Compare commits

...

74 Commits

Author SHA1 Message Date
400392230b fixed: variable reference error (#9722)
Co-authored-by: hobo.l <hobo.l@binance.com>
2024-10-23 19:17:06 +08:00
eca66f9577 add vdb py test (#9706) 2024-10-23 19:14:24 +08:00
121bb99cc2 downgrade unstructured nltk version (#9726) 2024-10-23 19:02:27 +08:00
cac1ef7ade remove ppt import (#9721) 2024-10-23 18:22:30 +08:00
d74d79b3d8 Modify characters (#9707) 2024-10-23 18:00:53 +08:00
c6b28bc193 chore: update version to 0.10.1 (#9689) 2024-10-23 17:49:51 +08:00
5d05574518 fix: refresh current page if url contains token (#9718) 2024-10-23 17:48:57 +08:00
bf478aeba2 Revert "Feat: use file size limit from api" (#9714) 2024-10-23 17:35:07 +08:00
c9dfe1ad92 feat: support user-defined configuration of log file size and retention count (#9610) 2024-10-23 17:24:36 +08:00
926609eb59 build(deps): bump next from 14.2.4 to 14.2.10 in /web (#9713)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-10-23 17:18:35 +08:00
e32116b9a3 Feat: use file size limit from api (#9711) 2024-10-23 17:03:44 +08:00
e11d5ac708 feat(model_runtime): add new model 'claude-3-5-sonnet-20241022' (#9708) 2024-10-23 17:03:30 +08:00
f6c3d4cadc build(deps): bump mermaid from 10.4.0 to 10.9.3 in /web (#9709)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-10-23 16:57:45 +08:00
3e9d271b52 nltk security issue and upgrade unstructured (#9558) 2024-10-23 16:23:55 +08:00
ecc8beef3f feat: added claude 3.5 sonnet v2 model to Google Cloud Vertex AI (#9688) 2024-10-23 16:13:51 +08:00
b9afb7bcec fix: revert ref usage in handleFormChange to fix IME input issues (#9672)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2024-10-23 15:47:50 +08:00
b4041759f7 Help documentation URL correction (#9704) 2024-10-23 15:47:11 +08:00
c3473b5b4f fix: workflow [if node] checklist (#9699) 2024-10-23 15:46:02 +08:00
1b9bf9c62d feat(api): add video and audio file size limits to upload config (#9703) 2024-10-23 15:23:30 +08:00
Joe
ed96a6b6c0 fix: remove email code login redirect (#9698) 2024-10-23 14:56:10 +08:00
4989d0c904 add bedrock claude 3.5 v2 support (#9685)
Co-authored-by: Yuanbo Li <ybalbert@amazon.com>
2024-10-23 13:54:21 +08:00
9a5bdae07f feat(condition): add support for 'exists' and 'not exists' operators (#9687) 2024-10-23 13:25:17 +08:00
67016feb96 feat(api): enhance file preview handling (#9674) 2024-10-23 13:12:34 +08:00
Joe
22bdfb7e56 Feat/optimize login (#9642) 2024-10-23 10:59:30 +08:00
ceb2c4f3ef chore: reuse existing test functions with upstash vdb (#9679) 2024-10-23 10:42:11 +08:00
d5a93a6400 fix(variable_pool): handle invalid attributes in variable lookup (#9646) 2024-10-23 10:19:33 +08:00
01a2513812 style: chat answer align with new UI (#9658) 2024-10-23 10:19:15 +08:00
8e7a752b2a feat: add upstash as a new vector database provider (#9644) 2024-10-23 09:16:35 +08:00
999d3f1539 fix: add downstream nodes of this branch (#9640) 2024-10-23 01:20:02 +08:00
a7ee51e5d8 feat: add code generator (#9051)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-10-22 21:57:54 +08:00
0e965b6529 chore(models): convert created_by_role to its value for consistency (#9612) 2024-10-22 21:56:26 +08:00
a9db06f5e7 feat(Tools): Refactor the base table plugin (#9182)
Co-authored-by: 黎斌 <libin.23@bytedance.com>
2024-10-22 21:31:34 +08:00
6827c4038b Web app support sending message using numpad enter (#9659) 2024-10-22 21:17:54 +08:00
e8a6e90a61 fix: environment variables for ModelProvider and Tool Position are not working (#9650) 2024-10-22 21:12:03 +08:00
ff956cb546 Fix/retrieval setting weight default value (#9622) 2024-10-22 18:31:39 +08:00
7d7e0f9800 fix: tool use file caused error (#9660) 2024-10-22 18:26:17 +08:00
3ae05a672d fix: webapp answer icon (#9654) 2024-10-22 18:24:13 +08:00
d700abff0a Fix: type missing of remote file in chat (#9652) 2024-10-22 17:54:48 +08:00
5267f34e76 fix(segments): return empty string instead of "null" for text, log, and markdown properties (#9651) 2024-10-22 17:52:22 +08:00
d6e8290a1c fix(files): update Content-Length handling for tool and remote files (#9649) 2024-10-22 17:24:42 +08:00
36f66d40e5 refactor(api): simplify limit retrieval and return types (#9641) 2024-10-22 16:34:16 +08:00
5f12616cb9 fix: file type document is not supported (#9618) 2024-10-22 16:33:50 +08:00
Joe
bc43efba75 fix: remove url join (#9635) 2024-10-22 15:56:53 +08:00
ef5f476cd6 fix(api): enhance file factory URL handling (#9631) 2024-10-22 15:38:08 +08:00
98bf7710e4 fix: fields.Nested(message_file_fields) (#9632) 2024-10-22 15:37:53 +08:00
7263af13ed fix(http_request): simplify JSON handling in requests (#9616) 2024-10-22 15:37:37 +08:00
d992a809f5 fix: update the default model to gpt-4o-mini for duckduckgo ai chat (#9614) 2024-10-22 15:37:16 +08:00
04f8d39860 Fix: doc link of legacy features (#9634) 2024-10-22 15:35:20 +08:00
b7bf14ab72 fix: wrong url of guides doc in new feature panel (#9626) 2024-10-22 14:53:10 +08:00
e8abbe0623 fix(storage): ensure storage_runner initialization within app context (#9627) 2024-10-22 14:50:56 +08:00
b14d59e977 fix(storage): use centralized config management (#9620) 2024-10-22 14:04:59 +08:00
5f12c17355 fix(core): use CreatedByRole enum for role consistency (#9607) 2024-10-22 13:03:50 +08:00
d170d78530 chore: (#9089 followup) fix storage factory constructor (#9609) 2024-10-22 13:01:37 +08:00
4d9160ca9f refactor: use dify_config to replace legacy usage of flask app's config (#9089) 2024-10-22 11:01:32 +08:00
8f670f31b8 refactor(variables): replace deprecated 'get_any' with 'get' method (#9584) 2024-10-22 10:49:19 +08:00
5838345f48 fix(entities): add validator for VisionConfig to handle None values (#9598) 2024-10-22 10:49:03 +08:00
3f1c84f65a chore: cleanup ineffective linter rules exclusions (#9580) 2024-10-22 09:18:31 +08:00
83b2b8fe60 refactor: add logging extension module for log initialization (#9524) 2024-10-22 09:00:44 +08:00
ac24300274 refactor(template_transform): use keyword-only arguments (#9575) 2024-10-22 09:00:21 +08:00
2e657b7b12 fix(workflow): handle NoneSegments in variable extraction (#9585) 2024-10-22 08:59:04 +08:00
c063617553 fix(workflow): improve database session handling and variable management (#9581) 2024-10-22 00:42:40 +08:00
38a4f0234d fix(http_request): handle empty and string data inputs (#9579) 2024-10-21 23:35:25 +08:00
740a723072 fix(validation): improve variable handling and validation (#9578) 2024-10-21 23:33:16 +08:00
495cf58014 dep: bump pydantic to 2.9 (#9077) 2024-10-21 23:32:09 +08:00
8e98759359 Fix: style of features panel in safari (#9573) 2024-10-21 22:52:21 +08:00
4ae0bb83f1 fix(file upload): correct upload method key for image config (#9568) 2024-10-21 20:40:47 +08:00
5459d812e7 fix(iteration): handle empty iterator gracefully (#9565) 2024-10-21 20:16:46 +08:00
831c222541 Fix: file upload support extension .md (#9564) 2024-10-21 19:58:57 +08:00
faad247d85 fix(upload): correct incorrect dictionary key usage (#9563) 2024-10-21 19:42:22 +08:00
1e829ceaf3 chore: format get_customizable_model_schema return value (#9335) 2024-10-21 19:05:44 +08:00
79fe175440 chore: lint code to remove unused imports and variables (#9553) 2024-10-21 19:04:54 +08:00
9b32bfb3db feat: Updata tongyi models (#9552) 2024-10-21 19:04:45 +08:00
37fea072bc enhance: use urllib join instead of fstring (#9549) 2024-10-21 19:04:28 +08:00
31a603e905 Build/fix wrong icon name (#9527) 2024-10-21 19:03:55 +08:00
225 changed files with 4264 additions and 3340 deletions

View File

@ -168,7 +168,7 @@ Star Dify on GitHub and be instantly notified of new releases.
> Before installing Dify, make sure your machine meets the following minimum system requirements:
>
>- CPU >= 2 Core
>- RAM >= 4GB
>- RAM >= 4 GiB
</br>

View File

@ -174,7 +174,7 @@ Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI
在安装 Dify 之前,请确保您的机器满足以下最低系统要求:
- CPU >= 2 Core
- RAM >= 4GB
- RAM >= 4 GiB
### 快速启动

View File

@ -111,7 +111,7 @@ SUPABASE_URL=your-server-url
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, vikingdb
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, vikingdb, upstash
VECTOR_STORE=weaviate
# Weaviate configuration
@ -220,6 +220,10 @@ BAIDU_VECTOR_DB_DATABASE=dify
BAIDU_VECTOR_DB_SHARD=1
BAIDU_VECTOR_DB_REPLICAS=3
# Upstash configuration
UPSTASH_VECTOR_URL=your-server-url
UPSTASH_VECTOR_TOKEN=your-access-token
# ViKingDB configuration
VIKINGDB_ACCESS_KEY=your-ak
VIKINGDB_SECRET_KEY=your-sk
@ -239,6 +243,7 @@ UPLOAD_AUDIO_FILE_SIZE_LIMIT=50
# Model Configuration
MULTIMODAL_SEND_IMAGE_FORMAT=base64
PROMPT_GENERATION_MAX_TOKENS=512
CODE_GENERATION_MAX_TOKENS=1024
# Mail configuration, support: resend, smtp
MAIL_TYPE=
@ -304,6 +309,10 @@ RESPECT_XFORWARD_HEADERS_ENABLED=false
# Log file path
LOG_FILE=
# Log file max size, the unit is MB
LOG_FILE_MAX_SIZE=20
# Log file max backup count
LOG_FILE_BACKUP_COUNT=5
# Indexing configuration
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH=1000

View File

@ -1,5 +1,7 @@
import os
from configs import dify_config
if os.environ.get("DEBUG", "false").lower() != "true":
from gevent import monkey
@ -36,17 +38,11 @@ if hasattr(time, "tzset"):
time.tzset()
# -------------
# Configuration
# -------------
config_type = os.getenv("EDITION", default="SELF_HOSTED") # ce edition first
# create app
app = create_app()
celery = app.extensions["celery"]
if app.config.get("TESTING"):
if dify_config.TESTING:
print("App is running in TESTING mode")
@ -54,15 +50,15 @@ if app.config.get("TESTING"):
def after_request(response):
"""Add Version headers to the response."""
response.set_cookie("remember_token", "", expires=0)
response.headers.add("X-Version", app.config["CURRENT_VERSION"])
response.headers.add("X-Env", app.config["DEPLOY_ENV"])
response.headers.add("X-Version", dify_config.CURRENT_VERSION)
response.headers.add("X-Env", dify_config.DEPLOY_ENV)
return response
@app.route("/health")
def health():
return Response(
json.dumps({"pid": os.getpid(), "status": "ok", "version": app.config["CURRENT_VERSION"]}),
json.dumps({"pid": os.getpid(), "status": "ok", "version": dify_config.CURRENT_VERSION}),
status=200,
content_type="application/json",
)

View File

@ -10,9 +10,6 @@ if os.environ.get("DEBUG", "false").lower() != "true":
grpc.experimental.gevent.init_gevent()
import json
import logging
import sys
from logging.handlers import RotatingFileHandler
from flask import Flask, Response, request
from flask_cors import CORS
@ -27,6 +24,7 @@ from extensions import (
ext_compress,
ext_database,
ext_hosting_provider,
ext_logging,
ext_login,
ext_mail,
ext_migrate,
@ -70,43 +68,7 @@ def create_flask_app_with_configs() -> Flask:
def create_app() -> Flask:
app = create_flask_app_with_configs()
app.secret_key = app.config["SECRET_KEY"]
log_handlers = None
log_file = app.config.get("LOG_FILE")
if log_file:
log_dir = os.path.dirname(log_file)
os.makedirs(log_dir, exist_ok=True)
log_handlers = [
RotatingFileHandler(
filename=log_file,
maxBytes=1024 * 1024 * 1024,
backupCount=5,
),
logging.StreamHandler(sys.stdout),
]
logging.basicConfig(
level=app.config.get("LOG_LEVEL"),
format=app.config.get("LOG_FORMAT"),
datefmt=app.config.get("LOG_DATEFORMAT"),
handlers=log_handlers,
force=True,
)
log_tz = app.config.get("LOG_TZ")
if log_tz:
from datetime import datetime
import pytz
timezone = pytz.timezone(log_tz)
def time_converter(seconds):
return datetime.utcfromtimestamp(seconds).astimezone(timezone).timetuple()
for handler in logging.root.handlers:
handler.formatter.converter = time_converter
app.secret_key = dify_config.SECRET_KEY
initialize_extensions(app)
register_blueprints(app)
register_commands(app)
@ -117,6 +79,7 @@ def create_app() -> Flask:
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_logging.init_app(app)
ext_compress.init_app(app)
ext_code_based_extension.init()
ext_database.init_app(app)
@ -187,7 +150,7 @@ def register_blueprints(app):
CORS(
web_bp,
resources={r"/*": {"origins": app.config["WEB_API_CORS_ALLOW_ORIGINS"]}},
resources={r"/*": {"origins": dify_config.WEB_API_CORS_ALLOW_ORIGINS}},
supports_credentials=True,
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
@ -198,7 +161,7 @@ def register_blueprints(app):
CORS(
console_app_bp,
resources={r"/*": {"origins": app.config["CONSOLE_CORS_ALLOW_ORIGINS"]}},
resources={r"/*": {"origins": dify_config.CONSOLE_CORS_ALLOW_ORIGINS}},
supports_credentials=True,
allow_headers=["Content-Type", "Authorization"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],

View File

@ -277,6 +277,7 @@ def migrate_knowledge_vector_database():
VectorType.TENCENT,
VectorType.BAIDU,
VectorType.VIKINGDB,
VectorType.UPSTASH,
}
page = 1
while True:

View File

@ -32,6 +32,21 @@ class SecurityConfig(BaseSettings):
default=5,
)
LOGIN_DISABLED: bool = Field(
description="Whether to disable login checks",
default=False,
)
ADMIN_API_KEY_ENABLE: bool = Field(
description="Whether to enable admin api key for authentication",
default=False,
)
ADMIN_API_KEY: Optional[str] = Field(
description="admin api key for authentication",
default=None,
)
class AppExecutionConfig(BaseSettings):
"""
@ -304,6 +319,16 @@ class LoggingConfig(BaseSettings):
default=None,
)
LOG_FILE_MAX_SIZE: PositiveInt = Field(
description="Maximum file size for file rotation retention, the unit is megabytes (MB)",
default=20,
)
LOG_FILE_BACKUP_COUNT: PositiveInt = Field(
description="Maximum file backup count file rotation retention",
default=5,
)
LOG_FORMAT: str = Field(
description="Format string for log messages",
default="%(asctime)s.%(msecs)03d %(levelname)s [%(threadName)s] [%(filename)s:%(lineno)d] - %(message)s",

View File

@ -28,6 +28,7 @@ from configs.middleware.vdb.qdrant_config import QdrantConfig
from configs.middleware.vdb.relyt_config import RelytConfig
from configs.middleware.vdb.tencent_vector_config import TencentVectorDBConfig
from configs.middleware.vdb.tidb_vector_config import TiDBVectorConfig
from configs.middleware.vdb.upstash_config import UpstashConfig
from configs.middleware.vdb.vikingdb_config import VikingDBConfig
from configs.middleware.vdb.weaviate_config import WeaviateConfig
@ -246,5 +247,6 @@ class MiddlewareConfig(
ElasticsearchConfig,
InternalTestConfig,
VikingDBConfig,
UpstashConfig,
):
pass

View File

@ -0,0 +1,20 @@
from typing import Optional
from pydantic import Field
from pydantic_settings import BaseSettings
class UpstashConfig(BaseSettings):
"""
Configuration settings for Upstash vector database
"""
UPSTASH_VECTOR_URL: Optional[str] = Field(
description="URL of the upstash server (e.g., 'https://vector.upstash.io')",
default=None,
)
UPSTASH_VECTOR_TOKEN: Optional[str] = Field(
description="Token for authenticating with the upstash server",
default=None,
)

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.10.0",
default="0.10.1",
)
COMMIT_SHA: str = Field(

View File

@ -15,7 +15,9 @@ AUDIO_EXTENSIONS.extend([ext.upper() for ext in AUDIO_EXTENSIONS])
if dify_config.ETL_TYPE == "Unstructured":
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "pdf", "html", "htm", "xlsx", "xls"]
DOCUMENT_EXTENSIONS.extend(("docx", "csv", "eml", "msg", "pptx", "ppt", "xml", "epub"))
DOCUMENT_EXTENSIONS.extend(("docx", "csv", "eml", "msg", "pptx", "xml", "epub"))
if dify_config.UNSTRUCTURED_API_URL:
DOCUMENT_EXTENSIONS.append("ppt")
DOCUMENT_EXTENSIONS.extend([ext.upper() for ext in DOCUMENT_EXTENSIONS])
else:
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "pdf", "html", "htm", "xlsx", "xls", "docx", "csv"]

View File

@ -1,10 +1,10 @@
import os
from functools import wraps
from flask import request
from flask_restful import Resource, reqparse
from werkzeug.exceptions import NotFound, Unauthorized
from configs import dify_config
from constants.languages import supported_language
from controllers.console import api
from controllers.console.wraps import only_edition_cloud
@ -15,7 +15,7 @@ from models.model import App, InstalledApp, RecommendedApp
def admin_required(view):
@wraps(view)
def decorated(*args, **kwargs):
if not os.getenv("ADMIN_API_KEY"):
if not dify_config.ADMIN_API_KEY:
raise Unauthorized("API key is invalid.")
auth_header = request.headers.get("Authorization")
@ -31,7 +31,7 @@ def admin_required(view):
if auth_scheme != "bearer":
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
if os.getenv("ADMIN_API_KEY") != auth_token:
if dify_config.ADMIN_API_KEY != auth_token:
raise Unauthorized("API key is invalid.")
return view(*args, **kwargs)

View File

@ -52,4 +52,39 @@ class RuleGenerateApi(Resource):
return rules
class RuleCodeGenerateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("instruction", type=str, required=True, nullable=False, location="json")
parser.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
parser.add_argument("no_variable", type=bool, required=True, default=False, location="json")
parser.add_argument("code_language", type=str, required=False, default="javascript", location="json")
args = parser.parse_args()
account = current_user
CODE_GENERATION_MAX_TOKENS = int(os.getenv("CODE_GENERATION_MAX_TOKENS", "1024"))
try:
code_result = LLMGenerator.generate_code(
tenant_id=account.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
code_language=args["code_language"],
max_tokens=CODE_GENERATION_MAX_TOKENS,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return code_result
api.add_resource(RuleGenerateApi, "/rule-generate")
api.add_resource(RuleCodeGenerateApi, "/rule-code-generate")

View File

@ -1,11 +1,10 @@
from typing import cast
import flask_login
from flask import redirect, request
from flask import request
from flask_restful import Resource, reqparse
import services
from configs import dify_config
from constants.languages import languages
from controllers.console import api
from controllers.console.auth.error import (
@ -196,10 +195,7 @@ class EmailCodeLoginApi(Resource):
email=user_email, name=user_email, interface_language=languages[0]
)
except WorkSpaceNotAllowedCreateError:
return redirect(
f"{dify_config.CONSOLE_WEB_URL}/signin"
"?message=Workspace not found, please contact system admin to invite you to join in a workspace."
)
return NotAllowedCreateWorkspace()
token_pair = AccountService.login(account, ip_address=extract_remote_ip(request))
AccountService.reset_login_error_rate_limit(args["email"])
return {"result": "success", "data": token_pair.model_dump()}

View File

@ -94,17 +94,15 @@ class OAuthCallback(Resource):
account = _generate_account(provider, user_info)
except AccountNotFoundError:
return redirect(f"{dify_config.CONSOLE_WEB_URL}/signin?message=Account not found.")
except WorkSpaceNotFoundError:
return redirect(f"{dify_config.CONSOLE_WEB_URL}/signin?message=Workspace not found.")
except WorkSpaceNotAllowedCreateError:
except (WorkSpaceNotFoundError, WorkSpaceNotAllowedCreateError):
return redirect(
f"{dify_config.CONSOLE_WEB_URL}/signin"
"?message=Workspace not found, please contact system admin to invite you to join in a workspace."
)
# Check account status
if account.status in {AccountStatus.BANNED.value, AccountStatus.CLOSED.value}:
return {"error": "Account is banned or closed."}, 403
if account.status == AccountStatus.BANNED.value:
return redirect(f"{dify_config.CONSOLE_WEB_URL}/signin?message=Account is banned.")
if account.status == AccountStatus.PENDING.value:
account.status = AccountStatus.ACTIVE.value

View File

@ -619,6 +619,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.PGVECTO_RS
| VectorType.BAIDU
| VectorType.VIKINGDB
| VectorType.UPSTASH
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (
@ -657,6 +658,7 @@ class DatasetRetrievalSettingMockApi(Resource):
| VectorType.PGVECTO_RS
| VectorType.BAIDU
| VectorType.VIKINGDB
| VectorType.UPSTASH
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (

View File

@ -30,13 +30,12 @@ class FileApi(Resource):
@account_initialization_required
@marshal_with(upload_config_fields)
def get(self):
file_size_limit = dify_config.UPLOAD_FILE_SIZE_LIMIT
batch_count_limit = dify_config.UPLOAD_FILE_BATCH_LIMIT
image_file_size_limit = dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT
return {
"file_size_limit": file_size_limit,
"batch_count_limit": batch_count_limit,
"image_file_size_limit": image_file_size_limit,
"file_size_limit": dify_config.UPLOAD_FILE_SIZE_LIMIT,
"batch_count_limit": dify_config.UPLOAD_FILE_BATCH_LIMIT,
"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT,
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
}, 200
@setup_required

View File

@ -41,7 +41,7 @@ class AlreadyActivateError(BaseHTTPException):
class NotAllowedCreateWorkspace(BaseHTTPException):
error_code = "unauthorized"
error_code = "not_allowed_create_workspace"
description = "Workspace not found, please contact system admin to invite you to join in a workspace."
code = 400

View File

@ -1,5 +1,5 @@
from flask import Response, request
from flask_restful import Resource
from flask_restful import Resource, reqparse
from werkzeug.exceptions import NotFound
import services
@ -41,24 +41,39 @@ class FilePreviewApi(Resource):
def get(self, file_id):
file_id = str(file_id)
timestamp = request.args.get("timestamp")
nonce = request.args.get("nonce")
sign = request.args.get("sign")
parser = reqparse.RequestParser()
parser.add_argument("timestamp", type=str, required=True, location="args")
parser.add_argument("nonce", type=str, required=True, location="args")
parser.add_argument("sign", type=str, required=True, location="args")
parser.add_argument("as_attachment", type=bool, required=False, default=False, location="args")
if not timestamp or not nonce or not sign:
args = parser.parse_args()
if not args["timestamp"] or not args["nonce"] or not args["sign"]:
return {"content": "Invalid request."}, 400
try:
generator, mimetype = FileService.get_signed_file_preview(
generator, upload_file = FileService.get_file_generator_by_file_id(
file_id=file_id,
timestamp=timestamp,
nonce=nonce,
sign=sign,
timestamp=args["timestamp"],
nonce=args["nonce"],
sign=args["sign"],
)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return Response(generator, mimetype=mimetype)
response = Response(
generator,
mimetype=upload_file.mime_type,
direct_passthrough=True,
headers={},
)
if upload_file.size > 0:
response.headers["Content-Length"] = str(upload_file.size)
if args["as_attachment"]:
response.headers["Content-Disposition"] = f"attachment; filename={upload_file.name}"
return response
class WorkspaceWebappLogoApi(Resource):

View File

@ -42,10 +42,10 @@ class ToolFilePreviewApi(Resource):
stream,
mimetype=tool_file.mimetype,
direct_passthrough=True,
headers={
"Content-Length": str(tool_file.size),
},
headers={},
)
if tool_file.size > 0:
response.headers["Content-Length"] = str(tool_file.size)
if args["as_attachment"]:
response.headers["Content-Disposition"] = f"attachment; filename={tool_file.name}"

View File

@ -48,7 +48,7 @@ class MessageListApi(Resource):
"tool_input": fields.String,
"created_at": TimestampField,
"observation": fields.String,
"message_files": fields.List(fields.String),
"message_files": fields.List(fields.Nested(message_file_fields)),
}
message_fields = {

View File

@ -46,7 +46,7 @@ class RemoteFileInfoApi(WebApiResource):
response = ssrf_proxy.head(decoded_url)
return {
"file_type": response.headers.get("Content-Type", "application/octet-stream"),
"file_length": int(response.headers.get("Content-Length", 0)),
"file_length": int(response.headers.get("Content-Length", -1)),
}
except Exception as e:
return {"error": str(e)}, 400

View File

@ -53,11 +53,11 @@ class BasicVariablesConfigManager:
VariableEntity(
type=variable_type,
variable=variable.get("variable"),
description=variable.get("description", ""),
description=variable.get("description") or "",
label=variable.get("label"),
required=variable.get("required", False),
max_length=variable.get("max_length"),
options=variable.get("options", []),
options=variable.get("options") or [],
)
)

View File

@ -2,7 +2,7 @@ from collections.abc import Sequence
from enum import Enum
from typing import Any, Optional
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, field_validator
from core.file import FileExtraConfig, FileTransferMethod, FileType
from core.model_runtime.entities.message_entities import PromptMessageRole
@ -114,6 +114,16 @@ class VariableEntity(BaseModel):
allowed_file_extensions: Sequence[str] = Field(default_factory=list)
allowed_file_upload_methods: Sequence[FileTransferMethod] = Field(default_factory=list)
@field_validator("description", mode="before")
@classmethod
def convert_none_description(cls, v: Any) -> str:
return v or ""
@field_validator("options", mode="before")
@classmethod
def convert_none_options(cls, v: Any) -> Sequence[str]:
return v or []
class ExternalDataVariableEntity(BaseModel):
"""

View File

@ -17,10 +17,13 @@ class FileUploadConfigManager:
file_upload_dict = config.get("file_upload")
if file_upload_dict:
if file_upload_dict.get("enabled"):
transform_methods = file_upload_dict.get("allowed_file_upload_methods") or file_upload_dict.get(
"allowed_upload_methods", []
)
data = {
"image_config": {
"number_limits": file_upload_dict["number_limits"],
"transfer_methods": file_upload_dict["allowed_file_upload_methods"],
"transfer_methods": transform_methods,
}
}

View File

@ -27,6 +27,7 @@ from core.app.task_pipeline.easy_ui_based_generate_task_pipeline import EasyUIBa
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from extensions.ext_database import db
from models import Account
from models.enums import CreatedByRole
from models.model import App, AppMode, AppModelConfig, Conversation, EndUser, Message, MessageFile
from services.errors.app_model_config import AppModelConfigBrokenError
from services.errors.conversation import ConversationCompletedError, ConversationNotExistsError
@ -240,7 +241,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
belongs_to="user",
url=file.remote_url,
upload_file_id=file.related_id,
created_by_role=("account" if account_id else "end_user"),
created_by_role=(CreatedByRole.ACCOUNT if account_id else CreatedByRole.END_USER),
created_by=account_id or end_user_id or "",
)
db.session.add(message_file)

View File

@ -53,7 +53,7 @@ class BasedGenerateTaskPipeline:
self._output_moderation_handler = self._init_output_moderation()
self._stream = stream
def _handle_error(self, event: QueueErrorEvent, message: Optional[Message] = None) -> Exception:
def _handle_error(self, event: QueueErrorEvent, message: Optional[Message] = None):
"""
Handle error event.
:param event: event
@ -100,7 +100,7 @@ class BasedGenerateTaskPipeline:
return message
def _error_to_stream_response(self, e: Exception) -> ErrorStreamResponse:
def _error_to_stream_response(self, e: Exception):
"""
Error to stream response.
:param e: exception

View File

@ -4,6 +4,8 @@ from collections.abc import Mapping, Sequence
from datetime import datetime, timezone
from typing import Any, Optional, Union, cast
from sqlalchemy.orm import Session
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom, WorkflowAppGenerateEntity
from core.app.entities.queue_entities import (
QueueIterationCompletedEvent,
@ -232,30 +234,30 @@ class WorkflowCycleManage:
self, workflow_run: WorkflowRun, event: QueueNodeStartedEvent
) -> WorkflowNodeExecution:
# init workflow node execution
workflow_node_execution = WorkflowNodeExecution()
workflow_node_execution.tenant_id = workflow_run.tenant_id
workflow_node_execution.app_id = workflow_run.app_id
workflow_node_execution.workflow_id = workflow_run.workflow_id
workflow_node_execution.triggered_from = WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN.value
workflow_node_execution.workflow_run_id = workflow_run.id
workflow_node_execution.predecessor_node_id = event.predecessor_node_id
workflow_node_execution.index = event.node_run_index
workflow_node_execution.node_execution_id = event.node_execution_id
workflow_node_execution.node_id = event.node_id
workflow_node_execution.node_type = event.node_type.value
workflow_node_execution.title = event.node_data.title
workflow_node_execution.status = WorkflowNodeExecutionStatus.RUNNING.value
workflow_node_execution.created_by_role = workflow_run.created_by_role
workflow_node_execution.created_by = workflow_run.created_by
workflow_node_execution.created_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.add(workflow_node_execution)
db.session.commit()
db.session.refresh(workflow_node_execution)
db.session.close()
with Session(db.engine, expire_on_commit=False) as session:
workflow_node_execution = WorkflowNodeExecution()
workflow_node_execution.tenant_id = workflow_run.tenant_id
workflow_node_execution.app_id = workflow_run.app_id
workflow_node_execution.workflow_id = workflow_run.workflow_id
workflow_node_execution.triggered_from = WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN.value
workflow_node_execution.workflow_run_id = workflow_run.id
workflow_node_execution.predecessor_node_id = event.predecessor_node_id
workflow_node_execution.index = event.node_run_index
workflow_node_execution.node_execution_id = event.node_execution_id
workflow_node_execution.node_id = event.node_id
workflow_node_execution.node_type = event.node_type.value
workflow_node_execution.title = event.node_data.title
workflow_node_execution.status = WorkflowNodeExecutionStatus.RUNNING.value
workflow_node_execution.created_by_role = workflow_run.created_by_role
workflow_node_execution.created_by = workflow_run.created_by
workflow_node_execution.created_at = datetime.now(timezone.utc).replace(tzinfo=None)
session.add(workflow_node_execution)
session.commit()
session.refresh(workflow_node_execution)
self._wip_workflow_node_executions[workflow_node_execution.node_execution_id] = workflow_node_execution
return workflow_node_execution
def _handle_workflow_node_execution_success(self, event: QueueNodeSucceededEvent) -> WorkflowNodeExecution:

View File

@ -1,8 +1,9 @@
from typing import Optional
from flask import Config, Flask
from flask import Flask
from pydantic import BaseModel
from configs import dify_config
from core.entities.provider_entities import QuotaUnit, RestrictModel
from core.model_runtime.entities.model_entities import ModelType
from models.provider import ProviderQuotaType
@ -44,32 +45,30 @@ class HostingConfiguration:
moderation_config: HostedModerationConfig = None
def init_app(self, app: Flask) -> None:
config = app.config
if config.get("EDITION") != "CLOUD":
if dify_config.EDITION != "CLOUD":
return
self.provider_map["azure_openai"] = self.init_azure_openai(config)
self.provider_map["openai"] = self.init_openai(config)
self.provider_map["anthropic"] = self.init_anthropic(config)
self.provider_map["minimax"] = self.init_minimax(config)
self.provider_map["spark"] = self.init_spark(config)
self.provider_map["zhipuai"] = self.init_zhipuai(config)
self.provider_map["azure_openai"] = self.init_azure_openai()
self.provider_map["openai"] = self.init_openai()
self.provider_map["anthropic"] = self.init_anthropic()
self.provider_map["minimax"] = self.init_minimax()
self.provider_map["spark"] = self.init_spark()
self.provider_map["zhipuai"] = self.init_zhipuai()
self.moderation_config = self.init_moderation_config(config)
self.moderation_config = self.init_moderation_config()
@staticmethod
def init_azure_openai(app_config: Config) -> HostingProvider:
def init_azure_openai() -> HostingProvider:
quota_unit = QuotaUnit.TIMES
if app_config.get("HOSTED_AZURE_OPENAI_ENABLED"):
if dify_config.HOSTED_AZURE_OPENAI_ENABLED:
credentials = {
"openai_api_key": app_config.get("HOSTED_AZURE_OPENAI_API_KEY"),
"openai_api_base": app_config.get("HOSTED_AZURE_OPENAI_API_BASE"),
"openai_api_key": dify_config.HOSTED_AZURE_OPENAI_API_KEY,
"openai_api_base": dify_config.HOSTED_AZURE_OPENAI_API_BASE,
"base_model_name": "gpt-35-turbo",
}
quotas = []
hosted_quota_limit = int(app_config.get("HOSTED_AZURE_OPENAI_QUOTA_LIMIT", "1000"))
hosted_quota_limit = dify_config.HOSTED_AZURE_OPENAI_QUOTA_LIMIT
trial_quota = TrialHostingQuota(
quota_limit=hosted_quota_limit,
restrict_models=[
@ -122,31 +121,31 @@ class HostingConfiguration:
quota_unit=quota_unit,
)
def init_openai(self, app_config: Config) -> HostingProvider:
def init_openai(self) -> HostingProvider:
quota_unit = QuotaUnit.CREDITS
quotas = []
if app_config.get("HOSTED_OPENAI_TRIAL_ENABLED"):
hosted_quota_limit = int(app_config.get("HOSTED_OPENAI_QUOTA_LIMIT", "200"))
trial_models = self.parse_restrict_models_from_env(app_config, "HOSTED_OPENAI_TRIAL_MODELS")
if dify_config.HOSTED_OPENAI_TRIAL_ENABLED:
hosted_quota_limit = dify_config.HOSTED_OPENAI_QUOTA_LIMIT
trial_models = self.parse_restrict_models_from_env("HOSTED_OPENAI_TRIAL_MODELS")
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit, restrict_models=trial_models)
quotas.append(trial_quota)
if app_config.get("HOSTED_OPENAI_PAID_ENABLED"):
paid_models = self.parse_restrict_models_from_env(app_config, "HOSTED_OPENAI_PAID_MODELS")
if dify_config.HOSTED_OPENAI_PAID_ENABLED:
paid_models = self.parse_restrict_models_from_env("HOSTED_OPENAI_PAID_MODELS")
paid_quota = PaidHostingQuota(restrict_models=paid_models)
quotas.append(paid_quota)
if len(quotas) > 0:
credentials = {
"openai_api_key": app_config.get("HOSTED_OPENAI_API_KEY"),
"openai_api_key": dify_config.HOSTED_OPENAI_API_KEY,
}
if app_config.get("HOSTED_OPENAI_API_BASE"):
credentials["openai_api_base"] = app_config.get("HOSTED_OPENAI_API_BASE")
if dify_config.HOSTED_OPENAI_API_BASE:
credentials["openai_api_base"] = dify_config.HOSTED_OPENAI_API_BASE
if app_config.get("HOSTED_OPENAI_API_ORGANIZATION"):
credentials["openai_organization"] = app_config.get("HOSTED_OPENAI_API_ORGANIZATION")
if dify_config.HOSTED_OPENAI_API_ORGANIZATION:
credentials["openai_organization"] = dify_config.HOSTED_OPENAI_API_ORGANIZATION
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
@ -156,26 +155,26 @@ class HostingConfiguration:
)
@staticmethod
def init_anthropic(app_config: Config) -> HostingProvider:
def init_anthropic() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
quotas = []
if app_config.get("HOSTED_ANTHROPIC_TRIAL_ENABLED"):
hosted_quota_limit = int(app_config.get("HOSTED_ANTHROPIC_QUOTA_LIMIT", "0"))
if dify_config.HOSTED_ANTHROPIC_TRIAL_ENABLED:
hosted_quota_limit = dify_config.HOSTED_ANTHROPIC_QUOTA_LIMIT
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit)
quotas.append(trial_quota)
if app_config.get("HOSTED_ANTHROPIC_PAID_ENABLED"):
if dify_config.HOSTED_ANTHROPIC_PAID_ENABLED:
paid_quota = PaidHostingQuota()
quotas.append(paid_quota)
if len(quotas) > 0:
credentials = {
"anthropic_api_key": app_config.get("HOSTED_ANTHROPIC_API_KEY"),
"anthropic_api_key": dify_config.HOSTED_ANTHROPIC_API_KEY,
}
if app_config.get("HOSTED_ANTHROPIC_API_BASE"):
credentials["anthropic_api_url"] = app_config.get("HOSTED_ANTHROPIC_API_BASE")
if dify_config.HOSTED_ANTHROPIC_API_BASE:
credentials["anthropic_api_url"] = dify_config.HOSTED_ANTHROPIC_API_BASE
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
@ -185,9 +184,9 @@ class HostingConfiguration:
)
@staticmethod
def init_minimax(app_config: Config) -> HostingProvider:
def init_minimax() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if app_config.get("HOSTED_MINIMAX_ENABLED"):
if dify_config.HOSTED_MINIMAX_ENABLED:
quotas = [FreeHostingQuota()]
return HostingProvider(
@ -203,9 +202,9 @@ class HostingConfiguration:
)
@staticmethod
def init_spark(app_config: Config) -> HostingProvider:
def init_spark() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if app_config.get("HOSTED_SPARK_ENABLED"):
if dify_config.HOSTED_SPARK_ENABLED:
quotas = [FreeHostingQuota()]
return HostingProvider(
@ -221,9 +220,9 @@ class HostingConfiguration:
)
@staticmethod
def init_zhipuai(app_config: Config) -> HostingProvider:
def init_zhipuai() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if app_config.get("HOSTED_ZHIPUAI_ENABLED"):
if dify_config.HOSTED_ZHIPUAI_ENABLED:
quotas = [FreeHostingQuota()]
return HostingProvider(
@ -239,17 +238,15 @@ class HostingConfiguration:
)
@staticmethod
def init_moderation_config(app_config: Config) -> HostedModerationConfig:
if app_config.get("HOSTED_MODERATION_ENABLED") and app_config.get("HOSTED_MODERATION_PROVIDERS"):
return HostedModerationConfig(
enabled=True, providers=app_config.get("HOSTED_MODERATION_PROVIDERS").split(",")
)
def init_moderation_config() -> HostedModerationConfig:
if dify_config.HOSTED_MODERATION_ENABLED and dify_config.HOSTED_MODERATION_PROVIDERS:
return HostedModerationConfig(enabled=True, providers=dify_config.HOSTED_MODERATION_PROVIDERS.split(","))
return HostedModerationConfig(enabled=False)
@staticmethod
def parse_restrict_models_from_env(app_config: Config, env_var: str) -> list[RestrictModel]:
models_str = app_config.get(env_var)
def parse_restrict_models_from_env(env_var: str) -> list[RestrictModel]:
models_str = dify_config.model_dump().get(env_var)
models_list = models_str.split(",") if models_str else []
return [
RestrictModel(model=model_name.strip(), model_type=ModelType.LLM)

View File

@ -8,6 +8,8 @@ from core.llm_generator.output_parser.suggested_questions_after_answer import Su
from core.llm_generator.prompts import (
CONVERSATION_TITLE_PROMPT,
GENERATOR_QA_PROMPT,
JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE,
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE,
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE,
)
from core.model_manager import ModelManager
@ -239,6 +241,54 @@ class LLMGenerator:
return rule_config
@classmethod
def generate_code(
cls,
tenant_id: str,
instruction: str,
model_config: dict,
code_language: str = "javascript",
max_tokens: int = 1000,
) -> dict:
if code_language == "python":
prompt_template = PromptTemplateParser(PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE)
else:
prompt_template = PromptTemplateParser(JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE)
prompt = prompt_template.format(
inputs={
"INSTRUCTION": instruction,
"CODE_LANGUAGE": code_language,
},
remove_template_variables=False,
)
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=model_config.get("provider") if model_config else None,
model=model_config.get("name") if model_config else None,
)
prompt_messages = [UserPromptMessage(content=prompt)]
model_parameters = {"max_tokens": max_tokens, "temperature": 0.01}
try:
response = model_instance.invoke_llm(
prompt_messages=prompt_messages, model_parameters=model_parameters, stream=False
)
generated_code = response.message.content
return {"code": generated_code, "language": code_language, "error": ""}
except InvokeError as e:
error = str(e)
return {"code": "", "language": code_language, "error": f"Failed to generate code. Error: {error}"}
except Exception as e:
logging.exception(e)
return {"code": "", "language": code_language, "error": f"An unexpected error occurred: {str(e)}"}
@classmethod
def generate_qa_document(cls, tenant_id: str, query, document_language: str):
prompt = GENERATOR_QA_PROMPT.format(language=document_language)

View File

@ -61,6 +61,73 @@ User Input: yo, 你今天咋样?
User Input:
""" # noqa: E501
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE = (
"You are an expert programmer. Generate code based on the following instructions:\n\n"
"Instructions: {{INSTRUCTION}}\n\n"
"Write the code in {{CODE_LANGUAGE}}.\n\n"
"Please ensure that you meet the following requirements:\n"
"1. Define a function named 'main'.\n"
"2. The 'main' function must return a dictionary (dict).\n"
"3. You may modify the arguments of the 'main' function, but include appropriate type hints.\n"
"4. The returned dictionary should contain at least one key-value pair.\n\n"
"5. You may ONLY use the following libraries in your code: \n"
"- json\n"
"- datetime\n"
"- math\n"
"- random\n"
"- re\n"
"- string\n"
"- sys\n"
"- time\n"
"- traceback\n"
"- uuid\n"
"- os\n"
"- base64\n"
"- hashlib\n"
"- hmac\n"
"- binascii\n"
"- collections\n"
"- functools\n"
"- operator\n"
"- itertools\n\n"
"Example:\n"
"def main(arg1: str, arg2: int) -> dict:\n"
" return {\n"
' "result": arg1 * arg2,\n'
" }\n\n"
"IMPORTANT:\n"
"- Provide ONLY the code without any additional explanations, comments, or markdown formatting.\n"
"- DO NOT use markdown code blocks (``` or ``` python). Return the raw code directly.\n"
"- The code should start immediately after this instruction, without any preceding newlines or spaces.\n"
"- The code should be complete, functional, and follow best practices for {{CODE_LANGUAGE}}.\n\n"
"- Always use the format return {'result': ...} for the output.\n\n"
"Generated Code:\n"
)
JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE = (
"You are an expert programmer. Generate code based on the following instructions:\n\n"
"Instructions: {{INSTRUCTION}}\n\n"
"Write the code in {{CODE_LANGUAGE}}.\n\n"
"Please ensure that you meet the following requirements:\n"
"1. Define a function named 'main'.\n"
"2. The 'main' function must return an object.\n"
"3. You may modify the arguments of the 'main' function, but include appropriate JSDoc annotations.\n"
"4. The returned object should contain at least one key-value pair.\n\n"
"5. The returned object should always be in the format: {result: ...}\n\n"
"Example:\n"
"function main(arg1, arg2) {\n"
" return {\n"
" result: arg1 * arg2\n"
" };\n"
"}\n\n"
"IMPORTANT:\n"
"- Provide ONLY the code without any additional explanations, comments, or markdown formatting.\n"
"- DO NOT use markdown code blocks (``` or ``` javascript). Return the raw code directly.\n"
"- The code should start immediately after this instruction, without any preceding newlines or spaces.\n"
"- The code should be complete, functional, and follow best practices for {{CODE_LANGUAGE}}.\n\n"
"Generated Code:\n"
)
SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
"Please help me predict the three most likely questions that human would ask, "
"and keeping each question under 20 characters.\n"

View File

@ -2,6 +2,7 @@ from typing import Optional
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.file import file_manager
from core.file.models import FileType
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
@ -98,8 +99,9 @@ class TokenBufferMemory:
prompt_message_contents: list[PromptMessageContent] = []
prompt_message_contents.append(TextPromptMessageContent(data=message.query))
for file_obj in file_objs:
prompt_message = file_manager.to_prompt_message_content(file_obj)
prompt_message_contents.append(prompt_message)
if file_obj.type in {FileType.IMAGE, FileType.AUDIO}:
prompt_message = file_manager.to_prompt_message_content(file_obj)
prompt_message_contents.append(prompt_message)
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:

View File

@ -218,7 +218,7 @@ For instance, Xinference supports `max_tokens`, `temperature`, and `top_p` param
However, some vendors may support different parameters for different models. For example, the `OpenLLM` vendor supports `top_k`, but not all models provided by this vendor support `top_k`. Let's say model A supports `top_k` but model B does not. In such cases, we need to dynamically generate the model parameter schema, as illustrated below:
```python
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -205,7 +205,7 @@ provider_credential_schema:
但是有的供应商根据不同的模型支持不同的参数,如供应商`OpenLLM`支持`top_k`,但是并不是这个供应商提供的所有模型都支持`top_k`我们这里举例A模型支持`top_k`B模型不支持`top_k`那么我们需要在这里动态生成模型参数的Schema如下所示
```python
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -1,3 +1,4 @@
- claude-3-5-sonnet-20241022
- claude-3-5-sonnet-20240620
- claude-3-haiku-20240307
- claude-3-opus-20240229

View File

@ -0,0 +1,39 @@
model: claude-3-5-sonnet-20241022
label:
en_US: claude-3-5-sonnet-20241022
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true
default: 8192
min: 1
max: 8192
- name: response_format
use_template: response_format
pricing:
input: '3.00'
output: '15.00'
unit: '0.000001'
currency: USD

View File

@ -294,7 +294,7 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Used to define customizable model schema
"""

View File

@ -148,7 +148,7 @@ class AzureRerankModel(RerankModel):
InvokeBadRequestError: [InvokeBadRequestError, KeyError, ValueError, json.JSONDecodeError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -0,0 +1,60 @@
model: anthropic.claude-3-5-sonnet-20241022-v2:0
label:
en_US: Claude 3.5 Sonnet V2
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,60 @@
model: eu.anthropic.claude-3-5-sonnet-20241022-v2:0
label:
en_US: Claude 3.5 Sonnet V2(EU.Cross Region Inference)
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,60 @@
model: us.anthropic.claude-3-5-sonnet-20241022-v2:0
label:
en_US: Claude 3.5 Sonnet V2(US.Cross Region Inference)
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -118,7 +118,7 @@ class HuggingfaceTeiRerankModel(RerankModel):
InvokeBadRequestError: [InvokeBadRequestError, KeyError, ValueError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -189,7 +189,7 @@ class HuggingfaceTeiTextEmbeddingModel(TextEmbeddingModel):
return usage
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -1,5 +1,5 @@
from collections.abc import Generator
from typing import cast
from typing import Optional, cast
from httpx import Timeout
from openai import (
@ -212,7 +212,7 @@ class LocalAILanguageModel(LargeLanguageModel):
except Exception as ex:
raise CredentialsValidateFailedError(f"Invalid credentials {str(ex)}")
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
completion_model = None
if credentials["completion_type"] == "chat_completion":
completion_model = LLMMode.CHAT.value

View File

@ -73,7 +73,7 @@ class LocalAISpeech2text(Speech2TextModel):
InvokeBadRequestError: [InvokeBadRequestError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -115,7 +115,7 @@ class LocalAITextEmbeddingModel(TextEmbeddingModel):
num_tokens += self._get_num_tokens_by_gpt2(text)
return num_tokens
def _get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def _get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Get customizable model schema

View File

@ -50,7 +50,7 @@ class MoonshotLargeLanguageModel(OAIAPICompatLargeLanguageModel):
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
return AIModelEntity(
model=model,
label=I18nObject(en_US=model, zh_Hans=model),

View File

@ -61,7 +61,7 @@ class OpenAISpeech2TextModel(_CommonOpenAI, Speech2TextModel):
return response.text
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -62,7 +62,7 @@ class OAICompatSpeech2TextModel(_CommonOaiApiCompat, Speech2TextModel):
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -1,4 +1,5 @@
from collections.abc import Generator
from typing import Optional
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
@ -193,7 +194,7 @@ class OpenLLMLargeLanguageModel(LargeLanguageModel):
),
)
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -408,7 +408,7 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
InvokeBadRequestError: [InvokeBadRequestError, KeyError, ValueError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -157,7 +157,7 @@ class SageMakerRerankModel(RerankModel):
InvokeBadRequestError: [InvokeBadRequestError, KeyError, ValueError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -111,7 +111,7 @@ class SageMakerSpeech2TextModel(Speech2TextModel):
InvokeBadRequestError: [InvokeBadRequestError, KeyError, ValueError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -180,7 +180,7 @@ class SageMakerEmbeddingModel(TextEmbeddingModel):
InvokeBadRequestError: [KeyError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -159,7 +159,7 @@ class SageMakerText2SpeechModel(TTSModel):
return self._tts_invoke_streaming(model_type, payload, sagemaker_endpoint)
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -40,7 +40,7 @@ class SiliconflowLargeLanguageModel(OAIAPICompatLargeLanguageModel):
credentials["mode"] = "chat"
credentials["endpoint_url"] = "https://api.siliconflow.cn/v1"
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
return AIModelEntity(
model=model,
label=I18nObject(en_US=model, zh_Hans=model),

View File

@ -50,7 +50,7 @@ class StepfunLargeLanguageModel(OAIAPICompatLargeLanguageModel):
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
return AIModelEntity(
model=model,
label=I18nObject(en_US=model, zh_Hans=model),

View File

@ -535,7 +535,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Architecture for defining customizable models

View File

@ -76,3 +76,4 @@ pricing:
output: '0.12'
unit: '0.001'
currency: RMB
deprecated: true

View File

@ -10,7 +10,7 @@ features:
- stream-tool-call
model_properties:
mode: chat
context_size: 8000
context_size: 32000
parameter_rules:
- name: temperature
use_template: temperature
@ -26,7 +26,7 @@ parameter_rules:
type: int
default: 2000
min: 1
max: 2000
max: 8192
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.

View File

@ -10,7 +10,7 @@ features:
- stream-tool-call
model_properties:
mode: chat
context_size: 131072
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature

View File

@ -10,7 +10,7 @@ features:
- stream-tool-call
model_properties:
mode: chat
context_size: 8000
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
@ -26,7 +26,7 @@ parameter_rules:
type: int
default: 2000
min: 1
max: 2000
max: 8192
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.

View File

@ -1,4 +1,5 @@
from collections.abc import Generator
from typing import Optional
from httpx import Response, post
from yarl import URL
@ -109,7 +110,7 @@ class TritonInferenceAILargeLanguageModel(LargeLanguageModel):
raise NotImplementedError(f"PromptMessage type {type(item)} is not supported")
return text
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -0,0 +1,55 @@
model: claude-3-5-sonnet-v2@20241022
label:
en_US: Claude 3.5 Sonnet v2
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -1,5 +1,6 @@
import logging
from collections.abc import Generator
from typing import Optional
from volcenginesdkarkruntime.types.chat import ChatCompletion, ChatCompletionChunk
@ -298,7 +299,7 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
chunks = client.stream_chat(prompt_messages, **req_params)
return _handle_stream_chat_response(chunks)
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -1,5 +1,5 @@
from collections.abc import Generator, Iterator
from typing import cast
from typing import Optional, cast
from openai import (
APIConnectionError,
@ -321,7 +321,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
return message_dict
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -142,7 +142,7 @@ class XinferenceRerankModel(RerankModel):
InvokeBadRequestError: [InvokeBadRequestError, KeyError, ValueError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -129,7 +129,7 @@ class XinferenceSpeech2TextModel(Speech2TextModel):
return response["text"]
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -184,7 +184,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
return usage
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -116,7 +116,7 @@ class XinferenceText2SpeechModel(TTSModel):
"""
return self._tts_invoke_streaming(model, credentials, content_text, voice)
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -33,7 +33,7 @@ class PromptTemplateParser:
key = match.group(1)
value = inputs.get(key, match.group(0)) # return original matched string if key not found
if remove_template_variables:
if remove_template_variables and isinstance(value, str):
return PromptTemplateParser.remove_template_variables(value, self.with_variable_tmpl)
return value

View File

@ -428,14 +428,13 @@ class QdrantVectorFactory(AbstractVectorFactory):
if not dataset.index_struct_dict:
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.QDRANT, collection_name))
config = current_app.config
return QdrantVector(
collection_name=collection_name,
group_id=dataset.id,
config=QdrantConfig(
endpoint=dify_config.QDRANT_URL,
api_key=dify_config.QDRANT_API_KEY,
root_path=config.root_path,
root_path=current_app.config.root_path,
timeout=dify_config.QDRANT_CLIENT_TIMEOUT,
grpc_port=dify_config.QDRANT_GRPC_PORT,
prefer_grpc=dify_config.QDRANT_GRPC_ENABLED,

View File

@ -0,0 +1,129 @@
import json
from typing import Any
from uuid import uuid4
from pydantic import BaseModel, model_validator
from upstash_vector import Index, Vector
from configs import dify_config
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.embedding.embedding_base import Embeddings
from core.rag.models.document import Document
from models.dataset import Dataset
class UpstashVectorConfig(BaseModel):
url: str
token: str
@model_validator(mode="before")
@classmethod
def validate_config(cls, values: dict) -> dict:
if not values["url"]:
raise ValueError("Upstash URL is required")
if not values["token"]:
raise ValueError("Upstash Token is required")
return values
class UpstashVector(BaseVector):
def __init__(self, collection_name: str, config: UpstashVectorConfig):
super().__init__(collection_name)
self._table_name = collection_name
self.index = Index(url=config.url, token=config.token)
def _get_index_dimension(self) -> int:
index_info = self.index.info()
if index_info and index_info.dimension:
return index_info.dimension
else:
return 1536
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
self.add_texts(texts, embeddings)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
vectors = [
Vector(
id=str(uuid4()),
vector=embedding,
metadata=doc.metadata,
data=doc.page_content,
)
for doc, embedding in zip(documents, embeddings)
]
self.index.upsert(vectors=vectors)
def text_exists(self, id: str) -> bool:
response = self.get_ids_by_metadata_field("doc_id", id)
return len(response) > 0
def delete_by_ids(self, ids: list[str]) -> None:
item_ids = []
for doc_id in ids:
ids = self.get_ids_by_metadata_field("doc_id", doc_id)
if id:
item_ids += ids
self._delete_by_ids(ids=item_ids)
def _delete_by_ids(self, ids: list[str]) -> None:
if ids:
self.index.delete(ids=ids)
def get_ids_by_metadata_field(self, key: str, value: str) -> list[str]:
query_result = self.index.query(
vector=[1.001 * i for i in range(self._get_index_dimension())],
include_metadata=True,
top_k=1000,
filter=f"{key} = '{value}'",
)
return [result.id for result in query_result]
def delete_by_metadata_field(self, key: str, value: str) -> None:
ids = self.get_ids_by_metadata_field(key, value)
if ids:
self._delete_by_ids(ids)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4)
result = self.index.query(vector=query_vector, top_k=top_k, include_metadata=True, include_data=True)
docs = []
score_threshold = float(kwargs.get("score_threshold") or 0.0)
for record in result:
metadata = record.metadata
text = record.data
score = record.score
metadata["score"] = score
if score > score_threshold:
docs.append(Document(page_content=text, metadata=metadata))
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
return []
def delete(self) -> None:
self.index.reset()
def get_type(self) -> str:
return VectorType.UPSTASH
class UpstashVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> UpstashVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix.lower()
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.UPSTASH, collection_name))
return UpstashVector(
collection_name=collection_name,
config=UpstashVectorConfig(
url=dify_config.UPSTASH_VECTOR_URL,
token=dify_config.UPSTASH_VECTOR_TOKEN,
),
)

View File

@ -111,6 +111,10 @@ class Vector:
from core.rag.datasource.vdb.vikingdb.vikingdb_vector import VikingDBVectorFactory
return VikingDBVectorFactory
case VectorType.UPSTASH:
from core.rag.datasource.vdb.upstash.upstash_vector import UpstashVectorFactory
return UpstashVectorFactory
case _:
raise ValueError(f"Vector store {vector_type} is not supported.")

View File

@ -18,3 +18,4 @@ class VectorType(str, Enum):
ELASTICSEARCH = "elasticsearch"
BAIDU = "baidu"
VIKINGDB = "vikingdb"
UPSTASH = "upstash"

View File

@ -21,6 +21,7 @@ from core.rag.extractor.unstructured.unstructured_eml_extractor import Unstructu
from core.rag.extractor.unstructured.unstructured_epub_extractor import UnstructuredEpubExtractor
from core.rag.extractor.unstructured.unstructured_markdown_extractor import UnstructuredMarkdownExtractor
from core.rag.extractor.unstructured.unstructured_msg_extractor import UnstructuredMsgExtractor
from core.rag.extractor.unstructured.unstructured_pdf_extractor import UnstructuredPDFExtractor
from core.rag.extractor.unstructured.unstructured_ppt_extractor import UnstructuredPPTExtractor
from core.rag.extractor.unstructured.unstructured_pptx_extractor import UnstructuredPPTXExtractor
from core.rag.extractor.unstructured.unstructured_text_extractor import UnstructuredTextExtractor
@ -102,10 +103,10 @@ class ExtractProcessor:
if file_extension in {".xlsx", ".xls"}:
extractor = ExcelExtractor(file_path)
elif file_extension == ".pdf":
extractor = PdfExtractor(file_path)
extractor = UnstructuredPDFExtractor(file_path, unstructured_api_url, unstructured_api_key)
elif file_extension in {".md", ".markdown"}:
extractor = (
UnstructuredMarkdownExtractor(file_path, unstructured_api_url)
UnstructuredMarkdownExtractor(file_path, unstructured_api_url, unstructured_api_key)
if is_automatic
else MarkdownExtractor(file_path, autodetect_encoding=True)
)
@ -116,17 +117,17 @@ class ExtractProcessor:
elif file_extension == ".csv":
extractor = CSVExtractor(file_path, autodetect_encoding=True)
elif file_extension == ".msg":
extractor = UnstructuredMsgExtractor(file_path, unstructured_api_url)
extractor = UnstructuredMsgExtractor(file_path, unstructured_api_url, unstructured_api_key)
elif file_extension == ".eml":
extractor = UnstructuredEmailExtractor(file_path, unstructured_api_url)
extractor = UnstructuredEmailExtractor(file_path, unstructured_api_url, unstructured_api_key)
elif file_extension == ".ppt":
extractor = UnstructuredPPTExtractor(file_path, unstructured_api_url, unstructured_api_key)
elif file_extension == ".pptx":
extractor = UnstructuredPPTXExtractor(file_path, unstructured_api_url)
extractor = UnstructuredPPTXExtractor(file_path, unstructured_api_url, unstructured_api_key)
elif file_extension == ".xml":
extractor = UnstructuredXmlExtractor(file_path, unstructured_api_url)
extractor = UnstructuredXmlExtractor(file_path, unstructured_api_url, unstructured_api_key)
elif file_extension == ".epub":
extractor = UnstructuredEpubExtractor(file_path, unstructured_api_url)
extractor = UnstructuredEpubExtractor(file_path, unstructured_api_url, unstructured_api_key)
else:
# txt
extractor = (

View File

@ -10,24 +10,26 @@ logger = logging.getLogger(__name__)
class UnstructuredEmailExtractor(BaseExtractor):
"""Load msg files.
"""Load eml files.
Args:
file_path: Path to the file to load.
"""
def __init__(
self,
file_path: str,
api_url: str,
):
def __init__(self, file_path: str, api_url: str, api_key: str):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
self._api_key = api_key
def extract(self) -> list[Document]:
from unstructured.partition.email import partition_email
if self._api_url:
from unstructured.partition.api import partition_via_api
elements = partition_email(filename=self._file_path)
elements = partition_via_api(filename=self._file_path, api_url=self._api_url, api_key=self._api_key)
else:
from unstructured.partition.email import partition_email
elements = partition_email(filename=self._file_path)
# noinspection PyBroadException
try:

View File

@ -19,15 +19,23 @@ class UnstructuredEpubExtractor(BaseExtractor):
self,
file_path: str,
api_url: Optional[str] = None,
api_key: Optional[str] = None,
):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
self._api_key = api_key
def extract(self) -> list[Document]:
from unstructured.partition.epub import partition_epub
if self._api_url:
from unstructured.partition.api import partition_via_api
elements = partition_via_api(filename=self._file_path, api_url=self._api_url, api_key=self._api_key)
else:
from unstructured.partition.epub import partition_epub
elements = partition_epub(filename=self._file_path, xml_keep_tags=True)
elements = partition_epub(filename=self._file_path, xml_keep_tags=True)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=2000)

View File

@ -24,19 +24,21 @@ class UnstructuredMarkdownExtractor(BaseExtractor):
if the specified encoding fails.
"""
def __init__(
self,
file_path: str,
api_url: str,
):
def __init__(self, file_path: str, api_url: str, api_key: str):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
self._api_key = api_key
def extract(self) -> list[Document]:
from unstructured.partition.md import partition_md
if self._api_url:
from unstructured.partition.api import partition_via_api
elements = partition_md(filename=self._file_path)
elements = partition_via_api(filename=self._file_path, api_url=self._api_url, api_key=self._api_key)
else:
from unstructured.partition.md import partition_md
elements = partition_md(filename=self._file_path)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=2000)

View File

@ -14,15 +14,21 @@ class UnstructuredMsgExtractor(BaseExtractor):
file_path: Path to the file to load.
"""
def __init__(self, file_path: str, api_url: str):
def __init__(self, file_path: str, api_url: str, api_key: str):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
self._api_key = api_key
def extract(self) -> list[Document]:
from unstructured.partition.msg import partition_msg
if self._api_url:
from unstructured.partition.api import partition_via_api
elements = partition_msg(filename=self._file_path)
elements = partition_via_api(filename=self._file_path, api_url=self._api_url, api_key=self._api_key)
else:
from unstructured.partition.msg import partition_msg
elements = partition_msg(filename=self._file_path)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=2000)

View File

@ -0,0 +1,47 @@
import logging
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredPDFExtractor(BaseExtractor):
"""Load pdf files.
Args:
file_path: Path to the file to load.
api_url: Unstructured API URL
api_key: Unstructured API Key
"""
def __init__(self, file_path: str, api_url: str, api_key: str):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
self._api_key = api_key
def extract(self) -> list[Document]:
if self._api_url:
from unstructured.partition.api import partition_via_api
elements = partition_via_api(
filename=self._file_path, api_url=self._api_url, api_key=self._api_key, strategy="auto"
)
else:
from unstructured.partition.pdf import partition_pdf
elements = partition_pdf(filename=self._file_path, strategy="auto")
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=2000)
documents = []
for chunk in chunks:
text = chunk.text.strip()
documents.append(Document(page_content=text))
return documents

View File

@ -7,7 +7,7 @@ logger = logging.getLogger(__name__)
class UnstructuredPPTExtractor(BaseExtractor):
"""Load msg files.
"""Load ppt files.
Args:
@ -21,9 +21,12 @@ class UnstructuredPPTExtractor(BaseExtractor):
self._api_key = api_key
def extract(self) -> list[Document]:
from unstructured.partition.api import partition_via_api
if self._api_url:
from unstructured.partition.api import partition_via_api
elements = partition_via_api(filename=self._file_path, api_url=self._api_url, api_key=self._api_key)
elements = partition_via_api(filename=self._file_path, api_url=self._api_url, api_key=self._api_key)
else:
raise NotImplementedError("Unstructured API Url is not configured")
text_by_page = {}
for element in elements:
page = element.metadata.page_number

View File

@ -7,22 +7,28 @@ logger = logging.getLogger(__name__)
class UnstructuredPPTXExtractor(BaseExtractor):
"""Load msg files.
"""Load pptx files.
Args:
file_path: Path to the file to load.
"""
def __init__(self, file_path: str, api_url: str):
def __init__(self, file_path: str, api_url: str, api_key: str):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
self._api_key = api_key
def extract(self) -> list[Document]:
from unstructured.partition.pptx import partition_pptx
if self._api_url:
from unstructured.partition.api import partition_via_api
elements = partition_pptx(filename=self._file_path)
elements = partition_via_api(filename=self._file_path, api_url=self._api_url, api_key=self._api_key)
else:
from unstructured.partition.pptx import partition_pptx
elements = partition_pptx(filename=self._file_path)
text_by_page = {}
for element in elements:
page = element.metadata.page_number

View File

@ -7,22 +7,29 @@ logger = logging.getLogger(__name__)
class UnstructuredXmlExtractor(BaseExtractor):
"""Load msg files.
"""Load xml files.
Args:
file_path: Path to the file to load.
"""
def __init__(self, file_path: str, api_url: str):
def __init__(self, file_path: str, api_url: str, api_key: str):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
self._api_key = api_key
def extract(self) -> list[Document]:
from unstructured.partition.xml import partition_xml
if self._api_url:
from unstructured.partition.api import partition_via_api
elements = partition_via_api(filename=self._file_path, api_url=self._api_url, api_key=self._api_key)
else:
from unstructured.partition.xml import partition_xml
elements = partition_xml(filename=self._file_path, xml_keep_tags=True)
elements = partition_xml(filename=self._file_path, xml_keep_tags=True)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=2000)

View File

@ -18,6 +18,7 @@ from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
from extensions.ext_database import db
from extensions.ext_storage import storage
from models.enums import CreatedByRole
from models.model import UploadFile
logger = logging.getLogger(__name__)
@ -109,9 +110,10 @@ class WordExtractor(BaseExtractor):
key=file_key,
name=file_key,
size=0,
extension=image_ext,
mime_type=mime_type,
extension=str(image_ext),
mime_type=mime_type or "",
created_by=self.user_id,
created_by_role=CreatedByRole.ACCOUNT,
created_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
used=True,
used_by=self.user_id,

View File

@ -37,7 +37,7 @@ parameters:
- value: mixtral-8x7b
label:
en_US: Mixtral
default: gpt-3.5
default: gpt-4o-mini
label:
en_US: Choose Model
zh_Hans: 选择模型

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 KiB

View File

@ -1,47 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="240px" height="240px" viewBox="0 0 240 240" enable-background="new 0 0 240 240" xml:space="preserve"> <image id="image0" width="240" height="240" x="0" y="0"
xlink:href="
AAB1MAAA6mAAADqYAAAXcJy6UTwAAAINUExURQAAAJ9g6qNg6qRd6KNe6aVg6J9g6p9g359a6qRd
66Ne66Re66Rd66Rd66Re7Z9g559g76Ne7aRe6qJd76Fe66Ne66Re66Vd7KNc6aRe66Nd66Re7KRd
66Nc6p9g36Re7KRf7KRe7KNe7KNc76Va6qVd66Ne66Re66Nd6qRb6KRe66Zd66Ve7KJd6aNe66Fe
7KRd6p9Y56Re66Je6qRb6qNe66Re7KNc56Jf6qNe6qRe6qFe6KNe6qRf66Rf66Ne7KNe6qRe6qRd
66Rd7KFe6aNc6qNe6qJd7Z9b6KNd659Z7KNd66Ne6aRe66Re7KNc66Nd66Ne66Jd6qNe6qNc6aJd
6qNd6qRe66Jd7KFe6qJe66Re6qNe66Jd66Jd6aRd6qRd66Va759V6qVd6qFe56Ne6KJd6KRe66Zj
67eB79Gu9eLM+OjX+uXS+dSz9bJ37s6p9LV87q9y7de49vn1/f///9q99qlo7NGu9Kxt7d/H+Pz5
/vz6/qdj68CQ8e7h+/Pq/Maa8rqG8NzC9/Pr/Myk8+DH+OXR+cyk9Pn1/ujW+u3g+7iB7+vc+r2L
8N3C9//+//bw/cmf87uG8OPM+ebR+axt7Muk8/Dm/Mif8/n0/c+p9MOV8fHm++7g+/n0/vbv/bqG
78CQ8Kxu7cCR8ePM+LqH8MCP8bV87+LM+bqF8Muk9OLL+NSy9bqF75VHsr4AAABndFJOUwAYSHCA
WDAQMJfn57+PVyAQb98/gO/mllDPr1/ebwiHn+6eLzCvf/63OL4/xkfOT58g9odfZ65Aj3fHT2+X
j3f3z7efgEjPRzi3KKd/7sZAv+6fri+P3rY3X77G5j9oxn4fGGCAbzcMFjqxAAAAAWJLR0R1qGqY
+wAAAAd0SU1FB+gGDQkfBmABjhYAAAXYSURBVHja7d35WxtFGAfwbUGDtRWKilAwFg+2VHtwqa31
qlfV1qta7/vYkDQhJFnTliQWhFYoDaVY8ECw3vffaHgefZ5CZvbZIbMz83a/35/ngfkwx+5m3iyW
hSAIgiAIgiAIgiAIgiAIQjAbNtbVa0vdNRuvjSjlNly3ydGd6zdvuaFRDbdpa7Nu7f9p3nJjU/De
m27W7bwyLbcEbW5t021cm7atQc7thm26fYw01wdHbjdmAa9Kx61NwXijt+mm8dLWHgi5cbtuGDed
t98RAPjOu3S7PBLEIBsNdjq7pIvNBjv2ju5wgR17593hAjvOPbtCBnZ27wkZWK6YAljqOqYAlrpX
kwA79t6ecIGd3r6mcIGdjv6QgaUtYypgaZOaDFjWpKYDlrRT0wE7LQMhA9v3yvgEhBBYziqmBJay
iimBpQwxKbDdFw0X2Nl8X8jAEuY0LbB9f80H58TAtT9C0AJLmNPEwL37QgaufRFTA29rCBfY2V/r
OQQ18O4HQgau+aGYGrjzQMjAdhfAVzm41idEcuBa7zwANjwAAwwwwKQCcIDg2GA8cXx1kqnBGK/5
UHpta16SqWETwZlszq1O7tMhZuv8CVZrXnKpk8aBh05xOptgDY+Y13VHsj7FysB8QSFerG5e+kzI
67qnRw0DDye4fT0+Vv3nyQp6XffzjFng0XH+Apyoaj10Rhh8dtAs8BeT3K4W0lWtx6aEwedKlMHT
Z4XB58tmgUvnuF0dr95vMjPC4IS/a7EysAeB1dV0QdB7IZs3C8zftWYvMloLz2nGVq8ZXJyYZfZ0
Ms4cmjmxbcvvZVjpvfTcl9UbV+FSmXMzPTwz6ZtbuDTntxNqn5bmp+dWZ3reo3VmzmemMzHfXcDj
IcAAA0wqAAMMMMCkAjDAAANMKgADDDDApAIwwBLB+XI6vjrp0kmB1rx4/RSN4PwC67BlfCHPbB0r
nRc4ePjq67zPXqgD82oeCuzqjIuzAl7X/eaET7E68ASvxiP3LaPGQ/BoiXyNRzEl6DXvuNSjxoNx
IB66Go91lDyErsbDNPDidyGb0h5jxqjxKMbp13hw5/RkmnGcLXxZWvI3o1XeeMSXmT0dSbGGpjjx
vZB3mV0pohPs5EeXLlTPxNOcW8viIqM1N7wbVK3gCvnywtrb/h/4RR4CDw+L/gpLlYNNCMAAAwww
qQAMMMAAkwrAAAMMMKkADDDAAJMKwIGCfxwcW5OMUGte/H9KqxIcKyerD4xyyZ+K7ObTP/s/Xiok
fzEPnE+zqzZy7OqMskhNC+dLyHrB3BKAcVZ1hkeFBDvGfWHaQ8D6SvyE2ItaXHckXvTVD0MPxNfx
0gPTDsQ96q6uztdaeNR4uPGq1ut5ccmvZoE9ypYYO+xvvwuDp/4wC+xRw8CoVlhHYZppLx/il6kU
WDUPpSVB8PKf/vqh7jrM3XjZLxDjVITwwq4U0Qp2MlmWYWSG84o4IfFyat5nL5Q+PAynT02tTiJ1
Oea/NS9//f2P7xd54PEQYIABJhWAAQYYYFIBWDSN23UTFIM3PKiboBgceUg3QTHYevgR3QbF4IFN
ug2Kwa2P6jYoBncf1G1QDO55TLdBMTj6OKldS8I/5G1v1o1QDKa1iCWAad16SADTmtMywKTmtAww
qX1aBth6Yr9uhmIwpW1LCtja86Ruh2IwoSGWA7aeIrOKJYGjXb26JWrB1qGndUsUg63+Dt0UxeBI
H41JLQ1sPfOsbotiMJGdWiKYxjKWCY4eaNHNUQu2IoeP6PaoBVMQywUTEEsGW5F9hq9j2eDK1ek5
WzdKLdg6tMNkcQBgsxey3ReVDras51+wdcO44K4AvCuD/KKh5I7+QMCW1fCSkWT76MsBgQ0lHzks
f8+6gvzKMcPI9quvBeitJPL6GyYNs/3mrmC9K+kZOPqWbQba3vl28N6VRBve2ftuRW1rhFd+97H3
3lfj/S8fdLd+WFevKx99/EkQdxwIgiAIgiAIgiAIgiAIgiBB519+T+5Fl+ldNwAAACV0RVh0ZGF0
ZTpjcmVhdGUAMjAyNC0wNi0xM1QwOTozMTowNiswMDowMPHqs70AAAAldEVYdGRhdGU6bW9kaWZ5
ADIwMjQtMDYtMTNUMDk6MzE6MDYrMDA6MDCAtwsBAAAAKHRFWHRkYXRlOnRpbWVzdGFtcAAyMDI0
LTA2LTEzVDA5OjMxOjA2KzAwOjAw16Iq3gAAAABJRU5ErkJggg==" />
</svg>

Before

Width:  |  Height:  |  Size: 3.7 KiB

View File

@ -1,8 +1,7 @@
from core.tools.provider.builtin.feishu_base.tools.get_tenant_access_token import GetTenantAccessTokenTool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
from core.tools.utils.feishu_api_utils import auth
class FeishuBaseProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
GetTenantAccessTokenTool()
pass
auth(credentials)

View File

@ -5,10 +5,32 @@ identity:
en_US: Feishu Base
zh_Hans: 飞书多维表格
description:
en_US: Feishu Base
zh_Hans: 飞书多维表格
icon: icon.svg
en_US: |
Feishu base, requires the following permissions: bitable:app.
zh_Hans: |
飞书多维表格,需要开通以下权限: bitable:app。
icon: icon.png
tags:
- social
- productivity
credentials_for_provider:
app_id:
type: text-input
required: true
label:
en_US: APP ID
placeholder:
en_US: Please input your feishu app id
zh_Hans: 请输入你的飞书 app id
help:
en_US: Get your app_id and app_secret from Feishu
zh_Hans: 从飞书获取您的 app_id 和 app_secret
url: https://open.larkoffice.com/app
app_secret:
type: secret-input
required: true
label:
en_US: APP Secret
placeholder:
en_US: Please input your app secret
zh_Hans: 请输入你的飞书 app secret

View File

@ -1,56 +0,0 @@
import json
from typing import Any, Union
import httpx
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class AddBaseRecordTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
url = "https://open.feishu.cn/open-apis/bitable/v1/apps/{app_token}/tables/{table_id}/records"
access_token = tool_parameters.get("Authorization", "")
if not access_token:
return self.create_text_message("Invalid parameter access_token")
app_token = tool_parameters.get("app_token", "")
if not app_token:
return self.create_text_message("Invalid parameter app_token")
table_id = tool_parameters.get("table_id", "")
if not table_id:
return self.create_text_message("Invalid parameter table_id")
fields = tool_parameters.get("fields", "")
if not fields:
return self.create_text_message("Invalid parameter fields")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {access_token}",
}
params = {}
payload = {"fields": json.loads(fields)}
try:
res = httpx.post(
url.format(app_token=app_token, table_id=table_id),
headers=headers,
params=params,
json=payload,
timeout=30,
)
res_json = res.json()
if res.is_success:
return self.create_text_message(text=json.dumps(res_json))
else:
return self.create_text_message(
f"Failed to add base record, status code: {res.status_code}, response: {res.text}"
)
except Exception as e:
return self.create_text_message("Failed to add base record. {}".format(e))

View File

@ -1,66 +0,0 @@
identity:
name: add_base_record
author: Doug Lea
label:
en_US: Add Base Record
zh_Hans: 在多维表格数据表中新增一条记录
description:
human:
en_US: Add Base Record
zh_Hans: |
在多维表格数据表中新增一条记录详细请参考https://open.larkoffice.com/document/server-docs/docs/bitable-v1/app-table-record/create
llm: Add a new record in the multidimensional table data table.
parameters:
- name: Authorization
type: string
required: true
label:
en_US: token
zh_Hans: 凭证
human_description:
en_US: API access token parameter, tenant_access_token or user_access_token
zh_Hans: API 的访问凭证参数tenant_access_token 或 user_access_token
llm_description: API access token parameter, tenant_access_token or user_access_token
form: llm
- name: app_token
type: string
required: true
label:
en_US: app_token
zh_Hans: 多维表格
human_description:
en_US: bitable app token
zh_Hans: 多维表格的唯一标识符 app_token
llm_description: bitable app token
form: llm
- name: table_id
type: string
required: true
label:
en_US: table_id
zh_Hans: 多维表格的数据表
human_description:
en_US: bitable table id
zh_Hans: 多维表格数据表的唯一标识符 table_id
llm_description: bitable table id
form: llm
- name: fields
type: string
required: true
label:
en_US: fields
zh_Hans: 数据表的列字段内容
human_description:
en_US: The fields of the Base data table are the columns of the data table.
zh_Hans: |
要增加一行多维表格记录,字段结构拼接如下:{"多行文本":"多行文本内容","单选":"选项1","多选":["选项1","选项2"],"复选框":true,"人员":[{"id":"ou_2910013f1e6456f16a0ce75ede950a0a"}],"群组":[{"id":"oc_cd07f55f14d6f4a4f1b51504e7e97f48"}],"电话号码":"13026162666"}
当前接口支持的字段类型为:多行文本、单选、条码、多选、日期、人员、附件、复选框、超链接、数字、单向关联、双向关联、电话号码、地理位置。
不同类型字段的数据结构请参考数据结构概述https://open.larkoffice.com/document/server-docs/docs/bitable-v1/bitable-structure
llm_description: |
要增加一行多维表格记录,字段结构拼接如下:{"多行文本":"多行文本内容","单选":"选项1","多选":["选项1","选项2"],"复选框":true,"人员":[{"id":"ou_2910013f1e6456f16a0ce75ede950a0a"}],"群组":[{"id":"oc_cd07f55f14d6f4a4f1b51504e7e97f48"}],"电话号码":"13026162666"}
当前接口支持的字段类型为:多行文本、单选、条码、多选、日期、人员、附件、复选框、超链接、数字、单向关联、双向关联、电话号码、地理位置。
不同类型字段的数据结构请参考数据结构概述https://open.larkoffice.com/document/server-docs/docs/bitable-v1/bitable-structure
form: llm

View File

@ -0,0 +1,21 @@
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class AddRecordsTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
app_token = tool_parameters.get("app_token")
table_id = tool_parameters.get("table_id")
table_name = tool_parameters.get("table_name")
records = tool_parameters.get("records")
user_id_type = tool_parameters.get("user_id_type", "open_id")
res = client.add_records(app_token, table_id, table_name, records, user_id_type)
return self.create_json_message(res)

View File

@ -0,0 +1,91 @@
identity:
name: add_records
author: Doug Lea
label:
en_US: Add Records
zh_Hans: 新增多条记录
description:
human:
en_US: Add Multiple Records to Multidimensional Table
zh_Hans: 在多维表格数据表中新增多条记录
llm: A tool for adding multiple records to a multidimensional table. (在多维表格数据表中新增多条记录)
parameters:
- name: app_token
type: string
required: true
label:
en_US: app_token
zh_Hans: app_token
human_description:
en_US: Unique identifier for the multidimensional table, supports inputting document URL.
zh_Hans: 多维表格的唯一标识符,支持输入文档 URL。
llm_description: 多维表格的唯一标识符,支持输入文档 URL。
form: llm
- name: table_id
type: string
required: false
label:
en_US: table_id
zh_Hans: table_id
human_description:
en_US: Unique identifier for the multidimensional table data, either table_id or table_name must be provided, cannot be empty simultaneously.
zh_Hans: 多维表格数据表的唯一标识符table_id 和 table_name 至少需要提供一个,不能同时为空。
llm_description: 多维表格数据表的唯一标识符table_id 和 table_name 至少需要提供一个,不能同时为空。
form: llm
- name: table_name
type: string
required: false
label:
en_US: table_name
zh_Hans: table_name
human_description:
en_US: Name of the multidimensional table data, either table_name or table_id must be provided, cannot be empty simultaneously.
zh_Hans: 多维表格数据表的名称table_name 和 table_id 至少需要提供一个,不能同时为空。
llm_description: 多维表格数据表的名称table_name 和 table_id 至少需要提供一个,不能同时为空。
form: llm
- name: records
type: string
required: true
label:
en_US: records
zh_Hans: 记录列表
human_description:
en_US: |
List of records to be added in this request. Example value: [{"multi-line-text":"text content","single_select":"option 1","date":1674206443000}]
For supported field types, refer to the integration guide (https://open.larkoffice.com/document/server-docs/docs/bitable-v1/notification). For data structures of different field types, refer to the data structure overview (https://open.larkoffice.com/document/server-docs/docs/bitable-v1/bitable-structure).
zh_Hans: |
本次请求将要新增的记录列表,示例值:[{"多行文本":"文本内容","单选":"选项 1","日期":1674206443000}]。
当前接口支持的字段类型请参考接入指南(https://open.larkoffice.com/document/server-docs/docs/bitable-v1/notification),不同类型字段的数据结构请参考数据结构概述(https://open.larkoffice.com/document/server-docs/docs/bitable-v1/bitable-structure)。
llm_description: |
本次请求将要新增的记录列表,示例值:[{"多行文本":"文本内容","单选":"选项 1","日期":1674206443000}]。
当前接口支持的字段类型请参考接入指南(https://open.larkoffice.com/document/server-docs/docs/bitable-v1/notification),不同类型字段的数据结构请参考数据结构概述(https://open.larkoffice.com/document/server-docs/docs/bitable-v1/bitable-structure)。
form: llm
- name: user_id_type
type: select
required: false
options:
- value: open_id
label:
en_US: open_id
zh_Hans: open_id
- value: union_id
label:
en_US: union_id
zh_Hans: union_id
- value: user_id
label:
en_US: user_id
zh_Hans: user_id
default: "open_id"
label:
en_US: user_id_type
zh_Hans: 用户 ID 类型
human_description:
en_US: User ID type, optional values are open_id, union_id, user_id, with a default value of open_id.
zh_Hans: 用户 ID 类型,可选值有 open_id、union_id、user_id默认值为 open_id。
llm_description: 用户 ID 类型,可选值有 open_id、union_id、user_id默认值为 open_id。
form: form

View File

@ -1,41 +1,18 @@
import json
from typing import Any, Union
import httpx
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class CreateBaseTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
url = "https://open.feishu.cn/open-apis/bitable/v1/apps"
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
access_token = tool_parameters.get("Authorization", "")
if not access_token:
return self.create_text_message("Invalid parameter access_token")
name = tool_parameters.get("name")
folder_token = tool_parameters.get("folder_token")
name = tool_parameters.get("name", "")
folder_token = tool_parameters.get("folder_token", "")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {access_token}",
}
params = {}
payload = {"name": name, "folder_token": folder_token}
try:
res = httpx.post(url, headers=headers, params=params, json=payload, timeout=30)
res_json = res.json()
if res.is_success:
return self.create_text_message(text=json.dumps(res_json))
else:
return self.create_text_message(
f"Failed to create base, status code: {res.status_code}, response: {res.text}"
)
except Exception as e:
return self.create_text_message("Failed to create base. {}".format(e))
res = client.create_base(name, folder_token)
return self.create_json_message(res)

View File

@ -6,32 +6,21 @@ identity:
zh_Hans: 创建多维表格
description:
human:
en_US: Create base
en_US: Create Multidimensional Table in Specified Directory
zh_Hans: 在指定目录下创建多维表格
llm: A tool for create a multidimensional table in the specified directory.
llm: A tool for creating a multidimensional table in a specified directory. (在指定目录下创建多维表格)
parameters:
- name: Authorization
type: string
required: true
label:
en_US: token
zh_Hans: 凭证
human_description:
en_US: API access token parameter, tenant_access_token or user_access_token
zh_Hans: API 的访问凭证参数tenant_access_token 或 user_access_token
llm_description: API access token parameter, tenant_access_token or user_access_token
form: llm
- name: name
type: string
required: false
label:
en_US: name
zh_Hans: name
zh_Hans: 多维表格 App 名字
human_description:
en_US: Base App Name
zh_Hans: 多维表格App名字
llm_description: Base App Name
en_US: |
Name of the multidimensional table App. Example value: "A new multidimensional table".
zh_Hans: 多维表格 App 名字,示例值:"一篇新的多维表格"。
llm_description: 多维表格 App 名字,示例值:"一篇新的多维表格"。
form: llm
- name: folder_token
@ -39,9 +28,15 @@ parameters:
required: false
label:
en_US: folder_token
zh_Hans: 多维表格App归属文件夹
zh_Hans: 多维表格 App 归属文件夹
human_description:
en_US: Base App home folder. The default is empty, indicating that Base will be created in the cloud space root directory.
zh_Hans: 多维表格App归属文件夹。默认为空表示多维表格将被创建在云空间根目录。
llm_description: Base App home folder. The default is empty, indicating that Base will be created in the cloud space root directory.
en_US: |
Folder where the multidimensional table App belongs. Default is empty, meaning the table will be created in the root directory of the cloud space. Example values: Fa3sfoAgDlMZCcdcJy1cDFg8nJc or https://svi136aogf123.feishu.cn/drive/folder/Fa3sfoAgDlMZCcdcJy1cDFg8nJc.
The folder_token must be an existing folder and supports inputting folder token or folder URL.
zh_Hans: |
多维表格 App 归属文件夹。默认为空,表示多维表格将被创建在云空间根目录。示例值: Fa3sfoAgDlMZCcdcJy1cDFg8nJc 或者 https://svi136aogf123.feishu.cn/drive/folder/Fa3sfoAgDlMZCcdcJy1cDFg8nJc。
folder_token 必须是已存在的文件夹,支持输入文件夹 token 或者文件夹 URL。
llm_description: |
多维表格 App 归属文件夹。默认为空,表示多维表格将被创建在云空间根目录。示例值: Fa3sfoAgDlMZCcdcJy1cDFg8nJc 或者 https://svi136aogf123.feishu.cn/drive/folder/Fa3sfoAgDlMZCcdcJy1cDFg8nJc。
folder_token 必须是已存在的文件夹,支持输入文件夹 token 或者文件夹 URL。
form: llm

View File

@ -1,48 +0,0 @@
import json
from typing import Any, Union
import httpx
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class CreateBaseTableTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
url = "https://open.feishu.cn/open-apis/bitable/v1/apps/{app_token}/tables"
access_token = tool_parameters.get("Authorization", "")
if not access_token:
return self.create_text_message("Invalid parameter access_token")
app_token = tool_parameters.get("app_token", "")
if not app_token:
return self.create_text_message("Invalid parameter app_token")
name = tool_parameters.get("name", "")
fields = tool_parameters.get("fields", "")
if not fields:
return self.create_text_message("Invalid parameter fields")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {access_token}",
}
params = {}
payload = {"table": {"name": name, "fields": json.loads(fields)}}
try:
res = httpx.post(url.format(app_token=app_token), headers=headers, params=params, json=payload, timeout=30)
res_json = res.json()
if res.is_success:
return self.create_text_message(text=json.dumps(res_json))
else:
return self.create_text_message(
f"Failed to create base table, status code: {res.status_code}, response: {res.text}"
)
except Exception as e:
return self.create_text_message("Failed to create base table. {}".format(e))

View File

@ -1,106 +0,0 @@
identity:
name: create_base_table
author: Doug Lea
label:
en_US: Create Base Table
zh_Hans: 多维表格新增一个数据表
description:
human:
en_US: Create base table
zh_Hans: |
多维表格新增一个数据表详细请参考https://open.larkoffice.com/document/server-docs/docs/bitable-v1/app-table/create
llm: A tool for add a new data table to the multidimensional table.
parameters:
- name: Authorization
type: string
required: true
label:
en_US: token
zh_Hans: 凭证
human_description:
en_US: API access token parameter, tenant_access_token or user_access_token
zh_Hans: API 的访问凭证参数tenant_access_token 或 user_access_token
llm_description: API access token parameter, tenant_access_token or user_access_token
form: llm
- name: app_token
type: string
required: true
label:
en_US: app_token
zh_Hans: 多维表格
human_description:
en_US: bitable app token
zh_Hans: 多维表格的唯一标识符 app_token
llm_description: bitable app token
form: llm
- name: name
type: string
required: false
label:
en_US: name
zh_Hans: name
human_description:
en_US: Multidimensional table data table name
zh_Hans: 多维表格数据表名称
llm_description: Multidimensional table data table name
form: llm
- name: fields
type: string
required: true
label:
en_US: fields
zh_Hans: fields
human_description:
en_US: Initial fields of the data table
zh_Hans: |
数据表的初始字段,格式为:[{"field_name":"多行文本","type":1},{"field_name":"数字","type":2},{"field_name":"单选","type":3},{"field_name":"多选","type":4},{"field_name":"日期","type":5}]。
field_name字段名
type: 字段类型;可选值有
1多行文本
2数字
3单选
4多选
5日期
7复选框
11人员
13电话号码
15超链接
17附件
18单向关联
20公式
21双向关联
22地理位置
23群组
1001创建时间
1002最后更新时间
1003创建人
1004修改人
1005自动编号
llm_description: |
数据表的初始字段,格式为:[{"field_name":"多行文本","type":1},{"field_name":"数字","type":2},{"field_name":"单选","type":3},{"field_name":"多选","type":4},{"field_name":"日期","type":5}]。
field_name字段名
type: 字段类型;可选值有
1多行文本
2数字
3单选
4多选
5日期
7复选框
11人员
13电话号码
15超链接
17附件
18单向关联
20公式
21双向关联
22地理位置
23群组
1001创建时间
1002最后更新时间
1003创建人
1004修改人
1005自动编号
form: llm

View File

@ -0,0 +1,20 @@
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class CreateTableTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
app_token = tool_parameters.get("app_token")
table_name = tool_parameters.get("table_name")
default_view_name = tool_parameters.get("default_view_name")
fields = tool_parameters.get("fields")
res = client.create_table(app_token, table_name, default_view_name, fields)
return self.create_json_message(res)

Some files were not shown because too many files have changed in this diff Show More