Compare commits

..

1 Commits
0.6.3 ... bai

Author SHA1 Message Date
2bfcd227e8 bai 2024-03-05 10:44:39 +08:00
1766 changed files with 191466 additions and 132796 deletions

View File

@ -1,5 +1,8 @@
FROM mcr.microsoft.com/devcontainers/python:3.10
COPY . .
# [Optional] Uncomment this section to install additional OS packages.
# RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
# && apt-get -y install --no-install-recommends <your-package-list-here>

View File

@ -8,8 +8,6 @@ body:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: This is only for bug report, if you would like to ask a quesion, please head to [Discussions](https://github.com/langgenius/dify/discussions/categories/general).
required: true
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).

View File

@ -1,5 +1,8 @@
blank_issues_enabled: false
contact_links:
- name: "\U0001F4E7 Discussions"
url: https://github.com/langgenius/dify/discussions/categories/general
about: General discussions and request help from the community
- name: "\U0001F4DA Dify user documentation"
url: https://docs.dify.ai/getting-started/readme
about: Documentation for users of Dify
- name: "\U0001F4DA Dify dev documentation"
url: https://docs.dify.ai/getting-started/install-self-hosted
about: Documentation for people interested in developing and contributing for Dify

22
.github/ISSUE_TEMPLATE/help_wanted.yml vendored Normal file
View File

@ -0,0 +1,22 @@
name: "🤝 Help Wanted"
description: "Request help from the community [please use English :]"
labels:
- help-wanted
body:
- type: checkboxes
attributes:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).
required: true
- label: "Pleas do not modify this template :) and fill in all the required fields."
required: true
- type: textarea
attributes:
label: Provide a description of the help you need
placeholder: Briefly describe what you need help with.
validations:
required: true

View File

@ -12,8 +12,6 @@ Please delete options that are not relevant.
- [ ] New feature (non-breaking change which adds functionality)
- [ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)
- [ ] This change requires a documentation update, included: [Dify Document](https://github.com/langgenius/dify-docs)
- [ ] Improvement, including but not limited to code refactoring, performance optimization, and UI/UX improvement
- [ ] Dependency upgrade
# How Has This Been Tested?

View File

@ -26,34 +26,20 @@ jobs:
HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL: b
HUGGINGFACE_EMBEDDINGS_ENDPOINT_URL: c
MOCK_SWITCH: true
CODE_MAX_STRING_LENGTH: 80000
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Install APT packages
uses: awalsh128/cache-apt-pkgs-action@v1
with:
packages: ffmpeg
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: 'pip'
cache-dependency-path: |
./api/requirements.txt
./api/requirements-dev.txt
cache-dependency-path: ./api/requirements.txt
- name: Install dependencies
run: pip install -r ./api/requirements.txt -r ./api/requirements-dev.txt
run: pip install -r ./api/requirements.txt
- name: Run ModelRuntime
- name: Run pytest
run: pytest api/tests/integration_tests/model_runtime/anthropic api/tests/integration_tests/model_runtime/azure_openai api/tests/integration_tests/model_runtime/openai api/tests/integration_tests/model_runtime/chatglm api/tests/integration_tests/model_runtime/google api/tests/integration_tests/model_runtime/xinference api/tests/integration_tests/model_runtime/huggingface_hub/test_llm.py
- name: Run Tool
run: pytest api/tests/integration_tests/tools/test_all_provider.py
- name: Run Workflow
run: pytest api/tests/integration_tests/workflow

View File

@ -1,32 +1,17 @@
name: Build and Push API & Web
name: Build and Push API Image
on:
push:
branches:
- "main"
- "deploy/dev"
- 'main'
- 'deploy/dev'
release:
types: [published]
env:
DOCKERHUB_USER: ${{ secrets.DOCKERHUB_USER }}
DOCKERHUB_TOKEN: ${{ secrets.DOCKERHUB_TOKEN }}
DIFY_WEB_IMAGE_NAME: ${{ vars.DIFY_WEB_IMAGE_NAME || 'langgenius/dify-web' }}
DIFY_API_IMAGE_NAME: ${{ vars.DIFY_API_IMAGE_NAME || 'langgenius/dify-api' }}
types: [ published ]
jobs:
build-and-push:
runs-on: ubuntu-latest
if: github.event.pull_request.draft == false
strategy:
matrix:
include:
- service_name: "web"
image_name_env: "DIFY_WEB_IMAGE_NAME"
context: "web"
- service_name: "api"
image_name_env: "DIFY_API_IMAGE_NAME"
context: "api"
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
@ -37,14 +22,14 @@ jobs:
- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ env.DOCKERHUB_USER }}
password: ${{ env.DOCKERHUB_TOKEN }}
username: ${{ secrets.DOCKERHUB_USER }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env[matrix.image_name_env] }}
images: langgenius/dify-api
tags: |
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
@ -54,11 +39,22 @@ jobs:
- name: Build and push
uses: docker/build-push-action@v5
with:
context: "{{defaultContext}}:${{ matrix.context }}"
context: "{{defaultContext}}:api"
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: |
${{ secrets.SSH_SCRIPT }}

60
.github/workflows/build-web-image.yml vendored Normal file
View File

@ -0,0 +1,60 @@
name: Build and Push WEB Image
on:
push:
branches:
- 'main'
- 'deploy/dev'
release:
types: [ published ]
jobs:
build-and-push:
runs-on: ubuntu-latest
if: github.event.pull_request.draft == false
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USER }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: langgenius/dify-web
tags: |
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=raw,value=${{ github.ref_name }},enable=${{ startsWith(github.ref, 'refs/tags/') }}
- name: Build and push
uses: docker/build-push-action@v5
with:
context: "{{defaultContext}}:web"
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: |
${{ secrets.SSH_SCRIPT }}

View File

@ -1,24 +0,0 @@
name: Deploy Dev
on:
workflow_run:
workflows: ["Build and Push API & Web"]
branches:
- "deploy/dev"
types:
- completed
jobs:
deploy:
runs-on: ubuntu-latest
if: |
github.event.workflow_run.conclusion == 'success'
steps:
- name: Deploy to server
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: |
${{ vars.SSH_SCRIPT || secrets.SSH_SCRIPT }}

26
.github/workflows/tool-tests.yaml vendored Normal file
View File

@ -0,0 +1,26 @@
name: Run Tool Pytest
on:
pull_request:
branches:
- main
jobs:
test:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: 'pip'
cache-dependency-path: ./api/requirements.txt
- name: Install dependencies
run: pip install -r ./api/requirements.txt
- name: Run pytest
run: pytest ./api/tests/integration_tests/tools/test_all_provider.py

6
.gitignore vendored
View File

@ -145,14 +145,10 @@ docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
docker/volumes/etcd/*
docker/volumes/minio/*
docker/volumes/milvus/*
sdks/python-client/build
sdks/python-client/dist
sdks/python-client/dify_client.egg-info
.vscode/*
!.vscode/launch.json
pyrightconfig.json
!.vscode/launch.json

View File

@ -36,7 +36,7 @@ In terms of licensing, please take a minute to read our short [License and Contr
| Feature Type | Priority |
| ------------------------------------------------------------ | --------------- |
| High-Priority Features as being labeled by a team member | High Priority |
| Popular feature requests from our [community feedback board](https://github.com/langgenius/dify/discussions/categories/feedbacks) | Medium Priority |
| Popular feature requests from our [community feedback board](https://feedback.dify.ai/) | Medium Priority |
| Non-core features and minor enhancements | Low Priority |
| Valuable but not immediate | Future-Feature |
@ -155,4 +155,4 @@ And that's it! Once your PR is merged, you will be featured as a contributor in
## Getting Help
If you ever get stuck or got a burning question while contributing, simply shoot your queries our way via the related GitHub issue, or hop onto our [Discord](https://discord.gg/8Tpq4AcN9c) for a quick chat.
If you ever get stuck or got a burning question while contributing, simply shoot your queries our way via the related GitHub issue, or hop onto our [Discord](https://discord.gg/AhzKf7dNgk) for a quick chat.

View File

@ -34,7 +34,7 @@
| Feature Type | Priority |
| ------------------------------------------------------------ | --------------- |
| High-Priority Features as being labeled by a team member | High Priority |
| Popular feature requests from our [community feedback board](https://github.com/langgenius/dify/discussions/categories/feedbacks) | Medium Priority |
| Popular feature requests from our [community feedback board](https://feedback.dify.ai/) | Medium Priority |
| Non-core features and minor enhancements | Low Priority |
| Valuable but not immediate | Future-Feature |
@ -152,4 +152,4 @@ Dify的后端使用Python编写使用[Flask](https://flask.palletsprojects.co
## 获取帮助
如果你在贡献过程中遇到困难或者有任何问题,可以通过相关的 GitHub 问题提出你的疑问,或者加入我们的 [Discord](https://discord.gg/8Tpq4AcN9c) 进行快速交流。
如果你在贡献过程中遇到困难或者有任何问题,可以通过相关的 GitHub 问题提出你的疑问,或者加入我们的 [Discord](https://discord.gg/AhzKf7dNgk) 进行快速交流。

View File

@ -1,43 +0,0 @@
# Variables
DOCKER_REGISTRY=langgenius
WEB_IMAGE=$(DOCKER_REGISTRY)/dify-web
API_IMAGE=$(DOCKER_REGISTRY)/dify-api
VERSION=latest
# Build Docker images
build-web:
@echo "Building web Docker image: $(WEB_IMAGE):$(VERSION)..."
docker build -t $(WEB_IMAGE):$(VERSION) ./web
@echo "Web Docker image built successfully: $(WEB_IMAGE):$(VERSION)"
build-api:
@echo "Building API Docker image: $(API_IMAGE):$(VERSION)..."
docker build -t $(API_IMAGE):$(VERSION) ./api
@echo "API Docker image built successfully: $(API_IMAGE):$(VERSION)"
# Push Docker images
push-web:
@echo "Pushing web Docker image: $(WEB_IMAGE):$(VERSION)..."
docker push $(WEB_IMAGE):$(VERSION)
@echo "Web Docker image pushed successfully: $(WEB_IMAGE):$(VERSION)"
push-api:
@echo "Pushing API Docker image: $(API_IMAGE):$(VERSION)..."
docker push $(API_IMAGE):$(VERSION)
@echo "API Docker image pushed successfully: $(API_IMAGE):$(VERSION)"
# Build all images
build-all: build-web build-api
# Push all images
push-all: push-web push-api
build-push-api: build-api push-api
build-push-web: build-web push-web
# Build and push all images
build-push-all: build-all push-all
@echo "All Docker images have been built and pushed."
# Phony targets
.PHONY: build-web build-api push-web push-api build-all push-all build-push-all

275
README.md
View File

@ -1,176 +1,103 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
[![](./images/describe.png)](https://dify.ai)
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">Self-hosting</a> ·
<a href="https://docs.dify.ai">Documentation</a> ·
<a href="https://cal.com/guchenhe/60-min-meeting">Enterprise inquiry</a>
<a href="./README.md">English</a> |
<a href="./README_CN.md">简体中文</a> |
<a href="./README_JA.md">日本語</a> |
<a href="./README_ES.md">Español</a> |
<a href="./README_KL.md">Klingon</a> |
<a href="./README_FR.md">Français</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<img alt="Static Badge" src="https://img.shields.io/badge/AI-Dify?logo=AI&logoColor=%20%23f5f5f5&label=Dify&labelColor=%20%23155EEF&color=%23EAECF0"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord"
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
<img src="https://img.shields.io/twitter/follow/dify_ai?style=social&logo=X"
alt="follow on Twitter"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="Commits last month" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_CN.md"><img alt="Commits last month" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="Commits last month" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="Commits last month" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_KL.md"><img alt="Commits last month" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_FR.md"><img alt="Commits last month" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="https://discord.com/events/1082486657678311454/1211724120996188220" target="_blank">
Dify.AI Upcoming Meetup Event [👉 Click to Join the Event Here 👈]
</a>
<ul align="center" style="text-decoration: none; list-style: none;">
<li> US EST: 09:00 (9:00 AM)</li>
<li> CET: 15:00 (3:00 PM)</li>
<li> CST: 22:00 (10:00 PM)</li>
</ul>
</p>
#
<p align="center">
<a href="https://trendshift.io/repositories/2152" target="_blank"><img src="https://trendshift.io/api/badge/repositories/2152" alt="langgenius%2Fdify | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
Dify is an open-source LLM app development platform. Its intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production. Here's a list of the core features:
</br> </br>
**1. Workflow**:
Build and test powerful AI workflows on a visual canvas, leveraging all the following features and beyond.
**Dify** is an LLM application development platform that has helped built over **100,000** applications. It integrates BaaS and LLMOps, covering the essential tech stack for building generative AI-native applications, including a built-in RAG engine. Dify allows you to **deploy your own version of Assistants API and GPTs, based on any LLMs.**
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
![](./images/demo.png)
**2. Comprehensive model support**:
Seamless integration with hundreds of proprietary / open-source LLMs from dozens of inference providers and self-hosted solutions, covering GPT, Mistral, Llama2, and any OpenAI API-compatible models. A full list of supported model providers can be found [here](https://docs.dify.ai/getting-started/readme/model-providers).
## Using our Cloud Services
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
You can try out [Dify.AI Cloud](https://dify.ai) now. It provides all the capabilities of the self-deployed version, and includes 200 free requests to OpenAI GPT-3.5.
## Dify vs. LangChain vs. Assistants API
**3. Prompt IDE**:
Intuitive interface for crafting prompts, comparing model performance, and adding additional features such as text-to-speech to a chat-based app.
**4. RAG Pipeline**:
Extensive RAG capabilities that cover everything from document ingestion to retrieval, with out-of-box support for text extraction from PDFs, PPTs, and other common document formats.
**5. Agent capabilities**:
You can define agents based on LLM Function Calling or ReAct, and add pre-built or custom tools for the agent. Dify provides 50+ built-in tools for AI agents, such as Google Search, DELL·E, Stable Diffusion and WolframAlpha.
**6. LLMOps**:
Monitor and analyze application logs and performance over time. You could continuously improve prompts, datasets, and models based on production data and annotations.
**7. Backend-as-a-Service**:
All of Dify's offerings come with corresponding APIs, so you could effortlessly integrate Dify into your own business logic.
## Feature comparison
<table style="width: 100%;">
<tr>
<th align="center">Feature</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Programming Approach</td>
<td align="center">API + App-oriented</td>
<td align="center">Python Code</td>
<td align="center">App-oriented</td>
<td align="center">API-oriented</td>
</tr>
<tr>
<td align="center">Supported LLMs</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">OpenAI-only</td>
</tr>
<tr>
<td align="center">RAG Engine</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Workflow</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Observability</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Enterprise Feature (SSO/Access control)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Local Deployment</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Using Dify
- **Cloud </br>**
We host a [Dify Cloud](https://dify.ai) service for anyone to try with zero setup. It provides all the capabilities of the self-deployed version, and includes 200 free GPT-4 calls in the sandbox plan.
- **Self-hosting Dify Community Edition</br>**
Quickly get Dify running in your environment with this [starter guide](#quick-start).
Use our [documentation](https://docs.dify.ai) for further references and more in-depth instructions.
- **Dify for enterprise / organizations</br>**
We provide additional enterprise-centric features. [Schedule a meeting with us](https://cal.com/guchenhe/30min) or [send us an email](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry) to discuss enterprise needs. </br>
> For startups and small businesses using AWS, check out [Dify Premium on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) and deploy it to your own AWS VPC with one-click. It's an affordable AMI offering with the option to create apps with custom logo and branding.
## Staying ahead
Star Dify on GitHub and be instantly notified of new releases.
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
| Feature | Dify.AI | Assistants API | LangChain |
|---------|---------|----------------|-----------|
| **Programming Approach** | API-oriented | API-oriented | Python Code-oriented |
| **Ecosystem Strategy** | Open Source | Close Source | Open Source |
| **RAG Engine** | Supported | Supported | Not Supported |
| **Prompt IDE** | Included | Included | None |
| **Supported LLMs** | Rich Variety | OpenAI-only | Rich Variety |
| **Local Deployment** | Supported | Not Supported | Not Applicable |
## Quick start
> Before installing Dify, make sure your machine meets the following minimum system requirements:
>
>- CPU >= 2 Core
>- RAM >= 4GB
## Features
</br>
![](./images/models.png)
**1. LLM Support**: Integration with OpenAI's GPT family of models, or the open-source Llama2 family models. In fact, Dify supports mainstream commercial models and open-source models (locally deployed or based on MaaS).
**2. Prompt IDE**: Visual orchestration of applications and services based on LLMs with your team.
**3. RAG Engine**: Includes various RAG capabilities based on full-text indexing or vector database embeddings, allowing direct upload of PDFs, TXTs, and other text formats.
**4. AI Agent**: Based on Function Calling and ReAct, the Agent inference framework allows users to customize tools, what you see is what you get. Dify provides more than a dozen built-in tool calling capabilities, such as Google Search, DELL·E, Stable Diffusion, WolframAlpha, etc.
**5. Continuous Operations**: Monitor and analyze application logs and performance, continuously improving Prompts, datasets, or models using production data.
## Before You Start
**Star us on GitHub, and be instantly notified for new releases!**
![star-us](https://github.com/langgenius/dify/assets/100913391/95f37259-7370-4456-a9f0-0bc01ef8642f)
- [Website](https://dify.ai)
- [Docs](https://docs.dify.ai)
- [Deployment Docs](https://docs.dify.ai/getting-started/install-self-hosted)
- [FAQ](https://docs.dify.ai/getting-started/faq)
## Install the Community Edition
### System Requirements
Before installing Dify, make sure your machine meets the following minimum system requirements:
- CPU >= 2 Core
- RAM >= 4GB
### Quick Start
The easiest way to start the Dify server is to run our [docker-compose.yml](docker/docker-compose.yaml) file. Before running the installation command, make sure that [Docker](https://docs.docker.com/get-docker/) and [Docker Compose](https://docs.docker.com/compose/install/) are installed on your machine:
@ -179,65 +106,57 @@ cd docker
docker compose up -d
```
After running, you can access the Dify dashboard in your browser at [http://localhost/install](http://localhost/install) and start the initialization process.
After running, you can access the Dify dashboard in your browser at [http://localhost/install](http://localhost/install) and start the initialization installation process.
> If you'd like to contribute to Dify or do additional development, refer to our [guide to deploying from source code](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
### Helm Chart
## Next steps
Big thanks to @BorisPolonsky for providing us with a [Helm Chart](https://helm.sh/) version, which allows Dify to be deployed on Kubernetes.
You can go to https://github.com/BorisPolonsky/dify-helm for deployment information.
If you need to customize the configuration, please refer to the comments in our [docker-compose.yml](docker/docker-compose.yaml) file and manually set the environment configuration. After making the changes, please run `docker-compose up -d` again. You can see the full list of environment variables [here](https://docs.dify.ai/getting-started/install-self-hosted/environments).
### Configuration
If you'd like to configure a highly-available setup, there are community-contributed [Helm Charts](https://helm.sh/) which allow Dify to be deployed on Kubernetes.
If you need to customize the configuration, please refer to the comments in our [docker-compose.yml](docker/docker-compose.yaml) file and manually set the environment configuration. After making the changes, please run `docker-compose up -d` again. You can see the full list of environment variables in our [docs](https://docs.dify.ai/getting-started/install-self-hosted/environments).
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Contributing
For those who'd like to contribute code, see our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
At the same time, please consider supporting Dify by sharing it on social media and at events and conferences.
> We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/8Tpq4AcN9c).
**Contributors**
### Contributors
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Community & contact
### Translations
* [Github Discussion](https://github.com/langgenius/dify/discussions). Best for: sharing feedback and asking questions.
We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README_EN.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/AhzKf7dNgk).
## Community & Support
* [Canny](https://feedback.dify.ai/). Best for: sharing feedback and checking out our feature roadmap.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Email](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). Best for: questions you have about using Dify.AI.
* [Email Support](mailto:hello@dify.ai?subject=[GitHub]Questions%20About%20Dify). Best for: questions you have about using Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
* [Twitter](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
* [Business Contact](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry). Best for: business inquiries of licensing Dify.AI for commercial use.
Or, schedule a meeting directly with a team member:
### Direct Meetings
<table>
<tr>
<th>Point of Contact</th>
<th>Purpose</th>
</tr>
<tr>
<td><a href='https://cal.com/guchenhe/15min' target='_blank'><img class="schedule-button" src='https://github.com/langgenius/dify/assets/13230914/9ebcd111-1205-4d71-83d5-948d70b809f5' alt='Git-Hub-README-Button-3x' style="width: 180px; height: auto; object-fit: contain;"/></a></td>
<td>Business enquiries & product feedback</td>
</tr>
<tr>
<td><a href='https://cal.com/pinkbanana' target='_blank'><img class="schedule-button" src='https://github.com/langgenius/dify/assets/13230914/d1edd00a-d7e4-4513-be6c-e57038e143fd' alt='Git-Hub-README-Button-2x' style="width: 180px; height: auto; object-fit: contain;"/></a></td>
<td>Contributions, issues & feature requests</td>
</tr>
</table>
**Help us make Dify better. Reach out directly to us**.
## Star history
| Point of Contact | Purpose |
| :----------------------------------------------------------: | :----------------------------------------------------------: |
| <a href='https://cal.com/guchenhe/15min' target='_blank'><img src='https://i.postimg.cc/fWBqSmjP/Git-Hub-README-Button-3x.png' border='0' alt='Git-Hub-README-Button-3x' height="60" width="214"/></a> | Product design feedback, user experience discussions, feature planning and roadmaps. |
| <a href='https://cal.com/pinkbanana' target='_blank'><img src='https://i.postimg.cc/LsRTh87D/Git-Hub-README-Button-2x.png' border='0' alt='Git-Hub-README-Button-2x' height="60" width="225"/></a> | Technical support, issues, or feature requests |
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Security disclosure
## Security Disclosure
To protect your privacy, please avoid posting security issues on GitHub. Instead, send your questions to security@dify.ai and we will provide you with a more detailed answer.

View File

@ -1,167 +1,78 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
<div align="center">
<a href="https://cloud.dify.ai">Dify 云服务</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">自托管</a> ·
<a href="https://docs.dify.ai">文档</a> ·
<a href="https://cal.com/guchenhe/dify-demo">预约演示</a>
</div>
[![](./images/describe.png)](https://dify.ai)
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_CN.md">简体中文</a> |
<a href="./README_JA.md">日本語</a> |
<a href="./README_ES.md">Español</a> |
<a href="./README_KL.md">Klingon</a> |
<a href="./README_FR.md">Français</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<img alt="Static Badge" src="https://img.shields.io/badge/AI-Dify?logo=AI&logoColor=%20%23f5f5f5&label=Dify&labelColor=%20%23155EEF&color=%23EAECF0"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord"
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
<img src="https://img.shields.io/twitter/follow/dify_ai?style=social&logo=X"
alt="follow on Twitter"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<div align="center">
<a href="./README.md"><img alt="上个月的提交次数" src="https://img.shields.io/badge/英文-d9d9d9"></a>
<a href="./README_CN.md"><img alt="上个月的提交次数" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="上个月的提交次数" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="上个月的提交次数" src="https://img.shields.io/badge/西班牙语-d9d9d9"></a>
<a href="./README_KL.md"><img alt="上个月的提交次数" src="https://img.shields.io/badge/法语-d9d9d9"></a>
<a href="./README_FR.md"><img alt="上个月的提交次数" src="https://img.shields.io/badge/克林贡语-d9d9d9"></a>
</div>
<p align="center">
<a href="https://mp.weixin.qq.com/s/TnyfIuH-tPi9o1KNjwVArw" target="_blank">
Dify 发布 AI Agent 能力:基于不同的大型语言模型构建 GPTs 和 Assistants
</a>
</p>
Dify 是一个 LLM 应用开发平台,已经有超过 10 万个应用基于 Dify.AI 构建。它融合了 Backend as Service 和 LLMOps 的理念,涵盖了构建生成式 AI 原生应用所需的核心技术栈,包括一个内置 RAG 引擎。使用 Dify你可以基于任何模型自部署类似 Assistants API 和 GPTs 的能力。
![](./images/demo.png)
## 使用云端服务
使用 [Dify.AI Cloud](https://dify.ai) 提供开源版本的所有功能,并包含 200 次 GPT 试用额度。
## 为什么选择 Dify
Dify 具有模型中立性,相较 LangChain 等硬编码开发库 Dify 是一个完整的、工程化的技术栈,而相较于 OpenAI 的 Assistants API 你可以完全将服务部署在本地。
| 功能 | Dify.AI | Assistants API | LangChain |
| --- | --- | --- | --- |
| 编程方式 | 面向 API | 面向 API | 面向 Python 代码 |
| 生态策略 | 开源 | 封闭且商用 | 开源 |
| RAG 引擎 | 支持 | 支持 | 不支持 |
| Prompt IDE | 包含 | 包含 | 没有 |
| 支持的 LLMs | 丰富 | 仅 GPT | 丰富 |
| 本地部署 | 支持 | 不支持 | 不适用 |
#
## 特点
<div align="center">
<a href="https://trendshift.io/repositories/2152" target="_blank"><img src="https://trendshift.io/api/badge/repositories/2152" alt="langgenius%2Fdify | 趋势转变" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
![](./images/models.png)
Dify 是一个开源的LLM应用开发平台。其直观的界面结合了AI工作流程、RAG管道、代理功能、模型管理、可观察性功能等让您可以快速从原型到生产。以下是其核心功能列表
</br> </br>
**1. LLM支持**:与 OpenAI 的 GPT 系列模型集成,或者与开源的 Llama2 系列模型集成。事实上Dify支持主流的商业模型和开源模型(本地部署或基于 MaaS)。
**1. 工作流**:
在视觉画布上构建和测试功能强大的AI工作流程利用以下所有功能以及更多功能。
**2. Prompt IDE**:和团队一起在 Dify 协作,通过可视化的 Prompt 和应用编排工具开发 AI 应用。 支持无缝切换多种大型语言模型。
**3. RAG引擎**:包括各种基于全文索引或向量数据库嵌入的 RAG 能力,允许直接上传 PDF、TXT 等各种文本格式。
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
**4. AI Agent**:基于 Function Calling 和 ReAct 的 Agent 推理框架允许用户自定义工具所见即所得。Dify 提供了十多种内置工具调用能力如谷歌搜索、DELL·E、Stable Diffusion、WolframAlpha 等。
**5. 持续运营**:监控和分析应用日志和性能,使用生产数据持续改进 Prompt、数据集或模型。
## 在开始之前
**2. 全面的模型支持**:
与数百种专有/开源LLMs以及数十种推理提供商和自托管解决方案无缝集成涵盖GPT、Mistral、Llama2以及任何与OpenAI API兼容的模型。完整的支持模型提供商列表可在[此处](https://docs.dify.ai/getting-started/readme/model-providers)找到。
**关注我们,您将立即收到 GitHub 上所有新发布版本的通知!**
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
![star-us](https://github.com/langgenius/dify/assets/100913391/95f37259-7370-4456-a9f0-0bc01ef8642f)
**3. Prompt IDE**:
用于制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能(如文本转语音)的直观界面。
**4. RAG Pipeline**:
广泛的RAG功能涵盖从文档摄入到检索的所有内容支持从PDF、PPT和其他常见文档格式中提取文本的开箱即用的支持。
**5. Agent 智能体**:
您可以基于LLM函数调用或ReAct定义代理并为代理添加预构建或自定义工具。Dify为AI代理提供了50多种内置工具如谷歌搜索、DELL·E、稳定扩散和WolframAlpha等。
**6. LLMOps**:
随时间监视和分析应用程序日志和性能。您可以根据生产数据和注释持续改进提示、数据集和模型。
**7. 后端即服务**:
所有Dify的功能都带有相应的API因此您可以轻松地将Dify集成到自己的业务逻辑中。
## 功能比较
<table style="width: 100%;">
<tr>
<th align="center">功能</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI助理API</th>
</tr>
<tr>
<td align="center">编程方法</td>
<td align="center">API + 应用程序导向</td>
<td align="center">Python代码</td>
<td align="center">应用程序导向</td>
<td align="center">API导向</td>
</tr>
<tr>
<td align="center">支持的LLMs</td>
<td align="center">丰富多样</td>
<td align="center">丰富多样</td>
<td align="center">丰富多样</td>
<td align="center">仅限OpenAI</td>
</tr>
<tr>
<td align="center">RAG引擎</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">代理</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">工作流程</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">可观察性</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">企业功能SSO/访问控制)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">本地部署</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## 使用 Dify
- **云 </br>**
我们提供[ Dify 云服务](https://dify.ai),任何人都可以零设置尝试。它提供了自部署版本的所有功能,并在沙盒计划中包含 200 次免费的 GPT-4 调用。
- **自托管 Dify 社区版</br>**
使用这个[入门指南](#quick-start)快速在您的环境中运行 Dify。
使用我们的[文档](https://docs.dify.ai)进行进一步的参考和更深入的说明。
- **面向企业/组织的 Dify</br>**
我们提供额外的面向企业的功能。[与我们安排会议](https://cal.com/guchenhe/30min)或[给我们发送电子邮件](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry)讨论企业需求。 </br>
> 对于使用 AWS 的初创公司和中小型企业,请查看 [AWS Marketplace 上的 Dify 高级版](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6),并使用一键部署到您自己的 AWS VPC。它是一个价格实惠的 AMI 产品,提供了使用自定义徽标和品牌创建应用程序的选项。
## 保持领先
在 GitHub 上给 Dify Star并立即收到新版本的通知。
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
- [网站](https://dify.ai)
- [文档](https://docs.dify.ai)
- [部署文档](https://docs.dify.ai/getting-started/install-self-hosted)
- [常见问题](https://docs.dify.ai/getting-started/faq)
## 安装社区版
@ -183,12 +94,10 @@ docker compose up -d
运行后,可以在浏览器上访问 [http://localhost/install](http://localhost/install) 进入 Dify 控制台并开始初始化安装操作。
#### 使用 Helm Chart 部署
### Helm Chart
使用 [Helm Chart](https://helm.sh/) 版本,可以在 Kubernetes 上部署 Dify。
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
非常感谢 @BorisPolonsky 为我们提供了一个 [Helm Chart](https://helm.sh/) 版本,可以在 Kubernetes 上部署 Dify。
您可以前往 https://github.com/BorisPolonsky/dify-helm 来获取部署信息。
### 配置
@ -199,24 +108,10 @@ docker compose up -d
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Contributing
对于那些想要贡献代码的人,请参阅我们的[贡献指南](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md)。
同时请考虑通过社交媒体、活动和会议来支持Dify的分享。
> 我们正在寻找贡献者来帮助将Dify翻译成除了中文和英文之外的其他语言。如果您有兴趣帮助请参阅我们的[i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md)获取更多信息,并在我们的[Discord社区服务器](https://discord.gg/8Tpq4AcN9c)的`global-users`频道中留言。
**Contributors**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## 社区与支持
我们欢迎您为 Dify 做出贡献,以帮助改善 Dify。包括提交代码、问题、新想法或分享您基于 Dify 创建的有趣且有用的 AI 应用程序。同时,我们也欢迎您在不同的活动、会议和社交媒体上分享 Dify。
- [Github Discussion](https://github.com/langgenius/dify/discussions). 👉:分享您的应用程序并与社区交流。
- [GitHub Issues](https://github.com/langgenius/dify/issues)。👉:使用 Dify.AI 时遇到的错误和问题,请参阅[贡献指南](CONTRIBUTING.md)。
- [电子邮件支持](mailto:hello@dify.ai?subject=[GitHub]Questions%20About%20Dify)。👉:关于使用 Dify.AI 的问题。
- [Discord](https://discord.gg/FngNHpbcY7)。👉:分享您的应用程序并与社区交流。

View File

@ -1,245 +1,119 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
[![](./images/describe.png)](https://dify.ai)
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">Auto-alojamiento</a> ·
<a href="https://docs.dify.ai">Documentación</a> ·
<a href="https://cal.com/guchenhe/dify-demo">Programar demostración</a>
<a href="./README.md">English</a> |
<a href="./README_CN.md">简体中文</a> |
<a href="./README_JA.md">日本語</a> |
<a href="./README_ES.md">Español</a> |
<a href="./README_KL.md">Klingon</a> |
<a href="./README_FR.md">Français</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Insignia Estática" src="https://img.shields.io/badge/Producto-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Insignia Estática" src="https://img.shields.io/badge/gratis-precios?logo=gratis&color=%20%23155EEF&label=precios&labelColor=%20%23528bff"></a>
<img alt="Static Badge" src="https://img.shields.io/badge/AI-Dify?logo=AI&logoColor=%20%23f5f5f5&label=Dify&labelColor=%20%23155EEF&color=%23EAECF0"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat en Discord"></a>
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord"
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="seguir en Twitter"></a>
<img src="https://img.shields.io/twitter/follow/dify_ai?style=social&logo=X"
alt="follow on Twitter"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Descargas de Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Actividad de Commits el último mes" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues cerrados" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20cerrados&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Publicaciones de discusión" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="Actividad de Commits el último mes" src="https://img.shields.io/badge/Inglés-d9d9d9"></a>
<a href="./README_CN.md"><img alt="Actividad de Commits el último mes" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="Actividad de Commits el último mes" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="Actividad de Commits el último mes" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_KL.md"><img alt="Actividad de Commits el último mes" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_FR.md"><img alt="Actividad de Commits el último mes" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
#
**Dify** es una plataforma de desarrollo de aplicaciones para modelos de lenguaje de gran tamaño (LLM) que ya ha visto la creación de más de **100,000** aplicaciones basadas en Dify.AI. Integra los conceptos de Backend como Servicio y LLMOps, cubriendo el conjunto de tecnologías esenciales requerido para construir aplicaciones nativas de inteligencia artificial generativa, incluyendo un motor RAG incorporado. Con Dify, **puedes auto-desplegar capacidades similares a las de Assistants API y GPTs basadas en cualquier LLM.**
<p align="center">
<a href="https://trendshift.io/repositories/2152" target="_blank"><img src="https://trendshift.io/api/badge/repositories/2152" alt="langgenius%2Fdify | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
Dify es una plataforma de desarrollo de aplicaciones de LLM de código abierto. Su interfaz intuitiva combina flujo de trabajo de IA, pipeline RAG, capacidades de agente, gestión de modelos, características de observabilidad y más, lo que le permite pasar rápidamente de un prototipo a producción. Aquí hay una lista de las características principales:
</br> </br>
![](./images/demo.png)
**1. Flujo de trabajo**:
Construye y prueba potentes flujos de trabajo de IA en un lienzo visual, aprovechando todas las siguientes características y más.
## Utilizar Servicios en la Nube
Usar [Dify.AI Cloud](https://dify.ai) proporciona todas las capacidades de la versión de código abierto, e incluye un complemento de 200 créditos de prueba para GPT.
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
## Por qué Dify
Dify se caracteriza por su neutralidad de modelo y es un conjunto tecnológico completo e ingenierizado, en comparación con las bibliotecas de desarrollo codificadas como LangChain. A diferencia de la API de Assistants de OpenAI, Dify permite el despliegue local completo de los servicios.
| Característica | Dify.AI | API de Assistants | LangChain |
|----------------|---------|------------------|-----------|
| **Enfoque de Programación** | Orientado a API | Orientado a API | Orientado a Código en Python |
| **Estrategia del Ecosistema** | Código Abierto | Cerrado y Comercial | Código Abierto |
| **Motor RAG** | Soportado | Soportado | No Soportado |
| **IDE de Prompts** | Incluido | Incluido | Ninguno |
| **LLMs Soportados** | Gran Variedad | Solo GPT | Gran Variedad |
| **Despliegue Local** | Soportado | No Soportado | No Aplicable |
**2. Soporte de modelos completo**:
Integración perfecta con cientos de LLMs propietarios / de código abierto de docenas de proveedores de inferencia y soluciones auto-alojadas, que cubren GPT, Mistral, Llama2 y cualquier modelo compatible con la API de OpenAI. Se puede encontrar una lista completa de proveedores de modelos admitidos [aquí](https://docs.dify.ai/getting-started/readme/model-providers).
## Características
![proveedores-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
![](./images/models.png)
**1. Soporte LLM**: Integración con la familia de modelos GPT de OpenAI, o los modelos de la familia Llama2 de código abierto. De hecho, Dify soporta modelos comerciales convencionales y modelos de código abierto (desplegados localmente o basados en MaaS).
**3. IDE de prompt**:
Interfaz intuitiva para crear prompts, comparar el rendimiento del modelo y agregar características adicionales como texto a voz a una aplicación basada en chat.
**2. IDE de Prompts**: Orquestación visual de aplicaciones y servicios basados en LLMs con tu equipo.
**4. Pipeline RAG**:
Amplias capacidades de RAG que cubren todo, desde la ingestión de documentos hasta la recuperación, con soporte listo para usar para la extracción de texto de PDF, PPT y otros formatos de documento comunes.
**3. Motor RAG**: Incluye varias capacidades RAG basadas en indexación de texto completo o incrustaciones de base de datos vectoriales, permitiendo la carga directa de PDFs, TXTs y otros formatos de texto.
**5. Capacidades de agente**:
Puedes definir agent
**4. Agente de IA**: Basado en la llamada de funciones y ReAct, el marco de inferencia del Agente permite a los usuarios personalizar las herramientas, lo que ves es lo que obtienes. Dify proporciona más de una docena de capacidades de llamada de herramientas incorporadas, como Búsqueda de Google, DELL·E, Difusión Estable, WolframAlpha, etc.
es basados en LLM Function Calling o ReAct, y agregar herramientas preconstruidas o personalizadas para el agente. Dify proporciona más de 50 herramientas integradas para agentes de IA, como Búsqueda de Google, DELL·E, Difusión Estable y WolframAlpha.
**5. Operaciones Continuas**: Monitorear y analizar registros de aplicaciones y rendimiento, mejorando continuamente Prompts, conjuntos de datos o modelos usando datos de producción.
**6. LLMOps**:
Supervisa y analiza registros de aplicaciones y rendimiento a lo largo del tiempo. Podrías mejorar continuamente prompts, conjuntos de datos y modelos basados en datos de producción y anotaciones.
## Antes de Empezar
**7. Backend como servicio**:
Todas las ofertas de Dify vienen con APIs correspondientes, por lo que podrías integrar Dify sin esfuerzo en tu propia lógica empresarial.
**¡Danos una estrella, y recibirás notificaciones instantáneas de todos los nuevos lanzamientos en GitHub!**
![star-us](https://github.com/langgenius/dify/assets/100913391/95f37259-7370-4456-a9f0-0bc01ef8642f)
## Comparación de características
<table style="width: 100%;">
<tr>
<th align="center">Característica</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">API de Asistentes de OpenAI</th>
</tr>
<tr>
<td align="center">Enfoque de programación</td>
<td align="center">API + orientado a la aplicación</td>
<td align="center">Código Python</td>
<td align="center">Orientado a la aplicación</td>
<td align="center">Orientado a la API</td>
</tr>
<tr>
<td align="center">LLMs admitidos</td>
<td align="center">Gran variedad</td>
<td align="center">Gran variedad</td>
<td align="center">Gran variedad</td>
<td align="center">Solo OpenAI</td>
</tr>
<tr>
<td align="center">Motor RAG</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agente</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Flujo de trabajo</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Observabilidad</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Característica empresarial (SSO/Control de acceso)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Implementación local</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
- [Sitio web](https://dify.ai)
- [Documentación](https://docs.dify.ai)
- [Documentación de Implementación](https://docs.dify.ai/getting-started/install-self-hosted)
- [Preguntas Frecuentes](https://docs.dify.ai/getting-started/faq)
## Usando Dify
## Instalar la Edición Comunitaria
- **Nube </br>**
Hospedamos un servicio [Dify Cloud](https://dify.ai) para que cualquiera lo pruebe sin configuración. Proporciona todas las capacidades de la versión autoimplementada e incluye 200 llamadas gratuitas a GPT-4 en el plan sandbox.
### Requisitos del Sistema
- **Auto-alojamiento de Dify Community Edition</br>**
Pon rápidamente Dify en funcionamiento en tu entorno con esta [guía de inicio rápido](#quick-start).
Usa nuestra [documentación](https://docs.dify.ai) para más referencias e instrucciones más detalladas.
Antes de instalar Dify, asegúrate de que tu máquina cumpla con los siguientes requisitos mínimos del sistema:
- **Dify para Empresas / Organizaciones</br>**
Proporcionamos características adicionales centradas en la empresa. [Programa una reunión con nosotros](https://cal.com/guchenhe/30min) o [envíanos un correo electrónico](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry) para discutir las necesidades empresariales. </br>
> Para startups y pequeñas empresas que utilizan AWS, echa un vistazo a [Dify Premium en AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) e impleméntalo en tu propio VPC de AWS con un clic. Es una AMI asequible que ofrece la opción de crear aplicaciones con logotipo y marca personalizados.
- CPU >= 2 núcleos
- RAM >= 4GB
### Inicio Rápido
## Manteniéndote al tanto
Dale estrella a Dify en GitHub y serás notificado instantáneamente de las nuevas versiones.
![danos estrella](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Inicio Rápido
> Antes de instalar Dify, asegúrate de que tu máquina cumpla con los siguientes requisitos mínimos del sistema:
>
>- CPU >= 2 núcleos
>- RAM >= 4GB
</br>
La forma más fácil de iniciar el servidor de Dify es ejecutar nuestro archivo [docker-compose.yml](docker/docker-compose.yaml). Antes de ejecutar el comando de instalación, asegúrate de que [Docker](https://docs.docker.com/get-docker/) y [Docker Compose](https://docs.docker.com/compose/install/) estén instalados en tu máquina:
La forma más sencilla de iniciar el servidor de Dify es ejecutar nuestro archivo [docker-compose.yml](docker/docker-compose.yaml). Antes de ejecutar el comando de instalación, asegúrate de que [Docker](https://docs.docker.com/get-docker/) y [Docker Compose](https://docs.docker.com/compose/install/) estén instalados en tu máquina:
```bash
cd docker
docker compose up -d
```
Después de ejecutarlo, puedes acceder al panel de control de Dify en tu navegador en [http://localhost/install](http://localhost/install) y comenzar el proceso de inicialización.
Después de ejecutarlo, puedes acceder al panel de control de Dify en tu navegador en [http://localhost/install](http://localhost/install) y comenzar el proceso de instalación de inicialización.
> Si deseas contribuir a Dify o realizar desarrollo adicional, consulta nuestra [guía para implementar desde el código fuente](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
### Gráfico Helm
## Próximos pasos
Un gran agradecimiento a @BorisPolonsky por proporcionarnos una versión del [Gráfico Helm](https://helm.sh/), que permite implementar Dify en Kubernetes. Puedes visitar https://github.com/BorisPolonsky/dify-helm para obtener información sobre la implementación.
Si necesitas personalizar la configuración, consulta los comentarios en nuestro archivo [docker-compose.yml](docker/docker-compose.yaml) y configura manualmente la configuración del entorno
### Configuración
. Después de realizar los cambios, ejecuta `docker-compose up -d` nuevamente. Puedes ver la lista completa de variables de entorno [aquí](https://docs.dify.ai/getting-started/install-self-hosted/environments).
Si deseas configurar una instalación altamente disponible, hay [Gráficos Helm](https://helm.sh/) contribuidos por la comunidad que permiten implementar Dify en Kubernetes.
- [Gráfico Helm por @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Gráfico Helm por @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
## Contribuir
Para aquellos que deseen contribuir con código, consulten nuestra [Guía de contribución](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
Al mismo tiempo, considera apoyar a Dify compartiéndolo en redes sociales y en eventos y conferencias.
> Estamos buscando colaboradores para ayudar con la traducción de Dify a idiomas que no sean el mandarín o el inglés. Si estás interesado en ayudar, consulta el [README de i18n](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) para obtener más información y déjanos un comentario en el canal `global-users` de nuestro [Servidor de Comunidad en Discord](https://discord.gg/8Tpq4AcN9c).
**Contribuidores**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Comunidad y Contacto
* [Discusión en GitHub](https://github.com/langgenius/dify/discussions). Lo mejor para: compartir comentarios y hacer preguntas.
* [Reporte de problemas en GitHub](https://github.com/langgenius/dify/issues). Lo mejor para: errores que encuentres usando Dify.AI y propuestas de características. Consulta nuestra [Guía de contribución](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Correo electrónico](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). Lo mejor para: preguntas que tengas sobre el uso de Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). Lo mejor para: compartir tus aplicaciones y pasar el rato con la comunidad.
* [Twitter](https://twitter.com/dify_ai). Lo mejor para: compartir tus aplicaciones y pasar el rato con la comunidad.
O, programa una reunión directamente con un miembro del equipo:
<table>
<tr>
<th>Punto de Contacto</th>
<th>Propósito</th>
</tr>
<tr>
<td><a href='https://cal.com/guchenhe/15min' target='_blank'><img class="schedule-button" src='https://github.com/langgenius/dify/assets/13230914/9ebcd111-1205-4d71-83d5-948d70b809f5' alt='Git-Hub-README-Button-3x' style="width: 180px; height: auto; object-fit: contain;"/></a></td>
<td>Consultas comerciales y retroalimentación del producto</td>
</tr>
<tr>
<td><a href='https://cal.com/pinkbanana' target='_blank'><img class="schedule-button" src='https://github.com/langgenius/dify/assets/13230914/d1edd00a-d7e4-4513-be6c-e57038e143fd' alt='Git-Hub-README-Button-2x' style="width: 180px; height: auto; object-fit: contain;"/></a></td>
<td>Contribuciones, problemas y solicitudes de características</td>
</tr>
</table>
Si necesitas personalizar la configuración, consulta los comentarios en nuestro archivo [docker-compose.yml](docker/docker-compose.yaml) y configura manualmente la configuración del entorno. Después de realizar los cambios, ejecuta nuevamente `docker-compose up -d`. Puedes ver la lista completa de variables de entorno en nuestra [documentación](https://docs.dify.ai/getting-started/install-self-hosted/environments).
## Historial de Estrellas
[![Gráfico de Historial de Estrellas](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Comunidad y Soporte
Te damos la bienvenida a contribuir a Dify para ayudar a hacer que Dify sea mejor de diversas maneras, enviando código, informando problemas, proponiendo nuevas ideas o compartiendo las aplicaciones de inteligencia artificial interesantes y útiles que hayas creado basadas en Dify. Al mismo tiempo, también te invitamos a compartir Dify en diferentes eventos, conferencias y redes sociales.
- [Problemas en GitHub](https://github.com/langgenius/dify/issues). Lo mejor para: errores y problemas que encuentres al usar Dify.AI, consulta la [Guía de Contribución](CONTRIBUTING.md).
- [Soporte por Correo Electrónico](mailto:hello@dify.ai?subject=[GitHub]Preguntas%20sobre%20Dify). Lo mejor para: preguntas que tengas sobre el uso de Dify.AI.
- [Discord](https://discord.gg/FngNHpbcY7). Lo mejor para: compartir tus aplicaciones y socializar con la comunidad.
- [Twitter](https://twitter.com/dify_ai). Lo mejor para: compartir tus aplicaciones y socializar con la comunidad.
- [Licencia Comercial](mailto:business@dify.ai?subject=[GitHub]Consulta%20de%20Licencia%20Comercial). Lo mejor para: consultas comerciales sobre la licencia de Dify.AI para uso comercial.
## Divulgación de Seguridad
@ -247,4 +121,4 @@ Para proteger tu privacidad, evita publicar problemas de seguridad en GitHub. En
## Licencia
Este repositorio está disponible bajo la [Licencia de Código Abierto de Dify](LICENSE), que es esencialmente Apache 2.0 con algunas restricciones adicionales.
Este repositorio está disponible bajo la [Licencia de Código Abierto Dify](LICENSE), que es esencialmente Apache 2.0 con algunas restricciones adicionales.

View File

@ -1,250 +1,127 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
[![](./images/describe.png)](https://dify.ai)
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">Auto-hébergement</a> ·
<a href="https://docs.dify.ai">Documentation</a> ·
<a href="https://cal.com/guchenhe/dify-demo">Planifier une démo</a>
<a href="./README.md">English</a> |
<a href="./README_CN.md">简体中文</a> |
<a href="./README_JA.md">日本語</a> |
<a href="./README_ES.md">Español</a> |
<a href="./README_KL.md">Klingon</a> |
<a href="./README_FR.md">Français</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Badge statique" src="https://img.shields.io/badge/Produit-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Badge statique" src="https://img.shields.io/badge/gratuit-Tarification?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<img alt="Static Badge" src="https://img.shields.io/badge/AI-Dify?logo=AI&logoColor=%20%23f5f5f5&label=Dify&labelColor=%20%23155EEF&color=%23EAECF0"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat sur Discord"></a>
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord"
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="suivre sur Twitter"></a>
<img src="https://img.shields.io/twitter/follow/dify_ai?style=social&logo=X"
alt="follow on Twitter"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Tirages Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits le mois dernier" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Problèmes fermés" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Messages de discussion" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="Commits le mois dernier" src="https://img.shields.io/badge/Anglais-d9d9d9"></a>
<a href="./README_CN.md"><img alt="Commits le mois dernier" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="Commits le mois dernier" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="Commits le mois dernier" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_KL.md"><img alt="Commits le mois dernier" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_FR.md"><img alt="Commits le mois dernier" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
#
<p align="center">
<a href="https://trendshift.io/repositories/2152" target="_blank"><img src="https://trendshift.io/api/badge/repositories/2152" alt="langgenius%2Fdify | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
Dify est une plateforme de développement d'applications LLM open source. Son interface intuitive combine un flux de travail d'IA, un pipeline RAG, des capacités d'agent, une gestion de modèles, des fonctionnalités d'observabilité, et plus encore, vous permettant de passer rapidement du prototype à la production. Voici une liste des fonctionnalités principales:
</br> </br>
**Dify** est une plateforme de développement d'applications LLM qui a déjà vu plus de **100,000** applications construites sur Dify.AI. Elle intègre les concepts de Backend as a Service et LLMOps, couvrant la pile technologique de base requise pour construire des applications natives d'IA générative, y compris un moteur RAG intégré. Avec Dify, **vous pouvez auto-déployer des capacités similaires aux API Assistants et GPT basées sur n'importe quels LLM.**
**1. Flux de travail**:
Construisez et testez des flux de travail d'IA puissants sur un canevas visuel, en utilisant toutes les fonctionnalités suivantes et plus encore.
![](./images/demo.png)
## Utiliser les services cloud
L'utilisation de [Dify.AI Cloud](https://dify.ai) fournit toutes les capacités de la version open source, et comprend un essai gratuit de 200 crédits GPT.
## Pourquoi Dify
Dify présente une neutralité de modèle et est une pile technologique complète et conçue par rapport à des bibliothèques de développement codées en dur comme LangChain. Contrairement à l'API Assistants d'OpenAI, Dify permet un déploiement local complet des services.
| Fonctionnalité | Dify.AI | API Assistants | LangChain |
|---------------|----------|-----------------|------------|
| **Approche de programmation** | Orientée API | Orientée API | Orientée code Python |
| **Stratégie écosystème** | Open source | Fermé et commercial | Open source |
| **Moteur RAG** | Pris en charge | Pris en charge | Non pris en charge |
| **IDE d'invite** | Inclus | Inclus | Aucun |
| **LLM pris en charge** | Grande variété | Seulement GPT | Grande variété |
| **Déploiement local** | Pris en charge | Non pris en charge | Non applicable |
## Fonctionnalités
![](./images/models.png)
**1\. Support LLM**: Intégration avec la famille de modèles GPT d'OpenAI, ou les modèles de la famille open source Llama2. En fait, Dify prend en charge les modèles commerciaux grand public et les modèles open source (déployés localement ou basés sur MaaS).
**2\. IDE d'invite**: Orchestration visuelle d'applications et de services basés sur LLMs avec votre équipe.
**3\. Moteur RAG**: Comprend diverses capacités RAG basées sur l'indexation de texte intégral ou les embeddings de base de données vectorielles, permettant le chargement direct de PDF, TXT et autres formats de texte.
**4\. AI Agent**: Basé sur l'appel de fonction et ReAct, le framework d'inférence de l'Agent permet aux utilisateurs de personnaliser les outils, ce que vous voyez est ce que vous obtenez. Dify propose plus d'une douzaine de capacités d'appel d'outils intégrées, telles que la recherche Google, DELL·E, Diffusion Stable, WolframAlpha, etc.
**5\. Opérations continues**: Surveillez et analysez les journaux et les performances des applications, améliorez en continu les invites, les datasets ou les modèles à l'aide de données de production.
## Avant de commencer
**Étoilez-nous, et vous recevrez des notifications instantanées pour toutes les nouvelles sorties sur GitHub !**
![star-us](https://github.com/langgenius/dify/assets/100913391/95f37259-7370-4456-a9f0-0bc01ef8642f)
- [Site web](https://dify.ai)
- [Documentation](https://docs.dify.ai)
- [Documentation de déploiement](https://docs.dify.ai/getting-started/install-self-hosted)
- [FAQ](https://docs.dify.ai/getting-started/faq)
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
## Installer la version Communauté
### Configuration système
Avant d'installer Dify, assurez-vous que votre machine répond aux exigences minimales suivantes:
**2. Prise en charge complète des modèles**:
Intégration transparente avec des centaines de LLM propriétaires / open source provenant de dizaines de fournisseurs d'inférence et de solutions auto-hébergées, couvrant GPT, Mistral, Llama2, et tous les modèles compatibles avec l'API OpenAI. Une liste complète des fournisseurs de modèles pris en charge se trouve [ici](https://docs.dify.ai/getting-started/readme/model-providers).
- CPU >= 2 cœurs
- RAM >= 4 Go
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
### Démarrage rapide
**3. IDE de prompt**:
Interface intuitive pour créer des prompts, comparer les performances des modèles et ajouter des fonctionnalités supplémentaires telles que la synthèse vocale à une application basée sur des chats.
**4. Pipeline RAG**:
Des capacités RAG étendues qui couvrent tout, de l'ingestion de documents à la récupération, avec un support prêt à l'emploi pour l'extraction de texte à partir de PDF, PPT et autres formats de document courants.
**5. Capac
ités d'agent**:
Vous pouvez définir des agents basés sur l'appel de fonction LLM ou ReAct, et ajouter des outils pré-construits ou personnalisés pour l'agent. Dify fournit plus de 50 outils intégrés pour les agents d'IA, tels que la recherche Google, DELL·E, Stable Diffusion et WolframAlpha.
**6. LLMOps**:
Surveillez et analysez les journaux d'application et les performances au fil du temps. Vous pouvez continuellement améliorer les prompts, les ensembles de données et les modèles en fonction des données de production et des annotations.
**7. Backend-as-a-Service**:
Toutes les offres de Dify sont accompagnées d'API correspondantes, vous permettant d'intégrer facilement Dify dans votre propre logique métier.
## Comparaison des fonctionnalités
<table style="width: 100%;">
<tr>
<th align="center">Fonctionnalité</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Approche de programmation</td>
<td align="center">API + Application</td>
<td align="center">Code Python</td>
<td align="center">Application</td>
<td align="center">API</td>
</tr>
<tr>
<td align="center">LLMs pris en charge</td>
<td align="center">Grande variété</td>
<td align="center">Grande variété</td>
<td align="center">Grande variété</td>
<td align="center">Uniquement OpenAI</td>
</tr>
<tr>
<td align="center">Moteur RAG</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Flux de travail</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Observabilité</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Fonctionnalité d'entreprise (SSO/Contrôle d'accès)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Déploiement local</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Utiliser Dify
- **Cloud </br>**
Nous hébergeons un service [Dify Cloud](https://dify.ai) pour que tout le monde puisse l'essayer sans aucune configuration. Il fournit toutes les capacités de la version auto-hébergée et comprend 200 appels GPT-4 gratuits dans le plan bac à sable.
- **Auto-hébergement Dify Community Edition</br>**
Lancez rapidement Dify dans votre environnement avec ce [guide de démarrage](#quick-start).
Utilisez notre [documentation](https://docs.dify.ai) pour plus de références et des instructions plus détaillées.
- **Dify pour les entreprises / organisations</br>**
Nous proposons des fonctionnalités supplémentaires adaptées aux entreprises. [Planifiez une réunion avec nous](https://cal.com/guchenhe/30min) ou [envoyez-nous un e-mail](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry) pour discuter des besoins de l'entreprise. </br>
> Pour les startups et les petites entreprises utilisant AWS, consultez [Dify Premium sur AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) et déployez-le dans votre propre VPC AWS en un clic. C'est une offre AMI abordable avec la possibilité de créer des applications avec un logo et une marque personnalisés.
## Rester en avance
Mettez une étoile à Dify sur GitHub et soyez instantanément informé des nouvelles versions.
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Démarrage rapide
> Avant d'installer Dify, assurez-vous que votre machine répond aux exigences système minimales suivantes:
>
>- CPU >= 2 cœurs
>- RAM >= 4 Go
</br>
La manière la plus simple de démarrer le serveur Dify est d'exécuter notre fichier [docker-compose.yml](docker/docker-compose.yaml). Avant d'exécuter la commande d'installation, assurez-vous que [Docker](https://docs.docker.com/get-docker/) et [Docker Compose](https://docs.docker.com/compose/install/) sont installés sur votre machine:
La façon la plus simple de démarrer le serveur Dify est d'exécuter notre fichier [docker-compose.yml](docker/docker-compose.yaml). Avant d'exécuter la commande d'installation, assurez-vous que [Docker](https://docs.docker.com/get-docker/) et [Docker Compose](https://docs.docker.com/compose/install/) sont installés sur votre machine:
```bash
cd docker
docker compose up -d
```
Après l'exécution, vous pouvez accéder au tableau de bord Dify dans votre navigateur à [http://localhost/install](http://localhost/install) et commencer le processus d'initialisation.
Après l'exécution, vous pouvez accéder au tableau de bord Dify dans votre navigateur à l'adresse [http://localhost/install](http://localhost/install) et démarrer le processus d'installation initiale.
> Si vous souhaitez contribuer à Dify ou effectuer un développement supplémentaire, consultez notre [guide de déploiement à partir du code source](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
### Chart Helm
## Prochaines étapes
Un grand merci à @BorisPolonsky pour nous avoir fourni une version [Helm Chart](https://helm.sh/) qui permet le déploiement de Dify sur Kubernetes.
Vous pouvez accéder à https://github.com/BorisPolonsky/dify-helm pour des informations de déploiement.
Si vous devez personnaliser la configuration, veuillez
### Configuration
vous référer aux commentaires dans notre fichier [docker-compose.yml](docker/docker-compose.yaml) et définir manuellement la configuration de l'environnement. Après avoir apporté les modifications, veuillez exécuter à nouveau `docker-compose up -d`. Vous pouvez voir la liste complète des variables d'environnement [ici](https://docs.dify.ai/getting-started/install-self-hosted/environments).
Si vous avez besoin de personnaliser la configuration, veuillez vous référer aux commentaires de notre fichier [docker-compose.yml](docker/docker-compose.yaml) et définir manuellement la configuration de l'environnement. Après avoir apporté les modifications, veuillez exécuter à nouveau `docker-compose up -d`. Vous trouverez la liste complète des variables d'environnement dans notre [documentation](https://docs.dify.ai/getting-started/install-self-hosted/environments).
Si vous souhaitez configurer une installation hautement disponible, il existe des [Helm Charts](https://helm.sh/) contribués par la communauté qui permettent de déployer Dify sur Kubernetes.
## Historique d'étoiles
- [Helm Chart par @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart par @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
[![Diagramme de l'historique des étoiles](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Contribuer
## Communauté & Support
Pour ceux qui souhaitent contribuer du code, consultez notre [Guide de contribution](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
Dans le même temps, veuillez envisager de soutenir Dify en le partageant sur les réseaux sociaux et lors d'événements et de conférences.
Nous vous invitons à contribuer à Dify pour aider à améliorer Dify de diverses manières, en soumettant du code, des problèmes, de nouvelles idées ou en partageant les applications d'IA intéressantes et utiles que vous avez créées sur la base de Dify. En même temps, nous vous invitons également à partager Dify lors de différents événements, conférences et réseaux sociaux.
- [Problèmes GitHub](https://github.com/langgenius/dify/issues). Idéal pour : les bogues et les erreurs que vous rencontrez en utilisant Dify.AI, voir le [Guide de contribution](CONTRIBUTING.md).
- [Support par courriel](mailto:hello@dify.ai?subject=[GitHub]Questions%20About%20Dify). Idéal pour : les questions que vous avez au sujet de l'utilisation de Dify.AI.
- [Discord](https://discord.gg/FngNHpbcY7). Idéal pour : partager vos applications et discuter avec la communauté.
- [Twitter](https://twitter.com/dify_ai). Idéal pour : partager vos applications et discuter avec la communauté.
- [Licence commerciale](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry). Idéal pour : les demandes commerciales de licence de Dify.AI pour un usage commercial.
> Nous recherchons des contributeurs pour aider à traduire Dify dans des langues autres que le mandarin ou l'anglais. Si vous êtes intéressé à aider, veuillez consulter le [README i18n](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) pour plus d'informations, et laissez-nous un commentaire dans le canal `global-users` de notre [Serveur communautaire Discord](https://discord.gg/8Tpq4AcN9c).
## Divulgation de la sécurité
**Contributeurs**
Pour protéger votre vie privée, veuillez éviter de publier des problèmes de sécurité sur GitHub. Envoyez plutôt vos questions à security@dify.ai et nous vous fournirons une réponse plus détaillée.
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Licence
## Communauté & Contact
* [Discussion GitHub](https://github.com/langgenius/dify/discussions). Meilleur pour: partager des commentaires et poser des questions.
* [Problèmes GitHub](https://github.com/langgenius/dify/issues). Meilleur pour: les bogues que vous rencontrez en utilisant Dify.AI et les propositions de fonctionnalités. Consultez notre [Guide de contribution](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [E-mail](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). Meilleur pour: les questions que vous avez sur l'utilisation de Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). Meilleur pour: partager vos applications et passer du temps avec la communauté.
* [Twitter](https://twitter.com/dify_ai). Meilleur pour: partager vos applications et passer du temps avec la communauté.
Ou, planifiez directement une réunion avec un membre de l'équipe:
<table>
<tr>
<th>Point de contact</th>
<th>Objectif</th>
</tr>
<tr>
<td><a href='https://cal.com/guchenhe/15min' target='_blank'><img class="schedule-button" src='https://github.com/langgenius/dify/assets/13230914/9ebcd111-1205-4d71-83d5-948d70b809f5' alt='Git-Hub-README-Button-3x' style="width: 180px; height: auto; object-fit: contain;"/></a></td>
<td>Demandes commerciales & retours produit</td>
</tr>
<tr>
<td><a href='https://cal.com/pinkbanana' target='_blank'><img class="schedule-button" src='https://github.com/langgenius/dify/assets/13230914/d1edd00a-d7e4-4513-be6c-e57038e143fd' alt='Git-Hub-README-Button-2x' style="width: 180px; height: auto; object-fit: contain;"/></a></td>
<td>Contributions, problèmes & demandes de fonctionnalités</td>
</tr>
</table>
## Historique des étoiles
[![Graphique de l'historique des étoiles](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Divulgation de sécurité
Pour protéger votre vie privée, veuillez éviter de publier des problèmes de sécurité sur GitHub. Au lieu de cela, envoyez vos questions à security@dify.ai et nous vous fournirons une réponse plus détaillée.
## Licence
Ce référentiel est disponible sous la [Licence open source Dify](LICENSE), qui est essentiellement l'Apache 2.0 avec quelques restrictions supplémentaires.
Ce référentiel est disponible sous la [Licence open source Dify](LICENSE), qui est essentiellement Apache 2.0 avec quelques restrictions supplémentaires.

View File

@ -1,249 +1,130 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
[![](./images/describe.png)](https://dify.ai)
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">自己ホスティング</a> ·
<a href="https://docs.dify.ai">ドキュメント</a> ·
<a href="https://cal.com/guchenhe/dify-demo">デモのスケジュール</a>
<a href="./README.md">English</a> |
<a href="./README_CN.md">简体中文</a> |
<a href="./README_JA.md">日本語</a> |
<a href="./README_ES.md">Español</a> |
<a href="./README_KL.md">Klingon</a> |
<a href="./README_FR.md">Français</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<img alt="Static Badge" src="https://img.shields.io/badge/AI-Dify?logo=AI&logoColor=%20%23f5f5f5&label=Dify&labelColor=%20%23155EEF&color=%23EAECF0"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="Discordでチャット"></a>
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord"
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="Twitterでフォロー"></a>
<img src="https://img.shields.io/twitter/follow/dify_ai?style=social&logo=X"
alt="follow on Twitter"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="先月のコミット" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="クローズされた問題" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="ディスカッション投稿" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="先月のコミット" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_CN.md"><img alt="先月のコミット" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="先月のコミット" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="先月のコミット" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_KL.md"><img alt="先月のコミット" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_FR.md"><img alt="先月のコミット" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
#
<p align="center">
<a href="https://trendshift.io/repositories/2152" target="_blank"><img src="https://trendshift.io/api/badge/repositories/2152" alt="langgenius%2Fdify | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
"Difyは、既にDify.AI上で10万以上のアプリケーションが構築されているLLMアプリケーション開発プラットフォームです。バックエンド・アズ・ア・サービスとLLMOpsの概念を統合し、組み込みのRAGエンジンを含む、生成AIネイティブアプリケーションを構築するためのコアテックスタックをカバーしています。Difyを使用すると、どのLLMに基づいても、Assistants APIやGPTのような機能を自己デプロイすることができます。"
DifyはオープンソースのLLMアプリケーション開発プラットフォームです。直感的なインターフェースには、AIワークフロー、RAGパイプライン、エージェント機能、モデル管理、観測機能などが組み合わさっており、プロトタイプから本番までの移行を迅速に行うことができます。以下は、主要機能のリストです
</br> </br>
Please note that translating complex technical terms can sometimes result in slight variations in meaning due to differences in language nuances.
**1. ワークフロー**:
ビジュアルキャンバス上で強力なAIワークフローを構築してテストし、以下の機能を活用してプロトタイプを超えることができます。
![](./images/demo.png)
## クラウドサービスの利用
[Dify.AI Cloud](https://dify.ai) を使用すると、オープンソース版の全機能を利用でき、さらに200GPTのトライアルクレジットが無料で提供されます。
## Difyの利点
Difyはモデルニュートラルであり、LangChainのようなハードコードされた開発ライブラリと比較して、完全にエンジニアリングされた技術スタックを特徴としています。OpenAIのAssistants APIとは異なり、Difyではサービスの完全なローカルデプロイメントが可能です。
| 機能 | Dify.AI | Assistants API | LangChain |
|---------|---------|----------------|-----------|
| **プログラミングアプローチ** | API指向 | API指向 | Pythonコード指向 |
| **エコシステム戦略** | オープンソース | 閉鎖的かつ商業的 | オープンソース |
| **RAGエンジン** | サポート済み | サポート済み | 非サポート |
| **プロンプトIDE** | 含まれる | 含まれる | なし |
| **サポートされるLLMs** | 豊富な種類 | GPTのみ | 豊富な種類 |
| **ローカルデプロイメント** | サポート済み | 非サポート | 該当なし |
## 機能
![](./images/models.png)
**1\. LLMサポート**: OpenAIのGPTファミリーモデルやLlama2ファミリーのオープンソースモデルとの統合。 実際、Difyは主要な商用モデルとオープンソースモデル(ローカルでデプロイまたはMaaSベース)をサポートしています。
**2\. プロンプトIDE**: チームとのLLMベースのアプリケーションとサービスの視覚的なオーケストレーション。
**3\. RAGエンジン**: フルテキストインデックスまたはベクトルデータベース埋め込みに基づくさまざまなRAG機能を含み、PDF、TXT、その他のテキストフォーマットの直接アップロードを可能にします。
**4. AIエージェント**: 関数呼び出しとReActに基づくAgent推論フレームワークにより、ユーザーはツールをカスタマイズすることができます。Difyは、Google検索、DELL·E、Stable Diffusion、WolframAlphaなど、十数種類の組み込みツール呼び出し機能を提供しています。
**5\. 継続的運用**: アプリケーションログとパフォーマンスを監視および分析し、運用データを使用してプロンプト、データセット、またはモデルを継続的に改善します。
## 開始する前に
**私たちをスターして、GitHub上でのすべての新しいリリースに対する即時通知を受け取ります**
![私たちをスターして](https://github.com/langgenius/dify/assets/100913391/95f37259-7370-4456-a9f0-0bc01ef8642f)
- [Website](https://dify.ai)
- [Docs](https://docs.dify.ai)
- [Deployment Docs](https://docs.dify.ai/getting-started/install-self-hosted)
- [FAQ](https://docs.dify.ai/getting-started/faq)
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
## コミュニティエディションのインストール
### システム要件
Difyをインストールする前に、以下の最低限のシステム要件を満たしていることを確認してください
**2. 網羅的なモデルサポート**:
数百のプロプライエタリ/オープンソースのLLMと、数十の推論プロバイダーおよびセルフホスティングソリューションとのシームレスな統合を提供します。GPT、Mistral、Llama2、およびOpenAI API互換のモデルをカバーします。サポートされているモデルプロバイダーの完全なリストは[こちら](https://docs
- CPU >= 2コア
- RAM >= 4GB
.dify.ai/getting-started/readme/model-providers)をご覧ください。
### クイックスタート
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**3. プロンプトIDE**:
チャットベースのアプリにテキスト読み上げなどの追加機能を追加するプロンプトを作成し、モデルのパフォーマンスを比較する直感的なインターフェース。
**4. RAGパイプライン**:
文書の取り込みから取得までをカバーする幅広いRAG機能で、PDF、PPTなどの一般的なドキュメント形式からのテキスト抽出に対するアウトオブボックスのサポートを提供します。
**5. エージェント機能**:
LLM関数呼び出しまたはReActに基づいてエージェントを定義し、エージェント向けの事前構築済みまたはカスタムのツールを追加できます。Difyには、Google検索、DELL·E、Stable Diffusion、WolframAlphaなどのAIエージェント用の50以上の組み込みツールが用意されています。
**6. LLMOps**:
アプリケーションログとパフォーマンスを時間の経過とともにモニタリングおよび分析します。本番データと注釈に基づいて、プロンプト、データセット、およびモデルを継続的に改善できます。
**7. Backend-as-a-Service**:
Difyのすべての提供には、それに対応するAPIが付属しており、独自のビジネスロジックにDifyをシームレスに統合できます。
## 機能比較
<table style="width: 100%;">
<tr>
<th align="center">機能</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">プログラミングアプローチ</td>
<td align="center">API + アプリ指向</td>
<td align="center">Pythonコード</td>
<td align="center">アプリ指向</td>
<td align="center">API指向</td>
</tr>
<tr>
<td align="center">サポートされているLLM</td>
<td align="center">豊富なバリエーション</td>
<td align="center">豊富なバリエーション</td>
<td align="center">豊富なバリエーション</td>
<td align="center">OpenAIのみ</td>
</tr>
<tr>
<td align="center">RAGエンジン</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">エージェント</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">ワークフロー</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">観測性</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">エンタープライズ機能SSO/アクセス制御)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">ローカル展開</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Difyの使用方法
- **クラウド </br>**
[こちら](https://dify.ai)のDify Cloudサービスを利用して、セットアップが不要で誰でも試すことができます。サンドボックスプランでは、200回の無料のGPT-4呼び出しが含まれています。
- **Dify Community Editionのセルフホスティング</br>**
この[スターターガイド](#quick-start)を使用して、環境でDifyをすばやく実行できます。
さらなる参照や詳細な手順については、[ドキュメント](https://docs.dify.ai)をご覧ください。
- **エンタープライズ/組織向けのDify</br>**
追加のエンタープライズ向け機能を提供しています。[こちらからミーティ
ングを予約](https://cal.com/guchenhe/30min)したり、[メールを送信](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry)してエンタープライズのニーズについて相談してください。 </br>
> AWSを使用しているスタートアップや中小企業の場合は、[AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6)のDify Premiumをチェックして、ワンクリックで独自のAWS VPCにデプロイできます。カスタムロゴとブランディングでアプリを作成するオプションを備えた手頃な価格のAMIオファリングです。
## 先を見る
GitHubでDifyにスターを付け、新しいリリースをすぐに通知されます。
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## クイックスタート
> Difyをインストールする前に、マシンが以下の最小システム要件を満たしていることを確認してください
>
>- CPU >= 2コア
>- RAM >= 4GB
</br>
Difyサーバーを起動する最も簡単な方法は、当社の[docker-compose.yml](docker/docker-compose.yaml)ファイルを実行することです。インストールコマンドを実行する前に、マシンに[Docker](https://docs.docker.com/get-docker/)と[Docker Compose](https://docs.docker.com/compose/install/)がインストールされていることを確認してください。
Difyサーバーを始める最も簡単な方法は、[docker-compose.yml](docker/docker-compose.yaml) ファイルを実行することです。インストールコマンドを実行する前に、マシンに [Docker](https://docs.docker.com/get-docker/) と [Docker Compose](https://docs.docker.com/compose/install/) がインストールされていることを確認してください:
```bash
cd docker
docker compose up -d
```
実行後、ブラウザで[http://localhost/install](http://localhost/install)にアクセスし、初期化プロセスを開始できます。
実行後、ブラウザで [http://localhost/install](http://localhost/install) にアクセスし、初期化インストールプロセスを開始できます。
> Difyに貢献したり、追加の開発を行う場合は、[ソースコードからのデプロイガイド](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)を参照してください。
### Helm Chart
## 次のステップ
@BorisPolonskyによる[Helm Chart](https://helm.sh/) バージョンを提供してくれて、大変感謝しています。これにより、DifyはKubernetes上にデプロイすることができます。
デプロイ情報については、https://github.com/BorisPolonsky/dify-helm をご覧ください。
環境設定をカスタマイズする場合は、[docker-compose.yml](docker/docker-compose.yaml)ファイル内のコメントを参照して、環境設定を手動で設定してください。変更を加えた後は、再び `docker-compose up -d` を実行してください。環境変数の完全なリストは[こちら](https://docs.dify.ai/getting-started/install-self-hosted/environments)をご覧ください。
### 設定
高可用性のセットアップを構成する場合は、コミュニティによって提供されている[Helm Charts](https://helm.sh/)があり、これによりKubernetes上にDifyを展開できます。
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
設定をカスタマイズする必要がある場合は、[docker-compose.yml](docker/docker-compose.yaml) ファイルのコメントを参照し、環境設定を手動で行ってください。変更を行った後は、もう一度 `docker-compose up -d` を実行してください。環境変数の完全なリストは、[ドキュメント](https://docs.dify.ai/getting-started/install-self-hosted/environments)で確認できます。
## 貢献
## スターヒストリー
コードに貢献したい方は、[Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md)を参照してください。
同時に、DifyをSNSやイベント、カンファレンスで共有してサポートしていただけると幸いです。
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## コミュニティとサポート
> Difyを英語または中国語以外の言語に翻訳してくれる貢献者を募集しています。興味がある場合は、詳細については[i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md)を参照してください。また、[Discordコミュニティサーバー](https://discord.gg/8Tpq4AcN9c)の`global-users`チャンネルにコメントを残してください
Difyに貢献していただき、コードの提出、問題の報告、新しいアイデアの提供、またはDifyを基に作成した興味深く有用なAIアプリケーションの共有により、Difyをより良いものにするお手伝いを歓迎します。同時に、さまざまなイベント、会議、ソーシャルメディアでDifyを共有することも歓迎します
**貢献者**
- [GitHub Issues](https://github.com/langgenius/dify/issues)。最適な使用法Dify.AIの使用中に遭遇するバグやエラー、[貢献ガイド](CONTRIBUTING.md)を参照。
- [Email サポート](mailto:hello@dify.ai?subject=[GitHub]Questions%20About%20Dify)。最適な使用法Dify.AIの使用に関する質問。
- [Discord](https://discord.gg/FngNHpbcY7)。最適な使用法:アプリケーションの共有とコミュニティとの交流。
- [Twitter](https://twitter.com/dify_ai)。最適な使用法:アプリケーションの共有とコミュニティとの交流。
- [ビジネスライセンス](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry)。最適な使用法Dify.AIを商業利用するためのビジネス関連の問い合わせ。
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## コミュニティ & お問い合わせ
* [Github Discussion](https://github.com/langgenius/dify/discussions). 主に: フィードバックの共有や質問。
* [GitHub Issues](https://github.com/langgenius/dify/issues). 主に: Dify.AIの使用中に遭遇したバグや機能提案。
* [Email](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). 主に: Dify.AIの使用に関する質問。
* [Discord](https://discord.gg/FngNHpbcY7). 主に: アプリケーションの共有やコミュニティとの交流。
* [Twitter](https://twitter.com/dify_ai). 主に: アプリケーションの共有やコミュニティとの交流。
または、直接チームメンバーとミーティングをスケジュールします:
<table>
<tr>
<th>連絡先</th>
<th>目的</th>
</tr>
<tr>
<td><a href='https://cal.com
/guchenhe/30min'>ミーティング</a></td>
<td>無料の30分間のミーティングをスケジュールしてください。</td>
</tr>
<tr>
<td><a href='mailto:support@dify.ai?subject=[GitHub]Technical%20Support'>技術サポート</a></td>
<td>技術的な問題やサポートに関する質問</td>
</tr>
<tr>
<td><a href='mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry'>営業担当</a></td>
<td>法人ライセンスに関するお問い合わせ</td>
</tr>
</table>
## セキュリティ
プライバシー保護のため、GitHub へのセキュリティ問題の投稿は避けてください。代わりに、あなたの質問を security@dify.ai に送ってください。より詳細な回答を提供します。
## ライセンス
プロジェクトはMITライセンスの下で利用可能です。[LICENSE](LICENSE)をご参照ください
このリポジトリは、基本的にApache 2.0にいくつかの追加制限を加えた[Difyオープンソースライセンス](LICENSE)の下で利用できます

View File

@ -1,250 +1,119 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
[![](./images/describe.png)](https://dify.ai)
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">Self-hosting</a> ·
<a href="https://docs.dify.ai">Documentation</a> ·
<a href="https://cal.com/guchenhe/dify-demo">Schedule demo</a>
<a href="./README.md">English</a> |
<a href="./README_CN.md">简体中文</a> |
<a href="./README_JA.md">日本語</a> |
<a href="./README_ES.md">Español</a> |
<a href="./README_KL.md">Klingon</a> |
<a href="./README_FR.md">Français</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<img alt="Static Badge" src="https://img.shields.io/badge/AI-Dify?logo=AI&logoColor=%20%23f5f5f5&label=Dify&labelColor=%20%23155EEF&color=%23EAECF0"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord"
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
<img src="https://img.shields.io/twitter/follow/dify_ai?style=social&logo=X"
alt="follow on Twitter"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="Commits last month" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_CN.md"><img alt="Commits last month" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="Commits last month" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="Commits last month" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_KL.md"><img alt="Commits last month" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_FR.md"><img alt="Commits last month" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
</p>
**Dify** Hoch LLM qorwI' pIqoDvam pagh laHta' je **100,000** pIqoDvamvam Dify.AI De'wI'. Dify leghpu' Backend chu' a Service teH LLMOps vItlhutlh, generative AI-native pIqoD teq wa'vam, vIyoD Built-in RAG engine. Dify, **'ej chenmoHmoH Hoch 'oHna' Assistant API 'ej GPTmey HoStaHbogh LLMmey.**
#
![](./images/demo.png)
<p align="center">
<a href="https://trendshift.io/repositories/2152" target="_blank"><img src="https://trendshift.io/api/badge/repositories/2152" alt="langgenius%2Fdify | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
Dify is an open-source LLM app development platform. Its intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production. Here's a list of the core features:
</br> </br>
## ngIl QaQ
**1. Workflow**:
Build and test powerful AI workflows on a visual canvas, leveraging all the following features and beyond.
[Dify.AI ngIl](https://dify.ai) pIm neHlaH 'ej ghaH. cha'logh wa' DIvI' 200 GPT trial credits.
## Dify WovmoH
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
Dify Daq rIn neutrality 'ej Hoch, LangChain tInHar HubwI'. maH Daqbe'law' Qawqar, OpenAI's Assistant API Daq local neH deployment.
| Qo'logh | Dify.AI | Assistants API | LangChain |
|---------|---------|----------------|-----------|
| **qet QaS** | API-oriented | API-oriented | Python Code-oriented |
| **Ecosystem Strategy** | Open Source | Closed and Commercial | Open Source |
| **RAG Engine** | Ha'qu' | Ha'qu' | ghoS Ha'qu' |
| **Prompt IDE** | jaH Include | jaH Include | qeylIS qaq |
| **qet LLMmey** | bo'Degh Hoch | GPTmey tIn | bo'Degh Hoch |
| **local deployment** | Ha'qu' | tInHa'qu' | tInHa'qu' ghogh |
## ruch
**2. Comprehensive model support**:
Seamless integration with hundreds of proprietary / open-source LLMs from dozens of inference providers and self-hosted solutions, covering GPT, Mistral, Llama2, and any OpenAI API-compatible models. A full list of supported model providers can be found [here](https://docs.dify.ai/getting-started/readme/model-providers).
![](./images/models.png)
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**1. LLM tIq**: OpenAI's GPT Hur nISmoHvam neH vIngeH, wa' Llama2 Hur nISmoHvam. Heghlu'lu'pu' Dify mIw 'oH choH qay'be'.Daq commercial Hurmey 'ej Open Source Hurmey (maqtaHvIS pagh locally neH neH deployment HoSvam).
**2. Prompt IDE**: cha'logh wa' LLMmey Hoch janlu'pu' 'ej lughpu' choH qay'be'.
**3. Prompt IDE**:
Intuitive interface for crafting prompts, comparing model performance, and adding additional features such as text-to-speech to a chat-based app.
**3. RAG Engine**: RAG vaD tIqpu' lo'taH indexing qor neH vector database wa' embeddings wIj, PDFs, TXTs, 'ej ghojmoHmoH HIq qorlIj je upload.
**4. RAG Pipeline**:
Extensive RAG capabilities that cover everything from document ingestion to retrieval, with out-of-box support for text extraction from PDFs, PPTs, and other common document formats.
**4. AI Agent**: Function Calling 'ej ReAct Daq Hurmey, Agent inference framework Hoch users customize tools, vaj 'oH QaQ. Dify Hoch loS ghaH 'ej wa'vatlh built-in tool calling capabilities, Google Search, DELL·E, Stable Diffusion, WolframAlpha, 'ej.
**5. Agent capabilities**:
You can define agents based on LLM Function Calling or ReAct, and add pre-built or custom tools for the agent. Dify provides 50+ built-in tools for AI agents, such as Google Search, DELL·E, Stable Diffusion and WolframAlpha.
**5. QaS muDHa'wI': cha'logh wa' pIq mI' logs 'ej quv yIn, vItlhutlh tIq 'e'wIj lo'taHmoHmoH Prompts, vItlhutlh, Hurmey ghaH production data jatlh.
**6. LLMOps**:
Monitor and analyze application logs and performance over time. You could continuously improve prompts, datasets, and models based on production data and annotations.
## Do'wI' qabmey lo'taH
**7. Backend-as-a-Service**:
All of Dify's offerings come with corresponding APIs, so you could effortlessly integrate Dify into your own business logic.
**maHvaD jatlhchugh, GitHub Daq Hoch chu' ghompu'vam tIqel yInob!**
![star-us](https://github.com/langgenius/dify/assets/100913391/95f37259-7370-4456-a9f0-0bc01ef8642f)
## Feature Comparison
<table style="width: 100%;">
<tr
- [Website](https://dify.ai)
- [Docs](https://docs.dify.ai)
- [lo'taHmoH Docs](https://docs.dify.ai/getting-started/install-self-hosted)
- [FAQ](https://docs.dify.ai/getting-started/faq)
>
<th align="center">Feature</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Programming Approach</td>
<td align="center">API + App-oriented</td>
<td align="center">Python Code</td>
<td align="center">App-oriented</td>
<td align="center">API-oriented</td>
</tr>
<tr>
<td align="center">Supported LLMs</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">OpenAI-only</td>
</tr>
<tr>
<td align="center">RAG Engine</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Workflow</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Observability</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Enterprise Feature (SSO/Access control)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Local Deployment</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Community Edition tu' yo'
## Using Dify
### System Qab
- **Cloud </br>**
We host a [Dify Cloud](https://dify.ai) service for anyone to try with zero setup. It provides all the capabilities of the self-deployed version, and includes 200 free GPT-4 calls in the sandbox plan.
Dify yo' yo' qaqmeH SuS chenmoH 'oH qech!
- **Self-hosting Dify Community Edition</br>**
Quickly get Dify running in your environment with this [starter guide](#quick-start).
Use our [documentation](https://docs.dify.ai) for further references and more in-depth instructions.
- CPU >= 2 Cores
- RAM >= 4GB
- **Dify for Enterprise / Organizations</br>**
We provide additional enterprise-centric features. [Schedule a meeting with us](https://cal.com/guchenhe/30min) or [send us an email](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry) to discuss enterprise needs. </br>
> For startups and small businesses using AWS, check out [Dify Premium on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) and deploy it to your own AWS VPC with one-click. It's an affordable AMI offering with the option to create apps with custom logo and branding.
### Quick Start
## Staying ahead
Star Dify on GitHub and be instantly notified of new releases.
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Quick Start
> Before installing Dify, make sure your machine meets the following minimum system requirements:
>
>- CPU >= 2 Core
>- RAM >= 4GB
</br>
The easiest way to start the Dify server is to run our [docker-compose.yml](docker/docker-compose.yaml) file. Before running the installation command, make sure that [Docker](https://docs.docker.com/get-docker/) and [Docker Compose](https://docs.docker.com/compose/install/) are installed on your machine:
Dify server luHoHtaHlu' vIngeH lo'laHbe'chugh vIyoD [docker-compose.yml](docker/docker-compose.yaml) QorwI'ghach. toH yItlhutlh chenmoH luH!chugh 'ay' vaj vIneHmeH, 'ej [Docker](https://docs.docker.com/get-docker/) 'ej [Docker Compose](https://docs.docker.com/compose/install/) vaj 'oH 'e' vIneHmeH:
```bash
cd docker
docker compose up -d
```
After running, you can access the Dify dashboard in your browser at [http://localhost/install](http://localhost/install) and start the initialization process.
luHoHtaHmeH HoHtaHvIS, Dify dashboard vIneHmeH vIngeH lI'wI' [http://localhost/install](http://localhost/install) 'ej 'oH initialization 'e' vIneHmeH.
> If you'd like to contribute to Dify or do additional development, refer to our [guide to deploying from source code](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
### Helm Chart
## Next steps
@BorisPolonsky Dify wIq tIq ['ay'var (Helm Chart)](https://helm.sh/) version Hur yIn chu' Dify luHoHchu'. Heghlu'lu' vIneHmeH [https://github.com/BorisPolonsky/dify-helm](https://github.com/BorisPolonsky/dify-helm) 'ej vaj QaS deployment information.
If you need to customize the configuration, please refer to the comments in our [docker-compose.yml](docker/docker-compose.yaml) file and manually set the environment configuration. After making the changes, please run `docker-compose up -d` again. You can see the full list of environment variables [here](https://docs.dify.ai/getting-started/install-self-hosted/environments).
### veS config
If you'd like to configure a highly-available setup, there are community-contributed [Helm Charts](https://helm.sh/) which allow Dify to be deployed on Kubernetes.
chenmoHDI' config lo'taH ghaH, vItlhutlh HIq wIgharghbe'lu'pu'. toH lo'taHvIS pagh vay' vIneHmeH, 'ej `docker-compose up -d` wa'DIch. tIqmoHmeH list full wa' lo'taHvo'lu'pu' ghaH [docs](https://docs.dify.ai/getting-started/install-self-hosted/environments).
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
## tIng qem
[![tIng qem Hur Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Contributing
## choHmoH 'ej vItlhutlh
For those who'd like to contribute code, see our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
At the same time, please consider supporting Dify by sharing it on social media and at events and conferences.
Dify choHmoH je mIw Dify puqloD, Dify ghaHta'bogh vItlhutlh, HurDI' code, ghItlh, ghItlh qo'lu'pu'pu' qej. tIqmeH, Hurmey je, Dify Hur tIqDI' woDDaj, DuD QangmeH 'ej HInobDaq vItlhutlh HImej Dify'e'.
- [GitHub vItlhutlh](https://github.com/langgenius/dify/issues). Hurmey: bugs 'ej errors Dify.AI tIqmeH. yImej [Contribution Guide](CONTRIBUTING.md).
- [Email QaH](mailto:hello@dify.ai?subject=[GitHub]Questions%20About%20Dify). Hurmey: questions vItlhutlh Dify.AI chaw'.
- [Discord](https://discord.gg/FngNHpbcY7). Hurmey: jIpuv 'ej jImej mIw Dify vItlhutlh.
- [Twitter](https://twitter.com/dify_ai). Hurmey: jIpuv 'ej jImej mIw Dify vItlhutlh.
- [Business License](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry). Hurmey: qurgh vItlhutlh Hurmey Dify.AI tIqbe'law'.
> We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/8Tpq4AcN9c).
## bIQDaqmey bom
**Contributors**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Community & Contact
* [Github Discussion](https://github.com/langgenius/dify/discussions
). Best for: sharing feedback and asking questions.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Email](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). Best for: questions you have about using Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
* [Twitter](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
Or, schedule a meeting directly with a team member:
<table>
<tr>
<th>Point of Contact</th>
<th>Purpose</th>
</tr>
<tr>
<td><a href='https://cal.com/guchenhe/15min' target='_blank'><img class="schedule-button" src='https://github.com/langgenius/dify/assets/13230914/9ebcd111-1205-4d71-83d5-948d70b809f5' alt='Git-Hub-README-Button-3x' style="width: 180px; height: auto; object-fit: contain;"/></a></td>
<td>Business enquiries & product feedback</td>
</tr>
<tr>
<td><a href='https://cal.com/pinkbanana' target='_blank'><img class="schedule-button" src='https://github.com/langgenius/dify/assets/13230914/d1edd00a-d7e4-4513-be6c-e57038e143fd' alt='Git-Hub-README-Button-2x' style="width: 180px; height: auto; object-fit: contain;"/></a></td>
<td>Contributions, issues & feature requests</td>
</tr>
</table>
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Security Disclosure
To protect your privacy, please avoid posting security issues on GitHub. Instead, send your questions to security@dify.ai and we will provide you with a more detailed answer.
taghlI' vIngeH'a'? pong security 'oH posting GitHub. yItlhutlh, toH security@dify.ai 'ej vIngeH'a'.
## License
This repository is available under the [Dify Open Source License](LICENSE), which is essentially Apache 2.0 with a few additional restrictions.
ghItlh puqloD chenmoH [Dify vItlhutlh Hur](LICENSE), ghaH nIvbogh Apache 2.0.

View File

@ -39,7 +39,7 @@ DB_DATABASE=dify
# Storage configuration
# use for store upload files, private keys...
# storage type: local, s3, azure-blob
# storage type: local, s3
STORAGE_TYPE=local
STORAGE_LOCAL_PATH=storage
S3_ENDPOINT=https://your-bucket-name.storage.s3.clooudflare.com
@ -47,17 +47,12 @@ S3_BUCKET_NAME=your-bucket-name
S3_ACCESS_KEY=your-access-key
S3_SECRET_KEY=your-secret-key
S3_REGION=your-region
# Azure Blob Storage configuration
AZURE_BLOB_ACCOUNT_NAME=your-account-name
AZURE_BLOB_ACCOUNT_KEY=your-account-key
AZURE_BLOB_CONTAINER_NAME=yout-container-name
AZURE_BLOB_ACCOUNT_URL=https://<your_account_name>.blob.core.windows.net
# CORS configuration
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Vector database configuration, support: weaviate, qdrant, milvus, relyt
# Vector database configuration, support: weaviate, qdrant, milvus
VECTOR_STORE=weaviate
# Weaviate configuration
@ -78,13 +73,6 @@ MILVUS_USER=root
MILVUS_PASSWORD=Milvus
MILVUS_SECURE=false
# Relyt configuration
RELYT_HOST=127.0.0.1
RELYT_PORT=5432
RELYT_USER=postgres
RELYT_PASSWORD=postgres
RELYT_DATABASE=postgres
# Upload configuration
UPLOAD_FILE_SIZE_LIMIT=15
UPLOAD_FILE_BATCH_LIMIT=5
@ -144,19 +132,3 @@ SSRF_PROXY_HTTP_URL=
SSRF_PROXY_HTTPS_URL=
BATCH_UPLOAD_LIMIT=10
KEYWORD_DATA_SOURCE_TYPE=database
# CODE EXECUTION CONFIGURATION
CODE_EXECUTION_ENDPOINT=http://127.0.0.1:8194
CODE_EXECUTION_API_KEY=dify-sandbox
CODE_MAX_NUMBER=9223372036854775807
CODE_MIN_NUMBER=-9223372036854775808
CODE_MAX_STRING_LENGTH=80000
TEMPLATE_TRANSFORM_MAX_LENGTH=80000
CODE_MAX_STRING_ARRAY_LENGTH=30
CODE_MAX_OBJECT_ARRAY_LENGTH=30
CODE_MAX_NUMBER_ARRAY_LENGTH=1000
# API Tool configuration
API_TOOL_DEFAULT_CONNECT_TIMEOUT=10
API_TOOL_DEFAULT_READ_TIMEOUT=60

View File

@ -6,7 +6,7 @@
"configurations": [
{
"name": "Python: Celery",
"type": "debugpy",
"type": "python",
"request": "launch",
"module": "celery",
"justMyCode": true,
@ -21,7 +21,7 @@
},
{
"name": "Python: Flask",
"type": "debugpy",
"type": "python",
"request": "launch",
"module": "flask",
"env": {

View File

@ -11,8 +11,7 @@ RUN apt-get update \
COPY requirements.txt /requirements.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install --prefix=/pkg -r requirements.txt
RUN pip install --prefix=/pkg -r requirements.txt
# production stage
FROM base AS production

View File

@ -5,7 +5,7 @@
1. Start the docker-compose stack
The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using `docker-compose`.
```bash
cd ../docker
docker-compose -f docker-compose.middleware.yaml -p dify up -d
@ -15,18 +15,18 @@
3. Generate a `SECRET_KEY` in the `.env` file.
```bash
sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
openssl rand -base64 42
```
4. If you use Anaconda, create a new environment and activate it
3.5 If you use annaconda, create a new environment and activate it
```bash
conda create --name dify python=3.10
conda activate dify
```
5. Install dependencies
4. Install dependencies
```bash
pip install -r requirements.txt
```
6. Run migrate
5. Run migrate
Before the first launch, migrate the database to the latest version.
@ -46,12 +46,10 @@
```
pip install -r requirements.txt --upgrade --force-reinstall
```
7. Start backend:
6. Start backend:
```bash
flask run --host 0.0.0.0 --port=5001 --debug
```
8. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
9. If you need to debug local async processing, please start the worker service by running
`celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail`.
The started celery app handles the async tasks, e.g. dataset importing and documents indexing.
7. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
8. If you need to debug local async processing, you can run `celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail`, celery can do dataset importing and other async tasks.

View File

@ -1,14 +1,17 @@
import os
from werkzeug.exceptions import Unauthorized
if not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true':
from gevent import monkey
monkey.patch_all()
# if os.environ.get("VECTOR_STORE") == 'milvus':
import grpc.experimental.gevent
grpc.experimental.gevent.init_gevent()
import langchain
langchain.verbose = True
import json
import logging
import threading
@ -18,13 +21,11 @@ import warnings
from flask import Flask, Response, request
from flask_cors import CORS
from werkzeug.exceptions import Unauthorized
from commands import register_commands
from config import CloudEditionConfig, Config
from extensions import (
ext_celery,
ext_code_based_extension,
ext_compress,
ext_database,
ext_hosting_provider,
ext_login,
@ -42,7 +43,6 @@ from services.account_service import AccountService
# DO NOT REMOVE BELOW
from events import event_handlers
from models import account, dataset, model, source, task, tool, tools, web
# DO NOT REMOVE ABOVE
@ -50,7 +50,7 @@ warnings.simplefilter("ignore", ResourceWarning)
# fix windows platform
if os.name == "nt":
os.system('tzutil /s "UTC"')
os.system('tzutil /s "UTC"')
else:
os.environ['TZ'] = 'UTC'
time.tzset()
@ -59,7 +59,6 @@ else:
class DifyApp(Flask):
pass
# -------------
# Configuration
# -------------
@ -67,7 +66,6 @@ class DifyApp(Flask):
config_type = os.getenv('EDITION', default='SELF_HOSTED') # ce edition first
# ----------------------------
# Application Factory Function
# ----------------------------
@ -98,7 +96,6 @@ def create_app(test_config=None) -> Flask:
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_compress.init_app(app)
ext_code_based_extension.init()
ext_database.init_app(app)
ext_migrate.init(app, db)
@ -193,6 +190,7 @@ def register_blueprints(app):
app = create_app()
celery = app.extensions["celery"]
if app.config['TESTING']:
print("App is running in TESTING mode")

View File

@ -15,7 +15,7 @@ from libs.rsa import generate_key_pair
from models.account import Tenant
from models.dataset import Dataset, DatasetCollectionBinding, DocumentSegment
from models.dataset import Document as DatasetDocument
from models.model import Account, App, AppAnnotationSetting, AppMode, Conversation, MessageAnnotation
from models.model import Account, App, AppAnnotationSetting, MessageAnnotation
from models.provider import Provider, ProviderModel
@ -109,20 +109,19 @@ def reset_encrypt_key_pair():
click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))
return
tenants = db.session.query(Tenant).all()
for tenant in tenants:
if not tenant:
click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
return
tenant = db.session.query(Tenant).first()
if not tenant:
click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
return
tenant.encrypt_public_key = generate_key_pair(tenant.id)
tenant.encrypt_public_key = generate_key_pair(tenant.id)
db.session.query(Provider).filter(Provider.provider_type == 'custom', Provider.tenant_id == tenant.id).delete()
db.session.query(ProviderModel).filter(ProviderModel.tenant_id == tenant.id).delete()
db.session.commit()
db.session.query(Provider).filter(Provider.provider_type == 'custom').delete()
db.session.query(ProviderModel).delete()
db.session.commit()
click.echo(click.style('Congratulations! '
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
click.echo(click.style('Congratulations! '
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
@click.command('vdb-migrate', help='migrate vector db.')
@ -255,7 +254,7 @@ def migrate_knowledge_vector_database():
for dataset in datasets:
total_count = total_count + 1
click.echo(f'Processing the {total_count} dataset {dataset.id}. '
+ f'{create_count} created, {skipped_count} skipped.')
+ f'{create_count} created, ${skipped_count} skipped.')
try:
click.echo('Create dataset vdb index: {}'.format(dataset.id))
if dataset.index_struct_dict:
@ -297,14 +296,6 @@ def migrate_knowledge_vector_database():
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == "relyt":
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'relyt',
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
else:
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
@ -379,70 +370,8 @@ def migrate_knowledge_vector_database():
fg='green'))
@click.command('convert-to-agent-apps', help='Convert Agent Assistant to Agent App.')
def convert_to_agent_apps():
"""
Convert Agent Assistant to Agent App.
"""
click.echo(click.style('Start convert to agent apps.', fg='green'))
proceeded_app_ids = []
while True:
# fetch first 1000 apps
sql_query = """SELECT a.id AS id FROM apps a
INNER JOIN app_model_configs am ON a.app_model_config_id=am.id
WHERE a.mode = 'chat'
AND am.agent_mode is not null
AND (
am.agent_mode like '%"strategy": "function_call"%'
OR am.agent_mode like '%"strategy": "react"%'
)
AND (
am.agent_mode like '{"enabled": true%'
OR am.agent_mode like '{"max_iteration": %'
) ORDER BY a.created_at DESC LIMIT 1000
"""
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query))
apps = []
for i in rs:
app_id = str(i.id)
if app_id not in proceeded_app_ids:
proceeded_app_ids.append(app_id)
app = db.session.query(App).filter(App.id == app_id).first()
apps.append(app)
if len(apps) == 0:
break
for app in apps:
click.echo('Converting app: {}'.format(app.id))
try:
app.mode = AppMode.AGENT_CHAT.value
db.session.commit()
# update conversation mode to agent
db.session.query(Conversation).filter(Conversation.app_id == app.id).update(
{Conversation.mode: AppMode.AGENT_CHAT.value}
)
db.session.commit()
click.echo(click.style('Converted app: {}'.format(app.id), fg='green'))
except Exception as e:
click.echo(
click.style('Convert app error: {} {}'.format(e.__class__.__name__,
str(e)), fg='red'))
click.echo(click.style('Congratulations! Converted {} agent apps.'.format(len(proceeded_app_ids)), fg='green'))
def register_commands(app):
app.cli.add_command(reset_password)
app.cli.add_command(reset_email)
app.cli.add_command(reset_encrypt_key_pair)
app.cli.add_command(vdb_migrate)
app.cli.add_command(convert_to_agent_apps)

View File

@ -22,13 +22,11 @@ DEFAULTS = {
'SERVICE_API_URL': 'https://api.dify.ai',
'APP_WEB_URL': 'https://udify.app',
'FILES_URL': '',
'S3_ADDRESS_STYLE': 'auto',
'STORAGE_TYPE': 'local',
'STORAGE_LOCAL_PATH': 'storage',
'CHECK_UPDATE_URL': 'https://updates.dify.ai',
'DEPLOY_ENV': 'PRODUCTION',
'SQLALCHEMY_POOL_SIZE': 30,
'SQLALCHEMY_MAX_OVERFLOW': 10,
'SQLALCHEMY_POOL_RECYCLE': 3600,
'SQLALCHEMY_ECHO': 'False',
'SENTRY_TRACES_SAMPLE_RATE': 1.0,
@ -42,7 +40,7 @@ DEFAULTS = {
'HOSTED_OPENAI_TRIAL_ENABLED': 'False',
'HOSTED_OPENAI_TRIAL_MODELS': 'gpt-3.5-turbo,gpt-3.5-turbo-1106,gpt-3.5-turbo-instruct,gpt-3.5-turbo-16k,gpt-3.5-turbo-16k-0613,gpt-3.5-turbo-0613,gpt-3.5-turbo-0125,text-davinci-003',
'HOSTED_OPENAI_PAID_ENABLED': 'False',
'HOSTED_OPENAI_PAID_MODELS': 'gpt-4,gpt-4-turbo-preview,gpt-4-turbo-2024-04-09,gpt-4-1106-preview,gpt-4-0125-preview,gpt-3.5-turbo,gpt-3.5-turbo-16k,gpt-3.5-turbo-16k-0613,gpt-3.5-turbo-1106,gpt-3.5-turbo-0613,gpt-3.5-turbo-0125,gpt-3.5-turbo-instruct,text-davinci-003',
'HOSTED_OPENAI_PAID_MODELS': 'gpt-4,gpt-4-turbo-preview,gpt-4-1106-preview,gpt-4-0125-preview,gpt-3.5-turbo,gpt-3.5-turbo-16k,gpt-3.5-turbo-16k-0613,gpt-3.5-turbo-1106,gpt-3.5-turbo-0613,gpt-3.5-turbo-0125,gpt-3.5-turbo-instruct,text-davinci-003',
'HOSTED_AZURE_OPENAI_ENABLED': 'False',
'HOSTED_AZURE_OPENAI_QUOTA_LIMIT': 200,
'HOSTED_ANTHROPIC_QUOTA_LIMIT': 600000,
@ -50,8 +48,6 @@ DEFAULTS = {
'HOSTED_ANTHROPIC_PAID_ENABLED': 'False',
'HOSTED_MODERATION_ENABLED': 'False',
'HOSTED_MODERATION_PROVIDERS': '',
'HOSTED_FETCH_APP_TEMPLATES_MODE': 'remote',
'HOSTED_FETCH_APP_TEMPLATES_REMOTE_DOMAIN': 'https://tmpl.dify.ai',
'CLEAN_DAY_SETTING': 30,
'UPLOAD_FILE_SIZE_LIMIT': 15,
'UPLOAD_FILE_BATCH_LIMIT': 5,
@ -63,12 +59,7 @@ DEFAULTS = {
'CAN_REPLACE_LOGO': 'False',
'ETL_TYPE': 'dify',
'KEYWORD_STORE': 'jieba',
'BATCH_UPLOAD_LIMIT': 20,
'CODE_EXECUTION_ENDPOINT': 'http://sandbox:8194',
'CODE_EXECUTION_API_KEY': 'dify-sandbox',
'TOOL_ICON_CACHE_MAX_AGE': 3600,
'MILVUS_DATABASE': 'default',
'KEYWORD_DATA_SOURCE_TYPE': 'database',
'BATCH_UPLOAD_LIMIT': 20
}
@ -99,7 +90,7 @@ class Config:
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.6.3"
self.CURRENT_VERSION = "0.5.8"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@ -155,7 +146,6 @@ class Config:
self.SQLALCHEMY_DATABASE_URI = f"postgresql://{db_credentials['DB_USERNAME']}:{db_credentials['DB_PASSWORD']}@{db_credentials['DB_HOST']}:{db_credentials['DB_PORT']}/{db_credentials['DB_DATABASE']}{db_extras}"
self.SQLALCHEMY_ENGINE_OPTIONS = {
'pool_size': int(get_env('SQLALCHEMY_POOL_SIZE')),
'max_overflow': int(get_env('SQLALCHEMY_MAX_OVERFLOW')),
'pool_recycle': int(get_env('SQLALCHEMY_POOL_RECYCLE'))
}
@ -190,15 +180,10 @@ class Config:
self.S3_ACCESS_KEY = get_env('S3_ACCESS_KEY')
self.S3_SECRET_KEY = get_env('S3_SECRET_KEY')
self.S3_REGION = get_env('S3_REGION')
self.S3_ADDRESS_STYLE = get_env('S3_ADDRESS_STYLE')
self.AZURE_BLOB_ACCOUNT_NAME = get_env('AZURE_BLOB_ACCOUNT_NAME')
self.AZURE_BLOB_ACCOUNT_KEY = get_env('AZURE_BLOB_ACCOUNT_KEY')
self.AZURE_BLOB_CONTAINER_NAME = get_env('AZURE_BLOB_CONTAINER_NAME')
self.AZURE_BLOB_ACCOUNT_URL = get_env('AZURE_BLOB_ACCOUNT_URL')
# ------------------------
# Vector Store Configurations.
# Currently, only support: qdrant, milvus, zilliz, weaviate, relyt
# Currently, only support: qdrant, milvus, zilliz, weaviate
# ------------------------
self.VECTOR_STORE = get_env('VECTOR_STORE')
self.KEYWORD_STORE = get_env('KEYWORD_STORE')
@ -213,7 +198,6 @@ class Config:
self.MILVUS_USER = get_env('MILVUS_USER')
self.MILVUS_PASSWORD = get_env('MILVUS_PASSWORD')
self.MILVUS_SECURE = get_env('MILVUS_SECURE')
self.MILVUS_DATABASE = get_env('MILVUS_DATABASE')
# weaviate settings
self.WEAVIATE_ENDPOINT = get_env('WEAVIATE_ENDPOINT')
@ -221,13 +205,6 @@ class Config:
self.WEAVIATE_GRPC_ENABLED = get_bool_env('WEAVIATE_GRPC_ENABLED')
self.WEAVIATE_BATCH_SIZE = int(get_env('WEAVIATE_BATCH_SIZE'))
# relyt settings
self.RELYT_HOST = get_env('RELYT_HOST')
self.RELYT_PORT = get_env('RELYT_PORT')
self.RELYT_USER = get_env('RELYT_USER')
self.RELYT_PASSWORD = get_env('RELYT_PASSWORD')
self.RELYT_DATABASE = get_env('RELYT_DATABASE')
# ------------------------
# Mail Configurations.
# ------------------------
@ -309,10 +286,6 @@ class Config:
self.HOSTED_MODERATION_ENABLED = get_bool_env('HOSTED_MODERATION_ENABLED')
self.HOSTED_MODERATION_PROVIDERS = get_env('HOSTED_MODERATION_PROVIDERS')
# fetch app templates mode, remote, builtin, db(only for dify SaaS), default: remote
self.HOSTED_FETCH_APP_TEMPLATES_MODE = get_env('HOSTED_FETCH_APP_TEMPLATES_MODE')
self.HOSTED_FETCH_APP_TEMPLATES_REMOTE_DOMAIN = get_env('HOSTED_FETCH_APP_TEMPLATES_REMOTE_DOMAIN')
self.ETL_TYPE = get_env('ETL_TYPE')
self.UNSTRUCTURED_API_URL = get_env('UNSTRUCTURED_API_URL')
self.BILLING_ENABLED = get_bool_env('BILLING_ENABLED')
@ -320,13 +293,6 @@ class Config:
self.BATCH_UPLOAD_LIMIT = get_env('BATCH_UPLOAD_LIMIT')
self.CODE_EXECUTION_ENDPOINT = get_env('CODE_EXECUTION_ENDPOINT')
self.CODE_EXECUTION_API_KEY = get_env('CODE_EXECUTION_API_KEY')
self.API_COMPRESSION_ENABLED = get_bool_env('API_COMPRESSION_ENABLED')
self.TOOL_ICON_CACHE_MAX_AGE = get_env('TOOL_ICON_CACHE_MAX_AGE')
self.KEYWORD_DATA_SOURCE_TYPE = get_env('KEYWORD_DATA_SOURCE_TYPE')
class CloudEditionConfig(Config):

View File

@ -1,6 +1,8 @@
import json
from models.model import AppModelConfig
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT', 'uk-UA', 'vi-VN']
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT', 'uk-UA']
language_timezone_mapping = {
'en-US': 'America/New_York',
@ -14,7 +16,6 @@ language_timezone_mapping = {
'ru-RU': 'Europe/Moscow',
'it-IT': 'Europe/Rome',
'uk-UA': 'Europe/Kyiv',
'vi-VN': 'Asia/Ho_Chi_Minh',
}
@ -25,3 +26,439 @@ def supported_language(lang):
error = ('{lang} is not a valid language.'
.format(lang=lang))
raise ValueError(error)
user_input_form_template = {
"en-US": [
{
"paragraph": {
"label": "Query",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"zh-Hans": [
{
"paragraph": {
"label": "查询内容",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"pt-BR": [
{
"paragraph": {
"label": "Consulta",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"es-ES": [
{
"paragraph": {
"label": "Consulta",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"ua-UK": [
{
"paragraph": {
"label": "Запит",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
}
demo_model_templates = {
'en-US': [
{
'name': 'Translation Assistant',
'icon': '',
'icon_background': '',
'description': 'A multilingual translator that provides translation capabilities in multiple languages, translating user input into the language they need.',
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "Please translate the following text into {{target_language}}:\n",
'prompt_variables': [
{
"key": "target_language",
"name": "Target Language",
"description": "The language you want to translate into.",
"type": "select",
"default": "Chinese",
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
],
'completion_params': {
'max_token': 1000,
'temperature': 0,
'top_p': 0,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='',
suggested_questions=None,
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=json.dumps([
{
"select": {
"label": "Target Language",
"variable": "target_language",
"description": "The language you want to translate into.",
"default": "Chinese",
"required": True,
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
}, {
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
'name': 'AI Front-end Interviewer',
'icon': '',
'icon_background': '',
'description': 'A simulated front-end interviewer that tests the skill level of front-end development through questioning.',
'mode': 'chat',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo',
configs={
'introduction': 'Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
'prompt_template': "You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
'prompt_variables': [],
'completion_params': {
'max_token': 300,
'temperature': 0.8,
'top_p': 0.9,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
suggested_questions=None,
pre_prompt="You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=None
)
}
],
'zh-Hans': [
{
'name': '翻译助手',
'icon': '',
'icon_background': '',
'description': '一个多语言翻译器,提供多种语言翻译能力,将用户输入的文本翻译成他们需要的语言。',
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "请将以下文本翻译为{{target_language}}:\n",
'prompt_variables': [
{
"key": "target_language",
"name": "目标语言",
"description": "翻译的目标语言",
"type": "select",
"default": "中文",
"options": [
"中文",
"英文",
"日语",
"法语",
"俄语",
"德语",
"西班牙语",
"韩语",
"意大利语",
]
}
],
'completion_params': {
'max_token': 1000,
'temperature': 0,
'top_p': 0,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='',
suggested_questions=None,
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=json.dumps([
{
"select": {
"label": "目标语言",
"variable": "target_language",
"description": "翻译的目标语言",
"default": "中文",
"required": True,
'options': [
"中文",
"英文",
"日语",
"法语",
"俄语",
"德语",
"西班牙语",
"韩语",
"意大利语",
]
}
}, {
"paragraph": {
"label": "文本内容",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
'name': 'AI 前端面试官',
'icon': '',
'icon_background': '',
'description': '一个模拟的前端面试官,通过提问的方式对前端开发的技能水平进行检验。',
'mode': 'chat',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo',
configs={
'introduction': '你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
'prompt_template': "你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
'prompt_variables': [],
'completion_params': {
'max_token': 300,
'temperature': 0.8,
'top_p': 0.9,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
suggested_questions=None,
pre_prompt="你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=None
)
}
],
'uk-UA': [{
"name": "Помічник перекладу",
"icon": "",
"icon_background": "",
"description": "Багатомовний перекладач, який надає можливості перекладу різними мовами, перекладаючи введені користувачем дані на потрібну мову.",
"mode": "completion",
"model_config": AppModelConfig(
provider="openai",
model_id="gpt-3.5-turbo-instruct",
configs={
"prompt_template": "Будь ласка, перекладіть наступний текст на {{target_language}}:\n",
"prompt_variables": [
{
"key": "target_language",
"name": "Цільова мова",
"description": "Мова, на яку ви хочете перекласти.",
"type": "select",
"default": "Ukrainian",
"options": [
"Chinese",
"English",
"Japanese",
"French",
"Russian",
"German",
"Spanish",
"Korean",
"Italian",
],
},
],
"completion_params": {
"max_token": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
},
opening_statement="",
suggested_questions=None,
pre_prompt="Будь ласка, перекладіть наступний текст на {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
}),
user_input_form=json.dumps([
{
"select": {
"label": "Цільова мова",
"variable": "target_language",
"description": "Мова, на яку ви хочете перекласти.",
"default": "Chinese",
"required": True,
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
}, {
"paragraph": {
"label": "Запит",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
"name": "AI інтерв’юер фронтенду",
"icon": "",
"icon_background": "",
"description": "Симульований інтерв’юер фронтенду, який перевіряє рівень кваліфікації у розробці фронтенду через опитування.",
"mode": "chat",
"model_config": AppModelConfig(
provider="openai",
model_id="gpt-3.5-turbo",
configs={
"introduction": "Привіт, ласкаво просимо на наше співбесіду. Я інтерв'юер цієї технологічної компанії, і я перевірю ваші навички веб-розробки фронтенду. Далі я поставлю вам декілька технічних запитань. Будь ласка, відповідайте якомога ретельніше. ",
"prompt_template": "Ви будете грати роль інтерв'юера технологічної компанії, перевіряючи навички розробки фронтенду користувача та ставлячи 5-10 чітких технічних питань.\n\nЗверніть увагу:\n- Ставте лише одне запитання за раз.\n- Після того, як користувач відповість на запитання, ставте наступне запитання безпосередньо, не намагаючись виправити будь-які помилки, допущені кандидатом.\n- Якщо ви вважаєте, що користувач не відповів правильно на кілька питань поспіль, задайте менше запитань.\n- Після того, як ви задали останнє запитання, ви можете поставити таке запитання: Чому ви залишили свою попередню роботу? Після того, як користувач відповість на це питання, висловіть своє розуміння та підтримку.\n",
"prompt_variables": [],
"completion_params": {
"max_token": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
},
opening_statement="Привіт, ласкаво просимо на наше співбесіду. Я інтерв'юер цієї технологічної компанії, і я перевірю ваші навички веб-розробки фронтенду. Далі я поставлю вам декілька технічних запитань. Будь ласка, відповідайте якомога ретельніше. ",
suggested_questions=None,
pre_prompt="Ви будете грати роль інтерв'юера технологічної компанії, перевіряючи навички розробки фронтенду користувача та ставлячи 5-10 чітких технічних питань.\n\nЗверніть увагу:\n- Ставте лише одне запитання за раз.\n- Після того, як користувач відповість на запитання, ставте наступне запитання безпосередньо, не намагаючись виправити будь-які помилки, допущені кандидатом.\n- Якщо ви вважаєте, що користувач не відповів правильно на кілька питань поспіль, задайте менше запитань.\n- Після того, як ви задали останнє запитання, ви можете поставити таке запитання: Чому ви залишили свою попередню роботу? Після того, як користувач відповість на це питання, висловіть своє розуміння та підтримку.\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
}),
user_input_form=None
),
}
],
}

View File

@ -1,31 +1,27 @@
import json
from models.model import AppMode
default_app_templates = {
# workflow default mode
AppMode.WORKFLOW: {
'app': {
'mode': AppMode.WORKFLOW.value,
'enable_site': True,
'enable_api': True
}
},
model_templates = {
# completion default mode
AppMode.COMPLETION: {
'completion_default': {
'app': {
'mode': AppMode.COMPLETION.value,
'mode': 'completion',
'enable_site': True,
'enable_api': True
'enable_api': True,
'is_demo': False,
'api_rpm': 0,
'api_rph': 0,
'status': 'normal'
},
'model_config': {
'model': {
'provider': '',
'model_id': '',
'configs': {},
'model': json.dumps({
"provider": "openai",
"name": "gpt-4",
"mode": "chat",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {}
},
}),
'user_input_form': json.dumps([
{
"paragraph": {
@ -37,50 +33,32 @@ default_app_templates = {
}
]),
'pre_prompt': '{{query}}'
},
}
},
# chat default mode
AppMode.CHAT: {
'chat_default': {
'app': {
'mode': AppMode.CHAT.value,
'mode': 'chat',
'enable_site': True,
'enable_api': True
'enable_api': True,
'is_demo': False,
'api_rpm': 0,
'api_rph': 0,
'status': 'normal'
},
'model_config': {
'model': {
'provider': '',
'model_id': '',
'configs': {},
'model': json.dumps({
"provider": "openai",
"name": "gpt-4",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {}
}
})
}
},
# advanced-chat default mode
AppMode.ADVANCED_CHAT: {
'app': {
'mode': AppMode.ADVANCED_CHAT.value,
'enable_site': True,
'enable_api': True
}
},
# agent-chat default mode
AppMode.AGENT_CHAT: {
'app': {
'mode': AppMode.AGENT_CHAT.value,
'enable_site': True,
'enable_api': True
},
'model_config': {
'model': {
"provider": "openai",
"name": "gpt-4",
"mode": "chat",
"completion_params": {}
}
}
}
}

File diff suppressed because one or more lines are too long

View File

@ -5,10 +5,10 @@ bp = Blueprint('console', __name__, url_prefix='/console/api')
api = ExternalApi(bp)
# Import other controllers
from . import admin, apikey, extension, feature, setup, version, ping
from . import admin, apikey, extension, feature, setup, version
# Import app controllers
from .app import (advanced_prompt_template, annotation, app, audio, completion, conversation, generator, message,
model_config, site, statistic, workflow, workflow_run, workflow_app_log, workflow_statistic, agent)
model_config, site, statistic)
# Import auth controllers
from .auth import activate, data_source_oauth, login, oauth
# Import billing controllers
@ -16,7 +16,6 @@ from .billing import billing
# Import datasets controllers
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing
# Import explore controllers
from .explore import (audio, completion, conversation, installed_app, message, parameter, recommended_app,
saved_message, workflow)
from .explore import audio, completion, conversation, installed_app, message, parameter, recommended_app, saved_message
# Import workspace controllers
from .workspace import account, members, model_providers, models, tool_providers, workspace
from .workspace import account, members, model_providers, models, tool_providers, workspace

View File

@ -0,0 +1,21 @@
from controllers.console.app.error import AppUnavailableError
from extensions.ext_database import db
from flask_login import current_user
from models.model import App
from werkzeug.exceptions import NotFound
def _get_app(app_id, mode=None):
app = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == current_user.current_tenant_id,
App.status == 'normal'
).first()
if not app:
raise NotFound("App not found")
if mode and app.mode != mode:
raise NotFound("The {} app not found".format(mode))
return app

View File

@ -1,32 +0,0 @@
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.helper import uuid_value
from libs.login import login_required
from models.model import AppMode
from services.agent_service import AgentService
class AgentLogApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.AGENT_CHAT])
def get(self, app_model):
"""Get agent logs"""
parser = reqparse.RequestParser()
parser.add_argument('message_id', type=uuid_value, required=True, location='args')
parser.add_argument('conversation_id', type=uuid_value, required=True, location='args')
args = parser.parse_args()
return AgentService.get_agent_logs(
app_model,
args['conversation_id'],
args['message_id']
)
api.add_resource(AgentLogApi, '/apps/<uuid:app_id>/agent/logs')

View File

@ -1,28 +1,39 @@
import json
import logging
from datetime import datetime
from flask_login import current_user
from flask_restful import Resource, inputs, marshal_with, reqparse
from werkzeug.exceptions import Forbidden, BadRequest
from flask_restful import Resource, abort, inputs, marshal_with, reqparse
from werkzeug.exceptions import Forbidden
from constants.languages import demo_model_templates, languages
from constants.model_template import model_templates
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.agent.entities import AgentToolEntity
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager
from events.app_event import app_was_created, app_was_deleted
from extensions.ext_database import db
from fields.app_fields import (
app_detail_fields,
app_detail_fields_with_site,
app_pagination_fields,
template_list_fields,
)
from libs.login import login_required
from services.app_service import AppService
from models.model import App, AppModelConfig, AppMode
from core.tools.utils.configuration import ToolParameterConfigurationManager
from core.tools.tool_manager import ToolManager
from models.model import App, AppModelConfig, Site
from services.app_model_config_service import AppModelConfigService
ALLOW_CREATE_APP_MODES = ['chat', 'agent-chat', 'advanced-chat', 'workflow', 'completion']
def _get_app(app_id, tenant_id):
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id).first()
if not app:
raise AppNotFoundError
return app
class AppListApi(Resource):
@ -36,15 +47,33 @@ class AppListApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('page', type=inputs.int_range(1, 99999), required=False, default=1, location='args')
parser.add_argument('limit', type=inputs.int_range(1, 100), required=False, default=20, location='args')
parser.add_argument('mode', type=str, choices=['chat', 'workflow', 'agent-chat', 'channel', 'all'], default='all', location='args', required=False)
parser.add_argument('mode', type=str, choices=['chat', 'completion', 'all'], default='all', location='args', required=False)
parser.add_argument('name', type=str, location='args', required=False)
args = parser.parse_args()
# get app list
app_service = AppService()
app_pagination = app_service.get_paginate_apps(current_user.current_tenant_id, args)
filters = [
App.tenant_id == current_user.current_tenant_id,
App.is_universal == False
]
return app_pagination
if args['mode'] == 'completion':
filters.append(App.mode == 'completion')
elif args['mode'] == 'chat':
filters.append(App.mode == 'chat')
else:
pass
if 'name' in args and args['name']:
filters.append(App.name.ilike(f'%{args["name"]}%'))
app_models = db.paginate(
db.select(App).where(*filters).order_by(App.created_at.desc()),
page=args['page'],
per_page=args['limit'],
error_out=False
)
return app_models
@setup_required
@login_required
@ -55,49 +84,147 @@ class AppListApi(Resource):
"""Create app"""
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('description', type=str, location='json')
parser.add_argument('mode', type=str, choices=ALLOW_CREATE_APP_MODES, location='json')
parser.add_argument('mode', type=str, choices=['completion', 'chat', 'assistant'], location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
parser.add_argument('model_config', type=dict, location='json')
args = parser.parse_args()
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
if 'mode' not in args or args['mode'] is None:
raise BadRequest("mode is required")
try:
provider_manager = ProviderManager()
default_model_entity = provider_manager.get_default_model(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.LLM
)
except (ProviderTokenNotInitError, LLMBadRequestError):
default_model_entity = None
except Exception as e:
logging.exception(e)
default_model_entity = None
app_service = AppService()
app = app_service.create_app(current_user.current_tenant_id, args, current_user)
if args['model_config'] is not None:
# validate config
model_config_dict = args['model_config']
# Get provider configurations
provider_manager = ProviderManager()
provider_configurations = provider_manager.get_configurations(current_user.current_tenant_id)
# get available models from provider_configurations
available_models = provider_configurations.get_models(
model_type=ModelType.LLM,
only_active=True
)
# check if model is available
available_models_names = [f'{model.provider.provider}.{model.model}' for model in available_models]
provider_model = f"{model_config_dict['model']['provider']}.{model_config_dict['model']['name']}"
if provider_model not in available_models_names:
if not default_model_entity:
raise ProviderNotInitializeError(
"No Default System Reasoning Model available. Please configure "
"in the Settings -> Model Provider.")
else:
model_config_dict["model"]["provider"] = default_model_entity.provider.provider
model_config_dict["model"]["name"] = default_model_entity.model
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=model_config_dict,
app_mode=args['mode']
)
app = App(
enable_site=True,
enable_api=True,
is_demo=False,
api_rpm=0,
api_rph=0,
status='normal'
)
app_model_config = AppModelConfig()
app_model_config = app_model_config.from_model_config_dict(model_configuration)
else:
if 'mode' not in args or args['mode'] is None:
abort(400, message="mode is required")
model_config_template = model_templates[args['mode'] + '_default']
app = App(**model_config_template['app'])
app_model_config = AppModelConfig(**model_config_template['model_config'])
# get model provider
model_manager = ModelManager()
try:
model_instance = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.LLM
)
except ProviderTokenNotInitError:
model_instance = None
if model_instance:
model_dict = app_model_config.model_dict
model_dict['provider'] = model_instance.provider
model_dict['name'] = model_instance.model
app_model_config.model = json.dumps(model_dict)
app.name = args['name']
app.mode = args['mode']
app.icon = args['icon']
app.icon_background = args['icon_background']
app.tenant_id = current_user.current_tenant_id
db.session.add(app)
db.session.flush()
app_model_config.app_id = app.id
db.session.add(app_model_config)
db.session.flush()
app.app_model_config_id = app_model_config.id
account = current_user
site = Site(
app_id=app.id,
title=app.name,
default_language=account.interface_language,
customize_token_strategy='not_allow',
code=Site.generate_code(16)
)
db.session.add(site)
db.session.commit()
app_was_created.send(app)
return app, 201
class AppTemplateApi(Resource):
class AppImportApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(app_detail_fields_with_site)
@cloud_edition_billing_resource_check('apps')
def post(self):
"""Import app"""
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
@marshal_with(template_list_fields)
def get(self):
"""Get app demo templates"""
account = current_user
interface_language = account.interface_language
parser = reqparse.RequestParser()
parser.add_argument('data', type=str, required=True, nullable=False, location='json')
parser.add_argument('name', type=str, location='json')
parser.add_argument('description', type=str, location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
templates = demo_model_templates.get(interface_language)
if not templates:
templates = demo_model_templates.get(languages[0])
app_service = AppService()
app = app_service.import_app(current_user.current_tenant_id, args['data'], args, current_user)
return app, 201
return {'data': templates}
class AppApi(Resource):
@ -105,198 +232,176 @@ class AppApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields_with_site)
def get(self, app_model):
def get(self, app_id):
"""Get app detail"""
# get original app model config
if app_model.mode == AppMode.AGENT_CHAT.value or app_model.is_agent:
model_config: AppModelConfig = app_model.app_model_config
agent_mode = model_config.agent_mode_dict
# decrypt agent tool parameters if it's secret-input
for tool in agent_mode.get('tools') or []:
if not isinstance(tool, dict) or len(tool.keys()) <= 3:
continue
agent_tool_entity = AgentToolEntity(**tool)
# get tool
try:
tool_runtime = ToolManager.get_agent_tool_runtime(
tenant_id=current_user.current_tenant_id,
agent_tool=agent_tool_entity,
)
manager = ToolParameterConfigurationManager(
tenant_id=current_user.current_tenant_id,
tool_runtime=tool_runtime,
provider_name=agent_tool_entity.provider_id,
provider_type=agent_tool_entity.provider_type,
)
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
# get decrypted parameters
if agent_tool_entity.tool_parameters:
parameters = manager.decrypt_tool_parameters(agent_tool_entity.tool_parameters or {})
masked_parameter = manager.mask_tool_parameters(parameters or {})
else:
masked_parameter = {}
# override tool parameters
tool['tool_parameters'] = masked_parameter
except Exception as e:
pass
# override agent mode
model_config.agent_mode = json.dumps(agent_mode)
db.session.commit()
return app_model
return app
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields_with_site)
def put(self, app_model):
"""Update app"""
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, nullable=False, location='json')
parser.add_argument('description', type=str, location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app_service = AppService()
app_model = app_service.update_app(app_model, args)
return app_model
@setup_required
@login_required
@account_initialization_required
@get_app_model
def delete(self, app_model):
def delete(self, app_id):
"""Delete app"""
app_id = str(app_id)
if not current_user.is_admin_or_owner:
raise Forbidden()
app_service = AppService()
app_service.delete_app(app_model)
app = _get_app(app_id, current_user.current_tenant_id)
db.session.delete(app)
db.session.commit()
# todo delete related data??
# model_config, site, api_token, conversation, message, message_feedback, message_annotation
app_was_deleted.send(app)
return {'result': 'success'}, 204
class AppCopyApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields_with_site)
def post(self, app_model):
"""Copy app"""
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, location='json')
parser.add_argument('description', type=str, location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app_service = AppService()
data = app_service.export_app(app_model)
app = app_service.import_app(current_user.current_tenant_id, data, args, current_user)
return app, 201
class AppExportApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
"""Export app"""
app_service = AppService()
return {
"data": app_service.export_app(app_model)
}
class AppNameApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields)
def post(self, app_model):
def post(self, app_id):
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
args = parser.parse_args()
app_service = AppService()
app_model = app_service.update_app_name(app_model, args.get('name'))
return app_model
app.name = args.get('name')
app.updated_at = datetime.utcnow()
db.session.commit()
return app
class AppIconApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields)
def post(self, app_model):
def post(self, app_id):
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
parser = reqparse.RequestParser()
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app_service = AppService()
app_model = app_service.update_app_icon(app_model, args.get('icon'), args.get('icon_background'))
app.icon = args.get('icon')
app.icon_background = args.get('icon_background')
app.updated_at = datetime.utcnow()
db.session.commit()
return app_model
return app
class AppSiteStatus(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields)
def post(self, app_model):
def post(self, app_id):
parser = reqparse.RequestParser()
parser.add_argument('enable_site', type=bool, required=True, location='json')
args = parser.parse_args()
app_id = str(app_id)
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == current_user.current_tenant_id).first()
if not app:
raise AppNotFoundError
app_service = AppService()
app_model = app_service.update_app_site_status(app_model, args.get('enable_site'))
if args.get('enable_site') == app.enable_site:
return app
return app_model
app.enable_site = args.get('enable_site')
app.updated_at = datetime.utcnow()
db.session.commit()
return app
class AppApiStatus(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields)
def post(self, app_model):
def post(self, app_id):
parser = reqparse.RequestParser()
parser.add_argument('enable_api', type=bool, required=True, location='json')
args = parser.parse_args()
app_service = AppService()
app_model = app_service.update_app_api_status(app_model, args.get('enable_api'))
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
return app_model
if args.get('enable_api') == app.enable_api:
return app
app.enable_api = args.get('enable_api')
app.updated_at = datetime.utcnow()
db.session.commit()
return app
class AppCopy(Resource):
@staticmethod
def create_app_copy(app):
copy_app = App(
name=app.name + ' copy',
icon=app.icon,
icon_background=app.icon_background,
tenant_id=app.tenant_id,
mode=app.mode,
app_model_config_id=app.app_model_config_id,
enable_site=app.enable_site,
enable_api=app.enable_api,
api_rpm=app.api_rpm,
api_rph=app.api_rph
)
return copy_app
@staticmethod
def create_app_model_config_copy(app_config, copy_app_id):
copy_app_model_config = app_config.copy()
copy_app_model_config.app_id = copy_app_id
return copy_app_model_config
@setup_required
@login_required
@account_initialization_required
@marshal_with(app_detail_fields)
def post(self, app_id):
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
copy_app = self.create_app_copy(app)
db.session.add(copy_app)
app_config = db.session.query(AppModelConfig). \
filter(AppModelConfig.app_id == app_id). \
one_or_none()
if app_config:
copy_app_model_config = self.create_app_model_config_copy(app_config, copy_app.id)
db.session.add(copy_app_model_config)
db.session.commit()
copy_app.app_model_config_id = copy_app_model_config.id
db.session.commit()
return copy_app, 201
api.add_resource(AppListApi, '/apps')
api.add_resource(AppImportApi, '/apps/import')
api.add_resource(AppTemplateApi, '/app-templates')
api.add_resource(AppApi, '/apps/<uuid:app_id>')
api.add_resource(AppCopyApi, '/apps/<uuid:app_id>/copy')
api.add_resource(AppExportApi, '/apps/<uuid:app_id>/export')
api.add_resource(AppCopy, '/apps/<uuid:app_id>/copy')
api.add_resource(AppNameApi, '/apps/<uuid:app_id>/name')
api.add_resource(AppIconApi, '/apps/<uuid:app_id>/icon')
api.add_resource(AppSiteStatus, '/apps/<uuid:app_id>/site-enable')

View File

@ -6,6 +6,7 @@ from werkzeug.exceptions import InternalServerError
import services
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.error import (
AppUnavailableError,
AudioTooLargeError,
@ -17,13 +18,11 @@ from controllers.console.app.error import (
ProviderQuotaExceededError,
UnsupportedAudioTypeError,
)
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from models.model import AppMode
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -37,13 +36,15 @@ class ChatMessageAudioApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def post(self, app_model):
def post(self, app_id):
app_id = str(app_id)
app_model = _get_app(app_id, 'chat')
file = request.files['file']
try:
response = AudioService.transcript_asr(
app_model=app_model,
tenant_id=app_model.tenant_id,
file=file,
end_user=None,
)
@ -79,13 +80,15 @@ class ChatMessageTextApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def post(self, app_model):
def post(self, app_id):
app_id = str(app_id)
app_model = _get_app(app_id, None)
try:
response = AudioService.transcript_tts(
app_model=app_model,
tenant_id=app_model.tenant_id,
text=request.form['text'],
voice=request.form.get('voice'),
voice=request.form['voice'] if request.form['voice'] else app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=False
)
@ -117,11 +120,9 @@ class ChatMessageTextApi(Resource):
class TextModesApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
def get(self, app_id: str):
app_model = _get_app(str(app_id))
try:
parser = reqparse.RequestParser()
parser.add_argument('language', type=str, required=True, location='args')

View File

@ -1,11 +1,16 @@
import json
import logging
from collections.abc import Generator
from typing import Union
import flask_login
from flask import Response, stream_with_context
from flask_restful import Resource, reqparse
from werkzeug.exceptions import InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.error import (
AppUnavailableError,
CompletionRequestError,
@ -14,18 +19,15 @@ from controllers.console.app.error import (
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.helper import uuid_value
from libs.login import login_required
from models.model import AppMode
from services.app_generate_service import AppGenerateService
from services.completion_service import CompletionService
# define completion message api for user
@ -34,8 +36,12 @@ class CompletionMessageApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=AppMode.COMPLETION)
def post(self, app_model):
def post(self, app_id):
app_id = str(app_id)
# get app info
app_model = _get_app(app_id, 'completion')
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json', default='')
@ -51,15 +57,16 @@ class CompletionMessageApi(Resource):
account = flask_login.current_user
try:
response = AppGenerateService.generate(
response = CompletionService.completion(
app_model=app_model,
user=account,
args=args,
invoke_from=InvokeFrom.DEBUGGER,
streaming=streaming
streaming=streaming,
is_model_config_override=True
)
return helper.compact_generate_response(response)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -86,11 +93,15 @@ class CompletionMessageStopApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=AppMode.COMPLETION)
def post(self, app_model, task_id):
def post(self, app_id, task_id):
app_id = str(app_id)
# get app info
_get_app(app_id, 'completion')
account = flask_login.current_user
AppQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
return {'result': 'success'}, 200
@ -99,8 +110,12 @@ class ChatMessageApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT])
def post(self, app_model):
def post(self, app_id):
app_id = str(app_id)
# get app info
app_model = _get_app(app_id, 'chat')
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, required=True, location='json')
@ -117,15 +132,16 @@ class ChatMessageApi(Resource):
account = flask_login.current_user
try:
response = AppGenerateService.generate(
response = CompletionService.completion(
app_model=app_model,
user=account,
args=args,
invoke_from=InvokeFrom.DEBUGGER,
streaming=streaming
streaming=streaming,
is_model_config_override=True
)
return helper.compact_generate_response(response)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -148,15 +164,30 @@ class ChatMessageApi(Resource):
raise InternalServerError()
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
class ChatMessageStopApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def post(self, app_model, task_id):
def post(self, app_id, task_id):
app_id = str(app_id)
# get app info
_get_app(app_id, 'chat')
account = flask_login.current_user
AppQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
return {'result': 'success'}, 200

View File

@ -1,4 +1,4 @@
from datetime import datetime, timezone
from datetime import datetime
import pytz
from flask_login import current_user
@ -9,10 +9,9 @@ from sqlalchemy.orm import joinedload
from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.app.entities.app_invoke_entities import InvokeFrom
from extensions.ext_database import db
from fields.conversation_fields import (
conversation_detail_fields,
@ -22,7 +21,7 @@ from fields.conversation_fields import (
)
from libs.helper import datetime_string
from libs.login import login_required
from models.model import AppMode, Conversation, Message, MessageAnnotation
from models.model import Conversation, Message, MessageAnnotation
class CompletionConversationApi(Resource):
@ -30,9 +29,10 @@ class CompletionConversationApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=AppMode.COMPLETION)
@marshal_with(conversation_pagination_fields)
def get(self, app_model):
def get(self, app_id):
app_id = str(app_id)
parser = reqparse.RequestParser()
parser.add_argument('keyword', type=str, location='args')
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -43,7 +43,10 @@ class CompletionConversationApi(Resource):
parser.add_argument('limit', type=int_range(1, 100), default=20, location='args')
args = parser.parse_args()
query = db.select(Conversation).where(Conversation.app_id == app_model.id, Conversation.mode == 'completion')
# get app info
app = _get_app(app_id, 'completion')
query = db.select(Conversation).where(Conversation.app_id == app.id, Conversation.mode == 'completion')
if args['keyword']:
query = query.join(
@ -103,22 +106,24 @@ class CompletionConversationDetailApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=AppMode.COMPLETION)
@marshal_with(conversation_message_detail_fields)
def get(self, app_model, conversation_id):
def get(self, app_id, conversation_id):
app_id = str(app_id)
conversation_id = str(conversation_id)
return _get_conversation(app_model, conversation_id)
return _get_conversation(app_id, conversation_id, 'completion')
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def delete(self, app_model, conversation_id):
def delete(self, app_id, conversation_id):
app_id = str(app_id)
conversation_id = str(conversation_id)
app = _get_app(app_id, 'chat')
conversation = db.session.query(Conversation) \
.filter(Conversation.id == conversation_id, Conversation.app_id == app_model.id).first()
.filter(Conversation.id == conversation_id, Conversation.app_id == app.id).first()
if not conversation:
raise NotFound("Conversation Not Exists.")
@ -134,9 +139,10 @@ class ChatConversationApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
@marshal_with(conversation_with_summary_pagination_fields)
def get(self, app_model):
def get(self, app_id):
app_id = str(app_id)
parser = reqparse.RequestParser()
parser.add_argument('keyword', type=str, location='args')
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -148,7 +154,10 @@ class ChatConversationApi(Resource):
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
query = db.select(Conversation).where(Conversation.app_id == app_model.id)
# get app info
app = _get_app(app_id, 'chat')
query = db.select(Conversation).where(Conversation.app_id == app.id, Conversation.mode == 'chat')
if args['keyword']:
query = query.join(
@ -202,9 +211,6 @@ class ChatConversationApi(Resource):
.having(func.count(Message.id) >= args['message_count_gte'])
)
if app_model.mode == AppMode.ADVANCED_CHAT.value:
query = query.where(Conversation.invoke_from != InvokeFrom.DEBUGGER.value)
query = query.order_by(Conversation.created_at.desc())
conversations = db.paginate(
@ -222,22 +228,25 @@ class ChatConversationDetailApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
@marshal_with(conversation_detail_fields)
def get(self, app_model, conversation_id):
def get(self, app_id, conversation_id):
app_id = str(app_id)
conversation_id = str(conversation_id)
return _get_conversation(app_model, conversation_id)
return _get_conversation(app_id, conversation_id, 'chat')
@setup_required
@login_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
@account_initialization_required
def delete(self, app_model, conversation_id):
def delete(self, app_id, conversation_id):
app_id = str(app_id)
conversation_id = str(conversation_id)
# get app info
app = _get_app(app_id, 'chat')
conversation = db.session.query(Conversation) \
.filter(Conversation.id == conversation_id, Conversation.app_id == app_model.id).first()
.filter(Conversation.id == conversation_id, Conversation.app_id == app.id).first()
if not conversation:
raise NotFound("Conversation Not Exists.")
@ -254,15 +263,18 @@ api.add_resource(ChatConversationApi, '/apps/<uuid:app_id>/chat-conversations')
api.add_resource(ChatConversationDetailApi, '/apps/<uuid:app_id>/chat-conversations/<uuid:conversation_id>')
def _get_conversation(app_model, conversation_id):
def _get_conversation(app_id, conversation_id, mode):
# get app info
app = _get_app(app_id, mode)
conversation = db.session.query(Conversation) \
.filter(Conversation.id == conversation_id, Conversation.app_id == app_model.id).first()
.filter(Conversation.id == conversation_id, Conversation.app_id == app.id).first()
if not conversation:
raise NotFound("Conversation Not Exists.")
if not conversation.read_at:
conversation.read_at = datetime.now(timezone.utc).replace(tzinfo=None)
conversation.read_at = datetime.utcnow()
conversation.read_account_id = current_user.id
db.session.commit()

View File

@ -85,9 +85,3 @@ class TooManyFilesError(BaseHTTPException):
error_code = 'too_many_files'
description = "Only one file is allowed."
code = 400
class DraftWorkflowNotExist(BaseHTTPException):
error_code = 'draft_workflow_not_exist'
description = "Draft workflow need to be initialized."
code = 400

View File

@ -11,7 +11,7 @@ from controllers.console.app.error import (
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.llm_generator.llm_generator import LLMGenerator
from core.generator.llm_generator import LLMGenerator
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required

View File

@ -1,22 +1,26 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import Resource, fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.error import (
AppMoreLikeThisDisabledError,
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.app.wraps import get_app_model
from controllers.console.explore.error import AppSuggestedQuestionsAfterAnswerDisabledError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.app.entities.app_invoke_entities import InvokeFrom
from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from extensions.ext_database import db
@ -24,10 +28,12 @@ from fields.conversation_fields import annotation_fields, message_detail_fields
from libs.helper import uuid_value
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from libs.login import login_required
from models.model import AppMode, Conversation, Message, MessageAnnotation, MessageFeedback
from models.model import Conversation, Message, MessageAnnotation, MessageFeedback
from services.annotation_service import AppAnnotationService
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
from services.errors.message import MessageNotExistsError
from services.message_service import MessageService
@ -40,10 +46,14 @@ class ChatMessageListApi(Resource):
@setup_required
@login_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
@account_initialization_required
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, app_model):
def get(self, app_id):
app_id = str(app_id)
# get app info
app = _get_app(app_id, 'chat')
parser = reqparse.RequestParser()
parser.add_argument('conversation_id', required=True, type=uuid_value, location='args')
parser.add_argument('first_id', type=uuid_value, location='args')
@ -52,7 +62,7 @@ class ChatMessageListApi(Resource):
conversation = db.session.query(Conversation).filter(
Conversation.id == args['conversation_id'],
Conversation.app_id == app_model.id
Conversation.app_id == app.id
).first()
if not conversation:
@ -100,8 +110,12 @@ class MessageFeedbackApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def post(self, app_model):
def post(self, app_id):
app_id = str(app_id)
# get app info
app = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('message_id', required=True, type=uuid_value, location='json')
parser.add_argument('rating', type=str, choices=['like', 'dislike', None], location='json')
@ -111,7 +125,7 @@ class MessageFeedbackApi(Resource):
message = db.session.query(Message).filter(
Message.id == message_id,
Message.app_id == app_model.id
Message.app_id == app.id
).first()
if not message:
@ -127,7 +141,7 @@ class MessageFeedbackApi(Resource):
raise ValueError('rating cannot be None when feedback not exists')
else:
feedback = MessageFeedback(
app_id=app_model.id,
app_id=app.id,
conversation_id=message.conversation_id,
message_id=message.id,
rating=args['rating'],
@ -146,20 +160,21 @@ class MessageAnnotationApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check('annotation')
@get_app_model
@marshal_with(annotation_fields)
def post(self, app_model):
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
parser = reqparse.RequestParser()
parser.add_argument('message_id', required=False, type=uuid_value, location='json')
parser.add_argument('question', required=True, type=str, location='json')
parser.add_argument('answer', required=True, type=str, location='json')
parser.add_argument('annotation_reply', required=False, type=dict, location='json')
args = parser.parse_args()
annotation = AppAnnotationService.up_insert_app_annotation_from_message(args, app_model.id)
annotation = AppAnnotationService.up_insert_app_annotation_from_message(args, app_id)
return annotation
@ -168,29 +183,93 @@ class MessageAnnotationCountApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
def get(self, app_id):
app_id = str(app_id)
# get app info
app = _get_app(app_id)
count = db.session.query(MessageAnnotation).filter(
MessageAnnotation.app_id == app_model.id
MessageAnnotation.app_id == app.id
).count()
return {'count': count}
class MessageMoreLikeThisApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id, message_id):
app_id = str(app_id)
message_id = str(message_id)
parser = reqparse.RequestParser()
parser.add_argument('response_mode', type=str, required=True, choices=['blocking', 'streaming'],
location='args')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
# get app info
app_model = _get_app(app_id, 'completion')
try:
response = CompletionService.generate_more_like_this(
app_model=app_model,
user=current_user,
message_id=message_id,
invoke_from=InvokeFrom.DEBUGGER,
streaming=streaming
)
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
raise AppMoreLikeThisDisabledError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
class MessageSuggestedQuestionApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def get(self, app_model, message_id):
def get(self, app_id, message_id):
app_id = str(app_id)
message_id = str(message_id)
# get app info
app_model = _get_app(app_id, 'chat')
try:
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
message_id=message_id,
user=current_user,
invoke_from=InvokeFrom.DEBUGGER
check_enabled=False
)
except MessageNotExistsError:
raise NotFound("Message not found")
@ -204,8 +283,6 @@ class MessageSuggestedQuestionApi(Resource):
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except SuggestedQuestionsAfterAnswerDisabledError:
raise AppSuggestedQuestionsAfterAnswerDisabledError()
except Exception:
logging.exception("internal server error.")
raise InternalServerError()
@ -217,11 +294,14 @@ class MessageApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(message_detail_fields)
def get(self, app_model, message_id):
def get(self, app_id, message_id):
app_id = str(app_id)
message_id = str(message_id)
# get app info
app_model = _get_app(app_id)
message = db.session.query(Message).filter(
Message.id == message_id,
Message.app_id == app_model.id
@ -233,6 +313,7 @@ class MessageApi(Resource):
return message
api.add_resource(MessageMoreLikeThisApi, '/apps/<uuid:app_id>/completion-messages/<uuid:message_id>/more-like-this')
api.add_resource(MessageSuggestedQuestionApi, '/apps/<uuid:app_id>/chat-messages/<uuid:message_id>/suggested-questions')
api.add_resource(ChatMessageListApi, '/apps/<uuid:app_id>/chat-messages', endpoint='console_chat_messages')
api.add_resource(MessageFeedbackApi, '/apps/<uuid:app_id>/feedbacks')

View File

@ -1,20 +1,16 @@
import json
from flask import request
from flask_login import current_user
from flask_restful import Resource
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.agent.entities import AgentToolEntity
from core.tools.tool_manager import ToolManager
from core.tools.utils.configuration import ToolParameterConfigurationManager
from events.app_event import app_model_config_was_updated
from extensions.ext_database import db
from libs.login import login_required
from models.model import AppMode, AppModelConfig
from models.model import AppModelConfig
from services.app_model_config_service import AppModelConfigService
@ -23,113 +19,33 @@ class ModelConfigResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.AGENT_CHAT, AppMode.CHAT, AppMode.COMPLETION])
def post(self, app_model):
def post(self, app_id):
"""Modify app model config"""
app_id = str(app_id)
app = _get_app(app_id)
# validate config
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=request.json,
app_mode=AppMode.value_of(app_model.mode)
app_mode=app.mode
)
new_app_model_config = AppModelConfig(
app_id=app_model.id,
app_id=app.id,
)
new_app_model_config = new_app_model_config.from_model_config_dict(model_configuration)
if app_model.mode == AppMode.AGENT_CHAT.value or app_model.is_agent:
# get original app model config
original_app_model_config: AppModelConfig = db.session.query(AppModelConfig).filter(
AppModelConfig.id == app_model.app_model_config_id
).first()
agent_mode = original_app_model_config.agent_mode_dict
# decrypt agent tool parameters if it's secret-input
parameter_map = {}
masked_parameter_map = {}
tool_map = {}
for tool in agent_mode.get('tools') or []:
if not isinstance(tool, dict) or len(tool.keys()) <= 3:
continue
agent_tool_entity = AgentToolEntity(**tool)
# get tool
try:
tool_runtime = ToolManager.get_agent_tool_runtime(
tenant_id=current_user.current_tenant_id,
agent_tool=agent_tool_entity,
)
manager = ToolParameterConfigurationManager(
tenant_id=current_user.current_tenant_id,
tool_runtime=tool_runtime,
provider_name=agent_tool_entity.provider_id,
provider_type=agent_tool_entity.provider_type,
)
except Exception as e:
continue
# get decrypted parameters
if agent_tool_entity.tool_parameters:
parameters = manager.decrypt_tool_parameters(agent_tool_entity.tool_parameters or {})
masked_parameter = manager.mask_tool_parameters(parameters or {})
else:
parameters = {}
masked_parameter = {}
key = f'{agent_tool_entity.provider_id}.{agent_tool_entity.provider_type}.{agent_tool_entity.tool_name}'
masked_parameter_map[key] = masked_parameter
parameter_map[key] = parameters
tool_map[key] = tool_runtime
# encrypt agent tool parameters if it's secret-input
agent_mode = new_app_model_config.agent_mode_dict
for tool in agent_mode.get('tools') or []:
agent_tool_entity = AgentToolEntity(**tool)
# get tool
key = f'{agent_tool_entity.provider_id}.{agent_tool_entity.provider_type}.{agent_tool_entity.tool_name}'
if key in tool_map:
tool_runtime = tool_map[key]
else:
try:
tool_runtime = ToolManager.get_agent_tool_runtime(
tenant_id=current_user.current_tenant_id,
agent_tool=agent_tool_entity,
)
except Exception as e:
continue
manager = ToolParameterConfigurationManager(
tenant_id=current_user.current_tenant_id,
tool_runtime=tool_runtime,
provider_name=agent_tool_entity.provider_id,
provider_type=agent_tool_entity.provider_type,
)
manager.delete_tool_parameters_cache()
# override parameters if it equals to masked parameters
if agent_tool_entity.tool_parameters:
if key not in masked_parameter_map:
continue
if agent_tool_entity.tool_parameters == masked_parameter_map[key]:
agent_tool_entity.tool_parameters = parameter_map[key]
# encrypt parameters
if agent_tool_entity.tool_parameters:
tool['tool_parameters'] = manager.encrypt_tool_parameters(agent_tool_entity.tool_parameters or {})
# update app model config
new_app_model_config.agent_mode = json.dumps(agent_mode)
db.session.add(new_app_model_config)
db.session.flush()
app_model.app_model_config_id = new_app_model_config.id
app.app_model_config_id = new_app_model_config.id
db.session.commit()
app_model_config_was_updated.send(
app_model,
app,
app_model_config=new_app_model_config
)

View File

@ -4,7 +4,7 @@ from werkzeug.exceptions import Forbidden, NotFound
from constants.languages import supported_language
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
@ -34,11 +34,13 @@ class AppSite(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_site_fields)
def post(self, app_model):
def post(self, app_id):
args = parse_app_site_args()
app_id = str(app_id)
app_model = _get_app(app_id)
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
@ -80,9 +82,11 @@ class AppSiteAccessTokenReset(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_site_fields)
def post(self, app_model):
def post(self, app_id):
app_id = str(app_id)
app_model = _get_app(app_id)
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()

View File

@ -7,13 +7,12 @@ from flask_login import current_user
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from libs.helper import datetime_string
from libs.login import login_required
from models.model import AppMode
class DailyConversationStatistic(Resource):
@ -21,9 +20,10 @@ class DailyConversationStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
def get(self, app_id):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -81,9 +81,10 @@ class DailyTerminalsStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
def get(self, app_id):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -140,9 +141,10 @@ class DailyTokenCostStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
def get(self, app_id):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -203,9 +205,10 @@ class AverageSessionInteractionStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def get(self, app_model):
def get(self, app_id):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id, 'chat')
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -268,9 +271,10 @@ class UserSatisfactionRateStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
def get(self, app_id):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -330,9 +334,10 @@ class AverageResponseTimeStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=AppMode.COMPLETION)
def get(self, app_model):
def get(self, app_id):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id, 'completion')
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -391,9 +396,10 @@ class TokensPerSecondStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
def get(self, app_id):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')

View File

@ -1,324 +0,0 @@
import json
import logging
from flask import abort, request
from flask_restful import Resource, marshal_with, reqparse
from werkzeug.exceptions import InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.app.error import ConversationCompletedError, DraftWorkflowNotExist
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from fields.workflow_fields import workflow_fields
from fields.workflow_run_fields import workflow_run_node_execution_fields
from libs import helper
from libs.helper import TimestampField, uuid_value
from libs.login import current_user, login_required
from models.model import App, AppMode
from services.app_generate_service import AppGenerateService
from services.workflow_service import WorkflowService
logger = logging.getLogger(__name__)
class DraftWorkflowApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_fields)
def get(self, app_model: App):
"""
Get draft workflow
"""
# fetch draft workflow by app_model
workflow_service = WorkflowService()
workflow = workflow_service.get_draft_workflow(app_model=app_model)
if not workflow:
raise DraftWorkflowNotExist()
# return workflow, if not found, return None (initiate graph by frontend)
return workflow
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
"""
Sync draft workflow
"""
content_type = request.headers.get('Content-Type')
if 'application/json' in content_type:
parser = reqparse.RequestParser()
parser.add_argument('graph', type=dict, required=True, nullable=False, location='json')
parser.add_argument('features', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
elif 'text/plain' in content_type:
try:
data = json.loads(request.data.decode('utf-8'))
if 'graph' not in data or 'features' not in data:
raise ValueError('graph or features not found in data')
if not isinstance(data.get('graph'), dict) or not isinstance(data.get('features'), dict):
raise ValueError('graph or features is not a dict')
args = {
'graph': data.get('graph'),
'features': data.get('features')
}
except json.JSONDecodeError:
return {'message': 'Invalid JSON data'}, 400
else:
abort(415)
workflow_service = WorkflowService()
workflow = workflow_service.sync_draft_workflow(
app_model=app_model,
graph=args.get('graph'),
features=args.get('features'),
account=current_user
)
return {
"result": "success",
"updated_at": TimestampField().format(workflow.updated_at or workflow.created_at)
}
class AdvancedChatDraftWorkflowRunApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT])
def post(self, app_model: App):
"""
Run draft workflow
"""
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, location='json')
parser.add_argument('query', type=str, required=True, location='json', default='')
parser.add_argument('files', type=list, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
args = parser.parse_args()
try:
response = AppGenerateService.generate(
app_model=app_model,
user=current_user,
args=args,
invoke_from=InvokeFrom.DEBUGGER,
streaming=True
)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
raise ConversationCompletedError()
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class DraftWorkflowRunApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.WORKFLOW])
def post(self, app_model: App):
"""
Run draft workflow
"""
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
parser.add_argument('files', type=list, required=False, location='json')
args = parser.parse_args()
try:
response = AppGenerateService.generate(
app_model=app_model,
user=current_user,
args=args,
invoke_from=InvokeFrom.DEBUGGER,
streaming=True
)
return helper.compact_generate_response(response)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class WorkflowTaskStopApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, task_id: str):
"""
Stop workflow task
"""
AppQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, current_user.id)
return {
"result": "success"
}
class DraftWorkflowNodeRunApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_run_node_execution_fields)
def post(self, app_model: App, node_id: str):
"""
Run draft workflow node
"""
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
workflow_service = WorkflowService()
workflow_node_execution = workflow_service.run_draft_workflow_node(
app_model=app_model,
node_id=node_id,
user_inputs=args.get('inputs'),
account=current_user
)
return workflow_node_execution
class PublishedWorkflowApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_fields)
def get(self, app_model: App):
"""
Get published workflow
"""
# fetch published workflow by app_model
workflow_service = WorkflowService()
workflow = workflow_service.get_published_workflow(app_model=app_model)
# return workflow, if not found, return None
return workflow
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
"""
Publish workflow
"""
workflow_service = WorkflowService()
workflow = workflow_service.publish_workflow(app_model=app_model, account=current_user)
return {
"result": "success",
"created_at": TimestampField().format(workflow.created_at)
}
class DefaultBlockConfigsApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App):
"""
Get default block config
"""
# Get default block configs
workflow_service = WorkflowService()
return workflow_service.get_default_block_configs()
class DefaultBlockConfigApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App, block_type: str):
"""
Get default block config
"""
parser = reqparse.RequestParser()
parser.add_argument('q', type=str, location='args')
args = parser.parse_args()
filters = None
if args.get('q'):
try:
filters = json.loads(args.get('q'))
except json.JSONDecodeError:
raise ValueError('Invalid filters')
# Get default block configs
workflow_service = WorkflowService()
return workflow_service.get_default_block_config(
node_type=block_type,
filters=filters
)
class ConvertToWorkflowApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.COMPLETION])
def post(self, app_model: App):
"""
Convert basic mode of chatbot app to workflow mode
Convert expert mode of chatbot app to workflow mode
Convert Completion App to Workflow App
"""
if request.data:
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=False, nullable=True, location='json')
parser.add_argument('icon', type=str, required=False, nullable=True, location='json')
parser.add_argument('icon_background', type=str, required=False, nullable=True, location='json')
args = parser.parse_args()
else:
args = {}
# convert to workflow mode
workflow_service = WorkflowService()
new_app_model = workflow_service.convert_to_workflow(
app_model=app_model,
account=current_user,
args=args
)
# return app id
return {
'new_app_id': new_app_model.id,
}
api.add_resource(DraftWorkflowApi, '/apps/<uuid:app_id>/workflows/draft')
api.add_resource(AdvancedChatDraftWorkflowRunApi, '/apps/<uuid:app_id>/advanced-chat/workflows/draft/run')
api.add_resource(DraftWorkflowRunApi, '/apps/<uuid:app_id>/workflows/draft/run')
api.add_resource(WorkflowTaskStopApi, '/apps/<uuid:app_id>/workflow-runs/tasks/<string:task_id>/stop')
api.add_resource(DraftWorkflowNodeRunApi, '/apps/<uuid:app_id>/workflows/draft/nodes/<string:node_id>/run')
api.add_resource(PublishedWorkflowApi, '/apps/<uuid:app_id>/workflows/publish')
api.add_resource(DefaultBlockConfigsApi, '/apps/<uuid:app_id>/workflows/default-workflow-block-configs')
api.add_resource(DefaultBlockConfigApi, '/apps/<uuid:app_id>/workflows/default-workflow-block-configs'
'/<string:block_type>')
api.add_resource(ConvertToWorkflowApi, '/apps/<uuid:app_id>/convert-to-workflow')

View File

@ -1,41 +0,0 @@
from flask_restful import Resource, marshal_with, reqparse
from flask_restful.inputs import int_range
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.workflow_app_log_fields import workflow_app_log_pagination_fields
from libs.login import login_required
from models.model import App, AppMode
from services.workflow_app_service import WorkflowAppService
class WorkflowAppLogApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.WORKFLOW])
@marshal_with(workflow_app_log_pagination_fields)
def get(self, app_model: App):
"""
Get workflow app logs
"""
parser = reqparse.RequestParser()
parser.add_argument('keyword', type=str, location='args')
parser.add_argument('status', type=str, choices=['succeeded', 'failed', 'stopped'], location='args')
parser.add_argument('page', type=int_range(1, 99999), default=1, location='args')
parser.add_argument('limit', type=int_range(1, 100), default=20, location='args')
args = parser.parse_args()
# get paginate workflow app logs
workflow_app_service = WorkflowAppService()
workflow_app_log_pagination = workflow_app_service.get_paginate_workflow_app_logs(
app_model=app_model,
args=args
)
return workflow_app_log_pagination
api.add_resource(WorkflowAppLogApi, '/apps/<uuid:app_id>/workflow-app-logs')

View File

@ -1,109 +0,0 @@
from flask_restful import Resource, marshal_with, reqparse
from flask_restful.inputs import int_range
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.workflow_run_fields import (
advanced_chat_workflow_run_pagination_fields,
workflow_run_detail_fields,
workflow_run_node_execution_list_fields,
workflow_run_pagination_fields,
)
from libs.helper import uuid_value
from libs.login import login_required
from models.model import App, AppMode
from services.workflow_run_service import WorkflowRunService
class AdvancedChatAppWorkflowRunListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT])
@marshal_with(advanced_chat_workflow_run_pagination_fields)
def get(self, app_model: App):
"""
Get advanced chat app workflow run list
"""
parser = reqparse.RequestParser()
parser.add_argument('last_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
workflow_run_service = WorkflowRunService()
result = workflow_run_service.get_paginate_advanced_chat_workflow_runs(
app_model=app_model,
args=args
)
return result
class WorkflowRunListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_run_pagination_fields)
def get(self, app_model: App):
"""
Get workflow run list
"""
parser = reqparse.RequestParser()
parser.add_argument('last_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
workflow_run_service = WorkflowRunService()
result = workflow_run_service.get_paginate_workflow_runs(
app_model=app_model,
args=args
)
return result
class WorkflowRunDetailApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_run_detail_fields)
def get(self, app_model: App, run_id):
"""
Get workflow run detail
"""
run_id = str(run_id)
workflow_run_service = WorkflowRunService()
workflow_run = workflow_run_service.get_workflow_run(app_model=app_model, run_id=run_id)
return workflow_run
class WorkflowRunNodeExecutionListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_run_node_execution_list_fields)
def get(self, app_model: App, run_id):
"""
Get workflow run node execution list
"""
run_id = str(run_id)
workflow_run_service = WorkflowRunService()
node_executions = workflow_run_service.get_workflow_run_node_executions(app_model=app_model, run_id=run_id)
return {
'data': node_executions
}
api.add_resource(AdvancedChatAppWorkflowRunListApi, '/apps/<uuid:app_id>/advanced-chat/workflow-runs')
api.add_resource(WorkflowRunListApi, '/apps/<uuid:app_id>/workflow-runs')
api.add_resource(WorkflowRunDetailApi, '/apps/<uuid:app_id>/workflow-runs/<uuid:run_id>')
api.add_resource(WorkflowRunNodeExecutionListApi, '/apps/<uuid:app_id>/workflow-runs/<uuid:run_id>/node-executions')

View File

@ -1,278 +0,0 @@
from datetime import datetime
from decimal import Decimal
import pytz
from flask import jsonify
from flask_login import current_user
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from libs.helper import datetime_string
from libs.login import login_required
from models.model import AppMode
from models.workflow import WorkflowRunTriggeredFrom
class WorkflowDailyRunsStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
account = current_user
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = '''
SELECT date(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date, count(id) AS runs
FROM workflow_runs
WHERE app_id = :app_id
AND triggered_from = :triggered_from
'''
arg_dict = {'tz': account.timezone, 'app_id': app_model.id, 'triggered_from': WorkflowRunTriggeredFrom.APP_RUN.value}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at >= :start'
arg_dict['start'] = start_datetime_utc
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at < :end'
arg_dict['end'] = end_datetime_utc
sql_query += ' GROUP BY date order by date'
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'runs': i.runs
})
return jsonify({
'data': response_data
})
class WorkflowDailyTerminalsStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
account = current_user
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = '''
SELECT date(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date, count(distinct workflow_runs.created_by) AS terminal_count
FROM workflow_runs
WHERE app_id = :app_id
AND triggered_from = :triggered_from
'''
arg_dict = {'tz': account.timezone, 'app_id': app_model.id, 'triggered_from': WorkflowRunTriggeredFrom.APP_RUN.value}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at >= :start'
arg_dict['start'] = start_datetime_utc
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at < :end'
arg_dict['end'] = end_datetime_utc
sql_query += ' GROUP BY date order by date'
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'terminal_count': i.terminal_count
})
return jsonify({
'data': response_data
})
class WorkflowDailyTokenCostStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
account = current_user
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = '''
SELECT
date(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date,
SUM(workflow_runs.total_tokens) as token_count
FROM workflow_runs
WHERE app_id = :app_id
AND triggered_from = :triggered_from
'''
arg_dict = {'tz': account.timezone, 'app_id': app_model.id, 'triggered_from': WorkflowRunTriggeredFrom.APP_RUN.value}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at >= :start'
arg_dict['start'] = start_datetime_utc
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at < :end'
arg_dict['end'] = end_datetime_utc
sql_query += ' GROUP BY date order by date'
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'token_count': i.token_count,
})
return jsonify({
'data': response_data
})
class WorkflowAverageAppInteractionStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.WORKFLOW])
def get(self, app_model):
account = current_user
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = """
SELECT
AVG(sub.interactions) as interactions,
sub.date
FROM
(SELECT
date(DATE_TRUNC('day', c.created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date,
c.created_by,
COUNT(c.id) AS interactions
FROM workflow_runs c
WHERE c.app_id = :app_id
AND c.triggered_from = :triggered_from
{{start}}
{{end}}
GROUP BY date, c.created_by) sub
GROUP BY sub.created_by, sub.date
"""
arg_dict = {'tz': account.timezone, 'app_id': app_model.id, 'triggered_from': WorkflowRunTriggeredFrom.APP_RUN.value}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query = sql_query.replace('{{start}}', ' AND c.created_at >= :start')
arg_dict['start'] = start_datetime_utc
else:
sql_query = sql_query.replace('{{start}}', '')
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query = sql_query.replace('{{end}}', ' and c.created_at < :end')
arg_dict['end'] = end_datetime_utc
else:
sql_query = sql_query.replace('{{end}}', '')
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'interactions': float(i.interactions.quantize(Decimal('0.01')))
})
return jsonify({
'data': response_data
})
api.add_resource(WorkflowDailyRunsStatistic, '/apps/<uuid:app_id>/workflow/statistics/daily-conversations')
api.add_resource(WorkflowDailyTerminalsStatistic, '/apps/<uuid:app_id>/workflow/statistics/daily-terminals')
api.add_resource(WorkflowDailyTokenCostStatistic, '/apps/<uuid:app_id>/workflow/statistics/token-costs')
api.add_resource(WorkflowAverageAppInteractionStatistic, '/apps/<uuid:app_id>/workflow/statistics/average-app-interactions')

View File

@ -1,55 +0,0 @@
from collections.abc import Callable
from functools import wraps
from typing import Optional, Union
from controllers.console.app.error import AppNotFoundError
from extensions.ext_database import db
from libs.login import current_user
from models.model import App, AppMode
def get_app_model(view: Optional[Callable] = None, *,
mode: Union[AppMode, list[AppMode]] = None):
def decorator(view_func):
@wraps(view_func)
def decorated_view(*args, **kwargs):
if not kwargs.get('app_id'):
raise ValueError('missing app_id in path parameters')
app_id = kwargs.get('app_id')
app_id = str(app_id)
del kwargs['app_id']
app_model = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == current_user.current_tenant_id,
App.status == 'normal'
).first()
if not app_model:
raise AppNotFoundError()
app_mode = AppMode.value_of(app_model.mode)
if app_mode == AppMode.CHANNEL:
raise AppNotFoundError()
if mode is not None:
if isinstance(mode, list):
modes = mode
else:
modes = [mode]
if app_mode not in modes:
mode_values = {m.value for m in modes}
raise AppNotFoundError(f"App mode is not in the supported list: {mode_values}")
kwargs['app_model'] = app_model
return view_func(*args, **kwargs)
return decorated_view
if view is None:
return decorator
else:
return decorator(view)

View File

@ -1,6 +1,6 @@
import base64
import datetime
import secrets
from datetime import datetime
from flask_restful import Resource, reqparse
@ -66,7 +66,7 @@ class ActivateApi(Resource):
account.timezone = args['timezone']
account.interface_theme = 'light'
account.status = AccountStatus.ACTIVE.value
account.initialized_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
account.initialized_at = datetime.utcnow()
db.session.commit()
return {'result': 'success'}

View File

@ -1,5 +1,5 @@
import logging
from datetime import datetime, timezone
from datetime import datetime
from typing import Optional
import requests
@ -73,7 +73,7 @@ class OAuthCallback(Resource):
if account.status == AccountStatus.PENDING.value:
account.status = AccountStatus.ACTIVE.value
account.initialized_at = datetime.now(timezone.utc).replace(tzinfo=None)
account.initialized_at = datetime.utcnow()
db.session.commit()
TenantService.create_owner_tenant_if_not_exist(account)

View File

@ -80,7 +80,7 @@ class DataSourceApi(Resource):
if action == 'enable':
if data_source_binding.disabled:
data_source_binding.disabled = False
data_source_binding.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
data_source_binding.updated_at = datetime.datetime.utcnow()
db.session.add(data_source_binding)
db.session.commit()
else:
@ -89,7 +89,7 @@ class DataSourceApi(Resource):
if action == 'disable':
if not data_source_binding.disabled:
data_source_binding.disabled = True
data_source_binding.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
data_source_binding.updated_at = datetime.datetime.utcnow()
db.session.add(data_source_binding)
db.session.commit()
else:

View File

@ -1,4 +1,4 @@
from datetime import datetime, timezone
from datetime import datetime
from flask import request
from flask_login import current_user
@ -637,7 +637,7 @@ class DocumentProcessingApi(DocumentResource):
raise InvalidActionError('Document not in indexing state.')
document.paused_by = current_user.id
document.paused_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.paused_at = datetime.utcnow()
document.is_paused = True
db.session.commit()
@ -717,7 +717,7 @@ class DocumentMetadataApi(DocumentResource):
document.doc_metadata[key] = value
document.doc_type = doc_type
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.updated_at = datetime.utcnow()
db.session.commit()
return {'result': 'success', 'message': 'Document metadata updated.'}, 200
@ -755,7 +755,7 @@ class DocumentStatusApi(DocumentResource):
document.enabled = True
document.disabled_at = None
document.disabled_by = None
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.updated_at = datetime.utcnow()
db.session.commit()
# Set cache to prevent indexing the same document multiple times
@ -772,9 +772,9 @@ class DocumentStatusApi(DocumentResource):
raise InvalidActionError('Document already disabled.')
document.enabled = False
document.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.disabled_at = datetime.utcnow()
document.disabled_by = current_user.id
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.updated_at = datetime.utcnow()
db.session.commit()
# Set cache to prevent indexing the same document multiple times
@ -789,9 +789,9 @@ class DocumentStatusApi(DocumentResource):
raise InvalidActionError('Document already archived.')
document.archived = True
document.archived_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.archived_at = datetime.utcnow()
document.archived_by = current_user.id
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.updated_at = datetime.utcnow()
db.session.commit()
if document.enabled:
@ -808,7 +808,7 @@ class DocumentStatusApi(DocumentResource):
document.archived = False
document.archived_at = None
document.archived_by = None
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.updated_at = datetime.utcnow()
db.session.commit()
# Set cache to prevent indexing the same document multiple times

View File

@ -1,5 +1,5 @@
import uuid
from datetime import datetime, timezone
from datetime import datetime
import pandas as pd
from flask import request
@ -12,11 +12,7 @@ from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.datasets.error import InvalidActionError, NoFileUploadedError, TooManyFilesError
from controllers.console.setup import setup_required
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_knowledge_limit_check,
cloud_edition_billing_resource_check,
)
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
@ -192,7 +188,7 @@ class DatasetDocumentSegmentApi(Resource):
raise InvalidActionError("Segment is already disabled.")
segment.enabled = False
segment.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None)
segment.disabled_at = datetime.utcnow()
segment.disabled_by = current_user.id
db.session.commit()
@ -211,7 +207,6 @@ class DatasetDocumentSegmentAddApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check('vector_space')
@cloud_edition_billing_knowledge_limit_check('add_segment')
def post(self, dataset_id, document_id):
# check dataset
dataset_id = str(dataset_id)
@ -362,7 +357,6 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check('vector_space')
@cloud_edition_billing_knowledge_limit_check('add_segment')
def post(self, dataset_id, document_id):
# check dataset
dataset_id = str(dataset_id)

View File

@ -19,6 +19,7 @@ from controllers.console.app.error import (
from controllers.console.explore.wraps import InstalledAppResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import AppModelConfig
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -31,12 +32,16 @@ from services.errors.audio import (
class ChatAudioApi(InstalledAppResource):
def post(self, installed_app):
app_model = installed_app.app
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript_asr(
app_model=app_model,
tenant_id=app_model.tenant_id,
file=file,
end_user=None
)
@ -71,12 +76,16 @@ class ChatAudioApi(InstalledAppResource):
class ChatTextApi(InstalledAppResource):
def post(self, installed_app):
app_model = installed_app.app
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.text_to_speech_dict['enabled']:
raise AppUnavailableError()
try:
response = AudioService.transcript_tts(
app_model=app_model,
tenant_id=app_model.tenant_id,
text=request.form['text'],
voice=request.form.get('voice'),
voice=request.form['voice'] if request.form['voice'] else app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=False
)
return {'data': response.data.decode('latin1')}

View File

@ -1,6 +1,10 @@
import json
import logging
from datetime import datetime, timezone
from collections.abc import Generator
from datetime import datetime
from typing import Union
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError, NotFound
@ -17,15 +21,13 @@ from controllers.console.app.error import (
)
from controllers.console.explore.error import NotChatAppError, NotCompletionAppError
from controllers.console.explore.wraps import InstalledAppResource
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from extensions.ext_database import db
from libs import helper
from libs.helper import uuid_value
from models.model import AppMode
from services.app_generate_service import AppGenerateService
from services.completion_service import CompletionService
# define completion api for user
@ -47,11 +49,11 @@ class CompletionApi(InstalledAppResource):
streaming = args['response_mode'] == 'streaming'
args['auto_generate_name'] = False
installed_app.last_used_at = datetime.now(timezone.utc).replace(tzinfo=None)
installed_app.last_used_at = datetime.utcnow()
db.session.commit()
try:
response = AppGenerateService.generate(
response = CompletionService.completion(
app_model=app_model,
user=current_user,
args=args,
@ -59,7 +61,7 @@ class CompletionApi(InstalledAppResource):
streaming=streaming
)
return helper.compact_generate_response(response)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -88,7 +90,7 @@ class CompletionStopApi(InstalledAppResource):
if app_model.mode != 'completion':
raise NotCompletionAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {'result': 'success'}, 200
@ -96,33 +98,34 @@ class CompletionStopApi(InstalledAppResource):
class ChatApi(InstalledAppResource):
def post(self, installed_app):
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='explore_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
args['auto_generate_name'] = False
installed_app.last_used_at = datetime.now(timezone.utc).replace(tzinfo=None)
installed_app.last_used_at = datetime.utcnow()
db.session.commit()
try:
response = AppGenerateService.generate(
response = CompletionService.completion(
app_model=app_model,
user=current_user,
args=args,
invoke_from=InvokeFrom.EXPLORE,
streaming=True
streaming=streaming
)
return helper.compact_generate_response(response)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -148,15 +151,25 @@ class ChatApi(InstalledAppResource):
class ChatStopApi(InstalledAppResource):
def post(self, installed_app, task_id):
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {'result': 'success'}, 200
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
api.add_resource(CompletionApi, '/installed-apps/<uuid:installed_app_id>/completion-messages', endpoint='installed_app_completion')
api.add_resource(CompletionStopApi, '/installed-apps/<uuid:installed_app_id>/completion-messages/<string:task_id>/stop', endpoint='installed_app_stop_completion')
api.add_resource(ChatApi, '/installed-apps/<uuid:installed_app_id>/chat-messages', endpoint='installed_app_chat_completion')

View File

@ -6,10 +6,8 @@ from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.explore.error import NotChatAppError
from controllers.console.explore.wraps import InstalledAppResource
from core.app.entities.app_invoke_entities import InvokeFrom
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import uuid_value
from models.model import AppMode
from services.conversation_service import ConversationService
from services.errors.conversation import ConversationNotExistsError, LastConversationNotExistsError
from services.web_conversation_service import WebConversationService
@ -20,8 +18,7 @@ class ConversationListApi(InstalledAppResource):
@marshal_with(conversation_infinite_scroll_pagination_fields)
def get(self, installed_app):
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -40,8 +37,8 @@ class ConversationListApi(InstalledAppResource):
user=current_user,
last_id=args['last_id'],
limit=args['limit'],
invoke_from=InvokeFrom.EXPLORE,
pinned=pinned,
exclude_debug_conversation=True
)
except LastConversationNotExistsError:
raise NotFound("Last Conversation Not Exists.")
@ -50,8 +47,7 @@ class ConversationListApi(InstalledAppResource):
class ConversationApi(InstalledAppResource):
def delete(self, installed_app, c_id):
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)
@ -69,8 +65,7 @@ class ConversationRenameApi(InstalledAppResource):
@marshal_with(simple_conversation_fields)
def post(self, installed_app, c_id):
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)
@ -96,8 +91,7 @@ class ConversationPinApi(InstalledAppResource):
def patch(self, installed_app, c_id):
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)
@ -113,8 +107,7 @@ class ConversationPinApi(InstalledAppResource):
class ConversationUnPinApi(InstalledAppResource):
def patch(self, installed_app, c_id):
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)

View File

@ -9,13 +9,7 @@ class NotCompletionAppError(BaseHTTPException):
class NotChatAppError(BaseHTTPException):
error_code = 'not_chat_app'
description = "App mode is invalid."
code = 400
class NotWorkflowAppError(BaseHTTPException):
error_code = 'not_workflow_app'
description = "Only support workflow app."
description = "Not Chat App"
code = 400

View File

@ -1,4 +1,4 @@
from datetime import datetime, timezone
from datetime import datetime
from flask_login import current_user
from flask_restful import Resource, inputs, marshal_with, reqparse
@ -34,7 +34,8 @@ class InstalledAppsListApi(Resource):
'is_pinned': installed_app.is_pinned,
'last_used_at': installed_app.last_used_at,
'editable': current_user.role in ["owner", "admin"],
'uninstallable': current_tenant_id == installed_app.app_owner_tenant_id
'uninstallable': current_tenant_id == installed_app.app_owner_tenant_id,
'is_agent': installed_app.is_agent
}
for installed_app in installed_apps
]
@ -81,7 +82,7 @@ class InstalledAppsListApi(Resource):
tenant_id=current_tenant_id,
app_owner_tenant_id=app.tenant_id,
is_pinned=False,
last_used_at=datetime.now(timezone.utc).replace(tzinfo=None)
last_used_at=datetime.utcnow()
)
db.session.add(new_installed_app)
db.session.commit()

View File

@ -1,5 +1,9 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import marshal_with, reqparse
from flask_restful.inputs import int_range
@ -20,14 +24,12 @@ from controllers.console.explore.error import (
NotCompletionAppError,
)
from controllers.console.explore.wraps import InstalledAppResource
from core.app.entities.app_invoke_entities import InvokeFrom
from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from fields.message_fields import message_infinite_scroll_pagination_fields
from libs import helper
from libs.helper import uuid_value
from models.model import AppMode
from services.app_generate_service import AppGenerateService
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
@ -39,8 +41,7 @@ class MessageListApi(InstalledAppResource):
def get(self, installed_app):
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -90,14 +91,14 @@ class MessageMoreLikeThisApi(InstalledAppResource):
streaming = args['response_mode'] == 'streaming'
try:
response = AppGenerateService.generate_more_like_this(
response = CompletionService.generate_more_like_this(
app_model=app_model,
user=current_user,
message_id=message_id,
invoke_from=InvokeFrom.EXPLORE,
streaming=streaming
)
return helper.compact_generate_response(response)
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
@ -117,12 +118,22 @@ class MessageMoreLikeThisApi(InstalledAppResource):
raise InternalServerError()
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
class MessageSuggestedQuestionApi(InstalledAppResource):
def get(self, installed_app, message_id):
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
if app_model.mode != 'chat':
raise NotCompletionAppError()
message_id = str(message_id)
@ -130,8 +141,7 @@ class MessageSuggestedQuestionApi(InstalledAppResource):
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=current_user,
message_id=message_id,
invoke_from=InvokeFrom.EXPLORE
message_id=message_id
)
except MessageNotExistsError:
raise NotFound("Message not found")

View File

@ -1,12 +1,13 @@
import json
from flask import current_app
from flask_restful import fields, marshal_with
from controllers.console import api
from controllers.console.app.error import AppUnavailableError
from controllers.console.explore.wraps import InstalledAppResource
from models.model import AppMode, InstalledApp
from services.app_service import AppService
from extensions.ext_database import db
from models.model import AppModelConfig, InstalledApp
from models.tools import ApiToolProvider
class AppParameterApi(InstalledAppResource):
@ -44,52 +45,61 @@ class AppParameterApi(InstalledAppResource):
def get(self, installed_app: InstalledApp):
"""Retrieve app parameters."""
app_model = installed_app.app
if app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
workflow = app_model.workflow
if workflow is None:
raise AppUnavailableError()
features_dict = workflow.features_dict
user_input_form = workflow.user_input_form(to_old_structure=True)
else:
app_model_config = app_model.app_model_config
features_dict = app_model_config.to_dict()
user_input_form = features_dict.get('user_input_form', [])
app_model_config = app_model.app_model_config
return {
'opening_statement': features_dict.get('opening_statement'),
'suggested_questions': features_dict.get('suggested_questions', []),
'suggested_questions_after_answer': features_dict.get('suggested_questions_after_answer',
{"enabled": False}),
'speech_to_text': features_dict.get('speech_to_text', {"enabled": False}),
'text_to_speech': features_dict.get('text_to_speech', {"enabled": False}),
'retriever_resource': features_dict.get('retriever_resource', {"enabled": False}),
'annotation_reply': features_dict.get('annotation_reply', {"enabled": False}),
'more_like_this': features_dict.get('more_like_this', {"enabled": False}),
'user_input_form': user_input_form,
'sensitive_word_avoidance': features_dict.get('sensitive_word_avoidance',
{"enabled": False, "type": "", "configs": []}),
'file_upload': features_dict.get('file_upload', {"image": {
"enabled": False,
"number_limits": 3,
"detail": "high",
"transfer_methods": ["remote_url", "local_file"]
}}),
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'text_to_speech': app_model_config.text_to_speech_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict,
'file_upload': app_model_config.file_upload_dict,
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
}
}
class ExploreAppMetaApi(InstalledAppResource):
def get(self, installed_app: InstalledApp):
"""Get app meta"""
app_model = installed_app.app
return AppService().get_app_meta(app_model)
app_model_config: AppModelConfig = installed_app.app.app_model_config
agent_config = app_model_config.agent_mode_dict or {}
meta = {
'tool_icons': {}
}
api.add_resource(AppParameterApi, '/installed-apps/<uuid:installed_app_id>/parameters',
endpoint='installed_app_parameters')
# get all tools
tools = agent_config.get('tools', [])
url_prefix = (current_app.config.get("CONSOLE_API_URL")
+ "/console/api/workspaces/current/tool-provider/builtin/")
for tool in tools:
keys = list(tool.keys())
if len(keys) >= 4:
# current tool standard
provider_type = tool.get('provider_type')
provider_id = tool.get('provider_id')
tool_name = tool.get('tool_name')
if provider_type == 'builtin':
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
elif provider_type == 'api':
try:
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
ApiToolProvider.id == provider_id
)
meta['tool_icons'][tool_name] = json.loads(provider.icon)
except:
meta['tool_icons'][tool_name] = {
"background": "#252525",
"content": "\ud83d\ude01"
}
return meta
api.add_resource(AppParameterApi, '/installed-apps/<uuid:installed_app_id>/parameters', endpoint='installed_app_parameters')
api.add_resource(ExploreAppMetaApi, '/installed-apps/<uuid:installed_app_id>/meta', endpoint='installed_app_meta')

View File

@ -1,11 +1,15 @@
from flask_login import current_user
from flask_restful import Resource, fields, marshal_with, reqparse
from flask_restful import Resource, fields, marshal_with
from sqlalchemy import and_
from constants.languages import languages
from controllers.console import api
from controllers.console.app.error import AppNotFoundError
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from libs.login import login_required
from services.recommended_app_service import RecommendedAppService
from models.model import App, InstalledApp, RecommendedApp
from services.account_service import TenantService
app_fields = {
'id': fields.String,
@ -23,7 +27,11 @@ recommended_app_fields = {
'privacy_policy': fields.String,
'category': fields.String,
'position': fields.Integer,
'is_listed': fields.Boolean
'is_listed': fields.Boolean,
'install_count': fields.Integer,
'installed': fields.Boolean,
'editable': fields.Boolean,
'is_agent': fields.Boolean
}
recommended_app_list_fields = {
@ -37,27 +45,96 @@ class RecommendedAppListApi(Resource):
@account_initialization_required
@marshal_with(recommended_app_list_fields)
def get(self):
# language args
parser = reqparse.RequestParser()
parser.add_argument('language', type=str, location='args')
args = parser.parse_args()
language_prefix = current_user.interface_language if current_user.interface_language else languages[0]
if args.get('language') and args.get('language') in languages:
language_prefix = args.get('language')
elif current_user and current_user.interface_language:
language_prefix = current_user.interface_language
else:
language_prefix = languages[0]
recommended_apps = db.session.query(RecommendedApp).filter(
RecommendedApp.is_listed == True,
RecommendedApp.language == language_prefix
).all()
return RecommendedAppService.get_recommended_apps_and_categories(language_prefix)
categories = set()
current_user.role = TenantService.get_user_role(current_user, current_user.current_tenant)
recommended_apps_result = []
for recommended_app in recommended_apps:
installed = db.session.query(InstalledApp).filter(
and_(
InstalledApp.app_id == recommended_app.app_id,
InstalledApp.tenant_id == current_user.current_tenant_id
)
).first() is not None
app = recommended_app.app
if not app or not app.is_public:
continue
site = app.site
if not site:
continue
recommended_app_result = {
'id': recommended_app.id,
'app': app,
'app_id': recommended_app.app_id,
'description': site.description,
'copyright': site.copyright,
'privacy_policy': site.privacy_policy,
'category': recommended_app.category,
'position': recommended_app.position,
'is_listed': recommended_app.is_listed,
'install_count': recommended_app.install_count,
'installed': installed,
'editable': current_user.role in ['owner', 'admin'],
"is_agent": app.is_agent
}
recommended_apps_result.append(recommended_app_result)
categories.add(recommended_app.category) # add category to categories
return {'recommended_apps': recommended_apps_result, 'categories': list(categories)}
class RecommendedAppApi(Resource):
model_config_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw(attribute='suggested_questions_list'),
'suggested_questions_after_answer': fields.Raw(attribute='suggested_questions_after_answer_dict'),
'more_like_this': fields.Raw(attribute='more_like_this_dict'),
'model': fields.Raw(attribute='model_dict'),
'user_input_form': fields.Raw(attribute='user_input_form_list'),
'pre_prompt': fields.String,
'agent_mode': fields.Raw(attribute='agent_mode_dict'),
}
app_simple_detail_fields = {
'id': fields.String,
'name': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'mode': fields.String,
'app_model_config': fields.Nested(model_config_fields),
}
@login_required
@account_initialization_required
@marshal_with(app_simple_detail_fields)
def get(self, app_id):
app_id = str(app_id)
return RecommendedAppService.get_recommend_app_detail(app_id)
# is in public recommended list
recommended_app = db.session.query(RecommendedApp).filter(
RecommendedApp.is_listed == True,
RecommendedApp.app_id == app_id
).first()
if not recommended_app:
raise AppNotFoundError
# get app detail
app = db.session.query(App).filter(App.id == app_id).first()
if not app or not app.is_public:
raise AppNotFoundError
return app
api.add_resource(RecommendedAppListApi, '/explore/apps')

View File

@ -1,85 +0,0 @@
import logging
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError
from controllers.console import api
from controllers.console.app.error import (
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.explore.error import NotWorkflowAppError
from controllers.console.explore.wraps import InstalledAppResource
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.login import current_user
from models.model import AppMode, InstalledApp
from services.app_generate_service import AppGenerateService
logger = logging.getLogger(__name__)
class InstalledAppWorkflowRunApi(InstalledAppResource):
def post(self, installed_app: InstalledApp):
"""
Run workflow
"""
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
parser.add_argument('files', type=list, required=False, location='json')
args = parser.parse_args()
try:
response = AppGenerateService.generate(
app_model=app_model,
user=current_user,
args=args,
invoke_from=InvokeFrom.EXPLORE,
streaming=True
)
return helper.compact_generate_response(response)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class InstalledAppWorkflowTaskStopApi(InstalledAppResource):
def post(self, installed_app: InstalledApp, task_id: str):
"""
Stop workflow task
"""
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {
"result": "success"
}
api.add_resource(InstalledAppWorkflowRunApi, '/installed-apps/<uuid:installed_app_id>/workflows/run')
api.add_resource(InstalledAppWorkflowTaskStopApi, '/installed-apps/<uuid:installed_app_id>/workflows/tasks/<string:task_id>/stop')

View File

@ -1,17 +0,0 @@
from flask_restful import Resource
from controllers.console import api
class PingApi(Resource):
def get(self):
"""
For connection health check
"""
return {
"result": "pong"
}
api.add_resource(PingApi, '/ping')

View File

@ -1,4 +1,4 @@
import datetime
from datetime import datetime
import pytz
from flask import current_app, request
@ -16,13 +16,26 @@ from controllers.console.workspace.error import (
)
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from fields.member_fields import account_fields
from libs.helper import TimestampField, timezone
from libs.login import login_required
from models.account import AccountIntegrate, InvitationCode
from services.account_service import AccountService
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError
account_fields = {
'id': fields.String,
'name': fields.String,
'avatar': fields.String,
'email': fields.String,
'is_password_set': fields.Boolean,
'interface_language': fields.String,
'interface_theme': fields.String,
'timezone': fields.String,
'last_login_at': TimestampField,
'last_login_ip': fields.String,
'created_at': TimestampField
}
class AccountInitApi(Resource):
@ -59,7 +72,7 @@ class AccountInitApi(Resource):
raise InvalidInvitationCodeError()
invitation_code.status = 'used'
invitation_code.used_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
invitation_code.used_at = datetime.utcnow()
invitation_code.used_by_tenant_id = account.current_tenant_id
invitation_code.used_by_account_id = account.id
@ -67,7 +80,7 @@ class AccountInitApi(Resource):
account.timezone = args['timezone']
account.interface_theme = 'light'
account.status = 'active'
account.initialized_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
account.initialized_at = datetime.utcnow()
db.session.commit()
return {'result': 'success'}

View File

@ -1,18 +1,33 @@
from flask import current_app
from flask_login import current_user
from flask_restful import Resource, abort, marshal_with, reqparse
from flask_restful import Resource, abort, fields, marshal_with, reqparse
import services
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from extensions.ext_database import db
from fields.member_fields import account_with_role_list_fields
from libs.helper import TimestampField
from libs.login import login_required
from models.account import Account
from services.account_service import RegisterService, TenantService
from services.errors.account import AccountAlreadyInTenantError
account_fields = {
'id': fields.String,
'name': fields.String,
'avatar': fields.String,
'email': fields.String,
'last_login_at': TimestampField,
'created_at': TimestampField,
'role': fields.String,
'status': fields.String,
}
account_list_fields = {
'accounts': fields.List(fields.Nested(account_fields))
}
class MemberListApi(Resource):
"""List all members of current tenant."""
@ -20,7 +35,7 @@ class MemberListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(account_with_role_list_fields)
@marshal_with(account_list_fields)
def get(self):
members = TenantService.get_tenant_members(current_user.current_tenant)
return {'result': 'success', 'accounts': members}, 200

View File

@ -1,6 +1,6 @@
import io
from flask import current_app, send_file
from flask import send_file
from flask_login import current_user
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
@ -8,7 +8,6 @@ from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_runtime.utils.encoders import jsonable_encoder
from libs.login import login_required
from services.tools_manage_service import ToolManageService
@ -31,11 +30,11 @@ class ToolBuiltinProviderListToolsApi(Resource):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
return jsonable_encoder(ToolManageService.list_builtin_tool_provider_tools(
return ToolManageService.list_builtin_tool_provider_tools(
user_id,
tenant_id,
provider,
))
)
class ToolBuiltinProviderDeleteApi(Resource):
@setup_required
@ -76,52 +75,13 @@ class ToolBuiltinProviderUpdateApi(Resource):
provider,
args['credentials'],
)
class ToolBuiltinProviderGetCredentialsApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
return ToolManageService.get_builtin_tool_provider_credentials(
user_id,
tenant_id,
provider,
)
class ToolBuiltinProviderIconApi(Resource):
@setup_required
def get(self, provider):
icon_bytes, mimetype = ToolManageService.get_builtin_tool_provider_icon(provider)
icon_cache_max_age = int(current_app.config.get('TOOL_ICON_CACHE_MAX_AGE'))
return send_file(io.BytesIO(icon_bytes), mimetype=mimetype, max_age=icon_cache_max_age)
icon_bytes, minetype = ToolManageService.get_builtin_tool_provider_icon(provider)
return send_file(io.BytesIO(icon_bytes), mimetype=minetype)
class ToolModelProviderIconApi(Resource):
@setup_required
def get(self, provider):
icon_bytes, mimetype = ToolManageService.get_model_tool_provider_icon(provider)
return send_file(io.BytesIO(icon_bytes), mimetype=mimetype)
class ToolModelProviderListToolsApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('provider', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
return jsonable_encoder(ToolManageService.list_model_tool_provider_tools(
user_id,
tenant_id,
args['provider'],
))
class ToolApiProviderAddApi(Resource):
@setup_required
@ -186,11 +146,11 @@ class ToolApiProviderListToolsApi(Resource):
args = parser.parse_args()
return jsonable_encoder(ToolManageService.list_api_tool_provider_tools(
return ToolManageService.list_api_tool_provider_tools(
user_id,
tenant_id,
args['provider'],
))
)
class ToolApiProviderUpdateApi(Resource):
@setup_required
@ -317,49 +277,17 @@ class ToolApiProviderPreviousTestApi(Resource):
args['schema'],
)
class ToolBuiltinListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
return jsonable_encoder([provider.to_dict() for provider in ToolManageService.list_builtin_tools(
user_id,
tenant_id,
)])
class ToolApiListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
return jsonable_encoder([provider.to_dict() for provider in ToolManageService.list_api_tools(
user_id,
tenant_id,
)])
api.add_resource(ToolProviderListApi, '/workspaces/current/tool-providers')
api.add_resource(ToolBuiltinProviderListToolsApi, '/workspaces/current/tool-provider/builtin/<provider>/tools')
api.add_resource(ToolBuiltinProviderDeleteApi, '/workspaces/current/tool-provider/builtin/<provider>/delete')
api.add_resource(ToolBuiltinProviderUpdateApi, '/workspaces/current/tool-provider/builtin/<provider>/update')
api.add_resource(ToolBuiltinProviderGetCredentialsApi, '/workspaces/current/tool-provider/builtin/<provider>/credentials')
api.add_resource(ToolBuiltinProviderCredentialsSchemaApi, '/workspaces/current/tool-provider/builtin/<provider>/credentials_schema')
api.add_resource(ToolBuiltinProviderIconApi, '/workspaces/current/tool-provider/builtin/<provider>/icon')
api.add_resource(ToolModelProviderIconApi, '/workspaces/current/tool-provider/model/<provider>/icon')
api.add_resource(ToolModelProviderListToolsApi, '/workspaces/current/tool-provider/model/tools')
api.add_resource(ToolApiProviderAddApi, '/workspaces/current/tool-provider/api/add')
api.add_resource(ToolApiProviderGetRemoteSchemaApi, '/workspaces/current/tool-provider/api/remote')
api.add_resource(ToolApiProviderListToolsApi, '/workspaces/current/tool-provider/api/tools')
api.add_resource(ToolApiProviderUpdateApi, '/workspaces/current/tool-provider/api/update')
api.add_resource(ToolApiProviderUpdateApi, '/workspaces/current/tool-provider/api/update')
api.add_resource(ToolApiProviderDeleteApi, '/workspaces/current/tool-provider/api/delete')
api.add_resource(ToolApiProviderGetApi, '/workspaces/current/tool-provider/api/get')
api.add_resource(ToolApiProviderSchemaApi, '/workspaces/current/tool-provider/api/schema')
api.add_resource(ToolApiProviderPreviousTestApi, '/workspaces/current/tool-provider/api/test/pre')
api.add_resource(ToolBuiltinListApi, '/workspaces/current/tools/builtin')
api.add_resource(ToolApiListApi, '/workspaces/current/tools/api')

View File

@ -51,12 +51,14 @@ def cloud_edition_billing_resource_check(resource: str,
@wraps(view)
def decorated(*args, **kwargs):
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
members = features.members
apps = features.apps
vector_space = features.vector_space
documents_upload_quota = features.documents_upload_quota
annotation_quota_limit = features.annotation_quota_limit
if resource == 'members' and 0 < members.limit <= members.size:
abort(403, error_msg)
elif resource == 'apps' and 0 < apps.limit <= apps.size:
@ -78,29 +80,7 @@ def cloud_edition_billing_resource_check(resource: str,
return view(*args, **kwargs)
return view(*args, **kwargs)
return decorated
return interceptor
def cloud_edition_billing_knowledge_limit_check(resource: str,
error_msg: str = "To unlock this feature and elevate your Dify experience, please upgrade to a paid plan."):
def interceptor(view):
@wraps(view)
def decorated(*args, **kwargs):
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
if resource == 'add_segment':
if features.billing.subscription.plan == 'sandbox':
abort(403, error_msg)
else:
return view(*args, **kwargs)
return view(*args, **kwargs)
return decorated
return interceptor
@ -119,5 +99,4 @@ def cloud_utm_record(view):
except Exception as e:
pass
return view(*args, **kwargs)
return decorated

View File

@ -27,7 +27,7 @@ class ToolFilePreviewApi(Resource):
raise Forbidden('Invalid request.')
try:
result = ToolFileManager.get_file_generator_by_tool_file_id(
result = ToolFileManager.get_file_generator_by_message_file_id(
file_id,
)

View File

@ -7,5 +7,5 @@ api = ExternalApi(bp)
from . import index
from .app import app, audio, completion, conversation, file, message, workflow
from .app import app, audio, completion, conversation, file, message
from .dataset import dataset, document, segment

View File

@ -1,12 +1,13 @@
import json
from flask import current_app
from flask_restful import Resource, fields, marshal_with
from flask_restful import fields, marshal_with, Resource
from controllers.service_api import api
from controllers.service_api.app.error import AppUnavailableError
from controllers.service_api.wraps import validate_app_token
from models.model import App, AppMode
from services.app_service import AppService
from extensions.ext_database import db
from models.model import App, AppModelConfig
from models.tools import ApiToolProvider
class AppParameterApi(Resource):
@ -45,60 +46,62 @@ class AppParameterApi(Resource):
@marshal_with(parameters_fields)
def get(self, app_model: App):
"""Retrieve app parameters."""
if app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
workflow = app_model.workflow
if workflow is None:
raise AppUnavailableError()
features_dict = workflow.features_dict
user_input_form = workflow.user_input_form(to_old_structure=True)
else:
app_model_config = app_model.app_model_config
features_dict = app_model_config.to_dict()
user_input_form = features_dict.get('user_input_form', [])
app_model_config = app_model.app_model_config
return {
'opening_statement': features_dict.get('opening_statement'),
'suggested_questions': features_dict.get('suggested_questions', []),
'suggested_questions_after_answer': features_dict.get('suggested_questions_after_answer',
{"enabled": False}),
'speech_to_text': features_dict.get('speech_to_text', {"enabled": False}),
'text_to_speech': features_dict.get('text_to_speech', {"enabled": False}),
'retriever_resource': features_dict.get('retriever_resource', {"enabled": False}),
'annotation_reply': features_dict.get('annotation_reply', {"enabled": False}),
'more_like_this': features_dict.get('more_like_this', {"enabled": False}),
'user_input_form': user_input_form,
'sensitive_word_avoidance': features_dict.get('sensitive_word_avoidance',
{"enabled": False, "type": "", "configs": []}),
'file_upload': features_dict.get('file_upload', {"image": {
"enabled": False,
"number_limits": 3,
"detail": "high",
"transfer_methods": ["remote_url", "local_file"]
}}),
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'text_to_speech': app_model_config.text_to_speech_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict,
'file_upload': app_model_config.file_upload_dict,
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
}
}
class AppMetaApi(Resource):
@validate_app_token
def get(self, app_model: App):
"""Get app meta"""
return AppService().get_app_meta(app_model)
app_model_config: AppModelConfig = app_model.app_model_config
class AppInfoApi(Resource):
@validate_app_token
def get(self, app_model: App):
"""Get app infomation"""
return {
'name':app_model.name,
'description':app_model.description
}
agent_config = app_model_config.agent_mode_dict or {}
meta = {
'tool_icons': {}
}
# get all tools
tools = agent_config.get('tools', [])
url_prefix = (current_app.config.get("CONSOLE_API_URL")
+ "/console/api/workspaces/current/tool-provider/builtin/")
for tool in tools:
keys = list(tool.keys())
if len(keys) >= 4:
# current tool standard
provider_type = tool.get('provider_type')
provider_id = tool.get('provider_id')
tool_name = tool.get('tool_name')
if provider_type == 'builtin':
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
elif provider_type == 'api':
try:
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
ApiToolProvider.id == provider_id
)
meta['tool_icons'][tool_name] = json.loads(provider.icon)
except:
meta['tool_icons'][tool_name] = {
"background": "#252525",
"content": "\ud83d\ude01"
}
return meta
api.add_resource(AppParameterApi, '/parameters')
api.add_resource(AppMetaApi, '/meta')
api.add_resource(AppInfoApi, '/info')

View File

@ -20,7 +20,7 @@ from controllers.service_api.app.error import (
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import App, EndUser
from models.model import App, AppModelConfig, EndUser
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -33,11 +33,16 @@ from services.errors.audio import (
class AudioApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.FORM))
def post(self, app_model: App, end_user: EndUser):
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript_asr(
app_model=app_model,
tenant_id=app_model.tenant_id,
file=file,
end_user=end_user
)
@ -70,20 +75,19 @@ class AudioApi(Resource):
class TextApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON))
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser):
parser = reqparse.RequestParser()
parser.add_argument('text', type=str, required=True, nullable=False, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('streaming', type=bool, required=False, nullable=False, location='json')
args = parser.parse_args()
try:
response = AudioService.transcript_tts(
app_model=app_model,
tenant_id=app_model.tenant_id,
text=args['text'],
end_user=end_user,
voice=args.get('voice'),
voice=args['voice'] if args['voice'] else app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=args['streaming']
)

View File

@ -1,5 +1,9 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_restful import Resource, reqparse
from werkzeug.exceptions import InternalServerError, NotFound
@ -15,14 +19,13 @@ from controllers.service_api.app.error import (
ProviderQuotaExceededError,
)
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.helper import uuid_value
from models.model import App, AppMode, EndUser
from services.app_generate_service import AppGenerateService
from models.model import App, EndUser
from services.completion_service import CompletionService
class CompletionApi(Resource):
@ -45,7 +48,7 @@ class CompletionApi(Resource):
args['auto_generate_name'] = False
try:
response = AppGenerateService.generate(
response = CompletionService.completion(
app_model=app_model,
user=end_user,
args=args,
@ -53,7 +56,7 @@ class CompletionApi(Resource):
streaming=streaming,
)
return helper.compact_generate_response(response)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -82,7 +85,7 @@ class CompletionStopApi(Resource):
if app_model.mode != 'completion':
raise AppUnavailableError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {'result': 'success'}, 200
@ -90,8 +93,7 @@ class CompletionStopApi(Resource):
class ChatApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -108,7 +110,7 @@ class ChatApi(Resource):
streaming = args['response_mode'] == 'streaming'
try:
response = AppGenerateService.generate(
response = CompletionService.completion(
app_model=app_model,
user=end_user,
args=args,
@ -116,7 +118,7 @@ class ChatApi(Resource):
streaming=streaming
)
return helper.compact_generate_response(response)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -142,15 +144,25 @@ class ChatApi(Resource):
class ChatStopApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser, task_id):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {'result': 'success'}, 200
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
api.add_resource(CompletionApi, '/completion-messages')
api.add_resource(CompletionStopApi, '/completion-messages/<string:task_id>/stop')
api.add_resource(ChatApi, '/chat-messages')

View File

@ -6,10 +6,9 @@ import services
from controllers.service_api import api
from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.app.entities.app_invoke_entities import InvokeFrom
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import uuid_value
from models.model import App, AppMode, EndUser
from models.model import App, EndUser
from services.conversation_service import ConversationService
@ -18,8 +17,7 @@ class ConversationApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.QUERY))
@marshal_with(conversation_infinite_scroll_pagination_fields)
def get(self, app_model: App, end_user: EndUser):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -28,23 +26,15 @@ class ConversationApi(Resource):
args = parser.parse_args()
try:
return ConversationService.pagination_by_last_id(
app_model=app_model,
user=end_user,
last_id=args['last_id'],
limit=args['limit'],
invoke_from=InvokeFrom.SERVICE_API
)
return ConversationService.pagination_by_last_id(app_model, end_user, args['last_id'], args['limit'])
except services.errors.conversation.LastConversationNotExistsError:
raise NotFound("Last Conversation Not Exists.")
class ConversationDetailApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON))
@marshal_with(simple_conversation_fields)
def delete(self, app_model: App, end_user: EndUser, c_id):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)
@ -61,8 +51,7 @@ class ConversationRenameApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON))
@marshal_with(simple_conversation_fields)
def post(self, app_model: App, end_user: EndUser, c_id):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)

View File

@ -15,13 +15,7 @@ class NotCompletionAppError(BaseHTTPException):
class NotChatAppError(BaseHTTPException):
error_code = 'not_chat_app'
description = "Please check if your app mode matches the right API route."
code = 400
class NotWorkflowAppError(BaseHTTPException):
error_code = 'not_workflow_app'
description = "Please check if your app mode matches the right API route."
description = "Please check if your Chat app mode matches the right API route."
code = 400

View File

@ -1,18 +1,14 @@
import logging
from flask_restful import Resource, fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from werkzeug.exceptions import BadRequest, InternalServerError, NotFound
from werkzeug.exceptions import NotFound
import services
from controllers.service_api import api
from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.app.entities.app_invoke_entities import InvokeFrom
from fields.conversation_fields import message_file_fields
from libs.helper import TimestampField, uuid_value
from models.model import App, AppMode, EndUser
from services.errors.message import SuggestedQuestionsAfterAnswerDisabledError
from models.model import App, EndUser
from services.message_service import MessageService
@ -58,14 +54,12 @@ class MessageListApi(Resource):
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String(attribute='re_sign_file_url_answer'),
'answer': fields.String,
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields)),
'status': fields.String,
'error': fields.String,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
}
message_infinite_scroll_pagination_fields = {
@ -77,8 +71,7 @@ class MessageListApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.QUERY))
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, app_model: App, end_user: EndUser):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -117,8 +110,7 @@ class MessageSuggestedApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.QUERY))
def get(self, app_model: App, end_user: EndUser, message_id):
message_id = str(message_id)
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
try:
@ -126,15 +118,10 @@ class MessageSuggestedApi(Resource):
app_model=app_model,
user=end_user,
message_id=message_id,
invoke_from=InvokeFrom.SERVICE_API
check_enabled=False
)
except services.errors.message.MessageNotExistsError:
raise NotFound("Message Not Exists.")
except SuggestedQuestionsAfterAnswerDisabledError:
raise BadRequest("Message Not Exists.")
except Exception:
logging.exception("internal server error.")
raise InternalServerError()
return {'result': 'success', 'data': questions}

View File

@ -1,87 +0,0 @@
import logging
from flask_restful import Resource, reqparse
from werkzeug.exceptions import InternalServerError
from controllers.service_api import api
from controllers.service_api.app.error import (
CompletionRequestError,
NotWorkflowAppError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from models.model import App, AppMode, EndUser
from services.app_generate_service import AppGenerateService
logger = logging.getLogger(__name__)
class WorkflowRunApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser):
"""
Run workflow
"""
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
args = parser.parse_args()
streaming = args.get('response_mode') == 'streaming'
try:
response = AppGenerateService.generate(
app_model=app_model,
user=end_user,
args=args,
invoke_from=InvokeFrom.SERVICE_API,
streaming=streaming
)
return helper.compact_generate_response(response)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class WorkflowTaskStopApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser, task_id: str):
"""
Stop workflow task
"""
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {
"result": "success"
}
api.add_resource(WorkflowRunApi, '/workflows/run')
api.add_resource(WorkflowTaskStopApi, '/workflows/tasks/<string:task_id>/stop')

View File

@ -4,11 +4,7 @@ from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.wraps import (
DatasetApiResource,
cloud_edition_billing_knowledge_limit_check,
cloud_edition_billing_resource_check,
)
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
@ -22,7 +18,6 @@ class SegmentApi(DatasetApiResource):
"""Resource for segments."""
@cloud_edition_billing_resource_check('vector_space', 'dataset')
@cloud_edition_billing_knowledge_limit_check('add_segment', 'dataset')
def post(self, tenant_id, dataset_id, document_id):
"""Create single segment."""
# check dataset
@ -202,11 +197,11 @@ class DatasetSegmentApi(DatasetApiResource):
# validate args
parser = reqparse.RequestParser()
parser.add_argument('segment', type=dict, required=False, nullable=True, location='json')
parser.add_argument('segments', type=dict, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args['segment'], document)
segment = SegmentService.update_segment(args['segment'], segment, document, dataset)
SegmentService.segment_create_args_validate(args['segments'], document)
segment = SegmentService.update_segment(args['segments'], segment, document, dataset)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form

View File

@ -1,5 +1,5 @@
from collections.abc import Callable
from datetime import datetime, timezone
from datetime import datetime
from enum import Enum
from functools import wraps
from typing import Optional
@ -8,7 +8,7 @@ from flask import current_app, request
from flask_login import user_logged_in
from flask_restful import Resource
from pydantic import BaseModel
from werkzeug.exceptions import Forbidden, NotFound, Unauthorized
from werkzeug.exceptions import NotFound, Unauthorized
from extensions.ext_database import db
from libs.login import _get_user
@ -92,13 +92,13 @@ def cloud_edition_billing_resource_check(resource: str,
documents_upload_quota = features.documents_upload_quota
if resource == 'members' and 0 < members.limit <= members.size:
raise Forbidden(error_msg)
raise Unauthorized(error_msg)
elif resource == 'apps' and 0 < apps.limit <= apps.size:
raise Forbidden(error_msg)
raise Unauthorized(error_msg)
elif resource == 'vector_space' and 0 < vector_space.limit <= vector_space.size:
raise Forbidden(error_msg)
raise Unauthorized(error_msg)
elif resource == 'documents' and 0 < documents_upload_quota.limit <= documents_upload_quota.size:
raise Forbidden(error_msg)
raise Unauthorized(error_msg)
else:
return view(*args, **kwargs)
@ -107,27 +107,6 @@ def cloud_edition_billing_resource_check(resource: str,
return interceptor
def cloud_edition_billing_knowledge_limit_check(resource: str,
api_token_type: str,
error_msg: str = "To unlock this feature and elevate your Dify experience, please upgrade to a paid plan."):
def interceptor(view):
@wraps(view)
def decorated(*args, **kwargs):
api_token = validate_and_get_api_token(api_token_type)
features = FeatureService.get_features(api_token.tenant_id)
if features.billing.enabled:
if resource == 'add_segment':
if features.billing.subscription.plan == 'sandbox':
raise Forbidden(error_msg)
else:
return view(*args, **kwargs)
return view(*args, **kwargs)
return decorated
return interceptor
def validate_dataset_token(view=None):
def decorator(view):
@wraps(view)
@ -183,7 +162,7 @@ def validate_and_get_api_token(scope=None):
if not api_token:
raise Unauthorized("Access token is invalid")
api_token.last_used_at = datetime.now(timezone.utc).replace(tzinfo=None)
api_token.last_used_at = datetime.utcnow()
db.session.commit()
return api_token

View File

@ -6,4 +6,4 @@ bp = Blueprint('web', __name__, url_prefix='/api')
api = ExternalApi(bp)
from . import app, audio, completion, conversation, file, message, passport, saved_message, site, workflow
from . import app, audio, completion, conversation, file, message, passport, saved_message, site

View File

@ -4,12 +4,10 @@ from flask import current_app
from flask_restful import fields, marshal_with
from controllers.web import api
from controllers.web.error import AppUnavailableError
from controllers.web.wraps import WebApiResource
from extensions.ext_database import db
from models.model import App, AppModelConfig, AppMode
from models.model import App, AppModelConfig
from models.tools import ApiToolProvider
from services.app_service import AppService
class AppParameterApi(WebApiResource):
@ -46,49 +44,61 @@ class AppParameterApi(WebApiResource):
@marshal_with(parameters_fields)
def get(self, app_model: App, end_user):
"""Retrieve app parameters."""
if app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
workflow = app_model.workflow
if workflow is None:
raise AppUnavailableError()
features_dict = workflow.features_dict
user_input_form = workflow.user_input_form(to_old_structure=True)
else:
app_model_config = app_model.app_model_config
features_dict = app_model_config.to_dict()
user_input_form = features_dict.get('user_input_form', [])
app_model_config = app_model.app_model_config
return {
'opening_statement': features_dict.get('opening_statement'),
'suggested_questions': features_dict.get('suggested_questions', []),
'suggested_questions_after_answer': features_dict.get('suggested_questions_after_answer',
{"enabled": False}),
'speech_to_text': features_dict.get('speech_to_text', {"enabled": False}),
'text_to_speech': features_dict.get('text_to_speech', {"enabled": False}),
'retriever_resource': features_dict.get('retriever_resource', {"enabled": False}),
'annotation_reply': features_dict.get('annotation_reply', {"enabled": False}),
'more_like_this': features_dict.get('more_like_this', {"enabled": False}),
'user_input_form': user_input_form,
'sensitive_word_avoidance': features_dict.get('sensitive_word_avoidance',
{"enabled": False, "type": "", "configs": []}),
'file_upload': features_dict.get('file_upload', {"image": {
"enabled": False,
"number_limits": 3,
"detail": "high",
"transfer_methods": ["remote_url", "local_file"]
}}),
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'text_to_speech': app_model_config.text_to_speech_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict,
'file_upload': app_model_config.file_upload_dict,
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
}
}
class AppMeta(WebApiResource):
def get(self, app_model: App, end_user):
"""Get app meta"""
return AppService().get_app_meta(app_model)
app_model_config: AppModelConfig = app_model.app_model_config
agent_config = app_model_config.agent_mode_dict or {}
meta = {
'tool_icons': {}
}
# get all tools
tools = agent_config.get('tools', [])
url_prefix = (current_app.config.get("CONSOLE_API_URL")
+ "/console/api/workspaces/current/tool-provider/builtin/")
for tool in tools:
keys = list(tool.keys())
if len(keys) >= 4:
# current tool standard
provider_type = tool.get('provider_type')
provider_id = tool.get('provider_id')
tool_name = tool.get('tool_name')
if provider_type == 'builtin':
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
elif provider_type == 'api':
try:
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
ApiToolProvider.id == provider_id
)
meta['tool_icons'][tool_name] = json.loads(provider.icon)
except:
meta['tool_icons'][tool_name] = {
"background": "#252525",
"content": "\ud83d\ude01"
}
return meta
api.add_resource(AppParameterApi, '/parameters')
api.add_resource(AppMeta, '/meta')

View File

@ -19,7 +19,7 @@ from controllers.web.error import (
from controllers.web.wraps import WebApiResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import App
from models.model import App, AppModelConfig
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -31,11 +31,16 @@ from services.errors.audio import (
class AudioApi(WebApiResource):
def post(self, app_model: App, end_user):
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript_asr(
app_model=app_model,
tenant_id=app_model.tenant_id,
file=file,
end_user=end_user
)
@ -69,12 +74,17 @@ class AudioApi(WebApiResource):
class TextApi(WebApiResource):
def post(self, app_model: App, end_user):
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.text_to_speech_dict['enabled']:
raise AppUnavailableError()
try:
response = AudioService.transcript_tts(
app_model=app_model,
tenant_id=app_model.tenant_id,
text=request.form['text'],
end_user=end_user.external_user_id,
voice=request.form.get('voice'),
voice=request.form['voice'] if request.form['voice'] else app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=False
)

View File

@ -1,5 +1,9 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError, NotFound
@ -16,14 +20,12 @@ from controllers.web.error import (
ProviderQuotaExceededError,
)
from controllers.web.wraps import WebApiResource
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.helper import uuid_value
from models.model import AppMode
from services.app_generate_service import AppGenerateService
from services.completion_service import CompletionService
# define completion api for user
@ -46,7 +48,7 @@ class CompletionApi(WebApiResource):
args['auto_generate_name'] = False
try:
response = AppGenerateService.generate(
response = CompletionService.completion(
app_model=app_model,
user=end_user,
args=args,
@ -54,7 +56,7 @@ class CompletionApi(WebApiResource):
streaming=streaming
)
return helper.compact_generate_response(response)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -82,15 +84,14 @@ class CompletionStopApi(WebApiResource):
if app_model.mode != 'completion':
raise NotCompletionAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
return {'result': 'success'}, 200
class ChatApi(WebApiResource):
def post(self, app_model, end_user):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -107,7 +108,7 @@ class ChatApi(WebApiResource):
args['auto_generate_name'] = False
try:
response = AppGenerateService.generate(
response = CompletionService.completion(
app_model=app_model,
user=end_user,
args=args,
@ -115,7 +116,7 @@ class ChatApi(WebApiResource):
streaming=streaming
)
return helper.compact_generate_response(response)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -140,15 +141,25 @@ class ChatApi(WebApiResource):
class ChatStopApi(WebApiResource):
def post(self, app_model, end_user, task_id):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
return {'result': 'success'}, 200
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
api.add_resource(CompletionApi, '/completion-messages')
api.add_resource(CompletionStopApi, '/completion-messages/<string:task_id>/stop')
api.add_resource(ChatApi, '/chat-messages')

View File

@ -5,10 +5,8 @@ from werkzeug.exceptions import NotFound
from controllers.web import api
from controllers.web.error import NotChatAppError
from controllers.web.wraps import WebApiResource
from core.app.entities.app_invoke_entities import InvokeFrom
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import uuid_value
from models.model import AppMode
from services.conversation_service import ConversationService
from services.errors.conversation import ConversationNotExistsError, LastConversationNotExistsError
from services.web_conversation_service import WebConversationService
@ -18,8 +16,7 @@ class ConversationListApi(WebApiResource):
@marshal_with(conversation_infinite_scroll_pagination_fields)
def get(self, app_model, end_user):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -38,8 +35,7 @@ class ConversationListApi(WebApiResource):
user=end_user,
last_id=args['last_id'],
limit=args['limit'],
invoke_from=InvokeFrom.WEB_APP,
pinned=pinned,
pinned=pinned
)
except LastConversationNotExistsError:
raise NotFound("Last Conversation Not Exists.")
@ -47,8 +43,7 @@ class ConversationListApi(WebApiResource):
class ConversationApi(WebApiResource):
def delete(self, app_model, end_user, c_id):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)
@ -65,8 +60,7 @@ class ConversationRenameApi(WebApiResource):
@marshal_with(simple_conversation_fields)
def post(self, app_model, end_user, c_id):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)
@ -91,8 +85,7 @@ class ConversationRenameApi(WebApiResource):
class ConversationPinApi(WebApiResource):
def patch(self, app_model, end_user, c_id):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)
@ -107,8 +100,7 @@ class ConversationPinApi(WebApiResource):
class ConversationUnPinApi(WebApiResource):
def patch(self, app_model, end_user, c_id):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
conversation_id = str(c_id)

View File

@ -15,13 +15,7 @@ class NotCompletionAppError(BaseHTTPException):
class NotChatAppError(BaseHTTPException):
error_code = 'not_chat_app'
description = "Please check if your app mode matches the right API route."
code = 400
class NotWorkflowAppError(BaseHTTPException):
error_code = 'not_workflow_app'
description = "Please check if your Workflow app mode matches the right API route."
description = "Please check if your Chat app mode matches the right API route."
code = 400

View File

@ -1,5 +1,9 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_restful import fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from werkzeug.exceptions import InternalServerError, NotFound
@ -17,15 +21,13 @@ from controllers.web.error import (
ProviderQuotaExceededError,
)
from controllers.web.wraps import WebApiResource
from core.app.entities.app_invoke_entities import InvokeFrom
from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from fields.conversation_fields import message_file_fields
from fields.message_fields import agent_thought_fields
from libs import helper
from libs.helper import TimestampField, uuid_value
from models.model import AppMode
from services.app_generate_service import AppGenerateService
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
@ -61,14 +63,12 @@ class MessageListApi(WebApiResource):
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String(attribute='re_sign_file_url_answer'),
'answer': fields.String,
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields)),
'status': fields.String,
'error': fields.String,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
}
message_infinite_scroll_pagination_fields = {
@ -79,8 +79,7 @@ class MessageListApi(WebApiResource):
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, app_model, end_user):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -128,7 +127,7 @@ class MessageMoreLikeThisApi(WebApiResource):
streaming = args['response_mode'] == 'streaming'
try:
response = AppGenerateService.generate_more_like_this(
response = CompletionService.generate_more_like_this(
app_model=app_model,
user=end_user,
message_id=message_id,
@ -136,7 +135,7 @@ class MessageMoreLikeThisApi(WebApiResource):
streaming=streaming
)
return helper.compact_generate_response(response)
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
@ -156,10 +155,20 @@ class MessageMoreLikeThisApi(WebApiResource):
raise InternalServerError()
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
class MessageSuggestedQuestionApi(WebApiResource):
def get(self, app_model, end_user, message_id):
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
if app_model.mode != 'chat':
raise NotCompletionAppError()
message_id = str(message_id)
@ -168,8 +177,7 @@ class MessageSuggestedQuestionApi(WebApiResource):
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=end_user,
message_id=message_id,
invoke_from=InvokeFrom.WEB_APP
message_id=message_id
)
except MessageNotExistsError:
raise NotFound("Message not found")

View File

@ -83,3 +83,7 @@ class AppSiteInfo:
'remove_webapp_brand': remove_webapp_brand,
'replace_webapp_logo': replace_webapp_logo,
}
if app.enable_site and site.prompt_public:
app_model_config = app.app_model_config
self.model_config = app_model_config

View File

@ -1,82 +0,0 @@
import logging
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError
from controllers.web import api
from controllers.web.error import (
CompletionRequestError,
NotWorkflowAppError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.web.wraps import WebApiResource
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from models.model import App, AppMode, EndUser
from services.app_generate_service import AppGenerateService
logger = logging.getLogger(__name__)
class WorkflowRunApi(WebApiResource):
def post(self, app_model: App, end_user: EndUser):
"""
Run workflow
"""
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
parser.add_argument('files', type=list, required=False, location='json')
args = parser.parse_args()
try:
response = AppGenerateService.generate(
app_model=app_model,
user=end_user,
args=args,
invoke_from=InvokeFrom.WEB_APP,
streaming=True
)
return helper.compact_generate_response(response)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class WorkflowTaskStopApi(WebApiResource):
def post(self, app_model: App, end_user: EndUser, task_id: str):
"""
Stop workflow task
"""
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
return {
"result": "success"
}
api.add_resource(WorkflowRunApi, '/workflows/run')
api.add_resource(WorkflowTaskStopApi, '/workflows/tasks/<string:task_id>/stop')

View File

@ -1,424 +0,0 @@
import json
from abc import ABC, abstractmethod
from collections.abc import Generator
from typing import Union
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentScratchpadUnit
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
ToolPromptMessage,
UserPromptMessage,
)
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool.tool import Tool
from core.tools.tool_engine import ToolEngine
from models.model import Message
class CotAgentRunner(BaseAgentRunner, ABC):
_is_first_iteration = True
_ignore_observation_providers = ['wenxin']
_historic_prompt_messages: list[PromptMessage] = None
_agent_scratchpad: list[AgentScratchpadUnit] = None
_instruction: str = None
_query: str = None
_prompt_messages_tools: list[PromptMessage] = None
def run(self, message: Message,
query: str,
inputs: dict[str, str],
) -> Union[Generator, LLMResult]:
"""
Run Cot agent application
"""
app_generate_entity = self.application_generate_entity
self._repack_app_generate_entity(app_generate_entity)
self._init_react_state(query)
# check model mode
if 'Observation' not in app_generate_entity.model_config.stop:
if app_generate_entity.model_config.provider not in self._ignore_observation_providers:
app_generate_entity.model_config.stop.append('Observation')
app_config = self.app_config
# init instruction
inputs = inputs or {}
instruction = app_config.prompt_template.simple_prompt_template
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
# convert tools into ModelRuntime Tool format
tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
prompt_messages = self._organize_prompt_messages()
function_call_state = True
llm_usage = {
'usage': None
}
final_answer = ''
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
if not final_llm_usage_dict['usage']:
final_llm_usage_dict['usage'] = usage
else:
llm_usage = final_llm_usage_dict['usage']
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
self._prompt_messages_tools = []
message_file_ids = []
agent_thought = self.create_agent_thought(
message_id=message.id,
message='',
tool_name='',
tool_input='',
messages_ids=message_file_ids
)
if iteration_step > 1:
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_config.parameters,
tools=[],
stop=app_generate_entity.model_config.stop,
stream=True,
user=self.user_id,
callbacks=[],
)
# check llm result
if not chunks:
raise ValueError("failed to invoke llm")
usage_dict = {}
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks)
scratchpad = AgentScratchpadUnit(
agent_response='',
thought='',
action_str='',
observation='',
action=None,
)
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
action = chunk
# detect action
scratchpad.agent_response += json.dumps(chunk.dict())
scratchpad.action_str = json.dumps(chunk.dict())
scratchpad.action = action
else:
scratchpad.agent_response += chunk
scratchpad.thought += chunk
yield LLMResultChunk(
model=self.model_config.model,
prompt_messages=prompt_messages,
system_fingerprint='',
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=chunk
),
usage=None
)
)
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
self._agent_scratchpad.append(scratchpad)
# get llm usage
if 'usage' in usage_dict:
increase_usage(llm_usage, usage_dict['usage'])
else:
usage_dict['usage'] = LLMUsage.empty_usage()
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=scratchpad.action.action_name if scratchpad.action else '',
tool_input={
scratchpad.action.action_name: scratchpad.action.action_input
} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought,
observation='',
answer=scratchpad.agent_response,
messages_ids=[],
llm_usage=usage_dict['usage']
)
if not scratchpad.is_final():
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
if not scratchpad.action:
# failed to extract action, return final answer directly
final_answer = scratchpad.agent_response or ''
else:
if scratchpad.action.action_name.lower() == "final answer":
# action is final answer, return final answer directly
try:
if isinstance(scratchpad.action.action_input, dict):
final_answer = json.dumps(scratchpad.action.action_input)
elif isinstance(scratchpad.action.action_input, str):
final_answer = scratchpad.action.action_input
else:
final_answer = f'{scratchpad.action.action_input}'
except json.JSONDecodeError:
final_answer = f'{scratchpad.action.action_input}'
else:
function_call_state = True
# action is tool call, invoke tool
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
action=scratchpad.action,
tool_instances=tool_instances,
message_file_ids=message_file_ids
)
scratchpad.observation = tool_invoke_response
scratchpad.agent_response = tool_invoke_response
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=scratchpad.action.action_name,
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
thought=scratchpad.thought,
observation={scratchpad.action.action_name: tool_invoke_response},
tool_invoke_meta=tool_invoke_meta.to_dict(),
answer=scratchpad.agent_response,
messages_ids=message_file_ids,
llm_usage=usage_dict['usage']
)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
# update prompt tool message
for prompt_tool in self._prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=final_answer
),
usage=llm_usage['usage']
),
system_fingerprint=''
)
# save agent thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name='',
tool_input={},
tool_invoke_meta={},
thought=final_answer,
observation={},
answer=final_answer,
messages_ids=[]
)
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=final_answer
),
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
)), PublishFrom.APPLICATION_MANAGER)
def _handle_invoke_action(self, action: AgentScratchpadUnit.Action,
tool_instances: dict[str, Tool],
message_file_ids: list[str]) -> tuple[str, ToolInvokeMeta]:
"""
handle invoke action
:param action: action
:param tool_instances: tool instances
:return: observation, meta
"""
# action is tool call, invoke tool
tool_call_name = action.action_name
tool_call_args = action.action_input
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
answer = f"there is not a tool named {tool_call_name}"
return answer, ToolInvokeMeta.error_instance(answer)
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback
)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
# publish message file
self.queue_manager.publish(QueueMessageFileEvent(
message_file_id=message_file.id
), PublishFrom.APPLICATION_MANAGER)
# add message file ids
message_file_ids.append(message_file.id)
return tool_invoke_response, tool_invoke_meta
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
"""
convert dict to action
"""
return AgentScratchpadUnit.Action(
action_name=action['action'],
action_input=action['action_input']
)
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
"""
fill in inputs from external data tools
"""
for key, value in inputs.items():
try:
instruction = instruction.replace(f'{{{{{key}}}}}', str(value))
except Exception as e:
continue
return instruction
def _init_react_state(self, query) -> None:
"""
init agent scratchpad
"""
self._query = query
self._agent_scratchpad = []
self._historic_prompt_messages = self._organize_historic_prompt_messages()
@abstractmethod
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
organize prompt messages
"""
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
"""
format assistant message
"""
message = ''
for scratchpad in agent_scratchpad:
if scratchpad.is_final():
message += f"Final Answer: {scratchpad.agent_response}"
else:
message += f"Thought: {scratchpad.thought}\n\n"
if scratchpad.action_str:
message += f"Action: {scratchpad.action_str}\n\n"
if scratchpad.observation:
message += f"Observation: {scratchpad.observation}\n\n"
return message
def _organize_historic_prompt_messages(self) -> list[PromptMessage]:
"""
organize historic prompt messages
"""
result: list[PromptMessage] = []
scratchpad: list[AgentScratchpadUnit] = []
current_scratchpad: AgentScratchpadUnit = None
for message in self.history_prompt_messages:
if isinstance(message, AssistantPromptMessage):
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content or 'I am thinking about how to help you',
action_str='',
action=None,
observation=None,
)
if message.tool_calls:
try:
current_scratchpad.action = AgentScratchpadUnit.Action(
action_name=message.tool_calls[0].function.name,
action_input=json.loads(message.tool_calls[0].function.arguments)
)
current_scratchpad.action_str = json.dumps(
current_scratchpad.action.to_dict()
)
except:
pass
scratchpad.append(current_scratchpad)
elif isinstance(message, ToolPromptMessage):
if current_scratchpad:
current_scratchpad.observation = message.content
elif isinstance(message, UserPromptMessage):
result.append(message)
if scratchpad:
result.append(AssistantPromptMessage(
content=self._format_assistant_message(scratchpad)
))
scratchpad = []
if scratchpad:
result.append(AssistantPromptMessage(
content=self._format_assistant_message(scratchpad)
))
return result

View File

@ -1,71 +0,0 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.utils.encoders import jsonable_encoder
class CotChatAgentRunner(CotAgentRunner):
def _organize_system_prompt(self) -> SystemPromptMessage:
"""
Organize system prompt
"""
prompt_entity = self.app_config.agent.prompt
first_prompt = prompt_entity.first_prompt
system_prompt = first_prompt \
.replace("{{instruction}}", self._instruction) \
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools))) \
.replace("{{tool_names}}", ', '.join([tool.name for tool in self._prompt_messages_tools]))
return SystemPromptMessage(content=system_prompt)
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize
"""
# organize system prompt
system_message = self._organize_system_prompt()
# organize historic prompt messages
historic_messages = self._historic_prompt_messages
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
if not agent_scratchpad:
assistant_messages = []
else:
assistant_message = AssistantPromptMessage(content='')
for unit in agent_scratchpad:
if unit.is_final():
assistant_message.content += f"Final Answer: {unit.agent_response}"
else:
assistant_message.content += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_message.content += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_message.content += f"Observation: {unit.observation}\n\n"
assistant_messages = [assistant_message]
# query messages
query_messages = UserPromptMessage(content=self._query)
if assistant_messages:
messages = [
system_message,
*historic_messages,
query_messages,
*assistant_messages,
UserPromptMessage(content='continue')
]
else:
messages = [system_message, *historic_messages, query_messages]
# join all messages
return messages

View File

@ -1,69 +0,0 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage, UserPromptMessage
from core.model_runtime.utils.encoders import jsonable_encoder
class CotCompletionAgentRunner(CotAgentRunner):
def _organize_instruction_prompt(self) -> str:
"""
Organize instruction prompt
"""
prompt_entity = self.app_config.agent.prompt
first_prompt = prompt_entity.first_prompt
system_prompt = first_prompt.replace("{{instruction}}", self._instruction) \
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools))) \
.replace("{{tool_names}}", ', '.join([tool.name for tool in self._prompt_messages_tools]))
return system_prompt
def _organize_historic_prompt(self) -> str:
"""
Organize historic prompt
"""
historic_prompt_messages = self._historic_prompt_messages
historic_prompt = ""
for message in historic_prompt_messages:
if isinstance(message, UserPromptMessage):
historic_prompt += f"Question: {message.content}\n\n"
elif isinstance(message, AssistantPromptMessage):
historic_prompt += message.content + "\n\n"
return historic_prompt
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize prompt messages
"""
# organize system prompt
system_prompt = self._organize_instruction_prompt()
# organize historic prompt messages
historic_prompt = self._organize_historic_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
assistant_prompt = ''
for unit in agent_scratchpad:
if unit.is_final():
assistant_prompt += f"Final Answer: {unit.agent_response}"
else:
assistant_prompt += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_prompt += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_prompt += f"Observation: {unit.observation}\n\n"
# query messages
query_prompt = f"Question: {self._query}"
# join all messages
prompt = system_prompt \
.replace("{{historic_messages}}", historic_prompt) \
.replace("{{agent_scratchpad}}", assistant_prompt) \
.replace("{{query}}", query_prompt)
return [UserPromptMessage(content=prompt)]

View File

@ -1,78 +0,0 @@
from enum import Enum
from typing import Any, Literal, Optional, Union
from pydantic import BaseModel
class AgentToolEntity(BaseModel):
"""
Agent Tool Entity.
"""
provider_type: Literal["builtin", "api"]
provider_id: str
tool_name: str
tool_parameters: dict[str, Any] = {}
class AgentPromptEntity(BaseModel):
"""
Agent Prompt Entity.
"""
first_prompt: str
next_iteration: str
class AgentScratchpadUnit(BaseModel):
"""
Agent First Prompt Entity.
"""
class Action(BaseModel):
"""
Action Entity.
"""
action_name: str
action_input: Union[dict, str]
def to_dict(self) -> dict:
"""
Convert to dictionary.
"""
return {
'action': self.action_name,
'action_input': self.action_input,
}
agent_response: Optional[str] = None
thought: Optional[str] = None
action_str: Optional[str] = None
observation: Optional[str] = None
action: Optional[Action] = None
def is_final(self) -> bool:
"""
Check if the scratchpad unit is final.
"""
return self.action is None or (
'final' in self.action.action_name.lower() and
'answer' in self.action.action_name.lower()
)
class AgentEntity(BaseModel):
"""
Agent Entity.
"""
class Strategy(Enum):
"""
Agent Strategy.
"""
CHAIN_OF_THOUGHT = 'chain-of-thought'
FUNCTION_CALLING = 'function-calling'
provider: str
model: str
strategy: Strategy
prompt: Optional[AgentPromptEntity] = None
tools: list[AgentToolEntity] = None
max_iteration: int = 5

View File

@ -1,183 +0,0 @@
import json
import re
from collections.abc import Generator
from typing import Union
from core.agent.entities import AgentScratchpadUnit
from core.model_runtime.entities.llm_entities import LLMResultChunk
class CotAgentOutputParser:
@classmethod
def handle_react_stream_output(cls, llm_response: Generator[LLMResultChunk, None, None]) -> \
Generator[Union[str, AgentScratchpadUnit.Action], None, None]:
def parse_action(json_str):
try:
action = json.loads(json_str)
action_name = None
action_input = None
for key, value in action.items():
if 'input' in key.lower():
action_input = value
else:
action_name = value
if action_name is not None and action_input is not None:
return AgentScratchpadUnit.Action(
action_name=action_name,
action_input=action_input,
)
else:
return json_str or ''
except:
return json_str or ''
def extra_json_from_code_block(code_block) -> Generator[Union[dict, str], None, None]:
code_blocks = re.findall(r'```(.*?)```', code_block, re.DOTALL)
if not code_blocks:
return
for block in code_blocks:
json_text = re.sub(r'^[a-zA-Z]+\n', '', block.strip(), flags=re.MULTILINE)
yield parse_action(json_text)
code_block_cache = ''
code_block_delimiter_count = 0
in_code_block = False
json_cache = ''
json_quote_count = 0
in_json = False
got_json = False
action_cache = ''
action_str = 'action:'
action_idx = 0
thought_cache = ''
thought_str = 'thought:'
thought_idx = 0
for response in llm_response:
response = response.delta.message.content
if not isinstance(response, str):
continue
# stream
index = 0
while index < len(response):
steps = 1
delta = response[index:index+steps]
last_character = response[index-1] if index > 0 else ''
if delta == '`':
code_block_cache += delta
code_block_delimiter_count += 1
else:
if not in_code_block:
if code_block_delimiter_count > 0:
yield code_block_cache
code_block_cache = ''
else:
code_block_cache += delta
code_block_delimiter_count = 0
if not in_code_block and not in_json:
if delta.lower() == action_str[action_idx] and action_idx == 0:
if last_character not in ['\n', ' ', '']:
index += steps
yield delta
continue
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
action_cache = ''
action_idx = 0
index += steps
continue
elif delta.lower() == action_str[action_idx] and action_idx > 0:
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
action_cache = ''
action_idx = 0
index += steps
continue
else:
if action_cache:
yield action_cache
action_cache = ''
action_idx = 0
if delta.lower() == thought_str[thought_idx] and thought_idx == 0:
if last_character not in ['\n', ' ', '']:
index += steps
yield delta
continue
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
thought_cache = ''
thought_idx = 0
index += steps
continue
elif delta.lower() == thought_str[thought_idx] and thought_idx > 0:
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
thought_cache = ''
thought_idx = 0
index += steps
continue
else:
if thought_cache:
yield thought_cache
thought_cache = ''
thought_idx = 0
if code_block_delimiter_count == 3:
if in_code_block:
yield from extra_json_from_code_block(code_block_cache)
code_block_cache = ''
in_code_block = not in_code_block
code_block_delimiter_count = 0
if not in_code_block:
# handle single json
if delta == '{':
json_quote_count += 1
in_json = True
json_cache += delta
elif delta == '}':
json_cache += delta
if json_quote_count > 0:
json_quote_count -= 1
if json_quote_count == 0:
in_json = False
got_json = True
index += steps
continue
else:
if in_json:
json_cache += delta
if got_json:
got_json = False
yield parse_action(json_cache)
json_cache = ''
json_quote_count = 0
in_json = False
if not in_code_block and not in_json:
yield delta.replace('`', '')
index += steps
if code_block_cache:
yield code_block_cache
if json_cache:
yield parse_action(json_cache)

View File

@ -1,76 +0,0 @@
from typing import Optional, Union
from core.app.app_config.entities import AppAdditionalFeatures, EasyUIBasedAppModelConfigFrom
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.more_like_this.manager import MoreLikeThisConfigManager
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
from core.app.app_config.features.suggested_questions_after_answer.manager import (
SuggestedQuestionsAfterAnswerConfigManager,
)
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from models.model import AppMode, AppModelConfig
class BaseAppConfigManager:
@classmethod
def convert_to_config_dict(cls, config_from: EasyUIBasedAppModelConfigFrom,
app_model_config: Union[AppModelConfig, dict],
config_dict: Optional[dict] = None) -> dict:
"""
Convert app model config to config dict
:param config_from: app model config from
:param app_model_config: app model config
:param config_dict: app model config dict
:return:
"""
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
app_model_config_dict = app_model_config.to_dict()
config_dict = app_model_config_dict.copy()
return config_dict
@classmethod
def convert_features(cls, config_dict: dict, app_mode: AppMode) -> AppAdditionalFeatures:
"""
Convert app config to app model config
:param config_dict: app config
:param app_mode: app mode
"""
config_dict = config_dict.copy()
additional_features = AppAdditionalFeatures()
additional_features.show_retrieve_source = RetrievalResourceConfigManager.convert(
config=config_dict
)
additional_features.file_upload = FileUploadConfigManager.convert(
config=config_dict,
is_vision=app_mode in [AppMode.CHAT, AppMode.COMPLETION, AppMode.AGENT_CHAT]
)
additional_features.opening_statement, additional_features.suggested_questions = \
OpeningStatementConfigManager.convert(
config=config_dict
)
additional_features.suggested_questions_after_answer = SuggestedQuestionsAfterAnswerConfigManager.convert(
config=config_dict
)
additional_features.more_like_this = MoreLikeThisConfigManager.convert(
config=config_dict
)
additional_features.speech_to_text = SpeechToTextConfigManager.convert(
config=config_dict
)
additional_features.text_to_speech = TextToSpeechConfigManager.convert(
config=config_dict
)
return additional_features

View File

@ -1,50 +0,0 @@
from typing import Optional
from core.app.app_config.entities import SensitiveWordAvoidanceEntity
from core.moderation.factory import ModerationFactory
class SensitiveWordAvoidanceConfigManager:
@classmethod
def convert(cls, config: dict) -> Optional[SensitiveWordAvoidanceEntity]:
sensitive_word_avoidance_dict = config.get('sensitive_word_avoidance')
if not sensitive_word_avoidance_dict:
return None
if 'enabled' in sensitive_word_avoidance_dict and sensitive_word_avoidance_dict['enabled']:
return SensitiveWordAvoidanceEntity(
type=sensitive_word_avoidance_dict.get('type'),
config=sensitive_word_avoidance_dict.get('config'),
)
else:
return None
@classmethod
def validate_and_set_defaults(cls, tenant_id, config: dict, only_structure_validate: bool = False) \
-> tuple[dict, list[str]]:
if not config.get("sensitive_word_avoidance"):
config["sensitive_word_avoidance"] = {
"enabled": False
}
if not isinstance(config["sensitive_word_avoidance"], dict):
raise ValueError("sensitive_word_avoidance must be of dict type")
if "enabled" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["enabled"]:
config["sensitive_word_avoidance"]["enabled"] = False
if config["sensitive_word_avoidance"]["enabled"]:
if not config["sensitive_word_avoidance"].get("type"):
raise ValueError("sensitive_word_avoidance.type is required")
if not only_structure_validate:
typ = config["sensitive_word_avoidance"]["type"]
sensitive_word_avoidance_config = config["sensitive_word_avoidance"]["config"]
ModerationFactory.validate_config(
name=typ,
tenant_id=tenant_id,
config=sensitive_word_avoidance_config
)
return config, ["sensitive_word_avoidance"]

View File

@ -1,78 +0,0 @@
from typing import Optional
from core.agent.entities import AgentEntity, AgentPromptEntity, AgentToolEntity
from core.tools.prompt.template import REACT_PROMPT_TEMPLATES
class AgentConfigManager:
@classmethod
def convert(cls, config: dict) -> Optional[AgentEntity]:
"""
Convert model config to model config
:param config: model config args
"""
if 'agent_mode' in config and config['agent_mode'] \
and 'enabled' in config['agent_mode']:
agent_dict = config.get('agent_mode', {})
agent_strategy = agent_dict.get('strategy', 'cot')
if agent_strategy == 'function_call':
strategy = AgentEntity.Strategy.FUNCTION_CALLING
elif agent_strategy == 'cot' or agent_strategy == 'react':
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
else:
# old configs, try to detect default strategy
if config['model']['provider'] == 'openai':
strategy = AgentEntity.Strategy.FUNCTION_CALLING
else:
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
agent_tools = []
for tool in agent_dict.get('tools', []):
keys = tool.keys()
if len(keys) >= 4:
if "enabled" not in tool or not tool["enabled"]:
continue
agent_tool_properties = {
'provider_type': tool['provider_type'],
'provider_id': tool['provider_id'],
'tool_name': tool['tool_name'],
'tool_parameters': tool['tool_parameters'] if 'tool_parameters' in tool else {}
}
agent_tools.append(AgentToolEntity(**agent_tool_properties))
if 'strategy' in config['agent_mode'] and \
config['agent_mode']['strategy'] not in ['react_router', 'router']:
agent_prompt = agent_dict.get('prompt', None) or {}
# check model mode
model_mode = config.get('model', {}).get('mode', 'completion')
if model_mode == 'completion':
agent_prompt_entity = AgentPromptEntity(
first_prompt=agent_prompt.get('first_prompt',
REACT_PROMPT_TEMPLATES['english']['completion']['prompt']),
next_iteration=agent_prompt.get('next_iteration',
REACT_PROMPT_TEMPLATES['english']['completion'][
'agent_scratchpad']),
)
else:
agent_prompt_entity = AgentPromptEntity(
first_prompt=agent_prompt.get('first_prompt',
REACT_PROMPT_TEMPLATES['english']['chat']['prompt']),
next_iteration=agent_prompt.get('next_iteration',
REACT_PROMPT_TEMPLATES['english']['chat']['agent_scratchpad']),
)
return AgentEntity(
provider=config['model']['provider'],
model=config['model']['name'],
strategy=strategy,
prompt=agent_prompt_entity,
tools=agent_tools,
max_iteration=agent_dict.get('max_iteration', 5)
)
return None

View File

@ -1,224 +0,0 @@
from typing import Optional
from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
from core.entities.agent_entities import PlanningStrategy
from models.model import AppMode
from services.dataset_service import DatasetService
class DatasetConfigManager:
@classmethod
def convert(cls, config: dict) -> Optional[DatasetEntity]:
"""
Convert model config to model config
:param config: model config args
"""
dataset_ids = []
if 'datasets' in config.get('dataset_configs', {}):
datasets = config.get('dataset_configs', {}).get('datasets', {
'strategy': 'router',
'datasets': []
})
for dataset in datasets.get('datasets', []):
keys = list(dataset.keys())
if len(keys) == 0 or keys[0] != 'dataset':
continue
dataset = dataset['dataset']
if 'enabled' not in dataset or not dataset['enabled']:
continue
dataset_id = dataset.get('id', None)
if dataset_id:
dataset_ids.append(dataset_id)
if 'agent_mode' in config and config['agent_mode'] \
and 'enabled' in config['agent_mode'] \
and config['agent_mode']['enabled']:
agent_dict = config.get('agent_mode', {})
for tool in agent_dict.get('tools', []):
keys = tool.keys()
if len(keys) == 1:
# old standard
key = list(tool.keys())[0]
if key != 'dataset':
continue
tool_item = tool[key]
if "enabled" not in tool_item or not tool_item["enabled"]:
continue
dataset_id = tool_item['id']
dataset_ids.append(dataset_id)
if len(dataset_ids) == 0:
return None
# dataset configs
dataset_configs = config.get('dataset_configs', {'retrieval_model': 'single'})
query_variable = config.get('dataset_query_variable')
if dataset_configs['retrieval_model'] == 'single':
return DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
)
)
)
else:
return DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
),
top_k=dataset_configs.get('top_k'),
score_threshold=dataset_configs.get('score_threshold'),
reranking_model=dataset_configs.get('reranking_model')
)
)
@classmethod
def validate_and_set_defaults(cls, tenant_id: str, app_mode: AppMode, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for dataset feature
:param tenant_id: tenant ID
:param app_mode: app mode
:param config: app model config args
"""
# Extract dataset config for legacy compatibility
config = cls.extract_dataset_config_for_legacy_compatibility(tenant_id, app_mode, config)
# dataset_configs
if not config.get("dataset_configs"):
config["dataset_configs"] = {'retrieval_model': 'single'}
if not config["dataset_configs"].get("datasets"):
config["dataset_configs"]["datasets"] = {
"strategy": "router",
"datasets": []
}
if not isinstance(config["dataset_configs"], dict):
raise ValueError("dataset_configs must be of object type")
if config["dataset_configs"]['retrieval_model'] == 'multiple':
if not config["dataset_configs"]['reranking_model']:
raise ValueError("reranking_model has not been set")
if not isinstance(config["dataset_configs"]['reranking_model'], dict):
raise ValueError("reranking_model must be of object type")
if not isinstance(config["dataset_configs"], dict):
raise ValueError("dataset_configs must be of object type")
need_manual_query_datasets = (config.get("dataset_configs")
and config["dataset_configs"].get("datasets", {}).get("datasets"))
if need_manual_query_datasets and app_mode == AppMode.COMPLETION:
# Only check when mode is completion
dataset_query_variable = config.get("dataset_query_variable")
if not dataset_query_variable:
raise ValueError("Dataset query variable is required when dataset is exist")
return config, ["agent_mode", "dataset_configs", "dataset_query_variable"]
@classmethod
def extract_dataset_config_for_legacy_compatibility(cls, tenant_id: str, app_mode: AppMode, config: dict) -> dict:
"""
Extract dataset config for legacy compatibility
:param tenant_id: tenant ID
:param app_mode: app mode
:param config: app model config args
"""
# Extract dataset config for legacy compatibility
if not config.get("agent_mode"):
config["agent_mode"] = {
"enabled": False,
"tools": []
}
if not isinstance(config["agent_mode"], dict):
raise ValueError("agent_mode must be of object type")
# enabled
if "enabled" not in config["agent_mode"] or not config["agent_mode"]["enabled"]:
config["agent_mode"]["enabled"] = False
if not isinstance(config["agent_mode"]["enabled"], bool):
raise ValueError("enabled in agent_mode must be of boolean type")
# tools
if not config["agent_mode"].get("tools"):
config["agent_mode"]["tools"] = []
if not isinstance(config["agent_mode"]["tools"], list):
raise ValueError("tools in agent_mode must be a list of objects")
# strategy
if not config["agent_mode"].get("strategy"):
config["agent_mode"]["strategy"] = PlanningStrategy.ROUTER.value
has_datasets = False
if config["agent_mode"]["strategy"] in [PlanningStrategy.ROUTER.value, PlanningStrategy.REACT_ROUTER.value]:
for tool in config["agent_mode"]["tools"]:
key = list(tool.keys())[0]
if key == "dataset":
# old style, use tool name as key
tool_item = tool[key]
if "enabled" not in tool_item or not tool_item["enabled"]:
tool_item["enabled"] = False
if not isinstance(tool_item["enabled"], bool):
raise ValueError("enabled in agent_mode.tools must be of boolean type")
if 'id' not in tool_item:
raise ValueError("id is required in dataset")
try:
uuid.UUID(tool_item["id"])
except ValueError:
raise ValueError("id in dataset must be of UUID type")
if not cls.is_dataset_exists(tenant_id, tool_item["id"]):
raise ValueError("Dataset ID does not exist, please check your permission.")
has_datasets = True
need_manual_query_datasets = has_datasets and config["agent_mode"]["enabled"]
if need_manual_query_datasets and app_mode == AppMode.COMPLETION:
# Only check when mode is completion
dataset_query_variable = config.get("dataset_query_variable")
if not dataset_query_variable:
raise ValueError("Dataset query variable is required when dataset is exist")
return config
@classmethod
def is_dataset_exists(cls, tenant_id: str, dataset_id: str) -> bool:
# verify if the dataset ID exists
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
return False
if dataset.tenant_id != tenant_id:
return False
return True

Some files were not shown because too many files have changed in this diff Show More