Compare commits

...

216 Commits

Author SHA1 Message Date
feaf202e93 [Bugfix] Guard _may_reorder_batch for encoder-only models on CPU (#24319) (#24348)
Signed-off-by: Remy <eunhwan.shin@dtonic.io>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-09-10 14:24:42 +08:00
91130ae376 [docs] promo pytorch conf and ray summit (#24562)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-09-09 23:24:20 -07:00
e40827280b [Docs] Enable relative links in examples to function when rendered in the docs (#24041)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-09 21:40:45 -07:00
4377b1ae3b [Bugfix] Update Run:AI Model Streamer Loading Integration (#23845)
Signed-off-by: Omer Dayan (SW-GPU) <omer@run.ai>
Signed-off-by: Peter Schuurman <psch@google.com>
Co-authored-by: Omer Dayan (SW-GPU) <omer@run.ai>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-09 21:37:17 -07:00
009d689b0c [Core] Simplify and unify mm uuid handling & auto-generated mm hash overrides processing. (#24271)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-09-09 21:36:09 -07:00
Wei
0efdb5c3ba [gpt-oss] Cache permute indices for faster MXFP4 MoE layer loading (#24154)
Signed-off-by: Wei Wei <wwei6@meta.com>
2025-09-10 04:27:53 +00:00
53b42f4102 [BugFix][Spec Decode] Fix out-of-range index triggered by eagle3; re-enable test for LlamaForCausalLMEagle3 (#24392)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-09-09 21:24:23 -07:00
309d7aa401 [P/D] MultiConnector supports shutdown (#24425)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-09 21:24:11 -07:00
b4a01aaf95 [KV Connector] More async support for get_num_new_matched_tokens (#23620)
Signed-off-by: ApostaC <yihua98@uchicago.edu>
2025-09-09 21:23:37 -07:00
83dd28aae4 [CI] Adjust threshold for flaky ngram spec decoding test (#24528)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-09 21:07:33 -07:00
f88e84016f [BugFix] Fix async core engine client finalizer (#24540)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-09 21:07:13 -07:00
3c2156b3af [Hardware][Apple-CPU] Enable native bfloat16 on Apple Silicon (M2 and later) (#24129)
Signed-off-by: ignaciosica <mignacio.sica@gmail.com>
2025-09-10 03:50:21 +00:00
7e7db04310 [CI] Retry flaky fp8 cutlass mla tests (#24536)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-09 20:33:10 -07:00
41f160b974 Add @heheda12345 to CODEOWNERS of KVCacheManager related code (#24546)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-10 03:30:32 +00:00
dc625ea6b8 [Perf] Convert np array to torch tensor to index into block table for attn chunking (#24474)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-09 20:01:06 -07:00
b23fb78623 [Bugfix] Fix for 24530. Fix naive all2all shared expert overlap. (#24538) 2025-09-09 17:53:53 -07:00
561f38dc3c [Bugfix] Improve EPLB config validation error message (#24524)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-10 00:32:36 +00:00
73e688cb79 [ROCm][Feature] Enable Pipeline Parallelism with Ray Compiled Graph on ROCm (#24275)
Signed-off-by: charlifu <charlifu@amd.com>
2025-09-09 23:27:35 +00:00
fb1a8f932a [Benchmark] Add option to skip oversampling in benchmark (#24457)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-09-09 22:00:17 +00:00
0dc9cbb527 [Benchmark] Update bench doc with mtbench, blazedit, spec bench (#24450)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-09-09 21:15:41 +00:00
b5fb3005a8 [Log] Use a relative path in debug-level logs to distinguish files with identical names (#23846)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-09 16:46:35 -04:00
15de5ff9ea [Feature] Disallow FlashMLA on Blackwell (#24521)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-09 14:59:34 -04:00
b8a93076d3 [CI] execute all piecewise compilation tests together (#24502)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-09 11:05:25 -07:00
c3f9773b2c [TPU] Fix tpu structured decoding in mixed batches (#24458)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-09-09 11:04:25 -07:00
3707cb2505 [Docs] Gemma3n transcriptions endpoint support (#24512)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-09 11:03:32 -07:00
920ed46b09 [Misc] bump outlines_core to fix the version conflicts with outlines >= 1.2.0 (#24368)
Signed-off-by: Kazuhiro Serizawa <nserihiro@gmail.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-09 10:59:46 -07:00
15cb047e25 Extend renderer with embedding support and integrate completion endpoint (#24405)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-10 01:46:46 +08:00
9ad0688e43 [Bugfix] Fix hidden_size for multimodal classification model (#24501)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-09 10:37:25 -07:00
b9a1c4c8a2 [ROCm][CI/Build] Sync ROCm dockerfiles with the ROCm fork (#24279)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-09 12:21:56 -04:00
1aa427fdc1 [Kernels] Add Flash Linear Attention Kernels (#24518)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-10 00:04:41 +08:00
1c63a16b65 [Core] Run garbage collector after CUDA graph capture to fix throughput regression (#24128)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-09 10:38:10 -04:00
922d3b401b [Bugfix] Handle the edge case in detokenizer where processed tokens contain both stop str and eos token (#23938)
Signed-off-by: dtransposed <damian.bogunowicz@gmail.com>
2025-09-09 07:30:24 -07:00
19332c0479 [Model] Systematic support for fp32 head, pooling models part (#23810)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-09 07:29:50 -07:00
a55cf41a09 [Compilation][WideEP] Enable Piecewise CUDAGraph for DeepEPHT (#24123) 2025-09-09 10:21:10 -04:00
6fb2788163 [CI/Build][Doc] Fully deprecate old bench scripts for serving / throughput / latency (#24411)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-09 10:02:35 +00:00
3d2a2de8f7 [RL] fast weight update with zmq + ipc handles (#24295)
Signed-off-by: huangweixiao <huangweixiao@msh.team>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-09 16:57:46 +08:00
1116590b16 [gpt-oss] Validate gpt-oss python tool during initialization (#23856)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-09 08:37:48 +00:00
ccb97338af [Misc] Add Codex settings to gitignore (#24493)
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-09-09 01:25:44 -07:00
45c9cb5835 [Misc] Add claude settings to gitignore (#24492)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-09 01:14:45 -07:00
e283976f3a [Performance][MM] Building the inverse permutation in O(n) time in Qwen2_5_VisionTransformer (#24443)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
2025-09-09 00:24:11 -07:00
46876dff32 [Doc]: fixing typos to improve docs (#24480)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-08 23:06:04 -07:00
1823a00d67 [Misc] Support bench serve long context (#24373)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-09-08 22:53:10 -07:00
ed16d0f26f [Doc] mention fpdb for multiprocess breakpoints (#24452)
Signed-off-by: Mickael Seznec <mickael@mistral.ai>
2025-09-08 21:46:45 -07:00
0cdd213641 [Misc] Improve Worker process title and logging prefix (#22205)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-08 21:43:48 -07:00
948dd3443b [Bugfix] Fix Apertus HF repo name (#24447)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-08 21:40:29 -07:00
b2f7745774 Add data_parallel_size to VllmConfig string representation (#24298)
Co-authored-by: Cong Chen <congc@meta.com>
2025-09-08 21:35:18 -07:00
82dfb12e52 [Core] Use sha256 bytes instead of BlockHash to reduce GC overhead (#23673)
Signed-off-by: linzebing <linzebing1995@gmail.com>
2025-09-08 21:34:37 -07:00
bba1042c6f [Flashinfer] Support Flashinfer TRTLLM FP8-qkv BF16/FP16-out Attention Kernel (#23647)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-08 20:53:07 -07:00
b6fbc15634 [BugFix][Model] Fix Ernie4.5-VL hanging on long inputs (#24074)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-09-09 11:37:16 +08:00
3e0d4a3475 Move KVTransferConfig from config/__init__.py to config/kv_transfer.py (#24434)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 20:30:32 -07:00
562663a044 Bump actions/github-script from 7.0.1 to 8.0.0 (#24413)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-09 03:12:44 +00:00
ed1623a88a Bump actions/stale from 9.1.0 to 10.0.0 (#24412)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-09 03:11:20 +00:00
13b89bd823 [doc] update vllm serve cli args documentation (#24329)
Signed-off-by: cjackal <44624812+cjackal@users.noreply.github.com>
2025-09-09 03:07:58 +00:00
22a0070530 Bump actions/setup-python from 5.4.0 to 6.0.0 (#24414)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-09-09 02:54:58 +00:00
170129eb28 [gpt-oss] Harmony changes with container tool support (#23386)
Signed-off-by: zhiweiz <zhiweiz@fb.com>
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
Co-authored-by: zhiweiz <zhiweiz@fb.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
2025-09-08 19:03:50 -07:00
955c624915 [Bugfix][Wide EP] Fix redundant work when using DeepEP, TP Attn, and EP MoE (#24134)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-08 19:01:51 -07:00
4f87abdcc6 Update reviewers for modelopt related files (#24468) 2025-09-09 01:53:13 +00:00
6910b56da2 [CI] Add nightly multiarch manifests to dockerhub (#24102)
Signed-off-by: Sahithi Chigurupati <chigurupati.sahithi@gmail.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-09 01:18:09 +00:00
e10fef0883 [Hardware][IBM Z] Fix Outlines Core issue for s390x (#24034)
Signed-off-by: Rehan Khan <Rehan.Khan7@ibm.com>
2025-09-08 16:50:34 -07:00
e680723eba [Bugfix] Disable the statslogger if the api_server_count is greater than 1 (#22227)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-08 15:28:03 -07:00
620db1fc58 [Attention] FlashAttention MLA cudagraph support (#23958)
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-08 22:05:26 +00:00
41183c1fe0 [Spec Decode] Fix offline spec_decode.py (#24257)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 20:44:13 +00:00
43d9ad03ba [Model loader]: support multi-thread model weight loading (#23928)
Signed-off-by: Yang Kaiyong <yangkaiyong.yky@antgroup.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-08 18:49:39 +00:00
7be141b2c5 [CI] Enable encoder model compilation test (#24442)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-08 11:48:06 -07:00
8d7f39b48c [Model] Remove quantized mixtral (#24437)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-08 11:02:14 -07:00
cd08636926 [Spec Decode][Benchmark] Add Blitzedit dataset (#23605)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 10:32:52 -07:00
3feeeb9fea [Spec Decode][Benchmark] Add Spec Bench Dataset for benchmarking (#23563)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-09-08 10:32:42 -07:00
6f4a82f8b5 [Model] Enable BNB support for qwen2_5_omni_thinker (#24420)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-08 09:37:08 -07:00
c44797a4d6 [Docs]add eplb_config param use docs (#24213)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-09-08 09:36:57 -07:00
55be93baf5 [Doc]: fix 2 hyperlinks leading to Ray site after they changed Ray's doc structure (#24438)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 09:36:54 -07:00
717fc00e98 [Docs] Move feature compatibility tables to README (#24431)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 06:45:14 -07:00
01dfb5e982 [Frontend] User-provided uuids for medias in chat. (RFC #22044) (#23449)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Roger Wang <hey@rogerw.me>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-08 06:42:20 -07:00
03dd652c16 Move KVEventsConfig from config/__init__.py to config/kv_events.py (#24433)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-08 06:41:27 -07:00
9cd76b71ab [Misc] Terratorch related fixes (#24337)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-08 06:40:26 -07:00
e041314184 [Bugfix] Fix mamba2 prefill chunking (#23279)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-08 11:42:41 +00:00
5e537f45b4 [Bugfix] Fix get_quant_config when using modelscope (#24421)
Signed-off-by: wangli <wangli858794774@gmail.com>
2025-09-08 11:03:02 +00:00
c2a8b08fcd [Doc] Fix issues in integrations/llamastack.md (#24428)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-08 02:28:32 -07:00
f4962a6d55 [Doc]: fix typos in Python comments (#24417)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-08 00:22:16 -07:00
2f0b833a05 [Docs] Fix a tip indentation and typo (#24419)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-08 00:19:40 -07:00
425b04b8f4 [gpt-oss][Responses API] Fix the function call id format (#24409)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-08 06:49:52 +00:00
60f0843ef8 [Model] Remove unnecessary CUDA sync of Qwen2VL image and video preprocess (#24334)
Signed-off-by: Win <chatcharinsang@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-07 23:11:12 -07:00
8a46602606 [Model] Remove unnecessary CUDA sync of GLM-4.1V image and video preprocess (#24332)
Signed-off-by: Win <chatcharinsang@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-07 23:10:54 -07:00
61aa4b2901 [P/D] Add a shutdown method to the Connector API (#22699)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-07 23:07:00 -07:00
8c892b1831 [Doc] Fix UTF-8 encoding issues in documentation generation on Windows (#24361)
Signed-off-by: alekramelaheehridoy <aliqramalaheehridoy@gmail.com>
Signed-off-by: alekramelaheehridoy <alekramelaheehridoy@gmail.com>
Co-authored-by: alekramelaheehridoy <alekramelaheehridoy@gmail.com>
2025-09-07 22:33:52 -07:00
3bca396f79 [CI/Build] Fix local image inputs in test_pixtral.py (#24401)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-08 03:31:35 +00:00
3a3e91bdfe [CI/Build] Disable flaky test_structured_output tests (#24404)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-08 02:51:59 +00:00
b3d7e3c845 [Sampler] Support returning all prompt logprobs (#23868)
Signed-off-by: Xingyu Liu <charlotteliu12x@gmail.com>
Co-authored-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-07 19:34:31 -07:00
67841317d1 [xpu] upgrade ipex/python3.12 for xpu (#23830)
Signed-off-by: Yan Ma <yan.ma@intel.com>
2025-09-08 02:07:16 +00:00
86173ad593 [Kernel] Support decode context parallelism on Blackwell with CUTLASS MLA (#24385)
Signed-off-by: Ming Yang <minos.future@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-08 09:27:12 +08:00
795b6951cd Add @luccafong to codeowner for spec decode (#24397)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-08 08:30:27 +08:00
2e5d21378d Skip MM Encoder for non-first PP ranks (#24387)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-07 09:38:35 -07:00
0661cb9df3 Add renderer-based prompt processing for embedding and classification endpoints (#24356)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-07 08:26:48 +00:00
105d3d62ef [TPU] Remove TopKTopPSampler dependency for TPU sampler (#24391)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-07 01:12:36 -07:00
62f66be1f7 [Bugfix] Fix Qwen3-coder moe tuned config (#24072)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-07 05:19:46 +00:00
81c53ef55c [Misc] collect flashinfer version in collect_env.py (#24378)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-07 03:30:41 +00:00
75334956c2 QWEN3 Thinking Fused MoE kernels Optimization configs (#24330)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-07 03:18:54 +00:00
77aec83b8c [Benchmark] add benchmark for custom activation op (#23908)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-06 20:12:05 -07:00
e67597545b [CI][Fix] deterministic seed for flaky CI runs on structured outputs (#24380)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-09-07 11:10:40 +08:00
37a6fa95fd Migrate Qwen2 inputs to TensorSchema (#23475)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-06 20:07:31 -07:00
558f0907dc [attention][DCP] use AttentionImpl.need_to_return_lse_for_decode (#24372)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-07 01:18:59 +00:00
4172235ab7 [V0 deprecation] Deprecate V0 Neuron backend (#21159)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-06 16:15:18 -07:00
848562bd49 break execute_model in gpu_model_runner into sub-functions for custom scopes (#24265)
Co-authored-by: Bangsheng Tang <bangsheng@meta.com>
2025-09-06 14:02:47 -07:00
e68dc2f014 [Bugfix] Fix unstable silu_mul+nvfp4 quant fusion test (#24370)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-06 20:39:34 +00:00
a3645ed94d [Frontend][Responses API] Support reporting tool output tokens and fix reasoning token count (#24285)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-06 13:27:15 -07:00
fb691ee4e7 [Fix] [gpt-oss] fix non-tool calling path for chat completion (#24324) 2025-09-06 19:10:32 +00:00
6024d115cd Lora bias(enable_lora_bias) deprecate warning (#24339)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-07 00:42:19 +08:00
7555d6b34a [Bugfix] Fix test_mixtral_moe (#24371) 2025-09-06 09:32:03 -07:00
00a4e56d8d [Bugfix] Fix broken deepseek fp8 TP weights loading (#24367)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-06 09:23:12 -07:00
0eadaeff7e [Bugfix] Avoid uninitialized usage of azp_val when AZP is false. (#24335)
Signed-off-by: Mohan Kumar Kumar <mohan.cbein@gmail.com>
Signed-off-by: mohankku <mohan.cbein@gmail.com>
2025-09-06 08:17:03 -07:00
0077c8634e Add @benchislett to codeowner for spec decode and structured outputs (#24362)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-09-06 22:03:35 +08:00
b121ca22ad [CI] Disable flaky structured output test from CI (#24366)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-06 13:31:56 +00:00
eddaafc1c7 [Multimodal] Improve max video embedding length estimation in V1 (#24312)
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-09-06 02:33:19 -07:00
305a1cc0d2 refactor: Turn GPUModelRunner.inputs_embeds to a CpuGpuBuffer (#24345)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-05 23:01:23 -07:00
6d6c6b05d3 [New Model]: google/embeddinggemma-300m (#24318)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-05 22:58:36 -07:00
53b19ccdd5 [Core] Allow disabling TP sharding for parallel Linear layer (#23024)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-05 22:53:58 -07:00
6432739ef1 [Bugfix] Catch and log invalid token ids in detokenizer (#24351)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-05 22:30:22 -07:00
ac201a0eaf [Feature] Support Decode Context Parallel (DCP) for MLA (#23734)
Signed-off-by: hongchao <hongchao@msh.team>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: hongchao <hongchao@msh.team>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-06 13:24:05 +08:00
3c529fc994 [KV Sharing] Raise error if using eagle with fast prefill (#24350)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-05 20:22:40 -07:00
35bf193864 [Doc]: fix typos in Python comments (#24294)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-05 19:41:12 -07:00
35efa70297 Add @22quinn as code reviewer for RL related components (#24346) 2025-09-06 01:56:15 +00:00
cee182b297 [Perf][V1] Fully overlap model execution (#23569)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-09-05 18:20:17 -07:00
c954c6629c [CI] Add timeouts to tests (#24260)
Signed-off-by: Rafael Vasquez <rafvasq21@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-05 17:26:22 -07:00
9dfbeb41e5 [RFC] allow cancelation after shutdown in blocking collective_rpc (#23390)
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
2025-09-05 14:14:18 -07:00
eedb2a2a10 [Bugfix] Fix silu_mul+quant fusion test (#24341)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-09-05 20:13:42 +00:00
23a6c5280e [gpt-oss][Bugfix]Fix streamableparser for missing handling of certain token_ids (#24306)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-05 10:26:00 -07:00
7812bcf278 [docs] add shenzhen meetup (#24326)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-05 22:48:42 +08:00
006e7a34ae Adding int4 and int8 models for CPU benchmarking (#23709)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
2025-09-05 20:08:50 +08:00
e599e2c65e [XPU][P/D] Add XPU support in NixlConnector (#22436)
Signed-off-by: zhenwei <zhenwei.liu@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-04 21:03:12 -07:00
c29fb540ff [gpt-oss] tool parser supports for /chat/completions [1/n] (#22386)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-04 20:39:12 -07:00
65e038931d [Frontend] Skip unnecessary detokenization when token_id is requested (#24236)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-04 23:04:12 +00:00
886ccbe5ba [CI/Build] Reduce the number of redundant cases to test for LoRA (#24276)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-04 21:58:44 +00:00
adc3ddb430 [Bugfix][Misc] Fix silu_and_mul_nvfp4_quant issue and extract common utils for nvfp4 kernel source files (#23727)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-04 14:25:45 -07:00
60b755cbcb [Misc] Have AsyncLLM custom_stat_loggers extend default logger list (#20952)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-04 14:25:30 -07:00
482e52f56c QWEN3 Coder Fused MoE kernels Optimization configs (#24266)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-04 20:33:43 +00:00
78336a0c3e Upgrade FlashInfer to v0.3.0 (#24086)
Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-09-04 09:49:20 -07:00
94866d7c93 [Misc] Slight improve deepgemm print (#24085)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-04 16:06:51 +00:00
83609ca91d [Doc]: fix typos in Python comments (#24173)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-04 08:52:17 -07:00
e41a0fa377 [Perf] Freeze core engine proc heap after init (#24008)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-04 22:55:23 +08:00
37241077d5 [Misc] Removed force_fp8_e4m3fnuz from FP8LinearOp (#23725)
Signed-off-by: Julien Lin <jullin@nvidia.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-04 09:25:40 -04:00
c9f7081f9c [LoRA]: Add lora support to qwen-2.5-omni (#24231) 2025-09-04 05:50:50 -07:00
16ded21eeb [XPU] support Triton Attention backend on Intel GPU (#24149)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-04 20:41:08 +08:00
2b30afa442 Use hidden_size_per_head as head_size fallback (#24221)
Signed-off-by: nopperl <54780682+nopperl@users.noreply.github.com>
2025-09-04 12:59:16 +01:00
eafa8dcde6 [Model] Add pp support for hunyuan (#24212)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-04 03:58:26 -07:00
6c7af8110a [Doc] Update vLLM Singapore Meetup info (#24234)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-09-04 02:58:18 -07:00
8f423e5f43 [Feature][Response API] Add streaming support for non-harmony (#23741)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-09-04 17:49:06 +08:00
369a079568 [Hardware][Apple-CPU] Disable OneDNN build for Apple Silicon (#24200)
Signed-off-by: ignaciosica <mignacio.sica@gmail.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-09-04 02:48:25 -07:00
402759d472 [Attention] FlashAttn MLA (#14258)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Matthew Bonanni <mbonanni001@gmail.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-04 02:47:59 -07:00
2c301ee2eb [Bugfix] Fix Incremental Detokenization with tokenizers == 0.22.0 (#24159)
Signed-off-by: Fanli Lin <fanli.lin@intel.com>
Signed-off-by: Fanli Lin <fanli0116@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-04 02:47:08 -07:00
whx
3efb9f4d95 [Attention][Platform] Refactor MLA to support Custom Op (#23332)
Signed-off-by: whx-sjtu <2952154980@qq.com>
2025-09-04 02:46:37 -07:00
04f3c35cff Improve flexibility of auto_tune.sh execution. (#23766)
Signed-off-by: Anthony Su <50185138+anthonsu@users.noreply.github.com>
Signed-off-by: anthonsu <50185138+anthonsu@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-04 09:41:41 +00:00
51d5e9be7d [Core][Model] Terratorch backend integration (#23513)
Signed-off-by: Michele Gazzetti <michele.gazzetti1@ibm.com>
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-04 00:22:41 -07:00
e7fc70016f [Model] Add MiDashengLM model support (#23652)
Signed-off-by: chenbing8 <chenbing8@xiaomi.com>
Signed-off-by: bingchen-mi <chenbing8@xiaomi.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-04 00:08:09 -07:00
12e1e63cc5 [Misc] Enhance output readability of helper script (#24214)
Signed-off-by: Weida Hong <wdhongtw@google.com>
2025-09-04 06:38:26 +00:00
57b1ce94f7 [CPU] Refactor CPU unquantized linear (#24150)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-04 14:28:45 +08:00
cb55ad86fe Migrate ultravox inputs to TensorSchema (#23503)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-04 06:09:11 +00:00
712b273f65 [Refactor] Introduce basic Renderer for completion-style request (#24010)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-09-04 05:21:12 +00:00
e919d6f549 [Kernel][Bugfix] Fix grouped topk cu (#24146)
Signed-off-by: mayuyuace <qiming1.zhang@intel.com>
2025-09-04 12:37:37 +08:00
a38f8bd54c [Feature][Responses API]Support MCP tools with streaming mode + background mode (#23927)
Signed-off-by: wuhang <wuhang6@huawei.com>
2025-09-04 04:05:10 +00:00
b5ee1e3261 Remove deprecated PyNcclConnector (#24151)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2025-09-03 22:49:16 +00:00
36c260dad6 [Feature][gpt-oss] Add support for num_cached_tokens and num_reasoning_tokens tracking (#23460)
Signed-off-by: George Nagy II <george.nagy0969@gmail.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-03 21:08:47 +00:00
a43a3f1770 [Bugfix][DP] DP distribution does not require ray[default] (#23822)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-09-03 13:21:36 -07:00
6adaed42f4 [Feature][P/D]: Optimize NIXL Connector xfer Launch (#23887)
Signed-off-by: ycyaw66 <497410282@qq.com>
Co-authored-by: ycyaw66 <497410282@qq.com>
2025-09-03 19:14:30 +00:00
a742322092 [Attention] Blackwell FP8 MLA support with CUTLASS_MLA backend (#23289)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-03 14:05:24 -04:00
731a6940e3 Migrate whisper inputs to TensorSchema (#23505)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-03 18:04:00 +00:00
e9b92dcd89 [Kernels] Overlap shared experts with send/recv (#23273)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-03 12:35:18 -04:00
fa4311d85f [V1] v1 engine + full CUDA graph support for PLaMo2 (#23998)
Signed-off-by: Hemmi Shinichi <shemmi@preferred.jp>
Signed-off-by: nopperl <54780682+nopperl@users.noreply.github.com>
Co-authored-by: Hemmi Shinichi <shemmi@preferred.jp>
Co-authored-by: Thomas Parnell <tom.parnell@gmail.com>
2025-09-03 08:24:02 -07:00
6d80ae83e1 [Bugfix] Fixing division by zero in triton_attn if query_heads/kv_heads > 16 (#23424)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
2025-09-03 15:01:09 +00:00
4ba0c587ba FIX: Add libnuma-dev to Dockerfile for dev stage (#20388)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-09-03 07:17:20 -07:00
6997a25ac6 [Model] Remove useless code from MiniMax implementation (#23982)
Signed-off-by: QscQ <qscqesze@gmail.com>
Signed-off-by: qingjun <qingjun@minimaxi.com>
2025-09-03 11:27:04 +00:00
28f350e147 Support add_generation_prompt in embeddings endpoint with chat request (#23931)
Signed-off-by: biba10 <jaksmid@seznam.cz>
2025-09-03 10:47:55 +00:00
51383bd472 [CI] Accelerate mteb test by setting SentenceTransformers mteb score to a constant (#24088)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-03 17:23:56 +08:00
9c99e4871f [Misc] Clean up deadcode for legacy processing pipeline (#24153)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-03 08:34:29 +00:00
70549c1245 [CI/Build] Serve images used by multimodal tests through local HTTP Server (#23907)
Signed-off-by: Divyansh Singhvi <divyanshsinghvi@gmail.com>
Signed-off-by: dsinghvi <divyanshsinghvi@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-03 16:13:11 +08:00
f0c503f66e [Nixl] Heterogeneous TP support FlashInfer (#20189)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-03 15:19:54 +08:00
f38035c123 [distributed][rl] remove nccl cumem env var override (#24141)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-03 06:45:25 +00:00
426cc8629f [BugFix] Fix routed_scaling_factor double mul for dots1 and glm4 MoE models (#24132)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-03 04:57:59 +00:00
e81d4e69c1 [Misc] Add check for dual_chunk_attention (#24070)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-03 04:19:14 +00:00
02d411fdb2 [Doc]: fix typos in Python comments (#24115)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-02 21:14:07 -07:00
d7e1e59972 [Doc]: fix typos in Python comments (#24093)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-02 21:05:45 -07:00
c4ed78b14f [Compile] Fix Compile Warning for w4a8_mm_entry.cu (#23660)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-02 20:45:52 -07:00
1bd007f234 fix some typos (#24071)
Signed-off-by: co63oc <co63oc@users.noreply.github.com>
2025-09-02 20:44:50 -07:00
136d853e65 [V1] Wrapper which plumbs request-level logits processors into vLLM batch-level logits processing (#23656)
Signed-off-by: Andrew Feldman <afeldman@redhat.com>
2025-09-03 02:52:51 +00:00
e32a0e8678 Upgrade xgrammar to 0.1.23 (#22988)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-03 02:32:59 +00:00
42dc59dbac Update release pipeline post PyTorch 2.8.0 update (#24073)
Signed-off-by: Huy Do <huydhn@gmail.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
2025-09-03 10:09:19 +08:00
862f2ef893 [XPU] Fix the bug of LoRA logits on the XPU platform (#24081)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-09-03 08:21:18 +08:00
2fd1a40a54 [CI/Build] Disable SiluMul NVFP4 quant fusion tests (#24121)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-09-02 16:50:28 -07:00
930a24144c [Bug] R1 Accuracy: Fix routed_scaling_factor Double Mul Issue (#24119)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-02 22:22:30 +00:00
457e471971 [AMD][Kernel][Bugfix] Cast offsets tensor bn to tl.int64 to avoid GPU segfault (#23692)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-09-02 22:13:57 +00:00
d328f7894f [CI] Enable all hf transformers baselines in test_hybrid (#23936)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-09-02 20:15:06 +00:00
98aee612aa [Log] Only Print Profiler Results on Rank 0 (#23370)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-02 18:53:34 +00:00
598bd74cf8 Fix weights loading for Apertus (#24100)
Signed-off-by: Nathan Ranchin <nranchin@student.ethz.ch>
2025-09-02 18:34:28 +00:00
2417798471 [Metrics] Deprecate TPOT in favor of ITL (#24110)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-09-02 18:10:10 +00:00
9480ae24e3 [Bugfix] Fix packed_factor missing attribute error (#23902)
Signed-off-by: Kyuyeun Kim <kyuyeunk@google.com>
2025-09-02 10:56:31 -07:00
f399182e8c Run ruff format on a few files. (#24075)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-09-02 17:55:32 +00:00
1c41310584 [Bugfix] Fix transform_config parsing in Compressed Tensors (#23945)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-09-02 13:54:10 -04:00
c83c4ff815 [Benchmark] Add support for local hf dataset path in benchmark (#23999)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-02 17:49:16 +00:00
0e1759cd54 [docs] add SYS_NICE cap & security-opt for docker/k8s (#24017)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: Peter Pan <peter.pan@daocloud.io>
Co-authored-by: Li, Jiang <bigpyj64@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-02 17:27:20 +00:00
e66ed3e675 [CI Failure] Skip failing nvfp4 silu test (#23959)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-02 13:18:15 -04:00
e0653f6c0b [Model] Classification models support logit_bias / sigmoid_normalize (#24031)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-02 16:48:57 +00:00
38ba061f6f [BugFix] Fix EXAONE4 rotary embeddings (#23918)
Signed-off-by: lkm2835 <lkm2835@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-02 14:40:55 +00:00
0a74e9d0f2 [Gemma3n] Fix audio batching (#24052)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-02 22:23:35 +08:00
8bd5844989 correct LWS deployment yaml (#23104)
Signed-off-by: cberge908 <42270330+cberge908@users.noreply.github.com>
2025-09-02 12:04:59 +00:00
ce30dca5c4 [CI]: reduce HTTP calls inside entrypoints openai tests (#23646)
Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
Signed-off-by: Aziz <azizbenothman76@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-02 10:49:32 +00:00
2f0bab3f26 [Model] Support dp on ViT on GLM-4.5V (#23168)
Signed-off-by: David Chen <530634352@qq.com>
2025-09-02 10:48:18 +00:00
fad73be1a5 [Doc]: fix typos in Python comments (#24077)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
2025-09-02 02:38:55 -07:00
56d04089ef Migrate Interns1 inputs to TensorSchema (#23510)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-02 04:35:45 +00:00
7be0cb8e9e [XPU][Feature] fp8 online quantization support for XPU (#23148)
Signed-off-by: Yan Ma <yan.ma@intel.com>
Co-authored-by: Qiming Zhang <qiming1.zhang@intel.com>
2025-09-02 04:06:53 +00:00
1fa1d6a9a0 Migrate OvisImagePatchInputs to TensorSchema (#22024)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-09-02 12:01:36 +08:00
d59c986444 Remove runtime checks based on pooling params (#24051)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-09-02 11:54:37 +08:00
04d0c60770 [Bugfix] Fix the issue that Blip2ForConditionalGeneration' object has… (#24028)
Signed-off-by: Dazhi Jiang <dazhi_jiang@163.com>
2025-09-02 11:54:20 +08:00
2b41cbbf03 [V1][Mamba1] - FP32 SSM Kernel Support (#23506)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-09-01 20:53:00 -07:00
0235103cbb [Doc]: fix typos in Python comments (#24042)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-01 19:07:45 -07:00
a344a5aa0a [bugfix]fix MTP hidden states (#24056)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-01 21:09:37 +00:00
5685370271 [Chore][V0 Deprecation] Move LogProb to a separate file (#24055)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-01 12:07:53 -07:00
a0e0efd6bd [Model] Support DP for ViT on Kimi-VL-A3B-Thinking-2506 (#23817)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Signed-off-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-09-01 16:56:56 +00:00
cf91a89dd2 [docs][misc] IOProcessor plugins fixes (#24046)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
2025-09-01 09:17:41 -07:00
586 changed files with 23384 additions and 15014 deletions

View File

@ -5,11 +5,11 @@ import os
import sys
import zipfile
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 400 MiB
# Note that we have 400 MiB quota, please use it wisely.
# See https://github.com/pypi/support/issues/3792 .
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 450 MiB
# Note that we have 800 MiB quota, please use it wisely.
# See https://github.com/pypi/support/issues/6326 .
# Please also sync the value with the one in Dockerfile.
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 400))
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 450))
def print_top_10_largest_files(zip_file):

View File

@ -218,7 +218,7 @@ if __name__ == "__main__":
"--xaxis",
type=str,
default="# of max concurrency.",
help="column name to use as X Axis in comparision graph",
help="column name to use as X Axis in comparison graph",
)
args = parser.parse_args()

View File

@ -1,6 +1,6 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"test_name": "serving_llama8B_bf16_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -32,7 +32,7 @@
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -64,7 +64,7 @@
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"test_name": "serving_llama8B_bf16_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -96,7 +96,7 @@
}
},
{
"test_name": "serving_llama8B_tp1_random_128_128",
"test_name": "serving_llama8B_bf16_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -131,7 +131,7 @@
}
},
{
"test_name": "serving_llama8B_tp2_random_128_128",
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -166,7 +166,7 @@
}
},
{
"test_name": "serving_llama8B_tp4_random_128_128",
"test_name": "serving_llama8B_bf16_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -198,5 +198,413 @@
"random-output-len": 128,
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
}
]

View File

@ -1,6 +1,6 @@
[
{
"test_name": "serving_llama8B_pp1_sharegpt",
"test_name": "serving_llama8B_bf16_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -32,7 +32,39 @@
}
},
{
"test_name": "serving_llama8B_pp3_sharegpt",
"test_name": "serving_llama8B_bf16_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_bf16_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -64,7 +96,7 @@
}
},
{
"test_name": "serving_llama8B_tp2pp3_sharegpt",
"test_name": "serving_llama8B_bf16_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
@ -97,7 +129,7 @@
}
},
{
"test_name": "serving_llama8B_pp1_random_128_128",
"test_name": "serving_llama8B_bf16_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -132,7 +164,42 @@
}
},
{
"test_name": "serving_llama8B_pp3_random_128_128",
"test_name": "serving_llama8B_bf16_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_bf16_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -167,7 +234,7 @@
}
},
{
"test_name": "serving_llama8B_tp2pp3_random_128_128",
"test_name": "serving_llama8B_bf16_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
@ -201,5 +268,553 @@
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_pp1_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_pp1_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 2,
"pipeline_parallel_size": 3,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
}
]

View File

@ -1,21 +1,24 @@
steps:
# aarch64 + CUDA builds
- label: "Build arm64 wheel - CUDA 12.8"
id: build-wheel-arm64-cuda-12-8
# aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
- label: "Build arm64 wheel - CUDA 12.9"
id: build-wheel-arm64-cuda-12-9
agents:
queue: arm64_cpu_queue_postmerge
commands:
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- block: "Build CUDA 12.8 wheel"
key: block-build-cu128-wheel
- label: "Build wheel - CUDA 12.8"
depends_on: block-build-cu128-wheel
id: build-wheel-cuda-12-8
agents:
queue: cpu_queue_postmerge
@ -44,18 +47,14 @@ steps:
env:
DOCKER_BUILDKIT: "1"
# Note(simon): We can always build CUDA 11.8 wheel to ensure the build is working.
# However, this block can be uncommented to save some compute hours.
# - block: "Build CUDA 11.8 wheel"
# key: block-build-cu118-wheel
- label: "Build wheel - CUDA 11.8"
# depends_on: block-build-cu118-wheel
id: build-wheel-cuda-11-8
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-cuda-12-9
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -75,6 +74,7 @@ steps:
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
# PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
- label: "Build release image (arm64)"
depends_on: ~
id: build-release-image-arm64
@ -82,7 +82,7 @@ steps:
queue: arm64_cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# Add job to create multi-arch manifest
@ -103,7 +103,7 @@ steps:
- create-multi-arch-manifest
- build-wheel-cuda-12-8
- build-wheel-cuda-12-6
- build-wheel-cuda-11-8
- build-wheel-cuda-12-9
id: annotate-release-workflow
agents:
queue: cpu_queue_postmerge
@ -150,18 +150,24 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- block: "Build Neuron release image"
key: block-neuron-release-image-build
depends_on: ~
- label: "Build and publish Neuron release image"
depends_on: block-neuron-release-image-build
- label: "Build and publish nightly multi-arch image to DockerHub"
depends_on:
- create-multi-arch-manifest
if: build.env("NIGHTLY") == "1"
agents:
queue: neuron-postmerge
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
- "docker push vllm/vllm-openai:nightly"
- "docker push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
# Clean up old nightly builds (keep only last 14)
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
plugins:
- docker-login#v3.0.0:
username: vllmbot
password-env: DOCKERHUB_TOKEN
env:
DOCKER_BUILDKIT: "1"

View File

@ -0,0 +1,97 @@
#!/bin/bash
set -ex
# Clean up old nightly builds from DockerHub, keeping only the last 14 builds
# This script uses DockerHub API to list and delete old tags with "nightly-" prefix
# DockerHub API endpoint for vllm/vllm-openai repository
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
# Get DockerHub token from environment
if [ -z "$DOCKERHUB_TOKEN" ]; then
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
exit 1
fi
# Function to get all tags from DockerHub
get_all_tags() {
local page=1
local all_tags=""
while true; do
local response=$(curl -s -H "Authorization: Bearer $DOCKERHUB_TOKEN" \
"$REPO_API_URL?page=$page&page_size=100")
# Get both last_updated timestamp and tag name, separated by |
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
if [ -z "$tags" ]; then
break
fi
all_tags="$all_tags$tags"$'\n'
page=$((page + 1))
done
# Sort by timestamp (newest first) and extract just the tag names
echo "$all_tags" | sort -r | cut -d'|' -f2
}
delete_tag() {
local tag_name="$1"
echo "Deleting tag: $tag_name"
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
local response=$(curl -s -X DELETE -H "Authorization: Bearer $DOCKERHUB_TOKEN" "$delete_url")
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"
else
echo "Successfully deleted tag: $tag_name"
fi
}
# Get all nightly- prefixed tags, sorted by last_updated timestamp (newest first)
echo "Fetching all tags from DockerHub..."
all_tags=$(get_all_tags)
if [ -z "$all_tags" ]; then
echo "No tags found to clean up"
exit 0
fi
# Count total tags
total_tags=$(echo "$all_tags" | wc -l)
echo "Found $total_tags tags"
# Keep only the last 14 builds (including the current one)
tags_to_keep=14
tags_to_delete=$((total_tags - tags_to_keep))
if [ $tags_to_delete -le 0 ]; then
echo "No tags need to be deleted (only $total_tags tags found, keeping $tags_to_keep)"
exit 0
fi
echo "Will delete $tags_to_delete old tags, keeping the newest $tags_to_keep"
# Get tags to delete (skip the first $tags_to_keep tags)
tags_to_delete_list=$(echo "$all_tags" | tail -n +$((tags_to_keep + 1)))
if [ -z "$tags_to_delete_list" ]; then
echo "No tags to delete"
exit 0
fi
# Delete old tags
echo "Deleting old tags..."
while IFS= read -r tag; do
if [ -n "$tag" ]; then
delete_tag "$tag"
# Add a small delay to avoid rate limiting
sleep 1
fi
done <<< "$tags_to_delete_list"
echo "Cleanup completed successfully"

View File

@ -1,64 +0,0 @@
#!/bin/bash
# This script build the Neuron docker image and run the API server inside the container.
# It serves a sanity check for compilation and basic model usage.
set -e
set -v
image_name="neuron/vllm-ci"
container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
HF_CACHE="$(realpath ~)/huggingface"
mkdir -p "${HF_CACHE}"
HF_MOUNT="/root/.cache/huggingface"
HF_TOKEN=$(aws secretsmanager get-secret-value --secret-id "ci/vllm-neuron/hf-token" --region us-west-2 --query 'SecretString' --output text | jq -r .VLLM_NEURON_CI_HF_TOKEN)
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
# Try building the docker image
aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
# prune old image and containers to save disk space, and only once a day
# by using a timestamp file in tmp.
if [ -f /tmp/neuron-docker-build-timestamp ]; then
last_build=$(cat /tmp/neuron-docker-build-timestamp)
current_time=$(date +%s)
if [ $((current_time - last_build)) -gt 86400 ]; then
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune -f
echo "$current_time" > /tmp/neuron-docker-build-timestamp
fi
else
date "+%s" > /tmp/neuron-docker-build-timestamp
fi
docker build -t "${image_name}" -f docker/Dockerfile.neuron .
# Setup cleanup
remove_docker_container() {
docker image rm -f "${image_name}" || true;
}
trap remove_docker_container EXIT
# Run the image
docker run --rm -it --device=/dev/neuron0 --network bridge \
-v "${HF_CACHE}:${HF_MOUNT}" \
-e "HF_HOME=${HF_MOUNT}" \
-e "HF_TOKEN=${HF_TOKEN}" \
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
--name "${container_name}" \
${image_name} \
/bin/bash -c "
set -e; # Exit on first error
python3 /workspace/vllm/examples/offline_inference/neuron.py;
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
echo \"Running test file: \$f\";
python3 -m pytest \$f -v --capture=tee-sys;
done
"

View File

@ -30,10 +30,11 @@ docker run \
bash -c '
set -e
echo $ZE_AFFINITY_MASK
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine

View File

@ -58,14 +58,15 @@ python3 .buildkite/generate_index.py --wheel "$normal_wheel"
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
# only upload index.html for cu128 wheels (default wheels)
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
fi
@ -74,14 +75,15 @@ fi
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
# only upload index.html for cu128 wheels (default wheels)
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
fi

View File

@ -41,7 +41,8 @@ steps:
commands:
- bash standalone_tests/pytorch_nightly_dependency.sh
- label: Async Engine, Inputs, Utils, Worker Test # 24min
- label: Async Engine, Inputs, Utils, Worker Test # 36min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -63,7 +64,8 @@ steps:
- pytest -v -s utils_ # Utils
- pytest -v -s worker # Worker
- label: Python-only Installation Test
- label: Python-only Installation Test # 10min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- tests/standalone_tests/python_only_compile.sh
@ -71,7 +73,8 @@ steps:
commands:
- bash standalone_tests/python_only_compile.sh
- label: Basic Correctness Test # 30min
- label: Basic Correctness Test # 20min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
fast_check: true
torch_nightly: true
@ -88,7 +91,8 @@ steps:
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Core Test # 10min
- label: Core Test # 22min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
fast_check: true
source_file_dependencies:
@ -98,7 +102,8 @@ steps:
commands:
- pytest -v -s core
- label: Entrypoints Test (LLM) # 40min
- label: Entrypoints Test (LLM) # 30min
timeout_in_minutes: 40
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
@ -114,7 +119,8 @@ steps:
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Entrypoints Test (API Server) # 40min
- label: Entrypoints Test (API Server) # 100min
timeout_in_minutes: 130
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
@ -129,7 +135,8 @@ steps:
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_collective_rpc.py
- pytest -v -s entrypoints/test_chat_utils.py
- label: Distributed Tests (4 GPUs) # 10min
- label: Distributed Tests (4 GPUs) # 35min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
@ -172,7 +179,8 @@ steps:
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: EPLB Algorithm Test
- label: EPLB Algorithm Test # 5min
timeout_in_minutes: 15
working_dir: "/vllm-workspace/tests"
source_file_dependencies:
- vllm/distributed/eplb
@ -181,6 +189,7 @@ steps:
- pytest -v -s distributed/test_eplb_algo.py
- label: EPLB Execution Test # 5min
timeout_in_minutes: 15
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -189,7 +198,8 @@ steps:
commands:
- pytest -v -s distributed/test_eplb_execute.py
- label: Metrics, Tracing Test # 10min
- label: Metrics, Tracing Test # 12min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
num_gpus: 2
source_file_dependencies:
@ -208,7 +218,8 @@ steps:
##### fast check tests #####
##### 1 GPU test #####
- label: Regression Test # 5min
- label: Regression Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -218,7 +229,8 @@ steps:
- pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
- label: Engine Test # 25min
timeout_in_minutes: 40
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -233,7 +245,8 @@ steps:
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
- label: V1 Test e2e + engine
- label: V1 Test e2e + engine # 30min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -244,7 +257,8 @@ steps:
- pytest -v -s v1/e2e
- pytest -v -s v1/engine
- label: V1 Test entrypoints
- label: V1 Test entrypoints # 35min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -252,7 +266,8 @@ steps:
commands:
- pytest -v -s v1/entrypoints
- label: V1 Test others
- label: V1 Test others # 42min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -276,7 +291,8 @@ steps:
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: Examples Test # 25min
- label: Examples Test # 30min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/examples"
source_file_dependencies:
@ -301,7 +317,8 @@ steps:
- python3 offline_inference/basic/score.py
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Platform Tests (CUDA)
- label: Platform Tests (CUDA) # 4min
timeout_in_minutes: 15
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -309,7 +326,8 @@ steps:
commands:
- pytest -v -s cuda/test_cuda_context.py
- label: Samplers Test # 36min
- label: Samplers Test # 56min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/layers
@ -320,15 +338,23 @@ steps:
- pytest -v -s samplers
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
- label: LoRA Test %N # 15min each
- label: LoRA Test %N # 20min each
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_llm_with_multi_loras.py
commands:
- pytest -v -s lora \
--shard-id=$$BUILDKITE_PARALLEL_JOB \
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
--ignore=lora/test_chatglm3_tp.py \
--ignore=lora/test_llama_tp.py \
--ignore=lora/test_llm_with_multi_loras.py
parallelism: 4
- label: PyTorch Compilation Unit Tests
- label: PyTorch Compilation Unit Tests # 15min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -344,7 +370,8 @@ steps:
- pytest -v -s compile/test_fusion_all_reduce.py
- pytest -v -s compile/test_decorator.py
- label: PyTorch Fullgraph Smoke Test # 9min
- label: PyTorch Fullgraph Smoke Test # 15min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -352,13 +379,10 @@ steps:
- tests/compile
commands:
- pytest -v -s compile/test_basic_correctness.py
# these tests need to be separated, cannot combine
- pytest -v -s compile/piecewise/test_simple.py
- pytest -v -s compile/piecewise/test_toy_llama.py
- pytest -v -s compile/piecewise/test_full_cudagraph.py
- pytest -v -s compile/piecewise/test_multiple_graphs.py
- pytest -v -s compile/piecewise/
- label: PyTorch Fullgraph Test # 18min
- label: PyTorch Fullgraph Test # 20min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -367,7 +391,8 @@ steps:
commands:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Core Operation Test
- label: Kernels Core Operation Test # 48min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -375,7 +400,8 @@ steps:
commands:
- pytest -v -s kernels/core
- label: Kernels Attention Test %N
- label: Kernels Attention Test %N # 23min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/attention/
@ -386,7 +412,8 @@ steps:
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels Quantization Test %N
- label: Kernels Quantization Test %N # 64min
timeout_in_minutes: 90
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/quantization/
@ -396,7 +423,8 @@ steps:
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels MoE Test %N
- label: Kernels MoE Test %N # 40min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/quantization/cutlass_w8a8/moe/
@ -408,7 +436,8 @@ steps:
- pytest -v -s kernels/moe --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels Mamba Test
- label: Kernels Mamba Test # 31min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/mamba/
@ -416,7 +445,8 @@ steps:
commands:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
- label: Tensorizer Test # 14min
timeout_in_minutes: 25
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/model_loader
@ -428,7 +458,8 @@ steps:
- pytest -v -s tensorizer_loader
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Model Executor Test
- label: Model Executor Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor
@ -438,7 +469,8 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s model_executor
- label: Benchmarks # 9min
- label: Benchmarks # 11min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/.buildkite"
source_file_dependencies:
@ -446,7 +478,8 @@ steps:
commands:
- bash scripts/run-benchmarks.sh
- label: Benchmarks CLI Test # 10min
- label: Benchmarks CLI Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -454,7 +487,8 @@ steps:
commands:
- pytest -v -s benchmarks/
- label: Quantization Test
- label: Quantization Test # 70min
timeout_in_minutes: 90
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -467,6 +501,7 @@ steps:
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -474,7 +509,8 @@ steps:
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: OpenAI API correctness
- label: OpenAI API correctness # 22min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/
@ -483,7 +519,8 @@ steps:
commands: # LMEval+Transcription WER check
- pytest -s entrypoints/openai/correctness/
- label: Encoder Decoder tests # 5min
- label: Encoder Decoder tests # 12min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
@ -491,7 +528,8 @@ steps:
commands:
- pytest -v -s encoder_decoder
- label: OpenAI-Compatible Tool Use # 20 min
- label: OpenAI-Compatible Tool Use # 23 min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
fast_check: false
source_file_dependencies:
@ -504,7 +542,8 @@ steps:
##### models test #####
- label: Basic Models Test # 24min
- label: Basic Models Test # 57min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -517,7 +556,8 @@ steps:
- pytest -v -s models/test_vision.py
- pytest -v -s models/test_initialization.py
- label: Language Models Test (Standard)
- label: Language Models Test (Standard) # 35min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -528,6 +568,7 @@ steps:
- pytest -v -s models/language -m core_model
- label: Language Models Test (Hybrid) # 35 min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -540,7 +581,8 @@ steps:
- uv pip install --system --no-build-isolation 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.2'
- pytest -v -s models/language/generation -m hybrid_model
- label: Language Models Test (Extended Generation) # 1hr20min
- label: Language Models Test (Extended Generation) # 80min
timeout_in_minutes: 110
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
@ -552,6 +594,7 @@ steps:
- pytest -v -s models/language/generation -m '(not core_model) and (not hybrid_model)'
- label: Language Models Test (Extended Pooling) # 36min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
optional: true
source_file_dependencies:
@ -560,7 +603,8 @@ steps:
commands:
- pytest -v -s models/language/pooling -m 'not core_model'
- label: Multi-Modal Processor Test
- label: Multi-Modal Processor Test # 44min
timeout_in_minutes: 60
source_file_dependencies:
- vllm/
- tests/models/multimodal
@ -568,7 +612,8 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/processing
- label: Multi-Modal Models Test (Standard)
- label: Multi-Modal Models Test (Standard) # 60min
timeout_in_minutes: 80
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -610,7 +655,8 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
- label: Quantized Models Test
- label: Quantized Models Test # 45 min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/layers/quantization
@ -640,7 +686,8 @@ steps:
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
- label: Blackwell Test
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
gpu: b200
# optional: true
@ -682,6 +729,7 @@ steps:
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -693,6 +741,7 @@ steps:
- pytest -v -s distributed/test_shm_broadcast.py
- label: 2 Node Tests (4 GPUs in total) # 16min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -716,7 +765,8 @@ steps:
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- label: Distributed Tests (2 GPUs) # 40min
- label: Distributed Tests (2 GPUs) # 110min
timeout_in_minutes: 150
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -757,6 +807,7 @@ steps:
- pytest -v -s models/multimodal/generation/test_maverick.py
- label: Plugin Tests (2 GPUs) # 40min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
@ -782,7 +833,8 @@ steps:
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
- label: Pipeline Parallelism Test # 45min
- label: Pipeline + Context Parallelism Test # 45min
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
@ -795,8 +847,10 @@ steps:
commands:
- pytest -v -s distributed/test_pp_cudagraph.py
- pytest -v -s distributed/test_pipeline_parallel.py
# - pytest -v -s distributed/test_context_parallel.py # TODO: enable it on Hopper runners or add triton MLA support
- label: LoRA TP Test (Distributed)
- label: LoRA TP Test (Distributed) # 17 min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
num_gpus: 4
source_file_dependencies:
@ -814,6 +868,7 @@ steps:
- label: Weight Loading Multiple GPU Test # 33min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2

16
.github/CODEOWNERS vendored
View File

@ -5,13 +5,15 @@
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/v1/sample @22quinn @houseroad
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
@ -25,8 +27,11 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/attention/backends/triton_attn.py @tdoublep
/vllm/v1/core @heheda12345
/vllm/v1/kv_cache_interface.py @heheda12345
# Test ownership
/.buildkite/lm-eval-harness @mgoin @simon-mo
@ -43,6 +48,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm
/tests/v1/core @heheda12345
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/lora @jeejeelee
/tests/models/language/generation/test_hybrid.py @tdoublep
@ -67,6 +73,9 @@ mkdocs.yaml @hmellor
/vllm/attention/backends/dual_chunk_flash_attn.py @sighingnow
/vllm/model_executor/models/qwen* @sighingnow
# MTP-specific files
/vllm/model_executor/models/deepseek_mtp.py @luccafong
# Mistral-specific files
/vllm/model_executor/models/mistral*.py @patrickvonplaten
/vllm/model_executor/models/mixtral*.py @patrickvonplaten
@ -85,4 +94,3 @@ mkdocs.yaml @hmellor
/vllm/v1/attention/backends/mla/rocm*.py @gshtras
/vllm/attention/ops/rocm*.py @gshtras
/vllm/model_executor/layers/fused_moe/rocm*.py @gshtras

14
.github/mergify.yml vendored
View File

@ -273,6 +273,20 @@ pull_request_rules:
users:
- "sangstar"
- name: assign reviewer for modelopt changes
conditions:
- or:
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
- files~=^tests/models/quantization/test_modelopt\.py$
- files~=^tests/quantization/test_modelopt\.py$
- files~=^tests/models/quantization/test_nvfp4\.py$
- files~=^docs/features/quantization/modelopt\.md$
actions:
assign:
users:
- "Edwardf0t1"
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict

View File

@ -10,7 +10,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Add label
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
script: |
github.rest.issues.addLabels({

View File

@ -16,7 +16,7 @@ jobs:
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Set up Python
uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: '3.12'

View File

@ -13,7 +13,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Label issues based on keywords
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
script: |
// Configuration: Add new labels and keywords here

View File

@ -17,7 +17,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
- uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: "3.12"
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"

View File

@ -9,7 +9,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Remind to run full CI on PR
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
with:
script: |
try {

View File

@ -13,7 +13,7 @@ jobs:
actions: write
runs-on: ubuntu-latest
steps:
- uses: actions/stale@5bef64f19d7facfb25b37b414482c7164d639639 # v9.1.0
- uses: actions/stale@3a9db7e6a41a89f618792c92c0e97cc736e1b13f # v10.0.0
with:
# Increasing this value ensures that changes to this workflow
# propagate to all issues and PRs in days rather than months

12
.gitignore vendored
View File

@ -4,7 +4,7 @@
# vllm-flash-attn built from source
vllm/vllm_flash_attn/*
# triton jit
# triton jit
.triton
# Byte-compiled / optimized / DLL files
@ -177,6 +177,14 @@ cython_debug/
# VSCode
.vscode/
# Claude
CLAUDE.md
.claude/
# Codex
AGENTS.md
.codex/
# DS Store
.DS_Store
@ -209,4 +217,4 @@ shellcheck*/
csrc/moe/marlin_moe_wna16/kernel_*
# Ignore ep_kernels_workspace folder
ep_kernels_workspace/
ep_kernels_workspace/

View File

@ -2,7 +2,6 @@ include LICENSE
include requirements/common.txt
include requirements/cuda.txt
include requirements/rocm.txt
include requirements/neuron.txt
include requirements/cpu.txt
include CMakeLists.txt

View File

@ -14,19 +14,24 @@ Easy, fast, and cheap LLM serving for everyone
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://blog.vllm.ai/"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://discuss.vllm.ai"><b>User Forum</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
</p>
---
Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundation.org/pytorch-conference/) and [Ray Summit, November 3-5](https://www.anyscale.com/ray-summit/2025) in San Francisco for our latest updates on vLLM and to meet the vLLM team! Register now for the largest vLLM community events of the year!
---
*Latest News* 🔥
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
- [2025/08] We hosted [vLLM Korea Meetup](https://luma.com/cgcgprmh) with Red Hat and Rebellions! We shared the latest advancements in vLLM along with project spotlights from the vLLM Korea community. Please find the meetup slides [here](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
<details>
<summary>Previous News</summary>
- [2025/08] We hosted [vLLM Korea Meetup](https://luma.com/cgcgprmh) with Red Hat and Rebellions! We shared the latest advancements in vLLM along with project spotlights from the vLLM Korea community. Please find the meetup slides [here](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).

View File

@ -95,6 +95,24 @@ become available.
<td style="text-align: center;"></td>
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
</tr>
<tr>
<td><strong>HuggingFace-MTBench</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>philschmid/mt-bench</code></td>
</tr>
<tr>
<td><strong>HuggingFace-Blazedit</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>vdaita/edit_5k_char</code>, <code>vdaita/edit_10k_char</code></td>
</tr>
<tr>
<td><strong>Spec Bench</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>wget https://raw.githubusercontent.com/hemingkx/Spec-Bench/refs/heads/main/data/spec_bench/question.jsonl</code></td>
</tr>
<tr>
<td><strong>Custom</strong></td>
<td style="text-align: center;"></td>
@ -110,7 +128,12 @@ become available.
🚧: to be supported
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`.
For local `dataset-path`, please set `hf-name` to its Hugging Face ID like
```bash
--dataset-path /datasets/VisionArena-Chat/ --hf-name lmarena-ai/VisionArena-Chat
```
## 🚀 Example - Online Benchmark
@ -234,6 +257,43 @@ vllm bench serve \
--num-prompts 2048
```
### Spec Bench Benchmark with Speculative Decoding
``` bash
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
--speculative-config $'{"method": "ngram",
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
"prompt_lookup_min": 2}'
```
[SpecBench dataset](https://github.com/hemingkx/Spec-Bench)
Run all categories:
``` bash
# Download the dataset using:
# wget https://raw.githubusercontent.com/hemingkx/Spec-Bench/refs/heads/main/data/spec_bench/question.jsonl
vllm bench serve \
--model meta-llama/Meta-Llama-3-8B-Instruct \
--dataset-name spec_bench \
--dataset-path "<YOUR_DOWNLOADED_PATH>/data/spec_bench/question.jsonl" \
--num-prompts -1
```
Available categories include `[writing, roleplay, reasoning, math, coding, extraction, stem, humanities, translation, summarization, qa, math_reasoning, rag]`.
Run only a specific category like "summarization":
``` bash
vllm bench serve \
--model meta-llama/Meta-Llama-3-8B-Instruct \
--dataset-name spec_bench \
--dataset-path "<YOUR_DOWNLOADED_PATH>/data/spec_bench/question.jsonl" \
--num-prompts -1
--spec-bench-category "summarization"
```
### Other HuggingFaceDataset Examples
```bash
@ -290,6 +350,18 @@ vllm bench serve \
--num-prompts 80
```
`vdaita/edit_5k_char` or `vdaita/edit_10k_char`:
``` bash
vllm bench serve \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path vdaita/edit_5k_char \
--num-prompts 90 \
--blazedit-min-distance 0.01 \
--blazedit-max-distance 0.99
```
### Running With Sampling Parameters
When using OpenAI-compatible backends such as `vllm`, optional sampling
@ -689,7 +761,7 @@ python -m vllm.entrypoints.openai.api_server \
Send requests with images:
```bash
python benchmarks/benchmark_serving.py \
vllm bench serve \
--backend openai-chat \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dataset-name sharegpt \
@ -716,7 +788,7 @@ python -m vllm.entrypoints.openai.api_server \
Send requests with videos:
```bash
python benchmarks/benchmark_serving.py \
vllm bench serve \
--backend openai-chat \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--dataset-name sharegpt \

View File

@ -31,6 +31,12 @@ cd vllm
You must set the following variables at the top of the script before execution.
Note: You can also override the default values below via environment variables when running the script.
```bash
MODEL=meta-llama/Llama-3.3-70B-Instruct SYSTEM=TPU TP=8 DOWNLOAD_DIR='' INPUT_LEN=128 OUTPUT_LEN=2048 MAX_MODEL_LEN=2300 MIN_CACHE_HIT_PCT=0 MAX_LATENCY_ALLOWED_MS=100000000000 NUM_SEQS_LIST="128 256" NUM_BATCHED_TOKENS_LIST="1024 2048 4096" VLLM_LOGGING_LEVEL=DEBUG bash auto_tune.sh
```
| Variable | Description | Example Value |
| --- | --- | --- |
| `BASE` | **Required.** The absolute path to the parent directory of your vLLM repository directory. | `"$HOME"` |

View File

@ -5,25 +5,41 @@
TAG=$(date +"%Y_%m_%d_%H_%M")
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
BASE="$SCRIPT_DIR/../../.."
MODEL="meta-llama/Llama-3.1-8B-Instruct"
SYSTEM="TPU"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MAX_MODEL_LEN=4096
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
VLLM_LOGGING_LEVEL=${VLLM_LOGGING_LEVEL:-INFO}
BASE=${BASE:-"$SCRIPT_DIR/../../.."}
MODEL=${MODEL:-"meta-llama/Llama-3.1-8B-Instruct"}
SYSTEM=${SYSTEM:-"TPU"}
TP=${TP:-1}
DOWNLOAD_DIR=${DOWNLOAD_DIR:-""}
INPUT_LEN=${INPUT_LEN:-4000}
OUTPUT_LEN=${OUTPUT_LEN:-16}
MAX_MODEL_LEN=${MAX_MODEL_LEN:-4096}
MIN_CACHE_HIT_PCT=${MIN_CACHE_HIT_PCT:-0}
MAX_LATENCY_ALLOWED_MS=${MAX_LATENCY_ALLOWED_MS:-100000000000}
NUM_SEQS_LIST=${NUM_SEQS_LIST:-"128 256"}
NUM_BATCHED_TOKENS_LIST=${NUM_BATCHED_TOKENS_LIST:-"512 1024 2048 4096"}
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
PROFILE_PATH="$LOG_FOLDER/profile"
echo "result file: $RESULT"
echo "model: $MODEL"
echo "====================== AUTO TUNE PARAMETERS ===================="
echo "SCRIPT_DIR=$SCRIPT_DIR"
echo "BASE=$BASE"
echo "MODEL=$MODEL"
echo "SYSTEM=$SYSTEM"
echo "TP=$TP"
echo "DOWNLOAD_DIR=$DOWNLOAD_DIR"
echo "INPUT_LEN=$INPUT_LEN"
echo "OUTPUT_LEN=$OUTPUT_LEN"
echo "MAX_MODEL_LEN=$MAX_MODEL_LEN"
echo "MIN_CACHE_HIT_PCT=$MIN_CACHE_HIT_PCT"
echo "MAX_LATENCY_ALLOWED_MS=$MAX_LATENCY_ALLOWED_MS"
echo "NUM_SEQS_LIST=$NUM_SEQS_LIST"
echo "NUM_BATCHED_TOKENS_LIST=$NUM_BATCHED_TOKENS_LIST"
echo "VLLM_LOGGING_LEVEL=$VLLM_LOGGING_LEVEL"
echo "RESULT_FILE=$RESULT"
echo "====================== AUTO TUNEPARAMETERS ===================="
rm -rf $LOG_FOLDER
rm -rf $PROFILE_PATH
@ -213,7 +229,7 @@ run_benchmark() {
pkill -if vllm
sleep 10
printf '=%.0s' $(seq 1 20)
echo "===================="
return 0
}

View File

@ -57,7 +57,7 @@ def invoke_main() -> None:
"--num-iteration",
type=int,
default=1000,
help="Number of iterations to run to stablize final data readings",
help="Number of iterations to run to stabilize final data readings",
)
parser.add_argument(
"--allocate-blocks",

View File

@ -403,7 +403,7 @@ class RandomDataset(BenchmarkDataset):
# [6880, 6881] -> ['Ġcalls', 'here'] ->
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
# To avoid uncontrolled change of the prompt length,
# the encoded sequence is truncated before being decode again.
# the encoded sequence is truncated before being decoded again.
total_input_len = prefix_len + int(input_lens[i])
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
:total_input_len

View File

@ -1,191 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import dataclasses
import json
import os
import time
from typing import Any, Optional
import numpy as np
from tqdm import tqdm
from typing_extensions import deprecated
import vllm.envs as envs
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptType
from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={"latency": results["latencies"]},
extra_info={k: results[k] for k in ["avg_latency", "percentiles"]},
)
if pt_records:
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
@deprecated(
"benchmark_latency.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench latency' instead.",
)
def main(args: argparse.Namespace):
print(args)
engine_args = EngineArgs.from_cli_args(args)
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(**dataclasses.asdict(engine_args))
assert llm.llm_engine.model_config.max_model_len >= (
args.input_len + args.output_len
), (
"Please ensure that max_model_len is greater than"
" the sum of input_len and output_len."
)
sampling_params = SamplingParams(
n=args.n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(
10000, size=(args.batch_size, args.input_len)
)
dummy_prompts: list[PromptType] = [
{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()
]
def llm_generate():
if not args.use_beam_search:
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False)
else:
llm.beam_search(
dummy_prompts,
BeamSearchParams(
beam_width=args.n,
max_tokens=args.output_len,
ignore_eos=True,
),
)
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
llm.start_profile()
llm_generate()
llm.stop_profile()
else:
start_time = time.perf_counter()
llm_generate()
end_time = time.perf_counter()
latency = end_time - start_time
return latency
print("Warming up...")
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = envs.VLLM_TORCH_PROFILER_DIR
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
# Benchmark.
latencies = []
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile_dir=None))
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90, 99]
percentiles = np.percentile(latencies, percentages)
print(f"Avg latency: {np.mean(latencies)} seconds")
for percentage, percentile in zip(percentages, percentiles):
print(f"{percentage}% percentile latency: {percentile} seconds")
# Output JSON results if specified
if args.output_json:
results = {
"avg_latency": np.mean(latencies),
"latencies": latencies.tolist(),
"percentiles": dict(zip(percentages, percentiles.tolist())),
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
def create_argument_parser():
parser = FlexibleArgumentParser(
description="Benchmark the latency of processing a single batch of "
"requests till completion."
)
parser.add_argument("--input-len", type=int, default=32)
parser.add_argument("--output-len", type=int, default=128)
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument(
"--n",
type=int,
default=1,
help="Number of generated sequences per prompt.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-iters-warmup",
type=int,
default=10,
help="Number of iterations to run for warmup.",
)
parser.add_argument(
"--num-iters", type=int, default=30, help="Number of iterations to run."
)
parser.add_argument(
"--profile",
action="store_true",
help="profile the generation process of a single batch",
)
parser.add_argument(
"--output-json",
type=str,
default=None,
help="Path to save the latency results in JSON format.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"
),
)
parser = EngineArgs.add_cli_args(parser)
# V1 enables prefix caching by default which skews the latency
# numbers. We need to disable prefix caching by default.
parser.set_defaults(enable_prefix_caching=False)
return parser
import sys
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
raise OSError(
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
"Please set it to a valid path to use torch profiler."
)
main(args)
print("""DEPRECATED: This script has been moved to the vLLM CLI.
Please use the following command instead:
vllm bench latency
For help with the new command, run:
vllm bench latency --help
Alternatively, you can run the new command directly with:
python -m vllm.entrypoints.cli.main bench latency --help
""")
sys.exit(1)

View File

@ -77,7 +77,7 @@ def invoke_main() -> None:
"--num-iteration",
type=int,
default=100,
help="Number of iterations to run to stablize final data readings",
help="Number of iterations to run to stabilize final data readings",
)
parser.add_argument(
"--num-req", type=int, default=128, help="Number of requests in the batch"

File diff suppressed because it is too large Load Diff

View File

@ -998,7 +998,7 @@ def create_argument_parser():
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-separated list of selected metrics to report percentils. "
help="Comma-separated list of selected metrics to report percentiles. "
"This argument specifies the metrics to report percentiles. "
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
'Default value is "ttft,tpot,itl".',

View File

@ -1,741 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark offline inference throughput."""
import argparse
import dataclasses
import json
import os
import random
import time
import warnings
from typing import Any, Optional, Union
import torch
import uvloop
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
from typing_extensions import deprecated
from benchmark_dataset import (
AIMODataset,
BurstGPTDataset,
ConversationDataset,
InstructCoderDataset,
RandomDataset,
SampleRequest,
ShareGPTDataset,
SonnetDataset,
VisionArenaDataset,
)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args,
)
from vllm.inputs import TextPrompt, TokensPrompt
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
def run_vllm(
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> tuple[float, Optional[list[RequestOutput]]]:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
# Add the requests to the engine.
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
lora_requests: Optional[list[LoRARequest]] = None
if engine_args.enable_lora:
lora_requests = [request.lora_request for request in requests]
use_beam_search = False
outputs = None
if not use_beam_search:
start = time.perf_counter()
outputs = llm.generate(
prompts, sampling_params, lora_request=lora_requests, use_tqdm=True
)
end = time.perf_counter()
else:
assert lora_requests is None, "BeamSearch API does not support LoRA"
# output_len should be the same for all requests.
output_len = requests[0].expected_output_len
for request in requests:
assert request.expected_output_len == output_len
start = time.perf_counter()
llm.beam_search(
prompts,
BeamSearchParams(
beam_width=n,
max_tokens=output_len,
ignore_eos=True,
),
)
end = time.perf_counter()
return end - start, outputs
def run_vllm_chat(
requests: list[SampleRequest],
n: int,
engine_args: EngineArgs,
disable_detokenize: bool = False,
) -> tuple[float, list[RequestOutput]]:
"""
Run vLLM chat benchmark. This function is recommended ONLY for benchmarking
multimodal models as it properly handles multimodal inputs and chat
formatting. For non-multimodal models, use run_vllm() instead.
"""
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
assert all(
llm.llm_engine.model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of "
"prompt_len and expected_output_len for all requests."
)
prompts = []
sampling_params: list[SamplingParams] = []
for request in requests:
prompts.append(request.prompt)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
start = time.perf_counter()
outputs = llm.chat(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
return end - start, outputs
async def run_vllm_async(
requests: list[SampleRequest],
n: int,
engine_args: AsyncEngineArgs,
disable_frontend_multiprocessing: bool = False,
disable_detokenize: bool = False,
) -> float:
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args,
disable_frontend_multiprocessing=disable_frontend_multiprocessing,
) as llm:
model_config = await llm.get_model_config()
assert all(
model_config.max_model_len
>= (request.prompt_len + request.expected_output_len)
for request in requests
), (
"Please ensure that max_model_len is greater than the sum of"
" prompt_len and expected_output_len for all requests."
)
# Add the requests to the engine.
prompts: list[Union[TextPrompt, TokensPrompt]] = []
sampling_params: list[SamplingParams] = []
lora_requests: list[Optional[LoRARequest]] = []
for request in requests:
prompts.append(
TokensPrompt(
prompt_token_ids=request.prompt["prompt_token_ids"],
multi_modal_data=request.multi_modal_data,
)
if "prompt_token_ids" in request.prompt
else TextPrompt(
prompt=request.prompt, multi_modal_data=request.multi_modal_data
)
)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=request.expected_output_len,
detokenize=not disable_detokenize,
)
)
lora_requests.append(request.lora_request)
generators = []
start = time.perf_counter()
for i, (prompt, sp, lr) in enumerate(
zip(prompts, sampling_params, lora_requests)
):
generator = llm.generate(prompt, sp, lora_request=lr, request_id=f"test{i}")
generators.append(generator)
all_gens = merge_async_iterators(*generators)
async for i, res in all_gens:
pass
end = time.perf_counter()
return end - start
def run_hf(
requests: list[SampleRequest],
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
max_batch_size: int,
trust_remote_code: bool,
disable_detokenize: bool = False,
) -> float:
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code
)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
llm = llm.cuda()
pbar = tqdm(total=len(requests))
start = time.perf_counter()
batch: list[str] = []
max_prompt_len = 0
max_output_len = 0
for i in range(len(requests)):
prompt = requests[i].prompt
prompt_len = requests[i].prompt_len
output_len = requests[i].expected_output_len
# Add the prompt to the batch.
batch.append(prompt)
max_prompt_len = max(max_prompt_len, prompt_len)
max_output_len = max(max_output_len, output_len)
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
next_prompt_len = requests[i + 1].prompt_len
next_output_len = requests[i + 1].expected_output_len
if (
max(max_prompt_len, next_prompt_len)
+ max(max_output_len, next_output_len)
) <= 2048:
# We can add more requests to the batch.
continue
# Generate the sequences.
input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=True,
num_return_sequences=n,
temperature=1.0,
top_p=1.0,
use_cache=True,
max_new_tokens=max_output_len,
)
if not disable_detokenize:
# Include the decoding time.
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
pbar.update(len(batch))
# Clear the batch.
batch = []
max_prompt_len = 0
max_output_len = 0
end = time.perf_counter()
return end - start
def run_mii(
requests: list[SampleRequest],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import client, serve
llm = serve(model, tensor_parallel=tensor_parallel_size)
prompts = [request.prompt for request in requests]
start = time.perf_counter()
llm.generate(prompts, max_new_tokens=output_len)
end = time.perf_counter()
client = client(model)
client.terminate_server()
return end - start
def save_to_pytorch_benchmark_format(
args: argparse.Namespace, results: dict[str, Any]
) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={
"requests_per_second": [results["requests_per_second"]],
"tokens_per_second": [results["tokens_per_second"]],
},
extra_info={
k: results[k] for k in ["elapsed_time", "num_requests", "total_num_tokens"]
},
)
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
def get_requests(args, tokenizer):
# Common parameters for all dataset types.
common_kwargs = {
"dataset_path": args.dataset_path,
"random_seed": args.seed,
}
sample_kwargs = {
"tokenizer": tokenizer,
"lora_path": args.lora_path,
"max_loras": args.max_loras,
"num_requests": args.num_prompts,
"input_len": args.input_len,
"output_len": args.output_len,
}
if args.dataset_path is None or args.dataset_name == "random":
sample_kwargs["range_ratio"] = args.random_range_ratio
sample_kwargs["prefix_len"] = args.prefix_len
dataset_cls = RandomDataset
elif args.dataset_name == "sharegpt":
dataset_cls = ShareGPTDataset
if args.backend == "vllm-chat":
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_name == "sonnet":
assert tokenizer.chat_template or tokenizer.default_chat_template, (
"Tokenizer/model must have chat template for sonnet dataset."
)
dataset_cls = SonnetDataset
sample_kwargs["prefix_len"] = args.prefix_len
sample_kwargs["return_prompt_formatted"] = True
elif args.dataset_name == "burstgpt":
dataset_cls = BurstGPTDataset
elif args.dataset_name == "hf":
common_kwargs["no_stream"] = args.no_stream
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = VisionArenaDataset
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = InstructCoderDataset
common_kwargs["dataset_split"] = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = ConversationDataset
common_kwargs["dataset_subset"] = args.hf_subset
common_kwargs["dataset_split"] = args.hf_split
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_cls = AIMODataset
common_kwargs["dataset_subset"] = None
common_kwargs["dataset_split"] = "train"
else:
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
# Remove None values
sample_kwargs = {k: v for k, v in sample_kwargs.items() if v is not None}
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
@deprecated(
"benchmark_throughput.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench throughput' instead.",
)
def main(args: argparse.Namespace):
if args.seed is None:
args.seed = 0
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code
)
requests = get_requests(args, tokenizer)
is_multi_modal = any(request.multi_modal_data is not None for request in requests)
request_outputs: Optional[list[RequestOutput]] = None
if args.backend == "vllm":
if args.async_engine:
elapsed_time = uvloop.run(
run_vllm_async(
requests,
args.n,
AsyncEngineArgs.from_cli_args(args),
args.disable_frontend_multiprocessing,
args.disable_detokenize,
)
)
else:
elapsed_time, request_outputs = run_vllm(
requests,
args.n,
EngineArgs.from_cli_args(args),
args.disable_detokenize,
)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(
requests,
args.model,
tokenizer,
args.n,
args.hf_max_batch_size,
args.trust_remote_code,
args.disable_detokenize,
)
elif args.backend == "mii":
elapsed_time = run_mii(
requests, args.model, args.tensor_parallel_size, args.output_len
)
elif args.backend == "vllm-chat":
elapsed_time, request_outputs = run_vllm_chat(
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
)
else:
raise ValueError(f"Unknown backend: {args.backend}")
if request_outputs:
# Note: with the vllm and vllm-chat backends,
# we have request_outputs, which we use to count tokens.
total_prompt_tokens = 0
total_output_tokens = 0
for ro in request_outputs:
if not isinstance(ro, RequestOutput):
continue
total_prompt_tokens += (
len(ro.prompt_token_ids) if ro.prompt_token_ids else 0
)
total_output_tokens += sum(len(o.token_ids) for o in ro.outputs if o)
total_num_tokens = total_prompt_tokens + total_output_tokens
else:
total_num_tokens = sum(r.prompt_len + r.expected_output_len for r in requests)
total_output_tokens = sum(r.expected_output_len for r in requests)
total_prompt_tokens = total_num_tokens - total_output_tokens
if is_multi_modal and args.backend != "vllm-chat":
print(
"\033[91mWARNING\033[0m: Multi-modal request with "
f"{args.backend} backend detected. The "
"following metrics are not accurate because image tokens are not"
" counted. See vllm-project/vllm/issues/9778 for details."
)
# TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
# vllm-chat backend counts the image tokens now
print(
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
f"{total_output_tokens / elapsed_time:.2f} output tokens/s"
)
print(f"Total num prompt tokens: {total_prompt_tokens}")
print(f"Total num output tokens: {total_output_tokens}")
# Output JSON results if specified
if args.output_json:
results = {
"elapsed_time": elapsed_time,
"num_requests": len(requests),
"total_num_tokens": total_num_tokens,
"requests_per_second": len(requests) / elapsed_time,
"tokens_per_second": total_num_tokens / elapsed_time,
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
def validate_args(args):
"""
Validate command-line arguments.
"""
# === Deprecation and Defaulting ===
if args.dataset is not None:
warnings.warn(
"The '--dataset' argument will be deprecated in the next release. "
"Please use '--dataset-name' and '--dataset-path' instead.",
stacklevel=2,
)
args.dataset_path = args.dataset
if not getattr(args, "tokenizer", None):
args.tokenizer = args.model
# === Backend Validation ===
valid_backends = {"vllm", "hf", "mii", "vllm-chat"}
if args.backend not in valid_backends:
raise ValueError(f"Unsupported backend: {args.backend}")
# === Dataset Configuration ===
if not args.dataset and not args.dataset_path:
print("When dataset path is not set, it will default to random dataset")
args.dataset_name = "random"
if args.input_len is None:
raise ValueError("input_len must be provided for a random dataset")
# === Dataset Name Specific Checks ===
# --hf-subset and --hf-split: only used
# when dataset_name is 'hf'
if args.dataset_name != "hf" and (
getattr(args, "hf_subset", None) is not None
or getattr(args, "hf_split", None) is not None
):
warnings.warn(
"--hf-subset and --hf-split will be ignored \
since --dataset-name is not 'hf'.",
stacklevel=2,
)
elif args.dataset_name == "hf":
if args.dataset_path in (
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
| ConversationDataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm-chat", (
f"{args.dataset_path} needs to use vllm-chat as the backend."
) # noqa: E501
elif args.dataset_path in (
InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS
):
assert args.backend == "vllm", (
f"{args.dataset_path} needs to use vllm as the backend."
) # noqa: E501
else:
raise ValueError(f"{args.dataset_path} is not supported by hf dataset.")
# --random-range-ratio: only used when dataset_name is 'random'
if args.dataset_name != "random" and args.random_range_ratio is not None:
warnings.warn(
"--random-range-ratio will be ignored since \
--dataset-name is not 'random'.",
stacklevel=2,
)
# --prefix-len: only used when dataset_name is 'random', 'sonnet', or not
# set.
if (
args.dataset_name not in {"random", "sonnet", None}
and args.prefix_len is not None
):
warnings.warn(
"--prefix-len will be ignored since --dataset-name\
is not 'random', 'sonnet', or not set.",
stacklevel=2,
)
# === LoRA Settings ===
if getattr(args, "enable_lora", False) and args.backend != "vllm":
raise ValueError("LoRA benchmarking is only supported for vLLM backend")
if getattr(args, "enable_lora", False) and args.lora_path is None:
raise ValueError("LoRA path must be provided when enable_lora is True")
# === Backend-specific Validations ===
if args.backend == "hf" and args.hf_max_batch_size is None:
raise ValueError("HF max batch size is required for HF backend")
if args.backend != "hf" and args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if (
args.backend in {"hf", "mii"}
and getattr(args, "quantization", None) is not None
):
raise ValueError("Quantization is only for vLLM backend.")
if args.backend == "mii" and args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.backend == "mii" and args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.backend == "mii" and args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII backend.")
# --data-parallel is not supported currently.
# https://github.com/vllm-project/vllm/issues/16222
if args.data_parallel_size > 1:
raise ValueError(
"Data parallel is not supported in offline benchmark, "
"please use benchmark serving instead"
)
def create_argument_parser():
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument(
"--backend",
type=str,
choices=["vllm", "hf", "mii", "vllm-chat"],
default="vllm",
)
parser.add_argument(
"--dataset-name",
type=str,
choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
help="Name of the dataset to benchmark on.",
default="sharegpt",
)
parser.add_argument(
"--no-stream",
action="store_true",
help="Do not load the dataset in streaming mode.",
)
parser.add_argument(
"--dataset",
type=str,
default=None,
help="Path to the ShareGPT dataset, will be deprecated in\
the next release. The dataset is expected to "
"be a json in form of list[dict[..., conversations: "
"list[dict[..., value: <prompt_or_response>]]]]",
)
parser.add_argument(
"--dataset-path", type=str, default=None, help="Path to the dataset"
)
parser.add_argument(
"--input-len",
type=int,
default=None,
help="Input prompt length for each request",
)
parser.add_argument(
"--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.",
)
parser.add_argument(
"--n", type=int, default=1, help="Number of generated sequences per prompt."
)
parser.add_argument(
"--num-prompts", type=int, default=1000, help="Number of prompts to process."
)
parser.add_argument(
"--hf-max-batch-size",
type=int,
default=None,
help="Maximum batch size for HF backend.",
)
parser.add_argument(
"--output-json",
type=str,
default=None,
help="Path to save the throughput results in JSON format.",
)
parser.add_argument(
"--async-engine",
action="store_true",
default=False,
help="Use vLLM async engine rather than LLM class.",
)
parser.add_argument(
"--disable-frontend-multiprocessing",
action="store_true",
default=False,
help="Disable decoupled async engine frontend.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=(
"Do not detokenize the response (i.e. do not include "
"detokenization time in the measurement)"
),
)
# LoRA
parser.add_argument(
"--lora-path",
type=str,
default=None,
help="Path to the LoRA adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.",
)
parser.add_argument(
"--prefix-len",
type=int,
default=None,
help=f"Number of prefix tokens to be used in RandomDataset "
"and SonnetDataset. For RandomDataset, the total input "
"length is the sum of prefix-len (default: "
f"{RandomDataset.DEFAULT_PREFIX_LEN}) and a random context length "
"sampled from [input_len * (1 - range_ratio), "
"input_len * (1 + range_ratio)]. For SonnetDataset, "
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
"controls how much of the input is fixed lines versus "
"random lines, but the total input length remains approximately "
"input_len tokens.",
)
# random dataset
parser.add_argument(
"--random-range-ratio",
type=float,
default=None,
help=f"Range ratio (default : {RandomDataset.DEFAULT_RANGE_RATIO}) "
"for sampling input/output length, "
"used only for RandomDataset. Must be in the range [0, 1) to "
"define a symmetric sampling range "
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
# hf dtaset
parser.add_argument(
"--hf-subset", type=str, default=None, help="Subset of the HF dataset."
)
parser.add_argument(
"--hf-split", type=str, default=None, help="Split of the HF dataset."
)
parser = AsyncEngineArgs.add_cli_args(parser)
return parser
import sys
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
validate_args(args)
main(args)
print("""DEPRECATED: This script has been moved to the vLLM CLI.
Please use the following command instead:
vllm bench throughput
For help with the new command, run:
vllm bench throughput --help
Alternatively, you can run the new command directly with:
python -m vllm.entrypoints.cli.main bench throughput --help
""")
sys.exit(1)

View File

@ -62,7 +62,7 @@ benchmark() {
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
@ -72,7 +72,7 @@ benchmark() {
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200

View File

@ -69,7 +69,7 @@ launch_disagg_prefill() {
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
@ -78,7 +78,7 @@ launch_disagg_prefill() {
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
wait_for_server 8100
wait_for_server 8200

View File

@ -0,0 +1,104 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# benchmark custom activation op performance
import itertools
import torch
import vllm.model_executor.layers.activation # noqa F401
from vllm.model_executor.custom_op import CustomOp
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
batch_size_range = [1, 16, 32, 64, 128]
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
intermediate_size = [3072, 9728, 12288]
configs = list(itertools.product(batch_size_range, seq_len_range, intermediate_size))
def benchmark_activation(
batch_size: int,
seq_len: int,
intermediate_size: int,
provider: str,
func_name: str,
dtype: torch.dtype,
):
device = "cuda"
num_tokens = batch_size * seq_len
dim = intermediate_size
current_platform.seed_everything(42)
torch.set_default_device(device)
if func_name == "gelu_and_mul":
layer = CustomOp.op_registry[func_name](approximate="none")
elif func_name == "gelu_and_mul_tanh":
layer = CustomOp.op_registry["gelu_and_mul"](approximate="tanh")
elif func_name == "fatrelu_and_mul":
threshold = 0.5
layer = CustomOp.op_registry[func_name](threshold)
else:
layer = CustomOp.op_registry[func_name]()
x = torch.randn(num_tokens, dim, dtype=dtype, device=device)
compiled_layer = torch.compile(layer.forward_native)
if provider == "custom":
fn = lambda: layer(x)
elif provider == "compiled":
fn = lambda: compiled_layer(x)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
fn, quantiles=[0.5, 0.2, 0.8]
)
return ms, max_ms, min_ms
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the custom activation op.")
parser.add_argument(
"--func-name",
type=str,
choices=[
"mul_and_silu",
"silu_and_mul",
"gelu_and_mul",
"gelu_and_mul_tanh",
"fatrelu_and_mul",
"swigluoai_and_mul",
"gelu_new",
"gelu_fast",
"quick_gelu",
],
default="silu_and_mul",
)
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
)
args = parser.parse_args()
assert args
func_name = args.func_name
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
perf_report = triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len", "intermediate_size"],
x_vals=configs,
line_arg="provider",
line_vals=["custom", "compiled"],
line_names=["Custom OP", "Compiled"],
styles=[("blue", "-"), ("green", "-")],
ylabel="ms",
plot_name=f"{func_name}-op-performance",
args={},
)
)
perf_report(
lambda batch_size, seq_len, intermediate_size, provider: benchmark_activation(
batch_size, seq_len, intermediate_size, provider, func_name, dtype
)
).run(print_data=True)

View File

@ -637,7 +637,7 @@ def bench_optype(
# Clear LoRA optimization hash-maps.
_LORA_A_PTR_DICT.clear()
_LORA_B_PTR_DICT.clear()
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are setup
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are set up
for kwargs in kwargs_list:
op_type.bench_fn()(**kwargs)
torch.cuda.synchronize()

View File

@ -678,7 +678,11 @@ def main(args: argparse.Namespace):
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
search_space = get_configs_compute_bound(is_fp16, block_quant_shape)
print(f"Start tuning over {len(search_space)} configurations...")
if use_deep_gemm:
raise ValueError(
"Tuning with --use-deep-gemm is not supported as it only tunes Triton "
"kernels. Please remove the flag."
)
start = time.time()
configs = _distribute(
"tune",

View File

@ -259,6 +259,7 @@ if __name__ == "__main__":
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
(None, None, None),
(None, FP8_DTYPE, None),
(FP8_DTYPE, FP8_DTYPE, None),
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
]

View File

@ -274,6 +274,7 @@ if __name__ == "__main__":
quant_dtypes = [
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
(None, None, None),
(FP8_DTYPE, FP8_DTYPE, None),
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
]

View File

@ -962,7 +962,7 @@ async def main_mp(
# At this point all the clients finished,
# collect results (TTFT, TPOT, etc.) from all the clients.
# This needs to happens before calling join on the clients
# This needs to happen before calling join on the clients
# (result_queue should be emptied).
while not result_queue.empty():
client_metrics.append(result_queue.get())

View File

@ -88,6 +88,7 @@ is_avx512_disabled(AVX512_DISABLED)
if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
message(STATUS "Apple Silicon Detected")
set(APPLE_SILICON_FOUND TRUE)
set(ENABLE_NUMA OFF)
check_sysctl(hw.optional.neon ASIMD_FOUND)
check_sysctl(hw.optional.arm.FEAT_BF16 ARM_BF16_FOUND)
@ -189,7 +190,7 @@ else()
set(USE_ACL OFF)
endif()
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 57b4e68b9f9d94750b46de8f8dbd2bfcc86edd4f
GIT_TAG ee4d25bd84e0cbc7e0b9b9685085fd5db2dcb62a
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -36,6 +36,7 @@ limitations under the License.
#if !defined(CUDA_VERSION) || CUDA_VERSION < 12040
void sm100_cutlass_mla_decode(
torch::Tensor const& out,
torch::Tensor const& lse,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
@ -64,11 +65,11 @@ struct IsPersistent {
static const bool value = v;
};
template <typename T, bool IsPaged128, typename PersistenceOption = IsPersistent<true>>
template <typename T, typename TOut, bool IsPaged128, typename PersistenceOption = IsPersistent<true>>
struct MlaSm100 {
using Element = T;
using ElementAcc = float;
using ElementOut = T;
using ElementOut = TOut;
using TileShape = Shape<_128, _128, Shape<_512, _64>>;
using TileShapeH = cute::tuple_element_t<0, TileShape>;
@ -99,6 +100,7 @@ struct MlaSm100 {
template <typename T>
typename T::Fmha::Arguments args_from_options(
at::Tensor const& out,
at::Tensor const& lse,
at::Tensor const& q_nope,
at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache,
@ -162,7 +164,10 @@ typename T::Fmha::Arguments args_from_options(
stride_PT,
page_count_total,
page_size},
{static_cast<ElementOut*>(out.data_ptr()), stride_O, static_cast<ElementAcc*>(nullptr), stride_LSE},
{static_cast<ElementOut*>(out.data_ptr()),
stride_O,
static_cast<ElementAcc*>(lse.defined() ? lse.data_ptr() : nullptr),
stride_LSE},
hw_info,
// TODO(trevor-m): Change split_kv back to -1 when
// https://github.com/NVIDIA/cutlass/issues/2274 is fixed. Split_kv=1 will
@ -178,9 +183,10 @@ typename T::Fmha::Arguments args_from_options(
return arguments;
}
template <typename Element, bool IsPaged128, typename PersistenceOption>
template <typename Element, typename ElementOut, bool IsPaged128, typename PersistenceOption>
void runMla(
at::Tensor const& out,
at::Tensor const& lse,
at::Tensor const& q_nope,
at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache,
@ -190,9 +196,9 @@ void runMla(
double sm_scale,
int64_t num_kv_splits,
cudaStream_t stream) {
using MlaSm100Type = MlaSm100<Element, IsPaged128, PersistenceOption>;
using MlaSm100Type = MlaSm100<Element, ElementOut, IsPaged128, PersistenceOption>;
typename MlaSm100Type::Fmha fmha;
auto arguments = args_from_options<MlaSm100Type>(out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
auto arguments = args_from_options<MlaSm100Type>(out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
CUTLASS_CHECK(fmha.can_implement(arguments));
@ -214,6 +220,7 @@ void runMla(
void sm100_cutlass_mla_decode(
torch::Tensor const& out,
torch::Tensor const& lse,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
@ -233,14 +240,14 @@ void sm100_cutlass_mla_decode(
DISPATCH_BOOL(page_size == 128, IsPaged128, [&] {
DISPATCH_BOOL(num_kv_splits <= 1, NotManualSplitKV, [&] {
if (in_dtype == at::ScalarType::Half) {
runMla<cutlass::half_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
runMla<cutlass::half_t, cutlass::half_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
runMla<cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
runMla<cutlass::bfloat16_t, cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else if (in_dtype == at::ScalarType::Float8_e4m3fn) {
runMla<cutlass::float_e4m3_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
runMla<cutlass::float_e4m3_t, cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, lse, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else {
TORCH_CHECK(false, "Unsupported input data type of MLA");
}
@ -253,7 +260,7 @@ void sm100_cutlass_mla_decode(
int64_t sm100_cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_batches, int64_t sm_count, int64_t num_kv_splits) {
// Workspace size depends on ElementAcc and ElementLSE (same as ElementAcc)
// which are float, so Element type here doesn't matter.
using MlaSm100Type = MlaSm100<cutlass::half_t, true>;
using MlaSm100Type = MlaSm100<cutlass::half_t, cutlass::half_t, true>;
// Get split kv. Requires problem shape and sm_count only.
typename MlaSm100Type::Fmha::Arguments arguments;

View File

@ -36,13 +36,6 @@ void concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe,
const std::string& kv_cache_dtype,
torch::Tensor& scale);
void cp_fused_concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe,
torch::Tensor& cp_local_token_select_indices,
torch::Tensor& kv_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype,
torch::Tensor& scale);
// Just for unittest
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
const double scale, const std::string& kv_cache_dtype);

View File

@ -396,51 +396,6 @@ __global__ void concat_and_cache_mla_kernel(
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
}
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void cp_fused_concat_and_cache_mla_kernel(
const scalar_t* __restrict__ kv_c, // [num_full_tokens, kv_lora_rank]
const scalar_t* __restrict__ k_pe, // [num_full_tokens, pe_dim]
const int64_t* __restrict__ cp_local_token_select_indices, // [num_tokens]
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
// + pe_dim)]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, //
const int entry_stride, //
const int kv_c_stride, //
const int k_pe_stride, //
const int kv_lora_rank, //
const int pe_dim, //
const int block_size, //
const float* scale //
) {
const int64_t token_idx = cp_local_token_select_indices[blockIdx.x];
const int64_t slot_idx = slot_mapping[blockIdx.x];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
auto copy = [&](const scalar_t* __restrict__ src, cache_t* __restrict__ dst,
int src_stride, int dst_stride, int size, int offset) {
for (int i = threadIdx.x; i < size; i += blockDim.x) {
const int64_t src_idx = token_idx * src_stride + i;
const int64_t dst_idx =
block_idx * block_stride + block_offset * entry_stride + i + offset;
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
dst[dst_idx] = src[src_idx];
} else {
dst[dst_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(src[src_idx], *scale);
}
}
};
copy(kv_c, kv_cache, kv_c_stride, block_stride, kv_lora_rank, 0);
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
}
} // namespace vllm
// KV_T is the data type of key and value tensors.
@ -554,20 +509,6 @@ void reshape_and_cache_flash(
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
// KV_T is the data type of key and value tensors.
// CACHE_T is the stored data type of kv-cache.
// KV_DTYPE is the real data type of kv-cache.
#define CALL_CP_FUSED_CONCAT_AND_CACHE_MLA(KV_T, CACHE_T, KV_DTYPE) \
vllm::cp_fused_concat_and_cache_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
cp_local_token_select_indices.data_ptr<int64_t>(), \
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
void concat_and_cache_mla(
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
torch::Tensor& k_pe, // [num_tokens, pe_dim]
@ -606,50 +547,6 @@ void concat_and_cache_mla(
CALL_CONCAT_AND_CACHE_MLA);
}
// Note(hc): cp_fused_concat_and_cache_mla fuses the following three kernel
// calls into one:
// k_c_normed.index_select(0, cp_local_token_select_indices) + \
// k_pe.squeeze(1).index_select(0, cp_local_token_select_indices) + \
// concat_and_cache_mla.
void cp_fused_concat_and_cache_mla(
torch::Tensor& kv_c, // [num_total_tokens, kv_lora_rank]
torch::Tensor& k_pe, // [num_total_tokens, pe_dim]
torch::Tensor& cp_local_token_select_indices, // [num_tokens]
torch::Tensor& kv_cache, // [num_blocks, block_size, (kv_lora_rank +
// pe_dim)]
torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens]
const std::string& kv_cache_dtype, torch::Tensor& scale) {
// NOTE(woosuk): In vLLM V1, key.size(0) can be different from
// slot_mapping.size(0) because of padding for CUDA graphs.
// In vLLM V0, key.size(0) is always equal to slot_mapping.size(0) because
// both include padding.
// In vLLM V1, however, key.size(0) can be larger than slot_mapping.size(0)
// since key includes padding for CUDA graphs, while slot_mapping does not.
// In this case, slot_mapping.size(0) represents the actual number of tokens
// before padding.
// For compatibility with both cases, we use slot_mapping.size(0) as the
// number of tokens.
int num_tokens = slot_mapping.size(0);
int kv_lora_rank = kv_c.size(1);
int pe_dim = k_pe.size(1);
int block_size = kv_cache.size(1);
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
int kv_c_stride = kv_c.stride(0);
int k_pe_stride = k_pe.stride(0);
int block_stride = kv_cache.stride(0);
int entry_stride = kv_cache.stride(1);
dim3 grid(num_tokens);
dim3 block(std::min(kv_lora_rank, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_c));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CP_FUSED_CONCAT_AND_CACHE_MLA);
}
namespace vllm {
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>

View File

@ -22,6 +22,23 @@ void release_dnnl_matmul_handler(int64_t handler) {
delete ptr;
}
DNNLScratchPadManager::DNNLScratchPadManager() : size_(0), ptr_(nullptr) {
this->realloc(allocation_unit * 128);
}
void DNNLScratchPadManager::realloc(size_t new_size) {
new_size = round(new_size);
if (new_size > size_) {
ptr_ = std::aligned_alloc(64, new_size);
size_ = new_size;
}
}
DNNLScratchPadManager* DNNLScratchPadManager::get_dnnl_scratchpad_manager() {
static DNNLScratchPadManager manager;
return &manager;
}
template <typename KT, typename VT>
class DNNLPrimitiveCache {
public:
@ -166,6 +183,23 @@ struct hash<W8A8MatMulPrimitiveHandler::MSizeCacheKey> {
hash<int>()(static_cast<int>(val.bias_type));
}
};
template <>
struct hash<MatMulPrimitiveHandler::ClassMatmulCacheKey> {
size_t operator()(
const MatMulPrimitiveHandler::ClassMatmulCacheKey& val) const {
return hash<dnnl_dim_t>()(val.b_n_size) ^ hash<dnnl_dim_t>()(val.b_k_size);
}
};
template <>
struct hash<MatMulPrimitiveHandler::MSizeCacheKey> {
size_t operator()(const MatMulPrimitiveHandler::MSizeCacheKey& val) const {
return hash<dnnl_dim_t>()(val.a_m_size) ^
hash<dnnl_dim_t>()(val.a_m_stride) ^ hash<bool>()(val.use_bias) ^
hash<int>()(static_cast<int>(val.bias_type));
}
};
} // namespace std
bool operator==(const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& l,
@ -181,6 +215,17 @@ bool operator==(const W8A8MatMulPrimitiveHandler::MSizeCacheKey& l,
l.bias_type == r.bias_type;
}
bool operator==(const MatMulPrimitiveHandler::ClassMatmulCacheKey& l,
const MatMulPrimitiveHandler::ClassMatmulCacheKey& r) {
return l.b_n_size == r.b_n_size && l.b_k_size == r.b_k_size;
}
bool operator==(const MatMulPrimitiveHandler::MSizeCacheKey& l,
const MatMulPrimitiveHandler::MSizeCacheKey& r) {
return l.a_m_size == r.a_m_size && l.a_m_stride == r.a_m_stride &&
l.use_bias == r.use_bias && l.bias_type == r.bias_type;
}
static std::shared_ptr<W8A8MatMulPrimitiveHandler::MSizeCache>
get_w8a8_class_primitive_cache(
const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& key,
@ -239,6 +284,11 @@ void W8A8MatMulPrimitiveHandler::execute(ExecArgs& args) {
}
dnnl::matmul matmul = get_matmul_cache(args);
auto&& [scratchpad_storage, scratchpad_mem_desc] = get_runtime_memory_ptr(5);
scratchpad_storage->set_data_handle(
DNNLScratchPadManager::get_dnnl_scratchpad_manager()->get_data<void>());
matmul.execute(default_stream(), memory_cache_);
default_stream().wait();
}
@ -257,6 +307,8 @@ dnnl::matmul W8A8MatMulPrimitiveHandler::get_matmul_cache(
return m_size_cache_->get_or_create(key, [&]() {
dnnl::matmul::primitive_desc desc = this->create_primitive_desc(key, false);
auto manager = DNNLScratchPadManager::get_dnnl_scratchpad_manager();
manager->realloc(desc.scratchpad_desc().get_size());
return dnnl::matmul(desc);
});
}
@ -300,6 +352,11 @@ void W8A8MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(4, memory_cache_[DNNL_ARG_BIAS].get());
memory_cache_[DNNL_ARG_SCRATCHPAD] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(5, memory_cache_[DNNL_ARG_SCRATCHPAD].get());
}
dnnl::matmul::primitive_desc W8A8MatMulPrimitiveHandler::create_primitive_desc(
@ -319,6 +376,9 @@ dnnl::matmul::primitive_desc W8A8MatMulPrimitiveHandler::create_primitive_desc(
dnnl::memory::format_tag::ab);
dnnl::primitive_attr attr;
attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
// For PER_TOKEN, scales will be applied in outside epilogue
if (a_qs_ == QuantizationStrategy::PER_TENSOR) {
attr.set_scales_mask(DNNL_ARG_SRC, 0);
@ -344,3 +404,120 @@ dnnl::matmul::primitive_desc W8A8MatMulPrimitiveHandler::create_primitive_desc(
attr);
}
}
MatMulPrimitiveHandler::MatMulPrimitiveHandler(const Args& args)
: DNNLMatMulPrimitiveHandler(
static_cast<DNNLMatMulPrimitiveHandler::Args>(args), args.ab_type),
m_size_cache_(nullptr) {
assert(ab_type_ == dnnl::memory::data_type::f32 ||
ab_type_ == dnnl::memory::data_type::bf16 ||
ab_type_ == dnnl::memory::data_type::f16);
prepack_weight(args.b_ptr,
create_primitive_desc(
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
.a_m_stride = DNNL_RUNTIME_DIM_VAL,
.use_bias = false,
.bias_type = dnnl::memory::data_type::undef},
true)
.weights_desc());
init_runtime_memory_cache(args);
}
static std::shared_ptr<MatMulPrimitiveHandler::MSizeCache>
get_matul_class_primitive_cache(
const MatMulPrimitiveHandler::ClassMatmulCacheKey& key,
int64_t cache_size) {
static MatMulPrimitiveHandler::ClassMatmulCache cache(128);
assert(cache_size > 0);
return cache.get_or_create(key, [&]() {
return std::make_shared<MatMulPrimitiveHandler::MSizeCache>(cache_size);
});
}
void MatMulPrimitiveHandler::execute(ExecArgs& args) {
auto&& [a_storage, a_mem_desc] = get_runtime_memory_ptr(0);
auto&& [c_storage, c_mem_desc] = get_runtime_memory_ptr(1);
a_storage->set_data_handle((void*)args.a_ptr);
a_mem_desc->dims[0] = args.a_m_size;
a_mem_desc->format_desc.blocking.strides[0] = args.a_m_stride;
c_storage->set_data_handle((void*)args.c_ptr);
c_mem_desc->dims[0] = args.a_m_size;
if (args.use_bias) {
auto&& [bias_storage, bias_mem_desc] = get_runtime_memory_ptr(2);
bias_storage->set_data_handle((void*)args.bias_ptr);
}
dnnl::matmul matmul = get_matmul_cache(args);
auto&& [scratchpad_storage, scratchpad_mem_desc] = get_runtime_memory_ptr(3);
scratchpad_storage->set_data_handle(
DNNLScratchPadManager::get_dnnl_scratchpad_manager()->get_data<void>());
matmul.execute(default_stream(), memory_cache_);
default_stream().wait();
}
dnnl::matmul MatMulPrimitiveHandler::get_matmul_cache(
const MSizeCacheKey& key) {
if (m_size_cache_.get() == nullptr) {
ClassMatmulCacheKey key = {.b_n_size = b_n_size_, .b_k_size = b_k_size_};
m_size_cache_ = get_matul_class_primitive_cache(key, primitive_cache_size_);
}
return m_size_cache_->get_or_create(key, [&]() {
dnnl::matmul::primitive_desc desc = this->create_primitive_desc(key, false);
auto manager = DNNLScratchPadManager::get_dnnl_scratchpad_manager();
manager->realloc(desc.scratchpad_desc().get_size());
return dnnl::matmul(desc);
});
}
dnnl::matmul::primitive_desc MatMulPrimitiveHandler::create_primitive_desc(
const MSizeCacheKey& key, bool first_time) {
dnnl::memory::desc a_md;
dnnl::memory::desc b_md;
if (first_time) {
a_md = dnnl::memory::desc({key.a_m_size, b_k_size_}, b_type_,
dnnl::memory::format_tag::ab);
b_md = dnnl::memory::desc({b_k_size_, b_n_size_}, b_type_,
dnnl::memory::format_tag::any);
} else {
a_md = dnnl::memory::desc({key.a_m_size, b_k_size_}, b_type_,
{key.a_m_stride, 1});
b_md = b_target_mem_desc_;
}
dnnl::memory::desc c_md({key.a_m_size, b_n_size_}, c_type_,
dnnl::memory::format_tag::ab);
dnnl::primitive_attr attr;
attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
if (key.use_bias) {
dnnl::memory::desc bias_md({1, b_n_size_}, key.bias_type, {b_n_size_, 1});
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, bias_md,
c_md, attr);
} else {
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
attr);
}
}
void MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
memory_cache_[DNNL_ARG_SRC] = dnnl::memory(
{{1, b_k_size_}, b_type_, {b_k_size_, 1}}, default_engine(), nullptr);
set_runtime_memory_ptr(0, memory_cache_[DNNL_ARG_SRC].get());
memory_cache_[DNNL_ARG_DST] =
dnnl::memory({{1, b_n_size_}, c_type_, dnnl::memory::format_tag::ab},
default_engine(), nullptr);
set_runtime_memory_ptr(1, memory_cache_[DNNL_ARG_DST].get());
memory_cache_[DNNL_ARG_BIAS] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(2, memory_cache_[DNNL_ARG_BIAS].get());
memory_cache_[DNNL_ARG_SCRATCHPAD] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(3, memory_cache_[DNNL_ARG_SCRATCHPAD].get());
}

View File

@ -59,6 +59,30 @@ constexpr inline dnnl::memory::data_type get_dnnl_type() {
return DNNLType<std::decay_t<T>>::type;
}
class DNNLScratchPadManager {
public:
static constexpr size_t allocation_unit = 4 * 1024 * 1024; // 4KB
static DNNLScratchPadManager* get_dnnl_scratchpad_manager();
DNNLScratchPadManager();
template <typename T>
T* get_data() {
return reinterpret_cast<T*>(ptr_);
}
static size_t round(size_t size) {
return ((size + allocation_unit - 1) / allocation_unit) * allocation_unit;
}
void realloc(size_t new_size);
private:
size_t size_;
void* ptr_;
};
class DNNLMatMulPrimitiveHandler {
public:
virtual ~DNNLMatMulPrimitiveHandler() = default;
@ -166,4 +190,54 @@ class W8A8MatMulPrimitiveHandler : public DNNLMatMulPrimitiveHandler {
std::shared_ptr<MSizeCache> m_size_cache_;
};
class MatMulPrimitiveHandler : public DNNLMatMulPrimitiveHandler {
public:
struct Args : public DNNLMatMulPrimitiveHandler::Args {
dnnl::memory::data_type ab_type;
};
struct ClassMatmulCacheKey {
dnnl_dim_t b_n_size;
dnnl_dim_t b_k_size;
friend bool operator==(const ClassMatmulCacheKey& l,
const ClassMatmulCacheKey& r);
};
struct MSizeCacheKey {
dnnl_dim_t a_m_size;
dnnl_dim_t a_m_stride;
bool use_bias;
dnnl::memory::data_type bias_type;
friend bool operator==(const MSizeCacheKey& l, const MSizeCacheKey& r);
};
using MSizeCache = DNNLPrimitiveCache<MSizeCacheKey, dnnl::matmul>;
using ClassMatmulCache =
DNNLPrimitiveCache<ClassMatmulCacheKey, std::shared_ptr<MSizeCache>>;
struct ExecArgs : public MSizeCacheKey {
const void* a_ptr;
const void* bias_ptr;
void* c_ptr;
};
public:
MatMulPrimitiveHandler(const Args& args);
void execute(ExecArgs& args);
private:
dnnl::matmul::primitive_desc create_primitive_desc(const MSizeCacheKey& key,
bool first_time);
void init_runtime_memory_cache(const Args& args);
dnnl::matmul get_matmul_cache(const MSizeCacheKey& key);
private:
std::shared_ptr<MSizeCache> m_size_cache_;
};
#endif

View File

@ -145,7 +145,8 @@ void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
}
}
float scale_val, azp_val;
float scale_val;
float azp_val = 0.0f;
if constexpr (AZP) {
float max_scalar = max_value.reduce_max();
float min_scalar = min_value.reduce_min();
@ -379,6 +380,7 @@ void onednn_scaled_mm(
exec_args.a_ptr = a.data_ptr<int8_t>();
exec_args.a_m_size = a.size(0);
exec_args.bias_ptr = nullptr;
exec_args.bias_type = get_dnnl_type<void>();
exec_args.use_bias = false;
exec_args.a_scales_ptr = nullptr;
exec_args.a_zero_points_ptr = nullptr;
@ -492,3 +494,56 @@ void dynamic_scaled_int8_quant(
}
});
}
int64_t create_onednn_mm_handler(const torch::Tensor& b,
int64_t primitive_cache_size) {
TORCH_CHECK(b.dim() == 2);
MatMulPrimitiveHandler::Args args;
args.primitive_cache_size = primitive_cache_size;
args.b_k_size = b.size(0);
args.b_k_stride = b.stride(0);
args.b_n_size = b.size(1);
args.b_n_stride = b.stride(1);
args.b_ptr = b.data_ptr();
VLLM_DISPATCH_FLOATING_TYPES(b.scalar_type(), "create_onednn_mm_handler",
[&] {
args.c_type = get_dnnl_type<scalar_t>();
args.ab_type = get_dnnl_type<scalar_t>();
});
return reinterpret_cast<int64_t>(new MatMulPrimitiveHandler(args));
}
void onednn_mm(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const std::optional<torch::Tensor>& bias, int64_t handler) {
CPU_KERNEL_GUARD_IN(onednn_mm)
TORCH_CHECK(a.dim() == 2);
TORCH_CHECK(a.stride(-1) == 1);
TORCH_CHECK(c.is_contiguous());
MatMulPrimitiveHandler* ptr =
reinterpret_cast<MatMulPrimitiveHandler*>(handler);
MatMulPrimitiveHandler::ExecArgs exec_args;
exec_args.a_m_size = a.size(0);
exec_args.a_m_stride = a.stride(0);
VLLM_DISPATCH_FLOATING_TYPES(a.scalar_type(), "onednn_mm", [&] {
if (bias.has_value()) {
exec_args.use_bias = true;
exec_args.bias_type = get_dnnl_type<scalar_t>();
exec_args.bias_ptr = bias->data_ptr<scalar_t>();
} else {
exec_args.use_bias = false;
exec_args.bias_type = get_dnnl_type<void>();
exec_args.bias_ptr = nullptr;
}
exec_args.a_ptr = a.data_ptr<scalar_t>();
exec_args.c_ptr = c.data_ptr<scalar_t>();
ptr->execute(exec_args);
});
}

View File

@ -21,6 +21,12 @@ void onednn_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
const std::optional<torch::Tensor>& bias,
int64_t handler);
int64_t create_onednn_mm_handler(const torch::Tensor& b,
int64_t primitive_cache_size);
void onednn_mm(torch::Tensor& c, const torch::Tensor& a,
const std::optional<torch::Tensor>& bias, int64_t handler);
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
torch::Tensor& kv_cache, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens);
@ -153,6 +159,18 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.def("release_dnnl_matmul_handler(int handler) -> ()",
&release_dnnl_matmul_handler);
// Create oneDNN GEMM handler
ops.def(
"create_onednn_mm_handler(Tensor b, int "
"primitive_cache_size) -> int",
&create_onednn_mm_handler);
// oneDNN GEMM
ops.def(
"onednn_mm(Tensor! c, Tensor a, Tensor? bias, "
"int handler) -> ()");
ops.impl("onednn_mm", torch::kCPU, &onednn_mm);
// Create oneDNN W8A8 handler
ops.def(
"create_onednn_scaled_mm_handler(Tensor b, Tensor b_scales, ScalarType "

View File

@ -52,15 +52,6 @@
#define VLLM_DISPATCH_FP8_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FP8_TYPES(__VA_ARGS__))
#define AT_DISPATCH_BYTE_CASE(enum_type, ...) \
AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, byte_t, __VA_ARGS__)
#define VLLM_DISPATCH_CASE_BYTE_TYPES(...) \
AT_DISPATCH_BYTE_CASE(at::ScalarType::Byte, __VA_ARGS__)
#define VLLM_DISPATCH_BYTE_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_BYTE_TYPES(__VA_ARGS__))
#define VLLM_DISPATCH_QUANT_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_QUANT_TYPES(__VA_ARGS__))

View File

@ -27,11 +27,12 @@
template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
bool kIsVariableB_, bool kIsVariableC_,
bool kHasZ_, bool kVarlen_, typename input_t_, typename weight_t_>
bool kHasZ_, bool kVarlen_, typename input_t_, typename weight_t_, typename state_t_>
struct Selective_Scan_fwd_kernel_traits {
static_assert(kNItems_ % 4 == 0);
using input_t = input_t_;
using weight_t = weight_t_;
using state_t = state_t_;
static constexpr int kNThreads = kNThreads_;
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
@ -132,7 +133,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + sequence_start_index * params.B_batch_stride + group_id * params.B_group_stride;
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + sequence_start_index * params.C_batch_stride + group_id * params.C_group_stride;
input_t *ssm_states = reinterpret_cast<input_t *>(params.ssm_states_ptr) +
typename Ktraits::state_t *ssm_states = reinterpret_cast<typename Ktraits::state_t *>(params.ssm_states_ptr) +
cache_index * params.ssm_states_batch_stride +
dim_id * kNRows * params.ssm_states_dim_stride;
@ -261,7 +262,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
if (threadIdx.x == 0) {
smem_running_prefix[state_idx] = prefix_op.running_prefix;
if (chunk == n_chunks - 1) {
ssm_states[state_idx * params.ssm_states_dstate_stride] = input_t(prefix_op.running_prefix.y);
ssm_states[state_idx * params.ssm_states_dstate_stride] = typename Ktraits::state_t(prefix_op.running_prefix.y);
}
}
#pragma unroll
@ -310,7 +311,7 @@ void selective_scan_fwd_kernel(SSMParamsBase params) {
}
}
template<int kNThreads, int kNItems, typename input_t, typename weight_t>
template<int kNThreads, int kNItems, typename input_t, typename weight_t, typename state_t>
void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
// Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
// processing 1 row.
@ -321,7 +322,7 @@ void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
BOOL_SWITCH(params.query_start_loc_ptr != nullptr , kVarlen, [&] {
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t>;
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t, state_t>;
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
dim3 grid(params.batch, params.dim / kNRows);
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
@ -341,59 +342,78 @@ void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
});
}
template<typename input_t, typename weight_t>
template<typename input_t, typename weight_t, typename state_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream) {
#ifndef USE_ROCM
if (params.seqlen <= 128) {
selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<32, 4, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 256) {
selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<32, 8, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<32, 16, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<64, 16, input_t, weight_t, state_t>(params, stream);
} else {
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<128, 16, input_t, weight_t, state_t>(params, stream);
}
#else
if (params.seqlen <= 256) {
selective_scan_fwd_launch<64, 4, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<64, 4, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_fwd_launch<64, 8, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<64, 8, input_t, weight_t, state_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<64, 16, input_t, weight_t, state_t>(params, stream);
} else {
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
selective_scan_fwd_launch<128, 16, input_t, weight_t, state_t>(params, stream);
}
#endif
}
template void selective_scan_fwd_cuda<at::BFloat16, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::Half, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<float, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::BFloat16, float, at::BFloat16>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::BFloat16, float, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::Half, float, at::Half>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::Half, float, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<float, float, float>(SSMParamsBase &params, cudaStream_t stream);
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, STYPE, NAME, ...) \
if (ITYPE == at::ScalarType::Half) { \
using input_t = at::Half; \
using weight_t = float; \
__VA_ARGS__(); \
if (STYPE == at::ScalarType::Half) { \
using state_t = at::Half; \
__VA_ARGS__(); \
} else if (STYPE == at::ScalarType::Float) { \
using state_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for state type '", toString(STYPE), "'"); \
} \
} else if (ITYPE == at::ScalarType::BFloat16) { \
using input_t = at::BFloat16; \
using weight_t = float; \
__VA_ARGS__(); \
if (STYPE == at::ScalarType::BFloat16) { \
using state_t = at::BFloat16; \
__VA_ARGS__(); \
} else if (STYPE == at::ScalarType::Float) { \
using state_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for state type '", toString(STYPE), "'"); \
} \
} else if (ITYPE == at::ScalarType::Float) { \
using input_t = float; \
using weight_t = float; \
using state_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
}
template<typename input_t, typename weight_t>
template<typename input_t, typename weight_t, typename state_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream);
void set_ssm_params_fwd(SSMParamsBase &params,
@ -648,7 +668,9 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
// Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
at::Tensor out = delta;
TORCH_CHECK(ssm_states.scalar_type() == input_type);
// ssm_states can now be either the same as input_type or float32
auto state_type = ssm_states.scalar_type();
TORCH_CHECK(state_type == input_type || state_type == at::ScalarType::Float);
TORCH_CHECK(ssm_states.is_cuda());
TORCH_CHECK(ssm_states.stride(-1) == 1);
@ -670,7 +692,7 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
const at::cuda::OptionalCUDAGuard device_guard(device_of(u));
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), ssm_states.scalar_type(), "selective_scan_fwd", [&] {
selective_scan_fwd_cuda<input_t, weight_t, state_t>(params, stream);
});
}

View File

@ -28,6 +28,7 @@ namespace cg = cooperative_groups;
namespace vllm {
namespace moe {
constexpr float kNegInfinity = INFINITY * -1;
constexpr unsigned FULL_WARP_MASK = 0xffffffff;
constexpr int32_t WARP_SIZE = 32;
constexpr int32_t BLOCK_SIZE = 512;
@ -512,8 +513,8 @@ __global__ void group_idx_and_topk_idx_kernel(
warp_id * topk;
s_topk_idx += warp_id * topk;
T value = cuda::std::numeric_limits<T>::min();
T topk_group_value = cuda::std::numeric_limits<T>::min();
T value = kNegInfinity;
T topk_group_value = kNegInfinity;
int32_t num_equalto_topkth_group;
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
@ -539,11 +540,11 @@ __global__ void group_idx_and_topk_idx_kernel(
__syncwarp(); // Ensure all threads have valid data before reduction
topk_group_value = cg::reduce(tile, value, cg::greater<T>());
if (value == topk_group_value) {
value = cuda::std::numeric_limits<T>::min();
value = kNegInfinity;
}
pre_count_equal_to_top_value = count_equal_to_top_value;
count_equal_to_top_value = __popc(__ballot_sync(
FULL_WARP_MASK, (value == cuda::std::numeric_limits<T>::min())));
FULL_WARP_MASK, (value == cuda_cast<T, float>(kNegInfinity))));
}
num_equalto_topkth_group = target_num_min - pre_count_equal_to_top_value;
}
@ -555,7 +556,7 @@ __global__ void group_idx_and_topk_idx_kernel(
int count_equalto_topkth_group = 0;
bool if_proceed_next_topk =
(topk_group_value != cuda::std::numeric_limits<T>::min());
(topk_group_value != cuda_cast<T, float>(kNegInfinity));
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i_group = 0; i_group < n_group; i_group++) {
if ((group_scores[i_group] > topk_group_value) ||
@ -568,7 +569,7 @@ __global__ void group_idx_and_topk_idx_kernel(
(i < num_experts_per_group) && isfinite(cuda_cast<float, T>(
scores_with_bias[offset + i]))
? scores_with_bias[offset + i]
: cuda::std::numeric_limits<T>::min();
: cuda_cast<T, float>(kNegInfinity);
queue.add(candidates, offset + i);
}
if (group_scores[i_group] == topk_group_value) {

View File

@ -130,8 +130,7 @@ void silu_and_mul(torch::Tensor& out, torch::Tensor& input);
void silu_and_mul_quant(torch::Tensor& out, torch::Tensor& input,
torch::Tensor& scale);
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
#ifndef USE_ROCM
void silu_and_mul_nvfp4_quant(torch::Tensor& out,
torch::Tensor& output_block_scale,
torch::Tensor& input,

View File

@ -11,6 +11,7 @@
#include "core/registration.h"
#include "cutlass/cutlass.h"
#include <limits>
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
@ -169,6 +170,11 @@ struct W4A8GemmKernel {
int k = A.size(1);
int n = B.size(1);
// safely cast group_size to int
TORCH_CHECK(group_size > 0 && group_size <= std::numeric_limits<int>::max(),
"group_size out of supported range for int: ", group_size);
int const group_size_int = static_cast<int>(group_size);
// Allocate output
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
auto device = A.device();
@ -181,7 +187,7 @@ struct W4A8GemmKernel {
auto A_ptr = static_cast<MmaType const*>(A.const_data_ptr());
auto B_ptr = static_cast<QuantType const*>(B.const_data_ptr());
auto D_ptr = static_cast<ElementD*>(D.data_ptr());
// can we avoid harcode the 8 here
// can we avoid hardcode the 8 here
auto S_ptr =
static_cast<cutlass::Array<ElementScale, ScalePackSize> const*>(
group_scales.const_data_ptr());
@ -192,7 +198,7 @@ struct W4A8GemmKernel {
cute::tile_to_shape(LayoutAtomQuant{}, shape_B);
// strides
int const scale_k = cutlass::ceil_div(k, group_size);
int const scale_k = cutlass::ceil_div(k, group_size_int);
StrideA stride_A =
cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(m, k, 1));
// Reverse stride here due to swap and transpose
@ -211,8 +217,8 @@ struct W4A8GemmKernel {
using EpilogueArguments = typename GemmKernelShuffled::EpilogueArguments;
MainloopArguments mainloop_arguments{
B_ptr, layout_B_reordered, A_ptr, stride_A,
S_ptr, stride_S, group_size};
B_ptr, layout_B_reordered, A_ptr, stride_A,
S_ptr, stride_S, group_size_int};
EpilogueArguments epilogue_arguments{
ChTokScalesEpilogue::prepare_args(channel_scales, token_scales),

View File

@ -26,164 +26,17 @@
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "nvfp4_utils.cuh"
namespace vllm {
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = c10::Half;
};
template <>
struct TypeConverter<c10::Half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = c10::BFloat16;
};
template <>
struct TypeConverter<c10::BFloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
template <class Type>
__inline__ __device__ PackedVec<Type> compute_silu(PackedVec<Type>& vec,
PackedVec<Type>& vec2) {
PackedVec<Type> result;
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; ++i) {
if constexpr (std::is_same_v<Type, c10::Half>) {
if constexpr (std::is_same_v<Type, half>) {
half2 val(0.5f, 0.5f);
half2 t0 = __hmul2(vec.elts[i], val);
half2 t1 = __hfma2(h2tanh(t0), val, val);
@ -206,13 +59,12 @@ __device__ uint32_t silu_and_cvt_warp_fp16_to_fp4(PackedVec<Type>& vec,
PackedVec<Type>& vec2,
float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
PackedVec<Type> out_silu = compute_silu(vec, vec2);
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(out_silu.elts[0]);
// Local maximum value.
#pragma unroll
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(out_silu.elts[i]));
}
@ -259,9 +111,9 @@ __device__ uint32_t silu_and_cvt_warp_fp16_to_fp4(PackedVec<Type>& vec,
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, c10::Half>) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(out_silu.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(out_silu.elts[i]);
@ -275,22 +127,14 @@ __device__ uint32_t silu_and_cvt_warp_fp16_to_fp4(PackedVec<Type>& vec,
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(1024, 4) silu_and_cvt_fp16_to_fp4(
#else
silu_and_cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(1024, 4)
silu_and_cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out,
uint32_t* SFout) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -328,22 +172,25 @@ silu_and_cvt_fp16_to_fp4(
in_vec, in_vec2, SFScaleVal, sf_out);
}
}
#endif
}
} // namespace vllm
void silu_and_mul_nvfp4_quant(torch::Tensor& output, // [..., d]
torch::Tensor& output_sf,
torch::Tensor& input, // [..., 2 * d]
torch::Tensor& input_sf) {
TORCH_CHECK(input.dtype() == torch::kFloat16 ||
input.dtype() == torch::kBFloat16);
void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output, // [..., d]
torch::Tensor& output_sf,
torch::Tensor& input, // [..., 2 * d]
torch::Tensor& input_sf) {
int32_t m = input.size(0);
int32_t n = input.size(1) / 2;
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
TORCH_CHECK(input.scalar_type() == at::ScalarType::Half ||
input.scalar_type() == at::ScalarType::BFloat16,
"Unsupported input data type for quantize_to_fp4.");
int multiProcessorCount =
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
auto input_sf_ptr = static_cast<float const*>(input_sf.data_ptr());
auto sf_out = static_cast<int32_t*>(output_sf.data_ptr());
auto output_ptr = static_cast<int64_t*>(output.data_ptr());
@ -352,17 +199,14 @@ void silu_and_mul_nvfp4_quant(torch::Tensor& output, // [..., d]
dim3 block(std::min(int(n / ELTS_PER_THREAD), 1024));
int const numBlocksPerSM = 2048 / block.x;
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
VLLM_DISPATCH_HALF_TYPES(
input.scalar_type(), "act_and_mul_quant_kernel", [&] {
auto input_ptr = reinterpret_cast<scalar_t const*>(input.data_ptr());
VLLM_DISPATCH_BYTE_TYPES(
output.scalar_type(), "fused_act_and_mul_quant_kernel_nvfp4_type",
[&] {
vllm::silu_and_cvt_fp16_to_fp4<scalar_t>
<<<grid, block, 0, stream>>>(
m, n, input_ptr, input_sf_ptr,
reinterpret_cast<uint32_t*>(output_ptr),
reinterpret_cast<uint32_t*>(sf_out));
});
input.scalar_type(), "silu_and_mul_nvfp4_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
auto input_ptr = static_cast<cuda_type const*>(input.data_ptr());
vllm::silu_and_cvt_fp16_to_fp4<cuda_type><<<grid, block, 0, stream>>>(
m, n, input_ptr, input_sf_ptr,
reinterpret_cast<uint32_t*>(output_ptr),
reinterpret_cast<uint32_t*>(sf_out));
});
}

View File

@ -1,3 +1,19 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cutlass/arch/arch.h>

View File

@ -1,247 +1,42 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cuda_runtime_api.h>
#include <cuda_runtime.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_runtime.h>
#include <cuda_fp8.h>
#include "dispatch_utils.h"
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
#include "nvfp4_utils.cuh"
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts, bool low_latency) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(512, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts,
bool low_latency) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -299,8 +94,8 @@ cvt_fp16_to_fp4(
&input_offset_by_experts[chunk_start + 12]));
local_offsets[16] = __ldca(&input_offset_by_experts[chunk_start + 16]);
// Check against the 16 loaded offsets
#pragma unroll
// Check against the 16 loaded offsets
#pragma unroll
for (int i = 0; i < 16; i++) {
if (rowIdx >= local_offsets[i] && rowIdx < local_offsets[i + 1]) {
rowIdx_in_expert = rowIdx - local_offsets[i];
@ -330,21 +125,15 @@ cvt_fp16_to_fp4(
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
#endif
}
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(1024, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(1024, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -425,7 +214,6 @@ cvt_fp16_to_fp4(
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
#endif
}
template <typename T>
@ -501,6 +289,8 @@ void quant_impl(void* output, void* output_scale, void* input,
}
}
} // namespace vllm
/*Quantization entry for fp4 experts quantization*/
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, "must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x, m) \
@ -560,23 +350,17 @@ void scaled_fp4_experts_quant_sm100a(
// 4 means 4 fp8 values are packed into one int32
TORCH_CHECK(output_scale.size(1) * 4 == padded_k);
auto in_dtype = input.dtype();
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(input.get_device());
if (in_dtype == at::ScalarType::Half) {
quant_impl<half>(output.data_ptr(), output_scale.data_ptr(),
input.data_ptr(), input_global_scale.data_ptr(),
input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk, k,
n_experts, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
quant_impl<__nv_bfloat16>(output.data_ptr(), output_scale.data_ptr(),
input.data_ptr(), input_global_scale.data_ptr(),
input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk,
k, n_experts, stream);
} else {
TORCH_CHECK(false, "Expected input data type to be half or bfloat16");
}
VLLM_DISPATCH_HALF_TYPES(
input.scalar_type(), "nvfp4_experts_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
vllm::quant_impl<cuda_type>(
output.data_ptr(), output_scale.data_ptr(), input.data_ptr(),
input_global_scale.data_ptr(), input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk, k, n_experts,
stream);
});
}

View File

@ -32,6 +32,14 @@ void scaled_fp4_experts_quant_sm100a(
torch::Tensor const& output_scale_offset_by_experts);
#endif
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output,
torch::Tensor& output_sf,
torch::Tensor& input,
torch::Tensor& input_sf);
#endif
void scaled_fp4_quant(torch::Tensor& output, torch::Tensor const& input,
torch::Tensor& output_sf, torch::Tensor const& input_sf) {
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
@ -54,3 +62,13 @@ void scaled_fp4_experts_quant(
TORCH_CHECK_NOT_IMPLEMENTED(false,
"No compiled nvfp4 experts quantization kernel");
}
void silu_and_mul_nvfp4_quant(torch::Tensor& output, torch::Tensor& output_sf,
torch::Tensor& input, torch::Tensor& input_sf) {
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
return silu_and_mul_nvfp4_quant_sm1xxa(output, output_sf, input, input_sf);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(
false, "No compiled silu_and_mul nvfp4 quantization kernel");
}

View File

@ -23,245 +23,18 @@
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp8.h>
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "nvfp4_utils.cuh"
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__global__ void __launch_bounds__(512, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
@ -293,7 +66,6 @@ cvt_fp16_to_fp4(
cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
}
#endif
}
template <typename T>
@ -332,6 +104,8 @@ template void invokeFP4Quantization(int m, int n, __nv_bfloat16 const* input,
int multiProcessorCount,
cudaStream_t stream);
} // namespace vllm
void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
torch::Tensor const& input,
torch::Tensor const& output_sf,
@ -340,6 +114,9 @@ void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
int32_t n = input.size(1);
TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16.");
TORCH_CHECK(input.scalar_type() == at::ScalarType::Half ||
input.scalar_type() == at::ScalarType::BFloat16,
"Unsupported input data type for quantize_to_fp4.");
int multiProcessorCount =
get_device_attribute(cudaDevAttrMultiProcessorCount, -1);
@ -353,24 +130,10 @@ void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
// We don't support e8m0 scales at this moment.
bool useUE8M0 = false;
switch (input.scalar_type()) {
case torch::kHalf: {
auto input_ptr = reinterpret_cast<half const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
case torch::kBFloat16: {
auto input_ptr = reinterpret_cast<__nv_bfloat16 const*>(input.data_ptr());
invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr, sf_out,
useUE8M0, multiProcessorCount, stream);
break;
}
default: {
std::cerr << "Observing: " << input.scalar_type()
<< " for the input datatype which is invalid";
throw std::runtime_error(
"Unsupported input data type for quantize_to_fp4.");
}
}
VLLM_DISPATCH_HALF_TYPES(input.scalar_type(), "nvfp4_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
auto input_ptr = static_cast<cuda_type const*>(input.data_ptr());
vllm::invokeFP4Quantization(m, n, input_ptr, input_sf_ptr, output_ptr,
sf_out, useUE8M0, multiProcessorCount, stream);
});
}

View File

@ -0,0 +1,251 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cuda_runtime.h>
#include <cuda_fp8.h>
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
namespace vllm {
// Convert PyTorch cpp type to CUDA type
template <typename T>
struct CUDATypeConverter {
using Type = T;
};
template <>
struct CUDATypeConverter<at::Half> {
using Type = half;
};
template <>
struct CUDATypeConverter<at::BFloat16> {
using Type = __nv_bfloat16;
};
// Get type2 from type or vice versa (applied to half and bfloat16)
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
return nullptr;
}
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
}
} // namespace vllm

View File

@ -417,7 +417,7 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
))
def prepacked_type_key(prepack_type: PrepackTypeConfig):
# For now we we can just use the first accumulator type seen since
# For now, we can just use the first accumulator type seen since
# the tensor core shapes/layouts don't vary based on accumulator
# type so we can generate less code this way
return (prepack_type.a, prepack_type.b_num_bits, prepack_type.convert)

View File

@ -115,8 +115,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"silu_and_mul_quant(Tensor! result, Tensor input, Tensor scale) -> ()");
ops.impl("silu_and_mul_quant", torch::kCUDA, &silu_and_mul_quant);
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
#ifndef USE_ROCM
ops.def(
"silu_and_mul_nvfp4_quant(Tensor! result, Tensor! result_block_scale, "
"Tensor input, Tensor input_global_scale) -> ()");
@ -517,10 +516,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// SM100 CUTLASS MLA decode
ops.def(
"sm100_cutlass_mla_decode(Tensor! out, Tensor q_nope, Tensor q_pe,"
" Tensor kv_c_and_k_pe_cache, Tensor seq_lens,"
" Tensor page_table, Tensor workspace, float "
"scale,"
"sm100_cutlass_mla_decode(Tensor! out, Tensor! lse, Tensor q_nope,"
" Tensor q_pe, Tensor kv_c_and_k_pe_cache,"
" Tensor seq_lens, Tensor page_table,"
" Tensor workspace, float scale,"
" int num_kv_splits) -> ()");
// conditionally compiled so impl in source file
@ -694,16 +693,6 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
" Tensor scale) -> ()");
cache_ops.impl("concat_and_cache_mla", torch::kCUDA, &concat_and_cache_mla);
cache_ops.def(
"cp_fused_concat_and_cache_mla(Tensor kv_c, Tensor k_pe,"
" Tensor cp_local_token_select_indices,"
" Tensor! kv_cache,"
" Tensor slot_mapping,"
" str kv_cache_dtype,"
" Tensor scale) -> ()");
cache_ops.impl("cp_fused_concat_and_cache_mla", torch::kCUDA,
&cp_fused_concat_and_cache_mla);
// Convert the key and value cache to fp8 data type.
cache_ops.def(
"convert_fp8(Tensor! dst_cache, Tensor src_cache, float scale, "

View File

@ -237,7 +237,7 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
# Check the size of the wheel if RUN_WHEEL_CHECK is true
COPY .buildkite/check-wheel-size.py check-wheel-size.py
# sync the default value with .buildkite/check-wheel-size.py
ARG VLLM_MAX_SIZE_MB=400
ARG VLLM_MAX_SIZE_MB=450
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
ARG RUN_WHEEL_CHECK=true
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
@ -261,6 +261,8 @@ ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Use copy mode to avoid hardlink failures with Docker cache mounts
ENV UV_LINK_MODE=copy
# Install libnuma-dev, required by fastsafetensors (fixes #20384)
RUN apt-get update && apt-get install -y libnuma-dev && rm -rf /var/lib/apt/lists/*
COPY requirements/lint.txt requirements/lint.txt
COPY requirements/test.txt requirements/test.txt
COPY requirements/dev.txt requirements/dev.txt
@ -373,7 +375,7 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
# Install FlashInfer from source
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
# Keep this in sync with "flashinfer" extra in setup.py
ARG FLASHINFER_GIT_REF="v0.2.14.post1"
ARG FLASHINFER_GIT_REF="v0.3.0"
# Flag to control whether to compile FlashInfer AOT kernels
# Set to "true" to enable AOT compilation:
# docker build --build-arg FLASHINFER_AOT_COMPILE=true ...

View File

@ -1,56 +0,0 @@
# default base image
# https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.6.0-neuronx-py310-sdk2.23.0-ubuntu22.04"
FROM $BASE_IMAGE
RUN echo "Base image is $BASE_IMAGE"
# Install some basic utilities
RUN apt-get update && \
apt-get install -y \
git \
python3 \
python3-pip \
ffmpeg libsm6 libxext6 libgl1
### Mount Point ###
# When launching the container, mount the code directory to /workspace
ARG APP_MOUNT=/workspace
VOLUME [ ${APP_MOUNT} ]
WORKDIR ${APP_MOUNT}/vllm
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas tenacity
RUN python3 -m pip install neuronx-cc==2.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
RUN python3 -m pip install pytest
# uninstall transformers-neuronx package explicitly to avoid version conflict
RUN python3 -m pip uninstall -y transformers-neuronx
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
RUN python3 -m pip install -U \
'cmake>=3.26.1' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
-r requirements/neuron.txt
ENV VLLM_TARGET_DEVICE neuron
RUN --mount=type=bind,source=.git,target=.git \
pip install --no-build-isolation -v -e .
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
# install transformers-neuronx package as an optional dependencies (for V0)
# FIXME: `--no-deps` argument is temporarily added to resolve transformers package version conflict
RUN python3 -m pip install transformers-neuronx==0.13.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U --no-deps
RUN python3 -m pip install sentencepiece transformers==4.48.0 -U
# overwrite entrypoint to run bash script
RUN echo "import subprocess; import sys; subprocess.check_call(sys.argv[1:])" > /usr/local/bin/dockerd-entrypoint.py
CMD ["/bin/bash"]

View File

@ -47,6 +47,7 @@ COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/requirements /requirements
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/benchmarks /benchmarks
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/tests /tests
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/examples /examples
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/docker/Dockerfile.rocm /docker/
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/.buildkite /.buildkite
# -----------------------
@ -71,7 +72,7 @@ COPY --from=build_vllm ${COMMON_WORKDIR}/vllm /vllm-workspace
RUN cd /vllm-workspace \
&& rm -rf vllm \
&& python3 -m pip install -e tests/vllm_test_utils \
&& python3 -m pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api] \
&& python3 -m pip install lm-eval[api]==0.4.4 \
&& python3 -m pip install pytest-shard
# -----------------------
@ -100,8 +101,10 @@ ARG COMMON_WORKDIR
# Copy over the benchmark scripts as well
COPY --from=export_vllm /benchmarks ${COMMON_WORKDIR}/vllm/benchmarks
COPY --from=export_vllm /examples ${COMMON_WORKDIR}/vllm/examples
COPY --from=export_vllm /docker ${COMMON_WORKDIR}/vllm/docker
ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
ENV RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1
ENV TOKENIZERS_PARALLELISM=false
# ENV that can improve safe tensor loading, and end-to-end time

View File

@ -1,18 +1,16 @@
ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:6.3.1-complete
ARG HIPBLASLT_BRANCH="db8e93b4"
ARG HIPBLAS_COMMON_BRANCH="7c1566b"
ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:6.4.1-complete
ARG HIPBLASLT_BRANCH="aa0bda7b"
ARG HIPBLAS_COMMON_BRANCH="9b80ba8e"
ARG LEGACY_HIPBLASLT_OPTION=
ARG RCCL_BRANCH="648a58d"
ARG RCCL_REPO="https://github.com/ROCm/rccl"
ARG TRITON_BRANCH="e5be006"
ARG TRITON_REPO="https://github.com/triton-lang/triton.git"
ARG PYTORCH_BRANCH="295f2ed4"
ARG PYTORCH_BRANCH="f717b2af"
ARG PYTORCH_VISION_BRANCH="v0.21.0"
ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git"
ARG PYTORCH_REPO="https://github.com/ROCm/pytorch.git"
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
ARG FA_BRANCH="1a7f4dfa"
ARG FA_REPO="https://github.com/Dao-AILab/flash-attention.git"
ARG AITER_BRANCH="916bf3c"
ARG AITER_BRANCH="4822e675"
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
FROM ${BASE_IMAGE} AS base
@ -45,7 +43,7 @@ RUN apt-get update -y \
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
RUN pip install -U packaging 'cmake<4' ninja wheel setuptools pybind11 Cython
RUN pip install -U packaging 'cmake<4' ninja wheel 'setuptools<80' pybind11 Cython
FROM base AS build_hipblaslt
ARG HIPBLASLT_BRANCH
@ -53,6 +51,7 @@ ARG HIPBLAS_COMMON_BRANCH
# Set to "--legacy_hipblas_direct" for ROCm<=6.2
ARG LEGACY_HIPBLASLT_OPTION
RUN git clone https://github.com/ROCm/hipBLAS-common.git
RUN apt-get remove -y hipblaslt && apt-get autoremove -y && apt-get autoclean -y
RUN cd hipBLAS-common \
&& git checkout ${HIPBLAS_COMMON_BRANCH} \
&& mkdir build \
@ -69,24 +68,17 @@ RUN cd hipBLASLt \
&& make package
RUN mkdir -p /app/install && cp /app/hipBLASLt/build/release/*.deb /app/hipBLAS-common/build/*.deb /app/install
FROM base AS build_rccl
ARG RCCL_BRANCH
ARG RCCL_REPO
RUN git clone ${RCCL_REPO}
RUN cd rccl \
&& git checkout ${RCCL_BRANCH} \
&& ./install.sh -p --amdgpu_targets ${PYTORCH_ROCM_ARCH}
RUN mkdir -p /app/install && cp /app/rccl/build/release/*.deb /app/install
FROM base AS build_triton
ARG TRITON_BRANCH
ARG TRITON_REPO
RUN git clone ${TRITON_REPO}
RUN cd triton \
&& git checkout ${TRITON_BRANCH} \
&& cd python \
&& python3 setup.py bdist_wheel --dist-dir=dist
RUN mkdir -p /app/install && cp /app/triton/python/dist/*.whl /app/install
&& if [ ! -f setup.py ]; then cd python; fi \
&& python3 setup.py bdist_wheel --dist-dir=dist \
&& mkdir -p /app/install && cp dist/*.whl /app/install
RUN if [ -d triton/python/triton_kernels ]; then pip install build && cd triton/python/triton_kernels \
&& python3 -m build --wheel && cp dist/*.whl /app/install; fi
FROM base AS build_amdsmi
RUN cd /opt/rocm/share/amd_smi \
@ -132,15 +124,25 @@ RUN cd aiter \
RUN pip install pyyaml && cd aiter && PREBUILD_KERNELS=1 GPU_ARCHS=gfx942 python3 setup.py bdist_wheel --dist-dir=dist && ls /app/aiter/dist/*.whl
RUN mkdir -p /app/install && cp /app/aiter/dist/*.whl /app/install
FROM base AS debs
RUN mkdir /app/debs
RUN --mount=type=bind,from=build_hipblaslt,src=/app/install/,target=/install \
cp /install/*.deb /app/debs
RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \
cp /install/*.whl /app/debs
RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
cp /install/*.whl /app/debs
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
cp /install/*.whl /app/debs
RUN --mount=type=bind,from=build_aiter,src=/app/install/,target=/install \
cp /install/*.whl /app/debs
FROM base AS final
RUN --mount=type=bind,from=build_hipblaslt,src=/app/install/,target=/install \
dpkg -i /install/*deb \
&& sed -i 's/, hipblaslt-dev \(.*\), hipcub-dev/, hipcub-dev/g' /var/lib/dpkg/status \
&& sed -i 's/, hipblaslt \(.*\), hipfft/, hipfft/g' /var/lib/dpkg/status
RUN --mount=type=bind,from=build_rccl,src=/app/install/,target=/install \
dpkg -i /install/*deb \
&& sed -i 's/, rccl-dev \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status \
&& sed -i 's/, rccl \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status
&& perl -p -i -e 's/, hipblas-common-dev \([^)]*?\), /, /g' /var/lib/dpkg/status \
&& perl -p -i -e 's/, hipblaslt-dev \([^)]*?\), /, /g' /var/lib/dpkg/status \
&& perl -p -i -e 's/, hipblaslt \([^)]*?\), /, /g' /var/lib/dpkg/status
RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \
pip install /install/*.whl
RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
@ -154,8 +156,6 @@ ARG BASE_IMAGE
ARG HIPBLAS_COMMON_BRANCH
ARG HIPBLASLT_BRANCH
ARG LEGACY_HIPBLASLT_OPTION
ARG RCCL_BRANCH
ARG RCCL_REPO
ARG TRITON_BRANCH
ARG TRITON_REPO
ARG PYTORCH_BRANCH
@ -170,8 +170,6 @@ RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
&& echo "HIPBLAS_COMMON_BRANCH: ${HIPBLAS_COMMON_BRANCH}" >> /app/versions.txt \
&& echo "HIPBLASLT_BRANCH: ${HIPBLASLT_BRANCH}" >> /app/versions.txt \
&& echo "LEGACY_HIPBLASLT_OPTION: ${LEGACY_HIPBLASLT_OPTION}" >> /app/versions.txt \
&& echo "RCCL_BRANCH: ${RCCL_BRANCH}" >> /app/versions.txt \
&& echo "RCCL_REPO: ${RCCL_REPO}" >> /app/versions.txt \
&& echo "TRITON_BRANCH: ${TRITON_BRANCH}" >> /app/versions.txt \
&& echo "TRITON_REPO: ${TRITON_REPO}" >> /app/versions.txt \
&& echo "PYTORCH_BRANCH: ${PYTORCH_BRANCH}" >> /app/versions.txt \
@ -180,4 +178,4 @@ RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
&& echo "PYTORCH_VISION_REPO: ${PYTORCH_VISION_REPO}" >> /app/versions.txt \
&& echo "FA_BRANCH: ${FA_BRANCH}" >> /app/versions.txt \
&& echo "AITER_BRANCH: ${AITER_BRANCH}" >> /app/versions.txt \
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt

View File

@ -16,7 +16,8 @@ ENV LANG=C.UTF-8 \
RUN microdnf install -y \
which procps findutils tar vim git gcc gcc-gfortran g++ make patch zlib-devel \
libjpeg-turbo-devel libtiff-devel libpng-devel libwebp-devel freetype-devel harfbuzz-devel \
openssl-devel openblas openblas-devel autoconf automake libtool cmake numpy libsndfile && \
openssl-devel openblas openblas-devel autoconf automake libtool cmake numpy libsndfile \
clang llvm-devel llvm-static clang-devel && \
microdnf clean all
# Python Installation
@ -191,7 +192,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
-DCOMPILER_RT_BUILD_ORC=OFF \
-DCOMPILER_RT_INCLUDE_TESTS=OFF \
${CMAKE_ARGS} -GNinja ../llvm \
&& ninja install . && \
# build llvmlite
cd ../../llvmlite && python setup.py bdist_wheel && \
@ -200,6 +200,45 @@ RUN --mount=type=cache,target=/root/.cache/uv \
sed -i '/#include "internal\/pycore_atomic.h"/i\#include "dynamic_annotations.h"' numba/_dispatcher.cpp; \
fi && python setup.py bdist_wheel
# Edit aws-lc-sys to support s390x
FROM python-install AS aws-lc-sys-editor
WORKDIR /tmp
ENV CARGO_HOME=/root/.cargo
ENV RUSTUP_HOME=/root/.rustup
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
ARG AWS_LC_VERSION=v0.30.0
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
git clone --recursive https://github.com/aws/aws-lc-rs.git && \
cd aws-lc-rs && \
git checkout tags/aws-lc-sys/${AWS_LC_VERSION} && \
git submodule sync && \
git submodule update --init --recursive && \
cd aws-lc-sys && \
sed -i '682 s/strncmp(buf, "-----END ", 9)/memcmp(buf, "-----END ", 9)/' aws-lc/crypto/pem/pem_lib.c && \
sed -i '712 s/strncmp(buf, "-----END ", 9)/memcmp(buf, "-----END ", 9)/' aws-lc/crypto/pem/pem_lib.c && \
sed -i '747 s/strncmp(buf, "-----END ", 9)/memcmp(buf, "-----END ", 9)/' aws-lc/crypto/pem/pem_lib.c
# Build Outlines Core
FROM python-install AS outlines-core-builder
WORKDIR /tmp
ENV CARGO_HOME=/root/.cargo
ENV RUSTUP_HOME=/root/.rustup
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
ARG OUTLINES_CORE_VERSION=0.2.10
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
--mount=type=bind,from=aws-lc-sys-editor,source=/tmp/aws-lc-rs/aws-lc-sys,target=/tmp/aws-lc-sys,rw \
git clone https://github.com/dottxt-ai/outlines-core.git && \
cd outlines-core && \
git checkout tags/${OUTLINES_CORE_VERSION} && \
sed -i "s/version = \"0.0.0\"/version = \"${OUTLINES_CORE_VERSION}\"/" Cargo.toml && \
echo '[patch.crates-io]' >> Cargo.toml && \
echo 'aws-lc-sys = { path = "/tmp/aws-lc-sys" }' >> Cargo.toml && \
uv pip install maturin && \
python -m maturin build --release --out dist
# Final build stage
FROM python-install AS vllm-cpu
@ -230,6 +269,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=torch,source=/tmp/pytorch/dist,target=/tmp/torch-wheels/ \
--mount=type=bind,from=numba-builder,source=/tmp/llvmlite/dist,target=/tmp/llvmlite-wheels/ \
--mount=type=bind,from=numba-builder,source=/tmp/numba/dist,target=/tmp/numba-wheels/ \
--mount=type=bind,from=outlines-core-builder,source=/tmp/outlines-core/dist,target=/tmp/outlines-core/dist/ \
sed -i '/^torch/d' requirements/build.txt && \
ARROW_WHL_FILE=$(ls /tmp/arrow-wheels/pyarrow-*.whl) && \
VISION_WHL_FILE=$(ls /tmp/vision-wheels/*.whl) && \
@ -237,6 +277,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
TORCH_WHL_FILE=$(ls /tmp/torch-wheels/*.whl) && \
LLVM_WHL_FILE=$(ls /tmp/llvmlite-wheels/*.whl) && \
NUMBA_WHL_FILE=$(ls /tmp/numba-wheels/*.whl) && \
OUTLINES_CORE_WHL_FILE=$(ls /tmp/outlines-core/dist/*.whl) && \
uv pip install -v \
$ARROW_WHL_FILE \
$VISION_WHL_FILE \
@ -244,6 +285,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
$TORCH_WHL_FILE \
$LLVM_WHL_FILE \
$NUMBA_WHL_FILE \
$OUTLINES_CORE_WHL_FILE \
--index-strategy unsafe-best-match \
-r requirements/build.txt \
-r requirements/cpu.txt

View File

@ -1,12 +1,10 @@
FROM intel/deep-learning-essentials:2025.1.3-0-devel-ubuntu24.04 AS vllm-base
RUN rm /etc/apt/sources.list.d/intel-graphics.list
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && \
echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list && \
add-apt-repository -y ppa:kobuk-team/intel-graphics
RUN apt clean && apt-get update -y && \
apt-get install -y software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa && \
apt-get install -y python3.10 python3.10-distutils && \
curl -sS https://bootstrap.pypa.io/get-pip.py | python3.10 && \
apt-get install -y --no-install-recommends --fix-missing \
curl \
ffmpeg \
@ -17,17 +15,29 @@ RUN apt clean && apt-get update -y && \
libgl1 \
lsb-release \
numactl \
python3.10-dev \
wget
wget \
vim \
python3.12 \
python3.12-dev \
python3-pip
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.12 1
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.12 1
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1
RUN apt install -y libze1 libze-dev libze-intel-gpu1 intel-opencl-icd libze-intel-gpu-raytracing
RUN wget https://github.com/uxlfoundation/oneCCL/releases/download/2021.15.4/intel-oneccl-2021.15.4.11_offline.sh
RUN bash intel-oneccl-2021.15.4.11_offline.sh -a --silent --eula accept && echo "source /opt/intel/oneapi/setvars.sh --force" >> /root/.bashrc
SHELL ["bash", "-c"]
CMD ["bash", "-c", "source /root/.bashrc && exec bash"]
WORKDIR /workspace/vllm
COPY requirements/xpu.txt /workspace/vllm/requirements/xpu.txt
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
# suppress the python externally managed environment error
RUN python3 -m pip config set global.break-system-packages true
RUN --mount=type=cache,target=/root/.cache/pip \
pip install --no-cache-dir \
-r requirements/xpu.txt
@ -54,8 +64,9 @@ FROM vllm-base AS vllm-openai
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer pytest pytest_asyncio lm_eval[api] modelscope
ENV VLLM_USAGE_SOURCE production-docker-image \
TRITON_XPU_PROFILE 1
RUN --mount=type=cache,target=/root/.cache/pip \
pip uninstall oneccl oneccl-devel -y
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -32,10 +32,7 @@ nav:
- models/pooling_models.md
- models/extensions
- Hardware Supported Models: models/hardware_supported_models
- Features:
- features/compatibility_matrix.md
- features/*
- features/quantization
- Features: features
- Developer Guide:
- contributing/README.md
- General:

View File

@ -2,6 +2,8 @@
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:
- [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ), August 30th 2025. [[Slides]](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA)
- [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet), August 27th 2025. [[Slides]](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing)
- [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg), August 23rd 2025. [[Slides]](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH)
- [vLLM Korea Meetup](https://luma.com/cgcgprmh), August 19th 2025. [[Slides]](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
- [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA), August 2nd 2025. [[Slides]](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) [[Recording]](https://www.chaspark.com/#/live/1166916873711665152).

View File

@ -174,6 +174,8 @@ Regardless, you need to set `mm_encoder_tp_mode="data"` in engine arguments to u
Known supported models:
- GLM-4.5V GLM-4.1V (<gh-pr:23168>)
- Kimi-VL (<gh-pr:23817>)
- Llama4 (<gh-pr:18368>)
- MiniCPM-V-2.5 or above (<gh-pr:23327>, <gh-pr:23948>)
- Qwen2.5-VL (<gh-pr:22742>)
@ -208,7 +210,7 @@ vllm serve Qwen/Qwen2.5-VL-3B-Instruct --api-server-count 4 -dp 2
!!! note
API server scale-out disables [multi-modal IPC caching](#ipc-caching)
because it requires a one-to-one correspondance between API and engine core processes.
because it requires a one-to-one correspondence between API and engine core processes.
This does not impact [multi-modal processor caching](#processor-caching).
@ -225,7 +227,7 @@ to avoid repeatedly processing the same multi-modal inputs in `BaseMultiModalPro
### IPC Caching
Multi-modal IPC caching is automatically enabled when
there is a one-to-one correspondance between API (`P0`) and engine core (`P1`) processes,
there is a one-to-one correspondence between API (`P0`) and engine core (`P1`) processes,
to avoid repeatedly transferring the same multi-modal inputs between them.
### Configuration

View File

@ -11,9 +11,39 @@ vLLM contains two sets of benchmarks:
The performance benchmarks are used for development to confirm whether new changes improve performance under various workloads. They are triggered on every commit with both the `perf-benchmarks` and `ready` labels, and when a PR is merged into vLLM.
### Manually Trigger the benchmark
Use [vllm-ci-test-repo images](https://gallery.ecr.aws/q9t5s3a7/vllm-ci-test-repo) with vLLM benchmark suite.
For CPU environment, please use the image with "-cpu" postfix.
Here is an example for docker run command for CPU.
```bash
docker run -it --entrypoint /bin/bash -v /data/huggingface:/root/.cache/huggingface -e HF_TOKEN='' --shm-size=16g --name vllm-cpu-ci public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:1da94e673c257373280026f75ceb4effac80e892-cpu
```
Then, run below command inside the docker instance.
```bash
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
```
When run, benchmark script generates results under **benchmark/results** folder, along with the benchmark_results.md and benchmark_results.json.
#### Runtime environment variables
- `ON_CPU`: set the value to '1' on Intel® Xeon® Processors. Default value is 0.
- `SERVING_JSON`: JSON file to use for the serving tests. Default value is empty string (use default file).
- `LATENCY_JSON`: JSON file to use for the latency tests. Default value is empty string (use default file).
- `THROUGHPUT_JSON`: JSON file to use for the throughout tests. Default value is empty string (use default file).
- `REMOTE_HOST`: IP for the remote vLLM service to benchmark. Default value is empty string.
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
For more results visualization, check the [visualizing the results](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md#visualizing-the-results).
The latest performance results are hosted on the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
More information on the performance benchmarks and their parameters can be found [here](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
[](){ #nightly-benchmarks }

View File

@ -19,7 +19,7 @@ When using `vllm bench serve`, you can enable profiling by passing the `--profil
Traces can be visualized using <https://ui.perfetto.dev/>.
!!! tip
You can directly call bench module without installing vllm using `python -m vllm.entrypoints.cli.main bench`.
You can directly call bench module without installing vLLM using `python -m vllm.entrypoints.cli.main bench`.
!!! tip
Only send a few requests through vLLM when profiling, as the traces can get quite large. Also, no need to untar the traces, they can be viewed directly.

View File

@ -22,7 +22,7 @@ Deploy the following yaml file `lws.yaml`
metadata:
name: vllm
spec:
replicas: 2
replicas: 1
leaderWorkerTemplate:
size: 2
restartPolicy: RecreateGroupOnPodRestart
@ -41,7 +41,7 @@ Deploy the following yaml file `lws.yaml`
- sh
- -c
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=$(LWS_GROUP_SIZE);
python3 -m vllm.entrypoints.openai.api_server --port 8080 --model meta-llama/Meta-Llama-3.1-405B-Instruct --tensor-parallel-size 8 --pipeline_parallel_size 2"
vllm serve meta-llama/Meta-Llama-3.1-405B-Instruct --port 8080 --tensor-parallel-size 8 --pipeline_parallel_size 2"
resources:
limits:
nvidia.com/gpu: "8"
@ -126,8 +126,6 @@ Should get an output similar to this:
NAME READY STATUS RESTARTS AGE
vllm-0 1/1 Running 0 2s
vllm-0-1 1/1 Running 0 2s
vllm-1 1/1 Running 0 2s
vllm-1-1 1/1 Running 0 2s
```
Verify that the distributed tensor-parallel inference works:

View File

@ -1,6 +1,6 @@
# Llama Stack
vLLM is also available via [Llama Stack](https://github.com/meta-llama/llama-stack) .
vLLM is also available via [Llama Stack](https://github.com/llamastack/llama-stack).
To install Llama Stack, run
@ -8,9 +8,9 @@ To install Llama Stack, run
pip install llama-stack -q
```
## Inference using OpenAI Compatible API
## Inference using OpenAI-Compatible API
Then start Llama Stack server pointing to your vLLM server with the following configuration:
Then start the Llama Stack server and configure it to point to your vLLM server with the following settings:
```yaml
inference:
@ -20,15 +20,15 @@ inference:
url: http://127.0.0.1:8000
```
Please refer to [this guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/remote-vllm.html) for more details on this remote vLLM provider.
Please refer to [this guide](https://llama-stack.readthedocs.io/en/latest/providers/inference/remote_vllm.html) for more details on this remote vLLM provider.
## Inference via Embedded vLLM
## Inference using Embedded vLLM
An [inline vLLM provider](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/inline/inference/vllm)
An [inline provider](https://github.com/llamastack/llama-stack/tree/main/llama_stack/providers/inline/inference)
is also available. This is a sample of configuration using that method:
```yaml
inference
inference:
- provider_type: vllm
config:
model: Llama3.1-8B-Instruct

View File

@ -54,8 +54,8 @@ The `FusedMoEModularKernel` acts as a bridge between the `FusedMoEPermuteExperts
### FusedMoEPrepareAndFinalize
The `FusedMoEPrepareAndFinalize` abstract class exposes `prepare` and `finalize` functions.
The `prepare` function is responsible for input activation Quantization and All2All Dispatch. The `finalize` function is responsible for invoking the All2All Combine. Additionally the `finalize` function may or may not do the TopK weight application and reduction (Please refer to the TopKWeightAndReduce section)
The `FusedMoEPrepareAndFinalize` abstract class exposes `prepare`, `prepare_no_receive` and `finalize` functions.
The `prepare` function is responsible for input activation Quantization and All2All Dispatch. If implemented, The `prepare_no_receive` is like `prepare` except it does not wait to receive results from other workers. Instead it returns a "receiver" callback that must be invoked to wait for the final results of worker. It is not required that this method is supported by all `FusedMoEPrepareAndFinalize` classes, but if it is available, it can be used to interleave work with the initial all to all communication, e.g. interleaving shared experts with fused experts. The `finalize` function is responsible for invoking the All2All Combine. Additionally the `finalize` function may or may not do the TopK weight application and reduction (Please refer to the TopKWeightAndReduce section)
![](../assets/design/fused_moe_modular_kernel/prepare_and_finalize_blocks.png "FusedMoEPrepareAndFinalize Blocks")
@ -146,6 +146,10 @@ This section describes the significance of the various functions exposed by the
`FusedMoEPrepareAndFinalize::prepare()`: The prepare method implements the Quantization and All2All Dispatch. Typically the Dispatch function from the relevant All2All Manager is invoked.
`FusedMoEPrepareAndFinalize::has_prepare_no_receive()`: Indicates whether or not this subclass implements `prepare_no_receive`. Defaults to False.
`FusedMoEPrepareAndFinalize::prepare_no_receive()`: The prepare_no_receive method implements the Quantization and All2All Dispatch. It does not wait for the result of the dispatch operation but instead returns a thunk that can be invoked to wait for the final results. Typically the Dispatch function from the relevant All2All Manager is invoked.
`FusedMoEPrepareAndFinalize::finalize()`: Maybe perform TopK Weight Application and Reduction and All2All Combine. Typically the Combine function from the relevant All2AllManager is invoked.
`FusedMoEPrepareAndFinalize::activation_format()`: Return `FusedMoEActivationFormat.BatchedExperts` if the output of the prepare method (i.e. the All2All dispatch) is Batched. Return `FusedMoEActivationFormat.Standard` otherwise.

View File

@ -2,7 +2,7 @@
IO Processor plugins are a feature that allows pre and post processing of the model input and output for pooling models. The idea is that users are allowed to pass a custom input to vLLM that is converted into one or more model prompts and fed to the model `encode` method. One potential use-case of such plugins is that of using vLLM for generating multi-modal data. Say users feed an image to vLLM and get an image in output.
When performing an inference with IO Processor plugins, the prompt type is defined by the plugin and the same is valid for the final request output. vLLM does not perform any validation of input/output data, and it is up to the plugin to ensure the correct data is being fed to the model and returned to the user. As of now these plugins support only pooling models and can be triggerd via the `encode` method in `LLM` and `AsyncLLM`, or in online serving mode via the `/pooling` endpoint.
When performing an inference with IO Processor plugins, the prompt type is defined by the plugin and the same is valid for the final request output. vLLM does not perform any validation of input/output data, and it is up to the plugin to ensure the correct data is being fed to the model and returned to the user. As of now these plugins support only pooling models and can be triggered via the `encode` method in `LLM` and `AsyncLLM`, or in online serving mode via the `/pooling` endpoint.
## Writing an IO Processor Plugin
@ -64,9 +64,9 @@ The `parse_request` method is used for validating the user prompt and converting
The `pre_process*` methods take the validated plugin input to generate vLLM's model prompts for regular inference.
The `post_process*` methods take `PoolingRequestOutput` objects as input and generate a custom plugin output.
The `output_to_response` method is used only for online serving and converts the plugin output to the `IOProcessorResponse` type that is then returned by the API Server. The implementation of the `/io_processor_pooling` serving endpoint is [here](../../vllm/entrypoints/openai/serving_pooling_with_io_plugin.py).
The `output_to_response` method is used only for online serving and converts the plugin output to the `IOProcessorResponse` type that is then returned by the API Server. The implementation of the `/io_processor_pooling` serving endpoint is available here <gh-file:vllm/entrypoints/openai/serving_pooling_with_io_plugin.py>.
An example implementation of a plugin that enables generating geotiff images with the PrithviGeospatialMAE model is available [here](https://github.com/christian-pinto/prithvi_io_processor_plugin). Please, also refer to our [online](../../examples/online_serving/prithvi_geospatial_mae.py) and [offline](../../examples/offline_inference/prithvi_geospatial_mae_io_processor.py) inference examples.
An example implementation of a plugin that enables generating geotiff images with the PrithviGeospatialMAE model is available [here](https://github.com/christian-pinto/prithvi_io_processor_plugin). Please, also refer to our online (<gh-file:examples/online_serving/prithvi_geospatial_mae.py>) and offline (<gh-file:examples/offline_inference/prithvi_geospatial_mae_io_processor.py>) inference examples.
## Using an IO Processor plugin

View File

@ -1,4 +1,6 @@
# Compatibility Matrix
# Features
## Compatibility Matrix
The tables below show mutually exclusive features and the support on some hardware.
@ -12,7 +14,7 @@ The symbols used have the following meanings:
!!! note
Check the ❌ or 🟠 with links to see tracking issue for unsupported feature/hardware combination.
## Feature x Feature
### Feature x Feature
<style>
td:not(:first-child) {
@ -56,7 +58,7 @@ th:not(:first-child) {
[](){ #feature-x-hardware }
## Feature x Hardware
### Feature x Hardware
| Feature | Volta | Turing | Ampere | Ada | Hopper | CPU | AMD | TPU |
|-----------------------------------------------------------|---------------------|-----------|-----------|--------|------------|--------------------|--------|-----|

View File

@ -215,19 +215,19 @@ When loading RGBA images (images with transparency), vLLM converts them to RGB f
```python
from vllm import LLM
# Default white background (no configuration needed)
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
# Custom black background for dark theme
llm = LLM(
model="llava-hf/llava-1.5-7b-hf",
media_io_kwargs={"image": {"rgba_background_color": [0, 0, 0]}}
)
# Custom brand color background (e.g., blue)
llm = LLM(
model="llava-hf/llava-1.5-7b-hf",
model="llava-hf/llava-1.5-7b-hf",
media_io_kwargs={"image": {"rgba_background_color": [0, 0, 255]}}
)
```
@ -388,7 +388,7 @@ For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embedd
## Online Serving
Our OpenAI-compatible server accepts multi-modal data via the [Chat Completions API](https://platform.openai.com/docs/api-reference/chat).
Our OpenAI-compatible server accepts multi-modal data via the [Chat Completions API](https://platform.openai.com/docs/api-reference/chat). Media inputs also support optional UUIDs users can provide to uniquely identify each media, which is used to cache the media results across requests.
!!! important
A chat template is **required** to use Chat Completions API.
@ -438,7 +438,13 @@ Then, you can use the OpenAI client as follows:
# NOTE: The prompt formatting with the image token `<image>` is not needed
# since the prompt will be processed automatically by the API server.
{"type": "text", "text": "Whats in this image?"},
{"type": "image_url", "image_url": {"url": image_url}},
{
"type": "image_url",
"image_url": {
url": image_url
},
"uuid": image_url # Optional
},
],
}],
)
@ -454,8 +460,20 @@ Then, you can use the OpenAI client as follows:
"role": "user",
"content": [
{"type": "text", "text": "What are the animals in these images?"},
{"type": "image_url", "image_url": {"url": image_url_duck}},
{"type": "image_url", "image_url": {"url": image_url_lion}},
{
"type": "image_url",
"image_url": {
"url": image_url_duck
},
"uuid": image_url_duck # Optional
},
{
"type": "image_url",
"image_url": {
"url": image_url_lion
},
"uuid": image_url_lion # Optional
},
],
}],
)
@ -522,6 +540,7 @@ Then, you can use the OpenAI client as follows:
"video_url": {
"url": video_url
},
"uuid": video_url # Optional
},
],
}],
@ -613,6 +632,7 @@ Then, you can use the OpenAI client as follows:
"data": audio_base64,
"format": "wav"
},
"uuid": audio_url # Optional
},
],
}],
@ -642,6 +662,7 @@ Alternatively, you can pass `audio_url`, which is the audio counterpart of `imag
"audio_url": {
"url": audio_url
},
"uuid": audio_url # Optional
},
],
}],
@ -695,7 +716,8 @@ The following example demonstrates how to pass image embeddings to the OpenAI se
model = "llava-hf/llava-1.5-7b-hf"
embeds = {
"type": "image_embeds",
"image_embeds": f"{base64_image_embedding}"
"image_embeds": f"{base64_image_embedding}",
"uuid": image_url # Optional
}
# Pass additional parameters (available to Qwen2-VL and MiniCPM-V)
@ -706,6 +728,7 @@ The following example demonstrates how to pass image embeddings to the OpenAI se
"image_embeds": f"{base64_image_embedding}" , # Required
"image_grid_thw": f"{base64_image_grid_thw}" # Required by Qwen/Qwen2-VL-2B-Instruct
},
"uuid": image_url # Optional
}
model = "openbmb/MiniCPM-V-2_6"
embeds = {
@ -714,6 +737,7 @@ The following example demonstrates how to pass image embeddings to the OpenAI se
"image_embeds": f"{base64_image_embedding}" , # Required
"image_sizes": f"{base64_image_sizes}" # Required by openbmb/MiniCPM-V-2_6
},
"uuid": image_url # Optional
}
chat_completion = client.chat.completions.create(
messages=[

View File

@ -169,7 +169,7 @@ All Llama 3.1, 3.2 and 4 models should be supported.
The tool calling that is supported is the [JSON-based tool calling](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#json-based-tool-calling). For [pythonic tool calling](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/text_prompt_format.md#zero-shot-function-calling) introduced by the Llama-3.2 models, see the `pythonic` tool parser below. As for Llama 4 models, it is recommended to use the `llama4_pythonic` tool parser.
Other tool calling formats like the built in python tool calling or custom tool calling are not supported.
Other tool calling formats like the built-in python tool calling or custom tool calling are not supported.
Known issues:

View File

@ -180,7 +180,7 @@ Inference batch size is an important parameter for the performance. Larger batch
- Offline Inference: `256 * world_size`
- Online Serving: `128 * world_size`
vLLM CPU supports data parallel (DP), tensor parallel (TP) and pipeline parallel (PP) to leverage multiple CPU sockets and memory nodes. For more details of tuning DP, TP and PP, please refer to [Optimization and Tuning](../../configuration/optimization.md). For vLLM CPU, it is recommend to use DP, TP and PP together if there are enough CPU sockets and memory nodes.
vLLM CPU supports data parallel (DP), tensor parallel (TP) and pipeline parallel (PP) to leverage multiple CPU sockets and memory nodes. For more details of tuning DP, TP and PP, please refer to [Optimization and Tuning](../../configuration/optimization.md). For vLLM CPU, it is recommended to use DP, TP and PP together if there are enough CPU sockets and memory nodes.
### Which quantization configs does vLLM CPU support?
@ -194,3 +194,35 @@ vLLM CPU supports data parallel (DP), tensor parallel (TP) and pipeline parallel
- Both of them require `amx` CPU flag.
- `VLLM_CPU_MOE_PREPACK` can provides better performance for MoE models
- `VLLM_CPU_SGL_KERNEL` can provides better performance for MoE models and small-batch scenarios.
### Why do I see `get_mempolicy: Operation not permitted` when running in Docker?
In some container environments (like Docker), NUMA-related syscalls used by vLLM (e.g., `get_mempolicy`, `migrate_pages`) are blocked/denied in the runtime's default seccomp/capabilities settings. This may lead to warnings like `get_mempolicy: Operation not permitted`. Functionality is not affected, but NUMA memory binding/migration optimizations may not take effect and performance can be suboptimal.
To enable these optimizations inside Docker with the least privilege, you can follow below tips:
```bash
docker run ... --cap-add SYS_NICE --security-opt seccomp=unconfined ...
# 1) `--cap-add SYS_NICE` is to address `get_mempolicy` EPERM issue.
# 2) `--security-opt seccomp=unconfined` is to enable `migrate_pages` for `numa_migrate_pages()`.
# Actually, `seccomp=unconfined` bypasses the seccomp for container,
# if it's unacceptable, you can customize your own seccomp profile,
# based on docker/runtime default.json and add `migrate_pages` to `SCMP_ACT_ALLOW` list.
# reference : https://docs.docker.com/engine/security/seccomp/
```
Alternatively, running with `--privileged=true` also works but is broader and not generally recommended.
In K8S, the following configuration can be added to workload yaml to achieve the same effect as above:
```yaml
securityContext:
seccompProfile:
type: Unconfined
capabilities:
add:
- SYS_NICE
```

View File

@ -48,6 +48,10 @@ docker run --rm \
--dtype=bfloat16 \
other vLLM OpenAI server arguments
```
!!! tip
An alternative of `--privileged=true` is `--cap-add SYS_NICE --security-opt seccomp=unconfined`.
# --8<-- [end:build-image-from-source]
# --8<-- [start:extra-information]
# --8<-- [end:extra-information]

View File

@ -89,6 +89,9 @@ docker run --rm \
other vLLM OpenAI server arguments
```
!!! tip
An alternative of `--privileged true` is `--cap-add SYS_NICE --security-opt seccomp=unconfined`.
# --8<-- [end:build-image-from-source]
# --8<-- [start:extra-information]
# --8<-- [end:extra-information]

View File

@ -44,6 +44,7 @@ docker build -f docker/Dockerfile.cpu \
# Launching OpenAI server
docker run --rm \
--security-opt seccomp=unconfined \
--cap-add SYS_NICE \
--shm-size=4g \
-p 8000:8000 \
-e VLLM_CPU_KVCACHE_SPACE=<KV cache space> \

View File

@ -119,7 +119,7 @@ Currently, there are no pre-built ROCm wheels.
This may take 5-10 minutes. Currently, `pip install .` does not work for ROCm installation.
!!! tip
- Triton flash attention is used by default. For benchmarking purposes, it is recommended to run a warm up step before collecting perf numbers.
- Triton flash attention is used by default. For benchmarking purposes, it is recommended to run a warm-up step before collecting perf numbers.
- Triton flash attention does not currently support sliding window attention. If using half precision, please use CK flash-attention for sliding window support.
- To use CK flash-attention or PyTorch naive attention, please use this flag `export VLLM_USE_TRITON_FLASH_ATTN=0` to turn off triton flash attention.
- The ROCm version of PyTorch, ideally, should match the ROCm driver version.

View File

@ -3,13 +3,16 @@
vLLM initially supports basic model inference and serving on Intel GPU platform.
!!! warning
There are no pre-built wheels or images for this device, so you must build vLLM from source.
There are no pre-built wheels for this device, so you need build vLLM from source. Or you can use pre-built images which are based on vLLM released versions.
# --8<-- [end:installation]
# --8<-- [start:requirements]
- Supported Hardware: Intel Data Center GPU, Intel ARC GPU
- OneAPI requirements: oneAPI 2025.0
- OneAPI requirements: oneAPI 2025.1
- Python: 3.12
!!! warning
The provided IPEX whl is Python3.12 specific so this version is a MUST.
# --8<-- [end:requirements]
# --8<-- [start:set-up-using-python]
@ -24,7 +27,7 @@ Currently, there are no pre-built XPU wheels.
# --8<-- [end:pre-built-wheels]
# --8<-- [start:build-wheel-from-source]
- First, install required [driver](https://dgpu-docs.intel.com/driver/installation.html#installing-gpu-drivers) and [Intel OneAPI](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) 2025.0 or later.
- First, install required [driver](https://dgpu-docs.intel.com/driver/installation.html#installing-gpu-drivers) and [Intel OneAPI](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) 2025.1 or later.
- Second, install Python packages for vLLM XPU backend building:
```bash
@ -40,14 +43,10 @@ pip install -v -r requirements/xpu.txt
VLLM_TARGET_DEVICE=xpu python setup.py install
```
!!! note
- FP16 is the default data type in the current XPU backend. The BF16 data
type is supported on Intel Data Center GPU, not supported on Intel Arc GPU yet.
# --8<-- [end:build-wheel-from-source]
# --8<-- [start:pre-built-images]
Currently, there are no pre-built XPU images.
Currently, we release prebuilt XPU images at docker [hub](https://hub.docker.com/r/intel/vllm/tags) based on vLLM released version. For more information, please refer release [note](https://github.com/intel/ai-containers/blob/main/vllm).
# --8<-- [end:pre-built-images]
# --8<-- [start:build-image-from-source]
@ -65,14 +64,14 @@ docker run -it \
# --8<-- [end:build-image-from-source]
# --8<-- [start:supported-features]
XPU platform supports **tensor parallel** inference/serving and also supports **pipeline parallel** as a beta feature for online serving. We require Ray as the distributed runtime backend. For example, a reference execution like following:
XPU platform supports **tensor parallel** inference/serving and also supports **pipeline parallel** as a beta feature for online serving. For **pipeline parallel**, we support it on single node with mp as the backend. For example, a reference execution like following:
```bash
python -m vllm.entrypoints.openai.api_server \
--model=facebook/opt-13b \
--dtype=bfloat16 \
--max_model_len=1024 \
--distributed-executor-backend=ray \
--distributed-executor-backend=mp \
--pipeline-parallel-size=2 \
-tp=8
```

View File

@ -165,6 +165,7 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
# Generate documentation for each parser
for stem, parser in parsers.items():
doc_path = ARGPARSE_DOC_DIR / f"{stem}.md"
with open(doc_path, "w") as f:
# Specify encoding for building on Windows
with open(doc_path, "w", encoding="utf-8") as f:
f.write(parser.format_help())
logger.info("Argparse generated: %s", doc_path.relative_to(ROOT_DIR))

View File

@ -106,13 +106,41 @@ class Example:
def determine_title(self) -> str:
if not self.is_code:
with open(self.main_file) as f:
# Specify encoding for building on Windows
with open(self.main_file, encoding="utf-8") as f:
first_line = f.readline().strip()
match = re.match(r'^#\s+(?P<title>.+)$', first_line)
if match:
return match.group('title')
return fix_case(self.path.stem.replace("_", " ").title())
def fix_relative_links(self, content: str) -> str:
"""
Fix relative links in markdown content by converting them to gh-file
format.
Args:
content (str): The markdown content to process
Returns:
str: Content with relative links converted to gh-file format
"""
# Regex to match markdown links [text](relative_path)
# This matches links that don't start with http, https, ftp, or #
link_pattern = r'\[([^\]]*)\]\((?!(?:https?|ftp)://|#)([^)]+)\)'
def replace_link(match):
link_text = match.group(1)
relative_path = match.group(2)
# Make relative to repo root
gh_file = (self.main_file.parent / relative_path).resolve()
gh_file = gh_file.relative_to(ROOT_DIR)
return f'[{link_text}](gh-file:{gh_file})'
return re.sub(link_pattern, replace_link, content)
def generate(self) -> str:
content = f"# {self.title}\n\n"
content += f"Source <gh-file:{self.path.relative_to(ROOT_DIR)}>.\n\n"
@ -120,14 +148,16 @@ class Example:
# Use long code fence to avoid issues with
# included files containing code fences too
code_fence = "``````"
# Skip the title from md snippets as it's been included above
start_line = 2
if self.is_code:
content += f"{code_fence}{self.main_file.suffix[1:]}\n"
start_line = 1
content += f'--8<-- "{self.main_file}:{start_line}"\n'
if self.is_code:
content += f"{code_fence}\n"
content += (f"{code_fence}{self.main_file.suffix[1:]}\n"
f'--8<-- "{self.main_file}"\n'
f"{code_fence}\n")
else:
with open(self.main_file) as f:
# Skip the title from md snippets as it's been included above
main_content = f.readlines()[1:]
content += self.fix_relative_links("".join(main_content))
content += "\n"
if not self.other_files:
@ -174,6 +204,7 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
doc_path = EXAMPLE_DOC_DIR / example.category / example_name
if not doc_path.parent.exists():
doc_path.parent.mkdir(parents=True)
with open(doc_path, "w+") as f:
# Specify encoding for building on Windows
with open(doc_path, "w+", encoding="utf-8") as f:
f.write(example.generate())
logger.debug("Example generated: %s", doc_path.relative_to(ROOT_DIR))

View File

@ -322,6 +322,7 @@ th {
| Architecture | Models | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/parallelism_scaling.md) | [V1](gh-issue:8779) |
|--------------|--------|-------------------|----------------------|---------------------------|---------------------|
| `ApertusForCausalLM` | Apertus | `swiss-ai/Apertus-8B-2509`, `swiss-ai/Apertus-70B-Instruct-2509`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `AquilaForCausalLM` | Aquila, Aquila2 | `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `ArceeForCausalLM` | Arcee (AFM) | `arcee-ai/AFM-4.5B-Base`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `ArcticForCausalLM` | Arctic | `Snowflake/snowflake-arctic-base`, `Snowflake/snowflake-arctic-instruct`, etc. | | ✅︎ | ✅︎ |
@ -365,8 +366,8 @@ th {
| `GraniteMoeSharedForCausalLM` | Granite MoE Shared | `ibm-research/moe-7b-1b-active-shared-experts` (test model) | ✅︎ | ✅︎ | ✅︎ |
| `GritLM` | GritLM | `parasail-ai/GritLM-7B-vllm`. | ✅︎ | ✅︎ | ✅︎ |
| `Grok1ModelForCausalLM` | Grok1 | `hpcai-tech/grok-1`. | ✅︎ | ✅︎ | ✅︎ |
| `HunYuanDenseV1ForCausalLM` | Hunyuan-7B-Instruct-0124 | `tencent/Hunyuan-7B-Instruct-0124` | ✅︎ | | ✅︎ |
| `HunYuanMoEV1ForCausalLM` | Hunyuan-80B-A13B | `tencent/Hunyuan-A13B-Instruct`, `tencent/Hunyuan-A13B-Pretrain`, `tencent/Hunyuan-A13B-Instruct-FP8`, etc. | ✅︎ | | ✅︎ |
| `HunYuanDenseV1ForCausalLM` | Hunyuan-7B-Instruct-0124 | `tencent/Hunyuan-7B-Instruct-0124` | ✅︎ | ✅︎ | ✅︎ |
| `HunYuanMoEV1ForCausalLM` | Hunyuan-80B-A13B | `tencent/Hunyuan-A13B-Instruct`, `tencent/Hunyuan-A13B-Pretrain`, `tencent/Hunyuan-A13B-Instruct-FP8`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `HCXVisionForCausalLM` | HyperCLOVAX-SEED-Vision-Instruct-3B | `naver-hyperclovax/HyperCLOVAX-SEED-Vision-Instruct-3B` | | | ✅︎ |
| `InternLMForCausalLM` | InternLM | `internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `InternLM2ForCausalLM` | InternLM2 | `internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -395,7 +396,7 @@ th {
| `PhiMoEForCausalLM` | Phi-3.5-MoE | `microsoft/Phi-3.5-MoE-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi4FlashForCausalLM` | Phi-4-mini-flash-reasoning | `microsoft/microsoft/Phi-4-mini-instruct`, etc. | | | |
| `PersimmonForCausalLM` | Persimmon | `adept/persimmon-8b-base`, `adept/persimmon-8b-chat`, etc. | | ✅︎ | ✅︎ |
| `Plamo2ForCausalLM` | PLaMo2 | `pfnet/plamo-2-1b`, `pfnet/plamo-2-8b`, etc. | | ✅︎ | |
| `Plamo2ForCausalLM` | PLaMo2 | `pfnet/plamo-2-1b`, `pfnet/plamo-2-8b`, etc. | | ✅︎ | ✅︎ |
| `QWenLMHeadModel` | Qwen | `Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen2ForCausalLM` | QwQ, Qwen2 | `Qwen/QwQ-32B-Preview`, `Qwen/Qwen2-7B-Instruct`, `Qwen/Qwen2-7B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen2MoeForCausalLM` | Qwen2MoE | `Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -440,6 +441,7 @@ These models primarily support the [`LLM.embed`](./pooling_models.md#llmembed) A
|--------------|--------|-------------------|----------------------|---------------------------|---------------------|
| `BertModel`<sup>C</sup> | BERT-based | `BAAI/bge-base-en-v1.5`, `Snowflake/snowflake-arctic-embed-xs`, etc. | | | ✅︎ |
| `Gemma2Model`<sup>C</sup> | Gemma 2-based | `BAAI/bge-multilingual-gemma2`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Gemma3TextModel`<sup>C</sup> | Gemma 3-based | `google/embeddinggemma-300m`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `GritLM` | GritLM | `parasail-ai/GritLM-7B-vllm`. | ✅︎ | ✅︎ | ✅︎ |
| `GteModel`<sup>C</sup> | Arctic-Embed-2.0-M | `Snowflake/snowflake-arctic-embed-m-v2.0`. | | | ✅︎ |
| `GteNewModel`<sup>C</sup> | mGTE-TRM (see note) | `Alibaba-NLP/gte-multilingual-base`, etc. | | | ✅︎ |
@ -643,6 +645,7 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `LlavaNextForConditionalGeneration` | LLaVA-NeXT | T + I<sup>E+</sup> | `llava-hf/llava-v1.6-mistral-7b-hf`, `llava-hf/llava-v1.6-vicuna-7b-hf`, etc. | | ✅︎ | ✅︎ |
| `LlavaNextVideoForConditionalGeneration` | LLaVA-NeXT-Video | T + V | `llava-hf/LLaVA-NeXT-Video-7B-hf`, etc. | | ✅︎ | ✅︎ |
| `LlavaOnevisionForConditionalGeneration` | LLaVA-Onevision | T + I<sup>+</sup> + V<sup>+</sup> | `llava-hf/llava-onevision-qwen2-7b-ov-hf`, `llava-hf/llava-onevision-qwen2-0.5b-ov-hf`, etc. | | ✅︎ | ✅︎ |
| `MiDashengLMModel` | MiDashengLM | T + A<sup>+</sup> | `mispeech/midashenglm-7b` | | ✅︎ | ✅︎ |
| `MiniCPMO` | MiniCPM-O | T + I<sup>E+</sup> + V<sup>E+</sup> + A<sup>E+</sup> | `openbmb/MiniCPM-o-2_6`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MiniCPMV` | MiniCPM-V | T + I<sup>E+</sup> + V<sup>E+</sup> | `openbmb/MiniCPM-V-2` (see note), `openbmb/MiniCPM-Llama3-V-2_5`, `openbmb/MiniCPM-V-2_6`, `openbmb/MiniCPM-V-4`, `openbmb/MiniCPM-V-4_5`, etc. | ✅︎ | | ✅︎ |
| `MiniMaxVL01ForConditionalGeneration` | MiniMax-VL | T + I<sup>E+</sup> | `MiniMaxAI/MiniMax-VL-01`, etc. | | ✅︎ | ✅︎ |
@ -661,7 +664,7 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `Qwen2AudioForConditionalGeneration` | Qwen2-Audio | T + A<sup>+</sup> | `Qwen/Qwen2-Audio-7B-Instruct` | | ✅︎ | ✅︎ |
| `Qwen2VLForConditionalGeneration` | QVQ, Qwen2-VL | T + I<sup>E+</sup> + V<sup>E+</sup> | `Qwen/QVQ-72B-Preview`, `Qwen/Qwen2-VL-7B-Instruct`, `Qwen/Qwen2-VL-72B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen2_5_VLForConditionalGeneration` | Qwen2.5-VL | T + I<sup>E+</sup> + V<sup>E+</sup> | `Qwen/Qwen2.5-VL-3B-Instruct`, `Qwen/Qwen2.5-VL-72B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen2_5OmniThinkerForConditionalGeneration` | Qwen2.5-Omni | T + I<sup>E+</sup> + V<sup>E+</sup> + A<sup>+</sup> | `Qwen/Qwen2.5-Omni-7B` | | ✅︎ | ✅︎ |
| `Qwen2_5OmniThinkerForConditionalGeneration` | Qwen2.5-Omni | T + I<sup>E+</sup> + V<sup>E+</sup> + A<sup>+</sup> | `Qwen/Qwen2.5-Omni-3B`, `Qwen/Qwen2.5-Omni-7B` | ✅︎ | ✅︎ | ✅︎ |
| `RForConditionalGeneration` | R-VL-4B | T + I<sup>E+</sup> | `YannQi/R-4B` | | ✅︎ | ✅︎ |
| `SkyworkR1VChatModel` | Skywork-R1V-38B | T + I | `Skywork/Skywork-R1V-38B` | | ✅︎ | ✅︎ |
| `SmolVLMForConditionalGeneration` | SmolVLM2 | T + I | `SmolVLM2-2.2B-Instruct` | ✅︎ | | ✅︎ |
@ -763,6 +766,7 @@ Speech2Text models trained specifically for Automatic Speech Recognition.
|--------------|--------|-------------------|----------------------|---------------------------|---------------------|
| `WhisperForConditionalGeneration` | Whisper | `openai/whisper-small`, `openai/whisper-large-v3-turbo`, etc. | | | |
| `VoxtralForConditionalGeneration` | Voxtral (Mistral format) | `mistralai/Voxtral-Mini-3B-2507`, `mistralai/Voxtral-Small-24B-2507`, etc. | | ✅︎ | ✅︎ |
| `Gemma3nForConditionalGeneration` | Gemma3n | `google/gemma-3n-E2B-it`, `google/gemma-3n-E4B-it`, etc. | | | ✅︎ |
### Pooling Models

View File

@ -123,12 +123,33 @@ When enabled, vLLM collects load statistics with every forward pass and periodic
### EPLB Parameters
Configure EPLB with the `--eplb-config` argument, which accepts a JSON string. The available keys and their descriptions are:
| Parameter | Description | Default |
|-----------|-------------|---------|
| `--eplb-window-size` | Number of engine steps to track for rebalancing decisions | - |
| `--eplb-step-interval` | Frequency of rebalancing (every N engine steps) | - |
| `--eplb-log-balancedness` | Log balancedness metrics (avg tokens per expert ÷ max tokens per expert) | `false` |
| `--num-redundant-experts` | Additional global experts per EP rank beyond equal distribution | `0` |
| `window_size`| Number of engine steps to track for rebalancing decisions | 1000 |
| `step_interval`| Frequency of rebalancing (every N engine steps) | 3000 |
| `log_balancedness` | Log balancedness metrics (avg tokens per expert ÷ max tokens per expert) | `false` |
| `num_redundant_experts` | Additional global experts per EP rank beyond equal distribution | `0` |
For example:
```bash
vllm serve Qwen/Qwen3-30B-A3B \
--enable-eplb \
--eplb-config '{"window_size":1000,"step_interval":3000,"num_redundant_experts":2,"log_balancedness":true}'
```
??? tip "Prefer individual arguments instead of JSON?"
```bash
vllm serve Qwen/Qwen3-30B-A3B \
--enable-eplb \
--eplb-config.window_size 1000 \
--eplb-config.step_interval 3000 \
--eplb-config.num_redundant_experts 2 \
--eplb-config.log_balancedness true
```
### Expert Distribution Formula
@ -146,12 +167,10 @@ VLLM_ALL2ALL_BACKEND=pplx VLLM_USE_DEEP_GEMM=1 vllm serve deepseek-ai/DeepSeek-V
--data-parallel-size 8 \ # Data parallelism
--enable-expert-parallel \ # Enable EP
--enable-eplb \ # Enable load balancer
--eplb-log-balancedness \ # Log balancing metrics
--eplb-window-size 1000 \ # Track last 1000 engine steps
--eplb-step-interval 3000 # Rebalance every 3000 steps
--eplb-config '{"window_size":1000,"step_interval":3000,"num_redundant_experts":2,"log_balancedness":true}'
```
For multi-node deployment, add these EPLB flags to each node's command. We recommend setting `--num-redundant-experts` to 32 in large scale use cases so the most popular experts are always available.
For multi-node deployment, add these EPLB flags to each node's command. We recommend setting `--eplb-config '{"num_redundant_experts":32}'` to 32 in large scale use cases so the most popular experts are always available.
## Disaggregated Serving (Prefill/Decode Split)

View File

@ -66,7 +66,7 @@ Ray is a distributed computing framework for scaling Python programs. Multi-node
vLLM uses Ray to manage the distributed execution of tasks across multiple nodes and control where execution happens.
Ray also offers high-level APIs for large-scale [offline batch inference](https://docs.ray.io/en/latest/data/working-with-llms.html) and [online serving](https://docs.ray.io/en/latest/serve/llm/serving-llms.html) that can leverage vLLM as the engine. These APIs add production-grade fault tolerance, scaling, and distributed observability to vLLM workloads.
Ray also offers high-level APIs for large-scale [offline batch inference](https://docs.ray.io/en/latest/data/working-with-llms.html) and [online serving](https://docs.ray.io/en/latest/serve/llm) that can leverage vLLM as the engine. These APIs add production-grade fault tolerance, scaling, and distributed observability to vLLM workloads.
For details, see the [Ray documentation](https://docs.ray.io/en/latest/index.html).
@ -104,7 +104,7 @@ Note that `VLLM_HOST_IP` is unique for each worker. Keep the shells running thes
From any node, enter a container and run `ray status` and `ray list nodes` to verify that Ray finds the expected number of nodes and GPUs.
!!! tip
Alternatively, set up the Ray cluster using KubeRay. For more information, see [KubeRay vLLM documentation](https://docs.ray.io/en/latest/cluster/kubernetes/examples/vllm-rayservice.html).
Alternatively, set up the Ray cluster using KubeRay. For more information, see [KubeRay vLLM documentation](https://docs.ray.io/en/latest/cluster/kubernetes/examples/rayserve-llm-example.html).
### Running vLLM on a Ray cluster

View File

@ -40,6 +40,34 @@ If other strategies don't solve the problem, it's likely that the vLLM instance
- `export NCCL_DEBUG=TRACE` to turn on more logging for NCCL.
- `export VLLM_TRACE_FUNCTION=1` to record all function calls for inspection in the log files to tell which function crashes or hangs. Do not use this flag unless absolutely needed for debugging, it will cause significant delays in startup time.
## Breakpoints
Setting normal `pdb` breakpoints may not work in vLLM's codebase if they are executed in a subprocess. You will experience something like:
``` text
File "/usr/local/uv/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/bdb.py", line 100, in trace_dispatch
return self.dispatch_line(frame)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/uv/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/bdb.py", line 125, in dispatch_line
if self.quitting: raise BdbQuit
^^^^^^^^^^^^^
bdb.BdbQuit
```
One solution is using [forked-pdb](https://github.com/Lightning-AI/forked-pdb). Install with `pip install fpdb` and set a breakpoint with something like:
``` python
__import__('fpdb').ForkedPdb().set_trace()
```
Another option is to disable multiprocessing entirely, with the `VLLM_ENABLE_V1_MULTIPROCESSING` environment variable.
This keeps the scheduler in the same process, so you can use stock `pdb` breakpoints:
``` python
import os
os.environ["VLLM_ENABLE_V1_MULTIPROCESSING"] = "0"
```
## Incorrect network setup
The vLLM instance cannot get the correct IP address if you have a complicated network config. You can find a log such as `DEBUG 06-10 21:32:17 parallel_state.py:88] world_size=8 rank=0 local_rank=0 distributed_init_method=tcp://xxx.xxx.xxx.xxx:54641 backend=nccl` and the IP address should be the correct one.
@ -295,4 +323,4 @@ This indicates vLLM failed to initialize the NCCL communicator, possibly due to
## Known Issues
- In `v0.5.2`, `v0.5.3`, and `v0.5.3.post1`, there is a bug caused by [zmq](https://github.com/zeromq/pyzmq/issues/2000) , which can occasionally cause vLLM to hang depending on the machine configuration. The solution is to upgrade to the latest version of `vllm` to include the [fix](gh-pr:6759).
- To circumvent a NCCL [bug](https://github.com/NVIDIA/nccl/issues/1234) , all vLLM processes will set an environment variable `NCCL_CUMEM_ENABLE=0` to disable NCCL's `cuMem` allocator. It does not affect performance but only gives memory benefits. When external processes want to set up a NCCL connection with vLLM's processes, they should also set this environment variable, otherwise, inconsistent environment setup will cause NCCL to hang or crash, as observed in the [RLHF integration](https://github.com/OpenRLHF/OpenRLHF/pull/604) and the [discussion](gh-issue:5723#issuecomment-2554389656) .
- To address a memory overhead issue in older NCCL versions (see [bug](https://github.com/NVIDIA/nccl/issues/1234)), vLLM versions `>= 0.4.3, <= 0.10.1.1` would set the environment variable `NCCL_CUMEM_ENABLE=0`. External processes connecting to vLLM also needed to set this variable to prevent hangs or crashes. Since the underlying NCCL bug was fixed in NCCL 2.22.3, this override was removed in newer vLLM versions to allow for NCCL performance optimizations.

View File

@ -110,7 +110,7 @@ Models using selective state-space mechanisms instead of standard transformer at
Models that use Mamba-2 and Mamba-1 layers (e.g., `Mamba2ForCausalLM`, `MambaForCausalLM`,`FalconMambaForCausalLM`) are supported.
Hybrid models that combine Mamba-2 and Mamba-1 layers with standard attention layers are also supported (e.g., `BambaForCausalLM`,
`Zamba2ForCausalLM`, `NemotronHForCausalLM`, `FalconH1ForCausalLM` and `GraniteMoeHybridForCausalLM`, `JambaForCausalLM`).
`Zamba2ForCausalLM`, `NemotronHForCausalLM`, `FalconH1ForCausalLM` and `GraniteMoeHybridForCausalLM`, `JambaForCausalLM`, `Plamo2ForCausalLM`).
Hybrid models with mechanisms different to Mamba are also supported (e.g, `MiniMaxText01ForCausalLM`, `MiniMaxM1ForCausalLM`, `Lfm2ForCausalLM`).

View File

@ -117,7 +117,7 @@ def run_gemma3n(question: str, audio_count: int) -> ModelRequestData:
# Granite Speech
def run_granite_speech(question: str, audio_count: int) -> ModelRequestData:
# NOTE - the setting in this example are somehat different than what is
# NOTE - the setting in this example are somewhat different from what is
# optimal for granite speech, and it is generally recommended to use beam
# search. Check the model README for suggested settings.
# https://huggingface.co/ibm-granite/granite-speech-3.3-8b
@ -146,6 +146,36 @@ def run_granite_speech(question: str, audio_count: int) -> ModelRequestData:
)
# MiDashengLM
def run_midashenglm(question: str, audio_count: int):
model_name = "mispeech/midashenglm-7b"
engine_args = EngineArgs(
model=model_name,
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=5,
limit_mm_per_prompt={"audio": audio_count},
)
audio_in_prompt = "".join(
["<|audio_bos|><|AUDIO|><|audio_eos|>" for idx in range(audio_count)]
)
default_system = "You are a helpful language and speech assistant."
prompt = (
f"<|im_start|>system\n{default_system}<|im_end|>\n"
"<|im_start|>user\n"
f"{audio_in_prompt}{question}<|im_end|>\n"
"<|im_start|>assistant\n"
)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
)
# MiniCPM-O
def run_minicpmo(question: str, audio_count: int) -> ModelRequestData:
model_name = "openbmb/MiniCPM-o-2_6"
@ -352,6 +382,7 @@ model_example_map = {
"voxtral": run_voxtral,
"gemma3n": run_gemma3n,
"granite_speech": run_granite_speech,
"midashenglm": run_midashenglm,
"minicpmo": run_minicpmo,
"phi4_mm": run_phi4mm,
"phi4_multimodal": run_phi4_multimodal,

View File

@ -143,5 +143,5 @@ outputs = llm.chat(messages, sampling_params, tools=tools)
print(outputs[0].outputs[0].text.strip())
# yields
# 'The weather in Dallas, TX is 85 degrees fahrenheit. '
# 'The weather in Dallas, TX is 85 degrees Fahrenheit. '
# 'It is partly cloudly, with highs in the 90's.'

View File

@ -87,6 +87,11 @@ def parse_args():
default=0.8,
help=("Fraction of GPU memory vLLM is allowed to allocate (0.0, 1.0]."),
)
parser.add_argument(
"--compilation-config",
type=int,
help=("Compilation optimization (O) level 0-3."),
)
parser.add_argument(
"--quantization",
type=str,
@ -106,6 +111,7 @@ def main(
trust_remote_code,
max_num_seqs,
max_model_len,
compilation_config,
gpu_memory_utilization,
quantization,
):
@ -162,6 +168,7 @@ def main(
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
quantization=quantization,
compilation_config=compilation_config,
)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
@ -218,6 +225,7 @@ if __name__ == "__main__":
args.trust_remote_code,
args.max_num_seqs,
args.max_model_len,
args.compilation_config,
args.gpu_memory_utilization,
args.quantization,
),

View File

@ -30,12 +30,12 @@ def run_prefill(prefill_done):
]
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=1)
# Using PyNcclConnector to transmit KV caches between vLLM instances.
# Using P2pNcclConnector to transmit KV caches between vLLM instances.
# This instance is the prefill node (kv_producer, rank 0).
# The number of parallel instances for KV cache transfer is set to 2,
# as required for PyNcclConnector.
# as required for P2pNcclConnector.
ktc = KVTransferConfig(
kv_connector="PyNcclConnector",
kv_connector="P2pNcclConnector",
kv_role="kv_producer",
kv_rank=0,
kv_parallel_size=2,
@ -74,12 +74,12 @@ def run_decode(prefill_done):
]
sampling_params = SamplingParams(temperature=0, top_p=0.95)
# Using PyNcclConnector to transmit KV caches between vLLM instances.
# Using P2pNcclConnector to transmit KV caches between vLLM instances.
# This instance is the decode node (kv_consumer, rank 1).
# The number of parallel instances for KV cache transfer is set to 2,
# as required for PyNcclConnector.
# as required for P2pNcclConnector.
ktc = KVTransferConfig(
kv_connector="PyNcclConnector",
kv_connector="P2pNcclConnector",
kv_role="kv_consumer",
kv_rank=1,
kv_parallel_size=2,

View File

@ -0,0 +1,151 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""This example demonstrates wrapping a request-level logits processor to be
compatible with vLLM's batch-level logits processing
For demo purposes, a dummy logits processor is employed which, if
`target_token` is passed as a keyword argument to `SamplingParams.extra_args`,
will mask out all tokens except `target_token`. This logits processor can be
applied to a vector of logits associated with a single decode step for a single
request. The logits processor cannot be applied to a request which does not
pass in a `target_token` custom argument.
The request-level dummy logits processor is wrapped to create a batch-level
logits processor, which can apply the logits processor to output logits from
all requests in the persistent batch in a given decode step. For requests which
do not provide a `target_token` argument, the corresponding row of `logits`
will not be modified.
A batch is constructed with `temperature=0.0` and 50% of requests specifying
`target_token`, and for these requests - and *only* these requests - we
expect the `target_token` to be decoded in each step, yielding an output
similar to that shown below:
Generated Outputs:
------------------------------------------------------------
Prompt: 'Hello, my name is'
Output: " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '"
------------------------------------------------------------
Prompt: 'The president of the United States is'
Output: " not a racist. He is a racist.\nHe's a racist because he"
------------------------------------------------------------
Prompt: 'The capital of France is'
Output: ' also also also also also also also also also also also also also
also also also'
------------------------------------------------------------
Prompt: 'The future of AI is'
Output: ' in the hands of the people.\n\nThe future of AI is in the'
------------------------------------------------------------
"""
from typing import Any, Optional
import torch
from vllm import LLM, SamplingParams
from vllm.logger import init_logger
from vllm.v1.sample.logits_processor import (
AdapterLogitsProcessor,
RequestLogitsProcessor,
)
logger = init_logger(__name__)
class DummyPerReqLogitsProcessor:
"""The request-level logits processor masks out all logits except the
token id identified by `target_token`"""
def __init__(self, target_token: int) -> None:
"""Specify `target_token`"""
self.target_token = target_token
def __call__(
self,
output_ids: list[int],
logits: torch.Tensor,
) -> torch.Tensor:
val_to_keep = logits[self.target_token].item()
logits[:] = float("-inf")
logits[self.target_token] = val_to_keep
return logits
class WrappedPerReqLogitsProcessor(AdapterLogitsProcessor):
"""Example of wrapping a fake request-level logit processor to create a
batch-level logits processor"""
def is_argmax_invariant(self) -> bool:
return False
def new_req_logits_processor(
self,
params: SamplingParams,
) -> Optional[RequestLogitsProcessor]:
"""This method returns a new request-level logits processor, customized
to the `target_token` value associated with a particular request.
Returns None if the logits processor should not be applied to the
particular request. To use the logits processor the request must have
a "target_token" custom argument with an integer value.
Args:
params: per-request sampling params
Returns:
`Callable` request logits processor, or None
"""
target_token: Optional[Any] = params.extra_args and params.extra_args.get(
"target_token"
)
if target_token is None:
return None
if not isinstance(target_token, int):
logger.warning(
"target_token value %s is not int; not applying logits"
" processor to request.",
target_token,
)
return None
return DummyPerReqLogitsProcessor(target_token)
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a mixture of requests which do and don't utilize the dummy logitproc
sampling_params_list = [
SamplingParams(temperature=0.0, extra_args={"target_token": 128}),
SamplingParams(temperature=0.0),
SamplingParams(temperature=0.0, extra_args={"target_token": 67}),
SamplingParams(temperature=0.0),
]
def main():
# Create an LLM.
llm = LLM(
model="facebook/opt-125m",
logits_processors=[WrappedPerReqLogitsProcessor],
)
# Generate texts from the prompts.
# The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params_list)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,165 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""This example demonstrates a special case of wrapping a request-level logits
processor, namely the case where it is necessary to utilize engine config or
environment info passed to the constructor. The subclass must override the
wrapper base class `__init__()` method to access the engine config, the device
identifier, or the flag which indicates whether pinned memory is available.
For demo purposes, a request-level dummy logits processor is employed which
causes the same token (`target_token`) to be decoded in each step. The
request-level dummy logits processor is wrapped to create a batch-level logits
processor, which can apply the logits processor to output logits from all
requests in the persistent batch in a given decode step.
The wrapped dummy logits processor below models a scenario where we must
disable the logits processor on non-"cuda" platforms. The wrapper base class
`__init__()` is overridden in order to check this condition and set a flag.
A batch is constructed with `temperature=0.0` and 50% of requests specifying
`target_token`, and for these requests - and *only* these requests - we
expect that on a "cuda" device the output will look something like:
Generated Outputs:
------------------------------------------------------------
Prompt: 'Hello, my name is'
Output: " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '"
------------------------------------------------------------
Prompt: 'The president of the United States is'
Output: " not a racist. He is a racist.\nHe's a racist because he"
------------------------------------------------------------
Prompt: 'The capital of France is'
Output: ' also also also also also also also also also also also also also
also also also'
------------------------------------------------------------
Prompt: 'The future of AI is'
Output: ' in the hands of the people.\n\nThe future of AI is in the'
------------------------------------------------------------
which indicates that the logits processor is running. However, on a non-"cuda"
device, the first and third requests would not repeat the same token.
"""
from typing import Optional
import torch
from vllm import LLM, SamplingParams
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.v1.sample.logits_processor import (
AdapterLogitsProcessor,
RequestLogitsProcessor,
)
logger = init_logger(__name__)
class DummyPerReqLogitsProcessor:
"""The request-level logits processor masks out all logits except the
token id identified by `target_token`"""
def __init__(self, target_token: int) -> None:
"""Specify `target_token`"""
self.target_token = target_token
def __call__(
self,
output_ids: list[int],
logits: torch.Tensor,
) -> torch.Tensor:
val_to_keep = logits[self.target_token].item()
logits[:] = float("-inf")
logits[self.target_token] = val_to_keep
return logits
class WrappedPerReqLogitsProcessor(AdapterLogitsProcessor):
"""Example of overriding the wrapper class `__init__()` in order to utilize
info about the device type"""
def __init__(
self, vllm_config: VllmConfig, device: torch.device, is_pin_memory: bool
):
super().__init__(vllm_config, device, is_pin_memory)
self.is_cuda = device.type == "cuda"
def is_argmax_invariant(self) -> bool:
return False
def new_req_logits_processor(
self,
params: SamplingParams,
) -> Optional[RequestLogitsProcessor]:
"""This method returns a new request-level logits processor, customized
to the `target_token` value associated with a particular request.
Returns None if the logits processor should not be applied to the
particular request. To use the logits processor the request must have
a "target_token" custom argument with an integer value, and the device
must be "cuda"-type
Args:
params: per-request sampling params
Returns:
`Callable` request logits processor, or None
"""
if (
not self.is_cuda
or (
target_token := params.extra_args
and params.extra_args.get("target_token")
)
is None
):
return None
if not isinstance(target_token, int):
logger.warning(
"target_token value %s is not int; not applying logits"
" processor to request.",
target_token,
)
return None
return DummyPerReqLogitsProcessor(target_token)
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a mixture of requests which do and don't utilize the dummy logitproc
sampling_params_list = [
SamplingParams(temperature=0.0, extra_args={"target_token": 128}),
SamplingParams(temperature=0.0),
SamplingParams(temperature=0.0, extra_args={"target_token": 67}),
SamplingParams(temperature=0.0),
]
def main():
# Create an LLM.
llm = LLM(
model="facebook/opt-125m",
logits_processors=[WrappedPerReqLogitsProcessor],
)
# Generate texts from the prompts.
# The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params_list)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
if __name__ == "__main__":
main()

View File

@ -1,49 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
def main():
# Create an LLM.
llm = LLM(
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
max_num_seqs=8,
# The max_model_len and block_size arguments are required to be same as
# max sequence length when targeting neuron device.
# Currently, this is a known limitation in continuous batching support
# in transformers-neuronx.
# TODO(liangfu): Support paged-attention in transformers-neuronx.
max_model_len=1024,
block_size=1024,
# ruff: noqa: E501
# The device can be automatically detected when AWS Neuron SDK is installed.
# The device argument can be either unspecified for automated detection,
# or explicitly assigned.
device="neuron",
tensor_parallel_size=2,
)
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("-" * 50)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
print("-" * 50)
if __name__ == "__main__":
main()

Some files were not shown because too many files have changed in this diff Show More