Compare commits

...

239 Commits

Author SHA1 Message Date
8afb19d904 update CITATION.cff 2025-10-28 23:42:37 -04:00
b2ca083d2b Fixed compilation error when using StreamK scheduler + PDL. (#2686) 2025-10-21 23:11:14 -04:00
b1d6e2c9b3 v4.3 update. (#2709)
* v4.3 update.

* Update the cute_dsl_api changelog's doc link

* Update version to 4.3.0

* Update the example link

* Update doc to encourage user to install DSL from requirements.txt

---------

Co-authored-by: Larry Wu <larwu@nvidia.com>
2025-10-21 14:26:30 -04:00
e6e2cc29f5 fix (#2684) 2025-10-15 14:46:38 -04:00
c6aeb9179c Update pyproject.toml
update version to 4.2.1
2025-09-24 01:18:51 -04:00
95a5ff14c0 Update CHANGELOG.md
format change
2025-09-23 17:33:00 -04:00
fb8b43ef05 Merge pull request #2669 from NVIDIA/421_update
4.2.1 update
2025-09-23 14:02:29 -07:00
f874df19ac 4.2.1 update 2025-09-23 13:45:13 -07:00
7a6d4ee099 v4.2.1 update. (#2666) 2025-09-23 13:25:43 -04:00
GTO
2b8dff1f90 Fix bfloat16 epsilon (#2607)
* Fix bfloat16 epsilon

* just use constants

---------

Co-authored-by: Konstantin <konstantin@MacBook-Air.local>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-09-21 23:43:59 -04:00
fd0312ddf6 Remove duplicate function calls (#1584) 2025-09-21 23:16:59 -04:00
64579189ec Feature/add bottom causal mask (#2480)
* Rebase to latest

* update

* upd

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* Update fmha_fusion.hpp

* Update fmha_fusion.hpp

fixed flipped logic for isQBegin

* Update fmha_fusion.hpp

* Avoid use of booleans

The current expression is confusing

* fmt

* Update fmha_fusion.hpp

Reproduce error/fix with: 
./77_blackwell_fmha_fp16 --verify --b=1 --q=1013 --k=1024 --h=1 --h_k=1 --mask=causal --causal-type=qend

* add test, format

---------

Co-authored-by: Richard Cai <ricai@nvidia.com>
Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2025-09-18 17:11:23 -04:00
b234a8c024 Rename python/cutlass to python/cutlass_cppgen (#2652) 2025-09-18 14:26:57 -04:00
74825181f2 Remove old-version dsl examples. (#2644) 2025-09-17 22:23:30 -04:00
8825e8be4f Add required changes for github pipeline. (#2648) 2025-09-17 22:22:45 -04:00
wbn
7817e47154 Fxied a typo in pipeline descript docs. (#2623) 2025-09-15 22:32:27 -04:00
25ccb875b8 Fix: a calculation error in the example of dividing out in the 02_layout_algebra doc (#2635) 2025-09-15 22:31:33 -04:00
29c1ad704a Fix doc cute 03_tensor.md link typo (#2627)
* Update 03_tensor.md fix link typo

change path to relative path

* Update 03_tensor.md

---------

Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2025-09-15 22:26:43 -04:00
57e3cfb47a doc change for 4.2 (#2639)
* doc change

* fix broken links

* ragged gemm doc update

* move around texts about moe gemm
2025-09-15 22:02:45 -04:00
e7e0adddac Update version.h
change version number to 4.2
2025-09-15 12:40:58 -04:00
6a35b4d22f v4.2 tag release. (#2638) 2025-09-15 12:21:53 -04:00
56f0718a97 ex77 backwards GQA (#2556)
* bwd GQA init

* Update examples/77_blackwell_fmha/77_blackwell_fmha_bwd.cu

* ref kernel type conversion fix

---------

Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2025-09-09 12:53:28 -04:00
76c96b0be3 Fix incorrect shapes in copy_atom doc comments. (#2575) 2025-09-04 16:57:24 -07:00
d98e7bf7ce Fix comment in mma_atom.hpp (#2579) 2025-09-04 16:56:39 -07:00
b6ccf34aef Fix Copy_Atom type mismatch in sgemm_sm80.cu (#2582) 2025-09-04 16:56:17 -07:00
2288c0c901 Fix bugs in matrix.h (#2598) 2025-09-04 16:55:11 -07:00
b2dd65dc86 more robust imports in heuristics.py and heuristics_provider.py (#2596) 2025-08-28 22:32:55 -04:00
496654bf2c Fix sm100 gemm wrong static constexpr that breaks compilation on Windows (#2167)
* Fix a sm100 gemm wrong defined static constexpr that breaks compilation on Windows

* Fix a sm100 gemm wrong defined static constexpr that breaks compilation on Windows

* More Windows fixes

Signed-off-by: Javier <25750030+SystemPanic@users.noreply.github.com>

* Revert "More Windows fixes"

This reverts commit 2e8cfc1382.

---------

Signed-off-by: Javier <25750030+SystemPanic@users.noreply.github.com>
2025-08-28 22:13:00 -04:00
9ca7e877b2 fix gqa issue for blackwell fmha.py (#2599) 2025-08-28 11:15:20 -04:00
a49a78ffef v4.2 release. (#2587)
* Fix default cluster callback values to 1 to avoid profiler failure when these values are not set in command line.

* v4.2 release.
2025-08-22 18:11:24 -04:00
11cad1f67b fix a typo. (#2561) 2025-08-19 22:23:09 -04:00
931359cec1 Fix typo in functional.h (#2571) 2025-08-19 22:22:31 -04:00
42e7c546c4 Add movmatrix support (movmatrix.sync.aligned.m8n8.trans.b16) (#2562) 2025-08-19 22:22:02 -04:00
ec18e8043b Make swizzle in pycute work (#2553) 2025-08-19 22:21:00 -04:00
5b76420d6a [DOC] Add more exposition to composition example (#2536)
* Add more exposition to composition example

* Apply suggestions from code review

Co-authored-by: Cris Cecka <ccecka@users.noreply.github.com>

---------

Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
Co-authored-by: Cris Cecka <ccecka@users.noreply.github.com>
2025-08-11 22:20:36 -04:00
19772cd63e Fix typo in smem_allocator.py (#2517) 2025-08-10 22:44:22 -04:00
052afcd314 fix typo (#2529) 2025-08-10 22:44:02 -04:00
86cf63e2d4 NIT: Grammar (#2537) 2025-08-10 22:42:45 -04:00
a267d47f9b Update batched_gemm.cu (#2538) 2025-08-10 22:42:21 -04:00
9e6ab77d27 Fix a copy error in the SM70 main loop when loading data from smem to rmem (#2540) 2025-08-10 22:42:01 -04:00
d0eada85a3 Support both CUDA 12 and 13 cccl header locations (#2543) 2025-08-10 22:41:25 -04:00
23139309e9 Fix incorrect K dim in CuTe MMA Atom doc. (#2544) 2025-08-10 22:40:56 -04:00
6dd13d4278 Facebook:This commit makes its files safe for use with -Wimplicit-fallthrough. (#2324) 2025-07-31 20:55:19 -04:00
3b054767b3 Fix typo (#2514) 2025-07-30 22:14:54 -04:00
6fb5e667c1 [Doc fix] incorrect compute cap. for Blackwell RTX (#2511)
Blackwell RTX is compute capability 12.0 (SM120) but incorrectly listed
as SM100 in the README.
2025-07-30 22:14:13 -04:00
6c891db9f6 Fix epilogue:🧵:Convert cannot be used with cute::collective::DefaultEpilogue. (#2333) 2025-07-30 22:12:53 -04:00
da47886e34 Fix example bug (#2351) 2025-07-30 22:12:33 -04:00
26b7450023 support fp16 accmulator for sm89 fp8 mma (#2378)
* add support for sm89 in cute and the unit tests

* support fp16 accmulator for sm89 fp8 mma

* format code
2025-07-30 22:12:08 -04:00
a39cf6b511 Fix example in CuTe tutorials (#2416) 2025-07-30 22:11:47 -04:00
f09045d660 Corrected minor nit in mma_traits.hpp (#2447)
* Corrected minor nit in mma_traits.hpp

The entry and descriptions were jumbled up.

* Update mma_traits.hpp

* Update mma_traits.hpp
2025-07-30 22:11:23 -04:00
84a27b3926 fix: examples/cute/tutorial/blackwell/04_mma_tma_2sm_sm100.cu GridDim miscalculated (#2492)
* fix: examples/cute/tutorial/blackwell/04_mma_tma_2sm_sm100.cu Launch dimGrid error

* feat: add cta tiler

* Update examples/cute/tutorial/blackwell/04_mma_tma_2sm_sm100.cu

use cluster_layout_vmnk instead of cta_tiler

Co-authored-by: Junkai-Wu <junkaiw@nvidia.com>

* feat: remove cta_tiler

---------

Co-authored-by: qinghongzeng <qinghongzeng@deeproute.ai>
Co-authored-by: Junkai-Wu <junkaiw@nvidia.com>
2025-07-30 22:11:04 -04:00
e093b4f691 Fix tutorial comment in sgemm_1.cu: use tCrC instead of tCsA in axpby explanation (#2448) 2025-07-30 22:09:55 -04:00
664c4f7b3e Update CUTLASS version to 4.1
Update CUTLASS version to 4.1.
2025-07-26 20:11:04 -04:00
0e026982ce Example 77 add blackwell fmha bwd for MLA shape (#2466)
* Update examples/77_blackwell_fmha/device/fmha_device_bwd.hpp

Co-authored-by: Vijay Thakkar <vijaythakkar@me.com>

* bug fix & use existing value rather than pass one more argument to support different dim in bwd_convert

* Fix casual mask cnt when IsQBegin==false

* bug fix in casual mask backward

* code sync

---------

Co-authored-by: Vijay Thakkar <vijaythakkar@me.com>
2025-07-24 18:41:11 -04:00
9a9a579714 Merge pull request #2489 from NVIDIA/update_workflow_script
Support "CuTe DSL" auto-labeling in workflow
2025-07-23 15:33:43 +08:00
51d730b8be Support "CuTe DSL" auto-labeling in workflow 2025-07-23 00:28:01 -07:00
6c0c8b7484 1. Update bug/feature report template to add component selection. (#2485)
2. Add workflow to apply component label automatically
2025-07-22 12:38:03 -04:00
e51efbfe18 Update CHANGELOG.md 2025-07-21 22:09:56 -04:00
fd6cfe1ed0 v4.1 release update v2. (#2481) 2025-07-21 22:03:55 -04:00
9baa06dd57 Add Blackwell MLA forward (shape: d=192, dv=128) implementation in example_77 (#2472) 2025-07-18 01:27:48 -04:00
ebe98c549a cache procedural_name in GemmOperation (#2317) 2025-07-16 22:25:02 -04:00
9892624b66 Fix typos in the text (#2417) 2025-07-16 21:51:12 -04:00
a1aaf2300a v4.1 release 2025-07-03 08:07:53 -04:00
b995f93317 4.0 doc change (#2425) 2025-06-27 09:35:06 -04:00
889ff20648 v4.0 update v2. (#2420)
* Ex77 forward kernel fix.
2025-06-25 12:56:25 -04:00
dc4817921e v4.0 update. (#2398)
* Ex77 fix.
2025-06-12 09:10:29 -04:00
5c6bca0441 Update requirements.txt (#2390)
Remove the dev suffix in the wheel version
2025-06-10 02:31:49 -04:00
c2ad7c5b20 fix link in readme (#2379) 2025-06-07 07:38:38 -04:00
cc23f6d1e9 fix link (#2377) 2025-06-07 06:00:39 -04:00
5a287538c2 "Update CHANGELOG for 4.0 tagging" (#2374) 2025-06-06 10:07:36 -04:00
8bdbfca682 v4.0 update. (#2371) 2025-06-06 02:39:20 -04:00
2e2af190bd Revert "[ex77] fix mla split; add fwd lse; add bwd varlen (#2366)" (#2370)
This reverts commit f12b1d75c9.
2025-06-05 23:14:57 -04:00
f12b1d75c9 [ex77] fix mla split; add fwd lse; add bwd varlen (#2366) 2025-06-05 18:39:46 -04:00
b244379d9b Merge pull request #2359 from NVIDIA/oss_ci
Initial Workflow Definition for blossom-ci support on CUTLASS GitHub
2025-06-03 14:04:35 -07:00
9d165a3b8e Handle get_masked_trip_count for small length in fmha example (#2292)
* handle get_masked_trip_count for small length

* Update examples/77_blackwell_fmha/collective/fmha_fusion.hpp

Co-authored-by: Vijay Thakkar <vijaythakkar@me.com>

* Update examples/77_blackwell_fmha/collective/fmha_fusion.hpp

Co-authored-by: Vijay Thakkar <vijaythakkar@me.com>

---------

Co-authored-by: Vijay Thakkar <vijaythakkar@me.com>
2025-05-30 22:51:18 -04:00
b9b110a9ea Correct divmod order in example 77 (blackwell fmha) (#2291)
* correct divmod naming

* order bidh/bidb
2025-05-30 22:50:40 -04:00
8206e7a0f5 Pre-compile in CuteDsl/ampere/elementwise_apply.py (#2340) 2025-05-28 10:24:39 -04:00
6316b6f867 Fix typos (#2311)
Signed-off-by: co63oc <co63oc@users.noreply.github.com>
2025-05-23 08:30:10 -04:00
9354bfd7c1 Keep the documentation consistent with the sgemm_1.cu code. (#2285)
* Keep the documentation consistent with the sgemm_1.cu code.

* fix typo

---------

Co-authored-by: zky <zky@126.com>
2025-05-19 22:53:15 -04:00
5e9b8e2a25 fix docx (#2290)
Co-authored-by: xiayongqiang <xiayq1@chinatelecom.cn>
2025-05-19 22:52:37 -04:00
1ec230c4bf Fix typo (#2299)
Needs == for pip to parse the file
2025-05-15 09:38:42 -04:00
f89cd95b16 Update elementwise_add.ipynb (#2298) 2025-05-15 09:38:27 -04:00
f115c3f854 Release v4.0.0 (#2294) 2025-05-13 15:55:29 -04:00
ad7b2f5e84 3.9.2 doc/version (#2279)
* 3.9.2 doc/version

* whitespace
2025-05-04 00:00:15 -04:00
40f124ef27 [CUTLASS] Add GNA to PUBLICATIONS.md (#2276)
Adds "Generalized Neighborhood Attention" to list of publications using
CUTLASS.

https://arxiv.org/abs/2504.16922

Co-authored-by: Ali Hassani <ahassani@nvidia.com>
2025-05-02 16:57:19 -04:00
89f6bf2739 Fix group scale gemm when K==128 (#2275)
Co-authored-by: Jiazhen Han <jiazhenh@nvidia.com>
2025-05-02 15:41:18 -04:00
f535c33634 3.9.1 doc/version change (#2273) 2025-05-01 00:27:00 -04:00
e3cb8a773a Import cuda, cudart, nvrtc lazily (#2251)
* Lazy cuda import

* More lazy cuda import

* More lazy cuda imports

* minor fixes

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-30 23:10:33 -04:00
c4bdfe821c Lazy scipy import (#2250) 2025-04-30 16:10:00 -04:00
b3ce7e12b7 Make cc a positional argument (#2249) 2025-04-30 16:09:25 -04:00
fe75ead92e Import pydot lazily (#2248) 2025-04-30 16:08:17 -04:00
35136f5564 Fix wrong detection of python version for use_rmm. (#2224) 2025-04-30 15:29:33 -04:00
e5b810bed1 Use cudaMemcpyAsync in gemm grouped with kRequiresPrecomputation schedule. (#2256)
Co-authored-by: Yuhang Qi <qiyuhang@bytedance.com>
2025-04-30 15:28:05 -04:00
2b78c2fe31 cherry-pick feature/hopper-blockwise-generalization-optimization (#2270) 2025-04-29 16:47:22 -04:00
697126019e fix blackwell grouped groupwise hang (#2267) 2025-04-29 11:54:20 -04:00
e94e888df3 Update CHANGELOG.md 2025-04-24 21:51:34 -04:00
be73ad20a5 Update CHANGELOG.md for 3.9 2025-04-24 16:54:06 -04:00
f02a7c2976 Update README.md for 3.9 2025-04-24 16:51:45 -04:00
331a1f5b3f cutlass 3.9 update (#2255)
* cutlass 3.9 update

* rebase

* fixes out of shared memory for blockwise Blackwell

* doc format

* fix issue 2253

* disable host ref by default

* fix sm120 smem capacity

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-24 15:42:40 -04:00
8e345c5c5b fix_missing_stdint (#2199)
* Update config.hpp

* 更新 config.hpp

* 更新 config.hpp
2025-04-23 22:21:22 -04:00
81a43e6d92 Set EpiTile correctly when TileN is not divisible by 32 (#2220)
If TileN is not divisible by 32 (e.g, 208), by default EpiTile would be set
to 128 x 32, which does not compile as TileN is required to divide EpiTileN
2025-04-21 00:02:51 -04:00
ade6376fa0 [SM90] Change register allocation for TileN=208 to avoid spills (#2219)
With the usual register allocation (producer 40, consumer 232) compiling Gemm
with tile shape 256 x 208 (cooperative) or 128 x 208 (pingpong) show lots of
register spilling (e.g. ~3000 bytes spill). For this case we can change
the register allocation to producer 24, consumer 240, which avoids spills.
2025-04-21 00:02:30 -04:00
bb4dd682dd Fix broken links and alt text in cluster launch control docs (#2234)
* Fix broken links in cluster launch control docs

* Improve titles and alt text
2025-04-21 00:01:12 -04:00
5e497243f7 fix: fig link in cute docs (#2216) 2025-04-10 14:51:41 -04:00
b3f3c7758c Update tile_iterator.cu (#2204)
Some typos in comments
2025-04-10 14:49:58 -04:00
9e1b649827 fix-left-inverse-for-nvcc114 (#2196) 2025-04-10 14:48:46 -04:00
5120b21cc3 suppress compilation warnings (#2195) 2025-04-10 14:48:01 -04:00
dd76dec4ef [Doc] Make C++ code more plausible (#2156)
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-10 14:35:46 -04:00
19cc2a5feb add support for sm89 in cute and the unit tests (#2177)
* add support for sm89 in cute and the unit tests

* rebase v3.9 and format code

* minor fix

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-10 14:16:36 -04:00
09df6ac464 [Doc]fix typo (#2174)
Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-10 12:46:53 -04:00
df8a550d39 Update mma_atom.hpp (#2159)
remove useless code
2025-04-03 11:42:10 -04:00
79fc51f4b8 v3.9 update (#2213)
Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-04-03 02:10:16 -04:00
6f4921858b v3.9 update (#2203)
* v3.9 update

* voidD

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-04-02 15:11:18 -04:00
62750a2b75 v3.9 (#2185)
* v3.8 update x

* fix blackwell gg

* doc change

* doc change

* doc change

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2025-03-21 01:52:23 -04:00
8c4d1dc47d Treat negative zero as equivalent to positive zero in sm90_sparse_gemm_compressor.hpp (#2110)
* Treat negative zero as zero in the sparse gemm compressor

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>

* format

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>

* Apply patch

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>

* sm90_sparse_gemm_compressor.hpp

* test/unit/transform/CMakeLists.txt

* test/unit/transform/device/sm90_sparse_gemm_compressor_legacy.hpp

* include/cutlass/numeric_types.h

---------

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2025-03-21 01:44:17 -04:00
3fe62887d8 adding blackwell (#2143) 2025-03-17 22:20:40 -04:00
bd03b22f64 fix typo (#2136)
Co-authored-by: XiaoDong <xiaod@nvidia.com>
2025-03-17 22:19:43 -04:00
6c6b78550e Fix SM90 beta=1 hang and stream-K launch errors (#2172)
* Fix stream-K occupancy calculation

* Fix beta=1 hang
2025-03-13 14:07:37 -04:00
06e560d98a Blockwise/Groupwise kernel improvement and programatic dependent launch enablement (#2161)
Co-authored-by: dePaul Miller <23461061+depaulmillz@users.noreply.github.com>
2025-03-10 14:36:11 -04:00
df18f5e4f5 Improvements for: Groupwise scaling along M for FP8 gemm (#2095)
* fix blockwise fp8 kernels

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* wip, < 128 not working

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* fix < 128

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* reduce diff

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* review comments

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* support partial n blocks

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* fix build errors

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

---------

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-02-27 22:39:29 -05:00
ca4fdbea70 Blockwise and Groupwise GEMM for Blackwell and Improvements for Hopper (#2139)
- Blockwise and Groupwise GEMM improvements for Hopper.
- Blockwise and Groupwise GEMM for Blackwell.
- Blockwise Grouped GEMM for Hopper.
- Static ScalePromotionInterval for Hopper FP8 GEMMs.

Co-authored-by: dePaul Miller <23461061+depaulmillz@users.noreply.github.com>
2025-02-26 12:44:58 -05:00
eefa171318 [EVT] Fix Row/Col broadcast with array arguments (#2120)
* Use constexpr in if to prevent invalid comparison.

* Move constexpr check into else scope.
2025-02-21 17:47:30 -05:00
afa1772203 truncate name for cutlass profiler (#2124)
Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-02-21 00:16:56 -05:00
9b3772dfa6 Hopper Grouped GEMM support for FP8 Accum (#2123)
* Add support for fp8accum, with profiler extension

* Update .gitignore

* contri

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-02-20 21:55:26 -05:00
b84e9802d8 update 3.8 v2 (#2112)
* update 3.8 v2

* update 3.8

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-02-19 22:03:14 -05:00
e9627ce55b Always use cudaGetDriverEntryPoint with CUDA 12 (#2086)
`cudaGetDriverEntryPointByVersion` has been added to drivers in 12.5, but we don't know at compile time the driver version.
In particular, we can build with nvcc 12.8 for a 12.2 driver for instance, and this was causing the following error:

```
undefined symbol: cudaGetDriverEntryPointByVersion,
```
2025-02-11 13:04:25 -05:00
ad6e1ec19c Add ParetoQ to PUBLICATIONS.md (#2089) 2025-02-10 16:47:02 -05:00
0642d46dd4 Update 0x_gemm_tutorial.md (#2090) 2025-02-10 16:46:43 -05:00
833f6990e0 v3.8.0 update (#2082)
* 3.8 update

* fix Markus' name

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-02-06 21:33:40 -05:00
affd1b693d [EVT] Add support for Row/Col broadcast PtrArray (#2033)
* Add group support to EVT row/col broadcast.

* small modifications

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-02-02 12:10:07 -05:00
6f55278121 bugfix generic-k code in top-k with softmax (#1993)
* bugfix generic-k code in top-k with softmax

* Update include/cutlass/epilogue/fusion/sm90_visitor_topk_softmax.hpp

Co-authored-by: Ali Hassani <68103095+alihassanijr@users.noreply.github.com>

* Update examples/61_hopper_gemm_with_topk_and_softmax/61_hopper_gemm_with_topk_and_softmax.cu

Co-authored-by: Ali Hassani <68103095+alihassanijr@users.noreply.github.com>

---------

Co-authored-by: Ali Hassani <68103095+alihassanijr@users.noreply.github.com>
2025-01-31 19:05:35 -05:00
3c28697b9f Groupwise scaling along M for FP8 gemm (#2037)
* FP8 groupwise scaling along M

* small updates

---------

Co-authored-by: zl <zl@deepseek.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-31 13:51:28 -05:00
bdd641790a Update README.md 2025-01-28 18:08:13 -05:00
cc19d4d22b fix a readme broken link (#2069) 2025-01-28 18:03:34 -05:00
47daa33c61 fix cuda 12.6 issues (#2066) 2025-01-28 17:28:29 -05:00
389e493055 CUTLASS 3.8 Release (#2059)
* CUTLASS 3.8 Release

* update

* Update README.md

* Revert "Update README.md"

This reverts commit b353e36fe8.

* update

* update

---------

Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-25 02:44:06 -05:00
9eb01fa0b0 update 3.7 docs (#2051)
* update docs

* update docs

* update docs

* update docs

* update docs

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-01-23 15:13:50 -05:00
b78588d163 CUTLASS 3.7 (#2045)
* CUTLASS 3.7

* clean up changelog

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-18 09:53:07 -05:00
902dff3663 fix assertion in integer_subbytes.h (#1961) 2025-01-09 22:47:58 -05:00
ef5620dd1d Blockwise Scaling for FP8 (#1932)
* F8 Blockwise Scaling

* two more NumProducerThreadEvents

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-09 11:22:09 -05:00
375e284e6a Add Line Break (#2020) 2025-01-08 23:46:59 -05:00
52b35e90ce Fix Typos (#2021)
* Fix Typo

* Fix Typo
2025-01-08 23:46:28 -05:00
24f991e879 Fix typo in library_defaults.py (#2024) 2025-01-08 15:44:11 -05:00
51b25e7b58 Add vector-types back to platform.h (#2026) 2025-01-08 15:31:59 -05:00
ZZK
7de6a59784 Add half->int8 saturate conversion to promise valid range (#1983)
* Add half->int8 saturate conversion to promise valid range

* add gpu only macro

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-08 09:01:07 -05:00
c506e16788 fix mem fence (#2030)
Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-01-07 19:02:26 -05:00
7494a180a4 fix bug: arch/mma_sm60.h Mma<2,2,1> calculate wrong (#1989) 2025-01-06 22:05:12 -05:00
cffd5d32b7 Update 0x_gemm_tutorial.md (#1982)
Shouldn't this be BLK_M, BLK_**K**, k
2025-01-06 22:04:35 -05:00
bf9da7b76c Update CHANGELOG.md 2024-12-25 17:11:15 -05:00
3d261a5974 3.6.0 update (#2005)
* 3.6.0 update

* doc and swap stuff

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2024-12-25 01:34:40 -05:00
e1cd8c7866 Fix Typo (#1962) 2024-12-10 22:07:37 -05:00
33c584364e Fix CuTe README Typo (#1951) 2024-12-10 22:05:40 -05:00
2b6cfd34d1 fix a typo that fails the compiling when ElementScale is not the same as MmaType (#1977) 2024-12-10 15:54:44 -05:00
4c42f73fda Improve mixed dtype GEMM (#1972)
* update

* fix a typo
2024-12-06 13:33:22 -05:00
80243e0b8c add {uint4, uint2, int2} => {fp16, bf16} conversion (#1966) 2024-12-03 14:03:43 -05:00
b0e09d7cd3 Fix cutlass python library with cuda 12.6.2.post1 (#1942)
* Fix `cutlass` python library with cuda `12.6.2.post1`

Previously we had this error:
```
  File "/storage/home/cutlass/python/cutlass/backend/operation.py", line 39, in <listcomp>
    _version_splits = [int(x) for x in __version__.split("rc")[0].split(".")]
                       ^^^^^^
ValueError: invalid literal for int() with base 10: 'post1'
```

* Update sm90_utils.py

* Update generator.py

* Update python/cutlass_library/generator.py

Co-authored-by: Jack Kosaian <jackkosaian@gmail.com>

* Update python/cutlass_library/sm90_utils.py

Co-authored-by: Jack Kosaian <jackkosaian@gmail.com>

---------

Co-authored-by: Jack Kosaian <jackkosaian@gmail.com>
2024-11-18 09:06:32 -05:00
8aa95dbb88 Fix the racing condition of mixed-input gemm when writing the registers (#1931)
* move two warpgroup_wait

* merge main

---------

Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
2024-11-08 13:15:54 -05:00
d656afbd2a fix undefined in device code error (#1880) 2024-11-06 14:56:54 -05:00
32e3c38aef remove restriction of stride == kernel in nhwc_pooling (#1896) 2024-11-06 14:54:53 -05:00
9004ed2d1b Update publications (#1912) 2024-11-06 14:54:15 -05:00
19f51596e8 feat: support kFactor 8 used in mma tensor op tile iterator (#1512) 2024-10-29 11:56:59 -04:00
e8a8b69365 Refactor some GroupedGEMM logic (#1899) 2024-10-25 20:14:01 -04:00
08a49953a0 Add a print for the uint{x}b_t type. (#1871) 2024-10-24 14:39:22 -04:00
a424ca6cf9 fix wrong A/BLayout in MMA_Traits for binary mma and append other MMA_Traits support (#1856)
* fix wrong A/BLayout in  MMA_Traits<SM80_16x8x256_S32U1U1S32_TN_XORPOPC> and append support for  m8n8k128, m16n8k128  mma.and.popc in MMA_Traits instantiation

* add "print" template for  subbyte_reference<T>
2024-10-24 14:38:35 -04:00
be692b48b0 remove redundant hardcoded packing configs in mixed dtype gemm (#1894)
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
2024-10-23 14:24:09 -04:00
12626bcfe4 Update gemm_f16n_f16t_f32t_tensor_op_f32_sm80.cu with include "cutlass/gemm/device/gemm_universal.h" (#1569)
fix compile with `cmake .. -DCUTLASS_ENABLE_TESTS=ON -DCUTLASS_TEST_LEVEL=2`
2024-10-23 12:56:36 -04:00
f02913c34e Include of regular_tile_iterator.h fixed for NVRTC (#1765)
* Include of regular_tile_iterator.h fixed for NVRTC

* More include fixed for NVRTC
2024-10-23 12:55:59 -04:00
03e3bffaec Adjusting code indentation (#1639) 2024-10-23 12:55:02 -04:00
e5f3caf145 Fix README (#1658)
* Fix README

* Improve README

---------

Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2024-10-23 12:52:43 -04:00
83ae20c740 added mapping for bf16 to torch::kBFloat16 (#1843)
Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2024-10-23 12:48:31 -04:00
b0c09ed077 fix by adding public (#1753) 2024-10-23 12:45:58 -04:00
ea69cc2849 fix typo (#1853) 2024-10-23 12:45:28 -04:00
f3a3bfcbf2 add maximum support (#1833) 2024-10-23 12:44:56 -04:00
d65266a868 Add all supported GMMA shapes (#1890) 2024-10-22 18:13:36 -04:00
5b50a8faaf Add GMMA shape m64n40k16 (#1864) 2024-10-21 20:41:47 -04:00
08101d9d0c Improve sm90 mixed dtype kernel (#1883) 2024-10-17 20:06:38 -04:00
755194a7bd add is_last_tile 2024-10-17 12:11:02 -07:00
53668799b2 Handle MNK Sm90{Row, Col}Reduction problem shapes (#1803) 2024-10-14 19:46:20 -04:00
cc3c29a81a CUTLASS 3.6.0 (#1850)
* v3.6

* update changelog

* update readme

* fix typo

* fixing typos

* hopper gemm with weight prefetch

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2024-10-09 15:33:27 -04:00
0837a2a00a Fix typo in comment (#1787) 2024-10-07 12:39:59 -04:00
477a677317 Fix typos in test/unit/conv/cache_testbed_output.h (#1652)
Co-authored-by: Alexander Zinoviev <azinoviev@tesla.com>
2024-10-07 12:39:11 -04:00
b27c49e84a Fix cute doc (#1529) 2024-10-07 12:38:32 -04:00
e2b0789927 Add some can implement rules of hopper convolution. (#1835) 2024-09-25 11:28:10 -04:00
44dae8b90e Adjust profiler space for SM89 (#1553) 2024-09-19 11:40:30 -04:00
2991ce18d3 Add print_svg for mma (#1733)
* add print_svg for mma

* correct the code indentation
2024-09-18 10:37:24 -04:00
1ebda1ccef Fix MMA promotion interval assertions (#1641) 2024-09-16 12:38:42 -04:00
9f68995de5 add publication: ‘EVT: Accelerating Deep Learning Training with Epilogue Visitor Tree’ (#1526)
Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2024-09-16 11:55:09 -04:00
3a8c01a18b Prefix a member template name with the template keyword. (#1796)
Fixes llvm buld error.
2024-09-11 13:33:56 -04:00
dbdae514e0 Support for TMA Epilogue for Group Gemm and add pingpong ptr array & Group Gemm (#1795) 2024-09-11 00:07:31 -04:00
21d0534167 fix assertion (#1790) 2024-09-09 14:05:27 -04:00
323c8170bf Support ComputeFn where output type differs from input type (#1771)
This is useful for e.g. function taking in 2 float inputs and turn them to complex
2024-09-05 23:25:03 -04:00
82f5075946 set_slice3x3 -> set_slice_3x3 (#1784) 2024-09-05 23:24:10 -04:00
06e337758d Remove extraneous comma in declaration (#1776) 2024-09-05 17:14:15 -04:00
7369adcaca Add Sm90LinCombPerColBias (#1774)
Co-authored-by: Jiayu Sun <jiayus@s4124-0071.nvidia.com>
2024-09-04 15:11:24 -04:00
6c3044136b Update barrier.h (#1782) 2024-09-04 14:52:11 -04:00
e1976daacc Add support for mixed 4-bit/8-bit data types GEMM (#1413)
* Add support for mixed 4-bit/8-bit data types GEMM

* fix ( and )

---------

Co-authored-by: Aleksandar Samardžić <asamardzic@matf.bg.ac.rs>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2024-08-29 23:11:06 -04:00
f7b19de32c minor fix for a double quote in CMakeLists.txt (#1727) 2024-08-19 22:21:42 -04:00
4dbf5dbed2 Use CUDA runtime API to retrieve function pointer to driver API (#1700)
* Query pfn to driver api

* use default for older toolkits

---------

Co-authored-by: shunfans <shunfans@nvidia.com>
2024-08-19 13:26:09 -04:00
f93a69134e Merge pull request #1714 from NVIDIA/u128_div
fix uint128
2024-08-16 07:14:59 -05:00
3f084f7f3c Add couple configs into generator.py for mixed input MM (#1350)
* Add couple configs into generator.py for mixed input MM

* change one unit test name; reenable 128x32 in the profiler

* Added U8/BF16 tests.

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2024-08-16 00:59:29 -04:00
b0296bf682 fix uint128 2024-08-15 21:06:01 -07:00
865be73a97 Merge pull request #1713 from NVIDIA/351_sparse_update
update 3.5.1 readme/changelog
2024-08-15 11:44:49 -05:00
8d8cfdf375 update 3.5.1 readme/changelog 2024-08-14 21:12:44 -07:00
eqy
fb170439e8 Update half.h (#1709) 2024-08-14 14:59:59 -04:00
4e5a8f6853 3.5.1 plots and updated readme (#1708)
Co-authored-by: dePaul Miller <23461061+depaulmillz@users.noreply.github.com>
2024-08-12 18:55:55 -04:00
7192f4ab23 Add CLayout_64x208 (#1680)
Without this I get compilation error when the extended shapes are enabled
2024-08-08 14:00:24 -04:00
2049c6c5a2 5476 cutlass 3x gemm kernels (#1695)
Co-authored-by: dePaul Miller <23461061+depaulmillz@users.noreply.github.com>
2024-08-08 13:56:23 -04:00
e22ba590cd support data type w2 used in cutlass_library (#1517) 2024-08-06 11:15:18 -04:00
19b4c5e065 Fix isnan namespace qualification in cutlass/functional.h (#1679)
* Fix unrelated MSVC build warnings

* Fix use of isnan in functional.h

Correct namespace qualification of isnan in functional.h
so that it invokes cutlass::isnan for half_t, instead of
converting half_t to float and invoking std::isnan (on host,
or ::isnan on device).
2024-08-05 14:28:13 -04:00
06b21349bc 1x1x1 cluster launch (#1673) 2024-08-01 12:20:28 -04:00
eee0cab26c Stamp out 1x1x1 clusters, 128x256 CTA shape (#1665)
Adds 128x256 tile shapes to FP16/BF16 and FP8 generators.
Also adds 1x1x1 clusters to all existing FP16/BF16/FP8 generators.

NOTE: it is important to set kernel filter (--kernels /
CUTLASS_LIBRARY_KERNELS) to a non empty string and skip pruning to get
all of the new configurations.

If profiling exhaustively, they can be set to `*`.

Number of CUTLASS 3.X GEMMs before this commit: 2868
Number of CUTLASS 3.X GEMMs after this commit: 4016

Co-authored-by: Ali Hassani <ahassani@nvidia.com>
2024-07-31 20:22:29 -04:00
36cbfcf483 Add extended wgmma shapes for all data types (#1666) 2024-07-31 18:33:14 -04:00
1f2b590da6 Skip void-C kernels in the profiler when beta is non zero (#1661)
* Skip void-C kernels in the profiler when beta is non zero

CUTLASS profiler will only skip disposition for void-C kernels when beta
is non zero, when it makes more sense to skip running it in the first
place.

Not all users are aware of void-C kernels (as far as I know it wasn't a
thing in 2.X), and not everyone remembers to filter out voidC kernels
when running the profiler with a non zero beta.

The easiest solution (and as far as I can tell correct way of handling this)
is that `can_implement` return `false` when beta is non zero (or
whatever argument indicates an epilogue source) but we have a void-C
kernel.

Profiler already includes functionality to skip running kernels that
fail `can_implement`.

* Move checks to collectives instead

---------

Co-authored-by: Ali Hassani <ahassani@nvidia.com>
2024-07-31 18:11:58 -04:00
8b2a0408bd Profiler docs and argument update for raster order (#1667) 2024-07-31 16:40:10 -04:00
eqy
fbd116c0e5 fix build on SM 5.2 (#1664) 2024-07-31 09:54:57 -04:00
5b283c872c Add more GMMA shapes (#1630)
* Add more GMMA shapes

* Add more shapes for BF16
2024-07-29 19:09:51 -04:00
be60a0b272 CUTLASS 3.5.1 (#1623)
* CUTLASS 3.5.1

* updates, optimizations, fixes
2024-07-29 08:46:24 -04:00
56b46e2d13 Fix grouped gemm invalid memory access to problem shapes (#1543) 2024-07-10 11:55:22 -04:00
52fb43f30f fix mbarrier invalidate (#1494) 2024-07-10 11:35:26 -04:00
843adf0408 Fix SMEM index for C in CuTe examples (#1477) 2024-07-10 11:14:15 -04:00
e48c7618e4 [bug] fix device thread gemm.h constructor (#1473) 2024-07-10 11:12:36 -04:00
c5239d8312 Add Faster Neighborhood Attention to pubs (#1471) 2024-07-10 11:09:13 -04:00
d6580c3dc0 Support use of external/system GTest installation (#1469)
* Support use of system/external GTest installation

* Create working directory for tests explicitly
2024-07-10 11:07:57 -04:00
81b06ee0e0 Fix B operand variable name and comments (#1458) 2024-07-10 11:06:29 -04:00
dbfced05e7 Fix typos in convolution tests (#1433) 2024-07-10 11:00:52 -04:00
2448bb56e6 Update gemm_api_3x.md (#1386)
Fixed what it seems to be an obvious typo.
2024-07-10 10:59:02 -04:00
637b159063 Fix C++17 version detection in helper_macros.hpp (#1479)
* It seems that __cplusplus can be inconsistent with _MSVC_LANG when discerning C++17 version. See https://github.com/NVIDIA/cutlass/issues/1474. Added switch to check _MSVC_LANG in addition to __cplusplus

* Fixed typo.

* Oops, another typo.

* Changed incorrect logic, ifndef to ifdef

* Define CUTLAS_CPLUSPLUS for language version testing

Co-authored-by: Mark Hoemmen <mhoemmen@users.noreply.github.com>

---------

Co-authored-by: Mark Hoemmen <mhoemmen@users.noreply.github.com>
2024-05-28 11:00:51 -04:00
033d9efd2d [Documentation] Fixes the confusion between concatenated vs. composed layout in CuTe documentation (#1498)
* Update 02_layout_algebra.md

* Update 02_layout_algebra.md
2024-05-02 15:35:12 -04:00
Sin
acc3ee18a1 Fix typos in cute docs (#1486)
* fix typos in 02_layout_algebra.md

* fix typos in 03_tensor.md
2024-05-02 15:34:36 -04:00
5c447dd84f Update packed_stride.hpp to add CUTLASS_HOST_DEVICE decorator to new functions (#1495) 2024-04-19 12:07:57 -04:00
7d49e6c7e2 Updates for CUTLASS 3.5.0 (#1468) 2024-04-11 21:33:40 -04:00
a40e08e9d5 Update 02_layout_algebra.md (#1451)
change line 348 to reflect correct layout.
2024-04-10 10:57:57 -04:00
lzw
8e7d9f483d add missing header for size_t in numeric_types.h (#1420)
* add missing header for size_t in `numeric_types.h`

* make nvrtc happy

* add missing header for int types in `cutlass/arch/memory.h`

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2024-04-09 14:15:48 -04:00
19f3cc33f1 Fix uint128 operator add (#1400)
* fix uint128 operator add for 64-bit hilo implemenation

* add uint128 test for operator add

* make clang happy

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2024-04-02 13:32:18 -04:00
f9ece1b42c Python Gemm tile_descriptions fix (#1439)
* fix python gemm tile descriptions

* fix formatting

* fix math_operation filtering

* fix formatting
2024-03-30 09:00:46 -04:00
28cbacbf64 fix stride compilation warning (#1415) 2024-03-29 23:50:33 -04:00
8f7d2789b8 [NFC] improve doc: fix typo in mma doc (#1417) 2024-03-27 14:07:20 -04:00
c4e3e122e2 group gemm set stride L = cute::Int<0> (#1416) 2024-03-20 17:31:14 -04:00
629f4653c3 CUTLASS 3.5.0 (#1411) 2024-03-19 17:51:04 -04:00
2842 changed files with 759571 additions and 29382 deletions

View File

@ -1,23 +0,0 @@
---
name: Bug report
about: Create a bug report to help us improve CUTLASS
title: "[BUG]"
labels: "? - Needs Triage, bug"
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**Steps/Code to reproduce bug**
Follow this guide http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports to craft a minimal bug report. This helps us reproduce the issue you're having and resolve the issue more quickly.
**Expected behavior**
A clear and concise description of what you expected to happen.
**Environment details (please complete the following information):**
- Environment location: [Bare-metal, Docker, Cloud(specify cloud provider)]
**Additional context**
Add any other context about the problem here.

38
.github/ISSUE_TEMPLATE/bug_report.yml vendored Normal file
View File

@ -0,0 +1,38 @@
name: Bug Report
description: Create a bug report to help us improve CUTLASS
title: "[BUG] "
labels: ["? - Needs Triage", "bug"]
assignees: []
body:
- type: dropdown
id: component
attributes:
label: Which component has the problem?
options:
- CuTe DSL
- CUTLASS C++
validations:
required: true
- type: textarea
id: bug-report
attributes:
label: Bug Report
description: Please fill out all sections below
value: |
**Describe the bug**
A clear and concise description of what the bug is.
**Steps/Code to reproduce bug**
Follow this guide http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports to craft a minimal bug report. This helps us reproduce the issue you're having and resolve the issue more quickly.
**Expected behavior**
A clear and concise description of what you expected to happen.
**Environment details (please complete the following information):**
- Environment location: [Bare-metal, Docker, Cloud(specify cloud provider)]
**Additional context**
Add any other context about the problem here.
validations:
required: true

View File

@ -1,20 +0,0 @@
---
name: Feature request
about: Suggest an idea for CUTLASS
title: "[FEA]"
labels: "? - Needs Triage, feature request"
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I wish I could use CUTLASS to do [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context, code examples, or references to existing implementations about the feature request here.

View File

@ -0,0 +1,35 @@
name: Feature Request
description: Suggest an idea for CUTLASS
title: "[FEA] "
labels: ["? - Needs Triage", "feature request"]
assignees: []
body:
- type: dropdown
id: component
attributes:
label: Which component requires the feature?
options:
- CuTe DSL
- CUTLASS C++
validations:
required: true
- type: textarea
id: feature-request
attributes:
label: Feature Request
description: Please fill out all sections below
value: |
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I wish I could use CUTLASS to do [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context, code examples, or references to existing implementations about the feature request here.
validations:
required: true

51
.github/workflows/auto-label-issues.yml vendored Normal file
View File

@ -0,0 +1,51 @@
name: Auto Label Issues
on:
issues:
types: [opened]
jobs:
add-labels:
runs-on: ubuntu-latest
permissions:
issues: write
steps:
- name: Add component label
uses: actions/github-script@v7
with:
script: |
const issue = context.payload.issue;
const body = issue.body || '';
// Parse the issue body to find the component selection
// GitHub renders dropdown selections as "### {label}\n\n{selection}"
// Check for both bug report and feature request dropdown labels
const bugComponentMatch = body.match(/### Which component has the problem\?\s*\n\s*\n\s*(.+?)(?:\n|$)/);
const featureComponentMatch = body.match(/### Which component requires the feature\?\s*\n\s*\n\s*(.+?)(?:\n|$)/);
const componentMatch = bugComponentMatch || featureComponentMatch;
if (componentMatch) {
const component = componentMatch[1].trim();
let label = '';
// Map component selections to labels
switch(component) {
case 'CuTe DSL':
label = 'CuTe DSL';
break;
case 'CUTLASS C++':
label = 'CUTLASS C++';
break;
}
if (label) {
await github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: issue.number,
labels: [label]
});
console.log(`Added label: ${label}`);
}
}

112
.github/workflows/blossom-ci.yml vendored Normal file
View File

@ -0,0 +1,112 @@
#################################################################################################
#
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
# A workflow to trigger ci on hybrid infra (github + self hosted runner)
name: Blossom-CI
on:
issue_comment:
types: [created]
workflow_dispatch:
inputs:
platform:
description: 'runs-on argument'
required: false
args:
description: 'argument'
required: false
jobs:
Authorization:
name: Authorization
runs-on: blossom
outputs:
args: ${{ env.args }}
# This job only runs for pull request comments
if: |
(startsWith(github.event.comment.body, '/bot run') ||
startsWith(github.event.comment.body, '/bot kill')) && contains(
fromJson('["nv-fastkernels-cicd", "zekunf-nv", "hwu36", "IonThruster", "thakkarV", "d-k-b", "mihir-awatramani", "fengxie", "vickiw973", "Junkai-Wu", "brandon-yujie-sun", "lijingticy22", "hongw-nv", "vikgupta-nv", "IwakuraRein", "depaulmillz", "jackkosaian", "itramble", "ccecka", "sxtyzhangzk", "hbarclay", "yzhaiustc", "x86vk", "sklevtsov-nvidia", "ANIKET-SHIVAM", "Shreya-gaur", "azhurkevich", "serifyesil", "richardmcai", "lsyyy666", "Ethan-Yan27", "XiaoSong9905", "shdetect", "keithzzzzz"]'),
github.actor)
steps:
- name: Check if comment is issued by authorized person
run: blossom-ci
env:
OPERATION: 'AUTH'
REPO_TOKEN: ${{ secrets.GITHUB_TOKEN }}
REPO_KEY_DATA: ${{ secrets.BLOSSOM_KEY }}
Vulnerability-scan:
name: Vulnerability scan
needs: [Authorization]
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
with:
repository: ${{ fromJson(needs.Authorization.outputs.args).repo }}
ref: ${{ fromJson(needs.Authorization.outputs.args).ref }}
lfs: 'true'
- name: Run blossom action
uses: NVIDIA/blossom-action@main
env:
REPO_TOKEN: ${{ secrets.GITHUB_TOKEN }}
REPO_KEY_DATA: ${{ secrets.BLOSSOM_KEY }}
with:
args1: ${{ fromJson(needs.Authorization.outputs.args).args1 }}
args2: ${{ fromJson(needs.Authorization.outputs.args).args2 }}
args3: ${{ fromJson(needs.Authorization.outputs.args).args3 }}
Job-trigger:
name: Start ci job
needs: [Vulnerability-scan]
runs-on: blossom
steps:
- name: Start ci job
run: blossom-ci
env:
OPERATION: 'START-CI-JOB'
CI_SERVER: ${{ secrets.CI_SERVER }}
REPO_TOKEN: ${{ secrets.GITHUB_TOKEN }}
Upload-Log:
name: Upload log
runs-on: blossom
if : github.event_name == 'workflow_dispatch'
steps:
- name: Jenkins log for pull request ${{ fromJson(github.event.inputs.args).pr }} (click here)
run: blossom-ci
env:
OPERATION: 'POST-PROCESSING'
CI_SERVER: ${{ secrets.CI_SERVER }}
REPO_TOKEN: ${{ secrets.GITHUB_TOKEN }}

3
.gitignore vendored
View File

@ -1,3 +1,4 @@
# PyCache files
__pycache__/
cutlass_library.egg-info/
cutlass_library.egg-info/
/build*

View File

@ -1,28 +1,488 @@
# NVIDIA CUTLASS Changelog
# Changelog
# CUTLASS 4.x
## [4.3.0](https://github.com/NVIDIA/cutlass/tree/main) (2025-10-20)
### CuTe DSL
* Debuggability improvements:
- Supported source location tracking for DSL APIs
- Supported dumping PTX and CUBIN code
* More examples and notebooks to get started with CuTe DSL:
- [Kernel launch with Programmatic Dependent Launch](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/programmatic_dependent_launch.py)
- Improved performance of elementwise kernel (https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/ampere/elementwise_apply.py):
+ Generalize code to handle list of input tensors
+ Generalize TV layout computation to handle different data types
- Demonstrate the new Pipeline APIs in [Blackwell SM100 persistent dense GEMM with static scheduling](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/dense_gemm_persistent.py):
+ New Pipeline API `PipelineProducer` and `PipelineConsumer` to simplify code (no more explicit pipeline state management)
- Separate epilogue code for non-TMA and TMA implementation
+ Note that the updates simplifies the codes but existing APIs still work and are supported
- [Basic Blackwell SM100 GEMM with decent performance](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/tutorial_gemm/fp16_gemm_0.py)
+ Simple tutorial achieves 84% SOL performance with MNK 8K
- Reworked [elementwise add notebook](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/notebooks/elementwise_add.ipynb) with more details and detailed explanation about TV layout
+ Updated implementation to handle general data type and multiple inputs
+ Updated explanation for TV layout in simpler language
+ Added visualization of TV Layout with 3rd party utils
- [Benchmark and autotune demonstration](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/notebooks/benchmark_autotune.ipynb)
* More examples of authorizing peak-performance kernels:
- [Blackwell SM100 mixed-input GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/mixed_input_gemm.py)
- [Blackwell SM100 persistent blockwise dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/blockwise_gemm/blockwise_gemm.py)
- [Blackwell SM100 persistent blockwise contiguous grouped dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/blockwise_gemm/contiguous_grouped_gemm.py)
- [Blackwell SM100 persistent blockwise masked grouped dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/blockwise_gemm/masked_grouped_gemm.py)
- [Blackwell SM100 fmha bwd](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/fmha_bwd.py)
- [Blackwell SM100 mla](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/mla.py)
- [Hopper SM90 persistent dense GEMM with static scheduling](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/hopper/dense_gemm_persistent.py)
- [Blackwell GeForce batched dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell_geforce/dense_gemm.py)
- [Ampere HSTU Attention](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/ampere/hstu_attention.py)
* API updates:
- Please refer to [DSL API changelog](https://docs.nvidia.com/cutlass/latest/media/docs/pythonDSL/cute_dsl_api/changelog.html) for details
* Bug fixings and improvements
- Add mma_tiler_n=64 and mma_tiler_n=192 support in [Blackwell SM100 persistent dense blockscaled GEMM with static scheduling](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/dense_blockscaled_gemm_persistent.py).
- Fixed ``TensorSSA.reduce`` to support static value as initial value
- Updated docstring for following APIs to be more concise and easier to understand:
- ``make_layout_tv``
- ``is_static``
- ``PipelineAsync``
- ``SmemAllocator``
- Fixed documentation for ``pipeline``, ``utils`` and ``cute.math``
### CUTLASS C++
* Further enhance Blackwell SM100 Attention kernels in [example 77](https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha/).
- Add softmax skip correction.
- Fix a shared memory allocation bug where it needs to opt in maximum dynamics shared memory explicitly once it exceeds 48KB.
- Fix a dead hang issue caused by early return warp.
* Add Ragged Contiguous Grouped gemm kernel in [example 92](https://github.com/NVIDIA/cutlass/tree/main/examples/92_blackwell_moe_gemm/).
- This kernel uses a TMA 3D load to load the weights matrix and use the tensormap update method to load activations.
* Optimize group gemm kernels by enabling async TMA desc update.
* Support Blackwell SM100 convolution stream-K kernel.
- Unit tests: [fprop_streamK](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/fprop/sm100_conv3d_fprop_implicit_gemm_f16_f16_f16_tensorop_f16_streamk.cu), [dgrad_streamK](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/dgrad/sm100_conv3d_dgrad_implicit_gemm_f16_f16_f16_tensorop_f16_streamk.cu), [wgrad_streamK](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/wgrad/sm100_conv2d_wgrad_implicit_gemm_f16_f16_f16_tensorop_f16_streamk.cu).
* Add profiler support for Blackwell SM100 and SM120 blockscaled sparse kernels.
* Fix some kernel issues:
- Fix a race check issue of Blackwell SM103 kernels by adding missing elect one for prefetch barrier initialization.
- Allow user to directly specify the number of stages for Hopper sm90 mixed input gemm.
- Remove warnings caused by cuda vector type alignment setting in CUDA 13.
- Remove problematic `cutlass::int8_t` and replace it with `int8_t`.
* Fix some profiler issues:
- Add some missing reference kernels.
- Add calculation of scale factor A and B in function `bytes_with_problem_shape` of block scaled profiler.
* Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
* Optimal code generation with CUDA toolkit versions 13.0U1.
## [4.2.1](https://github.com/NVIDIA/cutlass/releases/tag/v4.2.1) (2025-09-22)
### CuTe DSL
* Bug fixings and improvements
- Fixed an issue when running DSL codes with cuda-python 13.0
- Fixed an issue when running inductor with DSL codes
- Fixed an issue with unexpected logging when running DSL codes in FlashInfer
- Fixed the issue reported in https://github.com/NVIDIA/cutlass/issues/2647
- Fixed an issue when conditional define of variables outside of dynamic control flow
### CUTLASS C++
* Bypass EVT for nosmem blockwise kernels on Blackwell.
* Rename cutlass/python/cutlass directory to cutlass/python/cutlass_cppgen.
## [4.2.0](https://github.com/NVIDIA/cutlass/releases/tag/v4.2.0) (2025-09-15)
### CuTe DSL
* More Python versions are now supported for both x86-64 and aarch64, including
- Python 3.10, 3.11, 3.12, and 3.13
* Added new example and updated notebook to get started with CuTe DSL
- [Call kernels with dlpack bypassed](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/ampere/call_bypass_dlpack.py)
- Updates on [TensorSSA demonstration](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/notebooks/tensorssa.ipynb)
+ Added a section for introducing the broadcast
* API updates
- Please refer to [DSL API changelog](https://docs.nvidia.com/cutlass/latest/media/docs/pythonDSL/cute_dsl_api/changelog.html) for details
* Bug fixings and improvements
- Fixed ``cute.print_tensor`` for coordinate tensor
- Fixed `cute.print` for tuple of layouts
- Fixed frozen object is not properly updated after fully assigned in dynamic control flow
- Fixed assign tuple/list element in a dynamic control flow may cause compilation failure
- Improved error message when CUDA context is not initialized
- Improved docstring of congruent and weakly_congruent
### CUTLASS C++
* Support for Blackwell SM103 kernels for B300 GPUs.
- Collective mainloop codes: [Blockscaled datatypes with support for dense GEMM mainloop](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm103_blockscaled_mma_warpspecialized.hpp)
- New [GEMM](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/dispatch_policy.hpp) and [epilogue](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/dispatch_policy.hpp) dispatch policies for collectives, kernel layers, and builders.
- Kernel codes: [Blockscaled datatypes with support for dense GEMM kernel](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm103_blockscaled_gemm_tma_warpspecialized.hpp).
* Set of examples that demonstrate the usage of the 3.x API for targeting Blackwell SM103 architecture:
- [Blockscaled ultra fp4 dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/89_sm103_fp4_ultra_gemm/).
- [Blockscaled ultra fp4 dense grouped GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/90_sm103_fp4_ultra_grouped_gemm).
* Set of unit tests that demonstrate the usage of Blackwell SM103 blockscaled GEMM
- Unit test files with prefix name of `sm103_` under [GEMM device unit tests](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/).
* Support for Blackwell SM121 kernels for DGX Spark GPUs.
- Share the major codes with Blackwell SM120 kernels.
* Add support for heuristics-based kernel filtering and autotuning using `nvidia-matmul-heuristics` to find the best kernels for a given scenario.
- Details please refer to [heuristics doc](https://github.com/NVIDIA/cutlass/tree/main/media/docs/cpp/heuristics.md).
* Further enhance Blackwell SM100 Attention kernels in [example 77](https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha/).
- Add fused reduction kernel support for cutlass MLA.
- Add softmax skip correction.
- Support for GQA in FMHA backward kernel.
- Fix an issue where `get_unmasked_trip_count` may return a negative value.
- Fix an issue where mbarriers are initialized with a zero arrival count.
- Fix a corner case issue where the sequence length of q is not a multiple of tile_q.
- Remove tma padding for forward kernel inputs.
* Add Blackwell SM100 kernels for MoEs (focusing on Low-Latency inference performance): [example 92](https://github.com/NVIDIA/cutlass/tree/main/examples/92_blackwell_moe_gemm/). It uses TMA (for weights) and CPASYNC (for tokens) to load input matrices and allow only one problem dimension to vary across groups/experts, unlike general Grouped GEMMs. Note: further API simplifications and kernel improvements are upcoming. Any feedback on API is welcome.
* Further enhance blockwise and groupwise GEMMs on Hopper and Blackwell
- On Blackwell SM120, a blockwise gemm kernel is added: [example 87](https://github.com/NVIDIA/cutlass/tree/main/examples/87_blackwell_geforce_gemm_blockwise/).
- On Hopper, add K major scale factor support for SM90 blockwise kernels.
- On Hopper, relax the restriction that the k dimension of the problem size has to be the multiple of the k dimension of the tile size.
- On Hopper, grouped version supports the case when k = 0.
* Support for Blackwell SM100 fp4 gemv kernels.
- Kernel codes: [Gemv kernel](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/gemv_blockscaled.h).
- Example codes: [example 91](https://github.com/NVIDIA/cutlass/tree/main/examples/91_fp4_gemv/)
* Support for Blackwell SM100 legacy mixed input GEMM kernels.
- Collective mainloop codes: [Mixed input mainloop](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm100_mma_warpspecialized_mixed_input.hpp).
- Kernel codes: [Mixed input kernel](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm100_gemm_tma_warpspecialized_mixed_input_transform.hpp).
- Example codes: [example 86](https://github.com/NVIDIA/cutlass/tree/main/examples/86_blackwell_mixed_dtype_gemm/).
* Support for Blackwell SM100 cpasync kernel.
- Collective mainloop codes: [cpasync mainloop](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm100_mma_cpasync_warpspecialized.hpp).
- Kernel codes: [cpasync kernel](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm100_gemm_cpasync_warpspecialized.hpp).
* Support Blackwell SM120 mixed input blockscaled grouped GEMM.
* Instantiating more Blackwell kernels in profiler.
- Blackwell SM100 and SM103 kernels support `CUTLASS_LIBRARY_INSTANTIATION_LEVEL` to instantiate all possible combinations.
- To use this feature, `CUTLASS_LIBRARY_KERNELS` must be non-empty. Profiler will combine `CUTLASS_LIBRARY_KERNELS` and `CUTLASS_LIBRARY_INSTANTIATION_LEVEL` to instantiate specific kernels.
- Details please check [Profiler Doc](https://github.com/NVIDIA/cutlass/tree/main/media/docs/cpp/profiler.md).
* Fix some profiler issues:
- Modify default cluster callback values to none 0 to avoid profiler failure when these values are not set in command line.
- Fix some no output and timeout issues.
- Fix Pingpong Blockwise Hopper library generation.
* From CUDA 13.0, the Blackwell SM101 for Thor GPUs is renamed to SM110.
- For CUDA toolkit version < 13.0, SM101 is still used for Thor GPUs.
- For CUDA toolkit version >= 13.0, SM110 is used for Thor GPUs and SM101 is no longer valid.
* Rename legacy Python API package from `cutlass` to `cutlass_cppgen` and add Blackwell EVT support to legacy Python interface.
- Restructuring the C++ Blackwell SM100 Collective Epilogue Builder to work with the Python interface's `EpilogueDescriptors`.
- Added Blackwell SM100 EVT Emitter on the Python side and routed most emission through Hopper SM90 Emitter.
- Added some support for running SM100 kernels via the Python interface.
* CuTe changes:
- Fix inaccurate GridDim calculation under [CuTe tutorial](https://github.com/NVIDIA/cutlass/tree/main/examples/cute/tutorial/blackwell/).
- Add [movmatrix](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-movmatrix) support.
- Fix smallest MMA-N allowed for Blackwell fp8 and fp16 gemm kernels.
- Support fp16 accmulator for sm89 fp8 mma.
- Shorten `nullspace` implementation.
- Isolate and comment on `cosize` risky changes.
- Important documentation correction: `E<0,1> == 1@0@1`.
* Fix some kernel issues:
- Fix Hopper SM90 group gemm kernel to only use the commit group and wait group instead of also waiting on mbarriers.
- Fix a tiny bug when K is large for Blackwell SM103 fp4 grouped GEMM kernel.
* Add following unit tests:
- [fp16 accmulator for sm89 fp8 mma](https://github.com/NVIDIA/cutlass/tree/main/test/unit/cute/ampere/cooperative_gemm.cu)
- [movmatrix test](https://github.com/NVIDIA/cutlass/tree/main/test/unit/cute/turing/movm.cu)
- [fp8 narrow mma n](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm100_tensorop_gemm/f16_f16_void_f32_narrow_mma_n.cu) and [fp16 narrow mma n](test/unit/gemm/device/sm100_tensorop_gemm/f8_f8_void_bf16_narrow_mma_n.cu)
* Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
* Optimal code generation with CUDA toolkit versions 13.0U1.
## [4.1.0](https://github.com/NVIDIA/cutlass/releases/tag/v4.1.0) (2025-07-16)
### CuTe DSL
* Add aarch64 support, you can now pip install `nvidia-cutlass-dsl` on GB200 systems!
* More examples demonstrating how to use CuTe DSL to write peak-performance kernels
- [Blackwell Mamba2 SSD](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/mamba2_ssd/mamba2_ssd.py)
- [Blackwell SM100 persistent dense blockscaled GEMM with static scheduling](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/dense_blockscaled_gemm_persistent.py)
* API updates
- Please refer to [DSL API changelog](https://docs.nvidia.com/cutlass/latest/media/docs/pythonDSL/cute_dsl_api/changelog.html) for details
### CUTLASS C++
* Further enhance Blackwell SM100 Attention kernels in [example 77](https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha/).
- Add variable sequence length support for FMHA Backward kernel.
- Add varlen test support to Backward runner.
- Codes support empty batch sequences.
* Replace `subbyte_iterator` with `cute::recast_ptr` when constructing logical iterators/arrays.
* CuTe changes:
- Rewrite ArithTuple and ScaledBasis for robustness and clarity.
- Remove buggy and kludgy `get_layoutA|B|C_MN` and friends from Atoms/TiledX.
- Factor out `print_latex` and friends and rewrite.
- Factor out `print_svg` and friends and rewrite.
* Support Blackwell SM100 SIMT packed fp32x2 kernels.
* Support residual add for implicit gemm kernels.
* Various fixes for CUTLASS C++ Python interface's EVT tracer:
- Add verifier for sm90 to report the invalid input.
- When adding an edge to the graph, if the edge already exists, add an identity compute node to avoid having multiple parallel edges.
- Register operations of tanh, sigmoid, exp, gelu to the python ast frontend.
- Replace the NotImplemented Error by packing all nodes into a single topological visitor node as a fallback.
* Fix profiler bugs in exhaustive perf search.
- Fix incorrect cluster shape output issue when doing exhaustive search.
- Fix a bug in profiler grouped GEMM for setting tile scheduler swizzles, cluster shapes, and raster orders.
* Fix some profiler issues.
- Complete the reference for Blackwell blockwise gemm kernels.
- Fix incorrect regex logic for L1 test.
* Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
* Optimal code generation with CUDA toolkit versions 12.9.
## [4.0.0](https://github.com/NVIDIA/cutlass/releases/tag/v4.0.0) (2025-06-03)
### CuTe DSL
* CuTe DSL, a Python DSL centered around CuTe's abstractions
- [Core DSL implementation files](https://github.com/NVIDIA/cutlass/tree/main/python/CuTeDSL)
- [DSL quick start](https://docs.nvidia.com/cutlass/latest/media/docs/pythonDSL/quick_start.html)
- [DSL Overview](https://docs.nvidia.com/cutlass/latest/media/docs/pythonDSL/overview.html)
* [Overhauled documentation with a new dedicated website](https://docs.nvidia.com/cutlass/latest)
* Set of examples demonstrating how to use CuTe DSL to write peak-performance kernels
- [Blackwell SM100 persistent dense GEMM with static scheduling](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/dense_gemm_persistent.py)
- [Blackwell SM100 grouped GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/grouped_gemm.py)
- [Blackwell SM100 fused multi-head attention forward pass](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/fmha.py)
- [Hopper GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/hopper/dense_gemm.py)
- [Ampere GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/ampere/tensorop_gemm.py)
- [FlashAttention-2 implementation targeting Ampere and Ada class GPUs (SM80, SM86, SM89)](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/ampere/flash_attention_v2.py)
- [SmemAllocator to facilitate shared memory allocation and management](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/ampere/smem_allocator.py)
- [C-structure based customized interface between JIT function and user codes](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/cute/ffi/jit_argument.py)
* [Educational notebooks for getting started with CuTe DSL](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/notebooks)
* API updates
- Please refer to [DSL API changelog](https://docs.nvidia.com/cutlass/latest/media/docs/pythonDSL/cute_dsl_api/changelog.html) for details
### CUTLASS C++
* Support [Family Specific Architecture Features](https://developer.nvidia.com/blog/nvidia-blackwell-and-nvidia-cuda-12-9-introduce-family-specific-architecture-features/) which was introduced in CUDA 12.9
- 100f, 101f, 120f were added to support Family Specific Architecture Features which allows running the same binary on different chips belonging to the same Family (e.g. sm100) without recompiling. Note 101a is supported since CUTLASS 3.9
* Instruction shapes and redundant accumulation type have been removed from CUTLASS 3.x-style library kernel names to disambiguate kernels and shorten names.
- For example:
+ `(old) cutlass3x_sm90_tensorop_s64x128x16gemm_bf16_bf16_f32_bf16_bf16_128x256x64_1x1x1_0_tnn_align8_warpspecialized_cooperative_epi_tma`
+ `(new) cutlass3x_sm90_tensorop_gemm_bf16_bf16_f32_bf16_bf16_128x256x64_1x1x1_0_tnn_align8_warpspecialized_cooperative_epi_tma`
- If you are using the CUTLASS library kernel names directly (e.g. to compile a subset of the CUTLASS library with `-DCUTLASS_LIBRARY_KERNELS`, filter kernels in the CUTLASS profiler with `--kernels`), please update your uses accordingly, this is a breaking change.
* Further improved [Blockwise](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) and [Groupwise](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu) GEMMs on Hopper and Blackwell.
- Added non-power-of-two tile sizes.
- Improved performance for K-major scale factors.
- The argument `mma_promotion_interval` has been removed from non-grouped GEMM to align with the grouped and Blackwell SM100 versions.
* Enhance Blackwell SM100 Attention kernels in [example 77](https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha/).
- Support LSE output in FMHA Forward kernel.
- Enhance performance measurement: support of different warmup iterations; buffer rotation to keep L2 cold; separate testing of persistent and non-persistent.
- Enhance testing of variable sequence length.
- Disable B2B mode in MLA to simplify the sample.
- Clarify that `fmha_gen` sample only supports head dim 128.
- Fixes for split-kv output in MLA.
* Improve Blackwell and Hopper grouped GEMM performance, functionality, and profiler support.
- Enable runtime datatype for Blackwell SM100 grouped GEMM. Profiler support is also added.
- Enable kernel parameter exploration for Blackwell SM100 grouped GEMM - raster_order, swizzle.
* Add [Blackwell SM100 implicit GEMM conv fprop/dgrad/wgrad unit tests](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/).
* Add dynamic and preferred cluster support for convolution Blackwell SM100 kernels.
* Fix profiler issues which cause no output or not supported error for some kernels.
* Optimizations for Blackwell SM100 and SM120 block scaled kernels.
* Support for Blackwell SM120 blockwise dense gemm in CUTLASS library and profiler.
* New [Hopper SM90 FMHA example](https://github.com/NVIDIA/cutlass/tree/main/examples/88_hopper_fmha/), similar in design to the existing [Blackwell FMHA](https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha/).
* CuTe changes:
- Rework `cute::copy_if` so that the predicate tensor is also a true CuTe Tensor rather than a lambda and introduces transform-tensors to avoid any extra register or load/store overhead in using bool-tensors.
- New [CuTe tutorial](https://github.com/NVIDIA/cutlass/tree/main/examples/cute/tutorial/tiled_copy_if.cu) to show the usage of copy_if in tile copy.
- Add [CuTe C++ reduce op](https://github.com/NVIDIA/cutlass/tree/main/include/cute/algorithm/tensor_reduce.hpp).
- Add several [unit tests](https://github.com/NVIDIA/cutlass/tree/main/test/unit/cute/core/tensor_algs.cpp) for CuTe tensor algorithms.
* Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
* Optimal code generation with CUDA toolkit versions 12.9.
# CUTLASS 3.x
## [3.9.2](https://github.com/NVIDIA/cutlass/releases/tag/v3.9.2) (2025-05-03)
* Fixed [Blockwise](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) and [Groupwise](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu) GEMM hang issue when problem size K is 128.
* Optimal code generation with CUDA toolkit versions 12.9.
## [3.9.1](https://github.com/NVIDIA/cutlass/releases/tag/v3.9.1) (2025-04-30)
* Fixed Group Gemm hang issue in CUTLASS 3.x
* Improved Hopper [Blockwise](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) and [Groupwise](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu) GEMM performance.
## [3.9.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.9.0) (2025-04-24)
* Support for Blackwell SM120 kernels for GeForce GPUs in CUTLASS 3.x API:
- Collective mainloops that target for:
* [Blockscaled datatypes with support for dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm120_blockscaled_mma_tma.hpp)
* [Blockscaled datatypes with support for sparse GEMM](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm120_blockscaled_sparse_mma_tma.hpp)
- New [GEMM](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/dispatch_policy.hpp) and [epilogue](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/dispatch_policy.hpp) dispatch policies for collectives, kernel layers, and builders.
- [Blackwell SM120 epilogue](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/fusion/sm120_visitor_store_tma_warpspecialized.hpp) and [full set of EVT fusions](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/fusion/sm120_callbacks_tma_warpspecialized.hpp).
* Set of examples that demonstrate the usage of the 3.x API for targeting Blackwell SM120 architecture:
- [Blockscaled GEMM with NVFP4 input datatype and BF16 output tensor](https://github.com/NVIDIA/cutlass/tree/main/examples/79_blackwell_geforce_gemm/79a_blackwell_geforce_nvfp4_bf16_gemm.cu).
- [Blockscaled GEMM with NVFP4 input datatype and NVFP4 output tensor with scale factor generation](https://github.com/NVIDIA/cutlass/tree/main/examples/79_blackwell_geforce_gemm/79b_blackwell_geforce_nvfp4_nvfp4_gemm.cu).
- [Blockscaled GEMM with mixed input datatype (MXFP8 and MXFP6) and BF16 output tensor](https://github.com/NVIDIA/cutlass/tree/main/examples/79_blackwell_geforce_gemm/79c_blackwell_geforce_mixed_mxfp8_mxfp6_bf16_gemm.cu).
- [Grouped GEMM with nvfp4 datatype](https://github.com/NVIDIA/cutlass/tree/main/examples/79_blackwell_geforce_gemm/79d_blackwell_geforce_nvfp4_grouped_gemm.cu).
- [Sparse Blockscaled GEMM with mxfp8 input datatype and BF16 output tensor](https://github.com/NVIDIA/cutlass/tree/main/examples/80_blackwell_geforce_sparse_gemm/80a_blackwell_geforce_mxfp8_bf16_sparse_gemm.cu).
- [Sparse Blockscaled GEMM with NVFP4 input datatype and NVFP4 output tensor](https://github.com/NVIDIA/cutlass/tree/main/examples/80_blackwell_geforce_sparse_gemm/80b_blackwell_geforce_nvfp4_nvfp4_sparse_gemm.cu).
* Set of unit tests that demonstrate the usage of both [sparse](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm120_blockscaled_sparse_tensorop_gemm/) and [dense](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm120_blockscaled_tensorop_gemm/) Blackwell SM120 blockscaled GEMM.
* Support for Blackwell SM100 Sparse kernels:
- Collective mainloop that target for
* [SM100 Sparse GEMM](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm100_sparse_mma_warpspecialized.hpp)
* Set of example that demonstrate the usage of the 3.x API for targeting Blackwell SM100 Sparse GEMM:
- [Sparse GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/83_blackwell_sparse_gemm/83_blackwell_sparse_gemm.cu)
- [Blockscaled Sparse GEMM with NVFP4 input data type](https://github.com/NVIDIA/cutlass/tree/main/examples/84_blackwell_narrow_precision_sparse_gemm/84a_blackwell_nvfp4_bf16_sparse_gemm.cu)
- [Blockscaled Sparse GEMM with mixed input data type (MXFP8 and MXFP4)](https://github.com/NVIDIA/cutlass/tree/main/examples/84_blackwell_narrow_precision_sparse_gemm/84b_blackwell_mixed_mxfp8_bf16_sparse_gemm.cu)
* Set of unit tests that demonstrate the usage of [sparse](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm100_sparse_tensorop_gemm) and [blockscaled sparse](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm100_blockscaled_sparse_tensorop_gemm) Blackwell SM100 GEMM.
* A new Multi-head Latent Attention (MLA) for SM100 Blackwell architecture in CUTLASS [example](https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha/) covers the flashMLA-like weight-absorbed decoding use-case.
* A new FMHA Backward kernel for SM100 Blackwell architecture extends CUTLASS [example](https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha/) to show how the five backward pass MMAs can be fused into a single kernel to achieve high performance.
* A new [distributed GEMM example](https://github.com/NVIDIA/cutlass/tree/main/examples/82_blackwell_distributed_gemm/82_blackwell_distributed_gemm.cu) for SM100 Blackwell architecture.
* Enhancement and new support of block-wise and group-wise GEMM for Hopper and Blackwell architectures:
- Enhancement of [blockwise GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) for Hopper architecture.
- Enhancement of [groupwise GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu) for Hopper architecture.
- Support for [grouped GEMM with blockwise and groupwise scaling](https://github.com/NVIDIA/cutlass/tree/main/examples/68_hopper_fp8_warp_specialized_grouped_gemm_with_blockwise_scaling/) for Hopper architecture.
- Support for [grouped-wise GEMM](https://github.com/NVIDIA/cutlass/tree/main/tools/profiler/src/blockwise_gemm_operation_profiler.cu) in CUTLASS profiler.
- Support for [blockwise GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/81_blackwell_gemm_blockwise/81_blackwell_gemm_blockwise.cu) for Blackwell architecture.
- Support for [groupwise GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/81_blackwell_gemm_blockwise/81_blackwell_gemm_groupwise.cu) for Blackwell architecture.
- Support for [grouped GEMM with blockwise](https://github.com/NVIDIA/cutlass/tree/main/examples/81_blackwell_gemm_blockwise/81_blackwell_grouped_gemm_blockwise.cu) and [groupwise scaling](https://github.com/NVIDIA/cutlass/tree/main/examples/81_blackwell_gemm_blockwise/81_blackwell_grouped_gemm_groupwise.cu) for Blackwell architecture.
* Added support for enhanced kernel performance search (auto-tuning) in CUTLASS profiler:
- Sorting performance results by GFLOPs/second: Users can now sort the final performance report based on GFLOPs/second, making it easier to identify the most efficient kernels.
- Exhaustive search for best kernel performance in GFLOPs/second: The profiler now searches for the best-performing kernel across a range of problem sizes, swizzle sizes, rasterization orders, and dynamic cluster configurations to maximize performance.
- Performance search under a fixed GEMM shape: Enables exhaustive tuning within a fixed GEMM shape, exploring various kernel parameters to find the best configuration.
- More detailed introductions and examples to leverage this feature can be found in [profiler.md](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/profiler.html#exhaustive-search-mode-and-top-k-output-ranking-according-to-performance-in-gflopss).
* Support `void` as the D element in sm100 kernel epilogues.
* Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
* Optimal code generation with CUDA toolkit versions 12.8U1.
## [3.8.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.8.0) (2025-01-25)
* Support for new CuTe building blocks specifically for Blackwell SM100 architecture:
- [5th generation Blackwell Tensor Core instructions (TCGen05)](https://github.com/NVIDIA/cutlass/tree/main/include/cute/atom/mma_traits_sm100.hpp) via CuTe MMA atoms.
- Extensions to [Tensor Memory Accelerator](https://github.com/NVIDIA/cutlass/tree/main/include/cute/atom/copy_traits_sm100_tma.hpp) via CuTe Copy atoms.
- Exposure of Blackwell's new tensor memory (note: distinct from TMA) as [`tmem`](https://github.com/NVIDIA/cutlass/tree/main/include/cute/pointer.hpp) across CuTe as a first class data locale.
- Exposure of [`tmem->rmem`, `rmem->tmem` and `smem->tmem data movement instructions`](https://github.com/NVIDIA/cutlass/tree/main/include/cute/atom/copy_traits_sm100.hpp) as copy atoms in CuTe.
- [`make_tmem_copy()`](https://github.com/NVIDIA/cutlass/tree/main/include/cute/atom/copy_traits_sm100.hpp) utility method to ease creation of tiled copies for tmem copy atoms.
- Support for [new variants of LDSM on Blackwell](https://github.com/NVIDIA/cutlass/tree/main/include/cute/atom/copy_traits_sm100.hpp) via CuTe Copy atoms.
* Support for new CUTLASS building blocks specifically for Blackwell SM100 architecture:
- Various narrow precision [FP4, FP6, and FP8](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/exmy_base.h) formats as well as their [block-scaled variants NVFP4, MXFP4, MXFP6, and MXFP8](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/float_subbyte.h)
- [Pipelines that implement Blackwell specific synchronization](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/pipeline/sm100_pipeline.hpp).
- [Cluster launch control API supporting preferred and fallback cluster shapes](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/cluster_launch.hpp).
- Data types including NVFP4, MXFP4, MXFP6, and MXFP8 and all their supported element and scale factor types.
- Tile schedulers using [Blackwell's Cluster Launch Control (CLC) feature](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/blackwell_cluster_launch_control.html) to implement dynamic persistence scheduling for [GEMMs](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm100_tile_scheduler.hpp), and [stream-K](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm100_tile_scheduler_stream_k.hpp).
- Extensions to testbeds and reference check code for unit tests and CUTLASS profiler.
* Full support for Blackwell SM100 kernels in CUTLASS 3.x API:
- [Blackwell specific kernel layers](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm100_gemm_tma_warpspecialized.hpp) that
+ Implement a new warp-specialization recipe tuned specifically for Blackwell SM100 architecture.
+ Leverage all the new features such as CLC based tile scheduling, preferred cluster, and TMEM based double buffering of accumulators.
+ Support stream-K load balancing for all kernel types everywhere via composable scheduler support.
- Blackwell collective mainloops that target the TCGen05 MMA instructions (both SS and TS) for
* [Non-block scaled data types without support for pointer array and grouped GEMM with TMA](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm100_mma_warpspecialized.hpp)
* [Non-block scaled data types with support for pointer array and grouped GEMM with TMA](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm100_mma_array_warpspecialized.hpp)
* [Block scaled data types without support for pointer array and grouped GEMM with TMA](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm100_blockscaled_mma_warpspecialized.hpp)
* [Block scaled data types with support for pointer array and grouped GEMM with TMA](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm100_blockscaled_mma_array_warpspecialized.hpp)
- Blackwell [collective mainloop for convolution kernels](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/conv/collective/sm100_implicit_gemm_umma_warpspecialized.hpp) supporting non-block scaled data types for fprop, dgrad, and wgrad.
- New [GEMM](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/dispatch_policy.hpp), [convolution](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/conv/dispatch_policy.hpp), and [epilogue](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/dispatch_policy.hpp) dispatch policies for collectives, kernel layers, and builders.
- [Blackwell epilogue that supports loading accumulators from `tmem`](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/collective/sm100_epilogue_tma_warpspecialized.hpp) and full set of EVT fusions.
* CUTLASS library and profiler integration for block scaled data types for kernel emission, profiling, and verification.
- Support for preferred and fallback cluster shapes via profiler command line arguments parsing to set dynamic cluster shapes.
- Support for dynamic datatypes by parsing profiler via profiler command line arguments parsing to set dynamic datatype setting in TCGen05 MMA instruction descriptors.
- Support for mixed input GEMM kernels on Hopper in the profiler.
* New CUTLASS profiler flag `use-cuda-graphs` to reduce overheads when benchmarking launch-bound kernels.
* A new 3.x version of grouped GEMM to the CUTLASS library and generates kernels for Hopper and Blackwell. Now grouped GEMM support is enabled in the CUTLASS profiler (`./cutlass_profiler --operation=GroupedGemm --help` for details).
* Set of examples that demonstrate the usage of the 3.x API for targeting Blackwell SM100 architecture:
- [Basic FP16 and FP8 GEMMs with minimal changes from Hopper examples](https://github.com/NVIDIA/cutlass/tree/main/examples/70_blackwell_gemm/), demonstrating ease of migration for off the shelf kernels using the 3.x collective builder API.
- GEMM with [opt-in collective builder schedules showcasing available recipes](https://github.com/NVIDIA/cutlass/tree/main/examples/71_blackwell_gemm_with_collective_builder/71_blackwell_gemm_with_collective_builder.cu) for Blackwell.
- Block scaled data type GEMMs targeting Blackwell's native block scaled Tensor Cores:
+ [NVFP4 inputs with BF16 output](https://github.com/NVIDIA/cutlass/tree/main/examples/72_blackwell_narrow_precision_gemm/72a_blackwell_nvfp4_bf16_gemm.cu)
+ [NVFP4 inputs with NVFP4 output](https://github.com/NVIDIA/cutlass/tree/main/examples/72_blackwell_narrow_precision_gemm/72b_blackwell_nvfp4_nvfp4_gemm.cu)
+ [Mixed MXFP8 and MXFP6 inputs with BF16 output](https://github.com/NVIDIA/cutlass/tree/main/examples/72_blackwell_narrow_precision_gemm/72c_blackwell_mixed_mxfp8_bf16_gemm.cu)
- GEMM example demonstrating [Blackwell's new preferred cluster support via dynamic cluster shapes](https://github.com/NVIDIA/cutlass/tree/main/examples/73_blackwell_gemm_preferred_cluster/blackwell_gemm_preferred_cluster.cu) for increased occupancy.
- [GEMM with CLC based StreamK scheduler for load balancing](https://github.com/NVIDIA/cutlass/tree/main/examples/74_blackwell_gemm_streamk/blackwell_gemm_streamk.cu).
- Grouped GEMM for [vanilla FP8 data inputs](https://github.com/NVIDIA/cutlass/tree/main/examples/75_blackwell_grouped_gemm/75_blackwell_grouped_gemm.cu) and [NVFP4 block scaled inputs](https://github.com/NVIDIA/cutlass/tree/main/examples/75_blackwell_grouped_gemm/75_blackwell_grouped_gemm_block_scaled.cu).
- Convolution kernels for [fprop](https://github.com/NVIDIA/cutlass/tree/main/examples/76_blackwell_conv/76_blackwell_conv_fprop.cu), [dgrad](https://github.com/NVIDIA/cutlass/tree/main/examples/76_blackwell_conv/76_blackwell_conv_dgrad.cu), and [wgrad](https://github.com/NVIDIA/cutlass/tree/main/examples/76_blackwell_conv/76_blackwell_conv_wgrad.cu).
- [Fused multi-head attention fprop kernel](https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha/77_blackwell_fmha.cu) supporting fp16/bf16/fp8 data types across head dims of 32,64, and 128.
- A new BF16x9 GEMM [kernel](https://github.com/NVIDIA/cutlass/tree/main/examples/78_blackwell_emulated_bf16x9_gemm/78_blackwell_emulated_bf16x9_gemm.cu) that emulates FP32 GEMM (SGEMM) using BF16 operations.
* Set of examples that demonstrate the usage of the 3.x API for targeting Hopper architecture:
- A set of new [Hopper grouped GEMM kernels](https://github.com/NVIDIA/cutlass/tree/main/examples/69_hopper_mixed_dtype_grouped_gemm/) that support mixed A and B datatypes.
- A new [Hopper FP8 GEMM with groupwise scaling](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu).
* Documentation updates:
- [Quickstart - instantiating a Blackwell block-scaled GEMM](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/quickstart.html#instantiating-a-blackwell-sm100-gemm-kernel).
- Detailed [Blackwell block-scaled GEMM functionality documentation](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/blackwell_functionality.html)
- A new [functionality documentation](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/functionality.html) specifically for 3.x API comprehensively documenting all supported kernel types, data types, kernel features, minimum CUDA tookit support etc for 3.x supported architectures.
- Updates to [compatibility](https://docs.nvidia.com/cutlass/latest/overview.html#compatibility) section regarding supported compilers, operating systems, CUDA Toolkits, Hardware Architectures, and [Target Architecture](https://docs.nvidia.com/cutlass/latest/overview.html#target-architecture).
- Updates to [profiler documentation](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/profiler.html) for testing mixed input GEMM kernels on Hopper.
## [3.7.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.7.0) (2025-01-11)
- [Hopper blockwise scaling FP8 GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) uses 2D scaling tensor, assigning one value per threadblock. This allows a finer-grained scaling to be applied for each output tile per gemm-k iteration. The operands and scaling tensors are loaded from global memory to shared memory using TMA and cp_async, respectively. The scaling is applied inside the mainloop. Details with figures are [here](https://github.com/NVIDIA/cutlass/pull/1932#issue-2645398439).
- [Distributed GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/65_distributed_gemm/65_distributed_gemm.cu) is a new (experimental) API which can turn existing CUTLASS GEMM kernels into pipelined Tensor Parallel GEMMs that run efficiently on NVLink-based network of GPUs. Its pipelining schedules can hide most of the communication behind computation, and relies on point-to-point communication, which can simply use CUDA runtime's peer device access feature. It also utilizes remote TMA loads and memcopies with CUDA graphs to handle communication primarily through the Copy Engine, leaving all SMs free for Hopper's persistent kernels. For more details you can refer to the [DistGEMM blog post](https://blog.shi-labs.com/distributed-gemm-88be6a481e2b).
- Improved persistent grid launch for Hopper kernels with large cluster sizes (>= size of 4) using the new `make_kernel_hardware_info` API as shown in [example 48](https://github.com/NVIDIA/cutlass/tree/main/examples/48_hopper_warp_specialized_gemm/48_hopper_warp_specialized_gemm.cu).
- Enabled high precision accumulation for Hopper FP8 Sparse GEMM.
- Potential API breaking changes:
+ Fix `cute::UniversalCopy` for type safety.
+ No longer implicitly select `cute::SM80_CP_ASYNC_*` based on input tensors. This avoids implicit downstream synchronization requirements. To use `SM80_CP_ASYNC`, users must explicitly select the appropriate CopyAtom.
+ Fix `cute::SM80_CP_ASYNC_CACHEALWAYS`, `cute::SM80_CP_ASYNC_CACHEGLOBAL`, `cute::SM80_CP_ASYNC_CACHEALWAYS_ZFILL`, `cute::SM80_CP_ASYNC_CACHEGLOBAL_ZFILL` to avoid implicitly selecting `ZFILL` behavior on predication.
+ Remove `cute::copy_vec<T>` in favor of `cute::copy_aligned` and `cute::copy(AutoVectorizingCopyWithAssumedAlignment<NumBits>,...)`.
+ A refactor of default epilogue struct `DefaultEpilogue` [API](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/collective/default_epilogue.hpp) to avoid reading non-void `ElementC` value for `ElementC = void` kernel.
- New CUTLASS profiler flags: `profiling-duration`, `min-iterations`, and `kernels-file` documented in [profiler.md](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/profiler.html#cutlass-profiler).
- Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
- Optimal code generation with CUDA toolkit versions 12.6.
## [3.6.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.6.0) (2024-10-03)
- [Hopper structured sparse GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/62_hopper_sparse_gemm/62_hopper_sparse_gemm.cu).
+ [FP16](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_sparse_gemm_f16_f16_f32_tensor_op_f32.cu)
+ [FP8](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_sparse_gemm_f8_f8_f32_tensor_op_f32.cu)
+ [INT8](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_sparse_gemm_s8_s8_s32_tensor_op_s32.cu)
+ [TF32](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_sparse_gemm_tf32_tf32_f32_tensor_op_f32.cu)
- A refactor to the CUTLASS 3.x convolution `kernel::ConvUniversal` [API](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/conv/kernel/sm90_implicit_gemm_tma_warpspecialized.hpp) to bring it in line with `gemm::GemmUniversal`. Now the 3.x convolution API is no longer considered as a beta API.
- [An improved mixed input GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/55_hopper_mixed_dtype_gemm/README.md) and a [lookup table implementation](https://github.com/NVIDIA/cutlass/tree/main/examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu) for `INT4`x`FP8` scale-only mode.
- [EVT nodes for Top-K selection and softmax](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/fusion/sm90_visitor_topk_softmax.hpp) and [GEMM example using those](https://github.com/NVIDIA/cutlass/tree/main/examples/61_hopper_gemm_with_topk_and_softmax/61_hopper_gemm_with_topk_and_softmax.cu).
- [Programmatic Dependent Launch](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/arch/grid_dependency_control.h) (PDL) that leverages a new Hopper feature to speedup two back-to-back kernels, and its corresponding [documentations](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/dependent_kernel_launch.html).
- [A new debugging tool, synclog](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/arch/synclog.hpp), for dumping out all synchronization events from within a kernel to a file. Please see [synclog documentation](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/utilities.html#debugging-asynchronous-kernels-with-cutlasss-built-in-synclog-tool) for details.
- A new TMA-enabled [epilogue](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/collective/sm90_epilogue_array_tma_warpspecialized.hpp) for grouped GEMM that brings significant performance improvement, as well as its EVT support.
- A SIMT-enabled pointer-array [epilogue](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/collective/sm70_epilogue_vectorized_array.hpp).
- A new [Ping-Pong kernel schedule for Grouped GEMM](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm90_gemm_array_tma_warpspecialized_pingpong.hpp) and some other optimizations.
- [A new instantiation strategy for CUTLASS profiler kernels](https://github.com/NVIDIA/cutlass/tree/main/python/cutlass_library/sm90_shapes.py) along with [improved documentation for instantiation level in CUTLASS profiler](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/profiler.html#instantiating-more-kernels-with-hopper).
- A new hardware support for comparisons and computations of [`cutlass::bfloat16_t`](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/bfloat16.h)
- Fixed use of isnan on Windows for [`half_t`](https://github.com/NVIDIA/cutlass/tree/main/test/unit/core/functional.cu).
- Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
- Optimal code generation with CUDA toolkit versions 12.6.
## [3.5.1](https://github.com/NVIDIA/cutlass/releases/tag/v3.5.1) (2024-07-25)
- [Minimal SM90 WGMMA + TMA GEMM example in 100 lines of code](https://github.com/NVIDIA/cutlass/tree/main/examples/cute/tutorial/wgmma_sm90.cu)
- [Exposure of L2 `cache_hint`s in TMA copy atoms](https://github.com/NVIDIA/cutlass/tree/main/include/cute/arch/copy_sm90_tma.hpp#L48)
- Exposure of raster order and tile swizzle extent in [CUTLASS library profiler](./media/docs/cpp/profiler.md#gemm), and
[example 48](https://github.com/NVIDIA/cutlass/tree/main/examples/48_hopper_warp_specialized_gemm/48_hopper_warp_specialized_gemm.cu).
- [TMA store based and EVT supported epilogues](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/collective/sm90_epilogue_array_tma_warpspecialized.hpp) for [Hopper pointer array batched kernels](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_ptr_array.cu).
- A new [`GemmSparseUniversal` API for CUTLASS 2.x Ampere kernels](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/device/gemm_sparse_universal.h) to enable serial and parallel split-k for sparse tensor cores and new tiny tile sizes to better support LLM inferrence:
+ [FP16 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_f16t_f16n_f32t_tensor_op_f32_sparse_sm80.cu#L269-L393) and [NT](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_f16n_f16t_f32t_tensor_op_f32_sparse_sm80.cu#L269-L411).
+ [int8 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_s8t_s8n_s32t_tensor_op_s32_sparse_sm80.cu#L264-L452).
+ [int4 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_s4t_s4n_s32t_tensor_op_s32_sparse_sm80.cu#L264-L452).
+ [FP32 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_f32t_f32n_f32t_tensor_op_f32_sparse_sm80.cu#L427-L642) and [NT](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_f32n_f32t_f32t_tensor_op_f32_sparse_sm80.cu#L427-L456).
- [CUDA host adapter](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/cuda_host_adapter.hpp) extensions to support TMA descriptor construction driver APIs.
- Inclusion of more [Hopper fprop, dgrad, and wgrad convolution kernels in CUTLASS library and profiler](https://github.com/NVIDIA/cutlass/tree/main/python/cutlass_library/generator.py).
- Support for residual add (beta != 0) in convolution kernels.
- A new convolution [epilogue](https://github.com/NVIDIA/cutlass/tree/main/examples/16_ampere_tensorop_conv2dfprop/ampere_tensorop_conv2dfprop.cu#L269) for CUTLASS 2.x to support non-packed NHWC output.
- A refactor of [include files throughout CUTLASS core directories](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/collective_mma_decl.hpp) to reduce circular dependencies and [tests to guard against them](https://github.com/NVIDIA/cutlass/tree/main/test/self_contained_includes/CMakeLists.txt).
- [A guide for setting up VSCode to work well with CUTLASS](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/ide_setup.html) and [expanded code style guide](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/programming_guidelines.html).
- Better support for MSVC as a host compiler.
- Many performance optimizations, improvements, and bug fixes including fixes for FlashAttention-2.
- Optimal code generation with CUDA toolkit versions 12.4 and 12.5u1.
## [3.5.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.5.0) (2024-04-09)
- Implicit GEMM Convolutions targeting Hopper SM90A via WGMMA + [TMA im2col](https://github.com/NVIDIA/cutlass/tree/main/include/cute/atom/copy_traits_sm90_im2col.hpp)
+ Native implementation in CUTLASS 3.x using CuTe, mirroring the [same design hierarchy as that of GEMMs](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/gemm_api_3x.html).
+ Support for 1D, 2D, and 3D convolutions in a [rank-agnostic fashion](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/conv/convnd_problem_shape.hpp).
+ Support for [Fprop](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/fprop/sm90_conv3d_fprop_implicit_gemm_s8_s8_s32_tensorop_s32.cu), [Dgrad](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/dgrad/sm90_conv2d_dgrad_implicit_gemm_f16_f16_f32_tensorop_f16.cu), and [Wgrad](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/wgrad/sm90_conv1d_wgrad_implicit_gemm_f16_f16_f32_tensorop_f16.cu) algorithms
+ [CUTLASS profiler support](https://github.com/NVIDIA/cutlass/tree/main/python/cutlass_library/conv3x_emitter.py) for 2D and 3D convolutions implemented via the 3.x API.
+ NOTE: this is a beta release. Further updates to CUTLASS will include major performance improvements, feature enablement, and possible breaking changes to the API until 3.7 release. Your feedback is welcome on the design!
- Support for [Ada (SM89) FP8 tensor cores via the 2.x API](https://github.com/NVIDIA/cutlass/tree/main/examples/58_ada_fp8_gemm/ada_fp8_gemm.cu). Requires CUDA 12.4 or newer.
- [Ampere gather/scatter convolution example](https://github.com/NVIDIA/cutlass/tree/main/examples/59_ampere_gather_scatter_conv/README.md) in CuTe and CUTLASS 3.x
+ Showcasing how custom kernels can be written and optimized using CUTLASS 3.x and CuTe and the general strategy for implementing convolutions as specializations of GETTs.
+ Implementation of a coarse grained sparse gather/scatter kernel achieving peak performance on Ampere class tensor cores.
- 32x and 16x tile sizes are added to CUTLASS 2.x to improve the performance of narrow-tall and wide-short matrices.
+ [Ampere FP16 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_f16t_f16n_f16t_tensor_op_f32_sm80.cu) and [NT](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_f16n_f16t_f16t_tensor_op_f32_sm80.cu#L227-L301), [Ampere INT8 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_s8t_s8n_s8t_tensor_op_s32_sm80.cu#L392-L1342), [Ampere INT4 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_s4t_s4n_s4t_tensor_op_s32_sm80.cu#L372-L934).
+ [Turing FP16 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_f16t_f16n_f16t_tensor_op_f32_sm75.cu#L55-L394), [Turing INT8 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_s8t_s8n_s8t_tensor_op_s32_sm75.cu#L166-L537), [Turing INT4 TN](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_s4t_s4n_s4t_tensor_op_s32_sm75.cu#L310-L564).
- Updates to CuTe documentation for [`cute::Tensor<>`](./media/docs/cpp/cute/03_tensor.md), [MMA atoms](./media/docs/cpp/cute/0t_mma_atom.md), and an overhauled [CuTe GEMM tutorial series](https://github.com/NVIDIA/cutlass/tree/main/examples/cute/tutorial).
- Extensions to CuTe to support [L2 prefetching](https://github.com/NVIDIA/cutlass/tree/main/include/cute/algorithm/prefetch.hpp) and [TMA store+reductions](https://github.com/NVIDIA/cutlass/tree/main/include/cute/arch/copy_sm90_tma.hpp#L1337).
- Remove C++11 requirement on a few CUTLASS 2.x API header files. All CUTLASS files now require C++17.
- Fixes to greatly reduce build warnings.
- Updates and bugfixes from the community (thanks!)
## [3.4.1](https://github.com/NVIDIA/cutlass/releases/tag/v3.4.1) (2024-02-14)
- Statically available [CUTLASS Version macros](/include/cutlass/version.h) that allow for handling API changes between CUTLASS releases on the users' side.
- Improvements for Hopper [Group-GEMMs](/examples/57_hopper_grouped_gemm) and [Pointer-Array Batched GEMMs](/examples/56_hopper_ptr_array_batched_gemm).
- Statically available [CUTLASS Version macros](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/version.h) that allow for handling API changes between CUTLASS releases on the users' side.
- Improvements for Hopper [Group-GEMMs](https://github.com/NVIDIA/cutlass/tree/main/examples/57_hopper_grouped_gemm) and [Pointer-Array Batched GEMMs](https://github.com/NVIDIA/cutlass/tree/main/examples/56_hopper_ptr_array_batched_gemm).
- Updates and bugfixes from the community (thanks!).
## [3.4.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.4.0) (2024-01-12)
* Expanded [Mixed-input Hopper GEMMs](/examples/55_hopper_mixed_dtype_gemm) support covering {16-bit, 8-bit} x {8-bit, 4-bit} input types with fast numerical converters and group scaling factors.
* Performance improvements to [Mixed-input Hopper GEMMs](/examples/55_hopper_mixed_dtype_gemm)
* Beta release of [Pointer-Array Batched GEMMs](/examples/56_hopper_ptr_array_batched_gemm) now available on Hopper GPUs utilizing TMA and WGMMA (requires CUDA 12.3 or above).
* Beta release of [Group-GEMM](/examples/57_hopper_grouped_gemm) utilizing TMA and WGMMA (requires CUDA 12.3 or above).
* [Ampere Sparse GEMM](/examples/15_ampere_sparse_tensorop_gemm/ampere_sparse_tensorop_gemm_with_visitor.cu) supports Epilogue Visitor Tree (EVT) now.
* NamedBarriers usability improvement and list of [ReservedNamedBarriers](/include/cutlass/arch/barrier.h) has been officially released.
* Improved [CuTe documentation](/media/docs/cute/) including improved clarity and depth of [Quickstart](/media/docs/cute/00_quickstart.md), [CuTe Layout](/media/docs/cute/01_layout.md), and [CuTe Layout Algebra](/media/docs/cute/02_layout_algebra.md). Associated code comments, post-conditions, and details in [CuTe Core Unit Tests](/test/unit/cute/core/) also improved.
* Expanded [Mixed-input Hopper GEMMs](https://github.com/NVIDIA/cutlass/tree/main/examples/55_hopper_mixed_dtype_gemm) support covering {16-bit, 8-bit} x {8-bit, 4-bit} input types with fast numerical converters and group scaling factors.
* Performance improvements to [Mixed-input Hopper GEMMs](https://github.com/NVIDIA/cutlass/tree/main/examples/55_hopper_mixed_dtype_gemm)
* Beta release of [Pointer-Array Batched GEMMs](https://github.com/NVIDIA/cutlass/tree/main/examples/56_hopper_ptr_array_batched_gemm) now available on Hopper GPUs utilizing TMA and WGMMA (requires CUDA 12.3 or above).
* Beta release of [Group-GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/57_hopper_grouped_gemm) utilizing TMA and WGMMA (requires CUDA 12.3 or above).
* [Ampere Sparse GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/15_ampere_sparse_tensorop_gemm/ampere_sparse_tensorop_gemm_with_visitor.cu) supports Epilogue Visitor Tree (EVT) now.
* NamedBarriers usability improvement and list of [ReservedNamedBarriers](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/arch/barrier.h) has been officially released.
* Improved CuTe documentation including improved clarity and depth of [Quickstart](./media/docs/cpp/cute/00_quickstart.md), [CuTe Layout](./media/docs/cpp/cute/01_layout.md), and [CuTe Layout Algebra](./media/docs/cpp/cute/02_layout_algebra.md). Associated code comments, post-conditions, and details in [CuTe Core Unit Tests](./test/unit/cute/core/) also improved.
## [3.3](https://github.com/NVIDIA/cutlass/releases/tag/v3.3.0) (2023-10-31)
* [Mixed-input Hopper GEMMs](/examples/55_hopper_mixed_dtype_gemm) support covering 16-bit x 8-bit input operand types.
* [Mixed-input Hopper GEMMs](https://github.com/NVIDIA/cutlass/tree/main/examples/55_hopper_mixed_dtype_gemm) support covering 16-bit x 8-bit input operand types.
* [Mixed-input Ampere GEMMs](https://github.com/NVIDIA/cutlass/pull/1084) with support for canonical layouts (TN). The implementation supports upcast on operandB {fp16, bf16} x {s8, u8}, and upcast on operandA {s8, u8} x {fp16, bf16}.
* [Copy Async based Hopper GEMMs](/test/unit/gemm/device/sm90_gemm_bf16_bf16_bf16_alignx_tensor_op_f32_warpspecialized_cooperative.cu) - which support lower than 16B aligned input tensors.
* Kernel schedules and Builder support for mixed precision and Copy Async GEMMs with < 16B aligned input tensors.
* [Copy Async based Hopper GEMMs](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_gemm_bf16_bf16_bf16_alignx_tensor_op_f32_warpspecialized_cooperative.cu) - which support lower than 16B aligned input tensors.
* Kernel schedules and Builder support for mixed precision and Copy Async GEMMs with < 16B aligned input tensors.
* Profiler support for lower-aligned Hopper GEMMs.
* Performance Improvements to [Scatter-Gather Hopper Example](/examples/52_hopper_gather_scatter_fusion).
* Performance Improvements to [Scatter-Gather Hopper Example](https://github.com/NVIDIA/cutlass/tree/main/examples/52_hopper_gather_scatter_fusion).
* Sub-Byte type fixes and improvements.
* EVT Support for RELU with Aux bitmap tensor store (used in dRELU). See [SM90 EVT fusions](/include/cutlass/epilogue/fusion/sm90_visitor_compute_tma_warpspecialized.hpp) for details.
* EVT Support for RELU with Aux bitmap tensor store (used in dRELU). See [SM90 EVT fusions](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/fusion/sm90_visitor_compute_tma_warpspecialized.hpp) for details.
* Fusion support for backprop fusions including drelu, dgelu, and dbias.
* Support for void-C kernels and SM80 mixed-input GEMMs in the CUTLASS Python interface
@ -34,7 +494,7 @@
* SM80 EVT support in C++ and Python.
* Other SM90 epilogue improvements.
* Splitting CUTLASS library into smaller units based on operation, arch and datatypes. See [1105](https://github.com/NVIDIA/cutlass/discussions/1105) for details.
* Making `tools/library/scripts` packageable - `tools/library/scripts` is now moving to `python/cutlass_library`. See the Python [README](/python/README.md) for details.
* Making `tools/library/scripts` packageable - `tools/library/scripts` is now moving to `python/cutlass_library`. See the Python [README](https://github.com/NVIDIA/cutlass/tree/main/python/README.md) for details.
* SM90 TF32 kernel improvements for all layouts.
* SM90 rasterization direction support in the CUTLASS profiler.
* Improvement for CUTLASS profiler build times.
@ -42,65 +502,67 @@
## [3.2.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.2.0) (2023-08-03)
* New warp-specialized persistent FP8 GEMM kernel [kernel schedules](/include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_cooperative.hpp) and [mainloops](/include/cutlass/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized_fp8.hpp) targeting Hopper architecture that achieve great performance with TMA, WGMMA, and threadblock clusters. An example showcasing [Hopper warp-specialized FP8 GEMMs](/examples/54_hopper_fp8_warp_specialized_gemm). FP8 GEMMs come with a fast accumulation mode. When enabled, problem execution might be faster but at the cost of lower accuracy because intermediate results will not periodically be promoted to a higher precision.
* New [Epilogue Visitor Tree (EVT)](/examples/49_hopper_gemm_with_collective_builder/49_collective_builder.cu) support for Hopper TMA epilogues. EVTs allows for user-defined customized epilogue fusion patterns without having to write a new epilogue.
* [Stream-K](/include/cutlass/gemm/kernel/sm90_tile_scheduler_stream_k.hpp) feature for Hopper. Note that this is only a functional implementation of stream-K, and should not be used for performance comparison. Optimizations are expected in a future release.
* Improved CTA rasterization and support for CTA swizzling for Hopper kernels using the [Tile Scheduler](/include/cutlass/gemm/kernel/sm90_tile_scheduler.hpp).
* Improved performance for [warp-specialized TensorFloat-32 (TF32) GEMM kernels](test/unit/gemm/device/sm90_gemm_tf32_tf32_f32_tensor_op_f32_gmma_rs_cluster_warpspecialized.cu) targeting Hopper TMA.
* [Hopper GEMM+Permute](/examples/53_hopper_gemm_permute/53_hopper_gemm_permute.cu), an example of fusing tensor reordering (permutation) with GEMM mainloop or epilogue.
* New CUTLASS 2D Convolution Python interface. New [example](/examples/python/03_basic_conv2d.ipynb) here.
* New warp-specialized persistent FP8 GEMM kernel [kernel schedules](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_cooperative.hpp) and [mainloops](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized_fp8.hpp) targeting Hopper architecture that achieve great performance with TMA, WGMMA, and threadblock clusters. An example showcasing [Hopper warp-specialized FP8 GEMMs](https://github.com/NVIDIA/cutlass/tree/main/examples/54_hopper_fp8_warp_specialized_gemm). FP8 GEMMs come with a fast accumulation mode. When enabled, problem execution might be faster but at the cost of lower accuracy because intermediate results will not periodically be promoted to a higher precision.
* New [Epilogue Visitor Tree (EVT)](https://github.com/NVIDIA/cutlass/tree/main/examples/49_hopper_gemm_with_collective_builder/49_collective_builder.cu) support for Hopper TMA epilogues. EVTs allows for user-defined customized epilogue fusion patterns without having to write a new epilogue.
* [Stream-K](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm90_tile_scheduler_stream_k.hpp) feature for Hopper. Note that this is only a functional implementation of stream-K, and should not be used for performance comparison. Optimizations are expected in a future release.
* Improved CTA rasterization and support for CTA swizzling for Hopper kernels using the [Tile Scheduler](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm90_tile_scheduler.hpp).
* Improved performance for [warp-specialized TensorFloat-32 (TF32) GEMM kernels](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_gemm_tf32_tf32_f32_tensor_op_f32_gmma_rs_cluster_warpspecialized.cu) targeting Hopper TMA.
* [Hopper GEMM+Permute](https://github.com/NVIDIA/cutlass/tree/main/examples/53_hopper_gemm_permute/53_hopper_gemm_permute.cu), an example of fusing tensor reordering (permutation) with GEMM mainloop or epilogue.
* New CUTLASS 2D Convolution Python interface. New [example](https://github.com/NVIDIA/cutlass/tree/main/examples/python/03_basic_conv2d.ipynb) here.
* Support for Windows (MSVC) builds. Tested with Visual Studio 2019 v16.11.27 on Windows 10.0.
* Optimal performance using [**CUDA 12.2u1**](https://developer.nvidia.com/cuda-downloads)
* Updates and bugfixes from the community (thanks!)
## [3.1.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.1.0) (2023-04-14)
* New CUTLASS Python interface that aims to provide an ease-of-use interface for instantiating, emitting, compiling, and running CUTLASS kernels via Python. More details [here](/python/README.md) and new [examples](/examples/python).
* New [efficient epilogues](test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_cluster_warpspecialized_cooperative.cu#L783) using TMA for Hopper.
* Support for [fused epilogues](test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_cluster_warpspecialized_cooperative_bias_elementwise.cu), such Bias, ReLU and GELU, using the new efficient epilogues.
* New [warp-specialized TensorFloat-32 (TF32) GEMM kernels](test/unit/gemm/device/sm90_gemm_tf32_tf32_f32_tensor_op_f32_gmma_rs_cluster_warpspecialized.cu) targeting Hopper TMA.
* New [*warp-specialized persistent cooperative*](include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_cooperative.hpp) kernel design that allows for larger tile sizes and improves performance on Hopper.
* An [example](examples/51_hopper_gett) showcasing GEMM-Like Tensor-Tensor Contraction (GETT) capability on Hopper.
* Epilogue builders. Similar to mainloop builders (see [example 49](/examples/49_hopper_gemm_with_collective_builder/49_collective_builder.cu)), epilogue builders aim to generate the best-possible epilogue while exposing incremental opt-ins for greater customization.
* New CUTLASS Python interface that aims to provide an ease-of-use interface for instantiating, emitting, compiling, and running CUTLASS kernels via Python. More details [here](https://github.com/NVIDIA/cutlass/tree/main/python/README.md) and new [examples](https://github.com/NVIDIA/cutlass/tree/main/examples/python).
* New [efficient epilogues](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_cluster_warpspecialized_cooperative.cu#L783) using TMA for Hopper.
* Support for [fused epilogues](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_cluster_warpspecialized_cooperative_bias_elementwise.cu), such Bias, ReLU and GELU, using the new efficient epilogues.
* New [warp-specialized TensorFloat-32 (TF32) GEMM kernels](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/sm90_gemm_tf32_tf32_f32_tensor_op_f32_gmma_rs_cluster_warpspecialized.cu) targeting Hopper TMA.
* New [*warp-specialized persistent cooperative*](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_cooperative.hpp) kernel design that allows for larger tile sizes and improves performance on Hopper.
* An [example](https://github.com/NVIDIA/cutlass/tree/main/examples/51_hopper_gett) showcasing GEMM-Like Tensor-Tensor Contraction (GETT) capability on Hopper.
* Epilogue builders. Similar to mainloop builders (see [example 49](https://github.com/NVIDIA/cutlass/tree/main/examples/49_hopper_gemm_with_collective_builder/49_collective_builder.cu)), epilogue builders aim to generate the best-possible epilogue while exposing incremental opt-ins for greater customization.
* Profiler support for overriding kernel and epilogue builder auto schedules for 3.x API kernels, allowing specific policies to be run in the CUTLASS profiler.
* Performance optimizations for the [*warp-specialized persistent ping-pong*](include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_pingpong.hpp) kernel.
* Changes to the [GEMM API 3.x](media/docs/gemm_api_3x.md), involving the host-facing arguments and the underlying `Params` structs.
* [FMHA Backward Pass](examples/41_fused_multi_head_attention/fused_multi_head_attention_backward.cu) from Meta xFormers.
* [Streamk GEMM with Broadcast](examples/47_ampere_gemm_universal_streamk/ampere_gemm_universal_streamk_broadcast.cu) enables epilogue broadcast with StreamK GEMM.
* [Batched B2B GEMM](examples/13_two_tensor_op_fusion) now can run multiple Back-to-Back GEMM with the same problem size in parallel.
* [Batched Strided GEMV](test/unit/gemm/device/gemv.cu) support both row major and column major input matrix.
* [Permute + GEMM fusion](examples/39_gemm_permute) can fuse Permute with following GEMM now. Before, we only support fusing GEMM with Permute in the epilogue.
* [Row Broadcast](include/cutlass/epilogue/threadblock/predicated_tile_iterator_row_broadcast.h) can be fused in the epilogue.
* Performance optimizations for the [*warp-specialized persistent ping-pong*](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_pingpong.hpp) kernel.
* Changes to the [GEMM API 3.x](./media/docs/cpp/gemm_api_3x.md), involving the host-facing arguments and the underlying `Params` structs.
* [FMHA Backward Pass](https://github.com/NVIDIA/cutlass/tree/main/examples/41_fused_multi_head_attention/fused_multi_head_attention_backward.cu) from Meta xFormers.
* [Streamk GEMM with Broadcast](https://github.com/NVIDIA/cutlass/tree/main/examples/47_ampere_gemm_universal_streamk/ampere_gemm_universal_streamk_broadcast.cu) enables epilogue broadcast with StreamK GEMM.
* [Batched B2B GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/13_two_tensor_op_fusion) now can run multiple Back-to-Back GEMM with the same problem size in parallel.
* [Batched Strided GEMV](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemv.cu) support both row major and column major input matrix.
* [Permute + GEMM fusion](https://github.com/NVIDIA/cutlass/tree/main/examples/39_gemm_permute) can fuse Permute with following GEMM now. Before, we only support fusing GEMM with Permute in the epilogue.
* [Row Broadcast](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/threadblock/predicated_tile_iterator_row_broadcast.h) can be fused in the epilogue.
* The GitHub branch is renamed from `master` to `main` in this release.
* Optimal performance using [**CUDA 12.1**](https://developer.nvidia.com/cuda-downloads)
* Updates and bugfixes from the community (thanks!)
## [3.0.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.0.0) (2023-01-23)
* [CuTe](/media/docs/cute/00_quickstart.md), a [new core library and backend](/include/cute) for CUTLASS 3.0 that defines a single Layout vocabulary type and an associated algebra of layouts for a much more expressive and composable abstraction for tensors, sets of parallel agents, and operations by said agents on tensors.
* [A new conceptual operation hierarchy](media/docs/cutlass_3x_design.md) that replaces the architecture-centric hierarchy of CUTLASS 2.x and [documentation for CUTLASS 3.0's GEMM API changes](/media/docs/gemm_api_3x.md).
* Strict API backwards compatibility that exposes both 2.x and 3.x API kernels through the same [`device::GemmUniversalAdapter`](include/cutlass/gemm/device/gemm_universal_adapter.h) and [`kernel::GemmUniversal`](include/cutlass/gemm/kernel/gemm_universal.hpp) types, allowing users to include both APIs in the same translation units. More information can be found in the [3.x backwards compatibility section](media/docs/cutlass_3x_backwards_compatibility.md).
* Updates to [Functionality](media/docs/functionality.md) which directs users on which kernels are supported via CUTLASS-2 and CUTLASS-3.
* Updates to [Compatibility](/README.md#compatibility) Section regarding supported compilers, operating systems, CUDA Toolkits, Hardware Architectures and [Target Architecture](/README.md#Target-Architecture).
* New warp-specialized GEMM [kernel schedules](include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized.hpp) and [mainloops](include/cutlass/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized.hpp) targeting Hopper architecture that achieve great performance with TMA, WGMMA, and threadblock clusters.
* [CuTe](./media/docs/cpp/cute/00_quickstart.md), a [new core library and backend](./include/cute) for CUTLASS 3.0 that defines a single Layout vocabulary type and an associated algebra of layouts for a much more expressive and composable abstraction for tensors, sets of parallel agents, and operations by said agents on tensors.
* [A new conceptual operation hierarchy](./media/docs/cpp/cutlass_3x_design.md) that replaces the architecture-centric hierarchy of CUTLASS 2.x and [documentation for CUTLASS 3.0's GEMM API changes](./media/docs/cpp/gemm_api_3x.md).
* Strict API backwards compatibility that exposes both 2.x and 3.x API kernels through the same [`device::GemmUniversalAdapter`](./include/cutlass/gemm/device/gemm_universal_adapter.h) and [`kernel::GemmUniversal`](./include/cutlass/gemm/kernel/gemm_universal.hpp) types, allowing users to include both APIs in the same translation units. More information can be found in the [3.x backwards compatibility section](./media/docs/cpp/cutlass_3x_backwards_compatibility.md).
* Updates to [Functionality](./media/docs/cpp/functionality.md) which directs users on which kernels are supported via CUTLASS-2 and CUTLASS-3.
* Updates to [Compatibility](./README.md#compatibility) Section regarding supported compilers, operating systems, CUDA Toolkits, Hardware Architectures and [Target Architecture](./README.md#target-architecture).
* New warp-specialized GEMM [kernel schedules](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized.hpp) and [mainloops](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized.hpp) targeting Hopper architecture that achieve great performance with TMA, WGMMA, and threadblock clusters.
* Extensions to CUTLASS profiler to support threadblock cluster shapes in library and profiler tile configurations.
* [CUTLASS library integration](/tools/library/src/gemm_operation_3x.hpp) for 3.x API kernels built through the new `CollectiveBuilder` API, enabling CUTLASS profiler.
* Support for [Hopper GEMMs](examples/48_hopper_warp_specialized_gemm) through the new 3.0 API with CuTe-based exposure of the Hopper [Tensor Memory Accelerator](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor) and [WGMMA Tensor Core](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-instructions) features.
* Set of examples that demonstrate the usage of the new 3.0 API to easily build GEMM kernels targeting Hopper: examples [48](examples/48_hopper_warp_specialized_gemm), [49](examples/49_hopper_gemm_schedules_with_collective_builder), and [50](examples/50_hopper_gemm_with_epilogue_swizzle).
* [CUTLASS library integration](https://github.com/NVIDIA/cutlass/tree/main/tools/library/src/gemm_operation_3x.hpp) for 3.x API kernels built through the new `CollectiveBuilder` API, enabling CUTLASS profiler.
* Support for [Hopper GEMMs](https://github.com/NVIDIA/cutlass/tree/main/examples/48_hopper_warp_specialized_gemm) through the new 3.0 API with CuTe-based exposure of the Hopper [Tensor Memory Accelerator](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor) and [WGMMA Tensor Core](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-instructions) features.
* Set of examples that demonstrate the usage of the new 3.0 API to easily build GEMM kernels targeting Hopper: examples [48](https://github.com/NVIDIA/cutlass/tree/main/examples/48_hopper_warp_specialized_gemm), [49](https://github.com/NVIDIA/cutlass/tree/main/examples/49_hopper_gemm_schedules_with_collective_builder), and [50](https://github.com/NVIDIA/cutlass/tree/main/examples/50_hopper_gemm_with_epilogue_swizzle).
# CUTLASS 2.x
## [2.11.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.11.0) (2022-11-19)
* [Stream-K](/examples/47_ampere_gemm_universal_streamk), which is a new general way to do split-K. It can not only improve performance, but can also significantly reduce the number of tile sizes that need to be profiled to find the best one.
* [Fused multi-head attention Kernel](/examples/41_fused_multi_head_attention). It has two variants: one uses batched GEMM for the fixed sequence length, and the other one uses group GEMM for the variable sequence length. Both versions just need one kernel.
* [Dual GEMM](/examples/45_dual_gemm), which can fuse A x B and A x C into one kernel. Two GEMMs has no producer-consumer dependency.
* Hopper improves [double precision matrix multiplication](/test/unit/gemm/device/gemm_f64n_f64t_f64t_tensor_op_f64_sm90.cu) by 2x compared to Ampere at iso-clocks. It is supported since CUDA 11.8.
* [BLAS3](/test/unit/gemm/device/hemm_cf64_cf64_cf64_tensor_op_f64_sm90.cu) functions with Hoppers new double precision matrix multiplication instructions.
* [ELL Block Sparse GEMM](/examples/43_ell_block_sparse_gemm), which uses an [ELL matrix](https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/) to describe the sparsity of A matrix. B and output matrices are still dense. The block size can be arbitary.
* Optimized [Group Conv](/examples/42_ampere_tensorop_group_conv) for SingleGroup mode, which requires that the output channel per group is a multiple of Threadblock tile N.
* [Optimized DepthWise Conv](/examples/46_depthwise_simt_conv2dfprop/depthwise_simt_conv2dfprop.cu). Two new modes are added
* [kOptimized](/test/unit/conv/device/depthwise_conv2d_fprop_direct_conv_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) - use direct conv to compute instead of implicit GEMM.
* [Stream-K](https://github.com/NVIDIA/cutlass/tree/main/examples/47_ampere_gemm_universal_streamk), which is a new general way to do split-K. It can not only improve performance, but can also significantly reduce the number of tile sizes that need to be profiled to find the best one.
* [Fused multi-head attention Kernel](https://github.com/NVIDIA/cutlass/tree/main/examples/41_fused_multi_head_attention). It has two variants: one uses batched GEMM for the fixed sequence length, and the other one uses group GEMM for the variable sequence length. Both versions just need one kernel.
* [Dual GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/45_dual_gemm), which can fuse A x B and A x C into one kernel. Two GEMMs has no producer-consumer dependency.
* Hopper improves [double precision matrix multiplication](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_f64n_f64t_f64t_tensor_op_f64_sm90.cu) by 2x compared to Ampere at iso-clocks. It is supported since CUDA 11.8.
* [BLAS3](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/hemm_cf64_cf64_cf64_tensor_op_f64_sm90.cu) functions with Hoppers new double precision matrix multiplication instructions.
* [ELL Block Sparse GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/43_ell_block_sparse_gemm), which uses an [ELL matrix](https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/) to describe the sparsity of A matrix. B and output matrices are still dense. The block size can be arbitary.
* Optimized [Group Conv](https://github.com/NVIDIA/cutlass/tree/main/examples/42_ampere_tensorop_group_conv) for SingleGroup mode, which requires that the output channel per group is a multiple of Threadblock tile N.
* [Optimized DepthWise Conv](https://github.com/NVIDIA/cutlass/tree/main/examples/46_depthwise_simt_conv2dfprop/depthwise_simt_conv2dfprop.cu). Two new modes are added
* [kOptimized](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/depthwise_conv2d_fprop_direct_conv_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) - use direct conv to compute instead of implicit GEMM.
* The restrictions are: 1) input ,output channel and group number should be multiple of (128 / sizeof(input element)). 2) The input filter size should be the same as the template parameter configuration.
* [kFixedStrideDilation](/test/unit/conv/device/depthwise_conv2d_fprop_direct_conv_fixed_stride_dilation_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) - which puts stride and dilation into templates to further improve the performance. In this mode, kernel persistents some inputs into register to squeeze more performance, so large filter/stride/dilation is not recommanded.
* The restrictions are: 1) input, output channel and group number should be multiple of (128 / sizeof(input element)). 2) input filter size, stride, dilation should same as the template parameter configuration.
* [Scripts](/examples/44_multi_gemm_ir_and_codegen) to fuse multiple back-to-back GEMM. Its implementation was discussed in a GTC'22 Spring [talk](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41606/).
* [FP8 data type definition](/include/cutlass/float8.h) and [conversion routines](/include/cutlass/numeric_conversion.h#L1274-2115).
* [kFixedStrideDilation](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/depthwise_conv2d_fprop_direct_conv_fixed_stride_dilation_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) - which puts stride and dilation into templates to further improve the performance. In this mode, kernel persistents some inputs into register to squeeze more performance, so large filter/stride/dilation is not recommanded.
* The restrictions are: 1) input, output channel and group number should be multiple of (128 / sizeof(input element)). 2) input filter size, stride, dilation should same as the template parameter configuration.
* [Scripts](https://github.com/NVIDIA/cutlass/tree/main/examples/44_multi_gemm_ir_and_codegen) to fuse multiple back-to-back GEMM. Its implementation was discussed in a GTC'22 Spring [talk](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41606/).
* [FP8 data type definition](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/float8.h) and [conversion routines](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/numeric_conversion.h#L1274-2115).
* Updates and bugfixes from the community (thanks!). Big shout out to Meta's [xFormers](https://github.com/facebookresearch/xformers).
* **Deprecation announcement:** CUTLASS plans to deprecate the following:
@ -109,54 +571,54 @@
* CUDA 10.2
## [2.10.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.10.0) (2022-08-23)
* [CUTLASS Python](/examples/40_cutlass_py) now supports GEMM, CONV, Group GEMM for different data types as well as different epilogue flavours.
* Optimizations for CUTLASS's [Grouped GEMM](examples/24_gemm_grouped/gemm_grouped.cu) kernel. Threadblock scheduling part is improved. Some computation can be moved to the host side if applicable. [Grouped Syr2k](examples/38_syr2k_grouped/syr2k_grouped.cu) kernels are added, too.
* Optimizations for [GEMM+Softmax](examples/35_gemm_softmax). All the reduction computation is fused into the previous GEMM. More template arguments are provided to fine tune the performance.
* [Grouped GEMM for Multihead Attention](examples/41_multi_head_attention). This general group gemm based MHA does not require the sequence length of all GEMMs to be the same which makes it most useful for natural language processing.
* [GEMM + Layer norm fusion for Ampere](examples/37_gemm_layernorm_gemm_fusion/) splits the layernorm into two parts and both of them can be fused into the GEMMs before and after separately. In addition to use square sum to compute variance of layernorm, [Shift-K](https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Computing_shifted_data) is provided if square sum raise numerical issues.
* [GEMM Epilogue Permutation Fusion](examples/39_gemm_permute) can apply user provided permutation layout mapping in the GEMM epilogue.
* [Grouped convolution targeting implicit GEMM](test/unit/conv/device/group_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) introduces the first group convolution implementation to CUTLASS. It is an Analytical implementation, not an Optimized. The restrictions are: 1) input and output channel number should be multiple of group number. 2) split-K is not supported. The implementation has 2 modes:
* [CUTLASS Python](https://github.com/NVIDIA/cutlass/tree/main/examples/40_cutlass_py) now supports GEMM, CONV, Group GEMM for different data types as well as different epilogue flavours.
* Optimizations for CUTLASS's [Grouped GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/24_gemm_grouped/gemm_grouped.cu) kernel. Threadblock scheduling part is improved. Some computation can be moved to the host side if applicable. [Grouped Syr2k](https://github.com/NVIDIA/cutlass/tree/main/examples/38_syr2k_grouped/syr2k_grouped.cu) kernels are added, too.
* Optimizations for [GEMM+Softmax](https://github.com/NVIDIA/cutlass/tree/main/examples/35_gemm_softmax). All the reduction computation is fused into the previous GEMM. More template arguments are provided to fine tune the performance.
* [Grouped GEMM for Multihead Attention](https://github.com/NVIDIA/cutlass/tree/main/examples/41_multi_head_attention). This general group gemm based MHA does not require the sequence length of all GEMMs to be the same which makes it most useful for natural language processing.
* [GEMM + Layer norm fusion for Ampere](https://github.com/NVIDIA/cutlass/tree/main/examples/37_gemm_layernorm_gemm_fusion/) splits the layernorm into two parts and both of them can be fused into the GEMMs before and after separately. In addition to use square sum to compute variance of layernorm, [Shift-K](https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Computing_shifted_data) is provided if square sum raise numerical issues.
* [GEMM Epilogue Permutation Fusion](https://github.com/NVIDIA/cutlass/tree/main/examples/39_gemm_permute) can apply user provided permutation layout mapping in the GEMM epilogue.
* [Grouped convolution targeting implicit GEMM](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/group_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) introduces the first group convolution implementation to CUTLASS. It is an Analytical implementation, not an Optimized. The restrictions are: 1) input and output channel number should be multiple of group number. 2) split-K is not supported. The implementation has 2 modes:
* kSingleGroup: output channel per group is multiple of Threadblock tile N.
* kMultipleGroup: Threadblock tile N is multiple of output channel per group.
* [Depthwise separable convolution](test/unit/conv/device/depthwise_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) introduces the first depthwise convolution which is also Analytical for now. The restrictions are: 1) SIMT only 2) No split-K 3) input channel equals to output channel equals to group number.
* Standalone [Layernorm](/tools/util/include/cutlass/util/device_layernorm.h) and [Pooling](/tools/util/include/cutlass/util/device_nhwc_pooling.h) kernels.
* [Back-to-back GEMM/CONV](examples/13_two_tensor_op_fusion) relaxes the requirement that the first GEMM K dimension needs to be the multiple of Threadblock Tile K dimension.
* [Depthwise separable convolution](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/depthwise_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) introduces the first depthwise convolution which is also Analytical for now. The restrictions are: 1) SIMT only 2) No split-K 3) input channel equals to output channel equals to group number.
* Standalone [Layernorm](https://github.com/NVIDIA/cutlass/tree/main/tools/util/include/cutlass/util/device_layernorm.h) and [Pooling](https://github.com/NVIDIA/cutlass/tree/main/tools/util/include/cutlass/util/device_nhwc_pooling.h) kernels.
* [Back-to-back GEMM/CONV](https://github.com/NVIDIA/cutlass/tree/main/examples/13_two_tensor_op_fusion) relaxes the requirement that the first GEMM K dimension needs to be the multiple of Threadblock Tile K dimension.
* Optimal performance using [**CUDA 11.6u2**](https://developer.nvidia.com/cuda-downloads)
* Updates and bugfixes from the community (thanks!)
## [2.9.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.9.0) (2022-04-21)
* [First layer Convolution kernels](/test/unit/conv/device/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) specialized for small channel counts and reduced alignment
* [Few channels](/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_few_channels.h) specialization for reduced alignment capabilities
* [Fixed channels](/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_fixed_channels.h) further specialized when channel count perfectly matches the access vector size
* [Unit tests](/test/unit/conv/device/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu)
* [Python-based instance emitter](/python/cutlass_library/generator.py) in the CUTLASS Library and support in the Profiler
* [First layer Convolution kernels](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) specialized for small channel counts and reduced alignment
* [Few channels](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_few_channels.h) specialization for reduced alignment capabilities
* [Fixed channels](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_fixed_channels.h) further specialized when channel count perfectly matches the access vector size
* [Unit tests](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu)
* [Python-based instance emitter](https://github.com/NVIDIA/cutlass/tree/main/python/cutlass_library/generator.py) in the CUTLASS Library and support in the Profiler
* [BLAS3](https://docs.nvidia.com/cuda/cublas/index.html#cublas-level-3-function-reference) operators accelerated by Tensor Cores
* Supported types: f32, cf32, f64, cf64, tf32x3, complex tf32x3
* [HERK](/test/unit/gemm/device/her2k_cf32h_cf32n_tensor_op_fast_f32_sm80.cu) with [emitter](/python/cutlass_library/rank_k_operation.py)
* [SYRK](/test/unit/gemm/device/syrk_f32n_f32t_tensor_op_fast_f32_sm80.cu) with [emitter](/python/cutlass_library/rank_k_operation.py)
* [SYMM](/test/unit/gemm/device/symm_f32n_f32n_tensor_op_fast_f32_ls_sm80.cu) with [emitter](/python/cutlass_library/symm_operation.py)
* [TRMM](/test/unit/gemm/device/trmm_f32n_f32t_f32t_tensor_op_fast_f32_ls_sm80.cu) with [emitter](/python/cutlass_library/trmm_operation.py)
* [Unit tests](/test/unit/gemm/device/testbed_rank_k_universal.h)
* [CUTLASS Python](/examples/40_cutlass_py) demonstrating JIT compilation of CUTLASS kernels and a Python-based runtime using [CUDA Python](https://developer.nvidia.com/cuda-python)
* [Python-based runtime](/tools/library/scripts/rt.py) interoperable with existing emitters
* [GEMM + Softmax example](/examples/35_gemm_softmax)
* [Gather and Scatter Fusion with GEMM](/examples/36_gather_scatter_fusion) can gather inputs and scatters outputs based on indices vectors in the same GEMM kernel.
* [HERK](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/her2k_cf32h_cf32n_tensor_op_fast_f32_sm80.cu) with [emitter](https://github.com/NVIDIA/cutlass/tree/main/python/cutlass_library/rank_k_operation.py)
* [SYRK](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/syrk_f32n_f32t_tensor_op_fast_f32_sm80.cu) with [emitter](https://github.com/NVIDIA/cutlass/tree/main/python/cutlass_library/rank_k_operation.py)
* [SYMM](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/symm_f32n_f32n_tensor_op_fast_f32_ls_sm80.cu) with [emitter](https://github.com/NVIDIA/cutlass/tree/main/python/cutlass_library/symm_operation.py)
* [TRMM](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/trmm_f32n_f32t_f32t_tensor_op_fast_f32_ls_sm80.cu) with [emitter](https://github.com/NVIDIA/cutlass/tree/main/python/cutlass_library/trmm_operation.py)
* [Unit tests](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/testbed_rank_k_universal.h)
* [CUTLASS Python](https://github.com/NVIDIA/cutlass/tree/main/examples/40_cutlass_py) demonstrating JIT compilation of CUTLASS kernels and a Python-based runtime using [CUDA Python](https://developer.nvidia.com/cuda-python)
* [Python-based runtime](https://github.com/NVIDIA/cutlass/tree/main/tools/library/scripts/rt.py) interoperable with existing emitters
* [GEMM + Softmax example](https://github.com/NVIDIA/cutlass/tree/main/examples/35_gemm_softmax)
* [Gather and Scatter Fusion with GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/36_gather_scatter_fusion) can gather inputs and scatters outputs based on indices vectors in the same GEMM kernel.
* It can select random rows in a row major matrix.
* It can select random columns in a column major matrix.
* [Back-to-back GEMM/CONV](examples/13_two_tensor_op_fusion) fully supports buffering the first GEMM/CONV results in the shared memory for the latter one to use. It can eliminate register spill when the tile size is big. Additionally, bias vector add is supported in the first GEMM/CONV.
* [Back-to-back GEMM/CONV](https://github.com/NVIDIA/cutlass/tree/main/examples/13_two_tensor_op_fusion) fully supports buffering the first GEMM/CONV results in the shared memory for the latter one to use. It can eliminate register spill when the tile size is big. Additionally, bias vector add is supported in the first GEMM/CONV.
* Supported kernels: GEMM and CONV.
* Supported types: fp16 and int8.
* Supported architectures: Turing and Ampere.
* [Transposed Convolution](/examples/34_transposed_conv2d) (a.k.a Deconvolution) support which reuses Dgrad implementation.
* [Utility functions](/tools/util/include/cutlass/util) that can pad NHWC and convert between NCHW and NHWC.
* [Transposed Convolution](https://github.com/NVIDIA/cutlass/tree/main/examples/34_transposed_conv2d) (a.k.a Deconvolution) support which reuses Dgrad implementation.
* [Utility functions](https://github.com/NVIDIA/cutlass/tree/main/tools/util/include/cutlass/util) that can pad NHWC and convert between NCHW and NHWC.
* [Small alignment implicit gemm](https://github.com/NVIDIA/cutlass/issues/242) support for Fprop/Dgrad/Wgrad so that padding is no longer mandated to use tensor cores in these kernels.
* Epilogue enhancement:
* Eliminate bank conflicts in int8 tensor core kernels.
* Half2 usage if epilogue compute type is fp16.
* More activation functions: Silu, Hardswish, Leaky Relu.
* New elementwise fusion pattern for [residual block](/include/cutlass/epilogue/thread/linear_combination_residual_block.h).
* [Group GEMM](/examples/24_gemm_grouped) thread block number calculation fix which helps to launch the intended number of threadblocks to fully occupy the GPUs.
* New elementwise fusion pattern for [residual block](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/thread/linear_combination_residual_block.h).
* [Group GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/24_gemm_grouped) thread block number calculation fix which helps to launch the intended number of threadblocks to fully occupy the GPUs.
* [Parallel GEMM splitk](https://github.com/NVIDIA/cutlass/pull/277) support in the CUTLASS profiler.
* Optimal performance using [**CUDA 11.6u2**](https://developer.nvidia.com/cuda-downloads)
* Updates and bugfixes from the community (thanks!)
@ -166,17 +628,17 @@
* **TF32x3:** emulated single-precision using Tensor Cores
* 45+ TFLOPs on NVIDIA A100
* [GEMM SDK example](/examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm/27_ampere_3xtf32_fast_accurate_tensorop_gemm.cu) (real)
* [COMPLEX GEMM SDK example](/examples/29_ampere_3xtf32_fast_accurate_tensorop_complex_gemm/29_3xtf32_complex_gemm.cu) (complex)
* [Implicit GEMM Convolution SDK example](/examples/28_ampere_3xtf32_fast_accurate_tensorop_fprop/ampere_3xtf32_fast_accurate_tensorop_fprop.cu)
* [GEMM SDK example](https://github.com/NVIDIA/cutlass/tree/main/examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm/27_ampere_3xtf32_fast_accurate_tensorop_gemm.cu) (real)
* [COMPLEX GEMM SDK example](https://github.com/NVIDIA/cutlass/tree/main/examples/29_ampere_3xtf32_fast_accurate_tensorop_complex_gemm/29_3xtf32_complex_gemm.cu) (complex)
* [Implicit GEMM Convolution SDK example](https://github.com/NVIDIA/cutlass/tree/main/examples/28_ampere_3xtf32_fast_accurate_tensorop_fprop/ampere_3xtf32_fast_accurate_tensorop_fprop.cu)
* **Mainloop fusion for Convolution:** convolution with fused per-channel scale-bias-relu
* [Conv Fprop SDK example](/examples/25_ampere_fprop_mainloop_fusion/ampere_fprop_mainloop_fusion.cu)
* [Conv WGrad SDK example](/examples/26_ampere_wgrad_mainloop_fusion/ampere_wgrad_mainloop_fusion.cu)
* [cutlass::conv::device::ImplicitGemmConvolutionFusion](/include/cutlass/conv/device/implicit_gemm_convolution_fusion.h)
* [Conv Fprop SDK example](https://github.com/NVIDIA/cutlass/tree/main/examples/25_ampere_fprop_mainloop_fusion/ampere_fprop_mainloop_fusion.cu)
* [Conv WGrad SDK example](https://github.com/NVIDIA/cutlass/tree/main/examples/26_ampere_wgrad_mainloop_fusion/ampere_wgrad_mainloop_fusion.cu)
* [cutlass::conv::device::ImplicitGemmConvolutionFusion](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/conv/device/implicit_gemm_convolution_fusion.h)
* **Grouped GEMM:** similar to batched GEMM with distinct problem size per group
* [SDK example](/examples/24_gemm_grouped) with performance comparison with Batched Strided GEMM
* [cutlass::gemm::device::GemmGrouped](/include/cutlass/gemm/device/gemm_grouped.h)
* [Implicit GEMM Convolution fusion](/examples/13_two_tensor_op_fusion/) supports staging 1st convolution's output accumulator in the shared memory on Turing. This allows more flexible warp tile sizes and less regsiter pressue.
* [SDK example](https://github.com/NVIDIA/cutlass/tree/main/examples/24_gemm_grouped) with performance comparison with Batched Strided GEMM
* [cutlass::gemm::device::GemmGrouped](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/gemm/device/gemm_grouped.h)
* [Implicit GEMM Convolution fusion](https://github.com/NVIDIA/cutlass/tree/main/examples/13_two_tensor_op_fusion/) supports staging 1st convolution's output accumulator in the shared memory on Turing. This allows more flexible warp tile sizes and less regsiter pressue.
* Optimal performance using [**CUDA 11.5**](https://developer.nvidia.com/cuda-downloads)
* Updates from the community (thanks!)
@ -186,13 +648,13 @@
* CUDA 10.2
## [2.7.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.7.0) (2021-09-24)
* Mainloop fusion for GEMM: [summation over A or B](/examples/23_ampere_gemm_operand_reduction_fusion/ampere_gemm_operand_reduction_fusion.cu)
* [Strided DGRAD (optimized iterators)](/include/cutlass/conv/kernel/default_conv2d_dgrad.h)
* [Half-precision GELU_taylor activation functions](/include/cutlass/epilogue/thread/activation.h#L196)
* Mainloop fusion for GEMM: [summation over A or B](https://github.com/NVIDIA/cutlass/tree/main/examples/23_ampere_gemm_operand_reduction_fusion/ampere_gemm_operand_reduction_fusion.cu)
* [Strided DGRAD (optimized iterators)](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/conv/kernel/default_conv2d_dgrad.h)
* [Half-precision GELU_taylor activation functions](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/thread/activation.h#L196)
* Use these when accumulation and epilogue compute types are all `cutlass::half_t`
* Tuning and bug fixes to [fused GEMM + GEMM example](/examples/13_two_tensor_op_fusion/)
* Support for smaller than 128b aligned Convolutions: [see examples](test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu#L272)
* Caching of results to accelerate Convolution [unit tests](test/unit/conv/device/cache_testbed_output.h)
* Tuning and bug fixes to [fused GEMM + GEMM example](https://github.com/NVIDIA/cutlass/tree/main/examples/13_two_tensor_op_fusion/)
* Support for smaller than 128b aligned Convolutions: [see examples](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu#L272)
* Caching of results to accelerate Convolution [unit tests](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/cache_testbed_output.h)
* Can be enabled or disabled by running `cmake .. -DCUTLASS_TEST_ENABLE_CACHED_RESULTS=OFF`
* Corrections and bug fixes reported by the CUTLASS community
* Thank you for filing these issues!
@ -205,27 +667,27 @@
## [2.6.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.6.0) (2021-07-22)
* Optimal performance when compiled with the [CUDA 11.4 Toolkit](https://developer.nvidia.com/cuda-toolkit)
* Adopt the new L2 prefetch feature in [cp.async](/include/cutlass/arch/memory.h) and [global load](/include/cutlass/arch/memory_sm80.h)
* Adopt the new L2 prefetch feature in [cp.async](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/arch/memory.h) and [global load](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/arch/memory_sm80.h)
* Fused operators with GEMM and Convolution
* [Fused broadcast in epilogue](test/unit/gemm/device/gemm_with_broadcast_f16n_f16n_f16n_tensorop_f32_sm75.cu)
* [Fused partial reduction in epilogue](/test/unit/gemm/device/gemm_with_reduction_f16n_f16n_f16n_tensorop_f32_sm75.cu)
* [Fused broadcast in epilogue](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_with_broadcast_f16n_f16n_f16n_tensorop_f32_sm75.cu)
* [Fused partial reduction in epilogue](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_with_reduction_f16n_f16n_f16n_tensorop_f32_sm75.cu)
* 64b tensor strides and leading dimensions support for GEMMs
* Affine rank=2 matrix layouts
* Row stride and column stride for matrices using [cutlass::layout::AffineRank2](/include/cutlass/layout/matrix.h)
* Support [FP64 tensor core](/examples/18_ampere_fp64_tensorop_affine2_gemm/ampere_fp64_tensorop_affine2_gemm.cu) and SIMT GEMM.
* [Batched GEMV](/test/unit/gemm/device/gemv.cu) preview implementation
* [New strided Dgrad](test/unit/conv/device/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu) implementation
* Affine rank=2 matrix layouts
* Row stride and column stride for matrices using [cutlass::layout::AffineRank2](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/layout/matrix.h)
* Support [FP64 tensor core](https://github.com/NVIDIA/cutlass/tree/main/examples/18_ampere_fp64_tensorop_affine2_gemm/ampere_fp64_tensorop_affine2_gemm.cu) and SIMT GEMM.
* [Batched GEMV](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemv.cu) preview implementation
* [New strided Dgrad](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu) implementation
* Accelerates over previous implementation by cutting down redundant math by 4x
* Support using new `Dy` and `w` analytic iterators and existing `cutlass::conv::device::ImplicitGemmConvolution` interface
* Quaternion-valued GEMM and Convolution in single- and double-precision (targeting CUDA Cores)
* Updates to [quaternion.h](/include/cutlass/quaternion.h) and [functional.h](/include/cutlass/functional.h)
* SDK Example for [GEMM](/examples/21_quaternion_gemm/quaternion_gemm.cu) and [Convolution](/examples/22_quaternion_conv/quaternion_conv.cu)
* [Unit tests for GEMM](/test/unit/gemm/device/simt_qgemm_nn_sm50.cu) and [Convolution](/test/unit/conv/device/conv2d_fprop_implicit_gemm_qf32nhwc_qf32nhwc_qf32nhwc_simt_f32_sm50.cu)
* Updates to [quaternion.h](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/quaternion.h) and [functional.h](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/functional.h)
* SDK Example for [GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/21_quaternion_gemm/quaternion_gemm.cu) and [Convolution](https://github.com/NVIDIA/cutlass/tree/main/examples/22_quaternion_conv/quaternion_conv.cu)
* [Unit tests for GEMM](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/simt_qgemm_nn_sm50.cu) and [Convolution](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/conv2d_fprop_implicit_gemm_qf32nhwc_qf32nhwc_qf32nhwc_simt_f32_sm50.cu)
* Many improvements to the epilogue.
* Provide an [option](/include/cutlass/epilogue/threadblock/epilogue.h) to not fully unroll the epilogue to reduce the code size and improve the performance when using complicated elementwise operations
* Provide an [option](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/threadblock/epilogue.h) to not fully unroll the epilogue to reduce the code size and improve the performance when using complicated elementwise operations
* Performance improvement for FP16 tensor core kernels
* Bug fixes
* Enhanced Clang support and the combination of Clang 13 and CUDA 11.4 can build and run kernels from Pascal and Ampere.
* Enhanced Clang support and the combination of Clang 13 and CUDA 11.4 can build and run kernels from Pascal and Ampere.
* Updated minimum CUDA Toolkit requirement to 10.2
* [CUDA 11.4 Toolkit](https://developer.nvidia.com/cuda-toolkit) recommended
* Corrections and bug fixes reported by the CUTLASS community
@ -234,17 +696,17 @@
## [2.5.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.5.0) (2021-02-26)
* Tensor reductions
* _m_-to-_n_ reductions of tensors with affine layout
* [Specializations](/test/unit/reduction/device/tensor_reduce_contiguous.cu) for reductions including contiguous dimension
* [Specializations](/test/unit/reduction/device/tensor_reduce_strided.cu) for reductions excluding contiguous dimension
* [Specializations](https://github.com/NVIDIA/cutlass/tree/main/test/unit/reduction/device/tensor_reduce_contiguous.cu) for reductions including contiguous dimension
* [Specializations](https://github.com/NVIDIA/cutlass/tree/main/test/unit/reduction/device/tensor_reduce_strided.cu) for reductions excluding contiguous dimension
* Custom reduction functors such as `cutlass::logical_and`
* Large tensor support, up to 2^63 elements (however, each dimension is limited to an extent of 2^31)
* Optimizations for 3-D convolution
* [Optimized tile iterators](include/cutlass/conv/threadblock/conv3d_fprop_activation_tile_access_iterator_optimized.h) using precomputed delta table for 3-D convolution
* Full coverage of [forward](test/unit/conv/device/conv3d_fprop_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) and [backwards](test/unit/conv/device/conv3d_dgrad_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) passes for 3D convolution
* [Fused Convolution+Convolution example](/examples/13_two_tensor_op_fusion/README.md)
* [Optimized tile iterators](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/conv/threadblock/conv3d_fprop_activation_tile_access_iterator_optimized.h) using precomputed delta table for 3-D convolution
* Full coverage of [forward](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/conv3d_fprop_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) and [backwards](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device/conv3d_dgrad_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) passes for 3D convolution
* [Fused Convolution+Convolution example](https://github.com/NVIDIA/cutlass/tree/main/examples/13_two_tensor_op_fusion/README.md)
* Corrections and bug fixes reported by the CUTLASS community
* Thank you for filing these issues!
## [2.4.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.4.0) (2020-11-19)
* Implicit GEMM convolution kernels supporting CUDA and Tensor Cores on NVIDIA GPUs
@ -252,33 +714,33 @@
* Data type: FP32, complex<FP32>, Tensor Float 32 (TF32), BFloat16 (BF16), Float16, Int4, Int8, Int32
* Spatial dimensions: 1-D, 2-D, and 3-D
* Layout: NHWC, NCxHWx
* Implicit GEMM convolution components:
* Implicit GEMM convolution components:
* Global memory iterators supporting Fprop, Dgrad, and Wgrad
* `MmaMultistage` for implicit GEMM convolution for NVIDIA Ampere architecture
* `MmaPipeline` for implicit GEMM convolution for NVIDIA Volta and Turing architectures
* [Documentation](/media/docs/implicit_gemm_convolution.md) describing Implicit GEMM Convolution algorithm and implementation
* [Documentation](./media/docs/cpp/implicit_gemm_convolution.md) describing Implicit GEMM Convolution algorithm and implementation
## [2.3.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.3.0) (2020-09-23)
* [NVIDIA Ampere Architecture features](https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/)
* [Sparse Tensor Core GEMM kernels](test/unit/gemm/device/gemm_f16n_f16n_f32t_tensor_op_f32_sparse_sm80.cu):
* [Sparse Tensor Core GEMM kernels](https://github.com/NVIDIA/cutlass/tree/main/test/unit/gemm/device/gemm_f16n_f16n_f32t_tensor_op_f32_sparse_sm80.cu):
* Direct access to Sparse Tensor Cores and maximum performance via [`mma.sp.sync`](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends)
* Fast SGEMM targeting GeForce RTX 30-series CUDA Cores
* Minor Features:
* [Activation functions](/include/cutlass/epilogue/thread/activation.h) such as [GeLU](/include/cutlass/epilogue/thread/linear_combination_gelu.h) and [Sigmoid](/include/cutlass/epilogue/thread/linear_combination_sigmoid.h)
* Small [matrix](/include/cutlass/matrix.h) and [quaternion](/include/cutlass/quaternion.h) template classes in device code
* [Floating-point constants](/include/cutlass/constants.h)
* [Activation functions](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/thread/activation.h) such as [GeLU](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/thread/linear_combination_gelu.h) and [Sigmoid](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/epilogue/thread/linear_combination_sigmoid.h)
* Small [matrix](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/matrix.h) and [quaternion](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/quaternion.h) template classes in device code
* [Floating-point constants](https://github.com/NVIDIA/cutlass/tree/main/include/cutlass/constants.h)
* NVIDIA Ampere GPU Architecture examples and documentation:
* [Tensor Float 32](/examples/14_ampere_tf32_tensorop_gemm/ampere_tf32_tensorop_gemm.cu) and
* [Sparse Tensor Cores](/examples/15_ampere_sparse_tensorop_gemm/ampere_sparse_tensorop_gemm.cu)
* Documentation added on CUTLASS [efficient row-major epilogue](/media/docs/gemm_api.md#efficient-epilogue)
* [Tensor Float 32](https://github.com/NVIDIA/cutlass/tree/main/examples/14_ampere_tf32_tensorop_gemm/ampere_tf32_tensorop_gemm.cu) and
* [Sparse Tensor Cores](https://github.com/NVIDIA/cutlass/tree/main/examples/15_ampere_sparse_tensorop_gemm/ampere_sparse_tensorop_gemm.cu)
* Documentation added on CUTLASS [efficient row-major epilogue](./media/docs/cpp/gemm_api.md#efficient-epilogue)
## [2.2.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.2.0) (2020-06-08)
* [NVIDIA Ampere Architecture features](https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/)
* Fast Tensor Core operations:
* Fast Tensor Core operations:
* Maximum performance via [`mma.sync`](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends)
* Tensor Float 32, BFloat16, and double-precision data types
* Mixed integer data types (int8, int4, bin1)
* Asynchronous copy for deep software pipelines via [`cp.async`](https://docs.nvidia.com/cuda/parallel-thread-execution)
* Asynchronous copy for deep software pipelines via [`cp.async`](https://docs.nvidia.com/cuda/parallel-thread-execution)
* Described in [GTC 2020 Webinar (SR 21745)](https://developer.nvidia.com/gtc/2020/video/s21745) (free registration required)
* Features:
* SDK examples showing GEMM fused with bias+relu and fused GEMM+GEMM
@ -290,11 +752,11 @@
* Disabled F16C by default for compatibility - enable on cmake command line with `-DCUTLASS_ENABLE_F16C=ON`
## [2.1.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.1.0) (2020-04-06)
* BLAS-style host-side API added to [CUTLASS Library](/media/docs/quickstart.md#cutlass-library)
* BLAS-style host-side API added to [CUTLASS Library](./media/docs/cpp/quickstart.md#cutlass-library)
* API to launch compiled kernel instances for GEMM and planar complex GEMM
* Planar Complex GEMM kernels targeting Volta and Turing Tensor Cores
* Computes complex matrix products on matrices stored as disjoint real and imaginary parts
* [SDK Examples of Planar Complex GEMMs](/examples/10_planar_complex/planar_complex.cu)
* [SDK Examples of Planar Complex GEMMs](https://github.com/NVIDIA/cutlass/tree/main/examples/10_planar_complex/planar_complex.cu)
* Minor enhancements and bug fixes
## [2.0.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.0.0) (2019-11-19)
@ -304,10 +766,10 @@
* Encapsulated functionality embodying modern C++11 programming techniques
* Optimized containers and data types for efficient, generic, portable device code
* Updates to:
* [Quick start guide](/media/docs/quickstart.md)
* [Documentation](/README.md#documentation)
* [Utilities](/media/docs/utilities.md)
* [CUTLASS Profiler](/media/docs/profiler.md)
* [Quick start guide](./media/docs/cpp/quickstart.md)
* [Documentation](./README.md#documentation)
* [Utilities](./media/docs/cpp/utilities.md)
* [CUTLASS Profiler](./media/docs/cpp/profiler.md)
* Native Turing Tensor Cores
* Efficient GEMM kernels targeting Turing Tensor Cores
* Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands
@ -371,7 +833,7 @@
## Copyright
Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
@ -400,4 +862,3 @@ SPDX-License-Identifier: BSD-3-Clause
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

View File

@ -57,6 +57,10 @@ authors:
family-names: Blasig
email: dblasig@nvidia.com
affiliation: NVIDIA
- given-names: Aditya
family-names: Atluri
email: aatluri@nvidia.com
affiliation: NVIDIA
- given-names: Fengqi
family-names: Qiao
email: fqiao@nvidia.com

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
@ -38,7 +38,7 @@ else()
endif()
message(STATUS "CMake Version: ${CMAKE_VERSION}")
set(IMPLICIT_CMAKE_CXX_STANDARD OFF CACHE BOOL "Do not explicitly specify -std=c++11 if set")
set(IMPLICIT_CMAKE_CXX_STANDARD OFF CACHE BOOL "Do not explicitly specify -std=c++17 if set")
# To reduce duplicate version locations, parse the version out of the
# main versions.h file and reuse it here.
@ -59,22 +59,43 @@ project(CUTLASS VERSION ${_CUTLASS_VERSION_MAJOR}.${_CUTLASS_VERSION_MINOR}.${_C
################################################################################
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU")
set(CUTLASS_GNU_HOST_COMPILE ON CACHE BOOL "Using GNU tools for host code compilation")
endif()
if (CMAKE_CXX_COMPILER_ID MATCHES "[Cc]lang")
set(CUTLASS_CLANG_HOST_COMPILE ON CACHE BOOL "Using Clang tools for host code compilation")
endif()
if (CMAKE_CXX_COMPILER_ID MATCHES "MSVC")
set(CUTLASS_MSVC_HOST_COMPILE ON CACHE BOOL "Using MSVC tools for host code compilation")
endif()
################################################################################
include(${CMAKE_CURRENT_SOURCE_DIR}/CUDA.cmake)
# nvcc supports response files with --options-file but some tools like clangd
# might choke on it. Thus provide a way to control the use of this feature.
set(CUTLASS_CUDA_USE_RESPONSE_FILE ON CACHE BOOL "Enable CUDA response files for includes, libraries, and objects")
if(NOT CUTLASS_CUDA_USE_RESPONSE_FILE)
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_INCLUDES 0)
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_LIBRARIES 0)
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_OBJECTS 0)
endif()
if (CUDA_VERSION VERSION_LESS 11.3)
message(WARNING "CUTLASS ${CUTLASS_VERSION} requires CUDA 11.4 or higher, and strongly recommends CUDA 11.8 or higher.")
elseif (CUDA_VERSION VERSION_LESS 11.4)
message(WARNING "CUTLASS ${CUTLASS_VERSION} support for CUDA ${CUDA_VERSION} is deprecated, please use CUDA 11.8 or higher.")
endif()
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.5)
message(FATAL_ERROR "GCC version must be at least 7.5!")
if(CUTLASS_GNU_HOST_COMPILE AND CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.3)
message(FATAL_ERROR "GCC version must be at least 7.3!")
endif()
if (CUDA_COMPILER MATCHES "[Cc]lang" AND CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.0)
if (CUTLASS_CLANG_DEVICE_COMPILE AND CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.0)
message(FATAL_ERROR "Clang 7.0+ required for GPU compilation")
endif()
find_package(Doxygen QUIET)
################################################################################
@ -86,14 +107,13 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
if(CUTLASS_NATIVE_CUDA)
set(CMAKE_CUDA_STANDARD 17)
set(CMAKE_CUDA_STANDARD_REQUIRED ON)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --expt-relaxed-constexpr)
else()
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --std=c++17)
endif()
set(CMAKE_CUDA_STANDARD 17)
set(CMAKE_CUDA_STANDARD_REQUIRED ON)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --expt-relaxed-constexpr)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -ftemplate-backtrace-limit=0)
if(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)
set(CMAKE_INSTALL_PREFIX install CACHE PATH "Default installation location." FORCE)
endif()
@ -106,6 +126,13 @@ set(CUTLASS_TEST_LEVEL "0" CACHE STRING "Level of tests to compile.")
find_package(Python3 3.5 COMPONENTS Interpreter REQUIRED)
################################################################################
include(customConfigs.cmake)
################################################################################
set(CUTLASS_ENABLE_HEADERS_ONLY OFF CACHE BOOL "Enable only the header library")
if(CUTLASS_ENABLE_HEADERS_ONLY)
@ -134,18 +161,51 @@ set(CUTLASS_ENABLE_PERFORMANCE ${CUTLASS_ENABLE_PROFILER} CACHE BOOL "Enable CUT
set(CUTLASS_ENABLE_TESTS ${CUTLASS_ENABLE_TESTS_INIT} CACHE BOOL "Enable CUTLASS Tests")
set(CUTLASS_ENABLE_GTEST_UNIT_TESTS ${CUTLASS_ENABLE_TESTS} CACHE BOOL "Enable CUTLASS GTest-based Unit Tests")
set(CUTLASS_USE_SYSTEM_GOOGLETEST OFF CACHE BOOL "Use system/external installation of GTest")
if (CUTLASS_ENABLE_TESTS AND CUTLASS_ENABLE_PROFILER)
set(CUTLASS_ENABLE_PROFILER_UNIT_TESTS_INIT ON)
else()
set(CUTLASS_ENABLE_PROFILER_UNIT_TESTS_INIT OFF)
endif()
set(CUTLASS_ENABLE_PROFILER_UNIT_TESTS ${CUTLASS_ENABLE_PROFILER_UNIT_TESTS_INIT} CACHE BOOL "Enable CUTLASS Profiler-based Unit Tests")
set(CUTLASS_ENABLE_SELF_CONTAINED_INCLUDES_CHECK ON CACHE BOOL "Enable CUTLASS check for self-contained header includes")
################################################################################
set(CUTLASS_NVCC_ARCHS_SUPPORTED "")
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.4 AND NOT CUDA_COMPILER MATCHES "[Cc]lang")
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.4)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 70 72 75 80 86 87)
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.8 AND NOT CUDA_COMPILER MATCHES "[Cc]lang")
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.8)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 89 90)
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.0 AND NOT CUDA_COMPILER MATCHES "[Cc]lang")
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.0)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 90a)
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.8)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 100 100a 120 120a 121 121a)
if (CUDA_VERSION VERSION_LESS 13.0)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 101 101a)
else()
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 110 110a)
endif()
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.9)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 100f 120f 121f 103a 103f)
if (CUDA_VERSION VERSION_LESS 13.0)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 101f)
else()
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 110f)
endif()
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 13.0)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 110 110a)
endif()
set(CUTLASS_NVCC_ARCHS ${CUTLASS_NVCC_ARCHS_SUPPORTED} CACHE STRING "The SM architectures requested.")
set(CUTLASS_NVCC_ARCHS_ENABLED ${CUTLASS_NVCC_ARCHS} CACHE STRING "The SM architectures to build code for.")
@ -168,6 +228,7 @@ endif()
include(GNUInstallDirs)
link_directories(${CUDA_TOOLKIT_ROOT_DIR}/lib64/stubs)
link_directories(${CUDA_TOOLKIT_ROOT_DIR}/lib64)
###################################################################################################
#
@ -215,7 +276,7 @@ if (${CUTLASS_NVCC_VERBOSE})
endif()
#
# CUTLASS NAMESPACE
# CUTLASS NAMESPACE
#
set(CUTLASS_NAMESPACE "cutlass" CACHE STRING "Top level namespace of CUTLASS")
@ -233,15 +294,15 @@ set(CUTLASS_ENABLE_F16C OFF CACHE BOOL "Enable F16C x86 extensions in host code.
set(KERNEL_FILTER_FILE "" CACHE STRING "KERNEL FILTER FILE FULL PATH")
if (KERNEL_FILTER_FILE AND NOT CUTLASS_LIBRARY_KERNELS)
if (KERNEL_FILTER_FILE AND NOT CUTLASS_LIBRARY_KERNELS)
# If a kernel filter file is specified, we want to generate and then
# filter on the entire kernel set, not the default kernel
# (sub)set. The user may overried CUTLASS_LIBRRARY_KERNELS, in which
# (sub)set. The user may have overridden CUTLASS_LIBRARY_KERNELS, in which
# case the resulting kernel set will be the intersection of the two
# options differenced against CUTLASS_LIBRARY_IGNORE_KERNELS.
set(CUTLASS_LIBRARY_KERNELS_INIT "*")
else()
set(CUTLASS_LIBRARY_KERNELS_INIT "")
else()
set(CUTLASS_LIBRARY_KERNELS_INIT "")
endif()
if (KERNEL_FILTER_FILE)
@ -249,15 +310,49 @@ if (KERNEL_FILTER_FILE)
set(KERNEL_FILTER_FILE "${KERNEL_FILTER_FILE}" CACHE STRING "KERNEL FILTER FILE FULL PATH" FORCE)
endif()
if (CUTLASS_LIBRARY_HEURISTICS_PROBLEMS_FILE)
get_filename_component(CUTLASS_LIBRARY_HEURISTICS_PROBLEMS_FILE "${CUTLASS_LIBRARY_HEURISTICS_PROBLEMS_FILE}" ABSOLUTE)
set(CUTLASS_LIBRARY_HEURISTICS_PROBLEMS_FILE "${CUTLASS_LIBRARY_HEURISTICS_PROBLEMS_FILE}" CACHE STRING "HEURISTICS FILE FULL PATH" FORCE)
endif()
set(SELECTED_KERNEL_LIST "selected" CACHE STRING "Name of the filtered kernel list")
if(KERNEL_FILTER_FILE)
message(STATUS "Full path of filter file: ${KERNEL_FILTER_FILE}")
endif()
set(CUTLASS_LIBRARY_OPERATIONS "all" CACHE STRING "Comma delimited list of operation name filters. Default '' means all operations are enabled.")
set(CUTLASS_LIBRARY_KERNELS ${CUTLASS_LIBRARY_KERNELS_INIT} CACHE STRING "Comma delimited list of kernel name filters. If unspecified, only the largest tile size is enabled. If 'all' is specified, all kernels are enabled.")
set(CUTLASS_LIBRARY_IGNORE_KERNELS "" CACHE STRING "Comma delimited list of kernel names to exclude from build.")
if(CUTLASS_LIBRARY_HEURISTICS_PROBLEMS_FILE)
message(STATUS "Full path of heuristics problems file: ${CUTLASS_LIBRARY_HEURISTICS_PROBLEMS_FILE}")
if(DEFINED CUTLASS_NVMMH_URL)
message(STATUS "CUTLASS_NVVMH_URL is set. Fetching dependency")
include(FetchContent)
FetchContent_Declare(
nvmmh
URL ${CUTLASS_NVMMH_URL}
)
FetchContent_MakeAvailable(nvmmh)
FetchContent_GetProperties(nvmmh SOURCE_DIR nvmmh_dir)
set(CUTLASS_NVMMH_PATH "${nvmmh_dir}")
endif()
if(DEFINED CUTLASS_NVMMH_PATH)
message(STATUS "CUTLASS_NVMMH_PATH is set. Using package at: ${CUTLASS_NVMMH_PATH}")
set(CUTLASS_NVMMH_PY_DIR "${CUTLASS_NVMMH_PATH}/python/")
set(ENV{CUTLASS_NVMMH_SO_PATH} "${CUTLASS_NVMMH_PATH}/lib/libnvMatmulHeuristics.so")
endif()
endif()
set(CUTLASS_LIBRARY_OPERATIONS "all" CACHE STRING "Comma-delimited list of operation name filters. Default '' means all operations are enabled.")
set(CUTLASS_LIBRARY_KERNELS ${CUTLASS_LIBRARY_KERNELS_INIT} CACHE STRING "Comma-delimited list of kernel name filters. If unspecified, only the largest tile size is enabled. If the string 'all' is specified, all kernels are enabled.")
set(CUTLASS_LIBRARY_IGNORE_KERNELS "" CACHE STRING "Comma-delimited list of kernels to exclude from build. This option ONLY takes effect if CUTLASS_LIBRARY_KERNELS is set.")
set(CUTLASS_LIBRARY_EXCLUDE_KERNELS "" CACHE STRING "Comma-delimited list of kernels to exclude from build. This option always takes effect, whether or not CUTLASS_LIBRARY_KERNELS is set. It also can exclude kernels from the filter file (see KERNEL_FILTER_FILE).")
set(CUTLASS_LIBRARY_INSTANTIATION_LEVEL "" CACHE STRING "Instantiation level for SM90 and SM100 kernels. Set to `max` and make sure CUTLASS_LIBRARY_KERNELS is non-empty to stamp all possible kernel configurations.")
if(CUTLASS_LIBRARY_INSTANTIATION_LEVEL OR CUTLASS_LIBRARY_HEURISTICS_PROBLEMS_FILE)
message(STATUS "Enable extended SM90 WGMMA instruction shapes for instantiation levels")
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTE_SM90_EXTENDED_MMA_SHAPES_ENABLED)
endif()
################################################################################
@ -298,6 +393,23 @@ list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_DEBUG_TRACE_LEVEL=${CUTLASS_DEBUG_
set(CUTLASS_ENABLE_TENSOR_CORE_MMA ${CUTLASS_ENABLE_TENSOR_CORE_MMA_DEFAULT} CACHE BOOL
"Enable PTX mma instruction for collective matrix multiply operations.")
set(CUTLASS_ENABLE_SM90_EXTENDED_MMA_SHAPES OFF CACHE BOOL
"Enable an extended set of SM90 WGMMA instruction shapes (may lead to increased compilation times)")
if(CUTLASS_ENABLE_SM90_EXTENDED_MMA_SHAPES)
message(STATUS "Enabled extended SM90 WGMMA instruction shapes")
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTE_SM90_EXTENDED_MMA_SHAPES_ENABLED)
endif()
if (CUTLASS_NVCC_ARCHS MATCHES 100f OR CUTLASS_NVCC_ARCHS MATCHES 101f)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_SM100_FAMILY_ARCHS_ENABLED)
endif()
if (CUTLASS_NVCC_ARCHS MATCHES 110f)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_SM100_FAMILY_ARCHS_ENABLED)
endif()
set(CUTLASS_SKIP_REDUCTION_INIT OFF CACHE BOOL "Disable init reduction workspace")
#
# NOTE: running with asan and CUDA requires the following environment variable:
#
@ -325,26 +437,87 @@ if(CUTLASS_NVCC_EMBED_PTX)
list(APPEND CUTLASS_CUDA_CLANG_FLAGS --cuda-include-ptx=all)
endif()
if (CUTLASS_SKIP_REDUCTION_INIT)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_SKIP_REDUCTION_INIT=1)
endif()
if (CUTLASS_ENABLE_TENSOR_CORE_MMA)
list(APPEND CUTLASS_CUDA_FLAGS -DCUTLASS_ENABLE_TENSOR_CORE_MMA=1)
endif()
set(CUTLASS_PROFILER_DISABLE_REFERENCE OFF CACHE BOOL "Disable compilation of reference kernels in the CUTLASS profiler.")
if (CUTLASS_PROFILER_DISABLE_REFERENCE)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_PROFILER_DISABLE_REFERENCE=1)
endif()
if (CUTLASS_ENABLE_GDC_FOR_SM90)
message(STATUS "Grid Dependency Control (GDC) is enabled for SM90 kernels (required for programmatic dependent launches).")
list(APPEND CUTLASS_CUDA_FLAGS -DCUTLASS_ENABLE_GDC_FOR_SM90=1)
endif()
if (NOT DEFINED CUTLASS_ENABLE_GDC_FOR_SM100_DEFAULT)
set(CUTLASS_ENABLE_GDC_FOR_SM100_DEFAULT ON)
endif()
set(CUTLASS_ENABLE_GDC_FOR_SM100
${CUTLASS_ENABLE_GDC_FOR_SM100_DEFAULT}
CACHE BOOL
"Enables Grid Dependency Control (GDC) for SM100 kernels (required for PDL).")
if (CUTLASS_ENABLE_GDC_FOR_SM100)
message(STATUS "Grid Dependency Control (GDC) is enabled for SM100 kernels (required for programmatic dependent launches).")
list(APPEND CUTLASS_CUDA_FLAGS -DCUTLASS_ENABLE_GDC_FOR_SM100=1)
endif()
set(CUTLASS_ENABLE_SYNCLOG OFF CACHE BOOL "Enable synchronization event logging for race condition debugging. WARNING: This redefines __syncthreads() and __syncwarp() in all downstream code!")
if (CUTLASS_ENABLE_SYNCLOG)
set(CMAKE_CUDA_SEPARABLE_COMPILATION ON)
string(APPEND CMAKE_CXX_FLAGS " -DCUTLASS_ENABLE_SYNCLOG=1")
string(APPEND CMAKE_CUDA_FLAGS " -DCUTLASS_ENABLE_SYNCLOG=1")
endif()
###################################################################################################
#
# Blackwell features
#
###################################################################################################
# Warnings-as-error exceptions and warning suppressions for Clang builds
if (CUTLASS_CLANG_HOST_COMPILE)
set(FLAGS_TO_ADD
"-Wno-error=implicit-int-conversion"
"-Wno-error=pass-failed"
"-Wno-error=inconsistent-missing-override"
"-Wno-sign-conversion"
"-Wno-unused-parameter"
)
foreach(FLAG ${FLAGS_TO_ADD})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAG}")
list(APPEND CUTLASS_CUDA_NVCC_FLAGS "${FLAG}")
list(APPEND CUTLASS_CUDA_CLANG_FLAGS "${FLAG}")
endforeach()
endif()
if (NOT MSVC AND CUTLASS_NVCC_KEEP)
# MSVC flow handles caching already, but for other generators we handle it here.
set(CUTLASS_NVCC_KEEP_DIR ${CMAKE_CURRENT_BINARY_DIR}/tmp CACHE PATH "Location to store NVCC scratch files")
file(MAKE_DIRECTORY ${CUTLASS_NVCC_KEEP_DIR})
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --keep -v) # --keep-dir may not work with nvcc for some directories.
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --keep -v -objtemp) # --keep-dir may not work with nvcc for some directories.
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -save-temps=${CUTLASS_NVCC_KEEP_DIR})
endif()
if (CUTLASS_ENABLE_F16C AND NOT CMAKE_CROSSCOMPILING)
list(APPEND CUTLASS_CUDA_FLAGS -DCUTLASS_ENABLE_F16C=1)
if ((CMAKE_CXX_COMPILER_ID MATCHES "GNU") OR (CMAKE_CXX_COMPILER_ID MATCHES "Clang"))
if (CUTLASS_GNU_HOST_COMPILE OR CUTLASS_CLANG_HOST_COMPILE)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=-mf16c)
elseif((CMAKE_CXX_COMPILER_ID MATCHES "MSVC"))
elseif(CUTLASS_MSVC_HOST_COMPILE)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=/arch:AVX2)
endif()
endif()
@ -357,35 +530,32 @@ if (CUTLASS_ENABLE_OPENMP_TESTS)
message(WARNING "CUTLASS_ENABLE_OPENMP_TESTS set but OpenMP not found.")
endif()
endif()
if(UNIX)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=-Wconversion)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=-fno-strict-aliasing)
endif()
# Known ctk11.4 issue (fixed later)
# Also see https://stackoverflow.com/questions/64523302/cuda-missing-return-statement-at-end-of-non-void-function-in-constexpr-if-fun
if (CUDA_VERSION VERSION_LESS 11.5.0)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcudafe "--diag_suppress=implicit_return_from_non_void_function" )
message("CUDA_VERSION check pass ${CUDA_VERSION}")
endif()
# Don't leak lineinfo in release builds
if (NOT CMAKE_BUILD_TYPE MATCHES "Release")
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -gmlt)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -lineinfo)
endif()
#Report CUDA build flags
if (CUDA_COMPILER MATCHES "[Cc]lang")
if(CUTLASS_CUDA_CLANG_FLAGS)
message(STATUS "Using CLANG flags: ${CUTLASS_CUDA_CLANG_FLAGS}")
endif()
else()
if(CUTLASS_CUDA_NVCC_FLAGS)
message(STATUS "Using NVCC flags: ${CUTLASS_CUDA_NVCC_FLAGS}")
endif()
endif()
if(CUDA_COMPILER MATCHES "[Cc]lang")
if( NOT CMAKE_CXX_COMPILER_ID MATCHES "Clang" )
if (CUTLASS_CLANG_DEVICE_COMPILE)
if (NOT CUTLASS_CLANG_HOST_COMPILE)
message(FATAL_ERROR "Clang CUDA compilation requires Clang CXX compilation. Currently CMAKE_CXX_COMPILER is ${CMAKE_CXX_COMPILER_ID}" )
endif()
# There are numerous Clang versions that can work with each CUDA toolkit and the
# the checks are not very useful so we are turning them off and using testing to
# There are numerous Clang versions that can work with each CUDA toolkit and the
# the checks are not very useful so we are turning them off and using testing to
# ensure the various combinations work properly.
list(APPEND CUTLASS_CUDA_CLANG_FLAGS --cuda-path=${CUDA_TOOLKIT_ROOT_DIR})
@ -396,12 +566,8 @@ if(CUDA_COMPILER MATCHES "[Cc]lang")
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -mllvm -unroll-threshold=5000)
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -Wno-unused-command-line-argument)
string(REPLACE "." ";" CUDA_VERSION_PARTS ${CMAKE_CUDA_COMPILER_VERSION})
list(GET CUDA_VERSION_PARTS 0 CUDA_VERSION_MAJOR)
list(GET CUDA_VERSION_PARTS 1 CUDA_VERSION_MINOR)
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -D__CUDACC_VER_MAJOR__=${CUDA_VERSION_MAJOR} -D__CUDACC_VER_MINOR__=${CUDA_VERSION_MINOR})
# needed for libcublasLt.so in case it's installed in the same location as libcudart.so
# dynamic linker can find it if linker sets RPATH (forced by --disable-new-tags)
# Otherwise linker uses RUNPATH and that does not propagate to loaded libs.
@ -409,34 +575,54 @@ if(CUDA_COMPILER MATCHES "[Cc]lang")
link_libraries(nvidia::cudart)
link_libraries(nvidia::cuda_driver)
endif()
# Support for 128-bit integers if using NVIDIA C++ compiler
#Report CUDA build flags
if (CUTLASS_CLANG_DEVICE_COMPILE AND CUTLASS_CUDA_CLANG_FLAGS)
set(__FLAG_GROUP Clang)
set(__FLAG_LIST CUTLASS_CUDA_CLANG_FLAGS)
else(CUTLASS_NVCC_DEVICE_COMPILE AND CUTLASS_CUDA_NVCC_FLAGS)
set(__FLAG_GROUP NVCC)
set(__FLAG_LIST CUTLASS_CUDA_NVCC_FLAGS)
endif()
set(__FLAG_DISPLAY_STRING "")
set(__FLAG_DISPLAY_SEPARATOR)
list(JOIN ${__FLAG_LIST} "\n " __FLAG_DISPLAY_STRING)
message(STATUS "Using the following ${__FLAG_GROUP} flags: \n ${__FLAG_DISPLAY_STRING}")
# Known gcc 8.1-8.3 SFINAE issue (fixed in gcc 8.4), check https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87748
# Also see https://github.com/NVIDIA/nccl/issues/835 for nvtx3.hpp
if (CUTLASS_GNU_HOST_COMPILE AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1 AND CMAKE_CXX_COMPILER_VERSION VERSION_LESS_EQUAL 8.3)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DNVTX3_USE_CHECKED_OVERLOADS_FOR_GET=0")
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -DNVTX3_USE_CHECKED_OVERLOADS_FOR_GET=0")
endif()
# Support for 128-bit integers if using NVIDIA C++ compiler
if (${CMAKE_CXX_COMPILER_ID} MATCHES "PGI" OR ${CMAKE_CXX_COMPILER_ID} MATCHES "NVHPC")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Mint128 ")
endif()
if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.18)
# CMake 3.18 added support for CUDA_ARCHITECTURES target property. We will use this
# property for CMake 3.18+, so we request the NEW behavior for correct compatibility.
# https://cmake.org/cmake/help/v3.18/policy/CMP0104.html#policy:CMP0104
cmake_policy(SET CMP0104 NEW)
endif()
# CMake 3.18 added support for CUDA_ARCHITECTURES target property. We will use this
# property for CMake 3.18+, so we request the NEW behavior for correct compatibility.
# https://cmake.org/cmake/help/v3.18/policy/CMP0104.html#policy:CMP0104
cmake_policy(SET CMP0104 NEW)
if (MSVC)
# MSVC by default does not apply the correct __cplusplus version as specified by the C++ standard
# because MSVC is not a completely compliant implementation. This option forces MSVC to use the
# because MSVC is not a completely compliant implementation. This option forces MSVC to use the
# appropriate value given the requested --std option. This fixes a compilation issue mismatch
# between GCC/Clang and MSVC.
#
# error : a constexpr function cannot have a nonliteral return type "dim3"
#
#
# See https://developercommunity.visualstudio.com/t/msvc-incorrectly-defines-cplusplus/139261
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /Zc:__cplusplus")
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -Xcompiler /Zc:__cplusplus")
endif()
# Some tests require this build option in order to link.
@ -457,59 +643,25 @@ function(cutlass_apply_cuda_gencode_flags TARGET)
set(ARCHS_ENABLED ${CUTLASS_NVCC_ARCHS_ENABLED})
endif()
set(NVCC_FLAGS)
set(CLANG_FLAGS)
set(__CMAKE_CUDA_ARCHS)
foreach(ARCH ${ARCHS_ENABLED})
list(APPEND CLANG_FLAGS --cuda-gpu-arch=sm_${ARCH})
set(CODES)
if(CUTLASS_NVCC_EMBED_CUBIN)
list(APPEND CODES sm_${ARCH})
list(APPEND __CMAKE_CUDA_ARCHS ${ARCH}-real)
endif()
if(CUTLASS_NVCC_EMBED_PTX)
list(APPEND CODES compute_${ARCH})
if(CUTLASS_NVCC_EMBED_PTX AND NOT CUTLASS_CLANG_DEVICE_COMPILE)
# If we're using clang for device compilation, the ptx is inserted
# via another command line option and the `-virtual` flags will cause an error.
list(APPEND __CMAKE_CUDA_ARCHS ${ARCH}-virtual)
endif()
list(JOIN CODES "," CODES_STR)
list(APPEND NVCC_FLAGS -gencode=arch=compute_${ARCH},code=[${CODES_STR}])
endforeach()
if (NOT __SM_ARCHS)
if (CUDA_COMPILER MATCHES "[Cc]lang")
target_compile_options(
${TARGET}
PRIVATE
$<$<COMPILE_LANGUAGE:CXX>:${CLANG_FLAGS}>
)
elseif(CMAKE_VERSION GREATER_EQUAL 3.18)
set_property(TARGET ${TARGET} PROPERTY CUDA_ARCHITECTURES ${__CMAKE_CUDA_ARCHS})
else()
target_compile_options(
${TARGET}
PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:${NVCC_FLAGS}>
)
endif()
else()
list(JOIN CLANG_FLAGS " " CLANG_FLAGS_STR)
list(JOIN NVCC_FLAGS " " STR_NVCC_FLAGS)
if (CUDA_COMPILER MATCHES "[Cc]lang")
if(${TARGET} MATCHES ".*\.cpp")
set_source_files_properties(${TARGET} PROPERTIES COMPILE_FLAGS ${CLANG_FLAGS_STR})
endif()
elseif(CMAKE_VERSION GREATER_EQUAL 3.18)
set_source_files_properties(${TARGET} PROPERTIES CUDA_ARCHITECTURES ${STR_NVCC_FLAGS})
else()
if(${TARGET} MATCHES ".*\.cu")
set_source_files_properties(${TARGET} PROPERTIES COMPILE_FLAGS ${STR_NVCC_FLAGS})
endif()
endif()
endif()
set_property(TARGET ${TARGET} PROPERTY CUDA_ARCHITECTURES ${__CMAKE_CUDA_ARCHS})
endfunction()
# Cache the flags so they are available when the function below is called anywhere globally.
# Cache the flags so they are available when the function below is called anywhere globally.
set(__CUTLASS_CUDA_FLAGS ${CUTLASS_CUDA_FLAGS} CACHE INTERNAL "")
set(__CUTLASS_CUDA_FLAGS_RELEASE ${CUTLASS_CUDA_FLAGS_RELEASE} CACHE INTERNAL "")
@ -526,8 +678,8 @@ set(__CUTLASS_CUDA_NVCC_FLAGS_DEBUG ${CUTLASS_CUDA_NVCC_FLAGS_DEBUG} CACHE INTER
function(cutlass_apply_standard_compile_options TARGET)
if(CUDA_COMPILER MATCHES "[Cc]lang")
set(CUDA_COMPILE_LANGUAGE CXX)
if(CUTLASS_CLANG_DEVICE_COMPILE)
set(CUDA_COMPILE_LANGUAGE CUDA)
set(_FLAGS ${__CUTLASS_CUDA_FLAGS} ${__CUTLASS_CUDA_CLANG_FLAGS})
set(_FLAGS_RELEASE ${__CUTLASS_CUDA_FLAGS_RELEASE} ${__CUTLASS_CUDA_CLANG_FLAGS_RELEASE})
set(_FLAGS_RELWITHDEBINFO ${__CUTLASS_CUDA_FLAGS_RELWITHDEBINFO} ${__CUTLASS_CUDA_CLANG_FLAGS_RELWITHDEBINFO})
@ -590,25 +742,6 @@ if (NOT CUTLASS_NAMESPACE STREQUAL "cutlass")
target_compile_definitions(CUTLASS INTERFACE CUTLASS_NAMESPACE=${CUTLASS_NAMESPACE})
endif()
if (NOT DEFINED CUTLASS_REVISION)
find_package(Git QUIET)
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-parse --short HEAD
RESULT_VARIABLE CUTLASS_REVISION_RESULT
OUTPUT_VARIABLE CUTLASS_REVISION
OUTPUT_STRIP_TRAILING_WHITESPACE
)
if (CUTLASS_REVISION_RESULT)
message(STATUS "CUTLASS Revision: Unable to detect, Git returned code ${CUTLASS_REVISION_RESULT}.")
else()
message(STATUS "CUTLASS Revision: ${CUTLASS_REVISION}")
endif()
endif()
configure_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/version_extended.h.in
${CMAKE_CURRENT_BINARY_DIR}/include/cutlass/version_extended.h
@ -620,8 +753,6 @@ target_include_directories(
$<INSTALL_INTERFACE:include>
$<BUILD_INTERFACE:${CUTLASS_INCLUDE_DIR}>
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}/include>
$<BUILD_INTERFACE:${cute_SOURCE_DIR}/include>
$<BUILD_INTERFACE:${cute_SOURCE_DIR}/examples>
)
# Mark CTK headers as system to supress warnings from them
@ -631,6 +762,14 @@ target_include_directories(
$<BUILD_INTERFACE:${CUDA_TOOLKIT_ROOT_DIR}/include>
)
if(CUDA_VERSION VERSION_GREATER_EQUAL 13.0)
target_include_directories(
CUTLASS
SYSTEM INTERFACE
$<BUILD_INTERFACE:${CUDA_TOOLKIT_ROOT_DIR}/include/cccl>
)
endif()
install(
DIRECTORY
${CUTLASS_INCLUDE_DIR}/
@ -675,11 +814,12 @@ if(NOT WIN32)
# Add common library search paths so executables and libraries can load and run
# without LD_LIBRARY_PATH being set.
link_libraries(
"-Wl,-rpath,'$ORIGIN'"
"-Wl,-rpath,'$ORIGIN/../lib64'"
"-Wl,-rpath,'$ORIGIN/../lib'"
"-Wl,-rpath,'$$ORIGIN'"
"-Wl,-rpath,'$$ORIGIN/../lib64'"
"-Wl,-rpath,'$$ORIGIN/../lib'"
"-Wl,-rpath,'${CUDA_TOOLKIT_ROOT_DIR}/lib64'"
"-Wl,-rpath,'${CUDA_TOOLKIT_ROOT_DIR}/lib'"
${CMAKE_DL_LIBS}
)
endif()
@ -689,7 +829,11 @@ include(CTest)
enable_testing()
if (CUTLASS_ENABLE_GTEST_UNIT_TESTS)
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/googletest.cmake)
if (CUTLASS_USE_SYSTEM_GOOGLETEST)
find_package(GTest REQUIRED)
else()
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/googletest.cmake)
endif()
endif()
if (NOT TARGET test_all)
@ -734,30 +878,31 @@ set(CUTLASS_DEFAULT_ACTIVE_TEST_SETS "default" CACHE STRING "Default
with CUTLASS_TEST_SETS environment variable when running the ctest
executable.")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_BINDIR}")
set(CUTLASS_CTEST_TEMPLATE_FILE ${CMAKE_CURRENT_LIST_DIR}/cmake/CTestTestfile.configure.cmake)
set(CUTLASS_CTEST_GENERATED_FILES "" CACHE INTERNAL "")
function(cutlass_add_executable_tests NAME TARGET)
#
# Generates test rules for `make test`, `make test_all`, and `ctest` invoked from either the
#
# Generates test rules for `make test`, `make test_all`, and `ctest` invoked from either the
# <CMAKE_BINARY_DIR> or the <CMAKE_INSTALL_PREFIX>/<CUTLASS_TEST_INSTALL_PREFIX> after installation.
#
#
# NAME: The base name for the test. Can be run with `make <NAME>` or `ctest -R 'c<NAME>'`.
# TARGET: The target corresponding to the executable under test.
# DISABLE_EXECUTABLE_INSTALL_RULE: An option, if given, that disables creating an install rule for TARGET.
# DEPENDS: A list of targets or files on which this test is dependent.
# DEPENDEES: A list of targets which should depend on this test.
# TEST_COMMAND_OPTIONS: A list of variables (i.e. by reference params) which contain command line arguments
# to pass to the test executable. A unique test is generated for each set of
# to pass to the test executable. A unique test is generated for each set of
# options given. If this option is not used, a single test with no arguments is generated.
# TEST_COMMAND_OPTIONS_PREFIX: If provided, is added as a prefix to each TEST_COMMAND_OPTIONS value for
# TEST_COMMAND_OPTIONS_PREFIX: If provided, is added as a prefix to each TEST_COMMAND_OPTIONS value for
# generating the full variable name to be referenced.
# RESULT_CACHE_FILE: A file to be installed alongside the test executable with pre-computed
# test results to speed up test runtime.
# TEST_SETS_SUPPORTED: A list of test set names these tests support.
#
# TEST_SETS_SUPPORTED: A list of test set names these tests support.
#
set(options DISABLE_EXECUTABLE_INSTALL_RULE)
set(options DISABLE_EXECUTABLE_INSTALL_RULE DO_NOT_LOWERCASE_TEST_NAME)
set(oneValueArgs DISABLE_TESTS RESULT_CACHE_FILE TEST_COMMAND_OPTIONS_PREFIX)
set(multiValueArgs DEPENDS DEPENDEES TEST_COMMAND_OPTIONS TEST_SETS_SUPPORTED)
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
@ -787,9 +932,9 @@ function(cutlass_add_executable_tests NAME TARGET)
endif()
if (NOT __DISABLE_EXECUTABLE_INSTALL_RULE AND CUTLASS_INSTALL_TESTS)
# file(RELATIVE_PATH CMAKE_CURRENT_BINARY_RELATIVE_DIR ${CMAKE_BINARY_DIR} ${CMAKE_CURRENT_BINARY_DIR})
install(
TARGETS ${TARGET}
RUNTIME DESTINATION ${CUTLASS_TEST_INSTALL_BINDIR}
@ -799,11 +944,11 @@ function(cutlass_add_executable_tests NAME TARGET)
install(
FILES ${__RESULT_CACHE_FILE}
DESTINATION ${CUTLASS_TEST_INSTALL_BINDIR}/
DESTINATION ${CUTLASS_TEST_INSTALL_BINDIR}
)
endif()
endif()
if (NOT __TEST_COMMAND_OPTIONS)
@ -829,48 +974,8 @@ function(cutlass_add_executable_tests NAME TARGET)
set(TEST_GROUP_NAME ${NAME})
foreach(CMD_OPTIONS_VAR IN LISTS __TEST_COMMAND_OPTIONS)
if (CMD_COUNT GREATER 1)
string(TOLOWER "${NAME}_${CMD_OPTIONS_VAR}" TEST_NAME)
else()
string(TOLOWER "${NAME}" TEST_NAME)
endif()
# The following rigmarole is needed to deal with spaces and possible quotes in
# command line arguments. The options are passed "by reference" as the actual
# variable names holding the real options. We then expand these in a way that
# preserves any quotes. Note, they have to be in this order for it to work for
# all the use cases below.
set(TEST_COMMAND_OPTIONS ${${__TEST_COMMAND_OPTIONS_PREFIX}${CMD_OPTIONS_VAR}})
list(JOIN TEST_COMMAND_OPTIONS " " TEST_COMMAND_OPTIONS)
separate_arguments(TEST_COMMAND_OPTIONS)
add_custom_target(
${TEST_NAME}
COMMAND
${CUTLASS_TEST_EXECUTION_ENVIRONMENT} $<TARGET_FILE:${TARGET}> ${TEST_COMMAND_OPTIONS}
DEPENDS
${TARGET}
)
if (CMD_COUNT GREATER 1)
add_dependencies(${NAME} ${TEST_NAME})
endif()
foreach(DEPENDEE ${__DEPENDEES})
add_dependencies(${DEPENDEE} ${TEST_NAME})
endforeach()
set(TEST_NAME c${TEST_NAME})
string(CONFIGURE "${_INLINE_PER_TEST_CODE_TEMPLATE}" _TEST_CODE @ONLY)
string(APPEND _INLINE_PER_TEST_CODE "${_TEST_CODE}")
endforeach()
# To run the tests from an install package with tests enabled, we need to generate test files
# that don't rely on the current directory structure in build.
# that don't rely on the current directory structure in build.
set(TEST_NAME c${NAME})
set(TEST_GEN_DIR ${CMAKE_CURRENT_BINARY_DIR}/ctest/${TEST_NAME})
@ -884,17 +989,62 @@ function(cutlass_add_executable_tests NAME TARGET)
set(TEST_USE_EXTENDED_FORMAT OFF) # ctest does not support extended add_test format.
configure_file("${CUTLASS_CTEST_TEMPLATE_FILE}" "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.install.cmake.in" @ONLY)
foreach(CMD_OPTIONS_VAR IN LISTS __TEST_COMMAND_OPTIONS)
if (CMD_COUNT GREATER 1)
set(TESTCASE_NAME "${NAME}_${CMD_OPTIONS_VAR}")
else()
set(TESTCASE_NAME "${NAME}")
endif()
if (NOT __DO_NOT_LOWERCASE_TEST_NAME)
string(TOLOWER "${TESTCASE_NAME}" TESTCASE_NAME)
endif()
# The following rigmarole is needed to deal with spaces and possible quotes in
# command line arguments. The options are passed "by reference" as the actual
# variable names holding the real options. We then expand these in a way that
# preserves any quotes. Note, they have to be in this order for it to work for
# all the use cases below.
set(TEST_COMMAND_OPTIONS ${${__TEST_COMMAND_OPTIONS_PREFIX}${CMD_OPTIONS_VAR}})
list(JOIN TEST_COMMAND_OPTIONS " " TEST_COMMAND_OPTIONS)
separate_arguments(TEST_COMMAND_OPTIONS)
add_custom_target(
${TESTCASE_NAME}
COMMAND
${CUTLASS_TEST_EXECUTION_ENVIRONMENT} $<TARGET_FILE:${TARGET}> ${TEST_COMMAND_OPTIONS}
DEPENDS
${TARGET}
)
if (CMD_COUNT GREATER 1)
add_dependencies(${NAME} ${TESTCASE_NAME})
endif()
foreach(DEPENDEE ${__DEPENDEES})
add_dependencies(${DEPENDEE} ${TESTCASE_NAME})
endforeach()
set(TESTCASE_NAME c${TESTCASE_NAME})
string(CONFIGURE "${_INLINE_PER_TEST_CODE_TEMPLATE}" _TEST_CODE @ONLY)
file(APPEND "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.cmake" "${_TEST_CODE}")
file(APPEND "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.install.cmake.in" "${_TEST_CODE}")
endforeach()
# The following line imports the tests for immediate run via `make test`.
include(${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.cmake)
set(CUTLASS_CTEST_GENERATED_FILES ${CUTLASS_CTEST_GENERATED_FILES};ctest/${TEST_NAME}/CTestTestfile.${TEST_NAME}.cmake CACHE INTERNAL "")
if (CUTLASS_INSTALL_TESTS)
file(GENERATE
OUTPUT "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.install.cmake"
INPUT "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.install.cmake.in"
file(GENERATE
OUTPUT "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.install.cmake"
INPUT "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.install.cmake.in"
)
install(
@ -907,6 +1057,100 @@ function(cutlass_add_executable_tests NAME TARGET)
endfunction()
function(cutlass_generate_profiler_tests NAME)
set(options)
set(oneValueArgs)
set(multiValueArgs DEPENDS DEPENDEES CUTLASS_PROFILER_EXTRA_OPTIONS)
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if (NOT CUTLASS_BUILD_FOR_PROFILER_REGRESSIONS AND NOT CUTLASS_BUILD_FOR_PROFILER_PERFORMANCE_REGRESSIONS)
return()
endif()
install(
FILES ${CUTLASS_PROFILER_REGRESSION_LIST_FILE}
DESTINATION ${CMAKE_INSTALL_INFODIR}/cutlass
RENAME profiler_regressions.csv
)
# Generate cmake test targets for each entry in the testlist csv
if (NOT EXISTS "${CUTLASS_PROFILER_REGRESSION_LIST_FILE}")
message(SEND_ERROR "Profiler unit tests list path is invalid: CUTLASS_PROFILER_REGRESSION_LIST_FILE = ${CUTLASS_PROFILER_REGRESSION_LIST_FILE}")
else()
message(STATUS "Using ${CUTLASS_PROFILER_REGRESSION_LIST_FILE} to generate profiler-based tests.")
endif()
file(STRINGS ${CUTLASS_PROFILER_REGRESSION_LIST_FILE} TEST_LIST)
foreach(TEST IN LISTS TEST_LIST)
set(TEMP_TEST ${TEST})
if ("${TEST}" MATCHES " *cutlass_profiler.*")
# Generate a flattened name for the test from the test command line.
string(REPLACE "," ";" TEST_NAME_LIST ${TEMP_TEST})
string(REGEX REPLACE "\\*" "_" TEST_NAME "${TEMP_TEST}")
string(REGEX REPLACE "\\\"\\{\\\"\\\"input_params.*\\{.*\\}\\}\\\"" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "\\\"\\{\\\"\\\"input_params.*\\{.*\\}\\}\\\"" "" TEST "${TEST}")
string(REGEX REPLACE "," ";" TEST "${TEST}")
string(REGEX MATCHALL "[a-zA-Z0-9_=]+" TEST_NAME "${TEST_NAME}")
list(FILTER TEST_NAME EXCLUDE REGEX "cutlass_profiler|mode=trace|providers=cutlass")
list(JOIN TEST_NAME "_" TEST_NAME)
string(REGEX REPLACE "_verification_required=(true|false)" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_verification_providers=device" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "batch_count=" "batch" TEST_NAME "${TEST_NAME}")
string(REPLACE "cluster_m=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_cluster_n=" "x" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "_cluster_k=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "cluster_m_fallback=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_cluster_n_fallback=" "x" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "_cluster_k_fallback=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "runtime_input_datatype_a=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "runtime_input_datatype_b=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "swizzle_size=" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "verification_enabled=(true|false)" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "warmup_iterations=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "profiling_iterations=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "sleep_duration=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "profiling_enabled=(true|false)" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_error_on_no_match" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_error_if_nothing_is_profiled" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "kernels" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "operation" "" TEST_NAME "${TEST_NAME}")
if (NOT __DO_NOT_LOWERCASE_TEST_NAME)
string(TOLOWER "${TEST_NAME}" TEST_NAME)
endif()
# Munge the test command
string(REPLACE "cutlass_profiler" "" TEST "${TEST}")
set(TEST "${TEST}" ${__CUTLASS_PROFILER_EXTRA_OPTIONS} "--junit-output=${TEST_NAME}")
set(TEST_COMMAND_${TEST_NAME} "${TEST}")
list(APPEND TEST_COMMAND_VARS ${TEST_NAME})
endif()
endforeach()
cutlass_add_executable_tests(
${NAME} cutlass_profiler
DEPENDS ${__DEPENDS}
DEPENDEES ${__DEPENDEES}
TEST_COMMAND_OPTIONS ${TEST_COMMAND_VARS}
TEST_COMMAND_OPTIONS_PREFIX TEST_COMMAND_
DISABLE_EXECUTABLE_INSTALL_RULE
# Uncomment the following line when alloc/dealloc tracking
# is fixed for all configurations.
# TEST_SETS_SUPPORTED tmem_alloc_tracking
)
endfunction()
if (CUTLASS_ENABLE_TOOLS)
add_subdirectory(tools)
if (CUTLASS_ENABLE_PROFILER)
@ -924,6 +1168,14 @@ if (CUTLASS_ENABLE_TESTS)
if (CUTLASS_ENABLE_GTEST_UNIT_TESTS)
add_dependencies(test_all test_unit)
endif()
if (CUTLASS_ENABLE_PROFILER_UNIT_TESTS AND CUTLASS_BUILD_FOR_PROFILER_REGRESSIONS)
# Generate profiler based unit test
cutlass_generate_profiler_tests(
tup
DEPENDEES test_unit
)
endif()
endif()
if (CUTLASS_INSTALL_TESTS)
@ -952,19 +1204,19 @@ endif()
include(CMakePackageConfigHelpers)
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/NvidiaCutlassConfigVersion.cmake
${CMAKE_CURRENT_BINARY_DIR}/NvidiaCutlassConfigVersion.cmake
COMPATIBILITY AnyNewerVersion)
configure_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/NvidiaCutlassConfig.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/NvidiaCutlassConfig.cmake
${CMAKE_CURRENT_BINARY_DIR}/NvidiaCutlassConfig.cmake
@ONLY
)
install(
FILES
${CMAKE_CURRENT_BINARY_DIR}/NvidiaCutlassConfig.cmake
${CMAKE_CURRENT_BINARY_DIR}/NvidiaCutlassConfigVersion.cmake
FILES
${CMAKE_CURRENT_BINARY_DIR}/NvidiaCutlassConfig.cmake
${CMAKE_CURRENT_BINARY_DIR}/NvidiaCutlassConfigVersion.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/NvidiaCutlass/
)

View File

@ -1,52 +1,149 @@
![ALT](/media/images/gemm-hierarchy-with-epilogue-no-labels.png "CUTLASS")
![ALT](./media/images/gemm-hierarchy-with-epilogue-no-labels.png "CUTLASS")
[README](/README.md#documentation) > **Contributors**
[README](./README.md#documentation) > **Contributors**
# CUTLASS Developers and Contributors
# CUTLASS C++ Developers **
This is the official list of CUTLASS developers and contributors.
## DEVELOPERS
Vijay Thakkar<br />
Pradeep Ramani<br />
Cris Cecka<br />
Aniket Shivam<br />
Jack Kosaian<br />
Mark Hoemmen<br />
Richard Cai<br />
Honghao Lu<br />
Ethan Yan<br />
Haicheng Wu<br />
Andrew Kerr<br />
Dustyn Blasig<br />
Fengqi Qiao<br />
Duane Merrill<br />
Yujia Zhai<br />
Rawn Henry<br />
Sergey Klevtsov<br />
Shang Zhang<br />
Piotr Majcher<br />
Paul Springer<br />
Markus Hohnerbach<br />
Jin Wang<br />
Dustyn Blasig<br />
Albert Xu<br />
Junkai Wu<br />
Xiuxia Zhang<br />
Haicheng Wu<br />
Jack Yang<br />
Pradeep Ramani<br />
Aditya Atluri<br />
Han Li<br />
Nick Zhao<br />
Ivan Yin<br />
Yu-Jung Chen<br />
Markus Hoehnerbach<br />
Honghao Lu<br />
Mihir Awatramani<br />
Hao Sheng<br />
Zekun Fan<br />
Aniket Shivam<br />
Siyu Liu<br />
Richard Cai<br />
Vikas Gupta<br />
Ethan Yan<br />
Vijay Thakkar<br />
Cris Cecka<br />
Lawrence Ryan<br />
Qun Song<br />
Daniel Ricketts<br />
dePaul Miller<br />
Yuhan Li<br />
Saman Ashkiani<br />
Jack Chen<br />
Shang Zhang<br />
Petrick Liu<br />
Questa Wang<br />
Pramod Shenoy<br />
Jack Kosaian<br />
Yujia Zhai<br />
Zhaodong Chen<br />
Manas Sahni<br />
Shunfan Shao<br />
Fengqi Qiao<br />
Serif Yesil<br />
Aragorn Guan<br />
Heidi He<br />
Xiao Song<br />
Sergey Klevtsov<br />
Jiang Shao<br />
Ruqing Xu<br />
Mengyu Guo<br />
Tao Xie<br />
Linfeng Zheng<br />
Harrison Barclay<br />
Wenfei Tang<br />
Diksha Gohlyan<br />
Alexander Zhurkevich<br />
Siyuan Fu<br />
Hua Huang<br />
Xiufan Liang<br />
Ian Tramble<br />
Ali Hassani<br />
Shreya Gaur<br />
** _The list is sorted in order of the author's first contribution to the CUTLASS project._
# CUTLASS DSL Developers ***
Albert Di<br />
Albert Xu<br />
Anakin Zheng<br />
Arvin Jou<br />
Brandon Sun<br />
Chenyang Xu<br />
Chunyu Wang<br />
Cris Cecka<br />
dePaul Miller<br />
Edward Cao<br />
Fung Xie<br />
Guray Ozen<br />
Hao Hu<br />
Hong Wang<br />
Jeremy Furtek<br />
Jie Fang <br />
JingZe Cui<br />
Kihiro Bando<br />
Linfeng Zheng<br />
Longsheng Du<br />
Mina Sun<br />
Mindy Li<br />
Pradeep Ramani<br />
Questa Wang<br />
Serif Yesil<br />
Tao Xie<br />
Tina Li<br />
Vicki Wang<br />
Vincent Zhang<br />
Vijay Thakkar<br />
Xiao Dong<br />
Xiaolei Shi<br />
Xinyu Wang<br />
Yihan Chen<br />
Yuhan Li<br />
Zekun Fan<br />
*** _Sorted in alphabetical order._
# CuTe Developers
## CuTe
Cris Cecka<br />
Vijay Thakkar<br />
## CUTLASS Product Manager
# CUTLASS Product Manager
Matthew Nicely<br />
## Former CUTLASS Developers
Manish Gupta<br />
Naila Farooqui<br />
David Tanner<br />
Manikandan Ananth<br />
Zhaodong Chen<br />
Chinmay Talegaonkar<br />
## CONTRIBUTORS
# Former CUTLASS Developers
Manish Gupta<br />
Duane Merrill<br />
Piotr Majcher<br />
Naila Farooqui<br />
Mark Hoemmen<br />
Rawn Henry<br />
Jin Wang<br />
Timmy Liu<br />
Manikandan Ananth<br />
David Tanner<br />
# Acknowledgements
Tri Dao<br />
Jay Shah<br />
Mehdi Amini<br />
Larry Wu<br />
Justin Holewinski<br />
Timothy Costa<br />
Julien Demouth<br />
Brian Fahs<br />
@ -55,26 +152,13 @@ Michael Goldfarb<br />
Mostafa Hagog<br />
Fei Hu<br />
Alan Kaatz<br />
Tina Li<br />
Timmy Liu<br />
Wei Liu<br />
Tim Martin<br />
Duane Merrill<br />
Kevin Siu<br />
Markus Tavenrath<br />
John Tran<br />
Vicki Wang<br />
Junkai Wu<br />
Fung Xie<br />
Albert Xu<br />
Yang Xu<br />
Jack Yang<br />
Scott Yokim<br />
Xiuxia Zhang<br />
Nick Zhao<br />
## ACKNOWLEDGEMENTS
Girish Bharambe<br />
Luke Durant<br />
Carter Edwards<br />
@ -85,3 +169,35 @@ Bryce Lelbach<br />
Joel McCormack<br />
Kyrylo Perelygin<br />
Sean Treichler<br />
# Copyright
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
@ -26,49 +26,46 @@
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
if(CUDA_COMPILER MATCHES "[Cc]lang")
set(CUTLASS_NATIVE_CUDA_INIT ON)
elseif(CMAKE_VERSION VERSION_LESS 3.12.4)
set(CUTLASS_NATIVE_CUDA_INIT OFF)
else()
set(CUTLASS_NATIVE_CUDA_INIT ON)
if (CUDA_COMPILER MATCHES "[Cc]lang")
message(WARNING "CUDA_COMPILER flag is deprecated, set CMAKE_CUDA_COMPILER to desired compiler executable.")
set(__CLANG_DEVICE_COMPILATION_REQUESTED ON)
elseif(CUDA_COMPILER)
message(WARNING "Deprecated flag CUDA_COMPILER used with unknown argument ${CUDA_COMPILER}, ignoring.")
endif()
set(CUTLASS_NATIVE_CUDA ${CUTLASS_NATIVE_CUDA_INIT} CACHE BOOL "Utilize the CMake native CUDA flow")
if(NOT DEFINED ENV{CUDACXX} AND NOT DEFINED ENV{CUDA_BIN_PATH} AND DEFINED ENV{CUDA_PATH})
# For backward compatibility, allow use of CUDA_PATH.
set(ENV{CUDACXX} $ENV{CUDA_PATH}/bin/nvcc)
if (__CLANG_DEVICE_COMPILATION_REQUESTED AND NOT DEFINED CMAKE_CUDA_COMPILER)
set(CMAKE_CUDA_COMPILER clang++) # We will let the system find Clang or error out
endif()
if(CUTLASS_NATIVE_CUDA)
enable_language(CUDA)
find_package(CUDAToolkit REQUIRED)
enable_language(CUDA)
if(NOT CUDA_VERSION)
set(CUDA_VERSION ${CMAKE_CUDA_COMPILER_VERSION})
endif()
if(NOT CUDA_TOOLKIT_ROOT_DIR)
get_filename_component(CUDA_TOOLKIT_ROOT_DIR "${CMAKE_CUDA_COMPILER}/../.." ABSOLUTE)
endif()
if(NOT CUDA_VERSION)
# For backward compatibility with older CMake code.
set(CUDA_VERSION ${CUDAToolkit_VERSION})
set(CUDA_VERSION_MAJOR ${CUDAToolkit_VERSION_MAJOR})
set(CUDA_VERSION_MINOR ${CUDAToolkit_VERSION_MINOR})
endif()
if(NOT CUDA_TOOLKIT_ROOT_DIR)
# In some scenarios, such as clang device compilation, the toolkit root may not be set, so we
# force it here to the nvcc we found via the CUDAToolkit package.
get_filename_component(CUDA_TOOLKIT_ROOT_DIR "${CUDAToolkit_NVCC_EXECUTABLE}/../.." ABSOLUTE)
endif()
if (CMAKE_CUDA_COMPILER_ID MATCHES "(nvcc|[Nn][Vv][Ii][Dd][Ii][Aa])")
set(CUTLASS_NVCC_DEVICE_COMPILE ON CACHE BOOL "Using nvcc tools for device compilation")
elseif (CMAKE_CUDA_COMPILER_ID MATCHES "[Cc]lang")
set(CUTLASS_CLANG_DEVICE_COMPILE ON CACHE BOOL "Using Clang tools for device compilation")
else()
message(FATAL_ERROR "Unknown device-side compiler ${CMAKE_CUDA_COMPILER_ID} found. Set CMAKE_CUDA_COMPILER to either nvcc or clang++.")
endif()
find_package(CUDA REQUIRED)
# We workaround missing variables with the native flow by also finding the CUDA toolkit the old way.
if(NOT CMAKE_CUDA_COMPILER_VERSION)
set(CMAKE_CUDA_COMPILER_VERSION ${CUDA_VERSION})
endif()
if (CUTLASS_CLANG_DEVICE_COMPILE AND CMAKE_VERSION VERSION_LESS_EQUAL "3.30")
message(FATAL_ERROR "Clang device compilation for CUTLASS requires CMake 3.30 or higher.")
endif()
if (CUDA_VERSION VERSION_LESS 9.2)
message(FATAL_ERROR "CUDA 9.2+ Required, Found ${CUDA_VERSION}.")
endif()
if(NOT CUTLASS_NATIVE_CUDA OR CUDA_COMPILER MATCHES "[Cc]lang")
set(CMAKE_CUDA_COMPILER ${CUDA_TOOLKIT_ROOT_DIR}/bin/nvcc)
message(STATUS "CUDA Compiler: ${CMAKE_CUDA_COMPILER}")
message(FATAL_ERROR "CUDA 9.2+ required, found ${CUDA_VERSION}.")
endif()
find_library(
@ -211,16 +208,6 @@ include_directories(SYSTEM ${CUDA_INCLUDE_DIRS})
# Some platforms (e.g. Visual Studio) don't add the CUDA include directories to the system include
# paths by default, so we add it explicitly here.
function(cutlass_correct_source_file_language_property)
if(CUDA_COMPILER MATCHES "[Cc]lang")
foreach(File ${ARGN})
if(File MATCHES ".*\.cu$")
set_source_files_properties(${File} PROPERTIES LANGUAGE CXX)
endif()
endforeach()
endif()
endfunction()
if (MSVC OR CUTLASS_LIBRARY_KERNELS MATCHES "all")
set(CUTLASS_UNITY_BUILD_ENABLED_INIT ON)
else()
@ -306,18 +293,13 @@ function(cutlass_add_library NAME)
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cutlass_unify_source_files(TARGET_SOURCE_ARGS ${__UNPARSED_ARGUMENTS})
if(CUTLASS_NATIVE_CUDA OR CUDA_COMPILER MATCHES "clang")
cutlass_correct_source_file_language_property(${TARGET_SOURCE_ARGS})
add_library(${NAME} ${TARGET_SOURCE_ARGS} "")
else()
set(CUDA_LINK_LIBRARIES_KEYWORD PRIVATE)
cuda_add_library(${NAME} ${TARGET_SOURCE_ARGS} "")
endif()
add_library(${NAME} ${TARGET_SOURCE_ARGS} "")
cutlass_apply_standard_compile_options(${NAME})
if (NOT __SKIP_GENCODE_FLAGS)
cutlass_apply_cuda_gencode_flags(${NAME})
cutlass_apply_cuda_gencode_flags(${NAME})
endif()
target_compile_features(
@ -326,6 +308,14 @@ function(cutlass_add_library NAME)
cxx_std_11
)
get_target_property(TARGET_TYPE ${NAME} TYPE)
if (TARGET_TYPE MATCHES "SHARED")
set_target_properties(${NAME} PROPERTIES CUDA_RUNTIME_LIBRARY Shared)
elseif(TARGET_TYPE MATCHES "STATIC")
set_target_properties(${NAME} PROPERTIES CUDA_RUNTIME_LIBRARY Static)
endif()
if(__EXPORT_NAME)
add_library(nvidia::cutlass::${__EXPORT_NAME} ALIAS ${NAME})
set_target_properties(${NAME} PROPERTIES EXPORT_NAME ${__EXPORT_NAME})
@ -336,19 +326,22 @@ endfunction()
function(cutlass_add_executable NAME)
set(options)
set(oneValueArgs)
set(oneValueArgs CUDA_RUNTIME_LIBRARY)
set(multiValueArgs)
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if (NOT DEFINED __CUDA_RUNTIME_LIBRARY)
set(__CUDA_RUNTIME_LIBRARY Shared)
endif()
set(__CUDA_RUNTIME_LIBRARY_ALLOWED None Shared Static)
if (NOT __CUDA_RUNTIME_LIBRARY IN_LIST __CUDA_RUNTIME_LIBRARY_ALLOWED)
message(FATAL_ERROR "CUDA_RUNTIME_LIBRARY value '${__CUDA_RUNTIME_LIBRARY}' is not in allowed list of '${__CUDA_RUNTIME_LIBRARY_ALLOWED}'")
endif()
cutlass_unify_source_files(TARGET_SOURCE_ARGS ${__UNPARSED_ARGUMENTS})
if(CUTLASS_NATIVE_CUDA OR CUDA_COMPILER MATCHES "clang")
cutlass_correct_source_file_language_property(${TARGET_SOURCE_ARGS})
add_executable(${NAME} ${TARGET_SOURCE_ARGS})
else()
set(CUDA_LINK_LIBRARIES_KEYWORD PRIVATE)
cuda_add_executable(${NAME} ${TARGET_SOURCE_ARGS})
endif()
add_executable(${NAME} ${TARGET_SOURCE_ARGS})
cutlass_apply_standard_compile_options(${NAME})
cutlass_apply_cuda_gencode_flags(${NAME})
@ -359,6 +352,8 @@ function(cutlass_add_executable NAME)
cxx_std_11
)
set_target_properties(${NAME} PROPERTIES CUDA_RUNTIME_LIBRARY ${__CUDA_RUNTIME_LIBRARY})
endfunction()
function(cutlass_target_sources NAME)
@ -369,7 +364,6 @@ function(cutlass_target_sources NAME)
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cutlass_unify_source_files(TARGET_SOURCE_ARGS ${__UNPARSED_ARGUMENTS})
cutlass_correct_source_file_language_property(${TARGET_SOURCE_ARGS})
target_sources(${NAME} ${TARGET_SOURCE_ARGS})
endfunction()

188
EULA.txt Normal file
View File

@ -0,0 +1,188 @@
NVIDIA Software License Agreement
IMPORTANT NOTICE PLEASE READ AND AGREE BEFORE USING THE SOFTWARE
This software license agreement (“Agreement”) is a legal agreement between you, whether an individual or entity, (“you”) and NVIDIA Corporation (“NVIDIA”) and governs the use of the NVIDIA CUTLASS DSLs software and materials that NVIDIA delivers to you under this Agreement (“Software”).
NVIDIA and you are each a “party” and collectively the “parties.”
This Agreement can be accepted only by an adult of legal age of majority in the country in which the Software is used.
If you dont have the required age or authority to accept this Agreement, or if you dont accept all the terms and conditions of this Agreement, do not use the Software.
1. License Grants
1.1. License Grant to You. The Software made available by NVIDIA to you is licensed, not sold.
Subject to the terms of this Agreement, NVIDIA grants you a limited, non-exclusive, revocable, non-transferable, and non-sublicensable (except as expressly granted in this Agreement), license to:
a. install and use copies of the Software,
b. configure the Software using configuration files provided (if applicable),
c. modify and create derivative works of any sample or example source code NVIDIA delivers to you as part of the Software (“Derivatives”) (if applicable), and
d. distribute python files in the Software package in source format as incorporated into a software application subject to the following distribution requirements:
i. Your application must have material additional functionality, beyond the included portions of the Software.
ii. The distributable portions of the Software shall only be accessed by your application.
iii. The following notice shall be included in modifications and derivative works of sample source code distributed: “This software contains source code provided by NVIDIA Corporation.”
iv. Unless a developer tool is identified in this Agreement as distributable, it is delivered for your internal use only.
v. The terms under which you distribute your application must be consistent with the terms of this Agreement, including (without limitation) terms relating to the license grant and license restrictions and protection of NVIDIAs intellectual property rights.
vi. Additionally, you agree that you will protect the privacy, security and legal rights of your application users.
The foregoing (a) through (d) are, collectively, the “Purpose”, and the developed applications are only for use in systems with NVIDIA GPUs.
1.2. License Grant to NVIDIA. Subject to the terms of this Agreement, you grant NVIDIA and its affiliates a non-exclusive, perpetual, irrevocable, sublicensable, worldwide, royalty-free, fully paid-up and transferable license, under your intellectual property rights, to publicly perform, publicly display, reproduce, use, make, have made, sell, offer for sale, distribute (through multiple tiers of distribution), import, create derivative works of and otherwise commercialize and exploit at NVIDIAs discretion any Derivatives created by or for you.
You may, but are not required to, deliver any Derivatives to NVIDIA.
2. License Restrictions
Your license to use the Software and Derivatives is restricted as stated in this Section 2 (“License Restrictions”).
You will cooperate with NVIDIA and, upon NVIDIAs written request, you will confirm in writing and provide reasonably requested information to verify your compliance with the terms of this Agreement.
You may not:
2.1. Use the Software or Derivatives for any purpose other than the Purpose;
2.2. Sell, rent, sublicense, transfer, distribute or otherwise make available to others (except authorized users as stated in Section 3 (“Authorized Users”)) any portion of the Software or Derivatives, except as expressly granted in Section 1.1 (“License Grant to You”);
2.3. Reverse engineer, decompile, or disassemble the Software components provided in binary form, nor attempt in any other manner to obtain source code of such Software;
2.4. Modify or create derivative works of the Software, except as expressly granted in Section 1.1 (“License Grant to You”);
2.5. Change or remove copyright or other proprietary notices in the Software;
2.6. Bypass, disable, or circumvent any technical limitation, encryption, security, digital rights management or authentication mechanism in the Software;
2.7. Use the Software or Derivatives in any manner that would cause them to become subject to an open source software license, subject to the terms in Section 6 (“Components Under Other Licenses”);
2.8. Use the Software or Derivatives in violation of any applicable law or regulation in relevant jurisdictions
2.9. Indicate that a product or service developed with the Software or Derivatives is sponsored or endorsed by NVIDIA;
2.10. Replace any NVIDIA software components in the Software that are governed by this Agreement with other software that implements NVIDIA APIs;
2.11. Reverse engineer, decompile or disassemble any portion of the output generated using Software elements for the purpose of translating such output artifacts to target a non-NVIDIA platform; or
3. Authorized Users
You may allow employees and contractors of your entity or of your subsidiary(ies), and for educational institutions also enrolled students, to internally access and use the Software as authorized by this Agreement from your secure network to perform the work authorized by this Agreement on your behalf.
You are responsible for the compliance with the terms of this Agreement by your authorized users.
Any act or omission that if committed by you would constitute a breach of this Agreement will be deemed to constitute a breach of this Agreement if committed by your authorized users.
4. Pre-Release
Software versions identified as alpha, beta, preview, early access or otherwise as pre-release (“Pre-Release”) may not be fully functional, may contain errors or design flaws, and may have reduced or different security, privacy, availability and reliability standards relative to NVIDIA commercial offerings.
You use Pre-Release Software at your own risk. NVIDIA did not design or test the Software for use in production or business-critical systems.
NVIDIA may choose not to make available a commercial version of Pre-Release Software.
NVIDIA may also choose to abandon development and terminate the availability of Pre-Release Software at any time without liability.
5. Updates
NVIDIA may at any time and at its option, change, discontinue, or deprecate any part, or all, of the Software, or change or remove features or functionality, or make available patches, workarounds or other updates to the Software.
Unless the updates are provided with their separate governing terms, they are deemed part of the Software licensed to you under this Agreement, and your continued use of the Software is deemed acceptance of such changes.
6. Components Under Other Licenses
The Software may include or be distributed with components provided with separate legal notices or terms that accompany the components, such as open source software licenses and other license terms (“Other Licenses”).
The components are subject to the applicable Other Licenses, including any proprietary notices, disclaimers, requirements and extended use rights;
except that this Agreement will prevail regarding the use of third-party open source software, unless a third-party open source software license requires its license terms to prevail.
Open source software license means any software, data or documentation subject to any license identified as an open source license by the Open Source Initiative (http://opensource.org), Free Software Foundation (http://www.fsf.org) or other similar open source organization or listed by the Software Package Data Exchange (SPDX) Workgroup under the Linux Foundation (http://www.spdx.org).
7. Ownership
7.1. NVIDIA Ownership. The Software, including all intellectual property rights, is and will remain the sole and exclusive property of NVIDIA or its licensors.
Except as expressly granted in this Agreement, (a) NVIDIA reserves all rights, interests and remedies in connection with the Software, and (b) no other license or right is granted to you by implication, estoppel or otherwise.
7.2. Your Ownership. Subject to the rights of NVIDIA and its suppliers in the Software, which continue to be licensed as stated in this Agreement, even when incorporated in your products or services, and the extent permitted by applicable law, as between you and NVIDIA, you hold all rights, title and interest in and to your products, services and Derivatives you develop as permitted in this Agreement including their respective intellectual property rights.
8. Feedback
You may, but you are not obligated to, provide suggestions, requests, fixes, modifications, enhancements, or other feedback regarding the Software (collectively, “Feedback”).
Feedback, even if designated as confidential by you, will not create any confidentiality obligation for NVIDIA or its affiliates.
If you provide Feedback, you grant NVIDIA, its affiliates and its designees a non-exclusive, perpetual, irrevocable, sublicensable, worldwide, royalty-free, fully paid-up and transferable license, under your intellectual property rights, to publicly perform, publicly display, reproduce, use, make, have made, sell, offer for sale, distribute (through multiple tiers of distribution), import, create derivative works of and otherwise commercialize and exploit the Feedback at NVIDIAs discretion.
9. Termination
9.1. Termination. This Agreement will automatically terminate without notice from NVIDIA if you fail to comply with any of the terms in this Agreement or if you commence or participate in any legal proceeding against NVIDIA with respect to the Software.
Additionally, either party may terminate this Agreement at any time with thirty (30) days advance written notice to the other party.
9.2. Effect of Termination. Upon any expiration or termination of this Agreement, you will promptly (a) stop using and return, delete or destroy NVIDIA confidential information and all Software received under this Agreement, and (b) delete or destroy Derivatives created under this Agreement, unless an authorized NVIDIA representative provides prior written approval that you may keep a copy of the Derivatives solely for archival purposes.
Upon written request, you will certify in writing that you have complied with your obligations under this Section 9.2 (“Effect of Termination”).
9.3. Survival. Section 1.2 (“License Grant to NVIDIA”), Section 5 (“Updates”), Section 6 (“Components Under Other Licenses”), Section 7 (“Ownership”), Section 8 (“Feedback), Section 9.2 (“Effect of Termination”), Section 9.3 (“Survival”), Section 10 (“Disclaimer of Warranties”), Section 11 (“Limitation of Liability”), Section 12 (“Use in Mission Critical Applications”), Section 13 (“Governing Law and Jurisdiction”), Section 14 (“Indemnity”) and Section 15 (“General”) will survive any expiration or termination of this Agreement.
10. Disclaimer of Warranties
THE SOFTWARE IS PROVIDED BY NVIDIA AS-IS AND WITH ALL FAULTS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVIDIA DISCLAIMS ALL WARRANTIES AND REPRESENTATIONS OF ANY KIND, WHETHER
EXPRESS, IMPLIED OR STATUTORY, RELATING TO OR ARISING UNDER THIS AGREEMENT, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF TITLE, NONINFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, USAGE OF TRADE AND COURSE OF DEALING. NVIDIA DOES NOT WARRANT OR ASSUME RESPONSIBILITY FOR THE ACCURACY OR COMPLETENESS OF ANY THIRD-PARTY INFORMATION, TEXT, GRAPHICS, LINKS CONTAINED IN THE SOFTWARE.
WITHOUT LIMITING THE FOREGOING, NVIDIA DOES NOT WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, ANY DEFECTS OR ERRORS WILL BE CORRECTED, ANY CERTAIN CONTENT WILL BE AVAILABLE; OR THAT THE SOFTWARE IS FREE OF VIRUSES OR OTHER HARMFUL COMPONENTS. NO INFORMATION OR ADVICE GIVEN BY NVIDIA WILL IN ANY WAY INCREASE THE SCOPE OF ANY WARRANTY EXPRESSLY PROVIDED IN THIS AGREEMENT.
NVIDIA does not warrant or assume responsibility for the accuracy or completeness of any third-party information, text, graphics or links contained in the Software.
11. Limitations of Liability
11.1. EXCLUSIONS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY (I) INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, OR (ii) DAMAGES FOR (a) THE COST OF PROCURING SUBSTITUTE GOODS, OR (b) LOSS OF PROFITS, REVENUES, USE, DATA OR GOODWILL ARISING OUT OF OR RELATED TO THIS AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, OR OTHERWISE, AND EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND EVEN IF A PARTYS REMEDIES FAIL THEIR ESSENTIAL PURPOSE.
11.2. DAMAGES CAP. ADDITIONALLY, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVIDIAS TOTAL CUMULATIVE AGGREGATE LIABILITY FOR ANY AND ALL LIABILITIES, OBLIGATIONS OR CLAIMS ARISING OUT OF OR RELATED TO THIS AGREEMENT WILL NOT EXCEED FIVE U.S. DOLLARS (US$5).
12. Use in Mission Critical Applications
You acknowledge that the Software provided under this Agreement is not designed or tested by NVIDIA for use in any system or application where the use or failure of such system or application developed with NVIDIAs Software could result in injury, death or catastrophic damage (each, a “Mission Critical Application”).
Examples of Mission Critical Applications include use in avionics, navigation, autonomous vehicle applications, AI solutions for automotive products, military, medical, life support or other mission-critical or life-critical applications.
NVIDIA will not be liable to you or any third party, in whole or in part, for any claims or damages arising from these uses.
You are solely responsible for ensuring that systems and applications developed with the Software include sufficient safety and redundancy features and comply with all applicable legal and regulatory standards and requirements.
13. Governing Law and Jurisdiction
This Agreement will be governed in all respects by the laws of the United States and the laws of the State of Delaware, without regard to conflict of laws principles or the United Nations Convention on Contracts for the International Sale of Goods.
The state and federal courts residing in Santa Clara County, California will have exclusive jurisdiction over any dispute or claim arising out of or related to this Agreement, and the parties irrevocably consent to personal jurisdiction and venue in those courts;
except that either party may apply for injunctive remedies or an equivalent type of urgent legal relief in any jurisdiction.
14. Indemnity
By using the Software you agree to defend, indemnify and hold harmless NVIDIA and its affiliates and their respective officers, directors, employees and agents from and against any claims, disputes, demands, liabilities, damages, losses, costs and expenses arising out of or in any way connected with (i) products or services that have been developed or deployed with or use the Software, or claims that they violate laws, or infringe, violate, or misappropriate any third party right;
or (ii) use of the Software in breach of the terms of this Agreement.
15. General
15.1. Independent Contractors.
The parties are independent contractors, and this Agreement does not create a joint venture, partnership, agency, or other form of business association between the parties.
Neither party will have the power to bind the other party or incur any obligation on its behalf without the other partys prior written consent.
Nothing in this Agreement prevents either party from participating in similar arrangements with third parties.
15.2. No Assignment.
NVIDIA may assign, delegate or transfer its rights or obligations under this Agreement by any means or operation of law.
You may not, without NVIDIAs prior written consent, assign, delegate or transfer any of your rights or obligations under this Agreement by any means or operation of law, and any attempt to do so is null and void.
15.3. No Waiver.
No failure or delay by a party to enforce any term or obligation of this Agreement will operate as a waiver by that party, or prevent the enforcement of such term or obligation later.
15.4. Trade Compliance.
You agree to comply with all applicable export, import, trade and economic sanctions laws and regulations, as amended, including without limitation U.S. Export Administration Regulations and Office of Foreign Assets Control regulations.
You confirm (a) your understanding that export or reexport of certain NVIDIA products or technologies may require a license or other approval from appropriate authorities and (b) that you will not export or reexport any products or technology, directly or indirectly, without first obtaining any required license or other approval from appropriate authorities, (i) to any countries that are subject to any U.S. or local export restrictions (currently including, but not necessarily limited to, Belarus, Cuba, Iran, North Korea, Russia, Syria, the Region of Crimea, Donetsk Peoples Republic Region and Luhansk Peoples Republic Region);
(ii) to any end-user who you know or have reason to know will utilize them in the design, development or production of nuclear, chemical or biological weapons, missiles, rocket systems, unmanned air vehicles capable of a maximum range of at least 300 kilometers, regardless of payload, or intended for military end-use, or any weapons of mass destruction;
(iii) to any end-user who has been prohibited from participating in the U.S. or local export transactions by any governing authority;
or (iv) to any known military or military-intelligence end-user or for any known military or military-intelligence end-use in accordance with U.S. trade compliance laws and regulations.
15.5. Government Rights.
The Software, documentation and technology (“Protected Items”) are “Commercial products” as this term is defined at 48 C.F.R.
2.101, consisting of “commercial computer software” and “commercial computer software documentation” as such terms are used in, respectively, 48 C.F.R.
12.212 and 48 C.F.R. 227.7202 & 252.227-7014(a)(1). Before any Protected Items are supplied to the U.S. Government, you will (i) inform the U.S. Government in writing that the Protected Items are and must be treated as commercial computer software and commercial computer software documentation developed at private expense;
(ii) inform the U.S. Government that the Protected Items are provided subject to the terms of the Agreement;
and (iii) mark the Protected Items as commercial computer software and commercial computer software documentation developed at private expense.
In no event will you permit the U.S. Government to acquire rights in Protected Items beyond those specified in 48 C.F.R.
52.227-19(b)(1)-(2) or 252.227-7013(c) except as expressly approved by NVIDIA in writing.
15.6. Notices.
Please direct your legal notices or other correspondence to legalnotices@nvidia.com with a copy mailed to NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, California 95051, United States of America, Attention: Legal Department.
If NVIDIA needs to contact you, you consent to receive the notices by email and agree that such notices will satisfy any legal communication requirements.
15.7. Severability.
If a court of competent jurisdiction rules that a provision of this Agreement is unenforceable, that provision will be deemed modified to the extent necessary to make it enforceable and the remainder of this Agreement will continue in full force and effect.
15.8. Amendment.
Any amendment to this Agreement must be in writing and signed by authorized representatives of both parties.
15.9. Construction.
The headings in the Agreement are included solely for convenience and are not intended to affect the meaning or interpretation of the Agreement.
As required by the context of the Agreement, the singular of a term includes the plural and vice versa.
15.10. Force Majeure.
Neither party will be liable during any period where an event or circumstance prevents or delays that party from performing its obligations under this Agreement and that event or circumstance: (i) is not within the reasonable control of that party and is not the result of that partys negligence, and (ii) cannot be overcome or avoided by that party using reasonably diligent efforts.
15.11. Entire Agreement.
Regarding the subject matter of this Agreement, the parties agree that (a) this Agreement constitutes the entire and exclusive agreement between the parties and supersedes all prior and contemporaneous communications and (b) any additional or different terms or conditions, whether contained in purchase orders, order acknowledgments, invoices or otherwise, will not be binding and are null and void.
(v. May 8, 2025)

View File

@ -1,4 +1,4 @@
Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
Redistribution and use in source and binary forms, with or without
@ -25,3 +25,10 @@ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Certain files within this repository are subject to separate licensing terms:
- The files located in the `python/CuTeDSL` directory are licensed under the
NVIDIA End User License Agreement (EULA). Please refer to
https://docs.nvidia.com/cutlass/media/docs/pythonDSL/license.html
for the full terms.

View File

@ -1,9 +1,30 @@
# Publications Using Cutlass
## 2025
- ["Comet: Fine-grained Computation-communication Overlapping for Mixture-of-Experts"](https://arxiv.org/abs/2502.19811). Shulai Zhang, Ningxin Zheng, Haibin Lin, Ziheng Jiang, Wenlei Bao, Chengquan Jiang, Qi Hou, Weihao Cui, Size Zheng, Li-Wen Chang, Quan Chen, Xin Liu. _arXiv_, February 2025.
- ["ParetoQ: Scaling Laws in Extremely Low-bit LLM Quantization"](https://arxiv.org/abs/2502.02631). Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy, Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong Tian, Bilge Soran, Raghuraman Krishnamoorthi, Tijmen Blankevoort, Vikas Chandra. _arXiv_, February 2025.
- ["Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light"](https://arxiv.org/abs/2504.16922). Ali Hassani, Fengzhe Zhou, Aditya Kane, Jiannan Huang, Chieh-Yun Chen, Min Shi, Steven Walton, Markus Hoehnerbach, Vijay Thakkar, Michael Isaev, Qinsheng Zhang, Bing Xu, Haicheng Wu, Wen-mei Hwu, Ming-Yu Liu, Humphrey Shi. _arXiv_, April 2025.
## 2024
- ["DeepSeek-V3 Technical Report"](https://arxiv.org/abs/2412.19437). DeepSeek-AI. _arXiv_, December 2024.
- ["ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference"](https://arxiv.org/abs/2410.21465). Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi, Beidi Chen. _arXiv_, October 2024.
- ["FLUX: Fast Software-based Communication Overlap On GPUs Through Kernel Fusion"](https://arxiv.org/abs/2406.06858). Li-Wen Chang, Wenlei Bao, Qi Hou, Chengquan Jiang, Ningxin Zheng, Yinmin Zhong, Xuanrun Zhang, Zuquan Song, Chengji Yao, Ziheng Jiang, Haibin Lin, Xin Jin, Xin Liu. _arXiv_, June 2024.
- ["EVT: Accelerating Deep Learning Training with Epilogue Visitor Tree"](https://dl.acm.org/doi/10.1145/3620666.3651369). Zhaodong Chen, Andrew Kerr, Richard Cai, Jack Kosaian, Haicheng Wu, Yufei Ding, and Yuan Xie. _Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems_, April 2024.
- ["Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level"](https://arxiv.org/abs/2403.04690). Ali Hassani, Wen-Mei Hwu, Humphrey Shi. _arXiv_, March 2024.
## 2023
- ["A Case Study in CUDA Kernel Fusion: Implementing FlashAttention-2 on NVIDIA Hopper Architecture using the CUTLASS Library"](https://arxiv.org/abs/2312.11918). Ganesh Bikshandi, Jay Shah. _arXiv_, December 2023.
- ["Benchmarking GPU Tensor Cores on General Matrix Multiplication Kernels through CUTLASS"](https://www.mdpi.com/2076-3417/13/24/13022). Xuanteng Huang, Xianwei Zhang, Panfei Yang, Nong Xiao. _Journal of Applied Sciences_, December 2023.
- ["A Speed Odyssey for Deployable Quantization of LLMs"](https://arxiv.org/abs/2311.09550). Qingyuan Li, Ran Meng, Yiduo Li, Bo Zhang, Liang Li, Yifan Lu, Xiangxiang Chu, Yerui Sun, Yuchen Xie. _arXiv_, November 2023.
@ -17,7 +38,9 @@
- ["Graphene: An IR for Optimized Tensor Computations on GPUs"](https://dl.acm.org/doi/pdf/10.1145/3582016.3582018). Hagedorn, Bastian, Bin Fan, Hanfeng Chen, Cris Cecka, Michael Garland, Vinod Grover. _Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems_, March 2023.
- ["Mixed Precision Post Training Quantization of Neural Networks with Sensitivity Guided Search"](https://arxiv.org/abs/2302.01382). Clemens JS Schaefer, Elfie Guo, Caitlin Stanton, Xiaofan Zhang, Tom Jablin, Navid Lambert-Shirzad, Jian Li, Chiachen Chou, Siddharth Joshi, Yu Emma Wang. _arXiv_, Feburary 2023.
- ["Mixed Precision Post Training Quantization of Neural Networks with Sensitivity Guided Search"](https://arxiv.org/abs/2302.01382). Clemens JS Schaefer, Elfie Guo, Caitlin Stanton, Xiaofan Zhang, Tom Jablin, Navid Lambert-Shirzad, Jian Li, Chiachen Chou, Siddharth Joshi, Yu Emma Wang. _arXiv_, February 2023.
- ["Dynamic N:M Fine-Grained Structured Sparse Attention Mechanism"](https://dl.acm.org/doi/abs/10.1145/3572848.3577500). Zhaodong Chen, Zheng Qu, Yuying Quan, Liu Liu, Yufei Ding, Yuan Xie. _Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming_, February 2023.
- ["Stream-K: Work-centric Parallel Decomposition for Dense Matrix-Matrix Multiplication on the GPU"](https://arxiv.org/abs/2301.03598). Muhammad Osama, Duane Merrill, Cris Cecka, Michael Garland, John D. Owens. _arXiv_, January 2023.
@ -47,3 +70,35 @@
"](https://arxiv.org/abs/2008.13006). Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang, Xiaoying Jia, Xipeng Li, Minyi Guo, Yuhao Zhu. _Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis_, November 2020.
- ["Strassen's Algorithm Reloaded on GPUs"](https://dl.acm.org/doi/10.1145/3372419). Jianyu Huang, Chenhan D. Yu, Robert A. van de Geijn. _ACM Transactions on Mathematical Software_, March 2020.
## Copyright
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

357
README.md
View File

@ -1,107 +1,173 @@
![ALT](/media/images/gemm-hierarchy-with-epilogue-no-labels.png "Complete CUDA GEMM decomposition")
![ALT](./media/images/gemm-hierarchy-with-epilogue-no-labels.png "Complete CUDA GEMM decomposition")
# Overview
# CUTLASS 3.4
# CUTLASS 4.3.0
_CUTLASS 3.4 - February 2024_
_CUTLASS 4.3.0 - Oct 2025_
CUTLASS is a collection of CUDA C++ template abstractions for implementing
high-performance matrix-matrix multiplication (GEMM) and related computations at all levels
and scales within CUDA. It incorporates strategies for hierarchical decomposition and
data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes
these "moving parts" into reusable, modular software components abstracted by C++ template
classes. Primitives for different levels of a conceptual parallelization hierarchy
can be specialized and tuned via custom tiling sizes, data types,
and other algorithmic policy. The resulting flexibility simplifies their use
as building blocks within custom kernels and applications.
CUTLASS is a collection of abstractions for implementing high-performance matrix-matrix multiplication (GEMM)
and related computations at all levels and scales within CUDA. It incorporates strategies for
hierarchical decomposition and data movement. CUTLASS decomposes these "moving parts" into reusable, modular
software components and abstractions.
To support a wide variety of applications, CUTLASS provides extensive support for
mixed-precision computations, providing specialized data-movement and
multiply-accumulate abstractions for half-precision floating
point (FP16), BFloat16 (BF16), Tensor Float 32 (TF32),
single-precision floating point (FP32),
[FP32 emulation via tensor core instruction](/examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm),
double-precision floating
point (FP64) types, integer data types (4b and 8b), and binary data types (1b).
CUTLASS demonstrates warp-synchronous matrix multiply operations
Primitives for different levels of a conceptual parallelization hierarchy can be specialized and tuned
via custom tiling sizes, data types, and other algorithmic policy. The resulting flexibility simplifies
their use as building blocks within custom kernels and applications.
CUTLASS has been providing CUDA C++ template abstractions for high-performance linear algebra since 2017 and
these abstractions provide extensive support for a wide range of computations including
mixed-precision computations, specialized data-movement (async copy) and
multiply-accumulate abstractions for FP64, FP32, TF32, FP16, BF16,
[FP32 emulation via tensor core instruction](https://github.com/NVIDIA/cutlass/tree/main/examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm),
8b floating point types (e5m2 and e4m3),
block scaled data types (NVIDIA NVFP4 and OCP standard MXFP4, MXFP6, MXFP8),
narrow integer types (4 and 8b signed and unsigned integers),
and binary 1b data types (where architectures allow for the
native support of such data types) across NVIDIA's Volta, Turing, Ampere, Ada, Hopper, and Blackwell architectures.
To this rich ecosystem of C++ based kernel programming abstractions, CUTLASS 4 adds CUTLASS DSLs. These are Python native interfaces for writing high-performance CUDA kernels based on core CUTLASS and CuTe concepts without any performance compromises. This allows for a much smoother learning curve, orders of magnitude faster compile times, native integration with DL frameworks without writing glue code, and much more intuitive metaprogramming that does not require deep C++ expertise.
Overall we envision CUTLASS DSLs as a family of domain-specific languages (DSLs). With the release of 4.0, we are releasing the first of these in CuTe DSL. This is a low level programming model that is fully consistent with CuTe C++ abstractions — exposing core concepts such as layouts, tensors, hardware atoms, and full control over the hardware thread and data hierarchy.
CuTe DSL demonstrates optimal matrix multiply and other linear algebra operations
targeting the programmable, high-throughput _Tensor Cores_ implemented by
NVIDIA's Volta, Turing, Ampere, and Hopper architectures.
NVIDIA's Ampere, Hopper, and Blackwell architectures.
See the [Quick Start Guide](/media/docs/quickstart.md) to get started quickly.
We believe it will become an indispensable tool for students, researchers, and performance
engineers alike — flattening the learning curve of GPU programming, rapidly prototyping kernel
designs, and bringing optimized solutions into production.
See the [functionality listing](/media/docs/functionality.md) for the list of operations
supported at each level of the execution model hierarchy.
CuTe DSL is currently in public beta and will graduate out of beta by end of summer 2025.
CUTLASS 3.0 introduced a new core library, CuTe, to describe and manipulate tensors of threads and data.
CuTe is a collection of C++ CUDA template abstractions for defining and operating on hierarchically multidimensional layouts of threads and data. CuTe provides `Layout` and `Tensor` objects that compactly package the type, shape, memory space, and layout of data, while performing the complicated indexing for the user. This lets programmers focus on the logical descriptions of their algorithms while CuTe does the mechanical bookkeeping for them. With these tools, we can quickly design, implement, and modify all dense linear algebra operations.
To get started quickly - please refer :
- [CUTLASS C++ Quick Start Guide](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/quickstart.html).
- [CuTe DSL Quick Start Guide](https://docs.nvidia.com/cutlass/latest/media/docs/pythonDSL/quick_start.html).
The core abstractions of CuTe are hierarchically multidimensional layouts which can be composed with data arrays to represent tensors. The representation of layouts is powerful enough to represent nearly everything we need to implement efficient dense linear algebra. Layouts can also be combined and manipulated via functional composition, on which we build a large set of common operations such as tiling and partitioning.
# What's New in CUTLASS 4.3
CUTLASS 3.0 and beyond adopts CuTe throughout the GEMM hierarchy in its templates. This greatly simplifies the design
and improves code composability and readability. More documentation specific to CuTe can be found in its [dedicated documentation directory](/media/docs/cute/00_quickstart.md).
## CuTe DSL
* Debuggability improvements:
- Supported source location tracking for DSL APIs
- Supported dumping PTX and CUBIN code
* More examples and notebooks to get started with CuTe DSL:
- [Kernel launch with Programmatic Dependent Launch](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/programmatic_dependent_launch.py)
- Improved performance of elementwise kernel (https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/ampere/elementwise_apply.py):
+ Generalize code to handle list of input tensors
+ Generalize TV layout computation to handle different data types
- Demonstrate the new Pipeline APIs in [Blackwell SM100 persistent dense GEMM with static scheduling](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/dense_gemm_persistent.py):
+ New Pipeline API `PipelineProducer` and `PipelineConsumer` to simplify code (no more explicit pipeline state management)
- Separate epilogue code for non-TMA and TMA implementation
+ Note that the updates simplifies the codes but existing APIs still work and are supported
- [Basic Blackwell SM100 GEMM with decent performance](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/tutorial_gemm/fp16_gemm_0.py)
+ Simple tutorial achieves 84% SOL performance with MNK 8K
- Reworked [elementwise add notebook](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/notebooks/elementwise_add.ipynb) with more details and detailed explanation about TV layout
+ Updated implementation to handle general data type and multiple inputs
+ Updated explanation for TV layout in simpler language
+ Added visualization of TV Layout with 3rd party utils
- [Benchmark and autotune demonstration](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/notebooks/benchmark_autotune.ipynb)
* More examples of authorizing peak-performance kernels:
- [Blackwell SM100 mixed-input GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/mixed_input_gemm.py)
- [Blackwell SM100 persistent blockwise dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/blockwise_gemm/blockwise_gemm.py)
- [Blackwell SM100 persistent blockwise contiguous grouped dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/blockwise_gemm/contiguous_grouped_gemm.py)
- [Blackwell SM100 persistent blockwise masked grouped dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/blockwise_gemm/masked_grouped_gemm.py)
- [Blackwell SM100 fmha bwd](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/fmha_bwd.py)
- [Blackwell SM100 mla](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/mla.py)
- [Hopper SM90 persistent dense GEMM with static scheduling](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/hopper/dense_gemm_persistent.py)
- [Blackwell GeForce batched dense GEMM](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell_geforce/dense_gemm.py)
- [Ampere HSTU Attention](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/ampere/hstu_attention.py)
* API updates:
- Please refer to [DSL API changelog](https://docs.nvidia.com/cutlass/latest/media/docs/pythonDSL/cute_dsl_api/changelog.html) for details
* Bug fixings and improvements
- Add mma_tiler_n=64 and mma_tiler_n=192 support in [Blackwell SM100 persistent dense blockscaled GEMM with static scheduling](https://github.com/NVIDIA/cutlass/tree/main/examples/python/CuTeDSL/blackwell/dense_blockscaled_gemm_persistent.py).
- Fixed ``TensorSSA.reduce`` to support static value as initial value
- Updated docstring for following APIs to be more concise and easier to understand:
- ``make_layout_tv``
- ``is_static``
- ``PipelineAsync``
- ``SmemAllocator``
- Fixed documentation for ``pipeline``, ``utils`` and ``cute.math``
In addition to GEMMs, CUTLASS implements high-performance convolution via the implicit GEMM algorithm. Implicit GEMM is the formulation of a convolution operation as a GEMM thereby taking advantage of CUTLASS's modular GEMM pipeline. This allows CUTLASS to build convolutions by reusing highly-optimized GEMM components.
## CUTLASS C++
* Further enhance Blackwell SM100 Attention kernels in [example 77](https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha/).
- Add softmax skip correction.
- Fix a shared memory allocation bug where it needs to opt in maximum dynamics shared memory explicitly once it exceeds 48KB.
- Fix a dead hang issue caused by early return warp.
* Add Ragged Contiguous Grouped gemm kernel in [example 92](https://github.com/NVIDIA/cutlass/tree/main/examples/92_blackwell_moe_gemm/).
- This kernel uses a TMA 3D load to load the weights matrix and use the tensormap update method to load activations.
* Optimize group gemm kernels by enabling async TMA desc update.
* Support Blackwell SM100 convolution stream-K kernel.
- Unit tests: [fprop_streamK](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/fprop/sm100_conv3d_fprop_implicit_gemm_f16_f16_f16_tensorop_f16_streamk.cu), [dgrad_streamK](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/dgrad/sm100_conv3d_dgrad_implicit_gemm_f16_f16_f16_tensorop_f16_streamk.cu), [wgrad_streamK](https://github.com/NVIDIA/cutlass/tree/main/test/unit/conv/device_3x/wgrad/sm100_conv2d_wgrad_implicit_gemm_f16_f16_f16_tensorop_f16_streamk.cu).
* Add profiler support for Blackwell SM100 and SM120 blockscaled sparse kernels.
* Fix some kernel issues:
- Fix a race check issue of Blackwell SM103 kernels by adding missing elect one for prefetch barrier initialization.
- Allow user to directly specify the number of stages for Hopper sm90 mixed input gemm.
- Remove warnings caused by cuda vector type alignment setting in CUDA 13.
- Remove problematic `cutlass::int8_t` and replace it with `int8_t`.
* Fix some profiler issues:
- Add some missing reference kernels.
- Add calculation of scale factor A and B in function `bytes_with_problem_shape` of block scaled profiler.
# What's New in CUTLASS 3.4
Note: CUTLASS 4.x builds are known to be down on Windows platforms for all CUDA toolkits.
CUTLASS team is working on a fix.
CUTLASS 3.4.1 is an update to CUTLASS adding:
- Statically available [CUTLASS Version macros](/include/cutlass/version.h) that allow for handling API changes between CUTLASS releases on the users' side.
- Improvements for Hopper [Group-GEMM](/examples/57_hopper_grouped_gemm) and [Pointer-Array Batched GEMM](/examples/56_hopper_ptr_array_batched_gemm).
- Updates and bugfixes from the community (thanks!).
CUTLASS 3.4.0 is an update to CUTLASS adding:
- Improved [Mixed-input Hopper GEMMs](/examples/55_hopper_mixed_dtype_gemm) supporting {16-bit, 8-bit} x {8-bit, 4-bit} input types with fast numerical converters and group scaling factors tuned for optimal performance on Hopper H100.
- Beta release of [Pointer-Array Batched GEMMs](/examples/56_hopper_ptr_array_batched_gemm) utilizing TMA and Hopper H100 tensor cores now available. (Requires CUDA 12.3 or above)
- Beta release of [Group-GEMM](/examples/57_hopper_grouped_gemm) - commonly used in optimization of Mixture-Of-Expert models, is now available on Hopper GPUs taking advantage of TMA and Hopper H100 tensor cores. (Requires CUDA 12.3 or above)
- [Ampere Sparse GEMM](/examples/15_ampere_sparse_tensorop_gemm/ampere_sparse_tensorop_gemm_with_visitor.cu) supports Epilogue Visitor Tree (EVT) now.
- Improvements to NamedBarriers including details of [ReservedNamedBarriers](/include/cutlass/arch/barrier.h) used within the CUTLASS library.
- Improved [CuTe documentation](/media/docs/cute/) including improved clarity and depth of [Quickstart](/media/docs/cute/00_quickstart.md), [CuTe Layout](/media/docs/cute/01_layout.md), and [CuTe Layout Algebra](/media/docs/cute/02_layout_algebra.md). Associated code comments, post-conditions, and details in [CuTe Core Unit Tests](/test/unit/cute/core/) also improved.
Minimum requirements:
- Architecture: Volta
- Compiler: Must support at least C++17
- CUDA Toolkit version: 11.4
Starting from CUTLASS 3.0, CUTLASS removed support for the following:
- Maxwell and Pascal GPU architectures
- Ubuntu 16.04
- CUDA 10.2
- C++ language versions less than 17.
**See the [CHANGELOG](CHANGELOG.md) for a detailed listing of releases and updates.**
**See the [CHANGELOG](https://docs.nvidia.com/cutlass/latest/CHANGELOG.html) for details of all past releases and updates.**
# Performance
<p align="center"><img src=media/images/cutlass-3.1-gemm-peak-performance.png></p>
CUTLASS primitives are very efficient. When used to construct device-wide GEMM kernels,
they exhibit peak performance comparable to cuBLAS for scalar GEMM
computations. The above figure shows CUTLASS performance relative to cuBLAS
for large matrix dimensions on an [NVIDIA H100](https://www.nvidia.com/en-us/data-center/h100/) (NVIDIA Hopper architecture),
an [NVIDIA L40](https://www.nvidia.com/en-us/data-center/l40/) (NVIDIA Ada architecture),
an [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/) (NVIDIA Ampere architecture),
and an [NVIDIA A40](https://www.nvidia.com/en-us/data-center/a40/) (NVIDIA Ampere architecture).
CUTLASS 3.0 was compiled with the [CUDA 12.0 Toolkit](https://developer.nvidia.com/cuda-downloads).
Tensor Core operations are implemented using CUDA's
they exhibit nearly optimal utilization of peak theoretical throughput. The figure below
shows CUTLASS 3.8's performance as a % of theoretical peak utilization
on various input and output data types when run on NVIDIA Blackwell SM100 architecture GPU.
![ALT](media/images/cutlass-3.8-blackwell-gemm-peak-performance.svg "")
The two figures below show the continual CUTLASS performance improvements
on an [NVIDIA H100](https://www.nvidia.com/en-us/data-center/h100/) (NVIDIA Hopper architecture) since
CUTLASS 3.1.
CUTLASS 3.5.1 was compiled with the [CUDA 12.5u1 Toolkit](https://developer.nvidia.com/cuda-downloads).
Tensor Core operations are implemented using CUDA's
[mma](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma) and
[wgmma](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-instructions) instructions.
<p align="center"><img src=media/images/cutlass-2.9-implicit-gemm-performance.png></p>
![ALT](media/images/cutlass-3.5.1-gemm-peak-performance.png "")
![ALT](media/images/cutlass-3.5.1-gemm-peak-performance-fp8.png "")
When using CUTLASS building blocks to construct device-wide implicit gemm (Fprop, Dgrad, and Wgrad)
kernels, CUTLASS performance is also comparable to cuDNN when running Resnet-50 layers on an [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/)
as shown in the above figure. Tensor Core operations are implemented using CUDA's
[mma instruction](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma).
# CuTe
CUTLASS 3.0 introduced a new core library, CuTe, to describe and manipulate tensors of threads and data.
CuTe is a collection of C++ CUDA template abstractions for
defining and operating on hierarchically multidimensional layouts of threads and data.
CuTe provides `Layout` and `Tensor` objects that compactly package the type,
shape, memory space, and layout of data, while performing the complicated indexing for the user.
This lets programmers focus on the logical descriptions of their algorithms while
CuTe does the mechanical bookkeeping for them. With these tools, we can quickly design,
implement, and modify all dense linear algebra operations.
The core abstractions of CuTe are hierarchically multidimensional layouts
which can be composed with data arrays to represent tensors.
The representation of layouts is powerful enough to represent nearly
everything we need to implement efficient dense linear algebra.
Layouts can also be combined and manipulated via functional composition, on which we build a large set of common operations such as tiling and partitioning.
CUTLASS 3.0 and beyond adopts CuTe throughout the GEMM hierarchy in its templates.
This greatly simplifies the design and improves code composability and readability.
More documentation specific to CuTe can be found in its
[dedicated documentation directory](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/cute/00_quickstart.html).
# Compatibility
CUTLASS requires a C++17 host compiler and
performs best when built with the [**CUDA 12.3.2 Toolkit**](https://developer.nvidia.com/cuda-downloads).
It is also compatible with CUDA 11.4, CUDA 11.5, CUDA 11.6, CUDA 11.7, CUDA 11.8, CUDA 12.0, CUDA 12.1, CUDA 12.2.2, CUDA 12.3.1 and CUDA 12.3.2.
Minimum requirements:
- Architecture: Volta (compute capability 7.0)
- Compiler: Must support at least C++17
- CUDA Toolkit version: 11.4
CUTLASS requires a C++17 host compiler and
performs best when built with the [**CUDA 12.8 Toolkit**](https://developer.nvidia.com/cuda-downloads).
It is also compatible with CUDA 11.4, CUDA 11.5, CUDA 11.6, CUDA 11.7, CUDA 11.8, and all other CUDA 12.x versions.
## Operating Systems
We have tested the following environments.
|**Operating System** | **Compiler** |
@ -109,71 +175,104 @@ We have tested the following environments.
| Ubuntu 18.04 | GCC 7.5.0 |
| Ubuntu 20.04 | GCC 10.3.0 |
| Ubuntu 22.04 | GCC 11.2.0 |
| Ubuntu 22.04 | Clang 10.0.0 |
| Ubuntu 22.04 | Clang 14.0.6 |
| Ubuntu 22.04 | Clang 17.0.6 |
| Windows 10.0 | Visual Studio 2019 v16.11.27 |
Note: GCC 8.5.0 has known regressions regarding fold expressions and overloaded operators. Using GCC 7.5.0 or (preferred) GCC >= 9 is recommended.
Note: CUTLASS 3.x builds are known to be down on Windows platforms for all CUDA toolkits.
CUTLASS team is working on a fix.
## Hardware
CUTLASS runs successfully on the following NVIDIA GPUs, and it is expected to be efficient on Volta, Turing, Ampere, Ada, and Hopper architecture based NVIDIA GPUs.
|**GPU**|**CUDA Compute Capability**|**Minimum CUDA Toolkit Required by CUTLASS-3**|
|---|---|---|
|NVIDIA V100 Tensor Core GPU |7.0|11.4|
|NVIDIA TitanV |7.0|11.4|
|NVIDIA GeForce RTX 2080 TI, 2080, 2070 |7.5|11.4|
|NVIDIA GeForce RTX 20x0 series |7.5|11.4|
|NVIDIA T4 |7.5|11.4|
|NVIDIA A100 Tensor Core GPU |8.0|11.4|
|NVIDIA A10 |8.6|11.4|
|NVIDIA GeForce RTX 3090 |8.6|11.4|
|NVIDIA GeForce RTX 4090 |8.9|11.8|
|NVIDIA GeForce RTX 30x0 series |8.6|11.4|
|NVIDIA GeForce RTX 40x0 series |8.9|11.8|
|NVIDIA L40 |8.9|11.8|
|NVIDIA H100 Tensor Core GPU |9.0|11.8|
|NVIDIA H200 Tensor Core GPU |9.0|11.8|
|NVIDIA B200 Tensor Core GPU |10.0|12.8|
|NVIDIA B300 Tensor Core GPU |10.3|13.0|
|NVIDIA DRIVE Thor |11.0|13.0|
|NVIDIA GeForce RTX 50x0 series |12.0|12.8|
|NVIDIA DGX Spark |12.1|13.0|
## Target Architecture
In general, PTX code generated for one target architecture can be run on future architectures (i.e., it is forward compatible). However, CUDA 12.0 introduced the concept of "architecture-accelerated features" whose PTX does not have forward compatibility guarantees. Several Hopper PTX instructions fall under this category of architecture-accelerated features, and thus require a `sm_90a` target architecture (note the "a" appended). For more details on this and other architecture-accelerated instructions, please refer to the [CUDA Documentation](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#feature-availability).
In general, PTX code generated for one target architecture can be run on future architectures
(i.e., it is forward compatible).
However, CUDA 12.0 introduced the concept of "architecture-accelerated features" whose
PTX does not have forward compatibility guarantees.
Several Hopper and Blackwell PTX instructions fall under this category of
architecture-accelerated features, and thus require a `sm_90a` or `sm100a` target architecture
(note the "a" appended). For more details on this and other architecture-accelerated instructions,
please refer to the [CUDA Documentation](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#feature-availability).
The target architecture information is passed on to CUTLASS via the cmake flag `CUTLASS_NVCC_ARCHS`. In order to maximize performance on Hopper GH100, users are required to build CUTLASS with `90a` as the target architecture. If a user accidentally builds a kernel which uses SM90a features (e.g. Hopper Tensor Core Instructions), using the SM90 target (note the lack of "a"), with either CTK 12 or 11.8, the kernel is expected to fail with a runtime error.
The target architecture information is passed on to CUTLASS via the cmake flag
`CUTLASS_NVCC_ARCHS`. In order to maximize performance on Hopper GH100,
users are required to build CUTLASS with `90a` as the target architecture.
If a user accidentally builds a kernel which uses SM90a features
(e.g. Hopper Tensor Core Instructions), using the SM90 target
(note the lack of "a"), with either CUDA Toolkit 12 or 11.8,
the kernel is expected to fail with a runtime error.
```
cmake .. -DCUTLASS_NVCC_ARCHS="90a"
cmake .. -DCUTLASS_NVCC_ARCHS="90a"
```
Or
```
cmake .. -DCUTLASS_NVCC_ARCHS="100a"
```
Please refer to the [functionality documentation](media/docs/functionality.md) for details on which kernels require which target architectures.
Note: The NVIDIA Blackwell SM100 architecture used in the datacenter
products has a different compute capability than the one underpinning
NVIDIA Blackwell GeForce RTX 50 series GPUs (SM120). As a result, kernels
compiled for Blackwell SM100 architecture with arch conditional features
(using `sm100a`) are not compatible with RTX 50 series GPUs.
Please refer to the [functionality documentation](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/functionality.html)
for details on which kernels require which target architectures.
# Documentation
CUTLASS is described in the following documents and the accompanying
[Doxygen documentation](https://nvidia.github.io/cutlass).
- [Quick Start Guide](/media/docs/quickstart.md) - build and run CUTLASS
- [Functionality](/media/docs/functionality.md) - summarizes functionality available in CUTLASS
- [Efficient GEMM in CUDA](media/docs/efficient_gemm.md) - describes how GEMM kernels may be implemented efficiently in CUDA
- [CUTLASS 3.x Design](media/docs/cutlass_3x_design.md) - describes the CUTLASS 3.x design, its benefits, and how CuTe enables us to write much more composable components
- [GEMM API 3.x](media/docs/gemm_api_3x.md) - describes the CUTLASS 3.x GEMM model and C++ template concepts
- [GEMM API 2.x](media/docs/gemm_api.md) - describes the CUTLASS 2.x GEMM model and C++ template concepts
- [Implicit GEMM Convolution](media/docs/implicit_gemm_convolution.md) - describes 2-D and 3-D convolution in CUTLASS
- [Code Organization](media/docs/code_organization.md) - describes the organization and contents of the CUTLASS project
- [Terminology](media/docs/terminology.md) - describes terms used in the code
- [Programming Guidelines](media/docs/programming_guidelines.md) - guidelines for writing efficient modern CUDA C++
- [Fundamental types](media/docs/fundamental_types.md) - describes basic C++ classes used in CUTLASS to represent numeric quantities and arrays
- [Layouts](media/docs/layout.md) - describes layouts of matrices and tensors in memory
- [Tile Iterators](media/docs/tile_iterator_concept.md) - describes C++ concepts for iterating over tiles of matrices in memory
- [CUTLASS Profiler](media/docs/profiler.md) - command-line driven profiling application
- [CUTLASS Utilities](media/docs/utilities.md) - additional templates used to facilate rapid development
- [Quick Start Guide](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/quickstart.html) - basics of building and running CUTLASS
- [Functionality](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/functionality.html) - summarizes functionality available in CUTLASS
- [Efficient GEMM in CUDA](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/efficient_gemm.html) - describes how GEMM kernels may be implemented efficiently in CUDA
- [CUTLASS 3.x Design](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/cutlass_3x_design.html) - describes the CUTLASS 3.x design, its benefits, and how CuTe enables us to write much more composable components
- [GEMM API 3.x](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/gemm_api_3x.html) - describes the CUTLASS 3.x GEMM model and C++ template concepts
- [GEMM API 2.x](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/gemm_api.html) - describes the CUTLASS 2.x GEMM model and C++ template concepts
- [Implicit GEMM Convolution](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/implicit_gemm_convolution.html) - describes 2-D and 3-D convolution in CUTLASS
- [Code Organization](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/code_organization.html) - describes the organization and contents of the CUTLASS project
- [Terminology](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/terminology.html) - describes terms used in the code
- [Programming Guidelines](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/programming_guidelines.html) - guidelines for writing efficient modern CUDA C++
- [Fundamental types](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/fundamental_types.html) - describes basic C++ classes used in CUTLASS to represent numeric quantities and arrays
- [Layouts](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/layout.html) - describes layouts of matrices and tensors in memory
- [Tile Iterators](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/tile_iterator_concept.html) - describes C++ concepts for iterating over tiles of matrices in memory
- [CUTLASS Profiler](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/profiler.html) - command-line driven profiling application
- [CUTLASS Utilities](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/utilities.html) - additional templates used to facilitate rapid development
- [Dependent kernel launch](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/dependent_kernel_launch.html) - describes a new feature in Hopper which allows overlapping dependent
kernels in the same stream, and how it is used in CUTLASS.
# Resources
We have also described the structure of an efficient GEMM in our talk at the
[GPU Technology Conference 2018](http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf).
- [CUTLASS: Software Primitives for Dense Linear Algebra at All Levels and Scales within CUDA](https://www.nvidia.com/en-us/on-demand/session/gtcsiliconvalley2018-s8854/)
- [Developing CUDA Kernels to Push Tensor Cores to the Absolute Limit on NVIDIA A100](https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s21745/)
- [Accelerating Convolution with Tensor Cores in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31883/)
- [Accelerating Backward Data Gradient by Increasing Tensor Core Utilization in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41996/)
- [CUTLASS: Python API, Enhancements, and NVIDIA Hopper](https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41131/)
- [CUTLASS: Software Primitives for Dense Linear Algebra at All Levels and Scales within CUDA](https://www.nvidia.com/en-us/on-demand/session/gtcsiliconvalley2018-s8854/)
- [Developing CUDA Kernels to Push Tensor Cores to the Absolute Limit on NVIDIA A100](https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s21745/)
- [Accelerating Convolution with Tensor Cores in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31883/)
- [Accelerating Backward Data Gradient by Increasing Tensor Core Utilization in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41996/)
- [CUTLASS: Python API, Enhancements, and NVIDIA Hopper](https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41131/)
# Building CUTLASS
@ -182,7 +281,7 @@ projects. Client applications should target CUTLASS's `include/` directory in th
paths.
CUTLASS unit tests, examples, and utilities can be build with CMake.
The minimum version of CMake is given in the [Quickstart guide](media/docs/quickstart.md).
The minimum version of CMake is given in the [Quickstart guide](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/quickstart.html).
Make sure the `CUDACXX` environment variable points to NVCC in the CUDA Toolkit installed
on your system.
@ -222,12 +321,12 @@ All tests should pass on supported platforms, though the exact number of tests m
# Project Structure
CUTLASS is arranged as a header-only library along with Utilities, Tools, Examples, and unit tests.
[Doxygen documentation](https://nvidia.github.io/cutlass) provides a complete list of files, classes,
CUTLASS is arranged as a header-only library along with Utilities, Tools, Examples, and unit tests.
[Doxygen documentation](https://nvidia.github.io/cutlass) provides a complete list of files, classes,
and template concepts defined in the CUTLASS project.
A detailed explanation of the source code organization may be found in the
[CUTLASS documentation](media/docs/code_organization.md), but several main components are summarized below.
A detailed explanation of the source code organization may be found in the
[CUTLASS documentation](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/code_organization.html), but several main components are summarized below.
## CUTLASS Template Library
@ -251,7 +350,7 @@ include/ # client applications should target this directory
reduction/ # bandwidth-limited reduction kernels that do not fit the "gemm" model
thread/ # simt code that can be performed within a CUDA thread
transform/ # code specialized for layout, type, and domain transformations
* # core vocabulary types, containers, and basic numeric operations
@ -276,7 +375,7 @@ include/ # client applications should target this directory
### CUTLASS SDK Examples
[CUTLASS SDK examples](/examples) apply CUTLASS templates to implement basic computations.
[CUTLASS SDK examples](https://github.com/NVIDIA/cutlass/tree/main/examples) apply CUTLASS templates to implement basic computations.
### Tools
@ -289,9 +388,9 @@ tools/
profiler/ # CUTLASS Profiler - command-line utility for executing operations in the
# CUTLASS Library
util/ # CUTLASS Utilities - contains numerous helper classes for
include/ # manging tensors in device memory, reference
include/ # managing tensors in device memory, reference
cutlass/ # implementations for GEMM, random initialization
util/ # of tensors, and I/O.
```
@ -301,7 +400,7 @@ tools/
The `test/unit/` directory consist of unit tests implemented with Google Test that demonstrate
basic usage of Core API components and complete tests of the CUTLASS GEMM computations.
Instructions for building and running the Unit tests are described in the [Quickstart guide](media/docs/quickstart.md).
Instructions for building and running the Unit tests are described in the [Quickstart guide](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/quickstart.html).
# Performance Profiling
@ -315,7 +414,7 @@ $ make cutlass_profiler -j16
By default, only one tile size is instantiated for each data type, math instruction, and layout.
To instantiate all, set the following environment variable when running CMake from an empty `build/` directory.
Beware, this results in *tens of thousands* of kernels and long build times.
Beware, this results in *tens of thousands* of kernels and long build times.
This would also result in a large binary size and on some platforms linker to fail on building the library.
Therefore, it's highly recommended to generate only a subset of kernels as demonstrated in the sub-section below.
```bash
@ -326,13 +425,13 @@ $ make cutlass_profiler -j16
## Building a subset of GEMM and Convolution kernels (_reduced_ build times)
To compile strictly one kernel or a small set of kernels, a comma-delimited list of kernel names with
To compile strictly one kernel or a small set of kernels, a comma-delimited list of kernel names with
wildcard characters may be used to reduce the set of kernels. The following examples show building exactly one
or a subset of kernels for NVIDIA Ampere and Turing architecture:
### Building a subset Tensor Core GEMM kernels
To compile a subset of Tensor Core GEMM kernels with FP32 accumulation and FP16 input targeting NVIDIA Ampere and Turing architecture,
To compile a subset of Tensor Core GEMM kernels with FP32 accumulation and FP16 input targeting NVIDIA Ampere and Turing architecture,
use the below cmake command line:
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*gemm_f16_*_nt_align8
@ -421,7 +520,7 @@ $ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=3456 --n=4096 --k=4096
### Building a subset of Tensor Core Convolution kernels
To compile a subset of Tensor core convolution kernels implementing forward propagation (fprop) with FP32 accumulation
To compile a subset of Tensor core convolution kernels implementing forward propagation (fprop) with FP32 accumulation
and FP16 input targeting NVIDIA Ampere and Turing architecture, use the below cmake command line:
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*fprop_optimized_f16
@ -469,7 +568,7 @@ reference_device: Passed
### Building one Convolution CUDA kernel
To compile and run one CUDA Core convolution kernel implementing forward propagation (fprop) with F32 accumulation
To compile and run one CUDA Core convolution kernel implementing forward propagation (fprop) with F32 accumulation
and FP32 input targeting NVIDIA Ampere and Turing architecture, use the below cmake command line:
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_simt_sfprop_optimized_128x128_8x2_nhwc
@ -517,14 +616,14 @@ reference_device: Passed
## More Details on Compiling CUTLASS Kernels and CUTLASS Profiler
- Please follow the links for more CMake examples on selectively compiling CUTLASS kernels:
- [GEMM CMake Examples](media/docs/quickstart.md#gemm-cmake-examples)
- [Implicit GEMM convolution CMake Examples](media/docs/quickstart.md#convolution-cmake-examples)
- [Further details about the CUTLASS Profiler are described here.](media/docs/profiler.md)
- [GEMM CMake Examples](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/quickstart.html#gemm-cmake-examples)
- [Implicit GEMM convolution CMake Examples](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/quickstart.html#convolution-cmake-examples)
- [Further details about the CUTLASS Profiler are described here.](https://docs.nvidia.com/cutlass/latest/media/docs/cpp/profiler.html)
# About
CUTLASS is released by NVIDIA Corporation as Open Source software under the
CUTLASS is released by NVIDIA Corporation as Open Source software under the
[3-clause "New" BSD license](LICENSE.txt).
# Contributors
@ -533,7 +632,7 @@ The official list of CUTLASS developers and contributors is available here: [CON
# Copyright
Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```

View File

@ -1,4 +1,4 @@
# Copyright (c) 2019 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2019 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
@ -50,5 +50,3 @@ if (DEFINED ENV{CUTLASS_TEST_EXECUTION_ENVIRONMENT})
else()
set(_CUTLASS_TEST_EXECUTION_ENVIRONMENT @CUTLASS_TEST_EXECUTION_ENVIRONMENT@)
endif()
@_INLINE_PER_TEST_CODE@

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
@ -30,14 +30,14 @@ if (CUTLASS_USE_EXTENDED_ADD_TEST_FORMAT)
# The longform/extended format allows generator expressions to be
# expanded property and is useful in contexts where the files need
# to be immediately included into being-processed cmake code.
add_test(NAME @TEST_NAME@ COMMAND ${_CUTLASS_TEST_EXECUTION_ENVIRONMENT} "${TEST_EXE_PATH}" @TEST_COMMAND_OPTIONS@)
add_test(NAME @TESTCASE_NAME@ COMMAND ${_CUTLASS_TEST_EXECUTION_ENVIRONMENT} "${TEST_EXE_PATH}" @TEST_COMMAND_OPTIONS@)
else()
add_test(@TEST_NAME@ ${_CUTLASS_TEST_EXECUTION_ENVIRONMENT} "${TEST_EXE_PATH}" @TEST_COMMAND_OPTIONS@)
add_test(@TESTCASE_NAME@ ${_CUTLASS_TEST_EXECUTION_ENVIRONMENT} "${TEST_EXE_PATH}" @TEST_COMMAND_OPTIONS@)
endif()
if (TEST_EXE_WORKING_DIRECTORY)
set_tests_properties(@TEST_NAME@ PROPERTIES WORKING_DIRECTORY "${TEST_EXE_WORKING_DIRECTORY}")
set_tests_properties(@TESTCASE_NAME@ PROPERTIES WORKING_DIRECTORY "${TEST_EXE_WORKING_DIRECTORY}")
endif()
set_tests_properties(@TEST_NAME@ PROPERTIES DISABLED @__DISABLE_TESTS@)
set_tests_properties(@TESTCASE_NAME@ PROPERTIES DISABLED @__DISABLE_TESTS@)

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
@ -34,10 +34,11 @@ if(GOOGLETEST_DIR)
set(FETCHCONTENT_SOURCE_DIR_GOOGLETEST ${GOOGLETEST_DIR} CACHE STRING "GoogleTest source directory override")
endif()
set(GTEST_REPOSITORY "https://github.com/google/googletest.git" CACHE STRING "GoogleTest repo to fetch")
FetchContent_Declare(
googletest
GIT_REPOSITORY https://github.com/google/googletest.git
GIT_TAG v1.13.0
GIT_REPOSITORY ${GTEST_REPOSITORY}
GIT_TAG v1.14.0
)
FetchContent_GetProperties(googletest)

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

98
customConfigs.cmake Normal file
View File

@ -0,0 +1,98 @@
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Profiler based functional testing
set(CUTLASS_BUILD_FOR_PROFILER_REGRESSIONS OFF CACHE BOOL "Utilize profiler-based functional regressions")
set(CUTLASS_PROFILER_REGRESSION_TEST_LEVEL ${CUTLASS_TEST_LEVEL} CACHE STRING "Profiler functional regression test level")
find_package(Python3 3.5 COMPONENTS Interpreter REQUIRED)
function(cutlass_generate_kernel_filter_and_testlist_files)
set(options)
set(oneValueArgs TEST_SET_NAME)
set(multiValueArgs)
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${CUTLASS_LIBRARY_PACKAGE_DIR}
${Python3_EXECUTABLE} ${CUTLASS_SOURCE_DIR}/python/cutlass_library/generator.py
--generator-target=${__TEST_SET_NAME}
--cuda-version=${CUDA_VERSION_MAJOR}.${CUDA_VERSION_MINOR}
--architectures=${CUTLASS_NVCC_ARCHS}
--kernels=\*
--disable-cutlass-package-imports
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
RESULT_VARIABLE cutlass_FILTER_GENERATION_RESULT
OUTPUT_VARIABLE cutlass_FILTER_GENERATION_OUTPUT
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/library_filter_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/library_filter_generation.log
)
if(NOT cutlass_FILTER_GENERATION_RESULT EQUAL 0)
message(FATAL_ERROR "Error generating kernel filters and testlist files. See ${CMAKE_CURRENT_BINARY_DIR}/library_filter_generation.log")
endif()
endfunction()
if(CUTLASS_BUILD_FOR_PROFILER_REGRESSIONS)
set(PROFILER_ARCH_LIST 100a 100f 103a 120a 120f 121a)
if (CUDA_VERSION VERSION_LESS 13.0)
list(APPEND PROFILER_ARCH_LIST 101a 101f)
else()
list(APPEND PROFILER_ARCH_LIST 110a 110f)
endif()
foreach(ARCH IN LISTS CUTLASS_NVCC_ARCHS)
if(NOT (ARCH IN_LIST PROFILER_ARCH_LIST))
message(FATAL_ERROR "Only SM${PROFILER_ARCH_LIST} compute capabilities are supported with profiler-based unit tests")
endif()
endforeach()
if(CUTLASS_PROFILER_REGRESSION_TEST_LEVEL EQUAL 0)
message(STATUS "Building for L0 profiler-based functional regressions")
cutlass_generate_kernel_filter_and_testlist_files(TEST_SET_NAME kernel_testlist_l0)
set(KERNEL_FILTER_FILE ${CMAKE_CURRENT_BINARY_DIR}/FK_functional_L0_testlist_SM${CUTLASS_NVCC_ARCHS}_cutlass3x_gemm_kernel_filter.list CACHE STRING "Kernel set")
set(CUTLASS_PROFILER_REGRESSION_LIST_FILE ${CMAKE_CURRENT_BINARY_DIR}/FK_functional_L0_testlist_SM${CUTLASS_NVCC_ARCHS}_cutlass3x_gemm.csv CACHE STRING "Regression set")
elseif (CUTLASS_PROFILER_REGRESSION_TEST_LEVEL EQUAL 1)
message(STATUS "Building for L1 profiler-based functional regressions")
cutlass_generate_kernel_filter_and_testlist_files(TEST_SET_NAME kernel_testlist_l1)
set(KERNEL_FILTER_FILE ${CMAKE_CURRENT_BINARY_DIR}/FK_functional_L1_testlist_SM${CUTLASS_NVCC_ARCHS}_cutlass3x_gemm_kernel_filter.list CACHE STRING "Kernel set")
set(CUTLASS_PROFILER_REGRESSION_LIST_FILE ${CMAKE_CURRENT_BINARY_DIR}/FK_functional_L1_testlist_SM${CUTLASS_NVCC_ARCHS}_cutlass3x_gemm.csv CACHE STRING "Regression set")
endif()
endif()

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -45,7 +45,7 @@
cutlass::half_t
This is a numeric type implementing IEEE half-precision quantities. It is functional in host
and device code. In host-side code, CUTLASS_ENABLE_F16C optionally enables harware-accelerated
and device code. In host-side code, CUTLASS_ENABLE_F16C optionally enables hardware-accelerated
numeric conversion on x86-64 CPUs support F16C extensions. In device code, all available
hardware is used to implement conversion and numeric operations.

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -260,7 +260,7 @@ private:
if (options.vectorize <= 2) return std::make_pair(false, -1);
// Boundary check.
if (i > elements.size() || (i + options.vectorize - 1) > elements.size())
if (i > int(elements.size()) || (i + options.vectorize - 1) > int(elements.size()))
return std::make_pair(false, -1);
// Check if either all elements are valid or invalid.

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -34,7 +34,7 @@
addressable memory, and then store it back into addressable memory.
TileIterator is a core concept in CUTLASS that enables efficient loading and storing of data to
and from addressable memory. The PredicateTileIterator accepts a ThreadMap type, which defines
and from addressable memory. The PredicatedTileIterator accepts a ThreadMap type, which defines
the mapping of threads to a "tile" in memory. This separation of concerns enables user-defined
thread mappings to be specified.
@ -94,7 +94,7 @@ __global__ void copy(
typename Iterator::Fragment fragment;
for(int i = 0; i < fragment.size(); ++i) {
for(size_t i = 0; i < fragment.size(); ++i) {
fragment[i] = 0;
}
@ -124,7 +124,7 @@ __global__ void copy(
cudaError_t TestTileIterator(int M, int K) {
// For this example, we chose a <64, 4> tile shape. The PredicateTileIterator expects
// For this example, we chose a <64, 4> tile shape. The PredicatedTileIterator expects
// PitchLinearShape and PitchLinear layout.
using Shape = cutlass::layout::PitchLinearShape<64, 4>;
using Layout = cutlass::layout::PitchLinear;
@ -136,7 +136,7 @@ cudaError_t TestTileIterator(int M, int K) {
// dimension then along the strided dimension.
using ThreadMap = cutlass::transform::PitchLinearStripminedThreadMap<Shape, kThreads>;
// Define the PredicateTileIterator, using TileShape, Element, Layout, and ThreadMap types
// Define the PredicatedTileIterator, using TileShape, Element, Layout, and ThreadMap types
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator<
Shape, Element, Layout, 1, ThreadMap>;

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -207,15 +207,15 @@ cudaError_t strided_batched_gemm_nn_reference(
cudaError_t result = cudaSuccess;
if (A.size() < lda * k * batch_count) {
if (A.size() < size_t(lda * k * batch_count)) {
std::cout << "the size of A is too small" << std::endl;
return cudaErrorInvalidValue;
}
if (B.size() < ldb * n) {
if (B.size() < size_t(ldb * n)) {
std::cout << "the size of B is too small" << std::endl;
return cudaErrorInvalidValue;
}
if (C.size() < ldc * n * batch_count) {
if (C.size() < size_t(ldc * n * batch_count)) {
std::cout << "the size of C is too small" << std::endl;
return cudaErrorInvalidValue;
}
@ -243,10 +243,11 @@ cudaError_t run_batched_gemm(bool use_array) {
const char* gemm_desc = use_array ? "array" : "strided batched";
std::cout << "Running " << gemm_desc << " gemm" << std::endl;
// Arbitrary problem size
// Arbitrary matrix shape
int const m = 520;
int const n = 219;
int const k = 129;
int const batch_count = 17;
// A, B are non-transpose, column major

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -64,7 +64,7 @@ ElementAccumulator (float), ElementComputeEpilogue (float), ElementInputA (cutla
ElementInputB (cutlass::half_t), ElementOutput (float). Communicating just the data type is not
enough. As the data is laid out linearly in memory, we have to convey the layout of matrices. We do
that by initializing template variable LayoutInputA to column major cutlass variable, LayoutInputB
to row major and LayoutOutput to row major. Next, we setup rules to comptue alpha * X + beta * C
to row major and LayoutOutput to row major. Next, we setup rules to compute alpha * X + beta * C
which is called epilogue of the kernel. We initialize template variable EpilogueOp, which takes the
data type of output ElementOutput (int32_t), the number of elements per vector memory access (16),
data type of accumulator (int32_t) and data type of computation of linear combination (alpha * X +
@ -162,7 +162,7 @@ using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 32>; // <- warp tile M =
using ShapeMMAOp = cutlass::gemm::GemmShape<8, 8, 4>; // <- MMA Op tile M = 8, N = 8, K = 4
// This code section describes how threadblocks are scheduled on GPU
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ??
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
// This code section describes ?
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -64,7 +64,7 @@ ElementComputeEpilogue (int32_t), ElementInputA (int8_t), ElementInputB (int8_t)
(int32_t). Communicating just the data type is not enough. As the data is laid out linearly in
memory, we have to convey the layout of matrices. We do that by initializing template variable
LayoutInputA to column major cutlass variable, LayoutInputB to row major and LayoutOutput to row
major. Next, we setup rules to comptue alpha * X + beta * C which is called epilogue of the kernel.
major. Next, we setup rules to compute alpha * X + beta * C which is called epilogue of the kernel.
We initialize template variable EpilogueOp, which takes the data type of output ElementOutput
(int32_t), the number of elements per vector memory access (16), data type of accumulator (int32_t)
and data type of computation of linear combination (alpha * X + beta * C).
@ -161,7 +161,7 @@ using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 64>; // <- warp tile M =
using ShapeMMAOp = cutlass::gemm::GemmShape<8, 8, 16>; // <- MMA Op tile M = 8, N = 8, K = 16
// This code section describes how threadblocks are scheduled on GPU
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ??
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
// This code section describes the epilogue part of the kernel
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -66,7 +66,7 @@ ElementComputeEpilogue (float), ElementInputA (cutlass::int4b_t), ElementInputB
ElementOutput (int32_t). Communicating just the data type is not enough. As the data is laid out
linearly in memory, we have to convey the layout of tensors. We do that by initializing template
variables LayoutInputA, LayoutInputB and LayoutOutput to TensorNHWC cutlass variable. Next, we setup
rules to comptue alpha * X + beta * C which is called epilogue of the kernel. We initialize template
rules to compute alpha * X + beta * C which is called epilogue of the kernel. We initialize template
variable EpilogueOp, which takes the data type of output ElementOutput (int32_t), the number of
elements per vector memory access (32), data type of accumulator (int32_t) and data type of
computation of linear combination (alpha * X + beta * C).

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -84,7 +84,7 @@ using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 32>; // <- warp tile M =
using ShapeMMAOp = cutlass::gemm::GemmShape<16, 8, 8>; // <- MMA Op tile M = 16, N = 8, K = 8
// This code section describes how threadblocks are scheduled on GPU
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ??
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
// Define the epilogue operation as LinearCombinationRelu. This is approximately equal to
//

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
@ -80,4 +80,3 @@ foreach(FUSION_GEMM_EXAMPLE
add_dependencies(13_fused_two_gemms 13_${FUSION_GEMM_EXAMPLE})
endforeach()

View File

@ -86,7 +86,7 @@ threadblock. Typically this requires the 2nd Convolution uses 1x1 filter without
# Copyright
Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
@ -115,4 +115,3 @@ SPDX-License-Identifier: BSD-3-Clause
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -102,7 +102,7 @@ struct B2bFusedGroupedGemmRun
if (dist_kind == cutlass::Distribution::Uniform) {
cutlass::reference::host::TensorFillRandomUniform(
view, seed, 2, -2, 0);
view, seed, 1, -1, 0);
}
else if (dist_kind == cutlass::Distribution::Identity) {
@ -231,7 +231,7 @@ struct B2bFusedGroupedGemmRun
host_tensor_ref_D1.at(i).sync_device();
ref_A0.at(i) = (host_tensor_A0.at(i).device_ref());
ref_B0.at(i) = (host_tensor_B0.at(i).device_ref());;
ref_B0.at(i) = (host_tensor_B0.at(i).device_ref());
ref_C0.at(i) = (host_tensor_C0.at(i).device_ref());
if (alpha0 == ElementCompute(0)) //per-channel scale
ref_Scale0.at(i) = (host_tensor_Scale0.at(i).device_ref());
@ -340,7 +340,7 @@ struct B2bFusedGroupedGemmRun
std::cout << "Fusion time " << gemmTime / (float)runs << " ms\n";
for (int i = 0; i < problem_count; ++i) {
host_tensor_D1.at(i).sync_host();;
host_tensor_D1.at(i).sync_host();
//
// Verify

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -177,7 +177,7 @@ public:
if(args.split_k_mode == SplitKMode::kParallel) {
// Split-K parallel: CTAs in k-dimension write the partial results in a temporary workspace.
// The user needs to call a reduction operator to optain the final output tensor
// The user needs to call a reduction operator to obtain the final output tensor
workspace_bytes =
sizeof(ElementAccumulator) *
size_t(cutlass::conv::implicit_gemm_tensor_c_size(kConvolutionalOperator, args.problem_size_0)) *

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -153,7 +153,7 @@ struct Options {
out << "13_fused_two_gemms_grouped_f16_sm80_rf\n\n"
<< " This example runs a grouped back-to-back GEMM kernel. A group of independent back-to-back GEMMs are\n"
<< " run in a single kernel. Each indivdual problem in the group is subject to the same constraints that non-grouped\n"
<< " run in a single kernel. Each individual problem in the group is subject to the same constraints that non-grouped\n"
<< " back-to-back GEMMs are subject to.s"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement.\n\n"

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -157,35 +157,34 @@ struct B2bGemm {
// Data members
//
GemmUniversalMode mode;
GemmCoord problem_size_0;
GemmCoord problem_size_1;
typename B2bMma::IteratorA0::TensorRef ref_A0;
typename B2bMma::IteratorB0::TensorRef ref_B0;
typename Epilogue::OutputTileIterator::TensorRef ref_C0;
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Scale0;
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Bias0;
typename B2bMma::IteratorB1::TensorRef ref_B1;
typename Epilogue::OutputTileIterator::TensorRef ref_C1;
typename Epilogue::OutputTileIterator::TensorRef ref_D1;
int64_t batch_stride_A0;
int64_t batch_stride_B0;
int64_t batch_stride_B1;
int64_t batch_stride_C1;
int64_t batch_stride_D1;
int64_t batch_stride_Bias0;
int64_t batch_stride_Scale0;
typename OutputOp0::Params epilogue0;
typename OutputOp1::Params epilogue1;
int batch_count;
GemmUniversalMode mode = cutlass::gemm::GemmUniversalMode::kGemm;
GemmCoord problem_size_0{0,0,0};
GemmCoord problem_size_1{0,0,0};
typename B2bMma::IteratorA0::TensorRef ref_A0{};
typename B2bMma::IteratorB0::TensorRef ref_B0{};
typename Epilogue::OutputTileIterator::TensorRef ref_C0{};
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Scale0{};
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Bias0{};
typename B2bMma::IteratorB1::TensorRef ref_B1{};
typename Epilogue::OutputTileIterator::TensorRef ref_C1{};
typename Epilogue::OutputTileIterator::TensorRef ref_D1{};
int64_t batch_stride_A0{0};
int64_t batch_stride_B0{0};
int64_t batch_stride_B1{0};
int64_t batch_stride_C1{0};
int64_t batch_stride_D1{0};
int64_t batch_stride_Bias0{0};
int64_t batch_stride_Scale0{0};
typename OutputOp0::Params epilogue0 {};
typename OutputOp1::Params epilogue1 {};
int batch_count{1};
//
// Methods
//
/// Default ctor
CUTLASS_HOST_DEVICE
Arguments() : mode(mode), problem_size_0(0, 0, 0), problem_size_1(0, 0, 0), batch_count(1) {}
Arguments() = default;
/// Constructs an Arguments structure
CUTLASS_HOST_DEVICE
@ -249,7 +248,7 @@ struct B2bGemm {
typename Epilogue::OutputTileIterator::TensorRef* ref_C1;
typename Epilogue::OutputTileIterator::TensorRef* ref_D1;
// Epilogue params remain constant across all problmes in the group. Thus,
// Epilogue params remain constant across all problems in the group. Thus,
// the parameter here is not a pointer.
typename OutputOp0::Params epilogue0;
typename OutputOp1::Params epilogue1;
@ -285,47 +284,45 @@ struct B2bGemm {
/// Parameters structure
struct Params {
cutlass::gemm::GemmUniversalMode mode;
cutlass::gemm::GemmCoord problem_size_0;
cutlass::gemm::GemmCoord problem_size_1;
cutlass::gemm::GemmCoord grid_tiled_shape;
int swizzle_log_tile;
typename B2bMma::IteratorA0::Params params_A0;
typename B2bMma::IteratorA0::TensorRef ref_A0;
typename B2bMma::IteratorB0::Params params_B0;
typename B2bMma::IteratorB0::TensorRef ref_B0;
typename Epilogue::OutputTileIterator::Params params_C0;
typename Epilogue::OutputTileIterator::TensorRef ref_C0;
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Scale0;
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Bias0;
typename B2bMma::IteratorB1::Params params_B1;
typename B2bMma::IteratorB1::TensorRef ref_B1;
typename Epilogue::OutputTileIterator::Params params_C1;
typename Epilogue::OutputTileIterator::TensorRef ref_C1;
typename Epilogue::OutputTileIterator::Params params_D1;
typename Epilogue::OutputTileIterator::TensorRef ref_D1;
typename OutputOp0::Params output_op_0;
typename OutputOp1::Params output_op_1;
int64_t batch_stride_A0;
int64_t batch_stride_B0;
int64_t batch_stride_B1;
int64_t batch_stride_C1;
int64_t batch_stride_D1;
int64_t batch_stride_Bias0;
int64_t batch_stride_Scale0;
int *semaphore;
int gemm_k_iterations_0;
int gemm_k_size_0;
int gemm_k_iterations_1;
int gemm_k_size_1;
cutlass::gemm::GemmUniversalMode mode = cutlass::gemm::GemmUniversalMode::kGemm;
cutlass::gemm::GemmCoord problem_size_0{};
cutlass::gemm::GemmCoord problem_size_1{};
cutlass::gemm::GemmCoord grid_tiled_shape{};
int swizzle_log_tile{0};
typename B2bMma::IteratorA0::Params params_A0{};
typename B2bMma::IteratorA0::TensorRef ref_A0{};
typename B2bMma::IteratorB0::Params params_B0{};
typename B2bMma::IteratorB0::TensorRef ref_B0{};
typename Epilogue::OutputTileIterator::Params params_C0{};
typename Epilogue::OutputTileIterator::TensorRef ref_C0{};
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Scale0{};
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Bias0{};
typename B2bMma::IteratorB1::Params params_B1{};
typename B2bMma::IteratorB1::TensorRef ref_B1{};
typename Epilogue::OutputTileIterator::Params params_C1{};
typename Epilogue::OutputTileIterator::TensorRef ref_C1{};
typename Epilogue::OutputTileIterator::Params params_D1{};
typename Epilogue::OutputTileIterator::TensorRef ref_D1{};
typename OutputOp0::Params output_op_0{};
typename OutputOp1::Params output_op_1{};
int64_t batch_stride_A0{0};
int64_t batch_stride_B0{0};
int64_t batch_stride_B1{0};
int64_t batch_stride_C1{0};
int64_t batch_stride_D1{0};
int64_t batch_stride_Bias0{0};
int64_t batch_stride_Scale0{0};
int *semaphore = nullptr;
int gemm_k_iterations_0{0};
int gemm_k_size_0{0};
int gemm_k_iterations_1{0};
int gemm_k_size_1{0};
//
// Methods
//
CUTLASS_HOST_DEVICE
Params(): mode(mode), swizzle_log_tile(0), semaphore(0), gemm_k_iterations_0(0), gemm_k_size_0(0),
gemm_k_iterations_1(0), gemm_k_size_1(0) { }
Params() = default;
CUTLASS_HOST_DEVICE
Params(
@ -405,7 +402,7 @@ struct B2bGemm {
typename Epilogue::OutputTileIterator::TensorRef* ref_C1;
typename Epilogue::OutputTileIterator::TensorRef* ref_D1;
// Epilogue params remain constant across all problmes in the group. Thus,
// Epilogue params remain constant across all problems in the group. Thus,
// the parameter here is not a pointer.
typename OutputOp0::Params output_op_0;
typename OutputOp1::Params output_op_1;
@ -437,7 +434,7 @@ struct B2bGemm {
// Only row-major outputs are currently supported, so no transpose is performed
}
/// Returns non-grouped paramaters to be used as input to the kernel-level
/// Returns non-grouped parameters to be used as input to the kernel-level
/// operator for the problem indicated by problem_visitor.
CUTLASS_HOST_DEVICE
Params to_single_params(const ProblemVisitor& problem_visitor) const {

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -560,7 +560,7 @@ struct DefaultB2bConv2dFprop <
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimzed IteratorAlgorithm and
/// Defines a kernel for Conv2dFprop specialization for Optimized IteratorAlgorithm and
// multistage pipeline with interleaved layout.
template <
typename ElementA,

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -606,7 +606,7 @@ struct DefaultB2bConv2dFprop <
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimzed IteratorAlgorithm and
/// Defines a kernel for Conv2dFprop specialization for Optimized IteratorAlgorithm and
// multistage pipeline with interleaved layout.
/// Accumulator will be staged in shared memory.
template <

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

Some files were not shown because too many files have changed in this diff Show More