table_lines = serving_md_table_with_headers.split("\n")
serving_md_table_without_header = "\n".join(serving_md_table_lines[2:])
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
@ -76,10 +73,9 @@ if __name__ == "__main__":
# document results with header.
# for those who wants to reproduce our benchmark.
f.write(serving_md_table_with_headers)
f.write('\n')
f.write("\n")
# document benchmarking results in json
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
results = serving_results.to_dict(orient='records')
results = serving_results.to_dict(orient="records")
f.write(json.dumps(results))

51
.buildkite/pyproject.toml Normal file
View File

@ -0,0 +1,51 @@
# This local pyproject file is part of the migration from yapf to ruff format.
# It uses the same core rules as the main pyproject.toml file, but with the
# following differences:
# - ruff line length is overridden to 88
# - deprecated typing ignores (UP006, UP035) have been removed
[tool.ruff]
line-length = 88
exclude = [
# External file, leaving license intact
"examples/other/fp8/quantizer/quantize.py",
"vllm/vllm_flash_attn/flash_attn_interface.pyi"
]
[tool.ruff.lint.per-file-ignores]
"vllm/third_party/**" = ["ALL"]
"vllm/version.py" = ["F401"]
"vllm/_version.py" = ["ALL"]
[tool.ruff.lint]
select = [
# pycodestyle
"E",
# Pyflakes
"F",
# pyupgrade
"UP",
# flake8-bugbear
"B",
# flake8-simplify
"SIM",
# isort
"I",
# flake8-logging-format
"G",
]
ignore = [
# star imports
"F405", "F403",
# lambda expression assignment
"E731",
# Loop control variable not used within loop body
"B007",
# f-string format
"UP032",
# Can remove once 3.10+ is the minimum Python version
"UP007",
]
[tool.ruff.format]
docstring-code-format = true

View File

@ -1,20 +1,20 @@
steps:
- label: "Build wheel - CUDA 12.4"
- label: "Build wheel - CUDA 12.8"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.1"
- label: "Build wheel - CUDA 12.6"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -48,7 +48,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Build and publish TPU release image"
@ -57,6 +57,8 @@ steps:
agents:
queue: tpu_queue_postmerge
commands:
- "yes | docker system prune -a"
- "git fetch --all"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f docker/Dockerfile.tpu ."
- "docker push vllm/vllm-tpu:nightly"
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"

View File

@ -3,6 +3,9 @@
# This script runs test inside the corresponding ROCm docker container.
set -o pipefail
# Export Python path
export PYTHONPATH=".."
# Print ROCm version
echo "--- Confirming Clean Initial State"
while true; do
@ -74,38 +77,69 @@ HF_MOUNT="/root/.cache/huggingface"
commands=$@
echo "Commands:$commands"
if [[ $commands == *"pytest -v -s basic_correctness/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s basic_correctness/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s basic_correctness/test_basic_correctness.py"}
fi
if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
fi
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
fi
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
fi
#ignore certain kernels tests
if [[ $commands == *" kernels "* ]]; then
if [[ $commands == *" kernels/core"* ]]; then
commands="${commands} \
--ignore=kernels/test_attention_selector.py \
--ignore=kernels/test_blocksparse_attention.py \
--ignore=kernels/test_causal_conv1d.py \
--ignore=kernels/test_cutlass.py \
--ignore=kernels/test_encoder_decoder_attn.py \
--ignore=kernels/test_flash_attn.py \
--ignore=kernels/test_flashinfer.py \
--ignore=kernels/test_int8_quant.py \
--ignore=kernels/test_machete_gemm.py \
--ignore=kernels/test_mamba_ssm.py \
--ignore=kernels/test_marlin_gemm.py \
--ignore=kernels/test_moe.py \
--ignore=kernels/test_prefix_prefill.py \
--ignore=kernels/test_rand.py \
--ignore=kernels/test_sampler.py \
--ignore=kernels/test_cascade_flash_attn.py \
--ignore=kernels/test_mamba_mixer2.py \
--ignore=kernels/test_aqlm.py \
--ignore=kernels/test_machete_mm.py \
--ignore=kernels/test_mha_attn.py \
--ignore=kernels/test_block_fp8.py \
--ignore=kernels/test_cutlass_moe.py \
--ignore=kernels/test_mamba_ssm_ssd.py \
--ignore=kernels/test_attention.py \
--ignore=kernels/test_block_int8.py \
--ignore=kernels/test_fused_quant_layernorm.py \
--ignore=kernels/test_int8_kernel.py \
--ignore=kernels/test_triton_moe_ptpc_fp8.py \
--ignore=kernels/test_permute_cols.py"
--ignore=kernels/core/test_fused_quant_layernorm.py \
--ignore=kernels/core/test_permute_cols.py"
fi
if [[ $commands == *" kernels/attention"* ]]; then
commands="${commands} \
--ignore=kernels/attention/stest_attention_selector.py \
--ignore=kernels/attention/test_blocksparse_attention.py \
--ignore=kernels/attention/test_encoder_decoder_attn.py \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/test_flash_attn.py \
--ignore=kernels/attention/test_flashinfer.py \
--ignore=kernels/attention/test_prefix_prefill.py \
--ignore=kernels/attention/test_cascade_flash_attn.py \
--ignore=kernels/attention/test_mha_attn.py \
--ignore=kernels/attention/test_lightning_attn.py \
--ignore=kernels/attention/test_attention.py"
fi
if [[ $commands == *" kernels/quantization"* ]]; then
commands="${commands} \
--ignore=kernels/quantization/test_int8_quant.py \
--ignore=kernels/quantization/test_aqlm.py \
--ignore=kernels/quantization/test_machete_mm.py \
--ignore=kernels/quantization/test_block_fp8.py \
--ignore=kernels/quantization/test_block_int8.py \
--ignore=kernels/quantization/test_marlin_gemm.py \
--ignore=kernels/quantization/test_cutlass_scaled_mm.py \
--ignore=kernels/quantization/test_int8_kernel.py"
fi
if [[ $commands == *" kernels/mamba"* ]]; then
commands="${commands} \
--ignore=kernels/mamba/test_mamba_mixer2.py \
--ignore=kernels/mamba/test_causal_conv1d.py \
--ignore=kernels/mamba/test_mamba_ssm_ssd.py"
fi
if [[ $commands == *" kernels/moe"* ]]; then
commands="${commands} \
--ignore=kernels/moe/test_moe.py \
--ignore=kernels/moe/test_cutlass_moe.py \
--ignore=kernels/moe/test_triton_moe_ptpc_fp8.py"
fi
#ignore certain Entrypoints/openai tests
@ -147,6 +181,8 @@ fi
PARALLEL_JOB_COUNT=8
MYPYTHONPATH=".."
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
if [[ $commands == *"--shard-id="* ]]; then
# assign job count as the number of shards used
@ -167,6 +203,7 @@ if [[ $commands == *"--shard-id="* ]]; then
-e AWS_SECRET_ACCESS_KEY \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "PYTHONPATH=${MYPYTHONPATH}" \
--name "${container_name}_${GPU}" \
"${image_name}" \
/bin/bash -c "${commands_gpu}" \
@ -197,6 +234,7 @@ else
-e AWS_SECRET_ACCESS_KEY \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "PYTHONPATH=${MYPYTHONPATH}" \
--name "${container_name}" \
"${image_name}" \
/bin/bash -c "${commands}"

View File

@ -32,9 +32,12 @@ function cpu_tests() {
set -e
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
pip install sentence-transformers datamodel_code_generator
pytest -v -s tests/models/embedding/language/test_cls_models.py::test_classification_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/embedding/language/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]
pytest -v -s tests/models/encoder_decoder/language -m cpu_model"
pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/language/pooling/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]"
}
# All of CPU tests are expected to be finished less than 40 mins.

View File

@ -1,6 +1,6 @@
#!/bin/bash
set -xue
set -xu
# Build the docker image.
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
@ -24,31 +24,80 @@ docker run --privileged --net host --shm-size=16G -it \
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
&& echo HARDWARE \
&& tpu-info \
&& echo TEST_0 \
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_perf.py \
&& echo TEST_1 \
&& pytest -v -s /workspace/vllm/tests/tpu/test_compilation.py \
&& echo TEST_2 \
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_basic.py \
&& echo TEST_3 \
&& pytest -v -s /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine \
&& echo TEST_4 \
&& pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
&& echo TEST_5 \
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
&& echo TEST_6 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py \
&& echo TEST_7 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py \
&& echo TEST_8 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py \
&& echo TEST_9 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py \
&& echo TEST_10 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py \
&& echo TEST_11 \
&& pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py" \
&& { \
echo TEST_0: Running test_perf.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_perf.py; \
echo TEST_0_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_1: Running test_compilation.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py; \
echo TEST_1_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_2: Running test_basic.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py; \
echo TEST_2_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_3: Running test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
echo TEST_3_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_4: Running test_quantization_accuracy.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py; \
echo TEST_4_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_5: Running examples/offline_inference/tpu.py; \
python3 /workspace/vllm/examples/offline_inference/tpu.py; \
echo TEST_5_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_6: Running test_tpu_model_runner.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py; \
echo TEST_6_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_7: Running test_sampler.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py; \
echo TEST_7_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_8: Running test_topk_topp_sampler.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py; \
echo TEST_8_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_9: Running test_multimodal.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py; \
echo TEST_9_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_10: Running test_pallas.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py; \
echo TEST_10_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_11: Running test_struct_output_generate.py; \
python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py; \
echo TEST_11_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_12: Running test_moe_pallas.py; \
python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py; \
echo TEST_12_EXIT_CODE: \$?; \
} & \
# Disable the TPU LoRA tests until the feature is activated
# & { \
# echo TEST_13: Running test_moe_pallas.py; \
# python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/; \
# echo TEST_13_EXIT_CODE: \$?; \
# } & \
wait \
&& echo 'All tests have attempted to run. Check logs for individual test statuses and exit codes.' \
"
# TODO: This test fails because it uses RANDOM_SEED sampling
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \

View File

@ -50,11 +50,11 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
else
# only upload index.html for cu124 wheels (default wheels)
# only upload index.html for cu128 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
fi
@ -66,12 +66,13 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
else
# only upload index.html for cu124 wheels (default wheels)
# only upload index.html for cu128 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
fi
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
aws s3 cp index.html "s3://vllm-wheels/$version/vllm/index.html"

View File

@ -32,6 +32,7 @@ steps:
##### fast check tests #####
- label: Documentation Build # 2min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/test_docs/docs"
fast_check: true
no_gpu: True
@ -39,9 +40,10 @@ steps:
- pip install -r ../../requirements/docs.txt
- SPHINXOPTS=\"-W\" make html
# Check API reference (if it fails, you may have missing mock imports)
- grep \"sig sig-object py\" build/html/api/inference_params.html
- grep \"sig sig-object py\" build/html/api/vllm/vllm.sampling_params.html
- label: Async Engine, Inputs, Utils, Worker Test # 24min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/mq_llm_engine
@ -62,6 +64,7 @@ steps:
- pytest -v -s worker # Worker
- label: Python-only Installation Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- tests/standalone_tests/python_only_compile.sh
- setup.py
@ -69,7 +72,7 @@ steps:
- bash standalone_tests/python_only_compile.sh
- label: Basic Correctness Test # 30min
#mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
fast_check: true
torch_nightly: true
source_file_dependencies:
@ -86,6 +89,7 @@ steps:
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Chunked Prefill Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_chunked_prefill
@ -94,7 +98,7 @@ steps:
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- label: Core Test # 10min
mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
fast_check: true
source_file_dependencies:
- vllm/core
@ -104,10 +108,10 @@ steps:
- pytest -v -s core
- label: Entrypoints Test # 40min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
torch_nightly: true
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/entrypoints/llm
@ -126,6 +130,7 @@ steps:
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Distributed Tests (4 GPUs) # 10min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -143,6 +148,8 @@ steps:
# test with tp=2 and external_dp=2
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with tp=2 and pp=2
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
@ -153,12 +160,12 @@ steps:
# TODO: create a dedicated test section for multi-GPU example tests
# when we have multiple distributed example tests
- pushd ../examples/offline_inference
- python3 rlhf.py
- RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 python3 rlhf.py
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: Metrics, Tracing Test # 10min
mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
num_gpus: 2
source_file_dependencies:
- vllm/
@ -172,7 +179,7 @@ steps:
##### 1 GPU test #####
- label: Regression Test # 5min
#mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/test_regression
@ -182,7 +189,7 @@ steps:
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/engine
@ -196,7 +203,7 @@ steps:
- pytest -v -s tokenization
- label: V1 Test
#mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/v1
@ -209,8 +216,8 @@ steps:
- pytest -v -s v1/worker
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_stats.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
# TODO: accuracy does not match, whether setting
@ -221,8 +228,8 @@ steps:
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: Examples Test # 25min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/examples"
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/entrypoints
- examples/
@ -246,7 +253,7 @@ steps:
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Prefix Caching Test # 9min
mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/prefix_caching
@ -254,6 +261,7 @@ steps:
- pytest -v -s prefix_caching
- label: Samplers Test # 36min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/layers
- vllm/sampling_metadata.py
@ -264,7 +272,7 @@ steps:
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
- label: LogitsProcessor Test # 5min
mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/model_executor/layers
- vllm/model_executor/guided_decoding
@ -275,6 +283,7 @@ steps:
- pytest -v -s model_executor/test_guided_processors.py
- label: Speculative decoding tests # 40min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/spec_decode
- tests/spec_decode
@ -285,7 +294,7 @@ steps:
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
- label: LoRA Test %N # 15min each
#mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/lora
- tests/lora
@ -293,15 +302,20 @@ steps:
parallelism: 4
- label: PyTorch Compilation Unit Tests
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_pass_manager.py
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- label: PyTorch Fullgraph Smoke Test # 9min
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
@ -312,6 +326,8 @@ steps:
- pytest -v -s compile/piecewise/test_toy_llama.py
- label: PyTorch Fullgraph Test # 18min
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
@ -319,6 +335,7 @@ steps:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Core Operation Test
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/
- tests/kernels/core
@ -326,6 +343,7 @@ steps:
- pytest -v -s kernels/core
- label: Kernels Attention Test %N
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/attention/
- vllm/attention
@ -336,6 +354,7 @@ steps:
parallelism: 2
- label: Kernels Quantization Test %N
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/quantization/
- vllm/model_executor/layers/quantization
@ -345,6 +364,7 @@ steps:
parallelism: 2
- label: Kernels MoE Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/moe/
- tests/kernels/moe
@ -353,6 +373,7 @@ steps:
- pytest -v -s kernels/moe
- label: Kernels Mamba Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/mamba/
- tests/kernels/mamba
@ -360,7 +381,7 @@ steps:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
# mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
@ -371,37 +392,42 @@ steps:
- pytest -v -s tensorizer_loader
- label: Benchmarks # 9min
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/.buildkite"
mirror_hardwares: [amd]
source_file_dependencies:
- benchmarks/
commands:
- bash scripts/run-benchmarks.sh
- label: Benchmarks CLI Test # 10min
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/benchmarks/
commands:
- pytest -v -s benchmarks/
- label: Quantization Test # 33min
- label: Quantization Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
- tests/quantization
command: VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
commands:
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: OpenAI API correctness
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
- vllm/entrypoints/openai/
@ -410,6 +436,7 @@ steps:
- pytest -s entrypoints/openai/correctness/
- label: Encoder Decoder tests # 5min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/encoder_decoder
@ -417,8 +444,8 @@ steps:
- pytest -v -s encoder_decoder
- label: OpenAI-Compatible Tool Use # 20 min
mirror_hardwares: [amdexperimental]
fast_check: false
#mirror_hardwares: [ amd ]
source_file_dependencies:
- vllm/
- tests/tool_use
@ -430,92 +457,98 @@ steps:
##### models test #####
- label: Basic Models Test # 24min
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models
commands:
- pytest -v -s models/test_transformers.py
- pytest -v -s models/test_registry.py
- pytest -v -s models/test_utils.py
- pytest -v -s models/test_vision.py
# V1 Test: https://github.com/vllm-project/vllm/issues/14531
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'llama4'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'plamo2'
- label: Language Models Test (Standard) # 32min
#mirror_hardwares: [amd]
- label: Language Models Test (Standard)
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
- tests/models/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install causal-conv1d
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
- pytest -v -s models/embedding/language -m core_model
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pip freeze | grep -E 'torch'
- pytest -v -s models/language -m core_model
- label: Language Models Test (Extended) # 1h10min
- label: Language Models Test (Extended)
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
- tests/models/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install causal-conv1d
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/language -m 'not core_model'
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language -m 'not core_model'
- label: Multi-Modal Models Test (Standard) # 40min
#mirror_hardwares: [amd]
- label: Multi-Modal Models Test (Standard)
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/audio_language
- tests/models/encoder_decoder/vision_language
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
- pytest -v -s models/decoder_only/vision_language -m 'core_model or quant_model'
- pytest -v -s models/embedding/vision_language -m core_model
- pytest -v -s models/encoder_decoder/audio_language -m core_model
- pytest -v -s models/encoder_decoder/language -m core_model
- pytest -v -s models/encoder_decoder/vision_language -m core_model
- pytest -v -s models/decoder_only/vision_language/test_interleaved.py
- pip freeze | grep -E 'torch'
- pytest -v -s models/multimodal/processing
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py models/multimodal -m core_model
- cd .. && pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Models Test (Extended) 1 # 48m
- label: Multi-Modal Models Test (Extended) 1
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/vision_language
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/vision_language -m 'not core_model'
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
- pytest -v -s --ignore models/multimodal/generation/test_common.py --ignore models/multimodal/processing models/multimodal -m 'not core_model'
- label: Multi-Modal Models Test (Extended) 2 # 38m
- label: Multi-Modal Models Test (Extended) 2
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/vision_language
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=1) and not core_model and not quant_model'
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=0) and not core_model'
- label: Multi-Modal Models Test (Extended) 3
mirror_hardwares: [amdexperimental, amdproduction]
optional: true
source_file_dependencies:
- vllm/
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
- label: Quantized Models Test
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/model_executor/layers/quantization
- tests/models/quantization
commands:
- pytest -v -s models/quantization
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
optional: true
commands:
- echo 'Testing custom models...'
@ -527,7 +560,7 @@ steps:
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -538,6 +571,7 @@ steps:
- pytest -v -s distributed/test_shm_broadcast.py
- label: 2 Node Tests (4 GPUs in total) # 16min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
num_nodes: 2
@ -556,7 +590,7 @@ steps:
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
- label: Distributed Tests (2 GPUs) # 40min
#mirror_hardwares: [amd]
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -581,9 +615,8 @@ steps:
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)'
# test sequence parallel
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
@ -594,13 +627,14 @@ steps:
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- label: Plugin Tests (2 GPUs) # 40min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/plugins/
- tests/plugins/
commands:
# begin platform plugin tests, all the code in-between runs on dummy platform
# begin platform plugin and general plugin tests, all the code in-between runs on dummy platform
- pip install -e ./plugins/vllm_add_dummy_platform
- pytest -v -s plugins_tests/test_platform_plugins.py
- pip uninstall vllm_add_dummy_platform -y
@ -611,8 +645,10 @@ steps:
- pytest -v -s distributed/test_distributed_oot.py
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
- label: Multi-step Tests (4 GPUs) # 36min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -633,6 +669,7 @@ steps:
- pytest -v -s multi_step/test_correctness_llm.py
- label: Pipeline Parallelism Test # 45min
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -646,6 +683,7 @@ steps:
- pytest -v -s distributed/test_pipeline_parallel.py
- label: LoRA TP Test (Distributed)
mirror_hardwares: [amdexperimental, amdproduction]
num_gpus: 4
source_file_dependencies:
- vllm/lora
@ -661,6 +699,7 @@ steps:
- label: Weight Loading Multiple GPU Test # 33min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -670,6 +709,7 @@ steps:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
- label: Weight Loading Multiple GPU Test - Large Models # optional
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
gpu: a100
@ -708,4 +748,4 @@ steps:
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-large.txt -t 4
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4

View File

@ -21,12 +21,12 @@ body:
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
<details>
<summary>The output of `python collect_env.py`</summary>
<summary>The output of <code>python collect_env.py</code></summary>
```text
Your output of `python collect_env.py` here
```
</details>
validations:
required: true
@ -75,7 +75,7 @@ body:
```
```
The error message you got, with the full traceback.
The error message you got, with the full traceback and the error logs with [dump_input.py:##] if present.
```
validations:
required: true

11
.github/mergify.yml vendored
View File

@ -163,6 +163,17 @@ pull_request_rules:
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
- name: assign reviewer for tensorizer changes
conditions:
- files~=^vllm/model_executor/model_loader/tensorizer.py
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
- files~=^tests/tensorizer_loader/
actions:
assign:
users:
- "sangstar"
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict

View File

@ -1,4 +1,6 @@
name: Add label on auto-merge enabled
permissions:
pull-requests: write
on:
pull_request_target:
types:

View File

@ -2,6 +2,9 @@ name: Lint and Deploy Charts
on: pull_request
permissions:
contents: read
jobs:
lint-and-deploy:
runs-on: ubuntu-latest
@ -66,7 +69,7 @@ jobs:
export AWS_SECRET_ACCESS_KEY=minioadmin
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
@ -79,4 +82,4 @@ jobs:
"max_tokens": 7,
"temperature": 0
}'):$CODE"
echo "$CODE"
echo "$CODE"

View File

@ -5,6 +5,9 @@ on:
push:
branches: [main]
permissions:
contents: read
jobs:
pre-commit:
runs-on: ubuntu-latest

View File

@ -1,4 +1,6 @@
name: PR Reminder Comment Bot
permissions:
pull-requests: write
on:
pull_request_target:
types: [opened]

1
.gitignore vendored
View File

@ -80,6 +80,7 @@ instance/
# Sphinx documentation
docs/_build/
docs/source/getting_started/examples/
docs/source/api/vllm
# PyBuilder
.pybuilder/

View File

@ -12,29 +12,31 @@ repos:
- id: yapf
args: [--in-place, --verbose]
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.3
rev: v0.11.7
hooks:
- id: ruff
args: [--output-format, github, --fix]
- id: ruff-format
files: ^(.buildkite|benchmarks)/.*
- repo: https://github.com/codespell-project/codespell
rev: v2.4.0
rev: v2.4.1
hooks:
- id: codespell
additional_dependencies: ['tomli']
args: ['--toml', 'pyproject.toml']
- repo: https://github.com/PyCQA/isort
rev: 0a0b7a830386ba6a31c2ec8316849ae4d1b8240d # 6.0.0
rev: 6.0.1
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v19.1.7
rev: v20.1.3
hooks:
- id: clang-format
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
types_or: [c++, cuda]
args: [--style=file, --verbose]
- repo: https://github.com/jackdewinter/pymarkdown
rev: v0.9.27
rev: v0.9.29
hooks:
- id: pymarkdown
args: [fix]
@ -43,10 +45,10 @@ repos:
hooks:
- id: actionlint
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.6.2
rev: 0.6.17
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
@ -101,8 +103,8 @@ repos:
args:
- -c
- |
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" .git/COMMIT_EDITMSG; then
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> .git/COMMIT_EDITMSG
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" "$(git rev-parse --git-path COMMIT_EDITMSG)"; then
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> "$(git rev-parse --git-path COMMIT_EDITMSG)"
fi
language: system
verbose: true
@ -125,8 +127,6 @@ repos:
name: Update Dockerfile dependency graph
entry: tools/update-dockerfile-graph.sh
language: script
files: ^docker/Dockerfile$
pass_filenames: false
# Keep `suggestion` last
- id: suggestion
name: Suggestion

View File

@ -15,7 +15,6 @@ project(vllm_extensions LANGUAGES CXX)
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
@ -46,8 +45,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.6.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.6.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
#
# Try to find python package with an executable that exactly matches
@ -231,6 +230,7 @@ set(VLLM_EXT_SRC
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
"csrc/attention/merge_attn_states.cu"
"csrc/attention/vertical_slash_index.cu"
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
@ -241,6 +241,7 @@ set(VLLM_EXT_SRC
"csrc/quantization/fp8/common.cu"
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/activation_kernels.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/custom_all_reduce.cu"
@ -249,9 +250,8 @@ set(VLLM_EXT_SRC
if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
# Please keep this in sync with FetchContent_Declare line below.
set(CUTLASS_REVISION "v3.9.0" CACHE STRING "CUTLASS revision to use")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v3.9.2" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -269,7 +269,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
# Please keep this in sync with CUTLASS_REVISION line above.
GIT_TAG v3.9.0
GIT_TAG ${CUTLASS_REVISION}
GIT_PROGRESS TRUE
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
@ -289,6 +289,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/cutlass_extensions/common.cpp"
"csrc/attention/mla/cutlass_mla_entry.cu")
@ -300,10 +301,55 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# Only build Marlin kernels if we are building for at least some compatible archs.
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
if (MARLIN_ARCHS)
#
# For the Marlin kernels we automatically generate sources for various
# preselected input type pairs and schedules.
# Generate sources:
set(MARLIN_GEN_SCRIPT
${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/gptq_marlin/generate_kernels.py)
file(MD5 ${MARLIN_GEN_SCRIPT} MARLIN_GEN_SCRIPT_HASH)
message(STATUS "Marlin generation script hash: ${MARLIN_GEN_SCRIPT_HASH}")
message(STATUS "Last run Marlin generate script hash: $CACHE{MARLIN_GEN_SCRIPT_HASH}")
if (NOT DEFINED CACHE{MARLIN_GEN_SCRIPT_HASH}
OR NOT $CACHE{MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MARLIN_GEN_SCRIPT_HASH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=$PYTHONPATH
${Python_EXECUTABLE} ${MARLIN_GEN_SCRIPT}
RESULT_VARIABLE marlin_generation_result
OUTPUT_VARIABLE marlin_generation_result
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log
)
if (NOT marlin_generation_result EQUAL 0)
message(FATAL_ERROR "Marlin generation failed."
" Result: \"${marlin_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log")
else()
set(MARLIN_GEN_SCRIPT_HASH ${MARLIN_GEN_SCRIPT_HASH}
CACHE STRING "Last run Marlin generate script hash" FORCE)
message(STATUS "Marlin generation completed successfully.")
endif()
else()
message(STATUS "Marlin generation script has not changed, skipping generation.")
endif()
file(GLOB MARLIN_TEMPLATE_KERNEL_SRC "csrc/quantization/gptq_marlin/kernel_*.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_TEMPLATE_KERNEL_SRC}"
CUDA_ARCHS "${MARLIN_ARCHS}")
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
set(MARLIN_SRCS
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
@ -375,6 +421,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm100_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -399,8 +446,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
#
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
# kernels for the remaining archs that are not already built for 3x.
# (Build 8.9 for FP8)
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
"7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
"7.5;8.0;8.9+PTX" "${CUDA_ARCHS}")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
@ -451,7 +499,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu")
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
@ -489,7 +539,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
# to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
@ -627,7 +677,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
CUDA_ARCHS "${CUDA_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
#
@ -645,7 +696,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
OR NOT $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MOE_MARLIN_GEN_SCRIPT_HASH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
PYTHONPATH=$PYTHONPATH
${Python_EXECUTABLE} ${MOE_MARLIN_GEN_SCRIPT}
RESULT_VARIABLE moe_marlin_generation_result
OUTPUT_VARIABLE moe_marlin_generation_output
@ -681,6 +732,17 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_PERMUTE_SRC
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
"csrc/moe/moe_permute_unpermute_op.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_PERMUTE_SRC}"
CUDA_ARCHS "${MOE_PERMUTE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
endif()
message(STATUS "Enabling moe extension.")
define_gpu_extension_target(
_moe_C
@ -689,6 +751,8 @@ define_gpu_extension_target(
SOURCES ${VLLM_MOE_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
INCLUDE_DIRECTORIES ${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
USE_SABI 3
WITH_SOABI)

View File

@ -16,18 +16,20 @@ Easy, fast, and cheap LLM serving for everyone
---
*Latest News* 🔥
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
<details>
<summary>Previous News</summary>
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
@ -72,7 +74,7 @@ vLLM is flexible and easy to use with:
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
- Prefix caching support
- Multi-lora support
- Multi-LoRA support
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)

212
benchmarks/auto_tune.sh Normal file
View File

@ -0,0 +1,212 @@
#!/bin/bash
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# The current server parameter combination is max_num_seqs and max_num_batched_tokens
# It also supports additional requirement: e2e latency and prefix cache.
# Pre-requisite:
# 1. Checkout to your branch, install/ update the correct running env. For TPU, activate conda env and install the corresponding torch, xla version.
# 2. If the model is customized, replace the MODEL's config with the customized config.
# 3. Set variables (ALL REQUIRED)
# BASE: your directory for vllm repo
# MODEL: the model served by vllm
# DOWNLOAD_DIR: directory to download and load model weights.
# INPUT_LEN: request input len
# OUTPUT_LEN: request output len
# MIN_CACHE_HIT_PCT: prefix cache rate
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
# 5. The final result will be saved in RESULT file.
# Example use cases
# 1. Given input_len=1800, output_len=20, what's the best max_num_seqs and max_num_batched_tokens to get highest throughput?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=100000000000
# 2. If we have latency requirement to be lower than 500ms, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=500
# 3. If we want to reach 60% prefix cache, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=60, MAX_LATENCY_ALLOWED_MS=500
TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MIN_CACHE_HIT_PCT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
echo "result file$ $RESULT"
echo "model: $MODEL"
echo
rm -rf $LOG_FOLDER
mkdir -p $LOG_FOLDER
cd "$BASE/vllm"
# create sonnet-4x.txt so that we can sample 2048 tokens for input
echo "" > benchmarks/sonnet_4x.txt
for _ in {1..4}
do
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
done
pip install datasets
current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
echo "current_hash: $current_hash"
best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
# start the server
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization 0.98 \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size 1 \
--enable-prefix-caching \
--load-format dummy \
--download-dir $DOWNLOAD_DIR \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
echo "wait for 10 minutes.."
echo
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
if grep -Fq "Application startup complete" "$vllm_log"; then
echo "Application started"
server_started=1
break
else
# echo "wait for 10 seconds..."
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
return 1
fi
echo "run benchmark test..."
echo
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate inf \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
fi
if (( ! meet_latency_requirement )); then
# start from request-rate as int(through_put) + 1
request_rate=$((${through_put%.*} + 1))
while ((request_rate > 0)); do
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
sleep 5
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore_eos \
--disable-tqdm \
--request-rate $request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
break
fi
request_rate=$((request_rate-1))
done
fi
# write the results and update the best result.
if ((meet_latency_requirement)); then
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
best_throughput=$through_put
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
fi
else
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}" >> "$RESULT"
fi
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
rm -f $vllm_log
printf '=%.0s' $(seq 1 20)
return 0
}
num_seqs_list="128 256"
num_batched_tokens_list="512 1024 2048 4096"
for num_seqs in $num_seqs_list; do
for num_batched_tokens in $num_batched_tokens_list; do
run_benchmark $num_seqs $num_batched_tokens
exit 0
done
done
echo "finish permutations"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput" >> "$RESULT"

View File

@ -12,8 +12,7 @@ from typing import Optional, Union
import aiohttp
import huggingface_hub.constants
from tqdm.asyncio import tqdm
from transformers import (AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
# NOTE(simon): do not import vLLM here so the benchmark script
# can run without vLLM installed.
@ -43,8 +42,7 @@ class RequestFuncOutput:
latency: float = 0.0
output_tokens: int = 0
ttft: float = 0.0 # Time to first token
itl: list[float] = field(
default_factory=list) # list of inter-token latencies
itl: list[float] = field(default_factory=list) # list of inter-token latencies
tpot: float = 0.0 # avg next-token latencies
prompt_len: int = 0
error: str = ""
@ -57,8 +55,9 @@ async def async_request_tgi(
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
params = {
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
@ -105,8 +104,7 @@ async def async_request_tgi(
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
@ -133,8 +131,9 @@ async def async_request_trt_llm(
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
@ -159,8 +158,7 @@ async def async_request_trt_llm(
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data:")
chunk = chunk_bytes.decode("utf-8").removeprefix("data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
@ -172,8 +170,7 @@ async def async_request_trt_llm(
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
@ -197,10 +194,11 @@ async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"max_tokens": request_func_input.output_len,
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
@ -216,19 +214,21 @@ async def async_request_deepspeed_mii(
st = time.perf_counter()
try:
async with session.post(url=request_func_input.api_url,
json=payload) as response:
async with session.post(
url=request_func_input.api_url, json=payload
) as response:
if response.status == 200:
parsed_resp = await response.json()
output.latency = time.perf_counter() - st
if "choices" in parsed_resp:
output.generated_text = parsed_resp["choices"][0][
"text"]
output.generated_text = parsed_resp["choices"][0]["text"]
elif "text" in parsed_resp:
output.generated_text = parsed_resp["text"][0]
else:
output.error = ("Unexpected response format: "
"neither 'choices' nor 'text' found")
output.error = (
"Unexpected response format: "
"neither 'choices' nor 'text' found"
)
output.success = False
output.success = True
else:
@ -249,17 +249,20 @@ async def async_request_openai_completions(
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
("completions", "profile")
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
assert api_url.endswith(("completions", "profile")), (
"OpenAI Completions API URL must end with 'completions' or 'profile'."
)
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
payload = {
"model": request_func_input.model_name \
if request_func_input.model_name else request_func_input.model,
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"repetition_penalty": 1.0,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
@ -271,9 +274,7 @@ async def async_request_openai_completions(
payload["ignore_eos"] = request_func_input.ignore_eos
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
@ -282,8 +283,9 @@ async def async_request_openai_completions(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
first_chunk_received = False
async for chunk_bytes in response.content:
@ -291,8 +293,7 @@ async def async_request_openai_completions(
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
data = json.loads(chunk)
@ -312,21 +313,20 @@ async def async_request_openai_completions(
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += text or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get(
"completion_tokens")
output.output_tokens = usage.get("completion_tokens")
if first_chunk_received:
output.success = True
else:
output.success = False
output.error = (
"Never received a valid chunk to calculate TTFT."
"This response will be marked as failed!")
"This response will be marked as failed!"
)
output.generated_text = generated_text
output.latency = most_recent_timestamp - st
else:
@ -347,23 +347,22 @@ async def async_request_openai_chat_completions(
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith(
("chat/completions", "profile")
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
assert api_url.endswith(("chat/completions", "profile")), (
"OpenAI Chat Completions API URL must end with 'chat/completions'."
)
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
content.append(request_func_input.multi_modal_content)
payload = {
"model": request_func_input.model_name \
if request_func_input.model_name else request_func_input.model,
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"messages": [
{
"role": "user",
"content": content
},
{"role": "user", "content": content},
],
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
@ -389,16 +388,16 @@ async def async_request_openai_chat_completions(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
async with session.post(
url=api_url, json=payload, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
@ -412,13 +411,11 @@ async def async_request_openai_chat_completions(
# Decoding phase
else:
output.itl.append(timestamp -
most_recent_timestamp)
output.itl.append(timestamp - most_recent_timestamp)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get(
"completion_tokens")
output.output_tokens = usage.get("completion_tokens")
most_recent_timestamp = timestamp
@ -444,25 +441,28 @@ async def async_request_openai_audio(
) -> RequestFuncOutput:
# Lazy import without PlaceholderModule to avoid vllm dep.
import soundfile
api_url = request_func_input.api_url
assert api_url.endswith(
("transcriptions", "translations"
)), "OpenAI Chat Completions API URL must end with 'transcriptions' "
assert api_url.endswith(("transcriptions", "translations")), (
"OpenAI Chat Completions API URL must end with 'transcriptions' "
)
"or `translations`."
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
async with aiohttp.ClientSession(
trust_env=True, timeout=AIOHTTP_TIMEOUT
) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
payload = {
"model": request_func_input.model_name \
if request_func_input.model_name else request_func_input.model,
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"language": "en",
# Flattened due to multipart/form-data
"stream_include_usage": True,
"stream_continuous_usage_stats": True
"stream_continuous_usage_stats": True,
}
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
@ -477,9 +477,9 @@ async def async_request_openai_audio(
buffer.seek(0)
return buffer
with to_bytes(*request_func_input.multi_modal_content['audio']) as f:
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
form = aiohttp.FormData()
form.add_field('file', f, content_type='audio/wav')
form.add_field("file", f, content_type="audio/wav")
for key, value in payload.items():
form.add_field(key, str(value))
@ -491,24 +491,22 @@ async def async_request_openai_audio(
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url,
data=form,
headers=headers) as response:
async with session.post(
url=api_url, data=form, headers=headers
) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get(
"content")
content = choices[0]["delta"].get("content")
# First token
if ttft == 0.0:
ttft = timestamp - st
@ -517,12 +515,14 @@ async def async_request_openai_audio(
# Decoding phase
else:
output.itl.append(
timestamp - most_recent_timestamp)
timestamp - most_recent_timestamp
)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get(
"completion_tokens")
"completion_tokens"
)
most_recent_timestamp = timestamp
@ -543,7 +543,7 @@ async def async_request_openai_audio(
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
if os.getenv("VLLM_USE_MODELSCOPE", "False").lower() == "true":
from modelscope import snapshot_download
from vllm.model_executor.model_loader.weight_utils import get_lock
@ -554,7 +554,8 @@ def get_model(pretrained_model_name_or_path: str) -> str:
model_path = snapshot_download(
model_id=pretrained_model_name_or_path,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
)
return model_path
return pretrained_model_name_or_path
@ -567,23 +568,23 @@ def get_tokenizer(
**kwargs,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
if pretrained_model_name_or_path is not None and not os.path.exists(
pretrained_model_name_or_path):
pretrained_model_name_or_path = get_model(
pretrained_model_name_or_path)
pretrained_model_name_or_path
):
pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
if tokenizer_mode == "slow":
if kwargs.get("use_fast", False):
raise ValueError(
"Cannot use the fast tokenizer in slow tokenizer mode.")
raise ValueError("Cannot use the fast tokenizer in slow tokenizer mode.")
kwargs["use_fast"] = False
if tokenizer_mode == "mistral":
try:
from vllm.transformers_utils.tokenizer import MistralTokenizer
except ImportError as e:
raise ImportError("MistralTokenizer requires vllm package.\n"
"Please install it with `pip install vllm` "
"to use mistral tokenizer mode.") from e
return MistralTokenizer.from_pretrained(
str(pretrained_model_name_or_path))
raise ImportError(
"MistralTokenizer requires vllm package.\n"
"Please install it with `pip install vllm` "
"to use mistral tokenizer mode."
) from e
return MistralTokenizer.from_pretrained(str(pretrained_model_name_or_path))
else:
return AutoTokenizer.from_pretrained(
pretrained_model_name_or_path,
@ -606,7 +607,7 @@ ASYNC_REQUEST_FUNCS = {
}
OPENAI_COMPATIBLE_BACKENDS = [
k for k, v in ASYNC_REQUEST_FUNCS.items()
if v in (async_request_openai_completions,
async_request_openai_chat_completions)
k
for k, v in ASYNC_REQUEST_FUNCS.items()
if v in (async_request_openai_completions, async_request_openai_chat_completions)
]

View File

@ -82,14 +82,12 @@ class BenchmarkDataset(ABC):
self.dataset_path = dataset_path
# Set the random seed, ensuring that a None value is replaced with the
# default seed.
self.random_seed = (random_seed
if random_seed is not None else self.DEFAULT_SEED)
self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED
self.data = None
def apply_multimodal_chat_transformation(
self,
prompt: str,
mm_content: Optional[MultiModalDataDict] = None) -> list[dict]:
self, prompt: str, mm_content: Optional[MultiModalDataDict] = None
) -> list[dict]:
"""
Transform a prompt and optional multimodal content into a chat format.
This method is used for chat models that expect a specific conversation
@ -111,8 +109,7 @@ class BenchmarkDataset(ABC):
NotImplementedError: If a subclass does not implement this method.
"""
# TODO (jenniferzhao): add support for downloading data
raise NotImplementedError(
"load_data must be implemented in subclasses.")
raise NotImplementedError("load_data must be implemented in subclasses.")
def get_random_lora_request(
self,
@ -158,8 +155,9 @@ class BenchmarkDataset(ABC):
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
@abstractmethod
def sample(self, tokenizer: PreTrainedTokenizerBase,
num_requests: int) -> list[SampleRequest]:
def sample(
self, tokenizer: PreTrainedTokenizerBase, num_requests: int
) -> list[SampleRequest]:
"""
Abstract method to generate sample requests from the dataset.
@ -177,8 +175,9 @@ class BenchmarkDataset(ABC):
"""
raise NotImplementedError("sample must be implemented in subclasses.")
def maybe_oversample_requests(self, requests: list[SampleRequest],
num_requests: int) -> None:
def maybe_oversample_requests(
self, requests: list[SampleRequest], num_requests: int
) -> None:
"""
Oversamples the list of requests if its size is less than the desired
number.
@ -189,11 +188,9 @@ class BenchmarkDataset(ABC):
"""
if len(requests) < num_requests:
random.seed(self.random_seed)
additional = random.choices(requests,
k=num_requests - len(requests))
additional = random.choices(requests, k=num_requests - len(requests))
requests.extend(additional)
logger.info("Oversampled requests to reach %d total samples.",
num_requests)
logger.info("Oversampled requests to reach %d total samples.", num_requests)
# -----------------------------------------------------------------------------
@ -218,14 +215,14 @@ def is_valid_sequence(
"""
# Check for invalid conditions
prompt_too_short = prompt_len < min_len
output_too_short = (not skip_min_output_len_check) and (output_len
< min_len)
output_too_short = (not skip_min_output_len_check) and (output_len < min_len)
prompt_too_long = prompt_len > max_prompt_len
combined_too_long = (prompt_len + output_len) > max_total_len
# Return True if none of the invalid conditions are met
return not (prompt_too_short or output_too_short or prompt_too_long
or combined_too_long)
return not (
prompt_too_short or output_too_short or prompt_too_long or combined_too_long
)
@cache
@ -257,28 +254,28 @@ def process_image(image: Any) -> Mapping[str, Any]:
Raises:
ValueError: If the input is not a supported type.
"""
if isinstance(image, dict) and 'bytes' in image:
image = Image.open(BytesIO(image['bytes']))
if isinstance(image, dict) and "bytes" in image:
image = Image.open(BytesIO(image["bytes"]))
if isinstance(image, Image.Image):
image = image.convert("RGB")
with io.BytesIO() as image_data:
image.save(image_data, format="JPEG")
image_base64 = base64.b64encode(
image_data.getvalue()).decode("utf-8")
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
return {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
}
if isinstance(image, str):
image_url = (image if image.startswith(
("http://", "file://")) else f"file://{image}")
image_url = (
image if image.startswith(("http://", "file://")) else f"file://{image}"
)
return {"type": "image_url", "image_url": {"url": image_url}}
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
" or str or dictionary with raw image bytes.")
raise ValueError(
f"Invalid image input {image}. Must be a PIL.Image.Image"
" or str or dictionary with raw image bytes."
)
# -----------------------------------------------------------------------------
@ -315,42 +312,56 @@ class RandomDataset(BenchmarkDataset):
)
vocab_size = tokenizer.vocab_size
num_special_tokens = tokenizer.num_special_tokens_to_add()
real_input_len = input_len - num_special_tokens
prefix_token_ids = (np.random.randint(
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
prefix_token_ids = (
np.random.randint(0, vocab_size, size=prefix_len).tolist()
if prefix_len > 0
else []
)
# New sampling logic: [X * (1 - b), X * (1 + b)]
input_low = int(input_len * (1 - range_ratio))
input_high = int(input_len * (1 + range_ratio))
input_low = int(real_input_len * (1 - range_ratio))
input_high = int(real_input_len * (1 + range_ratio))
output_low = int(output_len * (1 - range_ratio))
output_high = int(output_len * (1 + range_ratio))
# Add logging for debugging
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
logger.info("Sampling output_len from [%s, %s]", output_low,
output_high)
logger.info("Sampling output_len from [%s, %s]", output_low, output_high)
input_lens = np.random.randint(input_low,
input_high + 1,
size=num_requests)
output_lens = np.random.randint(output_low,
output_high + 1,
size=num_requests)
input_lens = np.random.randint(input_low, input_high + 1, size=num_requests)
output_lens = np.random.randint(output_low, output_high + 1, size=num_requests)
offsets = np.random.randint(0, vocab_size, size=num_requests)
requests = []
for i in range(num_requests):
inner_seq = ((offsets[i] + i + np.arange(input_lens[i])) %
vocab_size).tolist()
inner_seq = (
(offsets[i] + i + np.arange(input_lens[i])) % vocab_size
).tolist()
token_sequence = prefix_token_ids + inner_seq
prompt = tokenizer.decode(token_sequence)
# After decoding the prompt we have to encode and decode it again.
# This is done because in some cases N consecutive tokens
# give a string tokenized into != N number of tokens.
# For example for GPT2Tokenizer:
# [6880, 6881] -> ['Ġcalls', 'here'] ->
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
# To avoid uncontrolled change of the prompt length,
# the encoded sequence is truncated before being decode again.
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
: input_lens[i]
]
prompt = tokenizer.decode(re_encoded_sequence)
total_input_len = prefix_len + int(input_lens[i])
requests.append(
SampleRequest(
prompt=prompt,
prompt_len=total_input_len,
expected_output_len=int(output_lens[i]),
))
)
)
return requests
@ -377,7 +388,8 @@ class ShareGPTDataset(BenchmarkDataset):
self.data = json.load(f)
# Filter entries with at least two conversation turns.
self.data = [
entry for entry in self.data
entry
for entry in self.data
if "conversations" in entry and len(entry["conversations"]) >= 2
]
random.seed(self.random_seed)
@ -403,27 +415,28 @@ class ShareGPTDataset(BenchmarkDataset):
)
lora_request, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
)
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
new_output_len = (len(completion_ids)
if output_len is None else output_len)
if not is_valid_sequence(prompt_len,
new_output_len,
skip_min_output_len_check=output_len
is not None):
new_output_len = len(completion_ids) if output_len is None else output_len
if not is_valid_sequence(
prompt_len,
new_output_len,
skip_min_output_len_check=output_len is not None,
):
continue
if enable_multimodal_chat:
prompt = self.apply_multimodal_chat_transformation(
prompt, None)
prompt = self.apply_multimodal_chat_transformation(prompt, None)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=new_output_len,
lora_request=lora_request,
))
)
)
self.maybe_oversample_requests(samples, num_requests)
return samples
@ -469,20 +482,20 @@ class SonnetDataset(BenchmarkDataset):
) -> list:
# Calculate average token length for a poem line.
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
avg_len = sum(len(tokens)
for tokens in tokenized_lines) / len(tokenized_lines)
avg_len = sum(len(tokens) for tokens in tokenized_lines) / len(tokenized_lines)
# Build the base prompt.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
base_msg = [{"role": "user", "content": base_prompt}]
base_fmt = tokenizer.apply_chat_template(base_msg,
add_generation_prompt=True,
tokenize=False)
base_fmt = tokenizer.apply_chat_template(
base_msg, add_generation_prompt=True, tokenize=False
)
base_offset = len(tokenizer(base_fmt).input_ids)
if input_len <= base_offset:
raise ValueError(
f"'input_len' must be higher than the base prompt length "
f"({base_offset}).")
f"({base_offset})."
)
# Determine how many poem lines to use.
num_input_lines = round((input_len - base_offset) / avg_len)
@ -491,21 +504,23 @@ class SonnetDataset(BenchmarkDataset):
samples = []
while len(samples) < num_requests:
extra_lines = random.choices(self.data,
k=num_input_lines - num_prefix_lines)
extra_lines = random.choices(
self.data, k=num_input_lines - num_prefix_lines
)
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
msg = [{"role": "user", "content": prompt}]
prompt_formatted = tokenizer.apply_chat_template(
msg, add_generation_prompt=True, tokenize=False)
msg, add_generation_prompt=True, tokenize=False
)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
if prompt_len <= input_len:
samples.append(
SampleRequest(
prompt=prompt_formatted
if return_prompt_formatted else prompt,
prompt=prompt_formatted if return_prompt_formatted else prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
))
)
)
return samples
@ -525,7 +540,9 @@ class BurstGPTDataset(BenchmarkDataset):
super().__init__(**kwargs)
self.load_data()
def load_data(self, ):
def load_data(
self,
):
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
@ -539,8 +556,7 @@ class BurstGPTDataset(BenchmarkDataset):
def _sample_loaded_data(self, num_requests: int) -> list:
if num_requests <= len(self.data):
data = self.data.sample(n=num_requests,
random_state=self.random_seed)
data = self.data.sample(n=num_requests, random_state=self.random_seed)
else:
data = self.data.sample(
n=num_requests,
@ -564,7 +580,8 @@ class BurstGPTDataset(BenchmarkDataset):
input_len = int(data[i][2])
output_len = int(data[i][3])
lora_req, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
)
vocab_size = tokenizer.vocab_size
# Generate a synthetic prompt: a list of token IDs computed as (i +
# j) modulo vocab_size.
@ -576,7 +593,8 @@ class BurstGPTDataset(BenchmarkDataset):
prompt_len=input_len,
expected_output_len=output_len,
lora_request=lora_req,
))
)
)
return samples
@ -619,20 +637,23 @@ class HuggingFaceDataset(BenchmarkDataset):
class ConversationDataset(HuggingFaceDataset):
"""Dataset for conversation data with multimodal support."""
SUPPORTED_DATASET_PATHS = {
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
"lmms-lab/LLaVA-OneVision-Data",
"Aeala/ShareGPT_Vicuna_unfiltered",
}
IS_MULTIMODAL = True
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
# Filter examples with at least 2 conversations
filtered_data = self.data.filter(
lambda x: len(x["conversations"]) >= 2)
filtered_data = self.data.filter(lambda x: len(x["conversations"]) >= 2)
sampled_requests = []
dynamic_output = output_len is None
@ -648,24 +669,22 @@ class ConversationDataset(HuggingFaceDataset):
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(
prompt_len, completion_len):
if dynamic_output and not is_valid_sequence(prompt_len, completion_len):
continue
mm_content = process_image(
item["image"]) if "image" in item else None
mm_content = process_image(item["image"]) if "image" in item else None
if enable_multimodal_chat:
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len and output len
prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
))
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -682,10 +701,8 @@ class VisionArenaDataset(HuggingFaceDataset):
DEFAULT_OUTPUT_LEN = 128
SUPPORTED_DATASET_PATHS = {
"lmarena-ai/VisionArena-Chat":
lambda x: x["conversation"][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1":
lambda x: x["turns"][0][0]["content"]
"lmarena-ai/VisionArena-Chat": lambda x: x["conversation"][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1": lambda x: x["turns"][0][0]["content"],
}
IS_MULTIMODAL = True
@ -697,16 +714,14 @@ class VisionArenaDataset(HuggingFaceDataset):
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
if parser_fn is None:
raise ValueError(
f"Unsupported dataset path: {self.dataset_path}")
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
prompt = parser_fn(item)
mm_content = process_image(item["images"][0])
prompt_len = len(tokenizer(prompt).input_ids)
@ -714,15 +729,15 @@ class VisionArenaDataset(HuggingFaceDataset):
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len
prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
))
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -747,14 +762,15 @@ class InstructCoderDataset(HuggingFaceDataset):
"likaixin/InstructCoder",
}
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
@ -766,7 +782,63 @@ class InstructCoderDataset(HuggingFaceDataset):
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
))
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# MT-Bench Dataset Implementation
# -----------------------------------------------------------------------------
class MTBenchDataset(HuggingFaceDataset):
"""
MT-Bench Dataset.
https://huggingface.co/datasets/philschmid/mt-bench
We create a single turn dataset for MT-Bench.
This is similar to Spec decoding benchmark setup in vLLM
https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
""" # noqa: E501
DEFAULT_OUTPUT_LEN = 256 # avg len used in SD bench in vLLM
SUPPORTED_DATASET_PATHS = {
"philschmid/mt-bench",
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = item["turns"][0]
# apply template
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=False,
)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -780,23 +852,27 @@ class AIMODataset(HuggingFaceDataset):
"""
Dataset class for processing a AIMO dataset with reasoning questions.
"""
SUPPORTED_DATASET_PATHS = {
"AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT"
"AI-MO/aimo-validation-aime",
"AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT",
}
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs) -> list:
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs,
) -> list:
sampled_requests = []
dynamic_output = output_len is None
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt, completion = item['problem'], item["solution"]
prompt, completion = item["problem"], item["solution"]
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
@ -804,10 +880,9 @@ class AIMODataset(HuggingFaceDataset):
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(prompt_len,
completion_len,
max_prompt_len=2048,
max_total_len=32000):
if dynamic_output and not is_valid_sequence(
prompt_len, completion_len, max_prompt_len=2048, max_total_len=32000
):
continue
sampled_requests.append(
SampleRequest(
@ -815,11 +890,100 @@ class AIMODataset(HuggingFaceDataset):
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=None,
))
)
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Next Edit Prediction Dataset Implementation
# -----------------------------------------------------------------------------
zeta_prompt = """### Instruction:
You are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.
### User Edits:
{}
### User Excerpt:
{}
### Response:
""" # noqa: E501
def _format_zeta_prompt(
sample: dict, original_start_marker: str = "<|editable_region_start|>"
) -> dict:
"""Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
This function formats examples from the NEP dataset
into prompts and expected outputs. It could be
further extended to support more NEP datasets.
Args:
sample: The dataset sample containing events,
inputs, and outputs.
original_start_marker: The marker indicating the
start of the editable region. Defaults to
"<|editable_region_start|>".
Returns:
A dictionary with the formatted prompts and expected outputs.
"""
events = sample["events"]
input = sample["input"]
output = sample["output"]
prompt = zeta_prompt.format(events, input)
# following the original implementation, extract the focused region
# from the raw output
output_start_index = output.find(original_start_marker)
output_focused_region = output[output_start_index:]
expected_output = output_focused_region
return {"prompt": prompt, "expected_output": expected_output}
class NextEditPredictionDataset(HuggingFaceDataset):
"""
Dataset class for processing a Next Edit Prediction dataset.
"""
SUPPORTED_DATASET_PATHS = {
"zed-industries/zeta",
}
MAPPING_PROMPT_FUNCS = {
"zed-industries/zeta": _format_zeta_prompt,
}
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int, **kwargs):
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(self.dataset_path)
if formatting_prompt_func is None:
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
samples = []
for sample in self.data:
sample = formatting_prompt_func(sample)
samples.append(
SampleRequest(
prompt=sample["prompt"],
prompt_len=len(tokenizer(sample["prompt"]).input_ids),
expected_output_len=len(
tokenizer(sample["expected_output"]).input_ids
),
)
)
if len(samples) >= num_requests:
break
self.maybe_oversample_requests(samples, num_requests)
return samples
# -----------------------------------------------------------------------------
# ASR Dataset Implementation
# -----------------------------------------------------------------------------
@ -842,18 +1006,22 @@ class ASRDataset(HuggingFaceDataset):
| AMI | Meetings | Spontaneous | ihm, sdm |
+----------------+----------------------------------------+--------------------------+-----------------------------+
""" # noqa: E501
""" # noqa: E501
SUPPORTED_DATASET_PATHS = {
"openslr/librispeech_asr", "facebook/voxpopuli", "LIUM/tedlium",
"edinburghcstr/ami", "speechcolab/gigaspeech", "kensho/spgispeech"
"openslr/librispeech_asr",
"facebook/voxpopuli",
"LIUM/tedlium",
"edinburghcstr/ami",
"speechcolab/gigaspeech",
"kensho/spgispeech",
}
DEFAULT_OUTPUT_LEN = 128
IS_MULTIMODAL = True
# TODO Whisper-specific. Abstract interface when more models are supported.
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|>"\
"<|notimestamps|>"
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>"
skip_long_audios: bool = True
def sample(
@ -864,8 +1032,8 @@ class ASRDataset(HuggingFaceDataset):
**kwargs,
) -> list:
import librosa
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests = []
@ -888,10 +1056,14 @@ class ASRDataset(HuggingFaceDataset):
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
))
)
)
if skipped:
logger.warning("%d samples discarded from dataset due to" \
" their length being greater than" \
" what Whisper supports.", skipped)
logger.warning(
"%d samples discarded from dataset due to"
" their length being greater than"
" what Whisper supports.",
skipped,
)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests

View File

@ -11,9 +11,9 @@ from typing import Any, Optional
import numpy as np
import torch
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from tqdm import tqdm
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptType
@ -21,13 +21,14 @@ from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: dict[str, Any]) -> None:
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={"latency": results["latencies"]},
extra_info={k: results[k]
for k in ["avg_latency", "percentiles"]})
extra_info={k: results[k] for k in ["avg_latency", "percentiles"]},
)
if pt_records:
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
@ -42,9 +43,11 @@ def main(args: argparse.Namespace):
# the engine will automatically process the request in multiple batches.
llm = LLM(**dataclasses.asdict(engine_args))
assert llm.llm_engine.model_config.max_model_len >= (
args.input_len +
args.output_len), ("Please ensure that max_model_len is greater than"
" the sum of input_len and output_len.")
args.input_len + args.output_len
), (
"Please ensure that max_model_len is greater than"
" the sum of input_len and output_len."
)
sampling_params = SamplingParams(
n=args.n,
@ -55,18 +58,16 @@ def main(args: argparse.Namespace):
detokenize=not args.disable_detokenize,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_prompts: list[PromptType] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
dummy_prompt_token_ids = np.random.randint(
10000, size=(args.batch_size, args.input_len)
)
dummy_prompts: list[PromptType] = [
{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()
]
def llm_generate():
if not args.use_beam_search:
llm.generate(dummy_prompts,
sampling_params=sampling_params,
use_tqdm=False)
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False)
else:
llm.beam_search(
dummy_prompts,
@ -80,12 +81,13 @@ def main(args: argparse.Namespace):
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir)),
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir)
),
) as p:
llm_generate()
print(p.key_averages().table(sort_by="self_cuda_time_total"))
@ -103,8 +105,9 @@ def main(args: argparse.Namespace):
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = (Path(".") / "vllm_benchmark_result" /
f"latency_result_{time.time()}")
profile_dir = (
Path(".") / "vllm_benchmark_result" / f"latency_result_{time.time()}"
)
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
@ -135,7 +138,8 @@ def main(args: argparse.Namespace):
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the latency of processing a single batch of "
"requests till completion.")
"requests till completion."
)
parser.add_argument("--input-len", type=int, default=32)
parser.add_argument("--output-len", type=int, default=128)
parser.add_argument("--batch-size", type=int, default=8)
@ -152,10 +156,9 @@ if __name__ == "__main__":
default=10,
help="Number of iterations to run for warmup.",
)
parser.add_argument("--num-iters",
type=int,
default=30,
help="Number of iterations to run.")
parser.add_argument(
"--num-iters", type=int, default=30, help="Number of iterations to run."
)
parser.add_argument(
"--profile",
action="store_true",
@ -165,8 +168,10 @@ if __name__ == "__main__":
"--profile-result-dir",
type=str,
default=None,
help=("path to save the pytorch profiler output. Can be visualized "
"with ui.perfetto.dev or Tensorboard."),
help=(
"path to save the pytorch profiler output. Can be visualized "
"with ui.perfetto.dev or Tensorboard."
),
)
parser.add_argument(
"--output-json",
@ -177,8 +182,10 @@ if __name__ == "__main__":
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
)
parser = EngineArgs.add_cli_args(parser)

View File

@ -76,7 +76,7 @@ def repeat_prompts(prompts, repeat_count, mode: str):
- 'random': Shuffle the prompts randomly after repetition.
- 'tile': Repeat the entire prompt list in sequence.
Example: [1, 2, 3] -> [1, 2, 3, 1, 2, 3].
- 'interleave': Repeat each prompt consecutively before moving to
- 'interleave': Repeat each prompt consecutively before moving to
the next. Example: [1, 2, 3] -> [1, 1, 2, 2, 3, 3].
Returns:
@ -86,20 +86,21 @@ def repeat_prompts(prompts, repeat_count, mode: str):
ValueError: If an invalid mode is provided.
"""
print("Repeat mode: ", mode)
if mode == 'random':
if mode == "random":
repeated_prompts = prompts * repeat_count
random.shuffle(repeated_prompts)
return repeated_prompts
elif mode == 'tile':
elif mode == "tile":
return prompts * repeat_count
elif mode == 'interleave':
elif mode == "interleave":
repeated_prompts = []
for prompt in prompts:
repeated_prompts.extend([prompt] * repeat_count)
return repeated_prompts
else:
raise ValueError(f"Invalid mode: {mode}, only support "
"'random', 'tile', 'interleave'")
raise ValueError(
f"Invalid mode: {mode}, only support 'random', 'tile', 'interleave'"
)
def main(args):
@ -109,16 +110,16 @@ def main(args):
# we append the document id at the beginning to avoid any of the document
# being the prefix of other documents
prompts = [
str(i) + ' '.join(['hi'] * args.document_length)
str(i) + " ".join(["hi"] * args.document_length)
for i in range(args.num_documents)
]
prompts = repeat_prompts(prompts, args.repeat_count, mode=args.repeat_mode)
warmup_prompts = [
"This is warm up request " + str(i) + \
' '.join(['hi'] * args.document_length)
for i in range(args.num_documents)]
"This is warm up request " + str(i) + " ".join(["hi"] * args.document_length)
for i in range(args.num_documents)
]
# Create the LLM engine
engine_args = EngineArgs.from_cli_args(args)
@ -142,42 +143,52 @@ def main(args):
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description=
'Benchmark the performance with or without automatic prefix caching.')
description="Benchmark the performance with or "
"without automatic prefix caching."
)
parser.add_argument(
'--document-length',
"--document-length",
type=int,
# Roughly the number of tokens for a system paper,
# excluding images
default=20000,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
help="Range of input lengths for sampling prompts, "
'specified as "min:max" (e.g., "128:256").',
)
parser.add_argument('--num-documents',
type=int,
default=8,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
parser.add_argument(
"--num-documents",
type=int,
default=8,
help="Range of input lengths for sampling prompts, "
'specified as "min:max" (e.g., "128:256").',
)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument("--output-len", type=int, default=10)
parser.add_argument('--repeat-count',
type=int,
default=2,
help='Number of times to repeat each prompt')
parser.add_argument(
"--repeat-count",
type=int,
default=2,
help="Number of times to repeat each prompt",
)
parser.add_argument("--repeat-mode",
type=str,
default='random',
help='The mode to repeat prompts. The supported '
'modes are "random", "tile", and "interleave". '
'See repeat_prompts() in the source code for details.')
parser.add_argument(
"--repeat-mode",
type=str,
default="random",
help="The mode to repeat prompts. The supported "
'modes are "random", "tile", and "interleave". '
"See repeat_prompts() in the source code for details.",
)
parser.add_argument("--shuffle-seed",
type=int,
default=0,
help='Random seed when the repeat mode is "random"')
parser.add_argument(
"--shuffle-seed",
type=int,
default=0,
help='Random seed when the repeat mode is "random"',
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -63,8 +63,7 @@ class Request:
output_len: int
def sample_tokens(tokenizer: PreTrainedTokenizerBase,
length: int) -> list[int]:
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> list[int]:
vocab = tokenizer.get_vocab()
all_special_ids = set(tokenizer.all_special_ids)
@ -91,8 +90,10 @@ def sample_requests_from_dataset(
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
# Shuffle the dataset.
random.shuffle(dataset)
@ -113,8 +114,9 @@ def sample_requests_from_dataset(
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = (len(completion_token_ids)
if fixed_output_len is None else fixed_output_len)
output_len = (
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
)
if min_len <= prompt_len <= max_len:
filtered_requests.append(Request(prompt, prompt_len, output_len))
@ -128,27 +130,27 @@ def sample_requests_from_random(
fixed_output_len: Optional[int],
prefix_len: int,
) -> list[Request]:
requests = []
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
min_len, max_len = input_length_range
for i in range(num_requests):
unique_part_token_ids = sample_tokens(
tokenizer,
random.randint(min_len - prefix_len, max_len - prefix_len))
tokenizer, random.randint(min_len - prefix_len, max_len - prefix_len)
)
prompt_token_ids = prefix_token_ids + unique_part_token_ids
prompt = tokenizer.decode(prompt_token_ids)
prompt_len = len(prompt_token_ids)
assert (min_len <= prompt_len <= max_len
), f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
assert min_len <= prompt_len <= max_len, (
f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
)
requests.append(Request(prompt, prompt_len, fixed_output_len))
return requests
def repeat_and_sort_requests(requests: list[Request],
repeat_count: int,
sort: bool = False) -> list[str]:
def repeat_and_sort_requests(
requests: list[Request], repeat_count: int, sort: bool = False
) -> list[str]:
repeated_requests = requests * repeat_count
if sort:
repeated_requests.sort(key=lambda x: x[1])
@ -159,14 +161,14 @@ def repeat_and_sort_requests(requests: list[Request],
def main(args):
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
input_length_range = tuple(map(int, args.input_length_range.split(':')))
input_length_range = tuple(map(int, args.input_length_range.split(":")))
random.seed(args.seed)
if args.dataset_path is not None:
if args.prefix_len > 0:
raise ValueError("prefix-len is not supported when "
"dataset-path is provided.")
print(f"Start to sample {args.num_prompts} prompts "
f"from {args.dataset_path}")
raise ValueError(
"prefix-len is not supported when dataset-path is provided."
)
print(f"Start to sample {args.num_prompts} prompts from {args.dataset_path}")
filtered_requests = sample_requests_from_dataset(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
@ -196,14 +198,16 @@ def main(args):
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(temperature=0,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize)
sampling_params = SamplingParams(
temperature=0,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize,
)
print("Testing filtered requests")
prompts = repeat_and_sort_requests(filtered_requests,
repeat_count=args.repeat_count,
sort=args.sort)
prompts = repeat_and_sort_requests(
filtered_requests, repeat_count=args.repeat_count, sort=args.sort
)
print("------start generating------")
test_prefix(
@ -215,29 +219,35 @@ def main(args):
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--num-prompts',
type=int,
required=True,
help="Number of the prompts sampled from dataset")
parser.add_argument('--repeat-count',
type=int,
default=1,
help='Number of times to repeat each prompt')
parser.add_argument('--sort',
action='store_true',
help='Sort prompts by input length')
parser.add_argument('--input-length-range',
type=str,
required=True,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
description="Benchmark the performance with or without "
"automatic prefix caching."
)
parser.add_argument(
"--dataset-path", type=str, default=None, help="Path to the dataset."
)
parser.add_argument("--output-len", type=int, default=10)
parser.add_argument(
"--num-prompts",
type=int,
required=True,
help="Number of the prompts sampled from dataset",
)
parser.add_argument(
"--repeat-count",
type=int,
default=1,
help="Number of times to repeat each prompt",
)
parser.add_argument(
"--sort", action="store_true", help="Sort prompts by input length"
)
parser.add_argument(
"--input-length-range",
type=str,
required=True,
help="Range of input lengths for sampling prompts,"
'specified as "min:max" (e.g., "128:256").',
)
parser.add_argument(
"--prefix-len",
type=int,
@ -248,10 +258,12 @@ if __name__ == "__main__":
"when dataset-path is not provided.",
)
parser.add_argument(
'--disable-detokenize',
action='store_true',
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
)
parser = EngineArgs.add_cli_args(parser)

View File

@ -1,5 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark offline prioritization."""
import argparse
import dataclasses
import json
@ -13,7 +14,7 @@ from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
#Select a equi-probable random priority
# Select a equi-probable random priority
def get_random_flag():
return 0 if random.random() < 0.5 else 1
@ -33,8 +34,10 @@ def sample_requests(
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
# Shuffle the dataset.
random.shuffle(dataset)
@ -51,8 +54,9 @@ def sample_requests(
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
output_len = (
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
)
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
@ -74,13 +78,16 @@ def run_vllm(
disable_detokenize: bool = False,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len >= (request[1] + request[2])
for request in requests), (
"Please ensure that max_model_len is greater than the sum of"
" input_len and output_len for all requests.")
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" input_len and output_len for all requests."
)
# Add the requests to the engine.
prompts = []
@ -97,7 +104,8 @@ def run_vllm(
ignore_eos=True,
max_tokens=output_len,
detokenize=not disable_detokenize,
))
)
)
start = time.perf_counter()
llm.generate(prompts, sampling_params, priority=priority, use_tqdm=True)
@ -111,26 +119,33 @@ def main(args: argparse.Namespace):
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
args.tokenizer, trust_remote_code=args.trust_remote_code
)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len,
get_random_flag()) for _ in range(args.num_prompts)]
requests = [
(prompt, args.input_len, args.output_len, get_random_flag())
for _ in range(args.num_prompts)
]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
requests = sample_requests(
args.dataset, args.num_prompts, tokenizer, args.output_len
)
if args.backend == "vllm":
elapsed_time = run_vllm(requests, args.n,
EngineArgs.from_cli_args(args),
args.disable_detokenize)
elapsed_time = run_vllm(
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
for _, prompt_len, output_len, priority in requests)
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
total_num_tokens = sum(
prompt_len + output_len for _, prompt_len, output_len, priority in requests
)
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s"
)
# Output JSON results if specified
if args.output_json:
@ -147,41 +162,44 @@ def main(args: argparse.Namespace):
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=200,
help="Number of prompts to process.")
parser.add_argument(
'--output-json',
"--backend", type=str, choices=["vllm", "hf", "mii"], default="vllm"
)
parser.add_argument(
"--dataset", type=str, default=None, help="Path to the dataset."
)
parser.add_argument(
"--input-len",
type=int,
default=None,
help="Input prompt length for each request",
)
parser.add_argument(
"--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.",
)
parser.add_argument(
"--n", type=int, default=1, help="Number of generated sequences per prompt."
)
parser.add_argument(
"--num-prompts", type=int, default=200, help="Number of prompts to process."
)
parser.add_argument(
"--output-json",
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
help="Path to save the throughput results in JSON format.",
)
parser.add_argument(
'--disable-detokenize',
action='store_true',
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
)
parser = EngineArgs.add_cli_args(parser)

File diff suppressed because it is too large Load Diff

View File

@ -19,6 +19,7 @@ On the client side, run:
--endpoint /generate_stream
to the end of the command above.
"""
import argparse
import asyncio
import copy
@ -36,11 +37,15 @@ from typing import Optional
import datasets
import numpy as np
import pandas as pd
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
RequestFuncOutput)
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
RequestFuncInput,
RequestFuncOutput,
)
try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
@ -52,7 +57,8 @@ except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from vllm.v1.structured_output.backend_xgrammar import (
has_xgrammar_unsupported_json_features)
has_xgrammar_unsupported_json_features,
)
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -98,6 +104,7 @@ class SampleRequest:
prompt_len: The length of the prompt in tokens.
expected_output_len: The expected length of the output in tokens.
"""
prompt: str
prompt_len: int
expected_output_len: int
@ -106,45 +113,45 @@ class SampleRequest:
completion: str = None
def sample_requests(tokenizer: PreTrainedTokenizerBase,
args: argparse.Namespace) -> list[SampleRequest]:
if args.dataset == 'json' or args.dataset == 'json-unique':
def sample_requests(
tokenizer: PreTrainedTokenizerBase, args: argparse.Namespace
) -> list[SampleRequest]:
if args.dataset == "json" or args.dataset == "json-unique":
if args.json_schema_path is None:
dir_path = os.path.dirname(os.path.realpath(__file__))
args.json_schema_path = os.path.join(dir_path,
"structured_schemas",
"structured_schema_1.json")
args.json_schema_path = os.path.join(
dir_path, "structured_schemas", "structured_schema_1.json"
)
json_schemas = []
with open(args.json_schema_path) as f:
schema = json.load(f)
if args.dataset == 'json-unique':
json_schemas = [
copy.deepcopy(schema) for _ in range(args.num_prompts)
]
if args.dataset == "json-unique":
json_schemas = [copy.deepcopy(schema) for _ in range(args.num_prompts)]
for i in range(len(json_schemas)):
json_schemas[i]["properties"][
f"__optional_field_{uuid.uuid4()}"] = {
"type":
"string",
"description":
"An unique optional field to avoid cached schemas"
}
if "properties" not in json_schemas[i]:
json_schemas[i]["properties"] = {}
json_schemas[i]["properties"][f"__optional_field_{uuid.uuid4()}"] = {
"type": "string",
"description": "An unique optional field to avoid cached schemas",
}
else:
json_schemas = [schema] * args.num_prompts
def gen_prompt(index: int):
return f"Generate an example of a user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
return f"Generate an example of a brief user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
def get_schema(index: int):
return json_schemas[index % len(json_schemas)]
requests = [
SampleRequest(prompt=gen_prompt(i),
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
expected_output_len=args.output_len,
schema=get_schema(i),
structure_type=args.structure_type)
SampleRequest(
prompt=gen_prompt(i),
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
expected_output_len=args.output_len,
schema=get_schema(i),
structure_type=args.structure_type,
)
for i in range(args.num_prompts)
]
@ -168,11 +175,13 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type)
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type,
)
for _ in range(args.num_prompts)
]
@ -186,11 +195,13 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=regex,
structure_type=args.structure_type)
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=regex,
structure_type=args.structure_type,
)
for _ in range(args.num_prompts)
]
@ -201,47 +212,55 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
input_len = len(tokenizer(prompt).input_ids)
print(f"Input length of the prompt: {input_len} tokens")
requests = [
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=choice,
structure_type=args.structure_type)
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=choice,
structure_type=args.structure_type,
)
for _ in range(args.num_prompts)
]
elif args.dataset == "xgrammar_bench":
requests: list[SampleRequest] = []
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
split="train")
dataset = datasets.load_dataset("NousResearch/json-mode-eval", split="train")
full_dataset_len = len(dataset)
def _filter_func(item):
import json
schema = json.loads(item["schema"])
return not has_xgrammar_unsupported_json_features(schema)
dataset = dataset.filter(_filter_func)
num_filtered_out = full_dataset_len - len(dataset)
print(f"dataset has {len(dataset)} entries after filtering "
f"out {num_filtered_out} entries with unsupported features")
print(
f"dataset has {len(dataset)} entries after filtering "
f"out {num_filtered_out} entries with unsupported features"
)
len_dataset = len(dataset)
for data_point_idx in range(args.num_prompts):
idx = data_point_idx
while idx >= len_dataset:
idx -= len_dataset
schema = dataset["schema"][idx]
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
tokenize=False)
prompt = tokenizer.apply_chat_template(
dataset["prompt"][idx], tokenize=False, add_generation_prompt=True
)
input_len = len(tokenizer(prompt).input_ids)
completion = dataset["completion"][idx]
requests.append(
SampleRequest(prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type,
completion=completion))
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=args.output_len,
schema=schema,
structure_type=args.structure_type,
completion=completion,
)
)
return requests
@ -273,7 +292,8 @@ async def get_request(
# Calculate scale parameter theta to maintain the desired request_rate.
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}.")
f"A positive burstiness factor is expected, but given {burstiness}."
)
theta = 1.0 / (request_rate * burstiness)
for i, request in enumerate(input_requests):
@ -315,8 +335,8 @@ def calculate_metrics(
# multiple output tokens may be bundled together
# Note : this may inflate the output token count slightly
output_len = len(
tokenizer(outputs[i].generated_text,
add_special_tokens=False).input_ids)
tokenizer(outputs[i].generated_text, add_special_tokens=False).input_ids
)
actual_output_lens.append(output_len)
total_input += input_requests[i].prompt_len
tpot = 0
@ -340,16 +360,19 @@ def calculate_metrics(
if "ttft" in goodput_config_dict:
valid_metrics.append(ttfts)
slo_values.append(goodput_config_dict["ttft"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
slo_values.append(
goodput_config_dict["ttft"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
if "tpot" in goodput_config_dict:
valid_metrics.append(all_tpots)
slo_values.append(goodput_config_dict["tpot"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
slo_values.append(
goodput_config_dict["tpot"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
if "e2el" in goodput_config_dict:
valid_metrics.append(e2els)
slo_values.append(goodput_config_dict["e2el"] /
MILLISECONDS_TO_SECONDS_CONVERSION)
slo_values.append(
goodput_config_dict["e2el"] / MILLISECONDS_TO_SECONDS_CONVERSION
)
for req_metric in zip(*valid_metrics):
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
@ -360,7 +383,8 @@ def calculate_metrics(
warnings.warn(
"All requests failed. This is likely due to a misconfiguration "
"on the benchmark arguments.",
stacklevel=2)
stacklevel=2,
)
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
@ -369,27 +393,31 @@ def calculate_metrics(
request_goodput=good_completed / dur_s,
output_throughput=sum(actual_output_lens) / dur_s,
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
mean_ttft_ms=np.mean(ttfts or 0) *
1000, # ttfts is empty if streaming is not supported by backend
mean_ttft_ms=np.mean(ttfts or 0)
* 1000, # ttfts is empty if streaming is not supported by backend
std_ttft_ms=np.std(ttfts or 0) * 1000,
median_ttft_ms=np.median(ttfts or 0) * 1000,
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
for p in selected_percentiles],
percentiles_ttft_ms=[
(p, np.percentile(ttfts or 0, p) * 1000) for p in selected_percentiles
],
mean_tpot_ms=np.mean(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
for p in selected_percentiles],
percentiles_tpot_ms=[
(p, np.percentile(tpots or 0, p) * 1000) for p in selected_percentiles
],
mean_itl_ms=np.mean(itls or 0) * 1000,
std_itl_ms=np.std(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
for p in selected_percentiles],
percentiles_itl_ms=[
(p, np.percentile(itls or 0, p) * 1000) for p in selected_percentiles
],
mean_e2el_ms=np.mean(e2els or 0) * 1000,
std_e2el_ms=np.std(e2els or 0) * 1000,
median_e2el_ms=np.median(e2els or 0) * 1000,
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
for p in selected_percentiles],
percentiles_e2el_ms=[
(p, np.percentile(e2els or 0, p) * 1000) for p in selected_percentiles
],
)
return metrics, actual_output_lens
@ -411,7 +439,6 @@ async def benchmark(
ignore_eos: bool,
max_concurrency: Optional[int],
structured_output_ratio: float,
structured_output_backend: str,
goodput_config_dict: Optional[dict[str, float]] = None,
):
if backend in ASYNC_REQUEST_FUNCS:
@ -423,18 +450,17 @@ async def benchmark(
extra_body = {}
# Add the schema to the extra_body
extra_body[request.structure_type] = request.schema
# Add the specific structured_output_backend
extra_body["guided_decoding_backend"] = structured_output_backend
return extra_body
print("Starting initial single prompt test run...")
structured_output_req_idx = random.sample(
range(len(input_requests)),
int(len(input_requests) * structured_output_ratio))
range(len(input_requests)), int(len(input_requests) * structured_output_ratio)
)
test_request = input_requests[0]
test_req_extra_body = (prepare_extra_body(test_request)
if 0 in structured_output_req_idx else None)
test_req_extra_body = (
prepare_extra_body(test_request) if 0 in structured_output_req_idx else None
)
test_input = RequestFuncInput(
model=model_id,
prompt=test_request.prompt,
@ -448,7 +474,8 @@ async def benchmark(
if not test_output.success:
raise ValueError(
"Initial test run failed - Please make sure benchmark arguments "
f"are correctly specified. Error: {test_output.error}")
f"are correctly specified. Error: {test_output.error}"
)
else:
print("Initial test run completed. Starting main benchmark run...")
@ -467,10 +494,7 @@ async def benchmark(
if profile_output.success:
print("Profiler started")
if burstiness == 1.0:
distribution = "Poisson process"
else:
distribution = "Gamma distribution"
distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"
print(f"Traffic request rate: {request_rate}")
print(f"Burstiness factor: {burstiness} ({distribution})")
@ -482,24 +506,21 @@ async def benchmark(
# and it will simplify the code in limited_request_func.
# semaphore = (asyncio.Semaphore(max_concurrency)
# if max_concurrency else contextlib.nullcontext())
semaphore = (asyncio.Semaphore(max_concurrency)
if max_concurrency else None)
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
async def limited_request_func(request_func_input, pbar):
if semaphore is None:
return await request_func(request_func_input=request_func_input,
pbar=pbar)
return await request_func(request_func_input=request_func_input, pbar=pbar)
async with semaphore:
return await request_func(request_func_input=request_func_input,
pbar=pbar)
return await request_func(request_func_input=request_func_input, pbar=pbar)
benchmark_start_time = time.perf_counter()
tasks: list[asyncio.Task] = []
expected: list[str] = []
async for i, request in get_request(input_requests, request_rate,
burstiness):
extra_body = prepare_extra_body(
request) if i in structured_output_req_idx else None
async for i, request in get_request(input_requests, request_rate, burstiness):
extra_body = (
prepare_extra_body(request) if i in structured_output_req_idx else None
)
request_func_input = RequestFuncInput(
model=model_id,
prompt=request.prompt,
@ -512,8 +533,9 @@ async def benchmark(
expected.append(request.completion)
tasks.append(
asyncio.create_task(
limited_request_func(request_func_input=request_func_input,
pbar=pbar)))
limited_request_func(request_func_input=request_func_input, pbar=pbar)
)
)
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
@ -545,54 +567,58 @@ async def benchmark(
goodput_config_dict=goodput_config_dict,
)
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
benchmark_duration))
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
print("{:<40} {:<10}".format("Total generated tokens:",
metrics.total_output))
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
metrics.request_throughput))
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
print(
"{:<40} {:<10.2f}".format(
"Request throughput (req/s):", metrics.request_throughput
)
)
if goodput_config_dict:
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
metrics.request_goodput))
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
metrics.output_throughput))
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
metrics.total_token_throughput))
print(
"{:<40} {:<10.2f}".format(
"Request goodput (req/s):", metrics.request_goodput
)
)
print(
"{:<40} {:<10.2f}".format(
"Output token throughput (tok/s):", metrics.output_throughput
)
)
print(
"{:<40} {:<10.2f}".format(
"Total Token throughput (tok/s):", metrics.total_token_throughput
)
)
result = {
"duration":
benchmark_duration,
"completed":
metrics.completed,
"total_input_tokens":
metrics.total_input,
"total_output_tokens":
metrics.total_output,
"request_throughput":
metrics.request_throughput,
"output_throughput":
metrics.output_throughput,
"total_token_throughput":
metrics.total_token_throughput,
"ttft_description":
pd.Series([output.ttft for output in outputs]).describe().to_dict(),
"tpot_description":
pd.Series([output.tpot for output in outputs]).describe().to_dict(),
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"output_throughput": metrics.output_throughput,
"total_token_throughput": metrics.total_token_throughput,
"ttft_description": pd.Series([output.ttft for output in outputs])
.describe()
.to_dict(),
"tpot_description": pd.Series([output.tpot for output in outputs])
.describe()
.to_dict(),
"input_lens": [output.prompt_len for output in outputs],
"output_lens":
actual_output_lens,
"output_lens": actual_output_lens,
"ttfts": [output.ttft for output in outputs],
"itls": [output.itl for output in outputs],
"errors": [output.error for output in outputs],
}
ret = [{
'generated': output.generated_text,
'expected': gt
} for output, gt in zip(outputs, expected)]
ret = [
{"generated": output.generated_text, "expected": gt}
for output, gt in zip(outputs, expected)
]
def process_one_metric(
# E.g., "ttft"
@ -606,29 +632,35 @@ async def benchmark(
# metric.
if metric_attribute_name not in selected_percentile_metrics:
return
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
print("{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
print("{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms")))
print("{s:{c}^{n}}".format(s=metric_header, n=50, c="-"))
print(
"{:<40} {:<10.2f}".format(
f"Mean {metric_name} (ms):",
getattr(metrics, f"mean_{metric_attribute_name}_ms"),
)
)
print(
"{:<40} {:<10.2f}".format(
f"Median {metric_name} (ms):",
getattr(metrics, f"median_{metric_attribute_name}_ms"),
)
)
result[f"mean_{metric_attribute_name}_ms"] = getattr(
metrics, f"mean_{metric_attribute_name}_ms")
metrics, f"mean_{metric_attribute_name}_ms"
)
result[f"median_{metric_attribute_name}_ms"] = getattr(
metrics, f"median_{metric_attribute_name}_ms")
metrics, f"median_{metric_attribute_name}_ms"
)
result[f"std_{metric_attribute_name}_ms"] = getattr(
metrics, f"std_{metric_attribute_name}_ms")
for p, value in getattr(metrics,
f"percentiles_{metric_attribute_name}_ms"):
metrics, f"std_{metric_attribute_name}_ms"
)
for p, value in getattr(metrics, f"percentiles_{metric_attribute_name}_ms"):
p_word = str(int(p)) if int(p) == p else str(p)
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
value))
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", value))
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
process_one_metric("ttft", "TTFT", "Time to First Token")
process_one_metric("tpot", "TPOT",
"Time per Output Token (excl. 1st token)")
process_one_metric("tpot", "TPOT", "Time per Output Token (excl. 1st token)")
process_one_metric("itl", "ITL", "Inter-token Latency")
process_one_metric("e2el", "E2EL", "End-to-end Latency")
@ -638,13 +670,13 @@ async def benchmark(
def evaluate(ret, args):
def _eval_correctness_json(expected, actual):
# extract json string from string using regex
import re
actual = actual.replace('\n', '').replace(' ', '').strip()
actual = actual.replace("\n", "").replace(" ", "").strip()
try:
actual = re.search(r'\{.*\}', actual).group()
actual = re.search(r"\{.*\}", actual).group()
actual = json.loads(actual)
except Exception:
return False
@ -656,28 +688,32 @@ def evaluate(ret, args):
def _eval_correctness_regex(expected, actual):
import re
return re.match(args.regex, actual) is not None
def _eval_correctness(expected, actual):
if args.structure_type == 'guided_json':
if args.structure_type == "guided_json":
return _eval_correctness_json(expected, actual)
elif args.structure_type == 'guided_regex':
elif args.structure_type == "guided_regex":
return _eval_correctness_regex(expected, actual)
elif args.structure_type == 'guided_choice':
elif args.structure_type == "guided_choice":
return _eval_correctness_choice(expected, actual)
else:
return None
scores = []
for res in ret:
score = _eval_correctness(res['expected'], res['generated'])
res['correctness'] = score
score = _eval_correctness(res["expected"], res["generated"])
res["correctness"] = score
scores.append(score)
not_none_scores = [score for score in scores if score is not None]
return (sum(not_none_scores) / len(not_none_scores) *
100) if len(not_none_scores) > 0 else None
return (
(sum(not_none_scores) / len(not_none_scores) * 100)
if len(not_none_scores) > 0
else None
)
def parse_goodput(slo_pairs):
@ -689,9 +725,10 @@ def parse_goodput(slo_pairs):
except ValueError as err:
raise argparse.ArgumentTypeError(
"Invalid format found for service level objectives. "
"Specify service level objectives for goodput as \"KEY:VALUE\" "
'Specify service level objectives for goodput as "KEY:VALUE" '
"pairs, where the key is a metric name, and the value is a "
"number in milliseconds.") from err
"number in milliseconds."
) from err
return goodput_config_dict
@ -705,12 +742,14 @@ def check_goodput_args(args):
raise ValueError(
f"Invalid metric name found, {slo_name}: {slo_val}. "
"The service level objective name should be one of "
f"{str(VALID_NAMES)}. ")
f"{str(VALID_NAMES)}. "
)
if slo_val < 0:
raise ValueError(
f"Invalid value found, {slo_name}: {slo_val}. "
"The service level objective value should be "
"non-negative.")
"non-negative."
)
return goodput_config_dict
@ -736,19 +775,19 @@ def main(args: argparse.Namespace):
tokenizer_mode=args.tokenizer_mode,
)
if args.dataset == 'grammar':
args.structure_type = 'guided_grammar'
elif args.dataset == 'regex':
args.structure_type = 'guided_regex'
elif args.dataset == 'choice':
args.structure_type = 'guided_choice'
if args.dataset == "grammar":
args.structure_type = "guided_grammar"
elif args.dataset == "regex":
args.structure_type = "guided_regex"
elif args.dataset == "choice":
args.structure_type = "guided_choice"
else:
args.structure_type = 'guided_json'
args.structure_type = "guided_json"
if args.no_structured_output:
args.structured_output_ratio = 0
if args.save_results:
result_file_name = f'{args.structured_output_ratio}guided'
result_file_name = f"{args.structured_output_ratio}guided"
result_file_name += f"_{backend}"
result_file_name += f"_{args.request_rate}qps"
result_file_name += f"_{args.model.split('/')[-1]}"
@ -776,37 +815,29 @@ def main(args: argparse.Namespace):
disable_tqdm=args.disable_tqdm,
profile=args.profile,
selected_percentile_metrics=args.percentile_metrics.split(","),
selected_percentiles=[
float(p) for p in args.metric_percentiles.split(",")
],
selected_percentiles=[float(p) for p in args.metric_percentiles.split(",")],
ignore_eos=args.ignore_eos,
max_concurrency=args.max_concurrency,
structured_output_ratio=args.structured_output_ratio,
structured_output_backend=args.structured_output_backend,
goodput_config_dict=goodput_config_dict,
))
)
)
# Save config and results to json
score = evaluate(ret, args)
print("correct_rate(%)", score, '\n')
print("correct_rate(%)", score, "\n")
if args.save_results:
results = {
"backend":
backend,
"model_id":
model_id,
"tokenizer_id":
tokenizer_id,
"num_prompts":
args.num_prompts,
"request_rate":
args.request_rate if args.request_rate < float("inf") else "inf",
"burstiness":
args.burstiness,
"max_concurrency":
args.max_concurrency,
"correct_rate(%)":
score
"backend": backend,
"model_id": model_id,
"tokenizer_id": tokenizer_id,
"num_prompts": args.num_prompts,
"request_rate": args.request_rate
if args.request_rate < float("inf")
else "inf",
"burstiness": args.burstiness,
"max_concurrency": args.max_concurrency,
"correct_rate(%)": score,
}
results = {"outputs": ret, **results, **benchmark_result}
@ -815,13 +846,14 @@ def main(args: argparse.Namespace):
result_file_name = args.result_filename
if args.result_dir:
result_file_name = os.path.join(args.result_dir, result_file_name)
with open(result_file_name, "w", encoding='utf-8') as outfile:
with open(result_file_name, "w", encoding="utf-8") as outfile:
json.dump(results, outfile, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput.")
description="Benchmark the online serving throughput."
)
parser.add_argument(
"--backend",
type=str,
@ -843,16 +875,14 @@ if __name__ == "__main__":
default="/v1/completions",
help="API endpoint.",
)
parser.add_argument("--dataset",
default='json',
choices=[
'json', 'json-unique', 'grammar', 'regex',
'choice', 'xgrammar_bench'
])
parser.add_argument("--json_schema_path",
type=str,
default=None,
help="Path to json schema.")
parser.add_argument(
"--dataset",
default="json",
choices=["json", "json-unique", "grammar", "regex", "choice", "xgrammar_bench"],
)
parser.add_argument(
"--json-schema-path", type=str, default=None, help="Path to json schema."
)
parser.add_argument(
"--max-concurrency",
type=int,
@ -864,7 +894,8 @@ if __name__ == "__main__":
"initiated, this argument will control how many are actually allowed "
"to execute at a time. This means that when used in combination, the "
"actual request rate may be lower than specified with --request-rate, "
"if the server is not processing requests fast enough to keep up.")
"if the server is not processing requests fast enough to keep up.",
)
parser.add_argument(
"--model",
type=str,
@ -874,15 +905,13 @@ if __name__ == "__main__":
parser.add_argument(
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--tokenizer-mode",
type=str,
default="auto",
help=
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
)
parser.add_argument(
"--num-prompts",
@ -959,52 +988,51 @@ if __name__ == "__main__":
"--ignore-eos",
action="store_true",
help="Set ignore_eos flag when sending the benchmark request."
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.")
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.",
)
parser.add_argument(
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-separated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
'Default value is "ttft,tpot,itl".',
)
parser.add_argument(
"--metric-percentiles",
type=str,
default="99",
help="Comma-separated list of percentiles for selected metrics. "
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
'To report 25-th, 50-th, and 75-th percentiles, use "25,50,75". '
'Default value is "99". '
'Use "--percentile-metrics" to select metrics.',
)
parser.add_argument(
"--goodput",
nargs="+",
required=False,
help="Specify service level objectives for goodput as \"KEY:VALUE\" "
help='Specify service level objectives for goodput as "KEY:VALUE" '
"pairs, where the key is a metric name, and the value is in "
"milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, "
'milliseconds. Multiple "KEY:VALUE" pairs can be provided, '
"separated by spaces. Allowed request level metric names are "
"\"ttft\", \"tpot\", \"e2el\". For more context on the definition of "
'"ttft", "tpot", "e2el". For more context on the definition of '
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
"and the blog: https://hao-ai-lab.github.io/blogs/distserve")
"and the blog: https://hao-ai-lab.github.io/blogs/distserve",
)
parser.add_argument("--no-structured-output",
action='store_true',
default=False,
help="Whether to disable JSON decoding or not.")
parser.add_argument("--structured-output-ratio",
type=float,
default=1.0,
help="Ratio of Structured Outputs requests")
parser.add_argument("--structured-output-backend",
type=str,
choices=[
"outlines", "lm-format-enforcer", "xgrammar",
"guidance", "auto"
],
default="auto",
help="Backend to use for structured outputs")
parser.add_argument(
"--no-structured-output",
action="store_true",
default=False,
help="Whether to disable JSON decoding or not.",
)
parser.add_argument(
"--structured-output-ratio",
type=float,
default=1.0,
help="Ratio of Structured Outputs requests",
)
args = parser.parse_args()
main(args)

View File

@ -1,5 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
@ -11,18 +12,25 @@ from typing import Any, Optional, Union
import torch
import uvloop
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
ConversationDataset, InstructCoderDataset,
RandomDataset, SampleRequest, ShareGPTDataset,
SonnetDataset, VisionArenaDataset)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
from benchmark_dataset import (
AIMODataset,
BurstGPTDataset,
ConversationDataset,
InstructCoderDataset,
RandomDataset,
SampleRequest,
ShareGPTDataset,
SonnetDataset,
VisionArenaDataset,
)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
build_async_engine_client_from_engine_args,
)
from vllm.inputs import TextPrompt, TokensPrompt
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
@ -37,23 +45,30 @@ def run_vllm(
disable_detokenize: bool = False,
) -> tuple[float, Optional[list[RequestOutput]]]:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len >= (
request.prompt_len + request.expected_output_len)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests.")
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
# Add the requests to the engine.
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data)
if "prompt_token_ids" in request.prompt else \
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
sampling_params.append(
SamplingParams(
n=n,
@ -62,7 +77,8 @@ def run_vllm(
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
))
)
)
lora_requests: Optional[list[LoRARequest]] = None
if engine_args.enable_lora:
lora_requests = [request.lora_request for request in requests]
@ -72,10 +88,9 @@ def run_vllm(
outputs = None
if not use_beam_search:
start = time.perf_counter()
outputs = llm.generate(prompts,
sampling_params,
lora_request=lora_requests,
use_tqdm=True)
outputs = llm.generate(
prompts, sampling_params, lora_request=lora_requests, use_tqdm=True
)
end = time.perf_counter()
else:
assert lora_requests is None, "BeamSearch API does not support LoRA"
@ -91,30 +106,35 @@ def run_vllm(
beam_width=n,
max_tokens=output_len,
ignore_eos=True,
))
),
)
end = time.perf_counter()
return end - start, outputs
def run_vllm_chat(
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False) -> tuple[float, list[RequestOutput]]:
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> tuple[float, list[RequestOutput]]:
"""
Run vLLM chat benchmark. This function is recommended ONLY for benchmarking
multimodal models as it properly handles multimodal inputs and chat
formatting. For non-multimodal models, use run_vllm() instead.
"""
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len >= (
request.prompt_len + request.expected_output_len)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of "
"prompt_len and expected_output_len for all requests.")
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of "
"prompt_len and expected_output_len for all requests."
)
prompts = []
sampling_params: list[SamplingParams] = []
@ -128,7 +148,8 @@ def run_vllm_chat(
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
))
)
)
start = time.perf_counter()
outputs = llm.chat(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
@ -145,13 +166,17 @@ async def run_vllm_async(
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing) as llm:
engine_args, disable_frontend_multiprocessing
) as llm:
model_config = await llm.get_model_config()
assert all(
llm.model_config.max_model_len >= (request.prompt_len +
request.expected_output_len)
for request in requests), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests.")
model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
# Add the requests to the engine.
prompts: list[Union[TextPrompt, TokensPrompt]] = []
@ -159,11 +184,15 @@ async def run_vllm_async(
lora_requests: list[Optional[LoRARequest]] = []
for request in requests:
prompts.append(
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data)
if "prompt_token_ids" in request.prompt else \
TextPrompt(prompt=request.prompt,
multi_modal_data=request.multi_modal_data))
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
sampling_params.append(
SamplingParams(
n=n,
@ -172,17 +201,16 @@ async def run_vllm_async(
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
))
)
)
lora_requests.append(request.lora_request)
generators = []
start = time.perf_counter()
for i, (prompt, sp,
lr) in enumerate(zip(prompts, sampling_params, lora_requests)):
generator = llm.generate(prompt,
sp,
lora_request=lr,
request_id=f"test{i}")
for i, (prompt, sp, lr) in enumerate(
zip(prompts, sampling_params, lora_requests)
):
generator = llm.generate(prompt, sp, lora_request=lr, request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
@ -201,7 +229,8 @@ def run_hf(
disable_detokenize: bool = False,
) -> float:
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code
)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
@ -224,14 +253,15 @@ def run_hf(
# Check if we can add more requests to the batch.
next_prompt_len = requests[i + 1].prompt_len
next_output_len = requests[i + 1].expected_output_len
if (max(max_prompt_len, next_prompt_len) +
max(max_output_len, next_output_len)) <= 2048:
if (
max(max_prompt_len, next_prompt_len)
+ max(max_output_len, next_output_len)
) <= 2048:
# We can add more requests to the batch.
continue
# Generate the sequences.
input_ids = tokenizer(batch, return_tensors="pt",
padding=True).input_ids
input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=True,
@ -261,6 +291,7 @@ def run_mii(
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [request.prompt for request in requests]
@ -272,8 +303,9 @@ def run_mii(
return end - start
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: dict[str, Any]) -> None:
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={
@ -281,9 +313,9 @@ def save_to_pytorch_benchmark_format(args: argparse.Namespace,
"tokens_per_second": [results["tokens_per_second"]],
},
extra_info={
k: results[k]
for k in ["elapsed_time", "num_requests", "total_num_tokens"]
})
k: results[k] for k in ["elapsed_time", "num_requests", "total_num_tokens"]
},
)
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
@ -315,7 +347,8 @@ def get_requests(args, tokenizer):
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_name == "sonnet":
assert tokenizer.chat_template or tokenizer.default_chat_template, (
"Tokenizer/model must have chat template for sonnet dataset.")
"Tokenizer/model must have chat template for sonnet dataset."
)
dataset_cls = SonnetDataset
sample_kwargs["prefix_len"] = args.prefix_len
sample_kwargs["return_prompt_formatted"] = True
@ -324,21 +357,21 @@ def get_requests(args, tokenizer):
elif args.dataset_name == "hf":
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = VisionArenaDataset
common_kwargs['dataset_subset'] = None
common_kwargs['dataset_split'] = "train"
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = InstructCoderDataset
common_kwargs['dataset_split'] = "train"
common_kwargs["dataset_split"] = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = ConversationDataset
common_kwargs['dataset_subset'] = args.hf_subset
common_kwargs['dataset_split'] = args.hf_split
common_kwargs["dataset_subset"] = args.hf_subset
common_kwargs["dataset_split"] = args.hf_split
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_cls = AIMODataset
common_kwargs['dataset_subset'] = None
common_kwargs['dataset_split'] = "train"
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
else:
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
# Remove None values
@ -353,10 +386,10 @@ def main(args: argparse.Namespace):
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
args.tokenizer, trust_remote_code=args.trust_remote_code
)
requests = get_requests(args, tokenizer)
is_multi_modal = any(request.multi_modal_data is not None
for request in requests)
is_multi_modal = any(request.multi_modal_data is not None for request in requests)
request_outputs: Optional[list[RequestOutput]] = None
if args.backend == "vllm":
if args.async_engine:
@ -367,23 +400,34 @@ def main(args: argparse.Namespace):
AsyncEngineArgs.from_cli_args(args),
args.disable_frontend_multiprocessing,
args.disable_detokenize,
))
)
)
else:
elapsed_time, request_outputs = run_vllm(
requests, args.n, EngineArgs.from_cli_args(args),
args.disable_detokenize)
requests,
args.n,
EngineArgs.from_cli_args(args),
args.disable_detokenize,
)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.hf_max_batch_size, args.trust_remote_code,
args.disable_detokenize)
elapsed_time = run_hf(
requests,
args.model,
tokenizer,
args.n,
args.hf_max_batch_size,
args.trust_remote_code,
args.disable_detokenize,
)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
elapsed_time = run_mii(
requests, args.model, args.tensor_parallel_size, args.output_len
)
elif args.backend == "vllm-chat":
elapsed_time, request_outputs = run_vllm_chat(
requests, args.n, EngineArgs.from_cli_args(args),
args.disable_detokenize)
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
)
else:
raise ValueError(f"Unknown backend: {args.backend}")
@ -395,28 +439,31 @@ def main(args: argparse.Namespace):
for ro in request_outputs:
if not isinstance(ro, RequestOutput):
continue
total_prompt_tokens += len(
ro.prompt_token_ids) if ro.prompt_token_ids else 0
total_output_tokens += sum(
len(o.token_ids) for o in ro.outputs if o)
total_prompt_tokens += (
len(ro.prompt_token_ids) if ro.prompt_token_ids else 0
)
total_output_tokens += sum(len(o.token_ids) for o in ro.outputs if o)
total_num_tokens = total_prompt_tokens + total_output_tokens
else:
total_num_tokens = sum(r.prompt_len + r.expected_output_len
for r in requests)
total_num_tokens = sum(r.prompt_len + r.expected_output_len for r in requests)
total_output_tokens = sum(r.expected_output_len for r in requests)
total_prompt_tokens = total_num_tokens - total_output_tokens
if is_multi_modal and args.backend != "vllm-chat":
print("\033[91mWARNING\033[0m: Multi-modal request with "
f"{args.backend} backend detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details.")
print(
"\033[91mWARNING\033[0m: Multi-modal request with "
f"{args.backend} backend detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details."
)
# TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
# vllm-chat backend counts the image tokens now
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s")
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s"
)
print(f"Total num prompt tokens: {total_prompt_tokens}")
print(f"Total num output tokens: {total_output_tokens}")
@ -444,7 +491,8 @@ def validate_args(args):
warnings.warn(
"The '--dataset' argument will be deprecated in the next release. "
"Please use '--dataset-name' and '--dataset-path' instead.",
stacklevel=2)
stacklevel=2,
)
args.dataset_path = args.dataset
if not getattr(args, "tokenizer", None):
@ -457,9 +505,8 @@ def validate_args(args):
# === Dataset Configuration ===
if not args.dataset and not args.dataset_path:
print(
"When dataset path is not set, it will default to random dataset")
args.dataset_name = 'random'
print("When dataset path is not set, it will default to random dataset")
args.dataset_name = "random"
if args.input_len is None:
raise ValueError("input_len must be provided for a random dataset")
@ -467,41 +514,55 @@ def validate_args(args):
# --hf-subset and --hf-split: only used
# when dataset_name is 'hf'
if args.dataset_name != "hf" and (
getattr(args, "hf_subset", None) is not None
or getattr(args, "hf_split", None) is not None):
warnings.warn("--hf-subset and --hf-split will be ignored \
getattr(args, "hf_subset", None) is not None
or getattr(args, "hf_split", None) is not None
):
warnings.warn(
"--hf-subset and --hf-split will be ignored \
since --dataset-name is not 'hf'.",
stacklevel=2)
stacklevel=2,
)
elif args.dataset_name == "hf":
if args.dataset_path in (
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
| ConversationDataset.SUPPORTED_DATASET_PATHS):
assert args.backend == "vllm-chat", f"{args.dataset_path} needs to use vllm-chat as the backend." #noqa: E501
elif args.dataset_path in (InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS):
assert args.backend == "vllm", f"{args.dataset_path} needs to use vllm as the backend." #noqa: E501
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
| ConversationDataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm-chat", (
f"{args.dataset_path} needs to use vllm-chat as the backend."
) # noqa: E501
elif args.dataset_path in (
InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm", (
f"{args.dataset_path} needs to use vllm as the backend."
) # noqa: E501
else:
raise ValueError(
f"{args.dataset_path} is not supported by hf dataset.")
raise ValueError(f"{args.dataset_path} is not supported by hf dataset.")
# --random-range-ratio: only used when dataset_name is 'random'
if args.dataset_name != 'random' and args.random_range_ratio is not None:
warnings.warn("--random-range-ratio will be ignored since \
if args.dataset_name != "random" and args.random_range_ratio is not None:
warnings.warn(
"--random-range-ratio will be ignored since \
--dataset-name is not 'random'.",
stacklevel=2)
stacklevel=2,
)
# --prefix-len: only used when dataset_name is 'random', 'sonnet', or not
# set.
if args.dataset_name not in {"random", "sonnet", None
} and args.prefix_len is not None:
warnings.warn("--prefix-len will be ignored since --dataset-name\
if (
args.dataset_name not in {"random", "sonnet", None}
and args.prefix_len is not None
):
warnings.warn(
"--prefix-len will be ignored since --dataset-name\
is not 'random', 'sonnet', or not set.",
stacklevel=2)
stacklevel=2,
)
# === LoRA Settings ===
if getattr(args, "enable_lora", False) and args.backend != "vllm":
raise ValueError(
"LoRA benchmarking is only supported for vLLM backend")
raise ValueError("LoRA benchmarking is only supported for vLLM backend")
if getattr(args, "enable_lora", False) and args.lora_path is None:
raise ValueError("LoRA path must be provided when enable_lora is True")
@ -511,8 +572,10 @@ def validate_args(args):
if args.backend != "hf" and args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.backend in {"hf", "mii"} and getattr(args, "quantization",
None) is not None:
if (
args.backend in {"hf", "mii"}
and getattr(args, "quantization", None) is not None
):
raise ValueError("Quantization is only for vLLM backend.")
if args.backend == "mii" and args.dtype != "auto":
@ -520,29 +583,32 @@ def validate_args(args):
if args.backend == "mii" and args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.backend == "mii" and args.tokenizer != args.model:
raise ValueError(
"Tokenizer must be the same as the model for MII backend.")
raise ValueError("Tokenizer must be the same as the model for MII backend.")
# --data-parallel is not supported currently.
# https://github.com/vllm-project/vllm/issues/16222
if args.data_parallel_size > 1:
raise ValueError(
"Data parallel is not supported in offline benchmark, \
please use benchmark serving instead")
please use benchmark serving instead"
)
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii", "vllm-chat"],
default="vllm")
parser.add_argument(
"--backend",
type=str,
choices=["vllm", "hf", "mii", "vllm-chat"],
default="vllm",
)
parser.add_argument(
"--dataset-name",
type=str,
choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
help="Name of the dataset to benchmark on.",
default="sharegpt")
default="sharegpt",
)
parser.add_argument(
"--dataset",
type=str,
@ -550,57 +616,70 @@ if __name__ == "__main__":
help="Path to the ShareGPT dataset, will be deprecated in\
the next release. The dataset is expected to "
"be a json in form of list[dict[..., conversations: "
"list[dict[..., value: <prompt_or_response>]]]]")
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.")
"list[dict[..., value: <prompt_or_response>]]]]",
)
parser.add_argument(
'--output-json',
"--dataset-path", type=str, default=None, help="Path to the dataset"
)
parser.add_argument(
"--input-len",
type=int,
default=None,
help="Input prompt length for each request",
)
parser.add_argument(
"--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.",
)
parser.add_argument(
"--n", type=int, default=1, help="Number of generated sequences per prompt."
)
parser.add_argument(
"--num-prompts", type=int, default=1000, help="Number of prompts to process."
)
parser.add_argument(
"--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.",
)
parser.add_argument(
"--output-json",
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser.add_argument("--async-engine",
action='store_true',
default=False,
help="Use vLLM async engine rather than LLM class.")
parser.add_argument("--disable-frontend-multiprocessing",
action='store_true',
default=False,
help="Disable decoupled async engine frontend.")
help="Path to save the throughput results in JSON format.",
)
parser.add_argument(
"--async-engine",
action="store_true",
default=False,
help="Use vLLM async engine rather than LLM class.",
)
parser.add_argument(
"--disable-frontend-multiprocessing",
action="store_true",
default=False,
help="Disable decoupled async engine frontend.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=("Do not detokenize the response (i.e. do not include "
"detokenization time in the measurement)"))
help=(
"Do not detokenize the response (i.e. do not include "
"detokenization time in the measurement)"
),
)
# LoRA
parser.add_argument(
"--lora-path",
type=str,
default=None,
help="Path to the lora adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.")
help="Path to the LoRA adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.",
)
parser.add_argument(
"--prefix-len",
type=int,
@ -614,7 +693,8 @@ if __name__ == "__main__":
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
"controls how much of the input is fixed lines versus "
"random lines, but the total input length remains approximately "
"input_len tokens.")
"input_len tokens.",
)
# random dataset
parser.add_argument(
"--random-range-ratio",
@ -628,14 +708,12 @@ if __name__ == "__main__":
)
# hf dtaset
parser.add_argument("--hf-subset",
type=str,
default=None,
help="Subset of the HF dataset.")
parser.add_argument("--hf-split",
type=str,
default=None,
help="Split of the HF dataset.")
parser.add_argument(
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
)
parser.add_argument(
"--hf-split", type=str, default=None, help="Split of the HF dataset."
)
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -7,9 +7,9 @@ import os
from typing import Any
def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
metrics: dict[str, list],
extra_info: dict[str, Any]) -> list:
def convert_to_pytorch_benchmark_format(
args: argparse.Namespace, metrics: dict[str, list], extra_info: dict[str, Any]
) -> list:
"""
Save the benchmark results in the format used by PyTorch OSS benchmark with
on metric per record
@ -37,12 +37,12 @@ def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
},
}
tp = record["benchmark"]["extra_info"]["args"].get(
"tensor_parallel_size")
tp = record["benchmark"]["extra_info"]["args"].get("tensor_parallel_size")
# Save tensor_parallel_size parameter if it's part of the metadata
if not tp and "tensor_parallel_size" in extra_info:
record["benchmark"]["extra_info"]["args"][
"tensor_parallel_size"] = extra_info["tensor_parallel_size"]
record["benchmark"]["extra_info"]["args"]["tensor_parallel_size"] = (
extra_info["tensor_parallel_size"]
)
records.append(record)
@ -50,7 +50,6 @@ def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
class InfEncoder(json.JSONEncoder):
def clear_inf(self, o: Any):
if isinstance(o, dict):
return {k: self.clear_inf(v) for k, v in o.items()}

View File

@ -23,8 +23,9 @@ DEFAULT_TP_SIZES = [1]
# bench
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
**kwargs) -> TMeasurement:
def bench_fn(
label: str, sub_label: str, description: str, fn: Callable, *args, **kwargs
) -> TMeasurement:
min_run_time = 1
globals = {
@ -41,16 +42,18 @@ def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
).blocked_autorange(min_run_time=min_run_time)
def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
def bench_int8(
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
) -> Iterable[TMeasurement]:
assert dtype == torch.int8
b_compressed, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(
a, b_compressed, e, scale_a, scale_b, torch.bfloat16
)
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
if not torch.allclose(out, out_ref):
@ -63,54 +66,107 @@ def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
timers = []
# pytorch impl - bfloat16
timers.append(
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16),
b.to(dtype=torch.bfloat16)))
bench_fn(
label,
sub_label,
"pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm,
a.to(dtype=torch.bfloat16),
b.to(dtype=torch.bfloat16),
)
)
# pytorch impl - float16
timers.append(
bench_fn(label, sub_label,
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))
bench_fn(
label,
sub_label,
"pytorch_fp16_fp16_fp16_matmul-no-scales",
torch.mm,
a.to(dtype=torch.float16),
b.to(dtype=torch.float16),
)
)
# cutlass impl
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_mm",
ops.cutlass_scaled_mm,
a,
b,
scale_a,
scale_b,
torch.bfloat16,
)
)
# cutlass with bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
bias))
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm,
a,
b,
scale_a,
scale_b,
torch.bfloat16,
bias,
)
)
# cutlass sparse impl
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16))
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
)
)
# cutlass sparse with bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16, bias))
bench_fn(
label,
sub_label,
"cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
bias,
)
)
return timers
def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
def bench_fp8(
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
) -> Iterable[TMeasurement]:
assert dtype == torch.float8_e4m3fn
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n,
k)
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b,
torch.bfloat16)
out = ops.cutlass_scaled_sparse_mm(
a, b_compressed, e, scale_a, scale_b, torch.bfloat16
)
out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16)
if not torch.allclose(out, out_ref):
@ -124,97 +180,165 @@ def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
# pytorch impl w. bf16
timers.append(
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda")))
bench_fn(
label,
sub_label,
"pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm,
a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda"),
)
)
# pytorch impl: bf16 output, without fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16))
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
)
)
# pytorch impl: bf16 output, with fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True))
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True,
)
)
# pytorch impl: fp16 output, without fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16))
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
)
)
# pytorch impl: fp16 output, with fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
use_fast_accum=True))
bench_fn(
label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
use_fast_accum=True,
)
)
# cutlass impl: bf16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_bf16_scaled_mm",
ops.cutlass_scaled_mm,
a,
b,
scale_a,
scale_b,
torch.bfloat16,
)
)
# cutlass impl: bf16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16))
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
)
)
# cutlass impl: fp16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.float16))
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_fp16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.float16,
)
)
# cutlass impl: bf16 output, with bias
timers.append(
bench_fn(label, sub_label,
"cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.bfloat16, bias))
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.bfloat16,
bias,
)
)
# cutlass impl: fp16 output, with bias
timers.append(
bench_fn(label, sub_label,
"cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a,
scale_b, torch.float16, bias.to(dtype=torch.float16)))
bench_fn(
label,
sub_label,
"cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm,
a,
b_compressed,
e,
scale_a,
scale_b,
torch.float16,
bias.to(dtype=torch.float16),
)
)
return timers
def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
def bench(
dtype: torch.dtype, m: int, k: int, n: int, label: str, sub_label: str
) -> Iterable[TMeasurement]:
if dtype == torch.int8:
return bench_int8(dtype, m, k, n, label, sub_label)
if dtype == torch.float8_e4m3fn:
@ -228,12 +352,12 @@ def print_timers(timers: Iterable[TMeasurement]):
compare.print()
def run(dtype: torch.dtype,
MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
def run(
dtype: torch.dtype, MKNs: Iterable[tuple[int, int, int]]
) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})")
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm", f"MKN=({m}x{k}x{n})")
print_timers(timers)
results.extend(timers)
@ -241,10 +365,12 @@ def run(dtype: torch.dtype,
# output makers
def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None):
def make_output(
data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None,
):
print(f"== All Results {base_description} ====")
print_timers(data)
@ -258,8 +384,7 @@ def make_output(data: Iterable[TMeasurement],
def run_square_bench(args):
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, MKNs)
@ -319,7 +444,7 @@ def run_model_bench(args):
pkl.dump(all_data, f)
if __name__ == '__main__':
if __name__ == "__main__":
def to_torch_dtype(dt):
if dt == "int8":
@ -344,12 +469,15 @@ Benchmark Cutlass GEMM.
Output:
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter)
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument("--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']")
parser.add_argument(
"--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']",
)
subparsers = parser.add_subparsers(dest="cmd")
square_parser = subparsers.add_parser("square_bench")
@ -368,19 +496,19 @@ Benchmark Cutlass GEMM.
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument("--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys())
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
model_parser.add_argument(
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
)
model_parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()

View File

@ -10,8 +10,9 @@ import vllm._custom_ops as ops
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
dtype=torch.float8_e4m3fn
)
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
@ -26,10 +27,11 @@ def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.float16)
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
def make_rand_tensors(
dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device="cuda") * 5
b = torch.randn((n, k), device="cuda").t() * 5
if dtype == torch.int8:
return to_int8(a), to_int8(b)
@ -49,9 +51,7 @@ def prune_to_2_4(tensor):
# Create binary mask
mask = torch.zeros_like(reshaped)
mask.scatter_(dim=1,
index=indices,
src=torch.ones_like(indices, dtype=mask.dtype))
mask.scatter_(dim=1, index=indices, src=torch.ones_like(indices, dtype=mask.dtype))
# Apply mask and reshape back
pruned = reshaped * mask
@ -62,10 +62,11 @@ def prune_to_2_4(tensor):
return pruned.reshape(original_shape)
def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
k: int) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
def make_rand_sparse_tensors(
dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device="cuda") * 5
b = torch.randn((n, k), device="cuda").t() * 5
b = prune_to_2_4(b.t()).t()
@ -86,9 +87,9 @@ def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
return b_compressed, e, a, b
def make_n_rand_sparse_tensors(num_tensors: int, dtype: torch.dtype,
m: int, n: int, k: int) -> \
tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
def make_n_rand_sparse_tensors(
num_tensors: int, dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
ABs = []
for _ in range(num_tensors):
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)

View File

@ -16,7 +16,8 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul)
w8a8_block_fp8_matmul,
)
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
@ -25,8 +26,9 @@ DEFAULT_TP_SIZES = [1]
# bench
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
**kwargs) -> TMeasurement:
def bench_fn(
label: str, sub_label: str, description: str, fn: Callable, *args, **kwargs
) -> TMeasurement:
min_run_time = 1
globals = {
@ -44,45 +46,48 @@ def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
def bench_int8(
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
"""Benchmark INT8-based kernels."""
assert dtype == torch.int8
a, b = make_rand_tensors(torch.int8, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
azp = torch.zeros((m, ), device="cuda", dtype=torch.int32)
azp_adj = torch.zeros((n, ), device="cuda", dtype=torch.int32)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
azp = torch.zeros((m,), device="cuda", dtype=torch.int32)
azp_adj = torch.zeros((n,), device="cuda", dtype=torch.int32)
bench_fns = {
"pytorch_bf16_bf16_bf16_matmul-no-scales":
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales":
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
"cutlass_i8_i8_bf16_scaled_mm":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
"cutlass_i8_i8_bf16_scaled_mm_bias":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
bias),
"cutlass_i8_i8_bf16_scaled_mm_azp":
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
bfloat16, azp_adj),
"cutlass_i8_i8_bf16_scaled_mm_azp_bias":
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
bfloat16, azp_adj, None, bias),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt":
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
bfloat16, azp_adj, azp),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias":
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
bfloat16, azp_adj, azp, bias),
"pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.float16), b.to(dtype=torch.float16)
),
"cutlass_i8_i8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16
),
"cutlass_i8_i8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16, bias
),
"cutlass_i8_i8_bf16_scaled_mm_azp": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj
),
"cutlass_i8_i8_bf16_scaled_mm_azp_bias": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, None, bias
),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, azp
),
"cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias": lambda: ops.cutlass_scaled_mm_azp(
a, b, scale_a, scale_b, torch.bfloat16, azp_adj, azp, bias
),
}
timers = []
@ -96,73 +101,73 @@ def bench_int8(
def bench_fp8(
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
"""Benchmark FP8-based kernels."""
assert dtype == torch.float8_e4m3fn
a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k)
a_cont = a.contiguous()
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
block_scale_a = torch.rand((m, k // 128),
device="cuda",
dtype=torch.float32)
block_scale_b = torch.rand((k // 128, n // 128),
device="cuda",
dtype=torch.float32)
def ceil_div(x: int, y: int) -> int:
return (x + y - 1) // y
block_scale_a = torch.rand(
(m, ceil_div(k, 128)), device="cuda", dtype=torch.float32
)
block_scale_b = torch.rand(
ceil_div(k, 128), ceil_div(n, 128), device="cuda", dtype=torch.float32
)
block_scale_a_M_major = block_scale_a.t().contiguous().t()
block_scale_b_K_major = block_scale_b.t().contiguous().t()
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
bias = torch.zeros((n,), device="cuda", dtype=torch.bfloat16)
print(m, k, n)
bench_fns = {
"pytorch_bf16_bf16_bf16_matmul-no-scales":
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales":
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
"pytorch_fp8_fp8_fp16_scaled_mm":
lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.float16),
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum":
lambda: torch._scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.float16,
use_fast_accum=True),
"pytorch_fp8_fp8_bf16_scaled_mm":
lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.bfloat16),
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum":
lambda: torch._scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True),
"cutlass_fp8_fp8_bf16_scaled_mm":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
"cutlass_fp8_fp8_fp16_scaled_mm":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16),
"cutlass_fp8_fp8_bf16_scaled_mm_bias":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
bias),
"cutlass_fp8_fp8_fp16_scaled_mm_bias":
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16,
bias.to(dtype=torch.float16)),
"triton_fp8_fp8_fp16_scaled_mm_blockwise":
lambda: w8a8_block_fp8_matmul(a_cont, b.t(), block_scale_a,
block_scale_b.t(), (128, 128)),
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise":
lambda: ops.cutlass_scaled_mm(a, b, block_scale_a_M_major,
block_scale_b_K_major, torch.float16),
"pytorch_bf16_bf16_bf16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
),
"pytorch_fp16_fp16_fp16_matmul-no-scales": lambda: torch.mm(
a.to(dtype=torch.float16), b.to(dtype=torch.float16)
),
"pytorch_fp8_fp8_fp16_scaled_mm": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.float16
),
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.float16, use_fast_accum=True
),
"pytorch_fp8_fp8_bf16_scaled_mm": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.bfloat16
),
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum": lambda: torch._scaled_mm(
a, b, scale_a, scale_b, out_dtype=torch.bfloat16, use_fast_accum=True
),
"cutlass_fp8_fp8_bf16_scaled_mm": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16
),
"cutlass_fp8_fp8_fp16_scaled_mm": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16
),
"cutlass_fp8_fp8_bf16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.bfloat16, bias
),
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
),
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
),
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
a, b, block_scale_a_M_major, block_scale_b_K_major, torch.float16
),
}
timers = []
@ -175,13 +180,15 @@ def bench_fp8(
return timers
def bench(dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
def bench(
dtype: torch.dtype,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
if dtype == torch.int8:
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
if dtype == torch.float8_e4m3fn:
@ -195,27 +202,33 @@ def print_timers(timers: Iterable[TMeasurement]):
compare.print()
def run(dtype: torch.dtype,
MKNs: Iterable[tuple[int, int, int]],
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
def run(
dtype: torch.dtype,
MKNs: Iterable[tuple[int, int, int]],
bench_kernels: Optional[list[str]] = None,
) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype,
m,
k,
n,
f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})",
bench_kernels=bench_kernels)
timers = bench(
dtype,
m,
k,
n,
f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})",
bench_kernels=bench_kernels,
)
print_timers(timers)
results.extend(timers)
return results
def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None):
def make_output(
data: Iterable[TMeasurement],
MKNs: Iterable[tuple[int, int, int]],
base_description: str,
timestamp=None,
):
print(f"== All Results {base_description} ====")
print_timers(data)
@ -226,8 +239,7 @@ def make_output(data: Iterable[TMeasurement],
def run_square_bench(args):
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
make_output(data, MKNs, f"square_bench-{args.dtype}")
@ -285,7 +297,7 @@ def run_model_bench(args):
pkl.dump(all_data, f)
if __name__ == '__main__':
if __name__ == "__main__":
def to_torch_dtype(dt):
if dt == "int8":
@ -310,19 +322,21 @@ Benchmark Cutlass GEMM.
Output:
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter)
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument("--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']")
parser.add_argument(
"--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']",
)
parser.add_argument(
"--kernels",
nargs="+",
type=str,
default=None,
help=
"Exact names of the kernels to benchmark. If not set, runs all kernels."
help="Exact names of the kernels to benchmark. If not set, runs all kernels.",
)
subparsers = parser.add_subparsers(dest="cmd")
@ -343,19 +357,19 @@ Benchmark Cutlass GEMM.
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument("--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys())
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
model_parser.add_argument(
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
)
model_parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()

View File

@ -42,4 +42,4 @@ WEIGHT_SHAPES = {
([8192, 57344], 1),
([28672, 8192], 0),
],
}
}

View File

@ -12,39 +12,37 @@ app = Quart(__name__)
async def forward_request(url, data):
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
async with session.post(url=url, json=data,
headers=headers) as response:
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
async with session.post(url=url, json=data, headers=headers) as response:
if response.status == 200:
# if response.headers.get('Transfer-Encoding') == 'chunked':
if True:
async for chunk_bytes in response.content.iter_chunked(
1024):
async for chunk_bytes in response.content.iter_chunked(1024):
yield chunk_bytes
else:
content = await response.read()
yield content
@app.route('/v1/completions', methods=['POST'])
@app.route("/v1/completions", methods=["POST"])
async def handle_request():
try:
original_request_data = await request.get_json()
prefill_request = original_request_data.copy()
# change max_tokens = 1 to let it only do prefill
prefill_request['max_tokens'] = 1
prefill_request["max_tokens"] = 1
# finish prefill
async for _ in forward_request('http://localhost:8100/v1/completions',
prefill_request):
async for _ in forward_request(
"http://localhost:8100/v1/completions", prefill_request
):
continue
# return decode
generator = forward_request('http://localhost:8200/v1/completions',
original_request_data)
generator = forward_request(
"http://localhost:8200/v1/completions", original_request_data
)
response = await make_response(generator)
response.timeout = None
@ -53,11 +51,12 @@ async def handle_request():
except Exception as e:
import sys
import traceback
exc_info = sys.exc_info()
print("Error occurred in disagg prefill proxy server")
print(e)
print("".join(traceback.format_exception(*exc_info)))
if __name__ == '__main__':
if __name__ == "__main__":
app.run(port=8000)

View File

@ -8,7 +8,6 @@ from aiohttp import web
class RoundRobinProxy:
def __init__(self, target_ports):
self.target_ports = target_ports
self.port_cycle = itertools.cycle(self.target_ports)
@ -21,14 +20,15 @@ class RoundRobinProxy:
try:
# Forward the request
async with session.request(
method=request.method,
url=target_url,
headers=request.headers,
data=request.content,
method=request.method,
url=target_url,
headers=request.headers,
data=request.content,
) as response:
# Start sending the response
resp = web.StreamResponse(status=response.status,
headers=response.headers)
resp = web.StreamResponse(
status=response.status, headers=response.headers
)
await resp.prepare(request)
# Stream the response content
@ -45,11 +45,11 @@ class RoundRobinProxy:
async def main():
proxy = RoundRobinProxy([8100, 8200])
app = web.Application()
app.router.add_route('*', '/{path:.*}', proxy.handle_request)
app.router.add_route("*", "/{path:.*}", proxy.handle_request)
runner = web.AppRunner(app)
await runner.setup()
site = web.TCPSite(runner, 'localhost', 8000)
site = web.TCPSite(runner, "localhost", 8000)
await site.start()
print("Proxy server started on http://localhost:8000")
@ -58,5 +58,5 @@ async def main():
await asyncio.Event().wait()
if __name__ == '__main__':
if __name__ == "__main__":
asyncio.run(main())

View File

@ -6,43 +6,41 @@ import matplotlib.pyplot as plt
import pandas as pd
if __name__ == "__main__":
data = []
for name in ['disagg_prefill', 'chunked_prefill']:
for name in ["disagg_prefill", "chunked_prefill"]:
for qps in [2, 4, 6, 8]:
with open(f"results/{name}-qps-{qps}.json") as f:
x = json.load(f)
x['name'] = name
x['qps'] = qps
x["name"] = name
x["qps"] = qps
data.append(x)
df = pd.DataFrame.from_dict(data)
dis_df = df[df['name'] == 'disagg_prefill']
chu_df = df[df['name'] == 'chunked_prefill']
dis_df = df[df["name"] == "disagg_prefill"]
chu_df = df[df["name"] == "chunked_prefill"]
plt.style.use('bmh')
plt.rcParams['font.size'] = 20
plt.style.use("bmh")
plt.rcParams["font.size"] = 20
for key in [
'mean_ttft_ms', 'median_ttft_ms', 'p99_ttft_ms', 'mean_itl_ms',
'median_itl_ms', 'p99_itl_ms'
"mean_ttft_ms",
"median_ttft_ms",
"p99_ttft_ms",
"mean_itl_ms",
"median_itl_ms",
"p99_itl_ms",
]:
fig, ax = plt.subplots(figsize=(11, 7))
plt.plot(dis_df['qps'],
dis_df[key],
label='disagg_prefill',
marker='o',
linewidth=4)
plt.plot(chu_df['qps'],
chu_df[key],
label='chunked_prefill',
marker='o',
linewidth=4)
plt.plot(
dis_df["qps"], dis_df[key], label="disagg_prefill", marker="o", linewidth=4
)
plt.plot(
chu_df["qps"], chu_df[key], label="chunked_prefill", marker="o", linewidth=4
)
ax.legend()
ax.set_xlabel('QPS')
ax.set_xlabel("QPS")
ax.set_ylabel(key)
ax.set_ylim(bottom=0)
fig.savefig(f'results/{key}.png')
fig.savefig(f"results/{key}.png")
plt.close(fig)

View File

@ -24,10 +24,12 @@ class bench_params_t:
dtype: torch.dtype
def description(self):
return (f'N {self.num_tokens} '
f'x D {self.hidden_size} '
f'x R {self.add_residual} '
f'x DT {self.dtype}')
return (
f"N {self.num_tokens} "
f"x D {self.hidden_size} "
f"x R {self.add_residual} "
f"x DT {self.dtype}"
)
def get_bench_params() -> list[bench_params_t]:
@ -38,15 +40,19 @@ def get_bench_params() -> list[bench_params_t]:
DTYPES = [torch.bfloat16, torch.float]
combinations = product(NUM_TOKENS, HIDDEN_SIZES, ADD_RESIDUAL, DTYPES)
bench_params = list(map(lambda x: \
bench_params_t(x[0], x[1], x[2], x[3]), combinations))
bench_params = list(
map(lambda x: bench_params_t(x[0], x[1], x[2], x[3]), combinations)
)
return bench_params
# Reference impls
def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype):
def unfused_int8_impl(
rms_norm_layer: RMSNorm,
x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype,
):
# Norm
torch_out = None
if residual is None:
@ -58,9 +64,12 @@ def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
torch_out, _, _ = ops.scaled_int8_quant(torch_out)
def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype):
def unfused_fp8_impl(
rms_norm_layer: RMSNorm,
x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype,
):
# Norm
torch_out = None
if residual is None:
@ -73,22 +82,27 @@ def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor,
def fused_impl(
rms_norm_layer: RMSNorm, # this stores the weights
x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype):
out, _ = ops.rms_norm_dynamic_per_token_quant(x,
rms_norm_layer.weight,
1e-6,
quant_dtype,
residual=residual)
rms_norm_layer: RMSNorm, # this stores the weights
x: torch.Tensor,
residual: Optional[torch.Tensor],
quant_dtype: torch.dtype,
):
out, _ = ops.rms_norm_dynamic_per_token_quant(
x, rms_norm_layer.weight, 1e-6, quant_dtype, residual=residual
)
# Bench functions
def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor,
quant_dtype: torch.dtype, label: str, sub_label: str,
fn: Callable, description: str) -> TMeasurement:
def bench_fn(
rms_norm_layer: RMSNorm,
x: torch.Tensor,
residual: torch.Tensor,
quant_dtype: torch.dtype,
label: str,
sub_label: str,
fn: Callable,
description: str,
) -> TMeasurement:
min_run_time = 1
globals = {
@ -106,43 +120,81 @@ def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor,
description=description,
).blocked_autorange(min_run_time=min_run_time)
def bench(params: bench_params_t, label: str, sub_label: str) \
-> Iterable[TMeasurement]:
def bench(params: bench_params_t, label: str, sub_label: str) -> Iterable[TMeasurement]:
# Make inputs
layer = RMSNorm(params.hidden_size, 1e-6).to(dtype=params.dtype)
# Make weights
layer.weight.data.normal_(mean=1.0, std=0.1)
# Make inputs
scale = 1 / params.hidden_size
x = torch.randn(params.num_tokens,
params.hidden_size,
dtype=params.dtype,
device='cuda') * scale
residual = (torch.randn_like(x) * scale).to(device='cuda') \
if params.add_residual else None
x = (
torch.randn(
params.num_tokens, params.hidden_size, dtype=params.dtype, device="cuda"
)
* scale
)
residual = (
(torch.randn_like(x) * scale).to(device="cuda") if params.add_residual else None
)
timers = []
# unfused int8 impl.
timers.append(
bench_fn(layer, x, residual, torch.int8, label, sub_label,
unfused_int8_impl, "unfused_int8_impl"))
bench_fn(
layer,
x,
residual,
torch.int8,
label,
sub_label,
unfused_int8_impl,
"unfused_int8_impl",
)
)
# unfused fp8 impl.
timers.append(
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
unfused_fp8_impl, "unfused_fp8_impl"))
bench_fn(
layer,
x,
residual,
torch.float8_e4m3fn,
label,
sub_label,
unfused_fp8_impl,
"unfused_fp8_impl",
)
)
# fused int8 impl.
timers.append(
bench_fn(layer, x, residual, torch.int8, label, sub_label, fused_impl,
"fused_int8_impl"))
bench_fn(
layer,
x,
residual,
torch.int8,
label,
sub_label,
fused_impl,
"fused_int8_impl",
)
)
# fused fp8 impl.
timers.append(
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label,
fused_impl, "fused_fp8_impl"))
bench_fn(
layer,
x,
residual,
torch.float8_e4m3fn,
label,
sub_label,
fused_impl,
"fused_fp8_impl",
)
)
print_timers(timers)
@ -157,13 +209,12 @@ def print_timers(timers: Iterable[TMeasurement]):
def main():
torch.set_default_device('cuda')
torch.set_default_device("cuda")
bench_params = get_bench_params()
timers = []
for bp in tqdm(bench_params):
timers.extend(
bench(bp, "rms-norm-dynamic-per-token-quant", bp.description()))
timers.extend(bench(bp, "rms-norm-dynamic-per-token-quant", bp.description()))
print_timers(timers)
# pickle all the results
@ -172,5 +223,5 @@ def main():
pkl.dump(timers, f)
if __name__ == '__main__':
if __name__ == "__main__":
main()

View File

@ -9,32 +9,39 @@ import torch.nn.functional as F
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.aqlm import (
dequantize_weight, generic_dequantize_gemm, get_int_dtype,
optimized_dequantize_gemm)
dequantize_weight,
generic_dequantize_gemm,
get_int_dtype,
optimized_dequantize_gemm,
)
from vllm.utils import FlexibleArgumentParser
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def torch_mult(
input: torch.Tensor, # [..., in_features]
weights: torch.Tensor,
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
# [..., in_features]
input: torch.Tensor,
weights: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
) -> torch.Tensor:
output = F.linear(input, weights)
return output
def dequant_out_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
if bias is None:
@ -46,40 +53,42 @@ def dequant_out_scale(
flattened_output *= b_scales
return flattened_output.view(orig_shape)
else:
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_weight_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
b_scales = scales.view(scales.shape[:-3] + (-1, )).expand(
-1, weights.shape[1])
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
weights *= b_scales
return F.linear(input, weights, bias)
def dequant_no_scale(
input: torch.Tensor, # [..., in_features]
codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks]
codebooks: torch.
Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales: torch.Tensor, # [num_out_groups, 1, 1, 1]
# [..., in_features]
input: torch.Tensor,
# [num_out_groups, num_in_groups, num_codebooks]
codes: torch.IntTensor,
# [num_codebooks, codebook_size, out_group_size, in_group_size]
codebooks: torch.Tensor,
# [num_out_groups, 1, 1, 1]
scales: torch.Tensor,
output_partition_sizes: torch.IntTensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
return F.linear(input, weights, bias)
@ -89,23 +98,26 @@ def dequant_no_scale(
# the generic pytorch version.
# Just visual comparison.
def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
n = int(parts.sum().item())
device = torch.device('cuda:0')
device = torch.device("cuda:0")
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codes = torch.randint(
-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device,
)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
codebooks = torch.randn(
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device,
)
count = 0
for index in range(16):
@ -138,24 +150,25 @@ def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
def main():
parser = FlexibleArgumentParser(description="Benchmark aqlm performance.")
# Add arguments
parser.add_argument("--nbooks",
type=int,
default=1,
help="Number of codebooks (default: 1)")
parser.add_argument("--bits",
type=int,
default=16,
help="Number of bits per code element (default: 16)")
parser.add_argument(
"--nbooks", type=int, default=1, help="Number of codebooks (default: 1)"
)
parser.add_argument(
"--bits",
type=int,
default=16,
help="Number of bits per code element (default: 16)",
)
parser.add_argument(
"--test",
type=bool,
default=False,
help="Run the decompression/dequant tester rather than benchmarking "
"(default: False)")
"(default: False)",
)
# Parse the arguments
args = parser.parse_args()
@ -165,7 +178,7 @@ def main():
bits = args.bits
if args.test:
dequant_test(4096, torch.tensor((4096, )), nbooks, bits)
dequant_test(4096, torch.tensor((4096,)), nbooks, bits)
return
# Otherwise, benchmark.
@ -184,31 +197,54 @@ def main():
with open(filename, "w") as f:
sys.stdout = f
print('m | k | n | n parts', end='')
print("m | k | n | n parts", end="")
for method in methods:
print(f" | {method.__name__.replace('_', ' ')} (µs)", end='')
print('')
print(f" | {method.__name__.replace('_', ' ')} (µs)", end="")
print("")
# These are reasonable prefill sizes.
ksandpartions = ((4096, (4096, 4096, 4096)), (4096, (4096, )),
(4096, (11008, 11008)), (11008, (4096, )))
ksandpartions = (
(4096, (4096, 4096, 4096)),
(4096, (4096,)),
(4096, (11008, 11008)),
(11008, (4096,)),
)
# reasonable ranges for m.
for m in [
1, 2, 4, 8, 10, 12, 14, 16, 24, 32, 48, 52, 56, 64, 96, 112,
128, 256, 512, 1024, 1536, 2048, 3072, 4096
1,
2,
4,
8,
10,
12,
14,
16,
24,
32,
48,
52,
56,
64,
96,
112,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]:
print(f'{m}', file=sys.__stdout__)
print(f"{m}", file=sys.__stdout__)
for ksp in ksandpartions:
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits,
methods)
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits, methods)
sys.stdout = sys.__stdout__
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int,
methods):
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, methods):
# I didn't see visible improvements from increasing these, but feel free :)
num_warmup_trials = 1
num_trials = 1
@ -229,7 +265,7 @@ def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int,
)
n = parts.sum().item()
print(f'{m} | {k} | {n} | {parts.tolist()}', end='')
print(f"{m} | {k} | {n} | {parts.tolist()}", end="")
for method in methods:
best_time_us = 1e20
@ -249,32 +285,36 @@ def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int,
if kernel_dur_us < best_time_us:
best_time_us = kernel_dur_us
print(f' | {kernel_dur_us:.0f}', end='')
print(f" | {kernel_dur_us:.0f}", end="")
print('')
print("")
def run_timing(num_calls: int, m: int, k: int, parts: torch.Tensor,
nbooks: int, bits: int, method) -> float:
def run_timing(
num_calls: int, m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, method
) -> float:
n = int(parts.sum().item())
device = torch.device('cuda:0')
device = torch.device("cuda:0")
input = torch.randn((1, m, k), dtype=torch.float16, device=device)
code_range = (1 << bits) // 2
ingroups = 8
codes = torch.randint(-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device)
codes = torch.randint(
-code_range,
code_range,
size=(n, k // ingroups, nbooks),
dtype=get_int_dtype(bits),
device=device,
)
codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device)
codebooks = torch.randn(
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
dtype=torch.float16,
device=device,
)
scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device)

View File

@ -3,27 +3,33 @@
# Licensed under the MIT License.
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
MINIMUM_BITBLAS_VERSION)
MINIMUM_BITBLAS_VERSION,
)
try:
import bitblas
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
raise ImportError("bitblas version is wrong. Please "
f"install bitblas>={MINIMUM_BITBLAS_VERSION}")
raise ImportError(
"bitblas version is wrong. Please "
f"install bitblas>={MINIMUM_BITBLAS_VERSION}"
)
except ImportError as e:
bitblas_import_exception = e
raise ValueError("Trying to use the bitblas backend, but could not import"
f"with the following error: {bitblas_import_exception}. "
"Please install bitblas through the following command: "
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
) from bitblas_import_exception
raise ValueError(
"Trying to use the bitblas backend, but could not import"
f"with the following error: {bitblas_import_exception}. "
"Please install bitblas through the following command: "
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
) from bitblas_import_exception
from bitblas import Matmul, MatmulConfig, auto_detect_nvidia_target
from vllm.utils import FlexibleArgumentParser
parser = FlexibleArgumentParser(
description="Benchmark BitBLAS int4 on a specific target.")
description="Benchmark BitBLAS int4 on a specific target."
)
# Add arguments to the parser
parser.add_argument(
@ -32,10 +38,9 @@ parser.add_argument(
default=auto_detect_nvidia_target(),
help="Specify the target device for benchmarking.",
)
parser.add_argument("--group_size",
type=int,
default=None,
help="Group size for grouped quantization.")
parser.add_argument(
"--group_size", type=int, default=None, help="Group size for grouped quantization."
)
parser.add_argument(
"--A_dtype",
type=str,
@ -82,17 +87,17 @@ parser.add_argument(
choices=["nt", "nn"],
help="Matrix layout, 'nt' for non-transpose A and transpose W.",
)
parser.add_argument("--with_bias",
action="store_true",
help="Include bias in the benchmark.")
parser.add_argument(
"--with_bias", action="store_true", help="Include bias in the benchmark."
)
parser.add_argument(
"--with_scaling",
action="store_true",
help="Include scaling factor in the quantization.",
)
parser.add_argument("--with_zeros",
action="store_true",
help="Include zeros in the quantization.")
parser.add_argument(
"--with_zeros", action="store_true", help="Include zeros in the quantization."
)
parser.add_argument(
"--zeros_mode",
type=str,
@ -170,8 +175,7 @@ shapes = [
]
# Build test shapes with all the shared arguments
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args))
for shape in shapes]
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args)) for shape in shapes]
benchmark_sets = []
benchmark_sets.extend(test_shapes)
@ -206,12 +210,12 @@ for config_key, values in benchmark_results.items():
func_name = args_split[0]
input_args_str = "-".join(args_split[1:])
col_widths[0] = max(col_widths[0], len(func_name) + 2, len(headers[0]) + 2)
col_widths[1] = max(col_widths[1],
len(input_args_str) + 2,
len(headers[1]) + 2)
col_widths[2] = max(col_widths[2],
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
len(headers[2]) + 2)
col_widths[1] = max(col_widths[1], len(input_args_str) + 2, len(headers[1]) + 2)
col_widths[2] = max(
col_widths[2],
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
len(headers[2]) + 2,
)
# break only if you want to measure widths from a single example;
# otherwise, let it loop over all items.
@ -232,5 +236,6 @@ for config_key, values in benchmark_results.items():
f"{values['BitBLAS_top20_latency']:.3f} ms",
]
row_str = "".join(
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)])
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)]
)
print(row_str)

View File

@ -0,0 +1,489 @@
# SPDX-License-Identifier: Apache-2.0
"""
Benchmark the performance of the cutlass_moe_fp4 kernel vs the triton_moe
kernel. The cutlass_moe_fp4 kernel takes in fp4 quantized weights and 16-bit
activations. The triton_moe kernel takes in fp8 weights(tensor scaled to fp8)
and 16-bit activations.
"""
import nvtx
import torch
import torch.utils.benchmark as benchmark
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
from vllm.scalar_type import scalar_types
from vllm.utils import FlexibleArgumentParser
WEIGHT_SHAPES_MOE = {
"nvidia/DeepSeek-R1-FP4": [
[256, 8, 2048, 7168],
],
}
DEFAULT_MODELS = [
"nvidia/DeepSeek-R1-FP4",
]
DEFAULT_BATCH_SIZES = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
DEFAULT_TP_SIZES = [1]
PER_ACT_TOKEN_OPTS = [False]
PER_OUT_CH_OPTS = [False]
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max
def to_fp8(tensor: torch.Tensor):
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
dtype=torch.float8_e4m3fn
)
def bench_run(
results: list[benchmark.Measurement],
model: str,
num_experts: int,
topk: int,
per_act_token: bool,
per_out_ch: bool,
mkn: tuple[int, int, int],
):
label = "NVFP4 Blockscaled CUTLASS MOE vs FP8 Tensor Scaled Triton"
sub_label = (
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, MKN=({})".format(
model, num_experts, topk, per_act_token, per_out_ch, mkn
)
)
print(f"Testing: {sub_label}")
(m, k, n) = mkn
dtype = torch.half
device = "cuda"
a = torch.randn((m, k), device=device, dtype=dtype) / 10
w1 = torch.randn((num_experts, 2 * n, k), device=device, dtype=dtype) / 10
w2 = torch.randn((num_experts, k, n), device=device, dtype=dtype) / 10
_, a_fp8_scale = ops.scaled_fp8_quant(a)
w1_fp8q = torch.empty(
(num_experts, 2 * n, k), device=device, dtype=torch.float8_e4m3fn
)
w2_fp8q = torch.empty((num_experts, k, n), device=device, dtype=torch.float8_e4m3fn)
w1_fp8scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
w2_fp8scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
for expert in range(num_experts):
w1_fp8q[expert], w1_fp8scale[expert] = ops.scaled_fp8_quant(w1[expert])
w2_fp8q[expert], w2_fp8scale[expert] = ops.scaled_fp8_quant(w2[expert])
w1_fp8q_notransp = w1_fp8q.clone()
w2_fp8q_notransp = w2_fp8q.clone()
w1_fp8q = w1_fp8q.transpose(1, 2)
w2_fp8q = w2_fp8q.transpose(1, 2)
score = torch.randn((m, num_experts), device=device, dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
quant_blocksize = 16
w1_blockscale = torch.empty(
(num_experts, 2 * n, k // quant_blocksize),
device=device,
dtype=torch.float8_e4m3fn,
)
w2_blockscale = torch.empty(
(num_experts, k, n // quant_blocksize), device=device, dtype=torch.float8_e4m3fn
)
# n_b_scales = 2 * n if per_out_ch else 1
# k_b_scales = k if per_out_ch else 1
w1_fp4 = torch.empty((num_experts, 2 * n, k // 2), device=device, dtype=torch.uint8)
w2_fp4 = torch.empty((num_experts, k, n // 2), device=device, dtype=torch.uint8)
w1_gs = torch.empty((num_experts,), device=device, dtype=torch.float32)
w2_gs = torch.empty((num_experts,), device=device, dtype=torch.float32)
a1_gs = torch.ones((num_experts,), device=device, dtype=torch.float32)
a2_gs = torch.ones((num_experts,), device=device, dtype=torch.float32)
for expert in range(num_experts):
w1_e = w1[expert]
w2_e = w2[expert]
w1_amax = torch.abs(w1_e).max().to(torch.float32)
w2_amax = torch.abs(w2_e).max().to(torch.float32)
w1_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w1_amax
w2_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w2_amax
w1_fp4[expert], w1_blockscale[expert] = ops.scaled_fp4_quant(
w1_e, w1_gs[expert]
)
w2_fp4[expert], w2_blockscale[expert] = ops.scaled_fp4_quant(
w2_e, w2_gs[expert]
)
def run_triton_moe(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a_fp8_scale: torch.Tensor,
num_repeats: int,
):
for _ in range(num_repeats):
fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_fp8_scale,
)
def run_cutlass_moe_fp4(
a: torch.Tensor,
w1_fp4: torch.Tensor,
w2_fp4: torch.Tensor,
w1_blockscale: torch.Tensor,
w2_blockscale: torch.Tensor,
w1_gs: torch.Tensor,
w2_gs: torch.Tensor,
a1_gs: torch.Tensor,
a2_gs: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
m: int,
n: int,
k: int,
e: int,
device: torch.device,
num_repeats: int,
):
for _ in range(num_repeats):
with nvtx.annotate("cutlass_moe_fp4", color="green"):
cutlass_moe_fp4(
a=a,
a1_gscale=a1_gs,
a2_gscale=a2_gs,
w1_fp4=w1_fp4,
w1_blockscale=w1_blockscale,
w1_alphas=w1_gs,
w2_fp4=w2_fp4,
w2_blockscale=w2_blockscale,
w2_alphas=w2_gs,
topk_weights=topk_weights,
topk_ids=topk_ids,
m=m,
n=n,
k=k,
e=num_experts,
device=device,
)
def run_cutlass_from_graph(
a: torch.Tensor,
a1_gscale: torch.Tensor,
w1_fp4: torch.Tensor,
w1_blockscale: torch.Tensor,
w1_alphas: torch.Tensor,
a2_gscale: torch.Tensor,
w2_fp4: torch.Tensor,
w2_blockscale: torch.Tensor,
w2_alphas: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
m: int,
n: int,
k: int,
e: int,
device: torch.device,
):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
return cutlass_moe_fp4(
a=a,
a1_gscale=a1_gs,
w1_fp4=w1_fp4,
w1_blockscale=w1_blockscale,
w1_alphas=w1_alphas,
a2_gscale=a2_gs,
w2_fp4=w2_fp4,
w2_blockscale=w2_blockscale,
w2_alphas=w2_alphas,
topk_weights=topk_weights,
topk_ids=topk_ids,
m=m,
n=n,
k=k,
e=num_experts,
device=device,
)
def run_triton_from_graph(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a_fp8_scale: torch.Tensor,
):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
return fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_fp8_scale,
)
def replay_graph(graph, num_repeats):
for _ in range(num_repeats):
graph.replay()
torch.cuda.synchronize()
cutlass_stream = torch.cuda.Stream()
cutlass_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
run_cutlass_from_graph(
a=a,
a1_gscale=a1_gs,
w1_fp4=w1_fp4,
w1_blockscale=w1_blockscale,
w1_alphas=w1_gs,
a2_gscale=a2_gs,
w2_fp4=w2_fp4,
w2_blockscale=w2_blockscale,
w2_alphas=w2_gs,
topk_weights=topk_weights,
topk_ids=topk_ids,
m=m,
n=n,
k=k,
e=num_experts,
device=device,
)
torch.cuda.synchronize()
triton_stream = torch.cuda.Stream()
triton_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(triton_graph, stream=triton_stream):
run_triton_from_graph(
a,
w1_fp8q_notransp,
w2_fp8q_notransp,
topk_weights,
topk_ids,
w1_fp8scale,
w2_fp8scale,
a_fp8_scale,
)
torch.cuda.synchronize()
min_run_time = 5
num_warmup = 5
num_runs = 25
globals = {
# Baseline params
"w1": w1,
"w2": w2,
"score": score,
"topk": topk,
"w1_fp8q_notransp": w1_fp8q_notransp,
"w2_fp8q_notransp": w2_fp8q_notransp,
"w1_fp8scale": w1_fp8scale,
"w2_fp8scale": w2_fp8scale,
"a_fp8_scale": a_fp8_scale,
# Cutlass params
"a": a,
"a1_gscale": a1_gs,
"w1_fp4": w1_fp4,
"w1_blockscale": w1_blockscale,
"w1_alphas": w1_gs,
"a2_gscale": a2_gs,
"w2_fp4": w2_fp4,
"w2_blockscale": w2_blockscale,
"w2_alphas": w2_gs,
"topk_weights": topk_weights,
"topk_ids": topk_ids,
"m": m,
"n": n,
"k": k,
"e": num_experts,
"device": device,
# cuda graph params
"cutlass_graph": cutlass_graph,
"triton_graph": triton_graph,
# Gen params
"num_runs": num_runs,
# Kernels
"run_triton_moe": run_triton_moe,
"run_cutlass_moe_fp4": run_cutlass_moe_fp4,
"replay_graph": replay_graph,
}
# Warmup
run_triton_moe(
a,
w1_fp8q_notransp,
w2_fp8q_notransp,
topk_weights,
topk_ids,
w1_fp8scale,
w2_fp8scale,
a_fp8_scale,
num_warmup,
)
results.append(
benchmark.Timer(
stmt="run_triton_moe(a, w1_fp8q_notransp, w2_fp8q_notransp, topk_weights, topk_ids, w1_fp8scale, w2_fp8scale, a_fp8_scale, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="triton_moe",
).blocked_autorange(min_run_time=min_run_time)
)
# Warmup
replay_graph(triton_graph, num_warmup)
results.append(
benchmark.Timer(
stmt="replay_graph(triton_graph, num_runs)",
globals=globals,
label=label,
sub_label=sub_label,
description="triton_moe_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time)
)
# Warmup
run_cutlass_moe_fp4(
a,
w1_fp4,
w2_fp4,
w1_blockscale,
w2_blockscale,
w1_gs,
w2_gs,
a1_gs,
a2_gs,
topk_weights,
topk_ids,
m,
n,
k,
num_experts,
device,
num_warmup,
)
results.append(
benchmark.Timer(
stmt="run_cutlass_moe_fp4(a, w1_fp4, w2_fp4, w1_blockscale, w2_blockscale, w1_alphas, w2_alphas, a1_gscale, a2_gscale, topk_weights, topk_ids, m, n, k, e, device, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="cutlass_moe_fp4",
).blocked_autorange(min_run_time=min_run_time)
)
# Warmup
replay_graph(cutlass_graph, num_warmup)
results.append(
benchmark.Timer(
stmt="replay_graph(cutlass_graph, num_runs)",
globals=globals,
label=label,
sub_label=sub_label,
description="cutlass_moe_fp4_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time)
)
def main(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
results: list[benchmark.Measurement] = []
for model in args.models:
for tp in args.tp_sizes:
for layer in WEIGHT_SHAPES_MOE[model]:
num_experts = layer[0]
topk = layer[1]
size_k = layer[2]
size_n = layer[3] // tp
if len(args.limit_k) > 0 and size_k not in args.limit_k:
continue
if len(args.limit_n) > 0 and size_n not in args.limit_n:
continue
for per_act_token in PER_ACT_TOKEN_OPTS:
for per_out_ch in PER_OUT_CH_OPTS:
for size_m in args.batch_sizes:
mkn = (size_m, size_k, size_n)
bench_run(
results,
model,
num_experts,
topk,
per_act_token,
per_out_ch,
mkn,
)
compare = benchmark.Compare(results)
compare.print()
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark NVFP4 CUTLASS MOE across specified models/shapes/batches"
)
parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES_MOE.keys(),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument("--limit-num-groups", nargs="+", type=int, default=[])
parser.add_argument("--limit-per-act-token", nargs="+", type=int, default=[])
parser.add_argument("--limit-per-out-ch", nargs="+", type=int, default=[])
args = parser.parse_args()
main(args)

View File

@ -6,14 +6,18 @@ from benchmark_shapes import WEIGHT_SHAPES_MOE
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.fused_moe import (cutlass_moe_fp8,
fused_experts,
fused_topk)
from vllm.model_executor.layers.fused_moe.fused_moe import (
cutlass_moe_fp8,
fused_experts,
fused_topk,
)
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = [
"nm-testing/Mixtral-8x7B-Instruct-v0.1", "nm-testing/deepseekv2-lite",
"ibm-granite/granite-3.0-1b-a400m", "ibm-granite/granite-3.0-3b-a800m"
"nm-testing/Mixtral-8x7B-Instruct-v0.1",
"nm-testing/deepseekv2-lite",
"ibm-granite/granite-3.0-1b-a400m",
"ibm-granite/granite-3.0-3b-a800m",
]
DEFAULT_BATCH_SIZES = [1, 4, 8, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1]
@ -24,19 +28,27 @@ PER_OUT_CH_OPTS = [False]
def to_fp8(tensor: torch.Tensor):
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
dtype=torch.float8_e4m3fn
)
def bench_run(results: list[benchmark.Measurement], model: str,
num_experts: int, topk: int, per_act_token: bool,
per_out_ch: bool, mkn: tuple[int, int, int]):
def bench_run(
results: list[benchmark.Measurement],
model: str,
num_experts: int,
topk: int,
per_act_token: bool,
per_out_ch: bool,
mkn: tuple[int, int, int],
):
label = "Quant Matmul"
sub_label = (
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, "
"MKN=({})".format(model, num_experts, topk, per_act_token, per_out_ch,
mkn))
"{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, MKN=({})".format(
model, num_experts, topk, per_act_token, per_out_ch, mkn
)
)
print(f"Testing: {sub_label}")
@ -50,35 +62,17 @@ def bench_run(results: list[benchmark.Measurement], model: str,
_, a_scale = ops.scaled_fp8_quant(a)
w1_q = torch.empty((num_experts, 2 * n, k),
device="cuda",
dtype=torch.float8_e4m3fn)
w2_q = torch.empty((num_experts, k, n),
device="cuda",
dtype=torch.float8_e4m3fn)
w1_scale = torch.empty((num_experts, 1, 1),
device="cuda",
dtype=torch.float32)
w2_scale = torch.empty((num_experts, 1, 1),
device="cuda",
dtype=torch.float32)
w1_q = torch.empty(
(num_experts, 2 * n, k), device="cuda", dtype=torch.float8_e4m3fn
)
w2_q = torch.empty((num_experts, k, n), device="cuda", dtype=torch.float8_e4m3fn)
w1_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
w2_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
ab_strides1 = torch.full((num_experts, ),
k,
device="cuda",
dtype=torch.int64)
c_strides1 = torch.full((num_experts, ),
2 * n,
device="cuda",
dtype=torch.int64)
ab_strides2 = torch.full((num_experts, ),
n,
device="cuda",
dtype=torch.int64)
c_strides2 = torch.full((num_experts, ),
k,
device="cuda",
dtype=torch.int64)
ab_strides1 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((num_experts,), 2 * n, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((num_experts,), n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
for expert in range(num_experts):
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(w1[expert])
@ -90,82 +84,121 @@ def bench_run(results: list[benchmark.Measurement], model: str,
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
topk_weights, topk_ids, token_expert_indices = fused_topk(
a, score, topk, renormalize=False
)
def run_triton_moe(a: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
a_scale: torch.Tensor, num_repeats: int):
def run_triton_moe(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a_scale: torch.Tensor,
num_repeats: int,
):
for _ in range(num_repeats):
fused_experts(a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale)
fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale,
)
def run_cutlass_moe(a: torch.Tensor, a_scale: torch.Tensor,
w1: torch.Tensor, w2: torch.Tensor,
w1_scale: torch.Tensor, w2_scale: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
ab_strides2: torch.Tensor, c_strides2: torch.Tensor,
num_repeats: int):
def run_cutlass_moe(
a: torch.Tensor,
a_scale: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
c_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides2: torch.Tensor,
num_repeats: int,
):
for _ in range(num_repeats):
cutlass_moe_fp8(a,
w1,
w2,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale)
cutlass_moe_fp8(
a,
w1,
w2,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale,
)
def run_cutlass_from_graph(
a: torch.Tensor, a_scale: torch.Tensor, w1_q: torch.Tensor,
w2_q: torch.Tensor, w1_scale: torch.Tensor, w2_scale: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
ab_strides2: torch.Tensor, c_strides2: torch.Tensor):
a: torch.Tensor,
a_scale: torch.Tensor,
w1_q: torch.Tensor,
w2_q: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
c_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides2: torch.Tensor,
):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(
pipeline_parallel_size=1))):
return cutlass_moe_fp8(a,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale)
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
return cutlass_moe_fp8(
a,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale,
)
def run_triton_from_graph(a: torch.Tensor, w1: torch.Tensor,
w2: torch.Tensor, topk_weights: torch.Tensor,
topk_ids: torch.Tensor, w1_scale: torch.Tensor,
w2_scale: torch.Tensor, a_scale: torch.Tensor):
def run_triton_from_graph(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a_scale: torch.Tensor,
):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(
pipeline_parallel_size=1))):
return fused_experts(a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale)
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
return fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8=True,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a_scale,
)
def replay_graph(graph, num_repeats):
for _ in range(num_repeats):
@ -175,16 +208,35 @@ def bench_run(results: list[benchmark.Measurement], model: str,
cutlass_stream = torch.cuda.Stream()
cutlass_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
run_cutlass_from_graph(a, a_scale, w1_q, w2_q, w1_scale, w2_scale,
topk_weights, topk_ids, ab_strides1, c_strides1,
ab_strides2, c_strides2)
run_cutlass_from_graph(
a,
a_scale,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
)
torch.cuda.synchronize()
triton_stream = torch.cuda.Stream()
triton_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(triton_graph, stream=triton_stream):
run_triton_from_graph(a, w1_q_notransp, w2_q_notransp, topk_weights,
topk_ids, w1_scale, w2_scale, a_scale)
run_triton_from_graph(
a,
w1_q_notransp,
w2_q_notransp,
topk_weights,
topk_ids,
w1_scale,
w2_scale,
a_scale,
)
torch.cuda.synchronize()
min_run_time = 5
@ -224,18 +276,27 @@ def bench_run(results: list[benchmark.Measurement], model: str,
}
# Warmup
run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids,
w1_scale, w2_scale, a_scale, num_warmup)
run_triton_moe(
a,
w1_q_notransp,
w2_q_notransp,
topk_weights,
topk_ids,
w1_scale,
w2_scale,
a_scale,
num_warmup,
)
results.append(
benchmark.Timer(
stmt=
"run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
stmt="run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="triton_moe",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
# Warmup
replay_graph(triton_graph, num_warmup)
@ -247,22 +308,35 @@ def bench_run(results: list[benchmark.Measurement], model: str,
label=label,
sub_label=sub_label,
description="triton_moe_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
# Warmup
run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights,
topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2,
num_warmup)
run_cutlass_moe(
a,
a_scale,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
num_warmup,
)
results.append(
benchmark.Timer(
stmt=
"run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="grouped_gemm_moe",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
# Warmup
replay_graph(cutlass_graph, num_warmup)
@ -274,7 +348,8 @@ def bench_run(results: list[benchmark.Measurement], model: str,
label=label,
sub_label=sub_label,
description="grouped_gemm_moe_cuda_graphs",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
def main(args):
@ -302,8 +377,15 @@ def main(args):
for per_out_ch in PER_OUT_CH_OPTS:
for size_m in DEFAULT_BATCH_SIZES:
mkn = (size_m, size_k, size_n)
bench_run(results, model, num_experts, topk,
per_act_token, per_out_ch, mkn)
bench_run(
results,
model,
num_experts,
topk,
per_act_token,
per_out_ch,
mkn,
)
compare = benchmark.Compare(results)
compare.print()
@ -311,7 +393,8 @@ def main(args):
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark Marlin across specified models/shapes/batches")
description="Benchmark Marlin across specified models/shapes/batches"
)
parser.add_argument(
"--models",
nargs="+",
@ -319,21 +402,14 @@ if __name__ == "__main__":
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES_MOE.keys(),
)
parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument("--limit-num-groups", nargs="+", type=int, default=[])
parser.add_argument("--limit-per-act-token",
nargs="+",
type=int,
default=[])
parser.add_argument("--limit-per-act-token", nargs="+", type=int, default=[])
parser.add_argument("--limit-per-out-ch", nargs="+", type=int, default=[])
args = parser.parse_args()

View File

@ -10,14 +10,16 @@ from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@torch.inference_mode()
def main(num_tokens: int,
hidden_size: int,
add_residual: bool,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
def main(
num_tokens: int,
hidden_size: int,
add_residual: bool,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device("cuda")
@ -56,33 +58,35 @@ def main(num_tokens: int,
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == '__main__':
parser = FlexibleArgumentParser(
description="Benchmark the layernorm kernel.")
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the layernorm kernel.")
parser.add_argument("--num-tokens", type=int, default=4096)
parser.add_argument("--hidden-size", type=int, default=8192)
parser.add_argument("--add-residual", action="store_true")
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument("--num-warmup-iters", type=int, default=5)
parser.add_argument("--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored")
parser.add_argument(
"--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored",
)
args = parser.parse_args()
print(args)
main(num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
add_residual=args.add_residual,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters)
main(
num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
add_residual=args.add_residual,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters,
)

File diff suppressed because it is too large Load Diff

View File

@ -20,12 +20,18 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N, marlin_permute_scales,
marlin_zero_points)
GPTQ_MARLIN_MAX_PARALLEL,
GPTQ_MARLIN_MIN_THREAD_N,
marlin_permute_scales,
marlin_zero_points,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace)
MarlinWorkspace,
)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
pack_rows, quantize_weights)
pack_rows,
quantize_weights,
)
from vllm.scalar_type import ScalarType, scalar_types
from vllm.utils import FlexibleArgumentParser
@ -82,12 +88,14 @@ def rand_data(shape, dtype=torch.float16, scale=1):
return torch.randint(-15, 15, shape, dtype=dtype, device="cuda")
def quantize_and_pack(atype: torch.dtype,
w: torch.Tensor,
wtype: ScalarType,
stype: Optional[torch.dtype],
group_size: Optional[int],
zero_points: bool = False):
def quantize_and_pack(
atype: torch.dtype,
w: torch.Tensor,
wtype: ScalarType,
stype: Optional[torch.dtype],
group_size: Optional[int],
zero_points: bool = False,
):
assert wtype.is_integer(), "TODO: support floating point weights"
w_ref, w_q, w_s, w_zp = quantize_weights(
@ -96,21 +104,24 @@ def quantize_and_pack(atype: torch.dtype,
group_size=group_size,
zero_points=zero_points,
# to match how the kernel applies zps
ref_zero_points_after_scales=True)
ref_zero_points_after_scales=True,
)
w_q = pack_rows(w_q, wtype.size_bits, *w_q.shape)
return w_ref, w_q, w_s, w_zp
def create_bench_tensors(shape: tuple[int, int, int], types: TypeConfig,
group_size: Optional[int]) -> list[BenchmarkTensors]:
def create_bench_tensors(
shape: tuple[int, int, int], types: TypeConfig, group_size: Optional[int]
) -> list[BenchmarkTensors]:
m, n, k = shape
# we want to make sure that weights don't fit into L2 cache between runs so
# we construct enough weights to exceed L2 cache, which is 50mb on a H100
# so we target total weight size > 2*50mb
num_weights = math.ceil(2 * 50 * 1024**2 * 8 /
(k * n * types.weight_type.size_bits))
num_weights = math.ceil(
2 * 50 * 1024**2 * 8 / (k * n * types.weight_type.size_bits)
)
a = rand_data((m, k), types.act_type, scale=5)
@ -124,8 +135,13 @@ def create_bench_tensors(shape: tuple[int, int, int], types: TypeConfig,
w = w.to(torch.float16)
w_ref, w_q_packed, w_s, w_zp = quantize_and_pack(
a.dtype, w, types.weight_type, types.group_scale_type, group_size,
types.group_zero_type is not None)
a.dtype,
w,
types.weight_type,
types.group_scale_type,
group_size,
types.group_zero_type is not None,
)
if not a.dtype.is_floating_point:
aiinfo = torch.iinfo(a.dtype)
@ -133,21 +149,30 @@ def create_bench_tensors(shape: tuple[int, int, int], types: TypeConfig,
w_ref = w_ref.to(torch.float32)
w_ch_s = None if types.channel_scale_type is None else\
rand_data((n,), types.channel_scale_type)
w_tok_s = None if types.token_scale_type is None else\
rand_data((m,), types.token_scale_type)
w_ch_s = (
None
if types.channel_scale_type is None
else rand_data((n,), types.channel_scale_type)
)
w_tok_s = (
None
if types.token_scale_type is None
else rand_data((m,), types.token_scale_type)
)
benchmark_tensors.append(
BenchmarkTensors(w_ref=w_ref,
a=a,
w_q=w_q_packed,
wtype=types.weight_type,
w_g_s=w_s,
w_g_zp=w_zp,
group_size=group_size,
w_ch_s=w_ch_s,
w_tok_s=w_tok_s))
BenchmarkTensors(
w_ref=w_ref,
a=a,
w_q=w_q_packed,
wtype=types.weight_type,
w_g_s=w_s,
w_g_zp=w_zp,
group_size=group_size,
w_ch_s=w_ch_s,
w_tok_s=w_tok_s,
)
)
return benchmark_tensors
@ -170,50 +195,57 @@ def cutlass_scaled_mm_create_bench_fn(bt: BenchmarkTensors) -> Callable:
scale_b = torch.tensor(1.0, dtype=torch.float32, device=bt.a.device)
w_col_major = bt.w_ref.to(bt.a.dtype).t().contiguous().t()
return lambda: ops.cutlass_scaled_mm(
bt.a, w_col_major, scale_a, scale_b, out_dtype=torch.float16)
bt.a, w_col_major, scale_a, scale_b, out_dtype=torch.float16
)
def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
device = bt.a.device
workspace = MarlinWorkspace(bt.w_ref.shape[1], GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)
workspace = MarlinWorkspace(
bt.w_ref.shape[1], GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
)
if bt.w_g_zp is None:
w_zp = torch.empty(0, dtype=torch.int, device=device)
else:
w_zp = marlin_zero_points(bt.w_g_zp, bt.w_ref.shape[0],
bt.w_ref.shape[1], bt.wtype.size_bits)
w_zp = marlin_zero_points(
bt.w_g_zp, bt.w_ref.shape[0], bt.w_ref.shape[1], bt.wtype.size_bits
)
if bt.group_size is None:
w_s = torch.tensor([], device="cuda", dtype=torch.half)
else:
w_s = marlin_permute_scales(bt.w_g_s, bt.w_ref.shape[0],
bt.w_ref.shape[1], bt.group_size)
w_s = marlin_permute_scales(
bt.w_g_s, bt.w_ref.shape[0], bt.w_ref.shape[1], bt.group_size
)
sort_indices = torch.empty(0, dtype=torch.int, device=device)
g_idx = torch.empty(0, dtype=torch.int, device=device)
w_q = ops.gptq_marlin_repack(bt.w_q, sort_indices, bt.w_ref.shape[0],
bt.w_ref.shape[1], bt.wtype.size_bits)
w_q = ops.gptq_marlin_repack(
bt.w_q, sort_indices, bt.w_ref.shape[0], bt.w_ref.shape[1], bt.wtype.size_bits
)
if bt.a.dtype.is_floating_point:
assert bt.w_ch_s is None
assert bt.w_tok_s is None
assert bt.group_size is not None
fn = lambda: ops.gptq_marlin_gemm(a=bt.a,
b_q_weight=w_q,
b_scales=w_s,
b_zeros=w_zp,
g_idx=g_idx,
perm=sort_indices,
workspace=workspace.scratch,
b_q_type=bt.wtype,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0],
is_k_full=True,
is_zp_float=False)
fn = lambda: ops.gptq_marlin_gemm(
a=bt.a,
b_q_weight=w_q,
b_scales=w_s,
b_zeros=w_zp,
g_idx=g_idx,
perm=sort_indices,
workspace=workspace.scratch,
b_q_type=bt.wtype,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0],
is_k_full=True,
is_zp_float=False,
)
else:
assert bt.a.dtype == torch.int8
assert bt.wtype == scalar_types.uint4b8
@ -221,36 +253,35 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
if bt.w_ch_s is not None:
s_ch = bt.w_ch_s.to(torch.float32)
else:
s_ch = torch.ones(bt.w_ref.shape[1],
dtype=torch.float32,
device=device)
s_ch = torch.ones(bt.w_ref.shape[1], dtype=torch.float32, device=device)
if bt.w_tok_s is not None:
s_tok = bt.w_tok_s.to(torch.float32)
else:
s_tok = torch.ones(bt.a.shape[0],
dtype=torch.float32,
device=device)
s_tok = torch.ones(bt.a.shape[0], dtype=torch.float32, device=device)
fn = lambda: ops.marlin_qqq_gemm(a=bt.a,
b_q_weight=w_q,
s_group=w_s,
s_tok=s_tok,
s_ch=s_ch,
workspace=workspace.scratch,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0])
fn = lambda: ops.marlin_qqq_gemm(
a=bt.a,
b_q_weight=w_q,
s_group=w_s,
s_tok=s_tok,
s_ch=s_ch,
workspace=workspace.scratch,
size_m=bt.a.shape[0],
size_n=bt.w_ref.shape[1],
size_k=bt.w_ref.shape[0],
)
return fn
def machete_create_bench_fn(bt: BenchmarkTensors,
out_type=torch.dtype,
schedule=None) -> Callable:
def machete_create_bench_fn(
bt: BenchmarkTensors, out_type=torch.dtype, schedule=None
) -> Callable:
w_q = bt.w_q.t().contiguous().t() # make col major
w_q = ops.machete_prepack_B(w_q, bt.a.dtype, bt.wtype,
None if bt.w_g_s is None else bt.w_g_s.dtype)
w_q = ops.machete_prepack_B(
w_q, bt.a.dtype, bt.wtype, None if bt.w_g_s is None else bt.w_g_s.dtype
)
w_g_zp = bt.w_g_zp
if w_g_zp is not None:
@ -275,26 +306,24 @@ def machete_create_bench_fn(bt: BenchmarkTensors,
# bench
def bench_fns(label: str, sub_label: str, description: str,
fns: list[Callable]):
def bench_fns(label: str, sub_label: str, description: str, fns: list[Callable]):
min_run_time = 1 if not NVTX_PROFILE else 0.1
res = TBenchmark.Timer(
stmt="""
for fn in fns:
fn()
""",
globals={
"fns": fns
},
globals={"fns": fns},
label=label,
sub_label=sub_label,
description=description,
).blocked_autorange(min_run_time=min_run_time)
if NVTX_PROFILE:
with nvtx.annotate("mm-bench"), nvtx.annotate(
f"{label}|{sub_label}|{description}"):
with (
nvtx.annotate("mm-bench"),
nvtx.annotate(f"{label}|{sub_label}|{description}"),
):
fns[0]()
return res
@ -304,19 +333,20 @@ _SWEEP_SCHEDULES_RESULTS: Optional[pd.DataFrame] = None
_SWEEP_SCHEDULES_RESULTS_CSV: Optional[str] = None
def bench(types: TypeConfig,
group_size: int,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
sweep_schedules: bool = True) -> list[TMeasurement]:
def bench(
types: TypeConfig,
group_size: int,
m: int,
k: int,
n: int,
label: str,
sub_label: str,
sweep_schedules: bool = True,
) -> list[TMeasurement]:
benchmark_tensors = create_bench_tensors((m, n, k), types, group_size)
sub_label += f", L={len(benchmark_tensors)}"
name_type_string = f"W{types.weight_type}"+\
f"-A{terse_type_name(types.act_type)}"
name_type_string = f"W{types.weight_type}" + f"-A{terse_type_name(types.act_type)}"
if types.group_scale_type is not None:
name_type_string += f"-GS{terse_type_name(types.group_scale_type)}"
if types.group_zero_type is not None:
@ -332,31 +362,45 @@ def bench(types: TypeConfig,
# pytorch impl
timers.append(
bench_fns(
label, sub_label, "torch.matmul (fp16)",
[torch_matmul_f16_create_bench_fn(bt)
for bt in benchmark_tensors]))
label,
sub_label,
"torch.matmul (fp16)",
[torch_matmul_f16_create_bench_fn(bt) for bt in benchmark_tensors],
)
)
if types.act_type == torch.int8 or types.act_type == torch.float8_e4m3fn:
timers.append(
bench_fns(
label, sub_label,
f"cutlass_scaled_mm ({terse_type_name(types.act_type)})", [
cutlass_scaled_mm_create_bench_fn(bt)
for bt in benchmark_tensors
]))
label,
sub_label,
f"cutlass_scaled_mm ({terse_type_name(types.act_type)})",
[cutlass_scaled_mm_create_bench_fn(bt) for bt in benchmark_tensors],
)
)
if types.act_type != torch.float8_e4m3fn:
timers.append(
bench_fns(label, sub_label, f"marlin ({name_type_string})",
[marlin_create_bench_fn(bt)
for bt in benchmark_tensors]))
bench_fns(
label,
sub_label,
f"marlin ({name_type_string})",
[marlin_create_bench_fn(bt) for bt in benchmark_tensors],
)
)
# machete
timers.append(
bench_fns(label, sub_label, f"machete ({name_type_string})", [
machete_create_bench_fn(bt, out_type=types.output_type)
for bt in benchmark_tensors
]))
bench_fns(
label,
sub_label,
f"machete ({name_type_string})",
[
machete_create_bench_fn(bt, out_type=types.output_type)
for bt in benchmark_tensors
],
)
)
if sweep_schedules:
global _SWEEP_SCHEDULES_RESULTS
@ -371,7 +415,8 @@ def bench(types: TypeConfig,
group_zeros_type=types.group_zero_type,
token_scales_type=types.token_scale_type,
channel_scales_type=types.channel_scale_type,
out_type=types.output_type)
out_type=types.output_type,
)
if schedules is None or len(schedules) == 0:
raise ValueError("No schedules found to sweep")
@ -383,11 +428,17 @@ def bench(types: TypeConfig,
if schedule_M >= 2 * max(m, 16) or schedule_M < m // 4:
continue
res = bench_fns(label, sub_label, "machete_best", [
machete_create_bench_fn(
bt, out_type=types.output_type, schedule=schedule)
for bt in benchmark_tensors
])
res = bench_fns(
label,
sub_label,
"machete_best",
[
machete_create_bench_fn(
bt, out_type=types.output_type, schedule=schedule
)
for bt in benchmark_tensors
],
)
results_row = {
"M": m,
@ -398,10 +449,8 @@ def bench(types: TypeConfig,
"median": res.median,
}
if _SWEEP_SCHEDULES_RESULTS is None:
_SWEEP_SCHEDULES_RESULTS = pd.DataFrame(
columns=results_row.keys())
_SWEEP_SCHEDULES_RESULTS.\
loc[len(_SWEEP_SCHEDULES_RESULTS)] = results_row
_SWEEP_SCHEDULES_RESULTS = pd.DataFrame(columns=results_row.keys())
_SWEEP_SCHEDULES_RESULTS.loc[len(_SWEEP_SCHEDULES_RESULTS)] = results_row
print(f" {res.median:5.5} ", schedule)
if not best or res.median < best.median:
@ -422,8 +471,9 @@ def print_timers(timers: list[TMeasurement]):
def run(args, MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
types = TypeConfig(
act_type=args.act_type,
weight_type=scalar_types.uint4b8 if args.group_zero_type is None \
else scalar_types.uint4,
weight_type=scalar_types.uint4b8
if args.group_zero_type is None
else scalar_types.uint4,
output_type=args.out_type,
group_scale_type=args.group_scale_type,
group_zero_type=args.group_zero_type,
@ -433,14 +483,16 @@ def run(args, MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
results: list[TMeasurement] = []
for m, k, n in MKNs:
timers = bench(types,
args.group_size,
m,
k,
n,
f"{args.act_type}-gemm",
f"MKN=({m}x{k}x{n})",
sweep_schedules=args.sweep_schedules)
timers = bench(
types,
args.group_size,
m,
k,
n,
f"{args.act_type}-gemm",
f"MKN=({m}x{k}x{n})",
sweep_schedules=args.sweep_schedules,
)
print_timers(timers)
results.extend(timers)
@ -454,7 +506,6 @@ def make_output(
base_description: str,
timestamp=None,
):
print(f"== All Results {base_description} ====")
print_timers(data)
@ -468,8 +519,7 @@ def make_output(
def run_square_bench(args):
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
dim_sizes = list(range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, args.sweep_schedules, MKNs)
@ -479,8 +529,9 @@ def run_square_bench(args):
def run_range_bench(args):
m_start, k_start, n_start = (int(x) for x in args.dim_start.split(","))
m_end, k_end, n_end = (int(x) for x in args.dim_end.split(","))
m_increment, k_increment, n_increment = \
(int(x) for x in args.dim_increment.split(","))
m_increment, k_increment, n_increment = (
int(x) for x in args.dim_increment.split(",")
)
Ms = list(range(m_start, m_end + 1, m_increment))
Ks = list(range(k_start, k_end + 1, k_increment))
Ns = list(range(n_start, n_end + 1, n_increment))
@ -492,7 +543,6 @@ def run_range_bench(args):
def run_model_bench(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
@ -535,10 +585,13 @@ def run_model_bench(args):
with open(f"model_bench-{type_string}-{timestr}.pkl", "wb") as f:
args_dict = vars(args)
args_dict.pop("func")
pkl.dump({
"args": args_dict,
"results": all_results,
}, f)
pkl.dump(
{
"args": args_dict,
"results": all_results,
},
f,
)
if __name__ == "__main__":
@ -554,7 +607,6 @@ if __name__ == "__main__":
}[dt]
class ToTorchDtype(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, to_torch_dtype(values))
@ -580,32 +632,32 @@ Benchmark Machete GEMM.
"--act-type",
action=ToTorchDtype,
required=True,
choices=['bfloat16', 'float16', 'int8', 'float8_e4m3fn'],
choices=["bfloat16", "float16", "int8", "float8_e4m3fn"],
)
parser.add_argument(
"--group-scale-type",
action=ToTorchDtype,
choices=['bfloat16', 'float16'],
choices=["bfloat16", "float16"],
)
parser.add_argument(
"--group-zero-type",
type=to_torch_dtype,
choices=['bfloat16', 'float16'],
choices=["bfloat16", "float16"],
)
parser.add_argument(
"--channel-scale-type",
action=ToTorchDtype,
choices=['float'],
choices=["float"],
)
parser.add_argument(
"--token-scale-type",
action=ToTorchDtype,
choices=['float'],
choices=["float"],
)
parser.add_argument(
"--out-type",
action=ToTorchDtype,
choices=['bfloat16', 'float16'],
choices=["bfloat16", "float16"],
)
parser.add_argument(
"--group-size",
@ -618,9 +670,11 @@ Benchmark Machete GEMM.
action="store_true",
help="Run a sweep over all supported schedules",
)
parser.add_argument("--sweep-csv-out",
help="CSV to store sweep results",
default="sch_sweep_results.csv")
parser.add_argument(
"--sweep-csv-out",
help="CSV to store sweep results",
default="sch_sweep_results.csv",
)
subparsers = parser.add_subparsers(dest="cmd", required=True)
square_parser = subparsers.add_parser("square_bench")
@ -634,17 +688,20 @@ Benchmark Machete GEMM.
"--dim-start",
type=str,
required=True,
help="Start value for M,K,N as common separated list")
help="Start value for M,K,N as common separated list",
)
range_parser.add_argument(
"--dim-end",
type=str,
required=True,
help="End value (inclusive) for M,K,N as common separated list")
help="End value (inclusive) for M,K,N as common separated list",
)
range_parser.add_argument(
"--dim-increment",
type=str,
required=True,
help="Increment value for M,K,N as common separated list")
help="Increment value for M,K,N as common separated list",
)
range_parser.set_defaults(func=run_range_bench)
model_parser = subparsers.add_parser("model_bench")
@ -655,14 +712,12 @@ Benchmark Machete GEMM.
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.add_argument(
"--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES
)
model_parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
model_parser.set_defaults(func=run_model_bench)
args = parser.parse_args()

View File

@ -6,19 +6,34 @@ from benchmark_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES)
GPTQ_MARLIN_24_MAX_PARALLEL,
GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES,
GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES,
)
from vllm.model_executor.layers.quantization.utils.allspark_utils import (
ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD, ALLSPARK_SUPPORTED_QUANT_TYPES)
ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD,
ALLSPARK_SUPPORTED_QUANT_TYPES,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N,
MARLIN_SUPPORTED_GROUP_SIZES, query_marlin_supported_quant_types)
GPTQ_MARLIN_MAX_PARALLEL,
GPTQ_MARLIN_MIN_THREAD_N,
MARLIN_SUPPORTED_GROUP_SIZES,
query_marlin_supported_quant_types,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace, marlin_quantize)
MarlinWorkspace,
marlin_quantize,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
marlin_24_quantize)
marlin_24_quantize,
)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, gptq_quantize_weights, quantize_weights, sort_weights)
gptq_pack,
gptq_quantize_weights,
quantize_weights,
sort_weights,
)
from vllm.scalar_type import ScalarType
from vllm.utils import FlexibleArgumentParser
@ -29,22 +44,29 @@ ACT_ORDER_OPTS = [False, True]
K_FULL_OPTS = [False, True]
def bench_run(results: list[benchmark.Measurement], model: str,
act_order: bool, is_k_full: bool, quant_type: ScalarType,
group_size: int, size_m: int, size_k: int, size_n: int):
def bench_run(
results: list[benchmark.Measurement],
model: str,
act_order: bool,
is_k_full: bool,
quant_type: ScalarType,
group_size: int,
size_m: int,
size_k: int,
size_n: int,
):
label = "Quant Matmul"
sub_label = ("{}, act={} k_full={}, q={}, g={}, "
"MKN=({}x{}x{})".format(model, act_order, is_k_full,
str(quant_type), group_size, size_m,
size_k, size_n))
sub_label = "{}, act={} k_full={}, q={}, g={}, MKN=({}x{}x{})".format(
model, act_order, is_k_full, str(quant_type), group_size, size_m, size_k, size_n
)
print(f"Testing: {sub_label}")
a = torch.randn(size_m, size_k).to(torch.half).cuda()
b = torch.rand(size_k, size_n).to(torch.half).cuda()
a_tmp = (torch.zeros(size_m, size_k).to(torch.half).cuda())
a_tmp = torch.zeros(size_m, size_k).to(torch.half).cuda()
# Marlin quant
(
@ -57,14 +79,16 @@ def bench_run(results: list[benchmark.Measurement], model: str,
) = marlin_quantize(b, quant_type, group_size, act_order)
# Marlin_24 quant
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta,
marlin_24_s) = marlin_24_quantize(b, quant_type, group_size)
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s) = (
marlin_24_quantize(b, quant_type, group_size)
)
marlin_zp = torch.empty(0, dtype=torch.int, device=b.device)
# GPTQ quant
(w_ref, q_w, s, g_idx,
rand_perm) = gptq_quantize_weights(b, quant_type, group_size, act_order)
(w_ref, q_w, s, g_idx, rand_perm) = gptq_quantize_weights(
b, quant_type, group_size, act_order
)
q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)
# For act_order, sort the "weights" and "g_idx"
@ -74,32 +98,37 @@ def bench_run(results: list[benchmark.Measurement], model: str,
(q_w, g_idx, repack_sort_indices) = sort_weights(q_w, g_idx)
# Prepare
marlin_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL)
marlin_workspace = MarlinWorkspace(
size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
)
marlin_24_workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_24_MIN_THREAD_N,
GPTQ_MARLIN_24_MAX_PARALLEL)
marlin_24_workspace = MarlinWorkspace(
size_n, GPTQ_MARLIN_24_MIN_THREAD_N, GPTQ_MARLIN_24_MAX_PARALLEL
)
marlin_zp = torch.zeros_like(marlin_s, dtype=torch.int)
# AllSpark W8A16 quant
as_supported_case = (quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
and group_size == -1 and not act_order and is_k_full)
as_supported_case = (
quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
and group_size == -1
and not act_order
and is_k_full
)
if as_supported_case:
properties = torch.cuda.get_device_properties(b.device.index)
sm_count = properties.multi_processor_count
sm_version = properties.major * 10 + properties.minor
supported_arch = (sm_version >= 80 and sm_version < 90)
supported_arch = sm_version >= 80 and sm_version < 90
as_supported_case = as_supported_case and supported_arch
if supported_arch:
has_zp = False
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size,
has_zp)
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size, has_zp)
qw = qw.to(torch.uint8)
qw_reorder, s_reorder, zp_reorder = \
ops.allspark_repack_weight(
qw, s, zp, has_zp)
qw_reorder, s_reorder, zp_reorder = ops.allspark_repack_weight(
qw, s, zp, has_zp
)
CUBLAS_M_THRESHOLD = ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD
globals = {
@ -136,8 +165,7 @@ def bench_run(results: list[benchmark.Measurement], model: str,
"zp_reorder": zp_reorder if as_supported_case else None,
"sm_count": sm_count if as_supported_case else None,
"sm_version": sm_version if as_supported_case else None,
"CUBLAS_M_THRESHOLD":
CUBLAS_M_THRESHOLD if as_supported_case else None,
"CUBLAS_M_THRESHOLD": CUBLAS_M_THRESHOLD if as_supported_case else None,
# Kernels
"gptq_marlin_gemm": ops.gptq_marlin_gemm,
"gptq_marlin_24_gemm": ops.gptq_marlin_24_gemm,
@ -158,60 +186,63 @@ def bench_run(results: list[benchmark.Measurement], model: str,
label=label,
sub_label=sub_label,
description="pytorch_gemm",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm_fp16",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm_fp32",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
if (quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES):
if (
quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
):
results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
stmt="output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_24_gemm",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
results.append(
benchmark.Timer(
stmt=
"q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
stmt="q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_repack",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
if as_supported_case:
results.append(
benchmark.Timer(
stmt=
"output = allspark_w8a16_gemm(a, qw_reorder, s_reorder, zp_reorder, size_n, group_size, sm_count, sm_version, CUBLAS_M_THRESHOLD, False, True)", # noqa: E501
stmt="output = allspark_w8a16_gemm(a, qw_reorder, s_reorder, zp_reorder, size_n, group_size, sm_count, sm_version, CUBLAS_M_THRESHOLD, False, True)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="allspark_w8a16_gemm_fp32",
).blocked_autorange(min_run_time=min_run_time))
).blocked_autorange(min_run_time=min_run_time)
)
def main(args):
@ -233,37 +264,50 @@ def main(args):
continue
for act_order in ACT_ORDER_OPTS:
if len(args.limit_act_order
) > 0 and act_order not in args.limit_act_order:
if (
len(args.limit_act_order) > 0
and act_order not in args.limit_act_order
):
continue
for is_k_full in K_FULL_OPTS:
if len(args.limit_k_full
) > 0 and is_k_full not in args.limit_k_full:
if (
len(args.limit_k_full) > 0
and is_k_full not in args.limit_k_full
):
continue
for quant_type in query_marlin_supported_quant_types(
False):
if len(args.limit_num_bits) > 0 and \
quant_type.size_bits not in args.limit_num_bits:
for quant_type in query_marlin_supported_quant_types(False):
if (
len(args.limit_num_bits) > 0
and quant_type.size_bits not in args.limit_num_bits
):
continue
for group_size in MARLIN_SUPPORTED_GROUP_SIZES:
if len(
args.limit_group_size
) > 0 and group_size not in args.limit_group_size:
if (
len(args.limit_group_size) > 0
and group_size not in args.limit_group_size
):
continue
# For act_order, the group_size must be less than
# size_k
if act_order and (group_size == size_k
or group_size == -1):
if act_order and (group_size == size_k or group_size == -1):
continue
for size_m in args.batch_sizes:
bench_run(results, model, act_order, is_k_full,
quant_type, group_size, size_m,
size_k, size_n)
bench_run(
results,
model,
act_order,
is_k_full,
quant_type,
group_size,
size_m,
size_k,
size_n,
)
compare = benchmark.Compare(results)
compare.print()
@ -274,7 +318,8 @@ def main(args):
#
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark Marlin across specified models/shapes/batches")
description="Benchmark Marlin across specified models/shapes/batches"
)
parser.add_argument(
"--models",
nargs="+",
@ -282,10 +327,9 @@ if __name__ == "__main__":
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument("--limit-group-size", nargs="+", type=int, default=[])

View File

@ -6,16 +6,17 @@ import time
from contextlib import nullcontext
from datetime import datetime
from itertools import product
from types import SimpleNamespace
from typing import Any, TypedDict
import ray
import torch
import triton
from ray.experimental.tqdm_ray import tqdm
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.platforms import current_platform
from vllm.transformers_utils.config import get_config
from vllm.triton_utils import triton
from vllm.utils import FlexibleArgumentParser
FP8_DTYPE = current_platform.fp8_dtype()
@ -30,56 +31,60 @@ class BenchmarkConfig(TypedDict):
num_stages: int
def benchmark_config(config: BenchmarkConfig,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
block_quant_shape: List[int] = None,
use_deep_gemm: bool = False) -> float:
def benchmark_config(
config: BenchmarkConfig,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
block_quant_shape: List[int] = None,
use_deep_gemm: bool = False,
) -> float:
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
if use_int8_w8a16:
w1 = torch.randint(-127,
127, (
num_experts,
shard_intermediate_size,
hidden_size,
),
dtype=torch.int8)
w2 = torch.randint(-127,
127, (
num_experts,
hidden_size,
shard_intermediate_size // 2,
),
dtype=torch.int8)
w1 = torch.randint(
-127,
127,
(
num_experts,
shard_intermediate_size,
hidden_size,
),
dtype=torch.int8,
)
w2 = torch.randint(
-127,
127,
(
num_experts,
hidden_size,
shard_intermediate_size // 2,
),
dtype=torch.int8,
)
else:
w1 = torch.randn(num_experts,
shard_intermediate_size,
hidden_size,
dtype=init_dtype)
w2 = torch.randn(num_experts,
hidden_size,
shard_intermediate_size // 2,
dtype=init_dtype)
gating_output = torch.randn(num_iters,
num_tokens,
num_experts,
dtype=torch.float32)
w1 = torch.randn(
num_experts, shard_intermediate_size, hidden_size, dtype=init_dtype
)
w2 = torch.randn(
num_experts, hidden_size, shard_intermediate_size // 2, dtype=init_dtype
)
gating_output = torch.randn(num_iters, num_tokens, num_experts, dtype=torch.float32)
w1_scale = None
w2_scale = None
a1_scale = None
a2_scale = None
if use_int8_w8a16:
w1_scale = torch.randn((num_experts, 2 * shard_intermediate_size),
dtype=torch.float32)
w1_scale = torch.randn(
(num_experts, 2 * shard_intermediate_size), dtype=torch.float32
)
w2_scale = torch.randn((hidden_size, num_experts), dtype=torch.float32)
if use_fp8_w8a8:
if block_quant_shape:
@ -92,10 +97,14 @@ def benchmark_config(config: BenchmarkConfig,
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_scale = torch.rand((E, n_tiles_w1, k_tiles_w1),
dtype=torch.float32) * factor_for_scale
w2_scale = torch.rand((E, n_tiles_w2, k_tiles_w2),
dtype=torch.float32) * factor_for_scale
w1_scale = (
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32)
* factor_for_scale
)
w2_scale = (
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32)
* factor_for_scale
)
else:
w1_scale = torch.randn(num_experts, dtype=torch.float32)
w2_scale = torch.randn(num_experts, dtype=torch.float32)
@ -113,10 +122,12 @@ def benchmark_config(config: BenchmarkConfig,
def run():
from vllm.model_executor.layers.fused_moe import override_config
with override_config(config):
if use_deep_gemm:
topk_weights, topk_ids = fused_topk(x, input_gating, topk,
False)
topk_weights, topk_ids, token_expert_indices = fused_topk(
x, input_gating, topk, False
)
return fused_experts(
x,
w1,
@ -212,8 +223,7 @@ def get_rocm_tuning_space(use_fp16):
return param_ranges
def get_configs_compute_bound(use_fp16,
block_quant_shape) -> list[dict[str, int]]:
def get_configs_compute_bound(use_fp16, block_quant_shape) -> list[dict[str, int]]:
configs: list[BenchmarkConfig] = []
if current_platform.is_rocm():
@ -249,20 +259,25 @@ def get_configs_compute_bound(use_fp16,
if block_quant_shape is not None and not use_fp16:
block_n, block_k = block_quant_shape[0], block_quant_shape[1]
for config in configs[:]:
if config["BLOCK_SIZE_K"] % block_k != 0 or config[
"BLOCK_SIZE_N"] % block_n != 0:
if (
config["BLOCK_SIZE_K"] % block_k != 0
or config["BLOCK_SIZE_N"] % block_n != 0
):
configs.remove(config)
return configs
def prune_rocm_search_space(num_tokens, shard_intermediate_size, hidden_size,
search_space, is_fp16, topk):
def prune_rocm_search_space(
num_tokens, shard_intermediate_size, hidden_size, search_space, is_fp16, topk
):
N1, K1 = shard_intermediate_size, hidden_size
N2, K2 = hidden_size, shard_intermediate_size // 2
pruned_space_1 = prune_rocm_configs(num_tokens * topk, N1, K1,
search_space, is_fp16)
pruned_space_2 = prune_rocm_configs(num_tokens * topk, N2, K2,
search_space, is_fp16)
pruned_space_1 = prune_rocm_configs(
num_tokens * topk, N1, K1, search_space, is_fp16
)
pruned_space_2 = prune_rocm_configs(
num_tokens * topk, N2, K2, search_space, is_fp16
)
search_space = merge_unique_dicts(pruned_space_1, pruned_space_2)
return search_space
@ -300,14 +315,14 @@ def prune_rocm_configs(M, N, K, configs, is_fp16=True):
SPLIT_K = config.get("SPLIT_K", 1)
GROUP_M = config.get("GROUP_SIZE_M")
if is_fp16:
if (matrix_instr_nonkdim > BLOCK_SIZE_M
or matrix_instr_nonkdim > BLOCK_SIZE_N):
if (
matrix_instr_nonkdim > BLOCK_SIZE_M
or matrix_instr_nonkdim > BLOCK_SIZE_N
):
continue
if (matrix_instr_nonkdim >= M
and matrix_instr_nonkdim != BLOCK_SIZE_M):
if matrix_instr_nonkdim >= M and matrix_instr_nonkdim != BLOCK_SIZE_M:
continue
if (matrix_instr_nonkdim >= N
and matrix_instr_nonkdim != BLOCK_SIZE_N):
if matrix_instr_nonkdim >= N and matrix_instr_nonkdim != BLOCK_SIZE_N:
continue
# Skip BLOCK_SIZE that is too large compare to M/N
# unless BLOCK_SIZE is already small enough
@ -328,8 +343,10 @@ def prune_rocm_configs(M, N, K, configs, is_fp16=True):
continue
# out of shared memory resource
# TODO (zhanglx): This does not consider the LDS usage in the epilogue
LDS = (BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a +
BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b)
LDS = (
BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a
+ BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b
)
if LDS > 65536:
continue
# Skip small block sizes and num_warps for large gemm
@ -363,7 +380,6 @@ def merge_unique_dicts(list1, list2):
@ray.remote(num_gpus=1)
class BenchmarkWorker:
def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
current_platform.seed_everything(seed)
@ -387,36 +403,40 @@ class BenchmarkWorker:
use_deep_gemm: bool = False,
) -> tuple[dict[str, int], float]:
current_platform.seed_everything(self.seed)
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
dtype_str = get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
op_config = get_moe_configs(num_experts, shard_intermediate_size // 2,
dtype_str)
op_config = get_moe_configs(
num_experts, shard_intermediate_size // 2, dtype_str
)
if op_config is None:
config = get_default_config(num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype_str,
is_marlin=False)
config = get_default_config(
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype_str,
is_marlin=False,
)
else:
config = op_config[min(op_config.keys(),
key=lambda x: abs(x - num_tokens))]
kernel_time = benchmark_config(config,
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
block_quant_shape=block_quant_shape,
use_deep_gemm=use_deep_gemm)
config = op_config[min(op_config.keys(), key=lambda x: abs(x - num_tokens))]
kernel_time = benchmark_config(
config,
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
block_quant_shape=block_quant_shape,
use_deep_gemm=use_deep_gemm,
)
return config, kernel_time
def tune(
@ -437,13 +457,22 @@ class BenchmarkWorker:
best_time = float("inf")
if current_platform.is_rocm():
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
search_space = prune_rocm_search_space(num_tokens,
shard_intermediate_size,
hidden_size, search_space,
is_fp16, topk)
search_space = prune_rocm_search_space(
num_tokens,
shard_intermediate_size,
hidden_size,
search_space,
is_fp16,
topk,
)
with torch.cuda.device(self.device_id) if current_platform.is_rocm(
) else nullcontext():
need_device_guard = False
if current_platform.is_rocm():
visible_device = os.environ.get("ROCR_VISIBLE_DEVICES", None)
if visible_device != f"{self.device_id}":
need_device_guard = True
with torch.cuda.device(self.device_id) if need_device_guard else nullcontext():
for config in tqdm(search_space):
try:
kernel_time = benchmark_config(
@ -458,7 +487,8 @@ class BenchmarkWorker:
use_int8_w8a16,
num_iters=20,
block_quant_shape=block_quant_shape,
use_deep_gemm=use_deep_gemm)
use_deep_gemm=use_deep_gemm,
)
except triton.runtime.autotuner.OutOfResources:
# Some configurations may be invalid and fail to compile.
continue
@ -474,42 +504,44 @@ class BenchmarkWorker:
def sort_config(config: BenchmarkConfig) -> BenchmarkConfig:
return {
"BLOCK_SIZE_M":
config["BLOCK_SIZE_M"],
"BLOCK_SIZE_N":
config["BLOCK_SIZE_N"],
"BLOCK_SIZE_K":
config["BLOCK_SIZE_K"],
"GROUP_SIZE_M":
config["GROUP_SIZE_M"],
"num_warps":
config["num_warps"],
"num_stages":
config["num_stages"],
**({
"waves_per_eu": config["waves_per_eu"]
} if "waves_per_eu" in config else {}),
**({
"matrix_instr_nonkdim": config["matrix_instr_nonkdim"]
} if "matrix_instr_nonkdim" in config else {}),
**({
"kpack": config["kpack"]
} if "kpack" in config else {}),
"BLOCK_SIZE_M": config["BLOCK_SIZE_M"],
"BLOCK_SIZE_N": config["BLOCK_SIZE_N"],
"BLOCK_SIZE_K": config["BLOCK_SIZE_K"],
"GROUP_SIZE_M": config["GROUP_SIZE_M"],
"num_warps": config["num_warps"],
"num_stages": config["num_stages"],
**(
{"waves_per_eu": config["waves_per_eu"]} if "waves_per_eu" in config else {}
),
**(
{"matrix_instr_nonkdim": config["matrix_instr_nonkdim"]}
if "matrix_instr_nonkdim" in config
else {}
),
**({"kpack": config["kpack"]} if "kpack" in config else {}),
}
def save_configs(configs: dict[int, BenchmarkConfig], num_experts: int,
shard_intermediate_size: int, hidden_size: int, topk: int,
dtype: torch.dtype, use_fp8_w8a8: bool, use_int8_w8a16: bool,
block_quant_shape: List[int]) -> None:
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
def save_configs(
configs: dict[int, BenchmarkConfig],
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
block_quant_shape: List[int],
) -> None:
dtype_str = get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
filename = get_config_file_name(num_experts, shard_intermediate_size // 2,
dtype_str, block_quant_shape)
filename = get_config_file_name(
num_experts, shard_intermediate_size // 2, dtype_str, block_quant_shape
)
print(f"Writing best config to {filename}...")
with open(filename, "w") as f:
@ -518,18 +550,20 @@ def save_configs(configs: dict[int, BenchmarkConfig], num_experts: int,
def get_weight_block_size_safety(config, default_value=None):
quantization_config = getattr(config, 'quantization_config', {})
quantization_config = getattr(config, "quantization_config", {})
if isinstance(quantization_config, dict):
return quantization_config.get('weight_block_size', default_value)
return quantization_config.get("weight_block_size", default_value)
return default_value
def main(args: argparse.Namespace):
print(args)
block_quant_shape = None
config = AutoConfig.from_pretrained(
args.model, trust_remote_code=args.trust_remote_code)
config = get_config(model=args.model, trust_remote_code=args.trust_remote_code)
if args.model_prefix:
config = getattr(config, args.model_prefix)
config = SimpleNamespace(**config)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
@ -540,14 +574,12 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif (config.architectures[0] == "DeepseekV3ForCausalLM"
or config.architectures[0] == "DeepseekV2ForCausalLM"):
elif config.architectures[0] in ("DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"):
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
block_quant_shape = get_weight_block_size_safety(config)
elif config.architectures[0] == "Qwen2MoeForCausalLM":
elif config.architectures[0] in ("Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"):
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
@ -562,20 +594,51 @@ def main(args: argparse.Namespace):
shard_intermediate_size = 2 * intermediate_size // args.tp_size
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
dtype = (
torch.float16
if current_platform.is_rocm()
else getattr(torch, config.torch_dtype)
)
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
block_quant_shape = get_weight_block_size_safety(config)
if args.batch_size is None:
batch_sizes = [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
1,
2,
4,
8,
16,
24,
32,
48,
64,
96,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]
else:
batch_sizes = [args.batch_size]
use_deep_gemm = bool(args.use_deep_gemm)
if current_platform.is_rocm() and "HIP_VISIBLE_DEVICES" in os.environ:
# Ray will set ROCR_VISIBLE_DEVICES for device visibility
logger.warning(
"Ray uses ROCR_VISIBLE_DEVICES to control device accessibility."
"Replacing HIP_VISIBLE_DEVICES with ROCR_VISIBLE_DEVICES."
)
val = os.environ["HIP_VISIBLE_DEVICES"]
os.environ["ROCR_VISIBLE_DEVICES"] = val
del os.environ["HIP_VISIBLE_DEVICES"]
ray.init()
num_gpus = int(ray.available_resources()["GPU"])
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
@ -598,25 +661,59 @@ def main(args: argparse.Namespace):
start = time.time()
configs = _distribute(
"tune", [(batch_size, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16, search_space,
block_quant_shape, use_deep_gemm)
for batch_size in batch_sizes])
"tune",
[
(
batch_size,
E,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
search_space,
block_quant_shape,
use_deep_gemm,
)
for batch_size in batch_sizes
],
)
best_configs = {
M: sort_config(config)
for M, config in zip(batch_sizes, configs)
M: sort_config(config) for M, config in zip(batch_sizes, configs)
}
save_configs(best_configs, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16,
block_quant_shape)
save_configs(
best_configs,
E,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
block_quant_shape,
)
end = time.time()
print(f"Tuning took {end - start:.2f} seconds")
else:
outputs = _distribute(
"benchmark",
[(batch_size, E, shard_intermediate_size, hidden_size, topk, dtype,
use_fp8_w8a8, use_int8_w8a16, block_quant_shape, use_deep_gemm)
for batch_size in batch_sizes])
[
(
batch_size,
E,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
block_quant_shape,
use_deep_gemm,
)
for batch_size in batch_sizes
],
)
for batch_size, (config, kernel_time) in zip(batch_sizes, outputs):
print(f"Batch size: {batch_size}, config: {config}")
@ -625,23 +722,21 @@ def main(args: argparse.Namespace):
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument("--model",
type=str,
default="mistralai/Mixtral-8x7B-Instruct-v0.1")
parser.add_argument("--tp-size",
"-tp",
"--tensor-parallel-size",
type=int,
default=2)
parser.add_argument("--dtype",
type=str,
choices=["auto", "fp8_w8a8", "int8_w8a16"],
default="auto")
parser.add_argument(
"--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
parser.add_argument(
"--tp-size", "-tp", "--tensor-parallel-size", type=int, default=2
)
parser.add_argument(
"--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
)
parser.add_argument("--use-deep-gemm", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--tune", action="store_true")
parser.add_argument("--trust-remote-code", action="store_true")
parser.add_argument("--model-prefix", type=str, required=False)
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,416 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
from typing import Any, TypedDict
import ray
import torch
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
_moe_permute,
_moe_unpermute_and_reduce,
)
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import *
from vllm.model_executor.layers.fused_moe.utils import _fp8_quantize
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
FP8_DTYPE = current_platform.fp8_dtype()
class BenchmarkConfig(TypedDict):
BLOCK_SIZE_M: int
BLOCK_SIZE_N: int
BLOCK_SIZE_K: int
GROUP_SIZE_M: int
num_warps: int
num_stages: int
def benchmark_permute(
num_tokens: int,
num_experts: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
use_customized_permute: bool = False,
) -> float:
# init_dtype = torch.float16 if use_fp8_w8a8 else dtype
hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
# output_hidden_states = torch.empty_like(hidden_states)
if use_fp8_w8a8:
align_block_size = 128 # deepgemm needs 128 m aligned block
qhidden_states, scale = _fp8_quantize(hidden_states, None, None)
else:
align_block_size = None
qhidden_states = hidden_states
gating_output = torch.randn(num_iters, num_tokens, num_experts, dtype=torch.float32)
input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)
topk_weights, topk_ids, token_expert_indices = fused_topk(
qhidden_states, input_gating, topk, False
)
def prepare(i: int):
input_gating.copy_(gating_output[i])
def run():
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
)
else:
(
permuted_hidden_states,
a1q_scale,
sorted_token_ids,
expert_ids,
inv_perm,
) = _moe_permute(
qhidden_states, None, topk_ids, num_experts, None, align_block_size
)
# JIT compilation & warmup
run()
torch.cuda.synchronize()
# Capture 10 invocations with CUDA graph
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
for _ in range(10):
run()
torch.cuda.synchronize()
# Warmup
for _ in range(5):
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
prepare(i)
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
graph.reset()
return avg
def benchmark_unpermute(
num_tokens: int,
num_experts: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
use_customized_permute: bool = False,
) -> float:
# init_dtype = torch.float16 if use_fp8_w8a8 else dtype
hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
output_hidden_states = torch.empty_like(hidden_states)
if use_fp8_w8a8:
align_block_size = 128 # deepgemm needs 128 m aligned block
qhidden_states, scale = _fp8_quantize(hidden_states, None, None)
else:
align_block_size = None
qhidden_states = hidden_states
input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)
topk_weights, topk_ids, token_expert_indices = fused_topk(
qhidden_states, input_gating, topk, False
)
def prepare():
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
)
# convert to fp16/bf16 as gemm output
return (
permuted_hidden_states.to(dtype),
first_token_off,
inv_perm_idx,
m_indices,
)
else:
(
permuted_qhidden_states,
a1q_scale,
sorted_token_ids,
expert_ids,
inv_perm,
) = _moe_permute(
qhidden_states, None, topk_ids, num_experts, None, align_block_size
)
# convert to fp16/bf16 as gemm output
return (
permuted_qhidden_states.to(dtype),
a1q_scale,
sorted_token_ids,
expert_ids,
inv_perm,
)
def run(input: tuple):
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = input
moe_unpermute(
permuted_hidden_states,
topk_weights,
topk_ids,
inv_perm_idx,
first_token_off,
topk,
num_experts,
num_experts,
)
else:
(
permuted_hidden_states,
a1q_scale,
sorted_token_ids,
expert_ids,
inv_perm,
) = input
_moe_unpermute_and_reduce(
output_hidden_states, permuted_hidden_states, inv_perm, topk_weights
)
# JIT compilation & warmup
input = prepare()
run(input)
torch.cuda.synchronize()
# Capture 10 invocations with CUDA graph
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
for _ in range(10):
run(input)
torch.cuda.synchronize()
# Warmup
for _ in range(5):
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
graph.reset()
return avg
@ray.remote(num_gpus=1)
class BenchmarkWorker:
def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
current_platform.seed_everything(seed)
self.seed = seed
# Get the device ID to allocate tensors and kernels
# on the respective GPU. This is required for Ray to work
# correctly with multi-GPU tuning on the ROCm platform.
self.device_id = int(ray.get_gpu_ids()[0])
def benchmark(
self,
num_tokens: int,
num_experts: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
use_customized_permute: bool = False,
) -> tuple[dict[str, int], float]:
current_platform.seed_everything(self.seed)
permute_time = benchmark_permute(
num_tokens,
num_experts,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
use_customized_permute=use_customized_permute,
)
unpermute_time = benchmark_unpermute(
num_tokens,
num_experts,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
use_customized_permute=use_customized_permute,
)
return permute_time, unpermute_time
def get_weight_block_size_safety(config, default_value=None):
quantization_config = getattr(config, "quantization_config", {})
if isinstance(quantization_config, dict):
return quantization_config.get("weight_block_size", default_value)
return default_value
def main(args: argparse.Namespace):
print(args)
config = AutoConfig.from_pretrained(
args.model, trust_remote_code=args.trust_remote_code
)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
elif config.architectures[0] == "JambaForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
elif (
config.architectures[0] == "DeepseekV3ForCausalLM"
or config.architectures[0] == "DeepseekV2ForCausalLM"
):
E = config.n_routed_experts
topk = config.num_experts_per_tok
elif config.architectures[0] in ["Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"]:
E = config.num_experts
topk = config.num_experts_per_tok
else:
# Support for llama4
config = config.get_text_config()
# Default: Mixtral.
E = config.num_local_experts
topk = config.num_experts_per_tok
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
use_customized_permute = args.use_customized_permute
if args.batch_size is None:
batch_sizes = [
1,
2,
4,
8,
16,
24,
32,
48,
64,
96,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]
else:
batch_sizes = [args.batch_size]
ray.init()
num_gpus = int(ray.available_resources()["GPU"])
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
def _distribute(method: str, inputs: list[Any]) -> list[Any]:
outputs = []
worker_idx = 0
for input_args in inputs:
worker = workers[worker_idx]
worker_method = getattr(worker, method)
output = worker_method.remote(*input_args)
outputs.append(output)
worker_idx = (worker_idx + 1) % num_gpus
return ray.get(outputs)
outputs = _distribute(
"benchmark",
[
(
batch_size,
E,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
use_customized_permute,
)
for batch_size in batch_sizes
],
)
for batch_size, (permute, unpermute) in zip(batch_sizes, outputs):
print(f"Batch size: {batch_size}")
print(f"Permute time: {permute:.2f} us")
print(f"Unpermute time: {unpermute:.2f} us")
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument(
"--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
parser.add_argument(
"--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
)
parser.add_argument("--use-customized-permute", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--trust-remote-code", action="store_true")
args = parser.parse_args()
main(args)

View File

@ -9,8 +9,11 @@ import torch
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
create_kv_caches_with_random)
from vllm.utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random,
)
logger = init_logger(__name__)
@ -38,19 +41,15 @@ def main(
current_platform.seed_everything(seed)
scale = float(1.0 / (head_size**0.5))
query = torch.empty(num_seqs,
num_query_heads,
head_size,
dtype=dtype,
device=device)
query = torch.empty(
num_seqs, num_query_heads, head_size, dtype=dtype, device=device
)
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
alibi_slopes = None
if use_alibi:
alibi_slopes = torch.randn(num_query_heads,
dtype=torch.float,
device=device)
alibi_slopes = torch.randn(num_query_heads, dtype=torch.float, device=device)
seq_lens = [seq_len for _ in range(num_seqs)]
max_seq_len = max(seq_lens)
@ -61,24 +60,23 @@ def main(
block_tables_lst: list[list[int]] = []
for _ in range(num_seqs):
block_table = [
random.randint(0, NUM_BLOCKS - 1)
for _ in range(max_num_blocks_per_seq)
random.randint(0, NUM_BLOCKS - 1) for _ in range(max_num_blocks_per_seq)
]
block_tables_lst.append(block_table)
block_tables = torch.tensor(block_tables_lst,
dtype=torch.int,
device=device)
block_tables = torch.tensor(block_tables_lst, dtype=torch.int, device=device)
# Create the KV cache.
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
device=device)
key_caches, value_caches = create_kv_caches_with_random(
NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
device=device,
)
key_cache, value_cache = key_caches[0], value_caches[0]
# Prepare for the paged attention kernel.
@ -86,11 +84,8 @@ def main(
if version == "v2":
if current_platform.is_rocm():
global PARTITION_SIZE
if not args.custom_paged_attn:
PARTITION_SIZE = 1024
else:
PARTITION_SIZE = PARTITION_SIZE_ROCM
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
PARTITION_SIZE = 1024 if not args.custom_paged_attn else PARTITION_SIZE_ROCM
num_partitions = (max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE
tmp_output = torch.empty(
size=(num_seqs, num_query_heads, num_partitions, head_size),
dtype=output.dtype,
@ -110,9 +105,7 @@ def main(
start_time = time.perf_counter()
# Using default kv_scale
k_scale = v_scale = torch.tensor(1.0,
dtype=torch.float32,
device=device)
k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
for _ in range(num_iters):
if version == "v1":
@ -195,30 +188,29 @@ def main(
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == '__main__':
logger.warning("This script benchmarks the paged attention kernel. "
"By default this is no longer used in vLLM inference.")
if __name__ == "__main__":
logger.warning(
"This script benchmarks the paged attention kernel. "
"By default this is no longer used in vLLM inference."
)
parser = FlexibleArgumentParser(
description="Benchmark the paged attention kernel.")
parser.add_argument("--version",
type=str,
choices=["v1", "v2"],
default="v2")
parser = FlexibleArgumentParser(description="Benchmark the paged attention kernel.")
parser.add_argument("--version", type=str, choices=["v1", "v2"], default="v2")
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--seq-len", type=int, default=4096)
parser.add_argument("--num-query-heads", type=int, default=64)
parser.add_argument("--num-kv-heads", type=int, default=8)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128)
parser.add_argument(
"--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128,
)
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
parser.add_argument("--use-alibi", action="store_true")
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument(
@ -228,10 +220,11 @@ if __name__ == '__main__':
default="auto",
help="Data type for kv cache storage. If 'auto', will use model "
"data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. "
"ROCm (AMD GPU) supports fp8 (=fp8_e4m3)")
parser.add_argument("--custom-paged-attn",
action="store_true",
help="Use custom paged attention")
"ROCm (AMD GPU) supports fp8 (=fp8_e4m3)",
)
parser.add_argument(
"--custom-paged-attn", action="store_true", help="Use custom paged attention"
)
args = parser.parse_args()
print(args)

View File

@ -10,15 +10,17 @@ from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@torch.inference_mode()
def main(num_tokens: int,
hidden_size: int,
static_scale: bool,
quant_dtype: torch.dtype,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
def main(
num_tokens: int,
hidden_size: int,
static_scale: bool,
quant_dtype: torch.dtype,
dtype: torch.dtype,
seed: int = 0,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device("cuda")
@ -56,7 +58,7 @@ def main(num_tokens: int,
print(f"Kernel running time: {latency * 1000000:.3f} us")
if __name__ == '__main__':
if __name__ == "__main__":
def to_torch_dtype(dt):
if dt == "int8":
@ -66,37 +68,40 @@ if __name__ == '__main__':
raise ValueError(f"Unsupported dtype: {dt}")
parser = FlexibleArgumentParser(
description="Benchmark the quantization (fp8 or int8) kernel.")
description="Benchmark the quantization (fp8 or int8) kernel."
)
parser.add_argument("--num-tokens", type=int, default=4096)
parser.add_argument("--hidden-size", type=int, default=8192)
parser.add_argument("--static-scale", action="store_true")
parser.add_argument("--quant-dtype",
type=str,
choices=["fp8", "int8"],
default="int8")
parser.add_argument("--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="half")
parser.add_argument(
"--quant-dtype", type=str, choices=["fp8", "int8"], default="int8"
)
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--profile", action="store_true")
parser.add_argument("--num-warmup-iters", type=int, default=5)
parser.add_argument("--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored")
parser.add_argument(
"--num-iters",
type=int,
default=100,
help="Number of benchmark iterations. "
"If --profile is set, this number is ignored",
)
args = parser.parse_args()
print(args)
main(num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
static_scale=args.static_scale,
quant_dtype=to_torch_dtype(args.quant_dtype),
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters)
main(
num_tokens=args.num_tokens,
hidden_size=args.hidden_size,
static_scale=args.static_scale,
quant_dtype=to_torch_dtype(args.quant_dtype),
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
seed=args.seed,
do_profile=args.profile,
num_warmup_iters=args.num_warmup_iters,
num_iters=args.num_iters,
)

View File

@ -4,15 +4,14 @@ import itertools
from typing import Optional, Union
import torch
import triton
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
from torch import nn
from vllm import _custom_ops as vllm_ops
from vllm.triton_utils import triton
class HuggingFaceRMSNorm(nn.Module):
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
@ -114,23 +113,19 @@ def rmsnorm_vllm(
def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
dtype = torch.bfloat16
x = torch.randn(batch_size,
seq_len,
hidden_size,
dtype=dtype,
device="cuda")
x = torch.randn(batch_size, seq_len, hidden_size, dtype=dtype, device="cuda")
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
residual = torch.randn_like(x) if use_residual else None
output_naive = rmsnorm_naive(
x.clone(), weight,
residual.clone() if residual is not None else None)
x.clone(), weight, residual.clone() if residual is not None else None
)
output_flashinfer = rmsnorm_flashinfer(
x.clone(), weight,
residual.clone() if residual is not None else None)
x.clone(), weight, residual.clone() if residual is not None else None
)
output_vllm = rmsnorm_vllm(
x.clone(), weight,
residual.clone() if residual is not None else None)
x.clone(), weight, residual.clone() if residual is not None else None
)
if use_residual:
output_naive = output_naive[0]
@ -141,9 +136,9 @@ def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
print(f"FlashInfer output={output_flashinfer}")
print(f"vLLM output={output_vllm}")
if torch.allclose(output_naive, output_flashinfer, atol=1e-2,
rtol=1e-2) and torch.allclose(
output_naive, output_vllm, atol=1e-2, rtol=1e-2):
if torch.allclose(
output_naive, output_flashinfer, atol=1e-2, rtol=1e-2
) and torch.allclose(output_naive, output_vllm, atol=1e-2, rtol=1e-2):
print("✅ All implementations match")
else:
print("❌ Implementations differ")
@ -152,12 +147,10 @@ def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
batch_size_range = [2**i for i in range(0, 7, 2)]
seq_length_range = [2**i for i in range(6, 11, 1)]
head_num_range = [32, 48]
configs = list(
itertools.product(head_num_range, batch_size_range, seq_length_range))
configs = list(itertools.product(head_num_range, batch_size_range, seq_length_range))
def get_benchmark(use_residual):
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["head_num", "batch_size", "seq_len"],
@ -167,19 +160,15 @@ def get_benchmark(use_residual):
line_names=["HuggingFace", "FlashInfer", "vLLM"],
styles=[("blue", "-"), ("green", "-"), ("red", "-")],
ylabel="us",
plot_name=
f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual",
plot_name=f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual",
args={},
))
)
)
def benchmark(head_num, batch_size, seq_len, provider):
dtype = torch.bfloat16
hidden_size = head_num * 128 # assuming head_dim = 128
x = torch.randn(batch_size,
seq_len,
hidden_size,
dtype=dtype,
device="cuda")
x = torch.randn(batch_size, seq_len, hidden_size, dtype=dtype, device="cuda")
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
residual = torch.randn_like(x) if use_residual else None
@ -240,9 +229,9 @@ if __name__ == "__main__":
default=4096,
help="Hidden size (2nd dimension) of the sequence",
)
parser.add_argument("--use-residual",
action="store_true",
help="Whether to use residual connection")
parser.add_argument(
"--use-residual", action="store_true", help="Whether to use residual connection"
)
parser.add_argument(
"--save-path",
type=str,
@ -253,10 +242,12 @@ if __name__ == "__main__":
args = parser.parse_args()
# Run correctness test
calculate_diff(batch_size=args.batch_size,
seq_len=args.seq_len,
hidden_size=args.hidden_size,
use_residual=args.use_residual)
calculate_diff(
batch_size=args.batch_size,
seq_len=args.seq_len,
hidden_size=args.hidden_size,
use_residual=args.use_residual,
)
# Get the benchmark function with proper use_residual setting
benchmark = get_benchmark(args.use_residual)

View File

@ -6,8 +6,7 @@ from typing import Optional
import nvtx
import torch
from vllm.model_executor.layers.rotary_embedding import (RotaryEmbedding,
get_rope)
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding, get_rope
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
@ -32,40 +31,49 @@ def benchmark_rope_kernels_multi_lora(
# silulating serving 4 LoRAs
scaling_factors = [1, 2, 4, 8]
# batched RoPE can take multiple scaling factors
batched_rope = get_rope(head_size, rotary_dim, max_position, base,
is_neox_style, {
"rope_type": "linear",
"factor": tuple(scaling_factors)
})
batched_rope = get_rope(
head_size,
rotary_dim,
max_position,
base,
is_neox_style,
{"rope_type": "linear", "factor": tuple(scaling_factors)},
)
# non-batched RoPE takes only one scaling factor, we create multiple
# instances to simulate the same behavior
non_batched_ropes: list[RotaryEmbedding] = []
for scaling_factor in scaling_factors:
non_batched_ropes.append(
get_rope(head_size, rotary_dim, max_position, base, is_neox_style,
{
"rope_type": "linear",
"factor": (scaling_factor, )
}))
get_rope(
head_size,
rotary_dim,
max_position,
base,
is_neox_style,
{"rope_type": "linear", "factor": (scaling_factor,)},
)
)
positions = torch.randint(0, max_position, (batch_size, seq_len))
query = torch.randn(batch_size,
seq_len,
num_heads * head_size,
dtype=dtype)
query = torch.randn(batch_size, seq_len, num_heads * head_size, dtype=dtype)
key = torch.randn_like(query)
# create query offsets for batched RoPE, we concat multiple kv cache
# together and each query needs to find the right kv cache of its type
offset_map = torch.tensor(
list(
accumulate([0] + [
max_position * scaling_factor * 2
for scaling_factor in scaling_factors[:-1]
])))
query_types = torch.randint(0,
len(scaling_factors), (batch_size, seq_len),
device=device)
accumulate(
[0]
+ [
max_position * scaling_factor * 2
for scaling_factor in scaling_factors[:-1]
]
)
)
)
query_types = torch.randint(
0, len(scaling_factors), (batch_size, seq_len), device=device
)
# map query types to offsets
query_offsets = offset_map[query_types]
# the kernel takes flattened offsets
@ -86,27 +94,28 @@ def benchmark_rope_kernels_multi_lora(
torch.cuda.synchronize()
if __name__ == '__main__':
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the rotary embedding kernels.")
description="Benchmark the rotary embedding kernels."
)
parser.add_argument("--is-neox-style", type=bool, default=True)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--seq-len", type=int, default=512)
parser.add_argument("--num-heads", type=int, default=8)
parser.add_argument("--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128)
parser.add_argument(
"--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128,
)
parser.add_argument("--rotary-dim", type=int, choices=[16, 32], default=32)
parser.add_argument("--dtype",
type=str,
choices=["bfloat16", "float"],
default="float")
parser.add_argument(
"--dtype", type=str, choices=["bfloat16", "float"], default="float"
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--device",
type=str,
choices=["cuda:0", "cuda:1"],
default="cuda:0")
parser.add_argument(
"--device", type=str, choices=["cuda:0", "cuda:1"], default="cuda:0"
)
args = parser.parse_args()
print(args)

View File

@ -14,14 +14,16 @@ import tqdm
import triton
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul)
_w8a8_block_fp8_matmul,
)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
mp.set_start_method("spawn", force=True)
assert current_platform.is_cuda(
), "Only support tune w8a8 block fp8 kernel on CUDA device."
assert current_platform.is_cuda(), (
"Only support tune w8a8 block fp8 kernel on CUDA device."
)
DTYPE_MAP = {
"float32": torch.float32,
@ -40,7 +42,7 @@ def w8a8_block_matmul(
config: dict[str, Any],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
"""This function performs matrix multiplication with
"""This function performs matrix multiplication with
block-wise quantization.
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
@ -51,7 +53,7 @@ def w8a8_block_matmul(
B: The input tensor, e.g., weight.
As: The per-token-group quantization scale for `A`.
Bs: The per-block quantization scale for `B`.
block_size: The block size for per-block quantization.
block_size: The block size for per-block quantization.
It should be 2-dim, e.g., [128, 128].
output_dytpe: The dtype of the returned tensor.
@ -71,18 +73,18 @@ def w8a8_block_matmul(
assert triton.cdiv(N, block_n) == Bs.shape[0]
assert triton.cdiv(K, block_k) == Bs.shape[1]
C_shape = A.shape[:-1] + (N, )
C_shape = A.shape[:-1] + (N,)
C = A.new_empty(C_shape, dtype=output_dtype)
def grid(META):
return (triton.cdiv(M, META["BLOCK_SIZE_M"]) *
triton.cdiv(N, META["BLOCK_SIZE_N"]), )
return (
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
)
if A.dtype == torch.float8_e4m3fn:
kernel = _w8a8_block_fp8_matmul
else:
raise RuntimeError(
"Currently, only support tune w8a8 block fp8 kernel.")
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
kernel[grid](
A,
@ -119,14 +121,16 @@ def get_configs_compute_bound():
for block_n in [32, 64, 128, 256]:
for num_warps in [4, 8]:
for group_size in [1, 16, 32, 64]:
configs.append({
"BLOCK_SIZE_M": block_m,
"BLOCK_SIZE_N": block_n,
"BLOCK_SIZE_K": block_k,
"GROUP_SIZE_M": group_size,
"num_warps": num_warps,
"num_stages": num_stages,
})
configs.append(
{
"BLOCK_SIZE_M": block_m,
"BLOCK_SIZE_N": block_n,
"BLOCK_SIZE_K": block_k,
"GROUP_SIZE_M": group_size,
"num_warps": num_warps,
"num_stages": num_stages,
}
)
return configs
@ -165,15 +169,9 @@ def get_weight_shapes(tp_size):
return weight_shapes
def benchmark_config(A,
B,
As,
Bs,
block_size,
config,
out_dtype=torch.float16,
num_iters=10):
def benchmark_config(
A, B, As, Bs, block_size, config, out_dtype=torch.float16, num_iters=10
):
def run():
w8a8_block_matmul(A, B, As, Bs, block_size, config, out_dtype)
@ -206,26 +204,26 @@ def tune(M, N, K, block_size, out_dtype, search_space, input_type):
fp8_max, fp8_min = fp8_info.max, fp8_info.min
A_fp32 = (
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
fp8_max)
(torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
)
A = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 *
fp8_max)
(torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
)
B = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
else:
raise RuntimeError(
"Currently, only support tune w8a8 block fp8 kernel.")
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32,
device="cuda") * factor_for_scale
Bs = (torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda") *
factor_for_scale)
As = torch.rand(M, k_tiles, dtype=torch.float32, device="cuda") * factor_for_scale
Bs = (
torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda")
* factor_for_scale
)
best_config = None
best_time = float("inf")
@ -267,7 +265,8 @@ def save_configs(
device_name = current_platform.get_device_name().replace(" ", "_")
json_file_name = (
f"N={N},K={K},device_name={device_name},dtype={input_type}_w8a8,"
f"block_shape=[{block_n},{block_k}].json")
f"block_shape=[{block_n},{block_k}].json"
)
config_file_path = os.path.join(save_path, json_file_name)
print(f"Writing best config to {config_file_path}...")
@ -295,8 +294,7 @@ def tune_on_gpu(args_dict):
search_space = get_configs_compute_bound()
search_space = [
config for config in search_space
if block_k % config["BLOCK_SIZE_K"] == 0
config for config in search_space if block_k % config["BLOCK_SIZE_K"] == 0
]
start = time.time()
@ -312,15 +310,11 @@ def tune_on_gpu(args_dict):
out_dtype,
search_space,
input_type,
) for batch_size in tqdm(batch_sizes,
desc=f"GPU {gpu_id} - Batch sizes")
)
for batch_size in tqdm(batch_sizes, desc=f"GPU {gpu_id} - Batch sizes")
]
best_configs = {
M: config
for M, config in zip(batch_sizes, benchmark_results)
}
save_configs(N, K, block_n, block_k, best_configs, save_path,
input_type)
best_configs = {M: config for M, config in zip(batch_sizes, benchmark_results)}
save_configs(N, K, block_n, block_k, best_configs, save_path, input_type)
end = time.time()
print(f"Tuning on GPU {gpu_id} took {end - start:.2f} seconds")
@ -376,13 +370,14 @@ def main(args):
process_args = []
for gpu_id in range(num_gpus):
process_args.append({
"gpu_id": gpu_id,
"batch_sizes": batches_per_gpu[gpu_id],
"weight_shapes":
weight_shapes, # Each GPU processes all weight shapes
"args": args,
})
process_args.append(
{
"gpu_id": gpu_id,
"batch_sizes": batches_per_gpu[gpu_id],
"weight_shapes": weight_shapes, # Each GPU processes all weight shapes
"args": args,
}
)
ctx = mp.get_context("spawn")
with ctx.Pool(num_gpus) as pool:
@ -398,13 +393,11 @@ Tune triton w8a8 block fp8 for DeepSeek-V3/DeepSeek-R1:
python3 benchmark_w8a8_block_fp8.py --tp-size 8 --input-type fp8
Then copy to model_executor/layers/quantization/utils/configs
""",
formatter_class=argparse.RawTextHelpFormatter)
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument("--tp-size", "-tp", type=int, default=8)
parser.add_argument("--input-type",
type=str,
choices=["fp8"],
default="fp8")
parser.add_argument("--input-type", type=str, choices=["fp8"], default="fp8")
parser.add_argument(
"--out-dtype",
type=str,

View File

@ -6,13 +6,15 @@ import time
# Import DeepGEMM functions
import deep_gemm
import torch
import triton
from deep_gemm import calc_diff, ceil_div, get_col_major_tma_aligned_tensor
# Import vLLM functions
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
per_token_group_quant_fp8,
w8a8_block_fp8_matmul,
)
from vllm.triton_utils import triton
# Copied from

View File

@ -14,13 +14,14 @@ from vllm.utils import FlexibleArgumentParser
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
parser.add_argument('filename', type=str)
description="Benchmark the latency of processing a single batch of "
"requests till completion."
)
parser.add_argument("filename", type=str)
args = parser.parse_args()
with open(args.filename, 'rb') as f:
with open(args.filename, "rb") as f:
data = pickle.load(f)
raw_results: list[TMeasurement] = data["results"]
@ -38,11 +39,7 @@ if __name__ == "__main__":
raise Exception("MKN not found")
kernel = v.task_spec.description
results[KN].append({
"kernel": kernel,
"batch_size": M,
"median": v.median
})
results[KN].append({"kernel": kernel, "batch_size": M, "median": v.median})
rows = int(math.ceil(len(results) / 2))
fig, axs = plt.subplots(rows, 2, figsize=(12, 5 * rows))
@ -50,14 +47,16 @@ if __name__ == "__main__":
for axs_idx, (shape, data) in enumerate(results.items()):
plt.sca(axs[axs_idx])
df = pd.DataFrame(data)
sns.lineplot(data=df,
x="batch_size",
y="median",
hue="kernel",
style="kernel",
markers=True,
dashes=False,
palette="Dark2")
sns.lineplot(
data=df,
x="batch_size",
y="median",
hue="kernel",
style="kernel",
markers=True,
dashes=False,
palette="Dark2",
)
plt.title(f"Shape: {shape}")
plt.ylabel("time (median, s)")
plt.tight_layout()

View File

@ -23,6 +23,7 @@ class ArgPool:
For every invocation during a benchmarking run, it will choose a
different value from the list.
"""
values: Iterable[Any]
def __getitem__(self, index):
@ -30,9 +31,7 @@ class ArgPool:
class Bench:
class ArgsIterator:
def __init__(self, args_list, kwargs_list):
assert len(args_list) == len(kwargs_list)
self.args_list = args_list
@ -53,10 +52,16 @@ class Bench:
def n_args(self):
return self.n
def __init__(self, cuda_graph_params: Optional[CudaGraphBenchParams],
label: str, sub_label: str, description: str, fn: Callable,
*args, **kwargs):
def __init__(
self,
cuda_graph_params: Optional[CudaGraphBenchParams],
label: str,
sub_label: str,
description: str,
fn: Callable,
*args,
**kwargs,
):
self.cuda_graph_params = cuda_graph_params
self.use_cuda_graph = self.cuda_graph_params is not None
self.label = label
@ -67,10 +72,8 @@ class Bench:
# Process args
self._args = args
self._kwargs = kwargs
self.args_list, self.kwargs_list = self.collapse_argpool(
*args, **kwargs)
self.args_iterator = self.ArgsIterator(self.args_list,
self.kwargs_list)
self.args_list, self.kwargs_list = self.collapse_argpool(*args, **kwargs)
self.args_iterator = self.ArgsIterator(self.args_list, self.kwargs_list)
# Cudagraph runner
self.g = None
@ -100,16 +103,13 @@ class Bench:
for i in range(argpool_size):
# collapse args; Just pick the ith value
args_list[i] = tuple([
arg[i] if isinstance(arg, ArgPool) else arg
for arg in args_list[i]
])
args_list[i] = tuple(
[arg[i] if isinstance(arg, ArgPool) else arg for arg in args_list[i]]
)
# collapse kwargs
kwargs_i = kwargs_list[i]
arg_pool_keys = [
k for k, v in kwargs_i.items() if isinstance(v, ArgPool)
]
arg_pool_keys = [k for k, v in kwargs_i.items() if isinstance(v, ArgPool)]
for k in arg_pool_keys:
# again just pick the ith value
kwargs_i[k] = kwargs_i[k][i]
@ -142,7 +142,7 @@ class Bench:
def run_cudagrah(self) -> TMeasurement:
assert self.use_cuda_graph
globals = {'g': self.g}
globals = {"g": self.g}
return TBenchmark.Timer(
stmt="g.replay()",
@ -162,15 +162,15 @@ class Bench:
has_arg_pool = self.args_iterator.n_args > 1
if has_arg_pool:
setup = '''
setup = """
args_iterator.reset()
args_it = args_iterator.__next__()
'''
stmt = '''
"""
stmt = """
args, kwargs = next(args_it)
fn(*args, **kwargs)
'''
globals = {'fn': self.fn, 'args_iterator': self.args_iterator}
"""
globals = {"fn": self.fn, "args_iterator": self.args_iterator}
else:
# no arg pool. Just use the args and kwargs directly
self.args_iterator.reset()
@ -178,10 +178,10 @@ class Bench:
args, kwargs = next(args_it)
setup = ""
stmt = '''
stmt = """
fn(*args, **kwargs)
'''
globals = {'fn': self.fn, 'args': args, 'kwargs': kwargs}
"""
globals = {"fn": self.fn, "args": args, "kwargs": kwargs}
return TBenchmark.Timer(
stmt=stmt,

View File

@ -7,9 +7,8 @@ from vllm import LLM, SamplingParams
from vllm.utils import FlexibleArgumentParser
# A very long prompt, total number of tokens is about 15k.
LONG_PROMPT = ["You are an expert in large language models, aren't you?"
] * 1000
LONG_PROMPT = ' '.join(LONG_PROMPT)
LONG_PROMPT = ["You are an expert in large language models, aren't you?"] * 1000
LONG_PROMPT = " ".join(LONG_PROMPT)
def main(args):
@ -30,32 +29,35 @@ def main(args):
print("------start generating------")
for i in range(3):
profiler.runctx('llm.generate(LONG_PROMPT, sampling_params)',
globals(), locals())
profiler.runctx(
"llm.generate(LONG_PROMPT, sampling_params)", globals(), locals()
)
# analyze the runtime of hashing function
stats = pstats.Stats(profiler)
stats.sort_stats('cumulative')
stats.sort_stats("cumulative")
total_time = 0
total_calls = 0
for func in stats.stats:
if 'hash_of_block' in func[2]:
if "hash_of_block" in func[2]:
total_time = stats.stats[func][3]
total_calls = stats.stats[func][0]
percentage = (total_time / stats.total_tt) * 100
print(f"Hashing took {total_time:.2f} seconds,"
f"{percentage:.2f}% of the total runtime.")
print(
f"Hashing took {total_time:.2f} seconds,{percentage:.2f}% of the total runtime."
)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the performance of hashing function in'
'automatic prefix caching.')
parser.add_argument('--model', type=str, default='lmsys/longchat-7b-16k')
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
action='store_true',
help='enable prefix caching')
description="Benchmark the performance of hashing function in"
"automatic prefix caching."
)
parser.add_argument("--model", type=str, default="lmsys/longchat-7b-16k")
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--output-len", type=int, default=10)
parser.add_argument(
"--enable-prefix-caching", action="store_true", help="enable prefix caching"
)
args = parser.parse_args()
main(args)

54
benchmarks/pyproject.toml Normal file
View File

@ -0,0 +1,54 @@
# This local pyproject file is part of the migration from yapf to ruff format.
# It uses the same core rules as the main pyproject.toml file, but with the
# following differences:
# - ruff line length is overridden to 88
# - deprecated typing ignores (UP006, UP035) have been removed
[tool.ruff]
line-length = 88
exclude = [
# External file, leaving license intact
"examples/other/fp8/quantizer/quantize.py",
"vllm/vllm_flash_attn/flash_attn_interface.pyi"
]
[tool.ruff.lint.per-file-ignores]
"vllm/third_party/**" = ["ALL"]
"vllm/version.py" = ["F401"]
"vllm/_version.py" = ["ALL"]
[tool.ruff.lint]
select = [
# pycodestyle
"E",
# Pyflakes
"F",
# pyupgrade
"UP",
# flake8-bugbear
"B",
# flake8-simplify
"SIM",
# isort
"I",
# flake8-logging-format
"G",
]
ignore = [
# star imports
"F405", "F403",
# lambda expression assignment
"E731",
# Loop control variable not used within loop body
"B007",
# f-string format
"UP032",
# Can remove once 3.10+ is the minimum Python version
"UP007",
]
[tool.ruff.lint.isort]
known-first-party = ["vllm"]
[tool.ruff.format]
docstring-code-format = true

View File

@ -1,41 +1,102 @@
#!/bin/bash
# Define the model to use
MODEL=${1:-"Qwen/Qwen2.5-7B-Instruct"}
# Define the backend to use
BACKEND=${2:-"vllm"}
# Define the dataset to use
DATASET=${3:-"xgrammar_bench"}
# Define the guided decoding backend
GUIDED_BACKEND=${4:-"xgrammar"}
# default values
MODEL=${MODEL:-"Qwen/Qwen2.5-7B-Instruct"}
BACKEND=${BACKEND:-"vllm"}
DATASET=${DATASET:-"xgrammar_bench"}
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
OUTPUT_DIR=${5:-"$SCRIPT_DIR/structured_output_benchmark_results"}
OUTPUT_DIR=${OUTPUT_DIR:-"$SCRIPT_DIR/structured_output_benchmark_results"}
PORT=${PORT:-8000}
STRUCTURED_OUTPUT_RATIO=${STRUCTURED_OUTPUT_RATIO:-1}
TOTAL_SECONDS=${TOTAL_SECONDS:-90}
MAX_NEW_TOKENS=${MAX_NEW_TOKENS:-300}
TOKENIZER_MODE=${TOKENIZER_MODE:-"auto"}
GUIDED_RATIO=${6:-0.5}
usage() {
echo "Usage: $0 [options]"
echo "Options:"
echo " --model MODEL Model to benchmark (default: $MODEL)"
echo " --backend BACKEND Backend to use (default: $BACKEND)"
echo " --dataset DATASET Dataset to use (default: $DATASET)"
echo " --max-new-tokens N Maximum number of tokens to generate (default: $MAX_NEW_TOKENS)"
echo " --output-dir DIR Output directory for results (default: $OUTPUT_DIR)"
echo " --port PORT Port to use (default: $PORT)"
echo " --structured-output-ratio N Ratio of structured outputs (default: $STRUCTURED_OUTPUT_RATIO)"
echo " --tokenizer-mode MODE Tokenizer mode to use (default: $TOKENIZER_MODE)"
echo " --total-seconds N Total seconds to run the benchmark (default: $TOTAL_SECONDS)"
echo " -h, --help Show this help message and exit"
exit 0
}
# parse command line arguments
while [[ $# -gt 0 ]]; do
case $1 in
--model)
MODEL="$2"
shift 2
;;
--backend)
BACKEND="$2"
shift 2
;;
--dataset)
DATASET="$2"
shift 2
;;
--max-new-tokens)
MAX_NEW_TOKENS="$2"
shift 2
;;
--output-dir)
OUTPUT_DIR="$2"
shift 2
;;
--port)
PORT="$2"
shift 2
;;
--structured-output-ratio)
STRUCTURED_OUTPUT_RATIO="$2"
shift 2
;;
--tokenizer-mode)
TOKENIZER_MODE="$2"
shift 2
;;
--total-seconds)
TOTAL_SECONDS="$2"
shift 2
;;
-h|--help)
usage
;;
*)
echo "Unknown argument: $1\n"
usage
;;
esac
done
# Create output directory if it doesn't exist
mkdir -p "$OUTPUT_DIR"
# Define QPS values to test
QPS_VALUES=(70 60 50 25 20 15 10)
QPS_VALUES=(25 20 15 10 5 1)
# Common parameters
COMMON_PARAMS="--backend $BACKEND \
--model $MODEL \
--dataset $DATASET \
--structured-output-backend $GUIDED_BACKEND \
--structured-output-ratio $GUIDED_RATIO \
--structured-output-ratio $STRUCTURED_OUTPUT_RATIO \
--save-results \
--result-dir $OUTPUT_DIR"
--result-dir $OUTPUT_DIR \
--output-len $MAX_NEW_TOKENS \
--port $PORT \
--tokenizer-mode $TOKENIZER_MODE"
echo "Starting structured output benchmark with model: $MODEL"
echo "Backend: $BACKEND"
echo "Dataset: $DATASET"
echo "Structured output backend: $GUIDED_BACKEND"
echo "Results will be saved to: $OUTPUT_DIR"
echo "----------------------------------------"
@ -48,14 +109,17 @@ for qps in "${QPS_VALUES[@]}"; do
GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD 2>/dev/null || echo "unknown")
# Construct filename for this run
FILENAME="${GUIDED_BACKEND}_${BACKEND}_${qps}qps_$(basename $MODEL)_${DATASET}_${GIT_HASH}.json"
FILENAME="${BACKEND}_${qps}qps_$(basename $MODEL)_${DATASET}_${GIT_HASH}.json"
NUM_PROMPTS=$(echo "$TOTAL_SECONDS * $qps" | bc)
NUM_PROMPTS=${NUM_PROMPTS%.*} # Remove fractional part
echo "Running benchmark with $NUM_PROMPTS prompts"
# Run the benchmark
python "$SCRIPT_DIR/benchmark_serving_structured_output.py" $COMMON_PARAMS \
--request-rate $qps \
--result-filename "$FILENAME" \
--tokenizer-mode ${TOKENIZER_MODE:-"auto"} \
--port ${PORT:-8000}
--num-prompts $NUM_PROMPTS
echo "Completed benchmark with QPS: $qps"
echo "----------------------------------------"

View File

@ -167,6 +167,33 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
FetchContent_MakeAvailable(oneDNN)
list(APPEND LIBS dnnl)
elseif(POWER10_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.7.2
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
set(ONEDNN_BUILD_EXAMPLES "OFF")
set(ONEDNN_BUILD_TESTS "OFF")
set(ONEDNN_ENABLE_WORKLOAD "INFERENCE")
set(ONEDNN_ENABLE_PRIMITIVE "MATMUL;REORDER")
set(ONEDNN_BUILD_GRAPH "OFF")
set(ONEDNN_ENABLE_JIT_PROFILING "OFF")
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
set(DNNL_CPU_RUNTIME "OMP")
FetchContent_MakeAvailable(oneDNN)
list(APPEND LIBS dnnl)
endif()
@ -197,6 +224,10 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
"csrc/cpu/quant.cpp"
"csrc/cpu/shm.cpp"
${VLLM_EXT_SRC})
elseif(POWER10_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
#
@ -214,4 +245,4 @@ define_gpu_extension_target(
WITH_SOABI
)
message(STATUS "Enabling C extension.")
message(STATUS "Enabling C extension.")

View File

@ -228,11 +228,26 @@ macro(set_gencode_flags_for_srcs)
"${multiValueArgs}" ${ARGN} )
foreach(_ARCH ${arg_CUDA_ARCHS})
string(REPLACE "." "" _ARCH "${_ARCH}")
set_gencode_flag_for_srcs(
SRCS ${arg_SRCS}
ARCH "compute_${_ARCH}"
CODE "sm_${_ARCH}")
# handle +PTX suffix: generate both sm and ptx codes if requested
string(FIND "${_ARCH}" "+PTX" _HAS_PTX)
if(NOT _HAS_PTX EQUAL -1)
string(REPLACE "+PTX" "" _BASE_ARCH "${_ARCH}")
string(REPLACE "." "" _STRIPPED_ARCH "${_BASE_ARCH}")
set_gencode_flag_for_srcs(
SRCS ${arg_SRCS}
ARCH "compute_${_STRIPPED_ARCH}"
CODE "sm_${_STRIPPED_ARCH}")
set_gencode_flag_for_srcs(
SRCS ${arg_SRCS}
ARCH "compute_${_STRIPPED_ARCH}"
CODE "compute_${_STRIPPED_ARCH}")
else()
string(REPLACE "." "" _STRIPPED_ARCH "${_ARCH}")
set_gencode_flag_for_srcs(
SRCS ${arg_SRCS}
ARCH "compute_${_STRIPPED_ARCH}"
CODE "sm_${_STRIPPED_ARCH}")
endif()
endforeach()
if (${arg_BUILD_PTX_FOR_ARCH})
@ -251,7 +266,10 @@ endmacro()
#
# For the given `SRC_CUDA_ARCHS` list of gencode versions in the form
# `<major>.<minor>[letter]` compute the "loose intersection" with the
# `TGT_CUDA_ARCHS` list of gencodes.
# `TGT_CUDA_ARCHS` list of gencodes. We also support the `+PTX` suffix in
# `SRC_CUDA_ARCHS` which indicates that the PTX code should be built when there
# is a CUDA_ARCH in `TGT_CUDA_ARCHS` that is equal to or larger than the
# architecture in `SRC_CUDA_ARCHS`.
# The loose intersection is defined as:
# { max{ x \in tgt | x <= y } | y \in src, { x \in tgt | x <= y } != {} }
# where `<=` is the version comparison operator.
@ -268,44 +286,63 @@ endmacro()
# cuda_archs_loose_intersection(OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_ARCHS)
# OUT_CUDA_ARCHS="8.0;8.6;9.0;9.0a"
#
# Example With PTX:
# SRC_CUDA_ARCHS="8.0+PTX"
# TGT_CUDA_ARCHS="9.0"
# cuda_archs_loose_intersection(OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_ARCHS)
# OUT_CUDA_ARCHS="8.0+PTX"
#
function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_ARCHS)
list(REMOVE_DUPLICATES SRC_CUDA_ARCHS)
set(TGT_CUDA_ARCHS_ ${TGT_CUDA_ARCHS})
set(_SRC_CUDA_ARCHS "${SRC_CUDA_ARCHS}")
set(_TGT_CUDA_ARCHS ${TGT_CUDA_ARCHS})
# handle +PTX suffix: separate base arch for matching, record PTX requests
set(_PTX_ARCHS)
foreach(_arch ${_SRC_CUDA_ARCHS})
if(_arch MATCHES "\\+PTX$")
string(REPLACE "+PTX" "" _base "${_arch}")
list(APPEND _PTX_ARCHS "${_base}")
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
list(APPEND _SRC_CUDA_ARCHS "${_base}")
endif()
endforeach()
list(REMOVE_DUPLICATES _PTX_ARCHS)
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
set(_CUDA_ARCHS)
if ("9.0a" IN_LIST SRC_CUDA_ARCHS)
list(REMOVE_ITEM SRC_CUDA_ARCHS "9.0a")
if ("9.0" IN_LIST TGT_CUDA_ARCHS_)
list(REMOVE_ITEM TGT_CUDA_ARCHS_ "9.0")
if ("9.0a" IN_LIST _SRC_CUDA_ARCHS)
list(REMOVE_ITEM _SRC_CUDA_ARCHS "9.0a")
if ("9.0" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "9.0")
set(_CUDA_ARCHS "9.0a")
endif()
endif()
if ("10.0a" IN_LIST SRC_CUDA_ARCHS)
list(REMOVE_ITEM SRC_CUDA_ARCHS "10.0a")
if ("10.0a" IN_LIST _SRC_CUDA_ARCHS)
list(REMOVE_ITEM _SRC_CUDA_ARCHS "10.0a")
if ("10.0" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM TGT_CUDA_ARCHS_ "10.0")
list(REMOVE_ITEM _TGT_CUDA_ARCHS "10.0")
set(_CUDA_ARCHS "10.0a")
endif()
endif()
list(SORT SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING)
list(SORT _SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING)
# for each ARCH in TGT_CUDA_ARCHS find the highest arch in SRC_CUDA_ARCHS that
# is less or equal to ARCH (but has the same major version since SASS binary
# compatibility is only forward compatible within the same major version).
foreach(_ARCH ${TGT_CUDA_ARCHS_})
foreach(_ARCH ${_TGT_CUDA_ARCHS})
set(_TMP_ARCH)
# Extract the major version of the target arch
string(REGEX REPLACE "^([0-9]+)\\..*$" "\\1" TGT_ARCH_MAJOR "${_ARCH}")
foreach(_SRC_ARCH ${SRC_CUDA_ARCHS})
foreach(_SRC_ARCH ${_SRC_CUDA_ARCHS})
# Extract the major version of the source arch
string(REGEX REPLACE "^([0-9]+)\\..*$" "\\1" SRC_ARCH_MAJOR "${_SRC_ARCH}")
# Check major-version match AND version-less-or-equal
# Check version-less-or-equal, and allow PTX arches to match across majors
if (_SRC_ARCH VERSION_LESS_EQUAL _ARCH)
if (SRC_ARCH_MAJOR STREQUAL TGT_ARCH_MAJOR)
if (_SRC_ARCH IN_LIST _PTX_ARCHS OR SRC_ARCH_MAJOR STREQUAL TGT_ARCH_MAJOR)
set(_TMP_ARCH "${_SRC_ARCH}")
endif()
else()
@ -321,6 +358,18 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
endforeach()
list(REMOVE_DUPLICATES _CUDA_ARCHS)
# reapply +PTX suffix to architectures that requested PTX
set(_FINAL_ARCHS)
foreach(_arch ${_CUDA_ARCHS})
if(_arch IN_LIST _PTX_ARCHS)
list(APPEND _FINAL_ARCHS "${_arch}+PTX")
else()
list(APPEND _FINAL_ARCHS "${_arch}")
endif()
endforeach()
set(_CUDA_ARCHS ${_FINAL_ARCHS})
set(${OUT_CUDA_ARCHS} ${_CUDA_ARCHS} PARENT_SCOPE)
endfunction()

View File

@ -70,6 +70,9 @@ __device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens); \
dim3 block(std::min(d, 1024)); \
if (num_tokens == 0) { \
return; \
} \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \

View File

@ -172,7 +172,7 @@ __device__ void paged_attention_kernel(
// Load the query to registers.
// Each thread in a thread group has a different part of the query.
// For example, if the the thread group size is 4, then the first thread in
// For example, if the thread group size is 4, then the first thread in
// the group has 0, 4, 8, ... th vectors of the query, and the second thread
// has 1, 5, 9, ... th vectors of the query, and so on. NOTE(woosuk): Because
// q is split from a qkv tensor, it may not be contiguous.
@ -259,7 +259,7 @@ __device__ void paged_attention_kernel(
// Load a key to registers.
// Each thread in a thread group has a different part of the key.
// For example, if the the thread group size is 4, then the first thread in
// For example, if the thread group size is 4, then the first thread in
// the group has 0, 4, 8, ... th vectors of the key, and the second thread
// has 1, 5, 9, ... th vectors of the key, and so on.
for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {

View File

@ -0,0 +1,401 @@
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
#include <assert.h>
#include <cuda.h>
#include <torch/all.h>
__device__ int64_t save_blocks(int* block_offset, int64_t range_start,
int64_t range_end, int64_t block_size,
int64_t input_block_count, int64_t kv_seqlen) {
if (range_start >= kv_seqlen) {
return input_block_count;
}
if (range_end > kv_seqlen) {
range_end = kv_seqlen;
}
int64_t current_block_count = input_block_count;
for (int idx = range_start; idx < range_end; idx += block_size) {
block_offset[current_block_count++] = idx;
}
return current_block_count;
}
__global__ void convert_vertical_slash_indexes_kernel(
const int* q_seqlens, // [BATCH, ]
const int* kv_seqlens, // [BATCH, ]
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S]
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
int64_t N_HEADS, int64_t N_ROWS, int64_t BLOCK_SIZE_M, int64_t BLOCK_SIZE_N,
int64_t NNZ_V, int64_t NNZ_S,
bool causal // True for intra, False for succ
) {
const int batch_idx = blockIdx.y;
const int head_idx = blockIdx.x;
const int group_idx = blockIdx.z;
int64_t q_seqlen = q_seqlens[batch_idx];
int64_t kv_seqlen = kv_seqlens[batch_idx];
int64_t block_idx_m = group_idx * blockDim.x + threadIdx.x;
int64_t start_m = block_idx_m * BLOCK_SIZE_M;
if (start_m >= q_seqlen) {
return;
}
int64_t end_m = start_m + BLOCK_SIZE_M;
vertical_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_V;
slash_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_S;
int64_t row_offset = (batch_idx * N_HEADS + head_idx) * N_ROWS + block_idx_m;
block_count += row_offset;
block_offset += row_offset * NNZ_S;
column_count += row_offset;
column_index += row_offset * NNZ_V;
bool has_slash = true;
int64_t tmp_col_cnt = 0, tmp_blk_cnt = 0;
int64_t s = 0, v = 0;
int64_t v_idx = vertical_indexes[v++];
int64_t s_idx = slash_indexes[s++];
if (causal) {
while (s_idx >= end_m + (kv_seqlen - q_seqlen) && s < NNZ_S) {
s_idx = slash_indexes[s++];
}
if (s_idx > end_m + (kv_seqlen - q_seqlen)) has_slash = false;
s_idx = max((kv_seqlen - q_seqlen) + end_m - s_idx, BLOCK_SIZE_M);
} else {
while (s_idx >= end_m + kv_seqlen && s < NNZ_S) {
s_idx = slash_indexes[s++];
}
if (s_idx > end_m + kv_seqlen) has_slash = false;
s_idx = max(kv_seqlen + end_m - s_idx, BLOCK_SIZE_M);
}
int64_t range_start = s_idx - BLOCK_SIZE_M, range_end = s_idx;
if (!has_slash) {
if (causal) {
range_start = (kv_seqlen - q_seqlen) + end_m;
range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
} else {
range_start = kv_seqlen;
range_end = kv_seqlen + BLOCK_SIZE_N;
}
}
bool slash_finished = false;
while (1) {
if (v_idx < range_end) {
if (v_idx < range_start) {
column_index[tmp_col_cnt++] = v_idx;
}
if (v < NNZ_V) {
v_idx = vertical_indexes[v++];
} else {
if (causal)
v_idx = end_m + BLOCK_SIZE_N + (kv_seqlen - q_seqlen);
else
v_idx = end_m + BLOCK_SIZE_N + kv_seqlen;
}
} else {
if ((s < NNZ_S && causal) ||
(s < NNZ_S && !causal && slash_indexes[s] >= start_m)) {
if (causal)
s_idx = max((kv_seqlen - q_seqlen) + end_m - slash_indexes[s++],
BLOCK_SIZE_M);
else
s_idx = max(kv_seqlen + end_m - slash_indexes[s++], BLOCK_SIZE_M);
} else {
if (v == NNZ_V || (v_idx > range_start && causal)) {
// add the last vertical if no more slash
if (v == NNZ_V && !causal && v_idx < kv_seqlen) {
column_index[tmp_col_cnt++] = v_idx;
}
tmp_blk_cnt = save_blocks(block_offset, range_start, range_end,
BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
break;
} else {
if (causal) {
range_start = (kv_seqlen - q_seqlen) + end_m;
range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
} else {
// if slash_finished but there are vertical left, save current
// blocks
tmp_blk_cnt = save_blocks(block_offset, range_start, range_end,
BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
range_start = kv_seqlen;
range_end = kv_seqlen + BLOCK_SIZE_N;
}
slash_finished = true;
}
}
if (!slash_finished) {
if (s_idx > range_end + BLOCK_SIZE_M) {
tmp_blk_cnt = save_blocks(block_offset, range_start, range_end,
BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
range_start = s_idx - BLOCK_SIZE_M;
range_end = s_idx;
} else if (s_idx > range_end) {
range_end += BLOCK_SIZE_M;
}
}
}
}
block_count[0] = tmp_blk_cnt;
column_count[0] = tmp_col_cnt;
}
void convert_vertical_slash_indexes_64x64(
const int* q_seqlens, // [BATCH, ]
const int* kv_seqlens, // [BATCH, ]
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S]
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
int64_t BATCH_SIZE, int64_t N_HEADS, int64_t N_ROWS, int64_t BLOCK_SIZE_M,
int64_t BLOCK_SIZE_N, int64_t NNZ_V, int64_t NNZ_S, bool causal) {
const int N_THREADS = 64;
const dim3 dimBlock(N_THREADS);
const dim3 dimGrid(N_HEADS, BATCH_SIZE, (N_ROWS + N_THREADS - 1) / N_THREADS);
convert_vertical_slash_indexes_kernel<<<dimGrid, dimBlock>>>(
q_seqlens, kv_seqlens, vertical_indexes, slash_indexes, block_count,
block_offset, column_count, column_index, N_HEADS, N_ROWS, BLOCK_SIZE_M,
BLOCK_SIZE_N, NNZ_V, NNZ_S, causal);
}
/**
* Implements the Algorithm 4 in paper https://arxiv.org/abs/2407.02490.
*
* This function builds the index of each row of blocks from vertical indices
* and slash indices. The vertical indices are treated as points, while the
* slash indices are converted as ranges. The output consists of the merged
* ranges and separate column indices, where the ranges are represented by
* block indices.
*
* The implementation is referenced from the original MInference repo:
* https://github.com/microsoft/MInference/blob/main/csrc/vertical_slash_index.cu.
*/
void convert_vertical_slash_indexes(
torch::Tensor& block_count, // [BATCH, N_HEADS, NUM_ROWS]
torch::Tensor& block_offset, // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
torch::Tensor& column_count, // [BATCH, N_HEADS, NUM_ROWS]
torch::Tensor& column_index, // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
torch::Tensor q_seqlens, // [BATCH, ]
torch::Tensor kv_seqlens, // [BATCH, ]
torch::Tensor vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
torch::Tensor slash_indexes, // [BATCH, N_HEADS, NNZ_S]
int64_t context_size, int64_t block_size_M, int64_t block_size_N,
bool causal) {
cudaSetDevice(q_seqlens.get_device());
int batch_size = slash_indexes.size(0);
int num_heads = slash_indexes.size(1);
int nnz_slash = slash_indexes.size(2);
int nnz_vertical = vertical_indexes.size(2);
int num_rows = (context_size + block_size_M - 1) / block_size_M;
convert_vertical_slash_indexes_64x64(
q_seqlens.data_ptr<int>(), kv_seqlens.data_ptr<int>(),
vertical_indexes.data_ptr<int>(), slash_indexes.data_ptr<int>(),
block_count.data_ptr<int>(), block_offset.data_ptr<int>(),
column_count.data_ptr<int>(), column_index.data_ptr<int>(), batch_size,
num_heads, num_rows, block_size_M, block_size_N, nnz_vertical, nnz_slash,
causal);
}
__global__ void convert_vertical_slash_indexes_kernel_mergehead(
const int* q_seqlens, // [BATCH, ]
const int* kv_seqlens, // [BATCH, ]
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S]
const int* per_head_vertical_topkv, const int* per_head_slash_topkv,
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
int64_t N_HEADS, int64_t N_ROWS, int64_t BLOCK_SIZE_M, int64_t BLOCK_SIZE_N,
int64_t NNZ_V, int64_t NNZ_S,
bool causal // True for intra, False for succ
) {
const int batch_idx = blockIdx.y;
const int head_idx = blockIdx.x;
const int group_idx = blockIdx.z;
int64_t q_seqlen = q_seqlens[batch_idx];
int64_t kv_seqlen = kv_seqlens[batch_idx];
int64_t block_idx_m = group_idx * blockDim.x + threadIdx.x;
int64_t start_m = block_idx_m * BLOCK_SIZE_M;
if (start_m >= q_seqlen) {
return;
}
int64_t end_m = start_m + BLOCK_SIZE_M;
vertical_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_V;
slash_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_S;
int64_t row_offset = (batch_idx * N_HEADS + head_idx) * N_ROWS + block_idx_m;
block_count += row_offset;
block_offset += row_offset * NNZ_S;
column_count += row_offset;
column_index += row_offset * NNZ_V;
// MergeHead: each head has it's unique max topk NNZ_VNNZ_S. (NNZ_VNNZ_S
// above is buffer size, use to compute offset)
NNZ_S = per_head_slash_topkv[head_idx];
NNZ_V = per_head_vertical_topkv[head_idx];
bool has_slash = true;
int64_t tmp_col_cnt = 0, tmp_blk_cnt = 0;
int64_t s = 0, v = 0;
int64_t v_idx = vertical_indexes[v++];
int64_t s_idx = slash_indexes[s++];
if (causal) {
while (s_idx >= end_m + (kv_seqlen - q_seqlen) && s < NNZ_S) {
s_idx = slash_indexes[s++];
}
if (s_idx > end_m + (kv_seqlen - q_seqlen)) has_slash = false;
s_idx = max((kv_seqlen - q_seqlen) + end_m - s_idx, BLOCK_SIZE_M);
} else {
while (s_idx >= end_m + kv_seqlen && s < NNZ_S) {
s_idx = slash_indexes[s++];
}
if (s_idx > end_m + kv_seqlen) has_slash = false;
s_idx = max(kv_seqlen + end_m - s_idx, BLOCK_SIZE_M);
}
int64_t range_start = s_idx - BLOCK_SIZE_M, range_end = s_idx;
if (!has_slash) {
if (causal) {
range_start = (kv_seqlen - q_seqlen) + end_m;
range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
} else {
range_start = kv_seqlen;
range_end = kv_seqlen + BLOCK_SIZE_N;
}
}
bool slash_finished = false;
while (1) {
if (v_idx < range_end) {
if (v_idx < range_start) {
column_index[tmp_col_cnt++] = v_idx;
}
if (v < NNZ_V) {
v_idx = vertical_indexes[v++];
} else {
if (causal)
v_idx = end_m + BLOCK_SIZE_N + (kv_seqlen - q_seqlen);
else
v_idx = end_m + BLOCK_SIZE_N + kv_seqlen;
}
} else {
if ((s < NNZ_S && causal) ||
(s < NNZ_S && !causal && slash_indexes[s] >= start_m)) {
if (causal)
s_idx = max((kv_seqlen - q_seqlen) + end_m - slash_indexes[s++],
BLOCK_SIZE_M);
else
s_idx = max(kv_seqlen + end_m - slash_indexes[s++], BLOCK_SIZE_M);
} else {
if (v == NNZ_V || (v_idx > range_start && causal)) {
// add the last vertical if no more slash
if (v == NNZ_V && !causal && v_idx < kv_seqlen) {
column_index[tmp_col_cnt++] = v_idx;
}
tmp_blk_cnt = save_blocks(block_offset, range_start, range_end,
BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
break;
} else {
if (causal) {
range_start = (kv_seqlen - q_seqlen) + end_m;
range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
} else {
// if slash_finished but there are vertical left, save current
// blocks
tmp_blk_cnt = save_blocks(block_offset, range_start, range_end,
BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
range_start = kv_seqlen;
range_end = kv_seqlen + BLOCK_SIZE_N;
}
slash_finished = true;
}
}
if (!slash_finished) {
if (s_idx > range_end + BLOCK_SIZE_M) {
tmp_blk_cnt = save_blocks(block_offset, range_start, range_end,
BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
range_start = s_idx - BLOCK_SIZE_M;
range_end = s_idx;
} else if (s_idx > range_end) {
range_end += BLOCK_SIZE_M;
}
}
}
}
block_count[0] = tmp_blk_cnt;
column_count[0] = tmp_col_cnt;
}
void convert_vertical_slash_indexes_64x64_mergehead(
const int* q_seqlens, // [BATCH, ]
const int* kv_seqlens, // [BATCH, ]
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S]
int* per_head_vertical_topkv, int* per_head_slash_topkv,
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
int64_t BATCH_SIZE, int64_t N_HEADS, int64_t N_ROWS, int64_t BLOCK_SIZE_M,
int64_t BLOCK_SIZE_N, int64_t NNZ_V, int64_t NNZ_S, bool causal) {
const int N_THREADS = 64;
const dim3 dimBlock(N_THREADS);
const dim3 dimGrid(N_HEADS, BATCH_SIZE, (N_ROWS + N_THREADS - 1) / N_THREADS);
convert_vertical_slash_indexes_kernel_mergehead<<<dimGrid, dimBlock>>>(
q_seqlens, kv_seqlens, vertical_indexes, slash_indexes,
per_head_vertical_topkv, per_head_slash_topkv, block_count, block_offset,
column_count, column_index, N_HEADS, N_ROWS, BLOCK_SIZE_M, BLOCK_SIZE_N,
NNZ_V, NNZ_S, causal);
}
/**
* Implements the Algorithm 4 in paper https://arxiv.org/abs/2407.02490.
*
* Like the above convert_vertical_slash_indexes, but with
* pre-computed vertical and slash counts.
*/
void convert_vertical_slash_indexes_mergehead(
torch::Tensor& block_count, // [BATCH, N_HEADS, NUM_ROWS]
torch::Tensor& block_offset, // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
torch::Tensor& column_count, // [BATCH, N_HEADS, NUM_ROWS]
torch::Tensor& column_index, // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
torch::Tensor q_seqlens, // [BATCH, ]
torch::Tensor kv_seqlens, // [BATCH, ]
torch::Tensor vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
torch::Tensor slash_indexes, // [BATCH, N_HEADS, NNZ_S]
torch::Tensor vertical_indices_count, // [N_HEADS, ]
torch::Tensor slash_indices_count, // [N_HEADS, ]
int64_t context_size, int64_t block_size_M, int64_t block_size_N,
bool causal) {
cudaSetDevice(q_seqlens.get_device());
int batch_size = slash_indexes.size(0);
int num_heads = slash_indexes.size(1);
int nnz_slash = slash_indexes.size(2);
int nnz_vertical = vertical_indexes.size(2);
int num_rows = (context_size + block_size_M - 1) / block_size_M;
convert_vertical_slash_indexes_64x64_mergehead(
q_seqlens.data_ptr<int>(), kv_seqlens.data_ptr<int>(),
vertical_indexes.data_ptr<int>(), slash_indexes.data_ptr<int>(),
vertical_indices_count.data_ptr<int>(),
slash_indices_count.data_ptr<int>(), block_count.data_ptr<int>(),
block_offset.data_ptr<int>(), column_count.data_ptr<int>(),
column_index.data_ptr<int>(), batch_size, num_heads, num_rows,
block_size_M, block_size_N, nnz_vertical, nnz_slash, causal);
}

View File

@ -7,3 +7,22 @@ inline constexpr uint32_t next_pow_2(uint32_t const num) {
if (num <= 1) return num;
return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1));
}
template <typename A, typename B>
static inline constexpr auto div_ceil(A a, B b) {
return (a + b - 1) / b;
}
// Round a down to the next multiple of b. The caller is responsible for making
// sure that b is non-zero
template <typename T>
inline constexpr T round_to_previous_multiple_of(T a, T b) {
return a % b == 0 ? a : (a / b) * b;
}
// Round a up to the next multiple of b. The caller is responsible for making
// sure that b is non-zero
template <typename T>
inline constexpr T round_to_next_multiple_of(T a, T b) {
return a % b == 0 ? a : ((a / b) + 1) * b;
}

View File

@ -315,6 +315,8 @@ static inline constexpr auto kS8 = ScalarType::int_(8);
static inline constexpr auto kU8 = ScalarType::uint(8);
static inline constexpr auto kU8B128 = ScalarType::uint(8, 128);
static inline constexpr auto kFE2M1f =
ScalarType::float_(2, 1, true, ScalarType::NAN_NONE);
static inline constexpr auto kFE3M2f =
ScalarType::float_(3, 2, true, ScalarType::NAN_NONE);
static inline constexpr auto kFE4M3fn =
@ -332,6 +334,7 @@ static inline constexpr auto kInt8 = kS8;
static inline constexpr auto kUint8 = kU8;
static inline constexpr auto kUint8b128 = kU8B128;
static inline constexpr auto kFloat4_e2m1f = kFE2M1f;
static inline constexpr auto kFloat6_e3m2f = kFE3M2f;
static inline constexpr auto kFloat8_e4m3fn = kFE4M3fn;
static inline constexpr auto kFloat8_e5m2 = kFE5M2;

View File

@ -4,6 +4,7 @@
#include <altivec.h>
#include <cmath>
#include <algorithm>
#include <torch/all.h>
namespace vec_op {
@ -62,6 +63,10 @@ typedef struct f32x4x4_t {
__vector float val[4];
} f32x4x4_t;
typedef struct i32x4x4_t {
__vector int32_t val[4];
} i32x4x4_t;
struct FP32Vec8;
struct FP32Vec16;
@ -98,6 +103,28 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
vec_xst(reg.val[0], 0, (signed short*)ptr);
vec_xst(reg.val[1], 16, (signed short*)ptr);
}
void save(void* ptr, const int elem_num) const {
const int clamped_elem = std::max(0, std::min(elem_num, 16));
// Calculate elements to store in each 128-bit part (8 elements each)
const int elements_val0 = std::min(clamped_elem, 8);
const int elements_val1 = std::max(clamped_elem - 8, 0);
// Convert elements to bytes (2 bytes per element)
const size_t bytes_val0 = elements_val0 * sizeof(signed short);
const size_t bytes_val1 = elements_val1 * sizeof(signed short);
signed short* dest = static_cast<signed short*>(ptr);
// Store the first part using vec_xst_len
if (bytes_val0 > 0) {
vec_xst_len(reg.val[0], dest, bytes_val0);
}
// Store the second part if needed
if (bytes_val1 > 0) {
vec_xst_len(reg.val[1], dest + elements_val0, bytes_val1);
}
}
};
const static __vector signed short zero = vec_splats((signed short)0);
@ -257,6 +284,64 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
}
};
struct INT32Vec16 : public Vec<INT32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
i32x4x4_t reg;
int32_t values[VEC_ELEM_NUM];
};
i32x4x4_t reg;
explicit INT32Vec16(const void* data_ptr) {
reg.val[0] = vec_xl(0, reinterpret_cast<const __vector int32_t*>(data_ptr));
reg.val[1] =
vec_xl(16, reinterpret_cast<const __vector int32_t*>(data_ptr));
reg.val[2] =
vec_xl(32, reinterpret_cast<const __vector int32_t*>(data_ptr));
reg.val[3] =
vec_xl(48, reinterpret_cast<const __vector int32_t*>(data_ptr));
}
void save(int32_t* ptr) const {
vec_xst(reg.val[0], 0, reinterpret_cast<__vector int32_t*>(ptr));
vec_xst(reg.val[1], 16, reinterpret_cast<__vector int32_t*>(ptr));
vec_xst(reg.val[2], 32, reinterpret_cast<__vector int32_t*>(ptr));
vec_xst(reg.val[3], 48, reinterpret_cast<__vector int32_t*>(ptr));
}
void save(int32_t* ptr, const int elem_num) const {
const int elements_in_chunk1 =
(elem_num >= 0) ? ((elem_num >= 4) ? 4 : elem_num) : 0;
const int elements_in_chunk2 =
(elem_num > 4) ? ((elem_num >= 8) ? 4 : elem_num - 4) : 0;
const int elements_in_chunk3 =
(elem_num > 8) ? ((elem_num >= 12) ? 4 : elem_num - 8) : 0;
const int elements_in_chunk4 =
(elem_num > 12) ? ((elem_num >= 16) ? 4 : elem_num - 12) : 0;
const size_t bytes_chunk1 =
static_cast<size_t>(elements_in_chunk1 * sizeof(int32_t));
const size_t bytes_chunk2 =
static_cast<size_t>(elements_in_chunk2 * sizeof(int32_t));
const size_t bytes_chunk3 =
static_cast<size_t>(elements_in_chunk3 * sizeof(int32_t));
const size_t bytes_chunk4 =
static_cast<size_t>(elements_in_chunk4 * sizeof(int32_t));
vec_xst_len(reg.val[0], reinterpret_cast<int32_t*>(ptr), bytes_chunk1);
vec_xst_len(reg.val[1],
reinterpret_cast<int32_t*>(reinterpret_cast<char*>(ptr) + 16),
bytes_chunk2);
vec_xst_len(reg.val[2],
reinterpret_cast<int32_t*>(reinterpret_cast<char*>(ptr) + 32),
bytes_chunk3);
vec_xst_len(reg.val[3],
reinterpret_cast<int32_t*>(reinterpret_cast<char*>(ptr) + 48),
bytes_chunk4);
}
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
@ -319,6 +404,13 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
explicit FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {}
explicit FP32Vec16(const INT32Vec16& v) {
reg.val[0] = vec_ctf(v.reg.val[0], 0);
reg.val[1] = vec_ctf(v.reg.val[1], 0);
reg.val[2] = vec_ctf(v.reg.val[2], 0);
reg.val[3] = vec_ctf(v.reg.val[3], 0);
}
FP32Vec16 operator*(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_mul(reg.val[0], b.reg.val[0]),
vec_mul(reg.val[1], b.reg.val[1]),
@ -347,6 +439,117 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vec_div(reg.val[3], b.reg.val[3])}));
}
FP32Vec16 clamp(const FP32Vec16& min, const FP32Vec16& max) const {
return FP32Vec16(f32x4x4_t(
{vec_min(max.reg.val[0], vec_max(min.reg.val[0], reg.val[0])),
vec_min(max.reg.val[1], vec_max(min.reg.val[1], reg.val[1])),
vec_min(max.reg.val[2], vec_max(min.reg.val[2], reg.val[2])),
vec_min(max.reg.val[3], vec_max(min.reg.val[3], reg.val[3]))}));
}
FP32Vec16 max(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_max(reg.val[0], b.reg.val[0]),
vec_max(reg.val[1], b.reg.val[1]),
vec_max(reg.val[2], b.reg.val[2]),
vec_max(reg.val[3], b.reg.val[3])}));
}
FP32Vec16 max(const FP32Vec16& b, int elem_num) const {
FP32Vec16 result;
// Create a vector of element indices for each chunk
__vector unsigned int indices = {0, 1, 2, 3};
__vector unsigned int elem_num_vec =
vec_splats(static_cast<unsigned int>(elem_num));
// Compute masks for each chunk
__vector unsigned int chunk_offset0 = {0, 0, 0,
0}; // Chunk 0: Elements 0-3
__vector unsigned int chunk_offset1 = {4, 4, 4,
4}; // Chunk 1: Elements 4-7
__vector unsigned int chunk_offset2 = {8, 8, 8,
8}; // Chunk 2: Elements 8-11
__vector unsigned int chunk_offset3 = {12, 12, 12,
12}; // Chunk 3: Elements 12-15
// Compute masks for each chunk
__vector bool int mask0 = vec_cmplt(indices + chunk_offset0, elem_num_vec);
__vector bool int mask1 = vec_cmplt(indices + chunk_offset1, elem_num_vec);
__vector bool int mask2 = vec_cmplt(indices + chunk_offset2, elem_num_vec);
__vector bool int mask3 = vec_cmplt(indices + chunk_offset3, elem_num_vec);
// Apply masks to compute the result for each chunk
result.reg.val[0] = vec_sel(this->reg.val[0],
vec_max(this->reg.val[0], b.reg.val[0]), mask0);
result.reg.val[1] = vec_sel(this->reg.val[1],
vec_max(this->reg.val[1], b.reg.val[1]), mask1);
result.reg.val[2] = vec_sel(this->reg.val[2],
vec_max(this->reg.val[2], b.reg.val[2]), mask2);
result.reg.val[3] = vec_sel(this->reg.val[3],
vec_max(this->reg.val[3], b.reg.val[3]), mask3);
return FP32Vec16(result.reg);
}
FP32Vec16 min(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_min(reg.val[0], b.reg.val[0]),
vec_min(reg.val[1], b.reg.val[1]),
vec_min(reg.val[2], b.reg.val[2]),
vec_min(reg.val[3], b.reg.val[3])}));
}
FP32Vec16 min(const FP32Vec16& b, int elem_num) const {
FP32Vec16 result;
vector unsigned int indices = {0, 1, 2, 3};
vector unsigned int elem_num_vec =
vec_splats(static_cast<unsigned int>(elem_num));
vector unsigned int chunk_offset0 = {0, 0, 0, 0};
vector unsigned int chunk_offset1 = {4, 4, 4, 4};
vector unsigned int chunk_offset2 = {8, 8, 8, 8};
vector unsigned int chunk_offset3 = {12, 12, 12, 12};
vector bool int mask0 = vec_cmplt(indices + chunk_offset0, elem_num_vec);
vector bool int mask1 = vec_cmplt(indices + chunk_offset1, elem_num_vec);
vector bool int mask2 = vec_cmplt(indices + chunk_offset2, elem_num_vec);
vector bool int mask3 = vec_cmplt(indices + chunk_offset3, elem_num_vec);
result.reg.val[0] = vec_sel(this->reg.val[0],
vec_min(this->reg.val[0], b.reg.val[0]), mask0);
result.reg.val[1] = vec_sel(this->reg.val[1],
vec_min(this->reg.val[1], b.reg.val[1]), mask1);
result.reg.val[2] = vec_sel(this->reg.val[2],
vec_min(this->reg.val[2], b.reg.val[2]), mask2);
result.reg.val[3] = vec_sel(this->reg.val[3],
vec_min(this->reg.val[3], b.reg.val[3]), mask3);
return FP32Vec16(result.reg);
}
FP32Vec16 abs() const {
return FP32Vec16(f32x4x4_t({vec_abs(reg.val[0]), vec_abs(reg.val[1]),
vec_abs(reg.val[2]), vec_abs(reg.val[3])}));
}
float reduce_max() {
__vector float max01 = vec_max(reg.val[0], reg.val[1]);
__vector float max23 = vec_max(reg.val[2], reg.val[3]);
__vector float max_all = vec_max(max01, max23);
__vector float temp = vec_max(max_all, vec_sld(max_all, max_all, 8));
temp = vec_max(temp, vec_sld(temp, temp, 4));
return vec_extract(temp, 0);
}
float reduce_min() {
__vector float min01 = vec_min(reg.val[0], reg.val[1]);
__vector float min23 = vec_min(reg.val[2], reg.val[3]);
__vector float min_all = vec_min(min01, min23);
__vector float temp = vec_min(min_all, vec_sld(min_all, min_all, 8));
temp = vec_min(temp, vec_sld(temp, temp, 4));
return vec_extract(temp, 0);
}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
@ -377,6 +580,68 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vec_xst(reg.val[2], 32, ptr);
vec_xst(reg.val[3], 48, ptr);
}
void save(float* ptr, const int elem_num) const {
const int elements_in_chunk1 =
(elem_num >= 0) ? ((elem_num >= 4) ? 4 : elem_num) : 0;
const int elements_in_chunk2 =
(elem_num > 4) ? ((elem_num >= 8) ? 4 : elem_num - 4) : 0;
const int elements_in_chunk3 =
(elem_num > 8) ? ((elem_num >= 12) ? 4 : elem_num - 8) : 0;
const int elements_in_chunk4 =
(elem_num > 12) ? ((elem_num >= 16) ? 4 : elem_num - 12) : 0;
const size_t bytes_chunk1 =
static_cast<size_t>(elements_in_chunk1 * sizeof(float));
const size_t bytes_chunk2 =
static_cast<size_t>(elements_in_chunk2 * sizeof(float));
const size_t bytes_chunk3 =
static_cast<size_t>(elements_in_chunk3 * sizeof(float));
const size_t bytes_chunk4 =
static_cast<size_t>(elements_in_chunk4 * sizeof(float));
vec_xst_len(reg.val[0], ptr, bytes_chunk1);
vec_xst_len(reg.val[1],
reinterpret_cast<float*>(reinterpret_cast<char*>(ptr) + 16),
bytes_chunk2);
vec_xst_len(reg.val[2],
reinterpret_cast<float*>(reinterpret_cast<char*>(ptr) + 32),
bytes_chunk3);
vec_xst_len(reg.val[3],
reinterpret_cast<float*>(reinterpret_cast<char*>(ptr) + 48),
bytes_chunk4);
}
};
struct INT8Vec16 : public Vec<INT8Vec16> {
constexpr static int VEC_NUM_ELEM = 16; // 128 bits / 8 bits = 16
union AliasReg {
__vector signed char reg;
int8_t values[VEC_NUM_ELEM];
};
__vector signed char reg;
explicit INT8Vec16(const FP32Vec16& vec) {
__vector signed int ret[4];
ret[0] = vec_cts(vec.reg.val[0], 0);
ret[1] = vec_cts(vec.reg.val[1], 0);
ret[2] = vec_cts(vec.reg.val[2], 0);
ret[3] = vec_cts(vec.reg.val[3], 0);
__vector signed short packed1 = vec_packs(ret[0], ret[1]);
__vector signed short packed2 = vec_packs(ret[2], ret[3]);
reg = vec_packs(packed1, packed2);
}
void save(void* ptr) const {
*reinterpret_cast<__vector signed char*>(ptr) = reg;
}
void save(signed char* ptr, const int elem_num) {
vec_xst_len(reg, ptr, static_cast<size_t>(elem_num));
}
};
template <typename T>

View File

@ -9,7 +9,8 @@ void rotary_embedding_impl(
scalar_t* __restrict__ query, /// [batch_size, seq_len, num_heads,
/// head_size] or [num_tokens, num_heads,
/// head_size]
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads,
scalar_t* __restrict__ key, // nullptr (optional) or
// [batch_size, seq_len, num_kv_heads,
// head_size] or [num_tokens, num_kv_heads,
// head_size]
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim //
@ -85,10 +86,13 @@ void rotary_embedding_impl(
compute_loop(token_head, cache_ptr, query);
}
for (int i = 0; i < num_kv_heads; ++i) {
const int head_idx = i;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
compute_loop(token_head, cache_ptr, key);
if (key != nullptr) {
for (int i = 0; i < num_kv_heads; ++i) {
const int head_idx = i;
const int64_t token_head =
token_idx * key_stride + head_idx * head_size;
compute_loop(token_head, cache_ptr, key);
}
}
}
}
@ -100,7 +104,8 @@ void rotary_embedding_gptj_impl(
scalar_t* __restrict__ query, /// [batch_size, seq_len, num_heads,
/// head_size] or [num_tokens, num_heads,
/// head_size]
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads,
scalar_t* __restrict__ key, // nullptr (optional) or
// [batch_size, seq_len, num_kv_heads,
// head_size] or [num_tokens, num_kv_heads,
// head_size]
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim //
@ -138,6 +143,10 @@ void rotary_embedding_gptj_impl(
}
}
if (key == nullptr) {
return;
}
#pragma omp parallel for collapse(2)
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (int i = 0; i < num_kv_heads; ++i) {
@ -168,13 +177,13 @@ void rotary_embedding_gptj_impl(
}; // namespace
void rotary_embedding(torch::Tensor& positions, torch::Tensor& query,
torch::Tensor& key, int64_t head_size,
std::optional<torch::Tensor> key, int64_t head_size,
torch::Tensor& cos_sin_cache, bool is_neox) {
int num_tokens = positions.numel();
int rot_dim = cos_sin_cache.size(1);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int64_t key_stride = key.stride(-2);
int num_kv_heads = key.has_value() ? key->size(-1) / head_size : num_heads;
int64_t key_stride = key.has_value() ? key->stride(-2) : 0;
int64_t query_stride = query.stride(-2);
VLLM_DISPATCH_FLOATING_TYPES(
@ -183,15 +192,15 @@ void rotary_embedding(torch::Tensor& positions, torch::Tensor& query,
if (is_neox) {
rotary_embedding_impl(
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
head_size, num_tokens);
key.has_value() ? key->data_ptr<scalar_t>() : nullptr,
cos_sin_cache.data_ptr<scalar_t>(), rot_dim, query_stride,
key_stride, num_heads, num_kv_heads, head_size, num_tokens);
} else {
rotary_embedding_gptj_impl(
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
head_size, num_tokens);
key.has_value() ? key->data_ptr<scalar_t>() : nullptr,
cos_sin_cache.data_ptr<scalar_t>(), rot_dim, query_stride,
key_stride, num_heads, num_kv_heads, head_size, num_tokens);
}
CPU_KERNEL_GUARD_OUT(rotary_embedding_impl)

View File

@ -239,6 +239,280 @@ void static_quant_epilogue(const float* input, scalar_t* output,
}
}
template <bool AZP, bool PerChannel, bool Bias, typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const float* b_scale,
const int32_t* azp, const int32_t* azp_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
cvt_vec_t token_scale_vec(a_scale[i]);
cvt_vec_t token_zp_scale_vec;
if constexpr (AZP) {
float zp_scale_val = a_scale[i] * static_cast<float>(azp[i]);
if constexpr (!PerChannel) {
zp_scale_val *= *b_scale;
}
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
}
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
#elif defined(__powerpc64__)
template <bool AZP, typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t inv_scale(1.0 / *scale);
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
cvt_vec_t zp_vec;
if constexpr (AZP) {
zp_vec = cvt_vec_t(static_cast<float>(*azp));
}
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, typename scalar_t>
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t max_value(std::numeric_limits<float>::lowest());
cvt_vec_t min_value(std::numeric_limits<float>::max());
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if (j + vec_elem_num == hidden_size) {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
} else {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32, hidden_size - j);
min_value = min_value.min(elems_fp32, hidden_size - j);
} else {
max_value = max_value.max(elems_fp32.abs(), hidden_size - j);
}
}
}
float scale_val, azp_val;
if constexpr (AZP) {
float max_scalar = max_value.reduce_max();
float min_scalar = min_value.reduce_min();
scale_val = (max_scalar - min_scalar) / 255.0f;
azp_val = std::nearbyint(-128.0f - min_scalar / scale_val);
azp[i] = static_cast<int32_t>(azp_val);
scale[i] = scale_val;
} else {
scale_val = max_value.reduce_max() / 127.0f;
scale[i] = scale_val;
}
const cvt_vec_t inv_scale(1.0 / scale_val);
const cvt_vec_t azp_vec(azp_val);
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
}
template <bool PerChannel, typename scalar_t>
void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_output_scale_impl)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t a_scale_vec(a_scale);
cvt_vec_t b_scale_vec(*b_scale);
cvt_vec_t scale_vec = a_scale_vec * b_scale_vec;
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, bool PerChannel, bool Bias, typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const float* b_scale,
@ -324,7 +598,8 @@ void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "static_scaled_int8_quant_impl requires AVX512 support.")
TORCH_CHECK(
false, "static_scaled_int8_quant_impl requires AVX512/powerpc64 support.")
}
template <typename scalar_t>
@ -332,7 +607,9 @@ void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "dynamic_scaled_int8_quant_impl requires AVX512 support.")
TORCH_CHECK(
false,
"dynamic_scaled_int8_quant_impl requires AVX512/powerpc64 support.")
}
template <bool PerChannel, typename scalar_t>
@ -340,7 +617,7 @@ void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "static_quant_epilogue requires AVX512 support.")
TORCH_CHECK(false, "static_quant_epilogue requires AVX512/powerpc64 support.")
}
template <typename scalar_t>
@ -349,7 +626,8 @@ void dynamic_quant_epilogue(const float* input, scalar_t* output,
const int32_t* azp, const int32_t* azp_with_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "dynamic_quant_epilogue requires AVX512 support.")
TORCH_CHECK(false,
"dynamic_quant_epilogue requires AVX512/powerpc64 support.")
}
#endif
} // namespace
@ -611,3 +889,58 @@ void dynamic_scaled_int8_quant(
}
});
}
#if defined(__powerpc64__)
void int8_scaled_mm_ppc64le(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const torch::Tensor& b, // [IC, OC], column-major
const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const std::optional<torch::Tensor>& bias // [OC]
) {
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm)
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
"int8_scaled_mm_ppc64le only supports INT8 inputs.");
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
b.size(1) == c.size(1));
// We dont need this
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
// Check for strides and alignment
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
TORCH_CHECK(b.stride(0) == 1); // Column-major
TORCH_CHECK(c.stride(0) % 16 == 0 &&
b.stride(1) % 16 == 0); // 16 Byte Alignment
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (bias) {
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous() &&
bias->dim() == 1);
}
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm_ppc64le", [&] {
torch::Tensor tmp_fp32_out = torch::empty_like(c, ::at::ScalarType::Float);
// Compute C_inter=s_b * (A@B)
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
if (bias.has_value()) {
// Compute C=s_a * C_inter + bias
dynamic_quant_epilogue<false, true, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr,
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
} else {
// Compute C=s_a * C_inter
dynamic_quant_epilogue<false, true, false, scalar_t>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr, nullptr,
c.size(0), c.size(1));
}
});
}
#endif

View File

@ -18,6 +18,14 @@ void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a,
const std::optional<torch::Tensor>& azp,
const std::optional<torch::Tensor>& bias);
#if defined(__powerpc64__)
void int8_scaled_mm_ppc64le(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& b,
const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const std::optional<torch::Tensor>& bias);
#endif
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
torch::Tensor& kv_cache, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens);
@ -117,7 +125,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// Apply GPT-NeoX or GPT-J style rotary embedding to query and key.
ops.def(
"rotary_embedding(Tensor positions, Tensor! query,"
" Tensor! key, int head_size,"
" Tensor!? key, int head_size,"
" Tensor cos_sin_cache, bool is_neox) -> ()");
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
@ -150,6 +158,33 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
#elif defined(__powerpc64__)
// Compute int8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale,"
"Tensor? azp) -> ()");
ops.impl("static_scaled_int8_quant", torch::kCPU, &static_scaled_int8_quant);
// Compute int8 quantized tensor and scaling factor
ops.def(
"dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale, "
"Tensor!? azp) -> ()");
ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
&dynamic_scaled_int8_quant);
// W8A8 GEMM, supporting symmetric quantization.
ops.def(
"cutlass_scaled_mm(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm_ppc64le);
// w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
// quantization.
ops.def(
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
#endif
// SHM CCL

View File

@ -59,3 +59,13 @@ struct enable_sm90_only : Kernel {
#endif
}
};
template <typename Kernel>
struct enable_sm100_only : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ == 1000
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};

View File

@ -65,5 +65,19 @@
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
#define VLLM_DISPATCH_CASE_INTEGRAL_AND_UNSIGNED_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::UInt16, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::UInt32, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::UInt64, __VA_ARGS__)
#define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_AND_UNSIGNED_TYPES(__VA_ARGS__))

View File

@ -140,6 +140,10 @@ void rms_norm(torch::Tensor& out, // [..., hidden_size]
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
double epsilon) {
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(weight.is_contiguous());
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;

File diff suppressed because it is too large Load Diff

View File

@ -1,31 +0,0 @@
#include "marlin_moe_kernel_ku4.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku4(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks) {
bool has_zp = true;
if (false) {
}
AWQ_CALL_IF_MOE(vllm::kU4, 16, 4, 256)
AWQ_CALL_IF_MOE(vllm::kU4, 8, 8, 256)
AWQ_CALL_IF_MOE(vllm::kU4, 8, 4, 128)
AWQ_CALL_IF_MOE(vllm::kU4, 4, 8, 128)
else {
return false;
}
return true;
}
} // namespace marlin_moe

View File

@ -1,20 +0,0 @@
#pragma once
#include "marlin_moe_kernel.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku4(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks);
} // namespace marlin_moe

View File

@ -1,31 +0,0 @@
#include "marlin_moe_kernel_ku4b8.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku4b8(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks) {
bool has_zp = false;
if (false) {
}
GPTQ_CALL_IF_MOE(vllm::kU4B8, 16, 4, 256)
GPTQ_CALL_IF_MOE(vllm::kU4B8, 8, 8, 256)
GPTQ_CALL_IF_MOE(vllm::kU4B8, 8, 4, 128)
GPTQ_CALL_IF_MOE(vllm::kU4B8, 4, 8, 128)
else {
return false;
}
return true;
}
} // namespace marlin_moe

View File

@ -1,20 +0,0 @@
#pragma once
#include "marlin_moe_kernel.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku4b8(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks);
} // namespace marlin_moe

View File

@ -1,31 +0,0 @@
#include "marlin_moe_kernel_ku8b128.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku8b128(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks) {
bool has_zp = false;
if (false) {
}
GPTQ_CALL_IF_MOE(vllm::kU8B128, 16, 4, 256)
GPTQ_CALL_IF_MOE(vllm::kU8B128, 8, 8, 256)
GPTQ_CALL_IF_MOE(vllm::kU8B128, 8, 4, 128)
GPTQ_CALL_IF_MOE(vllm::kU8B128, 4, 8, 128)
else {
return false;
}
return true;
}
} // namespace marlin_moe

View File

@ -1,18 +0,0 @@
#pragma once
#include "marlin_moe_kernel.h"
namespace marlin_moe {
bool call_marlin_moe_kernel_ku8b128(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks);
}

View File

@ -1,588 +0,0 @@
/*
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <iostream>
#include "core/exception.hpp"
#include "core/scalar_type.hpp"
#include "core/registration.h"
#include "marlin_kernels/marlin_moe_kernel_ku4b8.h"
#include "marlin_kernels/marlin_moe_kernel_ku8b128.h"
#include "marlin_kernels/marlin_moe_kernel_ku4.h"
template <typename T>
inline std::string str(T x) {
return std::to_string(x);
}
namespace marlin_moe {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
// For a given "a" of size [M,K] performs a permutation of the K columns based
// on the given "perm" indices.
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr, int size_m,
int size_k, int block_rows) {
int start_row = block_rows * blockIdx.x;
int finish_row = start_row + block_rows;
if (finish_row > size_m) {
finish_row = size_m;
}
int cur_block_rows = finish_row - start_row;
int row_stride = size_k * sizeof(half) / 16;
auto permute_row = [&](int row) {
int iters = size_k / blockDim.x;
int rest = size_k % blockDim.x;
int offset = row * row_stride;
half const* a_row_half = reinterpret_cast<half const*>(a_int4_ptr + offset);
half* out_half = reinterpret_cast<half*>(out_int4_ptr + offset);
int base_k = 0;
for (int i = 0; i < iters; i++) {
int cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
base_k += blockDim.x;
}
if (rest) {
if (threadIdx.x < rest) {
int cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
}
}
};
for (int i = 0; i < cur_block_rows; i++) {
int cur_row = start_row + i;
if (cur_row < size_m) {
permute_row(cur_row);
}
}
}
__global__ void compute_expert_offsets(int const* __restrict__ topk_ids,
int* __restrict__ expert_offsets,
int topk_length, int block_size) {
int expert_id = threadIdx.x;
int num_experts = blockDim.x;
int occurrences = 0;
for (int i = 0; i < topk_length; ++i) {
occurrences += (topk_ids[i] == expert_id);
}
expert_offsets[expert_id + 1] = occurrences;
__syncthreads();
if (threadIdx.x == 0) {
int tot_offset = 0;
expert_offsets[0] = 0;
for (int i = 0; i < num_experts; ++i) {
tot_offset += ceildiv(expert_offsets[i + 1], block_size) * block_size;
expert_offsets[i + 1] = tot_offset;
}
}
__syncthreads();
}
#else
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr, int size_m,
int size_k, int block_rows) {
// Marlin is not implemented yet for SM < 8.0
assert(false);
return;
}
__global__ void compute_expert_offsets(int const* __restrict__ topk_ids,
int* __restrict__ expert_offsets,
int topk_length, int block_size) {
// Marlin is not implemented yet for SM < 8.0
assert(false);
return;
}
#endif
typedef struct {
int thread_k;
int thread_n;
int num_threads;
} thread_config_t;
typedef struct {
int max_m_blocks;
thread_config_t tb_cfg;
} exec_config_t;
thread_config_t small_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{128, 128, 256}, // Default
{128, 64, 128}, // Reduce N 2X, same K
{64, 256, 256}, // Reduce K 2X, increase N 2X
{64, 128, 128}, // Reduce K 2X, same N
{64, 64, 128}, // Reduce both 2X
};
thread_config_t large_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{64, 256, 256}, // Default
{128, 128, 256}, // Reduce N 2X, increase K 2X
{64, 128, 128}, // Reduce N 2X, same K
{128, 64, 128}, // Reduce N 4X, increase K 2X
{64, 64, 128}, // Reduce N 4X, same K
};
int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
int prob_n, int prob_k, int num_bits, int group_size,
bool has_act_order, bool is_k_full) {
bool cache_scales_chunk = has_act_order && !is_k_full;
int tb_n = th_config.thread_n;
int tb_k = th_config.thread_k;
// Get max scale groups per thread-block
int tb_groups;
if (group_size == -1) {
tb_groups = 1;
} else if (group_size == 0) {
tb_groups = ceildiv(tb_k, 32); // Worst case is 32 group size
} else {
tb_groups = ceildiv(tb_k, group_size);
}
if (cache_scales_chunk) {
int load_groups =
tb_groups * STAGES * 2; // Chunk size is 2x pipeline over dim K
load_groups = max(load_groups, 32); // We load at least 32 scale groups
return load_groups * tb_n * 4;
} else {
int tb_scales = tb_groups * tb_n * 2;
return tb_scales * STAGES;
}
}
bool is_valid_cache_size(thread_config_t const& th_config, int max_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int scales_cache_size, int max_shared_mem) {
int pack_factor = 32 / num_bits;
// Get B size
int tb_k = th_config.thread_k;
int tb_n = th_config.thread_n;
int b_size = (tb_k * tb_n / pack_factor) * 4;
// Get A size
int m_blocks = ceildiv(prob_m, 16);
int tb_max_m = 16;
while (true) {
if (m_blocks >= max_m_blocks) {
tb_max_m *= max_m_blocks;
break;
}
max_m_blocks--;
if (max_m_blocks == 0) {
TORCH_CHECK(false, "Unexpected m_blocks = ", m_blocks);
}
}
int a_size = (tb_max_m * tb_k) * 2;
float pipe_size = (a_size + b_size) * STAGES;
TORCH_CHECK(max_shared_mem / 2 > scales_cache_size); // Sanity
return pipe_size < 0.95f * (max_shared_mem - scales_cache_size);
}
bool is_valid_config(thread_config_t const& th_config, int max_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, bool has_act_order, bool is_k_full,
int max_shared_mem) {
// Sanity
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
th_config.num_threads == -1) {
return false;
}
// Verify K/N are divisible by thread K/N
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
return false;
}
// thread_k can be only 128 or 64 (because it must be less than groupsize
// which is 128)
if (th_config.thread_k != 128 && th_config.thread_k != 64) {
return false;
}
// Verify min for thread K/N
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
return false;
}
// num_threads must be at least 128 (= 4 warps)
if (th_config.num_threads < 128) {
return false;
}
// Determine cache for scales
int scales_cache_size =
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full);
// Check that pipeline fits into cache
if (!is_valid_cache_size(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, scales_cache_size, max_shared_mem)) {
return false;
}
return true;
}
exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k,
int num_bits, int group_size,
bool has_act_order, bool is_k_full,
int max_shared_mem) {
int max_m_blocks = 4;
while (max_m_blocks > 0) {
if (prob_m <= 16) {
for (auto th_config : small_batch_thread_configs) {
if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full,
max_shared_mem)) {
return exec_config_t{max_m_blocks, th_config};
}
}
} else {
for (auto th_config : large_batch_thread_configs) {
if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full,
max_shared_mem)) {
return exec_config_t{max_m_blocks, th_config};
}
}
}
max_m_blocks--; // Process less M blocks per invocation to reduce cache
// usage
}
return exec_config_t{0, {-1, -1, -1}};
}
#define CALL_MOE_KERNEL_FUNCTION(KERNEL_FUNCTION) \
else if (KERNEL_FUNCTION( \
q_type, thread_n_blocks, thread_k_blocks, has_act_order, \
group_blocks, num_threads, blocks, max_shared_mem, stream, \
A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \
zp_ptr, g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \
num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \
replicate_input, apply_weights, m_block, max_par, \
exec_cfg.max_m_blocks)) { \
}
void marlin_mm_moe(const void* A, const void* B, void* C,
const void* sorted_ids, const void* topk_weights,
const void* topk_ids, const void* s, void* zp,
const void* g_idx, const void* perm, void* a_tmp,
void* expert_offsets, int prob_m, int prob_n, int prob_k,
void* workspace, vllm::ScalarType const& q_type,
bool has_act_order, bool is_k_full, bool has_zp,
int num_groups, int group_size, int num_experts, int topk,
int moe_block_size, int dev, cudaStream_t stream,
int thread_k, int thread_n, int sms, int max_par,
bool replicate_input, bool apply_weights) {
TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
", ", prob_n, ", ", prob_k, "]");
if (sms == -1) {
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
}
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
int num_bits = q_type.size_bits();
// Set thread config
exec_config_t exec_cfg;
if (thread_k != -1 && thread_n != -1) {
// User-defined config
exec_cfg =
exec_config_t{4, thread_config_t{thread_k, thread_n, USER_THREADS}};
} else {
// Auto config
exec_cfg =
determine_thread_config(prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, max_shared_mem);
}
TORCH_CHECK(exec_cfg.max_m_blocks > 0 &&
is_valid_config(exec_cfg.tb_cfg, exec_cfg.max_m_blocks,
prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, max_shared_mem),
"Invalid thread config: max_m_blocks = ", exec_cfg.max_m_blocks,
", thread_k = ", exec_cfg.tb_cfg.thread_k,
", thread_n = ", exec_cfg.tb_cfg.thread_n,
", num_threads = ", exec_cfg.tb_cfg.num_threads, " for MKN = [",
prob_m, ", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
", group_size = ", group_size,
", has_act_order = ", has_act_order, ", is_k_full = ", is_k_full,
", max_shared_mem = ", max_shared_mem);
int num_threads = exec_cfg.tb_cfg.num_threads;
thread_k = exec_cfg.tb_cfg.thread_k;
thread_n = exec_cfg.tb_cfg.thread_n;
int thread_k_blocks = thread_k / 16;
int thread_n_blocks = thread_n / 16;
int blocks = sms;
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
" is not divisible by thread_n = ", thread_n);
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
" is not divisible by thread_k = ", thread_k);
int group_blocks = 0;
if (has_act_order) {
if (is_k_full) {
TORCH_CHECK(group_size != -1);
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
} else {
TORCH_CHECK(group_size == 0);
group_blocks = 0;
}
} else {
if (group_size == -1) {
group_blocks = -1;
} else {
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
}
}
int tot_m = prob_m;
const int* topk_ids_ptr = (const int*)topk_ids;
int* expert_offsets_ptr = (int*)expert_offsets;
compute_expert_offsets<<<1, num_experts, 0, stream>>>(
topk_ids_ptr, expert_offsets_ptr, tot_m * topk, moe_block_size);
bool do_permute_a = has_act_order;
// If we have a full K, then we can run the non-act-order version of Marlin
// (since the weight rows are reordered by increasing group ids, and by
// having a full K, we have full original groups)
if (is_k_full) {
has_act_order = false;
}
int pack_factor = 32 / q_type.size_bits();
for (int expert_idx = 0; expert_idx < num_experts; ++expert_idx) {
const int4* A_ptr = (const int4*)A;
int4* a_tmp_ptr = (int4*)a_tmp;
const int4* B_ptr =
(const int4*)B + (prob_n * prob_k / (pack_factor * 4)) * expert_idx;
int4* C_ptr = (int4*)C;
const float* topk_weights_ptr = (const float*)topk_weights;
const int* sorted_ids_ptr = (const int*)sorted_ids;
const int4* s_ptr = (const int4*)s + num_groups * prob_n / 8 * expert_idx;
const int4* zp_ptr =
(const int4*)zp + num_groups * prob_n / (pack_factor * 4) * expert_idx;
const int* g_idx_ptr = (const int*)g_idx + prob_k * expert_idx;
const int* perm_ptr = (const int*)perm + prob_k * expert_idx;
int* locks = (int*)workspace;
if (do_permute_a) {
// Permute A columns
int topk_rows = replicate_input ? tot_m : tot_m * topk;
int block_rows = ceildiv(topk_rows, blocks);
permute_cols_kernel<<<blocks, num_threads, 0, stream>>>(
A_ptr, perm_ptr, a_tmp_ptr, topk_rows, prob_k, block_rows);
A_ptr = a_tmp_ptr;
}
int tot_m_blocks = ceildiv(tot_m, 16);
for (int m_block = 0; m_block < tot_m_blocks;
m_block += 4 * exec_cfg.max_m_blocks) {
if (false) {
}
CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku4b8)
CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku8b128)
CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku4)
else {
TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " +
str(prob_n) + ", " + str(prob_k) + "]" +
", has_act_order = " + str(has_act_order) +
", num_groups = " + str(num_groups) +
", group_size = " + str(group_size) +
", thread_n_blocks = " + str(thread_n_blocks) +
", thread_k_blocks = " + str(thread_k_blocks));
}
}
}
}
} // namespace marlin_moe
torch::Tensor marlin_gemm_moe(
const torch::Tensor& a, const torch::Tensor& b_q_weights,
const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights,
const torch::Tensor& topk_ids, const torch::Tensor& b_scales,
torch::Tensor& b_zeros, const torch::Tensor& g_idx,
const torch::Tensor& perm, torch::Tensor& workspace,
vllm::ScalarTypeId const b_q_type_id, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full, int64_t num_experts, int64_t topk,
int64_t moe_block_size, bool replicate_input, bool apply_weights) {
vllm::ScalarType const b_q_type = vllm::ScalarType::from_id(b_q_type_id);
bool has_zp = b_zeros.size(1) != 0;
if (has_zp) {
TORCH_CHECK(
b_q_type == vllm::kU4,
"b_q_type must be u4 when has_zp = True. Got = ", b_q_type.str());
} else {
TORCH_CHECK(
b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128,
"b_q_type must be uint4b8 or uint8b128. Got = ", b_q_type.str());
}
int pack_factor = 32 / b_q_type.size_bits();
int max_par = 4;
int dev = a.get_device();
auto options_dtype =
torch::TensorOptions().dtype(a.dtype()).device(a.device());
auto options_int =
torch::TensorOptions().dtype(torch::kInt).device(a.device());
torch::Tensor c = torch::zeros({size_m, topk, size_n}, options_dtype);
torch::Tensor a_tmp =
replicate_input ? torch::zeros({size_m, size_k}, options_dtype)
: torch::zeros({size_m, topk, size_k}, options_dtype);
torch::Tensor expert_offsets = torch::empty({num_experts + 1}, options_int);
// thread_k: `k` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_k = -1;
// thread_n: `n` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_n = -1;
// sms: number of SMs to use for the kernel (can usually be left as auto -1)
int sms = -1;
// Detect groupsize and act_order
int num_groups = -1;
int group_size = -1;
bool has_act_order = g_idx.size(1) != 0;
int b_rank = b_scales.sizes().size();
TORCH_CHECK(b_rank == 3, "b_scales rank = ", b_rank, " is not 3");
TORCH_CHECK(b_scales.size(2) == size_n, "b_scales dim 2 = ", b_scales.size(2),
" is not size_n = ", size_n);
num_groups = b_scales.size(1);
TORCH_CHECK(VLLM_IMPLIES(!is_k_full, has_act_order),
"if is_k_full is false, has_act_order must be true");
if (has_act_order) {
if (is_k_full) {
TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1");
TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by num_groups = ", num_groups);
group_size = size_k / num_groups;
} else {
group_size = 0;
}
} else {
if (num_groups > 1) {
TORCH_CHECK(
size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by b_scales.size(0) = ", b_scales.size(0));
group_size = size_k / num_groups;
} else {
group_size = -1;
}
}
// Verify b_zeros
if (has_zp) {
int rank = b_zeros.sizes().size();
TORCH_CHECK(rank == 3, "b_zeros rank = ", rank, " is not 3");
TORCH_CHECK(b_zeros.size(1) == num_groups,
"b_zeros dim 1 = ", b_zeros.size(1),
" is not num_groups = ", num_groups);
TORCH_CHECK(b_zeros.size(2) == size_n / pack_factor,
"b_zeros dim 2 = ", b_zeros.size(2),
" is not size_n / pack_factor = ", size_n / pack_factor);
}
marlin_moe::marlin_mm_moe(
a.data_ptr(), b_q_weights.data_ptr(), c.data_ptr(), sorted_ids.data_ptr(),
topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(),
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(),
expert_offsets.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(),
b_q_type, has_act_order, is_k_full, has_zp, num_groups, group_size,
num_experts, topk, moe_block_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, max_par,
replicate_input, apply_weights);
return c;
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("marlin_gemm_moe", &marlin_gemm_moe);
}

1
csrc/moe/marlin_moe_wna16/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
kernel_*.cu

View File

@ -25,15 +25,16 @@ TEMPLATE = ("template __global__ void Marlin<"
"{{thread_k_blocks}}, "
"{{'true' if m_block_size_8 else 'false'}}, "
"{{stages}}, "
"{{'true' if has_act_order else 'false'}}, "
"{{'true' if has_zp else 'false'}}, "
"{{group_blocks}}, "
"{{'true' if is_zp_float else 'false'}}>"
"( MARLIN_KERNEL_PARAMS );")
# int8 with zero point case (vllm::kU8) is also supported,
# we don't add it to reduce wheel size.
SCALAR_TYPES = ["vllm::kU4", "vllm::kU4B8", "vllm::kU8B128"]
SCALAR_TYPES = [
"vllm::kU4", "vllm::kU4B8", "vllm::kU8B128", "vllm::kFE4M3fn",
"vllm::kFE2M1f"
]
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128)]
THREAD_M_BLOCKS = [0.5, 1, 2, 3, 4]
@ -41,7 +42,7 @@ THREAD_M_BLOCKS = [0.5, 1, 2, 3, 4]
# = 0 : act order case
# = -1 : channelwise quantization
# > 0 : group_size=16*group_blocks
GROUP_BLOCKS = [0, -1, 2, 4, 8]
GROUP_BLOCKS = [0, -1, 1, 2, 4, 8]
DTYPES = ["fp16", "bf16"]
@ -52,21 +53,35 @@ def remove_old_kernels():
def generate_new_kernels():
for scalar_type, dtype in itertools.product(SCALAR_TYPES, DTYPES):
has_zp = "B" not in scalar_type
all_template_str_list = []
for group_blocks, m_blocks, thread_configs in itertools.product(
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS):
has_act_order = group_blocks == 0
if has_zp and has_act_order:
# act order case only support gptq-int4 and gptq-int8
if group_blocks == 0 and scalar_type not in [
"vllm::kU4B8", "vllm::kU8B128"
]:
continue
if thread_configs[2] == 256:
# for small batch (m_blocks == 1), we only need (128, 128, 256)
# for large batch (m_blocks > 1), we only need (64, 256, 256)
if m_blocks <= 1 and thread_configs[0] != 128:
continue
if m_blocks > 1 and thread_configs[0] != 64:
continue
# we only support channelwise quantization and group_size == 128
# for fp8
if scalar_type == "vllm::kFE4M3fn" and group_blocks not in [-1, 8]:
continue
# nvfp4 only supports group_size == 16
if scalar_type == "vllm::kFE2M1f" and group_blocks not in [1, 2]:
continue
# other quantization methods don't support group_size = 16
if scalar_type != "vllm::kFE2M1f" and group_blocks == 1:
continue
k_blocks = thread_configs[0] // 16
n_blocks = thread_configs[1] // 16
threads = thread_configs[2]
@ -82,8 +97,6 @@ def generate_new_kernels():
thread_k_blocks=k_blocks,
m_block_size_8=m_blocks == 0.5,
stages="pipe_stages",
has_act_order=has_act_order,
has_zp=has_zp,
group_blocks=group_blocks,
is_zp_float=False,
)

View File

@ -7,18 +7,19 @@
#include "quantization/gptq_marlin/marlin_dtypes.cuh"
#include "core/scalar_type.hpp"
#define MARLIN_KERNEL_PARAMS \
const int4 *__restrict__ A, const int4 *__restrict__ B, \
int4 *__restrict__ C, int4 *__restrict__ C_tmp, \
const int4 *__restrict__ scales_ptr, const int4 *__restrict__ zp_ptr, \
const int *__restrict__ g_idx, \
const int32_t *__restrict__ sorted_token_ids_ptr, \
const int32_t *__restrict__ expert_ids_ptr, \
const int32_t *__restrict__ num_tokens_past_padded_ptr, \
const float *__restrict__ topk_weights_ptr, int top_k, \
bool mul_topk_weights, bool is_ep, int num_groups, int prob_m, \
int prob_n, int prob_k, int *locks, bool use_atomic_add, \
bool use_fp32_reduce
#define MARLIN_KERNEL_PARAMS \
const int4 *__restrict__ A, const int4 *__restrict__ B, \
int4 *__restrict__ C, int4 *__restrict__ C_tmp, \
const int4 *__restrict__ scales_ptr, \
const uint16_t *__restrict__ scale2_ptr, \
const int4 *__restrict__ zp_ptr, const int *__restrict__ g_idx, \
const int32_t *__restrict__ sorted_token_ids_ptr, \
const int32_t *__restrict__ expert_ids_ptr, \
const int32_t *__restrict__ num_tokens_past_padded_ptr, \
const float *__restrict__ topk_weights_ptr, int top_k, \
bool mul_topk_weights, bool is_ep, int num_groups, int prob_m, \
int prob_n, int prob_k, int *locks, bool use_atomic_add, \
bool use_fp32_reduce, int max_shared_mem
namespace MARLIN_NAMESPACE_NAME {
template <typename scalar_t, // compute dtype, half or nv_float16
@ -33,11 +34,9 @@ template <typename scalar_t, // compute dtype, half or nv_float16
// only works when thread_m_blocks == 1
const int stages, // number of stages for the async global->shared
// fetch pipeline
const bool has_act_order, // whether act_order is enabled
const bool has_zp, // whether zero-points are enabled
const int group_blocks, // number of consecutive 16x16 blocks
// with a separate quantization scale
const bool is_zp_float // is zero point of float16 type?
const int group_blocks, // number of consecutive 16x16 blocks
// with a separate quantization scale
const bool is_zp_float // is zero point of float16 type?
>
__global__ void Marlin(MARLIN_KERNEL_PARAMS);

View File

@ -25,6 +25,7 @@
#include "quantization/gptq_marlin/marlin.cuh"
#include "quantization/gptq_marlin/marlin_dtypes.cuh"
#include "quantization/gptq_marlin/dequant.h"
#include "core/scalar_type.hpp"
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
@ -48,11 +49,9 @@ template <typename scalar_t, // compute dtype, half or nv_float16
// only works when thread_m_blocks == 1
const int stages, // number of stages for the async global->shared
// fetch pipeline
const bool has_act_order, // whether act_order is enabled
const bool has_zp, // whether zero-points are enabled
const int group_blocks, // number of consecutive 16x16 blocks
// with a separate quantization scale
const bool is_zp_float // is zero point of float16 type?
const int group_blocks, // number of consecutive 16x16 blocks
// with a separate quantization scale
const bool is_zp_float // is zero point of float16 type?
>
__global__ void Marlin(
const int4* __restrict__ A, // fp16 input matrix of shape mxk
@ -77,8 +76,8 @@ __global__ void Marlin(
int prob_k, // reduction dimension k
int* locks, // extra global storage for barrier synchronization
bool use_atomic_add, // whether to use atomic add to reduce
bool use_fp32_reduce // whether to use fp32 global reduce
) {}
bool use_fp32_reduce, // whether to use fp32 global reduce
int max_shared_mem) {}
} // namespace MARLIN_NAMESPACE_NAME
@ -166,144 +165,6 @@ __device__ inline void ldsm(typename ScalarType<scalar_t>::FragA& frag_a,
}
}
// Lookup-table based 3-input logical operation; explicitly used for
// dequantization as the compiler does not seem to automatically recognize it in
// all cases.
template <int lut>
__device__ inline int lop3(int a, int b, int c) {
int res;
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(res)
: "r"(a), "r"(b), "r"(c), "n"(lut));
return res;
}
// Constructs destination register by taking bytes from 2 sources (based on
// mask)
template <int start_byte, int mask>
__device__ inline uint32_t prmt(uint32_t a) {
uint32_t res;
asm volatile("prmt.b32 %0, %1, %2, %3;\n"
: "=r"(res)
: "r"(a), "n"(start_byte), "n"(mask));
return res;
}
template <typename scalar_t, int bit>
__device__ inline typename ScalarType<scalar_t>::FragB dequant(
int q, typename ScalarType<scalar_t>::FragB& frag_b);
//
// Efficiently dequantize 4bit values packed in an int32 value into a full
// B-fragment of 4 fp16 values. We mostly follow the strategy in the link below,
// with some small changes:
// - FP16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L215-L287
// - BF16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L327-L385
//
template <>
__device__ inline typename ScalarType<half>::FragB dequant<half, 4>(
int q, typename ScalarType<half>::FragB& frag_b) {
const int LO = 0x000f000f;
const int HI = 0x00f000f0;
const int EX = 0x64006400;
// Guarantee that the `(a & b) | c` operations are LOP3s.
int lo = lop3 < (0xf0 & 0xcc) | 0xaa > (q, LO, EX);
int hi = lop3 < (0xf0 & 0xcc) | 0xaa > (q, HI, EX);
// We want signed int4 outputs, hence we fuse the `-8` symmetric zero point
// directly into `SUB` and `ADD`.
const int SUB = 0x64086408;
const int MUL = 0x2c002c00;
const int ADD = 0xd480d480;
frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
*reinterpret_cast<const half2*>(&SUB));
frag_b[1] = __hfma2(*reinterpret_cast<half2*>(&hi),
*reinterpret_cast<const half2*>(&MUL),
*reinterpret_cast<const half2*>(&ADD));
return frag_b;
}
template <>
__device__ inline typename ScalarType<nv_bfloat16>::FragB
dequant<nv_bfloat16, 4>(int q,
typename ScalarType<nv_bfloat16>::FragB& frag_b) {
static constexpr uint32_t MASK = 0x000f000f;
static constexpr uint32_t EX = 0x43004300;
// Guarantee that the `(a & b) | c` operations are LOP3s.
int lo = lop3 < (0xf0 & 0xcc) | 0xaa > (q, MASK, EX);
q >>= 4;
int hi = lop3 < (0xf0 & 0xcc) | 0xaa > (q, MASK, EX);
static constexpr uint32_t MUL = 0x3F803F80;
static constexpr uint32_t ADD = 0xC308C308;
frag_b[0] = __hfma2(*reinterpret_cast<nv_bfloat162*>(&lo),
*reinterpret_cast<const nv_bfloat162*>(&MUL),
*reinterpret_cast<const nv_bfloat162*>(&ADD));
frag_b[1] = __hfma2(*reinterpret_cast<nv_bfloat162*>(&hi),
*reinterpret_cast<const nv_bfloat162*>(&MUL),
*reinterpret_cast<const nv_bfloat162*>(&ADD));
return frag_b;
}
//
// Fast Int8ToFp16/Int8ToBf16: Efficiently dequantize 8bit int values to fp16 or
// bf16 Reference:
// - FP16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L53-L85
// - BF16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L125-L175
//
template <>
__device__ inline typename ScalarType<half>::FragB dequant<half, 8>(
int q, typename ScalarType<half>::FragB& frag_b) {
static constexpr uint32_t mask_for_elt_01 = 0x5250;
static constexpr uint32_t mask_for_elt_23 = 0x5351;
static constexpr uint32_t start_byte_for_fp16 = 0x64646464;
uint32_t lo = prmt<start_byte_for_fp16, mask_for_elt_01>(q);
uint32_t hi = prmt<start_byte_for_fp16, mask_for_elt_23>(q);
static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64806480;
frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
*reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
frag_b[1] = __hsub2(*reinterpret_cast<half2*>(&hi),
*reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
return frag_b;
}
template <>
__device__ inline typename ScalarType<nv_bfloat16>::FragB
dequant<nv_bfloat16, 8>(int q,
typename ScalarType<nv_bfloat16>::FragB& frag_b) {
float fp32_intermediates[4];
uint32_t* fp32_intermediates_casted =
reinterpret_cast<uint32_t*>(fp32_intermediates);
static constexpr uint32_t fp32_base = 0x4B000000;
fp32_intermediates_casted[0] = __byte_perm(q, fp32_base, 0x7650);
fp32_intermediates_casted[1] = __byte_perm(q, fp32_base, 0x7652);
fp32_intermediates_casted[2] = __byte_perm(q, fp32_base, 0x7651);
fp32_intermediates_casted[3] = __byte_perm(q, fp32_base, 0x7653);
fp32_intermediates[0] -= 8388736.f;
fp32_intermediates[1] -= 8388736.f;
fp32_intermediates[2] -= 8388736.f;
fp32_intermediates[3] -= 8388736.f;
uint32_t* bf16_result_ptr = reinterpret_cast<uint32_t*>(&frag_b);
bf16_result_ptr[0] = __byte_perm(fp32_intermediates_casted[0],
fp32_intermediates_casted[1], 0x7632);
bf16_result_ptr[1] = __byte_perm(fp32_intermediates_casted[2],
fp32_intermediates_casted[3], 0x7632);
return frag_b;
}
// Multiply dequantized values by the corresponding quantization scale; used
// only for grouped quantization.
template <typename scalar_t>
@ -429,11 +290,9 @@ template <typename scalar_t, // compute dtype, half or nv_float16
// only works when thread_m_blocks == 1
const int stages, // number of stages for the async global->shared
// fetch pipeline
const bool has_act_order, // whether act_order is enabled
const bool has_zp, // whether zero-points are enabled
const int group_blocks, // number of consecutive 16x16 blocks
// with a separate quantization scale
const bool is_zp_float // is zero point of float16 type?
const int group_blocks, // number of consecutive 16x16 blocks
// with a separate quantization scale
const bool is_zp_float // is zero point of float16 type?
>
__global__ void Marlin(
const int4* __restrict__ A, // fp16 input matrix of shape mxk
@ -442,9 +301,11 @@ __global__ void Marlin(
int4* __restrict__ C_tmp, // fp32 tmp output buffer (for reduce)
const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
// (k/groupsize)xn
const int4* __restrict__ zp_ptr, // 4bit packed zero-points of shape
// (k/groupsize)x(n/pack_factor)
const int* __restrict__ g_idx, // int32 group indices of shape k
const uint16_t* __restrict__ scale2_ptr, // fp16 global scale (for nvfp4
// only)
const int4* __restrict__ zp_ptr, // 4bit packed zero-points of shape
// (k/groupsize)x(n/pack_factor)
const int* __restrict__ g_idx, // int32 group indices of shape k
const int32_t* __restrict__ sorted_token_ids_ptr, // moe sorted_ids
const int32_t* __restrict__ expert_ids_ptr, // moe expert ids
const int32_t* __restrict__ num_tokens_past_padded_ptr, // moe num tokens
@ -458,8 +319,8 @@ __global__ void Marlin(
int prob_k, // reduction dimension k
int* locks, // extra global storage for barrier synchronization
bool use_atomic_add, // whether to use atomic add to reduce
bool use_fp32_reduce // whether to use fp32 global reduce
) {
bool use_fp32_reduce, // whether to use fp32 global reduce
int max_shared_mem) {
// Each threadblock processes one "stripe" of the B matrix with (roughly) the
// same size, which might involve multiple column "slices" (of width 16 *
// `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM
@ -481,13 +342,26 @@ __global__ void Marlin(
extern __shared__ int4 sh[];
static constexpr auto w_type = vllm::ScalarType::from_id(w_type_id);
constexpr bool has_zp = w_type == vllm::kU4 || w_type == vllm::kU8;
constexpr bool is_int_type = w_type == vllm::kU4 || w_type == vllm::kU8 ||
w_type == vllm::kU4B8 || w_type == vllm::kU8B128;
// see comments of dequant.h for more details
constexpr bool dequant_skip_flop =
!is_int_type ||
has_zp && !is_zp_float && !std::is_same<scalar_t, nv_bfloat16>::value ||
has_zp && !is_zp_float && !(w_type == vllm::kU8);
scalar_t2 global_scale;
constexpr bool has_act_order = group_blocks == 0;
constexpr int pack_factor = 32 / w_type.size_bits();
static_assert(thread_m_blocks == 1 || !m_block_size_8);
constexpr int moe_block_size = m_block_size_8 ? 8 : (16 * thread_m_blocks);
const int group_size =
(!has_act_order && group_blocks == -1) ? prob_k : prob_k / num_groups;
const int scales_expert_stride = prob_n * prob_k / group_size / 8;
const int scales_expert_stride =
prob_n * prob_k / group_size / (w_type == vllm::kFE2M1f ? 16 : 8);
const int zp_expert_stride =
is_zp_float ? prob_n * prob_k / group_size / 8
: prob_n * prob_k / group_size / (pack_factor * 4);
@ -534,13 +408,20 @@ __global__ void Marlin(
int64_t B_expert_off = 0;
int4* sh_block_sorted_ids_int4 = sh;
int4* sh_rd_block_sorted_ids_int4 =
sh_block_sorted_ids_int4 + moe_block_size / 4;
int4* sh_block_topk_weights_int4 =
sh_rd_block_sorted_ids_int4 + moe_block_size / 4;
// sh_block_topk_weights_int4 only need (moe_block_size / 4);
// but we pad to align to 256 bytes
int4* sh_new =
sh_block_topk_weights_int4 + moe_block_size / 2 + moe_block_size;
int32_t* sh_block_sorted_ids =
reinterpret_cast<int*>(sh_block_sorted_ids_int4);
int4* sh_block_topk_weights_int4 =
sh_block_sorted_ids_int4 + moe_block_size / 4;
int32_t* sh_rd_block_sorted_ids =
reinterpret_cast<int*>(sh_rd_block_sorted_ids_int4);
scalar_t2* sh_block_topk_weights =
reinterpret_cast<scalar_t2*>(sh_block_topk_weights_int4);
int4* sh_new = sh_block_topk_weights_int4 + moe_block_size / 4;
int32_t block_num_valid_tokens = 0;
int32_t locks_off = 0;
@ -584,12 +465,24 @@ __global__ void Marlin(
sh_block_sorted_ids_int4[tid4] = reinterpret_cast<const int4*>(
sorted_token_ids_ptr)[block_id * moe_block_size / 4 + tid4];
#pragma unroll
for (int i = 0; i < 4; i++)
sh_rd_block_sorted_ids[tid4 * 4 + i] =
sh_block_sorted_ids[tid4 * 4 + i] / top_k;
if (mul_topk_weights) {
#pragma unroll
for (int i = 0; i < 4; i++) {
sh_block_topk_weights[tid4 * 4 + i] =
Dtype::num2num2(Dtype::float2num(
topk_weights_ptr[sh_block_sorted_ids[tid4 * 4 + i]]));
int idx = tid4 * 4 + i;
idx = idx < block_num_valid_tokens ? idx : 0;
if constexpr (w_type == vllm::kFE2M1f) {
sh_block_topk_weights[idx] = __hmul2(
global_scale, Dtype::num2num2(Dtype::float2num(
topk_weights_ptr[sh_block_sorted_ids[idx]])));
} else {
sh_block_topk_weights[idx] = Dtype::num2num2(
Dtype::float2num(topk_weights_ptr[sh_block_sorted_ids[idx]]));
}
}
}
}
@ -620,6 +513,11 @@ __global__ void Marlin(
expert_id = expert_ids_ptr[block_id];
}
if constexpr (w_type == vllm::kFE2M1f) {
uint16_t val = scale2_ptr[expert_id];
global_scale = Dtype::num2num2(*reinterpret_cast<scalar_t*>(&val));
}
B_expert_off = expert_id * prob_n * prob_k / (pack_factor * 4);
scales_ptr += (expert_id - old_expert_id) * scales_expert_stride;
if constexpr (has_zp) {
@ -733,7 +631,7 @@ __global__ void Marlin(
constexpr int s_sh_stride = 16 * thread_n_blocks / 8;
constexpr int s_tb_groups =
!has_act_order && group_blocks != -1 && group_blocks < thread_k_blocks
? thread_k_blocks / group_blocks
? thread_k_blocks / group_blocks / (w_type == vllm::kFE2M1f ? 2 : 1)
: 1;
constexpr int s_sh_stage = s_tb_groups * s_sh_stride;
int s_gl_rd_delta = s_gl_stride;
@ -743,6 +641,7 @@ __global__ void Marlin(
constexpr int g_idx_stage = has_act_order ? (tb_k * sizeof(int)) / 16 : 0;
// constexpr int act_s_row_stride = 1;
// int act_s_col_stride = act_s_row_stride * num_groups;
constexpr int act_s_max_num_groups = 32;
int act_s_col_stride = 1;
int act_s_col_warp_stride = act_s_col_stride * 8;
int tb_n_warps = thread_n_blocks / 4;
@ -758,9 +657,9 @@ __global__ void Marlin(
int zp_gl_rd_delta = zp_gl_stride;
// Global A read index of current thread.
int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
(threadIdx.x % a_gl_rd_delta_o);
a_gl_rd += a_gl_rd_delta_o * slice_row;
int a_gl_rd_row = threadIdx.x / a_gl_rd_delta_o;
int a_gl_rd_col = a_gl_rd_delta_o * slice_row + threadIdx.x % a_gl_rd_delta_o;
// Shared write index of current thread.
int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) +
(threadIdx.x % a_gl_rd_delta_o);
@ -774,8 +673,8 @@ __global__ void Marlin(
(threadIdx.x % b_sh_stride_threads) * b_thread_vecs;
b_gl_rd += b_sh_stride * slice_col;
b_gl_rd += b_gl_rd_delta_o * slice_row;
int b_sh_wr = threadIdx.x * b_thread_vecs;
int b_sh_rd = threadIdx.x * b_thread_vecs;
auto b_sh_wr = threadIdx.x * b_thread_vecs;
auto b_sh_rd = threadIdx.x * b_thread_vecs;
// For act_order
constexpr int k_iter_size = tb_k / b_sh_wr_iters;
@ -790,11 +689,12 @@ __global__ void Marlin(
if constexpr (group_blocks == -1) {
s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
} else {
s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) /
(w_type == vllm::kFE2M1f ? 2 : 1) +
s_sh_stride * slice_col + threadIdx.x;
}
}
int s_sh_wr = threadIdx.x;
auto s_sh_wr = threadIdx.x;
bool s_sh_wr_pred = threadIdx.x < s_sh_stride;
// Zero-points
@ -807,17 +707,27 @@ __global__ void Marlin(
zp_sh_stride * slice_col + threadIdx.x;
}
}
int zp_sh_wr = threadIdx.x;
auto zp_sh_wr = threadIdx.x;
bool zp_sh_wr_pred = threadIdx.x < zp_sh_stride;
// We use a different scale layout for grouped and column-wise quantization as
// we scale a `half2` tile in column-major layout in the former and in
// row-major in the latter case.
int s_sh_rd;
if constexpr (group_blocks != -1)
if constexpr (group_blocks != -1 && w_type == vllm::kFE2M1f) {
auto warp_id = threadIdx.x / 32;
int n_warps = thread_n_blocks / 4;
int warp_row = warp_id / n_warps;
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) / 4;
else if constexpr (group_blocks == -1 && (m_block_size_8 || has_zp))
s_sh_rd = s_sh_rd * 2 + warp_row % 2;
} else if constexpr (group_blocks != -1)
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) / 4;
else if constexpr (group_blocks == -1 &&
(m_block_size_8 || (has_zp && !dequant_skip_flop)))
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) / 8;
else
@ -851,7 +761,7 @@ __global__ void Marlin(
// each warp must also write a consecutive memory segment?
auto transform_a = [&](int i) {
int row = i / a_gl_rd_delta_o;
return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row;
return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ (row % 8);
};
// Since the computation of this remapping is non-trivial and, due to our main
// loop unrolls, all shared memory accesses are static, we simply precompute
@ -879,12 +789,28 @@ __global__ void Marlin(
B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd;
// Shared memory storage for global fetch pipelines.
int4* sh_a = sh_new;
int4* sh_b = sh_a + (stages * a_sh_stage);
int4* sh_g_idx = sh_b + (stages * b_sh_stage);
constexpr int sh_red_size = (2 * thread_n_blocks + 1) * 16 * thread_m_blocks;
constexpr int sh_b_size = stages * b_sh_stage;
int4* sh_b = sh_new;
int4* sh_red = sh_new;
int4* sh_g_idx = sh_b + (sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
int4* sh_zp = sh_g_idx + (stages * g_idx_stage);
constexpr int sh_s_size = has_act_order ? (act_s_max_num_groups * s_sh_stride)
: (stages * s_sh_stage);
int4* sh_s = sh_zp + (stages * zp_sh_stage);
int4* sh_red = sh_b;
// shared memory reused by reduction should be smaller than
// shared memory used by weight.
static_assert(thread_m_blocks * 16 * thread_n_blocks * 16 / 8 <=
stages * b_sh_stage);
int4* sh_a = sh_s + sh_s_size;
constexpr int shm_size_used =
moe_block_size + stages * (g_idx_stage + zp_sh_stage) + sh_s_size +
(sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
// all remaining shared memory is used to cache A (input)
// sh_a_max_row is at least ` stages * 16 * thread_m_blocks `
int sh_a_max_row =
((max_shared_mem - 1024) / 16 - shm_size_used) / (thread_k_blocks * 2);
// Register storage for double buffer of shared memory reads.
FragA frag_a[2][thread_m_blocks];
@ -905,15 +831,14 @@ __global__ void Marlin(
int sh_first_group_id = -1;
int sh_num_groups = -1;
constexpr int sh_max_num_groups = 32;
auto fetch_act_order_scales_to_shared = [&](bool is_async, int first_group_id,
int last_group_id) {
sh_first_group_id = first_group_id;
sh_num_groups = last_group_id - first_group_id + 1;
if (sh_num_groups < sh_max_num_groups) {
sh_num_groups = sh_max_num_groups;
if (sh_num_groups > act_s_max_num_groups) {
sh_num_groups = act_s_max_num_groups;
}
if (sh_first_group_id + sh_num_groups > num_groups) {
@ -940,27 +865,31 @@ __global__ void Marlin(
}
}
};
// Asynchronously fetch the next A, B and s tile from global to the next
// shared memory pipeline location.
int a_remaining_load_count_in_slice = stages;
auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) {
bool should_load_a = true;
int max_num_stage_groups =
((sh_a_max_row - moe_block_size) / moe_block_size + 1) / stages;
max_num_stage_groups = max(max_num_stage_groups, 1);
auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true,
int pipe_a = 0) {
if (pred) {
int4* sh_a_stage = sh_a + a_sh_stage * pipe;
if (prob_k > thread_k_blocks * 16 * stages || slice_col == 0 ||
a_remaining_load_count_in_slice > 0) {
a_remaining_load_count_in_slice--;
if (should_load_a) {
int4* sh_a_stage = sh_a + moe_block_size * a_sh_stride * pipe_a;
#pragma unroll
for (int i = 0; i < a_sh_wr_iters; i++) {
int a_idx = a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off;
int row = a_idx / a_gl_stride;
int row = a_gl_rd_delta_i / a_gl_stride * i + a_gl_rd_row;
int64_t sorted_row = 0;
if (!m_block_size_8 || row < 8)
sorted_row = sh_block_sorted_ids[row] / top_k;
int64_t true_idx = sorted_row * a_gl_stride + a_idx % a_gl_stride;
sorted_row = sh_rd_block_sorted_ids[row];
int64_t true_idx =
sorted_row * a_gl_stride + a_gl_rd_col + a_gl_rd_delta_o * a_off;
cp_async4_pred(&sh_a_stage[a_sh_wr_trans[i]], &A[true_idx],
row < block_num_valid_tokens);
}
}
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) {
@ -1063,8 +992,8 @@ __global__ void Marlin(
// Load the next sub-tile from the current location in the shared memory pipe
// into the current register buffer.
auto fetch_to_registers = [&](int k, int pipe) {
int4* sh_a_stage = sh_a + a_sh_stage * pipe;
auto fetch_to_registers = [&](int k, int pipe, int pipe_a = 0) {
int4* sh_a_stage = sh_a + moe_block_size * a_sh_stride * pipe_a;
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++)
ldsm<m_block_size_8 ? 2 : 4, scalar_t>(
@ -1109,12 +1038,17 @@ __global__ void Marlin(
}
} else if constexpr (group_blocks != -1) {
if constexpr (group_blocks >= thread_k_blocks) {
int4* sh_s_stage =
sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) *
(pipe / (group_blocks / thread_k_blocks)));
reinterpret_cast<int4*>(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd];
if (k % b_sh_wr_iters == 0) {
int4* sh_s_stage =
sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) *
(pipe / (group_blocks / thread_k_blocks)));
reinterpret_cast<int4*>(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd];
} else {
reinterpret_cast<int4*>(&frag_s[1])[0] =
reinterpret_cast<int4*>(&frag_s[0])[0];
}
} else {
int warp_id = threadIdx.x / 32;
auto warp_id = threadIdx.x / 32;
int n_warps = thread_n_blocks / 4;
int warp_row = warp_id / n_warps;
@ -1123,12 +1057,19 @@ __global__ void Marlin(
cur_k += k_iter_size * (k % b_sh_wr_iters);
int k_blocks = cur_k / 16;
int cur_group_id = k_blocks / group_blocks;
int cur_group_id =
k_blocks / (group_blocks * (w_type == vllm::kFE2M1f ? 2 : 1));
int4* sh_s_stage = sh_s + s_sh_stage * pipe;
reinterpret_cast<int4*>(&frag_s[k % 2])[0] =
sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride];
if constexpr (w_type_id != vllm::kFE2M1f.id()) {
reinterpret_cast<int4*>(&frag_s[k % 2])[0] =
sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride];
} else {
reinterpret_cast<int2*>(&frag_s[k % 2])[0] =
reinterpret_cast<int2*>(
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride)];
}
}
}
@ -1152,7 +1093,7 @@ __global__ void Marlin(
// Determine "position" inside the thread-block (based on warp and
// thread-id)
int warp_id = threadIdx.x / 32;
auto warp_id = threadIdx.x / 32;
int n_warps =
thread_n_blocks / 4; // Each warp processes 4 16-size tiles over N
@ -1161,7 +1102,7 @@ __global__ void Marlin(
cur_k += warp_row * 16;
int th_id = threadIdx.x % 32;
auto th_id = threadIdx.x % 32;
cur_k += (th_id % 4) * 2; // Due to tensor-core layout for fp16 B matrix
int s_col_shift =
@ -1222,15 +1163,18 @@ __global__ void Marlin(
}
} else if constexpr (group_blocks >= thread_k_blocks) {
int4* sh_zp_stage =
sh_zp + zp_sh_stage * ((group_blocks / thread_k_blocks) *
(pipe / (group_blocks / thread_k_blocks)));
for (int i = 0; i < num_ints_per_thread; i++) {
frag_qzp[k % 2][i] =
(reinterpret_cast<int*>(sh_zp_stage))[zp_sh_rd + i];
if (k % b_sh_wr_iters == 0) {
int4* sh_zp_stage =
sh_zp + zp_sh_stage * ((group_blocks / thread_k_blocks) *
(pipe / (group_blocks / thread_k_blocks)));
#pragma unroll
for (int i = 0; i < num_ints_per_thread; i++) {
frag_qzp[k % 2][i] =
(reinterpret_cast<int*>(sh_zp_stage))[zp_sh_rd + i];
}
}
} else {
int warp_id = threadIdx.x / 32;
auto warp_id = threadIdx.x / 32;
int n_warps = thread_n_blocks / 4;
int warp_row = warp_id / n_warps;
@ -1251,6 +1195,7 @@ __global__ void Marlin(
sh_zp_stage += cur_group_id * zp_sh_stride;
#pragma unroll
for (int i = 0; i < num_ints_per_thread; i++) {
frag_qzp[k % 2][i] =
(reinterpret_cast<int*>(sh_zp_stage))[zp_sh_rd + i];
@ -1263,12 +1208,16 @@ __global__ void Marlin(
if constexpr (group_blocks != -1) {
if constexpr (group_blocks >= thread_k_blocks) {
int4* sh_zp_stage =
sh_zp + zp_sh_stage * ((group_blocks / thread_k_blocks) *
(pipe / (group_blocks / thread_k_blocks)));
reinterpret_cast<int4*>(&frag_zpf[k % 2])[0] = sh_zp_stage[zp_sh_rd];
if (k % b_sh_wr_iters == 0) {
int4* sh_zp_stage =
sh_zp +
zp_sh_stage * ((group_blocks / thread_k_blocks) *
(pipe / (group_blocks / thread_k_blocks)));
reinterpret_cast<int4*>(&frag_zpf[k % 2])[0] =
sh_zp_stage[zp_sh_rd];
}
} else {
int warp_id = threadIdx.x / 32;
auto warp_id = threadIdx.x / 32;
int n_warps = thread_n_blocks / 4;
int warp_row = warp_id / n_warps;
@ -1292,6 +1241,10 @@ __global__ void Marlin(
}
};
auto dequant_data = [&](int q, scalar_t2* frag_b_ptr) {
dequant<scalar_t2, w_type_id, dequant_skip_flop>(q, frag_b_ptr);
};
// Execute the actual tensor core matmul of a sub-tile.
bool is_first_matmul_in_slice = true;
auto matmul = [&](int k) {
@ -1315,15 +1268,27 @@ __global__ void Marlin(
zp_quant_1 = frag_qzp[k2][1];
}
dequant<scalar_t, w_type.size_bits()>(zp_quant_0, frag_zp_0);
dequant<scalar_t, w_type.size_bits()>(zp_quant_1, frag_zp_1);
frag_zp[0] = frag_zp_0[0];
frag_zp[1] = frag_zp_0[1];
frag_zp[2] = frag_zp_1[0];
frag_zp[3] = frag_zp_1[1];
dequant_data(zp_quant_0, reinterpret_cast<scalar_t2*>(&frag_zp));
dequant_data(zp_quant_1, reinterpret_cast<scalar_t2*>(&frag_zp) + 2);
}
}
if constexpr (!dequant_skip_flop && has_zp && is_zp_float) {
if (is_new_zp) {
reinterpret_cast<int4*>(&frag_zp)[0] =
reinterpret_cast<int4*>(&frag_zpf[k2])[0];
}
}
if constexpr (w_type == vllm::kFE2M1f) {
int s_quant_0 = reinterpret_cast<int*>(frag_s[k2])[0];
int s_quant_1 = reinterpret_cast<int*>(frag_s[k2])[1];
dequant_fp8_scales<scalar_t2>(s_quant_0,
reinterpret_cast<scalar_t2*>(&frag_s[k2]));
dequant_fp8_scales<scalar_t2>(
s_quant_1, reinterpret_cast<scalar_t2*>(&frag_s[k2]) + 2);
}
// We have the m dimension as the inner loop in order to encourage overlapping
// dequantization and matmul operations.
#pragma unroll
@ -1332,7 +1297,10 @@ __global__ void Marlin(
FragB frag_b1;
int b_quant_0, b_quant_1;
if constexpr (w_type.size_bits() == 4) {
if constexpr (w_type_id == vllm::kFE2M1f.id()) {
b_quant_1 = frag_b_quant[k2][0][j];
b_quant_0 = b_quant_1 << 8;
} else if constexpr (w_type.size_bits() == 4) {
b_quant_0 = frag_b_quant[k2][0][j];
b_quant_1 = b_quant_0 >> 8;
} else {
@ -1342,8 +1310,13 @@ __global__ void Marlin(
b_quant_1 = frag_b_quant_ptr[j * 2 + 1];
}
dequant<scalar_t, w_type.size_bits()>(b_quant_0, frag_b0);
dequant<scalar_t, w_type.size_bits()>(b_quant_1, frag_b1);
dequant_data(b_quant_0, reinterpret_cast<scalar_t2*>(&frag_b0));
dequant_data(b_quant_1, reinterpret_cast<scalar_t2*>(&frag_b1));
if constexpr (dequant_skip_flop && has_zp && !is_zp_float) {
sub_zp<scalar_t>(frag_b0, frag_zp[j], 0);
sub_zp<scalar_t>(frag_b1, frag_zp[j], 1);
}
// Apply scale to frag_b0
if constexpr (has_act_order) {
@ -1351,9 +1324,9 @@ __global__ void Marlin(
scale4<scalar_t>(frag_b0, act_frag_s[k2][0][j], act_frag_s[k2][1][j],
act_frag_s[k2][2][j], act_frag_s[k2][3][j], 0);
scale4<scalar_t>(frag_b1, act_frag_s[k2][0][j], act_frag_s[k2][1][j],
act_frag_s[k][2][j], act_frag_s[k2][3][j], 1);
} else if constexpr (has_zp && !is_zp_float && group_blocks == -1) {
act_frag_s[k2][2][j], act_frag_s[k2][3][j], 1);
} else if constexpr (!dequant_skip_flop && has_zp && !is_zp_float &&
group_blocks == -1) {
int idx = (threadIdx.x / 4) % 2;
scalar_t2 s2 = Dtype::nums2num2(
reinterpret_cast<scalar_t*>(&frag_s[j / 2][j % 2 * 2 + 0])[idx],
@ -1361,18 +1334,12 @@ __global__ void Marlin(
if (is_new_zp) frag_zp[j] = __hmul2(frag_zp[j], s2);
scale_and_sub<scalar_t>(frag_b0, s2.x, frag_zp[j].x);
scale_and_sub<scalar_t>(frag_b1, s2.y, frag_zp[j].y);
} else if constexpr (has_zp && !is_zp_float && group_blocks != -1) {
} else if constexpr (!dequant_skip_flop && has_zp && group_blocks != -1) {
if (is_new_zp)
frag_zp[j] = __hmul2(frag_zp[j],
*reinterpret_cast<scalar_t2*>(&frag_s[k2][j]));
scale_and_sub<scalar_t>(frag_b0, frag_s[k % 2][j][0].x, frag_zp[j].x);
scale_and_sub<scalar_t>(frag_b1, frag_s[k % 2][j][0].y, frag_zp[j].y);
} else if constexpr (has_zp && is_zp_float && group_blocks != -1) {
if (is_new_zp)
frag_zpf[k2][j] = __hmul2(
frag_zpf[k2][j], *reinterpret_cast<scalar_t2*>(&frag_s[k2][j]));
scale_and_sub<scalar_t>(frag_b0, frag_s[k2][j].x, frag_zpf[k2][j].x);
scale_and_sub<scalar_t>(frag_b1, frag_s[k2][j].y, frag_zpf[k2][j].y);
scale_and_sub<scalar_t>(frag_b0, frag_s[k2][j][0].x, frag_zp[j].x);
scale_and_sub<scalar_t>(frag_b1, frag_s[k2][j][0].y, frag_zp[j].y);
} else if constexpr (group_blocks != -1) {
scale<scalar_t>(frag_b0, frag_s[k2][j], 0);
scale<scalar_t>(frag_b1, frag_s[k2][j], 1);
@ -1397,7 +1364,7 @@ __global__ void Marlin(
auto thread_block_reduce = [&]() {
constexpr int red_off = threads / b_sh_stride_threads / 2;
if (red_off >= 1) {
int red_idx = threadIdx.x / b_sh_stride_threads;
auto red_idx = threadIdx.x / b_sh_stride_threads;
constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2;
constexpr int red_sh_delta = b_sh_stride_threads;
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) +
@ -1634,10 +1601,17 @@ __global__ void Marlin(
// For per-column quantization we finally apply the scale here (only for
// 4-bit)
if constexpr (!has_act_order && group_blocks == -1 &&
w_type.size_bits() == 4 && !has_zp) {
w_type.size_bits() == 4 &&
(has_zp && dequant_skip_flop || !has_zp)) {
res = __hmul2(res, s[0]);
}
if constexpr (w_type == vllm::kFE2M1f) {
if (!mul_topk_weights) {
res = __hmul2(res, global_scale);
}
}
if constexpr (m_block_size_8) {
((scalar_t*)sh_red)[idx] = res.x;
((scalar_t*)sh_red)[idx + 8 * c_sh_stride] = res.y;
@ -1728,10 +1702,12 @@ __global__ void Marlin(
if constexpr (has_zp && !is_zp_float && group_blocks == -1) {
if (i == 0) {
fetch_col_zp_to_shared();
fetch_col_scale_to_shared();
if constexpr (!dequant_skip_flop) {
fetch_col_scale_to_shared();
}
}
}
fetch_to_shared(i, i, i < slice_iters);
fetch_to_shared(i, i, i < slice_iters, i);
}
zero_accums();
@ -1740,8 +1716,10 @@ __global__ void Marlin(
fetch_to_registers(0, 0);
fetch_scales_to_registers(0, 0);
fetch_zp_to_registers(0, 0);
a_gl_rd += a_gl_rd_delta_o * (stages - 1);
slice_k_start_shared_fetch += tb_k * (stages - 1);
a_gl_rd_col += a_gl_rd_delta_o * (stages - 1);
if constexpr (has_act_order) {
slice_k_start_shared_fetch += tb_k * (stages - 1);
}
};
if (slice_iters) {
start_pipes();
@ -1754,45 +1732,61 @@ __global__ void Marlin(
// have even length meaning that the next iteration will always start at
// index 0.
for (int stage_group_id = 0; stage_group_id < max_num_stage_groups;
stage_group_id++) {
#pragma unroll
for (int pipe = 0; pipe < stages;) {
for (int pipe = 0; pipe < stages;) {
#pragma unroll
for (int k = 0; k < b_sh_wr_iters; k++) {
fetch_to_registers(k + 1, pipe % stages);
fetch_scales_to_registers(k + 1, pipe);
fetch_zp_to_registers(k + 1, pipe);
if (k == b_sh_wr_iters - 2) {
fetch_to_shared((pipe + stages - 1) % stages, pipe,
slice_iters >= stages);
pipe++;
wait_for_stage();
init_same_group(pipe % stages);
for (int k = 0; k < b_sh_wr_iters; k++) {
int idx =
(pipe >= stages && stage_group_id == max_num_stage_groups - 1)
? (pipe - stages)
: (pipe + stage_group_id * stages);
fetch_to_registers(k + 1, pipe % stages, idx);
fetch_scales_to_registers(k + 1, pipe);
fetch_zp_to_registers(k + 1, pipe);
if (k == b_sh_wr_iters - 2) {
int idx = (pipe >= 1 && stage_group_id == max_num_stage_groups - 1)
? (pipe - 1)
: (pipe + (stage_group_id + 1) * stages - 1);
fetch_to_shared((pipe + stages - 1) % stages, pipe,
slice_iters >= stages, idx);
pipe++;
wait_for_stage();
init_same_group(pipe % stages);
}
matmul(k);
}
slice_iters--;
if (slice_iters == 0) {
break;
}
}
a_gl_rd_col += a_gl_rd_delta_o * stages;
if constexpr (has_act_order) {
slice_k_start += tb_k * stages;
if (slice_k_start < prob_k) {
slice_k_start_shared_fetch += tb_k * stages;
int first_group_id = g_idx[slice_k_start];
int last_g_idx = slice_k_start + stages * tb_k * 2;
if (last_g_idx >= prob_k) {
last_g_idx = prob_k - 1;
}
int last_group_id = g_idx[last_g_idx];
if (last_group_id >= sh_first_group_id + sh_num_groups) {
fetch_act_order_scales_to_shared(false, first_group_id,
last_group_id);
__syncthreads();
}
}
matmul(k);
}
slice_iters--;
if (slice_iters == 0) {
break;
}
}
a_remaining_load_count_in_slice = 0;
a_gl_rd += a_gl_rd_delta_o * stages;
slice_k_start += tb_k * stages;
slice_k_start_shared_fetch += tb_k * stages;
if constexpr (has_act_order) {
int first_group_id = g_idx[slice_k_start];
int last_g_idx = slice_k_start + stages * tb_k * 2;
if (last_g_idx >= prob_k) {
last_g_idx = prob_k - 1;
}
int last_group_id = g_idx[last_g_idx];
if (last_group_id >= sh_first_group_id + sh_num_groups) {
fetch_act_order_scales_to_shared(false, first_group_id, last_group_id);
__syncthreads();
}
}
// Process results and, if necessary, proceed to the next column slice.
// While this pattern may not be the most readable, other ways of writing
@ -1802,7 +1796,8 @@ __global__ void Marlin(
bool last = slice_idx == slice_count - 1;
// For per-column scales, we only fetch them here in the final step before
// write-out
if constexpr (!has_act_order && group_blocks == -1 && !has_zp) {
if constexpr (!has_act_order && group_blocks == -1 &&
(has_zp && dequant_skip_flop || !has_zp)) {
if (w_type.size_bits() == 8 || (last || use_atomic_add)) {
if (s_sh_wr_pred) {
cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]);
@ -1812,7 +1807,8 @@ __global__ void Marlin(
}
thread_block_reduce();
if constexpr (!has_act_order && group_blocks == -1 && !has_zp) {
if constexpr (!has_act_order && group_blocks == -1 &&
(has_zp && dequant_skip_flop || !has_zp)) {
if (w_type.size_bits() == 8 || (last || use_atomic_add)) {
cp_async_wait<0>();
__syncthreads();
@ -1836,7 +1832,8 @@ __global__ void Marlin(
// that converts the fp32 results to fp16 (so that we avoid possible
// overflow in fp16)
if constexpr (!has_act_order && group_blocks == -1 &&
w_type.size_bits() == 8 && !has_zp) {
w_type.size_bits() == 8 &&
(has_zp && dequant_skip_flop || !has_zp)) {
if (threadIdx.x / 32 < thread_n_blocks / 4) {
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++) {
@ -1877,15 +1874,30 @@ __global__ void Marlin(
if (last || use_atomic_add)
// only the last block in a slice actually writes the result
write_result();
if (slice_row) a_remaining_load_count_in_slice = stages;
int old_slice_row = slice_row;
slice_row = 0;
slice_col_par++;
slice_col++;
is_first_matmul_in_slice = true;
init_slice();
// Should we load A matrix in next slice?
// `slice_col == 0`: when move to a new moe block
// `old_slice_row > 0`:
// when the last slice is not starting from k_index == 0
// (only happen when it is the first slice of a threadblock)
// `prob_k > thread_k_blocks * 16 * stages * max_num_stage_groups`:
// when the required shared memory size is larger than
// the remaining shared memory
if (slice_col == 0 || old_slice_row ||
prob_k > thread_k_blocks * 16 * stages * max_num_stage_groups) {
should_load_a = true;
} else {
should_load_a = false;
}
if (slice_iters) {
a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
(threadIdx.x % a_gl_rd_delta_o);
a_gl_rd_col = (threadIdx.x % a_gl_rd_delta_o);
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++)
B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles;
@ -1900,12 +1912,10 @@ __global__ void Marlin(
slice_k_finish = slice_k_start + tb_k * slice_iters;
slice_k_start_shared_fetch = slice_k_start;
slice_n_offset = act_s_col_tb_stride * slice_col;
} else {
s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
zp_gl_rd = zp_sh_stride * slice_col + threadIdx.x;
}
start_pipes();
}
}

View File

@ -116,7 +116,7 @@ __global__ void permute_cols_kernel(
int base_k = 0;
for (int i = 0; i < iters; i++) {
int cur_k = base_k + threadIdx.x;
auto cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
@ -126,7 +126,7 @@ __global__ void permute_cols_kernel(
if (rest) {
if (threadIdx.x < rest) {
int cur_k = base_k + threadIdx.x;
auto cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
@ -195,7 +195,6 @@ int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
tb_groups * pipe_stages * 2; // Chunk size is 2x pipeline over dim K
load_groups = max(load_groups, 32); // We load at least 32 scale groups
return load_groups * tb_n * 2;
} else {
int tb_scales = tb_groups * tb_n * 2;
@ -203,22 +202,24 @@ int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
}
}
int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, bool has_act_order, bool is_k_full,
int has_zp, int is_zp_float) {
int get_kernel_cache_size(thread_config_t const& th_config, bool m_block_size_8,
int thread_m_blocks, int prob_m, int prob_n,
int prob_k, int num_bits, int group_size,
bool has_act_order, bool is_k_full, int has_zp,
int is_zp_float) {
int pack_factor = 32 / num_bits;
// Get B size
int tb_k = th_config.thread_k;
int tb_n = th_config.thread_n;
int tb_m = thread_m_blocks * 16;
int tb_m = thread_m_blocks * (m_block_size_8 ? 8 : 16);
// shm size for block_sorted_ids/block_topk_weights
// shm size for block_sorted_ids/rd_block_sorted_ids/block_topk_weights
// both of them requires tb_m * 4 bytes (tb_m * int32 or tb_m * float32)
int sh_block_meta_size = tb_m * 4 * 2;
int sh_block_meta_size = tb_m * 4;
int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
int sh_red_size = tb_m * (tb_n + 8) * 2;
int sh_s_size =
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full);
@ -233,16 +234,17 @@ int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
sh_zp_size = sh_s_size / 2;
}
int total_size = sh_a_size + sh_b_size + sh_s_size + sh_zp_size +
sh_g_idx_size + sh_block_meta_size;
int total_size = max(sh_b_size, sh_red_size) + sh_a_size + sh_s_size +
sh_zp_size + sh_g_idx_size + sh_block_meta_size;
return total_size;
}
bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, bool has_act_order, bool is_k_full,
int has_zp, int is_zp_float, int max_shared_mem) {
bool is_valid_config(thread_config_t const& th_config, bool m_block_size_8,
int thread_m_blocks, int prob_m, int prob_n, int prob_k,
int num_bits, int group_size, bool has_act_order,
bool is_k_full, int has_zp, int is_zp_float,
int max_shared_mem) {
// Sanity
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
th_config.num_threads == -1) {
@ -266,143 +268,129 @@ bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
// Check that pipeline fits into cache
int cache_size = get_kernel_cache_size(
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, has_zp, is_zp_float);
th_config, m_block_size_8, thread_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float);
return cache_size <= max_shared_mem;
}
#define __GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
M_BLOCK_SIZE_8, HAS_ACT_ORDER, HAS_ZP, GROUP_BLOCKS, \
NUM_THREADS, IS_ZP_FLOAT) \
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
thread_n_blocks == THREAD_N_BLOCKS && \
thread_k_blocks == THREAD_K_BLOCKS && \
m_block_size_8 == M_BLOCK_SIZE_8 && \
has_act_order == HAS_ACT_ORDER && has_zp == HAS_ZP && \
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
is_zp_float == IS_ZP_FLOAT) { \
kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, \
THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8, \
pipe_stages, HAS_ACT_ORDER, HAS_ZP, GROUP_BLOCKS, \
IS_ZP_FLOAT>; \
#define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
M_BLOCK_SIZE_8, GROUP_BLOCKS, NUM_THREADS, IS_ZP_FLOAT) \
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
thread_n_blocks == THREAD_N_BLOCKS && \
thread_k_blocks == THREAD_K_BLOCKS && \
m_block_size_8 == M_BLOCK_SIZE_8 && \
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
is_zp_float == IS_ZP_FLOAT) { \
kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, \
THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8, \
pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
}
#define GPTQ_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, true, false, 0, NUM_THREADS, \
false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, true, false, 0, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, false, 8, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, false, 8, \
NUM_THREADS, false)
// COMMON: cases for (group_blocks in [-1, 2, 4, 8] and is_zp_float == false)
// this is the most common cases
// BIGGROUP: cases for big group size (group_blocks in [-1, 8])
// FZP: cases for float-zero-point (is_zp_float = true)
// ACT: cases for act order case (group_blocks == 0)
// FP4: cases for nvfp4(e2m1) (group_blocks == 1)
#define COMMON_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 8, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
#define GPTQ_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, true, false, 0, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, true, false, 0, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, true, false, 0, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, false, 8, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, false, 8, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, false, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, false, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, false, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, false, 8, \
NUM_THREADS, false)
#define COMMON_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
\
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
\
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
#define AWQ_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, 2, NUM_THREADS, \
false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, 4, NUM_THREADS, \
false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, 8, NUM_THREADS, \
false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, 8, \
NUM_THREADS, false)
#define COMMON_GET_IF(W_TYPE) \
COMMON_GET_IF_M1(W_TYPE, 8, 8, 256) \
COMMON_GET_IF_M1(W_TYPE, 8, 4, 128) \
COMMON_GET_IF_M234(W_TYPE, 16, 4, 256) \
COMMON_GET_IF_M234(W_TYPE, 8, 4, 128)
#define AWQ_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, 8, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, 8, \
NUM_THREADS, false) \
\
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, -1, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, 2, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, false) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, 8, \
NUM_THREADS, false)
#define BIGGROUP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 8, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
#define BIGGROUP_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
\
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
#define FP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
#define FP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
#define FP4_GET_IF(W_TYPE) \
FP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
FP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
FP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
FP4_GET_IF_M234(W_TYPE, 8, 4, 128)
#define BIGGROUP_GET_IF(W_TYPE) \
BIGGROUP_GET_IF_M1(W_TYPE, 8, 8, 256) \
BIGGROUP_GET_IF_M1(W_TYPE, 8, 4, 128) \
BIGGROUP_GET_IF_M234(W_TYPE, 16, 4, 256) \
BIGGROUP_GET_IF_M234(W_TYPE, 8, 4, 128)
// We currently have 4-bit models only with group_blocks == 4
#define HQQ_GET_IF(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, false, true, 4, NUM_THREADS, \
true) \
__GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, true) \
__GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, true) \
__GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, true) \
__GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, false, true, 4, \
NUM_THREADS, true)
#define FZP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, true) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true)
#define FZP_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true)
#define FZP_GET_IF(W_TYPE) \
FZP_GET_IF_M1(W_TYPE, 8, 8, 256) \
FZP_GET_IF_M1(W_TYPE, 8, 4, 128) \
FZP_GET_IF_M234(W_TYPE, 16, 4, 256) \
FZP_GET_IF_M234(W_TYPE, 8, 4, 128)
// We currently have 4-bit models only with group_blocks == 4
#define ACT_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false)
#define ACT_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false)
#define ACT_GET_IF(W_TYPE) \
ACT_GET_IF_M1(W_TYPE, 8, 8, 256) \
ACT_GET_IF_M1(W_TYPE, 8, 4, 128) \
ACT_GET_IF_M234(W_TYPE, 16, 4, 256) \
ACT_GET_IF_M234(W_TYPE, 8, 4, 128)
template <typename scalar_t>
MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
@ -415,23 +403,17 @@ MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
auto kernel = MarlinDefault;
if (false) {
}
GPTQ_GET_IF_M1(vllm::kU4B8, 8, 8, 256)
GPTQ_GET_IF_M1(vllm::kU4B8, 8, 4, 128)
GPTQ_GET_IF_M234(vllm::kU4B8, 16, 4, 256)
GPTQ_GET_IF_M234(vllm::kU4B8, 8, 4, 128)
COMMON_GET_IF(vllm::kU4)
COMMON_GET_IF(vllm::kU4B8)
COMMON_GET_IF(vllm::kU8B128)
GPTQ_GET_IF_M1(vllm::kU8B128, 8, 8, 256)
GPTQ_GET_IF_M1(vllm::kU8B128, 8, 4, 128)
BIGGROUP_GET_IF(vllm::kFE4M3fn)
GPTQ_GET_IF_M234(vllm::kU8B128, 16, 4, 256)
GPTQ_GET_IF_M234(vllm::kU8B128, 8, 4, 128)
FP4_GET_IF(vllm::kFE2M1f)
AWQ_GET_IF_M1(vllm::kU4, 8, 8, 256)
AWQ_GET_IF_M1(vllm::kU4, 8, 4, 128)
AWQ_GET_IF_M234(vllm::kU4, 16, 4, 256)
AWQ_GET_IF_M234(vllm::kU4, 8, 4, 128)
ACT_GET_IF(vllm::kU4B8)
ACT_GET_IF(vllm::kU8B128)
return kernel;
}
@ -457,19 +439,19 @@ exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
for (int i = 0; i < thread_configs_size; i++) {
thread_config_t th_config = thread_configs[i];
if (!is_valid_config(th_config, thread_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full, has_zp,
is_zp_float, max_shared_mem)) {
if (!is_valid_config(th_config, m_block_size_8, thread_m_blocks, prob_m,
prob_n, prob_k, num_bits, group_size, has_act_order,
is_k_full, has_zp, is_zp_float, max_shared_mem)) {
continue;
}
int cache_size = get_kernel_cache_size(
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full, has_zp, is_zp_float);
th_config, m_block_size_8, thread_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float);
int group_blocks = 0;
if (!has_act_order) {
group_blocks = group_size == -1 ? -1 : group_size / 16;
group_blocks = group_size == -1 ? -1 : (group_size / 16);
}
auto kernel = get_marlin_kernel<scalar_t>(
@ -501,7 +483,7 @@ exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
template <typename scalar_t>
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
void* zp, void* g_idx, void* perm, void* a_tmp,
void* s2, void* zp, void* g_idx, void* perm, void* a_tmp,
void* sorted_token_ids, void* expert_ids,
void* num_tokens_past_padded, void* topk_weights,
int moe_block_size, int top_k, bool mul_topk_weights, bool is_ep,
@ -520,8 +502,10 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
"q_type must be u4 or u8 when has_zp = True. Got = ", q_type.str());
} else {
TORCH_CHECK(
q_type == vllm::kU4B8 || q_type == vllm::kU8B128,
"q_type must be uint4b8 or uint8b128 when has_zp = False. Got = ",
q_type == vllm::kU4B8 || q_type == vllm::kU8B128 ||
q_type == vllm::kFE4M3fn || q_type == vllm::kFE2M1f,
"q_type must be uint4b8, uint8b128, float8_e4m3fn or float4_e2m1f when "
"has_zp = False. Got = ",
q_type.str());
}
@ -555,6 +539,7 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
int4* C_ptr = (int4*)C;
int4* C_tmp_ptr = (int4*)C_tmp;
const int4* s_ptr = (const int4*)s;
const uint16_t* s2_ptr = (const uint16_t*)s2;
const int4* zp_ptr = (const int4*)zp;
const int* g_idx_ptr = (const int*)g_idx;
const int* perm_ptr = (const int*)perm;
@ -631,18 +616,18 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
int thread_k_blocks = thread_k / 16;
int thread_n_blocks = thread_n / 16;
TORCH_CHECK(is_valid_config(thread_tfg, thread_m_blocks, prob_m, prob_n,
prob_k, num_bits, group_size, has_act_order,
is_k_full, has_zp, is_zp_float, max_shared_mem),
"Invalid thread config: thread_m_blocks = ", thread_m_blocks,
", thread_k = ", thread_tfg.thread_k,
", thread_n = ", thread_tfg.thread_n,
", num_threads = ", thread_tfg.num_threads, " for MKN = [",
prob_m, ", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
", group_size = ", group_size,
", has_act_order = ", has_act_order, ", is_k_full = ", is_k_full,
", has_zp = ", has_zp, ", is_zp_float = ", is_zp_float,
", max_shared_mem = ", max_shared_mem);
TORCH_CHECK(
is_valid_config(thread_tfg, m_block_size_8, thread_m_blocks, prob_m,
prob_n, prob_k, num_bits, group_size, has_act_order,
is_k_full, has_zp, is_zp_float, max_shared_mem),
"Invalid thread config: thread_m_blocks = ", thread_m_blocks,
", thread_k = ", thread_tfg.thread_k,
", thread_n = ", thread_tfg.thread_n,
", num_threads = ", thread_tfg.num_threads, " for MKN = [", prob_m, ", ",
prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
", group_size = ", group_size, ", has_act_order = ", has_act_order,
", is_k_full = ", is_k_full, ", has_zp = ", has_zp,
", is_zp_float = ", is_zp_float, ", max_shared_mem = ", max_shared_mem);
auto kernel = get_marlin_kernel<scalar_t>(
q_type, thread_m_blocks, thread_n_blocks, thread_k_blocks, m_block_size_8,
@ -663,10 +648,10 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
// avoid ">>>" being formatted to "> > >"
// clang-format off
kernel<<<blocks, num_threads, max_shared_mem, stream>>>(
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, zp_ptr, g_idx_ptr,
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, s2_ptr, zp_ptr, g_idx_ptr,
sorted_token_ids_ptr, expert_ids_ptr, num_tokens_past_padded_ptr,
topk_weights_ptr, top_k, mul_topk_weights, is_ep, num_groups, prob_m,
prob_n, prob_k, locks, use_atomic_add, use_fp32_reduce);
prob_n, prob_k, locks, use_atomic_add, use_fp32_reduce, max_shared_mem);
// clang-format on
}
@ -675,6 +660,7 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
torch::Tensor moe_wna16_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> const& c_or_none,
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& global_scale_or_none,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
@ -826,6 +812,17 @@ torch::Tensor moe_wna16_marlin_gemm(
}
}
torch::Tensor global_scale;
if (global_scale_or_none.has_value()) {
global_scale = global_scale_or_none.value();
TORCH_CHECK(b_q_type == vllm::kFE2M1f,
"global_scale can only be used for float4_e2m1f.");
} else {
global_scale = torch::empty({0}, options);
TORCH_CHECK(!(b_q_type == vllm::kFE2M1f),
"the global_scale parameter must be passed for float4_e2m1f.");
}
torch::Tensor b_zeros;
if (b_zeros_or_none.has_value()) {
b_zeros = b_zeros_or_none.value();
@ -838,13 +835,15 @@ torch::Tensor moe_wna16_marlin_gemm(
if (has_zp) {
TORCH_CHECK(
b_q_type == vllm::kU4,
"b_q_type must be u4 when has_zp = True. Got = ", b_q_type.str());
b_q_type == vllm::kU4 || b_q_type == vllm::kU8,
"b_q_type must be u4 or u8 when has_zp = True. Got = ", b_q_type.str());
} else {
TORCH_CHECK(
b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128,
"b_q_type must be uint4b8 or uint8b128 when has_zp = False. Got = ",
b_q_type.str());
TORCH_CHECK(b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128 ||
b_q_type == vllm::kFE4M3fn || b_q_type == vllm::kFE2M1f,
"b_q_type must be uint4b8, uint8b128, float8_e4m3fn or "
"float4_e2m1f when "
"has_zp = False. Got = ",
b_q_type.str());
}
if (has_zp && is_zp_float) {
@ -889,9 +888,16 @@ torch::Tensor moe_wna16_marlin_gemm(
int dev = a.get_device();
if (a.scalar_type() == at::ScalarType::Half) {
void* scales_ptr;
if (b_q_type == vllm::kFE2M1f) {
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
} else {
scales_ptr = b_scales.data_ptr<at::Half>();
}
MARLIN_NAMESPACE_NAME::marlin_mm<half>(
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
c_tmp.data_ptr<float>(), b_scales.data_ptr<at::Half>(),
c_tmp.data_ptr<float>(), scales_ptr, global_scale.data_ptr<at::Half>(),
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
a_tmp.data_ptr<at::Half>(), sorted_token_ids.data_ptr(),
expert_ids.data_ptr(), num_tokens_past_padded.data_ptr(),
@ -901,11 +907,18 @@ torch::Tensor moe_wna16_marlin_gemm(
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
use_atomic_add, use_fp32_reduce, is_zp_float);
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
void* scales_ptr;
if (b_q_type == vllm::kFE2M1f) {
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
} else {
scales_ptr = b_scales.data_ptr<at::BFloat16>();
}
MARLIN_NAMESPACE_NAME::marlin_mm<nv_bfloat16>(
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(),
b_scales.data_ptr<at::BFloat16>(), b_zeros.data_ptr(), g_idx.data_ptr(),
perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(), scales_ptr,
global_scale.data_ptr<at::BFloat16>(), b_zeros.data_ptr(),
g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
sorted_token_ids.data_ptr(), expert_ids.data_ptr(),
num_tokens_past_padded.data_ptr(), topk_weights.data_ptr(),
moe_block_size, top_k, mul_topk_weights, is_ep, size_m, size_n, size_k,

View File

@ -326,7 +326,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
}
if (use_global_memory) {
VLLM_DISPATCH_INTEGRAL_TYPES(
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_global_mem_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
// tensors
@ -351,7 +351,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
cumsum_buffer.data_ptr<int32_t>());
});
} else if (use_i16) {
VLLM_DISPATCH_INTEGRAL_TYPES(
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
// set dynamic shared mem
auto kernel =
@ -366,7 +366,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
topk_ids.numel());
});
} else {
VLLM_DISPATCH_INTEGRAL_TYPES(
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
auto kernel =
vllm::moe::moe_align_block_size_kernel<scalar_t, int32_t>;
@ -391,7 +391,7 @@ void sgl_moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
TORCH_CHECK(num_experts == 256,
"sgl_moe_align_block_size kernel only supports deepseek v3.");
VLLM_DISPATCH_INTEGRAL_TYPES(
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "sgl_moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `cumsum` tensors
auto options_int =

View File

@ -0,0 +1,133 @@
#include <c10/core/ScalarType.h>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include "permute_unpermute_kernels/moe_permute_unpermute_kernel.h"
#include "permute_unpermute_kernels/dispatch.h"
#include "core/registration.h"
void moe_permute(
const torch::Tensor& input, // [n_token, hidden]
const torch::Tensor& topk_weights, //[n_token, topk]
torch::Tensor& topk_ids, // [n_token, topk]
const torch::Tensor& token_expert_indicies, // [n_token, topk]
const std::optional<torch::Tensor>& expert_map, // [n_expert]
int64_t n_expert, int64_t n_local_expert, int64_t topk,
const std::optional<int64_t>& align_block_size,
torch::Tensor&
permuted_input, // [topk * n_token/align_block_size_m, hidden]
torch::Tensor& expert_first_token_offset, // [n_local_expert + 1]
torch::Tensor& src_row_id2dst_row_id_map, // [n_token, topk]
torch::Tensor& m_indices) { // [align_expand_m]
TORCH_CHECK(topk_weights.scalar_type() == at::ScalarType::Float,
"topk_weights must be float32");
TORCH_CHECK(expert_first_token_offset.scalar_type() == at::ScalarType::Long,
"expert_first_token_offset must be int64");
TORCH_CHECK(topk_ids.scalar_type() == at::ScalarType::Int,
"topk_ids must be int32");
TORCH_CHECK(token_expert_indicies.scalar_type() == at::ScalarType::Int,
"token_expert_indicies must be int32");
TORCH_CHECK(src_row_id2dst_row_id_map.scalar_type() == at::ScalarType::Int,
"src_row_id2dst_row_id_map must be int32");
TORCH_CHECK(expert_first_token_offset.size(0) == n_local_expert + 1,
"expert_first_token_offset shape != n_local_expert+1")
TORCH_CHECK(
src_row_id2dst_row_id_map.sizes() == token_expert_indicies.sizes(),
"token_expert_indicies shape must be same as src_row_id2dst_row_id_map");
auto n_token = input.sizes()[0];
auto n_hidden = input.sizes()[1];
auto align_block_size_value =
align_block_size.has_value() ? align_block_size.value() : -1;
auto stream = at::cuda::getCurrentCUDAStream().stream();
const long sorter_size =
CubKeyValueSorter::getWorkspaceSize(n_token * topk, n_expert);
auto sort_workspace = torch::empty(
{sorter_size},
torch::dtype(torch::kInt8).device(torch::kCUDA).requires_grad(false));
auto permuted_experts_id = torch::empty_like(topk_ids);
auto dst_row_id2src_row_id_map = torch::empty_like(src_row_id2dst_row_id_map);
auto align_expert_first_token_offset =
torch::zeros_like(expert_first_token_offset);
CubKeyValueSorter sorter{};
int64_t* valid_num_ptr = nullptr;
// pre-process kernel for expert-parallelism:
// no local expert id plus "n_expert" offset for priority to local expert
// map local expert id [n, .., n+n_local_expert-1] to [0, n_local_expert -1]
// For example, 4 expert with ep_size=2. ep_rank=1 owns global expert id
// [2,3] with expert_map[-1, -1, 0, 1], preprocess_topk_id process topk_ids
// and map global expert id [2, 3] to local_expert id [0, 1] and map global
// expert id [0, 1] ( not in ep rank=1) to [4, 5] by plus n_expert. This map
// operation is to make local expert high priority in following sort topk_ids
// and scan local expert_first_token_offset for each ep rank for next group
// gemm.
if (expert_map.has_value()) {
const int* expert_map_ptr = get_ptr<int>(expert_map.value());
valid_num_ptr =
get_ptr<int64_t>(expert_first_token_offset) + n_local_expert;
preprocessTopkIdLauncher(get_ptr<int>(topk_ids), n_token * topk,
expert_map_ptr, n_expert, stream);
}
// expert sort topk expert id and scan expert id get expert_first_token_offset
sortAndScanExpert(get_ptr<int>(topk_ids), get_ptr<int>(token_expert_indicies),
get_ptr<int>(permuted_experts_id),
get_ptr<int>(dst_row_id2src_row_id_map),
get_ptr<int64_t>(expert_first_token_offset), n_token,
n_expert, n_local_expert, topk, sorter,
get_ptr<int>(sort_workspace), stream);
// dispatch expandInputRowsKernelLauncher
MOE_DISPATCH(input.scalar_type(), [&] {
expandInputRowsKernelLauncher<scalar_t>(
get_ptr<scalar_t>(input), get_ptr<scalar_t>(permuted_input),
get_ptr<float>(topk_weights), get_ptr<int>(permuted_experts_id),
get_ptr<int>(dst_row_id2src_row_id_map),
get_ptr<int>(src_row_id2dst_row_id_map),
get_ptr<int64_t>(expert_first_token_offset), n_token, valid_num_ptr,
n_hidden, topk, n_local_expert, align_block_size_value, stream);
});
// get m_indices and update expert_first_token_offset with align block
getMIndices(get_ptr<int64_t>(expert_first_token_offset),
get_ptr<int64_t>(align_expert_first_token_offset),
get_ptr<int>(m_indices), n_local_expert, align_block_size_value,
stream);
if (align_block_size.has_value()) {
// update align_expert_first_token_offset
expert_first_token_offset.copy_(align_expert_first_token_offset);
}
}
void moe_unpermute(
const torch::Tensor& permuted_hidden_states, // [n_token * topk, hidden]
const torch::Tensor& topk_weights, //[n_token, topk]
const torch::Tensor& topk_ids, // [n_token, topk]
const torch::Tensor& src_row_id2dst_row_id_map, // [n_token, topk]
const torch::Tensor& expert_first_token_offset, // [n_local_expert+1]
int64_t n_expert, int64_t n_local_expert, int64_t topk,
torch::Tensor& hidden_states // [n_token, hidden]
) {
TORCH_CHECK(src_row_id2dst_row_id_map.sizes() == topk_ids.sizes(),
"topk_ids shape must be same as src_row_id2dst_row_id_map");
TORCH_CHECK(topk_ids.scalar_type() == at::ScalarType::Int,
"topk_ids must be int32");
TORCH_CHECK(
permuted_hidden_states.scalar_type() == hidden_states.scalar_type(),
"topk_ids dtype must be same as src_row_id2dst_row_id_map");
auto n_token = hidden_states.size(0);
auto n_hidden = hidden_states.size(1);
auto stream = at::cuda::getCurrentCUDAStream().stream();
const int64_t* valid_ptr =
get_ptr<int64_t>(expert_first_token_offset) + n_local_expert;
MOE_DISPATCH(hidden_states.scalar_type(), [&] {
finalizeMoeRoutingKernelLauncher<scalar_t, scalar_t>(
get_ptr<scalar_t>(permuted_hidden_states),
get_ptr<scalar_t>(hidden_states), get_ptr<float>(topk_weights),
get_ptr<int>(src_row_id2dst_row_id_map), get_ptr<int>(topk_ids),
n_token, n_hidden, topk, valid_ptr, stream);
});
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("moe_permute", &moe_permute);
m.impl("moe_unpermute", &moe_unpermute);
}

Some files were not shown because too many files have changed in this diff Show More