Compare commits

...

139 Commits

Author SHA1 Message Date
de57af46c0 chore: update version to 0.10.2 in packaging and docker configurations (#9924) 2024-10-28 18:47:45 +08:00
badf9baf9b Fix/external api update (#9955) 2024-10-28 18:37:35 +08:00
adcd83f6a8 Docs: fix docs url (#9954) 2024-10-28 18:34:23 +08:00
81d4d8cea1 fix: separator change add too many backslash (#9949) 2024-10-28 18:01:33 +08:00
4da0b70694 feat(http-request-executor): enhance file handling in HTTP requests (#9944) 2024-10-28 17:51:01 +08:00
7056009b6a feat(tools): add Baidu translation tool (#9943) 2024-10-28 17:18:28 +08:00
ddb960ddfb feat: support Vectorizer can be used in workflow (#9932) 2024-10-28 16:52:57 +08:00
0ebd985672 feat: add models for gitee.ai (#9490) 2024-10-28 16:52:12 +08:00
c13dc62065 Modify and add jp translation (#9930) 2024-10-28 16:31:58 +08:00
705946cc40 fix: tool var type error (#9937) 2024-10-28 15:36:28 +08:00
aafa4a3c8b Remove invalid languages error (#9928)
Co-authored-by: crazywoola <427733928@qq.com>
2024-10-28 13:53:04 +08:00
af68084895 add document lock for multi-thread (#9873) 2024-10-28 13:52:35 +08:00
Joe
9633c5dab6 fix: enterprise create workspace (#9921) 2024-10-28 11:48:16 +08:00
aa11141660 feat: add stable-diffusion-3-5-large for the text-to-image tool with siliconflow (#9909) 2024-10-27 21:17:36 +08:00
8bb5b943d7 fix(tools): remove the undefined variable parameter_type (#9908) 2024-10-27 11:56:29 +08:00
22776f24ab chore: Extract common functions of the base model in Azure OpenAI Provider (#9907) 2024-10-27 11:56:17 +08:00
216442ddc1 feat(workflow): Support JSON type in document extractor node (#9899)
Co-authored-by: -LAN- <laipz8200@outlook.com>
2024-10-26 20:29:48 +08:00
dd3ac7a2c9 fix(api): add signature generation for image previews (#9893) 2024-10-26 15:35:57 +08:00
11447324ff Update README.md (#9891) 2024-10-26 14:56:27 +08:00
f8210b353e Update README.md (#9890) 2024-10-26 14:47:08 +08:00
2b66c1358b Update README.md (#9889) 2024-10-26 14:32:50 +08:00
102d86d4b6 Update README.md (#9886) 2024-10-26 14:04:15 +08:00
227f49a0cc docs: improve api documentation for advanced chat and workflow (#9882) 2024-10-26 10:43:47 +08:00
a17f169e01 fix users had already joined a workspace, but the system still first … (#9834)
Co-authored-by: yong.zhang <yong.zhang@yesno.com.cn>
2024-10-25 23:04:00 +08:00
72ea3d6b98 fix(workflow): Take back LLM streaming output after IF-ELSE (#9875) 2024-10-25 22:33:34 +08:00
17cacf258e fix: wrong element object (#9868) 2024-10-25 22:32:41 +08:00
f7aacefcd6 feat: support button in markdown (#9876) 2024-10-25 21:51:59 +08:00
ace7ffab5f feat: support comfyui workflow tool image generate image (#9871) 2024-10-25 18:48:07 +08:00
eec63b112f chore: add default value for redis configuration (#9864) 2024-10-25 17:16:07 +08:00
caf7bc8569 upgrade nltk, unstructured and starlette (#9860) 2024-10-25 17:15:44 +08:00
fd437ff4c5 fix: segement settings of documents raise error (#8971) 2024-10-25 16:58:50 +08:00
fb218f8b10 feat: allow answer node use chat_var and env_var (#9226) 2024-10-25 15:37:29 +08:00
4693080ce0 Marking the last piece of data on each page is a duplicate issue, which can be solved by adding the id field to the order by rig and using a unique field (#9799)
Signed-off-by: root <root@localhost.localdomain>
Co-authored-by: root <root@localhost.localdomain>
2024-10-25 15:34:58 +08:00
60ddcdf960 chore: translate i18n files (#9853)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-10-25 15:19:05 +08:00
303bafb3ac chore: update api docs (#9832) 2024-10-25 15:03:24 +08:00
7a0d0d9b96 Fix: add check for maximum chunk length (#9837) 2024-10-25 15:02:36 +08:00
84a9d2d072 chore: code generator button should only display in code node (#9842) 2024-10-25 15:00:12 +08:00
1b5adf40da fix: moonshot response_format raise error (#9847) 2024-10-25 14:59:55 +08:00
59a32aaae6 fix: exclude failed answer when sending messages (#9835) 2024-10-25 14:06:33 +08:00
18106a4fc6 add tidb on qdrant type (#9831)
Co-authored-by: Zhaofeng Miao <522856232@qq.com>
2024-10-25 13:57:03 +08:00
fc2297a2ca chore: add local storage test (#9827) 2024-10-25 11:11:26 +08:00
5b7b765090 fix: yuque book id should be string (#9819) 2024-10-25 11:11:18 +08:00
90769ac709 feat: create_empty_dataset api add the description parameter and update api docs (#9824) 2024-10-25 10:50:15 +08:00
ac9f1e9de5 fix: duckduckgo image search not work (#9821) 2024-10-25 10:11:33 +08:00
5bf31e7a86 refactor: update load_stream method to directly yield file chunks (#9806) 2024-10-25 10:11:25 +08:00
dd17506078 feat(api): add generic file size limit parameter (#9812) 2024-10-25 09:02:06 +08:00
5d1424f67c Feat: use file size limit from api (#9739) 2024-10-24 22:55:17 +08:00
2346b0ab99 chore: make doc extractor node also can extract text by file extension (#9543) 2024-10-24 22:54:48 +08:00
88dec6ef2b Added description for .ppt, specify the reason for unstructured.io (#9452)
Co-authored-by: crazywoola <427733928@qq.com>
2024-10-24 22:13:06 +08:00
e71f494839 chore: abstract common function with local storage (#9811) 2024-10-24 21:53:37 +08:00
22bb0414a1 feat(parameters): standardize system parameter field types and values (#9797) 2024-10-24 21:52:57 +08:00
6477bb8d77 chore(docker): add default for MAX_VARIABLE_SIZE in docker-compose (#9798) 2024-10-24 21:52:48 +08:00
70ddc0ce43 openai compatiable api usage and id (#9800)
Co-authored-by: jinqi.guo <jinqi.guo@ubtrobot.com>
2024-10-24 21:51:36 +08:00
9986e4c6d0 chore(docker): correct package version for expat and perl in Dockerfile (#9801) 2024-10-24 19:07:03 +08:00
e2710161f6 fix: chart tool can't display chinese (#9686) 2024-10-24 18:49:49 +08:00
5f11fe521d remove unstructured pdf extract (#9794) 2024-10-24 18:13:05 +08:00
d018b32d0b fix(workflow): enhance prompt handling with vision support (#9790) 2024-10-24 17:52:11 +08:00
e54b7cda3d refactor(file_factory): improve filename and mime type determination (#9784) 2024-10-24 17:07:20 +08:00
fc63841169 fix: chat log not showing correctly (#9777) 2024-10-24 16:21:50 +08:00
b674c598f9 Update README_CN.md (#9766) 2024-10-24 14:59:40 +08:00
710230a294 fix: fe can not start (#9768) 2024-10-24 14:54:38 +08:00
169f7440ac feat:Add host volume env variables for postgres, redis and weaviate (#9761) 2024-10-24 14:27:53 +08:00
57ec12eb6b feat: regenerate history switch navigation (#8749) 2024-10-24 12:09:46 +08:00
2c26f77a25 fix(api): handle missing upload_file_id for tool_file messages (#9756) 2024-10-24 11:43:57 +08:00
95dc90e6b2 Update Code Generator to use the currently configured model. (#9740) 2024-10-24 11:23:35 +08:00
400392230b fixed: variable reference error (#9722)
Co-authored-by: hobo.l <hobo.l@binance.com>
2024-10-23 19:17:06 +08:00
eca66f9577 add vdb py test (#9706) 2024-10-23 19:14:24 +08:00
121bb99cc2 downgrade unstructured nltk version (#9726) 2024-10-23 19:02:27 +08:00
cac1ef7ade remove ppt import (#9721) 2024-10-23 18:22:30 +08:00
d74d79b3d8 Modify characters (#9707) 2024-10-23 18:00:53 +08:00
c6b28bc193 chore: update version to 0.10.1 (#9689) 2024-10-23 17:49:51 +08:00
5d05574518 fix: refresh current page if url contains token (#9718) 2024-10-23 17:48:57 +08:00
bf478aeba2 Revert "Feat: use file size limit from api" (#9714) 2024-10-23 17:35:07 +08:00
c9dfe1ad92 feat: support user-defined configuration of log file size and retention count (#9610) 2024-10-23 17:24:36 +08:00
926609eb59 build(deps): bump next from 14.2.4 to 14.2.10 in /web (#9713)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-10-23 17:18:35 +08:00
e32116b9a3 Feat: use file size limit from api (#9711) 2024-10-23 17:03:44 +08:00
e11d5ac708 feat(model_runtime): add new model 'claude-3-5-sonnet-20241022' (#9708) 2024-10-23 17:03:30 +08:00
f6c3d4cadc build(deps): bump mermaid from 10.4.0 to 10.9.3 in /web (#9709)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-10-23 16:57:45 +08:00
3e9d271b52 nltk security issue and upgrade unstructured (#9558) 2024-10-23 16:23:55 +08:00
ecc8beef3f feat: added claude 3.5 sonnet v2 model to Google Cloud Vertex AI (#9688) 2024-10-23 16:13:51 +08:00
b9afb7bcec fix: revert ref usage in handleFormChange to fix IME input issues (#9672)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2024-10-23 15:47:50 +08:00
b4041759f7 Help documentation URL correction (#9704) 2024-10-23 15:47:11 +08:00
c3473b5b4f fix: workflow [if node] checklist (#9699) 2024-10-23 15:46:02 +08:00
1b9bf9c62d feat(api): add video and audio file size limits to upload config (#9703) 2024-10-23 15:23:30 +08:00
Joe
ed96a6b6c0 fix: remove email code login redirect (#9698) 2024-10-23 14:56:10 +08:00
4989d0c904 add bedrock claude 3.5 v2 support (#9685)
Co-authored-by: Yuanbo Li <ybalbert@amazon.com>
2024-10-23 13:54:21 +08:00
9a5bdae07f feat(condition): add support for 'exists' and 'not exists' operators (#9687) 2024-10-23 13:25:17 +08:00
67016feb96 feat(api): enhance file preview handling (#9674) 2024-10-23 13:12:34 +08:00
Joe
22bdfb7e56 Feat/optimize login (#9642) 2024-10-23 10:59:30 +08:00
ceb2c4f3ef chore: reuse existing test functions with upstash vdb (#9679) 2024-10-23 10:42:11 +08:00
d5a93a6400 fix(variable_pool): handle invalid attributes in variable lookup (#9646) 2024-10-23 10:19:33 +08:00
01a2513812 style: chat answer align with new UI (#9658) 2024-10-23 10:19:15 +08:00
8e7a752b2a feat: add upstash as a new vector database provider (#9644) 2024-10-23 09:16:35 +08:00
999d3f1539 fix: add downstream nodes of this branch (#9640) 2024-10-23 01:20:02 +08:00
a7ee51e5d8 feat: add code generator (#9051)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-10-22 21:57:54 +08:00
0e965b6529 chore(models): convert created_by_role to its value for consistency (#9612) 2024-10-22 21:56:26 +08:00
a9db06f5e7 feat(Tools): Refactor the base table plugin (#9182)
Co-authored-by: 黎斌 <libin.23@bytedance.com>
2024-10-22 21:31:34 +08:00
6827c4038b Web app support sending message using numpad enter (#9659) 2024-10-22 21:17:54 +08:00
e8a6e90a61 fix: environment variables for ModelProvider and Tool Position are not working (#9650) 2024-10-22 21:12:03 +08:00
ff956cb546 Fix/retrieval setting weight default value (#9622) 2024-10-22 18:31:39 +08:00
7d7e0f9800 fix: tool use file caused error (#9660) 2024-10-22 18:26:17 +08:00
3ae05a672d fix: webapp answer icon (#9654) 2024-10-22 18:24:13 +08:00
d700abff0a Fix: type missing of remote file in chat (#9652) 2024-10-22 17:54:48 +08:00
5267f34e76 fix(segments): return empty string instead of "null" for text, log, and markdown properties (#9651) 2024-10-22 17:52:22 +08:00
d6e8290a1c fix(files): update Content-Length handling for tool and remote files (#9649) 2024-10-22 17:24:42 +08:00
36f66d40e5 refactor(api): simplify limit retrieval and return types (#9641) 2024-10-22 16:34:16 +08:00
5f12616cb9 fix: file type document is not supported (#9618) 2024-10-22 16:33:50 +08:00
Joe
bc43efba75 fix: remove url join (#9635) 2024-10-22 15:56:53 +08:00
ef5f476cd6 fix(api): enhance file factory URL handling (#9631) 2024-10-22 15:38:08 +08:00
98bf7710e4 fix: fields.Nested(message_file_fields) (#9632) 2024-10-22 15:37:53 +08:00
7263af13ed fix(http_request): simplify JSON handling in requests (#9616) 2024-10-22 15:37:37 +08:00
d992a809f5 fix: update the default model to gpt-4o-mini for duckduckgo ai chat (#9614) 2024-10-22 15:37:16 +08:00
04f8d39860 Fix: doc link of legacy features (#9634) 2024-10-22 15:35:20 +08:00
b7bf14ab72 fix: wrong url of guides doc in new feature panel (#9626) 2024-10-22 14:53:10 +08:00
e8abbe0623 fix(storage): ensure storage_runner initialization within app context (#9627) 2024-10-22 14:50:56 +08:00
b14d59e977 fix(storage): use centralized config management (#9620) 2024-10-22 14:04:59 +08:00
5f12c17355 fix(core): use CreatedByRole enum for role consistency (#9607) 2024-10-22 13:03:50 +08:00
d170d78530 chore: (#9089 followup) fix storage factory constructor (#9609) 2024-10-22 13:01:37 +08:00
4d9160ca9f refactor: use dify_config to replace legacy usage of flask app's config (#9089) 2024-10-22 11:01:32 +08:00
8f670f31b8 refactor(variables): replace deprecated 'get_any' with 'get' method (#9584) 2024-10-22 10:49:19 +08:00
5838345f48 fix(entities): add validator for VisionConfig to handle None values (#9598) 2024-10-22 10:49:03 +08:00
3f1c84f65a chore: cleanup ineffective linter rules exclusions (#9580) 2024-10-22 09:18:31 +08:00
83b2b8fe60 refactor: add logging extension module for log initialization (#9524) 2024-10-22 09:00:44 +08:00
ac24300274 refactor(template_transform): use keyword-only arguments (#9575) 2024-10-22 09:00:21 +08:00
2e657b7b12 fix(workflow): handle NoneSegments in variable extraction (#9585) 2024-10-22 08:59:04 +08:00
c063617553 fix(workflow): improve database session handling and variable management (#9581) 2024-10-22 00:42:40 +08:00
38a4f0234d fix(http_request): handle empty and string data inputs (#9579) 2024-10-21 23:35:25 +08:00
740a723072 fix(validation): improve variable handling and validation (#9578) 2024-10-21 23:33:16 +08:00
495cf58014 dep: bump pydantic to 2.9 (#9077) 2024-10-21 23:32:09 +08:00
8e98759359 Fix: style of features panel in safari (#9573) 2024-10-21 22:52:21 +08:00
4ae0bb83f1 fix(file upload): correct upload method key for image config (#9568) 2024-10-21 20:40:47 +08:00
5459d812e7 fix(iteration): handle empty iterator gracefully (#9565) 2024-10-21 20:16:46 +08:00
831c222541 Fix: file upload support extension .md (#9564) 2024-10-21 19:58:57 +08:00
faad247d85 fix(upload): correct incorrect dictionary key usage (#9563) 2024-10-21 19:42:22 +08:00
1e829ceaf3 chore: format get_customizable_model_schema return value (#9335) 2024-10-21 19:05:44 +08:00
79fe175440 chore: lint code to remove unused imports and variables (#9553) 2024-10-21 19:04:54 +08:00
9b32bfb3db feat: Updata tongyi models (#9552) 2024-10-21 19:04:45 +08:00
37fea072bc enhance: use urllib join instead of fstring (#9549) 2024-10-21 19:04:28 +08:00
31a603e905 Build/fix wrong icon name (#9527) 2024-10-21 19:03:55 +08:00
426 changed files with 13449 additions and 4394 deletions

View File

@ -1,5 +1,9 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
<p align="center">
📌 <a href="https://dify.ai/blog/introducing-dify-workflow-file-upload-a-demo-on-ai-podcast">Introducing Dify Workflow File Upload: Recreate Google NotebookLM Podcast</a>
</p>
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">Self-hosting</a> ·
@ -168,7 +172,7 @@ Star Dify on GitHub and be instantly notified of new releases.
> Before installing Dify, make sure your machine meets the following minimum system requirements:
>
>- CPU >= 2 Core
>- RAM >= 4GB
>- RAM >= 4 GiB
</br>

View File

@ -154,7 +154,7 @@ Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI
我们提供[ Dify 云服务](https://dify.ai),任何人都可以零设置尝试。它提供了自部署版本的所有功能,并在沙盒计划中包含 200 次免费的 GPT-4 调用。
- **自托管 Dify 社区版</br>**
使用这个[入门指南](#quick-start)快速在您的环境中运行 Dify。
使用这个[入门指南](#快速启动)快速在您的环境中运行 Dify。
使用我们的[文档](https://docs.dify.ai)进行进一步的参考和更深入的说明。
- **面向企业/组织的 Dify</br>**
@ -174,7 +174,7 @@ Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI
在安装 Dify 之前,请确保您的机器满足以下最低系统要求:
- CPU >= 2 Core
- RAM >= 4GB
- RAM >= 4 GiB
### 快速启动

View File

@ -31,8 +31,17 @@ REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_USERNAME=
REDIS_PASSWORD=difyai123456
REDIS_USE_SSL=false
REDIS_DB=0
# redis Sentinel configuration.
REDIS_USE_SENTINEL=false
REDIS_SENTINELS=
REDIS_SENTINEL_SERVICE_NAME=
REDIS_SENTINEL_USERNAME=
REDIS_SENTINEL_PASSWORD=
REDIS_SENTINEL_SOCKET_TIMEOUT=0.1
# PostgreSQL database configuration
DB_USERNAME=postgres
DB_PASSWORD=difyai123456
@ -111,7 +120,7 @@ SUPABASE_URL=your-server-url
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, vikingdb
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, vikingdb, upstash
VECTOR_STORE=weaviate
# Weaviate configuration
@ -220,6 +229,10 @@ BAIDU_VECTOR_DB_DATABASE=dify
BAIDU_VECTOR_DB_SHARD=1
BAIDU_VECTOR_DB_REPLICAS=3
# Upstash configuration
UPSTASH_VECTOR_URL=your-server-url
UPSTASH_VECTOR_TOKEN=your-access-token
# ViKingDB configuration
VIKINGDB_ACCESS_KEY=your-ak
VIKINGDB_SECRET_KEY=your-sk
@ -239,6 +252,7 @@ UPLOAD_AUDIO_FILE_SIZE_LIMIT=50
# Model Configuration
MULTIMODAL_SEND_IMAGE_FORMAT=base64
PROMPT_GENERATION_MAX_TOKENS=512
CODE_GENERATION_MAX_TOKENS=1024
# Mail configuration, support: resend, smtp
MAIL_TYPE=
@ -304,6 +318,10 @@ RESPECT_XFORWARD_HEADERS_ENABLED=false
# Log file path
LOG_FILE=
# Log file max size, the unit is MB
LOG_FILE_MAX_SIZE=20
# Log file max backup count
LOG_FILE_BACKUP_COUNT=5
# Indexing configuration
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH=1000

View File

@ -55,7 +55,9 @@ RUN apt-get update \
&& echo "deb http://deb.debian.org/debian testing main" > /etc/apt/sources.list \
&& apt-get update \
# For Security
&& apt-get install -y --no-install-recommends zlib1g=1:1.3.dfsg+really1.3.1-1 expat=2.6.3-1 libldap-2.5-0=2.5.18+dfsg-3 perl=5.38.2-5 libsqlite3-0=3.46.1-1 \
&& apt-get install -y --no-install-recommends zlib1g=1:1.3.dfsg+really1.3.1-1 expat=2.6.3-1 libldap-2.5-0=2.5.18+dfsg-3+b1 perl=5.40.0-6 libsqlite3-0=3.46.1-1 \
# install a chinese font to support the use of tools like matplotlib
&& apt-get install -y fonts-noto-cjk \
&& apt-get autoremove -y \
&& rm -rf /var/lib/apt/lists/*

View File

@ -1,5 +1,7 @@
import os
from configs import dify_config
if os.environ.get("DEBUG", "false").lower() != "true":
from gevent import monkey
@ -36,17 +38,11 @@ if hasattr(time, "tzset"):
time.tzset()
# -------------
# Configuration
# -------------
config_type = os.getenv("EDITION", default="SELF_HOSTED") # ce edition first
# create app
app = create_app()
celery = app.extensions["celery"]
if app.config.get("TESTING"):
if dify_config.TESTING:
print("App is running in TESTING mode")
@ -54,15 +50,15 @@ if app.config.get("TESTING"):
def after_request(response):
"""Add Version headers to the response."""
response.set_cookie("remember_token", "", expires=0)
response.headers.add("X-Version", app.config["CURRENT_VERSION"])
response.headers.add("X-Env", app.config["DEPLOY_ENV"])
response.headers.add("X-Version", dify_config.CURRENT_VERSION)
response.headers.add("X-Env", dify_config.DEPLOY_ENV)
return response
@app.route("/health")
def health():
return Response(
json.dumps({"pid": os.getpid(), "status": "ok", "version": app.config["CURRENT_VERSION"]}),
json.dumps({"pid": os.getpid(), "status": "ok", "version": dify_config.CURRENT_VERSION}),
status=200,
content_type="application/json",
)

View File

@ -10,9 +10,6 @@ if os.environ.get("DEBUG", "false").lower() != "true":
grpc.experimental.gevent.init_gevent()
import json
import logging
import sys
from logging.handlers import RotatingFileHandler
from flask import Flask, Response, request
from flask_cors import CORS
@ -27,6 +24,7 @@ from extensions import (
ext_compress,
ext_database,
ext_hosting_provider,
ext_logging,
ext_login,
ext_mail,
ext_migrate,
@ -70,43 +68,7 @@ def create_flask_app_with_configs() -> Flask:
def create_app() -> Flask:
app = create_flask_app_with_configs()
app.secret_key = app.config["SECRET_KEY"]
log_handlers = None
log_file = app.config.get("LOG_FILE")
if log_file:
log_dir = os.path.dirname(log_file)
os.makedirs(log_dir, exist_ok=True)
log_handlers = [
RotatingFileHandler(
filename=log_file,
maxBytes=1024 * 1024 * 1024,
backupCount=5,
),
logging.StreamHandler(sys.stdout),
]
logging.basicConfig(
level=app.config.get("LOG_LEVEL"),
format=app.config.get("LOG_FORMAT"),
datefmt=app.config.get("LOG_DATEFORMAT"),
handlers=log_handlers,
force=True,
)
log_tz = app.config.get("LOG_TZ")
if log_tz:
from datetime import datetime
import pytz
timezone = pytz.timezone(log_tz)
def time_converter(seconds):
return datetime.utcfromtimestamp(seconds).astimezone(timezone).timetuple()
for handler in logging.root.handlers:
handler.formatter.converter = time_converter
app.secret_key = dify_config.SECRET_KEY
initialize_extensions(app)
register_blueprints(app)
register_commands(app)
@ -117,6 +79,7 @@ def create_app() -> Flask:
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_logging.init_app(app)
ext_compress.init_app(app)
ext_code_based_extension.init()
ext_database.init_app(app)
@ -187,7 +150,7 @@ def register_blueprints(app):
CORS(
web_bp,
resources={r"/*": {"origins": app.config["WEB_API_CORS_ALLOW_ORIGINS"]}},
resources={r"/*": {"origins": dify_config.WEB_API_CORS_ALLOW_ORIGINS}},
supports_credentials=True,
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
@ -198,7 +161,7 @@ def register_blueprints(app):
CORS(
console_app_bp,
resources={r"/*": {"origins": app.config["CONSOLE_CORS_ALLOW_ORIGINS"]}},
resources={r"/*": {"origins": dify_config.CONSOLE_CORS_ALLOW_ORIGINS}},
supports_credentials=True,
allow_headers=["Content-Type", "Authorization"],
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],

View File

@ -277,6 +277,7 @@ def migrate_knowledge_vector_database():
VectorType.TENCENT,
VectorType.BAIDU,
VectorType.VIKINGDB,
VectorType.UPSTASH,
}
page = 1
while True:

View File

@ -32,6 +32,21 @@ class SecurityConfig(BaseSettings):
default=5,
)
LOGIN_DISABLED: bool = Field(
description="Whether to disable login checks",
default=False,
)
ADMIN_API_KEY_ENABLE: bool = Field(
description="Whether to enable admin api key for authentication",
default=False,
)
ADMIN_API_KEY: Optional[str] = Field(
description="admin api key for authentication",
default=None,
)
class AppExecutionConfig(BaseSettings):
"""
@ -304,6 +319,16 @@ class LoggingConfig(BaseSettings):
default=None,
)
LOG_FILE_MAX_SIZE: PositiveInt = Field(
description="Maximum file size for file rotation retention, the unit is megabytes (MB)",
default=20,
)
LOG_FILE_BACKUP_COUNT: PositiveInt = Field(
description="Maximum file backup count file rotation retention",
default=5,
)
LOG_FORMAT: str = Field(
description="Format string for log messages",
default="%(asctime)s.%(msecs)03d %(levelname)s [%(threadName)s] [%(filename)s:%(lineno)d] - %(message)s",
@ -546,6 +571,11 @@ class DataSetConfig(BaseSettings):
default=False,
)
TIDB_SERVERLESS_NUMBER: PositiveInt = Field(
description="number of tidb serverless cluster",
default=500,
)
class WorkspaceConfig(BaseSettings):
"""

View File

@ -27,7 +27,9 @@ from configs.middleware.vdb.pgvectors_config import PGVectoRSConfig
from configs.middleware.vdb.qdrant_config import QdrantConfig
from configs.middleware.vdb.relyt_config import RelytConfig
from configs.middleware.vdb.tencent_vector_config import TencentVectorDBConfig
from configs.middleware.vdb.tidb_on_qdrant_config import TidbOnQdrantConfig
from configs.middleware.vdb.tidb_vector_config import TiDBVectorConfig
from configs.middleware.vdb.upstash_config import UpstashConfig
from configs.middleware.vdb.vikingdb_config import VikingDBConfig
from configs.middleware.vdb.weaviate_config import WeaviateConfig
@ -53,6 +55,11 @@ class VectorStoreConfig(BaseSettings):
default=None,
)
VECTOR_STORE_WHITELIST_ENABLE: Optional[bool] = Field(
description="Enable whitelist for vector store.",
default=False,
)
class KeywordStoreConfig(BaseSettings):
KEYWORD_STORE: str = Field(
@ -246,5 +253,7 @@ class MiddlewareConfig(
ElasticsearchConfig,
InternalTestConfig,
VikingDBConfig,
UpstashConfig,
TidbOnQdrantConfig,
):
pass

View File

@ -0,0 +1,65 @@
from typing import Optional
from pydantic import Field, NonNegativeInt, PositiveInt
from pydantic_settings import BaseSettings
class TidbOnQdrantConfig(BaseSettings):
"""
Tidb on Qdrant configs
"""
TIDB_ON_QDRANT_URL: Optional[str] = Field(
description="Tidb on Qdrant url",
default=None,
)
TIDB_ON_QDRANT_API_KEY: Optional[str] = Field(
description="Tidb on Qdrant api key",
default=None,
)
TIDB_ON_QDRANT_CLIENT_TIMEOUT: NonNegativeInt = Field(
description="Tidb on Qdrant client timeout in seconds",
default=20,
)
TIDB_ON_QDRANT_GRPC_ENABLED: bool = Field(
description="whether enable grpc support for Tidb on Qdrant connection",
default=False,
)
TIDB_ON_QDRANT_GRPC_PORT: PositiveInt = Field(
description="Tidb on Qdrant grpc port",
default=6334,
)
TIDB_PUBLIC_KEY: Optional[str] = Field(
description="Tidb account public key",
default=None,
)
TIDB_PRIVATE_KEY: Optional[str] = Field(
description="Tidb account private key",
default=None,
)
TIDB_API_URL: Optional[str] = Field(
description="Tidb API url",
default=None,
)
TIDB_IAM_API_URL: Optional[str] = Field(
description="Tidb IAM API url",
default=None,
)
TIDB_REGION: Optional[str] = Field(
description="Tidb serverless region",
default="regions/aws-us-east-1",
)
TIDB_PROJECT_ID: Optional[str] = Field(
description="Tidb project id",
default=None,
)

View File

@ -0,0 +1,20 @@
from typing import Optional
from pydantic import Field
from pydantic_settings import BaseSettings
class UpstashConfig(BaseSettings):
"""
Configuration settings for Upstash vector database
"""
UPSTASH_VECTOR_URL: Optional[str] = Field(
description="URL of the upstash server (e.g., 'https://vector.upstash.io')",
default=None,
)
UPSTASH_VECTOR_TOKEN: Optional[str] = Field(
description="Token for authenticating with the upstash server",
default=None,
)

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.10.0",
default="0.10.2",
)
COMMIT_SHA: str = Field(

View File

@ -15,7 +15,9 @@ AUDIO_EXTENSIONS.extend([ext.upper() for ext in AUDIO_EXTENSIONS])
if dify_config.ETL_TYPE == "Unstructured":
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "pdf", "html", "htm", "xlsx", "xls"]
DOCUMENT_EXTENSIONS.extend(("docx", "csv", "eml", "msg", "pptx", "ppt", "xml", "epub"))
DOCUMENT_EXTENSIONS.extend(("docx", "csv", "eml", "msg", "pptx", "xml", "epub"))
if dify_config.UNSTRUCTURED_API_URL:
DOCUMENT_EXTENSIONS.append("ppt")
DOCUMENT_EXTENSIONS.extend([ext.upper() for ext in DOCUMENT_EXTENSIONS])
else:
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "pdf", "html", "htm", "xlsx", "xls", "docx", "csv"]

View File

@ -1,10 +1,10 @@
import os
from functools import wraps
from flask import request
from flask_restful import Resource, reqparse
from werkzeug.exceptions import NotFound, Unauthorized
from configs import dify_config
from constants.languages import supported_language
from controllers.console import api
from controllers.console.wraps import only_edition_cloud
@ -15,7 +15,7 @@ from models.model import App, InstalledApp, RecommendedApp
def admin_required(view):
@wraps(view)
def decorated(*args, **kwargs):
if not os.getenv("ADMIN_API_KEY"):
if not dify_config.ADMIN_API_KEY:
raise Unauthorized("API key is invalid.")
auth_header = request.headers.get("Authorization")
@ -31,7 +31,7 @@ def admin_required(view):
if auth_scheme != "bearer":
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
if os.getenv("ADMIN_API_KEY") != auth_token:
if dify_config.ADMIN_API_KEY != auth_token:
raise Unauthorized("API key is invalid.")
return view(*args, **kwargs)

View File

@ -52,4 +52,39 @@ class RuleGenerateApi(Resource):
return rules
class RuleCodeGenerateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("instruction", type=str, required=True, nullable=False, location="json")
parser.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
parser.add_argument("no_variable", type=bool, required=True, default=False, location="json")
parser.add_argument("code_language", type=str, required=False, default="javascript", location="json")
args = parser.parse_args()
account = current_user
CODE_GENERATION_MAX_TOKENS = int(os.getenv("CODE_GENERATION_MAX_TOKENS", "1024"))
try:
code_result = LLMGenerator.generate_code(
tenant_id=account.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
code_language=args["code_language"],
max_tokens=CODE_GENERATION_MAX_TOKENS,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return code_result
api.add_resource(RuleGenerateApi, "/rule-generate")
api.add_resource(RuleCodeGenerateApi, "/rule-code-generate")

View File

@ -105,6 +105,8 @@ class ChatMessageListApi(Resource):
if rest_count > 0:
has_more = True
history_messages = list(reversed(history_messages))
return InfiniteScrollPagination(data=history_messages, limit=args["limit"], has_more=has_more)

View File

@ -1,11 +1,10 @@
from typing import cast
import flask_login
from flask import redirect, request
from flask import request
from flask_restful import Resource, reqparse
import services
from configs import dify_config
from constants.languages import languages
from controllers.console import api
from controllers.console.auth.error import (
@ -196,10 +195,7 @@ class EmailCodeLoginApi(Resource):
email=user_email, name=user_email, interface_language=languages[0]
)
except WorkSpaceNotAllowedCreateError:
return redirect(
f"{dify_config.CONSOLE_WEB_URL}/signin"
"?message=Workspace not found, please contact system admin to invite you to join in a workspace."
)
return NotAllowedCreateWorkspace()
token_pair = AccountService.login(account, ip_address=extract_remote_ip(request))
AccountService.reset_login_error_rate_limit(args["email"])
return {"result": "success", "data": token_pair.model_dump()}

View File

@ -94,17 +94,15 @@ class OAuthCallback(Resource):
account = _generate_account(provider, user_info)
except AccountNotFoundError:
return redirect(f"{dify_config.CONSOLE_WEB_URL}/signin?message=Account not found.")
except WorkSpaceNotFoundError:
return redirect(f"{dify_config.CONSOLE_WEB_URL}/signin?message=Workspace not found.")
except WorkSpaceNotAllowedCreateError:
except (WorkSpaceNotFoundError, WorkSpaceNotAllowedCreateError):
return redirect(
f"{dify_config.CONSOLE_WEB_URL}/signin"
"?message=Workspace not found, please contact system admin to invite you to join in a workspace."
)
# Check account status
if account.status in {AccountStatus.BANNED.value, AccountStatus.CLOSED.value}:
return {"error": "Account is banned or closed."}, 403
if account.status == AccountStatus.BANNED.value:
return redirect(f"{dify_config.CONSOLE_WEB_URL}/signin?message=Account is banned.")
if account.status == AccountStatus.PENDING.value:
account.status = AccountStatus.ACTIVE.value

View File

@ -102,6 +102,13 @@ class DatasetListApi(Resource):
help="type is required. Name must be between 1 to 40 characters.",
type=_validate_name,
)
parser.add_argument(
"description",
type=str,
nullable=True,
required=False,
default="",
)
parser.add_argument(
"indexing_technique",
type=str,
@ -140,6 +147,7 @@ class DatasetListApi(Resource):
dataset = DatasetService.create_empty_dataset(
tenant_id=current_user.current_tenant_id,
name=args["name"],
description=args["description"],
indexing_technique=args["indexing_technique"],
account=current_user,
permission=DatasetPermissionEnum.ONLY_ME,
@ -619,6 +627,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.PGVECTO_RS
| VectorType.BAIDU
| VectorType.VIKINGDB
| VectorType.UPSTASH
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (
@ -630,6 +639,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
| VectorType.PGVECTOR
| VectorType.TIDB_ON_QDRANT
):
return {
"retrieval_method": [
@ -657,6 +667,7 @@ class DatasetRetrievalSettingMockApi(Resource):
| VectorType.PGVECTO_RS
| VectorType.BAIDU
| VectorType.VIKINGDB
| VectorType.UPSTASH
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (

View File

@ -30,13 +30,12 @@ class FileApi(Resource):
@account_initialization_required
@marshal_with(upload_config_fields)
def get(self):
file_size_limit = dify_config.UPLOAD_FILE_SIZE_LIMIT
batch_count_limit = dify_config.UPLOAD_FILE_BATCH_LIMIT
image_file_size_limit = dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT
return {
"file_size_limit": file_size_limit,
"batch_count_limit": batch_count_limit,
"image_file_size_limit": image_file_size_limit,
"file_size_limit": dify_config.UPLOAD_FILE_SIZE_LIMIT,
"batch_count_limit": dify_config.UPLOAD_FILE_BATCH_LIMIT,
"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT,
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
}, 200
@setup_required

View File

@ -41,7 +41,7 @@ class AlreadyActivateError(BaseHTTPException):
class NotAllowedCreateWorkspace(BaseHTTPException):
error_code = "unauthorized"
error_code = "not_allowed_create_workspace"
description = "Workspace not found, please contact system admin to invite you to join in a workspace."
code = 400

View File

@ -21,7 +21,12 @@ class AppParameterApi(InstalledAppResource):
"options": fields.List(fields.String),
}
system_parameters_fields = {"image_file_size_limit": fields.String}
system_parameters_fields = {
"image_file_size_limit": fields.Integer,
"video_file_size_limit": fields.Integer,
"audio_file_size_limit": fields.Integer,
"file_size_limit": fields.Integer,
}
parameters_fields = {
"opening_statement": fields.String,
@ -82,7 +87,12 @@ class AppParameterApi(InstalledAppResource):
}
},
),
"system_parameters": {"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT},
"system_parameters": {
"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT,
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
"file_size_limit": dify_config.UPLOAD_FILE_SIZE_LIMIT,
},
}

View File

@ -1,5 +1,5 @@
from flask import Response, request
from flask_restful import Resource
from flask_restful import Resource, reqparse
from werkzeug.exceptions import NotFound
import services
@ -41,24 +41,39 @@ class FilePreviewApi(Resource):
def get(self, file_id):
file_id = str(file_id)
timestamp = request.args.get("timestamp")
nonce = request.args.get("nonce")
sign = request.args.get("sign")
parser = reqparse.RequestParser()
parser.add_argument("timestamp", type=str, required=True, location="args")
parser.add_argument("nonce", type=str, required=True, location="args")
parser.add_argument("sign", type=str, required=True, location="args")
parser.add_argument("as_attachment", type=bool, required=False, default=False, location="args")
if not timestamp or not nonce or not sign:
args = parser.parse_args()
if not args["timestamp"] or not args["nonce"] or not args["sign"]:
return {"content": "Invalid request."}, 400
try:
generator, mimetype = FileService.get_signed_file_preview(
generator, upload_file = FileService.get_file_generator_by_file_id(
file_id=file_id,
timestamp=timestamp,
nonce=nonce,
sign=sign,
timestamp=args["timestamp"],
nonce=args["nonce"],
sign=args["sign"],
)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return Response(generator, mimetype=mimetype)
response = Response(
generator,
mimetype=upload_file.mime_type,
direct_passthrough=True,
headers={},
)
if upload_file.size > 0:
response.headers["Content-Length"] = str(upload_file.size)
if args["as_attachment"]:
response.headers["Content-Disposition"] = f"attachment; filename={upload_file.name}"
return response
class WorkspaceWebappLogoApi(Resource):

View File

@ -42,10 +42,10 @@ class ToolFilePreviewApi(Resource):
stream,
mimetype=tool_file.mimetype,
direct_passthrough=True,
headers={
"Content-Length": str(tool_file.size),
},
headers={},
)
if tool_file.size > 0:
response.headers["Content-Length"] = str(tool_file.size)
if args["as_attachment"]:
response.headers["Content-Disposition"] = f"attachment; filename={tool_file.name}"

View File

@ -21,7 +21,7 @@ class EnterpriseWorkspace(Resource):
if account is None:
return {"message": "owner account not found."}, 404
tenant = TenantService.create_tenant(args["name"])
tenant = TenantService.create_tenant(args["name"], is_from_dashboard=True)
TenantService.create_tenant_member(tenant, account, role="owner")
tenant_was_created.send(tenant)

View File

@ -21,7 +21,12 @@ class AppParameterApi(Resource):
"options": fields.List(fields.String),
}
system_parameters_fields = {"image_file_size_limit": fields.String}
system_parameters_fields = {
"image_file_size_limit": fields.Integer,
"video_file_size_limit": fields.Integer,
"audio_file_size_limit": fields.Integer,
"file_size_limit": fields.Integer,
}
parameters_fields = {
"opening_statement": fields.String,
@ -81,7 +86,12 @@ class AppParameterApi(Resource):
}
},
),
"system_parameters": {"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT},
"system_parameters": {
"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT,
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
"file_size_limit": dify_config.UPLOAD_FILE_SIZE_LIMIT,
},
}

View File

@ -48,7 +48,7 @@ class MessageListApi(Resource):
"tool_input": fields.String,
"created_at": TimestampField,
"observation": fields.String,
"message_files": fields.List(fields.String),
"message_files": fields.List(fields.Nested(message_file_fields)),
}
message_fields = {

View File

@ -66,6 +66,13 @@ class DatasetListApi(DatasetApiResource):
help="type is required. Name must be between 1 to 40 characters.",
type=_validate_name,
)
parser.add_argument(
"description",
type=str,
nullable=True,
required=False,
default="",
)
parser.add_argument(
"indexing_technique",
type=str,
@ -108,6 +115,7 @@ class DatasetListApi(DatasetApiResource):
dataset = DatasetService.create_empty_dataset(
tenant_id=tenant_id,
name=args["name"],
description=args["description"],
indexing_technique=args["indexing_technique"],
account=current_user,
permission=args["permission"],

View File

@ -21,7 +21,12 @@ class AppParameterApi(WebApiResource):
"options": fields.List(fields.String),
}
system_parameters_fields = {"image_file_size_limit": fields.String}
system_parameters_fields = {
"image_file_size_limit": fields.Integer,
"video_file_size_limit": fields.Integer,
"audio_file_size_limit": fields.Integer,
"file_size_limit": fields.Integer,
}
parameters_fields = {
"opening_statement": fields.String,
@ -80,7 +85,12 @@ class AppParameterApi(WebApiResource):
}
},
),
"system_parameters": {"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT},
"system_parameters": {
"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT,
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
"file_size_limit": dify_config.UPLOAD_FILE_SIZE_LIMIT,
},
}

View File

@ -46,7 +46,7 @@ class RemoteFileInfoApi(WebApiResource):
response = ssrf_proxy.head(decoded_url)
return {
"file_type": response.headers.get("Content-Type", "application/octet-stream"),
"file_length": int(response.headers.get("Content-Length", 0)),
"file_length": int(response.headers.get("Content-Length", -1)),
}
except Exception as e:
return {"error": str(e)}, 400

View File

@ -165,6 +165,12 @@ class BaseAgentRunner(AppRunner):
continue
parameter_type = parameter.type.as_normal_type()
if parameter.type in {
ToolParameter.ToolParameterType.SYSTEM_FILES,
ToolParameter.ToolParameterType.FILE,
ToolParameter.ToolParameterType.FILES,
}:
continue
enum = []
if parameter.type == ToolParameter.ToolParameterType.SELECT:
enum = [option.value for option in parameter.options]
@ -250,6 +256,12 @@ class BaseAgentRunner(AppRunner):
continue
parameter_type = parameter.type.as_normal_type()
if parameter.type in {
ToolParameter.ToolParameterType.SYSTEM_FILES,
ToolParameter.ToolParameterType.FILE,
ToolParameter.ToolParameterType.FILES,
}:
continue
enum = []
if parameter.type == ToolParameter.ToolParameterType.SELECT:
enum = [option.value for option in parameter.options]

View File

@ -53,11 +53,11 @@ class BasicVariablesConfigManager:
VariableEntity(
type=variable_type,
variable=variable.get("variable"),
description=variable.get("description", ""),
description=variable.get("description") or "",
label=variable.get("label"),
required=variable.get("required", False),
max_length=variable.get("max_length"),
options=variable.get("options", []),
options=variable.get("options") or [],
)
)

View File

@ -2,7 +2,7 @@ from collections.abc import Sequence
from enum import Enum
from typing import Any, Optional
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, field_validator
from core.file import FileExtraConfig, FileTransferMethod, FileType
from core.model_runtime.entities.message_entities import PromptMessageRole
@ -114,6 +114,16 @@ class VariableEntity(BaseModel):
allowed_file_extensions: Sequence[str] = Field(default_factory=list)
allowed_file_upload_methods: Sequence[FileTransferMethod] = Field(default_factory=list)
@field_validator("description", mode="before")
@classmethod
def convert_none_description(cls, v: Any) -> str:
return v or ""
@field_validator("options", mode="before")
@classmethod
def convert_none_options(cls, v: Any) -> Sequence[str]:
return v or []
class ExternalDataVariableEntity(BaseModel):
"""

View File

@ -17,10 +17,13 @@ class FileUploadConfigManager:
file_upload_dict = config.get("file_upload")
if file_upload_dict:
if file_upload_dict.get("enabled"):
transform_methods = file_upload_dict.get("allowed_file_upload_methods") or file_upload_dict.get(
"allowed_upload_methods", []
)
data = {
"image_config": {
"number_limits": file_upload_dict["number_limits"],
"transfer_methods": file_upload_dict["allowed_file_upload_methods"],
"transfer_methods": transform_methods,
}
}

View File

@ -27,6 +27,7 @@ from core.app.task_pipeline.easy_ui_based_generate_task_pipeline import EasyUIBa
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from extensions.ext_database import db
from models import Account
from models.enums import CreatedByRole
from models.model import App, AppMode, AppModelConfig, Conversation, EndUser, Message, MessageFile
from services.errors.app_model_config import AppModelConfigBrokenError
from services.errors.conversation import ConversationCompletedError, ConversationNotExistsError
@ -240,7 +241,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
belongs_to="user",
url=file.remote_url,
upload_file_id=file.related_id,
created_by_role=("account" if account_id else "end_user"),
created_by_role=(CreatedByRole.ACCOUNT if account_id else CreatedByRole.END_USER),
created_by=account_id or end_user_id or "",
)
db.session.add(message_file)

View File

@ -53,7 +53,7 @@ class BasedGenerateTaskPipeline:
self._output_moderation_handler = self._init_output_moderation()
self._stream = stream
def _handle_error(self, event: QueueErrorEvent, message: Optional[Message] = None) -> Exception:
def _handle_error(self, event: QueueErrorEvent, message: Optional[Message] = None):
"""
Handle error event.
:param event: event
@ -100,7 +100,7 @@ class BasedGenerateTaskPipeline:
return message
def _error_to_stream_response(self, e: Exception) -> ErrorStreamResponse:
def _error_to_stream_response(self, e: Exception):
"""
Error to stream response.
:param e: exception

View File

@ -4,6 +4,8 @@ from collections.abc import Mapping, Sequence
from datetime import datetime, timezone
from typing import Any, Optional, Union, cast
from sqlalchemy.orm import Session
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom, WorkflowAppGenerateEntity
from core.app.entities.queue_entities import (
QueueIterationCompletedEvent,
@ -232,30 +234,30 @@ class WorkflowCycleManage:
self, workflow_run: WorkflowRun, event: QueueNodeStartedEvent
) -> WorkflowNodeExecution:
# init workflow node execution
workflow_node_execution = WorkflowNodeExecution()
workflow_node_execution.tenant_id = workflow_run.tenant_id
workflow_node_execution.app_id = workflow_run.app_id
workflow_node_execution.workflow_id = workflow_run.workflow_id
workflow_node_execution.triggered_from = WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN.value
workflow_node_execution.workflow_run_id = workflow_run.id
workflow_node_execution.predecessor_node_id = event.predecessor_node_id
workflow_node_execution.index = event.node_run_index
workflow_node_execution.node_execution_id = event.node_execution_id
workflow_node_execution.node_id = event.node_id
workflow_node_execution.node_type = event.node_type.value
workflow_node_execution.title = event.node_data.title
workflow_node_execution.status = WorkflowNodeExecutionStatus.RUNNING.value
workflow_node_execution.created_by_role = workflow_run.created_by_role
workflow_node_execution.created_by = workflow_run.created_by
workflow_node_execution.created_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.add(workflow_node_execution)
db.session.commit()
db.session.refresh(workflow_node_execution)
db.session.close()
with Session(db.engine, expire_on_commit=False) as session:
workflow_node_execution = WorkflowNodeExecution()
workflow_node_execution.tenant_id = workflow_run.tenant_id
workflow_node_execution.app_id = workflow_run.app_id
workflow_node_execution.workflow_id = workflow_run.workflow_id
workflow_node_execution.triggered_from = WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN.value
workflow_node_execution.workflow_run_id = workflow_run.id
workflow_node_execution.predecessor_node_id = event.predecessor_node_id
workflow_node_execution.index = event.node_run_index
workflow_node_execution.node_execution_id = event.node_execution_id
workflow_node_execution.node_id = event.node_id
workflow_node_execution.node_type = event.node_type.value
workflow_node_execution.title = event.node_data.title
workflow_node_execution.status = WorkflowNodeExecutionStatus.RUNNING.value
workflow_node_execution.created_by_role = workflow_run.created_by_role
workflow_node_execution.created_by = workflow_run.created_by
workflow_node_execution.created_at = datetime.now(timezone.utc).replace(tzinfo=None)
session.add(workflow_node_execution)
session.commit()
session.refresh(workflow_node_execution)
self._wip_workflow_node_executions[workflow_node_execution.node_execution_id] = workflow_node_execution
return workflow_node_execution
def _handle_workflow_node_execution_success(self, event: QueueNodeSucceededEvent) -> WorkflowNodeExecution:

View File

@ -76,8 +76,16 @@ def to_prompt_message_content(f: File, /):
def download(f: File, /):
upload_file = file_repository.get_upload_file(session=db.session(), file=f)
return _download_file_content(upload_file.key)
if f.transfer_method == FileTransferMethod.TOOL_FILE:
tool_file = file_repository.get_tool_file(session=db.session(), file=f)
return _download_file_content(tool_file.file_key)
elif f.transfer_method == FileTransferMethod.LOCAL_FILE:
upload_file = file_repository.get_upload_file(session=db.session(), file=f)
return _download_file_content(upload_file.key)
# remote file
response = ssrf_proxy.get(f.remote_url, follow_redirects=True)
response.raise_for_status()
return response.content
def _download_file_content(path: str, /):

View File

@ -1,8 +1,9 @@
from typing import Optional
from flask import Config, Flask
from flask import Flask
from pydantic import BaseModel
from configs import dify_config
from core.entities.provider_entities import QuotaUnit, RestrictModel
from core.model_runtime.entities.model_entities import ModelType
from models.provider import ProviderQuotaType
@ -44,32 +45,30 @@ class HostingConfiguration:
moderation_config: HostedModerationConfig = None
def init_app(self, app: Flask) -> None:
config = app.config
if config.get("EDITION") != "CLOUD":
if dify_config.EDITION != "CLOUD":
return
self.provider_map["azure_openai"] = self.init_azure_openai(config)
self.provider_map["openai"] = self.init_openai(config)
self.provider_map["anthropic"] = self.init_anthropic(config)
self.provider_map["minimax"] = self.init_minimax(config)
self.provider_map["spark"] = self.init_spark(config)
self.provider_map["zhipuai"] = self.init_zhipuai(config)
self.provider_map["azure_openai"] = self.init_azure_openai()
self.provider_map["openai"] = self.init_openai()
self.provider_map["anthropic"] = self.init_anthropic()
self.provider_map["minimax"] = self.init_minimax()
self.provider_map["spark"] = self.init_spark()
self.provider_map["zhipuai"] = self.init_zhipuai()
self.moderation_config = self.init_moderation_config(config)
self.moderation_config = self.init_moderation_config()
@staticmethod
def init_azure_openai(app_config: Config) -> HostingProvider:
def init_azure_openai() -> HostingProvider:
quota_unit = QuotaUnit.TIMES
if app_config.get("HOSTED_AZURE_OPENAI_ENABLED"):
if dify_config.HOSTED_AZURE_OPENAI_ENABLED:
credentials = {
"openai_api_key": app_config.get("HOSTED_AZURE_OPENAI_API_KEY"),
"openai_api_base": app_config.get("HOSTED_AZURE_OPENAI_API_BASE"),
"openai_api_key": dify_config.HOSTED_AZURE_OPENAI_API_KEY,
"openai_api_base": dify_config.HOSTED_AZURE_OPENAI_API_BASE,
"base_model_name": "gpt-35-turbo",
}
quotas = []
hosted_quota_limit = int(app_config.get("HOSTED_AZURE_OPENAI_QUOTA_LIMIT", "1000"))
hosted_quota_limit = dify_config.HOSTED_AZURE_OPENAI_QUOTA_LIMIT
trial_quota = TrialHostingQuota(
quota_limit=hosted_quota_limit,
restrict_models=[
@ -122,31 +121,31 @@ class HostingConfiguration:
quota_unit=quota_unit,
)
def init_openai(self, app_config: Config) -> HostingProvider:
def init_openai(self) -> HostingProvider:
quota_unit = QuotaUnit.CREDITS
quotas = []
if app_config.get("HOSTED_OPENAI_TRIAL_ENABLED"):
hosted_quota_limit = int(app_config.get("HOSTED_OPENAI_QUOTA_LIMIT", "200"))
trial_models = self.parse_restrict_models_from_env(app_config, "HOSTED_OPENAI_TRIAL_MODELS")
if dify_config.HOSTED_OPENAI_TRIAL_ENABLED:
hosted_quota_limit = dify_config.HOSTED_OPENAI_QUOTA_LIMIT
trial_models = self.parse_restrict_models_from_env("HOSTED_OPENAI_TRIAL_MODELS")
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit, restrict_models=trial_models)
quotas.append(trial_quota)
if app_config.get("HOSTED_OPENAI_PAID_ENABLED"):
paid_models = self.parse_restrict_models_from_env(app_config, "HOSTED_OPENAI_PAID_MODELS")
if dify_config.HOSTED_OPENAI_PAID_ENABLED:
paid_models = self.parse_restrict_models_from_env("HOSTED_OPENAI_PAID_MODELS")
paid_quota = PaidHostingQuota(restrict_models=paid_models)
quotas.append(paid_quota)
if len(quotas) > 0:
credentials = {
"openai_api_key": app_config.get("HOSTED_OPENAI_API_KEY"),
"openai_api_key": dify_config.HOSTED_OPENAI_API_KEY,
}
if app_config.get("HOSTED_OPENAI_API_BASE"):
credentials["openai_api_base"] = app_config.get("HOSTED_OPENAI_API_BASE")
if dify_config.HOSTED_OPENAI_API_BASE:
credentials["openai_api_base"] = dify_config.HOSTED_OPENAI_API_BASE
if app_config.get("HOSTED_OPENAI_API_ORGANIZATION"):
credentials["openai_organization"] = app_config.get("HOSTED_OPENAI_API_ORGANIZATION")
if dify_config.HOSTED_OPENAI_API_ORGANIZATION:
credentials["openai_organization"] = dify_config.HOSTED_OPENAI_API_ORGANIZATION
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
@ -156,26 +155,26 @@ class HostingConfiguration:
)
@staticmethod
def init_anthropic(app_config: Config) -> HostingProvider:
def init_anthropic() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
quotas = []
if app_config.get("HOSTED_ANTHROPIC_TRIAL_ENABLED"):
hosted_quota_limit = int(app_config.get("HOSTED_ANTHROPIC_QUOTA_LIMIT", "0"))
if dify_config.HOSTED_ANTHROPIC_TRIAL_ENABLED:
hosted_quota_limit = dify_config.HOSTED_ANTHROPIC_QUOTA_LIMIT
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit)
quotas.append(trial_quota)
if app_config.get("HOSTED_ANTHROPIC_PAID_ENABLED"):
if dify_config.HOSTED_ANTHROPIC_PAID_ENABLED:
paid_quota = PaidHostingQuota()
quotas.append(paid_quota)
if len(quotas) > 0:
credentials = {
"anthropic_api_key": app_config.get("HOSTED_ANTHROPIC_API_KEY"),
"anthropic_api_key": dify_config.HOSTED_ANTHROPIC_API_KEY,
}
if app_config.get("HOSTED_ANTHROPIC_API_BASE"):
credentials["anthropic_api_url"] = app_config.get("HOSTED_ANTHROPIC_API_BASE")
if dify_config.HOSTED_ANTHROPIC_API_BASE:
credentials["anthropic_api_url"] = dify_config.HOSTED_ANTHROPIC_API_BASE
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
@ -185,9 +184,9 @@ class HostingConfiguration:
)
@staticmethod
def init_minimax(app_config: Config) -> HostingProvider:
def init_minimax() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if app_config.get("HOSTED_MINIMAX_ENABLED"):
if dify_config.HOSTED_MINIMAX_ENABLED:
quotas = [FreeHostingQuota()]
return HostingProvider(
@ -203,9 +202,9 @@ class HostingConfiguration:
)
@staticmethod
def init_spark(app_config: Config) -> HostingProvider:
def init_spark() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if app_config.get("HOSTED_SPARK_ENABLED"):
if dify_config.HOSTED_SPARK_ENABLED:
quotas = [FreeHostingQuota()]
return HostingProvider(
@ -221,9 +220,9 @@ class HostingConfiguration:
)
@staticmethod
def init_zhipuai(app_config: Config) -> HostingProvider:
def init_zhipuai() -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if app_config.get("HOSTED_ZHIPUAI_ENABLED"):
if dify_config.HOSTED_ZHIPUAI_ENABLED:
quotas = [FreeHostingQuota()]
return HostingProvider(
@ -239,17 +238,15 @@ class HostingConfiguration:
)
@staticmethod
def init_moderation_config(app_config: Config) -> HostedModerationConfig:
if app_config.get("HOSTED_MODERATION_ENABLED") and app_config.get("HOSTED_MODERATION_PROVIDERS"):
return HostedModerationConfig(
enabled=True, providers=app_config.get("HOSTED_MODERATION_PROVIDERS").split(",")
)
def init_moderation_config() -> HostedModerationConfig:
if dify_config.HOSTED_MODERATION_ENABLED and dify_config.HOSTED_MODERATION_PROVIDERS:
return HostedModerationConfig(enabled=True, providers=dify_config.HOSTED_MODERATION_PROVIDERS.split(","))
return HostedModerationConfig(enabled=False)
@staticmethod
def parse_restrict_models_from_env(app_config: Config, env_var: str) -> list[RestrictModel]:
models_str = app_config.get(env_var)
def parse_restrict_models_from_env(env_var: str) -> list[RestrictModel]:
models_str = dify_config.model_dump().get(env_var)
models_list = models_str.split(",") if models_str else []
return [
RestrictModel(model=model_name.strip(), model_type=ModelType.LLM)

View File

@ -8,6 +8,8 @@ from core.llm_generator.output_parser.suggested_questions_after_answer import Su
from core.llm_generator.prompts import (
CONVERSATION_TITLE_PROMPT,
GENERATOR_QA_PROMPT,
JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE,
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE,
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE,
)
from core.model_manager import ModelManager
@ -239,6 +241,54 @@ class LLMGenerator:
return rule_config
@classmethod
def generate_code(
cls,
tenant_id: str,
instruction: str,
model_config: dict,
code_language: str = "javascript",
max_tokens: int = 1000,
) -> dict:
if code_language == "python":
prompt_template = PromptTemplateParser(PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE)
else:
prompt_template = PromptTemplateParser(JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE)
prompt = prompt_template.format(
inputs={
"INSTRUCTION": instruction,
"CODE_LANGUAGE": code_language,
},
remove_template_variables=False,
)
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=model_config.get("provider") if model_config else None,
model=model_config.get("name") if model_config else None,
)
prompt_messages = [UserPromptMessage(content=prompt)]
model_parameters = {"max_tokens": max_tokens, "temperature": 0.01}
try:
response = model_instance.invoke_llm(
prompt_messages=prompt_messages, model_parameters=model_parameters, stream=False
)
generated_code = response.message.content
return {"code": generated_code, "language": code_language, "error": ""}
except InvokeError as e:
error = str(e)
return {"code": "", "language": code_language, "error": f"Failed to generate code. Error: {error}"}
except Exception as e:
logging.exception(e)
return {"code": "", "language": code_language, "error": f"An unexpected error occurred: {str(e)}"}
@classmethod
def generate_qa_document(cls, tenant_id: str, query, document_language: str):
prompt = GENERATOR_QA_PROMPT.format(language=document_language)

View File

@ -61,6 +61,73 @@ User Input: yo, 你今天咋样?
User Input:
""" # noqa: E501
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE = (
"You are an expert programmer. Generate code based on the following instructions:\n\n"
"Instructions: {{INSTRUCTION}}\n\n"
"Write the code in {{CODE_LANGUAGE}}.\n\n"
"Please ensure that you meet the following requirements:\n"
"1. Define a function named 'main'.\n"
"2. The 'main' function must return a dictionary (dict).\n"
"3. You may modify the arguments of the 'main' function, but include appropriate type hints.\n"
"4. The returned dictionary should contain at least one key-value pair.\n\n"
"5. You may ONLY use the following libraries in your code: \n"
"- json\n"
"- datetime\n"
"- math\n"
"- random\n"
"- re\n"
"- string\n"
"- sys\n"
"- time\n"
"- traceback\n"
"- uuid\n"
"- os\n"
"- base64\n"
"- hashlib\n"
"- hmac\n"
"- binascii\n"
"- collections\n"
"- functools\n"
"- operator\n"
"- itertools\n\n"
"Example:\n"
"def main(arg1: str, arg2: int) -> dict:\n"
" return {\n"
' "result": arg1 * arg2,\n'
" }\n\n"
"IMPORTANT:\n"
"- Provide ONLY the code without any additional explanations, comments, or markdown formatting.\n"
"- DO NOT use markdown code blocks (``` or ``` python). Return the raw code directly.\n"
"- The code should start immediately after this instruction, without any preceding newlines or spaces.\n"
"- The code should be complete, functional, and follow best practices for {{CODE_LANGUAGE}}.\n\n"
"- Always use the format return {'result': ...} for the output.\n\n"
"Generated Code:\n"
)
JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE = (
"You are an expert programmer. Generate code based on the following instructions:\n\n"
"Instructions: {{INSTRUCTION}}\n\n"
"Write the code in {{CODE_LANGUAGE}}.\n\n"
"Please ensure that you meet the following requirements:\n"
"1. Define a function named 'main'.\n"
"2. The 'main' function must return an object.\n"
"3. You may modify the arguments of the 'main' function, but include appropriate JSDoc annotations.\n"
"4. The returned object should contain at least one key-value pair.\n\n"
"5. The returned object should always be in the format: {result: ...}\n\n"
"Example:\n"
"function main(arg1, arg2) {\n"
" return {\n"
" result: arg1 * arg2\n"
" };\n"
"}\n\n"
"IMPORTANT:\n"
"- Provide ONLY the code without any additional explanations, comments, or markdown formatting.\n"
"- DO NOT use markdown code blocks (``` or ``` javascript). Return the raw code directly.\n"
"- The code should start immediately after this instruction, without any preceding newlines or spaces.\n"
"- The code should be complete, functional, and follow best practices for {{CODE_LANGUAGE}}.\n\n"
"Generated Code:\n"
)
SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
"Please help me predict the three most likely questions that human would ask, "
"and keeping each question under 20 characters.\n"

View File

@ -2,6 +2,7 @@ from typing import Optional
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.file import file_manager
from core.file.models import FileType
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
@ -98,8 +99,9 @@ class TokenBufferMemory:
prompt_message_contents: list[PromptMessageContent] = []
prompt_message_contents.append(TextPromptMessageContent(data=message.query))
for file_obj in file_objs:
prompt_message = file_manager.to_prompt_message_content(file_obj)
prompt_message_contents.append(prompt_message)
if file_obj.type in {FileType.IMAGE, FileType.AUDIO}:
prompt_message = file_manager.to_prompt_message_content(file_obj)
prompt_message_contents.append(prompt_message)
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:

View File

@ -218,7 +218,7 @@ For instance, Xinference supports `max_tokens`, `temperature`, and `top_p` param
However, some vendors may support different parameters for different models. For example, the `OpenLLM` vendor supports `top_k`, but not all models provided by this vendor support `top_k`. Let's say model A supports `top_k` but model B does not. In such cases, we need to dynamically generate the model parameter schema, as illustrated below:
```python
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -205,7 +205,7 @@ provider_credential_schema:
但是有的供应商根据不同的模型支持不同的参数,如供应商`OpenLLM`支持`top_k`,但是并不是这个供应商提供的所有模型都支持`top_k`我们这里举例A模型支持`top_k`B模型不支持`top_k`那么我们需要在这里动态生成模型参数的Schema如下所示
```python
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -105,6 +105,7 @@ class LLMResult(BaseModel):
Model class for llm result.
"""
id: Optional[str] = None
model: str
prompt_messages: list[PromptMessage]
message: AssistantPromptMessage

View File

@ -1,3 +1,4 @@
- claude-3-5-sonnet-20241022
- claude-3-5-sonnet-20240620
- claude-3-haiku-20240307
- claude-3-opus-20240229

View File

@ -0,0 +1,39 @@
model: claude-3-5-sonnet-20241022
label:
en_US: claude-3-5-sonnet-20241022
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true
default: 8192
min: 1
max: 8192
- name: response_format
use_template: response_format
pricing:
input: '3.00'
output: '15.00'
unit: '0.000001'
currency: USD

View File

@ -294,7 +294,7 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Used to define customizable model schema
"""

View File

@ -148,7 +148,7 @@ class AzureRerankModel(RerankModel):
InvokeBadRequestError: [InvokeBadRequestError, KeyError, ValueError, json.JSONDecodeError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -53,6 +53,9 @@ model_credential_schema:
type: select
required: true
options:
- label:
en_US: 2024-10-01-preview
value: 2024-10-01-preview
- label:
en_US: 2024-09-01-preview
value: 2024-09-01-preview

View File

@ -45,9 +45,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
stream: bool = True,
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
base_model_name = credentials.get("base_model_name")
if not base_model_name:
raise ValueError("Base Model Name is required")
base_model_name = self._get_base_model_name(credentials)
ai_model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
if ai_model_entity and ai_model_entity.entity.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT.value:
@ -81,9 +79,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
prompt_messages: list[PromptMessage],
tools: Optional[list[PromptMessageTool]] = None,
) -> int:
base_model_name = credentials.get("base_model_name")
if not base_model_name:
raise ValueError("Base Model Name is required")
base_model_name = self._get_base_model_name(credentials)
model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
if not model_entity:
raise ValueError(f"Base Model Name {base_model_name} is invalid")
@ -108,9 +104,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
if "base_model_name" not in credentials:
raise CredentialsValidateFailedError("Base Model Name is required")
base_model_name = credentials.get("base_model_name")
if not base_model_name:
raise CredentialsValidateFailedError("Base Model Name is required")
base_model_name = self._get_base_model_name(credentials)
ai_model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
if not ai_model_entity:
@ -149,9 +143,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
raise CredentialsValidateFailedError(str(ex))
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
base_model_name = credentials.get("base_model_name")
if not base_model_name:
raise ValueError("Base Model Name is required")
base_model_name = self._get_base_model_name(credentials)
ai_model_entity = self._get_ai_model_entity(base_model_name=base_model_name, model=model)
return ai_model_entity.entity if ai_model_entity else None
@ -308,11 +300,6 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
if tools:
extra_model_kwargs["tools"] = [helper.dump_model(PromptMessageFunction(function=tool)) for tool in tools]
# extra_model_kwargs['functions'] = [{
# "name": tool.name,
# "description": tool.description,
# "parameters": tool.parameters
# } for tool in tools]
if stop:
extra_model_kwargs["stop"] = stop
@ -769,3 +756,9 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
ai_model_entity_copy.entity.label.en_US = model
ai_model_entity_copy.entity.label.zh_Hans = model
return ai_model_entity_copy
def _get_base_model_name(self, credentials: dict) -> str:
base_model_name = credentials.get("base_model_name")
if not base_model_name:
raise ValueError("Base Model Name is required")
return base_model_name

View File

@ -0,0 +1,60 @@
model: anthropic.claude-3-5-sonnet-20241022-v2:0
label:
en_US: Claude 3.5 Sonnet V2
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,60 @@
model: eu.anthropic.claude-3-5-sonnet-20241022-v2:0
label:
en_US: Claude 3.5 Sonnet V2(EU.Cross Region Inference)
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,60 @@
model: us.anthropic.claude-3-5-sonnet-20241022-v2:0
label:
en_US: Claude 3.5 Sonnet V2(US.Cross Region Inference)
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 9.8 KiB

View File

@ -0,0 +1,3 @@
<svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg">
<path fill-rule="evenodd" clip-rule="evenodd" d="M25.132 24.3947C25.497 25.7527 25.8984 27.1413 26.3334 28.5834C26.7302 29.8992 25.5459 30.4167 25.0752 29.1758C24.571 27.8466 24.0885 26.523 23.6347 25.1729C21.065 26.4654 18.5025 27.5424 15.5961 28.7541C16.7581 33.0256 17.8309 36.5984 19.4952 39.9935C19.4953 39.9936 19.4953 39.9937 19.4954 39.9938C19.6631 39.9979 19.8313 40 20 40C31.0457 40 40 31.0457 40 20C40 16.0335 38.8453 12.3366 36.8537 9.22729C31.6585 9.69534 27.0513 10.4562 22.8185 11.406C22.8882 12.252 22.9677 13.0739 23.0555 13.855C23.3824 16.7604 23.9112 19.5281 24.6137 22.3836C27.0581 21.2848 29.084 20.3225 30.6816 19.522C32.2154 18.7535 33.6943 18.7062 31.2018 20.6594C29.0388 22.1602 27.0644 23.3566 25.132 24.3947ZM36.1559 8.20846C33.0001 3.89184 28.1561 0.887462 22.5955 0.166882C22.4257 2.86234 22.4785 6.26344 22.681 9.50447C26.7473 8.88859 31.1721 8.46032 36.1559 8.20846ZM19.9369 9.73661e-05C19.7594 2.92694 19.8384 6.65663 20.19 9.91293C17.3748 10.4109 14.7225 11.0064 12.1592 11.7038C12.0486 10.4257 11.9927 9.25764 11.9927 8.24178C11.9927 7.5054 11.3957 6.90844 10.6593 6.90844C9.92296 6.90844 9.32601 7.5054 9.32601 8.24178C9.32601 9.47868 9.42873 10.898 9.61402 12.438C8.33567 12.8278 7.07397 13.2443 5.81918 13.688C5.12493 13.9336 4.76118 14.6954 5.0067 15.3896C5.25223 16.0839 6.01406 16.4476 6.7083 16.2021C7.7931 15.8185 8.88482 15.4388 9.98927 15.0659C10.5222 18.3344 11.3344 21.9428 12.2703 25.4156C12.4336 26.0218 12.6062 26.6262 12.7863 27.2263C9.34168 28.4135 5.82612 29.3782 2.61128 29.8879C0.949407 26.9716 0 23.5967 0 20C0 8.97534 8.92023 0.0341108 19.9369 9.73661e-05ZM4.19152 32.2527C7.45069 36.4516 12.3458 39.3173 17.9204 39.8932C16.5916 37.455 14.9338 33.717 13.5405 29.5901C10.4404 30.7762 7.25883 31.6027 4.19152 32.2527ZM22.9735 23.1135C22.1479 20.41 21.4462 17.5441 20.9225 14.277C20.746 13.5841 20.5918 12.8035 20.4593 11.9636C17.6508 12.6606 14.9992 13.4372 12.4356 14.2598C12.8479 17.4766 13.5448 21.1334 14.5118 24.7218C14.662 25.2792 14.8081 25.8248 14.9514 26.3594L14.9516 26.3603L14.9524 26.3634L14.9526 26.3639L14.973 26.4401C16.1833 25.9872 17.3746 25.5123 18.53 25.0259C20.1235 24.3552 21.6051 23.7165 22.9735 23.1135Z" fill="#141519"/>
</svg>

After

Width:  |  Height:  |  Size: 2.2 KiB

View File

@ -0,0 +1,47 @@
from dashscope.common.error import (
AuthenticationError,
InvalidParameter,
RequestFailure,
ServiceUnavailableError,
UnsupportedHTTPMethod,
UnsupportedModel,
)
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)
class _CommonGiteeAI:
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
The key is the error type thrown to the caller
The value is the error type thrown by the model,
which needs to be converted into a unified error type for the caller.
:return: Invoke error mapping
"""
return {
InvokeConnectionError: [
RequestFailure,
],
InvokeServerUnavailableError: [
ServiceUnavailableError,
],
InvokeRateLimitError: [],
InvokeAuthorizationError: [
AuthenticationError,
],
InvokeBadRequestError: [
InvalidParameter,
UnsupportedModel,
UnsupportedHTTPMethod,
],
}

View File

@ -0,0 +1,25 @@
import logging
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
logger = logging.getLogger(__name__)
class GiteeAIProvider(ModelProvider):
def validate_provider_credentials(self, credentials: dict) -> None:
"""
Validate provider credentials
if validate failed, raise exception
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
"""
try:
model_instance = self.get_model_instance(ModelType.LLM)
model_instance.validate_credentials(model="Qwen2-7B-Instruct", credentials=credentials)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:
logger.exception(f"{self.get_provider_schema().provider} credentials validate failed")
raise ex

View File

@ -0,0 +1,35 @@
provider: gitee_ai
label:
en_US: Gitee AI
zh_Hans: Gitee AI
description:
en_US: 快速体验大模型,领先探索 AI 开源世界
zh_Hans: 快速体验大模型,领先探索 AI 开源世界
icon_small:
en_US: Gitee-AI-Logo.svg
icon_large:
en_US: Gitee-AI-Logo-full.svg
help:
title:
en_US: Get your token from Gitee AI
zh_Hans: 从 Gitee AI 获取 token
url:
en_US: https://ai.gitee.com/dashboard/settings/tokens
supported_model_types:
- llm
- text-embedding
- rerank
- speech2text
- tts
configurate_methods:
- predefined-model
provider_credential_schema:
credential_form_schemas:
- variable: api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key

View File

@ -0,0 +1,105 @@
model: Qwen2-72B-Instruct
label:
zh_Hans: Qwen2-72B-Instruct
en_US: Qwen2-72B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 6400
parameter_rules:
- name: stream
use_template: boolean
label:
en_US: "Stream"
zh_Hans: "流式"
type: boolean
default: true
required: true
help:
en_US: "Whether to return the results in batches through streaming. If set to true, the generated text will be pushed to the user in real time during the generation process."
zh_Hans: "是否通过流式分批返回结果。如果设置为 true生成过程中实时地向用户推送每一部分生成的文本。"
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -0,0 +1,105 @@
model: Qwen2-7B-Instruct
label:
zh_Hans: Qwen2-7B-Instruct
en_US: Qwen2-7B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: stream
use_template: boolean
label:
en_US: "Stream"
zh_Hans: "流式"
type: boolean
default: true
required: true
help:
en_US: "Whether to return the results in batches through streaming. If set to true, the generated text will be pushed to the user in real time during the generation process."
zh_Hans: "是否通过流式分批返回结果。如果设置为 true生成过程中实时地向用户推送每一部分生成的文本。"
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -0,0 +1,105 @@
model: Yi-1.5-34B-Chat
label:
zh_Hans: Yi-1.5-34B-Chat
en_US: Yi-1.5-34B-Chat
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 4096
parameter_rules:
- name: stream
use_template: boolean
label:
en_US: "Stream"
zh_Hans: "流式"
type: boolean
default: true
required: true
help:
en_US: "Whether to return the results in batches through streaming. If set to true, the generated text will be pushed to the user in real time during the generation process."
zh_Hans: "是否通过流式分批返回结果。如果设置为 true生成过程中实时地向用户推送每一部分生成的文本。"
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -0,0 +1,7 @@
- Qwen2-7B-Instruct
- Qwen2-72B-Instruct
- Yi-1.5-34B-Chat
- glm-4-9b-chat
- deepseek-coder-33B-instruct-chat
- deepseek-coder-33B-instruct-completions
- codegeex4-all-9b

View File

@ -0,0 +1,105 @@
model: codegeex4-all-9b
label:
zh_Hans: codegeex4-all-9b
en_US: codegeex4-all-9b
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 40960
parameter_rules:
- name: stream
use_template: boolean
label:
en_US: "Stream"
zh_Hans: "流式"
type: boolean
default: true
required: true
help:
en_US: "Whether to return the results in batches through streaming. If set to true, the generated text will be pushed to the user in real time during the generation process."
zh_Hans: "是否通过流式分批返回结果。如果设置为 true生成过程中实时地向用户推送每一部分生成的文本。"
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -0,0 +1,105 @@
model: deepseek-coder-33B-instruct-chat
label:
zh_Hans: deepseek-coder-33B-instruct-chat
en_US: deepseek-coder-33B-instruct-chat
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 9000
parameter_rules:
- name: stream
use_template: boolean
label:
en_US: "Stream"
zh_Hans: "流式"
type: boolean
default: true
required: true
help:
en_US: "Whether to return the results in batches through streaming. If set to true, the generated text will be pushed to the user in real time during the generation process."
zh_Hans: "是否通过流式分批返回结果。如果设置为 true生成过程中实时地向用户推送每一部分生成的文本。"
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -0,0 +1,91 @@
model: deepseek-coder-33B-instruct-completions
label:
zh_Hans: deepseek-coder-33B-instruct-completions
en_US: deepseek-coder-33B-instruct-completions
model_type: llm
features:
- agent-thought
model_properties:
mode: completion
context_size: 9000
parameter_rules:
- name: stream
use_template: boolean
label:
en_US: "Stream"
zh_Hans: "流式"
type: boolean
default: true
required: true
help:
en_US: "Whether to return the results in batches through streaming. If set to true, the generated text will be pushed to the user in real time during the generation process."
zh_Hans: "是否通过流式分批返回结果。如果设置为 true生成过程中实时地向用户推送每一部分生成的文本。"
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -0,0 +1,105 @@
model: glm-4-9b-chat
label:
zh_Hans: glm-4-9b-chat
en_US: glm-4-9b-chat
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: stream
use_template: boolean
label:
en_US: "Stream"
zh_Hans: "流式"
type: boolean
default: true
required: true
help:
en_US: "Whether to return the results in batches through streaming. If set to true, the generated text will be pushed to the user in real time during the generation process."
zh_Hans: "是否通过流式分批返回结果。如果设置为 true生成过程中实时地向用户推送每一部分生成的文本。"
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -0,0 +1,47 @@
from collections.abc import Generator
from typing import Optional, Union
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult
from core.model_runtime.entities.message_entities import (
PromptMessage,
PromptMessageTool,
)
from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel
class GiteeAILargeLanguageModel(OAIAPICompatLargeLanguageModel):
MODEL_TO_IDENTITY: dict[str, str] = {
"Yi-1.5-34B-Chat": "Yi-34B-Chat",
"deepseek-coder-33B-instruct-completions": "deepseek-coder-33B-instruct",
"deepseek-coder-33B-instruct-chat": "deepseek-coder-33B-instruct",
}
def _invoke(
self,
model: str,
credentials: dict,
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials, model, model_parameters)
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials, model, None)
super().validate_credentials(model, credentials)
@staticmethod
def _add_custom_parameters(credentials: dict, model: str, model_parameters: dict) -> None:
if model is None:
model = "bge-large-zh-v1.5"
model_identity = GiteeAILargeLanguageModel.MODEL_TO_IDENTITY.get(model, model)
credentials["endpoint_url"] = f"https://ai.gitee.com/api/serverless/{model_identity}/"
if model.endswith("completions"):
credentials["mode"] = LLMMode.COMPLETION.value
else:
credentials["mode"] = LLMMode.CHAT.value

View File

@ -0,0 +1 @@
- bge-reranker-v2-m3

View File

@ -0,0 +1,4 @@
model: bge-reranker-v2-m3
model_type: rerank
model_properties:
context_size: 1024

View File

@ -0,0 +1,128 @@
from typing import Optional
import httpx
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
class GiteeAIRerankModel(RerankModel):
"""
Model class for rerank model.
"""
def _invoke(
self,
model: str,
credentials: dict,
query: str,
docs: list[str],
score_threshold: Optional[float] = None,
top_n: Optional[int] = None,
user: Optional[str] = None,
) -> RerankResult:
"""
Invoke rerank model
:param model: model name
:param credentials: model credentials
:param query: search query
:param docs: docs for reranking
:param score_threshold: score threshold
:param top_n: top n documents to return
:param user: unique user id
:return: rerank result
"""
if len(docs) == 0:
return RerankResult(model=model, docs=[])
base_url = credentials.get("base_url", "https://ai.gitee.com/api/serverless")
base_url = base_url.removesuffix("/")
try:
body = {"model": model, "query": query, "documents": docs}
if top_n is not None:
body["top_n"] = top_n
response = httpx.post(
f"{base_url}/{model}/rerank",
json=body,
headers={"Authorization": f"Bearer {credentials.get('api_key')}"},
)
response.raise_for_status()
results = response.json()
rerank_documents = []
for result in results["results"]:
rerank_document = RerankDocument(
index=result["index"],
text=result["document"]["text"],
score=result["relevance_score"],
)
if score_threshold is None or result["relevance_score"] >= score_threshold:
rerank_documents.append(rerank_document)
return RerankResult(model=model, docs=rerank_documents)
except httpx.HTTPStatusError as e:
raise InvokeServerUnavailableError(str(e))
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
self._invoke(
model=model,
credentials=credentials,
query="What is the capital of the United States?",
docs=[
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
"Census, Carson City had a population of 55,274.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
"are a political division controlled by the United States. Its capital is Saipan.",
],
score_threshold=0.01,
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
"""
return {
InvokeConnectionError: [httpx.ConnectError],
InvokeServerUnavailableError: [httpx.RemoteProtocolError],
InvokeRateLimitError: [],
InvokeAuthorizationError: [httpx.HTTPStatusError],
InvokeBadRequestError: [httpx.RequestError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
"""
generate custom model entities from credentials
"""
entity = AIModelEntity(
model=model,
label=I18nObject(en_US=model),
model_type=ModelType.RERANK,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size"))},
)
return entity

View File

@ -0,0 +1,2 @@
- whisper-base
- whisper-large

View File

@ -0,0 +1,53 @@
import os
from typing import IO, Optional
import requests
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.gitee_ai._common import _CommonGiteeAI
class GiteeAISpeech2TextModel(_CommonGiteeAI, Speech2TextModel):
"""
Model class for OpenAI Compatible Speech to text model.
"""
def _invoke(self, model: str, credentials: dict, file: IO[bytes], user: Optional[str] = None) -> str:
"""
Invoke speech2text model
:param model: model name
:param credentials: model credentials
:param file: audio file
:param user: unique user id
:return: text for given audio file
"""
# doc: https://ai.gitee.com/docs/openapi/serverless#tag/serverless/POST/{service}/speech-to-text
endpoint_url = f"https://ai.gitee.com/api/serverless/{model}/speech-to-text"
files = [("file", file)]
_, file_ext = os.path.splitext(file.name)
headers = {"Content-Type": f"audio/{file_ext}", "Authorization": f"Bearer {credentials.get('api_key')}"}
response = requests.post(endpoint_url, headers=headers, files=files)
if response.status_code != 200:
raise InvokeBadRequestError(response.text)
response_data = response.json()
return response_data["text"]
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
audio_file_path = self._get_demo_file_path()
with open(audio_file_path, "rb") as audio_file:
self._invoke(model, credentials, audio_file)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))

View File

@ -0,0 +1,5 @@
model: whisper-base
model_type: speech2text
model_properties:
file_upload_limit: 1
supported_file_extensions: flac,mp3,mp4,mpeg,mpga,m4a,ogg,wav,webm

View File

@ -0,0 +1,5 @@
model: whisper-large
model_type: speech2text
model_properties:
file_upload_limit: 1
supported_file_extensions: flac,mp3,mp4,mpeg,mpga,m4a,ogg,wav,webm

View File

@ -0,0 +1,3 @@
- bge-large-zh-v1.5
- bge-small-zh-v1.5
- bge-m3

View File

@ -0,0 +1,8 @@
model: bge-large-zh-v1.5
label:
zh_Hans: bge-large-zh-v1.5
en_US: bge-large-zh-v1.5
model_type: text-embedding
model_properties:
context_size: 200000
max_chunks: 20

View File

@ -0,0 +1,8 @@
model: bge-m3
label:
zh_Hans: bge-m3
en_US: bge-m3
model_type: text-embedding
model_properties:
context_size: 200000
max_chunks: 20

View File

@ -0,0 +1,8 @@
model: bge-small-zh-v1.5
label:
zh_Hans: bge-small-zh-v1.5
en_US: bge-small-zh-v1.5
model_type: text-embedding
model_properties:
context_size: 200000
max_chunks: 20

View File

@ -0,0 +1,31 @@
from typing import Optional
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.model_providers.openai_api_compatible.text_embedding.text_embedding import (
OAICompatEmbeddingModel,
)
class GiteeAIEmbeddingModel(OAICompatEmbeddingModel):
def _invoke(
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
self._add_custom_parameters(credentials, model)
return super()._invoke(model, credentials, texts, user, input_type)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials, None)
super().validate_credentials(model, credentials)
@staticmethod
def _add_custom_parameters(credentials: dict, model: str) -> None:
if model is None:
model = "bge-m3"
credentials["endpoint_url"] = f"https://ai.gitee.com/api/serverless/{model}/v1/"

View File

@ -0,0 +1,11 @@
model: ChatTTS
model_type: tts
model_properties:
default_voice: 'default'
voices:
- mode: 'default'
name: 'Default'
language: [ 'zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID' ]
word_limit: 3500
audio_type: 'mp3'
max_workers: 5

View File

@ -0,0 +1,11 @@
model: FunAudioLLM-CosyVoice-300M
model_type: tts
model_properties:
default_voice: 'default'
voices:
- mode: 'default'
name: 'Default'
language: [ 'zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID' ]
word_limit: 3500
audio_type: 'mp3'
max_workers: 5

View File

@ -0,0 +1,4 @@
- speecht5_tts
- ChatTTS
- fish-speech-1.2-sft
- FunAudioLLM-CosyVoice-300M

View File

@ -0,0 +1,11 @@
model: fish-speech-1.2-sft
model_type: tts
model_properties:
default_voice: 'default'
voices:
- mode: 'default'
name: 'Default'
language: [ 'zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID' ]
word_limit: 3500
audio_type: 'mp3'
max_workers: 5

View File

@ -0,0 +1,11 @@
model: speecht5_tts
model_type: tts
model_properties:
default_voice: 'default'
voices:
- mode: 'default'
name: 'Default'
language: [ 'zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID' ]
word_limit: 3500
audio_type: 'mp3'
max_workers: 5

View File

@ -0,0 +1,79 @@
from typing import Optional
import requests
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.model_providers.gitee_ai._common import _CommonGiteeAI
class GiteeAIText2SpeechModel(_CommonGiteeAI, TTSModel):
"""
Model class for OpenAI Speech to text model.
"""
def _invoke(
self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str, user: Optional[str] = None
) -> any:
"""
_invoke text2speech model
:param model: model name
:param tenant_id: user tenant id
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:param user: unique user id
:return: text translated to audio file
"""
return self._tts_invoke_streaming(model=model, credentials=credentials, content_text=content_text, voice=voice)
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
validate credentials text2speech model
:param model: model name
:param credentials: model credentials
:return: text translated to audio file
"""
try:
self._tts_invoke_streaming(
model=model,
credentials=credentials,
content_text="Hello Dify!",
voice=self._get_model_default_voice(model, credentials),
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str, voice: str) -> any:
"""
_tts_invoke_streaming text2speech model
:param model: model name
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:return: text translated to audio file
"""
try:
# doc: https://ai.gitee.com/docs/openapi/serverless#tag/serverless/POST/{service}/text-to-speech
endpoint_url = "https://ai.gitee.com/api/serverless/" + model + "/text-to-speech"
headers = {"Content-Type": "application/json"}
api_key = credentials.get("api_key")
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
payload = {"inputs": content_text}
response = requests.post(endpoint_url, headers=headers, json=payload)
if response.status_code != 200:
raise InvokeBadRequestError(response.text)
data = response.content
for i in range(0, len(data), 1024):
yield data[i : i + 1024]
except Exception as ex:
raise InvokeBadRequestError(str(ex))

View File

@ -118,7 +118,7 @@ class HuggingfaceTeiRerankModel(RerankModel):
InvokeBadRequestError: [InvokeBadRequestError, KeyError, ValueError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -189,7 +189,7 @@ class HuggingfaceTeiTextEmbeddingModel(TextEmbeddingModel):
return usage
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -1,5 +1,5 @@
from collections.abc import Generator
from typing import cast
from typing import Optional, cast
from httpx import Timeout
from openai import (
@ -212,7 +212,7 @@ class LocalAILanguageModel(LargeLanguageModel):
except Exception as ex:
raise CredentialsValidateFailedError(f"Invalid credentials {str(ex)}")
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
completion_model = None
if credentials["completion_type"] == "chat_completion":
completion_model = LLMMode.CHAT.value

View File

@ -73,7 +73,7 @@ class LocalAISpeech2text(Speech2TextModel):
InvokeBadRequestError: [InvokeBadRequestError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -115,7 +115,7 @@ class LocalAITextEmbeddingModel(TextEmbeddingModel):
num_tokens += self._get_num_tokens_by_gpt2(text)
return num_tokens
def _get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def _get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Get customizable model schema

View File

@ -44,13 +44,16 @@ class MoonshotLargeLanguageModel(OAIAPICompatLargeLanguageModel):
self._add_custom_parameters(credentials)
self._add_function_call(model, credentials)
user = user[:32] if user else None
# {"response_format": "json_object"} need convert to {"response_format": {"type": "json_object"}}
if "response_format" in model_parameters:
model_parameters["response_format"] = {"type": model_parameters.get("response_format")}
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
return AIModelEntity(
model=model,
label=I18nObject(en_US=model, zh_Hans=model),

View File

@ -61,7 +61,7 @@ class OpenAISpeech2TextModel(_CommonOpenAI, Speech2TextModel):
return response.text
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -397,16 +397,21 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
chunk_index = 0
def create_final_llm_result_chunk(
index: int, message: AssistantPromptMessage, finish_reason: str
id: Optional[str], index: int, message: AssistantPromptMessage, finish_reason: str, usage: dict
) -> LLMResultChunk:
# calculate num tokens
prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
completion_tokens = self._num_tokens_from_string(model, full_assistant_content)
prompt_tokens = usage and usage.get("prompt_tokens")
if prompt_tokens is None:
prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
completion_tokens = usage and usage.get("completion_tokens")
if completion_tokens is None:
completion_tokens = self._num_tokens_from_string(model, full_assistant_content)
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
return LLMResultChunk(
id=id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(index=index, message=message, finish_reason=finish_reason, usage=usage),
@ -450,7 +455,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
tool_call.function.arguments += new_tool_call.function.arguments
finish_reason = None # The default value of finish_reason is None
message_id, usage = None, None
for chunk in response.iter_lines(decode_unicode=True, delimiter=delimiter):
chunk = chunk.strip()
if chunk:
@ -462,20 +467,26 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
continue
try:
chunk_json = json.loads(decoded_chunk)
chunk_json: dict = json.loads(decoded_chunk)
# stream ended
except json.JSONDecodeError as e:
yield create_final_llm_result_chunk(
id=message_id,
index=chunk_index + 1,
message=AssistantPromptMessage(content=""),
finish_reason="Non-JSON encountered.",
usage=usage,
)
break
if chunk_json:
if u := chunk_json.get("usage"):
usage = u
if not chunk_json or len(chunk_json["choices"]) == 0:
continue
choice = chunk_json["choices"][0]
finish_reason = chunk_json["choices"][0].get("finish_reason")
message_id = chunk_json.get("id")
chunk_index += 1
if "delta" in choice:
@ -524,6 +535,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
continue
yield LLMResultChunk(
id=message_id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
@ -536,6 +548,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
if tools_calls:
yield LLMResultChunk(
id=message_id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
@ -545,17 +558,22 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
)
yield create_final_llm_result_chunk(
index=chunk_index, message=AssistantPromptMessage(content=""), finish_reason=finish_reason
id=message_id,
index=chunk_index,
message=AssistantPromptMessage(content=""),
finish_reason=finish_reason,
usage=usage,
)
def _handle_generate_response(
self, model: str, credentials: dict, response: requests.Response, prompt_messages: list[PromptMessage]
) -> LLMResult:
response_json = response.json()
response_json: dict = response.json()
completion_type = LLMMode.value_of(credentials["mode"])
output = response_json["choices"][0]
message_id = response_json.get("id")
response_content = ""
tool_calls = None
@ -593,6 +611,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
# transform response
result = LLMResult(
id=message_id,
model=response_json["model"],
prompt_messages=prompt_messages,
message=assistant_message,

View File

@ -62,7 +62,7 @@ class OAICompatSpeech2TextModel(_CommonOaiApiCompat, Speech2TextModel):
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -1,4 +1,5 @@
from collections.abc import Generator
from typing import Optional
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
@ -193,7 +194,7 @@ class OpenLLMLargeLanguageModel(LargeLanguageModel):
),
)
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@ -408,7 +408,7 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
InvokeBadRequestError: [InvokeBadRequestError, KeyError, ValueError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

Some files were not shown because too many files have changed in this diff Show More