mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-14 23:45:18 +08:00
Compare commits
7 Commits
jk/node-re
...
feat/api-n
| Author | SHA1 | Date | |
|---|---|---|---|
| fe8020670b | |||
| dc9822b7df | |||
| 712efb466b | |||
| 726af73867 | |||
| 831351a29e | |||
| e1add563f9 | |||
| 8902907d7a |
@ -1,105 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from aiohttp import web
|
||||
|
||||
from typing import TYPE_CHECKING, TypedDict
|
||||
if TYPE_CHECKING:
|
||||
from comfy_api.latest._node_replace import NodeReplace
|
||||
|
||||
from nodes import NODE_CLASS_MAPPINGS
|
||||
|
||||
class NodeStruct(TypedDict):
|
||||
inputs: dict[str, str | int | float | bool | tuple[str, int]]
|
||||
class_type: str
|
||||
_meta: dict[str, str]
|
||||
|
||||
def copy_node_struct(node_struct: NodeStruct, empty_inputs: bool = False) -> NodeStruct:
|
||||
new_node_struct = node_struct.copy()
|
||||
if empty_inputs:
|
||||
new_node_struct["inputs"] = {}
|
||||
else:
|
||||
new_node_struct["inputs"] = node_struct["inputs"].copy()
|
||||
new_node_struct["_meta"] = node_struct["_meta"].copy()
|
||||
return new_node_struct
|
||||
|
||||
|
||||
class NodeReplaceManager:
|
||||
"""Manages node replacement registrations."""
|
||||
|
||||
def __init__(self):
|
||||
self._replacements: dict[str, list[NodeReplace]] = {}
|
||||
|
||||
def register(self, node_replace: NodeReplace):
|
||||
"""Register a node replacement mapping."""
|
||||
self._replacements.setdefault(node_replace.old_node_id, []).append(node_replace)
|
||||
|
||||
def get_replacement(self, old_node_id: str) -> list[NodeReplace] | None:
|
||||
"""Get replacements for an old node ID."""
|
||||
return self._replacements.get(old_node_id)
|
||||
|
||||
def has_replacement(self, old_node_id: str) -> bool:
|
||||
"""Check if a replacement exists for an old node ID."""
|
||||
return old_node_id in self._replacements
|
||||
|
||||
def apply_replacements(self, prompt: dict[str, NodeStruct]):
|
||||
connections: dict[str, list[tuple[str, str, int]]] = {}
|
||||
need_replacement: set[str] = set()
|
||||
for node_number, node_struct in prompt.items():
|
||||
class_type = node_struct["class_type"]
|
||||
# need replacement if not in NODE_CLASS_MAPPINGS and has replacement
|
||||
if class_type not in NODE_CLASS_MAPPINGS.keys() and self.has_replacement(class_type):
|
||||
need_replacement.add(node_number)
|
||||
# keep track of connections
|
||||
for input_id, input_value in node_struct["inputs"].items():
|
||||
if isinstance(input_value, list):
|
||||
conn_number = input_value[0]
|
||||
connections.setdefault(conn_number, []).append((node_number, input_id, input_value[1]))
|
||||
if len(need_replacement) > 0:
|
||||
for node_number in need_replacement:
|
||||
node_struct = prompt[node_number]
|
||||
class_type = node_struct["class_type"]
|
||||
replacements = self.get_replacement(class_type)
|
||||
if replacements is None:
|
||||
continue
|
||||
# just use the first replacement
|
||||
replacement = replacements[0]
|
||||
new_node_id = replacement.new_node_id
|
||||
# if replacement is not a valid node, skip trying to replace it as will only cause confusion
|
||||
if new_node_id not in NODE_CLASS_MAPPINGS.keys():
|
||||
continue
|
||||
# first, replace node id (class_type)
|
||||
new_node_struct = copy_node_struct(node_struct, empty_inputs=True)
|
||||
new_node_struct["class_type"] = new_node_id
|
||||
# TODO: consider replacing display_name in _meta as well for error reporting purposes; would need to query node schema
|
||||
# second, replace inputs
|
||||
if replacement.input_mapping is not None:
|
||||
for input_map in replacement.input_mapping:
|
||||
if "set_value" in input_map:
|
||||
new_node_struct["inputs"][input_map["new_id"]] = input_map["set_value"]
|
||||
elif "old_id" in input_map:
|
||||
new_node_struct["inputs"][input_map["new_id"]] = node_struct["inputs"][input_map["old_id"]]
|
||||
# finalize input replacement
|
||||
prompt[node_number] = new_node_struct
|
||||
# third, replace outputs
|
||||
if replacement.output_mapping is not None:
|
||||
# re-mapping outputs requires changing the input values of nodes that receive connections from this one
|
||||
if node_number in connections:
|
||||
for conns in connections[node_number]:
|
||||
conn_node_number, conn_input_id, old_output_idx = conns
|
||||
for output_map in replacement.output_mapping:
|
||||
if output_map["old_idx"] == old_output_idx:
|
||||
new_output_idx = output_map["new_idx"]
|
||||
previous_input = prompt[conn_node_number]["inputs"][conn_input_id]
|
||||
previous_input[1] = new_output_idx
|
||||
|
||||
def as_dict(self):
|
||||
"""Serialize all replacements to dict."""
|
||||
return {
|
||||
k: [v.as_dict() for v in v_list]
|
||||
for k, v_list in self._replacements.items()
|
||||
}
|
||||
|
||||
def add_routes(self, routes):
|
||||
@routes.get("/node_replacements")
|
||||
async def get_node_replacements(request):
|
||||
return web.json_response(self.as_dict())
|
||||
@ -297,6 +297,30 @@ class ControlNet(ControlBase):
|
||||
self.model_sampling_current = None
|
||||
super().cleanup()
|
||||
|
||||
|
||||
class QwenFunControlNet(ControlNet):
|
||||
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
||||
# Fun checkpoints are more sensitive to high strengths in the generic
|
||||
# ControlNet merge path. Use a soft response curve so strength=1.0 stays
|
||||
# unchanged while >1 grows more gently.
|
||||
original_strength = self.strength
|
||||
self.strength = math.sqrt(max(self.strength, 0.0))
|
||||
try:
|
||||
return super().get_control(x_noisy, t, cond, batched_number, transformer_options)
|
||||
finally:
|
||||
self.strength = original_strength
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
self.set_extra_arg("base_model", model.diffusion_model)
|
||||
|
||||
def copy(self):
|
||||
c = QwenFunControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
||||
c.control_model = self.control_model
|
||||
c.control_model_wrapped = self.control_model_wrapped
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
class ControlLoraOps:
|
||||
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
@ -560,6 +584,7 @@ def load_controlnet_hunyuandit(controlnet_data, model_options={}):
|
||||
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
sd = model_config.process_unet_state_dict(sd)
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
@ -605,6 +630,53 @@ def load_controlnet_qwen_instantx(sd, model_options={}):
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
|
||||
def load_controlnet_qwen_fun(sd, model_options={}):
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
unet_dtype = model_options.get("dtype", weight_dtype)
|
||||
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
||||
|
||||
in_features = sd["control_img_in.weight"].shape[1]
|
||||
inner_dim = sd["control_img_in.weight"].shape[0]
|
||||
|
||||
block_weight = sd["control_blocks.0.attn.to_q.weight"]
|
||||
attention_head_dim = sd["control_blocks.0.attn.norm_q.weight"].shape[0]
|
||||
num_attention_heads = max(1, block_weight.shape[0] // max(1, attention_head_dim))
|
||||
|
||||
model = comfy.ldm.qwen_image.controlnet.QwenImageFunControlNetModel(
|
||||
control_in_features=in_features,
|
||||
inner_dim=inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
num_control_blocks=5,
|
||||
main_model_double=60,
|
||||
injection_layers=(0, 12, 24, 36, 48),
|
||||
operations=operations,
|
||||
device=comfy.model_management.unet_offload_device(),
|
||||
dtype=unet_dtype,
|
||||
)
|
||||
model = controlnet_load_state_dict(model, sd)
|
||||
|
||||
latent_format = comfy.latent_formats.Wan21()
|
||||
control = QwenFunControlNet(
|
||||
model,
|
||||
compression_ratio=1,
|
||||
latent_format=latent_format,
|
||||
# Fun checkpoints already expect their own 33-channel context handling.
|
||||
# Enabling generic concat_mask injects an extra mask channel at apply-time
|
||||
# and breaks the intended fallback packing path.
|
||||
concat_mask=False,
|
||||
load_device=load_device,
|
||||
manual_cast_dtype=manual_cast_dtype,
|
||||
extra_conds=[],
|
||||
)
|
||||
return control
|
||||
|
||||
def convert_mistoline(sd):
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
|
||||
|
||||
@ -682,6 +754,8 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
||||
return load_controlnet_qwen_instantx(controlnet_data, model_options=model_options)
|
||||
elif "controlnet_x_embedder.weight" in controlnet_data:
|
||||
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
|
||||
elif "control_blocks.0.after_proj.weight" in controlnet_data and "control_img_in.weight" in controlnet_data:
|
||||
return load_controlnet_qwen_fun(controlnet_data, model_options=model_options)
|
||||
|
||||
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
|
||||
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
|
||||
|
||||
@ -3,7 +3,6 @@ from torch import Tensor, nn
|
||||
|
||||
from comfy.ldm.flux.layers import (
|
||||
MLPEmbedder,
|
||||
RMSNorm,
|
||||
ModulationOut,
|
||||
)
|
||||
|
||||
@ -29,7 +28,7 @@ class Approximator(nn.Module):
|
||||
super().__init__()
|
||||
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.norms = nn.ModuleList([operations.RMSNorm(hidden_dim, dtype=dtype, device=device) for x in range( n_layers)])
|
||||
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
|
||||
|
||||
@property
|
||||
|
||||
@ -4,8 +4,6 @@ from functools import lru_cache
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from comfy.ldm.flux.layers import RMSNorm
|
||||
|
||||
|
||||
class NerfEmbedder(nn.Module):
|
||||
"""
|
||||
@ -145,7 +143,7 @@ class NerfGLUBlock(nn.Module):
|
||||
# We now need to generate parameters for 3 matrices.
|
||||
total_params = 3 * hidden_size_x**2 * mlp_ratio
|
||||
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
|
||||
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
|
||||
self.norm = operations.RMSNorm(hidden_size_x, dtype=dtype, device=device)
|
||||
self.mlp_ratio = mlp_ratio
|
||||
|
||||
|
||||
@ -178,7 +176,7 @@ class NerfGLUBlock(nn.Module):
|
||||
class NerfFinalLayer(nn.Module):
|
||||
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
@ -190,7 +188,7 @@ class NerfFinalLayer(nn.Module):
|
||||
class NerfFinalLayerConv(nn.Module):
|
||||
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
|
||||
self.conv = operations.Conv2d(
|
||||
in_channels=hidden_size,
|
||||
out_channels=out_channels,
|
||||
|
||||
@ -5,9 +5,9 @@ import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .math import attention, rope
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
# Fix import for some custom nodes, TODO: delete eventually.
|
||||
RMSNorm = None
|
||||
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, dim: int, theta: int, axes_dim: list):
|
||||
@ -87,20 +87,12 @@ def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dt
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)
|
||||
|
||||
|
||||
class QKNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
self.query_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
|
||||
self.key_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
|
||||
q = self.query_norm(q)
|
||||
@ -169,7 +161,7 @@ class SiLUActivation(nn.Module):
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
@ -197,8 +189,6 @@ class DoubleStreamBlock(nn.Module):
|
||||
|
||||
self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
|
||||
if self.modulation:
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
@ -224,32 +214,17 @@ class DoubleStreamBlock(nn.Module):
|
||||
del txt_qkv
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
if self.flipped_img_txt:
|
||||
q = torch.cat((img_q, txt_q), dim=2)
|
||||
del img_q, txt_q
|
||||
k = torch.cat((img_k, txt_k), dim=2)
|
||||
del img_k, txt_k
|
||||
v = torch.cat((img_v, txt_v), dim=2)
|
||||
del img_v, txt_v
|
||||
# run actual attention
|
||||
attn = attention(q, k, v,
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
q = torch.cat((txt_q, img_q), dim=2)
|
||||
del txt_q, img_q
|
||||
k = torch.cat((txt_k, img_k), dim=2)
|
||||
del txt_k, img_k
|
||||
v = torch.cat((txt_v, img_v), dim=2)
|
||||
del txt_v, img_v
|
||||
# run actual attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
|
||||
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
|
||||
else:
|
||||
q = torch.cat((txt_q, img_q), dim=2)
|
||||
del txt_q, img_q
|
||||
k = torch.cat((txt_k, img_k), dim=2)
|
||||
del txt_k, img_k
|
||||
v = torch.cat((txt_v, img_v), dim=2)
|
||||
del txt_v, img_v
|
||||
# run actual attention
|
||||
attn = attention(q, k, v,
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
|
||||
# calculate the img bloks
|
||||
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
|
||||
|
||||
@ -16,7 +16,6 @@ from .layers import (
|
||||
SingleStreamBlock,
|
||||
timestep_embedding,
|
||||
Modulation,
|
||||
RMSNorm
|
||||
)
|
||||
|
||||
@dataclass
|
||||
@ -81,7 +80,7 @@ class Flux(nn.Module):
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
|
||||
|
||||
if params.txt_norm:
|
||||
self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.txt_norm = operations.RMSNorm(params.context_in_dim, dtype=dtype, device=device)
|
||||
else:
|
||||
self.txt_norm = None
|
||||
|
||||
|
||||
@ -241,7 +241,6 @@ class HunyuanVideo(nn.Module):
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
flipped_img_txt=True,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
@ -378,14 +377,14 @@ class HunyuanVideo(nn.Module):
|
||||
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
|
||||
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
|
||||
|
||||
ids = torch.cat((img_ids, txt_ids), dim=1)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
img_len = img.shape[1]
|
||||
if txt_mask is not None:
|
||||
attn_mask_len = img_len + txt.shape[1]
|
||||
attn_mask = torch.zeros((1, 1, attn_mask_len), dtype=img.dtype, device=img.device)
|
||||
attn_mask[:, 0, img_len:] = txt_mask
|
||||
attn_mask[:, 0, :txt.shape[1]] = txt_mask
|
||||
else:
|
||||
attn_mask = None
|
||||
|
||||
@ -413,7 +412,7 @@ class HunyuanVideo(nn.Module):
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((img, txt), 1)
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
transformer_options["total_blocks"] = len(self.single_blocks)
|
||||
transformer_options["block_type"] = "single"
|
||||
@ -435,9 +434,9 @@ class HunyuanVideo(nn.Module):
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, : img_len] += add
|
||||
img[:, txt.shape[1]: img_len + txt.shape[1]] += add
|
||||
|
||||
img = img[:, : img_len]
|
||||
img = img[:, txt.shape[1]: img_len + txt.shape[1]]
|
||||
if ref_latent is not None:
|
||||
img = img[:, ref_latent.shape[1]:]
|
||||
|
||||
|
||||
@ -2,6 +2,196 @@ import torch
|
||||
import math
|
||||
|
||||
from .model import QwenImageTransformer2DModel
|
||||
from .model import QwenImageTransformerBlock
|
||||
|
||||
|
||||
class QwenImageFunControlBlock(QwenImageTransformerBlock):
|
||||
def __init__(self, dim, num_attention_heads, attention_head_dim, has_before_proj=False, dtype=None, device=None, operations=None):
|
||||
super().__init__(
|
||||
dim=dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
self.has_before_proj = has_before_proj
|
||||
if has_before_proj:
|
||||
self.before_proj = operations.Linear(dim, dim, device=device, dtype=dtype)
|
||||
self.after_proj = operations.Linear(dim, dim, device=device, dtype=dtype)
|
||||
|
||||
|
||||
class QwenImageFunControlNetModel(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
control_in_features=132,
|
||||
inner_dim=3072,
|
||||
num_attention_heads=24,
|
||||
attention_head_dim=128,
|
||||
num_control_blocks=5,
|
||||
main_model_double=60,
|
||||
injection_layers=(0, 12, 24, 36, 48),
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.main_model_double = main_model_double
|
||||
self.injection_layers = tuple(injection_layers)
|
||||
# Keep base hint scaling at 1.0 so user-facing strength behaves similarly
|
||||
# to the reference Gen2/VideoX implementation around strength=1.
|
||||
self.hint_scale = 1.0
|
||||
self.control_img_in = operations.Linear(control_in_features, inner_dim, device=device, dtype=dtype)
|
||||
|
||||
self.control_blocks = torch.nn.ModuleList([])
|
||||
for i in range(num_control_blocks):
|
||||
self.control_blocks.append(
|
||||
QwenImageFunControlBlock(
|
||||
dim=inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
has_before_proj=(i == 0),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
)
|
||||
|
||||
def _process_hint_tokens(self, hint):
|
||||
if hint is None:
|
||||
return None
|
||||
if hint.ndim == 4:
|
||||
hint = hint.unsqueeze(2)
|
||||
|
||||
# Fun checkpoints are trained with 33 latent channels before 2x2 packing:
|
||||
# [control_latent(16), mask(1), inpaint_latent(16)] -> 132 features.
|
||||
# Default behavior (no inpaint input in stock Apply ControlNet) should use
|
||||
# zeros for mask/inpaint branches, matching VideoX fallback semantics.
|
||||
expected_c = self.control_img_in.weight.shape[1] // 4
|
||||
if hint.shape[1] == 16 and expected_c == 33:
|
||||
zeros_mask = torch.zeros_like(hint[:, :1])
|
||||
zeros_inpaint = torch.zeros_like(hint)
|
||||
hint = torch.cat([hint, zeros_mask, zeros_inpaint], dim=1)
|
||||
|
||||
bs, c, t, h, w = hint.shape
|
||||
hidden_states = torch.nn.functional.pad(hint, (0, w % 2, 0, h % 2))
|
||||
orig_shape = hidden_states.shape
|
||||
hidden_states = hidden_states.view(
|
||||
orig_shape[0],
|
||||
orig_shape[1],
|
||||
orig_shape[-3],
|
||||
orig_shape[-2] // 2,
|
||||
2,
|
||||
orig_shape[-1] // 2,
|
||||
2,
|
||||
)
|
||||
hidden_states = hidden_states.permute(0, 2, 3, 5, 1, 4, 6)
|
||||
hidden_states = hidden_states.reshape(
|
||||
bs,
|
||||
t * ((h + 1) // 2) * ((w + 1) // 2),
|
||||
c * 4,
|
||||
)
|
||||
|
||||
expected_in = self.control_img_in.weight.shape[1]
|
||||
cur_in = hidden_states.shape[-1]
|
||||
if cur_in < expected_in:
|
||||
pad = torch.zeros(
|
||||
(hidden_states.shape[0], hidden_states.shape[1], expected_in - cur_in),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
hidden_states = torch.cat([hidden_states, pad], dim=-1)
|
||||
elif cur_in > expected_in:
|
||||
hidden_states = hidden_states[:, :, :expected_in]
|
||||
|
||||
return hidden_states
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
timesteps,
|
||||
context,
|
||||
attention_mask=None,
|
||||
guidance: torch.Tensor = None,
|
||||
hint=None,
|
||||
transformer_options={},
|
||||
base_model=None,
|
||||
**kwargs,
|
||||
):
|
||||
if base_model is None:
|
||||
raise RuntimeError("Qwen Fun ControlNet requires a QwenImage base model at runtime.")
|
||||
|
||||
encoder_hidden_states_mask = attention_mask
|
||||
# Keep attention mask disabled inside Fun control blocks to mirror
|
||||
# VideoX behavior (they rely on seq lengths for RoPE, not masked attention).
|
||||
encoder_hidden_states_mask = None
|
||||
|
||||
hidden_states, img_ids, _ = base_model.process_img(x)
|
||||
hint_tokens = self._process_hint_tokens(hint)
|
||||
if hint_tokens is None:
|
||||
raise RuntimeError("Qwen Fun ControlNet requires a control hint image.")
|
||||
|
||||
if hint_tokens.shape[1] != hidden_states.shape[1]:
|
||||
max_tokens = min(hint_tokens.shape[1], hidden_states.shape[1])
|
||||
hint_tokens = hint_tokens[:, :max_tokens]
|
||||
hidden_states = hidden_states[:, :max_tokens]
|
||||
img_ids = img_ids[:, :max_tokens]
|
||||
|
||||
txt_start = round(
|
||||
max(
|
||||
((x.shape[-1] + (base_model.patch_size // 2)) // base_model.patch_size) // 2,
|
||||
((x.shape[-2] + (base_model.patch_size // 2)) // base_model.patch_size) // 2,
|
||||
)
|
||||
)
|
||||
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = base_model.pe_embedder(ids).to(x.dtype).contiguous()
|
||||
|
||||
hidden_states = base_model.img_in(hidden_states)
|
||||
encoder_hidden_states = base_model.txt_norm(context)
|
||||
encoder_hidden_states = base_model.txt_in(encoder_hidden_states)
|
||||
|
||||
if guidance is not None:
|
||||
guidance = guidance * 1000
|
||||
|
||||
temb = (
|
||||
base_model.time_text_embed(timesteps, hidden_states)
|
||||
if guidance is None
|
||||
else base_model.time_text_embed(timesteps, guidance, hidden_states)
|
||||
)
|
||||
|
||||
c = self.control_img_in(hint_tokens)
|
||||
|
||||
for i, block in enumerate(self.control_blocks):
|
||||
if i == 0:
|
||||
c_in = block.before_proj(c) + hidden_states
|
||||
all_c = []
|
||||
else:
|
||||
all_c = list(torch.unbind(c, dim=0))
|
||||
c_in = all_c.pop(-1)
|
||||
|
||||
encoder_hidden_states, c_out = block(
|
||||
hidden_states=c_in,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
c_skip = block.after_proj(c_out) * self.hint_scale
|
||||
all_c += [c_skip, c_out]
|
||||
c = torch.stack(all_c, dim=0)
|
||||
|
||||
hints = torch.unbind(c, dim=0)[:-1]
|
||||
|
||||
controlnet_block_samples = [None] * self.main_model_double
|
||||
for local_idx, base_idx in enumerate(self.injection_layers):
|
||||
if local_idx < len(hints) and base_idx < len(controlnet_block_samples):
|
||||
controlnet_block_samples[base_idx] = hints[local_idx]
|
||||
|
||||
return {"input": controlnet_block_samples}
|
||||
|
||||
|
||||
class QwenImageControlNetModel(QwenImageTransformer2DModel):
|
||||
|
||||
@ -5,7 +5,7 @@ import comfy.utils
|
||||
def convert_lora_bfl_control(sd): #BFL loras for Flux
|
||||
sd_out = {}
|
||||
for k in sd:
|
||||
k_to = "diffusion_model.{}".format(k.replace(".lora_B.bias", ".diff_b").replace("_norm.scale", "_norm.scale.set_weight"))
|
||||
k_to = "diffusion_model.{}".format(k.replace(".lora_B.bias", ".diff_b").replace("_norm.scale", "_norm.set_weight"))
|
||||
sd_out[k_to] = sd[k]
|
||||
|
||||
sd_out["diffusion_model.img_in.reshape_weight"] = torch.tensor([sd["img_in.lora_B.weight"].shape[0], sd["img_in.lora_A.weight"].shape[1]])
|
||||
|
||||
@ -19,6 +19,12 @@ def count_blocks(state_dict_keys, prefix_string):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def any_suffix_in(keys, prefix, main, suffix_list=[]):
|
||||
for x in suffix_list:
|
||||
if "{}{}{}".format(prefix, main, x) in keys:
|
||||
return True
|
||||
return False
|
||||
|
||||
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
|
||||
context_dim = None
|
||||
use_linear_in_transformer = False
|
||||
@ -186,7 +192,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["meanflow_sum"] = False
|
||||
return dit_config
|
||||
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
|
||||
if any_suffix_in(state_dict_keys, key_prefix, 'double_blocks.0.img_attn.norm.key_norm.', ["weight", "scale"]) and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.norms.0.', ["weight", "scale"])): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
|
||||
dit_config = {}
|
||||
if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["image_model"] = "flux2"
|
||||
@ -241,7 +247,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
|
||||
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
|
||||
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
|
||||
|
||||
if any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.0.norms.0.', ["weight", "scale"]) or any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.norms.0.', ["weight", "scale"]): #Chroma
|
||||
dit_config["image_model"] = "chroma"
|
||||
dit_config["in_channels"] = 64
|
||||
dit_config["out_channels"] = 64
|
||||
@ -249,7 +256,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["out_dim"] = 3072
|
||||
dit_config["hidden_dim"] = 5120
|
||||
dit_config["n_layers"] = 5
|
||||
if f"{key_prefix}nerf_blocks.0.norm.scale" in state_dict_keys: #Chroma Radiance
|
||||
|
||||
if any_suffix_in(state_dict_keys, key_prefix, 'nerf_blocks.0.norm.', ["weight", "scale"]): #Chroma Radiance
|
||||
dit_config["image_model"] = "chroma_radiance"
|
||||
dit_config["in_channels"] = 3
|
||||
dit_config["out_channels"] = 3
|
||||
@ -259,7 +267,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["nerf_depth"] = 4
|
||||
dit_config["nerf_max_freqs"] = 8
|
||||
dit_config["nerf_tile_size"] = 512
|
||||
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
|
||||
dit_config["nerf_final_head_type"] = "conv" if any_suffix_in(state_dict_keys, key_prefix, 'nerf_final_layer_conv.norm.', ["weight", "scale"]) else "linear"
|
||||
dit_config["nerf_embedder_dtype"] = torch.float32
|
||||
if "{}__x0__".format(key_prefix) in state_dict_keys: # x0 pred
|
||||
dit_config["use_x0"] = True
|
||||
@ -268,7 +276,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
else:
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys
|
||||
dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys
|
||||
dit_config["txt_norm"] = any_suffix_in(state_dict_keys, key_prefix, 'txt_norm.', ["weight", "scale"])
|
||||
if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model
|
||||
dit_config["txt_ids_dims"] = [1, 2]
|
||||
|
||||
|
||||
@ -1561,6 +1561,8 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
allocated_size += weight_size
|
||||
vbar.set_watermark_limit(allocated_size)
|
||||
|
||||
move_weight_functions(m, device_to)
|
||||
|
||||
logging.info(f"Model {self.model.__class__.__name__} prepared for dynamic VRAM loading. {allocated_size // (1024 ** 2)}MB Staged. {num_patches} patches attached.")
|
||||
|
||||
self.model.device = device_to
|
||||
@ -1601,6 +1603,8 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
if unpatch_weights:
|
||||
self.partially_unload_ram(1e32)
|
||||
self.partially_unload(None, 1e32)
|
||||
for m in self.model.modules():
|
||||
move_weight_functions(m, device_to)
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
|
||||
assert not force_patch_weights #See above
|
||||
|
||||
@ -171,8 +171,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
|
||||
def process_tokens(self, tokens, device):
|
||||
end_token = self.special_tokens.get("end", None)
|
||||
pad_token = self.special_tokens.get("pad", -1)
|
||||
if end_token is None:
|
||||
cmp_token = self.special_tokens.get("pad", -1)
|
||||
cmp_token = pad_token
|
||||
else:
|
||||
cmp_token = end_token
|
||||
|
||||
@ -186,15 +187,21 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
other_embeds = []
|
||||
eos = False
|
||||
index = 0
|
||||
left_pad = False
|
||||
for y in x:
|
||||
if isinstance(y, numbers.Integral):
|
||||
if eos:
|
||||
token = int(y)
|
||||
if index == 0 and token == pad_token:
|
||||
left_pad = True
|
||||
|
||||
if eos or (left_pad and token == pad_token):
|
||||
attention_mask.append(0)
|
||||
else:
|
||||
attention_mask.append(1)
|
||||
token = int(y)
|
||||
left_pad = False
|
||||
|
||||
tokens_temp += [token]
|
||||
if not eos and token == cmp_token:
|
||||
if not eos and token == cmp_token and not left_pad:
|
||||
if end_token is None:
|
||||
attention_mask[-1] = 0
|
||||
eos = True
|
||||
|
||||
@ -710,6 +710,15 @@ class Flux(supported_models_base.BASE):
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
out_sd = {}
|
||||
for k in list(state_dict.keys()):
|
||||
key_out = k
|
||||
if key_out.endswith("_norm.scale"):
|
||||
key_out = "{}.weight".format(key_out[:-len(".scale")])
|
||||
out_sd[key_out] = state_dict[k]
|
||||
return out_sd
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
@ -898,11 +907,13 @@ class HunyuanVideo(supported_models_base.BASE):
|
||||
key_out = key_out.replace("txt_in.c_embedder.linear_1.", "txt_in.c_embedder.in_layer.").replace("txt_in.c_embedder.linear_2.", "txt_in.c_embedder.out_layer.")
|
||||
key_out = key_out.replace("_mod.linear.", "_mod.lin.").replace("_attn_qkv.", "_attn.qkv.")
|
||||
key_out = key_out.replace("mlp.fc1.", "mlp.0.").replace("mlp.fc2.", "mlp.2.")
|
||||
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.scale").replace("_attn_k_norm.weight", "_attn.norm.key_norm.scale")
|
||||
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.scale").replace(".k_norm.weight", ".norm.key_norm.scale")
|
||||
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.weight").replace("_attn_k_norm.weight", "_attn.norm.key_norm.weight")
|
||||
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.weight").replace(".k_norm.weight", ".norm.key_norm.weight")
|
||||
key_out = key_out.replace("_attn_proj.", "_attn.proj.")
|
||||
key_out = key_out.replace(".modulation.linear.", ".modulation.lin.")
|
||||
key_out = key_out.replace("_in.mlp.2.", "_in.out_layer.").replace("_in.mlp.0.", "_in.in_layer.")
|
||||
if key_out.endswith(".scale"):
|
||||
key_out = "{}.weight".format(key_out[:-len(".scale")])
|
||||
out_sd[key_out] = state_dict[k]
|
||||
return out_sd
|
||||
|
||||
@ -1264,6 +1275,15 @@ class Hunyuan3Dv2(supported_models_base.BASE):
|
||||
|
||||
latent_format = latent_formats.Hunyuan3Dv2
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
out_sd = {}
|
||||
for k in list(state_dict.keys()):
|
||||
key_out = k
|
||||
if key_out.endswith(".scale"):
|
||||
key_out = "{}.weight".format(key_out[:-len(".scale")])
|
||||
out_sd[key_out] = state_dict[k]
|
||||
return out_sd
|
||||
|
||||
def process_unet_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {"": "model."}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
@ -1341,6 +1361,14 @@ class Chroma(supported_models_base.BASE):
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
out_sd = {}
|
||||
for k in list(state_dict.keys()):
|
||||
key_out = k
|
||||
if key_out.endswith(".scale"):
|
||||
key_out = "{}.weight".format(key_out[:-len(".scale")])
|
||||
out_sd[key_out] = state_dict[k]
|
||||
return out_sd
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Chroma(self, device=device)
|
||||
|
||||
@ -10,7 +10,6 @@ import comfy.utils
|
||||
def sample_manual_loop_no_classes(
|
||||
model,
|
||||
ids=None,
|
||||
paddings=[],
|
||||
execution_dtype=None,
|
||||
cfg_scale: float = 2.0,
|
||||
temperature: float = 0.85,
|
||||
@ -36,9 +35,6 @@ def sample_manual_loop_no_classes(
|
||||
|
||||
embeds, attention_mask, num_tokens, embeds_info = model.process_tokens(ids, device)
|
||||
embeds_batch = embeds.shape[0]
|
||||
for i, t in enumerate(paddings):
|
||||
attention_mask[i, :t] = 0
|
||||
attention_mask[i, t:] = 1
|
||||
|
||||
output_audio_codes = []
|
||||
past_key_values = []
|
||||
@ -135,13 +131,11 @@ def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=102
|
||||
pos_pad = (len(negative) - len(positive))
|
||||
positive = [model.special_tokens["pad"]] * pos_pad + positive
|
||||
|
||||
paddings = [pos_pad, neg_pad]
|
||||
ids = [positive, negative]
|
||||
else:
|
||||
paddings = []
|
||||
ids = [positive]
|
||||
|
||||
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
|
||||
return sample_manual_loop_no_classes(model, ids, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
|
||||
|
||||
|
||||
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
@ -25,7 +25,7 @@ def ltxv_te(*args, **kwargs):
|
||||
class Gemma3_12BTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, disable_weights=True, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_left=True, disable_weights=True, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
@ -97,6 +97,7 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
token_weight_pairs = token_weight_pairs["gemma3_12b"]
|
||||
|
||||
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
|
||||
out = out[:, :, -torch.sum(extra["attention_mask"]).item():]
|
||||
out_device = out.device
|
||||
if comfy.model_management.should_use_bf16(self.execution_device):
|
||||
out = out.to(device=self.execution_device, dtype=torch.bfloat16)
|
||||
@ -138,6 +139,7 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
|
||||
token_weight_pairs = token_weight_pairs.get("gemma3_12b", [])
|
||||
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
|
||||
num_tokens = max(num_tokens, 64)
|
||||
return num_tokens * constant * 1024 * 1024
|
||||
|
||||
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
|
||||
@ -675,10 +675,10 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
|
||||
"ff_context.linear_in.bias": "txt_mlp.0.bias",
|
||||
"ff_context.linear_out.weight": "txt_mlp.2.weight",
|
||||
"ff_context.linear_out.bias": "txt_mlp.2.bias",
|
||||
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
|
||||
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
|
||||
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
|
||||
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
|
||||
"attn.norm_q.weight": "img_attn.norm.query_norm.weight",
|
||||
"attn.norm_k.weight": "img_attn.norm.key_norm.weight",
|
||||
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.weight",
|
||||
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.weight",
|
||||
}
|
||||
|
||||
for k in block_map:
|
||||
@ -701,8 +701,8 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
|
||||
"norm.linear.bias": "modulation.lin.bias",
|
||||
"proj_out.weight": "linear2.weight",
|
||||
"proj_out.bias": "linear2.bias",
|
||||
"attn.norm_q.weight": "norm.query_norm.scale",
|
||||
"attn.norm_k.weight": "norm.key_norm.scale",
|
||||
"attn.norm_q.weight": "norm.query_norm.weight",
|
||||
"attn.norm_k.weight": "norm.key_norm.weight",
|
||||
"attn.to_qkv_mlp_proj.weight": "linear1.weight", # Flux 2
|
||||
"attn.to_out.weight": "linear2.weight", # Flux 2
|
||||
}
|
||||
|
||||
@ -14,7 +14,6 @@ SERVER_FEATURE_FLAGS: dict[str, Any] = {
|
||||
"supports_preview_metadata": True,
|
||||
"max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes
|
||||
"extension": {"manager": {"supports_v4": True}},
|
||||
"node_replacements": True,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -10,7 +10,6 @@ from ._input_impl import VideoFromFile, VideoFromComponents
|
||||
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL, File3D
|
||||
from . import _io_public as io
|
||||
from . import _ui_public as ui
|
||||
from . import _node_replace_public as node_replace
|
||||
from comfy_execution.utils import get_executing_context
|
||||
from comfy_execution.progress import get_progress_state, PreviewImageTuple
|
||||
from PIL import Image
|
||||
@ -22,14 +21,6 @@ class ComfyAPI_latest(ComfyAPIBase):
|
||||
VERSION = "latest"
|
||||
STABLE = False
|
||||
|
||||
class NodeReplacement(ProxiedSingleton):
|
||||
async def register(self, node_replace: 'node_replace.NodeReplace') -> None:
|
||||
"""Register a node replacement mapping."""
|
||||
from server import PromptServer
|
||||
PromptServer.instance.node_replace_manager.register(node_replace)
|
||||
|
||||
node_replacement: NodeReplacement
|
||||
|
||||
class Execution(ProxiedSingleton):
|
||||
async def set_progress(
|
||||
self,
|
||||
@ -140,5 +131,4 @@ __all__ = [
|
||||
"IO",
|
||||
"ui",
|
||||
"UI",
|
||||
"node_replace",
|
||||
]
|
||||
|
||||
@ -1,69 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, TypedDict
|
||||
|
||||
|
||||
class InputMapOldId(TypedDict):
|
||||
"""Map an old node input to a new node input by ID."""
|
||||
new_id: str
|
||||
old_id: str
|
||||
|
||||
|
||||
class InputMapSetValue(TypedDict):
|
||||
"""Set a specific value for a new node input."""
|
||||
new_id: str
|
||||
set_value: Any
|
||||
|
||||
|
||||
InputMap = InputMapOldId | InputMapSetValue
|
||||
"""
|
||||
Input mapping for node replacement. Type is inferred by dictionary keys:
|
||||
- {"new_id": str, "old_id": str} - maps old input to new input
|
||||
- {"new_id": str, "set_value": Any} - sets a specific value for new input
|
||||
"""
|
||||
|
||||
|
||||
class OutputMap(TypedDict):
|
||||
"""Map outputs of node replacement via indexes."""
|
||||
new_idx: int
|
||||
old_idx: int
|
||||
|
||||
|
||||
class NodeReplace:
|
||||
"""
|
||||
Defines a possible node replacement, mapping inputs and outputs of the old node to the new node.
|
||||
|
||||
Also supports assigning specific values to the input widgets of the new node.
|
||||
|
||||
Args:
|
||||
new_node_id: The class name of the new replacement node.
|
||||
old_node_id: The class name of the deprecated node.
|
||||
old_widget_ids: Ordered list of input IDs for widgets that may not have an input slot
|
||||
connected. The workflow JSON stores widget values by their relative position index,
|
||||
not by ID. This list maps those positional indexes to input IDs, enabling the
|
||||
replacement system to correctly identify widget values during node migration.
|
||||
input_mapping: List of input mappings from old node to new node.
|
||||
output_mapping: List of output mappings from old node to new node.
|
||||
"""
|
||||
def __init__(self,
|
||||
new_node_id: str,
|
||||
old_node_id: str,
|
||||
old_widget_ids: list[str] | None=None,
|
||||
input_mapping: list[InputMap] | None=None,
|
||||
output_mapping: list[OutputMap] | None=None,
|
||||
):
|
||||
self.new_node_id = new_node_id
|
||||
self.old_node_id = old_node_id
|
||||
self.old_widget_ids = old_widget_ids
|
||||
self.input_mapping = input_mapping
|
||||
self.output_mapping = output_mapping
|
||||
|
||||
def as_dict(self):
|
||||
"""Create serializable representation of the node replacement."""
|
||||
return {
|
||||
"new_node_id": self.new_node_id,
|
||||
"old_node_id": self.old_node_id,
|
||||
"old_widget_ids": self.old_widget_ids,
|
||||
"input_mapping": list(self.input_mapping) if self.input_mapping else None,
|
||||
"output_mapping": list(self.output_mapping) if self.output_mapping else None,
|
||||
}
|
||||
@ -1 +0,0 @@
|
||||
from ._node_replace import * # noqa: F403
|
||||
@ -6,7 +6,7 @@ from comfy_api.latest import (
|
||||
)
|
||||
from typing import Type, TYPE_CHECKING
|
||||
from comfy_api.internal.async_to_sync import create_sync_class
|
||||
from comfy_api.latest import io, ui, IO, UI, ComfyExtension, node_replace #noqa: F401
|
||||
from comfy_api.latest import io, ui, IO, UI, ComfyExtension #noqa: F401
|
||||
|
||||
|
||||
class ComfyAPIAdapter_v0_0_2(ComfyAPI_latest):
|
||||
@ -46,5 +46,4 @@ __all__ = [
|
||||
"IO",
|
||||
"ui",
|
||||
"UI",
|
||||
"node_replace",
|
||||
]
|
||||
|
||||
@ -45,17 +45,55 @@ class BriaEditImageRequest(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
class BriaRemoveBackgroundRequest(BaseModel):
|
||||
image: str = Field(...)
|
||||
sync: bool = Field(False)
|
||||
visual_input_content_moderation: bool = Field(
|
||||
False, description="If true, returns 422 on input image moderation failure."
|
||||
)
|
||||
visual_output_content_moderation: bool = Field(
|
||||
False, description="If true, returns 422 on visual output moderation failure."
|
||||
)
|
||||
seed: int = Field(...)
|
||||
|
||||
|
||||
class BriaStatusResponse(BaseModel):
|
||||
request_id: str = Field(...)
|
||||
status_url: str = Field(...)
|
||||
warning: str | None = Field(None)
|
||||
|
||||
|
||||
class BriaResult(BaseModel):
|
||||
class BriaRemoveBackgroundResult(BaseModel):
|
||||
image_url: str = Field(...)
|
||||
|
||||
|
||||
class BriaRemoveBackgroundResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
result: BriaRemoveBackgroundResult | None = Field(None)
|
||||
|
||||
|
||||
class BriaImageEditResult(BaseModel):
|
||||
structured_prompt: str = Field(...)
|
||||
image_url: str = Field(...)
|
||||
|
||||
|
||||
class BriaResponse(BaseModel):
|
||||
class BriaImageEditResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
result: BriaResult | None = Field(None)
|
||||
result: BriaImageEditResult | None = Field(None)
|
||||
|
||||
|
||||
class BriaRemoveVideoBackgroundRequest(BaseModel):
|
||||
video: str = Field(...)
|
||||
background_color: str = Field(default="transparent", description="Background color for the output video.")
|
||||
output_container_and_codec: str = Field(...)
|
||||
preserve_audio: bool = Field(True)
|
||||
seed: int = Field(...)
|
||||
|
||||
|
||||
class BriaRemoveVideoBackgroundResult(BaseModel):
|
||||
video_url: str = Field(...)
|
||||
|
||||
|
||||
class BriaRemoveVideoBackgroundResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
result: BriaRemoveVideoBackgroundResult | None = Field(None)
|
||||
|
||||
@ -3,7 +3,11 @@ from typing_extensions import override
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api_nodes.apis.bria import (
|
||||
BriaEditImageRequest,
|
||||
BriaResponse,
|
||||
BriaRemoveBackgroundRequest,
|
||||
BriaRemoveBackgroundResponse,
|
||||
BriaRemoveVideoBackgroundRequest,
|
||||
BriaRemoveVideoBackgroundResponse,
|
||||
BriaImageEditResponse,
|
||||
BriaStatusResponse,
|
||||
InputModerationSettings,
|
||||
)
|
||||
@ -11,10 +15,12 @@ from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
convert_mask_to_image,
|
||||
download_url_to_image_tensor,
|
||||
get_number_of_images,
|
||||
download_url_to_video_output,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
upload_image_to_comfyapi,
|
||||
upload_video_to_comfyapi,
|
||||
validate_video_duration,
|
||||
)
|
||||
|
||||
|
||||
@ -73,21 +79,15 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
IO.DynamicCombo.Input(
|
||||
"moderation",
|
||||
options=[
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input(
|
||||
"prompt_content_moderation", default=False
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"visual_input_moderation", default=False
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"visual_output_moderation", default=True
|
||||
),
|
||||
IO.Boolean.Input("prompt_content_moderation", default=False),
|
||||
IO.Boolean.Input("visual_input_moderation", default=False),
|
||||
IO.Boolean.Input("visual_output_moderation", default=True),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="Moderation settings",
|
||||
),
|
||||
@ -127,50 +127,26 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
mask: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
if not prompt and not structured_prompt:
|
||||
raise ValueError(
|
||||
"One of prompt or structured_prompt is required to be non-empty."
|
||||
)
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Exactly one input image is required.")
|
||||
raise ValueError("One of prompt or structured_prompt is required to be non-empty.")
|
||||
mask_url = None
|
||||
if mask is not None:
|
||||
mask_url = (
|
||||
await upload_images_to_comfyapi(
|
||||
cls,
|
||||
convert_mask_to_image(mask),
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
wait_label="Uploading mask",
|
||||
)
|
||||
)[0]
|
||||
mask_url = await upload_image_to_comfyapi(cls, convert_mask_to_image(mask), wait_label="Uploading mask")
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="proxy/bria/v2/image/edit", method="POST"),
|
||||
data=BriaEditImageRequest(
|
||||
instruction=prompt if prompt else None,
|
||||
structured_instruction=structured_prompt if structured_prompt else None,
|
||||
images=await upload_images_to_comfyapi(
|
||||
cls,
|
||||
image,
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
wait_label="Uploading image",
|
||||
),
|
||||
images=[await upload_image_to_comfyapi(cls, image, wait_label="Uploading image")],
|
||||
mask=mask_url,
|
||||
negative_prompt=negative_prompt if negative_prompt else None,
|
||||
guidance_scale=guidance_scale,
|
||||
seed=seed,
|
||||
model_version=model,
|
||||
steps_num=steps,
|
||||
prompt_content_moderation=moderation.get(
|
||||
"prompt_content_moderation", False
|
||||
),
|
||||
visual_input_content_moderation=moderation.get(
|
||||
"visual_input_moderation", False
|
||||
),
|
||||
visual_output_content_moderation=moderation.get(
|
||||
"visual_output_moderation", False
|
||||
),
|
||||
prompt_content_moderation=moderation.get("prompt_content_moderation", False),
|
||||
visual_input_content_moderation=moderation.get("visual_input_moderation", False),
|
||||
visual_output_content_moderation=moderation.get("visual_output_moderation", False),
|
||||
),
|
||||
response_model=BriaStatusResponse,
|
||||
)
|
||||
@ -178,7 +154,7 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/bria/v2/status/{response.request_id}"),
|
||||
status_extractor=lambda r: r.status,
|
||||
response_model=BriaResponse,
|
||||
response_model=BriaImageEditResponse,
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_image_tensor(response.result.image_url),
|
||||
@ -186,11 +162,167 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
)
|
||||
|
||||
|
||||
class BriaRemoveImageBackground(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="BriaRemoveImageBackground",
|
||||
display_name="Bria Remove Image Background",
|
||||
category="api node/image/Bria",
|
||||
description="Remove the background from an image using Bria RMBG 2.0.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.DynamicCombo.Input(
|
||||
"moderation",
|
||||
options=[
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input("visual_input_moderation", default=False),
|
||||
IO.Boolean.Input("visual_output_moderation", default=True),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="Moderation settings",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[IO.Image.Output()],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.018}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: Input.Image,
|
||||
moderation: dict,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/bria/v2/image/edit/remove_background", method="POST"),
|
||||
data=BriaRemoveBackgroundRequest(
|
||||
image=await upload_image_to_comfyapi(cls, image, wait_label="Uploading image"),
|
||||
sync=False,
|
||||
visual_input_content_moderation=moderation.get("visual_input_moderation", False),
|
||||
visual_output_content_moderation=moderation.get("visual_output_moderation", False),
|
||||
seed=seed,
|
||||
),
|
||||
response_model=BriaStatusResponse,
|
||||
)
|
||||
response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/bria/v2/status/{response.request_id}"),
|
||||
status_extractor=lambda r: r.status,
|
||||
response_model=BriaRemoveBackgroundResponse,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(response.result.image_url))
|
||||
|
||||
|
||||
class BriaRemoveVideoBackground(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="BriaRemoveVideoBackground",
|
||||
display_name="Bria Remove Video Background",
|
||||
category="api node/video/Bria",
|
||||
description="Remove the background from a video using Bria. ",
|
||||
inputs=[
|
||||
IO.Video.Input("video"),
|
||||
IO.Combo.Input(
|
||||
"background_color",
|
||||
options=[
|
||||
"Black",
|
||||
"White",
|
||||
"Gray",
|
||||
"Red",
|
||||
"Green",
|
||||
"Blue",
|
||||
"Yellow",
|
||||
"Cyan",
|
||||
"Magenta",
|
||||
"Orange",
|
||||
],
|
||||
tooltip="Background color for the output video.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.14,"format":{"suffix":"/second"}}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
video: Input.Video,
|
||||
background_color: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
validate_video_duration(video, max_duration=60.0)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/bria/v2/video/edit/remove_background", method="POST"),
|
||||
data=BriaRemoveVideoBackgroundRequest(
|
||||
video=await upload_video_to_comfyapi(cls, video),
|
||||
background_color=background_color,
|
||||
output_container_and_codec="mp4_h264",
|
||||
seed=seed,
|
||||
),
|
||||
response_model=BriaStatusResponse,
|
||||
)
|
||||
response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/bria/v2/status/{response.request_id}"),
|
||||
status_extractor=lambda r: r.status,
|
||||
response_model=BriaRemoveVideoBackgroundResponse,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.result.video_url))
|
||||
|
||||
|
||||
class BriaExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
BriaImageEditNode,
|
||||
BriaRemoveImageBackground,
|
||||
BriaRemoveVideoBackground,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -57,7 +57,7 @@ def tensor_to_bytesio(
|
||||
image: torch.Tensor,
|
||||
*,
|
||||
total_pixels: int | None = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
mime_type: str | None = "image/png",
|
||||
) -> BytesIO:
|
||||
"""Converts a torch.Tensor image to a named BytesIO object.
|
||||
|
||||
|
||||
@ -655,7 +655,6 @@ class BatchImagesMasksLatentsNode(io.ComfyNode):
|
||||
batched = batch_masks(values)
|
||||
return io.NodeOutput(batched)
|
||||
|
||||
|
||||
class PostProcessingExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
|
||||
@ -1,103 +0,0 @@
|
||||
from comfy_api.latest import ComfyExtension, io, node_replace
|
||||
from server import PromptServer
|
||||
|
||||
def _register(nr: node_replace.NodeReplace):
|
||||
"""Helper to register replacements via PromptServer."""
|
||||
PromptServer.instance.node_replace_manager.register(nr)
|
||||
|
||||
async def register_replacements():
|
||||
"""Register all built-in node replacements."""
|
||||
register_replacements_longeredge()
|
||||
register_replacements_batchimages()
|
||||
register_replacements_upscaleimage()
|
||||
register_replacements_controlnet()
|
||||
register_replacements_load3d()
|
||||
register_replacements_preview3d()
|
||||
register_replacements_svdimg2vid()
|
||||
register_replacements_conditioningavg()
|
||||
|
||||
def register_replacements_longeredge():
|
||||
# No dynamic inputs here
|
||||
_register(node_replace.NodeReplace(
|
||||
new_node_id="ImageScaleToMaxDimension",
|
||||
old_node_id="ResizeImagesByLongerEdge",
|
||||
old_widget_ids=["longer_edge"],
|
||||
input_mapping=[
|
||||
{"new_id": "image", "old_id": "images"},
|
||||
{"new_id": "largest_size", "old_id": "longer_edge"},
|
||||
{"new_id": "upscale_method", "set_value": "lanczos"},
|
||||
],
|
||||
# just to test the frontend output_mapping code, does nothing really here
|
||||
output_mapping=[{"new_idx": 0, "old_idx": 0}],
|
||||
))
|
||||
|
||||
def register_replacements_batchimages():
|
||||
# BatchImages node uses Autogrow
|
||||
_register(node_replace.NodeReplace(
|
||||
new_node_id="BatchImagesNode",
|
||||
old_node_id="ImageBatch",
|
||||
input_mapping=[
|
||||
{"new_id": "images.image0", "old_id": "image1"},
|
||||
{"new_id": "images.image1", "old_id": "image2"},
|
||||
],
|
||||
))
|
||||
|
||||
def register_replacements_upscaleimage():
|
||||
# ResizeImageMaskNode uses DynamicCombo
|
||||
_register(node_replace.NodeReplace(
|
||||
new_node_id="ResizeImageMaskNode",
|
||||
old_node_id="ImageScaleBy",
|
||||
old_widget_ids=["upscale_method", "scale_by"],
|
||||
input_mapping=[
|
||||
{"new_id": "input", "old_id": "image"},
|
||||
{"new_id": "resize_type", "set_value": "scale by multiplier"},
|
||||
{"new_id": "resize_type.multiplier", "old_id": "scale_by"},
|
||||
{"new_id": "scale_method", "old_id": "upscale_method"},
|
||||
],
|
||||
))
|
||||
|
||||
def register_replacements_controlnet():
|
||||
# T2IAdapterLoader → ControlNetLoader
|
||||
_register(node_replace.NodeReplace(
|
||||
new_node_id="ControlNetLoader",
|
||||
old_node_id="T2IAdapterLoader",
|
||||
input_mapping=[
|
||||
{"new_id": "control_net_name", "old_id": "t2i_adapter_name"},
|
||||
],
|
||||
))
|
||||
|
||||
def register_replacements_load3d():
|
||||
# Load3DAnimation merged into Load3D
|
||||
_register(node_replace.NodeReplace(
|
||||
new_node_id="Load3D",
|
||||
old_node_id="Load3DAnimation",
|
||||
))
|
||||
|
||||
def register_replacements_preview3d():
|
||||
# Preview3DAnimation merged into Preview3D
|
||||
_register(node_replace.NodeReplace(
|
||||
new_node_id="Preview3D",
|
||||
old_node_id="Preview3DAnimation",
|
||||
))
|
||||
|
||||
def register_replacements_svdimg2vid():
|
||||
# Typo fix: SDV → SVD
|
||||
_register(node_replace.NodeReplace(
|
||||
new_node_id="SVD_img2vid_Conditioning",
|
||||
old_node_id="SDV_img2vid_Conditioning",
|
||||
))
|
||||
|
||||
def register_replacements_conditioningavg():
|
||||
# Typo fix: trailing space in node name
|
||||
_register(node_replace.NodeReplace(
|
||||
new_node_id="ConditioningAverage",
|
||||
old_node_id="ConditioningAverage ",
|
||||
))
|
||||
|
||||
class NodeReplacementsExtension(ComfyExtension):
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return []
|
||||
|
||||
async def comfy_entrypoint() -> NodeReplacementsExtension:
|
||||
await register_replacements()
|
||||
return NodeReplacementsExtension()
|
||||
@ -1035,7 +1035,7 @@ class TrainLoraNode(io.ComfyNode):
|
||||
io.Boolean.Input(
|
||||
"offloading",
|
||||
default=False,
|
||||
tooltip="Depth level for gradient checkpointing.",
|
||||
tooltip="Offload the Model to RAM. Requires Bypass Mode.",
|
||||
),
|
||||
io.Combo.Input(
|
||||
"existing_lora",
|
||||
@ -1124,6 +1124,15 @@ class TrainLoraNode(io.ComfyNode):
|
||||
lora_dtype = node_helpers.string_to_torch_dtype(lora_dtype)
|
||||
mp.set_model_compute_dtype(dtype)
|
||||
|
||||
if mp.is_dynamic():
|
||||
if not bypass_mode:
|
||||
logging.info("Training MP is Dynamic - forcing bypass mode. Start comfy with --highvram to force weight diff mode")
|
||||
bypass_mode = True
|
||||
offloading = True
|
||||
elif offloading:
|
||||
if not bypass_mode:
|
||||
logging.info("Training Offload selected - forcing bypass mode. Set bypass = True to remove this message")
|
||||
|
||||
# Prepare latents and compute counts
|
||||
latents, num_images, multi_res = _prepare_latents_and_count(
|
||||
latents, dtype, bucket_mode
|
||||
|
||||
1
nodes.py
1
nodes.py
@ -2435,7 +2435,6 @@ async def init_builtin_extra_nodes():
|
||||
"nodes_lora_debug.py",
|
||||
"nodes_color.py",
|
||||
"nodes_toolkit.py",
|
||||
"nodes_replacements.py",
|
||||
]
|
||||
|
||||
import_failed = []
|
||||
|
||||
@ -40,7 +40,6 @@ from app.user_manager import UserManager
|
||||
from app.model_manager import ModelFileManager
|
||||
from app.custom_node_manager import CustomNodeManager
|
||||
from app.subgraph_manager import SubgraphManager
|
||||
from app.node_replace_manager import NodeReplaceManager
|
||||
from typing import Optional, Union
|
||||
from api_server.routes.internal.internal_routes import InternalRoutes
|
||||
from protocol import BinaryEventTypes
|
||||
@ -205,7 +204,6 @@ class PromptServer():
|
||||
self.model_file_manager = ModelFileManager()
|
||||
self.custom_node_manager = CustomNodeManager()
|
||||
self.subgraph_manager = SubgraphManager()
|
||||
self.node_replace_manager = NodeReplaceManager()
|
||||
self.internal_routes = InternalRoutes(self)
|
||||
self.supports = ["custom_nodes_from_web"]
|
||||
self.prompt_queue = execution.PromptQueue(self)
|
||||
@ -889,8 +887,6 @@ class PromptServer():
|
||||
if "partial_execution_targets" in json_data:
|
||||
partial_execution_targets = json_data["partial_execution_targets"]
|
||||
|
||||
self.node_replace_manager.apply_replacements(prompt)
|
||||
|
||||
valid = await execution.validate_prompt(prompt_id, prompt, partial_execution_targets)
|
||||
extra_data = {}
|
||||
if "extra_data" in json_data:
|
||||
@ -999,7 +995,6 @@ class PromptServer():
|
||||
self.model_file_manager.add_routes(self.routes)
|
||||
self.custom_node_manager.add_routes(self.routes, self.app, nodes.LOADED_MODULE_DIRS.items())
|
||||
self.subgraph_manager.add_routes(self.routes, nodes.LOADED_MODULE_DIRS.items())
|
||||
self.node_replace_manager.add_routes(self.routes)
|
||||
self.app.add_subapp('/internal', self.internal_routes.get_app())
|
||||
|
||||
# Prefix every route with /api for easier matching for delegation.
|
||||
|
||||
Reference in New Issue
Block a user