Compare commits

..

1 Commits
0.5.9 ... bai

Author SHA1 Message Date
2bfcd227e8 bai 2024-03-05 10:44:39 +08:00
174 changed files with 657 additions and 4117 deletions

3
.gitignore vendored
View File

@ -145,9 +145,6 @@ docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
docker/volumes/etcd/*
docker/volumes/minio/*
docker/volumes/milvus/*
sdks/python-client/build
sdks/python-client/dist

View File

@ -21,6 +21,17 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://discord.com/events/1082486657678311454/1211724120996188220" target="_blank">
Dify.AI Upcoming Meetup Event [👉 Click to Join the Event Here 👈]
</a>
<ul align="center" style="text-decoration: none; list-style: none;">
<li> US EST: 09:00 (9:00 AM)</li>
<li> CET: 15:00 (3:00 PM)</li>
<li> CST: 22:00 (10:00 PM)</li>
</ul>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs

View File

@ -5,7 +5,7 @@
1. Start the docker-compose stack
The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using `docker-compose`.
```bash
cd ../docker
docker-compose -f docker-compose.middleware.yaml -p dify up -d
@ -15,7 +15,7 @@
3. Generate a `SECRET_KEY` in the `.env` file.
```bash
sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
openssl rand -base64 42
```
3.5 If you use annaconda, create a new environment and activate it
```bash
@ -46,7 +46,7 @@
```
pip install -r requirements.txt --upgrade --force-reinstall
```
6. Start backend:
```bash
flask run --host 0.0.0.0 --port=5001 --debug

View File

@ -26,7 +26,6 @@ from config import CloudEditionConfig, Config
from extensions import (
ext_celery,
ext_code_based_extension,
ext_compress,
ext_database,
ext_hosting_provider,
ext_login,
@ -97,7 +96,6 @@ def create_app(test_config=None) -> Flask:
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_compress.init_app(app)
ext_code_based_extension.init()
ext_database.init_app(app)
ext_migrate.init(app, db)

View File

@ -90,7 +90,7 @@ class Config:
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.5.9"
self.CURRENT_VERSION = "0.5.8"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@ -293,8 +293,6 @@ class Config:
self.BATCH_UPLOAD_LIMIT = get_env('BATCH_UPLOAD_LIMIT')
self.API_COMPRESSION_ENABLED = get_bool_env('API_COMPRESSION_ENABLED')
class CloudEditionConfig(Config):

View File

@ -27,9 +27,7 @@ from fields.app_fields import (
from libs.login import login_required
from models.model import App, AppModelConfig, Site
from services.app_model_config_service import AppModelConfigService
from core.tools.utils.configuration import ToolParameterConfigurationManager
from core.tools.tool_manager import ToolManager
from core.entities.application_entities import AgentToolEntity
def _get_app(app_id, tenant_id):
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id).first()
@ -238,42 +236,7 @@ class AppApi(Resource):
def get(self, app_id):
"""Get app detail"""
app_id = str(app_id)
app: App = _get_app(app_id, current_user.current_tenant_id)
# get original app model config
model_config: AppModelConfig = app.app_model_config
agent_mode = model_config.agent_mode_dict
# decrypt agent tool parameters if it's secret-input
for tool in agent_mode.get('tools') or []:
agent_tool_entity = AgentToolEntity(**tool)
# get tool
try:
tool_runtime = ToolManager.get_agent_tool_runtime(
tenant_id=current_user.current_tenant_id,
agent_tool=agent_tool_entity,
agent_callback=None
)
manager = ToolParameterConfigurationManager(
tenant_id=current_user.current_tenant_id,
tool_runtime=tool_runtime,
provider_name=agent_tool_entity.provider_id,
provider_type=agent_tool_entity.provider_type,
)
# get decrypted parameters
if agent_tool_entity.tool_parameters:
parameters = manager.decrypt_tool_parameters(agent_tool_entity.tool_parameters or {})
masked_parameter = manager.mask_tool_parameters(parameters or {})
else:
masked_parameter = {}
# override tool parameters
tool['tool_parameters'] = masked_parameter
except Exception as e:
pass
# override agent mode
model_config.agent_mode = json.dumps(agent_mode)
app = _get_app(app_id, current_user.current_tenant_id)
return app

View File

@ -1,4 +1,3 @@
import json
from flask import request
from flask_login import current_user
@ -8,9 +7,6 @@ from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.entities.application_entities import AgentToolEntity
from core.tools.tool_manager import ToolManager
from core.tools.utils.configuration import ToolParameterConfigurationManager
from events.app_event import app_model_config_was_updated
from extensions.ext_database import db
from libs.login import login_required
@ -42,88 +38,6 @@ class ModelConfigResource(Resource):
)
new_app_model_config = new_app_model_config.from_model_config_dict(model_configuration)
# get original app model config
original_app_model_config: AppModelConfig = db.session.query(AppModelConfig).filter(
AppModelConfig.id == app.app_model_config_id
).first()
agent_mode = original_app_model_config.agent_mode_dict
# decrypt agent tool parameters if it's secret-input
parameter_map = {}
masked_parameter_map = {}
tool_map = {}
for tool in agent_mode.get('tools') or []:
agent_tool_entity = AgentToolEntity(**tool)
# get tool
try:
tool_runtime = ToolManager.get_agent_tool_runtime(
tenant_id=current_user.current_tenant_id,
agent_tool=agent_tool_entity,
agent_callback=None
)
manager = ToolParameterConfigurationManager(
tenant_id=current_user.current_tenant_id,
tool_runtime=tool_runtime,
provider_name=agent_tool_entity.provider_id,
provider_type=agent_tool_entity.provider_type,
)
except Exception as e:
continue
# get decrypted parameters
if agent_tool_entity.tool_parameters:
parameters = manager.decrypt_tool_parameters(agent_tool_entity.tool_parameters or {})
masked_parameter = manager.mask_tool_parameters(parameters or {})
else:
parameters = {}
masked_parameter = {}
key = f'{agent_tool_entity.provider_id}.{agent_tool_entity.provider_type}.{agent_tool_entity.tool_name}'
masked_parameter_map[key] = masked_parameter
parameter_map[key] = parameters
tool_map[key] = tool_runtime
# encrypt agent tool parameters if it's secret-input
agent_mode = new_app_model_config.agent_mode_dict
for tool in agent_mode.get('tools') or []:
agent_tool_entity = AgentToolEntity(**tool)
# get tool
key = f'{agent_tool_entity.provider_id}.{agent_tool_entity.provider_type}.{agent_tool_entity.tool_name}'
if key in tool_map:
tool_runtime = tool_map[key]
else:
try:
tool_runtime = ToolManager.get_agent_tool_runtime(
tenant_id=current_user.current_tenant_id,
agent_tool=agent_tool_entity,
agent_callback=None
)
except Exception as e:
continue
manager = ToolParameterConfigurationManager(
tenant_id=current_user.current_tenant_id,
tool_runtime=tool_runtime,
provider_name=agent_tool_entity.provider_id,
provider_type=agent_tool_entity.provider_type,
)
manager.delete_tool_parameters_cache()
# override parameters if it equals to masked parameters
if agent_tool_entity.tool_parameters:
if key not in masked_parameter_map:
continue
if agent_tool_entity.tool_parameters == masked_parameter_map[key]:
agent_tool_entity.tool_parameters = parameter_map[key]
# encrypt parameters
if agent_tool_entity.tool_parameters:
tool['tool_parameters'] = manager.encrypt_tool_parameters(agent_tool_entity.tool_parameters or {})
# update app model config
new_app_model_config.agent_mode = json.dumps(agent_mode)
db.session.add(new_app_model_config)
db.session.flush()

View File

@ -82,30 +82,6 @@ class ToolBuiltinProviderIconApi(Resource):
icon_bytes, minetype = ToolManageService.get_builtin_tool_provider_icon(provider)
return send_file(io.BytesIO(icon_bytes), mimetype=minetype)
class ToolModelProviderIconApi(Resource):
@setup_required
def get(self, provider):
icon_bytes, mimetype = ToolManageService.get_model_tool_provider_icon(provider)
return send_file(io.BytesIO(icon_bytes), mimetype=mimetype)
class ToolModelProviderListToolsApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('provider', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
return ToolManageService.list_model_tool_provider_tools(
user_id,
tenant_id,
args['provider'],
)
class ToolApiProviderAddApi(Resource):
@setup_required
@ -307,8 +283,6 @@ api.add_resource(ToolBuiltinProviderDeleteApi, '/workspaces/current/tool-provide
api.add_resource(ToolBuiltinProviderUpdateApi, '/workspaces/current/tool-provider/builtin/<provider>/update')
api.add_resource(ToolBuiltinProviderCredentialsSchemaApi, '/workspaces/current/tool-provider/builtin/<provider>/credentials_schema')
api.add_resource(ToolBuiltinProviderIconApi, '/workspaces/current/tool-provider/builtin/<provider>/icon')
api.add_resource(ToolModelProviderIconApi, '/workspaces/current/tool-provider/model/<provider>/icon')
api.add_resource(ToolModelProviderListToolsApi, '/workspaces/current/tool-provider/model/tools')
api.add_resource(ToolApiProviderAddApi, '/workspaces/current/tool-provider/api/add')
api.add_resource(ToolApiProviderGetRemoteSchemaApi, '/workspaces/current/tool-provider/api/remote')
api.add_resource(ToolApiProviderListToolsApi, '/workspaces/current/tool-provider/api/tools')

View File

@ -200,8 +200,8 @@ class DatasetSegmentApi(DatasetApiResource):
parser.add_argument('segments', type=dict, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args, document)
segment = SegmentService.update_segment(args, segment, document, dataset)
SegmentService.segment_create_args_validate(args['segments'], document)
segment = SegmentService.update_segment(args['segments'], segment, document, dataset)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form

View File

@ -195,10 +195,6 @@ class AssistantApplicationRunner(AppRunner):
if set([ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL]).intersection(model_schema.features or []):
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
db.session.refresh(conversation)
db.session.refresh(message)
db.session.close()
# start agent runner
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
assistant_cot_runner = AssistantCotApplicationRunner(

View File

@ -192,8 +192,6 @@ class BasicApplicationRunner(AppRunner):
model=app_orchestration_config.model_config.model
)
db.session.close()
invoke_result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,

View File

@ -89,10 +89,6 @@ class GenerateTaskPipeline:
Process generate task pipeline.
:return:
"""
db.session.refresh(self._conversation)
db.session.refresh(self._message)
db.session.close()
if stream:
return self._process_stream_response()
else:
@ -307,7 +303,6 @@ class GenerateTaskPipeline:
.first()
)
db.session.refresh(agent_thought)
db.session.close()
if agent_thought:
response = {
@ -335,8 +330,6 @@ class GenerateTaskPipeline:
.filter(MessageFile.id == event.message_file_id)
.first()
)
db.session.close()
# get extension
if '.' in message_file.url:
extension = f'.{message_file.url.split(".")[-1]}'
@ -420,7 +413,6 @@ class GenerateTaskPipeline:
usage = llm_result.usage
self._message = db.session.query(Message).filter(Message.id == self._message.id).first()
self._conversation = db.session.query(Conversation).filter(Conversation.id == self._conversation.id).first()
self._message.message = self._prompt_messages_to_prompt_for_saving(self._task_state.llm_result.prompt_messages)
self._message.message_tokens = usage.prompt_tokens

View File

@ -201,7 +201,7 @@ class ApplicationManager:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
finally:
db.session.close()
db.session.remove()
def _handle_response(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
@ -233,6 +233,8 @@ class ApplicationManager:
else:
logger.exception(e)
raise e
finally:
db.session.remove()
def _convert_from_app_model_config_dict(self, tenant_id: str, app_model_config_dict: dict) \
-> AppOrchestrationConfigEntity:
@ -649,7 +651,6 @@ class ApplicationManager:
db.session.add(conversation)
db.session.commit()
db.session.refresh(conversation)
else:
conversation = (
db.session.query(Conversation)
@ -688,7 +689,6 @@ class ApplicationManager:
db.session.add(message)
db.session.commit()
db.session.refresh(message)
for file in application_generate_entity.files:
message_file = MessageFile(

View File

@ -114,7 +114,6 @@ class BaseAssistantApplicationRunner(AppRunner):
self.agent_thought_count = db.session.query(MessageAgentThought).filter(
MessageAgentThought.message_id == self.message.id,
).count()
db.session.close()
# check if model supports stream tool call
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
@ -155,9 +154,9 @@ class BaseAssistantApplicationRunner(AppRunner):
"""
convert tool to prompt message tool
"""
tool_entity = ToolManager.get_agent_tool_runtime(
tenant_id=self.tenant_id,
agent_tool=tool,
tool_entity = ToolManager.get_tool_runtime(
provider_type=tool.provider_type, provider_name=tool.provider_id, tool_name=tool.tool_name,
tenant_id=self.application_generate_entity.tenant_id,
agent_callback=self.agent_callback
)
tool_entity.load_variables(self.variables_pool)
@ -172,11 +171,33 @@ class BaseAssistantApplicationRunner(AppRunner):
}
)
parameters = tool_entity.get_all_runtime_parameters()
for parameter in parameters:
if parameter.form != ToolParameter.ToolParameterForm.LLM:
continue
runtime_parameters = {}
parameters = tool_entity.parameters or []
user_parameters = tool_entity.get_runtime_parameters() or []
# override parameters
for parameter in user_parameters:
# check if parameter in tool parameters
found = False
for tool_parameter in parameters:
if tool_parameter.name == parameter.name:
found = True
break
if found:
# override parameter
tool_parameter.type = parameter.type
tool_parameter.form = parameter.form
tool_parameter.required = parameter.required
tool_parameter.default = parameter.default
tool_parameter.options = parameter.options
tool_parameter.llm_description = parameter.llm_description
else:
# add new parameter
parameters.append(parameter)
for parameter in parameters:
parameter_type = 'string'
enum = []
if parameter.type == ToolParameter.ToolParameterType.STRING:
@ -192,16 +213,59 @@ class BaseAssistantApplicationRunner(AppRunner):
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
message_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if parameter.form == ToolParameter.ToolParameterForm.FORM:
# get tool parameter from form
tool_parameter_config = tool.tool_parameters.get(parameter.name)
if not tool_parameter_config:
# get default value
tool_parameter_config = parameter.default
if not tool_parameter_config and parameter.required:
raise ValueError(f"tool parameter {parameter.name} not found in tool config")
if parameter.type == ToolParameter.ToolParameterType.SELECT:
# check if tool_parameter_config in options
options = list(map(lambda x: x.value, parameter.options))
if tool_parameter_config not in options:
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} not in options {options}")
# convert tool parameter config to correct type
try:
if parameter.type == ToolParameter.ToolParameterType.NUMBER:
# check if tool parameter is integer
if isinstance(tool_parameter_config, int):
tool_parameter_config = tool_parameter_config
elif isinstance(tool_parameter_config, float):
tool_parameter_config = tool_parameter_config
elif isinstance(tool_parameter_config, str):
if '.' in tool_parameter_config:
tool_parameter_config = float(tool_parameter_config)
else:
tool_parameter_config = int(tool_parameter_config)
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
tool_parameter_config = bool(tool_parameter_config)
elif parameter.type not in [ToolParameter.ToolParameterType.SELECT, ToolParameter.ToolParameterType.STRING]:
tool_parameter_config = str(tool_parameter_config)
elif parameter.type == ToolParameter.ToolParameterType:
tool_parameter_config = str(tool_parameter_config)
except Exception as e:
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} is not correct type")
# save tool parameter to tool entity memory
runtime_parameters[parameter.name] = tool_parameter_config
elif parameter.form == ToolParameter.ToolParameterForm.LLM:
message_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if len(enum) > 0:
message_tool.parameters['properties'][parameter.name]['enum'] = enum
if len(enum) > 0:
message_tool.parameters['properties'][parameter.name]['enum'] = enum
if parameter.required:
message_tool.parameters['required'].append(parameter.name)
if parameter.required:
message_tool.parameters['required'].append(parameter.name)
tool_entity.runtime.runtime_parameters.update(runtime_parameters)
return message_tool, tool_entity
@ -241,9 +305,6 @@ class BaseAssistantApplicationRunner(AppRunner):
tool_runtime_parameters = tool.get_runtime_parameters() or []
for parameter in tool_runtime_parameters:
if parameter.form != ToolParameter.ToolParameterForm.LLM:
continue
parameter_type = 'string'
enum = []
if parameter.type == ToolParameter.ToolParameterType.STRING:
@ -259,17 +320,18 @@ class BaseAssistantApplicationRunner(AppRunner):
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
prompt_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if parameter.form == ToolParameter.ToolParameterForm.LLM:
prompt_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if len(enum) > 0:
prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
if len(enum) > 0:
prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
if parameter.required:
if parameter.name not in prompt_tool.parameters['required']:
prompt_tool.parameters['required'].append(parameter.name)
if parameter.required:
if parameter.name not in prompt_tool.parameters['required']:
prompt_tool.parameters['required'].append(parameter.name)
return prompt_tool
@ -342,16 +404,13 @@ class BaseAssistantApplicationRunner(AppRunner):
created_by=self.user_id,
)
db.session.add(message_file)
db.session.commit()
db.session.refresh(message_file)
result.append((
message_file,
message.save_as
))
db.session.close()
db.session.commit()
return result
def create_agent_thought(self, message_id: str, message: str,
@ -388,8 +447,6 @@ class BaseAssistantApplicationRunner(AppRunner):
db.session.add(thought)
db.session.commit()
db.session.refresh(thought)
db.session.close()
self.agent_thought_count += 1
@ -407,10 +464,6 @@ class BaseAssistantApplicationRunner(AppRunner):
"""
Save agent thought
"""
agent_thought = db.session.query(MessageAgentThought).filter(
MessageAgentThought.id == agent_thought.id
).first()
if thought is not None:
agent_thought.thought = thought
@ -461,7 +514,6 @@ class BaseAssistantApplicationRunner(AppRunner):
agent_thought.tool_labels_str = json.dumps(labels)
db.session.commit()
db.session.close()
def transform_tool_invoke_messages(self, messages: list[ToolInvokeMessage]) -> list[ToolInvokeMessage]:
"""
@ -534,14 +586,9 @@ class BaseAssistantApplicationRunner(AppRunner):
"""
convert tool variables to db variables
"""
db_variables = db.session.query(ToolConversationVariables).filter(
ToolConversationVariables.conversation_id == self.message.conversation_id,
).first()
db_variables.updated_at = datetime.utcnow()
db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
db.session.commit()
db.session.close()
def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
@ -597,6 +644,4 @@ class BaseAssistantApplicationRunner(AppRunner):
if message.answer:
result.append(AssistantPromptMessage(content=message.answer))
db.session.close()
return result

View File

@ -28,9 +28,6 @@ from models.model import Conversation, Message
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
_is_first_iteration = True
_ignore_observation_providers = ['wenxin']
def run(self, conversation: Conversation,
message: Message,
query: str,
@ -45,8 +42,10 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
agent_scratchpad: list[AgentScratchpadUnit] = []
self._init_agent_scratchpad(agent_scratchpad, self.history_prompt_messages)
if 'Observation' not in app_orchestration_config.model_config.stop:
if app_orchestration_config.model_config.provider not in self._ignore_observation_providers:
# check model mode
if self.app_orchestration_config.model_config.mode == "completion":
# TODO: stop words
if 'Observation' not in app_orchestration_config.model_config.stop:
app_orchestration_config.model_config.stop.append('Observation')
# override inputs
@ -203,7 +202,6 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
)
)
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
agent_scratchpad.append(scratchpad)
# get llm usage
@ -257,15 +255,9 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
# invoke tool
error_response = None
try:
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
tool_response = tool_instance.invoke(
user_id=self.user_id,
tool_parameters=tool_call_args
tool_parameters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
)
# transform tool response to llm friendly response
tool_response = self.transform_tool_invoke_messages(tool_response)
@ -474,7 +466,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
if isinstance(message, AssistantPromptMessage):
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content or 'I am thinking about how to help you',
thought=message.content,
action_str='',
action=None,
observation=None,
@ -554,8 +546,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
result = ''
for scratchpad in agent_scratchpad:
result += (scratchpad.thought or '') + (scratchpad.action_str or '') + \
next_iteration.replace("{{observation}}", scratchpad.observation or 'It seems that no response is available')
result += scratchpad.thought + next_iteration.replace("{{observation}}", scratchpad.observation or '') + "\n"
return result
@ -630,24 +621,21 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
))
# add assistant message
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
if len(agent_scratchpad) > 0:
prompt_messages.append(AssistantPromptMessage(
content=(agent_scratchpad[-1].thought or '') + (agent_scratchpad[-1].action_str or ''),
content=(agent_scratchpad[-1].thought or '')
))
# add user message
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
if len(agent_scratchpad) > 0:
prompt_messages.append(UserPromptMessage(
content=(agent_scratchpad[-1].observation or 'It seems that no response is available'),
content=(agent_scratchpad[-1].observation or ''),
))
self._is_first_iteration = False
return prompt_messages
elif mode == "completion":
# parse agent scratchpad
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
self._is_first_iteration = False
# parse prompt messages
return [UserPromptMessage(
content=first_prompt.replace("{{instruction}}", instruction)

View File

@ -1,54 +0,0 @@
import json
from enum import Enum
from json import JSONDecodeError
from typing import Optional
from extensions.ext_redis import redis_client
class ToolParameterCacheType(Enum):
PARAMETER = "tool_parameter"
class ToolParameterCache:
def __init__(self,
tenant_id: str,
provider: str,
tool_name: str,
cache_type: ToolParameterCacheType
):
self.cache_key = f"{cache_type.value}_secret:tenant_id:{tenant_id}:provider:{provider}:tool_name:{tool_name}"
def get(self) -> Optional[dict]:
"""
Get cached model provider credentials.
:return:
"""
cached_tool_parameter = redis_client.get(self.cache_key)
if cached_tool_parameter:
try:
cached_tool_parameter = cached_tool_parameter.decode('utf-8')
cached_tool_parameter = json.loads(cached_tool_parameter)
except JSONDecodeError:
return None
return cached_tool_parameter
else:
return None
def set(self, parameters: dict) -> None:
"""
Cache model provider credentials.
:param credentials: provider credentials
:return:
"""
redis_client.setex(self.cache_key, 86400, json.dumps(parameters))
def delete(self) -> None:
"""
Delete cached model provider credentials.
:return:
"""
redis_client.delete(self.cache_key)

View File

@ -82,8 +82,6 @@ class HostingConfiguration:
RestrictModel(model="gpt-35-turbo-16k", base_model_name="gpt-35-turbo-16k", model_type=ModelType.LLM),
RestrictModel(model="text-davinci-003", base_model_name="text-davinci-003", model_type=ModelType.LLM),
RestrictModel(model="text-embedding-ada-002", base_model_name="text-embedding-ada-002", model_type=ModelType.TEXT_EMBEDDING),
RestrictModel(model="text-embedding-3-small", base_model_name="text-embedding-3-small", model_type=ModelType.TEXT_EMBEDDING),
RestrictModel(model="text-embedding-3-large", base_model_name="text-embedding-3-large", model_type=ModelType.TEXT_EMBEDDING),
]
)
quotas.append(trial_quota)

View File

@ -62,8 +62,7 @@ class IndexingRunner:
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
processing_rule.to_dict())
documents = self._transform(index_processor, dataset, text_docs, processing_rule.to_dict())
# save segment
self._load_segments(dataset, dataset_document, documents)
@ -121,8 +120,7 @@ class IndexingRunner:
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
processing_rule.to_dict())
documents = self._transform(index_processor, dataset, text_docs, processing_rule.to_dict())
# save segment
self._load_segments(dataset, dataset_document, documents)
@ -188,7 +186,7 @@ class IndexingRunner:
first()
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
index_processor = IndexProcessorFactory(index_type, processing_rule.to_dict()).init_index_processor()
self._load(
index_processor=index_processor,
dataset=dataset,
@ -416,14 +414,9 @@ class IndexingRunner:
if separator:
separator = separator.replace('\\n', '\n')
if 'chunk_overlap' in segmentation and segmentation['chunk_overlap']:
chunk_overlap = segmentation['chunk_overlap']
else:
chunk_overlap = 0
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
chunk_size=segmentation["max_tokens"],
chunk_overlap=chunk_overlap,
chunk_overlap=segmentation.get('chunk_overlap', 0),
fixed_separator=separator,
separators=["\n\n", "", ".", " ", ""],
embedding_model_instance=embedding_model_instance
@ -757,7 +750,7 @@ class IndexingRunner:
index_processor.load(dataset, documents)
def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]:
text_docs: list[Document], process_rule: dict) -> list[Document]:
# get embedding model instance
embedding_model_instance = None
if dataset.indexing_technique == 'high_quality':
@ -775,8 +768,7 @@ class IndexingRunner:
)
documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
process_rule=process_rule, tenant_id=dataset.tenant_id,
doc_language=doc_language)
process_rule=process_rule)
return documents

View File

@ -47,14 +47,11 @@ class TokenBufferMemory:
files, message.app_model_config
)
if not file_objs:
prompt_messages.append(UserPromptMessage(content=message.query))
else:
prompt_message_contents = [TextPromptMessageContent(data=message.query)]
for file_obj in file_objs:
prompt_message_contents.append(file_obj.prompt_message_content)
prompt_message_contents = [TextPromptMessageContent(data=message.query)]
for file_obj in file_objs:
prompt_message_contents.append(file_obj.prompt_message_content)
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=message.query))

View File

@ -17,7 +17,7 @@ class ModelType(Enum):
SPEECH2TEXT = "speech2text"
MODERATION = "moderation"
TTS = "tts"
TEXT2IMG = "text2img"
# TEXT2IMG = "text2img"
@classmethod
def value_of(cls, origin_model_type: str) -> "ModelType":
@ -36,8 +36,6 @@ class ModelType(Enum):
return cls.SPEECH2TEXT
elif origin_model_type == 'tts' or origin_model_type == cls.TTS.value:
return cls.TTS
elif origin_model_type == 'text2img' or origin_model_type == cls.TEXT2IMG.value:
return cls.TEXT2IMG
elif origin_model_type == cls.MODERATION.value:
return cls.MODERATION
else:
@ -61,11 +59,10 @@ class ModelType(Enum):
return 'tts'
elif self == self.MODERATION:
return 'moderation'
elif self == self.TEXT2IMG:
return 'text2img'
else:
raise ValueError(f'invalid model type {self}')
class FetchFrom(Enum):
"""
Enum class for fetch from.

View File

@ -1,48 +0,0 @@
from abc import abstractmethod
from typing import IO, Optional
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers.__base.ai_model import AIModel
class Text2ImageModel(AIModel):
"""
Model class for text2img model.
"""
model_type: ModelType = ModelType.TEXT2IMG
def invoke(self, model: str, credentials: dict, prompt: str,
model_parameters: dict, user: Optional[str] = None) \
-> list[IO[bytes]]:
"""
Invoke Text2Image model
:param model: model name
:param credentials: model credentials
:param prompt: prompt for image generation
:param model_parameters: model parameters
:param user: unique user id
:return: image bytes
"""
try:
return self._invoke(model, credentials, prompt, model_parameters, user)
except Exception as e:
raise self._transform_invoke_error(e)
@abstractmethod
def _invoke(self, model: str, credentials: dict, prompt: str,
model_parameters: dict, user: Optional[str] = None) \
-> list[IO[bytes]]:
"""
Invoke Text2Image model
:param model: model name
:param credentials: model credentials
:param prompt: prompt for image generation
:param model_parameters: model parameters
:param user: unique user id
:return: image bytes
"""
raise NotImplementedError

View File

@ -7,7 +7,6 @@
- togetherai
- ollama
- mistralai
- groq
- replicate
- huggingface_hub
- zhipuai

View File

@ -424,25 +424,8 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
if isinstance(message, UserPromptMessage):
message_text = f"{human_prompt} {content}"
if not isinstance(message.content, list):
message_text = f"{ai_prompt} {content}"
else:
message_text = ""
for sub_message in message.content:
if sub_message.type == PromptMessageContentType.TEXT:
message_text += f"{human_prompt} {sub_message.data}"
elif sub_message.type == PromptMessageContentType.IMAGE:
message_text += f"{human_prompt} [IMAGE]"
elif isinstance(message, AssistantPromptMessage):
if not isinstance(message.content, list):
message_text = f"{ai_prompt} {content}"
else:
message_text = ""
for sub_message in message.content:
if sub_message.type == PromptMessageContentType.TEXT:
message_text += f"{ai_prompt} {sub_message.data}"
elif sub_message.type == PromptMessageContentType.IMAGE:
message_text += f"{ai_prompt} [IMAGE]"
message_text = f"{ai_prompt} {content}"
elif isinstance(message, SystemPromptMessage):
message_text = content
else:

View File

@ -524,172 +524,5 @@ EMBEDDING_BASE_MODELS = [
currency='USD',
)
)
),
AzureBaseModel(
base_model_name='text-embedding-3-small',
entity=AIModelEntity(
model='fake-deployment-name',
label=I18nObject(
en_US='fake-deployment-name-label'
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.TEXT_EMBEDDING,
model_properties={
ModelPropertyKey.CONTEXT_SIZE: 8191,
ModelPropertyKey.MAX_CHUNKS: 32,
},
pricing=PriceConfig(
input=0.00002,
unit=0.001,
currency='USD',
)
)
),
AzureBaseModel(
base_model_name='text-embedding-3-large',
entity=AIModelEntity(
model='fake-deployment-name',
label=I18nObject(
en_US='fake-deployment-name-label'
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.TEXT_EMBEDDING,
model_properties={
ModelPropertyKey.CONTEXT_SIZE: 8191,
ModelPropertyKey.MAX_CHUNKS: 32,
},
pricing=PriceConfig(
input=0.00013,
unit=0.001,
currency='USD',
)
)
)
]
SPEECH2TEXT_BASE_MODELS = [
AzureBaseModel(
base_model_name='whisper-1',
entity=AIModelEntity(
model='fake-deployment-name',
label=I18nObject(
en_US='fake-deployment-name-label'
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.SPEECH2TEXT,
model_properties={
ModelPropertyKey.FILE_UPLOAD_LIMIT: 25,
ModelPropertyKey.SUPPORTED_FILE_EXTENSIONS: 'flac,mp3,mp4,mpeg,mpga,m4a,ogg,wav,webm'
}
)
)
]
TTS_BASE_MODELS = [
AzureBaseModel(
base_model_name='tts-1',
entity=AIModelEntity(
model='fake-deployment-name',
label=I18nObject(
en_US='fake-deployment-name-label'
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.TTS,
model_properties={
ModelPropertyKey.DEFAULT_VOICE: 'alloy',
ModelPropertyKey.VOICES: [
{
'mode': 'alloy',
'name': 'Alloy',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'echo',
'name': 'Echo',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'fable',
'name': 'Fable',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'onyx',
'name': 'Onyx',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'nova',
'name': 'Nova',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'shimmer',
'name': 'Shimmer',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
],
ModelPropertyKey.WORD_LIMIT: 120,
ModelPropertyKey.AUDOI_TYPE: 'mp3',
ModelPropertyKey.MAX_WORKERS: 5
},
pricing=PriceConfig(
input=0.015,
unit=0.001,
currency='USD',
)
)
),
AzureBaseModel(
base_model_name='tts-1-hd',
entity=AIModelEntity(
model='fake-deployment-name',
label=I18nObject(
en_US='fake-deployment-name-label'
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.TTS,
model_properties={
ModelPropertyKey.DEFAULT_VOICE: 'alloy',
ModelPropertyKey.VOICES: [
{
'mode': 'alloy',
'name': 'Alloy',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'echo',
'name': 'Echo',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'fable',
'name': 'Fable',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'onyx',
'name': 'Onyx',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'nova',
'name': 'Nova',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'shimmer',
'name': 'Shimmer',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
],
ModelPropertyKey.WORD_LIMIT: 120,
ModelPropertyKey.AUDOI_TYPE: 'mp3',
ModelPropertyKey.MAX_WORKERS: 5
},
pricing=PriceConfig(
input=0.03,
unit=0.001,
currency='USD',
)
)
)
]

View File

@ -15,8 +15,6 @@ help:
supported_model_types:
- llm
- text-embedding
- speech2text
- tts
configurate_methods:
- customizable-model
model_credential_schema:
@ -101,36 +99,6 @@ model_credential_schema:
show_on:
- variable: __model_type
value: text-embedding
- label:
en_US: text-embedding-3-small
value: text-embedding-3-small
show_on:
- variable: __model_type
value: text-embedding
- label:
en_US: text-embedding-3-large
value: text-embedding-3-large
show_on:
- variable: __model_type
value: text-embedding
- label:
en_US: whisper-1
value: whisper-1
show_on:
- variable: __model_type
value: speech2text
- label:
en_US: tts-1
value: tts-1
show_on:
- variable: __model_type
value: tts
- label:
en_US: tts-1-hd
value: tts-1-hd
show_on:
- variable: __model_type
value: tts
placeholder:
zh_Hans: 在此输入您的模型版本
en_US: Enter your model version

View File

@ -1,82 +0,0 @@
import copy
from typing import IO, Optional
from openai import AzureOpenAI
from core.model_runtime.entities.model_entities import AIModelEntity
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.azure_openai._common import _CommonAzureOpenAI
from core.model_runtime.model_providers.azure_openai._constant import SPEECH2TEXT_BASE_MODELS, AzureBaseModel
class AzureOpenAISpeech2TextModel(_CommonAzureOpenAI, Speech2TextModel):
"""
Model class for OpenAI Speech to text model.
"""
def _invoke(self, model: str, credentials: dict,
file: IO[bytes], user: Optional[str] = None) \
-> str:
"""
Invoke speech2text model
:param model: model name
:param credentials: model credentials
:param file: audio file
:param user: unique user id
:return: text for given audio file
"""
return self._speech2text_invoke(model, credentials, file)
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
audio_file_path = self._get_demo_file_path()
with open(audio_file_path, 'rb') as audio_file:
self._speech2text_invoke(model, credentials, audio_file)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def _speech2text_invoke(self, model: str, credentials: dict, file: IO[bytes]) -> str:
"""
Invoke speech2text model
:param model: model name
:param credentials: model credentials
:param file: audio file
:return: text for given audio file
"""
# transform credentials to kwargs for model instance
credentials_kwargs = self._to_credential_kwargs(credentials)
# init model client
client = AzureOpenAI(**credentials_kwargs)
response = client.audio.transcriptions.create(model=model, file=file)
return response.text
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
ai_model_entity = self._get_ai_model_entity(credentials['base_model_name'], model)
return ai_model_entity.entity
@staticmethod
def _get_ai_model_entity(base_model_name: str, model: str) -> AzureBaseModel:
for ai_model_entity in SPEECH2TEXT_BASE_MODELS:
if ai_model_entity.base_model_name == base_model_name:
ai_model_entity_copy = copy.deepcopy(ai_model_entity)
ai_model_entity_copy.entity.model = model
ai_model_entity_copy.entity.label.en_US = model
ai_model_entity_copy.entity.label.zh_Hans = model
return ai_model_entity_copy
return None

View File

@ -1,174 +0,0 @@
import concurrent.futures
import copy
from functools import reduce
from io import BytesIO
from typing import Optional
from flask import Response, stream_with_context
from openai import AzureOpenAI
from pydub import AudioSegment
from core.model_runtime.entities.model_entities import AIModelEntity
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.model_providers.azure_openai._common import _CommonAzureOpenAI
from core.model_runtime.model_providers.azure_openai._constant import TTS_BASE_MODELS, AzureBaseModel
from extensions.ext_storage import storage
class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
"""
Model class for OpenAI Speech to text model.
"""
def _invoke(self, model: str, tenant_id: str, credentials: dict,
content_text: str, voice: str, streaming: bool, user: Optional[str] = None) -> any:
"""
_invoke text2speech model
:param model: model name
:param tenant_id: user tenant id
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:param streaming: output is streaming
:param user: unique user id
:return: text translated to audio file
"""
audio_type = self._get_model_audio_type(model, credentials)
if not voice or voice not in [d['value'] for d in self.get_tts_model_voices(model=model, credentials=credentials)]:
voice = self._get_model_default_voice(model, credentials)
if streaming:
return Response(stream_with_context(self._tts_invoke_streaming(model=model,
credentials=credentials,
content_text=content_text,
tenant_id=tenant_id,
voice=voice)),
status=200, mimetype=f'audio/{audio_type}')
else:
return self._tts_invoke(model=model, credentials=credentials, content_text=content_text, voice=voice)
def validate_credentials(self, model: str, credentials: dict, user: Optional[str] = None) -> None:
"""
validate credentials text2speech model
:param model: model name
:param credentials: model credentials
:param user: unique user id
:return: text translated to audio file
"""
try:
self._tts_invoke(
model=model,
credentials=credentials,
content_text='Hello Dify!',
voice=self._get_model_default_voice(model, credentials),
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def _tts_invoke(self, model: str, credentials: dict, content_text: str, voice: str) -> Response:
"""
_tts_invoke text2speech model
:param model: model name
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:return: text translated to audio file
"""
audio_type = self._get_model_audio_type(model, credentials)
word_limit = self._get_model_word_limit(model, credentials)
max_workers = self._get_model_workers_limit(model, credentials)
try:
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
audio_bytes_list = list()
# Create a thread pool and map the function to the list of sentences
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(self._process_sentence, sentence=sentence, model=model, voice=voice,
credentials=credentials) for sentence in sentences]
for future in futures:
try:
if future.result():
audio_bytes_list.append(future.result())
except Exception as ex:
raise InvokeBadRequestError(str(ex))
if len(audio_bytes_list) > 0:
audio_segments = [AudioSegment.from_file(BytesIO(audio_bytes), format=audio_type) for audio_bytes in
audio_bytes_list if audio_bytes]
combined_segment = reduce(lambda x, y: x + y, audio_segments)
buffer: BytesIO = BytesIO()
combined_segment.export(buffer, format=audio_type)
buffer.seek(0)
return Response(buffer.read(), status=200, mimetype=f"audio/{audio_type}")
except Exception as ex:
raise InvokeBadRequestError(str(ex))
# Todo: To improve the streaming function
def _tts_invoke_streaming(self, model: str, tenant_id: str, credentials: dict, content_text: str,
voice: str) -> any:
"""
_tts_invoke_streaming text2speech model
:param model: model name
:param tenant_id: user tenant id
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:return: text translated to audio file
"""
# transform credentials to kwargs for model instance
credentials_kwargs = self._to_credential_kwargs(credentials)
if not voice or voice not in self.get_tts_model_voices(model=model, credentials=credentials):
voice = self._get_model_default_voice(model, credentials)
word_limit = self._get_model_word_limit(model, credentials)
audio_type = self._get_model_audio_type(model, credentials)
tts_file_id = self._get_file_name(content_text)
file_path = f'generate_files/audio/{tenant_id}/{tts_file_id}.{audio_type}'
try:
client = AzureOpenAI(**credentials_kwargs)
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
for sentence in sentences:
response = client.audio.speech.create(model=model, voice=voice, input=sentence.strip())
# response.stream_to_file(file_path)
storage.save(file_path, response.read())
except Exception as ex:
raise InvokeBadRequestError(str(ex))
def _process_sentence(self, sentence: str, model: str,
voice, credentials: dict):
"""
_tts_invoke openai text2speech model api
:param model: model name
:param credentials: model credentials
:param voice: model timbre
:param sentence: text content to be translated
:return: text translated to audio file
"""
# transform credentials to kwargs for model instance
credentials_kwargs = self._to_credential_kwargs(credentials)
client = AzureOpenAI(**credentials_kwargs)
response = client.audio.speech.create(model=model, voice=voice, input=sentence.strip())
if isinstance(response.read(), bytes):
return response.read()
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
ai_model_entity = self._get_ai_model_entity(credentials['base_model_name'], model)
return ai_model_entity.entity
@staticmethod
def _get_ai_model_entity(base_model_name: str, model: str) -> AzureBaseModel:
for ai_model_entity in TTS_BASE_MODELS:
if ai_model_entity.base_model_name == base_model_name:
ai_model_entity_copy = copy.deepcopy(ai_model_entity)
ai_model_entity_copy.entity.model = model
ai_model_entity_copy.entity.label.en_US = model
ai_model_entity_copy.entity.label.zh_Hans = model
return ai_model_entity_copy
return None

View File

@ -108,7 +108,7 @@ class BaichuanTextEmbeddingModel(TextEmbeddingModel):
try:
response = post(url, headers=headers, data=dumps(data))
except Exception as e:
raise InvokeConnectionError(str(e))
raise InvokeConnectionError(e)
if response.status_code != 200:
try:

View File

@ -472,7 +472,7 @@ class CohereLargeLanguageModel(LargeLanguageModel):
else:
raise ValueError(f"Got unknown type {message}")
if message.name:
if message.name is not None:
message_dict["user_name"] = message.name
return message_dict

View File

@ -1,11 +0,0 @@
<svg width="112" height="24" viewBox="0 0 112 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M57.4336 17.092C56.4746 16.5453 55.7216 15.7924 55.1749 14.8244C54.6283 13.8564 54.3594 12.763 54.3594 11.544C54.3594 10.3251 54.6283 9.2137 55.1749 8.24571C55.7216 7.27772 56.4746 6.52485 57.4336 5.98708C58.3926 5.4493 59.4861 5.18042 60.6961 5.18042C61.6999 5.18042 62.623 5.3776 63.4476 5.77197C64.2722 6.16633 64.9445 6.73995 65.4554 7.49284L64.568 8.13816C64.1199 7.51076 63.5642 7.04469 62.9009 6.731C62.2377 6.41729 61.5027 6.26492 60.705 6.26492C59.7281 6.26492 58.8498 6.48899 58.0789 6.92818C57.2992 7.36736 56.6986 7.98579 56.2505 8.79244C55.8113 9.59014 55.5872 10.5133 55.5872 11.553C55.5872 12.5926 55.8113 13.5159 56.2505 14.3136C56.6896 15.1112 57.2992 15.7297 58.0789 16.1778C58.8587 16.617 59.7281 16.8411 60.705 16.8411C61.5027 16.8411 62.2377 16.6888 62.9009 16.375C63.5642 16.0613 64.1199 15.5953 64.568 14.9678L65.4554 15.6132C64.9445 16.366 64.2722 16.9396 63.4476 17.334C62.623 17.7284 61.7089 17.9255 60.6961 17.9255C59.4771 17.9255 58.3926 17.6568 57.4336 17.11V17.092Z" fill="#F55036"/>
<path d="M67.2754 0H68.4763V17.8181H67.2754V0Z" fill="#F55036"/>
<path d="M73.6754 17.092C72.7254 16.5454 71.9725 15.7924 71.4347 14.8244C70.888 13.8564 70.6191 12.763 70.6191 11.544C70.6191 10.3251 70.888 9.23163 71.4347 8.26364C71.9814 7.29566 72.7254 6.54277 73.6754 5.99604C74.6255 5.4493 75.6921 5.18042 76.8841 5.18042C78.0762 5.18042 79.1338 5.4493 80.0928 5.99604C81.0429 6.54277 81.7957 7.29566 82.3335 8.26364C82.8803 9.23163 83.1492 10.3251 83.1492 11.544C83.1492 12.763 82.8803 13.8564 82.3335 14.8244C81.7868 15.7924 81.0429 16.5454 80.0928 17.092C79.1427 17.6387 78.0673 17.9076 76.8841 17.9076C75.7011 17.9076 74.6344 17.6387 73.6754 17.092ZM79.4655 16.1599C80.2273 15.7118 80.8277 15.0843 81.2669 14.2867C81.7062 13.489 81.9302 12.5747 81.9302 11.553C81.9302 10.5312 81.7062 9.61703 81.2669 8.81933C80.8277 8.02164 80.2273 7.39425 79.4655 6.9461C78.7036 6.49796 77.8431 6.27389 76.8841 6.27389C75.9251 6.27389 75.0646 6.49796 74.3028 6.9461C73.5409 7.39425 72.9405 8.02164 72.5013 8.81933C72.0621 9.61703 71.838 10.5312 71.838 11.553C71.838 12.5747 72.0621 13.489 72.5013 14.2867C72.9405 15.0843 73.5409 15.7118 74.3028 16.1599C75.0646 16.608 75.9251 16.8322 76.8841 16.8322C77.8431 16.8322 78.7036 16.608 79.4655 16.1599Z" fill="#F55036"/>
<path d="M96.2799 5.27905V17.8091H95.1237V15.1203C94.7114 15.9986 94.0929 16.6887 93.2774 17.1728C92.4618 17.6567 91.5027 17.9077 90.4003 17.9077C88.769 17.9077 87.4873 17.4506 86.5553 16.5364C85.6231 15.6222 85.166 14.3136 85.166 12.6017V5.27905H86.367V12.5031C86.367 13.9102 86.7255 14.9858 87.4515 15.7207C88.1775 16.4557 89.1903 16.8232 90.4989 16.8232C91.9061 16.8232 93.0264 16.384 93.851 15.5057C94.6756 14.6272 95.0878 13.4442 95.0878 11.9563V5.27905H96.2889H96.2799Z" fill="#F55036"/>
<path d="M110.952 0V17.8181H109.777V14.8604C109.284 15.8374 108.585 16.5902 107.689 17.119C106.793 17.6479 105.78 17.9077 104.642 17.9077C103.503 17.9077 102.419 17.6389 101.469 17.0922C100.528 16.5454 99.7838 15.7925 99.246 14.8336C98.7083 13.8745 98.4395 12.781 98.4395 11.5441C98.4395 10.3073 98.7083 9.2138 99.246 8.24582C99.7838 7.27783 100.519 6.52496 101.469 5.98718C102.41 5.44941 103.468 5.18053 104.642 5.18053C105.816 5.18053 106.766 5.44044 107.653 5.96925C108.541 6.49807 109.24 7.23301 109.75 8.17411V0H110.952ZM107.295 16.16C108.057 15.7119 108.657 15.0844 109.096 14.2868C109.535 13.4891 109.759 12.5749 109.759 11.5531C109.759 10.5313 109.535 9.61713 109.096 8.81944C108.657 8.02174 108.057 7.39434 107.295 6.9462C106.533 6.49807 105.672 6.27399 104.713 6.27399C103.754 6.27399 102.894 6.49807 102.132 6.9462C101.37 7.39434 100.77 8.02174 100.331 8.81944C99.8914 9.61713 99.6673 10.5313 99.6673 11.5531C99.6673 12.5749 99.8914 13.4891 100.331 14.2868C100.77 15.0844 101.37 15.7119 102.132 16.16C102.894 16.6081 103.754 16.8322 104.713 16.8322C105.672 16.8322 106.533 16.6081 107.295 16.16Z" fill="#F55036"/>
<path d="M30.6085 5.27024C27.077 5.27024 24.209 8.13835 24.209 11.6697C24.209 15.201 27.077 18.0692 30.6085 18.0692C34.1399 18.0692 37.0079 15.201 37.0079 11.6697C37.0079 8.13835 34.1399 5.27921 30.6085 5.27024ZM30.6085 15.6672C28.4036 15.6672 26.611 13.8746 26.611 11.6697C26.611 9.46486 28.4036 7.67228 30.6085 7.67228C32.8133 7.67228 34.6059 9.46486 34.6059 11.6697C34.6059 13.8746 32.8133 15.6672 30.6085 15.6672Z" fill="black"/>
<path d="M6.45358 5.23422C2.92222 5.19837 0.036187 8.0396 0.000335591 11.571C-0.0355158 15.1023 2.80571 17.9974 6.33706 18.0242C6.37292 18.0242 6.41773 18.0242 6.45358 18.0242H8.55986V15.6311H6.45358C4.24873 15.658 2.43823 13.8923 2.41134 11.6785C2.38445 9.47365 4.15014 7.66315 6.36395 7.63626C6.39084 7.63626 6.4267 7.63626 6.45358 7.63626C8.65844 7.63626 10.46 9.42884 10.46 11.6337V17.5222C10.46 19.7092 8.67637 21.4929 6.48943 21.5197C5.44078 21.5197 4.44591 21.0895 3.71095 20.3455L2.01698 22.0395C3.1911 23.2227 4.7865 23.8949 6.45358 23.9128H6.54321C10.0298 23.859 12.8351 21.0357 12.853 17.5491V11.4724C12.7635 8.00374 9.93116 5.23422 6.46254 5.23422H6.45358Z" fill="black"/>
<path d="M51.2406 11.5082C51.151 8.03961 48.3187 5.27009 44.8501 5.27009C41.3187 5.23423 38.4237 8.07545 38.3968 11.6068C38.361 15.1382 41.2022 18.0331 44.7335 18.0601C44.7694 18.0601 44.8143 18.0601 44.8501 18.0601H46.9563V15.667H44.8501C42.6452 15.6939 40.8347 13.9282 40.8078 11.7144C40.7809 9.5095 42.5467 7.69902 44.7604 7.67213C44.7874 7.67213 44.8232 7.67213 44.8501 7.67213C47.055 7.67213 48.8565 9.46469 48.8565 11.6696V23.626L51.2406 23.6528V11.5082Z" fill="black"/>
<path d="M14.6808 18.0602H17.0649V11.6607C17.0649 9.45589 18.8575 7.66332 21.0623 7.66332C21.7883 7.66332 22.4695 7.8605 23.0611 8.2011L24.2621 6.12172C23.3209 5.57498 22.2276 5.27024 21.0713 5.27024C17.5399 5.27024 14.6719 8.13835 14.6719 11.6697V18.0692L14.6808 18.0602Z" fill="black"/>
</svg>

Before

Width:  |  Height:  |  Size: 5.8 KiB

View File

@ -1,4 +0,0 @@
<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<rect width="24" height="24" rx="12" fill="#F55036"/>
<path d="M12.146 6.00022C9.87734 5.97718 8.02325 7.80249 8.00022 10.0712C7.97718 12.3398 9.80249 14.1997 12.0712 14.217C12.0942 14.217 12.123 14.217 12.146 14.217H13.4992V12.6796H12.146C10.7295 12.6968 9.56641 11.5625 9.54913 10.1403C9.53186 8.72377 10.6662 7.56065 12.0884 7.54337C12.1057 7.54337 12.1287 7.54337 12.146 7.54337C13.5625 7.54337 14.7199 8.69498 14.7199 10.1115V13.8945C14.7199 15.2995 13.574 16.4453 12.169 16.4626C11.4953 16.4626 10.8562 16.1862 10.384 15.7083L9.29578 16.7965C10.0501 17.5566 11.075 17.9885 12.146 18H12.2036C14.4435 17.9654 16.2457 16.1516 16.2572 13.9117V10.0078C16.1997 7.77945 14.3801 6.00022 12.1518 6.00022H12.146Z" fill="white"/>
</svg>

Before

Width:  |  Height:  |  Size: 828 B

View File

@ -1,29 +0,0 @@
import logging
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
logger = logging.getLogger(__name__)
class GroqProvider(ModelProvider):
def validate_provider_credentials(self, credentials: dict) -> None:
"""
Validate provider credentials
if validate failed, raise exception
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
"""
try:
model_instance = self.get_model_instance(ModelType.LLM)
model_instance.validate_credentials(
model='llama2-70b-4096',
credentials=credentials
)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:
logger.exception(f'{self.get_provider_schema().provider} credentials validate failed')
raise ex

View File

@ -1,32 +0,0 @@
provider: groq
label:
zh_Hans: GroqCloud
en_US: GroqCloud
description:
en_US: GroqCloud provides access to the Groq Cloud API, which hosts models like LLama2 and Mixtral.
zh_Hans: GroqCloud 提供对 Groq Cloud API 的访问,其中托管了 LLama2 和 Mixtral 等模型。
icon_small:
en_US: icon_s_en.svg
icon_large:
en_US: icon_l_en.svg
background: "#F5F5F4"
help:
title:
en_US: Get your API Key from GroqCloud
zh_Hans: 从 GroqCloud 获取 API Key
url:
en_US: https://console.groq.com/
supported_model_types:
- llm
configurate_methods:
- predefined-model
provider_credential_schema:
credential_form_schemas:
- variable: api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key

View File

@ -1,25 +0,0 @@
model: llama2-70b-4096
label:
zh_Hans: Llama-2-70B-4096
en_US: Llama-2-70B-4096
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 4096
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 4096
pricing:
input: '0.7'
output: '0.8'
unit: '0.000001'
currency: USD

View File

@ -1,26 +0,0 @@
from collections.abc import Generator
from typing import Optional, Union
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel
class GroqLargeLanguageModel(OAIAPICompatLargeLanguageModel):
def _invoke(self, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) \
-> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials)
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
@staticmethod
def _add_custom_parameters(credentials: dict) -> None:
credentials['mode'] = 'chat'
credentials['endpoint_url'] = 'https://api.groq.com/openai/v1'

View File

@ -1,25 +0,0 @@
model: mixtral-8x7b-32768
label:
zh_Hans: Mixtral-8x7b-Instruct-v0.1
en_US: Mixtral-8x7b-Instruct-v0.1
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 20480
pricing:
input: '0.27'
output: '0.27'
unit: '0.000001'
currency: USD

View File

@ -1,32 +1,20 @@
from os.path import abspath, dirname, join
from threading import Lock
from transformers import AutoTokenizer
class JinaTokenizer:
_tokenizer = None
_lock = Lock()
@classmethod
def _get_tokenizer(cls):
if cls._tokenizer is None:
with cls._lock:
if cls._tokenizer is None:
base_path = abspath(__file__)
gpt2_tokenizer_path = join(dirname(base_path), 'tokenizer')
cls._tokenizer = AutoTokenizer.from_pretrained(gpt2_tokenizer_path)
return cls._tokenizer
@classmethod
def _get_num_tokens_by_jina_base(cls, text: str) -> int:
@staticmethod
def _get_num_tokens_by_jina_base(text: str) -> int:
"""
use jina tokenizer to get num tokens
"""
tokenizer = cls._get_tokenizer()
base_path = abspath(__file__)
gpt2_tokenizer_path = join(dirname(base_path), 'tokenizer')
tokenizer = AutoTokenizer.from_pretrained(gpt2_tokenizer_path)
tokens = tokenizer.encode(text)
return len(tokens)
@classmethod
def get_num_tokens(cls, text: str) -> int:
return cls._get_num_tokens_by_jina_base(text)
@staticmethod
def get_num_tokens(text: str) -> int:
return JinaTokenizer._get_num_tokens_by_jina_base(text)

View File

@ -57,7 +57,7 @@ class JinaTextEmbeddingModel(TextEmbeddingModel):
try:
response = post(url, headers=headers, data=dumps(data))
except Exception as e:
raise InvokeConnectionError(str(e))
raise InvokeConnectionError(e)
if response.status_code != 200:
try:

View File

@ -59,7 +59,7 @@ class LocalAITextEmbeddingModel(TextEmbeddingModel):
try:
response = post(join(url, 'embeddings'), headers=headers, data=dumps(data), timeout=10)
except Exception as e:
raise InvokeConnectionError(str(e))
raise InvokeConnectionError(e)
if response.status_code != 200:
try:

View File

@ -65,7 +65,7 @@ class MinimaxTextEmbeddingModel(TextEmbeddingModel):
try:
response = post(url, headers=headers, data=dumps(data))
except Exception as e:
raise InvokeConnectionError(str(e))
raise InvokeConnectionError(e)
if response.status_code != 200:
raise InvokeServerUnavailableError(response.text)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.2 KiB

After

Width:  |  Height:  |  Size: 2.3 KiB

View File

@ -24,7 +24,7 @@ parameter_rules:
min: 1
max: 8000
- name: safe_prompt
default: false
defulat: false
type: boolean
help:
en_US: Whether to inject a safety prompt before all conversations.

View File

@ -24,7 +24,7 @@ parameter_rules:
min: 1
max: 8000
- name: safe_prompt
default: false
defulat: false
type: boolean
help:
en_US: Whether to inject a safety prompt before all conversations.

View File

@ -24,7 +24,7 @@ parameter_rules:
min: 1
max: 8000
- name: safe_prompt
default: false
defulat: false
type: boolean
help:
en_US: Whether to inject a safety prompt before all conversations.

View File

@ -24,7 +24,7 @@ parameter_rules:
min: 1
max: 2048
- name: safe_prompt
default: false
defulat: false
type: boolean
help:
en_US: Whether to inject a safety prompt before all conversations.

View File

@ -24,7 +24,7 @@ parameter_rules:
min: 1
max: 8000
- name: safe_prompt
default: false
defulat: false
type: boolean
help:
en_US: Whether to inject a safety prompt before all conversations.

View File

@ -2,4 +2,4 @@ model: whisper-1
model_type: speech2text
model_properties:
file_upload_limit: 25
supported_file_extensions: flac,mp3,mp4,mpeg,mpga,m4a,ogg,wav,webm
supported_file_extensions: mp3,mp4,mpeg,mpga,m4a,wav,webm

View File

@ -25,7 +25,6 @@ from core.model_runtime.entities.model_entities import (
AIModelEntity,
DefaultParameterName,
FetchFrom,
ModelFeature,
ModelPropertyKey,
ModelType,
ParameterRule,
@ -167,23 +166,11 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
"""
generate custom model entities from credentials
"""
support_function_call = False
features = []
function_calling_type = credentials.get('function_calling_type', 'no_call')
if function_calling_type == 'function_call':
features = [ModelFeature.TOOL_CALL]
support_function_call = True
endpoint_url = credentials["endpoint_url"]
# if not endpoint_url.endswith('/'):
# endpoint_url += '/'
# if 'https://api.openai.com/v1/' == endpoint_url:
# features = [ModelFeature.STREAM_TOOL_CALL]
entity = AIModelEntity(
model=model,
label=I18nObject(en_US=model),
model_type=ModelType.LLM,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
features=features if support_function_call else [],
model_properties={
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get('context_size', "4096")),
ModelPropertyKey.MODE: credentials.get('mode'),
@ -207,6 +194,14 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
max=1,
precision=2
),
ParameterRule(
name="top_k",
label=I18nObject(en_US="Top K"),
type=ParameterType.INT,
default=int(credentials.get('top_k', 1)),
min=1,
max=100
),
ParameterRule(
name=DefaultParameterName.FREQUENCY_PENALTY.value,
label=I18nObject(en_US="Frequency Penalty"),
@ -237,7 +232,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
output=Decimal(credentials.get('output_price', 0)),
unit=Decimal(credentials.get('unit', 0)),
currency=credentials.get('currency', "USD")
),
)
)
if credentials['mode'] == 'chat':
@ -297,22 +292,14 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
raise ValueError("Unsupported completion type for model configuration.")
# annotate tools with names, descriptions, etc.
function_calling_type = credentials.get('function_calling_type', 'no_call')
formatted_tools = []
if tools:
if function_calling_type == 'function_call':
data['functions'] = [{
"name": tool.name,
"description": tool.description,
"parameters": tool.parameters
} for tool in tools]
elif function_calling_type == 'tool_call':
data["tool_choice"] = "auto"
data["tool_choice"] = "auto"
for tool in tools:
formatted_tools.append(helper.dump_model(PromptMessageFunction(function=tool)))
for tool in tools:
formatted_tools.append(helper.dump_model(PromptMessageFunction(function=tool)))
data["tools"] = formatted_tools
data["tools"] = formatted_tools
if stop:
data["stop"] = stop
@ -380,9 +367,9 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
for chunk in response.iter_lines(decode_unicode=True, delimiter=delimiter):
if chunk:
# ignore sse comments
#ignore sse comments
if chunk.startswith(':'):
continue
continue
decoded_chunk = chunk.strip().lstrip('data: ').lstrip()
chunk_json = None
try:
@ -465,13 +452,10 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
response_content = ''
tool_calls = None
function_calling_type = credentials.get('function_calling_type', 'no_call')
if completion_type is LLMMode.CHAT:
response_content = output.get('message', {})['content']
if function_calling_type == 'tool_call':
tool_calls = output.get('message', {}).get('tool_calls')
elif function_calling_type == 'function_call':
tool_calls = output.get('message', {}).get('function_call')
tool_calls = output.get('message', {}).get('tool_calls')
elif completion_type is LLMMode.COMPLETION:
response_content = output['text']
@ -479,10 +463,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
assistant_message = AssistantPromptMessage(content=response_content, tool_calls=[])
if tool_calls:
if function_calling_type == 'tool_call':
assistant_message.tool_calls = self._extract_response_tool_calls(tool_calls)
elif function_calling_type == 'function_call':
assistant_message.tool_calls = [self._extract_response_function_call(tool_calls)]
assistant_message.tool_calls = self._extract_response_tool_calls(tool_calls)
usage = response_json.get("usage")
if usage:
@ -541,34 +522,33 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
message = cast(AssistantPromptMessage, message)
message_dict = {"role": "assistant", "content": message.content}
if message.tool_calls:
# message_dict["tool_calls"] = [helper.dump_model(PromptMessageFunction(function=tool_call)) for tool_call
# in
# message.tool_calls]
function_call = message.tool_calls[0]
message_dict["function_call"] = {
"name": function_call.function.name,
"arguments": function_call.function.arguments,
}
message_dict["tool_calls"] = [helper.dump_model(PromptMessageFunction(function=tool_call)) for tool_call
in
message.tool_calls]
# function_call = message.tool_calls[0]
# message_dict["function_call"] = {
# "name": function_call.function.name,
# "arguments": function_call.function.arguments,
# }
elif isinstance(message, SystemPromptMessage):
message = cast(SystemPromptMessage, message)
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, ToolPromptMessage):
message = cast(ToolPromptMessage, message)
# message_dict = {
# "role": "tool",
# "content": message.content,
# "tool_call_id": message.tool_call_id
# }
message_dict = {
"role": "function",
"role": "tool",
"content": message.content,
"name": message.tool_call_id
"tool_call_id": message.tool_call_id
}
# message_dict = {
# "role": "function",
# "content": message.content,
# "name": message.tool_call_id
# }
else:
raise ValueError(f"Got unknown type {message}")
if message.name:
if message.name is not None:
message_dict["name"] = message.name
return message_dict
@ -713,26 +693,3 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
tool_calls.append(tool_call)
return tool_calls
def _extract_response_function_call(self, response_function_call) \
-> AssistantPromptMessage.ToolCall:
"""
Extract function call from response
:param response_function_call: response function call
:return: tool call
"""
tool_call = None
if response_function_call:
function = AssistantPromptMessage.ToolCall.ToolCallFunction(
name=response_function_call['name'],
arguments=response_function_call['arguments']
)
tool_call = AssistantPromptMessage.ToolCall(
id=response_function_call['name'],
type="function",
function=function
)
return tool_call

View File

@ -75,28 +75,6 @@ model_credential_schema:
value: llm
default: '4096'
type: text-input
- variable: function_calling_type
show_on:
- variable: __model_type
value: llm
label:
en_US: Function calling
type: select
required: false
default: no_call
options:
- value: function_call
label:
en_US: Support
zh_Hans: 支持
# - value: tool_call
# label:
# en_US: Tool Call
# zh_Hans: Tool Call
- value: no_call
label:
en_US: Not Support
zh_Hans: 不支持
- variable: stream_mode_delimiter
label:
zh_Hans: 流模式返回结果的分隔符

View File

@ -53,7 +53,7 @@ class OpenLLMTextEmbeddingModel(TextEmbeddingModel):
# cloud not connect to the server
raise InvokeAuthorizationError(f"Invalid server URL: {e}")
except Exception as e:
raise InvokeConnectionError(str(e))
raise InvokeConnectionError(e)
if response.status_code != 200:
if response.status_code == 400:

View File

@ -308,7 +308,6 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
type=ParameterType.INT,
use_template='max_tokens',
min=1,
max=credentials.get('context_length', 2048),
default=512,
label=I18nObject(
zh_Hans='最大生成长度',

View File

@ -44,9 +44,6 @@ class XinferenceRerankModel(RerankModel):
docs=[]
)
if credentials['server_url'].endswith('/'):
credentials['server_url'] = credentials['server_url'][:-1]
# initialize client
client = Client(
base_url=credentials['server_url']

View File

@ -1,10 +1,10 @@
from os import path
from threading import Lock
from time import time
from requests.adapters import HTTPAdapter
from requests.exceptions import ConnectionError, MissingSchema, Timeout
from requests.sessions import Session
from yarl import URL
class XinferenceModelExtraParameter:
@ -55,10 +55,7 @@ class XinferenceHelper:
get xinference model extra parameter like model_format and model_handle_type
"""
if not model_uid or not model_uid.strip() or not server_url or not server_url.strip():
raise RuntimeError('model_uid is empty')
url = str(URL(server_url) / 'v1' / 'models' / model_uid)
url = path.join(server_url, 'v1/models', model_uid)
# this method is surrounded by a lock, and default requests may hang forever, so we just set a Adapter with max_retries=3
session = Session()
@ -69,6 +66,7 @@ class XinferenceHelper:
response = session.get(url, timeout=10)
except (MissingSchema, ConnectionError, Timeout) as e:
raise RuntimeError(f'get xinference model extra parameter failed, url: {url}, error: {e}')
if response.status_code != 200:
raise RuntimeError(f'get xinference model extra parameter failed, status code: {response.status_code}, response: {response.text}')

View File

@ -3,7 +3,6 @@ import csv
from typing import Optional
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.extractor.helpers import detect_file_encodings
from core.rag.models.document import Document
@ -37,7 +36,7 @@ class CSVExtractor(BaseExtractor):
docs = self._read_from_file(csvfile)
except UnicodeDecodeError as e:
if self._autodetect_encoding:
detected_encodings = detect_file_encodings(self._file_path)
detected_encodings = detect_filze_encodings(self._file_path)
for encoding in detected_encodings:
try:
with open(self._file_path, newline="", encoding=encoding.encoding) as csvfile:

View File

@ -10,7 +10,7 @@ from core.rag.models.document import Document
class WordExtractor(BaseExtractor):
"""Load docx files.
"""Load pdf files.
Args:
@ -46,16 +46,14 @@ class WordExtractor(BaseExtractor):
def extract(self) -> list[Document]:
"""Load given path as single page."""
from docx import Document as docx_Document
import docx2txt
document = docx_Document(self.file_path)
doc_texts = [paragraph.text for paragraph in document.paragraphs]
content = '\n'.join(doc_texts)
return [Document(
page_content=content,
metadata={"source": self.file_path},
)]
return [
Document(
page_content=docx2txt.process(self.file_path),
metadata={"source": self.file_path},
)
]
@staticmethod
def _is_valid_url(url: str) -> bool:

View File

@ -52,7 +52,7 @@ class BaseIndexProcessor(ABC):
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
chunk_size=segmentation["max_tokens"],
chunk_overlap=segmentation.get('chunk_overlap', 0),
chunk_overlap=0,
fixed_separator=separator,
separators=["\n\n", "", ".", " ", ""],
embedding_model_instance=embedding_model_instance
@ -61,7 +61,7 @@ class BaseIndexProcessor(ABC):
# Automatic segmentation
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
chunk_overlap=0,
separators=["\n\n", "", ".", " ", ""],
embedding_model_instance=embedding_model_instance
)

View File

@ -7,6 +7,7 @@ from typing import Optional
import pandas as pd
from flask import Flask, current_app
from flask_login import current_user
from werkzeug.datastructures import FileStorage
from core.generator.llm_generator import LLMGenerator
@ -30,7 +31,7 @@ class QAIndexProcessor(BaseIndexProcessor):
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
splitter = self._get_splitter(processing_rule=kwargs.get('process_rule'),
embedding_model_instance=kwargs.get('embedding_model_instance'))
embedding_model_instance=None)
# Split the text documents into nodes.
all_documents = []
@ -65,10 +66,10 @@ class QAIndexProcessor(BaseIndexProcessor):
for doc in sub_documents:
document_format_thread = threading.Thread(target=self._format_qa_document, kwargs={
'flask_app': current_app._get_current_object(),
'tenant_id': kwargs.get('tenant_id'),
'tenant_id': current_user.current_tenant.id,
'document_node': doc,
'all_qa_documents': all_qa_documents,
'document_language': kwargs.get('doc_language', 'English')})
'document_language': kwargs.get('document_language', 'English')})
threads.append(document_format_thread)
document_format_thread.start()
for thread in threads:

View File

@ -30,7 +30,7 @@ def _split_text_with_regex(
if separator:
if keep_separator:
# The parentheses in the pattern keep the delimiters in the result.
_splits = re.split(f"({re.escape(separator)})", text)
_splits = re.split(f"({separator})", text)
splits = [_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)]
if len(_splits) % 2 == 0:
splits += _splits[-1:]
@ -94,7 +94,7 @@ class TextSplitter(BaseDocumentTransformer, ABC):
documents.append(new_doc)
return documents
def split_documents(self, documents: Iterable[Document] ) -> list[Document]:
def split_documents(self, documents: Iterable[Document]) -> list[Document]:
"""Split documents."""
texts, metadatas = [], []
for doc in documents:

View File

@ -119,7 +119,7 @@ parameters: # Parameter list
- The `identity` field is mandatory, it contains the basic information of the tool, including name, author, label, description, etc.
- `parameters` Parameter list
- `name` Parameter name, unique, no duplication with other parameters
- `type` Parameter type, currently supports `string`, `number`, `boolean`, `select`, `secret-input` four types, corresponding to string, number, boolean, drop-down box, and encrypted input box, respectively. For sensitive information, we recommend using `secret-input` type
- `type` Parameter type, currently supports `string`, `number`, `boolean`, `select` four types, corresponding to string, number, boolean, drop-down box
- `required` Required or not
- In `llm` mode, if the parameter is required, the Agent is required to infer this parameter
- In `form` mode, if the parameter is required, the user is required to fill in this parameter on the frontend before the conversation starts

View File

@ -119,7 +119,7 @@ parameters: # 参数列表
- `identity` 字段是必须的,它包含了工具的基本信息,包括名称、作者、标签、描述等
- `parameters` 参数列表
- `name` 参数名称,唯一,不允许和其他参数重名
- `type` 参数类型,目前支持`string``number``boolean``select``secret-input`种类型,分别对应字符串、数字、布尔值、下拉框、加密输入框,对于敏感信息,我们建议使用`secret-input`类型
- `type` 参数类型,目前支持`string``number``boolean``select`种类型,分别对应字符串、数字、布尔值、下拉框
- `required` 是否必填
-`llm`模式下如果参数为必填则会要求Agent必须要推理出这个参数
-`form`模式下,如果参数为必填,则会要求用户在对话开始前在前端填写这个参数

View File

@ -8,19 +8,15 @@ class I18nObject(BaseModel):
Model class for i18n object.
"""
zh_Hans: Optional[str] = None
pt_BR: Optional[str] = None
en_US: str
def __init__(self, **data):
super().__init__(**data)
if not self.zh_Hans:
self.zh_Hans = self.en_US
if not self.pt_BR:
self.pt_BR = self.en_US
def to_dict(self) -> dict:
return {
'zh_Hans': self.zh_Hans,
'en_US': self.en_US,
'pt_BR': self.pt_BR
}
}

View File

@ -100,7 +100,6 @@ class ToolParameter(BaseModel):
NUMBER = "number"
BOOLEAN = "boolean"
SELECT = "select"
SECRET_INPUT = "secret-input"
class ToolParameterForm(Enum):
SCHEMA = "schema" # should be set while adding tool
@ -305,24 +304,4 @@ class ToolRuntimeVariablePool(BaseModel):
value=value,
)
self.pool.append(variable)
class ModelToolPropertyKey(Enum):
IMAGE_PARAMETER_NAME = "image_parameter_name"
class ModelToolConfiguration(BaseModel):
"""
Model tool configuration
"""
type: str = Field(..., description="The type of the model tool")
model: str = Field(..., description="The model")
label: I18nObject = Field(..., description="The label of the model tool")
properties: dict[ModelToolPropertyKey, Any] = Field(..., description="The properties of the model tool")
class ModelToolProviderConfiguration(BaseModel):
"""
Model tool provider configuration
"""
provider: str = Field(..., description="The provider of the model tool")
models: list[ModelToolConfiguration] = Field(..., description="The models of the model tool")
label: I18nObject = Field(..., description="The label of the model tool")
self.pool.append(variable)

View File

@ -13,7 +13,6 @@ class UserToolProvider(BaseModel):
BUILTIN = "builtin"
APP = "app"
API = "api"
MODEL = "model"
id: str
author: str

View File

@ -1,20 +0,0 @@
provider: anthropic
label:
en_US: Anthropic Model Tools
zh_Hans: Anthropic 模型能力
pt_BR: Anthropic Model Tools
models:
- type: llm
model: claude-3-sonnet-20240229
label:
zh_Hans: Claude3 Sonnet 视觉
en_US: Claude3 Sonnet Vision
properties:
image_parameter_name: image_id
- type: llm
model: claude-3-opus-20240229
label:
zh_Hans: Claude3 Opus 视觉
en_US: Claude3 Opus Vision
properties:
image_parameter_name: image_id

View File

@ -1,13 +0,0 @@
provider: google
label:
en_US: Google Model Tools
zh_Hans: Google 模型能力
pt_BR: Google Model Tools
models:
- type: llm
model: gemini-pro-vision
label:
zh_Hans: Gemini Pro 视觉
en_US: Gemini Pro Vision
properties:
image_parameter_name: image_id

View File

@ -1,13 +0,0 @@
provider: openai
label:
en_US: OpenAI Model Tools
zh_Hans: OpenAI 模型能力
pt_BR: OpenAI Model Tools
models:
- type: llm
model: gpt-4-vision-preview
label:
zh_Hans: GPT-4 视觉
en_US: GPT-4 Vision
properties:
image_parameter_name: image_id

View File

@ -1,13 +0,0 @@
provider: zhipuai
label:
en_US: ZhipuAI Model Tools
zh_Hans: ZhipuAI 模型能力
pt_BR: ZhipuAI Model Tools
models:
- type: llm
model: glm-4v
label:
zh_Hans: GLM-4 视觉
en_US: GLM-4 Vision
properties:
image_parameter_name: image_id

View File

@ -1,19 +1,14 @@
- google
- bing
- duckduckgo
- dalle
- azuredalle
- wikipedia
- model.openai
- model.google
- model.anthropic
- yahoo
- wikipedia
- arxiv
- pubmed
- dalle
- azuredalle
- stablediffusion
- webscraper
- model.zhipuai
- aippt
- youtube
- wolframalpha
- maths
@ -23,5 +18,3 @@
- vectorizer
- gaode
- wecom
- qrcode
- dingtalk

View File

@ -4,24 +4,24 @@ from yaml import FullLoader, load
from core.tools.entities.user_entities import UserToolProvider
position = {}
class BuiltinToolProviderSort:
_position = {}
@classmethod
def sort(cls, providers: list[UserToolProvider]) -> list[UserToolProvider]:
if not cls._position:
@staticmethod
def sort(providers: list[UserToolProvider]) -> list[UserToolProvider]:
global position
if not position:
tmp_position = {}
file_path = os.path.join(os.path.dirname(__file__), '..', '_position.yaml')
with open(file_path) as f:
for pos, val in enumerate(load(f, Loader=FullLoader)):
tmp_position[val] = pos
cls._position = tmp_position
position = tmp_position
def sort_compare(provider: UserToolProvider) -> int:
if provider.type == UserToolProvider.ProviderType.MODEL:
return cls._position.get(f'model.{provider.name}', 10000)
return cls._position.get(provider.name, 10000)
# if provider.type == UserToolProvider.ProviderType.MODEL:
# return position.get(f'model_provider.{provider.name}', 10000)
return position.get(provider.name, 10000)
sorted_providers = sorted(providers, key=sort_compare)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.9 KiB

View File

@ -1,11 +0,0 @@
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin.aippt.tools.aippt import AIPPTGenerateTool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class AIPPTProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
try:
AIPPTGenerateTool._get_api_token(credentials, user_id='__dify_system__')
except Exception as e:
raise ToolProviderCredentialValidationError(str(e))

View File

@ -1,42 +0,0 @@
identity:
author: Dify
name: aippt
label:
en_US: AIPPT
zh_Hans: AIPPT
description:
en_US: AI-generated PPT with one click, input your content topic, and let AI serve you one-stop
zh_Hans: AI一键生成PPT输入你的内容主题让AI为你一站式服务到底
icon: icon.png
credentials_for_provider:
aippt_access_key:
type: secret-input
required: true
label:
en_US: AIPPT API key
zh_Hans: AIPPT API key
pt_BR: AIPPT API key
help:
en_US: Please input your AIPPT API key
zh_Hans: 请输入你的 AIPPT API key
pt_BR: Please input your AIPPT API key
placeholder:
en_US: Please input your AIPPT API key
zh_Hans: 请输入你的 AIPPT API key
pt_BR: Please input your AIPPT API key
url: https://www.aippt.cn
aippt_secret_key:
type: secret-input
required: true
label:
en_US: AIPPT Secret key
zh_Hans: AIPPT Secret key
pt_BR: AIPPT Secret key
help:
en_US: Please input your AIPPT Secret key
zh_Hans: 请输入你的 AIPPT Secret key
pt_BR: Please input your AIPPT Secret key
placeholder:
en_US: Please input your AIPPT Secret key
zh_Hans: 请输入你的 AIPPT Secret key
pt_BR: Please input your AIPPT Secret key

View File

@ -1,541 +0,0 @@
from base64 import b64encode
from hashlib import sha1
from hmac import new as hmac_new
from json import loads as json_loads
from threading import Lock
from time import sleep, time
from typing import Any
from httpx import get, post
from requests import get as requests_get
from yarl import URL
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter, ToolParameterOption
from core.tools.tool.builtin_tool import BuiltinTool
class AIPPTGenerateTool(BuiltinTool):
"""
A tool for generating a ppt
"""
_api_base_url = URL('https://co.aippt.cn/api')
_api_token_cache = {}
_api_token_cache_lock = Lock()
_style_cache = {}
_style_cache_lock = Lock()
_task = {}
_task_type_map = {
'auto': 1,
'markdown': 7,
}
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage | list[ToolInvokeMessage]:
"""
Invokes the AIPPT generate tool with the given user ID and tool parameters.
Args:
user_id (str): The ID of the user invoking the tool.
tool_parameters (dict[str, Any]): The parameters for the tool
Returns:
ToolInvokeMessage | list[ToolInvokeMessage]: The result of the tool invocation, which can be a single message or a list of messages.
"""
title = tool_parameters.get('title', '')
if not title:
return self.create_text_message('Please provide a title for the ppt')
model = tool_parameters.get('model', 'aippt')
if not model:
return self.create_text_message('Please provide a model for the ppt')
outline = tool_parameters.get('outline', '')
# create task
task_id = self._create_task(
type=self._task_type_map['auto' if not outline else 'markdown'],
title=title,
content=outline,
user_id=user_id
)
# get suit
color = tool_parameters.get('color')
style = tool_parameters.get('style')
if color == '__default__':
color_id = ''
else:
color_id = int(color.split('-')[1])
if style == '__default__':
style_id = ''
else:
style_id = int(style.split('-')[1])
suit_id = self._get_suit(style_id=style_id, colour_id=color_id)
# generate outline
if not outline:
self._generate_outline(
task_id=task_id,
model=model,
user_id=user_id
)
# generate content
self._generate_content(
task_id=task_id,
model=model,
user_id=user_id
)
# generate ppt
_, ppt_url = self._generate_ppt(
task_id=task_id,
suit_id=suit_id,
user_id=user_id
)
return self.create_text_message('''the ppt has been created successfully,'''
f'''the ppt url is {ppt_url}'''
'''please give the ppt url to user and direct user to download it.''')
def _create_task(self, type: int, title: str, content: str, user_id: str) -> str:
"""
Create a task
:param type: the task type
:param title: the task title
:param content: the task content
:return: the task ID
"""
headers = {
'x-channel': '',
'x-api-key': self.runtime.credentials['aippt_access_key'],
'x-token': self._get_api_token(credentials=self.runtime.credentials, user_id=user_id),
}
response = post(
str(self._api_base_url / 'ai' / 'chat' / 'v2' / 'task'),
headers=headers,
files={
'type': ('', str(type)),
'title': ('', title),
'content': ('', content)
}
)
if response.status_code != 200:
raise Exception(f'Failed to connect to aippt: {response.text}')
response = response.json()
if response.get('code') != 0:
raise Exception(f'Failed to create task: {response.get("msg")}')
return response.get('data', {}).get('id')
def _generate_outline(self, task_id: str, model: str, user_id: str) -> str:
api_url = self._api_base_url / 'ai' / 'chat' / 'outline' if model == 'aippt' else \
self._api_base_url / 'ai' / 'chat' / 'wx' / 'outline'
api_url %= {'task_id': task_id}
headers = {
'x-channel': '',
'x-api-key': self.runtime.credentials['aippt_access_key'],
'x-token': self._get_api_token(credentials=self.runtime.credentials, user_id=user_id),
}
response = requests_get(
url=api_url,
headers=headers,
stream=True,
timeout=(10, 60)
)
if response.status_code != 200:
raise Exception(f'Failed to connect to aippt: {response.text}')
outline = ''
for chunk in response.iter_lines(delimiter=b'\n\n'):
if not chunk:
continue
event = ''
lines = chunk.decode('utf-8').split('\n')
for line in lines:
if line.startswith('event:'):
event = line[6:]
elif line.startswith('data:'):
data = line[5:]
if event == 'message':
try:
data = json_loads(data)
outline += data.get('content', '')
except Exception as e:
pass
elif event == 'close':
break
elif event == 'error' or event == 'filter':
raise Exception(f'Failed to generate outline: {data}')
return outline
def _generate_content(self, task_id: str, model: str, user_id: str) -> str:
api_url = self._api_base_url / 'ai' / 'chat' / 'content' if model == 'aippt' else \
self._api_base_url / 'ai' / 'chat' / 'wx' / 'content'
api_url %= {'task_id': task_id}
headers = {
'x-channel': '',
'x-api-key': self.runtime.credentials['aippt_access_key'],
'x-token': self._get_api_token(credentials=self.runtime.credentials, user_id=user_id),
}
response = requests_get(
url=api_url,
headers=headers,
stream=True,
timeout=(10, 60)
)
if response.status_code != 200:
raise Exception(f'Failed to connect to aippt: {response.text}')
if model == 'aippt':
content = ''
for chunk in response.iter_lines(delimiter=b'\n\n'):
if not chunk:
continue
event = ''
lines = chunk.decode('utf-8').split('\n')
for line in lines:
if line.startswith('event:'):
event = line[6:]
elif line.startswith('data:'):
data = line[5:]
if event == 'message':
try:
data = json_loads(data)
content += data.get('content', '')
except Exception as e:
pass
elif event == 'close':
break
elif event == 'error' or event == 'filter':
raise Exception(f'Failed to generate content: {data}')
return content
elif model == 'wenxin':
response = response.json()
if response.get('code') != 0:
raise Exception(f'Failed to generate content: {response.get("msg")}')
return response.get('data', '')
return ''
def _generate_ppt(self, task_id: str, suit_id: int, user_id) -> tuple[str, str]:
"""
Generate a ppt
:param task_id: the task ID
:param suit_id: the suit ID
:return: the cover url of the ppt and the ppt url
"""
headers = {
'x-channel': '',
'x-api-key': self.runtime.credentials['aippt_access_key'],
'x-token': self._get_api_token(credentials=self.runtime.credentials, user_id=user_id),
}
response = post(
str(self._api_base_url / 'design' / 'v2' / 'save'),
headers=headers,
data={
'task_id': task_id,
'template_id': suit_id
}
)
if response.status_code != 200:
raise Exception(f'Failed to connect to aippt: {response.text}')
response = response.json()
if response.get('code') != 0:
raise Exception(f'Failed to generate ppt: {response.get("msg")}')
id = response.get('data', {}).get('id')
cover_url = response.get('data', {}).get('cover_url')
response = post(
str(self._api_base_url / 'download' / 'export' / 'file'),
headers=headers,
data={
'id': id,
'format': 'ppt',
'files_to_zip': False,
'edit': True
}
)
if response.status_code != 200:
raise Exception(f'Failed to connect to aippt: {response.text}')
response = response.json()
if response.get('code') != 0:
raise Exception(f'Failed to generate ppt: {response.get("msg")}')
export_code = response.get('data')
if not export_code:
raise Exception('Failed to generate ppt, the export code is empty')
current_iteration = 0
while current_iteration < 50:
# get ppt url
response = post(
str(self._api_base_url / 'download' / 'export' / 'file' / 'result'),
headers=headers,
data={
'task_key': export_code
}
)
if response.status_code != 200:
raise Exception(f'Failed to connect to aippt: {response.text}')
response = response.json()
if response.get('code') != 0:
raise Exception(f'Failed to generate ppt: {response.get("msg")}')
if response.get('msg') == '导出中':
current_iteration += 1
sleep(2)
continue
ppt_url = response.get('data', [])
if len(ppt_url) == 0:
raise Exception('Failed to generate ppt, the ppt url is empty')
return cover_url, ppt_url[0]
raise Exception('Failed to generate ppt, the export is timeout')
@classmethod
def _get_api_token(cls, credentials: dict[str, str], user_id: str) -> str:
"""
Get API token
:param credentials: the credentials
:return: the API token
"""
access_key = credentials['aippt_access_key']
secret_key = credentials['aippt_secret_key']
cache_key = f'{access_key}#@#{user_id}'
with cls._api_token_cache_lock:
# clear expired tokens
now = time()
for key in list(cls._api_token_cache.keys()):
if cls._api_token_cache[key]['expire'] < now:
del cls._api_token_cache[key]
if cache_key in cls._api_token_cache:
return cls._api_token_cache[cache_key]['token']
# get token
headers = {
'x-api-key': access_key,
'x-timestamp': str(int(now)),
'x-signature': cls._calculate_sign(access_key, secret_key, int(now))
}
param = {
'uid': user_id,
'channel': ''
}
response = get(
str(cls._api_base_url / 'grant' / 'token'),
params=param,
headers=headers
)
if response.status_code != 200:
raise Exception(f'Failed to connect to aippt: {response.text}')
response = response.json()
if response.get('code') != 0:
raise Exception(f'Failed to connect to aippt: {response.get("msg")}')
token = response.get('data', {}).get('token')
expire = response.get('data', {}).get('time_expire')
with cls._api_token_cache_lock:
cls._api_token_cache[cache_key] = {
'token': token,
'expire': now + expire
}
return token
@classmethod
def _calculate_sign(cls, access_key: str, secret_key: str, timestamp: int) -> str:
return b64encode(
hmac_new(
key=secret_key.encode('utf-8'),
msg=f'GET@/api/grant/token/@{timestamp}'.encode(),
digestmod=sha1
).digest()
).decode('utf-8')
@classmethod
def _get_styles(cls, credentials: dict[str, str], user_id: str) -> tuple[list[dict], list[dict]]:
"""
Get styles
"""
# check cache
with cls._style_cache_lock:
# clear expired styles
now = time()
for key in list(cls._style_cache.keys()):
if cls._style_cache[key]['expire'] < now:
del cls._style_cache[key]
key = f'{credentials["aippt_access_key"]}#@#{user_id}'
if key in cls._style_cache:
return cls._style_cache[key]['colors'], cls._style_cache[key]['styles']
headers = {
'x-channel': '',
'x-api-key': credentials['aippt_access_key'],
'x-token': cls._get_api_token(credentials=credentials, user_id=user_id)
}
response = get(
str(cls._api_base_url / 'template_component' / 'suit' / 'select'),
headers=headers
)
if response.status_code != 200:
raise Exception(f'Failed to connect to aippt: {response.text}')
response = response.json()
if response.get('code') != 0:
raise Exception(f'Failed to connect to aippt: {response.get("msg")}')
colors = [{
'id': f'id-{item.get("id")}',
'name': item.get('name'),
'en_name': item.get('en_name', item.get('name')),
} for item in response.get('data', {}).get('colour') or []]
styles = [{
'id': f'id-{item.get("id")}',
'name': item.get('title'),
} for item in response.get('data', {}).get('suit_style') or []]
with cls._style_cache_lock:
cls._style_cache[key] = {
'colors': colors,
'styles': styles,
'expire': now + 60 * 60
}
return colors, styles
def get_styles(self, user_id: str) -> tuple[list[dict], list[dict]]:
"""
Get styles
:param credentials: the credentials
:return: Tuple[list[dict[id, color]], list[dict[id, style]]
"""
if not self.runtime.credentials.get('aippt_access_key') or not self.runtime.credentials.get('aippt_secret_key'):
raise Exception('Please provide aippt credentials')
return self._get_styles(credentials=self.runtime.credentials, user_id=user_id)
def _get_suit(self, style_id: int, colour_id: int) -> int:
"""
Get suit
"""
headers = {
'x-channel': '',
'x-api-key': self.runtime.credentials['aippt_access_key'],
'x-token': self._get_api_token(credentials=self.runtime.credentials, user_id='__dify_system__')
}
response = get(
str(self._api_base_url / 'template_component' / 'suit' / 'search'),
headers=headers,
params={
'style_id': style_id,
'colour_id': colour_id,
'page': 1,
'page_size': 1
}
)
if response.status_code != 200:
raise Exception(f'Failed to connect to aippt: {response.text}')
response = response.json()
if response.get('code') != 0:
raise Exception(f'Failed to connect to aippt: {response.get("msg")}')
if len(response.get('data', {}).get('list') or []) > 0:
return response.get('data', {}).get('list')[0].get('id')
raise Exception('Failed to get suit, the suit does not exist, please check the style and color')
def get_runtime_parameters(self) -> list[ToolParameter]:
"""
Get runtime parameters
Override this method to add runtime parameters to the tool.
"""
try:
colors, styles = self.get_styles(user_id='__dify_system__')
except Exception as e:
colors, styles = [
{'id': -1, 'name': '__default__', 'en_name': '__default__'}
], [
{'id': -1, 'name': '__default__', 'en_name': '__default__'}
]
return [
ToolParameter(
name='color',
label=I18nObject(zh_Hans='颜色', en_US='Color'),
human_description=I18nObject(zh_Hans='颜色', en_US='Color'),
type=ToolParameter.ToolParameterType.SELECT,
form=ToolParameter.ToolParameterForm.FORM,
required=False,
default=colors[0]['id'],
options=[
ToolParameterOption(
value=color['id'],
label=I18nObject(zh_Hans=color['name'], en_US=color['en_name'])
) for color in colors
]
),
ToolParameter(
name='style',
label=I18nObject(zh_Hans='风格', en_US='Style'),
human_description=I18nObject(zh_Hans='风格', en_US='Style'),
type=ToolParameter.ToolParameterType.SELECT,
form=ToolParameter.ToolParameterForm.FORM,
required=False,
default=styles[0]['id'],
options=[
ToolParameterOption(
value=style['id'],
label=I18nObject(zh_Hans=style['name'], en_US=style['name'])
) for style in styles
]
),
]

View File

@ -1,54 +0,0 @@
identity:
name: aippt
author: Dify
label:
en_US: AIPPT
zh_Hans: AIPPT
description:
human:
en_US: AI-generated PPT with one click, input your content topic, and let AI serve you one-stop
zh_Hans: AI一键生成PPT输入你的内容主题让AI为你一站式服务到底
llm: A tool used to generate PPT with AI, input your content topic, and let AI generate PPT for you.
parameters:
- name: title
type: string
required: true
label:
en_US: Title
zh_Hans: 标题
human_description:
en_US: The title of the PPT.
zh_Hans: PPT的标题。
llm_description: The title of the PPT, which will be used to generate the PPT outline.
form: llm
- name: outline
type: string
required: false
label:
en_US: Outline
zh_Hans: 大纲
human_description:
en_US: The outline of the PPT
zh_Hans: PPT的大纲
llm_description: The outline of the PPT, which will be used to generate the PPT content. provide it if you have.
form: llm
- name: llm
type: select
required: true
label:
en_US: LLM model
zh_Hans: 生成大纲的LLM
options:
- value: aippt
label:
en_US: AIPPT default model
zh_Hans: AIPPT默认模型
- value: wenxin
label:
en_US: Wenxin ErnieBot
zh_Hans: 文心一言
default: aippt
human_description:
en_US: The LLM model used for generating PPT outline.
zh_Hans: 用于生成PPT大纲的LLM模型。
form: form

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 KiB

View File

@ -1,40 +0,0 @@
<svg viewBox="-29.62167543756803 0.1 574.391675437568 799.8100000000002" xmlns="http://www.w3.org/2000/svg" width="1888"
height="2500">
<linearGradient id="a" gradientUnits="userSpaceOnUse" x1="286.383" x2="542.057" y1="284.169" y2="569.112">
<stop offset="0" stop-color="#37bdff"/>
<stop offset=".25" stop-color="#26c6f4"/>
<stop offset=".5" stop-color="#15d0e9"/>
<stop offset=".75" stop-color="#3bd6df"/>
<stop offset="1" stop-color="#62dcd4"/>
</linearGradient>
<linearGradient id="b" gradientUnits="userSpaceOnUse" x1="108.979" x2="100.756" y1="675.98" y2="43.669">
<stop offset="0" stop-color="#1b48ef"/>
<stop offset=".5" stop-color="#2080f1"/>
<stop offset="1" stop-color="#26b8f4"/>
</linearGradient>
<linearGradient id="c" gradientUnits="userSpaceOnUse" x1="256.823" x2="875.632" y1="649.719" y2="649.719">
<stop offset="0" stop-color="#39d2ff"/>
<stop offset=".5" stop-color="#248ffa"/>
<stop offset="1" stop-color="#104cf5"/>
</linearGradient>
<linearGradient id="d" gradientUnits="userSpaceOnUse" x1="256.823" x2="875.632" y1="649.719" y2="649.719">
<stop offset="0" stop-color="#fff"/>
<stop offset="1"/>
</linearGradient>
<path d="M249.97 277.48c-.12.96-.12 2.05-.12 3.12 0 4.16.83 8.16 2.33 11.84l1.34 2.76 5.3 13.56 27.53 70.23 24.01 61.33c6.85 12.38 17.82 22.1 31.05 27.28l4.11 1.51c.16.05.43.05.65.11l65.81 22.63v.05l25.16 8.64 1.72.58c.06 0 .16.06.22.06 4.96 1.25 9.82 2.93 14.46 4.98 10.73 4.63 20.46 11.23 28.77 19.28 3.35 3.2 6.43 6.65 9.28 10.33a88.64 88.64 0 0 1 6.64 9.72c8.78 14.58 13.82 31.72 13.82 49.97 0 3.26-.16 6.41-.49 9.61-.11 1.41-.28 2.77-.49 4.12v.11c-.22 1.43-.49 2.91-.76 4.36-.28 1.41-.54 2.81-.86 4.21-.05.16-.11.33-.17.49-.3 1.42-.68 2.82-1.07 4.23-.35 1.33-.79 2.7-1.28 3.99a42.96 42.96 0 0 1-1.51 4.16c-.49 1.4-1.07 2.82-1.72 4.16-1.78 4.11-3.9 8.06-6.28 11.83a97.889 97.889 0 0 1-10.47 13.95c30.88-33.2 51.41-76.07 56.52-123.51.86-7.78 1.3-15.67 1.3-23.61 0-5.07-.22-10.09-.55-15.13-3.89-56.89-29.79-107.77-69.32-144.08-10.9-10.09-22.81-19.07-35.62-26.69l-24.2-12.37-122.63-62.93a30.15 30.15 0 0 0-11.93-2.44c-15.88 0-28.99 12.11-30.55 27.56z"
fill="#7f7f7f"/>
<path d="M249.97 277.48c-.12.96-.12 2.05-.12 3.12 0 4.16.83 8.16 2.33 11.84l1.34 2.76 5.3 13.56 27.53 70.23 24.01 61.33c6.85 12.38 17.82 22.1 31.05 27.28l4.11 1.51c.16.05.43.05.65.11l65.81 22.63v.05l25.16 8.64 1.72.58c.06 0 .16.06.22.06 4.96 1.25 9.82 2.93 14.46 4.98 10.73 4.63 20.46 11.23 28.77 19.28 3.35 3.2 6.43 6.65 9.28 10.33a88.64 88.64 0 0 1 6.64 9.72c8.78 14.58 13.82 31.72 13.82 49.97 0 3.26-.16 6.41-.49 9.61-.11 1.41-.28 2.77-.49 4.12v.11c-.22 1.43-.49 2.91-.76 4.36-.28 1.41-.54 2.81-.86 4.21-.05.16-.11.33-.17.49-.3 1.42-.68 2.82-1.07 4.23-.35 1.33-.79 2.7-1.28 3.99a42.96 42.96 0 0 1-1.51 4.16c-.49 1.4-1.07 2.82-1.72 4.16-1.78 4.11-3.9 8.06-6.28 11.83a97.889 97.889 0 0 1-10.47 13.95c30.88-33.2 51.41-76.07 56.52-123.51.86-7.78 1.3-15.67 1.3-23.61 0-5.07-.22-10.09-.55-15.13-3.89-56.89-29.79-107.77-69.32-144.08-10.9-10.09-22.81-19.07-35.62-26.69l-24.2-12.37-122.63-62.93a30.15 30.15 0 0 0-11.93-2.44c-15.88 0-28.99 12.11-30.55 27.56z"
fill="url(#a)"/>
<path d="M31.62.1C14.17.41.16 14.69.16 32.15v559.06c.07 3.9.29 7.75.57 11.66.25 2.06.52 4.2.9 6.28 7.97 44.87 47.01 78.92 94.15 78.92 16.53 0 32.03-4.21 45.59-11.53.08-.06.22-.14.29-.14l4.88-2.95 19.78-11.64 25.16-14.93.06-496.73c0-33.01-16.52-62.11-41.81-79.4-.6-.36-1.18-.74-1.71-1.17L50.12 5.56C45.16 2.28 39.18.22 32.77.1z"
fill="#7f7f7f"/>
<path d="M31.62.1C14.17.41.16 14.69.16 32.15v559.06c.07 3.9.29 7.75.57 11.66.25 2.06.52 4.2.9 6.28 7.97 44.87 47.01 78.92 94.15 78.92 16.53 0 32.03-4.21 45.59-11.53.08-.06.22-.14.29-.14l4.88-2.95 19.78-11.64 25.16-14.93.06-496.73c0-33.01-16.52-62.11-41.81-79.4-.6-.36-1.18-.74-1.71-1.17L50.12 5.56C45.16 2.28 39.18.22 32.77.1z"
fill="url(#b)"/>
<path d="M419.81 510.84L194.72 644.26l-3.24 1.95v.71l-25.16 14.9-19.77 11.67-4.85 2.93-.33.16c-13.53 7.35-29.04 11.51-45.56 11.51-47.13 0-86.22-34.03-94.16-78.92 3.77 32.84 14.96 63.41 31.84 90.04 34.76 54.87 93.54 93.04 161.54 99.67h41.58c36.78-3.84 67.49-18.57 99.77-38.46l49.64-30.36c22.36-14.33 83.05-49.58 100.93-69.36 3.89-4.33 7.4-8.97 10.47-13.94 2.38-3.78 4.5-7.73 6.28-11.84.6-1.4 1.17-2.76 1.72-4.15.52-1.38 1.01-2.77 1.51-4.18.93-2.7 1.67-5.41 2.38-8.2.36-1.59.69-3.16 1.02-4.72 1.08-5.89 1.67-11.94 1.67-18.21 0-18.25-5.04-35.39-13.77-49.95-2-3.4-4.2-6.65-6.64-9.72-2.85-3.7-5.93-7.13-9.28-10.33-8.31-8.05-18.01-14.65-28.77-19.29-4.64-2.05-9.48-3.74-14.46-4.97-.06 0-.16-.06-.22-.06l-1.72-.58z"
fill="#7f7f7f"/>
<path d="M419.81 510.84L194.72 644.26l-3.24 1.95v.71l-25.16 14.9-19.77 11.67-4.85 2.93-.33.16c-13.53 7.35-29.04 11.51-45.56 11.51-47.13 0-86.22-34.03-94.16-78.92 3.77 32.84 14.96 63.41 31.84 90.04 34.76 54.87 93.54 93.04 161.54 99.67h41.58c36.78-3.84 67.49-18.57 99.77-38.46l49.64-30.36c22.36-14.33 83.05-49.58 100.93-69.36 3.89-4.33 7.4-8.97 10.47-13.94 2.38-3.78 4.5-7.73 6.28-11.84.6-1.4 1.17-2.76 1.72-4.15.52-1.38 1.01-2.77 1.51-4.18.93-2.7 1.67-5.41 2.38-8.2.36-1.59.69-3.16 1.02-4.72 1.08-5.89 1.67-11.94 1.67-18.21 0-18.25-5.04-35.39-13.77-49.95-2-3.4-4.2-6.65-6.64-9.72-2.85-3.7-5.93-7.13-9.28-10.33-8.31-8.05-18.01-14.65-28.77-19.29-4.64-2.05-9.48-3.74-14.46-4.97-.06 0-.16-.06-.22-.06l-1.72-.58z"
fill="url(#c)"/>
<path d="M512 595.46c0 6.27-.59 12.33-1.68 18.22-.32 1.56-.65 3.12-1.02 4.7-.7 2.8-1.44 5.51-2.37 8.22-.49 1.4-.99 2.8-1.51 4.16-.54 1.4-1.12 2.76-1.73 4.16a87.873 87.873 0 0 1-6.26 11.83 96.567 96.567 0 0 1-10.48 13.94c-17.88 19.79-78.57 55.04-100.93 69.37l-49.64 30.36c-36.39 22.42-70.77 38.29-114.13 39.38-2.05.06-4.06.11-6.05.11-2.8 0-5.56-.05-8.33-.16-73.42-2.8-137.45-42.25-174.38-100.54a213.368 213.368 0 0 1-31.84-90.04c7.94 44.89 47.03 78.92 94.16 78.92 16.52 0 32.03-4.17 45.56-11.51l.33-.17 4.85-2.92 19.77-11.67 25.16-14.9v-.71l3.24-1.95 225.09-133.43 17.33-10.27 1.72.58c.05 0 .16.06.22.06 4.98 1.23 9.83 2.92 14.46 4.97 10.76 4.64 20.45 11.24 28.77 19.29a92.13 92.13 0 0 1 9.28 10.33c2.44 3.07 4.64 6.32 6.64 9.72 8.73 14.56 13.77 31.7 13.77 49.95z"
fill="#7f7f7f" opacity=".15"/>
<path d="M512 595.46c0 6.27-.59 12.33-1.68 18.22-.32 1.56-.65 3.12-1.02 4.7-.7 2.8-1.44 5.51-2.37 8.22-.49 1.4-.99 2.8-1.51 4.16-.54 1.4-1.12 2.76-1.73 4.16a87.873 87.873 0 0 1-6.26 11.83 96.567 96.567 0 0 1-10.48 13.94c-17.88 19.79-78.57 55.04-100.93 69.37l-49.64 30.36c-36.39 22.42-70.77 38.29-114.13 39.38-2.05.06-4.06.11-6.05.11-2.8 0-5.56-.05-8.33-.16-73.42-2.8-137.45-42.25-174.38-100.54a213.368 213.368 0 0 1-31.84-90.04c7.94 44.89 47.03 78.92 94.16 78.92 16.52 0 32.03-4.17 45.56-11.51l.33-.17 4.85-2.92 19.77-11.67 25.16-14.9v-.71l3.24-1.95 225.09-133.43 17.33-10.27 1.72.58c.05 0 .16.06.22.06 4.98 1.23 9.83 2.92 14.46 4.97 10.76 4.64 20.45 11.24 28.77 19.29a92.13 92.13 0 0 1 9.28 10.33c2.44 3.07 4.64 6.32 6.64 9.72 8.73 14.56 13.77 31.7 13.77 49.95z"
fill="url(#d)" opacity=".15"/>
</svg>

Before

Width:  |  Height:  |  Size: 6.9 KiB

View File

@ -9,7 +9,7 @@ identity:
en_US: Bing Search
zh_Hans: Bing 搜索
pt_BR: Bing Search
icon: icon.svg
icon: icon.png
credentials_for_provider:
subscription_key:
type: secret-input

View File

@ -1,7 +0,0 @@
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Transformed by: SVG Repo Mixer Tools -->
<svg fill="#4aa4f8" width="800px" height="800px" viewBox="0 0 1024 1024" xmlns="http://www.w3.org/2000/svg" class="icon" stroke="#4aa4f8">
<g id="SVGRepo_bgCarrier" stroke-width="0"/>

Before

Width:  |  Height:  |  Size: 1.1 KiB

View File

@ -1,8 +0,0 @@
from core.tools.provider.builtin.dingtalk.tools.dingtalk_group_bot import DingTalkGroupBotTool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class DingTalkProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
DingTalkGroupBotTool()
pass

View File

@ -1,13 +0,0 @@
identity:
author: Bowen Liang
name: dingtalk
label:
en_US: DingTalk
zh_Hans: 钉钉
pt_BR: DingTalk
description:
en_US: DingTalk group robot
zh_Hans: 钉钉群机器人
pt_BR: DingTalk group robot
icon: icon.svg
credentials_for_provider:

View File

@ -1,83 +0,0 @@
import base64
import hashlib
import hmac
import logging
import time
import urllib.parse
from typing import Any, Union
import httpx
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class DingTalkGroupBotTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
"""
invoke tools
Dingtalk custom group robot API docs:
https://open.dingtalk.com/document/orgapp/custom-robot-access
"""
content = tool_parameters.get('content')
if not content:
return self.create_text_message('Invalid parameter content')
access_token = tool_parameters.get('access_token')
if not access_token:
return self.create_text_message('Invalid parameter access_token. '
'Regarding information about security details,'
'please refer to the DingTalk docs:'
'https://open.dingtalk.com/document/robots/customize-robot-security-settings')
sign_secret = tool_parameters.get('sign_secret')
if not sign_secret:
return self.create_text_message('Invalid parameter sign_secret. '
'Regarding information about security details,'
'please refer to the DingTalk docs:'
'https://open.dingtalk.com/document/robots/customize-robot-security-settings')
msgtype = 'text'
api_url = 'https://oapi.dingtalk.com/robot/send'
headers = {
'Content-Type': 'application/json',
}
params = {
'access_token': access_token,
}
self._apply_security_mechanism(params, sign_secret)
payload = {
"msgtype": msgtype,
"text": {
"content": content,
}
}
try:
res = httpx.post(api_url, headers=headers, params=params, json=payload)
if res.is_success:
return self.create_text_message("Text message sent successfully")
else:
return self.create_text_message(
f"Failed to send the text message, status code: {res.status_code}, response: {res.text}")
except Exception as e:
return self.create_text_message("Failed to send message to group chat bot. {}".format(e))
@staticmethod
def _apply_security_mechanism(params: dict[str, Any], sign_secret: str):
try:
timestamp = str(round(time.time() * 1000))
secret_enc = sign_secret.encode('utf-8')
string_to_sign = f'{timestamp}\n{sign_secret}'
string_to_sign_enc = string_to_sign.encode('utf-8')
hmac_code = hmac.new(secret_enc, string_to_sign_enc, digestmod=hashlib.sha256).digest()
sign = urllib.parse.quote_plus(base64.b64encode(hmac_code))
params['timestamp'] = timestamp
params['sign'] = sign
except Exception:
msg = "Failed to apply security mechanism to the request."
logging.exception(msg)

View File

@ -1,52 +0,0 @@
identity:
name: dingtalk_group_bot
author: Bowen Liang
label:
en_US: Send Group Message
zh_Hans: 发送群消息
pt_BR: Send Group Message
icon: icon.svg
description:
human:
en_US: Sending a group message on DingTalk via the webhook of group bot
zh_Hans: 通过钉钉的群机器人webhook发送群消息
pt_BR: Sending a group message on DingTalk via the webhook of group bot
llm: A tool for sending messages to a chat group on DingTalk(钉钉) .
parameters:
- name: access_token
type: secret-input
required: true
label:
en_US: access token
zh_Hans: access token
pt_BR: access token
human_description:
en_US: access_token in the group robot webhook
zh_Hans: 群自定义机器人webhook中access_token字段的值
pt_BR: access_token in the group robot webhook
form: form
- name: sign_secret
type: secret-input
required: true
label:
en_US: secret key for signing
zh_Hans: 加签秘钥
pt_BR: secret key for signing
human_description:
en_US: secret key for signing
zh_Hans: 加签秘钥
pt_BR: secret key for signing
form: form
- name: content
type: string
required: true
label:
en_US: content
zh_Hans: 消息内容
pt_BR: content
human_description:
en_US: Content to sent to the group.
zh_Hans: 群消息文本
pt_BR: Content to sent to the group.
llm_description: Content of the message
form: llm

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 KiB

View File

@ -1 +0,0 @@
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" height="1024" width="1024" viewBox="0 0 1024 1024"><path d="M699.052008 894.366428l-253.855434-159.289336-115.571175 114.768472 44.746184-157.983686L887.097839 163.880236 312.470884 651.791088l-205.584597-128.995835L887.097839 163.876212 699.056031 894.364417zM348.039293 321.886051h122.859882L348.039293 374.779976V321.886051z m675.960707 0v-75.373642C1024 109.706813 917.443646 0 782.927466 0H698.090373v224.076951l-80.471512 34.642986V0H242.63167C108.113477 0-0.002012 109.706813-0.002012 246.51442V321.886051h195.143419v80.471513H0v376.276746C0 915.439906 108.115489 1024 242.63167 1024h374.985179v-145.906923l80.471512 51.270412V1024h84.837093C917.445658 1024 1024 915.439906 1024 778.63431V402.357564h-172.255308l20.717391-80.471513H1024z" fill="#0093FD"></path></svg>

Before

Width:  |  Height:  |  Size: 828 B

View File

@ -9,7 +9,7 @@ identity:
en_US: Autonavi Open Platform service toolkit.
zh_Hans: 高德开放平台服务工具包。
pt_BR: Kit de ferramentas de serviço Autonavi Open Platform.
icon: icon.svg
icon: icon.png
credentials_for_provider:
api_key:
type: secret-input

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 KiB

View File

@ -1,17 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg width="800px" height="800px" viewBox="0 0 20 20" version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">
<title>github [#142]</title>
<desc>Created with Sketch.</desc>
<defs>
</defs>
<g id="Page-1" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="Dribbble-Light-Preview" transform="translate(-140.000000, -7559.000000)" fill="#000000">
<g id="icons" transform="translate(56.000000, 160.000000)">
<path d="M94,7399 C99.523,7399 104,7403.59 104,7409.253 C104,7413.782 101.138,7417.624 97.167,7418.981 C96.66,7419.082 96.48,7418.762 96.48,7418.489 C96.48,7418.151 96.492,7417.047 96.492,7415.675 C96.492,7414.719 96.172,7414.095 95.813,7413.777 C98.04,7413.523 100.38,7412.656 100.38,7408.718 C100.38,7407.598 99.992,7406.684 99.35,7405.966 C99.454,7405.707 99.797,7404.664 99.252,7403.252 C99.252,7403.252 98.414,7402.977 96.505,7404.303 C95.706,7404.076 94.85,7403.962 94,7403.958 C93.15,7403.962 92.295,7404.076 91.497,7404.303 C89.586,7402.977 88.746,7403.252 88.746,7403.252 C88.203,7404.664 88.546,7405.707 88.649,7405.966 C88.01,7406.684 87.619,7407.598 87.619,7408.718 C87.619,7412.646 89.954,7413.526 92.175,7413.785 C91.889,7414.041 91.63,7414.493 91.54,7415.156 C90.97,7415.418 89.522,7415.871 88.63,7414.304 C88.63,7414.304 88.101,7413.319 87.097,7413.247 C87.097,7413.247 86.122,7413.234 87.029,7413.87 C87.029,7413.87 87.684,7414.185 88.139,7415.37 C88.139,7415.37 88.726,7417.2 91.508,7416.58 C91.513,7417.437 91.522,7418.245 91.522,7418.489 C91.522,7418.76 91.338,7419.077 90.839,7418.982 C86.865,7417.627 84,7413.783 84,7409.253 C84,7403.59 88.478,7399 94,7399"
id="github-[#142]">
</path>
</g>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 1.8 KiB

View File

@ -9,7 +9,7 @@ identity:
en_US: GitHub is an online software source code hosting service.
zh_Hans: GitHub是一个在线软件源代码托管服务平台。
pt_BR: GitHub é uma plataforma online para serviços de hospedagem de código fonte de software.
icon: icon.svg
icon: icon.png
credentials_for_provider:
access_tokens:
type: secret-input

View File

@ -1,7 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<svg width="800px" height="800px" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<g>
<path fill="none" d="M0 0h24v24H0z"/>
<path d="M16 17v-1h-3v-3h3v2h2v2h-1v2h-2v2h-2v-3h2v-1h1zm5 4h-4v-2h2v-2h2v4zM3 3h8v8H3V3zm2 2v4h4V5H5zm8-2h8v8h-8V3zm2 2v4h4V5h-4zM3 13h8v8H3v-8zm2 2v4h4v-4H5zm13-2h3v2h-3v-2zM6 6h2v2H6V6zm0 10h2v2H6v-2zM16 6h2v2h-2V6z"/>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 428 B

View File

@ -1,16 +0,0 @@
from typing import Any
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin.qrcode.tools.qrcode_generator import QRCodeGeneratorTool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class QRCodeProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict[str, Any]) -> None:
try:
QRCodeGeneratorTool().invoke(user_id='',
tool_parameters={
'content': 'Dify 123 😊'
})
except Exception as e:
raise ToolProviderCredentialValidationError(str(e))

View File

@ -1,12 +0,0 @@
identity:
author: Bowen Liang
name: qrcode
label:
en_US: QRCode
zh_Hans: 二维码工具
pt_BR: QRCode
description:
en_US: A tool for generating QR code (quick-response code) image.
zh_Hans: 一个二维码工具
pt_BR: A tool for generating QR code (quick-response code) image.
icon: icon.svg

View File

@ -1,69 +0,0 @@
import io
import logging
from typing import Any, Union
from qrcode.constants import ERROR_CORRECT_H, ERROR_CORRECT_L, ERROR_CORRECT_M, ERROR_CORRECT_Q
from qrcode.image.base import BaseImage
from qrcode.image.pure import PyPNGImage
from qrcode.main import QRCode
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class QRCodeGeneratorTool(BuiltinTool):
error_correction_levels = {
'L': ERROR_CORRECT_L, # <=7%
'M': ERROR_CORRECT_M, # <=15%
'Q': ERROR_CORRECT_Q, # <=25%
'H': ERROR_CORRECT_H, # <=30%
}
def _invoke(self,
user_id: str,
tool_parameters: dict[str, Any],
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
"""
invoke tools
"""
# get text content
content = tool_parameters.get('content', '')
if not content:
return self.create_text_message('Invalid parameter content')
# get border size
border = tool_parameters.get('border', 0)
if border < 0 or border > 100:
return self.create_text_message('Invalid parameter border')
# get error_correction
error_correction = tool_parameters.get('error_correction', '')
if error_correction not in self.error_correction_levels.keys():
return self.create_text_message('Invalid parameter error_correction')
try:
image = self._generate_qrcode(content, border, error_correction)
image_bytes = self._image_to_byte_array(image)
return self.create_blob_message(blob=image_bytes,
meta={'mime_type': 'image/png'},
save_as=self.VARIABLE_KEY.IMAGE.value)
except Exception:
logging.exception(f'Failed to generate QR code for content: {content}')
return self.create_text_message('Failed to generate QR code')
def _generate_qrcode(self, content: str, border: int, error_correction: str) -> BaseImage:
qr = QRCode(
image_factory=PyPNGImage,
error_correction=self.error_correction_levels.get(error_correction),
border=border,
)
qr.add_data(data=content)
qr.make(fit=True)
img = qr.make_image()
return img
@staticmethod
def _image_to_byte_array(image: BaseImage) -> bytes:
byte_stream = io.BytesIO()
image.save(byte_stream)
return byte_stream.getvalue()

View File

@ -1,76 +0,0 @@
identity:
name: qrcode_generator
author: Bowen Liang
label:
en_US: Generate QR Code
zh_Hans: 生成二维码
pt_BR: Generate QR Code
description:
human:
en_US: A tool for generating QR code image
zh_Hans: 一个用于生成二维码的工具
pt_BR: A tool for generating QR code image
llm: A tool for generating QR code image
parameters:
- name: content
type: string
required: true
label:
en_US: content text for QR code
zh_Hans: 二维码文本内容
pt_BR: content text for QR code
human_description:
en_US: content text for QR code
zh_Hans: 二维码文本内容
pt_BR: 二维码文本内容
form: llm
- name: error_correction
type: select
required: true
default: M
label:
en_US: Error Correction
zh_Hans: 容错等级
pt_BR: Error Correction
human_description:
en_US: Error Correction in L, M, Q or H, from low to high, the bigger size of generated QR code with the better error correction effect
zh_Hans: 容错等级,可设置为低、中、偏高或高,从低到高,生成的二维码越大且容错效果越好
pt_BR: Error Correction in L, M, Q or H, from low to high, the bigger size of generated QR code with the better error correction effect
options:
- value: L
label:
en_US: Low
zh_Hans:
pt_BR: Low
- value: M
label:
en_US: Medium
zh_Hans:
pt_BR: Medium
- value: Q
label:
en_US: Quartile
zh_Hans: 偏高
pt_BR: Quartile
- value: H
label:
en_US: High
zh_Hans:
pt_BR: High
form: form
- name: border
type: number
required: true
default: 2
min: 0
max: 100
label:
en_US: border size
zh_Hans: 边框粗细
pt_BR: border size
human_description:
en_US: border sizedefault to 2
zh_Hans: 边框粗细的格数默认为2
pt_BR: border sizedefault to 2
llm: border size, default to 2
form: form

View File

@ -2,11 +2,11 @@ import io
import json
from base64 import b64decode, b64encode
from copy import deepcopy
from os.path import join
from typing import Any, Union
from httpx import get, post
from PIL import Image
from yarl import URL
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter, ToolParameterOption
@ -79,7 +79,7 @@ class StableDiffusionTool(BuiltinTool):
# set model
try:
url = str(URL(base_url) / 'sdapi' / 'v1' / 'options')
url = join(base_url, 'sdapi/v1/options')
response = post(url, data=json.dumps({
'sd_model_checkpoint': model
}))
@ -153,21 +153,8 @@ class StableDiffusionTool(BuiltinTool):
if not model:
raise ToolProviderCredentialValidationError('Please input model')
api_url = str(URL(base_url) / 'sdapi' / 'v1' / 'sd-models')
response = get(url=api_url, timeout=10)
if response.status_code == 404:
# try draw a picture
self._invoke(
user_id='test',
tool_parameters={
'prompt': 'a cat',
'width': 1024,
'height': 1024,
'steps': 1,
'lora': '',
}
)
elif response.status_code != 200:
response = get(url=f'{base_url}/sdapi/v1/sd-models', timeout=120)
if response.status_code != 200:
raise ToolProviderCredentialValidationError('Failed to get models')
else:
models = [d['model_name'] for d in response.json()]
@ -178,23 +165,6 @@ class StableDiffusionTool(BuiltinTool):
except Exception as e:
raise ToolProviderCredentialValidationError(f'Failed to get models, {e}')
def get_sd_models(self) -> list[str]:
"""
get sd models
"""
try:
base_url = self.runtime.credentials.get('base_url', None)
if not base_url:
return []
api_url = str(URL(base_url) / 'sdapi' / 'v1' / 'sd-models')
response = get(url=api_url, timeout=10)
if response.status_code != 200:
return []
else:
return [d['model_name'] for d in response.json()]
except Exception as e:
return []
def img2img(self, base_url: str, lora: str, image_binary: bytes,
prompt: str, negative_prompt: str,
width: int, height: int, steps: int) \
@ -222,7 +192,7 @@ class StableDiffusionTool(BuiltinTool):
draw_options['prompt'] = prompt
try:
url = str(URL(base_url) / 'sdapi' / 'v1' / 'img2img')
url = join(base_url, 'sdapi/v1/img2img')
response = post(url, data=json.dumps(draw_options), timeout=120)
if response.status_code != 200:
return self.create_text_message('Failed to generate image')
@ -255,7 +225,7 @@ class StableDiffusionTool(BuiltinTool):
draw_options['negative_prompt'] = negative_prompt
try:
url = str(URL(base_url) / 'sdapi' / 'v1' / 'txt2img')
url = join(base_url, 'sdapi/v1/txt2img')
response = post(url, data=json.dumps(draw_options), timeout=120)
if response.status_code != 200:
return self.create_text_message('Failed to generate image')
@ -299,29 +269,5 @@ class StableDiffusionTool(BuiltinTool):
label=I18nObject(en_US=i.name, zh_Hans=i.name)
) for i in self.list_default_image_variables()])
)
if self.runtime.credentials:
try:
models = self.get_sd_models()
if len(models) != 0:
parameters.append(
ToolParameter(name='model',
label=I18nObject(en_US='Model', zh_Hans='Model'),
human_description=I18nObject(
en_US='Model of Stable Diffusion, you can check the official documentation of Stable Diffusion',
zh_Hans='Stable Diffusion 的模型,您可以查看 Stable Diffusion 的官方文档',
),
type=ToolParameter.ToolParameterType.SELECT,
form=ToolParameter.ToolParameterForm.FORM,
llm_description='Model of Stable Diffusion, you can check the official documentation of Stable Diffusion',
required=True,
default=models[0],
options=[ToolParameterOption(
value=i,
label=I18nObject(en_US=i, zh_Hans=i)
) for i in models])
)
except:
pass
return parameters

View File

@ -1 +0,0 @@
<svg width="2500" height="2500" viewBox="0 0 256 256" xmlns="http://www.w3.org/2000/svg" preserveAspectRatio="xMidYMid"><g fill="#CF272D"><path d="M127.86 222.304c-52.005 0-94.164-42.159-94.164-94.163 0-52.005 42.159-94.163 94.164-94.163 52.004 0 94.162 42.158 94.162 94.163 0 52.004-42.158 94.163-94.162 94.163zm0-222.023C57.245.281 0 57.527 0 128.141 0 198.756 57.245 256 127.86 256c70.614 0 127.859-57.244 127.859-127.859 0-70.614-57.245-127.86-127.86-127.86z"/><path d="M133.116 96.297c0-14.682 11.903-26.585 26.586-26.585 14.683 0 26.585 11.903 26.585 26.585 0 14.684-11.902 26.586-26.585 26.586-14.683 0-26.586-11.902-26.586-26.586M133.116 159.983c0-14.682 11.903-26.586 26.586-26.586 14.683 0 26.585 11.904 26.585 26.586 0 14.683-11.902 26.586-26.585 26.586-14.683 0-26.586-11.903-26.586-26.586M69.431 159.983c0-14.682 11.904-26.586 26.586-26.586 14.683 0 26.586 11.904 26.586 26.586 0 14.683-11.903 26.586-26.586 26.586-14.682 0-26.586-11.903-26.586-26.586M69.431 96.298c0-14.683 11.904-26.585 26.586-26.585 14.683 0 26.586 11.902 26.586 26.585 0 14.684-11.903 26.586-26.586 26.586-14.682 0-26.586-11.902-26.586-26.586"/></g></svg>

Before

Width:  |  Height:  |  Size: 1.1 KiB

View File

@ -1,41 +0,0 @@
from typing import Any, Union
from langchain.utilities import TwilioAPIWrapper
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class SendMessageTool(BuiltinTool):
"""
A tool for sending messages using Twilio API.
Args:
user_id (str): The ID of the user invoking the tool.
tool_parameters (Dict[str, Any]): The parameters required for sending the message.
Returns:
Union[ToolInvokeMessage, List[ToolInvokeMessage]]: The result of invoking the tool, which includes the status of the message sending operation.
"""
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
account_sid = self.runtime.credentials["account_sid"]
auth_token = self.runtime.credentials["auth_token"]
from_number = self.runtime.credentials["from_number"]
message = tool_parameters["message"]
to_number = tool_parameters["to_number"]
if to_number.startswith("whatsapp:"):
from_number = f"whatsapp: {from_number}"
twilio = TwilioAPIWrapper(
account_sid=account_sid, auth_token=auth_token, from_number=from_number
)
# Sending the message through Twilio
result = twilio.run(message, to_number)
return self.create_text_message(text="Message sent successfully.")

View File

@ -1,40 +0,0 @@
identity:
name: send_message
author: Yash Parmar
label:
en_US: SendMessage
zh_Hans: 发送消息
pt_BR: SendMessage
description:
human:
en_US: Send SMS or Twilio Messaging Channels messages.
zh_Hans: 发送SMS或Twilio消息通道消息。
pt_BR: Send SMS or Twilio Messaging Channels messages.
llm: Send SMS or Twilio Messaging Channels messages. Supports different channels including WhatsApp.
parameters:
- name: message
type: string
required: true
label:
en_US: Message
zh_Hans: 消息内容
pt_BR: Message
human_description:
en_US: The content of the message to be sent.
zh_Hans: 要发送的消息内容。
pt_BR: The content of the message to be sent.
llm_description: The content of the message to be sent.
form: llm
- name: to_number
type: string
required: true
label:
en_US: To Number
zh_Hans: 收信号码
pt_BR: Para Número
human_description:
en_US: The recipient's phone number. Prefix with 'whatsapp:' for WhatsApp messages, e.g., "whatsapp:+1234567890".
zh_Hans: 收件人的电话号码。WhatsApp消息前缀为'whatsapp:',例如,"whatsapp:+1234567890"。
pt_BR: The recipient's phone number. Prefix with 'whatsapp:' for WhatsApp messages, e.g., "whatsapp:+1234567890".
llm_description: The recipient's phone number. Prefix with 'whatsapp:' for WhatsApp messages, e.g., "whatsapp:+1234567890".
form: llm

Some files were not shown because too many files have changed in this diff Show More