Compare commits
241 Commits
v1-blockta
...
moondream2
| Author | SHA1 | Date | |
|---|---|---|---|
| a7ca0cc47f | |||
| 5c89a29c22 | |||
| 59a0192fb9 | |||
| 83609791d2 | |||
| 0974c9bc5c | |||
| d2643128f7 | |||
| c5c06209ec | |||
| 3ea7b94523 | |||
| 51ef828f10 | |||
| df450aa567 | |||
| bbe5f9de7d | |||
| 81763c58a0 | |||
| edaae198e7 | |||
| 936db119ed | |||
| e66faf4809 | |||
| 630eb5b5ce | |||
| 4e94951bb1 | |||
| 7a8a48d51e | |||
| 32eb0da808 | |||
| 6d0e3d3724 | |||
| 02798ecabe | |||
| 813f249f02 | |||
| da02cb4b27 | |||
| c09503ddd6 | |||
| 2b83503227 | |||
| 7b98a65ae6 | |||
| b5b57e301e | |||
| 54cacf008f | |||
| 58fd57ff1d | |||
| 87a0c076af | |||
| d4e6194570 | |||
| 07934cc237 | |||
| 69d765f5a5 | |||
| 8027a72461 | |||
| d75ab55f10 | |||
| d1adb9b403 | |||
| b8bfa46a18 | |||
| 1475847a14 | |||
| fead53ba78 | |||
| ebc73f2828 | |||
| d06e824006 | |||
| 62b06ba23d | |||
| 5fd24ec02e | |||
| 874f7c292a | |||
| 92e793d91a | |||
| bf53e0c70b | |||
| dd7c9ad870 | |||
| 9aa1519f08 | |||
| f8ef146f03 | |||
| fa0050db08 | |||
| cd9d06fb8d | |||
| ebd8c669ef | |||
| 70755e819e | |||
| edce722eaa | |||
| 57e729e874 | |||
| de0526f668 | |||
| 5ecf3e0aaf | |||
| 97eb97b5a4 | |||
| 3adf0ffda8 | |||
| ad388d25a8 | |||
| cbe94391eb | |||
| 994fc655b7 | |||
| 3f9b7ab9f5 | |||
| ad34c0df0f | |||
| f218f9c24d | |||
| 0794e7446e | |||
| b7ee940a82 | |||
| 9ddac56311 | |||
| 1a51b9f872 | |||
| 42f5e7c52a | |||
| a3a3ee4e6f | |||
| 87054a57ab | |||
| c9d6ff530b | |||
| a2d2acb4c8 | |||
| 2e0e017610 | |||
| 1f18adb245 | |||
| bb354e6b2d | |||
| ff39141a49 | |||
| 8a1f938e6f | |||
| 078da31903 | |||
| 1a401252b5 | |||
| f35ec461fc | |||
| 289b5191d5 | |||
| c6db21313c | |||
| a7d59688fb | |||
| 458e63a2c6 | |||
| e8c23ff989 | |||
| cd8249903f | |||
| 0f8cafe2d1 | |||
| 5340a30d01 | |||
| 89ce62a316 | |||
| c3f05b09a0 | |||
| cf6bbcb493 | |||
| 80ea3af1a0 | |||
| 9dd02d85ca | |||
| f7b3ba82c3 | |||
| 619ae268c3 | |||
| d14e98d924 | |||
| 9597a095f2 | |||
| 263a870ee1 | |||
| 8bddb73512 | |||
| f967e51f38 | |||
| 43f3d9e699 | |||
| b25cfab9a0 | |||
| 4b657d3292 | |||
| d697dc01b4 | |||
| a991f7d508 | |||
| 7a3a83e3b8 | |||
| c32a7c7c0c | |||
| 2118d0565c | |||
| 899136b857 | |||
| c9f09a4fe8 | |||
| d45cbe70f5 | |||
| 8a579408f3 | |||
| 46fa98ccad | |||
| aa1e77a19c | |||
| 5959564f94 | |||
| f33e033e27 | |||
| 482cdc494e | |||
| 20410b2fda | |||
| 12664ddda5 | |||
| 241ad7b301 | |||
| d85c47d6ad | |||
| ef725feafc | |||
| d907be7dc7 | |||
| d53575a5f0 | |||
| 61af633256 | |||
| ac2f3f7fee | |||
| d789ce06a7 | |||
| cf5f000d21 | |||
| 3de2b1eafb | |||
| b844b99ad3 | |||
| c3cf54dda4 | |||
| 36f5303578 | |||
| 9a228348d2 | |||
| bd82872211 | |||
| 405eb8e396 | |||
| 65097ca0af | |||
| 1d967acb45 | |||
| 0bd1ff4346 | |||
| 310aca88c9 | |||
| a732900efc | |||
| d848800e88 | |||
| 730e9592e9 | |||
| 1fe554bac3 | |||
| 615e4a5401 | |||
| 3db0cafdf1 | |||
| 526de822d5 | |||
| 56fe4c297c | |||
| 47de8821d3 | |||
| 5984499e47 | |||
| ca47e176af | |||
| 78f4590b60 | |||
| 2f7024987e | |||
| 6cd40a5bfe | |||
| aba8d6ee00 | |||
| 2a0596bc48 | |||
| f12141170a | |||
| cfd3219f58 | |||
| a1b2b8606e | |||
| ad9f1aa679 | |||
| 889e662eae | |||
| ef68eb28d8 | |||
| 259abd8953 | |||
| f645eb6954 | |||
| f4923cb8bc | |||
| b640b19cc0 | |||
| dc71af0a71 | |||
| 4d29e91be8 | |||
| 91445c7bc8 | |||
| 5950f555a1 | |||
| a4e2b26856 | |||
| 973f5dc581 | |||
| c994223d56 | |||
| 869579a702 | |||
| c0efe92d8b | |||
| d9fa1c05ad | |||
| 2de197bdd4 | |||
| 869e829b85 | |||
| 8f37be38eb | |||
| 8082ad7950 | |||
| 1e4ce295ae | |||
| ce1917fcf2 | |||
| e512f76a89 | |||
| 898cdf033e | |||
| 0f3f3c86ec | |||
| b278557935 | |||
| 8ceffbf315 | |||
| d93d2d74fd | |||
| d0169e1b0f | |||
| 08fb75c72e | |||
| 91b361ae89 | |||
| e20c92bb61 | |||
| 32c9eff2ff | |||
| 4ca5d40adc | |||
| 9279b9f83d | |||
| ee77fdb5de | |||
| 996357e480 | |||
| 2a622d704a | |||
| 9c749713f6 | |||
| 022c5c6944 | |||
| f8fcca100b | |||
| 06bfb51963 | |||
| 408e560015 | |||
| 402d378360 | |||
| 9e764e7b10 | |||
| 33fc1e2e86 | |||
| eba17173d3 | |||
| 635b897246 | |||
| 4068f4b5b5 | |||
| 47831430cc | |||
| 65c08928c2 | |||
| ba214dffbe | |||
| eed11ebee9 | |||
| 300acb8347 | |||
| d91457d529 | |||
| fbf2564554 | |||
| d1d49397e7 | |||
| 9c93636d84 | |||
| e5d7ed0c53 | |||
| ad0d567e1c | |||
| bf0d97d786 | |||
| a655eb3025 | |||
| 1543914c04 | |||
| 61fed92c7e | |||
| 80c751e7f6 | |||
| e1a5c2f0a1 | |||
| fd3a62a122 | |||
| 07064cb1d4 | |||
| 2f1e8e8f54 | |||
| 68d37809b9 | |||
| 5dba257506 | |||
| 187e32997c | |||
| b55ed6ef8a | |||
| 2f385183f3 | |||
| 84c35c374a | |||
| 8c38ee7007 | |||
| b6087a6bee | |||
| 23c1b10a4c | |||
| a115ac46b5 | |||
| 73001445fb |
@ -1,5 +1,6 @@
|
||||
steps:
|
||||
- label: "Wait for container to be ready"
|
||||
key: wait-for-container-image
|
||||
agents:
|
||||
queue: A100
|
||||
plugins:
|
||||
@ -10,12 +11,11 @@ steps:
|
||||
command:
|
||||
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
|
||||
|
||||
- wait
|
||||
|
||||
- label: "A100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: A100
|
||||
depends_on: wait-for-container-image
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
@ -49,6 +49,7 @@ steps:
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H200
|
||||
depends_on: wait-for-container-image
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
@ -73,7 +74,7 @@ steps:
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: ~
|
||||
depends_on: wait-for-container-image
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
|
||||
@ -43,7 +43,7 @@ main() {
|
||||
|
||||
|
||||
|
||||
# The figures should be genereated by a separate process outside the CI/CD pipeline
|
||||
# The figures should be generated by a separate process outside the CI/CD pipeline
|
||||
|
||||
# # generate figures
|
||||
# python3 -m pip install tabulate pandas matplotlib
|
||||
|
||||
@ -301,6 +301,104 @@ run_serving_tests() {
|
||||
kill_gpu_processes
|
||||
}
|
||||
|
||||
run_genai_perf_tests() {
|
||||
# run genai-perf tests
|
||||
|
||||
# $1: a json file specifying genai-perf test cases
|
||||
local genai_perf_test_file
|
||||
genai_perf_test_file=$1
|
||||
|
||||
# Iterate over genai-perf tests
|
||||
jq -c '.[]' "$genai_perf_test_file" | while read -r params; do
|
||||
# get the test name, and append the GPU type back to it.
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
||||
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
||||
echo "Skip test case $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
# prepend the current serving engine to the test name
|
||||
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
|
||||
|
||||
# get common parameters
|
||||
common_params=$(echo "$params" | jq -r '.common_parameters')
|
||||
model=$(echo "$common_params" | jq -r '.model')
|
||||
tp=$(echo "$common_params" | jq -r '.tp')
|
||||
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
|
||||
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
|
||||
port=$(echo "$common_params" | jq -r '.port')
|
||||
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
|
||||
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
|
||||
|
||||
# get client and server arguments
|
||||
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
|
||||
qps_list=$(echo "$params" | jq -r '.qps_list')
|
||||
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
||||
echo "Running over qps list $qps_list"
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
if [[ $gpu_count -lt $tp ]]; then
|
||||
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
if [[ $reuse_server == "true" ]]; then
|
||||
echo "Reuse previous server for test case $test_name"
|
||||
else
|
||||
kill_gpu_processes
|
||||
bash "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh" \
|
||||
"$server_params" "$common_params"
|
||||
fi
|
||||
|
||||
if wait_for_server; then
|
||||
echo ""
|
||||
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
|
||||
else
|
||||
echo ""
|
||||
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
|
||||
break
|
||||
fi
|
||||
|
||||
# iterate over different QPS
|
||||
for qps in $qps_list; do
|
||||
# remove the surrounding single quote from qps
|
||||
if [[ "$qps" == *"inf"* ]]; then
|
||||
echo "qps was $qps"
|
||||
qps=$num_prompts
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
backend=$CURRENT_LLM_SERVING_ENGINE
|
||||
|
||||
if [[ "$backend" == *"vllm"* ]]; then
|
||||
backend="vllm"
|
||||
fi
|
||||
#TODO: add output dir.
|
||||
client_command="genai-perf profile \
|
||||
-m $model \
|
||||
--service-kind openai \
|
||||
--backend vllm \
|
||||
--endpoint-type chat \
|
||||
--streaming \
|
||||
--url localhost:$port \
|
||||
--request-rate $qps \
|
||||
--num-prompts $num_prompts \
|
||||
"
|
||||
|
||||
echo "Client command: $client_command"
|
||||
|
||||
eval "$client_command"
|
||||
|
||||
#TODO: process/record outputs
|
||||
done
|
||||
done
|
||||
|
||||
kill_gpu_processes
|
||||
|
||||
}
|
||||
|
||||
prepare_dataset() {
|
||||
|
||||
@ -328,12 +426,17 @@ main() {
|
||||
|
||||
pip install -U transformers
|
||||
|
||||
pip install -r requirements-dev.txt
|
||||
which genai-perf
|
||||
|
||||
# check storage
|
||||
df -h
|
||||
|
||||
ensure_installed wget
|
||||
ensure_installed curl
|
||||
ensure_installed jq
|
||||
# genai-perf dependency
|
||||
ensure_installed libb64-0d
|
||||
|
||||
prepare_dataset
|
||||
|
||||
@ -345,6 +448,10 @@ main() {
|
||||
# run the test
|
||||
run_serving_tests "$BENCHMARK_ROOT/tests/nightly-tests.json"
|
||||
|
||||
# run genai-perf tests
|
||||
run_genai_perf_tests "$BENCHMARK_ROOT/tests/genai-perf-tests.json"
|
||||
mv artifacts/ $RESULTS_FOLDER/
|
||||
|
||||
# upload benchmark results to buildkite
|
||||
python3 -m pip install tabulate pandas
|
||||
python3 "$BENCHMARK_ROOT/scripts/summary-nightly-results.py"
|
||||
|
||||
23
.buildkite/nightly-benchmarks/tests/genai-perf-tests.json
Normal file
23
.buildkite/nightly-benchmarks/tests/genai-perf-tests.json
Normal file
@ -0,0 +1,23 @@
|
||||
[
|
||||
{
|
||||
"test_name": "llama8B_tp1_genai_perf",
|
||||
"qps_list": [4,8,16,32],
|
||||
"common_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
"tp": 1,
|
||||
"port": 8000,
|
||||
"num_prompts": 500,
|
||||
"reuse_server": false
|
||||
},
|
||||
"vllm_server_parameters": {
|
||||
"disable_log_stats": "",
|
||||
"disable_log_requests": "",
|
||||
"gpu_memory_utilization": 0.9,
|
||||
"num_scheduler_steps": 10,
|
||||
"max_num_seqs": 512,
|
||||
"dtype": "bfloat16"
|
||||
},
|
||||
"genai_perf_input_parameters": {
|
||||
}
|
||||
}
|
||||
]
|
||||
@ -9,36 +9,33 @@ CORE_RANGE=${CORE_RANGE:-48-95}
|
||||
NUMA_NODE=${NUMA_NODE:-1}
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test -f Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test-"$BUILDKITE_BUILD_NUMBER" -f Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 -f Dockerfile.cpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f cpu-test-"$NUMA_NODE" cpu-test-avx2-"$NUMA_NODE" || true; }
|
||||
remove_docker_container() { set -e; docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2-"$NUMA_NODE" cpu-test-avx2
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
export NUMA_NODE=$2
|
||||
|
||||
# offline inference
|
||||
docker exec cpu-test-avx2-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference.py"
|
||||
python3 examples/offline_inference/basic.py"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pip install pytest pytest-asyncio \
|
||||
decord einops librosa peft Pillow sentence-transformers soundfile \
|
||||
transformers_stream_generator matplotlib datamodel_code_generator
|
||||
pip install torchvision --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r vllm/requirements-test.txt
|
||||
pytest -v -s tests/models/decoder_only/language -m cpu_model
|
||||
pytest -v -s tests/models/embedding/language -m cpu_model
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
|
||||
@ -46,26 +43,26 @@ function cpu_tests() {
|
||||
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
|
||||
|
||||
# Run compressed-tensor test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
|
||||
|
||||
# Run AWQ test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_ipex_quant.py"
|
||||
|
||||
# Run chunked-prefill and prefix-cache test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v -k cpu_model \
|
||||
tests/basic_correctness/test_chunked_prefill.py"
|
||||
|
||||
# online inference
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
# online serving
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
export VLLM_CPU_KVCACHE_SPACE=10
|
||||
export VLLM_CPU_OMP_THREADS_BIND=$1
|
||||
@ -78,8 +75,14 @@ function cpu_tests() {
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions \
|
||||
--tokenizer facebook/opt-125m"
|
||||
|
||||
# Run multi-lora tests
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/lora/test_qwen2vl.py"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 25 mins.
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
export -f cpu_tests
|
||||
timeout 30m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
|
||||
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
|
||||
|
||||
@ -24,5 +24,5 @@ remove_docker_container
|
||||
|
||||
# Run the image and test offline inference
|
||||
docker run --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
|
||||
python3 examples/offline_inference.py
|
||||
python3 examples/offline_inference/basic.py
|
||||
'
|
||||
|
||||
@ -8,9 +8,17 @@ set -ex
|
||||
docker build -t hpu-test-env -f Dockerfile.hpu .
|
||||
|
||||
# Setup cleanup
|
||||
# certain versions of HPU software stack have a bug that can
|
||||
# override the exit code of the script, so we need to use
|
||||
# separate remove_docker_container and remove_docker_container_and_exit
|
||||
# functions, while other platforms only need one remove_docker_container
|
||||
# function.
|
||||
EXITCODE=1
|
||||
remove_docker_container() { docker rm -f hpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container_and_exit() { remove_docker_container; exit $EXITCODE; }
|
||||
trap remove_docker_container_and_exit EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference.py
|
||||
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic.py
|
||||
EXITCODE=$?
|
||||
|
||||
@ -3,6 +3,18 @@
|
||||
# This script build the Neuron docker image and run the API server inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -e
|
||||
set -v
|
||||
|
||||
image_name="neuron/vllm-ci"
|
||||
container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
|
||||
HF_CACHE="$(realpath ~)/huggingface"
|
||||
mkdir -p "${HF_CACHE}"
|
||||
HF_MOUNT="/root/.cache/huggingface"
|
||||
|
||||
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
|
||||
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
|
||||
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
|
||||
|
||||
# Try building the docker image
|
||||
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
|
||||
@ -13,41 +25,30 @@ if [ -f /tmp/neuron-docker-build-timestamp ]; then
|
||||
last_build=$(cat /tmp/neuron-docker-build-timestamp)
|
||||
current_time=$(date +%s)
|
||||
if [ $((current_time - last_build)) -gt 86400 ]; then
|
||||
docker image prune -f
|
||||
docker system prune -f
|
||||
rm -rf "${HF_MOUNT:?}/*"
|
||||
rm -rf "${NEURON_COMPILE_CACHE_MOUNT:?}/*"
|
||||
echo "$current_time" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
else
|
||||
date "+%s" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
|
||||
docker build -t neuron -f Dockerfile.neuron .
|
||||
docker build -t "${image_name}" -f Dockerfile.neuron .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f neuron || true; }
|
||||
remove_docker_container() {
|
||||
docker image rm -f "${image_name}" || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image
|
||||
docker run --device=/dev/neuron0 --device=/dev/neuron1 --network host --name neuron neuron python3 -m vllm.entrypoints.api_server \
|
||||
--model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --max-num-seqs 8 --max-model-len 128 --block-size 128 --device neuron --tensor-parallel-size 2 &
|
||||
|
||||
# Wait for the server to start
|
||||
wait_for_server_to_start() {
|
||||
timeout=300
|
||||
counter=0
|
||||
|
||||
while [ "$(curl -s -o /dev/null -w '%{http_code}' localhost:8000/health)" != "200" ]; do
|
||||
sleep 1
|
||||
counter=$((counter + 1))
|
||||
if [ $counter -ge $timeout ]; then
|
||||
echo "Timeout after $timeout seconds"
|
||||
break
|
||||
fi
|
||||
done
|
||||
}
|
||||
wait_for_server_to_start
|
||||
|
||||
# Test a simple prompt
|
||||
curl -X POST -H "Content-Type: application/json" \
|
||||
localhost:8000/generate \
|
||||
-d '{"prompt": "San Francisco is a"}'
|
||||
docker run --rm -it --device=/dev/neuron0 --device=/dev/neuron1 --network host \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
--name "${container_name}" \
|
||||
${image_name} \
|
||||
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py"
|
||||
|
||||
@ -13,4 +13,4 @@ trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference.py
|
||||
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference/basic.py
|
||||
|
||||
@ -14,4 +14,13 @@ remove_docker_container
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it -e "HF_TOKEN=$HF_TOKEN" --name tpu-test vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git && python3 -m pip install pytest && python3 -m pip install lm_eval[api]==0.4.4 && pytest -v -s /workspace/vllm/tests/entrypoints/openai/test_accuracy.py && pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py && python3 /workspace/vllm/tests/tpu/test_compilation.py && python3 /workspace/vllm/examples/offline_inference_tpu.py"
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& pytest -v -s /workspace/vllm/tests/entrypoints/openai/test_accuracy.py \
|
||||
&& pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_compilation.py \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
|
||||
&& python3 /workspace/vllm/examples/offline_inference/tpu.py"
|
||||
|
||||
@ -14,6 +14,6 @@ remove_docker_container
|
||||
|
||||
# Run the image and test offline inference/tensor parallel
|
||||
docker run --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test sh -c '
|
||||
python3 examples/offline_inference.py
|
||||
python3 examples/offline_inference_cli.py -tp 2
|
||||
python3 examples/offline_inference/basic.py
|
||||
python3 examples/offline_inference/cli.py -tp 2
|
||||
'
|
||||
|
||||
@ -38,7 +38,7 @@ steps:
|
||||
- pip install -r requirements-docs.txt
|
||||
- SPHINXOPTS=\"-W\" make html
|
||||
# Check API reference (if it fails, you may have missing mock imports)
|
||||
- grep \"sig sig-object py\" build/html/dev/sampling_params.html
|
||||
- grep \"sig sig-object py\" build/html/api/inference_params.html
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test # 24min
|
||||
fast_check: true
|
||||
@ -106,7 +106,7 @@ steps:
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
commands:
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
|
||||
@ -125,11 +125,15 @@ steps:
|
||||
- tests/distributed
|
||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||
- tests/compile
|
||||
- examples/offline_inference/rlhf.py
|
||||
commands:
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- python3 ../examples/offline_inference/rlhf.py
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
num_gpus: 2
|
||||
@ -187,19 +191,19 @@ steps:
|
||||
- examples/
|
||||
commands:
|
||||
- pip install tensorizer # for tensorizer test
|
||||
- python3 offline_inference.py
|
||||
- python3 cpu_offload.py
|
||||
- python3 offline_inference_chat.py
|
||||
- python3 offline_inference_with_prefix.py
|
||||
- python3 llm_engine_example.py
|
||||
- python3 offline_inference_vision_language.py
|
||||
- python3 offline_inference_vision_language_multi_image.py
|
||||
- python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference_encoder_decoder.py
|
||||
- python3 offline_inference_classification.py
|
||||
- python3 offline_inference_embedding.py
|
||||
- python3 offline_inference_scoring.py
|
||||
- python3 offline_profile.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
- python3 offline_inference/basic.py
|
||||
- python3 offline_inference/cpu_offload.py
|
||||
- python3 offline_inference/chat.py
|
||||
- python3 offline_inference/prefix_caching.py
|
||||
- python3 offline_inference/llm_engine_example.py
|
||||
- python3 offline_inference/vision_language.py
|
||||
- python3 offline_inference/vision_language_multi_image.py
|
||||
- python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference/encoder_decoder.py
|
||||
- python3 offline_inference/classification.py
|
||||
- python3 offline_inference/embedding.py
|
||||
- python3 offline_inference/scoring.py
|
||||
- python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
|
||||
- label: Prefix Caching Test # 9min
|
||||
mirror_hardwares: [amd]
|
||||
@ -214,6 +218,7 @@ steps:
|
||||
- vllm/model_executor/layers
|
||||
- vllm/sampling_metadata.py
|
||||
- tests/samplers
|
||||
- tests/conftest.py
|
||||
commands:
|
||||
- pytest -v -s samplers
|
||||
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
|
||||
@ -229,20 +234,22 @@ steps:
|
||||
- pytest -v -s test_logits_processor.py
|
||||
- pytest -v -s model_executor/test_guided_processors.py
|
||||
|
||||
- label: Speculative decoding tests # 30min
|
||||
- label: Speculative decoding tests # 40min
|
||||
source_file_dependencies:
|
||||
- vllm/spec_decode
|
||||
- tests/spec_decode
|
||||
- vllm/model_executor/models/eagle.py
|
||||
commands:
|
||||
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py
|
||||
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
|
||||
|
||||
- label: LoRA Test %N # 15min each
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py
|
||||
parallelism: 4
|
||||
|
||||
- label: "PyTorch Fullgraph Smoke Test" # 9min
|
||||
@ -363,12 +370,15 @@ steps:
|
||||
- tests/models/decoder_only/audio_language
|
||||
- tests/models/decoder_only/vision_language
|
||||
- tests/models/embedding/vision_language
|
||||
- tests/models/encoder_decoder/audio_language
|
||||
- tests/models/encoder_decoder/vision_language
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/audio_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m core_model
|
||||
|
||||
@ -455,7 +465,10 @@ steps:
|
||||
- vllm/worker/worker_base.py
|
||||
- vllm/worker/worker.py
|
||||
- vllm/worker/model_runner.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
commands:
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- torchrun --nproc-per-node=2 distributed/test_torchrun_example.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
@ -533,6 +546,7 @@ steps:
|
||||
# requires multi-GPU testing for validation.
|
||||
- pytest -v -s -x lora/test_chatglm3_tp.py
|
||||
- pytest -v -s -x lora/test_llama_tp.py
|
||||
- pytest -v -s -x lora/test_minicpmv_tp.py
|
||||
|
||||
|
||||
- label: Weight Loading Multiple GPU Test # 33min
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/600-new-model.yml
vendored
2
.github/ISSUE_TEMPLATE/600-new-model.yml
vendored
@ -9,7 +9,7 @@ body:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/models/adding_model.html first to understand how to add a new model.
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/adding_model.html first to understand how to add a new model.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: The model to consider.
|
||||
|
||||
40
.github/workflows/actionlint.yml
vendored
40
.github/workflows/actionlint.yml
vendored
@ -1,40 +0,0 @@
|
||||
name: Lint GitHub Actions workflows
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '.github/workflows/*.ya?ml'
|
||||
- '.github/workflows/actionlint.*'
|
||||
- '.github/workflows/matchers/actionlint.json'
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '.github/workflows/*.ya?ml'
|
||||
- '.github/workflows/actionlint.*'
|
||||
- '.github/workflows/matchers/actionlint.json'
|
||||
|
||||
env:
|
||||
LC_ALL: en_US.UTF-8
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
actionlint:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: "Checkout"
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: "Run actionlint"
|
||||
run: |
|
||||
echo "::add-matcher::.github/workflows/matchers/actionlint.json"
|
||||
tools/actionlint.sh -color
|
||||
53
.github/workflows/clang-format.yml
vendored
53
.github/workflows/clang-format.yml
vendored
@ -1,53 +0,0 @@
|
||||
name: clang-format
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- '**/*.h'
|
||||
- '**/*.cpp'
|
||||
- '**/*.cu'
|
||||
- '**/*.cuh'
|
||||
- '.github/workflows/clang-format.yml'
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- '**/*.h'
|
||||
- '**/*.cpp'
|
||||
- '**/*.cu'
|
||||
- '**/*.cuh'
|
||||
- '.github/workflows/clang-format.yml'
|
||||
|
||||
jobs:
|
||||
clang-format:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.11"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install clang-format==18.1.5
|
||||
- name: Running clang-format
|
||||
run: |
|
||||
EXCLUDES=(
|
||||
'csrc/moe/topk_softmax_kernels.cu'
|
||||
'csrc/quantization/gguf/ggml-common.h'
|
||||
'csrc/quantization/gguf/dequantize.cuh'
|
||||
'csrc/quantization/gguf/vecdotq.cuh'
|
||||
'csrc/quantization/gguf/mmq.cuh'
|
||||
'csrc/quantization/gguf/mmvq.cuh'
|
||||
)
|
||||
find csrc/ \( -name '*.h' -o -name '*.cpp' -o -name '*.cu' -o -name '*.cuh' \) -print \
|
||||
| grep -vFf <(printf "%s\n" "${EXCLUDES[@]}") \
|
||||
| xargs clang-format --dry-run --Werror
|
||||
45
.github/workflows/codespell.yml
vendored
45
.github/workflows/codespell.yml
vendored
@ -1,45 +0,0 @@
|
||||
name: codespell
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- "**/*.md"
|
||||
- "**/*.rst"
|
||||
- pyproject.toml
|
||||
- requirements-lint.txt
|
||||
- .github/workflows/codespell.yml
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- "**/*.md"
|
||||
- "**/*.rst"
|
||||
- pyproject.toml
|
||||
- requirements-lint.txt
|
||||
- .github/workflows/codespell.yml
|
||||
|
||||
jobs:
|
||||
codespell:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements-lint.txt
|
||||
- name: Spelling check with codespell
|
||||
run: |
|
||||
codespell --toml pyproject.toml
|
||||
20
.github/workflows/dummy.yml
vendored
Normal file
20
.github/workflows/dummy.yml
vendored
Normal file
@ -0,0 +1,20 @@
|
||||
name: dummy-checks
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
|
||||
jobs:
|
||||
mypy:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.12"]
|
||||
steps:
|
||||
- run: echo "This is a dummy step that always passes"
|
||||
ruff:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.12"]
|
||||
steps:
|
||||
- run: echo "This is a dummy step that always passes"
|
||||
5
.github/workflows/lint-and-deploy.yaml
vendored
5
.github/workflows/lint-and-deploy.yaml
vendored
@ -27,7 +27,7 @@ jobs:
|
||||
version: v3.10.1
|
||||
|
||||
- name: Run chart-testing (lint)
|
||||
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/chart-helm --charts examples/chart-helm
|
||||
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/online_serving/chart-helm --charts examples/online_serving/chart-helm
|
||||
|
||||
- name: Setup minio
|
||||
run: |
|
||||
@ -64,7 +64,8 @@ jobs:
|
||||
run: |
|
||||
export AWS_ACCESS_KEY_ID=minioadmin
|
||||
export AWS_SECRET_ACCESS_KEY=minioadmin
|
||||
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/chart-helm -f examples/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
|
||||
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
|
||||
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
|
||||
|
||||
- name: curl test
|
||||
run: |
|
||||
|
||||
17
.github/workflows/matchers/ruff.json
vendored
17
.github/workflows/matchers/ruff.json
vendored
@ -1,17 +0,0 @@
|
||||
{
|
||||
"problemMatcher": [
|
||||
{
|
||||
"owner": "ruff",
|
||||
"pattern": [
|
||||
{
|
||||
"regexp": "^(.+?):(\\d+):(\\d+): (\\w+): (.+)$",
|
||||
"file": 1,
|
||||
"line": 2,
|
||||
"column": 3,
|
||||
"code": 4,
|
||||
"message": 5
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
51
.github/workflows/mypy.yaml
vendored
51
.github/workflows/mypy.yaml
vendored
@ -1,51 +0,0 @@
|
||||
name: mypy
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- '**/*.py'
|
||||
- '.github/workflows/mypy.yaml'
|
||||
- 'tools/mypy.sh'
|
||||
- 'pyproject.toml'
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
# This workflow is only relevant when one of the following files changes.
|
||||
# However, we have github configured to expect and require this workflow
|
||||
# to run and pass before github with auto-merge a pull request. Until github
|
||||
# allows more flexible auto-merge policy, we can just run this on every PR.
|
||||
# It doesn't take that long to run, anyway.
|
||||
#paths:
|
||||
# - '**/*.py'
|
||||
# - '.github/workflows/mypy.yaml'
|
||||
# - 'tools/mypy.sh'
|
||||
# - 'pyproject.toml'
|
||||
|
||||
jobs:
|
||||
mypy:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install mypy==1.11.1
|
||||
pip install types-setuptools
|
||||
pip install types-PyYAML
|
||||
pip install types-requests
|
||||
pip install types-setuptools
|
||||
- name: Mypy
|
||||
run: |
|
||||
echo "::add-matcher::.github/workflows/matchers/mypy.json"
|
||||
tools/mypy.sh 1 ${{ matrix.python-version }}
|
||||
37
.github/workflows/png-lint.yml
vendored
37
.github/workflows/png-lint.yml
vendored
@ -1,37 +0,0 @@
|
||||
name: Lint PNG exports from excalidraw
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '*.excalidraw.png'
|
||||
- '.github/workflows/png-lint.yml'
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '*.excalidraw.png'
|
||||
- '.github/workflows/png-lint.yml'
|
||||
|
||||
env:
|
||||
LC_ALL: en_US.UTF-8
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
actionlint:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: "Checkout"
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: "Run png-lint.sh to check excalidraw exported images"
|
||||
run: |
|
||||
tools/png-lint.sh
|
||||
17
.github/workflows/pre-commit.yml
vendored
Normal file
17
.github/workflows/pre-commit.yml
vendored
Normal file
@ -0,0 +1,17 @@
|
||||
name: pre-commit
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
jobs:
|
||||
pre-commit:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: "3.12"
|
||||
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"
|
||||
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
|
||||
52
.github/workflows/ruff.yml
vendored
52
.github/workflows/ruff.yml
vendored
@ -1,52 +0,0 @@
|
||||
name: ruff
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- pyproject.toml
|
||||
- requirements-lint.txt
|
||||
- .github/workflows/matchers/ruff.json
|
||||
- .github/workflows/ruff.yml
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
# This workflow is only relevant when one of the following files changes.
|
||||
# However, we have github configured to expect and require this workflow
|
||||
# to run and pass before github with auto-merge a pull request. Until github
|
||||
# allows more flexible auto-merge policy, we can just run this on every PR.
|
||||
# It doesn't take that long to run, anyway.
|
||||
#paths:
|
||||
# - "**/*.py"
|
||||
# - pyproject.toml
|
||||
# - requirements-lint.txt
|
||||
# - .github/workflows/matchers/ruff.json
|
||||
# - .github/workflows/ruff.yml
|
||||
|
||||
jobs:
|
||||
ruff:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements-lint.txt
|
||||
- name: Analysing the code with ruff
|
||||
run: |
|
||||
echo "::add-matcher::.github/workflows/matchers/ruff.json"
|
||||
ruff check --output-format github .
|
||||
- name: Run isort
|
||||
run: |
|
||||
isort . --check-only
|
||||
37
.github/workflows/shellcheck.yml
vendored
37
.github/workflows/shellcheck.yml
vendored
@ -1,37 +0,0 @@
|
||||
name: Lint shell scripts
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '**/*.sh'
|
||||
- '.github/workflows/shellcheck.yml'
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- '**/*.sh'
|
||||
- '.github/workflows/shellcheck.yml'
|
||||
|
||||
env:
|
||||
LC_ALL: en_US.UTF-8
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
shellcheck:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: "Checkout"
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: "Check shell scripts"
|
||||
run: |
|
||||
tools/shellcheck.sh
|
||||
32
.github/workflows/sphinx-lint.yml
vendored
32
.github/workflows/sphinx-lint.yml
vendored
@ -1,32 +0,0 @@
|
||||
name: Lint documentation
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "docs/**"
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "docs/**"
|
||||
|
||||
jobs:
|
||||
sphinx-lint:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements-lint.txt
|
||||
- name: Linting docs
|
||||
run: tools/sphinx-lint.sh
|
||||
38
.github/workflows/yapf.yml
vendored
38
.github/workflows/yapf.yml
vendored
@ -1,38 +0,0 @@
|
||||
name: yapf
|
||||
|
||||
on:
|
||||
# Trigger the workflow on push or pull request,
|
||||
# but only for the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- .github/workflows/yapf.yml
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- .github/workflows/yapf.yml
|
||||
|
||||
jobs:
|
||||
yapf:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install yapf==0.32.0
|
||||
pip install toml==0.10.2
|
||||
- name: Running yapf
|
||||
run: |
|
||||
yapf --diff --recursive .
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@ -79,10 +79,7 @@ instance/
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
docs/source/getting_started/examples/*.rst
|
||||
!**/*.template.rst
|
||||
docs/source/getting_started/examples/*.md
|
||||
!**/*.template.md
|
||||
docs/source/getting_started/examples/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
|
||||
73
.pre-commit-config.yaml
Normal file
73
.pre-commit-config.yaml
Normal file
@ -0,0 +1,73 @@
|
||||
repos:
|
||||
- repo: https://github.com/google/yapf
|
||||
rev: v0.32.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
additional_dependencies: [toml] # TODO: Remove when yapf is upgraded
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.6.5
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--output-format, github]
|
||||
- repo: https://github.com/codespell-project/codespell
|
||||
rev: v2.3.0
|
||||
hooks:
|
||||
- id: codespell
|
||||
exclude: 'benchmarks/sonnet.txt|(build|tests/(lora/data|models/fixtures|prompts))/.*'
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v18.1.5
|
||||
hooks:
|
||||
- id: clang-format
|
||||
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))'
|
||||
types_or: [c++, cuda]
|
||||
args: [--style=file, --verbose]
|
||||
- repo: https://github.com/jackdewinter/pymarkdown
|
||||
rev: v0.9.27
|
||||
hooks:
|
||||
- id: pymarkdown
|
||||
files: docs/.*
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.9
|
||||
entry: tools/mypy.sh 1 "3.9"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-setuptools, types-PyYAML, types-requests]
|
||||
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.10
|
||||
entry: tools/mypy.sh 1 "3.10"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.11
|
||||
entry: tools/mypy.sh 1 "3.11"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.12
|
||||
entry: tools/mypy.sh 1 "3.12"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
- id: shellcheck
|
||||
name: Lint shell scripts
|
||||
entry: tools/shellcheck.sh
|
||||
language: script
|
||||
types: [shell]
|
||||
- id: png-lint
|
||||
name: Lint PNG exports from excalidraw
|
||||
entry: tools/png-lint.sh
|
||||
language: script
|
||||
types: [png]
|
||||
- repo: https://github.com/rhysd/actionlint
|
||||
rev: v1.7.6
|
||||
hooks:
|
||||
- id: actionlint
|
||||
@ -550,7 +550,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG 04325b6798bcc326c86fb35af62d05a9c8c8eceb
|
||||
GIT_TAG 96266b1111111f3d11aabefaf3bacbab6a89d03c
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
|
||||
17
Dockerfile
17
Dockerfile
@ -2,8 +2,8 @@
|
||||
# to run the OpenAI compatible server.
|
||||
|
||||
# Please update any changes made here to
|
||||
# docs/source/dev/dockerfile/dockerfile.md and
|
||||
# docs/source/assets/dev/dockerfile-stages-dependency.png
|
||||
# docs/source/contributing/dockerfile/dockerfile.md and
|
||||
# docs/source/assets/contributing/dockerfile-stages-dependency.png
|
||||
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
@ -234,8 +234,8 @@ RUN mv vllm test_docs/
|
||||
#################### TEST IMAGE ####################
|
||||
|
||||
#################### OPENAI API SERVER ####################
|
||||
# openai api server alternative
|
||||
FROM vllm-base AS vllm-openai
|
||||
# base openai image with additional requirements, for any subsequent openai-style images
|
||||
FROM vllm-base AS vllm-openai-base
|
||||
|
||||
# install additional dependencies for openai api server
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
@ -247,5 +247,14 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image
|
||||
|
||||
# define sagemaker first, so it is not default from `docker build`
|
||||
FROM vllm-openai-base AS vllm-sagemaker
|
||||
|
||||
COPY examples/online_serving/sagemaker-entrypoint.sh .
|
||||
RUN chmod +x sagemaker-entrypoint.sh
|
||||
ENTRYPOINT ["./sagemaker-entrypoint.sh"]
|
||||
|
||||
FROM vllm-openai-base AS vllm-openai
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
#################### OPENAI API SERVER ####################
|
||||
|
||||
@ -26,10 +26,10 @@ RUN pip install intel_extension_for_pytorch==2.5.0
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
COPY requirements-build.txt requirements-build.txt
|
||||
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
|
||||
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
|
||||
pip install --upgrade pip && \
|
||||
pip install -r requirements-build.txt
|
||||
|
||||
@ -37,9 +37,9 @@ FROM cpu-test-1 AS build
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
COPY requirements-common.txt requirements-common.txt
|
||||
COPY requirements-cpu.txt requirements-cpu.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements-common.txt,target=requirements-common.txt \
|
||||
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
|
||||
pip install -v -r requirements-cpu.txt
|
||||
|
||||
COPY . .
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
FROM vault.habana.ai/gaudi-docker/1.18.0/ubuntu22.04/habanalabs/pytorch-installer-2.4.0:latest
|
||||
FROM vault.habana.ai/gaudi-docker/1.19.1/ubuntu22.04/habanalabs/pytorch-installer-2.5.1:latest
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
||||
|
||||
@ -15,8 +15,8 @@ RUN apt-get update && \
|
||||
ffmpeg libsm6 libxext6 libgl1
|
||||
|
||||
### Mount Point ###
|
||||
# When launching the container, mount the code directory to /app
|
||||
ARG APP_MOUNT=/app
|
||||
# When launching the container, mount the code directory to /workspace
|
||||
ARG APP_MOUNT=/workspace
|
||||
VOLUME [ ${APP_MOUNT} ]
|
||||
WORKDIR ${APP_MOUNT}/vllm
|
||||
|
||||
@ -25,6 +25,7 @@ RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
|
||||
RUN python3 -m pip install sentencepiece transformers==4.45.2 -U
|
||||
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install neuronx-cc==2.16.345.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install pytest
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
@ -42,4 +43,7 @@ RUN --mount=type=bind,source=.git,target=.git \
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
# overwrite entrypoint to run bash script
|
||||
RUN echo "import subprocess; import sys; subprocess.check_call(sys.argv[1:])" > /usr/local/bin/dockerd-entrypoint.py
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@ -14,6 +14,7 @@ ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
RUN python3 -m pip install -U pip
|
||||
# install build requirements
|
||||
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/requirements-build.txt
|
||||
# build vLLM with OpenVINO backend
|
||||
|
||||
@ -4,7 +4,7 @@ USER root
|
||||
|
||||
ENV PATH="/usr/local/cargo/bin:$PATH:/opt/conda/bin/"
|
||||
|
||||
RUN apt-get update -y && apt-get install -y git wget curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1
|
||||
RUN apt-get update -y && apt-get install -y git wget curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1 libssl-dev
|
||||
|
||||
# Some packages in requirements-cpu are installed here
|
||||
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
|
||||
@ -18,9 +18,8 @@ ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
|
||||
|
||||
# These packages will be in rocketce eventually
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
|
||||
RUSTFLAGS='-L /opt/conda/lib' pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
|
||||
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
|
||||
torch==2.3.1 \
|
||||
-r requirements-cpu.txt \
|
||||
|
||||
@ -51,10 +51,10 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
*"rocm-6.2"*) \
|
||||
python3 -m pip uninstall -y torch torchvision \
|
||||
&& python3 -m pip install --pre \
|
||||
torch==2.6.0.dev20241113+rocm6.2 \
|
||||
torch \
|
||||
'setuptools-scm>=8' \
|
||||
torchvision==0.20.0.dev20241113+rocm6.2 \
|
||||
--extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2;; \
|
||||
torchvision \
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.2;; \
|
||||
*) ;; esac
|
||||
|
||||
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
|
||||
|
||||
33
README.md
33
README.md
@ -15,6 +15,10 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
|
||||
---
|
||||
|
||||
The first vLLM meetup in 2025 is happening on January 22nd, Wednesday, with Google Cloud in San Francisco! We will talk about vLLM's performant V1 architecture, Q1 roadmap, Google Cloud's innovation around vLLM: networking, Cloud Run, Vertex, and TPU! [Register Now](https://lu.ma/zep56hui)
|
||||
|
||||
---
|
||||
|
||||
*Latest News* 🔥
|
||||
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
|
||||
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
|
||||
@ -34,10 +38,12 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
## About
|
||||
vLLM is a fast and easy-to-use library for LLM inference and serving.
|
||||
|
||||
Originally developed in the [Sky Computing Lab](https://sky.cs.berkeley.edu) at UC Berkeley, vLLM has evloved into a community-driven project with contributions from both academia and industry.
|
||||
|
||||
vLLM is fast with:
|
||||
|
||||
- State-of-the-art serving throughput
|
||||
- Efficient management of attention key and value memory with **PagedAttention**
|
||||
- Efficient management of attention key and value memory with [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html)
|
||||
- Continuous batching of incoming requests
|
||||
- Fast model execution with CUDA/HIP graph
|
||||
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), INT4, INT8, and FP8.
|
||||
@ -68,16 +74,16 @@ Find the full list of supported models [here](https://docs.vllm.ai/en/latest/mod
|
||||
|
||||
## Getting Started
|
||||
|
||||
Install vLLM with `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
|
||||
Install vLLM with `pip` or [from source](https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source):
|
||||
|
||||
```bash
|
||||
pip install vllm
|
||||
```
|
||||
|
||||
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to learn more.
|
||||
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
|
||||
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
|
||||
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
|
||||
Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
|
||||
- [Installation](https://docs.vllm.ai/en/latest/getting_started/installation/index.html)
|
||||
- [Quickstart](https://docs.vllm.ai/en/latest/getting_started/quickstart.html)
|
||||
- [List of Supported Models](https://docs.vllm.ai/en/latest/models/supported_models.html)
|
||||
|
||||
## Contributing
|
||||
|
||||
@ -90,28 +96,33 @@ vLLM is a community project. Our compute resources for development and testing a
|
||||
|
||||
<!-- Note: Please sort them in alphabetical order. -->
|
||||
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->
|
||||
|
||||
Cash Donations:
|
||||
- a16z
|
||||
- Dropbox
|
||||
- Sequoia Capital
|
||||
- Skywork AI
|
||||
- ZhenFund
|
||||
|
||||
Compute Resources:
|
||||
- AMD
|
||||
- Anyscale
|
||||
- AWS
|
||||
- Crusoe Cloud
|
||||
- Databricks
|
||||
- DeepInfra
|
||||
- Dropbox
|
||||
- Google Cloud
|
||||
- Lambda Lab
|
||||
- Nebius
|
||||
- Novita AI
|
||||
- NVIDIA
|
||||
- Replicate
|
||||
- Roblox
|
||||
- RunPod
|
||||
- Sequoia Capital
|
||||
- Skywork AI
|
||||
- Trainy
|
||||
- UC Berkeley
|
||||
- UC San Diego
|
||||
- ZhenFund
|
||||
|
||||
Slack Sponsor: Anyscale
|
||||
|
||||
We also have an official fundraising venue through [OpenCollective](https://opencollective.com/vllm). We plan to use the fund to support the development, maintenance, and adoption of vLLM.
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
|
||||
If you believe you have found a security vulnerability in vLLM, we encourage you to let us know right away. We will investigate all legitimate reports and do our best to quickly fix the problem.
|
||||
|
||||
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new).
|
||||
Please report security issues privately using [the vulnerability submission form](https://github.com/vllm-project/vllm/security/advisories/new). Reports will then be triaged by the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html).
|
||||
|
||||
---
|
||||
|
||||
|
||||
@ -22,6 +22,7 @@ class RequestFuncInput:
|
||||
prompt_len: int
|
||||
output_len: int
|
||||
model: str
|
||||
model_name: Optional[str] = None
|
||||
best_of: int = 1
|
||||
logprobs: Optional[int] = None
|
||||
extra_body: Optional[dict] = None
|
||||
@ -78,7 +79,7 @@ async def async_request_tgi(
|
||||
continue
|
||||
chunk_bytes = chunk_bytes.decode("utf-8")
|
||||
|
||||
#NOTE: Sometimes TGI returns a ping response without
|
||||
# NOTE: Sometimes TGI returns a ping response without
|
||||
# any data, we should skip it.
|
||||
if chunk_bytes.startswith(":"):
|
||||
continue
|
||||
@ -235,7 +236,8 @@ async def async_request_openai_completions(
|
||||
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
payload = {
|
||||
"model": request_func_input.model,
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"prompt": request_func_input.prompt,
|
||||
"temperature": 0.0,
|
||||
"best_of": request_func_input.best_of,
|
||||
@ -328,7 +330,8 @@ async def async_request_openai_chat_completions(
|
||||
if request_func_input.multi_modal_content:
|
||||
content.append(request_func_input.multi_modal_content)
|
||||
payload = {
|
||||
"model": request_func_input.model,
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
@ -417,14 +420,35 @@ def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
|
||||
|
||||
def get_tokenizer(
|
||||
pretrained_model_name_or_path: str, trust_remote_code: bool
|
||||
pretrained_model_name_or_path: str,
|
||||
tokenizer_mode: str = "auto",
|
||||
trust_remote_code: bool = False,
|
||||
**kwargs,
|
||||
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
||||
if pretrained_model_name_or_path is not None and not os.path.exists(
|
||||
pretrained_model_name_or_path):
|
||||
pretrained_model_name_or_path = get_model(
|
||||
pretrained_model_name_or_path)
|
||||
return AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
|
||||
trust_remote_code=trust_remote_code)
|
||||
if tokenizer_mode == "slow":
|
||||
if kwargs.get("use_fast", False):
|
||||
raise ValueError(
|
||||
"Cannot use the fast tokenizer in slow tokenizer mode.")
|
||||
kwargs["use_fast"] = False
|
||||
if tokenizer_mode == "mistral":
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import MistralTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError("MistralTokenizer requires vllm package.\n"
|
||||
"Please install it with `pip install vllm` "
|
||||
"to use mistral tokenizer mode.") from e
|
||||
return MistralTokenizer.from_pretrained(
|
||||
str(pretrained_model_name_or_path))
|
||||
else:
|
||||
return AutoTokenizer.from_pretrained(
|
||||
pretrained_model_name_or_path,
|
||||
trust_remote_code=trust_remote_code,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
ASYNC_REQUEST_FUNCS = {
|
||||
|
||||
@ -13,6 +13,7 @@ from tqdm import tqdm
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.inputs import PromptType
|
||||
from vllm.sampling_params import BeamSearchParams
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
@ -40,6 +41,20 @@ def main(args: argparse.Namespace):
|
||||
"prompt_token_ids": batch
|
||||
} for batch in dummy_prompt_token_ids.tolist()]
|
||||
|
||||
def llm_generate():
|
||||
if not args.use_beam_search:
|
||||
llm.generate(dummy_prompts,
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=False)
|
||||
else:
|
||||
llm.beam_search(
|
||||
dummy_prompts,
|
||||
BeamSearchParams(
|
||||
beam_width=args.n,
|
||||
max_tokens=args.output_len,
|
||||
ignore_eos=True,
|
||||
))
|
||||
|
||||
def run_to_completion(profile_dir: Optional[str] = None):
|
||||
if profile_dir:
|
||||
with torch.profiler.profile(
|
||||
@ -49,15 +64,11 @@ def main(args: argparse.Namespace):
|
||||
],
|
||||
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
||||
str(profile_dir))) as p:
|
||||
llm.generate(dummy_prompts,
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=False)
|
||||
print(p.key_averages())
|
||||
llm_generate()
|
||||
print(p.key_averages().table(sort_by="self_cuda_time_total"))
|
||||
else:
|
||||
start_time = time.perf_counter()
|
||||
llm.generate(dummy_prompts,
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=False)
|
||||
llm_generate()
|
||||
end_time = time.perf_counter()
|
||||
latency = end_time - start_time
|
||||
return latency
|
||||
|
||||
@ -2,8 +2,7 @@
|
||||
Offline benchmark to test the long document QA throughput.
|
||||
|
||||
Example usage:
|
||||
# This command run the vllm with 50GB CPU memory for offloading
|
||||
# The workload samples 8 different prompts with a default input
|
||||
# This workload samples 8 different prompts with a default input
|
||||
# length of 20000 tokens, then replicates each prompt 2 times
|
||||
# in random order.
|
||||
python benchmark_long_document_qa_throughput.py \
|
||||
|
||||
@ -10,7 +10,8 @@ Fixed example usage:
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-prompts 1 \
|
||||
--repeat-count 100
|
||||
--repeat-count 100 \
|
||||
--input-length-range 128:256
|
||||
|
||||
ShareGPT example usage:
|
||||
# This command samples 20 prompts with input lengths
|
||||
|
||||
@ -525,6 +525,7 @@ async def benchmark(
|
||||
api_url: str,
|
||||
base_url: str,
|
||||
model_id: str,
|
||||
model_name: str,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_requests: List[Tuple[str, int, int]],
|
||||
logprobs: Optional[int],
|
||||
@ -553,6 +554,7 @@ async def benchmark(
|
||||
"Multi-modal content is only supported on 'openai-chat' backend.")
|
||||
test_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
model_name=model_name,
|
||||
prompt=test_prompt,
|
||||
api_url=api_url,
|
||||
prompt_len=test_prompt_len,
|
||||
@ -573,6 +575,7 @@ async def benchmark(
|
||||
if profile:
|
||||
print("Starting profiler...")
|
||||
profile_input = RequestFuncInput(model=model_id,
|
||||
model_name=model_name,
|
||||
prompt=test_prompt,
|
||||
api_url=base_url + "/start_profile",
|
||||
prompt_len=test_prompt_len,
|
||||
@ -616,6 +619,7 @@ async def benchmark(
|
||||
async for request in get_request(input_requests, request_rate, burstiness):
|
||||
prompt, prompt_len, output_len, mm_content = request
|
||||
request_func_input = RequestFuncInput(model=model_id,
|
||||
model_name=model_name,
|
||||
prompt=prompt,
|
||||
api_url=api_url,
|
||||
prompt_len=prompt_len,
|
||||
@ -780,6 +784,7 @@ def main(args: argparse.Namespace):
|
||||
|
||||
backend = args.backend
|
||||
model_id = args.model
|
||||
model_name = args.served_model_name
|
||||
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
|
||||
tokenizer_mode = args.tokenizer_mode
|
||||
|
||||
@ -877,6 +882,7 @@ def main(args: argparse.Namespace):
|
||||
api_url=api_url,
|
||||
base_url=base_url,
|
||||
model_id=model_id,
|
||||
model_name=model_name,
|
||||
tokenizer=tokenizer,
|
||||
input_requests=input_requests,
|
||||
logprobs=args.logprobs,
|
||||
@ -1222,5 +1228,12 @@ if __name__ == "__main__":
|
||||
'always use the slow tokenizer. \n* '
|
||||
'"mistral" will always use the `mistral_common` tokenizer.')
|
||||
|
||||
parser.add_argument("--served-model-name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The model name used in the API. "
|
||||
"If not specified, the model name will be the "
|
||||
"same as the ``--model`` argument. ")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
1147
benchmarks/kernels/benchmark_lora.py
Normal file
1147
benchmarks/kernels/benchmark_lora.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
import time
|
||||
from datetime import datetime
|
||||
from itertools import product
|
||||
from typing import Any, Dict, List, Tuple, TypedDict
|
||||
|
||||
import ray
|
||||
@ -11,7 +12,10 @@ from transformers import AutoConfig
|
||||
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import *
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.utils import FlexibleArgumentParser, is_navi
|
||||
|
||||
FP8_DTYPE = torch.float8_e4m3fnuz if current_platform.is_rocm(
|
||||
) and not is_navi() else torch.float8_e4m3fn
|
||||
|
||||
|
||||
class BenchmarkConfig(TypedDict):
|
||||
@ -80,8 +84,8 @@ def benchmark_config(
|
||||
a1_scale = torch.randn(1, dtype=torch.float32)
|
||||
a2_scale = torch.randn(1, dtype=torch.float32)
|
||||
|
||||
w1 = w1.to(torch.float8_e4m3fn)
|
||||
w2 = w2.to(torch.float8_e4m3fn)
|
||||
w1 = w1.to(FP8_DTYPE)
|
||||
w2 = w2.to(FP8_DTYPE)
|
||||
|
||||
input_gating = torch.empty(num_tokens, num_experts, dtype=torch.float32)
|
||||
|
||||
@ -141,28 +145,172 @@ def benchmark_config(
|
||||
return avg
|
||||
|
||||
|
||||
def get_configs_compute_bound() -> List[Dict[str, int]]:
|
||||
# Reduced search space for faster tuning.
|
||||
# TODO(woosuk): Increase the search space and use a performance model to
|
||||
# prune the search space.
|
||||
def get_rocm_tuning_space(use_fp16):
|
||||
block_mn_range = [16, 32, 64, 128, 256]
|
||||
block_k_range = [16, 32, 64, 128, 256]
|
||||
if not use_fp16:
|
||||
block_k_range.remove(16) # BLOCK_K=16 not supported for fp8
|
||||
num_warps_range = [1, 2, 4, 8]
|
||||
group_m_range = [1, 4, 8, 16, 32]
|
||||
num_stage_range = [2]
|
||||
waves_per_eu_range = [0]
|
||||
matrix_instr_nonkdim_range = [16, 32] if use_fp16 else []
|
||||
kpack_range = [1, 2] if use_fp16 else []
|
||||
|
||||
param_ranges = {
|
||||
"BLOCK_SIZE_M": block_mn_range,
|
||||
"BLOCK_SIZE_N": block_mn_range,
|
||||
"BLOCK_SIZE_K": block_k_range,
|
||||
"GROUP_SIZE_M": group_m_range,
|
||||
"num_warps": num_warps_range,
|
||||
"num_stages": num_stage_range,
|
||||
"waves_per_eu": waves_per_eu_range,
|
||||
}
|
||||
if use_fp16:
|
||||
param_ranges["matrix_instr_nonkdim"] = matrix_instr_nonkdim_range
|
||||
param_ranges["kpack"] = kpack_range
|
||||
|
||||
return param_ranges
|
||||
|
||||
|
||||
def get_configs_compute_bound(use_fp16) -> List[Dict[str, int]]:
|
||||
configs: List[BenchmarkConfig] = []
|
||||
for num_stages in [2, 3, 4, 5]:
|
||||
for block_m in [16, 32, 64, 128, 256]:
|
||||
for block_k in [64, 128, 256]:
|
||||
for block_n in [32, 64, 128, 256]:
|
||||
for num_warps in [4, 8]:
|
||||
for group_size in [1, 16, 32, 64]:
|
||||
configs.append({
|
||||
"BLOCK_SIZE_M": block_m,
|
||||
"BLOCK_SIZE_N": block_n,
|
||||
"BLOCK_SIZE_K": block_k,
|
||||
"GROUP_SIZE_M": group_size,
|
||||
"num_warps": num_warps,
|
||||
"num_stages": num_stages,
|
||||
})
|
||||
|
||||
if current_platform.is_rocm():
|
||||
param_ranges = get_rocm_tuning_space(use_fp16)
|
||||
else:
|
||||
# Reduced search space for faster tuning.
|
||||
# TODO(woosuk): Increase the search space and use a performance model to
|
||||
# prune the search space.
|
||||
block_m_range = [16, 32, 64, 128, 256]
|
||||
block_n_range = [32, 64, 128, 256]
|
||||
block_k_range = [64, 128, 256]
|
||||
num_warps_range = [4, 8]
|
||||
group_m_range = [1, 16, 32, 64]
|
||||
num_stage_range = [2, 3, 4, 5]
|
||||
|
||||
param_ranges = {
|
||||
"BLOCK_SIZE_M": block_m_range,
|
||||
"BLOCK_SIZE_N": block_n_range,
|
||||
"BLOCK_SIZE_K": block_k_range,
|
||||
"GROUP_SIZE_M": group_m_range,
|
||||
"num_warps": num_warps_range,
|
||||
"num_stages": num_stage_range,
|
||||
}
|
||||
|
||||
keys, values = zip(*param_ranges.items())
|
||||
for config_values in product(*values):
|
||||
config = dict(zip(keys, config_values))
|
||||
configs.append(config)
|
||||
return configs
|
||||
|
||||
|
||||
def prune_rocm_search_space(num_tokens, shard_intermediate_size, hidden_size,
|
||||
search_space, is_fp16):
|
||||
N1, K1 = shard_intermediate_size, hidden_size
|
||||
N2, K2 = hidden_size, shard_intermediate_size // 2
|
||||
pruned_space_1 = prune_rocm_configs(num_tokens * 2, N1, K1, search_space,
|
||||
is_fp16)
|
||||
pruned_space_2 = prune_rocm_configs(num_tokens * 2, N2, K2, search_space,
|
||||
is_fp16)
|
||||
search_space = merge_unique_dicts(pruned_space_1, pruned_space_2)
|
||||
return search_space
|
||||
|
||||
|
||||
# The following code is inspired by ROCm/Triton GEMM tuning script:
|
||||
# https://github.com/ROCm/triton/blob/triton-mlir/scripts/amd/gemm/tune_gemm.py#L89
|
||||
def prune_rocm_configs(M, N, K, configs, is_fp16=True):
|
||||
pruned_configs = []
|
||||
elemBytes_a = 2 if is_fp16 else 1
|
||||
elemBytes_b = 2 if is_fp16 else 1
|
||||
|
||||
mfma = 16 if M < 32 or N < 32 else 32
|
||||
|
||||
# TODO (zhanglx): figure out the boundary between large and small gemms
|
||||
large_gemm = False
|
||||
if M >= 2048 and N >= 2048:
|
||||
large_gemm = True
|
||||
|
||||
for config in configs:
|
||||
BLOCK_SIZE_M = config.get("BLOCK_SIZE_M")
|
||||
BLOCK_SIZE_N = config.get("BLOCK_SIZE_N")
|
||||
BLOCK_SIZE_K = config.get("BLOCK_SIZE_K")
|
||||
num_warps = config.get("num_warps")
|
||||
|
||||
if is_fp16:
|
||||
matrix_instr_nonkdim = config.get("matrix_instr_nonkdim")
|
||||
if matrix_instr_nonkdim > mfma:
|
||||
continue
|
||||
if mfma == 4 and BLOCK_SIZE_K < 64:
|
||||
continue
|
||||
# some layouts could not work properly in case
|
||||
# number elements per thread is less 1
|
||||
if BLOCK_SIZE_M * BLOCK_SIZE_N < 64:
|
||||
continue
|
||||
SPLIT_K = config.get("SPLIT_K", 1)
|
||||
GROUP_M = config.get("GROUP_SIZE_M")
|
||||
if is_fp16:
|
||||
if (matrix_instr_nonkdim > BLOCK_SIZE_M
|
||||
or matrix_instr_nonkdim > BLOCK_SIZE_N):
|
||||
continue
|
||||
if (matrix_instr_nonkdim >= M
|
||||
and matrix_instr_nonkdim != BLOCK_SIZE_M):
|
||||
continue
|
||||
if (matrix_instr_nonkdim >= N
|
||||
and matrix_instr_nonkdim != BLOCK_SIZE_N):
|
||||
continue
|
||||
# Skip BLOCK_SIZE that is too large compare to M/N
|
||||
# unless BLOCK_SIZE is already small enough
|
||||
if M * 2 < BLOCK_SIZE_M and BLOCK_SIZE_M != 16:
|
||||
continue
|
||||
if N * 2 < BLOCK_SIZE_N and BLOCK_SIZE_N != 16:
|
||||
continue
|
||||
# skip large split_k when not necessary
|
||||
if SPLIT_K != 1 and not need_split_k(M, N, K):
|
||||
continue
|
||||
# skip split_k that leads to EVEN_K = false
|
||||
leap = SPLIT_K * BLOCK_SIZE_K
|
||||
modv = K % leap
|
||||
if modv != 0:
|
||||
continue
|
||||
# skip large GROUP_M
|
||||
if GROUP_M * BLOCK_SIZE_M > M and GROUP_M != 1:
|
||||
continue
|
||||
# out of shared memory resource
|
||||
# TODO (zhanglx): This does not consider the LDS usage in the epilogue
|
||||
LDS = (BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a +
|
||||
BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b)
|
||||
if LDS > 65536:
|
||||
continue
|
||||
# Skip small block sizes and num_warps for large gemm
|
||||
# For fp16 and f8, we want to only use BLOCK_SIZE >= 64
|
||||
if large_gemm:
|
||||
if BLOCK_SIZE_M < 64 or BLOCK_SIZE_N < 64:
|
||||
continue
|
||||
if BLOCK_SIZE_K < 64:
|
||||
continue
|
||||
if num_warps < 4:
|
||||
continue
|
||||
|
||||
pruned_configs.append(config)
|
||||
|
||||
return pruned_configs
|
||||
|
||||
|
||||
def need_split_k(SIZE_M, SIZE_N, SIZE_K):
|
||||
return (SIZE_M < 64 or SIZE_N < 64) and SIZE_K > 1024
|
||||
|
||||
|
||||
def merge_unique_dicts(list1, list2):
|
||||
result = []
|
||||
combined_list = list1.copy()
|
||||
combined_list.extend(list2)
|
||||
for dictionary in combined_list:
|
||||
if dictionary not in result:
|
||||
result.append(dictionary)
|
||||
return result
|
||||
|
||||
|
||||
@ray.remote(num_gpus=1)
|
||||
class BenchmarkWorker:
|
||||
|
||||
@ -170,6 +318,10 @@ class BenchmarkWorker:
|
||||
torch.set_default_device("cuda")
|
||||
current_platform.seed_everything(seed)
|
||||
self.seed = seed
|
||||
# Get the device ID to allocate tensors and kernels
|
||||
# on the respective GPU. This is required for Ray to work
|
||||
# correctly with multi-GPU tuning on the ROCm platform.
|
||||
self.device_id = int(ray.get_gpu_ids()[0])
|
||||
|
||||
def benchmark(
|
||||
self,
|
||||
@ -217,25 +369,33 @@ class BenchmarkWorker:
|
||||
) -> Dict[str, int]:
|
||||
best_config = None
|
||||
best_time = float("inf")
|
||||
for config in tqdm(search_space):
|
||||
try:
|
||||
kernel_time = benchmark_config(config,
|
||||
num_tokens,
|
||||
num_experts,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype,
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
num_iters=10)
|
||||
except triton.runtime.autotuner.OutOfResources:
|
||||
# Some configurations may be invalid and fail to compile.
|
||||
continue
|
||||
if current_platform.is_rocm():
|
||||
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
|
||||
search_space = prune_rocm_search_space(num_tokens,
|
||||
shard_intermediate_size,
|
||||
hidden_size, search_space,
|
||||
is_fp16)
|
||||
|
||||
if kernel_time < best_time:
|
||||
best_time = kernel_time
|
||||
best_config = config
|
||||
with torch.cuda.device(self.device_id):
|
||||
for config in tqdm(search_space):
|
||||
try:
|
||||
kernel_time = benchmark_config(config,
|
||||
num_tokens,
|
||||
num_experts,
|
||||
shard_intermediate_size,
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype,
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
num_iters=20)
|
||||
except triton.runtime.autotuner.OutOfResources:
|
||||
# Some configurations may be invalid and fail to compile.
|
||||
continue
|
||||
|
||||
if kernel_time < best_time:
|
||||
best_time = kernel_time
|
||||
best_config = config
|
||||
now = datetime.now()
|
||||
print(f"{now.ctime()}] Completed tuning for batch_size={num_tokens}")
|
||||
assert best_config is not None
|
||||
@ -244,12 +404,27 @@ class BenchmarkWorker:
|
||||
|
||||
def sort_config(config: BenchmarkConfig) -> BenchmarkConfig:
|
||||
return {
|
||||
"BLOCK_SIZE_M": config["BLOCK_SIZE_M"],
|
||||
"BLOCK_SIZE_N": config["BLOCK_SIZE_N"],
|
||||
"BLOCK_SIZE_K": config["BLOCK_SIZE_K"],
|
||||
"GROUP_SIZE_M": config["GROUP_SIZE_M"],
|
||||
"num_warps": config["num_warps"],
|
||||
"num_stages": config["num_stages"],
|
||||
"BLOCK_SIZE_M":
|
||||
config["BLOCK_SIZE_M"],
|
||||
"BLOCK_SIZE_N":
|
||||
config["BLOCK_SIZE_N"],
|
||||
"BLOCK_SIZE_K":
|
||||
config["BLOCK_SIZE_K"],
|
||||
"GROUP_SIZE_M":
|
||||
config["GROUP_SIZE_M"],
|
||||
"num_warps":
|
||||
config["num_warps"],
|
||||
"num_stages":
|
||||
config["num_stages"],
|
||||
**({
|
||||
"waves_per_eu": config["waves_per_eu"]
|
||||
} if "waves_per_eu" in config else {}),
|
||||
**({
|
||||
"matrix_instr_nonkdim": config["matrix_instr_nonkdim"]
|
||||
} if "matrix_instr_nonkdim" in config else {}),
|
||||
**({
|
||||
"kpack": config["kpack"]
|
||||
} if "kpack" in config else {}),
|
||||
}
|
||||
|
||||
|
||||
@ -294,7 +469,7 @@ def main(args: argparse.Namespace):
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
|
||||
hidden_size = config.hidden_size
|
||||
dtype = config.torch_dtype
|
||||
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||
|
||||
@ -322,7 +497,8 @@ def main(args: argparse.Namespace):
|
||||
return ray.get(outputs)
|
||||
|
||||
if args.tune:
|
||||
search_space = get_configs_compute_bound()
|
||||
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
|
||||
search_space = get_configs_compute_bound(is_fp16)
|
||||
print(f"Start tuning over {len(search_space)} configurations...")
|
||||
|
||||
start = time.time()
|
||||
|
||||
210
benchmarks/kernels/utils.py
Normal file
210
benchmarks/kernels/utils.py
Normal file
@ -0,0 +1,210 @@
|
||||
import dataclasses
|
||||
from typing import Any, Callable, Iterable, Optional
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
from torch.utils.benchmark import Measurement as TMeasurement
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class CudaGraphBenchParams:
|
||||
num_ops_in_cuda_graph: int
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ArgPool:
|
||||
"""
|
||||
When some argument of the benchmarking function is annotated with this type,
|
||||
the benchmarking class (BenchMM) will collapse the argument to a pick a
|
||||
single value from the given list of values, during function invocation.
|
||||
For every invocation during a benchmarking run, it will choose a
|
||||
different value from the list.
|
||||
"""
|
||||
values: Iterable[Any]
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.values[index]
|
||||
|
||||
|
||||
class Bench:
|
||||
|
||||
class ArgsIterator:
|
||||
|
||||
def __init__(self, args_list, kwargs_list):
|
||||
assert len(args_list) == len(kwargs_list)
|
||||
self.args_list = args_list
|
||||
self.kwargs_list = kwargs_list
|
||||
self.n = len(self.args_list)
|
||||
self.idx = 0
|
||||
|
||||
def __next__(self):
|
||||
while True:
|
||||
yield (self.args_list[self.idx], self.kwargs_list[self.idx])
|
||||
self.idx += 1
|
||||
self.idx = self.idx % self.n
|
||||
|
||||
def reset(self):
|
||||
self.idx = 0
|
||||
|
||||
@property
|
||||
def n_args(self):
|
||||
return self.n
|
||||
|
||||
def __init__(self, cuda_graph_params: Optional[CudaGraphBenchParams],
|
||||
label: str, sub_label: str, description: str, fn: Callable,
|
||||
*args, **kwargs):
|
||||
|
||||
self.cuda_graph_params = cuda_graph_params
|
||||
self.use_cuda_graph = self.cuda_graph_params is not None
|
||||
self.label = label
|
||||
self.sub_label = sub_label
|
||||
self.description = description
|
||||
self.fn = fn
|
||||
|
||||
# Process args
|
||||
self._args = args
|
||||
self._kwargs = kwargs
|
||||
self.args_list, self.kwargs_list = self.collapse_argpool(
|
||||
*args, **kwargs)
|
||||
self.args_iterator = self.ArgsIterator(self.args_list,
|
||||
self.kwargs_list)
|
||||
|
||||
# Cudagraph runner
|
||||
self.g = None
|
||||
if self.use_cuda_graph:
|
||||
self.g = self.get_cuda_graph_runner()
|
||||
|
||||
# benchmark run params
|
||||
self.min_run_time = 1
|
||||
|
||||
def collapse_argpool(self, *args, **kwargs):
|
||||
argpool_args = [arg for arg in args if isinstance(arg, ArgPool)] + [
|
||||
arg for arg in kwargs.values() if isinstance(arg, ArgPool)
|
||||
]
|
||||
if len(argpool_args) == 0:
|
||||
return [args], [kwargs]
|
||||
|
||||
# Make sure all argpools are of the same size
|
||||
argpool_size = len(argpool_args[0].values)
|
||||
assert all([argpool_size == len(arg.values) for arg in argpool_args])
|
||||
|
||||
# create copies of the args
|
||||
args_list = []
|
||||
kwargs_list = []
|
||||
for _ in range(argpool_size):
|
||||
args_list.append(args)
|
||||
kwargs_list.append(kwargs.copy())
|
||||
|
||||
for i in range(argpool_size):
|
||||
# collapse args; Just pick the ith value
|
||||
args_list[i] = tuple([
|
||||
arg[i] if isinstance(arg, ArgPool) else arg
|
||||
for arg in args_list[i]
|
||||
])
|
||||
|
||||
# collapse kwargs
|
||||
kwargs_i = kwargs_list[i]
|
||||
arg_pool_keys = [
|
||||
k for k, v in kwargs_i.items() if isinstance(v, ArgPool)
|
||||
]
|
||||
for k in arg_pool_keys:
|
||||
# again just pick the ith value
|
||||
kwargs_i[k] = kwargs_i[k][i]
|
||||
kwargs_list[i] = kwargs_i
|
||||
|
||||
return args_list, kwargs_list
|
||||
|
||||
def get_cuda_graph_runner(self):
|
||||
assert self.use_cuda_graph
|
||||
assert self.args_iterator is not None
|
||||
|
||||
num_graph_ops = self.cuda_graph_params.num_ops_in_cuda_graph
|
||||
|
||||
# warmup
|
||||
args_it = self.args_iterator.__next__()
|
||||
for _ in range(2):
|
||||
args, kwargs = next(args_it)
|
||||
self.fn(*args, **kwargs)
|
||||
|
||||
self.args_iterator.reset()
|
||||
args_it = self.args_iterator.__next__()
|
||||
stream = torch.cuda.Stream()
|
||||
with torch.cuda.stream(stream):
|
||||
g = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(g):
|
||||
for _ in range(num_graph_ops):
|
||||
args, kwargs = next(args_it)
|
||||
self.fn(*args, **kwargs)
|
||||
return g
|
||||
|
||||
def run_cudagrah(self) -> TMeasurement:
|
||||
assert self.use_cuda_graph
|
||||
globals = {'g': self.g}
|
||||
|
||||
return TBenchmark.Timer(
|
||||
stmt="g.replay()",
|
||||
globals=globals,
|
||||
label=(
|
||||
f"{self.label}"
|
||||
f" | cugraph {self.cuda_graph_params.num_ops_in_cuda_graph} ops"
|
||||
),
|
||||
sub_label=self.sub_label,
|
||||
description=self.description,
|
||||
).blocked_autorange(min_run_time=self.min_run_time)
|
||||
|
||||
def run_eager(self) -> TMeasurement:
|
||||
setup = None
|
||||
stmt = None
|
||||
globals = None
|
||||
|
||||
has_arg_pool = self.args_iterator.n_args > 1
|
||||
if has_arg_pool:
|
||||
setup = '''
|
||||
args_iterator.reset()
|
||||
args_it = args_iterator.__next__()
|
||||
'''
|
||||
stmt = '''
|
||||
args, kwargs = next(args_it)
|
||||
fn(*args, **kwargs)
|
||||
'''
|
||||
globals = {'fn': self.fn, 'args_iterator': self.args_iterator}
|
||||
else:
|
||||
# no arg pool. Just use the args and kwargs directly
|
||||
self.args_iterator.reset()
|
||||
args_it = self.args_iterator.__next__()
|
||||
args, kwargs = next(args_it)
|
||||
|
||||
setup = ""
|
||||
stmt = '''
|
||||
fn(*args, **kwargs)
|
||||
'''
|
||||
globals = {'fn': self.fn, 'args': args, 'kwargs': kwargs}
|
||||
|
||||
return TBenchmark.Timer(
|
||||
stmt=stmt,
|
||||
setup=setup,
|
||||
globals=globals,
|
||||
label=self.label,
|
||||
sub_label=self.sub_label,
|
||||
description=self.description,
|
||||
).blocked_autorange(min_run_time=self.min_run_time)
|
||||
|
||||
def run(self) -> TMeasurement:
|
||||
timer = None
|
||||
if self.use_cuda_graph: # noqa SIM108
|
||||
timer = self.run_cudagrah()
|
||||
else:
|
||||
timer = self.run_eager()
|
||||
if not timer.meets_confidence() or timer.has_warnings:
|
||||
print("Doesn't meet confidence - re-running bench ...")
|
||||
return self.run()
|
||||
return timer
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
if exc_type:
|
||||
print(f"exc type {exc_type}")
|
||||
print(f"exc value {exc_value}")
|
||||
print(f"exc traceback {traceback}")
|
||||
@ -4,6 +4,11 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_EXTENSIONS ON)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(MACOSX_FOUND TRUE)
|
||||
endif()
|
||||
|
||||
|
||||
#
|
||||
# Define environment variables for special configurations
|
||||
#
|
||||
@ -13,6 +18,9 @@ endif()
|
||||
|
||||
include_directories("${CMAKE_SOURCE_DIR}/csrc")
|
||||
|
||||
|
||||
set (ENABLE_NUMA TRUE)
|
||||
|
||||
#
|
||||
# Check the compile flags
|
||||
#
|
||||
@ -22,18 +30,28 @@ if (CMAKE_SYSTEM_PROCESSOR MATCHES "x86_64")
|
||||
"-mf16c"
|
||||
)
|
||||
endif()
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-fopenmp"
|
||||
"-DVLLM_CPU_EXTENSION")
|
||||
|
||||
execute_process(COMMAND cat /proc/cpuinfo
|
||||
RESULT_VARIABLE CPUINFO_RET
|
||||
OUTPUT_VARIABLE CPUINFO)
|
||||
|
||||
if (NOT CPUINFO_RET EQUAL 0)
|
||||
message(FATAL_ERROR "Failed to check CPU features via /proc/cpuinfo")
|
||||
if(MACOSX_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-Xpreprocessor"
|
||||
"-fopenmp"
|
||||
"-DVLLM_CPU_EXTENSION")
|
||||
else()
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-fopenmp"
|
||||
"-DVLLM_CPU_EXTENSION")
|
||||
endif()
|
||||
|
||||
if (NOT MACOSX_FOUND)
|
||||
execute_process(COMMAND cat /proc/cpuinfo
|
||||
RESULT_VARIABLE CPUINFO_RET
|
||||
OUTPUT_VARIABLE CPUINFO)
|
||||
if (NOT CPUINFO_RET EQUAL 0)
|
||||
message(FATAL_ERROR "Failed to check CPU features via /proc/cpuinfo")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
function (find_isa CPUINFO TARGET OUT)
|
||||
string(FIND ${CPUINFO} ${TARGET} ISA_FOUND)
|
||||
if(NOT ISA_FOUND EQUAL -1)
|
||||
@ -54,12 +72,17 @@ endfunction()
|
||||
|
||||
is_avx512_disabled(AVX512_DISABLED)
|
||||
|
||||
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
|
||||
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
|
||||
find_isa(${CPUINFO} "POWER10" POWER10_FOUND)
|
||||
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
|
||||
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
||||
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
|
||||
if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
|
||||
set(APPLE_SILICON_FOUND TRUE)
|
||||
else()
|
||||
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
|
||||
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
|
||||
find_isa(${CPUINFO} "POWER10" POWER10_FOUND)
|
||||
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
|
||||
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
||||
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
|
||||
endif()
|
||||
|
||||
|
||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
@ -103,6 +126,9 @@ elseif (ASIMD_FOUND)
|
||||
set(MARCH_FLAGS "-march=armv8.2-a+dotprod+fp16")
|
||||
endif()
|
||||
list(APPEND CXX_COMPILE_FLAGS ${MARCH_FLAGS})
|
||||
elseif(APPLE_SILICON_FOUND)
|
||||
message(STATUS "Apple Silicon Detected")
|
||||
set(ENABLE_NUMA OFF)
|
||||
else()
|
||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA or ARMv8 support.")
|
||||
endif()
|
||||
@ -139,7 +165,12 @@ endif()
|
||||
|
||||
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
|
||||
|
||||
list(APPEND LIBS numa)
|
||||
if(ENABLE_NUMA)
|
||||
list(APPEND LIBS numa)
|
||||
else()
|
||||
message(STATUS "NUMA is disabled")
|
||||
add_compile_definitions(-DVLLM_NUMA_DISABLED)
|
||||
endif()
|
||||
|
||||
#
|
||||
# _C extension
|
||||
|
||||
@ -58,8 +58,8 @@ function (hipify_sources_target OUT_SRCS NAME ORIG_SRCS)
|
||||
#
|
||||
set(SRCS ${ORIG_SRCS})
|
||||
set(CXX_SRCS ${ORIG_SRCS})
|
||||
list(FILTER SRCS EXCLUDE REGEX "\.(cc)|(cpp)$")
|
||||
list(FILTER CXX_SRCS INCLUDE REGEX "\.(cc)|(cpp)$")
|
||||
list(FILTER SRCS EXCLUDE REGEX "\.(cc)|(cpp)|(hip)$")
|
||||
list(FILTER CXX_SRCS INCLUDE REGEX "\.(cc)|(cpp)|(hip)$")
|
||||
|
||||
#
|
||||
# Generate ROCm/HIP source file names from CUDA file names.
|
||||
|
||||
@ -9,8 +9,16 @@
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&),
|
||||
bool act_first>
|
||||
__device__ __forceinline__ scalar_t compute(const scalar_t& x,
|
||||
const scalar_t& y) {
|
||||
return act_first ? ACT_FN(x) * y : x * ACT_FN(y);
|
||||
}
|
||||
// Activation and gating kernel template.
|
||||
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
|
||||
|
||||
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&),
|
||||
bool act_first>
|
||||
__global__ void act_and_mul_kernel(
|
||||
scalar_t* __restrict__ out, // [..., d]
|
||||
const scalar_t* __restrict__ input, // [..., 2, d]
|
||||
@ -19,7 +27,7 @@ __global__ void act_and_mul_kernel(
|
||||
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
||||
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
|
||||
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
|
||||
out[token_idx * d + idx] = ACT_FN(x) * y;
|
||||
out[token_idx * d + idx] = compute<scalar_t, ACT_FN, act_first>(x, y);
|
||||
}
|
||||
}
|
||||
|
||||
@ -55,7 +63,9 @@ __device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
|
||||
} // namespace vllm
|
||||
|
||||
// Launch activation and gating kernel.
|
||||
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
|
||||
// Use ACT_FIRST (bool) indicating whether to apply the activation function
|
||||
// first.
|
||||
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL, ACT_FIRST) \
|
||||
int d = input.size(-1) / 2; \
|
||||
int64_t num_tokens = input.numel() / input.size(-1); \
|
||||
dim3 grid(num_tokens); \
|
||||
@ -64,7 +74,7 @@ __device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
||||
VLLM_DISPATCH_FLOATING_TYPES( \
|
||||
input.scalar_type(), "act_and_mul_kernel", [&] { \
|
||||
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>> \
|
||||
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>, ACT_FIRST> \
|
||||
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
|
||||
input.data_ptr<scalar_t>(), d); \
|
||||
});
|
||||
@ -72,19 +82,27 @@ __device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
|
||||
void silu_and_mul(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input) // [..., 2 * d]
|
||||
{
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel, true);
|
||||
}
|
||||
|
||||
void mul_and_silu(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input) // [..., 2 * d]
|
||||
{
|
||||
// The difference between mul_and_silu and silu_and_mul is that mul_and_silu
|
||||
// applies the silu to the latter half of the input.
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel, false);
|
||||
}
|
||||
|
||||
void gelu_and_mul(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input) // [..., 2 * d]
|
||||
{
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel);
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel, true);
|
||||
}
|
||||
|
||||
void gelu_tanh_and_mul(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input) // [..., 2 * d]
|
||||
{
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_tanh_kernel);
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_tanh_kernel, true);
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
|
||||
@ -53,7 +53,7 @@ void paged_attention_v1_launcher(
|
||||
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int num_kv_heads, float scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes, float k_scale,
|
||||
const std::optional<torch::Tensor>& alibi_slopes, float k_scale,
|
||||
float v_scale, const int tp_rank, const int blocksparse_local_blocks,
|
||||
const int blocksparse_vert_stride, const int blocksparse_block_size,
|
||||
const int blocksparse_head_sliding_step) {
|
||||
@ -176,7 +176,7 @@ void paged_attention_v1(
|
||||
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
torch::Tensor& seq_lens, // [num_seqs]
|
||||
int64_t block_size, int64_t max_seq_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
|
||||
@ -54,7 +54,7 @@ void paged_attention_v2_launcher(
|
||||
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int num_kv_heads, float scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes, float k_scale,
|
||||
const std::optional<torch::Tensor>& alibi_slopes, float k_scale,
|
||||
float v_scale, const int tp_rank, const int blocksparse_local_blocks,
|
||||
const int blocksparse_vert_stride, const int blocksparse_block_size,
|
||||
const int blocksparse_head_sliding_step) {
|
||||
@ -187,7 +187,7 @@ void paged_attention_v2(
|
||||
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
torch::Tensor& seq_lens, // [num_seqs]
|
||||
int64_t block_size, int64_t max_seq_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
|
||||
@ -32,7 +32,7 @@ class ScalarType {
|
||||
signed_(signed_),
|
||||
bias(bias),
|
||||
finite_values_only(finite_values_only),
|
||||
nan_repr(nan_repr){};
|
||||
nan_repr(nan_repr) {};
|
||||
|
||||
static constexpr ScalarType int_(uint8_t size_bits, int32_t bias = 0) {
|
||||
return ScalarType(0, size_bits - 1, true, bias);
|
||||
|
||||
@ -386,7 +386,7 @@ void paged_attention_v1_impl_launcher(
|
||||
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int num_kv_heads, float scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes) {
|
||||
const std::optional<torch::Tensor>& alibi_slopes) {
|
||||
int num_seqs = query.size(0);
|
||||
int num_heads = query.size(1);
|
||||
int head_size = query.size(2);
|
||||
@ -459,7 +459,7 @@ void paged_attention_v1(
|
||||
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
||||
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
@ -702,7 +702,7 @@ void paged_attention_v2_impl_launcher(
|
||||
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int num_kv_heads, float scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int block_size,
|
||||
int max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes) {
|
||||
int max_seq_len, const std::optional<torch::Tensor>& alibi_slopes) {
|
||||
int num_seqs = query.size(0);
|
||||
int num_heads = query.size(1);
|
||||
int head_size = query.size(2);
|
||||
@ -781,7 +781,7 @@ void paged_attention_v2(
|
||||
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
||||
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
|
||||
@ -2,13 +2,13 @@
|
||||
#define CPU_TYPES_HPP
|
||||
|
||||
#if defined(__x86_64__)
|
||||
//x86 implementation
|
||||
// x86 implementation
|
||||
#include "cpu_types_x86.hpp"
|
||||
#elif defined(__POWER9_VECTOR__)
|
||||
//ppc implementation
|
||||
// ppc implementation
|
||||
#include "cpu_types_vsx.hpp"
|
||||
#elif defined(__aarch64__)
|
||||
//arm implementation
|
||||
// arm implementation
|
||||
#include "cpu_types_arm.hpp"
|
||||
#else
|
||||
#warning "unsupported vLLM cpu implementation"
|
||||
|
||||
@ -1,48 +1,50 @@
|
||||
#include <arm_neon.h>
|
||||
#include <torch/all.h>
|
||||
#include <torch/all.h>
|
||||
#include <cmath>
|
||||
|
||||
namespace vec_op {
|
||||
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
|
||||
#else
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
|
||||
#endif
|
||||
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
||||
|
||||
#ifndef CPU_OP_GUARD
|
||||
#define CPU_KERNEL_GUARD_IN(NAME)
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#define CPU_KERNEL_GUARD_IN(NAME)
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#else
|
||||
#define CPU_KERNEL_GUARD_IN(NAME) \
|
||||
std::cout << #NAME << " invoked." << std::endl;
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl;
|
||||
#define CPU_KERNEL_GUARD_IN(NAME) \
|
||||
std::cout << #NAME << " invoked." << std::endl;
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME) \
|
||||
std::cout << #NAME << " exit." << std::endl;
|
||||
#endif
|
||||
|
||||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
namespace {
|
||||
template <typename T, T... indexes, typename F>
|
||||
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F &&f) {
|
||||
(f(std::integral_constant<T, indexes>{}), ...);
|
||||
};
|
||||
};
|
||||
template <typename T, T... indexes, typename F>
|
||||
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
|
||||
(f(std::integral_constant<T, indexes>{}), ...);
|
||||
};
|
||||
}; // namespace
|
||||
|
||||
template <typename T, T count, typename F,
|
||||
typename = std::enable_if_t<std::is_invocable_v<F, T>>>
|
||||
constexpr void unroll_loop(F &&f) {
|
||||
constexpr void unroll_loop(F&& f) {
|
||||
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
|
||||
}
|
||||
|
||||
template <typename T> struct Vec {
|
||||
template <typename T>
|
||||
struct Vec {
|
||||
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; };
|
||||
};
|
||||
|
||||
@ -54,53 +56,106 @@ struct FP16Vec8 : public Vec<FP16Vec8> {
|
||||
|
||||
float16x8_t reg;
|
||||
|
||||
explicit FP16Vec8(const void *ptr)
|
||||
: reg(vld1q_f16(static_cast<const __fp16 *>(ptr))) {};
|
||||
explicit FP16Vec8(const void* ptr)
|
||||
: reg(vld1q_f16(static_cast<const __fp16*>(ptr))) {};
|
||||
|
||||
explicit FP16Vec8(const FP32Vec8 &);
|
||||
explicit FP16Vec8(const FP32Vec8&);
|
||||
|
||||
void save(void *ptr) const {
|
||||
vst1q_f16(static_cast<__fp16 *>(ptr), reg);
|
||||
}
|
||||
void save(void* ptr) const { vst1q_f16(static_cast<__fp16*>(ptr), reg); }
|
||||
};
|
||||
|
||||
struct FP16Vec16 : public Vec<FP16Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
|
||||
float16x8x2_t reg;
|
||||
|
||||
explicit FP16Vec16(const void *ptr) {
|
||||
reg.val[0] = vld1q_f16(reinterpret_cast<const __fp16*>(ptr));
|
||||
reg.val[1] = vld1q_f16(reinterpret_cast<const __fp16*>(ptr) + 8);
|
||||
}
|
||||
|
||||
explicit FP16Vec16(const FP32Vec16& vec);
|
||||
|
||||
void save(void *ptr) const {
|
||||
vst1q_f16(reinterpret_cast<__fp16*>(ptr), reg.val[0]);
|
||||
vst1q_f16(reinterpret_cast<__fp16*>(ptr) + 8, reg.val[1]);
|
||||
}
|
||||
|
||||
void save(void *ptr, const int elem_num) const {
|
||||
int full_blocks = elem_num / 8;
|
||||
int remainder = elem_num % 8;
|
||||
|
||||
if (full_blocks > 0) {
|
||||
vst1q_f16(reinterpret_cast<__fp16*>(ptr), reg.val[0]);
|
||||
if (full_blocks > 1) {
|
||||
vst1q_f16(reinterpret_cast<__fp16*>(ptr) + 8, reg.val[1]);
|
||||
}
|
||||
}
|
||||
|
||||
if (remainder > 0) {
|
||||
float16x8_t temp = reg.val[full_blocks];
|
||||
for (int i = 0; i < remainder; ++i) {
|
||||
reinterpret_cast<__fp16*>(ptr)[full_blocks * 8 + i] = vgetq_lane_f16(temp, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
|
||||
float16x8x2_t reg;
|
||||
|
||||
explicit FP16Vec16(const void* ptr) {
|
||||
reg.val[0] = vld1q_f16(reinterpret_cast<const __fp16*>(ptr));
|
||||
reg.val[1] = vld1q_f16(reinterpret_cast<const __fp16*>(ptr) + 8);
|
||||
}
|
||||
|
||||
explicit FP16Vec16(const FP32Vec16& vec);
|
||||
|
||||
void save(void* ptr) const {
|
||||
vst1q_f16(reinterpret_cast<__fp16*>(ptr), reg.val[0]);
|
||||
vst1q_f16(reinterpret_cast<__fp16*>(ptr) + 8, reg.val[1]);
|
||||
}
|
||||
|
||||
void save(void* ptr, const int elem_num) const {
|
||||
int full_blocks = elem_num / 8;
|
||||
int remainder = elem_num % 8;
|
||||
|
||||
if (full_blocks > 0) {
|
||||
vst1q_f16(reinterpret_cast<__fp16*>(ptr), reg.val[0]);
|
||||
if (full_blocks > 1) {
|
||||
vst1q_f16(reinterpret_cast<__fp16*>(ptr) + 8, reg.val[1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Note: below is the unrolled version of the following code:
|
||||
//
|
||||
// for (int i = 0; i < remainder; ++i) {
|
||||
// reinterpret_cast<__fp16*>(ptr)[full_blocks * 8 + i] =
|
||||
// vgetq_lane_f16(temp, i);
|
||||
// }
|
||||
//
|
||||
// For macOS build (Clang), the arm/neon intrinsics function
|
||||
// `vgetq_lane_f16` needs the parameter `i` to be constant at compile
|
||||
// time.
|
||||
|
||||
if (remainder > 0) {
|
||||
float16x8_t temp = reg.val[full_blocks];
|
||||
__fp16* fp16_ptr = reinterpret_cast<__fp16*>(ptr);
|
||||
switch (remainder) {
|
||||
case 1:
|
||||
fp16_ptr[full_blocks * 8 + 0] = vgetq_lane_f16(temp, 0);
|
||||
break;
|
||||
case 2:
|
||||
fp16_ptr[full_blocks * 8 + 0] = vgetq_lane_f16(temp, 0);
|
||||
fp16_ptr[full_blocks * 8 + 1] = vgetq_lane_f16(temp, 1);
|
||||
break;
|
||||
case 3:
|
||||
fp16_ptr[full_blocks * 8 + 0] = vgetq_lane_f16(temp, 0);
|
||||
fp16_ptr[full_blocks * 8 + 1] = vgetq_lane_f16(temp, 1);
|
||||
fp16_ptr[full_blocks * 8 + 2] = vgetq_lane_f16(temp, 2);
|
||||
break;
|
||||
case 4:
|
||||
fp16_ptr[full_blocks * 8 + 0] = vgetq_lane_f16(temp, 0);
|
||||
fp16_ptr[full_blocks * 8 + 1] = vgetq_lane_f16(temp, 1);
|
||||
fp16_ptr[full_blocks * 8 + 2] = vgetq_lane_f16(temp, 2);
|
||||
fp16_ptr[full_blocks * 8 + 3] = vgetq_lane_f16(temp, 3);
|
||||
break;
|
||||
case 5:
|
||||
fp16_ptr[full_blocks * 8 + 0] = vgetq_lane_f16(temp, 0);
|
||||
fp16_ptr[full_blocks * 8 + 1] = vgetq_lane_f16(temp, 1);
|
||||
fp16_ptr[full_blocks * 8 + 2] = vgetq_lane_f16(temp, 2);
|
||||
fp16_ptr[full_blocks * 8 + 3] = vgetq_lane_f16(temp, 3);
|
||||
fp16_ptr[full_blocks * 8 + 4] = vgetq_lane_f16(temp, 4);
|
||||
break;
|
||||
case 6:
|
||||
fp16_ptr[full_blocks * 8 + 0] = vgetq_lane_f16(temp, 0);
|
||||
fp16_ptr[full_blocks * 8 + 1] = vgetq_lane_f16(temp, 1);
|
||||
fp16_ptr[full_blocks * 8 + 2] = vgetq_lane_f16(temp, 2);
|
||||
fp16_ptr[full_blocks * 8 + 3] = vgetq_lane_f16(temp, 3);
|
||||
fp16_ptr[full_blocks * 8 + 4] = vgetq_lane_f16(temp, 4);
|
||||
fp16_ptr[full_blocks * 8 + 5] = vgetq_lane_f16(temp, 5);
|
||||
break;
|
||||
case 7:
|
||||
fp16_ptr[full_blocks * 8 + 0] = vgetq_lane_f16(temp, 0);
|
||||
fp16_ptr[full_blocks * 8 + 1] = vgetq_lane_f16(temp, 1);
|
||||
fp16_ptr[full_blocks * 8 + 2] = vgetq_lane_f16(temp, 2);
|
||||
fp16_ptr[full_blocks * 8 + 3] = vgetq_lane_f16(temp, 3);
|
||||
fp16_ptr[full_blocks * 8 + 4] = vgetq_lane_f16(temp, 4);
|
||||
fp16_ptr[full_blocks * 8 + 5] = vgetq_lane_f16(temp, 5);
|
||||
fp16_ptr[full_blocks * 8 + 6] = vgetq_lane_f16(temp, 6);
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
struct BF16Vec8 : public Vec<BF16Vec8> {
|
||||
@ -108,16 +163,17 @@ struct BF16Vec8 : public Vec<BF16Vec8> {
|
||||
|
||||
bfloat16x8_t reg;
|
||||
|
||||
explicit BF16Vec8(const void *ptr)
|
||||
: reg(*reinterpret_cast<const bfloat16x8_t *>(ptr)) {};
|
||||
explicit BF16Vec8(const void* ptr)
|
||||
: reg(*reinterpret_cast<const bfloat16x8_t*>(ptr)) {};
|
||||
|
||||
explicit BF16Vec8(bfloat16x8_t data) : reg(data) {};
|
||||
|
||||
explicit BF16Vec8(const FP32Vec8 &);
|
||||
explicit BF16Vec8(const FP32Vec8&);
|
||||
|
||||
explicit BF16Vec8(float32x4x2_t v) : reg(vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[0]), v.val[1])) {};
|
||||
explicit BF16Vec8(float32x4x2_t v)
|
||||
: reg(vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[0]), v.val[1])) {};
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<bfloat16x8_t *>(ptr) = reg; }
|
||||
void save(void* ptr) const { *reinterpret_cast<bfloat16x8_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
@ -125,19 +181,18 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
|
||||
bfloat16x8x2_t reg;
|
||||
|
||||
explicit BF16Vec16(const void *ptr)
|
||||
: reg(*reinterpret_cast<const bfloat16x8x2_t *>(ptr)) {};
|
||||
explicit BF16Vec16(const void* ptr)
|
||||
: reg(*reinterpret_cast<const bfloat16x8x2_t*>(ptr)) {};
|
||||
|
||||
explicit BF16Vec16(bfloat16x8x2_t data) : reg(data) {};
|
||||
|
||||
explicit BF16Vec16(const FP32Vec16 &);
|
||||
explicit BF16Vec16(const FP32Vec16&);
|
||||
|
||||
explicit BF16Vec16(float32x4x4_t v) : reg({
|
||||
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[0]), v.val[1]),
|
||||
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[2]), v.val[3])
|
||||
}){};
|
||||
explicit BF16Vec16(float32x4x4_t v)
|
||||
: reg({vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[0]), v.val[1]),
|
||||
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[2]), v.val[3])}) {};
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<bfloat16x8x2_t *>(ptr) = reg; };
|
||||
void save(void* ptr) const { *reinterpret_cast<bfloat16x8x2_t*>(ptr) = reg; };
|
||||
};
|
||||
|
||||
struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
@ -145,19 +200,15 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
|
||||
bfloat16x8x4_t reg;
|
||||
|
||||
explicit BF16Vec32(const void *ptr)
|
||||
: reg(*reinterpret_cast<const bfloat16x8x4_t *>(ptr)) {};
|
||||
explicit BF16Vec32(const void* ptr)
|
||||
: reg(*reinterpret_cast<const bfloat16x8x4_t*>(ptr)) {};
|
||||
|
||||
explicit BF16Vec32(bfloat16x8x4_t data) : reg(data) {};
|
||||
|
||||
explicit BF16Vec32(const BF16Vec8 &vec8_data) : reg({
|
||||
vec8_data.reg,
|
||||
vec8_data.reg,
|
||||
vec8_data.reg,
|
||||
vec8_data.reg
|
||||
}) {};
|
||||
explicit BF16Vec32(const BF16Vec8& vec8_data)
|
||||
: reg({vec8_data.reg, vec8_data.reg, vec8_data.reg, vec8_data.reg}) {};
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<bfloat16x8x4_t *>(ptr) = reg; };
|
||||
void save(void* ptr) const { *reinterpret_cast<bfloat16x8x4_t*>(ptr) = reg; };
|
||||
};
|
||||
#endif
|
||||
|
||||
@ -175,11 +226,11 @@ struct FP32Vec4 : public Vec<FP32Vec4> {
|
||||
|
||||
explicit FP32Vec4() : reg(vdupq_n_f32(0.0f)) {};
|
||||
|
||||
explicit FP32Vec4(const float *ptr) : reg(vld1q_f32(ptr)) {};
|
||||
explicit FP32Vec4(const float* ptr) : reg(vld1q_f32(ptr)) {};
|
||||
|
||||
explicit FP32Vec4(float32x4_t data) : reg(data) {};
|
||||
|
||||
explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {};
|
||||
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {};
|
||||
};
|
||||
|
||||
struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
@ -195,32 +246,37 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
|
||||
explicit FP32Vec8() : reg({vmovq_n_f32(0.0), vmovq_n_f32(0.0)}) {};
|
||||
|
||||
explicit FP32Vec8(const float *ptr) : reg({vld1q_f32(ptr), vld1q_f32(ptr + 4)}) {};
|
||||
explicit FP32Vec8(const float* ptr)
|
||||
: reg({vld1q_f32(ptr), vld1q_f32(ptr + 4)}) {};
|
||||
|
||||
explicit FP32Vec8(float32x4x2_t data) : reg(data) {};
|
||||
|
||||
explicit FP32Vec8(const FP32Vec8 &data) : reg(data.reg) {};
|
||||
explicit FP32Vec8(const FP32Vec8& data) : reg(data.reg) {};
|
||||
|
||||
explicit FP32Vec8(const FP16Vec8 &v) {
|
||||
reg.val[0] = vcvt_f32_f16(vget_low_f16(v.reg));
|
||||
reg.val[1] = vcvt_f32_f16(vget_high_f16(v.reg));
|
||||
};
|
||||
explicit FP32Vec8(const FP16Vec8& v) {
|
||||
reg.val[0] = vcvt_f32_f16(vget_low_f16(v.reg));
|
||||
reg.val[1] = vcvt_f32_f16(vget_high_f16(v.reg));
|
||||
};
|
||||
|
||||
explicit FP32Vec8(float16x8_t v) : reg({vcvt_f32_f16(vget_low_f16(v)), vcvt_f32_f16(vget_high_f16(v))}) {};
|
||||
explicit FP32Vec8(float16x8_t v)
|
||||
: reg({vcvt_f32_f16(vget_low_f16(v)), vcvt_f32_f16(vget_high_f16(v))}) {};
|
||||
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
|
||||
explicit FP32Vec8(bfloat16x8_t v) : reg({vcvtq_low_f32_bf16(v), vcvtq_high_f32_bf16(v)}) {};
|
||||
explicit FP32Vec8(bfloat16x8_t v)
|
||||
: reg({vcvtq_low_f32_bf16(v), vcvtq_high_f32_bf16(v)}) {};
|
||||
|
||||
explicit FP32Vec8(const BF16Vec8 &v) : reg({vcvtq_low_f32_bf16(v.reg), vcvtq_high_f32_bf16(v.reg)}) {};
|
||||
explicit FP32Vec8(const BF16Vec8& v)
|
||||
: reg({vcvtq_low_f32_bf16(v.reg), vcvtq_high_f32_bf16(v.reg)}) {};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
float reduce_sum() const {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
float answer = 0;
|
||||
unroll_loop<int, VEC_ELEM_NUM>([&answer, &ar](int i) { answer += ar.values[i]; });
|
||||
unroll_loop<int, VEC_ELEM_NUM>(
|
||||
[&answer, &ar](int i) { answer += ar.values[i]; });
|
||||
|
||||
return answer;
|
||||
}
|
||||
@ -267,10 +323,14 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
|
||||
float32x2_t er_vec0 = {static_cast<float32_t>(erf(ar.values[0])), static_cast<float32_t>(erf(ar.values[1]))};
|
||||
float32x2_t er_vec1 = {static_cast<float32_t>(erf(ar.values[2])), static_cast<float32_t>(erf(ar.values[3]))};
|
||||
float32x2_t er_vec2 = {static_cast<float32_t>(erf(ar.values[4])), static_cast<float32_t>(erf(ar.values[5]))};
|
||||
float32x2_t er_vec3 = {static_cast<float32_t>(erf(ar.values[6])), static_cast<float32_t>(erf(ar.values[7]))};
|
||||
float32x2_t er_vec0 = {static_cast<float32_t>(erf(ar.values[0])),
|
||||
static_cast<float32_t>(erf(ar.values[1]))};
|
||||
float32x2_t er_vec1 = {static_cast<float32_t>(erf(ar.values[2])),
|
||||
static_cast<float32_t>(erf(ar.values[3]))};
|
||||
float32x2_t er_vec2 = {static_cast<float32_t>(erf(ar.values[4])),
|
||||
static_cast<float32_t>(erf(ar.values[5]))};
|
||||
float32x2_t er_vec3 = {static_cast<float32_t>(erf(ar.values[6])),
|
||||
static_cast<float32_t>(erf(ar.values[7]))};
|
||||
|
||||
float32x4_t result0 = vcombine_f32(er_vec0, er_vec1);
|
||||
float32x4_t result1 = vcombine_f32(er_vec2, er_vec3);
|
||||
@ -280,25 +340,29 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
result.val[1] = result1;
|
||||
|
||||
return FP32Vec8(result);
|
||||
}
|
||||
|
||||
FP32Vec8 operator*(const FP32Vec8 &b) const {
|
||||
return FP32Vec8(float32x4x2_t({vmulq_f32(reg.val[0], b.reg.val[0]), vmulq_f32(reg.val[1], b.reg.val[1])}));
|
||||
}
|
||||
|
||||
FP32Vec8 operator+(const FP32Vec8 &b) const {
|
||||
return FP32Vec8(float32x4x2_t({vaddq_f32(reg.val[0], b.reg.val[0]), vaddq_f32(reg.val[1], b.reg.val[1])}));
|
||||
FP32Vec8 operator*(const FP32Vec8& b) const {
|
||||
return FP32Vec8(float32x4x2_t({vmulq_f32(reg.val[0], b.reg.val[0]),
|
||||
vmulq_f32(reg.val[1], b.reg.val[1])}));
|
||||
}
|
||||
|
||||
FP32Vec8 operator-(const FP32Vec8 &b) const {
|
||||
return FP32Vec8(float32x4x2_t({vsubq_f32(reg.val[0], b.reg.val[0]), vsubq_f32(reg.val[1], b.reg.val[1])}));
|
||||
FP32Vec8 operator+(const FP32Vec8& b) const {
|
||||
return FP32Vec8(float32x4x2_t({vaddq_f32(reg.val[0], b.reg.val[0]),
|
||||
vaddq_f32(reg.val[1], b.reg.val[1])}));
|
||||
}
|
||||
|
||||
FP32Vec8 operator/(const FP32Vec8 &b) const {
|
||||
return FP32Vec8(float32x4x2_t({vdivq_f32(reg.val[0], b.reg.val[0]), vdivq_f32(reg.val[1], b.reg.val[1])}));
|
||||
FP32Vec8 operator-(const FP32Vec8& b) const {
|
||||
return FP32Vec8(float32x4x2_t({vsubq_f32(reg.val[0], b.reg.val[0]),
|
||||
vsubq_f32(reg.val[1], b.reg.val[1])}));
|
||||
}
|
||||
|
||||
void save(float *ptr) const {
|
||||
FP32Vec8 operator/(const FP32Vec8& b) const {
|
||||
return FP32Vec8(float32x4x2_t({vdivq_f32(reg.val[0], b.reg.val[0]),
|
||||
vdivq_f32(reg.val[1], b.reg.val[1])}));
|
||||
}
|
||||
|
||||
void save(float* ptr) const {
|
||||
vst1q_f32(ptr, reg.val[0]);
|
||||
vst1q_f32(ptr + 4, reg.val[1]);
|
||||
}
|
||||
@ -313,103 +377,100 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
|
||||
float32x4x4_t reg;
|
||||
|
||||
explicit FP32Vec16(float v) : reg({vmovq_n_f32(v), vmovq_n_f32(v), vmovq_n_f32(v), vmovq_n_f32(v)}) {}
|
||||
explicit FP32Vec16(float v)
|
||||
: reg({vmovq_n_f32(v), vmovq_n_f32(v), vmovq_n_f32(v), vmovq_n_f32(v)}) {}
|
||||
|
||||
explicit FP32Vec16() : reg({vmovq_n_f32(0.0), vmovq_n_f32(0.0), vmovq_n_f32(0.0), vmovq_n_f32(0.0)}) {}
|
||||
explicit FP32Vec16()
|
||||
: reg({vmovq_n_f32(0.0), vmovq_n_f32(0.0), vmovq_n_f32(0.0),
|
||||
vmovq_n_f32(0.0)}) {}
|
||||
|
||||
explicit FP32Vec16(const float *ptr) : reg({vld1q_f32(ptr), vld1q_f32(ptr + 4), vld1q_f32(ptr + 8), vld1q_f32(ptr + 12)}) {}
|
||||
explicit FP32Vec16(const float* ptr)
|
||||
: reg({vld1q_f32(ptr), vld1q_f32(ptr + 4), vld1q_f32(ptr + 8),
|
||||
vld1q_f32(ptr + 12)}) {}
|
||||
|
||||
explicit FP32Vec16(float32x4x4_t data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec8 &data) {
|
||||
reg.val[0] = data.reg.val[0];
|
||||
reg.val[1] = data.reg.val[1];
|
||||
reg.val[2] = data.reg.val[0];
|
||||
reg.val[3] = data.reg.val[1];
|
||||
explicit FP32Vec16(const FP32Vec8& data) {
|
||||
reg.val[0] = data.reg.val[0];
|
||||
reg.val[1] = data.reg.val[1];
|
||||
reg.val[2] = data.reg.val[0];
|
||||
reg.val[3] = data.reg.val[1];
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec16 &data) : reg(data.reg) {}
|
||||
explicit FP32Vec16(const FP32Vec16& data) : reg(data.reg) {}
|
||||
|
||||
explicit FP32Vec16(const FP16Vec8 &v) : FP32Vec16(FP32Vec8(v.reg)) {}
|
||||
explicit FP32Vec16(const FP16Vec8& v) : FP32Vec16(FP32Vec8(v.reg)) {}
|
||||
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
explicit FP32Vec16(bfloat16x8x2_t v) : reg({
|
||||
vcvtq_low_f32_bf16(v.val[0]),
|
||||
vcvtq_high_f32_bf16(v.val[0]),
|
||||
vcvtq_low_f32_bf16(v.val[1]),
|
||||
vcvtq_high_f32_bf16(v.val[1])
|
||||
}) {};
|
||||
#endif
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
explicit FP32Vec16(bfloat16x8x2_t v)
|
||||
: reg({vcvtq_low_f32_bf16(v.val[0]), vcvtq_high_f32_bf16(v.val[0]),
|
||||
vcvtq_low_f32_bf16(v.val[1]), vcvtq_high_f32_bf16(v.val[1])}) {};
|
||||
#endif
|
||||
|
||||
explicit FP32Vec16(const FP32Vec4 &data) {
|
||||
explicit FP32Vec16(const FP32Vec4& data) {
|
||||
reg.val[0] = data.reg;
|
||||
reg.val[1] = data.reg;
|
||||
reg.val[2] = data.reg;
|
||||
reg.val[3] = data.reg;
|
||||
};
|
||||
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
explicit FP32Vec16(const BF16Vec16 &v) : reg({
|
||||
vcvtq_low_f32_bf16(v.reg.val[0]),
|
||||
vcvtq_high_f32_bf16(v.reg.val[0]),
|
||||
vcvtq_low_f32_bf16(v.reg.val[1]),
|
||||
vcvtq_high_f32_bf16(v.reg.val[1])
|
||||
}) {};
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
explicit FP32Vec16(const BF16Vec16& v)
|
||||
: reg({vcvtq_low_f32_bf16(v.reg.val[0]),
|
||||
vcvtq_high_f32_bf16(v.reg.val[0]),
|
||||
vcvtq_low_f32_bf16(v.reg.val[1]),
|
||||
vcvtq_high_f32_bf16(v.reg.val[1])}) {};
|
||||
|
||||
explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {};
|
||||
#endif
|
||||
explicit FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
|
||||
#endif
|
||||
|
||||
explicit FP32Vec16(const FP16Vec16 &v) {
|
||||
reg.val[0] = vcvt_f32_f16(vget_low_f16(v.reg.val[0]));
|
||||
reg.val[1] = vcvt_f32_f16(vget_high_f16(v.reg.val[0]));
|
||||
reg.val[2] = vcvt_f32_f16(vget_low_f16(v.reg.val[1]));
|
||||
reg.val[3] = vcvt_f32_f16(vget_high_f16(v.reg.val[1]));
|
||||
explicit FP32Vec16(const FP16Vec16& v) {
|
||||
reg.val[0] = vcvt_f32_f16(vget_low_f16(v.reg.val[0]));
|
||||
reg.val[1] = vcvt_f32_f16(vget_high_f16(v.reg.val[0]));
|
||||
reg.val[2] = vcvt_f32_f16(vget_low_f16(v.reg.val[1]));
|
||||
reg.val[3] = vcvt_f32_f16(vget_high_f16(v.reg.val[1]));
|
||||
};
|
||||
|
||||
FP32Vec16 operator+(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(float32x4x4_t({
|
||||
vaddq_f32(reg.val[0], b.reg.val[0]),
|
||||
vaddq_f32(reg.val[1], b.reg.val[1]),
|
||||
vaddq_f32(reg.val[2], b.reg.val[2]),
|
||||
vaddq_f32(reg.val[3], b.reg.val[3])}));
|
||||
FP32Vec16 operator+(const FP32Vec16& b) const {
|
||||
return FP32Vec16(float32x4x4_t({vaddq_f32(reg.val[0], b.reg.val[0]),
|
||||
vaddq_f32(reg.val[1], b.reg.val[1]),
|
||||
vaddq_f32(reg.val[2], b.reg.val[2]),
|
||||
vaddq_f32(reg.val[3], b.reg.val[3])}));
|
||||
};
|
||||
|
||||
FP32Vec16 operator*(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(float32x4x4_t({
|
||||
vmulq_f32(reg.val[0], b.reg.val[0]),
|
||||
vmulq_f32(reg.val[1], b.reg.val[1]),
|
||||
vmulq_f32(reg.val[2], b.reg.val[2]),
|
||||
vmulq_f32(reg.val[3], b.reg.val[3])}));
|
||||
FP32Vec16 operator*(const FP32Vec16& b) const {
|
||||
return FP32Vec16(float32x4x4_t({vmulq_f32(reg.val[0], b.reg.val[0]),
|
||||
vmulq_f32(reg.val[1], b.reg.val[1]),
|
||||
vmulq_f32(reg.val[2], b.reg.val[2]),
|
||||
vmulq_f32(reg.val[3], b.reg.val[3])}));
|
||||
};
|
||||
|
||||
FP32Vec16 operator-(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(float32x4x4_t({
|
||||
vsubq_f32(reg.val[0], b.reg.val[0]),
|
||||
vsubq_f32(reg.val[1], b.reg.val[1]),
|
||||
vsubq_f32(reg.val[2], b.reg.val[2]),
|
||||
vsubq_f32(reg.val[3], b.reg.val[3])
|
||||
}));
|
||||
FP32Vec16 operator-(const FP32Vec16& b) const {
|
||||
return FP32Vec16(float32x4x4_t({vsubq_f32(reg.val[0], b.reg.val[0]),
|
||||
vsubq_f32(reg.val[1], b.reg.val[1]),
|
||||
vsubq_f32(reg.val[2], b.reg.val[2]),
|
||||
vsubq_f32(reg.val[3], b.reg.val[3])}));
|
||||
};
|
||||
|
||||
FP32Vec16 operator/(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(float32x4x4_t({
|
||||
vdivq_f32(reg.val[0], b.reg.val[0]),
|
||||
vdivq_f32(reg.val[1], b.reg.val[1]),
|
||||
vdivq_f32(reg.val[2], b.reg.val[2]),
|
||||
vdivq_f32(reg.val[3], b.reg.val[3])
|
||||
}));
|
||||
FP32Vec16 operator/(const FP32Vec16& b) const {
|
||||
return FP32Vec16(float32x4x4_t({vdivq_f32(reg.val[0], b.reg.val[0]),
|
||||
vdivq_f32(reg.val[1], b.reg.val[1]),
|
||||
vdivq_f32(reg.val[2], b.reg.val[2]),
|
||||
vdivq_f32(reg.val[3], b.reg.val[3])}));
|
||||
};
|
||||
|
||||
float reduce_sum() const {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
float answer = 0;
|
||||
unroll_loop<int, VEC_ELEM_NUM>([&answer, &ar](int i) { answer += ar.values[i]; });
|
||||
unroll_loop<int, VEC_ELEM_NUM>(
|
||||
[&answer, &ar](int i) { answer += ar.values[i]; });
|
||||
|
||||
return answer;
|
||||
};
|
||||
|
||||
template <int group_size> float reduce_sub_sum(int idx) {
|
||||
template <int group_size>
|
||||
float reduce_sub_sum(int idx) {
|
||||
static_assert(VEC_ELEM_NUM % group_size == 0);
|
||||
|
||||
AliasReg ar;
|
||||
@ -422,7 +483,7 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
return answer;
|
||||
};
|
||||
|
||||
void save(float *ptr) const {
|
||||
void save(float* ptr) const {
|
||||
vst1q_f32(ptr, reg.val[0]);
|
||||
vst1q_f32(ptr + 4, reg.val[1]);
|
||||
vst1q_f32(ptr + 8, reg.val[2]);
|
||||
@ -430,43 +491,59 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
};
|
||||
};
|
||||
|
||||
template <typename T> struct VecType { using vec_type = void; };
|
||||
template <typename T>
|
||||
struct VecType {
|
||||
using vec_type = void;
|
||||
};
|
||||
|
||||
template <typename T> using vec_t = typename VecType<T>::vec_type;
|
||||
template <typename T>
|
||||
using vec_t = typename VecType<T>::vec_type;
|
||||
|
||||
template <> struct VecType<float> { using vec_type = FP32Vec8; };
|
||||
template <>
|
||||
struct VecType<float> {
|
||||
using vec_type = FP32Vec8;
|
||||
};
|
||||
|
||||
template <> struct VecType<c10::Half> { using vec_type = FP16Vec8; };
|
||||
template <>
|
||||
struct VecType<c10::Half> {
|
||||
using vec_type = FP16Vec8;
|
||||
};
|
||||
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
template <> struct VecType<c10::BFloat16> { using vec_type = BF16Vec8; };
|
||||
template <>
|
||||
struct VecType<c10::BFloat16> {
|
||||
using vec_type = BF16Vec8;
|
||||
};
|
||||
#endif
|
||||
|
||||
template <typename T> void storeFP32(float v, T *ptr) { *ptr = v; }
|
||||
|
||||
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
|
||||
*reinterpret_cast<__fp16 *>(ptr) = v;
|
||||
template <typename T>
|
||||
void storeFP32(float v, T* ptr) {
|
||||
*ptr = v;
|
||||
}
|
||||
|
||||
inline FP16Vec16::FP16Vec16(const FP32Vec16 &v) {
|
||||
float16x4_t low_0 = vcvt_f16_f32(v.reg.val[0]);
|
||||
float16x4_t high_0 = vcvt_f16_f32(v.reg.val[1]);
|
||||
float16x4_t low_1 = vcvt_f16_f32(v.reg.val[2]);
|
||||
float16x4_t high_1 = vcvt_f16_f32(v.reg.val[3]);
|
||||
template <>
|
||||
inline void storeFP32<c10::Half>(float v, c10::Half* ptr) {
|
||||
*reinterpret_cast<__fp16*>(ptr) = v;
|
||||
}
|
||||
|
||||
reg.val[0] = vcombine_f16(low_0, high_0);
|
||||
reg.val[1] = vcombine_f16(low_1, high_1);
|
||||
inline FP16Vec16::FP16Vec16(const FP32Vec16& v) {
|
||||
float16x4_t low_0 = vcvt_f16_f32(v.reg.val[0]);
|
||||
float16x4_t high_0 = vcvt_f16_f32(v.reg.val[1]);
|
||||
float16x4_t low_1 = vcvt_f16_f32(v.reg.val[2]);
|
||||
float16x4_t high_1 = vcvt_f16_f32(v.reg.val[3]);
|
||||
|
||||
reg.val[0] = vcombine_f16(low_0, high_0);
|
||||
reg.val[1] = vcombine_f16(low_1, high_1);
|
||||
};
|
||||
|
||||
inline FP16Vec8 :: FP16Vec8(const FP32Vec8 &v) {
|
||||
float16x4_t lower_half = vcvt_f16_f32(v.reg.val[0]);
|
||||
float16x4_t upper_half = vcvt_f16_f32(v.reg.val[1]);
|
||||
inline FP16Vec8 ::FP16Vec8(const FP32Vec8& v) {
|
||||
float16x4_t lower_half = vcvt_f16_f32(v.reg.val[0]);
|
||||
float16x4_t upper_half = vcvt_f16_f32(v.reg.val[1]);
|
||||
|
||||
reg = vcombine_f16(lower_half, upper_half);
|
||||
reg = vcombine_f16(lower_half, upper_half);
|
||||
};
|
||||
|
||||
inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) {
|
||||
|
||||
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
|
||||
acc.reg.val[0] = vfmaq_f32(acc.reg.val[0], a.reg.val[0], b.reg.val[0]);
|
||||
acc.reg.val[1] = vfmaq_f32(acc.reg.val[1], a.reg.val[1], b.reg.val[1]);
|
||||
acc.reg.val[2] = vfmaq_f32(acc.reg.val[2], a.reg.val[2], b.reg.val[2]);
|
||||
@ -474,8 +551,7 @@ inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) {
|
||||
};
|
||||
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) {
|
||||
|
||||
inline void fma(FP32Vec16& acc, BF16Vec32& a, BF16Vec32& b) {
|
||||
float32x4_t a0_low = vcvt_f32_bf16(vget_low_bf16(a.reg.val[0]));
|
||||
float32x4_t a0_high = vcvt_f32_bf16(vget_high_bf16(a.reg.val[0]));
|
||||
float32x4_t a1_low = vcvt_f32_bf16(vget_low_bf16(a.reg.val[1]));
|
||||
@ -494,22 +570,22 @@ inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) {
|
||||
#endif
|
||||
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) : reg(vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.reg.val[0]), v.reg.val[1])) {};
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8& v)
|
||||
: reg(vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.reg.val[0]), v.reg.val[1])) {
|
||||
};
|
||||
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) : reg({
|
||||
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.reg.val[0]), v.reg.val[1]),
|
||||
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.reg.val[2]), v.reg.val[3])
|
||||
}){};
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16& v)
|
||||
: reg({vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.reg.val[0]), v.reg.val[1]),
|
||||
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.reg.val[2]),
|
||||
v.reg.val[3])}) {};
|
||||
#endif
|
||||
|
||||
inline void prefetch(const void *addr) {
|
||||
__builtin_prefetch(addr, 0, 1);
|
||||
};
|
||||
inline void prefetch(const void* addr) { __builtin_prefetch(addr, 0, 1); };
|
||||
|
||||
#ifdef ARM_BF16_SUPPORT
|
||||
template <>
|
||||
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
|
||||
*reinterpret_cast<__bf16 *>(ptr) = vcvth_bf16_f32(v);
|
||||
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
|
||||
*reinterpret_cast<__bf16*>(ptr) = vcvth_bf16_f32(v);
|
||||
};
|
||||
#endif
|
||||
};
|
||||
}; // namespace vec_op
|
||||
@ -9,38 +9,40 @@
|
||||
namespace vec_op {
|
||||
|
||||
// FIXME: FP16 is not fully supported in Torch-CPU
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
|
||||
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
||||
|
||||
#ifndef CPU_OP_GUARD
|
||||
#define CPU_KERNEL_GUARD_IN(NAME)
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#define CPU_KERNEL_GUARD_IN(NAME)
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#else
|
||||
#define CPU_KERNEL_GUARD_IN(NAME) \
|
||||
std::cout << #NAME << " invoked." << std::endl;
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME) std::cout << #NAME << " exit." << std::endl;
|
||||
#define CPU_KERNEL_GUARD_IN(NAME) \
|
||||
std::cout << #NAME << " invoked." << std::endl;
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME) \
|
||||
std::cout << #NAME << " exit." << std::endl;
|
||||
#endif
|
||||
|
||||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
namespace {
|
||||
template <typename T, T... indexes, typename F>
|
||||
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F &&f) {
|
||||
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
|
||||
(f(std::integral_constant<T, indexes>{}), ...);
|
||||
}
|
||||
}; // namespace
|
||||
}; // namespace
|
||||
|
||||
template <typename T, T count, typename F,
|
||||
typename = std::enable_if_t<std::is_invocable_v<F, T>>>
|
||||
constexpr void unroll_loop(F &&f) {
|
||||
constexpr void unroll_loop(F&& f) {
|
||||
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
|
||||
}
|
||||
|
||||
template <typename T> struct Vec {
|
||||
template <typename T>
|
||||
struct Vec {
|
||||
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
|
||||
};
|
||||
|
||||
@ -68,12 +70,14 @@ struct BF16Vec8 : public Vec<BF16Vec8> {
|
||||
|
||||
__vector signed short reg;
|
||||
|
||||
explicit BF16Vec8(const void *ptr)
|
||||
: reg((__vector signed short)vec_xl(0, (__vector signed short *)ptr)) {}
|
||||
explicit BF16Vec8(const void* ptr)
|
||||
: reg((__vector signed short)vec_xl(0, (__vector signed short*)ptr)) {}
|
||||
|
||||
explicit BF16Vec8(const FP32Vec8 &);
|
||||
explicit BF16Vec8(const FP32Vec8&);
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<__vector signed short *>(ptr) = reg; }
|
||||
void save(void* ptr) const {
|
||||
*reinterpret_cast<__vector signed short*>(ptr) = reg;
|
||||
}
|
||||
};
|
||||
|
||||
struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
@ -81,18 +85,18 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
|
||||
ss16x8x2_t reg;
|
||||
|
||||
explicit BF16Vec16(const void *ptr) {
|
||||
explicit BF16Vec16(const void* ptr) {
|
||||
// Load 256 bits in two parts
|
||||
reg.val[0] = (__vector signed short)vec_xl(0, (signed short *)ptr);
|
||||
reg.val[1] = (__vector signed short)vec_xl(16, (signed short *)ptr);
|
||||
reg.val[0] = (__vector signed short)vec_xl(0, (signed short*)ptr);
|
||||
reg.val[1] = (__vector signed short)vec_xl(16, (signed short*)ptr);
|
||||
}
|
||||
|
||||
explicit BF16Vec16(const FP32Vec16 &);
|
||||
explicit BF16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void *ptr) const {
|
||||
void save(void* ptr) const {
|
||||
// Save 256 bits in two parts
|
||||
vec_xst(reg.val[0], 0, (signed short *)ptr);
|
||||
vec_xst(reg.val[1], 16, (signed short *)ptr);
|
||||
vec_xst(reg.val[0], 0, (signed short*)ptr);
|
||||
vec_xst(reg.val[1], 16, (signed short*)ptr);
|
||||
}
|
||||
};
|
||||
|
||||
@ -102,19 +106,15 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
constexpr static int VEC_ELEM_NUM = 32;
|
||||
|
||||
ss16x8x4_t reg;
|
||||
explicit BF16Vec32(const void *ptr)
|
||||
: reg(*reinterpret_cast<const ss16x8x4_t *>(ptr)) {}
|
||||
explicit BF16Vec32(const void* ptr)
|
||||
: reg(*reinterpret_cast<const ss16x8x4_t*>(ptr)) {}
|
||||
|
||||
explicit BF16Vec32(ss16x8x4_t data) : reg(data) {}
|
||||
|
||||
explicit BF16Vec32(const BF16Vec8 &vec8_data) : reg({
|
||||
vec8_data.reg,
|
||||
vec8_data.reg,
|
||||
vec8_data.reg,
|
||||
vec8_data.reg
|
||||
}) {}
|
||||
explicit BF16Vec32(const BF16Vec8& vec8_data)
|
||||
: reg({vec8_data.reg, vec8_data.reg, vec8_data.reg, vec8_data.reg}) {}
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<ss16x8x4_t *>(ptr) = reg; }
|
||||
void save(void* ptr) const { *reinterpret_cast<ss16x8x4_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct FP32Vec4 : public Vec<FP32Vec4> {
|
||||
@ -130,11 +130,11 @@ struct FP32Vec4 : public Vec<FP32Vec4> {
|
||||
|
||||
explicit FP32Vec4() : reg(vec_splats(0.0f)) {}
|
||||
|
||||
explicit FP32Vec4(const float *ptr) : reg(vec_xl(0, ptr)) {}
|
||||
explicit FP32Vec4(const float* ptr) : reg(vec_xl(0, ptr)) {}
|
||||
|
||||
explicit FP32Vec4(__vector float data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {}
|
||||
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {}
|
||||
};
|
||||
|
||||
struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
@ -156,19 +156,19 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
reg.val[1] = vec_splats(0.0f);
|
||||
}
|
||||
|
||||
explicit FP32Vec8(const float *ptr) {
|
||||
explicit FP32Vec8(const float* ptr) {
|
||||
reg.val[0] = vec_xl(0, ptr);
|
||||
reg.val[1] = vec_xl(16, ptr);
|
||||
}
|
||||
|
||||
explicit FP32Vec8(f32x4x2_t data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec8(const FP32Vec8 &data) {
|
||||
explicit FP32Vec8(const FP32Vec8& data) {
|
||||
reg.val[0] = data.reg.val[0];
|
||||
reg.val[1] = data.reg.val[1];
|
||||
}
|
||||
|
||||
explicit FP32Vec8(const BF16Vec8 &v) {
|
||||
explicit FP32Vec8(const BF16Vec8& v) {
|
||||
reg.val[0] = (__vector float)vec_mergeh(zero, v.reg);
|
||||
reg.val[1] = (__vector float)vec_mergel(zero, v.reg);
|
||||
}
|
||||
@ -177,7 +177,8 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
float result = 0;
|
||||
unroll_loop<int, VEC_ELEM_NUM>([&result, &ar](int i) { result += ar.values[i]; });
|
||||
unroll_loop<int, VEC_ELEM_NUM>(
|
||||
[&result, &ar](int i) { result += ar.values[i]; });
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -230,23 +231,27 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
return FP32Vec8(f32x4x2_t({ret.val[0], ret.val[1]}));
|
||||
}
|
||||
|
||||
FP32Vec8 operator*(const FP32Vec8 &b) const {
|
||||
return FP32Vec8({vec_mul(reg.val[0], b.reg.val[0]), vec_mul(reg.val[1], b.reg.val[1])});
|
||||
FP32Vec8 operator*(const FP32Vec8& b) const {
|
||||
return FP32Vec8(
|
||||
{vec_mul(reg.val[0], b.reg.val[0]), vec_mul(reg.val[1], b.reg.val[1])});
|
||||
}
|
||||
|
||||
FP32Vec8 operator+(const FP32Vec8 &b) const {
|
||||
return FP32Vec8({vec_add(reg.val[0], b.reg.val[0]), vec_add(reg.val[1], b.reg.val[1])});
|
||||
FP32Vec8 operator+(const FP32Vec8& b) const {
|
||||
return FP32Vec8(
|
||||
{vec_add(reg.val[0], b.reg.val[0]), vec_add(reg.val[1], b.reg.val[1])});
|
||||
}
|
||||
|
||||
FP32Vec8 operator-(const FP32Vec8 &b) const {
|
||||
return FP32Vec8({vec_sub(reg.val[0], b.reg.val[0]), vec_sub(reg.val[1], b.reg.val[1])});
|
||||
FP32Vec8 operator-(const FP32Vec8& b) const {
|
||||
return FP32Vec8(
|
||||
{vec_sub(reg.val[0], b.reg.val[0]), vec_sub(reg.val[1], b.reg.val[1])});
|
||||
}
|
||||
|
||||
FP32Vec8 operator/(const FP32Vec8 &b) const {
|
||||
return FP32Vec8({vec_div(reg.val[0], b.reg.val[0]), vec_div(reg.val[1], b.reg.val[1])});
|
||||
FP32Vec8 operator/(const FP32Vec8& b) const {
|
||||
return FP32Vec8(
|
||||
{vec_div(reg.val[0], b.reg.val[0]), vec_div(reg.val[1], b.reg.val[1])});
|
||||
}
|
||||
|
||||
void save(float *ptr) const {
|
||||
void save(float* ptr) const {
|
||||
vec_xst(reg.val[0], 0, ptr);
|
||||
vec_xst(reg.val[1], 16, ptr);
|
||||
}
|
||||
@ -275,7 +280,7 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
reg.val[3] = vec_splats(0.0f);
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const float *ptr) {
|
||||
explicit FP32Vec16(const float* ptr) {
|
||||
reg.val[0] = vec_xl(0, ptr);
|
||||
reg.val[1] = vec_xl(16, ptr);
|
||||
reg.val[2] = vec_xl(32, ptr);
|
||||
@ -284,78 +289,76 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
|
||||
explicit FP32Vec16(f32x4x4_t data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec16 &data) {
|
||||
explicit FP32Vec16(const FP32Vec16& data) {
|
||||
reg.val[0] = data.reg.val[0];
|
||||
reg.val[1] = data.reg.val[1];
|
||||
reg.val[2] = data.reg.val[2];
|
||||
reg.val[3] = data.reg.val[3];
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec4 &data) {
|
||||
explicit FP32Vec16(const FP32Vec4& data) {
|
||||
reg.val[0] = data.reg;
|
||||
reg.val[1] = data.reg;
|
||||
reg.val[2] = data.reg;
|
||||
reg.val[3] = data.reg;
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec8 &data) {
|
||||
explicit FP32Vec16(const FP32Vec8& data) {
|
||||
reg.val[0] = data.reg.val[0];
|
||||
reg.val[1] = data.reg.val[1];
|
||||
reg.val[2] = data.reg.val[0];
|
||||
reg.val[3] = data.reg.val[1];
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec16 &v) {
|
||||
explicit FP32Vec16(const BF16Vec16& v) {
|
||||
reg.val[0] = (__vector float)vec_mergeh(zero, v.reg.val[0]);
|
||||
reg.val[1] = (__vector float)vec_mergel(zero, v.reg.val[0]);
|
||||
reg.val[2] = (__vector float)vec_mergeh(zero, v.reg.val[1]);
|
||||
reg.val[3] = (__vector float)vec_mergel(zero, v.reg.val[1]);
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
explicit FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
|
||||
FP32Vec16 operator*(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(f32x4x4_t({
|
||||
vec_mul(reg.val[0], b.reg.val[0]),
|
||||
vec_mul(reg.val[1], b.reg.val[1]),
|
||||
vec_mul(reg.val[2], b.reg.val[2]),
|
||||
vec_mul(reg.val[3], b.reg.val[3])}));
|
||||
FP32Vec16 operator*(const FP32Vec16& b) const {
|
||||
return FP32Vec16(f32x4x4_t({vec_mul(reg.val[0], b.reg.val[0]),
|
||||
vec_mul(reg.val[1], b.reg.val[1]),
|
||||
vec_mul(reg.val[2], b.reg.val[2]),
|
||||
vec_mul(reg.val[3], b.reg.val[3])}));
|
||||
}
|
||||
|
||||
FP32Vec16 operator+(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(f32x4x4_t({
|
||||
vec_add(reg.val[0], b.reg.val[0]),
|
||||
vec_add(reg.val[1], b.reg.val[1]),
|
||||
vec_add(reg.val[2], b.reg.val[2]),
|
||||
vec_add(reg.val[3], b.reg.val[3])}));
|
||||
FP32Vec16 operator+(const FP32Vec16& b) const {
|
||||
return FP32Vec16(f32x4x4_t({vec_add(reg.val[0], b.reg.val[0]),
|
||||
vec_add(reg.val[1], b.reg.val[1]),
|
||||
vec_add(reg.val[2], b.reg.val[2]),
|
||||
vec_add(reg.val[3], b.reg.val[3])}));
|
||||
}
|
||||
|
||||
FP32Vec16 operator-(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(f32x4x4_t({
|
||||
vec_sub(reg.val[0], b.reg.val[0]),
|
||||
vec_sub(reg.val[1], b.reg.val[1]),
|
||||
vec_sub(reg.val[2], b.reg.val[2]),
|
||||
vec_sub(reg.val[3], b.reg.val[3])}));
|
||||
FP32Vec16 operator-(const FP32Vec16& b) const {
|
||||
return FP32Vec16(f32x4x4_t({vec_sub(reg.val[0], b.reg.val[0]),
|
||||
vec_sub(reg.val[1], b.reg.val[1]),
|
||||
vec_sub(reg.val[2], b.reg.val[2]),
|
||||
vec_sub(reg.val[3], b.reg.val[3])}));
|
||||
}
|
||||
|
||||
FP32Vec16 operator/(const FP32Vec16 &b) const {
|
||||
return FP32Vec16(f32x4x4_t({
|
||||
vec_div(reg.val[0], b.reg.val[0]),
|
||||
vec_div(reg.val[1], b.reg.val[1]),
|
||||
vec_div(reg.val[2], b.reg.val[2]),
|
||||
vec_div(reg.val[3], b.reg.val[3])}));
|
||||
FP32Vec16 operator/(const FP32Vec16& b) const {
|
||||
return FP32Vec16(f32x4x4_t({vec_div(reg.val[0], b.reg.val[0]),
|
||||
vec_div(reg.val[1], b.reg.val[1]),
|
||||
vec_div(reg.val[2], b.reg.val[2]),
|
||||
vec_div(reg.val[3], b.reg.val[3])}));
|
||||
}
|
||||
|
||||
float reduce_sum() const {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
float result = 0;
|
||||
unroll_loop<int, VEC_ELEM_NUM>([&result, &ar](int i) { result += ar.values[i]; });
|
||||
unroll_loop<int, VEC_ELEM_NUM>(
|
||||
[&result, &ar](int i) { result += ar.values[i]; });
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
template <int group_size> float reduce_sub_sum(int idx) {
|
||||
template <int group_size>
|
||||
float reduce_sub_sum(int idx) {
|
||||
static_assert(VEC_ELEM_NUM % group_size == 0);
|
||||
|
||||
AliasReg ar;
|
||||
@ -368,7 +371,7 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
return result;
|
||||
}
|
||||
|
||||
void save(float *ptr) const {
|
||||
void save(float* ptr) const {
|
||||
vec_xst(reg.val[0], 0, ptr);
|
||||
vec_xst(reg.val[1], 16, ptr);
|
||||
vec_xst(reg.val[2], 32, ptr);
|
||||
@ -376,43 +379,62 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T> struct VecType { using vec_type = void; };
|
||||
template <typename T>
|
||||
struct VecType {
|
||||
using vec_type = void;
|
||||
};
|
||||
|
||||
template <typename T> using vec_t = typename VecType<T>::vec_type;
|
||||
template <typename T>
|
||||
using vec_t = typename VecType<T>::vec_type;
|
||||
|
||||
template <> struct VecType<float> { using vec_type = FP32Vec8; };
|
||||
template <>
|
||||
struct VecType<float> {
|
||||
using vec_type = FP32Vec8;
|
||||
};
|
||||
|
||||
template <> struct VecType<c10::BFloat16> { using vec_type = BF16Vec8; };
|
||||
template <>
|
||||
struct VecType<c10::BFloat16> {
|
||||
using vec_type = BF16Vec8;
|
||||
};
|
||||
|
||||
template <typename T> void storeFP32(float v, T *ptr) { *ptr = v; }
|
||||
template <typename T>
|
||||
void storeFP32(float v, T* ptr) {
|
||||
*ptr = v;
|
||||
}
|
||||
|
||||
inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) {
|
||||
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
|
||||
acc = acc + a * b;
|
||||
}
|
||||
|
||||
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
|
||||
c10::BFloat16 __attribute__((__may_alias__)) *v_ptr =
|
||||
reinterpret_cast<c10::BFloat16 *>(&v);
|
||||
template <>
|
||||
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
|
||||
c10::BFloat16 __attribute__((__may_alias__))* v_ptr =
|
||||
reinterpret_cast<c10::BFloat16*>(&v);
|
||||
*ptr = *(v_ptr + 1);
|
||||
}
|
||||
|
||||
#ifndef __VEC_CLASS_FP_NAN
|
||||
#define __VEC_CLASS_FP_NAN (1 << 6)
|
||||
#define __VEC_CLASS_FP_NAN (1 << 6)
|
||||
#endif
|
||||
|
||||
const static __vector unsigned char omask = { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 };
|
||||
const static __vector unsigned char omask = {0, 1, 4, 5, 8, 9, 12, 13,
|
||||
16, 17, 20, 21, 24, 25, 28, 29};
|
||||
#ifndef _ARCH_PWR10
|
||||
const static __vector unsigned int bias = { 0x00007fff, 0x00007fff, 0x00007fff, 0x00007fff };
|
||||
const static __vector unsigned int nan = { 0x7fc00000, 0x7fc00000, 0x7fc00000, 0x7fc00000 };
|
||||
const static __vector unsigned int sh16 = { 16, 16, 16, 16 };
|
||||
const static __vector unsigned int one = { 1, 1, 1, 1 };
|
||||
const static __vector unsigned int bias = {0x00007fff, 0x00007fff, 0x00007fff,
|
||||
0x00007fff};
|
||||
const static __vector unsigned int nan = {0x7fc00000, 0x7fc00000, 0x7fc00000,
|
||||
0x7fc00000};
|
||||
const static __vector unsigned int sh16 = {16, 16, 16, 16};
|
||||
const static __vector unsigned int one = {1, 1, 1, 1};
|
||||
#endif
|
||||
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) {
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8& v) {
|
||||
#ifdef _ARCH_PWR10
|
||||
__vector signed short ret[2];
|
||||
ret[0] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[0]);
|
||||
ret[1] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[1]);
|
||||
ret[0] = (__vector signed short)__builtin_vsx_xvcvspbf16(
|
||||
(__vector unsigned char)v.reg.val[0]);
|
||||
ret[1] = (__vector signed short)__builtin_vsx_xvcvspbf16(
|
||||
(__vector unsigned char)v.reg.val[1]);
|
||||
reg = vec_perm(ret[0], ret[1], omask);
|
||||
#elif defined(_ARCH_PWR9)
|
||||
__vector unsigned int inp0 = (__vector unsigned int)(v.reg.val[0]);
|
||||
@ -425,8 +447,10 @@ inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) {
|
||||
__vector unsigned int rnd1 = vec_add(lsb1, bias);
|
||||
inp0 = vec_add(inp0, rnd0);
|
||||
inp1 = vec_add(inp1, rnd1);
|
||||
__vector __bool int sel0 = vec_test_data_class(v.reg.val[0], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel1 = vec_test_data_class(v.reg.val[1], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel0 =
|
||||
vec_test_data_class(v.reg.val[0], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel1 =
|
||||
vec_test_data_class(v.reg.val[1], __VEC_CLASS_FP_NAN);
|
||||
inp0 = vec_sel(inp0, nan, sel0);
|
||||
inp1 = vec_sel(inp1, nan, sel1);
|
||||
inp0 = vec_sr(inp0, sh16);
|
||||
@ -435,13 +459,17 @@ inline BF16Vec8::BF16Vec8(const FP32Vec8 &v) {
|
||||
#endif
|
||||
}
|
||||
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) {
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
|
||||
#ifdef _ARCH_PWR10
|
||||
__vector signed short ret[4];
|
||||
ret[0] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[0]);
|
||||
ret[1] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[1]);
|
||||
ret[2] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[2]);
|
||||
ret[3] = (__vector signed short)__builtin_vsx_xvcvspbf16((__vector unsigned char)v.reg.val[3]);
|
||||
ret[0] = (__vector signed short)__builtin_vsx_xvcvspbf16(
|
||||
(__vector unsigned char)v.reg.val[0]);
|
||||
ret[1] = (__vector signed short)__builtin_vsx_xvcvspbf16(
|
||||
(__vector unsigned char)v.reg.val[1]);
|
||||
ret[2] = (__vector signed short)__builtin_vsx_xvcvspbf16(
|
||||
(__vector unsigned char)v.reg.val[2]);
|
||||
ret[3] = (__vector signed short)__builtin_vsx_xvcvspbf16(
|
||||
(__vector unsigned char)v.reg.val[3]);
|
||||
reg.val[0] = vec_perm(ret[0], ret[1], omask);
|
||||
reg.val[1] = vec_perm(ret[2], ret[3], omask);
|
||||
#elif defined(_ARCH_PWR9)
|
||||
@ -465,10 +493,14 @@ inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) {
|
||||
inp1 = vec_add(inp1, rnd1);
|
||||
inp2 = vec_add(inp2, rnd2);
|
||||
inp3 = vec_add(inp3, rnd3);
|
||||
__vector __bool int sel0 = vec_test_data_class(v.reg.val[0], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel1 = vec_test_data_class(v.reg.val[1], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel2 = vec_test_data_class(v.reg.val[2], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel3 = vec_test_data_class(v.reg.val[3], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel0 =
|
||||
vec_test_data_class(v.reg.val[0], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel1 =
|
||||
vec_test_data_class(v.reg.val[1], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel2 =
|
||||
vec_test_data_class(v.reg.val[2], __VEC_CLASS_FP_NAN);
|
||||
__vector __bool int sel3 =
|
||||
vec_test_data_class(v.reg.val[3], __VEC_CLASS_FP_NAN);
|
||||
inp0 = vec_sel(inp0, nan, sel0);
|
||||
inp1 = vec_sel(inp1, nan, sel1);
|
||||
inp2 = vec_sel(inp2, nan, sel2);
|
||||
@ -482,10 +514,10 @@ inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) {
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void prefetch(const void *addr) {
|
||||
inline void prefetch(const void* addr) {
|
||||
__asm__ __volatile__("dcbt 0, %0" : : "r"(addr) : "memory");
|
||||
}
|
||||
|
||||
}; // namespace vec_op
|
||||
}; // namespace vec_op
|
||||
|
||||
#endif
|
||||
|
||||
@ -11,39 +11,40 @@ static_assert(false, "AVX2 must be supported for the current implementation.");
|
||||
|
||||
namespace vec_op {
|
||||
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
|
||||
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
||||
|
||||
#ifndef CPU_OP_GUARD
|
||||
#define CPU_KERNEL_GUARD_IN(NAME)
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#define CPU_KERNEL_GUARD_IN(NAME)
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#else
|
||||
#define CPU_KERNEL_GUARD_IN(NAME) \
|
||||
RECORD_FUNCTION(#NAME, c10::ArrayRef<c10::IValue>({}));
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#define CPU_KERNEL_GUARD_IN(NAME) \
|
||||
RECORD_FUNCTION(#NAME, c10::ArrayRef<c10::IValue>({}));
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#endif
|
||||
|
||||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
namespace {
|
||||
template <typename T, T... indexes, typename F>
|
||||
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F &&f) {
|
||||
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
|
||||
(f(std::integral_constant<T, indexes>{}), ...);
|
||||
}
|
||||
}; // namespace
|
||||
}; // namespace
|
||||
|
||||
template <typename T, T count, typename F,
|
||||
typename = std::enable_if_t<std::is_invocable_v<F, T>>>
|
||||
constexpr void unroll_loop(F &&f) {
|
||||
constexpr void unroll_loop(F&& f) {
|
||||
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
|
||||
}
|
||||
|
||||
template <typename T> struct Vec {
|
||||
template <typename T>
|
||||
struct Vec {
|
||||
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
|
||||
};
|
||||
|
||||
@ -55,12 +56,12 @@ struct FP16Vec8 : public Vec<FP16Vec8> {
|
||||
|
||||
__m128i reg;
|
||||
|
||||
explicit FP16Vec8(const void *ptr)
|
||||
: reg((__m128i)_mm_loadu_si128((__m128i *)ptr)) {}
|
||||
explicit FP16Vec8(const void* ptr)
|
||||
: reg((__m128i)_mm_loadu_si128((__m128i*)ptr)) {}
|
||||
|
||||
explicit FP16Vec8(const FP32Vec8 &);
|
||||
explicit FP16Vec8(const FP32Vec8&);
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<__m128i *>(ptr) = reg; }
|
||||
void save(void* ptr) const { *reinterpret_cast<__m128i*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct FP16Vec16 : public Vec<FP16Vec16> {
|
||||
@ -68,12 +69,12 @@ struct FP16Vec16 : public Vec<FP16Vec16> {
|
||||
|
||||
__m256i reg;
|
||||
|
||||
explicit FP16Vec16(const void *ptr)
|
||||
: reg((__m256i)_mm256_loadu_si256((__m256i *)ptr)) {}
|
||||
explicit FP16Vec16(const void* ptr)
|
||||
: reg((__m256i)_mm256_loadu_si256((__m256i*)ptr)) {}
|
||||
|
||||
explicit FP16Vec16(const FP32Vec16 &);
|
||||
explicit FP16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<__m256i *>(ptr) = reg; }
|
||||
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
|
||||
|
||||
void save(void* ptr, const int elem_num) const {
|
||||
constexpr uint32_t M = 0xFFFFFFFF;
|
||||
@ -87,12 +88,12 @@ struct BF16Vec8 : public Vec<BF16Vec8> {
|
||||
|
||||
__m128i reg;
|
||||
|
||||
explicit BF16Vec8(const void *ptr)
|
||||
: reg((__m128i)_mm_loadu_si128((__m128i *)ptr)) {}
|
||||
explicit BF16Vec8(const void* ptr)
|
||||
: reg((__m128i)_mm_loadu_si128((__m128i*)ptr)) {}
|
||||
|
||||
explicit BF16Vec8(const FP32Vec8 &);
|
||||
explicit BF16Vec8(const FP32Vec8&);
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<__m128i *>(ptr) = reg; }
|
||||
void save(void* ptr) const { *reinterpret_cast<__m128i*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
@ -100,12 +101,12 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
|
||||
__m256i reg;
|
||||
|
||||
explicit BF16Vec16(const void *ptr)
|
||||
: reg((__m256i)_mm256_loadu_si256((__m256i *)ptr)) {}
|
||||
explicit BF16Vec16(const void* ptr)
|
||||
: reg((__m256i)_mm256_loadu_si256((__m256i*)ptr)) {}
|
||||
|
||||
explicit BF16Vec16(const FP32Vec16 &);
|
||||
explicit BF16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<__m256i *>(ptr) = reg; }
|
||||
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
|
||||
|
||||
void save(void* ptr, const int elem_num) const {
|
||||
constexpr uint32_t M = 0xFFFFFFFF;
|
||||
@ -120,11 +121,11 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
|
||||
__m512i reg;
|
||||
|
||||
explicit BF16Vec32(const void *ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {}
|
||||
explicit BF16Vec32(const void* ptr) : reg((__m512i)_mm512_loadu_si512(ptr)) {}
|
||||
|
||||
explicit BF16Vec32(__m512i data) : reg(data) {}
|
||||
|
||||
explicit BF16Vec32(BF16Vec8 &vec8_data)
|
||||
explicit BF16Vec32(BF16Vec8& vec8_data)
|
||||
: reg((__m512i)_mm512_inserti32x4(
|
||||
_mm512_inserti32x4(_mm512_inserti32x4(_mm512_castsi128_si512(
|
||||
(__m128i)vec8_data.reg),
|
||||
@ -132,7 +133,7 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
(__m128i)vec8_data.reg, 2),
|
||||
(__m128i)vec8_data.reg, 3)) {}
|
||||
|
||||
void save(void *ptr) const { *reinterpret_cast<__m512i *>(ptr) = reg; }
|
||||
void save(void* ptr) const { *reinterpret_cast<__m512i*>(ptr) = reg; }
|
||||
};
|
||||
#else
|
||||
struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
@ -141,24 +142,24 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
__m256i reg_low;
|
||||
__m256i reg_high;
|
||||
|
||||
explicit BF16Vec32(const void *ptr)
|
||||
: reg_low(_mm256_loadu_si256((__m256i const *)ptr)),
|
||||
reg_high(_mm256_loadu_si256((__m256i const *)ptr + 1)) {}
|
||||
explicit BF16Vec32(const void* ptr)
|
||||
: reg_low(_mm256_loadu_si256((__m256i const*)ptr)),
|
||||
reg_high(_mm256_loadu_si256((__m256i const*)ptr + 1)) {}
|
||||
|
||||
explicit BF16Vec32(__m256i low, __m256i high) : reg_low(low),
|
||||
reg_high(high) {}
|
||||
explicit BF16Vec32(__m256i low, __m256i high)
|
||||
: reg_low(low), reg_high(high) {}
|
||||
|
||||
explicit BF16Vec32(BF16Vec8 &vec8_data)
|
||||
explicit BF16Vec32(BF16Vec8& vec8_data)
|
||||
: reg_low((__m256i)_mm256_inserti32x4(
|
||||
_mm256_castsi128_si256((__m128i)vec8_data.reg),
|
||||
(__m128i)vec8_data.reg, 1)),
|
||||
_mm256_castsi128_si256((__m128i)vec8_data.reg),
|
||||
(__m128i)vec8_data.reg, 1)),
|
||||
reg_high((__m256i)_mm256_inserti32x4(
|
||||
_mm256_castsi128_si256((__m128i)vec8_data.reg),
|
||||
(__m128i)vec8_data.reg, 1)) {}
|
||||
_mm256_castsi128_si256((__m128i)vec8_data.reg),
|
||||
(__m128i)vec8_data.reg, 1)) {}
|
||||
|
||||
void save(void *ptr) const {
|
||||
*reinterpret_cast<__m256i *>(ptr) = reg_low;
|
||||
*reinterpret_cast<__m256i *>((__m256i *)ptr + 1) = reg_high;
|
||||
void save(void* ptr) const {
|
||||
*reinterpret_cast<__m256i*>(ptr) = reg_low;
|
||||
*reinterpret_cast<__m256i*>((__m256i*)ptr + 1) = reg_high;
|
||||
}
|
||||
};
|
||||
#endif
|
||||
@ -176,11 +177,11 @@ struct FP32Vec4 : public Vec<FP32Vec4> {
|
||||
|
||||
explicit FP32Vec4() : reg(_mm_set1_ps(0.0)) {}
|
||||
|
||||
explicit FP32Vec4(const float *ptr) : reg(_mm_loadu_ps(ptr)) {}
|
||||
explicit FP32Vec4(const float* ptr) : reg(_mm_loadu_ps(ptr)) {}
|
||||
|
||||
explicit FP32Vec4(__m128 data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec4(const FP32Vec4 &data) : reg(data.reg) {}
|
||||
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {}
|
||||
};
|
||||
|
||||
struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
@ -196,15 +197,15 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
|
||||
explicit FP32Vec8() : reg(_mm256_set1_ps(0.0)) {}
|
||||
|
||||
explicit FP32Vec8(const float *ptr) : reg(_mm256_loadu_ps(ptr)) {}
|
||||
explicit FP32Vec8(const float* ptr) : reg(_mm256_loadu_ps(ptr)) {}
|
||||
|
||||
explicit FP32Vec8(__m256 data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec8(const FP32Vec8 &data) : reg(data.reg) {}
|
||||
explicit FP32Vec8(const FP32Vec8& data) : reg(data.reg) {}
|
||||
|
||||
explicit FP32Vec8(const FP16Vec8 &v) : reg(_mm256_cvtph_ps(v.reg)) {}
|
||||
explicit FP32Vec8(const FP16Vec8& v) : reg(_mm256_cvtph_ps(v.reg)) {}
|
||||
|
||||
explicit FP32Vec8(const BF16Vec8 &v)
|
||||
explicit FP32Vec8(const BF16Vec8& v)
|
||||
: reg(_mm256_castsi256_ps(
|
||||
_mm256_bslli_epi128(_mm256_cvtepu16_epi32(v.reg), 2))) {}
|
||||
|
||||
@ -212,7 +213,8 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
AliasReg ar;
|
||||
ar.reg = reg;
|
||||
float result = 0;
|
||||
unroll_loop<int, VEC_ELEM_NUM>([&result, &ar](int i) { result += ar.values[i]; });
|
||||
unroll_loop<int, VEC_ELEM_NUM>(
|
||||
[&result, &ar](int i) { result += ar.values[i]; });
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -244,27 +246,27 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
erf(ar.values[1]), erf(ar.values[0])));
|
||||
}
|
||||
|
||||
FP32Vec8 operator*(const FP32Vec8 &b) const {
|
||||
FP32Vec8 operator*(const FP32Vec8& b) const {
|
||||
return FP32Vec8(_mm256_mul_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec8 operator+(const FP32Vec8 &b) const {
|
||||
FP32Vec8 operator+(const FP32Vec8& b) const {
|
||||
return FP32Vec8(_mm256_add_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec8 operator-(const FP32Vec8 &b) const {
|
||||
FP32Vec8 operator-(const FP32Vec8& b) const {
|
||||
return FP32Vec8(_mm256_sub_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec8 operator/(const FP32Vec8 &b) const {
|
||||
FP32Vec8 operator/(const FP32Vec8& b) const {
|
||||
return FP32Vec8(_mm256_div_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
void save(float *ptr) const { _mm256_storeu_ps(ptr, reg); }
|
||||
void save(float* ptr) const { _mm256_storeu_ps(ptr, reg); }
|
||||
};
|
||||
|
||||
#ifdef __AVX512F__
|
||||
struct INT32Vec16: public Vec<INT32Vec16> {
|
||||
struct INT32Vec16 : public Vec<INT32Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
union AliasReg {
|
||||
__m512i reg;
|
||||
@ -272,12 +274,11 @@ struct INT32Vec16: public Vec<INT32Vec16> {
|
||||
};
|
||||
|
||||
__m512i reg;
|
||||
|
||||
explicit INT32Vec16(const void* data_ptr) : reg(_mm512_loadu_epi32(data_ptr)) {}
|
||||
|
||||
void save(int32_t* ptr) const {
|
||||
_mm512_storeu_epi32(ptr, reg);
|
||||
}
|
||||
explicit INT32Vec16(const void* data_ptr)
|
||||
: reg(_mm512_loadu_epi32(data_ptr)) {}
|
||||
|
||||
void save(int32_t* ptr) const { _mm512_storeu_epi32(ptr, reg); }
|
||||
|
||||
void save(int32_t* ptr, const int elem_num) const {
|
||||
constexpr uint32_t M = 0xFFFFFFFF;
|
||||
@ -301,11 +302,11 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
|
||||
explicit FP32Vec16() : reg(_mm512_set1_ps(0.0)) {}
|
||||
|
||||
explicit FP32Vec16(const float *ptr) : reg(_mm512_loadu_ps(ptr)) {}
|
||||
explicit FP32Vec16(const float* ptr) : reg(_mm512_loadu_ps(ptr)) {}
|
||||
|
||||
explicit FP32Vec16(__m512 data) : reg(data) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec4 &data)
|
||||
explicit FP32Vec16(const FP32Vec4& data)
|
||||
: reg((__m512)_mm512_inserti32x4(
|
||||
_mm512_inserti32x4(
|
||||
_mm512_inserti32x4(_mm512_castsi128_si512((__m128i)data.reg),
|
||||
@ -313,36 +314,37 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
(__m128i)data.reg, 2),
|
||||
(__m128i)data.reg, 3)) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec8 &data)
|
||||
explicit FP32Vec16(const FP32Vec8& data)
|
||||
: reg((__m512)_mm512_inserti32x8(
|
||||
_mm512_castsi256_si512((__m256i)data.reg), (__m256i)data.reg, 1)) {}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec16 &v)
|
||||
explicit FP32Vec16(const BF16Vec16& v)
|
||||
: reg(_mm512_castsi512_ps(
|
||||
_mm512_bslli_epi128(_mm512_cvtepu16_epi32(v.reg), 2))) {}
|
||||
|
||||
explicit FP32Vec16(const FP16Vec16 &v) : reg(_mm512_cvtph_ps(v.reg)) {}
|
||||
explicit FP32Vec16(const FP16Vec16& v) : reg(_mm512_cvtph_ps(v.reg)) {}
|
||||
|
||||
explicit FP32Vec16(const FP16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
explicit FP32Vec16(const FP16Vec8& v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
explicit FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
|
||||
explicit FP32Vec16(const INT32Vec16 &v)
|
||||
: reg(_mm512_cvt_roundepi32_ps(v.reg, _MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC)) {}
|
||||
explicit FP32Vec16(const INT32Vec16& v)
|
||||
: reg(_mm512_cvt_roundepi32_ps(
|
||||
v.reg, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)) {}
|
||||
|
||||
FP32Vec16 operator*(const FP32Vec16 &b) const {
|
||||
FP32Vec16 operator*(const FP32Vec16& b) const {
|
||||
return FP32Vec16(_mm512_mul_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec16 operator+(const FP32Vec16 &b) const {
|
||||
FP32Vec16 operator+(const FP32Vec16& b) const {
|
||||
return FP32Vec16(_mm512_add_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec16 operator-(const FP32Vec16 &b) const {
|
||||
FP32Vec16 operator-(const FP32Vec16& b) const {
|
||||
return FP32Vec16(_mm512_sub_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec16 operator/(const FP32Vec16 &b) const {
|
||||
FP32Vec16 operator/(const FP32Vec16& b) const {
|
||||
return FP32Vec16(_mm512_div_ps(reg, b.reg));
|
||||
}
|
||||
|
||||
@ -370,9 +372,7 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
return FP32Vec16(_mm512_mask_min_ps(reg, mask, reg, b.reg));
|
||||
}
|
||||
|
||||
FP32Vec16 abs() const {
|
||||
return FP32Vec16(_mm512_abs_ps(reg));
|
||||
}
|
||||
FP32Vec16 abs() const { return FP32Vec16(_mm512_abs_ps(reg)); }
|
||||
|
||||
float reduce_sum() const { return _mm512_reduce_add_ps(reg); }
|
||||
|
||||
@ -380,14 +380,15 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
|
||||
float reduce_min() const { return _mm512_reduce_min_ps(reg); }
|
||||
|
||||
template <int group_size> float reduce_sub_sum(int idx) {
|
||||
template <int group_size>
|
||||
float reduce_sub_sum(int idx) {
|
||||
static_assert(VEC_ELEM_NUM % group_size == 0);
|
||||
constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size));
|
||||
__mmask16 mask = _cvtu32_mask16(base_mask << (idx * group_size));
|
||||
return _mm512_mask_reduce_add_ps(mask, reg);
|
||||
}
|
||||
|
||||
void save(float *ptr) const { _mm512_storeu_ps(ptr, reg); }
|
||||
void save(float* ptr) const { _mm512_storeu_ps(ptr, reg); }
|
||||
|
||||
void save(float* ptr, const int elem_num) const {
|
||||
constexpr uint32_t M = 0xFFFFFFFF;
|
||||
@ -407,32 +408,30 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
__m256 reg_low;
|
||||
__m256 reg_high;
|
||||
|
||||
explicit FP32Vec16(float v) : reg_low(_mm256_set1_ps(v)),
|
||||
reg_high(_mm256_set1_ps(v)) {}
|
||||
explicit FP32Vec16(float v)
|
||||
: reg_low(_mm256_set1_ps(v)), reg_high(_mm256_set1_ps(v)) {}
|
||||
|
||||
explicit FP32Vec16() : reg_low(_mm256_set1_ps(0.0)),
|
||||
reg_high(_mm256_set1_ps(0.0)) {}
|
||||
explicit FP32Vec16()
|
||||
: reg_low(_mm256_set1_ps(0.0)), reg_high(_mm256_set1_ps(0.0)) {}
|
||||
|
||||
explicit FP32Vec16(const float *ptr) : reg_low(_mm256_loadu_ps(ptr)),
|
||||
reg_high(_mm256_loadu_ps(ptr + 8)) {}
|
||||
explicit FP32Vec16(const float* ptr)
|
||||
: reg_low(_mm256_loadu_ps(ptr)), reg_high(_mm256_loadu_ps(ptr + 8)) {}
|
||||
|
||||
explicit FP32Vec16(__m256 low, __m256 high) : reg_low(low), reg_high(high) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec16 &data) : reg_low(data.reg_low),
|
||||
reg_high(data.reg_high) {}
|
||||
explicit FP32Vec16(const FP32Vec16& data)
|
||||
: reg_low(data.reg_low), reg_high(data.reg_high) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec4 &data)
|
||||
explicit FP32Vec16(const FP32Vec4& data)
|
||||
: reg_low((__m256)_mm256_inserti128_si256(
|
||||
_mm256_castsi128_si256((__m128i)data.reg),
|
||||
(__m128i)data.reg, 1)),
|
||||
_mm256_castsi128_si256((__m128i)data.reg), (__m128i)data.reg, 1)),
|
||||
reg_high((__m256)_mm256_inserti128_si256(
|
||||
_mm256_castsi128_si256((__m128i)data.reg),
|
||||
(__m128i)data.reg, 1)) {}
|
||||
_mm256_castsi128_si256((__m128i)data.reg), (__m128i)data.reg, 1)) {}
|
||||
|
||||
explicit FP32Vec16(const FP32Vec8 &data)
|
||||
explicit FP32Vec16(const FP32Vec8& data)
|
||||
: reg_low(data.reg), reg_high(data.reg) {}
|
||||
|
||||
explicit FP32Vec16(const FP16Vec16 &v) {
|
||||
explicit FP32Vec16(const FP16Vec16& v) {
|
||||
__m128i low = _mm256_extractf128_si256(v.reg, 0);
|
||||
__m128i high = _mm256_extractf128_si256(v.reg, 1);
|
||||
|
||||
@ -440,9 +439,9 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
reg_high = _mm256_cvtph_ps(high);
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const FP16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
explicit FP32Vec16(const FP16Vec8& v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec16 &v) {
|
||||
explicit FP32Vec16(const BF16Vec16& v) {
|
||||
__m128i low = _mm256_extractf128_si256(v.reg, 0);
|
||||
__m128i high = _mm256_extractf128_si256(v.reg, 1);
|
||||
|
||||
@ -456,24 +455,24 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
reg_high = _mm256_castsi256_ps(v_high_shifted);
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec8 &v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
explicit FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {}
|
||||
|
||||
FP32Vec16 operator*(const FP32Vec16 &b) const {
|
||||
FP32Vec16 operator*(const FP32Vec16& b) const {
|
||||
return FP32Vec16(_mm256_mul_ps(reg_low, b.reg_low),
|
||||
_mm256_mul_ps(reg_high, b.reg_high));
|
||||
}
|
||||
|
||||
FP32Vec16 operator+(const FP32Vec16 &b) const {
|
||||
FP32Vec16 operator+(const FP32Vec16& b) const {
|
||||
return FP32Vec16(_mm256_add_ps(reg_low, b.reg_low),
|
||||
_mm256_add_ps(reg_high, b.reg_high));
|
||||
}
|
||||
|
||||
FP32Vec16 operator-(const FP32Vec16 &b) const {
|
||||
FP32Vec16 operator-(const FP32Vec16& b) const {
|
||||
return FP32Vec16(_mm256_sub_ps(reg_low, b.reg_low),
|
||||
_mm256_sub_ps(reg_high, b.reg_high));
|
||||
}
|
||||
|
||||
FP32Vec16 operator/(const FP32Vec16 &b) const {
|
||||
FP32Vec16 operator/(const FP32Vec16& b) const {
|
||||
return FP32Vec16(_mm256_div_ps(reg_low, b.reg_low),
|
||||
_mm256_div_ps(reg_high, b.reg_high));
|
||||
}
|
||||
@ -484,7 +483,8 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
return low.reduce_sum() + high.reduce_sum();
|
||||
}
|
||||
|
||||
template <int group_size> float reduce_sub_sum(int idx) {
|
||||
template <int group_size>
|
||||
float reduce_sub_sum(int idx) {
|
||||
float sum = 0.0;
|
||||
static_assert(VEC_ELEM_NUM % group_size == 0);
|
||||
constexpr uint32_t base_mask = (0xFFFF >> (16 - group_size));
|
||||
@ -507,7 +507,7 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
return sum;
|
||||
}
|
||||
|
||||
void save(float *ptr) const {
|
||||
void save(float* ptr) const {
|
||||
_mm256_storeu_ps(ptr, reg_low);
|
||||
_mm256_storeu_ps(ptr + 8, reg_high);
|
||||
}
|
||||
@ -515,7 +515,7 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
#endif
|
||||
|
||||
#ifdef __AVX512F__
|
||||
struct INT8Vec16: public Vec<INT8Vec16> {
|
||||
struct INT8Vec16 : public Vec<INT8Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
union AliasReg {
|
||||
__m128i reg;
|
||||
@ -523,14 +523,12 @@ struct INT8Vec16: public Vec<INT8Vec16> {
|
||||
};
|
||||
|
||||
__m128i reg;
|
||||
|
||||
explicit INT8Vec16(const FP32Vec16& vec) : reg(
|
||||
_mm512_cvtepi32_epi8(_mm512_cvt_roundps_epi32(vec.reg, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC))
|
||||
) {}
|
||||
|
||||
void save(int8_t* ptr) const {
|
||||
_mm_storeu_epi8(ptr, reg);
|
||||
}
|
||||
explicit INT8Vec16(const FP32Vec16& vec)
|
||||
: reg(_mm512_cvtepi32_epi8(_mm512_cvt_roundps_epi32(
|
||||
vec.reg, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC))) {}
|
||||
|
||||
void save(int8_t* ptr) const { _mm_storeu_epi8(ptr, reg); }
|
||||
|
||||
void save(int8_t* ptr, const int elem_num) const {
|
||||
constexpr uint32_t M = 0xFFFFFFFF;
|
||||
@ -540,71 +538,92 @@ struct INT8Vec16: public Vec<INT8Vec16> {
|
||||
};
|
||||
#endif
|
||||
|
||||
template <typename T> struct VecType { using vec_type = void; };
|
||||
template <typename T>
|
||||
struct VecType {
|
||||
using vec_type = void;
|
||||
};
|
||||
|
||||
template <typename T> using vec_t = typename VecType<T>::vec_type;
|
||||
template <typename T>
|
||||
using vec_t = typename VecType<T>::vec_type;
|
||||
|
||||
template <> struct VecType<float> { using vec_type = FP32Vec8; };
|
||||
template <>
|
||||
struct VecType<float> {
|
||||
using vec_type = FP32Vec8;
|
||||
};
|
||||
|
||||
template <> struct VecType<c10::Half> { using vec_type = FP16Vec8; };
|
||||
template <>
|
||||
struct VecType<c10::Half> {
|
||||
using vec_type = FP16Vec8;
|
||||
};
|
||||
|
||||
template <> struct VecType<c10::BFloat16> { using vec_type = BF16Vec8; };
|
||||
template <>
|
||||
struct VecType<c10::BFloat16> {
|
||||
using vec_type = BF16Vec8;
|
||||
};
|
||||
|
||||
template <typename T> void storeFP32(float v, T *ptr) { *ptr = v; }
|
||||
template <typename T>
|
||||
void storeFP32(float v, T* ptr) {
|
||||
*ptr = v;
|
||||
}
|
||||
|
||||
inline void fma(FP32Vec16 &acc, FP32Vec16 &a, FP32Vec16 &b) {
|
||||
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
|
||||
acc = acc + a * b;
|
||||
}
|
||||
|
||||
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
|
||||
*reinterpret_cast<unsigned short *>(ptr) =
|
||||
template <>
|
||||
inline void storeFP32<c10::Half>(float v, c10::Half* ptr) {
|
||||
*reinterpret_cast<unsigned short*>(ptr) =
|
||||
_cvtss_sh(v, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
|
||||
}
|
||||
|
||||
inline FP16Vec8::FP16Vec8(const FP32Vec8 &v)
|
||||
inline FP16Vec8::FP16Vec8(const FP32Vec8& v)
|
||||
: reg(_mm256_cvtps_ph(v.reg,
|
||||
_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)) {}
|
||||
|
||||
#ifdef __AVX512F__
|
||||
inline FP16Vec16::FP16Vec16(const FP32Vec16 &v)
|
||||
inline FP16Vec16::FP16Vec16(const FP32Vec16& v)
|
||||
: reg(_mm512_cvtps_ph(v.reg,
|
||||
_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)) {}
|
||||
#else
|
||||
inline FP16Vec16::FP16Vec16(const FP32Vec16 &v)
|
||||
: reg(_mm256_insertf128_si256(_mm256_castsi128_si256(FP16Vec8(FP32Vec8(v.reg_low)).reg), FP16Vec8(FP32Vec8(v.reg_low)).reg, 1)) {}
|
||||
inline FP16Vec16::FP16Vec16(const FP32Vec16& v)
|
||||
: reg(_mm256_insertf128_si256(
|
||||
_mm256_castsi128_si256(FP16Vec8(FP32Vec8(v.reg_low)).reg),
|
||||
FP16Vec8(FP32Vec8(v.reg_low)).reg, 1)) {}
|
||||
#endif
|
||||
|
||||
#ifdef __AVX512BF16__
|
||||
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
|
||||
*reinterpret_cast<__bfloat16 *>(ptr) = _mm_cvtness_sbh(v);
|
||||
template <>
|
||||
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
|
||||
*reinterpret_cast<__bfloat16*>(ptr) = _mm_cvtness_sbh(v);
|
||||
}
|
||||
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8& v)
|
||||
: reg((__m128i)_mm256_cvtneps_pbh(v.reg)) {}
|
||||
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16& v)
|
||||
: reg((__m256i)_mm512_cvtneps_pbh(v.reg)) {}
|
||||
|
||||
inline void fma(FP32Vec16 &acc, BF16Vec32 &a, BF16Vec32 &b) {
|
||||
inline void fma(FP32Vec16& acc, BF16Vec32& a, BF16Vec32& b) {
|
||||
acc.reg = _mm512_dpbf16_ps(acc.reg, (__m512bh)a.reg, (__m512bh)b.reg);
|
||||
}
|
||||
#else
|
||||
template <> inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16 *ptr) {
|
||||
c10::BFloat16 __attribute__((__may_alias__)) *v_ptr =
|
||||
reinterpret_cast<c10::BFloat16 *>(&v);
|
||||
template <>
|
||||
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
|
||||
c10::BFloat16 __attribute__((__may_alias__))* v_ptr =
|
||||
reinterpret_cast<c10::BFloat16*>(&v);
|
||||
*ptr = *(v_ptr + 1);
|
||||
}
|
||||
|
||||
#ifdef __AVX512F__
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
|
||||
#ifdef __AVX512F__
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8& v)
|
||||
: reg(_mm256_cvtepi32_epi16(
|
||||
_mm256_bsrli_epi128(_mm256_castps_si256(v.reg), 2))) {}
|
||||
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v)
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16& v)
|
||||
: reg(_mm512_cvtepi32_epi16(
|
||||
_mm512_bsrli_epi128(_mm512_castps_si512(v.reg), 2))) {}
|
||||
#else
|
||||
namespace{
|
||||
#else
|
||||
namespace {
|
||||
__m128i FP32Vec8_to_BF16Vec8_avx2(__m256 a) {
|
||||
__m256i ai = _mm256_castps_si256(a);
|
||||
ai = _mm256_srli_epi32(ai, 16);
|
||||
@ -612,21 +631,21 @@ __m128i FP32Vec8_to_BF16Vec8_avx2(__m256 a) {
|
||||
ai = _mm256_permute4x64_epi64(ai, 0b00111001);
|
||||
return _mm256_extracti128_si256(ai, 0);
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8 &v)
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8& v)
|
||||
: reg(FP32Vec8_to_BF16Vec8_avx2(v.reg)) {}
|
||||
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16 &v) {
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
|
||||
BF16Vec8 low = BF16Vec8(FP32Vec8(v.reg_low));
|
||||
BF16Vec8 high = BF16Vec8(FP32Vec8(v.reg_high));
|
||||
reg = _mm256_insertf128_si256(_mm256_castsi128_si256(low.reg), high.reg, 1);
|
||||
}
|
||||
#endif // __AVX512F__
|
||||
#endif // __AVX512BF16__
|
||||
#endif // __AVX512F__
|
||||
#endif // __AVX512BF16__
|
||||
|
||||
inline void prefetch(const void *addr) { _mm_prefetch(addr, _MM_HINT_T1); }
|
||||
inline void prefetch(const void* addr) { _mm_prefetch(addr, _MM_HINT_T1); }
|
||||
|
||||
}; // namespace vec_op
|
||||
}; // namespace vec_op
|
||||
|
||||
#endif
|
||||
|
||||
@ -359,7 +359,7 @@ void int8_scaled_mm(torch::Tensor& c, // [M, OC], row-major
|
||||
const torch::Tensor& b, // [IC, OC], column-major
|
||||
const torch::Tensor& a_scales, // [1] or [M]
|
||||
const torch::Tensor& b_scales, // [1] or [OC]
|
||||
const c10::optional<torch::Tensor>& bias // [OC]
|
||||
const std::optional<torch::Tensor>& bias // [OC]
|
||||
) {
|
||||
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm)
|
||||
// Checks for conformality
|
||||
@ -442,8 +442,8 @@ void int8_scaled_mm_azp(torch::Tensor& c, // [M, OC], row-major
|
||||
const torch::Tensor& a_scales, // [1] or [M]
|
||||
const torch::Tensor& b_scales, // [1] or [OC]
|
||||
const torch::Tensor& azp_adj, // [OC]
|
||||
const c10::optional<torch::Tensor>& azp, // [1] or [M]
|
||||
const c10::optional<torch::Tensor>& bias // [OC]
|
||||
const std::optional<torch::Tensor>& azp, // [1] or [M]
|
||||
const std::optional<torch::Tensor>& bias // [OC]
|
||||
) {
|
||||
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm_azp)
|
||||
// Checks for conformality
|
||||
@ -561,7 +561,7 @@ void int8_scaled_mm_azp(torch::Tensor& c, // [M, OC], row-major
|
||||
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
|
||||
const torch::Tensor& input, // [..., hidden_size]
|
||||
const torch::Tensor& scale,
|
||||
c10::optional<torch::Tensor> const& azp) {
|
||||
std::optional<torch::Tensor> const& azp) {
|
||||
CPU_KERNEL_GUARD_IN(static_scaled_int8_quant)
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
@ -590,7 +590,7 @@ void dynamic_scaled_int8_quant(
|
||||
torch::Tensor& out, // [..., hidden_size]
|
||||
const torch::Tensor& input, // [..., hidden_size]
|
||||
torch::Tensor& scale, // [..., 1]
|
||||
c10::optional<torch::Tensor> const& azp) {
|
||||
std::optional<torch::Tensor> const& azp) {
|
||||
CPU_KERNEL_GUARD_IN(dynamic_scaled_int8_quant)
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
|
||||
@ -9,14 +9,14 @@ std::string init_cpu_threads_env(const std::string& cpu_ids);
|
||||
void int8_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
|
||||
const torch::Tensor& b, const torch::Tensor& a_scales,
|
||||
const torch::Tensor& b_scales,
|
||||
const c10::optional<torch::Tensor>& bias);
|
||||
const std::optional<torch::Tensor>& bias);
|
||||
|
||||
void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a,
|
||||
const torch::Tensor& b, const torch::Tensor& a_scales,
|
||||
const torch::Tensor& b_scales,
|
||||
const torch::Tensor& azp_adj,
|
||||
const c10::optional<torch::Tensor>& azp,
|
||||
const c10::optional<torch::Tensor>& bias);
|
||||
const std::optional<torch::Tensor>& azp,
|
||||
const std::optional<torch::Tensor>& bias);
|
||||
|
||||
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
// vLLM custom ops
|
||||
|
||||
@ -1,10 +1,22 @@
|
||||
#include <numa.h>
|
||||
#include <unistd.h>
|
||||
#include <string>
|
||||
#include <sched.h>
|
||||
#ifndef VLLM_NUMA_DISABLED
|
||||
#include <numa.h>
|
||||
#include <unistd.h>
|
||||
#include <string>
|
||||
#include <sched.h>
|
||||
#endif
|
||||
|
||||
#include "cpu_types.hpp"
|
||||
|
||||
#ifdef VLLM_NUMA_DISABLED
|
||||
std::string init_cpu_threads_env(const std::string& cpu_ids) {
|
||||
return std::string(
|
||||
"Warning: NUMA is not enabled in this build. `init_cpu_threads_env` has "
|
||||
"no effect to setup thread affinity.");
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifndef VLLM_NUMA_DISABLED
|
||||
std::string init_cpu_threads_env(const std::string& cpu_ids) {
|
||||
bitmask* omp_cpu_mask = numa_parse_cpustring(cpu_ids.c_str());
|
||||
TORCH_CHECK(omp_cpu_mask->size > 0);
|
||||
@ -57,7 +69,7 @@ std::string init_cpu_threads_env(const std::string& cpu_ids) {
|
||||
omp_lock_t writelock;
|
||||
omp_init_lock(&writelock);
|
||||
|
||||
#pragma omp parallel for schedule(static, 1)
|
||||
#pragma omp parallel for schedule(static, 1)
|
||||
for (size_t i = 0; i < omp_cpu_ids.size(); ++i) {
|
||||
cpu_set_t mask;
|
||||
CPU_ZERO(&mask);
|
||||
@ -88,3 +100,4 @@ std::string init_cpu_threads_env(const std::string& cpu_ids) {
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
#endif
|
||||
@ -27,8 +27,7 @@
|
||||
inline int get_cuda_max_shared_memory_per_block_opt_in(int const device) {
|
||||
int max_shared_mem_per_block_opt_in = 0;
|
||||
cudaDeviceGetAttribute(&max_shared_mem_per_block_opt_in,
|
||||
cudaDevAttrMaxSharedMemoryPerBlockOptin,
|
||||
device);
|
||||
cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
|
||||
return max_shared_mem_per_block_opt_in;
|
||||
}
|
||||
|
||||
|
||||
@ -68,7 +68,7 @@ struct ScaledEpilogueBase {
|
||||
// This overload handles the case where there might not be a tensor, in which
|
||||
// case a nullptr is passed and a constant (0) is used.
|
||||
template <typename Descriptor, typename T>
|
||||
static auto args_from_tensor(c10::optional<torch::Tensor> const& tensor) {
|
||||
static auto args_from_tensor(std::optional<torch::Tensor> const& tensor) {
|
||||
static_assert(std::is_same_v<Descriptor, RowOrZeroLoad<T>>);
|
||||
using Arguments = typename Descriptor::Arguments;
|
||||
auto* data_ptr = tensor ? static_cast<T*>(tensor->data_ptr()) : nullptr;
|
||||
@ -223,7 +223,7 @@ struct ScaledEpilogueBiasAzp
|
||||
static ArgumentType prepare_args(torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
|
||||
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
|
||||
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
|
||||
@ -301,7 +301,7 @@ struct ScaledEpilogueBiasAzpToken
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
torch::Tensor const& azp,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
|
||||
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
|
||||
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
|
||||
|
||||
@ -67,7 +67,7 @@ struct ScaledEpilogueBase {
|
||||
// This overload handles the case where there might not be a tensor, in which
|
||||
// case a nullptr is passed and a constant (0) is used.
|
||||
template <typename Descriptor, typename T>
|
||||
static auto args_from_tensor(c10::optional<torch::Tensor> const& tensor) {
|
||||
static auto args_from_tensor(std::optional<torch::Tensor> const& tensor) {
|
||||
using Arguments = typename Descriptor::Arguments;
|
||||
auto* data_ptr = tensor ? static_cast<T*>(tensor->data_ptr()) : nullptr;
|
||||
static_assert(std::is_same_v<Descriptor, ColLoad<T, true>> ||
|
||||
@ -223,7 +223,7 @@ struct ScaledEpilogueBiasAzp
|
||||
static ArgumentType prepare_args(torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
|
||||
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
|
||||
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
|
||||
@ -299,7 +299,7 @@ struct ScaledEpilogueBiasAzpToken
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
torch::Tensor const& azp,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
|
||||
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
|
||||
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
|
||||
|
||||
@ -97,7 +97,7 @@ static inline auto make_cute_layout(torch::Tensor const& tensor,
|
||||
|
||||
template <typename Stride>
|
||||
static inline auto maybe_make_cute_layout(
|
||||
c10::optional<torch::Tensor> const& tensor,
|
||||
std::optional<torch::Tensor> const& tensor,
|
||||
std::string_view name = "tensor") {
|
||||
using Layout = decltype(make_cute_layout<Stride>(*tensor));
|
||||
|
||||
|
||||
@ -53,12 +53,12 @@ void set_conv_params_fwd(ConvParamsBase ¶ms,
|
||||
const at::Tensor x,
|
||||
const at::Tensor weight,
|
||||
const at::Tensor out,
|
||||
const c10::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
bool silu_activation,
|
||||
int64_t pad_slot_id,
|
||||
const c10::optional<at::Tensor>& query_start_loc = std::nullopt,
|
||||
const c10::optional<at::Tensor>& cache_indices = std::nullopt,
|
||||
const c10::optional<at::Tensor>& has_initial_state = std::nullopt) {
|
||||
const std::optional<at::Tensor>& query_start_loc = std::nullopt,
|
||||
const std::optional<at::Tensor>& cache_indices = std::nullopt,
|
||||
const std::optional<at::Tensor>& has_initial_state = std::nullopt) {
|
||||
|
||||
// Reset the parameters
|
||||
memset(¶ms, 0, sizeof(params));
|
||||
@ -93,11 +93,11 @@ void set_conv_params_fwd(ConvParamsBase ¶ms,
|
||||
|
||||
|
||||
void causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
|
||||
const c10::optional<at::Tensor> &bias_,
|
||||
const c10::optional<at::Tensor> &conv_states,
|
||||
const c10::optional<at::Tensor> &query_start_loc,
|
||||
const c10::optional<at::Tensor> &cache_indices,
|
||||
const c10::optional<at::Tensor> &has_initial_state,
|
||||
const std::optional<at::Tensor> &bias_,
|
||||
const std::optional<at::Tensor> &conv_states,
|
||||
const std::optional<at::Tensor> &query_start_loc,
|
||||
const std::optional<at::Tensor> &cache_indices,
|
||||
const std::optional<at::Tensor> &has_initial_state,
|
||||
bool silu_activation,
|
||||
// used to identify padding entries if cache_indices provided
|
||||
// in case of padding, the kernel will return early
|
||||
@ -194,10 +194,10 @@ void causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
|
||||
void causal_conv1d_update(const at::Tensor &x,
|
||||
const at::Tensor &conv_state,
|
||||
const at::Tensor &weight,
|
||||
const c10::optional<at::Tensor> &bias_,
|
||||
const std::optional<at::Tensor> &bias_,
|
||||
bool silu_activation,
|
||||
const c10::optional<at::Tensor> &cache_seqlens_,
|
||||
const c10::optional<at::Tensor> &conv_state_indices_,
|
||||
const std::optional<at::Tensor> &cache_seqlens_,
|
||||
const std::optional<at::Tensor> &conv_state_indices_,
|
||||
// used to identify padding entries if cache_indices provided
|
||||
// in case of padding, the kernel will return early
|
||||
int64_t pad_slot_id) {
|
||||
|
||||
@ -402,14 +402,14 @@ void set_ssm_params_fwd(SSMParamsBase ¶ms,
|
||||
const torch::Tensor out,
|
||||
const torch::Tensor z,
|
||||
const torch::Tensor out_z,
|
||||
const c10::optional<at::Tensor>& D,
|
||||
const c10::optional<at::Tensor>& delta_bias,
|
||||
const std::optional<at::Tensor>& D,
|
||||
const std::optional<at::Tensor>& delta_bias,
|
||||
const torch::Tensor ssm_states,
|
||||
bool has_z,
|
||||
bool delta_softplus,
|
||||
const c10::optional<at::Tensor>& query_start_loc,
|
||||
const c10::optional<at::Tensor>& cache_indices,
|
||||
const c10::optional<at::Tensor>& has_initial_state,
|
||||
const std::optional<at::Tensor>& query_start_loc,
|
||||
const std::optional<at::Tensor>& cache_indices,
|
||||
const std::optional<at::Tensor>& has_initial_state,
|
||||
bool varlen,
|
||||
int64_t pad_slot_id) {
|
||||
|
||||
@ -504,13 +504,13 @@ void set_ssm_params_fwd(SSMParamsBase ¶ms,
|
||||
|
||||
void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
|
||||
const torch::Tensor &A, const torch::Tensor &B, const torch::Tensor &C,
|
||||
const c10::optional<torch::Tensor> &D_,
|
||||
const c10::optional<torch::Tensor> &z_,
|
||||
const c10::optional<torch::Tensor> &delta_bias_,
|
||||
const std::optional<torch::Tensor> &D_,
|
||||
const std::optional<torch::Tensor> &z_,
|
||||
const std::optional<torch::Tensor> &delta_bias_,
|
||||
bool delta_softplus,
|
||||
const c10::optional<torch::Tensor> &query_start_loc,
|
||||
const c10::optional<torch::Tensor> &cache_indices,
|
||||
const c10::optional<torch::Tensor> &has_initial_state,
|
||||
const std::optional<torch::Tensor> &query_start_loc,
|
||||
const std::optional<torch::Tensor> &cache_indices,
|
||||
const std::optional<torch::Tensor> &has_initial_state,
|
||||
const torch::Tensor &ssm_states,
|
||||
// used to identify padding entries if cache_indices provided
|
||||
// in case of padding, the kernel will return early
|
||||
|
||||
48
csrc/ops.h
48
csrc/ops.h
@ -33,7 +33,7 @@ void paged_attention_v1(
|
||||
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
||||
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
@ -44,7 +44,7 @@ void paged_attention_v2(
|
||||
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
||||
int64_t max_seq_len, const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale,
|
||||
const int64_t tp_rank, const int64_t blocksparse_local_blocks,
|
||||
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
||||
@ -86,6 +86,8 @@ void batched_rotary_embedding(torch::Tensor& positions, torch::Tensor& query,
|
||||
|
||||
void silu_and_mul(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
void mul_and_silu(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
void gelu_and_mul(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
void gelu_tanh_and_mul(torch::Tensor& out, torch::Tensor& input);
|
||||
@ -153,15 +155,15 @@ bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability);
|
||||
void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
|
||||
void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
|
||||
bool cutlass_sparse_scaled_mm_supported(int64_t cuda_device_capability);
|
||||
|
||||
@ -169,7 +171,7 @@ void cutlass_scaled_sparse_mm(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b, torch::Tensor const& e,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
|
||||
bool cutlass_sparse_compress_entry(torch::Tensor& a_compressed,
|
||||
torch::Tensor& e, torch::Tensor const& a);
|
||||
@ -177,11 +179,11 @@ bool cutlass_sparse_compress_entry(torch::Tensor& a_compressed,
|
||||
|
||||
void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,
|
||||
torch::Tensor const& scale,
|
||||
c10::optional<torch::Tensor> const& azp);
|
||||
std::optional<torch::Tensor> const& azp);
|
||||
|
||||
void dynamic_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,
|
||||
torch::Tensor& scales,
|
||||
c10::optional<torch::Tensor> const& azp);
|
||||
std::optional<torch::Tensor> const& azp);
|
||||
|
||||
torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
|
||||
torch::Tensor b_gptq_qzeros,
|
||||
@ -198,34 +200,34 @@ void dynamic_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input,
|
||||
|
||||
void dynamic_per_token_scaled_fp8_quant(
|
||||
torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scale,
|
||||
c10::optional<torch::Tensor> const& scale_ub);
|
||||
std::optional<torch::Tensor> const& scale_ub);
|
||||
|
||||
void selective_scan_fwd(const torch::Tensor& u, const torch::Tensor& delta,
|
||||
const torch::Tensor& A, const torch::Tensor& B,
|
||||
const torch::Tensor& C,
|
||||
const c10::optional<torch::Tensor>& D_,
|
||||
const c10::optional<torch::Tensor>& z_,
|
||||
const c10::optional<torch::Tensor>& delta_bias_,
|
||||
const std::optional<torch::Tensor>& D_,
|
||||
const std::optional<torch::Tensor>& z_,
|
||||
const std::optional<torch::Tensor>& delta_bias_,
|
||||
bool delta_softplus,
|
||||
const c10::optional<torch::Tensor>& query_start_loc,
|
||||
const c10::optional<torch::Tensor>& cache_indices,
|
||||
const c10::optional<torch::Tensor>& has_initial_state,
|
||||
const std::optional<torch::Tensor>& query_start_loc,
|
||||
const std::optional<torch::Tensor>& cache_indices,
|
||||
const std::optional<torch::Tensor>& has_initial_state,
|
||||
const torch::Tensor& ssm_states, int64_t pad_slot_id);
|
||||
|
||||
void causal_conv1d_update(const at::Tensor& x, const at::Tensor& conv_state,
|
||||
const at::Tensor& weight,
|
||||
const c10::optional<at::Tensor>& bias_,
|
||||
const std::optional<at::Tensor>& bias_,
|
||||
bool silu_activation,
|
||||
const c10::optional<at::Tensor>& cache_seqlens_,
|
||||
const c10::optional<at::Tensor>& conv_state_indices_,
|
||||
const std::optional<at::Tensor>& cache_seqlens_,
|
||||
const std::optional<at::Tensor>& conv_state_indices_,
|
||||
int64_t pad_slot_id);
|
||||
|
||||
void causal_conv1d_fwd(const at::Tensor& x, const at::Tensor& weight,
|
||||
const c10::optional<at::Tensor>& bias_,
|
||||
const c10::optional<at::Tensor>& conv_states,
|
||||
const c10::optional<at::Tensor>& query_start_loc,
|
||||
const c10::optional<at::Tensor>& cache_indices,
|
||||
const c10::optional<at::Tensor>& has_initial_state,
|
||||
const std::optional<at::Tensor>& bias_,
|
||||
const std::optional<at::Tensor>& conv_states,
|
||||
const std::optional<at::Tensor>& query_start_loc,
|
||||
const std::optional<at::Tensor>& cache_indices,
|
||||
const std::optional<at::Tensor>& has_initial_state,
|
||||
bool silu_activation, int64_t pad_slot_id);
|
||||
|
||||
#ifndef USE_ROCM
|
||||
|
||||
@ -95,6 +95,16 @@ __global__ void advance_step_flashinfer_kernel(
|
||||
long* input_positions_ptr, int* seq_lens_ptr, long* slot_mapping_ptr,
|
||||
int const* block_tables_ptr, int64_t const block_tables_stride,
|
||||
int* paged_kv_last_page_len_ptr, int* block_table_bound_ptr) {
|
||||
int const n_pad = num_seqs - num_queries;
|
||||
if (n_pad && blockIdx.x == 0) {
|
||||
// Handle cuda graph padding
|
||||
int const offset = num_queries;
|
||||
for (int i = threadIdx.x; i < n_pad; i += blockDim.x) {
|
||||
input_tokens_ptr[offset + i] = 0;
|
||||
input_positions_ptr[offset + i] = 0;
|
||||
slot_mapping_ptr[offset + i] = -1;
|
||||
}
|
||||
}
|
||||
int num_query_blocks = div_ceil(num_queries, num_threads);
|
||||
|
||||
if (blockIdx.x < num_query_blocks) {
|
||||
|
||||
@ -226,7 +226,7 @@ __global__ void dynamic_scaled_int8_azp_quant_kernel(
|
||||
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
|
||||
torch::Tensor const& input, // [..., hidden_size]
|
||||
torch::Tensor const& scale,
|
||||
c10::optional<torch::Tensor> const& azp) {
|
||||
std::optional<torch::Tensor> const& azp) {
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
TORCH_CHECK(scale.numel() == 1);
|
||||
@ -257,7 +257,7 @@ void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
|
||||
void dynamic_scaled_int8_quant(
|
||||
torch::Tensor& out, // [..., hidden_size]
|
||||
torch::Tensor const& input, // [..., hidden_size]
|
||||
torch::Tensor& scales, c10::optional<torch::Tensor> const& azp) {
|
||||
torch::Tensor& scales, std::optional<torch::Tensor> const& azp) {
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
TORCH_CHECK(scales.is_contiguous());
|
||||
|
||||
@ -39,7 +39,7 @@ void cutlass_scaled_mm_sm75(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
if (bias) {
|
||||
@ -58,8 +58,8 @@ void cutlass_scaled_mm_azp_sm75(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
|
||||
@ -94,7 +94,7 @@ void cutlass_scaled_mm_sm80(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
if (bias) {
|
||||
@ -113,8 +113,8 @@ void cutlass_scaled_mm_azp_sm80(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
|
||||
@ -165,7 +165,7 @@ void cutlass_scaled_mm_sm89(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
if (bias) {
|
||||
@ -184,8 +184,8 @@ void cutlass_scaled_mm_azp_sm89(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
|
||||
|
||||
@ -51,7 +51,7 @@ void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
if (bias) {
|
||||
@ -70,8 +70,8 @@ void cutlass_scaled_mm_azp_sm90(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
|
||||
|
||||
@ -9,26 +9,26 @@ void cutlass_scaled_mm_sm75(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
|
||||
void cutlass_scaled_mm_sm80(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
|
||||
void cutlass_scaled_mm_sm89(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
|
||||
#if defined ENABLE_SCALED_MM_C3X && ENABLE_SCALED_MM_C3X
|
||||
void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
#endif
|
||||
|
||||
void cutlass_scaled_mm_azp_sm75(torch::Tensor& c, torch::Tensor const& a,
|
||||
@ -36,24 +36,24 @@ void cutlass_scaled_mm_azp_sm75(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
|
||||
void cutlass_scaled_mm_azp_sm80(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
|
||||
void cutlass_scaled_mm_azp_sm89(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
|
||||
#if defined CUDA_VERSION && CUDA_VERSION >= 12000
|
||||
void cutlass_scaled_mm_azp_sm90(torch::Tensor& c, torch::Tensor const& a,
|
||||
@ -61,8 +61,8 @@ void cutlass_scaled_mm_azp_sm90(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
#endif
|
||||
|
||||
bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability) {
|
||||
@ -84,7 +84,7 @@ bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability) {
|
||||
void cutlass_scaled_mm(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
// Checks for conformality
|
||||
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
|
||||
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
|
||||
@ -148,8 +148,8 @@ void cutlass_scaled_mm_azp(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
torch::Tensor const& azp_adj,
|
||||
c10::optional<torch::Tensor> const& azp,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& azp,
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
// Checks for conformality
|
||||
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
|
||||
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
|
||||
|
||||
@ -834,6 +834,7 @@ __global__ void Marlin(
|
||||
int4* sh_g_idx = sh_b + (stages * b_sh_stage);
|
||||
int4* sh_zp = sh_g_idx + (stages * g_idx_stage);
|
||||
int4* sh_s = sh_zp + (stages * zp_sh_stage);
|
||||
int4* sh_red = sh_s + (stages * s_sh_stage);
|
||||
|
||||
// Register storage for double buffer of shared memory reads.
|
||||
FragA frag_a[2][thread_m_blocks];
|
||||
@ -932,11 +933,11 @@ __global__ void Marlin(
|
||||
int4* sh_s_stage = sh_s + s_sh_stage * pipe;
|
||||
|
||||
if constexpr (group_blocks >= thread_k_blocks) {
|
||||
if (s_sh_wr_pred) {
|
||||
cp_async4(&sh_s_stage[s_sh_wr], &scales_ptr[s_gl_rd]);
|
||||
}
|
||||
// Only fetch scales if this tile starts a new group
|
||||
if (pipe % (group_blocks / thread_k_blocks) == 0) {
|
||||
if (s_sh_wr_pred) {
|
||||
cp_async4(&sh_s_stage[s_sh_wr], &scales_ptr[s_gl_rd]);
|
||||
}
|
||||
if ((pipe + 1) % (group_blocks / thread_k_blocks) == 0) {
|
||||
s_gl_rd += s_gl_rd_delta;
|
||||
}
|
||||
} else {
|
||||
@ -1038,9 +1039,7 @@ __global__ void Marlin(
|
||||
// No act-order case
|
||||
if constexpr (group_blocks != -1) {
|
||||
if constexpr (group_blocks >= thread_k_blocks) {
|
||||
int4* sh_s_stage =
|
||||
sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) *
|
||||
(pipe / (group_blocks / thread_k_blocks)));
|
||||
int4* sh_s_stage = sh_s + s_sh_stage * pipe;
|
||||
reinterpret_cast<int4*>(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd];
|
||||
} else {
|
||||
int warp_id = threadIdx.x / 32;
|
||||
@ -1339,15 +1338,15 @@ __global__ void Marlin(
|
||||
int red_sh_wr =
|
||||
red_sh_delta * j + (red_sh_rd - red_sh_stride * i);
|
||||
if (i < red_off) {
|
||||
float* c_rd =
|
||||
reinterpret_cast<float*>(&sh[red_sh_delta * j + red_sh_rd]);
|
||||
float* c_wr = reinterpret_cast<float*>(&sh[red_sh_wr]);
|
||||
float* c_rd = reinterpret_cast<float*>(
|
||||
&sh_red[red_sh_delta * j + red_sh_rd]);
|
||||
float* c_wr = reinterpret_cast<float*>(&sh_red[red_sh_wr]);
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 4; k++)
|
||||
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + j][k] +=
|
||||
c_rd[k] + c_wr[k];
|
||||
}
|
||||
sh[red_sh_wr] =
|
||||
sh_red[red_sh_wr] =
|
||||
reinterpret_cast<int4*>(&frag_c)[4 * 2 * m_block + j];
|
||||
}
|
||||
}
|
||||
@ -1357,7 +1356,7 @@ __global__ void Marlin(
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4 * 2; i++) {
|
||||
float* c_rd =
|
||||
reinterpret_cast<float*>(&sh[red_sh_delta * i + red_sh_rd]);
|
||||
reinterpret_cast<float*>(&sh_red[red_sh_delta * i + red_sh_rd]);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; j++)
|
||||
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + i][j] +=
|
||||
@ -1397,7 +1396,7 @@ __global__ void Marlin(
|
||||
#pragma unroll
|
||||
for (int i = 0; i < thread_m_blocks * 4; i++) {
|
||||
cp_async4_pred(
|
||||
&sh[c_sh_wr + c_sh_wr_delta * i],
|
||||
&sh_red[c_sh_wr + c_sh_wr_delta * i],
|
||||
&C[c_gl_wr + c_gl_wr_delta_o * (i / 2) +
|
||||
c_gl_wr_delta_i * (i % 2)],
|
||||
i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m);
|
||||
@ -1410,7 +1409,7 @@ __global__ void Marlin(
|
||||
for (int i = 0; i < thread_m_blocks * 4; i++) {
|
||||
if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m) {
|
||||
if (!first) {
|
||||
int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta];
|
||||
int4 c_red = sh_red[c_sh_wr + i * c_sh_wr_delta];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 2 * 4; j++) {
|
||||
reinterpret_cast<float*>(
|
||||
@ -1461,10 +1460,10 @@ __global__ void Marlin(
|
||||
float* frag_c_ptr = reinterpret_cast<float*>(&frag_c);
|
||||
#pragma unroll
|
||||
for (int k = 0; k < th_size; k++) {
|
||||
sh[threadIdx.x] =
|
||||
sh_red[threadIdx.x] =
|
||||
C_tmp[c_cur_offset + active_threads * k + threadIdx.x];
|
||||
|
||||
float* sh_c_ptr = reinterpret_cast<float*>(&sh[threadIdx.x]);
|
||||
float* sh_c_ptr = reinterpret_cast<float*>(&sh_red[threadIdx.x]);
|
||||
#pragma unroll
|
||||
for (int f = 0; f < 4; f++) {
|
||||
frag_c_ptr[k * 4 + f] += sh_c_ptr[f];
|
||||
@ -1515,7 +1514,7 @@ __global__ void Marlin(
|
||||
res = __hmul2(res, s[0]);
|
||||
}
|
||||
|
||||
((scalar_t2*)sh)[idx] = res;
|
||||
((scalar_t2*)sh_red)[idx] = res;
|
||||
};
|
||||
|
||||
if (threadIdx.x / 32 < thread_n_blocks / 4) {
|
||||
@ -1543,7 +1542,7 @@ __global__ void Marlin(
|
||||
i < div_ceil(16 * thread_m_blocks, threads / (2 * thread_n_blocks));
|
||||
i++) {
|
||||
if (c_gl_wr < c_gl_wr_end) {
|
||||
C[c_gl_wr] = sh[c_sh_rd];
|
||||
C[c_gl_wr] = sh_red[c_sh_rd];
|
||||
c_gl_wr += c_gl_wr_delta;
|
||||
c_sh_rd += c_sh_rd_delta;
|
||||
}
|
||||
@ -1865,9 +1864,12 @@ bool is_valid_cache_size(thread_config_t const& th_config, int max_m_blocks,
|
||||
|
||||
float pipe_size = (a_size + b_size) * pipe_stages;
|
||||
|
||||
float reduce_size = max(th_config.num_threads * 32 * 4,
|
||||
(tb_n / 64) * 32 * (tb_max_m / 16) * 4 * 2 * 4 * 2);
|
||||
|
||||
TORCH_CHECK(max_shared_mem / 2 > scales_cache_size); // Sanity
|
||||
|
||||
return pipe_size < 0.95f * (max_shared_mem - scales_cache_size);
|
||||
return pipe_size + reduce_size < 0.95f * (max_shared_mem - scales_cache_size);
|
||||
}
|
||||
|
||||
bool is_valid_config(thread_config_t const& th_config, int max_m_blocks,
|
||||
|
||||
@ -63,7 +63,7 @@ torch::Tensor mm_dispatch_{{type_sig}}(MMArgs args) {
|
||||
|
||||
|
||||
static inline std::optional<at::ScalarType> maybe_scalartype(
|
||||
c10::optional<at::Tensor> const& t) {
|
||||
std::optional<at::Tensor> const& t) {
|
||||
if (!t) {
|
||||
return std::nullopt;
|
||||
} else {
|
||||
|
||||
@ -183,11 +183,11 @@ struct MacheteKernelTemplate {
|
||||
torch::Tensor const& A, // MxK matrix
|
||||
torch::Tensor const& B, // KxN prepacked matrix
|
||||
torch::Tensor& D, // MxN matrix
|
||||
c10::optional<torch::Tensor> const& maybe_g_scales, // scale_KxN matrix
|
||||
c10::optional<torch::Tensor> const& maybe_g_zeros, // scale_KxN matrix
|
||||
c10::optional<int64_t> maybe_group_size,
|
||||
c10::optional<torch::Tensor> const& maybe_ch_scales, // len N vector
|
||||
c10::optional<torch::Tensor> const& maybe_tok_scales) // len M vector
|
||||
std::optional<torch::Tensor> const& maybe_g_scales, // scale_KxN matrix
|
||||
std::optional<torch::Tensor> const& maybe_g_zeros, // scale_KxN matrix
|
||||
std::optional<int64_t> maybe_group_size,
|
||||
std::optional<torch::Tensor> const& maybe_ch_scales, // len N vector
|
||||
std::optional<torch::Tensor> const& maybe_tok_scales) // len M vector
|
||||
{
|
||||
static_assert(!with_group_zeropoints || with_group_scales);
|
||||
|
||||
|
||||
@ -13,23 +13,23 @@ struct MMArgs {
|
||||
torch::Tensor const& A;
|
||||
torch::Tensor const& B;
|
||||
vllm::ScalarType const& b_type;
|
||||
c10::optional<at::ScalarType> const& maybe_out_type;
|
||||
c10::optional<torch::Tensor> const& maybe_group_scales;
|
||||
c10::optional<torch::Tensor> const& maybe_group_zeros;
|
||||
c10::optional<int64_t> maybe_group_size;
|
||||
c10::optional<torch::Tensor> const& maybe_channel_scales;
|
||||
c10::optional<torch::Tensor> const& maybe_token_scales;
|
||||
c10::optional<std::string> maybe_schedule;
|
||||
std::optional<at::ScalarType> const& maybe_out_type;
|
||||
std::optional<torch::Tensor> const& maybe_group_scales;
|
||||
std::optional<torch::Tensor> const& maybe_group_zeros;
|
||||
std::optional<int64_t> maybe_group_size;
|
||||
std::optional<torch::Tensor> const& maybe_channel_scales;
|
||||
std::optional<torch::Tensor> const& maybe_token_scales;
|
||||
std::optional<std::string> maybe_schedule;
|
||||
};
|
||||
|
||||
struct SupportedSchedulesArgs {
|
||||
at::ScalarType a_type;
|
||||
vllm::ScalarType b_type;
|
||||
c10::optional<at::ScalarType> maybe_group_scales_type;
|
||||
c10::optional<at::ScalarType> maybe_group_zeros_type;
|
||||
c10::optional<at::ScalarType> maybe_channel_scales_type;
|
||||
c10::optional<at::ScalarType> maybe_token_scales_type;
|
||||
c10::optional<at::ScalarType> maybe_out_type;
|
||||
std::optional<at::ScalarType> maybe_group_scales_type;
|
||||
std::optional<at::ScalarType> maybe_group_zeros_type;
|
||||
std::optional<at::ScalarType> maybe_channel_scales_type;
|
||||
std::optional<at::ScalarType> maybe_token_scales_type;
|
||||
std::optional<at::ScalarType> maybe_out_type;
|
||||
};
|
||||
|
||||
torch::Tensor mm_dispatch(MMArgs args);
|
||||
|
||||
@ -10,7 +10,7 @@ struct PrepackBArgs {
|
||||
torch::Tensor const& B;
|
||||
at::ScalarType a_type;
|
||||
vllm::ScalarType b_type;
|
||||
c10::optional<at::ScalarType> maybe_group_scales_type;
|
||||
std::optional<at::ScalarType> maybe_group_scales_type;
|
||||
};
|
||||
|
||||
template <typename PrepackedLayoutB>
|
||||
|
||||
@ -10,11 +10,11 @@ using namespace vllm;
|
||||
|
||||
std::vector<std::string> supported_schedules(
|
||||
at::ScalarType a_type, int64_t b_type_id,
|
||||
c10::optional<at::ScalarType> maybe_group_scales_type,
|
||||
c10::optional<at::ScalarType> maybe_group_zeros_type,
|
||||
c10::optional<at::ScalarType> maybe_channel_scales_type,
|
||||
c10::optional<at::ScalarType> maybe_token_scales_type,
|
||||
c10::optional<at::ScalarType> maybe_out_type) {
|
||||
std::optional<at::ScalarType> maybe_group_scales_type,
|
||||
std::optional<at::ScalarType> maybe_group_zeros_type,
|
||||
std::optional<at::ScalarType> maybe_channel_scales_type,
|
||||
std::optional<at::ScalarType> maybe_token_scales_type,
|
||||
std::optional<at::ScalarType> maybe_out_type) {
|
||||
ScalarType const b_type = ScalarType::from_id(b_type_id);
|
||||
return supported_schedules_dispatch({
|
||||
.a_type = a_type,
|
||||
@ -29,13 +29,13 @@ std::vector<std::string> supported_schedules(
|
||||
|
||||
torch::Tensor mm(torch::Tensor const& A, torch::Tensor const& B,
|
||||
int64_t b_type_id,
|
||||
c10::optional<at::ScalarType> const& maybe_out_type,
|
||||
c10::optional<torch::Tensor> const& maybe_group_scales,
|
||||
c10::optional<torch::Tensor> const& maybe_group_zeros,
|
||||
c10::optional<int64_t> maybe_group_size,
|
||||
c10::optional<torch::Tensor> const& maybe_channel_scales,
|
||||
c10::optional<torch::Tensor> const& maybe_token_scales,
|
||||
c10::optional<std::string> maybe_schedule) {
|
||||
std::optional<at::ScalarType> const& maybe_out_type,
|
||||
std::optional<torch::Tensor> const& maybe_group_scales,
|
||||
std::optional<torch::Tensor> const& maybe_group_zeros,
|
||||
std::optional<int64_t> maybe_group_size,
|
||||
std::optional<torch::Tensor> const& maybe_channel_scales,
|
||||
std::optional<torch::Tensor> const& maybe_token_scales,
|
||||
std::optional<std::string> maybe_schedule) {
|
||||
ScalarType const b_type = ScalarType::from_id(b_type_id);
|
||||
return mm_dispatch({.A = A,
|
||||
.B = B,
|
||||
@ -51,7 +51,7 @@ torch::Tensor mm(torch::Tensor const& A, torch::Tensor const& B,
|
||||
|
||||
torch::Tensor prepack_B(
|
||||
torch::Tensor const& B, at::ScalarType const& a_type, int64_t b_type_id,
|
||||
c10::optional<at::ScalarType> const& maybe_group_scales_type) {
|
||||
std::optional<at::ScalarType> const& maybe_group_scales_type) {
|
||||
ScalarType const b_type = ScalarType::from_id(b_type_id);
|
||||
return prepack_B_dispatch(
|
||||
{.B = B,
|
||||
|
||||
@ -928,7 +928,7 @@ void paged_attention_custom_launcher(
|
||||
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
|
||||
torch::Tensor& value_cache, const int num_kv_heads, float scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& context_lens,
|
||||
int max_context_len, const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
int max_context_len, const std::optional<torch::Tensor>& alibi_slopes,
|
||||
float k_scale, float v_scale) {
|
||||
int num_seqs = query.size(0);
|
||||
int num_heads = query.size(1);
|
||||
@ -1086,7 +1086,7 @@ void paged_attention(
|
||||
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
|
||||
torch::Tensor& context_lens, // [num_seqs]
|
||||
int64_t block_size, int64_t max_context_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double k_scale, double v_scale) {
|
||||
const int head_size = query.size(2);
|
||||
if (kv_cache_dtype == "auto") {
|
||||
|
||||
@ -9,6 +9,6 @@ void paged_attention(torch::Tensor& out, torch::Tensor& exp_sums,
|
||||
double scale, torch::Tensor& block_tables,
|
||||
torch::Tensor& context_lens, int64_t block_size,
|
||||
int64_t max_context_len,
|
||||
const c10::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::optional<torch::Tensor>& alibi_slopes,
|
||||
const std::string& kv_cache_dtype, double k_scale,
|
||||
double v_scale);
|
||||
|
||||
@ -286,7 +286,7 @@ void cutlass_scaled_sparse_mm_sm90(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& bt_meta,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
if (bias) {
|
||||
|
||||
@ -22,7 +22,7 @@ void cutlass_scaled_sparse_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& e,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias);
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
#endif
|
||||
|
||||
void cutlass_scaled_sparse_mm(torch::Tensor& c, torch::Tensor const& a,
|
||||
@ -30,7 +30,7 @@ void cutlass_scaled_sparse_mm(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& bt_meta,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
c10::optional<torch::Tensor> const& bias) {
|
||||
std::optional<torch::Tensor> const& bias) {
|
||||
// Checks for conformality
|
||||
TORCH_CHECK(a.dim() == 2 && bt_nzs.dim() == 2 && c.dim() == 2);
|
||||
TORCH_CHECK(c.size(1) == bt_nzs.size(0) && bt_nzs.size(1) * 2 == a.size(1) &&
|
||||
|
||||
@ -55,6 +55,9 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
|
||||
ops.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);
|
||||
|
||||
ops.def("mul_and_silu(Tensor! out, Tensor input) -> ()");
|
||||
ops.impl("mul_and_silu", torch::kCUDA, &mul_and_silu);
|
||||
|
||||
// Activation function used in GeGLU with `none` approximation.
|
||||
ops.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
|
||||
ops.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);
|
||||
|
||||
@ -18,3 +18,7 @@ help:
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
clean:
|
||||
@$(SPHINXBUILD) -M clean "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
rm -rf "$(SOURCEDIR)/getting_started/examples"
|
||||
|
||||
@ -16,4 +16,5 @@ make html
|
||||
```bash
|
||||
python -m http.server -d build/html/
|
||||
```
|
||||
|
||||
Launch your browser and open localhost:8000.
|
||||
|
||||
@ -3,6 +3,8 @@ sphinx-book-theme==1.0.1
|
||||
sphinx-copybutton==0.5.2
|
||||
myst-parser==3.0.1
|
||||
sphinx-argparse==0.4.0
|
||||
sphinx-design==0.6.1
|
||||
sphinx-togglebutton==0.3.2
|
||||
msgspec
|
||||
cloudpickle
|
||||
|
||||
|
||||
21
docs/source/api/inference_params.md
Normal file
21
docs/source/api/inference_params.md
Normal file
@ -0,0 +1,21 @@
|
||||
# Inference Parameters
|
||||
|
||||
Inference parameters for vLLM APIs.
|
||||
|
||||
(sampling-params)=
|
||||
|
||||
## Sampling Parameters
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.SamplingParams
|
||||
:members:
|
||||
```
|
||||
|
||||
(pooling-params)=
|
||||
|
||||
## Pooling Parameters
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.PoolingParams
|
||||
:members:
|
||||
```
|
||||
9
docs/source/api/model/adapters.md
Normal file
9
docs/source/api/model/adapters.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Model Adapters
|
||||
|
||||
## Module Contents
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: vllm.model_executor.models.adapters
|
||||
:members:
|
||||
:member-order: bysource
|
||||
```
|
||||
11
docs/source/api/model/index.md
Normal file
11
docs/source/api/model/index.md
Normal file
@ -0,0 +1,11 @@
|
||||
# Model Development
|
||||
|
||||
## Submodules
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
interfaces_base
|
||||
interfaces
|
||||
adapters
|
||||
```
|
||||
9
docs/source/api/model/interfaces.md
Normal file
9
docs/source/api/model/interfaces.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Optional Interfaces
|
||||
|
||||
## Module Contents
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: vllm.model_executor.models.interfaces
|
||||
:members:
|
||||
:member-order: bysource
|
||||
```
|
||||
9
docs/source/api/model/interfaces_base.md
Normal file
9
docs/source/api/model/interfaces_base.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Base Model Interfaces
|
||||
|
||||
## Module Contents
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: vllm.model_executor.models.interfaces_base
|
||||
:members:
|
||||
:member-order: bysource
|
||||
```
|
||||
28
docs/source/api/multimodal/index.md
Normal file
28
docs/source/api/multimodal/index.md
Normal file
@ -0,0 +1,28 @@
|
||||
(multi-modality)=
|
||||
|
||||
# Multi-Modality
|
||||
|
||||
vLLM provides experimental support for multi-modal models through the {mod}`vllm.multimodal` package.
|
||||
|
||||
Multi-modal inputs can be passed alongside text and token prompts to [supported models](#supported-mm-models)
|
||||
via the `multi_modal_data` field in {class}`vllm.inputs.PromptType`.
|
||||
|
||||
Looking to add your own multi-modal model? Please follow the instructions listed [here](#supports-multimodal).
|
||||
|
||||
## Module Contents
|
||||
|
||||
```{eval-rst}
|
||||
.. autodata:: vllm.multimodal.MULTIMODAL_REGISTRY
|
||||
```
|
||||
|
||||
## Submodules
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
inputs
|
||||
parse
|
||||
processing
|
||||
profiling
|
||||
registry
|
||||
```
|
||||
49
docs/source/api/multimodal/inputs.md
Normal file
49
docs/source/api/multimodal/inputs.md
Normal file
@ -0,0 +1,49 @@
|
||||
# Input Definitions
|
||||
|
||||
## User-facing inputs
|
||||
|
||||
```{eval-rst}
|
||||
.. autodata:: vllm.multimodal.inputs.MultiModalDataDict
|
||||
```
|
||||
|
||||
## Internal data structures
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.multimodal.inputs.PlaceholderRange
|
||||
:members:
|
||||
:show-inheritance:
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autodata:: vllm.multimodal.inputs.NestedTensors
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.multimodal.inputs.MultiModalFieldElem
|
||||
:members:
|
||||
:show-inheritance:
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.multimodal.inputs.MultiModalFieldConfig
|
||||
:members:
|
||||
:show-inheritance:
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.multimodal.inputs.MultiModalKwargsItem
|
||||
:members:
|
||||
:show-inheritance:
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.multimodal.inputs.MultiModalKwargs
|
||||
:members:
|
||||
:show-inheritance:
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.multimodal.inputs.MultiModalInputsV2
|
||||
:members:
|
||||
:show-inheritance:
|
||||
```
|
||||
9
docs/source/api/multimodal/parse.md
Normal file
9
docs/source/api/multimodal/parse.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Data Parsing
|
||||
|
||||
## Module Contents
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: vllm.multimodal.parse
|
||||
:members:
|
||||
:member-order: bysource
|
||||
```
|
||||
9
docs/source/api/multimodal/processing.md
Normal file
9
docs/source/api/multimodal/processing.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Data Processing
|
||||
|
||||
## Module Contents
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: vllm.multimodal.processing
|
||||
:members:
|
||||
:member-order: bysource
|
||||
```
|
||||
9
docs/source/api/multimodal/profiling.md
Normal file
9
docs/source/api/multimodal/profiling.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Memory Profiling
|
||||
|
||||
## Module Contents
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: vllm.multimodal.profiling
|
||||
:members:
|
||||
:member-order: bysource
|
||||
```
|
||||
9
docs/source/api/multimodal/registry.md
Normal file
9
docs/source/api/multimodal/registry.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Registry
|
||||
|
||||
## Module Contents
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: vllm.multimodal.registry
|
||||
:members:
|
||||
:member-order: bysource
|
||||
```
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user