Compare commits

...

260 Commits

Author SHA1 Message Date
6f62c94d7e updated
Signed-off-by: Robert Shaw <rshaw@neuralmagic.com>
2025-10-03 13:47:16 -04:00
52a7d91980 debug
Signed-off-by: Robert Shaw <rshaw@neuralmagic.com>
2025-10-03 13:25:00 -04:00
d76541a6c5 Stop mergify from keeping stale PRs alive (#26169)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-03 16:42:34 +00:00
dd96465fd7 [BugFix][QWEN-VL]fix wrong apply_rotary_emb_torch selection introduced by #24642 (#26123)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-03 08:52:26 -07:00
4f8f47e87e Fix undefined symbol: cutlass_moe_mm_sm100 (#26098)
Signed-off-by: Jun Jiang <jasl9187@hotmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-03 15:48:32 +00:00
d78fda7cda [Renderer] Move Processor out of LLMEngine (#26165)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-03 15:08:22 +00:00
73a99cc2a5 [Model] Fixed stream generator for gpt-oss + spec-decoding (#26027)
Signed-off-by: Aleksandr Samarin <astrlrd@nebius.com>
2025-10-03 13:43:41 +00:00
adae0c1f43 [CI/Build] do not enforce precompilation on tpu ci tests (#25992)
Signed-off-by: Xiang Si <sixiang@google.com>
2025-10-03 13:38:42 +00:00
whx
cbf9221992 [Model] Supplement to PR 24862: Pass param prefix to LLMHead (#25805)
Signed-off-by: whx-sjtu <2952154980@qq.com>
2025-10-03 21:34:53 +08:00
5f42fc53b6 [backends][short_conv] CUDA graph piecewise edits (#24215)
Signed-off-by: Paul Pak <paulpak58@gmail.com>
2025-10-03 12:59:48 +00:00
8ee846c27c [Bugfix] Re-enable prefill of max model length (#24446)
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
2025-10-03 14:13:34 +02:00
812b7f54a8 [Renderer] Move Processor out of AsyncLLM (#24138)
Signed-off-by: Yang <lymailforjob@gmail.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-03 11:29:45 +00:00
5f2cacdb1e Quick fix for IMA with the Prefix Prefill kernel during graph capture (#25983)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-10-03 11:28:22 +00:00
aa5053e3fe [Doc] Fixed shape description for fused_batched_moe.py (#25668)
Signed-off-by: Egor <e.a.krivov@gmail.com>
2025-10-03 04:00:23 -07:00
79aa244678 [Multi Modal] Configurable MM Profiling (#25631)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-03 03:59:10 -07:00
kyt
2ed3f20dba [openai] Fix missing tool usage check (system message) (#24768)
Signed-off-by: kyt <eluban4532@gmail.com>
2025-10-03 18:55:44 +08:00
48f309029a [NIXL][Misc] Expose metrics from NIXL for logging to CLI (#25388)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-03 10:47:59 +00:00
0e93ac0b3a [CI] Fix distributed hybrid tests in CI (#26155)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-10-03 09:14:18 +00:00
5446ad1d24 [test utils] correct wrong typing (#26159)
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
2025-10-03 02:11:49 -07:00
f9a8084e48 [Model] Use merge_by_field_config for MM models (InternVL family) (#26153)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-03 01:59:06 -07:00
3e70e3d4d5 add(v1): RequestStatesStats to RequestOutput (#24947)
Signed-off-by: huijjj <huijong.jeong@squeezebits.com>
2025-10-03 08:56:25 +00:00
eb0fa43868 [Perf] Optimize reshape_and_cache CUDA Kernel (#25955)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Co-authored-by: Liu-congo <1502632128@qq.com>
2025-10-03 01:33:46 -07:00
0ad9951c41 [Input] Remove unused prompt field (#26097)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-03 00:23:21 -07:00
8c9117181d [Misc] Remove typing.List (#26150)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-10-03 07:00:33 +00:00
c4b48d3c0f [BUG] Reorder model config creation (#26124)
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
2025-10-03 14:59:36 +08:00
10d765482d FusedMoE support for the Transformers backend (#22650)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-02 23:12:15 -07:00
39b643dc1a [Model] Use merge_by_field_config for MM models (G) (#26117)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-02 22:38:29 -07:00
711f485643 [Bugfix] Fix import gemm_afp4wfp4 failure on AMD (#26068)
Signed-off-by: zhewenli <zhewenli@meta.com>
2025-10-02 22:37:25 -07:00
9c5ee91b2a [ROCm] [VL] [Bugfix] Fix vit flash attn dispatcher logic for ROCm (#26104)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-10-02 22:34:53 -07:00
27edd2aeb4 [Build/CI] Revert back to Ubuntu 20.04, install python 3.12 with uv (#26103)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-10-02 22:21:01 -07:00
e5017cd6d6 [gpt-oss] disable tool server initialization if no tool in request (#25790)
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
2025-10-03 05:08:35 +00:00
6a7796e871 [Bug]: Limit num_reqs in dummy_run when max_num_seqs is small (#26144)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-03 04:00:20 +00:00
47b9339546 [DeepSeek] Improve performance of DS MLA cache kernel (#26132)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-02 20:35:47 -07:00
5d5146eee3 [CI/Build] Conditionally register cutlass_fp4_group_mm to fix building on Hopper (#26138)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-02 20:32:38 -07:00
2aaa423842 [Attention] Move Backend enum into registry (#25893)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-02 20:32:24 -07:00
ad2d788016 [Bug][Benchmark] Fix duplicate req in oversampling (#26140)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-03 02:55:24 +00:00
36ce76c632 [Log] Optimize DeepGEMM Missing Log (#26106)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-02 20:02:26 -06:00
f1fc2107a3 [Bugfix] Disable cascade attention with FlashInfer (#26130)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-02 16:30:37 -07:00
13cdc02173 Fix MTP with deepep_low_latency (#25904)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-02 21:29:49 +00:00
502640c3f9 [Perf] Fix and reapply move apply w8a8 block fp8 linear to class (#25696)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: ElizaWszola <elizaw.9289@gmail.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
2025-10-02 19:35:13 +00:00
3d5f1c8640 [Mamba][KVCacheManager] Simplify kv cache manage logic for mamba + MTP (#25119)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-10-02 18:48:31 +00:00
1cab2f9cad EAGLE 3: Fix preamble so that measured speedup over Eagle 1 becomes 32% instead of 5% on MTBench (#25916)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-10-02 11:29:35 -07:00
1e50f1be70 [Deepseek v3.2] Support indexer prefill chunking (#25999)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-10-02 10:29:12 -07:00
ad87ba927a [Small] Prevent bypassing media domain restriction via HTTP redirects (#26035)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-10-02 10:27:10 -07:00
decf7f794b [BugFix] Fix FI accuracy issue when used for MLA prefill (#26063)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-10-02 17:18:13 +00:00
d00d652998 [CI/Build] Replace vllm.entrypoints.openai.api_server entrypoint with vllm serve command (#25967)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-02 10:04:57 -07:00
3b279a84be [CI] Add Blackwell DeepSeek FP8 FlashInfer MoE tests (#26040)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-02 09:07:19 -07:00
5e4a8223c6 [Qwen][ROCm] Flash Attention Rotary Embeddings (#24642)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-10-02 08:26:08 -07:00
e51de388a2 [Platform][CI] Added OOT platform interface e2e test that running on Ascend NPU (#25470)
Signed-off-by: leo-pony <nengjunma@outlook.com>
2025-10-02 23:19:22 +08:00
cc253b73d3 [Model] Use merge_by_field_config for MM models (D-F) (#26076)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-02 08:17:35 -07:00
7d6fb905d9 [Model] Use merge_by_field_config for MM models (A-C) (#26073)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-02 08:17:31 -07:00
418d111f8c [FA/Chore] Bump vllm-flash-attention (#25537)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-10-02 11:06:14 -04:00
be8921fbba Change size of single CUDA graph for CI to 4 (#26089)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-10-02 14:14:28 +00:00
d4e7a1152d Update base image to 22.04 (jammy) (#26065)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-10-02 05:48:04 -07:00
be22bb6f3d Run:ai model streamer add GCS package support (#24909)
Signed-off-by: Peter Schuurman <psch@google.com>
2025-10-01 20:59:13 -07:00
169313b9f8 [Misc] Make handling of SamplingParams clearer in n>1 case (#26032)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-01 19:31:39 -07:00
0b018d8baf [ROCm][Bugfix] Add missing parameter to ROCm backend (#26029)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-10-01 19:23:14 -07:00
c31246800c Support RL online quantization with torchao (#23014)
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
2025-10-01 16:39:29 -07:00
4134312b35 [BugFix] ChunkedLocalAttention is currently not CG compatible (#26034)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-10-01 16:28:00 -07:00
da554f932e [Bug] Fix Negative Cuda Memory Usage (#25683)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-01 18:16:26 -04:00
aac622e0cd [ROCm][Build] Add support for AMD Ryzen AI MAX / AI 300 Series (#25908)
Signed-off-by: Hosang Yoon <hosang.yoon@amd.com>
2025-10-01 21:39:49 +00:00
1726e93ef1 [BugFix][DP/EP] Fix CUTLASS MLA hang under load (#26026)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2025-10-01 12:30:00 -07:00
ee04c0cd04 [CI] Tweaks to GPT-OSS Eval (Blackwell) for stability (#26030)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-01 12:02:17 -07:00
c36f0aa300 Fix test_mamba_ssm_ssd.py due to missing _query_start_loc_to_chunk_indices_offsets (#25995)
Signed-off-by: Huamin Li <3ericli@gmail.com>
2025-10-01 18:18:36 +00:00
5234dc7451 [NVIDIA] Blackwell Family (#24673)
Signed-off-by: Johnny <johnnynuca14@gmail.com>
Signed-off-by: johnnynunez <johnnynuca14@gmail.com>
Signed-off-by: Johnny <johnnync13@gmail.com>
Signed-off-by: Salvatore Cena <cena@cenas.it>
Co-authored-by: Aidyn-A <31858918+Aidyn-A@users.noreply.github.com>
Co-authored-by: Salvatore Cena <cena@cenas.it>
2025-10-01 10:50:54 -07:00
3b7c20a6b5 [Bugfix] Apply same sampling parameters for both n=1 and n>1 (#26005)
Signed-off-by: Kenichi Maehashi <maehashi@preferred.jp>
2025-10-01 14:37:35 +00:00
f9e714813a [Benchmark] Finish documented v0.11.0 deprecation of --endpoint-type (#26007)
Signed-off-by: Nathan Scott <nathans@redhat.com>
2025-10-01 12:41:57 +00:00
2518230d3e [MISC] Fix misleading batch_size_capture_list when cuda_graph_sizes < 4 (#25829)
Signed-off-by: billishyahao <bill.he@amd.com>
Co-authored-by: Luka Govedic <ProExpertProg@users.noreply.github.com>
2025-10-01 08:39:45 -04:00
a332b84578 [CI] Only capture a single CUDA graph size in CI by default (#25951)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-01 10:03:44 +01:00
1405f0c7ba [Misc] Factor out common _apply_feature_select_strategy (#26003)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-01 01:31:03 -07:00
84d57342b6 [BugFix][MM] Fix Nonetype error when video is cache in qwen2.5-omni-thinker (#26004)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-10-01 08:03:25 +00:00
57b46d769e [Doc] updating torch.compile doc link (#25989)
Signed-off-by: nadathurv <work.vnadathur@gmail.com>
Signed-off-by: WorldExplored <srreyansh.sethi@gmail.com>
Co-authored-by: Srreyansh Sethi <107075589+WorldExplored@users.noreply.github.com>
2025-10-01 07:04:56 +00:00
f48b6a03ba [Misc]allow disable pynccl (#25421)
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
2025-10-01 06:04:13 +00:00
2a69ab4899 Update to Transformers v4.56.2 (#24638)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-30 22:07:07 -07:00
8d7da92fd7 [BugFix] Fix default kv-cache-dtype default for DeepseekV3.2 (#25988)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-30 21:58:31 -07:00
e952eee698 [Bugfix] Fix __syncwarp on ROCM (#25996) 2025-09-30 21:15:11 -07:00
66bca9b8bd [MM] Add text-only mode for Qwen3-VL (#26000) 2025-09-30 21:13:42 -07:00
99028fda44 Fix INT8 quantization error on Blackwell GPUs (SM100+) (#25935)
Signed-off-by: padg9912 <phone.and.desktop@gmail.com>
2025-09-30 19:19:53 -07:00
1244948885 [Log] Optimize Log for FP8MOE (#25709)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-30 19:18:43 -07:00
a73f6491c8 Update launch_bounds_utils.h for correct compile on Multiple Cuda Arch - PTXAS out of range Warning (#25843)
Signed-off-by: Salvatore Cena <cena@cenas.it>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-30 19:18:19 -07:00
001e50c92c [Model] MTP fallback to eager for DeepSeek v32 (#25982)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-10-01 01:53:22 +00:00
96ebcaa3ad [Misc] Make EP kernels install script support uv (#25785)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-30 23:38:34 +00:00
5db1870bb9 [gpt-oss] use vLLM instead of openai types for streaming (#25186)
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
2025-09-30 22:47:07 +00:00
2ce26b9b5d [Docs] Remove API Reference from search index (#25949)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 22:10:02 +00:00
a388252ac4 Add explicit pooling classes for the Transformers backend (#25322)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-30 23:07:06 +01:00
9a9f48dff7 [V1] [P/D] Add Support for KV Load Failure Recovery (#19330)
Signed-off-by: David Ben-David <davidb@pliops.com>
Co-authored-by: David Ben-David <davidb@pliops.com>
2025-09-30 14:57:08 -07:00
67f3fb0844 [Bench] Add DeepSeekV32 to MoE benchmark (#25962)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-30 14:13:48 -07:00
43b752c325 [Llama4] [multimodal] Fix misplaced dtype cast of cos_sin_cache in Llama4VisionRotaryEmbedding (#25889)
Signed-off-by: cjackal <44624812+cjackal@users.noreply.github.com>
2025-09-30 20:35:15 +00:00
cfd302db9b OffloadingConnector: Fix GPU block tracking bug (#25856)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-30 19:53:04 +00:00
fb610ae684 [Docs] Add moe kernel features doc (#25297)
Signed-off-by: Bill Nell <bnell@redhat.com>
Signed-off-by: bnellnm <49004751+bnellnm@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 19:03:15 +00:00
2f652e6cdf [Doc] Improve MM Pooling model documentation (#25966)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-30 18:58:29 +00:00
e6a226efba [Bug] Fix AttributeError: 'QKVParallelLinear' object has no attribute 'orig_dtype' (#25958)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-30 11:13:03 -07:00
a2e6fa7e03 [bugfix][deepseek] fix flashmla kernel selection (#25956)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-10-01 00:30:36 +08:00
9f1c4ecaf2 [Bugfix] Token type and position embeddings fail to be applied to inputs_embeds (#25922)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-01 00:23:12 +08:00
ef283548f7 [Bugfix] Fix accuracy issue of TRTLLM FP8 MOE and improve logging (#25895)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-09-30 10:51:31 -04:00
f4db5e6de1 [Bugfix][Model] Fix inference for Hunyuan dense models (#25354)
Signed-off-by: anion <1005128408@qq.com>
Signed-off-by: Anion <123177548+Anionex@users.noreply.github.com>
2025-09-30 14:38:07 +00:00
099aaee536 Add Hugging Face Inference Endpoints guide to Deployment docs (#25886)
Signed-off-by: sergiopaniego <sergiopaniegoblanco@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 14:35:06 +00:00
35fe398c7c [Kernel][Moe Configs] Add more tuned triton configs for ExpertsInt8 and FP8 (#25858)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-09-30 07:30:44 -07:00
bb6d43047e [Fix] Improve CPU backend compatibility for RISC-V (#25816)
Signed-off-by: lyd1992 <liuyudong@iscas.ac.cn>
Signed-off-by: ihb2032 <1355790728@qq.com>
2025-09-30 13:48:07 +00:00
bc546f76a1 [CI] Move applicable tests to CPU (#24080)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 14:45:20 +01:00
80608ba5af [NIXL] Add support for MLA caches with different latent dim (#25902)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
2025-09-30 12:18:29 +00:00
e184c9c510 [perf] Use CPU tensor to reduce GPU->CPU sync (#25884)
Signed-off-by: Lehua Ding <lehuading@tencent.com>
2025-09-30 19:51:16 +08:00
d7e34b4210 [Model] Move vision_feature_select_strategy into resolve_visual_encoder_outputs (#25938)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-30 11:24:57 +00:00
ef6e0e7132 [Bugfix][Model]fix ernie45 moe gate&bias dtype to float32 (#25936)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-09-30 19:11:21 +08:00
1ad3aca682 Updated TRL integration docs (#25684)
Signed-off-by: sergiopaniego <sergiopaniegoblanco@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 03:10:55 -07:00
8d0afa9b42 [Doc] Add Cambricon MLU support (#25942)
Signed-off-by: a120092009 <zhaoty0121@gmail.com>
2025-09-30 17:59:47 +08:00
fa7e254a7f [New Model] DeepSeek-V3.2 (Rebased to Main) (#25896)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Yongye Zhu <zyy1102000@gmail.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Xiaozhu Meng <mxz297@gmail.com>
Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
2025-09-30 17:14:41 +08:00
e23cacda35 [Bugfix]: Clean up chunked prefill logging when using whisper (#25075)
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
2025-09-30 08:17:49 +00:00
2e1b8bc2b6 [Model][Bugfix] Fix MiDashengLM audio encoder mask by removing incorrect logical_not (#25925)
Signed-off-by: zhoukz <me@zhoukz.com>
2025-09-30 08:15:23 +00:00
e47433b3c1 [BugFix] Pass config_format via try_get_generation_config (#25912) 2025-09-30 05:09:50 +00:00
23194d83e8 [BugFix] Fix DP/EP hang (#25906)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-30 04:18:59 +00:00
61aedb5ffe MoveVllmConfig from config/__init__.py to config/vllm.py (#25271)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-29 19:49:49 -07:00
d3bd171123 [Benchmark] Support benchmark throughput for external launcher DP (#25913)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-30 01:43:57 +00:00
89e4050af4 [Bug] Fix Weight Loading for Block FP8 Cutlass SM90 (#25909)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-30 09:15:19 +08:00
78a47f87ce Test Prompt Embeds/LoRA compatibility and Enable LoRA Support for OPT Models (#25717)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-30 08:10:58 +08:00
6a113d9aed [V0 Deprecation] Remove vllm.worker and update according imports (#25901) 2025-09-29 23:26:11 +00:00
2e4fe48c37 [NIXL] Increase default KV block eviction timeout on P (#25897)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-29 21:35:14 +00:00
8eb0a1d906 [Doc] Polish example for torchrun dp (#25899) 2025-09-29 21:31:34 +00:00
fea3e476aa [Kernel] Chunk-aligned mamba2 (#24683) 2025-09-29 23:18:25 +02:00
61a3431613 [Bugfix][ROCm] Fixing trying to import non-existent symbols from libnccl.so (#25605)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-29 17:01:50 -04:00
9bedac9623 [Doc] Add documentation for vLLM continuous benchmarking and profiling (#25819)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
2025-09-29 20:49:49 +00:00
c42ff4f4fd [BugFix][torch.compile] KV scale calculation issues with FP8 quantization (#25513)
Signed-off-by: adabeyta <aabeyta@redhat.com>
2025-09-29 15:52:04 -04:00
d5ab28511c [Bugfix] Use correct key "ignore" for config.json non-quantized layers (#25706)
Signed-off-by: Lee Nau <lnau@nvidia.com>
2025-09-29 15:07:29 -04:00
e61eb5e09d [Model] Remove MotifForCausalLM (#25866)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-30 00:36:30 +08:00
0899ba5b42 [CI/Build] Include Transformers backend test in nightly transformers test (#25885)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-29 09:33:39 -07:00
145ac73317 [Bugfix][Speculative Decoding] Fix Eagle3 quantization config issue (#25883)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
2025-09-29 11:37:20 -04:00
d0d138bc55 [Nixl][P/D] Add cuda2cpu support (HD->DH transfer) (#24690)
Signed-off-by: Chenxi Yang <cxyang@fb.com>
Co-authored-by: Chenxi Yang <cxyang@fb.com>
2025-09-29 14:31:51 +00:00
43227236ec [torch.compile] serialize cudagraph_mode as its enum name instead of value (#25868)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-29 13:54:52 +00:00
8616300ae2 [Model][Bugfix] Fix issues in MiDashengLM implementation for quantized models (#25854)
Signed-off-by: zhoukz <me@zhoukz.com>
2025-09-29 10:59:04 +00:00
edbaadd91f [Bugfix] Fix requirements paths in install instructions (#25827)
Signed-off-by: yingjun-mou <renzomou@gmail.com>
2025-09-29 03:49:35 -07:00
9360d34fa1 update to latest deepgemm for dsv3.2 (#25871)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-29 17:51:43 +08:00
1b67b04656 [Misc] Remove more get_input_embeddings_v0 (#25857)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-29 08:03:37 +00:00
bd51f78e39 [V0 Deprecation][Models] Remove all V0 condition for mm embeddings merge (#25331)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: isotr0py <2037008807@qq.com>
2025-09-29 14:09:18 +08:00
65ecb4f134 [Bugfix] Fallback ViT attn backend to SDPA for blackwell (#25851)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-29 06:03:51 +00:00
143844fa43 [XPU]Fix xpu spec decoding UTs, avoid using cuda graph (#25847)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-29 05:15:10 +00:00
219cfbe7f6 Add Phi4FlashForCausalLM to _PREVIOUSLY_SUPPORTED_MODELS (#25832)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-09-29 05:08:17 +00:00
9b44a7d926 [P/D] NIXL Updates (#25844)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-09-29 04:46:30 +00:00
a3ae45a38c [Misc] fix tests failure by using current_platform (#25825)
Signed-off-by: Juechen Liu <jueliu@meta.com>
2025-09-29 04:18:57 +00:00
0307428d65 Remove redundant cudagraph dispatcher warning (#25841) 2025-09-28 17:12:42 -04:00
471997adf6 [Bugfix] fix Qwen3VLMoe load when pp > 1 (#25838)
Signed-off-by: liuye.hj <liuye.hj@alibaba-inc.com>
Co-authored-by: liuye.hj <liuye.hj@alibaba-inc.com>
2025-09-28 17:56:12 +00:00
b1ded114b9 Update GLM-4.5 Doc transformers version (#25830)
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
2025-09-28 12:05:51 +00:00
f4e4088c99 Fix random dataset mismatched token length with config. (#24937)
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-28 08:23:44 +00:00
0efd540dbc [VLM] Update Qwen3-VL max_num_video_tokens calculation for configurable video profiling (#25557)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-28 04:21:01 +00:00
6144754014 [Bugfix] Fix Qwen3-VL regression from #24982 (#25814)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-28 03:21:09 +00:00
69311446ba [MM] Optimize memory profiling for scattered multimodal embeddings (#25810)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-28 02:17:58 +00:00
da63274d9f [Bugfix][NIXL] Fix Async Scheduler timeout issue (#25808)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-27 15:17:35 -04:00
c216119d64 [Core] GC Debug callback (#24829)
Signed-off-by: Jialin Ouyang <jialino@meta.com>
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Co-authored-by: Jialin Ouyang <jialino@meta.com>
2025-09-27 17:53:31 +00:00
5546acb463 [Bug]: Set LD_LIBRARY_PATH to include the 'standard' CUDA location (#25766)
Signed-off-by: Clayton Coleman <smarterclayton@gmail.com>
2025-09-27 13:36:28 -04:00
c0ec81836f [torch.compile]: Add VLLM_DEBUG_DUMP_PATH environment variable (#25651)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-27 16:09:00 +00:00
b65e56babe [Core] Refactor self.model() to call a helper for subclassing. (#25084)
Signed-off-by: Patrick Toulme <ptoulme@meta.com>
Signed-off-by: Patrick Toulme <pctoulme+1@gmail.com>
2025-09-27 08:40:59 -07:00
49996cd597 [env] default nixl side port conflicts with kv-event zmq port (#25056)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2025-09-27 15:02:40 +00:00
ecb37e276a [docs] transcriptions API audio upload (#25446)
Signed-off-by: zxw <1020938856@qq.com>
2025-09-27 15:00:35 +00:00
a5354b3ed2 [Bugfix][WideEP] Apply TP Attn + EP MoE fix to other models (#24982)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-27 14:22:28 +00:00
f9df8b4ad7 [Bugfix] Fix triton import precommit failure (#25803)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-27 07:13:11 -07:00
ec152c8748 Fix GPTQ model loading in Transformers backend (#25770)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-27 12:18:20 +00:00
7977e5027c Add filtering for chat template kwargs (#25794)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-27 10:46:49 +00:00
3f5d902d2a Validate API tokens in constant time (#25781)
Signed-off-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: rentianyue-jk <rentianyue-jk@360shuke.com>
2025-09-27 18:09:26 +08:00
27d7638b94 [Bugfix] Merge MM embeddings by index instead of token IDs (#16229)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-27 08:15:12 +00:00
176173989a [Bugfix] Add missing image_size for phi4_multimodal (#25796) 2025-09-27 07:59:22 +00:00
23b8ee672d [Misc] Update openai client example file for multimodal (#25795)
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-27 07:57:07 +00:00
3939152069 [Misc] Fix codeowners override for v1 sample and attention (#25037)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-27 07:47:29 +00:00
cd87bfbf37 [CI/Build] Reorganize root-level V1 tests (#25767)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-27 13:51:15 +08:00
b3613e3ace [CI/Build] Add timing to Model Executor Test (#25799)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-26 21:57:27 -07:00
d346ec695e [CI/Build] Consolidate model loader tests and requirements (#25765)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 21:45:20 -07:00
c242c98031 [Bugfix] Allow Only SDPA Backend for ViT on B200 for Qwen3-VL (#25788) 2025-09-26 20:44:52 -07:00
f1d53d150c [Multimodal][Speculative Decoding]Eagle Eagle3 mm support, enablement on qwen2.5vl (#22872)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Signed-off-by: Junhong Liu <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
2025-09-27 03:35:47 +00:00
92da847cf5 Add flashinfer-build.sh and register precompiled cu128 wheel in Dockerfile (#25782)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 18:54:09 -07:00
3958b96bf5 Add option to restrict media domains (#25783)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
2025-09-27 01:23:52 +00:00
8bf8f45822 [Core] Don't count preempted tokens in prefix cache hit rate (#25787)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-27 00:16:40 +00:00
6f5c0931c1 [Spec decode] automatically disable mm for text-only draft models (#25667)
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
2025-09-27 08:10:21 +08:00
4e33a7ea85 [Bugfix] Optimize CpuGpuBuffer initialization (#25447)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
2025-09-27 08:07:36 +08:00
dc48ba0c75 Kernel-override Determinism [1/n] (#25603)
Signed-off-by: Bram Wasti <bwasti@meta.com>
2025-09-26 16:59:09 -07:00
4778b42660 Reduce the Cuda Graph memory footprint when running with DBO (#25779)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-09-26 22:29:56 +00:00
c70ac4b8ff [spec decode] Consolidate speculative decode method name for MTP (#25232)
Signed-off-by: zixi-qi <qizixi@meta.com>
2025-09-26 22:27:05 +00:00
cf89202855 [CI] Fix FlashInfer AOT in release docker image (#25730)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 14:11:40 -07:00
f075693da7 [V1] address post issues related to #20059 (part 1) (#23046)
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-26 15:58:19 -04:00
f708bd4904 [CI] Add E2E Blackwell Quantized MoE Test (#25723)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 12:23:00 -07:00
0002b7f0d1 [Docs] Add Toronto Meetup (#25773)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 12:00:46 -07:00
11aafd9886 [Bugfix] Improve GLM4 MoE Reasoning Parser's is_reasoning_end Condition (#25355)
Signed-off-by: frankwang28 <frank.wbb@hotmail.com>
Signed-off-by: Frank Wang <41319051+frankwang28@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-09-26 11:54:00 -07:00
b761df963c [Doc]: improve CPU(x86) build-wheel-from-source section (#25617)
Signed-off-by: Kosseila (CloudThrill) <klouddude@gmail.com>
2025-09-26 10:26:33 -07:00
33f6aaf972 Eagle3 that supports the Minicpm3 model (#24243)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: liudan <adan@minicpm.com>
Co-authored-by: liudan <liudan@qq.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
2025-09-26 10:04:57 -07:00
56aafa8c0b [Misc] fix unique_filepath (#25732)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-26 16:56:15 +00:00
8d52f2b3a7 [ray][metrics] Replace ':' with '_' for OpenTelemetry compatibility in Ray (#25439)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Co-authored-by: Rui Qiao <161574667+ruisearch42@users.noreply.github.com>
2025-09-26 09:43:30 -07:00
984d18498a [BugFix] Fix using dbo_decode_token_threshold always (and ignoring dbo_prefill_token_threshold) (#25622)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-26 16:22:49 +00:00
d4d9899860 [Quantization] Add field to skip unquantized modules for GPTQ config (#25455)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-26 15:47:41 +00:00
db1e42f627 [CI/Build] Fix some V1 tests not being run (#25569)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 20:52:36 +08:00
bc9d7b5595 [CI/Build] Split up Distributed Tests (#25572)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 14:49:33 +02:00
fe6b19c314 [Bugfix] Properly abort pooling request. (#25734)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-26 05:47:34 -07:00
2827b3f4a3 [CI] Fix test_shared_storage_connector_hashes (#25748)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-26 20:46:17 +08:00
2b6b1d7809 [Model] Mamba2 varlen refactor (#21467)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: RishiAstra <40644327+RishiAstra@users.noreply.github.com>
2025-09-26 11:31:14 +00:00
633f943e30 [Doc] Update Batch-level DP docs (#25757)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 02:37:40 -07:00
b03b1b97f6 Support LongCat-Flash-Chat tool call (#24083)
Signed-off-by: 许文卿 <xwq391974@alibaba-inc.com>
2025-09-26 09:25:39 +00:00
dfb9af2014 [Bugfix] Fix Shared Expert/Zero expert code in FusedMoE.process_chunk (#25698)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-26 01:25:28 -07:00
19f76ee68e [misc] refactor speculative config (#25657)
Signed-off-by: zxw <1020938856@qq.com>
2025-09-26 01:22:06 -07:00
dd70437a4f Remove cuda hard-code in compute_causal_conv1d_metadata (#25555)
Signed-off-by: Icey <1790571317@qq.com>
2025-09-26 01:19:20 -07:00
99b3a504c5 [Qwen3-Next][GDN] fixes cuda graph capturing bug in GDN metadata and a stride bug in causal_conv_1d. (#25743)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-09-26 01:18:58 -07:00
6e30010d2f fix: print outputt offline_inference/base/chat.py example (#25744)
Signed-off-by: Iceber Gu <caiwei95@hotmail.com>
2025-09-26 01:18:24 -07:00
52621c8f5c [Harware][AMD][Model] Triton MoE tuning configs for GLM-4.5 for MI300X (#25703)
Signed-off-by: xaguilar <Xavier.AguilarFruto@amd.com>
2025-09-26 01:18:20 -07:00
d48f4d6daf perf: Avoid copying inputs_embeds tensors to GPU unless prompt_embeds is enabled (#25739)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-26 01:18:09 -07:00
e84e0735c7 fix: revert cast to cpu in MsgpackEncoder._encode_tensor to avoid hidden performance regressions (#25738)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-26 01:18:05 -07:00
3edf87d25f [CI/Build] fix doc build warning: Failed to get 'name: description' pair (#25733)
Signed-off-by: yiting.jiang <yiting.jiang@daocloud.io>
2025-09-26 01:18:02 -07:00
392edee34a EVS Support (Video tokens pruning) (#22980)
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Signed-off-by: Eugene Khvedchenya <ekhvedchenya@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-26 11:54:54 +08:00
983056e456 [Misc] Remove unnecessary memoryviews in shm_broadcast.py (#25721)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-26 03:11:44 +00:00
13dd93c667 [Core] Force PIECEWISE CUDAGraph mode for encoder-decoder (#25701)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-25 18:21:56 -07:00
53a30845be Llamas 3.1 405B fp4 changes upstreaming from 355_wip (#25135)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Doug Lehr <douglehr@amd.com>
2025-09-25 19:16:53 -06:00
8b77328ffe [Misc] Don't log shm dequeue delay warning on worker side (#25720)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-26 01:08:30 +00:00
9fe4c2bdb9 [Refactor] Remove DeepGEMM OP Register (#25710)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-25 20:13:41 -04:00
081b5594a2 Fix routing_bias dtype (#25711)
Signed-off-by: Shu Wang. <shuw@nvidia.com>
2025-09-25 23:35:14 +00:00
57329a8c01 [Model] rename NemotronH_Nano_VL -> NemotronH_Nano_VL_V2 (#25708)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
2025-09-25 16:10:29 -07:00
8c435c9bce [Core] Enable command line logging for LLMEngine (#25610)
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-25 15:31:17 -07:00
e71b8e210d [Spec Decode] Add Batch Parallel Ngram. Upto 8x lower overhead. (#24986)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-25 15:22:03 -07:00
89fa54e6f7 [Optimization] Use a cheaper cache key in get_model_architecture (#25682)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 17:54:20 -04:00
3d54bdcb73 [Optimization] Streamline InputPreprocessor (#25702)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 21:06:49 +00:00
6b0fcbbf43 [Misc] Simplify test_argsort_mm_positions (#25690)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 18:23:01 +00:00
0fa673af4c [V0 deprecation] Clean up LoRA (#25686)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-25 18:12:33 +00:00
3468f17ebe [V0 deprecation] Remove _VLLM_V1 suffixes from attention backend names (#25489)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-09-25 17:37:50 +00:00
71b25b0d48 [V0 deprecation] Clean up V0 fallback in compilation config (#25675)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-25 17:29:51 +00:00
0ea80c87d9 [Model] Define merge_by_field_config MM interface (#25676)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 17:13:07 +00:00
b8d9e4a326 [Model] Add optional parameter to reasoning parser constructor (#25554)
Signed-off-by: taohui <taohui3@gmail.com>
Signed-off-by: Tao Hui <taohui3@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-26 01:12:50 +08:00
13cc7f5370 [BugFix] Fix DBO hang (#25625)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-25 17:04:48 +00:00
916bd9204d Revert "[Bug] Dynamo Unsupported due to BasevLLMParameter.torch_function calling disabled super()" (#25681)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-25 09:45:06 -07:00
e04a1b6b21 [BUGFIX] Fix crash in Eagle Speculative Decoding models when exceedin… (#24662)
Signed-off-by: AlonKejzman <alonkeizman@gmail.com>
2025-09-25 15:40:14 +00:00
2e5df88c92 [Logging] Remove TORCH_NCCL_AVOID_RECORD_STREAMS to squash a warning (#25532)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-25 15:16:06 +00:00
0754ac4c49 [Misc] Remove cruft file in repo (#25678)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-25 08:05:12 -07:00
03858e6d1c [Bugfix] Fix InternS1 video processing after Transformers v4.56 (#25644)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-25 14:46:04 +00:00
532a6cfccb [ux] Switch a warning to debug about a pytorch fallback (#23750)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-25 14:38:16 +00:00
eb32335e35 [CPU] update torch 2.8 and fix missing fields in TorchSDPAMetadata (#25652)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-25 13:29:11 +00:00
69a8c8e99a [torch.compile] Make Query Quantization Fusable (#24914)
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
2025-09-25 09:25:12 -04:00
6c340da4df [misc] log info messages by default for hanging / busy / idle (#25627)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-25 21:14:57 +08:00
2f17117606 [mypy] Fix wrong type annotations related to tuple (#25660)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 13:00:45 +00:00
1e9a77e037 [Hardware][RISC-V] Add riscv64 support for vLLM with scalar (#22112)
Signed-off-by: chenlang <chen.lang5@zte.com.cn>
Co-authored-by: chenlang <10346245@zte.com.cn>
2025-09-25 20:46:11 +08:00
d2af67441d [XPU][Triton]add xpu config in triton_reshape_and_cache_flash (#25643)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-25 12:38:11 +00:00
0bcc3a160d [CI/Build] Fix flaky entrypoints test (#25663)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 12:19:40 +00:00
70fbdb26e9 Add backward compatibility for guided_... API (#25615)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-25 19:45:25 +08:00
7f570f1caa [V0 deprecation] Remove unreachable model_config.supported_tasks (#25642)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-25 11:26:31 +00:00
eaeca3cd7f [Bugfix] Parse SpeculativeConfig Error (#25142)
Signed-off-by: zxw <1020938856@qq.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-25 11:09:39 +00:00
12c1287d64 [mypy] Further improve MM type annotations (#25654)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 10:57:36 +00:00
17b4c6685c [Bugfix] Fix Qwen3-VL max_num_video_tokens calculation for video profiling (#25648)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-25 18:36:01 +08:00
3c2b2ccece [Bugfix] Add triton.language.tensor placeholder (#25649)
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
2025-09-25 10:31:14 +00:00
7be9ffcd9f [Misc] Fix Qwen3-VL video_grid_thw typing (#25646)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-25 10:16:45 +00:00
393de22d2e [fix] Update torch version in cpu-build.txt for AArch64/ppc64le and Darwin (#25579)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
2025-09-25 09:39:18 +00:00
1260180c67 Revert "[Performance] Move apply_w8a8_block_fp8_linear to an op class… (#25607)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-25 08:05:21 +00:00
af4ee63e0e typo: remove duplicate is (#25641)
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
2025-09-25 00:46:22 -07:00
bc092ea873 Map CwmForCausalLM to llama and LlamaForCausalLM (#25611)
Signed-off-by: Jacob Kahn <jacobkahn1@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-25 07:37:03 +00:00
755ed7b05b [Misc] Simplify PoolerOutput and move to v1/outputs (#25629)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 06:47:03 +00:00
a676e668ee [Bugfix] fix apply_temperature to avoid nan in probs (#24734)
Signed-off-by: courage17340 <courage17340@163.com>
2025-09-25 05:32:21 +00:00
c85be1f6dd optimize: eliminate duplicate split_enc_dec_inputs calls (#25573)
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
2025-09-25 05:03:25 +00:00
845adb3ec6 [Model] Add LongCat-Flash (#23991)
Signed-off-by: yangxurui <yangxurui@meituan.com>
Co-authored-by: yangxurui <yangxurui@meituan.com>
2025-09-24 21:53:40 -07:00
90b139cfff Enable Fbgemm NVFP4 on Dense models (#25609)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-24 21:12:53 -07:00
4492e3a554 [Bug] Dynamo Unsupported due to BasevLLMParameter.torch_function calling disabled super() (#25613)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-24 18:52:52 -07:00
05c19485a5 [Kernel] Support DCP for Triton backend (#25132)
Signed-off-by: Wei Wei <wwei6@meta.com>
2025-09-24 18:09:34 -07:00
52d0cb8458 [Model] Improve DotsOCRForCausalLM (#25466)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-25 07:58:08 +08:00
5c1e496a75 [MISC] replace c10::optional with std::optional (#25602)
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
2025-09-24 16:56:21 -07:00
e7f27ea648 Improve --help for enhanced user experience (#24903)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-24 23:08:18 +00:00
1f29141258 [Refactor] Use DeepGEMM Col Major TMA Aligned Tensor (#25517)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-24 18:52:36 -04:00
6160ba4151 feat: BF16 FlashInfer Fused Cutlass MOE for Hopper and Blackwell Expert Parallel (#25503)
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
2025-09-24 18:50:04 -04:00
fea8006062 [Logging] Improve log for when DeepEP HT disables CUDA Graphs (#25531)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-24 22:43:06 +00:00
e6750d0b18 [V0 Deprecation] Remove unused classes in attention (#25541)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-24 13:24:40 -07:00
8c853050e7 [Docs] Enable fail_on_warning for the docs build in CI (#25580)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-24 19:30:33 +00:00
f84a472a03 Suppress benign cuBLAS warning when capturing cudagraphs with DBO (#25596)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-09-24 19:02:08 +00:00
640 changed files with 25951 additions and 11815 deletions

View File

@ -181,18 +181,14 @@ launch_vllm_server() {
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
server_command="vllm serve $model \
-tp $tp \
--model $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
server_command="vllm serve $model \
-tp $tp \
--model $model \
--port $port \
$server_args"
fi

View File

@ -365,8 +365,7 @@ run_serving_tests() {
continue
fi
server_command="$server_envs python3 \
-m vllm.entrypoints.openai.api_server \
server_command="$server_envs vllm serve \
$server_args"
# run the server

View File

@ -76,7 +76,7 @@ steps:
queue: arm64_cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# Add job to create multi-arch manifest

View File

@ -58,11 +58,8 @@ function cpu_tests() {
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# Note: disable Bart until supports V1
pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
pytest -x -v -s tests/models/language/generation -m cpu_model
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model
pytest -x -v -s tests/models/language/pooling -m cpu_model
pytest -x -v -s tests/models/multimodal/generation \

View File

@ -0,0 +1,191 @@
#!/bin/bash
# This script build the Ascend NPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Base ubuntu image with basic ascend development libraries and python installed
VLLM_ASCEND_REPO="https://github.com/vllm-project/vllm-ascend.git"
CONFIG_FILE_REMOTE_PATH="tests/e2e/vllm_interface/vllm_test.cfg"
TEST_RUN_CONFIG_FILE="vllm_test.cfg"
VLLM_ASCEND_TMP_DIR=
# Get the test run configuration file from the vllm-ascend repository
fetch_vllm_test_cfg() {
VLLM_ASCEND_TMP_DIR=$(mktemp -d)
# Ensure that the temporary directory is cleaned up when an exception occurs during configuration file retrieval
cleanup() {
rm -rf "${VLLM_ASCEND_TMP_DIR}"
}
trap cleanup EXIT
GIT_TRACE=1 git clone -v --depth 1 "${VLLM_ASCEND_REPO}" "${VLLM_ASCEND_TMP_DIR}"
if [ ! -f "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" ]; then
echo "Error: file '${CONFIG_FILE_REMOTE_PATH}' does not exist in the warehouse" >&2
exit 1
fi
# If the file already exists locally, just overwrite it
cp "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" "${TEST_RUN_CONFIG_FILE}"
echo "Copied ${CONFIG_FILE_REMOTE_PATH} to ${TEST_RUN_CONFIG_FILE}"
# Since the trap will be overwritten later, and when it is executed here, the task of cleaning up resources
# when the trap is abnormal has been completed, so the temporary resources are manually deleted here.
rm -rf "${VLLM_ASCEND_TMP_DIR}"
trap - EXIT
}
# Downloads test run configuration file from a remote URL.
# Loads the configuration into the current script environment.
get_config() {
if [ ! -f "${TEST_RUN_CONFIG_FILE}" ]; then
echo "Error: file '${TEST_RUN_CONFIG_FILE}' does not exist in the warehouse" >&2
exit 1
fi
source "${TEST_RUN_CONFIG_FILE}"
echo "Base docker image name that get from configuration: ${BASE_IMAGE_NAME}"
return 0
}
# get test running configuration.
fetch_vllm_test_cfg
get_config
# Check if the function call was successful. If not, exit the script.
if [ $? -ne 0 ]; then
exit 1
fi
image_name="npu/vllm-ci:${BUILDKITE_COMMIT}_${EPOCHSECONDS}"
container_name="npu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
# BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards
agent_idx=$(echo "${BUILDKITE_AGENT_NAME}" | awk -F'-' '{print $(NF-1)}')
echo "agent_idx: ${agent_idx}"
builder_name="cachebuilder${agent_idx}"
builder_cache_dir="/mnt/docker-cache${agent_idx}"
mkdir -p ${builder_cache_dir}
# Try building the docker image
cat <<EOF | DOCKER_BUILDKIT=1 docker build \
--add-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_HOST} \
--builder ${builder_name} --cache-from type=local,src=${builder_cache_dir} \
--cache-to type=local,dest=${builder_cache_dir},mode=max \
--progress=plain --load -t ${image_name} -f - .
FROM ${BASE_IMAGE_NAME}
# Define environments
ENV DEBIAN_FRONTEND=noninteractive
RUN pip config set global.index-url http://cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_PORT}/pypi/simple && \
pip config set global.trusted-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local && \
apt-get update -y && \
apt-get install -y python3-pip git vim wget net-tools gcc g++ cmake libnuma-dev && \
rm -rf /var/cache/apt/* && \
rm -rf /var/lib/apt/lists/*
# Install for pytest to make the docker build cache layer always valid
RUN --mount=type=cache,target=/root/.cache/pip \
pip install pytest>=6.0 modelscope
WORKDIR /workspace/vllm
# Install vLLM dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements/common.txt
COPY . .
# Install vLLM
RUN --mount=type=cache,target=/root/.cache/pip \
VLLM_TARGET_DEVICE="empty" python3 -m pip install -v -e /workspace/vllm/ --extra-index https://download.pytorch.org/whl/cpu/ && \
python3 -m pip uninstall -y triton
# Install vllm-ascend
WORKDIR /workspace
ARG VLLM_ASCEND_REPO=https://github.com/vllm-project/vllm-ascend.git
ARG VLLM_ASCEND_TAG=main
RUN git config --global url."https://gh-proxy.test.osinfra.cn/https://github.com/".insteadOf "https://github.com/" && \
git clone --depth 1 \$VLLM_ASCEND_REPO --branch \$VLLM_ASCEND_TAG /workspace/vllm-ascend
# Install vllm dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r /workspace/vllm-ascend/requirements.txt
RUN --mount=type=cache,target=/root/.cache/pip \
export PIP_EXTRA_INDEX_URL=https://mirrors.huaweicloud.com/ascend/repos/pypi && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh && \
source /usr/local/Ascend/nnal/atb/set_env.sh && \
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/Ascend/ascend-toolkit/latest/`uname -i`-linux/devlib && \
python3 -m pip install -v -e /workspace/vllm-ascend/ --extra-index https://download.pytorch.org/whl/cpu/
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV VLLM_USE_MODELSCOPE=True
WORKDIR /workspace/vllm-ascend
CMD ["/bin/bash"]
EOF
# Setup cleanup
remove_docker_container() {
docker rm -f "${container_name}" || true;
docker image rm -f "${image_name}" || true;
docker system prune -f || true;
}
trap remove_docker_container EXIT
# Generate corresponding --device args based on BUILDKITE_AGENT_NAME
# Ascend NPU BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards, and agent_idx starts from 1.
# e.g. atlas-a2-001-1-2cards means this is the 1-th agent on atlas-a2-001 host, and it has 2 NPU cards.
# returns --device /dev/davinci0 --device /dev/davinci1
parse_and_gen_devices() {
local input="$1"
local index cards_num
if [[ "$input" =~ ([0-9]+)-([0-9]+)cards$ ]]; then
index="${BASH_REMATCH[1]}"
cards_num="${BASH_REMATCH[2]}"
else
echo "parse error" >&2
return 1
fi
local devices=""
local i=0
while (( i < cards_num )); do
local dev_idx=$(((index - 1)*cards_num + i ))
devices="$devices --device /dev/davinci${dev_idx}"
((i++))
done
# trim leading space
devices="${devices#"${devices%%[![:space:]]*}"}"
# Output devices: assigned to the caller variable
printf '%s' "$devices"
}
devices=$(parse_and_gen_devices "${BUILDKITE_AGENT_NAME}") || exit 1
# Run the image and execute the Out-Of-Tree (OOT) platform interface test case on Ascend NPU hardware.
# This test checks whether the OOT platform interface is functioning properly in conjunction with
# the hardware plugin vllm-ascend.
model_cache_dir=/mnt/modelscope${agent_idx}
mkdir -p ${model_cache_dir}
docker run \
${devices} \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v ${model_cache_dir}:/root/.cache/modelscope \
--entrypoint="" \
--name "${container_name}" \
"${image_name}" \
bash -c '
set -e
pytest -v -s tests/e2e/vllm_interface/
'

View File

@ -35,16 +35,15 @@ docker run \
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
pytest -v -s v1/test_metrics
pytest -v -s v1/test_serial_utils.py
pytest -v -s v1/test_utils.py
pytest -v -s v1/test_metrics_reader.py
'

View File

@ -18,7 +18,7 @@ vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
vllm serve meta-llama/Llama-2-7b-chat-hf &
server_pid=$!
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

View File

@ -50,19 +50,28 @@ steps:
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/multimodal
- tests/utils_
commands:
- pytest -v -s -m 'not cpu_test' multimodal
- pytest -v -s utils_
- label: Async Engine, Inputs, Utils, Worker Test (CPU) # 4 mins
timeout_in_minutes: 10
source_file_dependencies:
- vllm/
- tests/test_inputs.py
- tests/test_outputs.py
- tests/multimodal
- tests/utils_
- tests/standalone_tests/lazy_imports.py
- tests/transformers_utils
no_gpu: true
commands:
- python3 standalone_tests/lazy_imports.py
- pytest -v -s test_inputs.py
- pytest -v -s test_outputs.py
- pytest -v -s multimodal
- pytest -v -s utils_ # Utils
- pytest -v -s transformers_utils # transformers_utils
- pytest -v -s -m 'cpu_test' multimodal
- pytest -v -s transformers_utils
- label: Python-only Installation Test # 10min
timeout_in_minutes: 20
@ -159,10 +168,7 @@ steps:
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/test_internal_lb_dp.py
- tests/v1/test_hybrid_lb_dp.py
- tests/v1/distributed
- tests/v1/engine/test_engine_core_client.py
- tests/distributed/test_symm_mem_allreduce.py
commands:
@ -180,10 +186,10 @@ steps:
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
@ -290,24 +296,34 @@ steps:
- tests/v1
commands:
# split the test to avoid interference
- pytest -v -s v1/core
- pytest -v -s v1/executor
- pytest -v -s v1/kv_offload
- pytest -v -s v1/sample
- pytest -v -s v1/logits_processors
- pytest -v -s v1/worker
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/metrics
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_utils.py
- pytest -v -s -m 'not cpu_test' v1/kv_connector/unit
- pytest -v -s -m 'not cpu_test' v1/metrics
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_metrics_reader.py
- pytest -v -s v1/test_request.py
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: V1 Test others (CPU) # 5 mins
source_file_dependencies:
- vllm/
- tests/v1
no_gpu: true
commands:
# split the test to avoid interference
- pytest -v -s v1/core
- pytest -v -s v1/structured_output
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s -m 'cpu_test' v1/kv_connector/unit
- pytest -v -s -m 'cpu_test' v1/metrics
- label: Examples Test # 30min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
@ -463,29 +479,18 @@ steps:
commands:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 14min
timeout_in_minutes: 25
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/model_loader
- tests/tensorizer_loader
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s tensorizer_loader
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Model Executor Test # 7min
timeout_in_minutes: 20
- label: Model Executor Test # 23min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor
- tests/model_executor
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s model_executor
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Benchmarks # 11min
timeout_in_minutes: 20
@ -520,7 +525,7 @@ steps:
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
# we can only upgrade after this is resolved
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
@ -548,10 +553,17 @@ steps:
source_file_dependencies:
- vllm/
- tests/tool_use
- tests/mistral_tool_use
commands:
- pytest -v -s tool_use
- pytest -v -s mistral_tool_use
- pytest -v -s -m 'not cpu_test' tool_use
- label: OpenAI-Compatible Tool Use (CPU) # 5 mins
timeout_in_minutes: 10
source_file_dependencies:
- vllm/
- tests/tool_use
no_gpu: true
commands:
- pytest -v -s -m 'cpu_test' tool_use
##### models test #####
@ -591,13 +603,19 @@ steps:
- vllm/
- tests/models/test_transformers.py
- tests/models/test_registry.py
commands:
- pytest -v -s models/test_transformers.py models/test_registry.py
- label: Basic Models Test (Other CPU) # 5min
timeout_in_minutes: 10
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models/test_utils.py
- tests/models/test_vision.py
no_gpu: true
commands:
- pytest -v -s models/test_transformers.py \
models/test_registry.py \
models/test_utils.py \
models/test_vision.py
- pytest -v -s models/test_utils.py models/test_vision.py
- label: Language Models Tests (Standard)
timeout_in_minutes: 25
@ -767,11 +785,13 @@ steps:
commands:
- pip install --upgrade git+https://github.com/huggingface/transformers
- pytest -v -s tests/models/test_initialization.py
- pytest -v -s tests/models/test_transformers.py
- pytest -v -s tests/models/multimodal/processing/
- pytest -v -s tests/models/multimodal/test_mapping.py
- python3 examples/offline_inference/basic/chat.py
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
# Whisper needs spawn method to avoid deadlock
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
@ -825,7 +845,24 @@ steps:
- vllm/v1/attention/backends/flashinfer.py
commands:
- uv pip install --system 'gpt-oss[eval]==0.0.5'
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58 --server-args '--tensor-parallel-size 2'
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
- label: Blackwell Quantized MoE Test
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
gpu: b200
source_file_dependencies:
- tests/quantization/test_blackwell_moe.py
- vllm/model_executor/models/deepseek_v2.py
- vllm/model_executor/models/gpt_oss.py
- vllm/model_executor/models/llama4.py
- vllm/model_executor/layers/fused_moe
- vllm/model_executor/layers/quantization/compressed_tensors
- vllm/model_executor/layers/quantization/modelopt.py
- vllm/model_executor/layers/quantization/mxfp4.py
- vllm/v1/attention/backends/flashinfer.py
commands:
- pytest -s -v tests/quantization/test_blackwell_moe.py
##### 1 GPU test #####
##### multi gpus test #####
@ -869,48 +906,58 @@ steps:
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- label: Distributed Tests (2 GPUs) # 110min
timeout_in_minutes: 150
- label: Distributed Tests (2 GPUs) # 68min
timeout_in_minutes: 90
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/compilation/
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
- vllm/compilation
- vllm/worker/worker_base.py
- entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- vllm/v1/engine/
- vllm/v1/worker/
- tests/compile/test_basic_correctness.py
- tests/compile/test_wrapper.py
- tests/distributed/
- tests/entrypoints/llm/test_collective_rpc.py
- tests/v1/distributed
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- tests/v1/shutdown
- tests/v1/worker/test_worker_memory_snapshot.py
commands:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- pytest -v -s distributed/test_sequence_parallel.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
- label: Distributed Model Tests (2 GPUs) # 37min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/model_executor/model_loader/sharded_state_loader.py
- vllm/model_executor/models/
- tests/basic_correctness/
- tests/model_executor/model_loader/test_sharded_state_loader.py
- tests/models/
commands:
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s model_executor/model_loader/test_sharded_state_loader.py
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)' --ignore models/multimodal/generation/test_whisper.py
- VLLM_WORKER_MULTIPROC_METHOD=spawn pytest models/multimodal/generation/test_whisper.py -v -s -m 'distributed(num_gpus=2)'
# test sequence parallel
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
# TODO: investigate and fix
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s models/multimodal/generation/test_maverick.py
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
- label: Plugin Tests (2 GPUs) # 40min
timeout_in_minutes: 60

10
.github/CODEOWNERS vendored
View File

@ -12,8 +12,6 @@
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
/vllm/v1/attention @LucasWilkinson
/vllm/v1/sample @22quinn @houseroad
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm @chaunceyjiang
@ -28,11 +26,13 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/attention @LucasWilkinson
/vllm/v1/attention/backends/flashinfer.py @mgoin
/vllm/v1/attention/backends/triton_attn.py @tdoublep
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/vllm/v1/sample @22quinn @houseroad @njhill
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/kv_cache_interface.py @heheda12345
/vllm/v1/offloading @ApostaC
@ -54,7 +54,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/lora @jeejeelee
/tests/models/language/generation/test_hybrid.py @tdoublep
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector @ApostaC
/tests/v1/offloading @ApostaC

33
.github/mergify.yml vendored
View File

@ -2,6 +2,7 @@ pull_request_rules:
- name: label-documentation
description: Automatically apply documentation label
conditions:
- label != stale
- or:
- files~=^[^/]+\.md$
- files~=^docs/
@ -14,6 +15,7 @@ pull_request_rules:
- name: label-ci-build
description: Automatically apply ci/build label
conditions:
- label != stale
- or:
- files~=^\.github/
- files~=\.buildkite/
@ -30,6 +32,7 @@ pull_request_rules:
- name: label-deepseek
description: Automatically apply deepseek label
conditions:
- label != stale
- or:
- files~=^examples/.*deepseek.*\.py
- files~=^tests/.*deepseek.*\.py
@ -46,6 +49,7 @@ pull_request_rules:
- name: label-frontend
description: Automatically apply frontend label
conditions:
- label != stale
- files~=^vllm/entrypoints/
actions:
label:
@ -55,6 +59,7 @@ pull_request_rules:
- name: label-llama
description: Automatically apply llama label
conditions:
- label != stale
- or:
- files~=^examples/.*llama.*\.py
- files~=^tests/.*llama.*\.py
@ -70,6 +75,7 @@ pull_request_rules:
- name: label-multi-modality
description: Automatically apply multi-modality label
conditions:
- label != stale
- or:
- files~=^vllm/multimodal/
- files~=^tests/multimodal/
@ -83,6 +89,7 @@ pull_request_rules:
- name: label-new-model
description: Automatically apply new-model label
conditions:
- label != stale
- and:
- files~=^vllm/model_executor/models/
- files=vllm/model_executor/models/registry.py
@ -94,6 +101,7 @@ pull_request_rules:
- name: label-performance
description: Automatically apply performance label
conditions:
- label != stale
- or:
- files~=^benchmarks/
- files~=^vllm/benchmarks/
@ -107,6 +115,7 @@ pull_request_rules:
- name: label-qwen
description: Automatically apply qwen label
conditions:
- label != stale
- or:
- files~=^examples/.*qwen.*\.py
- files~=^tests/.*qwen.*\.py
@ -121,6 +130,7 @@ pull_request_rules:
- name: label-gpt-oss
description: Automatically apply gpt-oss label
conditions:
- label != stale
- or:
- files~=^examples/.*gpt[-_]?oss.*\.py
- files~=^tests/.*gpt[-_]?oss.*\.py
@ -142,6 +152,7 @@ pull_request_rules:
- name: label-rocm
description: Automatically apply rocm label
conditions:
- label != stale
- or:
- files~=^csrc/rocm/
- files~=^docker/Dockerfile.rocm
@ -162,6 +173,7 @@ pull_request_rules:
- name: label-structured-output
description: Automatically apply structured-output label
conditions:
- label != stale
- or:
- files~=^benchmarks/structured_schemas/
- files=benchmarks/benchmark_serving_structured_output.py
@ -181,6 +193,7 @@ pull_request_rules:
- name: label-speculative-decoding
description: Automatically apply speculative-decoding label
conditions:
- label != stale
- or:
- files~=^vllm/v1/spec_decode/
- files~=^tests/v1/spec_decode/
@ -196,6 +209,7 @@ pull_request_rules:
- name: label-v1
description: Automatically apply v1 label
conditions:
- label != stale
- or:
- files~=^vllm/v1/
- files~=^tests/v1/
@ -208,6 +222,7 @@ pull_request_rules:
description: Automatically apply tpu label
# Keep this list in sync with `label-tpu-remove` conditions
conditions:
- label != stale
- or:
- files~=tpu.py
- files~=_tpu
@ -223,6 +238,7 @@ pull_request_rules:
description: Automatically remove tpu label
# Keep this list in sync with `label-tpu` conditions
conditions:
- label != stale
- and:
- -files~=tpu.py
- -files~=_tpu
@ -237,9 +253,9 @@ pull_request_rules:
- name: label-tool-calling
description: Automatically add tool-calling label
conditions:
- label != stale
- or:
- files~=^tests/tool_use/
- files~=^tests/mistral_tool_use/
- files~=^tests/entrypoints/openai/tool_parsers/
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
- files~=^vllm/entrypoints/openai/tool_parsers/
@ -256,8 +272,9 @@ pull_request_rules:
- name: ping author on conflicts and add 'needs-rebase' label
conditions:
- conflict
- -closed
- label != stale
- conflict
- -closed
actions:
label:
add:
@ -271,10 +288,12 @@ pull_request_rules:
- name: assign reviewer for tensorizer changes
conditions:
- label != stale
- or:
- files~=^vllm/model_executor/model_loader/tensorizer.py
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
- files~=^tests/tensorizer_loader/
- files~=^tests/model_executor/model_loader/tensorizer_loader/
actions:
assign:
users:
@ -282,6 +301,7 @@ pull_request_rules:
- name: assign reviewer for modelopt changes
conditions:
- label != stale
- or:
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
@ -296,8 +316,8 @@ pull_request_rules:
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict
- -closed
- -conflict
- -closed
actions:
label:
remove:
@ -306,6 +326,7 @@ pull_request_rules:
- name: label-kv-connector
description: Automatically apply kv-connector label
conditions:
- label != stale
- or:
- files~=^examples/online_serving/disaggregated[^/]*/.*
- files~=^examples/offline_inference/disaggregated[^/]*/.*

View File

@ -13,6 +13,7 @@ build:
mkdocs:
configuration: mkdocs.yaml
fail_on_warning: true
# Optionally declare the Python requirements required to build your docs
python:

View File

@ -37,7 +37,7 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
#
# Supported/expected torch versions for CUDA/ROCm.
@ -86,6 +86,9 @@ find_package(Torch REQUIRED)
# Supported NVIDIA architectures.
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
set(CUDA_SUPPORTED_ARCHS "7.5;8.0;8.6;8.7;8.9;9.0;10.0;11.0;12.0")
elseif(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
else()
@ -175,6 +178,15 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Set compression mode for CUDA >=13.x.
#
if(VLLM_GPU_LANG STREQUAL "CUDA" AND
DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
list(APPEND VLLM_GPU_FLAGS "--compress-mode=size")
endif()
#
# Set CUDA include flags for CXX compiler.
#
@ -270,7 +282,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
set(CUTLASS_REVISION "v4.2.1" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -305,7 +317,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/cutlass_extensions/common.cpp"
"csrc/quantization/fp8/per_token_group_quant.cu")
@ -440,7 +451,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
@ -470,7 +485,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
# require CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
@ -550,7 +569,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
# CUDA 12.8 or later
cuda_archs_loose_intersection(FP4_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(FP4_ARCHS "12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(FP4_ARCHS "12.0a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
@ -569,7 +592,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# FP4 Archs and flags
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(FP4_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(FP4_ARCHS "10.0a;10.1a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
@ -591,7 +618,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# CUTLASS MLA Archs and flags
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(MLA_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(MLA_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
set(SRCS
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
@ -635,7 +666,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
set_gencode_flags_for_srcs(
@ -656,7 +691,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# moe_data.cu is used by all CUTLASS MoE kernels.
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
set_gencode_flags_for_srcs(
@ -675,7 +714,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
set_gencode_flags_for_srcs(

View File

@ -21,6 +21,7 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
*Latest News* 🔥
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).

View File

@ -1,17 +1,31 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import time
from unittest import mock
import numpy as np
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
from vllm.config import (
CacheConfig,
DeviceConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
SchedulerConfig,
SpeculativeConfig,
VllmConfig,
)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
from vllm.v1.worker.gpu_input_batch import InputBatch
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
def main(args):
def benchmark_propose(args):
rows = []
for max_ngram in args.max_ngram:
collector = TimeCollector(TimeCollector.US)
@ -69,10 +83,88 @@ def main(args):
)
def benchmark_batched_propose(args):
NUM_SPECULATIVE_TOKENS_NGRAM = 10
PROMPT_LOOKUP_MIN = 5
PROMPT_LOOKUP_MAX = 15
MAX_MODEL_LEN = int(1e7)
DEVICE = current_platform.device_type
model_config = ModelConfig(model="facebook/opt-125m", runner="generate")
speculative_config = SpeculativeConfig(
target_model_config=model_config,
target_parallel_config=ParallelConfig(),
method="ngram",
num_speculative_tokens=NUM_SPECULATIVE_TOKENS_NGRAM,
prompt_lookup_max=PROMPT_LOOKUP_MAX,
prompt_lookup_min=PROMPT_LOOKUP_MIN,
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=CacheConfig(),
speculative_config=speculative_config,
device_config=DeviceConfig(device=current_platform.device_type),
parallel_config=ParallelConfig(),
load_config=LoadConfig(),
scheduler_config=SchedulerConfig(),
)
# monkey patch vllm.v1.worker.gpu_model_runner.get_pp_group
mock_pp_group = mock.MagicMock()
mock_pp_group.world_size = 1
with mock.patch(
"vllm.v1.worker.gpu_model_runner.get_pp_group", return_value=mock_pp_group
):
runner = GPUModelRunner(vllm_config, DEVICE)
# hack max model len
runner.max_model_len = MAX_MODEL_LEN
runner.drafter.max_model_len = MAX_MODEL_LEN
dummy_input_batch = InputBatch(
max_num_reqs=args.num_req,
max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=args.num_req * args.num_token,
device=DEVICE,
pin_memory=False,
vocab_size=256000,
block_sizes=[16],
)
dummy_input_batch._req_ids = list(str(id) for id in range(args.num_req))
dummy_input_batch.spec_decode_unsupported_reqs = ()
dummy_input_batch.num_tokens_no_spec = [args.num_token] * args.num_req
dummy_input_batch.token_ids_cpu = np.random.randint(
0, 20, (args.num_req, args.num_token)
)
runner.input_batch = dummy_input_batch
sampled_token_ids = [[0]] * args.num_req
print("Starting benchmark")
# first run is warmup so ignore it
for _ in range(args.num_iteration):
start = time.time()
runner.drafter.propose(
sampled_token_ids,
dummy_input_batch.req_ids,
dummy_input_batch.num_tokens_no_spec,
dummy_input_batch.token_ids_cpu,
dummy_input_batch.spec_decode_unsupported_reqs,
)
end = time.time()
print(f"Iteration time (s): {end - start}")
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of N-gram speculative decode drafting"
)
parser.add_argument(
"--batched", action="store_true", help="consider time to prepare batch"
) # noqa: E501
parser.add_argument(
"--num-iteration",
type=int,
@ -105,8 +197,17 @@ def invoke_main() -> None:
help="Number of speculative tokens to generate",
)
args = parser.parse_args()
main(args)
if not args.batched:
benchmark_propose(args)
else:
benchmark_batched_propose(args)
"""
# Example command lines:
# time python3 benchmarks/benchmark_ngram_proposer.py
# time python3 benchmarks/benchmark_ngram_proposer.py --batched --num-iteration 4 --num-token 1000000 --num-req 128
""" # noqa: E501
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -55,9 +55,7 @@ benchmark() {
output_len=$2
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
@ -65,9 +63,7 @@ benchmark() {
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \

View File

@ -38,16 +38,12 @@ wait_for_server() {
launch_chunked_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
--port 8100 \
--max-model-len 10000 \
--enable-chunked-prefill \
--gpu-memory-utilization 0.6 &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
--port 8200 \
--max-model-len 10000 \
--enable-chunked-prefill \
@ -62,18 +58,14 @@ launch_chunked_prefill() {
launch_disagg_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \

View File

@ -3,6 +3,7 @@
import argparse
import copy
import itertools
import os
import torch
from weight_shapes import WEIGHT_SHAPES
@ -23,21 +24,45 @@ PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"nvfp4": dict(no_a_quant=False, enabled=True),
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
"fbgemm-nvfp4": dict(fbgemm=True, no_a_quant=False, enabled=True),
"fbgemm-nvfp4-noquant": dict(fbgemm=True, no_a_quant=True, enabled=True),
}
_needs_fbgemm = any(
v.get("fbgemm", False) for v in PROVIDER_CFGS.values() if v.get("enabled", False)
)
if _needs_fbgemm:
try:
from fbgemm_gpu.experimental.gemm.triton_gemm.fp4_quantize import (
triton_scale_nvfp4_quant,
)
except ImportError:
print(
"WARNING: FBGEMM providers are enabled but fbgemm_gpu is not installed. "
"These providers will be skipped. Please install fbgemm_gpu with: "
"'pip install fbgemm-gpu-genai' to run them."
)
# Disable FBGEMM providers so the benchmark can run.
for cfg in PROVIDER_CFGS.values():
if cfg.get("fbgemm"):
cfg["enabled"] = False
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
def _quant_weight_nvfp4(b: torch.Tensor, device: str, cfg):
# Compute global scale for weight
b_amax = torch.abs(b).max().to(torch.float32)
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
if "fbgemm" in cfg and cfg["fbgemm"]:
b_fp4, scale_b_fp4 = triton_scale_nvfp4_quant(b, b_global_scale)
else:
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
return b_fp4, scale_b_fp4, b_global_scale
def build_nvfp4_runner(cfg, a, b, dtype, device):
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device, cfg)
# Compute global scale for activation
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
@ -46,6 +71,35 @@ def build_nvfp4_runner(cfg, a, b, dtype, device):
# Alpha for the GEMM operation
alpha = 1.0 / (a_global_scale * b_global_scale)
if "fbgemm" in cfg and cfg["fbgemm"]:
if cfg["no_a_quant"]:
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
def run():
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
else:
def run():
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
if cfg["no_a_quant"]:
# Pre-quantize activation
@ -130,10 +184,13 @@ if __name__ == "__main__":
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
save_dir = f"bench_nvfp4_res_n{N}_k{K}"
os.makedirs(save_dir, exist_ok=True)
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_nvfp4_res_n{N}_k{K}",
save_path=save_dir,
N=N,
K=K,
)

View File

@ -79,9 +79,9 @@ def make_rand_lora_weight_tensor(
def make_rand_tensors(
a_shape: tuple[int],
b_shape: tuple[int],
c_shape: tuple[int],
a_shape: tuple[int, ...],
b_shape: tuple[int, ...],
c_shape: tuple[int, ...],
a_dtype: torch.dtype,
b_dtype: torch.dtype,
c_dtype: torch.dtype,
@ -243,7 +243,7 @@ class OpType(Enum):
lora_rank: int,
num_loras: int,
num_slices: int,
) -> tuple[tuple[int], tuple[int], tuple[int]]:
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
"""
Given num_slices, return the shapes of the A, B, and C matrices
in A x B = C, for the op_type

View File

@ -584,8 +584,9 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
elif config.architectures[0] in (
"DeepseekV3ForCausalLM",
"DeepseekV2ForCausalLM",
"DeepseekV3ForCausalLM",
"DeepseekV32ForCausalLM",
"Glm4MoeForCausalLM",
):
E = config.n_routed_experts

View File

@ -0,0 +1,174 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from __future__ import annotations
import random
import time
import torch
from tabulate import tabulate
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random,
)
logger = init_logger(__name__)
@torch.inference_mode()
def run_benchmark(
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
kv_cache_dtype: str,
num_iters: int,
benchmark_mode: str,
device: str = "cuda",
) -> float:
"""Return latency (seconds) for given num_tokens."""
if kv_cache_dtype == "fp8" and head_size % 16:
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
current_platform.seed_everything(42)
torch.set_default_device(device)
# create random key / value tensors [T, H, D].
key = torch.randn(num_tokens, num_heads, head_size, dtype=dtype, device=device)
value = torch.randn_like(key)
# prepare the slot mapping.
# each token is assigned a unique slot in the KV-cache.
num_slots = block_size * num_blocks
if num_tokens > num_slots:
raise ValueError("num_tokens cannot exceed the total number of cache slots")
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long, device=device)
key_caches, value_caches = create_kv_caches_with_random(
num_blocks,
block_size,
1, # num_layers
num_heads,
head_size,
kv_cache_dtype,
dtype,
device=device,
)
key_cache, value_cache = key_caches[0], value_caches[0]
# to free unused memory
del key_caches, value_caches
# compute per-kernel scaling factors for fp8 conversion (if used).
k_scale = (key.amax() / 64.0).to(torch.float32)
v_scale = (value.amax() / 64.0).to(torch.float32)
function_under_test = lambda: ops.reshape_and_cache(
key, # noqa: F821
value, # noqa: F821
key_cache, # noqa: F821
value_cache, # noqa: F821
slot_mapping, # noqa: F821
kv_cache_dtype,
k_scale,
v_scale,
)
if benchmark_mode == "cudagraph":
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
function_under_test()
torch.cuda.synchronize()
function_under_test = lambda: g.replay()
def run_cuda_benchmark(n_iters: int) -> float:
nonlocal key, value, key_cache, value_cache, slot_mapping
torch.cuda.synchronize()
start = time.perf_counter()
for _ in range(n_iters):
function_under_test()
torch.cuda.synchronize()
end = time.perf_counter()
return (end - start) / n_iters
# warm-up
run_cuda_benchmark(3)
lat = run_cuda_benchmark(num_iters)
# free tensors to mitigate OOM when sweeping
del key, value, key_cache, value_cache, slot_mapping
torch.cuda.empty_cache()
return lat
def main(args):
rows = []
for exp in range(1, 17):
n_tok = 2**exp
lat = run_benchmark(
num_tokens=n_tok,
num_heads=args.num_heads,
head_size=args.head_size,
block_size=args.block_size,
num_blocks=args.num_blocks,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
kv_cache_dtype=args.kv_cache_dtype,
num_iters=args.iters,
benchmark_mode=args.mode,
device="cuda",
)
rows.append([n_tok, lat * 1e6]) # convert to microseconds
print(f"Benchmark results for implementation cuda (measuring with {args.mode}):")
print(tabulate(rows, headers=["num_tokens", "latency (µs)"], floatfmt=".3f"))
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument("--num-heads", type=int, default=128)
parser.add_argument(
"--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128,
)
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
parser.add_argument("--num-blocks", type=int, default=128 * 128)
parser.add_argument(
"--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="bfloat16",
)
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8"],
default="auto",
)
parser.add_argument("--iters", type=int, default=200)
parser.add_argument(
"--mode",
type=str,
choices=["cudagraph", "no_graph"],
default="cudagraph",
)
args = parser.parse_args()
main(args)

View File

@ -8,12 +8,16 @@ import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
get_col_major_tma_aligned_tensor,
per_token_group_quant_fp8,
w8a8_triton_block_scaled_mm,
)
from vllm.triton_utils import triton
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
from vllm.utils.deep_gemm import (
calc_diff,
fp8_gemm_nt,
get_col_major_tma_aligned_tensor,
per_block_cast_to_fp8,
)
def benchmark_shape(m: int,

View File

@ -101,6 +101,7 @@ else()
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
find_isa(${CPUINFO} "S390" S390_FOUND)
find_isa(${CPUINFO} "v" RVV_FOUND) # Check for RISC-V RVV support
endif()
if (AVX512_FOUND AND NOT AVX512_DISABLED)
@ -177,8 +178,14 @@ elseif (S390_FOUND)
"-mzvector"
"-march=native"
"-mtune=native")
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "riscv64")
if(RVV_FOUND)
message(FAIL_ERROR "Can't support rvv now.")
else()
list(APPEND CXX_COMPILE_FLAGS "-march=rv64gc")
endif()
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
endif()
#

View File

@ -18,8 +18,8 @@ if(FLASH_MLA_SRC_DIR)
else()
FetchContent_Declare(
flashmla
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
GIT_PROGRESS TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
@ -33,23 +33,64 @@ message(STATUS "FlashMLA is available at ${flashmla_SOURCE_DIR}")
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
# Only build FlashMLA kernels if we are building for something compatible with
# sm90a
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
set(SUPPORT_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3)
list(APPEND SUPPORT_ARCHS 9.0a)
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8)
list(APPEND SUPPORT_ARCHS 10.0a)
endif()
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "${SUPPORT_ARCHS}" "${CUDA_ARCHS}")
if(FLASH_MLA_ARCHS)
set(VLLM_FLASHMLA_GPU_FLAGS ${VLLM_GPU_FLAGS})
list(APPEND VLLM_FLASHMLA_GPU_FLAGS "--expt-relaxed-constexpr" "--expt-extended-lambda" "--use_fast_math")
set(FlashMLA_SOURCES
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
${flashmla_SOURCE_DIR}/csrc/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/smxx/get_mla_metadata.cu
${flashmla_SOURCE_DIR}/csrc/smxx/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/sm90/decode/dense/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm90/decode/sparse_fp8/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm90/prefill/sparse/fwd.cu
${flashmla_SOURCE_DIR}/csrc/sm100/decode/sparse_fp8/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_fwd_sm100.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_bwd_sm100.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/sparse/fwd.cu
)
set(FlashMLA_Extension_SOURCES
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
)
set(FlashMLA_INCLUDES
${flashmla_SOURCE_DIR}/csrc
${flashmla_SOURCE_DIR}/csrc/sm90
${flashmla_SOURCE_DIR}/csrc/cutlass/include
${flashmla_SOURCE_DIR}/csrc)
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
)
set(FlashMLA_Extension_INCLUDES
${flashmla_SOURCE_DIR}/csrc
${flashmla_SOURCE_DIR}/csrc/sm90
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/
${flashmla_SOURCE_DIR}/csrc/cutlass/include
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
)
set_gencode_flags_for_srcs(
SRCS "${FlashMLA_SOURCES}"
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
set_gencode_flags_for_srcs(
SRCS "${FlashMLA_Extension_SOURCES}"
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
define_gpu_extension_target(
_flashmla_C
DESTINATION vllm
@ -60,8 +101,32 @@ if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
USE_SABI 3
WITH_SOABI)
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
target_compile_options(_flashmla_C PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
define_gpu_extension_target(
_flashmla_extension_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${FlashMLA_Extension_SOURCES}
COMPILE_FLAGS ${VLLM_FLASHMLA_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${FlashMLA_Extension_INCLUDES}
USE_SABI 3
WITH_SOABI)
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
target_compile_options(_flashmla_extension_C PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
else()
# Create an empty target for setup.py when not targeting sm90a systems
# Create empty targets for setup.py when not targeting sm90a systems
add_custom_target(_flashmla_C)
add_custom_target(_flashmla_extension_C)
endif()

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG ee4d25bd84e0cbc7e0b9b9685085fd5db2dcb62a
GIT_TAG 4695e6bed5366c41e28c06cd86170166e4f43d00
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -310,13 +310,13 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
list(REMOVE_DUPLICATES _PTX_ARCHS)
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
# If x.0a or x.0f is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a or x.0f from SRC_CUDA_ARCHS and add x.0a or x.0f to _CUDA_ARCHS
set(_CUDA_ARCHS)
foreach(_arch ${_SRC_CUDA_ARCHS})
if(_arch MATCHES "\\a$")
if(_arch MATCHES "[af]$")
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
string(REPLACE "a" "" _base "${_arch}")
string(REGEX REPLACE "[af]$" "" _base "${_arch}")
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
list(APPEND _CUDA_ARCHS "${_arch}")

View File

@ -580,22 +580,22 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
continue;
if (local_split_kv <= get<3>(blk_coord))
continue;
load_page_table(
blk_coord,
problem_shape,
params.mainloop,
shared_storage.tensors,
pipeline_page_table, pipeline_pt_producer_state,
local_split_kv
local_split_kv
);
}
}
@ -604,15 +604,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
CUTLASS_PRAGMA_NO_UNROLL
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
load_cpasync(
blk_coord,
@ -621,7 +621,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
params.mainloop_params,
shared_storage.tensors,
pipeline_load_qk, pipeline_load_qk_producer_state,
local_split_kv,
local_split_kv,
/* must be shared pipe */
pipeline_page_table, pipeline_pt_consumer_state
);
@ -633,15 +633,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
CUTLASS_PRAGMA_NO_UNROLL
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
load_tma</* paged= */ true>(
blk_coord,
@ -651,7 +651,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
shared_storage.tensors,
pipeline_load_qk, pipeline_load_qk_producer_state,
pipeline_load_qk, pipeline_load_qk_producer_state,
local_split_kv
local_split_kv
);
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
}
@ -660,15 +660,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
CUTLASS_PRAGMA_NO_UNROLL
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
load_tma<false>(
blk_coord,
@ -678,7 +678,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
shared_storage.tensors,
pipeline_load_qk, pipeline_load_qk_producer_state,
pipeline_load_qk, pipeline_load_qk_producer_state,
local_split_kv
local_split_kv
);
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
}
@ -694,14 +694,14 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
mma(blk_coord,
problem_shape,
@ -711,7 +711,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
pipeline_mma_s, pipeline_mma_s_producer_state,
pipeline_p_mma, pipeline_p_mma_consumer_state,
pipeline_mma_o, pipeline_mma_o_producer_state,
local_split_kv
local_split_kv
);
}
}
@ -726,15 +726,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto split_kv = params.split_kv;
auto local_split_kv = split_kv;
auto split_kv = params.split_kv;
auto local_split_kv = split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
compute(
blk_coord,
@ -745,7 +745,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
pipeline_mma_s, pipeline_mma_s_consumer_state,
pipeline_p_mma, pipeline_p_mma_producer_state,
pipeline_mma_o, pipeline_mma_o_consumer_state,
local_split_kv
local_split_kv
);
}
@ -1900,7 +1900,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
cutlass::arch::NamedBarrier(
(kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp,
kNamedBarrierEpilogue
).arrive();
).arrive_and_wait();
return;
}

View File

@ -56,3 +56,11 @@ void cp_gather_cache(
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
// Indexer K quantization and cache function
void indexer_k_quant_and_cache(
torch::Tensor& k, // [num_tokens, head_dim]
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& slot_mapping, // [num_tokens]
int64_t quant_block_size, // quantization block size
const std::string& scale_fmt);

View File

@ -16,8 +16,7 @@
#include <algorithm>
#include <cassert>
#include <map>
#include <vector>
#include <cfloat> // FLT_MIN
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
@ -209,6 +208,20 @@ void copy_blocks_mla(std::vector<torch::Tensor> const& kv_caches,
namespace vllm {
// Used to copy/convert one element
template <typename OutT, typename InT, Fp8KVCacheDataType kv_dt>
struct CopyWithScaleOp {
float scale;
__device__ __forceinline__ void operator()(OutT& dst, const InT src) const {
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
dst = static_cast<OutT>(src);
} else {
dst = fp8::scaled_convert<OutT, InT, kv_dt>(src, scale);
}
}
};
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void reshape_and_cache_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
@ -224,59 +237,51 @@ __global__ void reshape_and_cache_kernel(
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx < 0) {
// Padding token that should be ignored.
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int h_block_count = head_size / x; // head_size//x
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int64_t src_key_idx = token_idx * key_stride + i;
const int64_t src_value_idx = token_idx * value_stride + i;
const int h_block_idx = threadIdx.x;
if (h_block_idx >= num_heads * h_block_count) {
return;
}
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int x_idx = head_offset / x;
const int x_offset = head_offset % x;
const int head_idx = h_block_idx / h_block_count;
const int h_block = h_block_idx % h_block_count;
const int64_t tgt_key_idx =
block_idx * num_heads * (head_size / x) * block_size * x +
head_idx * (head_size / x) * block_size * x + x_idx * block_size * x +
block_offset * x + x_offset;
const int64_t tgt_value_idx =
block_idx * num_heads * head_size * block_size +
head_idx * head_size * block_size + head_offset * block_size +
block_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
key_cache[tgt_key_idx] = tgt_key;
value_cache[tgt_value_idx] = tgt_value;
} else {
key_cache[tgt_key_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, *k_scale);
value_cache[tgt_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, *v_scale);
}
const scalar_t* __restrict__ key_src =
key + token_idx * key_stride + head_idx * head_size + h_block * x;
const int64_t src_value_start =
token_idx * value_stride + head_idx * head_size + h_block * x;
cache_t* __restrict__ key_dst =
key_cache + block_idx * num_heads * h_block_count * block_size * x +
head_idx * h_block_count * block_size * x + h_block * block_size * x +
block_offset * x;
const int64_t tgt_value_start =
block_idx * num_heads * h_block_count * x * block_size +
head_idx * h_block_count * x * block_size + h_block * x * block_size +
block_offset;
constexpr int VEC_SIZE = (sizeof(scalar_t) == 2) ? 8 : 4;
float k_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *k_scale;
CopyWithScaleOp<cache_t, scalar_t, kv_dt> k_op{k_scale_val};
float v_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *v_scale;
CopyWithScaleOp<cache_t, scalar_t, kv_dt> v_op{v_scale_val};
vectorize_with_alignment<VEC_SIZE>(key_src, key_dst, x, 0, 1, k_op);
const scalar_t* __restrict__ value_src = value + src_value_start;
cache_t* __restrict__ value_dst = value_cache + tgt_value_start;
#pragma unroll
for (int i = 0; i < x; i++) {
v_op(value_dst[i * block_size], value_src[i]);
}
}
// Used by vectorization_utils to copy/convert one element
template <typename OutT, typename InT, Fp8KVCacheDataType kv_dt>
struct CopyWithScaleOp {
float scale;
__device__ __forceinline__ void operator()(OutT& dst, const InT src) const {
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
dst = static_cast<OutT>(src);
} else {
dst = fp8::scaled_convert<OutT, InT, kv_dt>(src, scale);
}
}
};
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void reshape_and_cache_flash_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
@ -396,6 +401,176 @@ __global__ void concat_and_cache_mla_kernel(
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
}
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void concat_and_cache_ds_mla_kernel(
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
// + pe_dim)]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, //
const int entry_stride, //
const int kv_c_stride, //
const int k_pe_stride, //
const int kv_lora_rank, //
const int pe_dim, //
const int block_size, //
const float* scale //
) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int64_t dst_idx_start =
block_idx * block_stride + block_offset * entry_stride;
// For the NoPE part, each tile of 128 elements is handled by half of one warp
// (16 threads). There are 4 total tiles, so 2 warps (64 threads).
// Lanes 0 and 16 of each warp write the scale values for that warp's tiles.
// The RoPE part (last 64 elements) is handled by another 1 warp (32 threads).
// So in total, we use 3 warps (96 threads) per block.
// Cast kv_cache to 16_bit for RoPE values
scalar_t* kv_cache_16bit =
reinterpret_cast<scalar_t*>(&kv_cache[dst_idx_start]);
// The last warp handles the RoPE part
if (threadIdx.x >= 64) {
// Each thread handles two elements of RoPE
const int8_t pe_idx_start = (threadIdx.x - 64) * 2;
const int64_t src_idx = token_idx * k_pe_stride + pe_idx_start;
// Vectorized load of two 16-bit values, performed as one 32-bit load
const int32_t vals = *reinterpret_cast<const int32_t*>(&k_pe[src_idx]);
// RoPE values start after the packed 8-bit NoPE values and the
// 32-bit scales
const int64_t dst_idx = kv_lora_rank / 2 + 8 + pe_idx_start;
// Vectorized store of two 16-bit values, performed as one 32-bit store
*reinterpret_cast<int32_t*>(&kv_cache_16bit[dst_idx]) = vals;
return;
}
// The first two warps handle the NoPE part
const int8_t warp_idx = threadIdx.x >> 5;
const int8_t lane_idx = threadIdx.x & 31;
const int8_t tile_idx = warp_idx * 2 + (lane_idx >> 4);
// Each thread handles 8 elements of NoPE
// Load the NoPE elements for this thread into registers
const int64_t src_idx_start = token_idx * kv_c_stride + (threadIdx.x * 8);
// Vectorized load of eight 16-bit values, performed as an int4 load
const int4 vals_i4 = *reinterpret_cast<const int4*>(&kv_c[src_idx_start]);
const scalar_t* vals = reinterpret_cast<const scalar_t*>(&vals_i4);
// Max absolute value of this thread's elements
float max_abs = fmaxf(fmaxf(fmaxf(fabsf(vals[0]), fabsf(vals[1])),
fmaxf(fabsf(vals[2]), fabsf(vals[3]))),
fmaxf(fmaxf(fabsf(vals[4]), fabsf(vals[5])),
fmaxf(fabsf(vals[6]), fabsf(vals[7]))));
// Warp-level reduction to find the max absolute value in each half-warp
#pragma unroll
for (int offset = 8; offset > 0; offset /= 2) {
max_abs = fmaxf(max_abs, VLLM_SHFL_XOR_SYNC_WIDTH(max_abs, offset, 16));
}
// Compute the scale for the tile
float tile_scale = max_abs / 448.f;
// The first lane of each half-warp writes the scale to kv_cache
if ((lane_idx == 0) || (lane_idx == 16)) {
float* kv_cache_32bit = reinterpret_cast<float*>(&kv_cache[dst_idx_start]);
const uint64_t dst_idx = kv_lora_rank / 4 + tile_idx;
kv_cache_32bit[dst_idx] = tile_scale;
}
// Now all threads in the block scale and write their elements
// NoPE data is packed in the first kv_lora_rank/2 bytes (first 256 bytes)
const int64_t dst_idx_base = dst_idx_start + (threadIdx.x * 8);
uint8_t result[8];
#pragma unroll
for (int i = 0; i < 8; i++) {
result[i] =
fp8::scaled_convert<uint8_t, scalar_t, Fp8KVCacheDataType::kFp8E4M3>(
vals[i], tile_scale);
}
// Store as aligned 64-bit writes
*reinterpret_cast<uint64_t*>(&kv_cache[dst_idx_base]) =
*reinterpret_cast<const uint64_t*>(result);
}
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void indexer_k_quant_and_cache_kernel(
const scalar_t* __restrict__ k, // [num_tokens, head_dim]
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, cache_stride]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int head_dim, // dimension of each head
const int quant_block_size, // quantization block size
const int cache_block_size, // cache block size
const int cache_stride, // stride for each token in kv_cache
const bool use_ue8m0 // use ue8m0 scale format
) {
constexpr int VEC_SIZE = 4;
const int64_t token_idx = blockIdx.x;
const int64_t head_dim_idx = (blockIdx.y * blockDim.y * blockDim.x +
threadIdx.y * blockDim.x + threadIdx.x) *
VEC_SIZE;
const int64_t slot_idx = slot_mapping[token_idx];
const int64_t block_idx = slot_idx / cache_block_size;
const int64_t block_offset = slot_idx % cache_block_size;
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0 || (head_dim_idx >= head_dim)) {
return;
}
float2 k_val = (reinterpret_cast<const float2*>(
k))[(token_idx * head_dim + head_dim_idx) / VEC_SIZE];
scalar_t* k_val_ptr = reinterpret_cast<scalar_t*>(&k_val);
float amax = 0.0f;
for (int i = 0; i < VEC_SIZE; i++) {
amax = fmaxf(amax, fabsf(float(k_val_ptr[i])));
}
#ifndef USE_ROCM
__syncwarp();
#endif
// Reduced amax
for (int mask = 16; mask > 0; mask /= 2) {
#ifdef USE_ROCM
amax = fmaxf(amax, __shfl_xor_sync(uint64_t(-1), amax, mask));
#else
amax = fmaxf(amax, __shfl_xor_sync(unsigned(-1), amax, mask));
#endif
}
#ifndef USE_ROCM
__syncwarp();
#endif
float scale = fmaxf(amax, 1e-4) / 448.0f;
if (use_ue8m0) {
scale = exp2f(ceilf(log2f(scale)));
}
const int64_t dst_offset = block_idx * cache_block_size * cache_stride +
block_offset * head_dim + head_dim_idx;
for (int i = 0; i < VEC_SIZE; i++) {
kv_cache[dst_offset + i] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(k_val_ptr[i], scale);
}
if (threadIdx.x == 0) {
const int64_t dst_scale_idx =
block_idx * cache_block_size * cache_stride +
cache_block_size * head_dim +
(block_offset * head_dim + head_dim_idx) * 4 / quant_block_size;
reinterpret_cast<float*>(kv_cache)[dst_scale_idx / 4] = scale;
}
}
} // namespace vllm
// KV_T is the data type of key and value tensors.
@ -431,14 +606,15 @@ void reshape_and_cache(
int key_stride = key.stride(0);
int value_stride = value.stride(0);
int head_div_x = head_size / x;
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
dim3 block(std::min(num_heads * head_div_x, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
CALL_RESHAPE_AND_CACHE)
CALL_RESHAPE_AND_CACHE);
}
// KV_T is the data type of key and value tensors.
@ -509,6 +685,18 @@ void reshape_and_cache_flash(
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
// KV_T is the data type of key and value tensors.
// CACHE_T is the stored data type of kv-cache.
#define CALL_CONCAT_AND_CACHE_DS_MLA(KV_T, CACHE_T, KV_DTYPE) \
vllm::concat_and_cache_ds_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
void concat_and_cache_mla(
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
torch::Tensor& k_pe, // [num_tokens, pe_dim]
@ -531,20 +719,43 @@ void concat_and_cache_mla(
int pe_dim = k_pe.size(1);
int block_size = kv_cache.size(1);
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
if (kv_cache_dtype == "fp8_ds_mla") {
TORCH_CHECK(kv_lora_rank == 512, "kv_lora_rank must be 512 for fp8_ds_mla");
TORCH_CHECK(pe_dim == 64, "pe_dim must be 64 for fp8_ds_mla");
TORCH_CHECK(kv_cache.size(2) == 656 / kv_cache.itemsize(),
"kv_cache.size(2) must be 656 bytes for fp8_ds_mla");
TORCH_CHECK(kv_c.itemsize() == 2,
"kv_c.itemsize() must be 2 for fp8_ds_mla");
TORCH_CHECK(k_pe.itemsize() == 2,
"k_pe.itemsize() must be 2 for fp8_ds_mla");
} else {
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
}
int kv_c_stride = kv_c.stride(0);
int k_pe_stride = k_pe.stride(0);
int block_stride = kv_cache.stride(0);
int entry_stride = kv_cache.stride(1);
dim3 grid(num_tokens);
dim3 block(std::min(kv_lora_rank, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_c));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_MLA);
if (kv_cache_dtype == "fp8_ds_mla") {
dim3 grid(num_tokens);
// For the NoPE part, each tile of 128 elements is handled by half of one
// warp (16 threads). There are 4 total tiles, so 2 warps (64 threads).
// Lanes 0 and 16 of each warp write the scale values for that warp's tiles.
// The RoPE part (last 64 elements) is handled by another 1 warp (32
// threads). So in total, we use 3 warps (96 threads) per block.
dim3 block(96);
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_DS_MLA);
} else {
dim3 grid(num_tokens);
dim3 block(std::min(kv_lora_rank, 512));
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_MLA);
}
}
namespace vllm {
@ -922,3 +1133,42 @@ void cp_gather_cache(
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
}
}
// Macro to dispatch the kernel based on the data type.
#define CALL_INDEXER_K_QUANT_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \
vllm::indexer_k_quant_and_cache_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(k.data_ptr()), \
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), head_dim, quant_block_size, \
cache_block_size, cache_stride, use_ue8m0);
void indexer_k_quant_and_cache(
torch::Tensor& k, // [num_tokens, head_dim]
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& slot_mapping, // [num_tokens]
int64_t quant_block_size, // quantization block size
const std::string& scale_fmt) {
int num_tokens = k.size(0);
int head_dim = k.size(1);
int cache_block_size = kv_cache.size(1);
int cache_stride = kv_cache.size(2);
bool use_ue8m0 = scale_fmt == "ue8m0";
TORCH_CHECK(k.device() == kv_cache.device(),
"k and kv_cache must be on the same device");
TORCH_CHECK(k.device() == slot_mapping.device(),
"k and slot_mapping must be on the same device");
TORCH_CHECK(head_dim % quant_block_size == 0,
"head_dim must be divisible by quant_block_size");
constexpr int vec_size = 4;
dim3 grid(num_tokens, (head_dim + quant_block_size * vec_size - 1) /
(quant_block_size * vec_size));
dim3 block(32, vec_size);
const at::cuda::OptionalCUDAGuard device_guard(device_of(k));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3",
CALL_INDEXER_K_QUANT_AND_CACHE);
}

View File

@ -0,0 +1,16 @@
#pragma once
#include <cstdlib>
#include <string>
#include <cctype>
namespace vllm {
// vllm_kernel_override_batch_invariant(); returns true
// if env VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT=1
inline bool vllm_kernel_override_batch_invariant() {
std::string env_key = "VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT";
const char* val = std::getenv(env_key.c_str());
return (val && std::atoi(val) != 0) ? 1 : 0;
}
} // namespace vllm

View File

@ -14,7 +14,8 @@
// arm implementation
#include "cpu_types_arm.hpp"
#else
#warning "unsupported vLLM cpu implementation"
#warning "unsupported vLLM cpu implementation, vLLM will compile with scalar"
#include "cpu_types_scalar.hpp"
#endif
#ifdef _OPENMP

View File

@ -0,0 +1,513 @@
#include <cmath>
#include <cstdint>
#include <cstring>
#include <torch/all.h>
#include "float_convert.hpp"
namespace vec_op {
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#ifndef CPU_OP_GUARD
#define CPU_KERNEL_GUARD_IN(NAME)
#define CPU_KERNEL_GUARD_OUT(NAME)
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) \
std::cout << #NAME << " exit." << std::endl;
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
#define __max(a, b) ((a) > (b) ? (a) : (b))
#define __min(a, b) ((a) < (b) ? (a) : (b))
#define __abs(a) ((a) < (0) ? (0 - a) : (a))
typedef struct f16x8_t {
uint16_t val[8];
} f16x8_t;
typedef struct f16x16_t {
uint16_t val[16];
} f16x16_t;
typedef struct f16x32_t {
uint16_t val[32];
} f16x32_t;
typedef struct f32x4_t {
float val[4];
} f32x4_t;
typedef struct f32x8_t {
float val[8];
} f32x8_t;
typedef struct f32x16_t {
float val[16];
} f32x16_t;
namespace {
template <typename T, T... indexes, typename F>
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
(f(std::integral_constant<T, indexes>{}), ...);
};
}; // namespace
template <typename T, T count, typename F,
typename = std::enable_if_t<std::is_invocable_v<F, T> > >
constexpr void unroll_loop(F&& f) {
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
}
template <typename T>
struct Vec {
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
};
struct FP32Vec8;
struct FP32Vec16;
struct FP16Vec8 : public Vec<FP16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f16x8_t reg;
explicit FP16Vec8(const void* ptr)
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
explicit FP16Vec8(const FP32Vec8&);
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
};
struct FP16Vec16 : public Vec<FP16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f16x16_t reg;
explicit FP16Vec16(const void* ptr)
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
explicit FP16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
void save(void* ptr, const int elem_num) const {
int num = __min(elem_num, VEC_ELEM_NUM);
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
}
};
struct BF16Vec8 : public Vec<BF16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f16x8_t reg;
explicit BF16Vec8(const void* ptr)
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
explicit BF16Vec8(const FP32Vec8&);
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
};
struct BF16Vec16 : public Vec<BF16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f16x16_t reg;
explicit BF16Vec16(const void* ptr)
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
explicit BF16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
void save(void* ptr, const int elem_num) const {
int num = __min(elem_num, VEC_ELEM_NUM);
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
}
};
struct BF16Vec32 : public Vec<BF16Vec32> {
constexpr static int VEC_ELEM_NUM = 32;
f16x32_t reg;
explicit BF16Vec32(const void* ptr)
: reg(*reinterpret_cast<const f16x32_t*>(ptr)) {};
explicit BF16Vec32(f16x32_t data) : reg(data) {};
explicit BF16Vec32(BF16Vec8& vec8_data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = vec8_data.reg.val[i % BF16Vec8::VEC_ELEM_NUM];
}
}
void save(void* ptr) const { *reinterpret_cast<f16x32_t*>(ptr) = reg; }
};
struct FP32Vec4 : public Vec<FP32Vec4> {
constexpr static int VEC_ELEM_NUM = 4;
f32x4_t reg;
explicit FP32Vec4(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec4() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec4(const float* ptr)
: reg(*reinterpret_cast<const f32x4_t*>(ptr)) {};
explicit FP32Vec4(f32x4_t data) : reg(data) {};
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {};
};
struct FP32Vec8 : public Vec<FP32Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f32x8_t reg;
explicit FP32Vec8(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec8() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec8(const float* ptr)
: reg(*reinterpret_cast<const f32x8_t*>(ptr)) {};
explicit FP32Vec8(f32x8_t data) : reg(data) {};
explicit FP32Vec8(const FP32Vec8& data) : reg(data.reg) {};
explicit FP32Vec8(const FP16Vec8& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = fp16_to_float(v.reg.val[i]);
}
}
FP32Vec8(const BF16Vec8& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = bf16_to_float(v.reg.val[i]);
}
}
float reduce_sum() const {
float result = 0;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result += reg.val[i];
}
return result;
}
FP32Vec8 exp() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = expf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 tanh() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = tanhf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 er() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = erf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 operator*(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] * b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator+(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] + b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator-(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] - b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator/(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] / b.reg.val[i];
}
return FP32Vec8(ret);
}
void save(void* ptr) const { *reinterpret_cast<f32x8_t*>(ptr) = reg; }
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f32x16_t reg;
explicit FP32Vec16(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec16() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec16(const float* ptr)
: reg(*reinterpret_cast<const f32x16_t*>(ptr)) {};
explicit FP32Vec16(f32x16_t data) : reg(data) {};
FP32Vec16(const FP32Vec4& data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = data.reg.val[i % FP32Vec4::VEC_ELEM_NUM];
}
}
FP32Vec16(const FP32Vec8& data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = data.reg.val[i % FP32Vec8::VEC_ELEM_NUM];
}
}
FP32Vec16(const FP32Vec16& data) : reg(data.reg) {};
explicit FP32Vec16(const FP16Vec16& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = fp16_to_float(v.reg.val[i]);
}
}
explicit FP32Vec16(const BF16Vec16& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = bf16_to_float(v.reg.val[i]);
}
}
explicit FP32Vec16(const FP16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
FP32Vec16 operator*(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] * b.reg.val[i];
}
return result;
}
FP32Vec16 operator+(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] + b.reg.val[i];
}
return result;
}
FP32Vec16 operator-(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] - b.reg.val[i];
}
return result;
}
FP32Vec16 operator/(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] / b.reg.val[i];
}
return result;
}
FP32Vec16 max(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __max(reg.val[i], b.reg.val[i]);
}
return result;
}
FP32Vec16 min(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __min(reg.val[i], b.reg.val[i]);
}
return result;
}
FP32Vec16 abs() const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __abs(reg.val[i]);
}
return result;
}
float reduce_sum() const {
float result = 0.0f;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result += reg.val[i];
}
return result;
}
float reduce_max() const {
float result = reg.val[0];
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result = __max(reg.val[i], result);
}
return result;
}
float reduce_min() const {
float result = reg.val[0];
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result = __min(reg.val[i], result);
}
return result;
}
template <int group_size>
float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
float sum = 0.0;
int start = idx * group_size;
int end = (idx + 1) * group_size;
for (; (start < VEC_ELEM_NUM) && (start < end); ++start) {
sum += reg.val[start];
}
return sum;
}
void save(void* ptr) const { *reinterpret_cast<f32x16_t*>(ptr) = reg; }
};
template <typename T>
struct VecType {
using vec_type = void;
};
template <typename T>
using vec_t = typename VecType<T>::vec_type;
template <>
struct VecType<float> {
using vec_type = FP32Vec8;
};
template <>
struct VecType<c10::Half> {
using vec_type = FP16Vec8;
};
template <>
struct VecType<c10::BFloat16> {
using vec_type = BF16Vec8;
};
template <typename T>
void storeFP32(float v, T* ptr) {
*ptr = v;
}
/*
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
c10::Half __attribute__((__may_alias__)) *v_ptr =
reinterpret_cast<c10::Half *>(&v);
*ptr = *(v_ptr + 1);
}
*/
template <>
inline void storeFP32<c10::Half>(float v, c10::Half* ptr) {
uint16_t fp16 = float_to_fp16(v);
*reinterpret_cast<uint16_t*>(ptr) = fp16;
}
template <>
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
c10::BFloat16 __attribute__((__may_alias__))* v_ptr =
reinterpret_cast<c10::BFloat16*>(&v);
*ptr = *(v_ptr + 1);
}
inline FP16Vec16::FP16Vec16(const FP32Vec16& v) {
int i = 0;
for (i = 0; i < FP16Vec16::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_fp16(v.reg.val[i]);
}
}
inline FP16Vec8 ::FP16Vec8(const FP32Vec8& v) {
int i = 0;
for (i = 0; i < FP16Vec8::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_fp16(v.reg.val[i]);
}
}
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
acc = acc + a * b;
}
inline BF16Vec8::BF16Vec8(const FP32Vec8& v) {
int i = 0;
for (i = 0; i < BF16Vec8::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_bf16(v.reg.val[i]);
}
}
inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
int i = 0;
for (i = 0; i < BF16Vec16::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_bf16(v.reg.val[i]);
}
}
inline void prefetch(const void* addr) { __builtin_prefetch(addr, 0, 3); }
}; // namespace vec_op

106
csrc/cpu/float_convert.hpp Normal file
View File

@ -0,0 +1,106 @@
static float bf16_to_float(uint16_t bf16) {
uint32_t bits = static_cast<uint32_t>(bf16) << 16;
float fp32;
std::memcpy(&fp32, &bits, sizeof(fp32));
return fp32;
}
static uint16_t float_to_bf16(float fp32) {
uint32_t bits;
std::memcpy(&bits, &fp32, sizeof(fp32));
return static_cast<uint16_t>(bits >> 16);
}
/************************************************
* Copyright (c) 2015 Princeton Vision Group
* Licensed under the MIT license.
* Codes below copied from
* https://github.com/PrincetonVision/marvin/tree/master/tools/tensorIO_matlab
*************************************************/
static uint16_t float_to_fp16(float fp32) {
uint16_t fp16;
unsigned x;
unsigned u, remainder, shift, lsb, lsb_s1, lsb_m1;
unsigned sign, exponent, mantissa;
std::memcpy(&x, &fp32, sizeof(fp32));
u = (x & 0x7fffffff);
// Get rid of +NaN/-NaN case first.
if (u > 0x7f800000) {
fp16 = 0x7fffU;
return fp16;
}
sign = ((x >> 16) & 0x8000);
// Get rid of +Inf/-Inf, +0/-0.
if (u > 0x477fefff) {
fp16 = sign | 0x7c00U;
return fp16;
}
if (u < 0x33000001) {
fp16 = (sign | 0x0000);
return fp16;
}
exponent = ((u >> 23) & 0xff);
mantissa = (u & 0x7fffff);
if (exponent > 0x70) {
shift = 13;
exponent -= 0x70;
} else {
shift = 0x7e - exponent;
exponent = 0;
mantissa |= 0x800000;
}
lsb = (1 << shift);
lsb_s1 = (lsb >> 1);
lsb_m1 = (lsb - 1);
// Round to nearest even.
remainder = (mantissa & lsb_m1);
mantissa >>= shift;
if (remainder > lsb_s1 || (remainder == lsb_s1 && (mantissa & 0x1))) {
++mantissa;
if (!(mantissa & 0x3ff)) {
++exponent;
mantissa = 0;
}
}
fp16 = (sign | (exponent << 10) | mantissa);
return fp16;
}
static float fp16_to_float(uint16_t fp16) {
unsigned sign = ((fp16 >> 15) & 1);
unsigned exponent = ((fp16 >> 10) & 0x1f);
unsigned mantissa = ((fp16 & 0x3ff) << 13);
int temp;
float fp32;
if (exponent == 0x1f) { /* NaN or Inf */
mantissa = (mantissa ? (sign = 0, 0x7fffff) : 0);
exponent = 0xff;
} else if (!exponent) { /* Denorm or Zero */
if (mantissa) {
unsigned int msb;
exponent = 0x71;
do {
msb = (mantissa & 0x400000);
mantissa <<= 1; /* normalize */
--exponent;
} while (!msb);
mantissa &= 0x7fffff; /* 1.mantissa is implicit */
}
} else {
exponent += 0x70;
}
temp = ((sign << 31) | (exponent << 23) | mantissa);
std::memcpy(&fp32, &temp, sizeof(temp));
return fp32;
}

View File

@ -8,11 +8,37 @@
#define VLLM_LAUNCH_BLOCKS_CAP 4
#endif
// compile-time estimate of max threads per SM for launch bounds.
// Compile-time estimate of max threads per SM for launch bounds.
// Families: 1024, 1536, 2048 threads/SM.
#ifndef VLLM_MAX_THREADS_PER_SM
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 300
#define VLLM_MAX_THREADS_PER_SM 1536
#ifdef __CUDA_ARCH__
/* 1024 thr/SM: Turing (sm_75) */
#if (__CUDA_ARCH__ == 750)
#define VLLM_MAX_THREADS_PER_SM 1024
/* 1536 thr/SM: Ampere GA10x (sm_86/87), Ada (sm_89),
GB20x consumer (sm_120/121), Thor (sm_101 or sm_110) */
#elif (__CUDA_ARCH__ == 860) || (__CUDA_ARCH__ == 870) || \
(__CUDA_ARCH__ == 890) || (__CUDA_ARCH__ == 1010) || \
(__CUDA_ARCH__ == 1100) || (__CUDA_ARCH__ == 1200) || \
(__CUDA_ARCH__ == 1210)
#define VLLM_MAX_THREADS_PER_SM 1536
/* 2048 thr/SM: Volta (sm_70/72), Ampere GA100 (sm_80),
Hopper (sm_90), Blackwell (sm_100/103) */
#elif (__CUDA_ARCH__ == 700) || (__CUDA_ARCH__ == 720) || \
(__CUDA_ARCH__ == 800) || (__CUDA_ARCH__ == 900) || \
(__CUDA_ARCH__ == 1000) || (__CUDA_ARCH__ == 1030)
#define VLLM_MAX_THREADS_PER_SM 2048
/* Fallback: use 2048 for unknown future CCs */
#else
#define VLLM_MAX_THREADS_PER_SM 2048
#endif
#else
/* Host pass (no __CUDA_ARCH__): neutral default */
#define VLLM_MAX_THREADS_PER_SM 2048
#endif
#endif

View File

@ -1,6 +1,7 @@
#include "type_convert.cuh"
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -413,7 +414,9 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
wt_ptr % req_alignment_bytes == 0;
bool offsets_are_multiple_of_vector_width =
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width) {
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
!batch_invariant_launch) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);
@ -459,7 +462,8 @@ void poly_norm(torch::Tensor& out, // [..., hidden_size]
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0) {
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
LAUNCH_FUSED_POLY_NORM(8);
} else {
LAUNCH_FUSED_POLY_NORM(0);

View File

@ -9,6 +9,7 @@
#include "quantization/fp8/common.cuh"
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -240,7 +241,9 @@ void fused_add_rms_norm_static_fp8_quant(
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned =
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0) {
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
!batch_invariant_launch) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);

View File

@ -44,6 +44,9 @@ __global__ void moe_align_block_size_kernel(
for (size_t i = tid; i < numel; i += stride) {
int expert_id = topk_ids[i];
if (expert_id >= num_experts) {
continue;
}
int warp_idx = expert_id / experts_per_warp;
int expert_offset = expert_id % experts_per_warp;
atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset], 1);
@ -95,12 +98,15 @@ template <typename scalar_t>
__global__ void count_and_sort_expert_tokens_kernel(
const scalar_t* __restrict__ topk_ids,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
size_t numel) {
size_t numel, int32_t num_experts) {
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = blockDim.x * gridDim.x;
for (size_t i = tid; i < numel; i += stride) {
int32_t expert_id = topk_ids[i];
if (expert_id >= num_experts) {
continue;
}
int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
sorted_token_ids[rank_post_pad] = i;
}
@ -269,7 +275,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel());
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel(), num_experts);
}
});
}

View File

@ -21,6 +21,7 @@
#include <c10/cuda/CUDAGuard.h>
#include "../cuda_compat.h"
#include "../cub_helpers.h"
#include "../core/batch_invariant.hpp"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -405,7 +406,8 @@ void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, f
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
const int num_warps = batch_invariant_launch ? 32 : (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);

View File

@ -231,7 +231,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
@ -245,7 +245,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
@ -259,7 +259,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
Shape<_2, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
}
@ -271,10 +271,10 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
// TMA epilogue isn't compatible with Swap A/B
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
out, a, b, a_scales, b_scales);
}
}
} // namespace vllm
} // namespace vllm

View File

@ -25,7 +25,10 @@ void dispatch_scaled_mm(torch::Tensor& c, torch::Tensor const& a,
if constexpr (!std::is_same_v<Int8Func, std::nullptr_t>) {
int8_func(c, a, b, a_scales, b_scales, bias);
} else {
TORCH_CHECK(false, "Int8 not supported for this architecture");
int32_t version_num = get_sm_version_num();
TORCH_CHECK(
false, "Int8 not supported on SM", version_num,
". Use FP8 quantization instead, or run on older arch (SM < 100).");
}
}
} else {

View File

@ -133,4 +133,4 @@ void cutlass_scaled_mm_sm100_fp8_epilogue(torch::Tensor& out,
}
}
} // namespace vllm
} // namespace vllm

View File

@ -67,8 +67,9 @@ void cutlass_scaled_mm_sm100(torch::Tensor& c, torch::Tensor const& a,
std::optional<torch::Tensor> const& bias);
#endif
#if defined(ENABLE_SCALED_MM_SM90) && ENABLE_SCALED_MM_SM90 || \
defined(ENABLE_SCALED_MM_SM100) && ENABLE_SCALED_MM_SM100
#if defined(ENABLE_SCALED_MM_SM90) && ENABLE_SCALED_MM_SM90 || \
defined(ENABLE_SCALED_MM_SM100) && ENABLE_SCALED_MM_SM100 || \
defined(ENABLE_SCALED_MM_SM120) && ENABLE_SCALED_MM_SM120
void get_cutlass_moe_mm_data_caller(
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
@ -253,7 +254,7 @@ void cutlass_moe_mm(
bool per_act_token, bool per_out_ch) {
int32_t version_num = get_sm_version_num();
#if defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100
if (version_num >= 100) {
if (version_num >= 100 && version_num < 110) {
cutlass_moe_mm_sm100(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
expert_offsets, problem_sizes, a_strides, b_strides,
c_strides, per_act_token, per_out_ch);
@ -261,7 +262,7 @@ void cutlass_moe_mm(
}
#endif
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
if (version_num >= 90) {
if (version_num >= 90 && version_num < 100) {
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
expert_offsets, problem_sizes, a_strides, b_strides,
c_strides, per_act_token, per_out_ch);

View File

@ -14,6 +14,8 @@
* limitations under the License.
*/
#include "core/registration.h"
#include <torch/all.h>
#include <cutlass/arch/arch.h>
@ -418,3 +420,7 @@ void cutlass_fp4_group_mm(
"12.8 or above.");
#endif
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("cutlass_fp4_group_mm", &cutlass_fp4_group_mm);
}

View File

@ -576,6 +576,17 @@ __inline__ __device__ Tout scaled_convert(const Tin& x, const float scale) {
TORCH_CHECK(false, \
"Unsupported input type of kv cache: ", SRC_DTYPE); \
} \
} else if (KV_DTYPE == "fp8_ds_mla") { \
if (SRC_DTYPE == at::ScalarType::Float) { \
FN(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else if (SRC_DTYPE == at::ScalarType::Half) { \
FN(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
FN(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else { \
TORCH_CHECK(false, \
"Unsupported input type of kv cache: ", SRC_DTYPE); \
} \
} else { \
TORCH_CHECK(false, "Unsupported data type of kv cache: ", KV_DTYPE); \
} \

View File

@ -40,7 +40,8 @@ using __hip_fp8_e5m2 = __hip_fp8_e5m2_fnuz;
#define __HIP__FP8MFMA__
#endif
#if defined(__HIPCC__) && (defined(__gfx1100__) || defined(__gfx1101__))
#if defined(__HIPCC__) && (defined(__gfx1100__) || defined(__gfx1101__) || \
defined(__gfx1150__) || defined(__gfx1151__))
#define __HIP__GFX11__
#endif

View File

@ -6,11 +6,11 @@ torch::Tensor LLMM1(at::Tensor& in_a, at::Tensor& in_b,
const int64_t rows_per_block);
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
const c10::optional<at::Tensor>& in_bias,
const std::optional<at::Tensor>& in_bias,
const int64_t CuCount);
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
const c10::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const at::Tensor& scale_a, const at::Tensor& scale_b,
const int64_t CuCount);

View File

@ -1271,7 +1271,7 @@ int mindiv(int N, int div1, int div2) {
}
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
const c10::optional<at::Tensor>& in_bias,
const std::optional<at::Tensor>& in_bias,
const int64_t CuCount) {
auto M_in = in_a.size(0);
auto K_in = in_a.size(1);
@ -1729,7 +1729,7 @@ __global__ void wvSplitKQ_hf_(const int K, const int Kp, const int M,
#endif // defined(__HIP__MI3XX__) TODO: Add NAVI support
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
const c10::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
const at::Tensor& scale_a, const at::Tensor& scale_b,
const int64_t CuCount) {
static c10::ScalarType kFp8Type = is_fp8_ocp()

View File

@ -397,7 +397,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
" Tensor a_blockscale, Tensor b_blockscales, Tensor alphas,"
" Tensor problem_sizes, Tensor expert_offsets, Tensor sf_offsets) -> ()",
{stride_tag});
ops.impl("cutlass_fp4_group_mm", torch::kCUDA, &cutlass_fp4_group_mm);
// conditionally compiled so impl registration is in source file
// CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column
// quantization, as well as bias
@ -713,6 +713,13 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
"cp_gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
"Tensor cu_seq_lens, int batch_size, Tensor? seq_starts) -> ()");
cache_ops.impl("cp_gather_cache", torch::kCUDA, &cp_gather_cache);
cache_ops.def(
"indexer_k_quant_and_cache(Tensor k, Tensor! kv_cache, Tensor "
"slot_mapping, "
"int quant_block_size, str kv_cache_dtype) -> ()");
cache_ops.impl("indexer_k_quant_and_cache", torch::kCUDA,
&indexer_k_quant_and_cache);
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {

View File

@ -14,6 +14,11 @@ ARG PYTHON_VERSION=3.12
#
# Example:
# docker build --build-arg BUILD_BASE_IMAGE=registry.acme.org/mirror/nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
# Important: We build with an old version of Ubuntu to maintain broad
# compatibility with other Linux OSes. The main reason for this is that the
# glibc version is baked into the distro, and binaries built with one glibc
# version are not backwards compatible with OSes that use an earlier version.
ARG BUILD_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
# TODO: Restore to base image after FlashInfer AOT wheel fixed
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
@ -75,34 +80,19 @@ ARG TARGETPLATFORM
ARG INSTALL_KV_CONNECTORS=false
ENV DEBIAN_FRONTEND=noninteractive
ARG DEADSNAKES_MIRROR_URL
ARG DEADSNAKES_GPGKEY_URL
ARG GET_PIP_URL
# Install Python and other dependencies
# Install system dependencies and uv, then create Python virtual environment
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
&& apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl sudo \
&& if [ ! -z ${DEADSNAKES_MIRROR_URL} ] ; then \
if [ ! -z "${DEADSNAKES_GPGKEY_URL}" ] ; then \
mkdir -p -m 0755 /etc/apt/keyrings ; \
curl -L ${DEADSNAKES_GPGKEY_URL} | gpg --dearmor > /etc/apt/keyrings/deadsnakes.gpg ; \
sudo chmod 644 /etc/apt/keyrings/deadsnakes.gpg ; \
echo "deb [signed-by=/etc/apt/keyrings/deadsnakes.gpg] ${DEADSNAKES_MIRROR_URL} $(lsb_release -cs) main" > /etc/apt/sources.list.d/deadsnakes.list ; \
fi ; \
else \
for i in 1 2 3; do \
add-apt-repository -y ppa:deadsnakes/ppa && break || \
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
done ; \
fi \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
&& apt-get install -y ccache software-properties-common git curl sudo python3-pip \
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
&& python3 --version && python3 -m pip --version
ARG PIP_INDEX_URL UV_INDEX_URL
@ -111,9 +101,9 @@ ARG PYTORCH_CUDA_INDEX_BASE_URL
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL
ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER
# Install uv for faster pip installs
RUN --mount=type=cache,target=/root/.cache/uv \
python3 -m pip install uv
# Activate virtual environment and add uv to PATH
ENV PATH="/opt/venv/bin:/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
@ -142,7 +132,7 @@ WORKDIR /workspace
COPY requirements/common.txt requirements/common.txt
COPY requirements/cuda.txt requirements/cuda.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/cuda.txt \
uv pip install --python /opt/venv/bin/python3 -r requirements/cuda.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# cuda arch list used by torch
@ -172,7 +162,7 @@ ENV UV_INDEX_STRATEGY="unsafe-best-match"
ENV UV_LINK_MODE=copy
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/build.txt \
uv pip install --python /opt/venv/bin/python3 -r requirements/build.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
COPY . .
@ -269,7 +259,7 @@ COPY requirements/lint.txt requirements/lint.txt
COPY requirements/test.txt requirements/test.txt
COPY requirements/dev.txt requirements/dev.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/dev.txt \
uv pip install --python /opt/venv/bin/python3 -r requirements/dev.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
#################### DEV IMAGE ####################
@ -391,19 +381,32 @@ RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
git clone --depth 1 --recursive --shallow-submodules \
--branch ${FLASHINFER_GIT_REF} \
${FLASHINFER_GIT_REPO} flashinfer
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
fi
pushd flashinfer
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
if [[ "${CUDA_VERSION}" == 12.8.* ]] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then
# NOTE: To make new precompiled wheels, see tools/flashinfer-build.sh
echo "🏗️ Installing FlashInfer from pre-compiled wheel"
uv pip install --system https://wheels.vllm.ai/flashinfer-python/flashinfer_python-0.3.1-cp39-abi3-manylinux1_x86_64.whl \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
# Download pre-compiled cubins
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer --download-cubin || echo "WARNING: Failed to download flashinfer cubins."
fi
elif [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
echo "🏗️ Installing FlashInfer with AOT compilation for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
export FLASHINFER_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}"
# HACK: We need these to run flashinfer.aot before installing flashinfer, get from the package in the future
uv pip install --system cuda-python==$(echo $CUDA_VERSION | cut -d. -f1,2) pynvml==$(echo $CUDA_VERSION | cut -d. -f1) nvidia-nvshmem-cu$(echo $CUDA_VERSION | cut -d. -f1)
# Build AOT kernels
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer.aot
@ -443,7 +446,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
ARG DEEPGEMM_GIT_REF
COPY tools/install_deepgemm.sh /tmp/install_deepgemm.sh
RUN --mount=type=cache,target=/root/.cache/uv \
VLLM_DOCKER_BUILD_CONTEXT=1 /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
VLLM_DOCKER_BUILD_CONTEXT=1 TORCH_CUDA_ARCH_LIST="9.0a 10.0a" /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
COPY tools/install_gdrcopy.sh install_gdrcopy.sh
RUN set -eux; \
@ -461,6 +464,12 @@ ENV CUDA_HOME=/usr/local/cuda
RUN export TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST:-9.0a+PTX}" \
&& bash install_python_libraries.sh
# CUDA image changed from /usr/local/nvidia to /usr/local/cuda in 12.8 but will
# return to /usr/local/nvidia in 13.0 to allow container providers to mount drivers
# consistently from the host (see https://github.com/vllm-project/vllm/issues/18859).
# Until then, add /usr/local/nvidia/lib64 before the image cuda path to allow override.
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib64:${LD_LIBRARY_PATH}
#################### vLLM installation IMAGE ####################
#################### TEST IMAGE ####################
@ -533,7 +542,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
else \
BITSANDBYTES_VERSION="0.46.1"; \
fi; \
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' boto3 runai-model-streamer runai-model-streamer[s3]
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3]>=0.14.0'
ENV VLLM_USAGE_SOURCE production-docker-image
@ -546,5 +555,5 @@ ENTRYPOINT ["./sagemaker-entrypoint.sh"]
FROM vllm-openai-base AS vllm-openai
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
ENTRYPOINT ["vllm", "serve"]
#################### OPENAI API SERVER ####################

View File

@ -47,7 +47,7 @@ ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ENV UV_HTTP_TIMEOUT=500
# Install Python dependencies
# Install Python dependencies
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
ENV UV_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
ENV UV_INDEX_STRATEGY="unsafe-best-match"
@ -104,7 +104,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/workspace/vllm/.deps,sharing=locked \
--mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
######################### TEST DEPS #########################
FROM base AS vllm-test-deps
@ -114,13 +114,10 @@ WORKDIR /workspace/vllm
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
cp requirements/test.in requirements/cpu-test.in && \
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
sed -i 's/^torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -r requirements/cpu-test.txt
uv pip install -r requirements/cpu-test.txt
######################### DEV IMAGE #########################
FROM vllm-build AS vllm-dev
@ -133,12 +130,12 @@ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -e tests/vllm_test_utils
uv pip install -e tests/vllm_test_utils
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=cache,target=/root/.cache/ccache \
--mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py develop
VLLM_TARGET_DEVICE=cpu python3 setup.py develop
COPY --from=vllm-test-deps /workspace/vllm/requirements/cpu-test.txt requirements/test.txt
@ -163,11 +160,12 @@ ADD ./benchmarks/ ./benchmarks/
ADD ./vllm/collect_env.py .
ADD ./.buildkite/ ./.buildkite/
# Create symlink for vllm-workspace to maintain CI compatibility
RUN ln -sf /workspace /vllm-workspace
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install -e tests/vllm_test_utils
ENTRYPOINT ["bash"]
uv pip install -e tests/vllm_test_utils
######################### RELEASE IMAGE #########################
FROM base AS vllm-openai
@ -179,4 +177,4 @@ RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=vllm-build,src=/workspace/vllm/dist,target=dist \
uv pip install dist/*.whl
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
ENTRYPOINT ["vllm", "serve"]

View File

@ -6,7 +6,7 @@ ARG CUDA_VERSION=12.8.0
#
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS base
ARG CUDA_VERSION=12.8.0
ARG PYTHON_VERSION=3.12
ARG TARGETPLATFORM

View File

@ -314,4 +314,4 @@ WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]
ENTRYPOINT ["vllm", "serve"]

View File

@ -15,7 +15,7 @@ FROM ${BASE_IMAGE} AS base
ENV PATH=/opt/rocm/llvm/bin:/opt/rocm/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV ROCM_PATH=/opt/rocm
ENV LD_LIBRARY_PATH=/opt/rocm/lib:/usr/local/lib:
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942;gfx950;gfx1100;gfx1101;gfx1200;gfx1201
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942;gfx950;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
ENV AITER_ROCM_ARCH=gfx942;gfx950
@ -141,4 +141,4 @@ RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
&& echo "FA_BRANCH: ${FA_BRANCH}" >> /app/versions.txt \
&& echo "FA_REPO: ${FA_REPO}" >> /app/versions.txt \
&& echo "AITER_BRANCH: ${AITER_BRANCH}" >> /app/versions.txt \
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt

View File

@ -309,4 +309,4 @@ USER 2000
WORKDIR /home/vllm
# Set the default entrypoint
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]
ENTRYPOINT ["vllm", "serve"]

View File

@ -69,4 +69,4 @@ RUN --mount=type=cache,target=/root/.cache/pip \
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
ENTRYPOINT ["vllm", "serve"]

View File

@ -1,2 +1,2 @@
search:
boost: 0.5
exclude: true

Binary file not shown.

After

Width:  |  Height:  |  Size: 627 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 350 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 814 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 267 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 354 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 781 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 359 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

View File

@ -2,6 +2,7 @@
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:
- [vLLM Toronto Meetup](https://luma.com/e80e0ymm), September 25th 2025. [[Slides]](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing)
- [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ), August 30th 2025. [[Slides]](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA)
- [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet), August 27th 2025. [[Slides]](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing)
- [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg), August 23rd 2025. [[Slides]](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH)

View File

@ -139,9 +139,9 @@ there is relatively little gain from TP. On the other hand, TP incurs significan
overhead because of all-reduce being performed after every layer.
Given this, it may be advantageous to instead shard the batched input data using TP, essentially
performing batch-level DP. This has been shown to improve the throughput by around 10% for
performing batch-level DP. This has been shown to improve the throughput and TTFT by around 10% for
`tensor_parallel_size=8`. For vision encoders that use hardware-unoptimized Conv3D operations,
batch-level DP can provide another 40% increase to throughput compared to regular TP.
batch-level DP can provide another 40% improvement compared to regular TP.
Nevertheless, since the weights of the multi-modal encoder are replicated across each TP rank,
there will be a minor increase in memory consumption and may cause OOM if you can barely fit the model already.
@ -172,14 +172,15 @@ Batch-level DP needs to be implemented on a per-model basis,
and enabled by setting `supports_encoder_tp_data = True` in the model class.
Regardless, you need to set `mm_encoder_tp_mode="data"` in engine arguments to use this feature.
Known supported models:
Known supported models (with corresponding benchmarks):
- GLM-4.5V GLM-4.1V (<gh-pr:23168>)
- dots_ocr (<gh-pr:25466>)
- GLM-4.1V or above (<gh-pr:23168>)
- InternVL (<gh-pr:23909>)
- Kimi-VL (<gh-pr:23817>)
- Llama4 (<gh-pr:18368>)
- MiniCPM-V-2.5 or above (<gh-pr:23327>, <gh-pr:23948>)
- Qwen2.5-VL (<gh-pr:22742>)
- Qwen2-VL or above (<gh-pr:22742>, <gh-pr:24955>, <gh-pr:25445>)
- Step3 (<gh-pr:22697>)
## Input Processing

View File

@ -661,8 +661,7 @@ Benchmark the performance of multi-modal requests in vLLM.
Start vLLM:
```bash
python -m vllm.entrypoints.openai.api_server \
--model Qwen/Qwen2.5-VL-7B-Instruct \
vllm serve Qwen/Qwen2.5-VL-7B-Instruct \
--dtype bfloat16 \
--limit-mm-per-prompt '{"image": 1}' \
--allowed-local-media-path /path/to/sharegpt4v/images
@ -688,8 +687,7 @@ vllm bench serve \
Start vLLM:
```bash
python -m vllm.entrypoints.openai.api_server \
--model Qwen/Qwen2.5-VL-7B-Instruct \
vllm serve Qwen/Qwen2.5-VL-7B-Instruct \
--dtype bfloat16 \
--limit-mm-per-prompt '{"video": 1}' \
--allowed-local-media-path /path/to/sharegpt4video/videos
@ -823,6 +821,30 @@ The latest performance results are hosted on the public [vLLM Performance Dashbo
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
### Continuous Benchmarking
The continuous benchmarking provides automated performance monitoring for vLLM across different models and GPU devices. This helps track vLLM's performance characteristics over time and identify any performance regressions or improvements.
#### How It Works
The continuous benchmarking is triggered via a [GitHub workflow CI](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) in the PyTorch infrastructure repository, which runs automatically every 4 hours. The workflow executes three types of performance tests:
- **Serving tests**: Measure request handling and API performance
- **Throughput tests**: Evaluate token generation rates
- **Latency tests**: Assess response time characteristics
#### Benchmark Configuration
The benchmarking currently runs on a predefined set of models configured in the [vllm-benchmarks directory](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks). To add new models for benchmarking:
1. Navigate to the appropriate GPU directory in the benchmarks configuration
2. Add your model specifications to the corresponding configuration files
3. The new models will be included in the next scheduled benchmark run
#### Viewing Results
All continuous benchmarking results are automatically published to the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
[](){ #nightly-benchmarks }
## Nightly Benchmarks

View File

@ -66,35 +66,12 @@ Further update the model as follows:
!!! important
The returned `multimodal_embeddings` must be either a **3D [torch.Tensor][]** of shape `(num_items, feature_size, hidden_size)`, or a **list / tuple of 2D [torch.Tensor][]'s** of shape `(feature_size, hidden_size)`, so that `multimodal_embeddings[i]` retrieves the embeddings generated from the `i`-th multimodal data item (e.g, image) of the request.
- Implement [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings] to merge `multimodal_embeddings` with text embeddings from the `input_ids`. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.
!!! note
By default, vLLM merges the multimodal embeddings into text embeddings depending on the information of their locations defined in
[PlaceholderRange][vllm.multimodal.inputs.PlaceholderRange] from input processing.
This logic can be found at [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings].
??? code
```python
from .utils import merge_multimodal_embeddings
class YourModelForImage2Seq(nn.Module):
...
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
# `get_input_embeddings` should already be implemented for the language
# model as one of the requirements of basic vLLM model implementation.
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
multimodal_embeddings=multimodal_embeddings,
placeholder_token_id=self.config.image_token_index)
return inputs_embeds
```
You may override this method if additional logic is required for your model when merging embeddings.
- Implement [get_language_model][vllm.model_executor.models.interfaces.SupportsMultiModal.get_language_model] getter to provide stable access to the underlying language model.
@ -281,17 +258,21 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Optional[Mapping[str, BaseDummyOptions]] = None,
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
image_overrides = mm_options.get("image") if mm_options else None
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
num_images=num_images,
overrides=image_overrides)
}
```
@ -461,16 +442,20 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Optional[Mapping[str, BaseDummyOptions]] = None,
) -> MultiModalDataDict:
target_width, target_height = \
self.info.get_image_size_with_most_features()
num_images = mm_counts.get("image", 0)
image_overrides = mm_options.get("image") if mm_options else None
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
num_images=num_images,
overrides=image_overrides)
}
```

View File

@ -39,8 +39,7 @@ Refer to <gh-file:examples/offline_inference/simple_profiling.py> for an example
```bash
VLLM_TORCH_PROFILER_DIR=./vllm_profile \
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Meta-Llama-3-70B
vllm serve meta-llama/Meta-Llama-3-70B
```
vllm bench command:
@ -160,6 +159,22 @@ GUI example:
<img width="1799" alt="Screenshot 2025-03-05 at 11 48 42AM" src="https://github.com/user-attachments/assets/c7cff1ae-6d6f-477d-a342-bd13c4fc424c" />
## Continuous Profiling
There is a [GitHub CI workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-profiling.yml) in the PyTorch infrastructure repository that provides continuous profiling for different models on vLLM. This automated profiling helps track performance characteristics over time and across different model configurations.
### How It Works
The workflow currently runs weekly profiling sessions for selected models, generating detailed performance traces that can be analyzed using different tools to identify performance regressions or optimization opportunities. But, it can be triggered manually as well, using the Github Action tool.
### Adding New Models
To extend the continuous profiling to additional models, you can modify the [profiling-tests.json](https://github.com/pytorch/pytorch-integration-testing/blob/main/vllm-profiling/cuda/profiling-tests.json) configuration file in the PyTorch integration testing repository. Simply add your model specifications to this file to include them in the automated profiling runs.
### Viewing Profiling Results
The profiling traces generated by the continuous profiling workflow are publicly available on the [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm). Look for the **Profiling traces** table to access and download the traces for different models and runs.
## Profiling vLLM Python Code
The Python standard library includes
@ -208,3 +223,11 @@ One example is [snakeviz](https://jiffyclub.github.io/snakeviz/).
pip install snakeviz
snakeviz expensive_function.prof
```
### Analyzing Garbage Collection Costs
Leverage VLLM_GC_DEBUG environment variable to debug GC costs.
- VLLM_GC_DEBUG=1: enable GC debugger with gc.collect elpased times
- VLLM_GC_DEBUG='{"top_objects":5}': enable GC debugger to log top 5
collected objects for each gc.collect

View File

@ -19,8 +19,7 @@ pip install -U "autogen-agentchat" "autogen-ext[openai]"
1. Start the vLLM server with the supported chat completion model, e.g.
```bash
python -m vllm.entrypoints.openai.api_server \
--model mistralai/Mistral-7B-Instruct-v0.2
vllm serve mistralai/Mistral-7B-Instruct-v0.2
```
1. Call it with AutoGen:

View File

@ -0,0 +1,170 @@
# Hugging Face Inference Endpoints
## Overview
Models compatible with vLLM can be deployed on Hugging Face Inference Endpoints, either starting from the [Hugging Face Hub](https://huggingface.co) or directly from the [Inference Endpoints](https://endpoints.huggingface.co/) interface. This allows you to serve models in a fully managed environment with GPU acceleration, auto-scaling, and monitoring, without managing the infrastructure manually.
For advanced details on vLLM integration and deployment options, see [Advanced Deployment Details](#advanced-deployment-details).
## Deployment Methods
- [**Method 1: Deploy from the Catalog.**](#method-1-deploy-from-the-catalog) One-click deploy models from the Hugging Face Hub with ready-made optimized configurations.
- [**Method 2: Guided Deployment (Transformers Models).**](#method-2-guided-deployment-transformers-models) Instantly deploy models tagged with `transformers` from the Hub UI using the **Deploy** button.
- [**Method 3: Manual Deployment (Advanced Models).**](#method-3-manual-deployment-advanced-models) For models that either use custom code with the `transformers` tag, or dont run with standard `transformers` but are supported by vLLM. This method requires manual configuration.
### Method 1: Deploy from the Catalog
This is the easiest way to get started with vLLM on Hugging Face Inference Endpoints. You can browse a catalog of models with verified and optimized deployment configuration at [Inference Endpoints](https://endpoints.huggingface.co/catalog) to maximize performance.
1. Go to [Endpoints Catalog](https://endpoints.huggingface.co/catalog) and in the **Inference Server** options, select `vLLM`.This will display the current list of models with optimized preconfigured options.
![Endpoints Catalog](../../assets/deployment/hf-inference-endpoints-catalog.png)
1. Select the desired model and click **Create Endpoint**.
![Create Endpoint](../../assets/deployment/hf-inference-endpoints-create-endpoint.png)
1. Once the deployment is ready, you can use the endpoint. Update the `DEPLOYMENT_URL` with the URL provided in the console, remembering to append `/v1` as required.
```python
# pip install openai
from openai import OpenAI
import os
client = OpenAI(
base_url = DEPLOYMENT_URL,
api_key = os.environ["HF_TOKEN"] # https://huggingface.co/settings/tokens
)
chat_completion = client.chat.completions.create(
model = "HuggingFaceTB/SmolLM3-3B",
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Give me a brief explanation of gravity in simple terms."
}
]
}
],
stream = True
)
for message in chat_completion:
print(message.choices[0].delta.content, end = "")
```
!!! note
The catalog provides models optimized for vLLM, including GPU settings and inference engine configurations. You can monitor the endpoint and update the **container or its configuration** from the Inference Endpoints UI.
### Method 2: Guided Deployment (Transformers Models)
This method applies to models with the `transformers` library tag in their metadata. It allows you to deploy a model directly from the Hub UI without manual configuration.
1. Navigate to a model on [Hugging Face Hub](https://huggingface.co/models).
For this example we will use the [`ibm-granite/granite-docling-258M`](https://huggingface.co/ibm-granite/granite-docling-258M) model. You can verify that the model is compatible by checking the front matter in the [README](https://huggingface.co/ibm-granite/granite-docling-258M/blob/main/README.md), where the library is tagged as `library: transformers`.
2. Locate the **Deploy** button. The button appears for models tagged with `transformers` at the top right of the [model card](https://huggingface.co/ibm-granite/granite-docling-258M).
![Locate deploy button](../../assets/deployment/hf-inference-endpoints-locate-deploy-button.png)
3. Click to **Deploy** button > **HF Inference Endpoints**. You will be taken to the Inference Endpoints interface to configure the deployment.
![Click deploy button](../../assets/deployment/hf-inference-endpoints-click-deploy-button.png)
4. Select the Hardware (we choose AWS>GPU>T4 for the example) and Container Configuration. Choose `vLLM` as the container type and finalize the deployment pressing **Create Endpoint**.
![Select Hardware](../../assets/deployment/hf-inference-endpoints-select-hardware.png)
5. Use the deployed endpoint. Update the `DEPLOYMENT_URL` with the URL provided in the console (remember to add `/v1` needed). You can then use your endpoint programmatically or via the SDK.
```python
# pip install openai
from openai import OpenAI
import os
client = OpenAI(
base_url = DEPLOYMENT_URL,
api_key = os.environ["HF_TOKEN"] # https://huggingface.co/settings/tokens
)
chat_completion = client.chat.completions.create(
model = "ibm-granite/granite-docling-258M",
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/ibm-granite/granite-docling-258M/resolve/main/assets/new_arxiv.png"
}
},
{
"type": "text",
"text": "Convert this page to docling."
}
]
}
],
stream = True
)
for message in chat_completion:
print(message.choices[0].delta.content, end = "")
```
!!! note
This method uses best-guess defaults. You may need to adjust the configuration to fit your specific requirements.
### Method 3: Manual Deployment (Advanced Models)
Some models require manual deployment because they:
- Use custom code with the `transformers` tag
- Don't run with standard `transformers` but are supported by `vLLM`
These models cannot be deployed using the **Deploy** button on the model card.
In this guide, we demonstrate manual deployment using the [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) model, an OCR model integrated with vLLM (see vLLM [PR](https://github.com/vllm-project/vllm/pull/24645)).
1. Start a new deployment. Go to [Inference Endpoints](https://endpoints.huggingface.co/) and click `New`.
![New Endpoint](../../assets/deployment/hf-inference-endpoints-new-endpoint.png)
2. Search the model in the Hub. In the dialog, switch to **Hub** and search for the desired model.
![Select model](../../assets/deployment/hf-inference-endpoints-select-model.png)
3. Choosing infrastructure. On the configuration page, select the cloud provider and hardware from the available options.
For this demo, we choose AWS and L4 GPU. Adjust according to your hardware needs.
![Choose Infra](../../assets/deployment/hf-inference-endpoints-choose-infra.png)
4. Configure the container. Scroll to the **Container Configuration** and select `vLLM` as the container type.
![Configure Container](../../assets/deployment/hf-inference-endpoints-configure-container.png)
5. Create the endpoint. Click **Create Endpoint** to deploy the model.
Once the endpoint is ready, you can use it with the OpenAI Completion API, cURL, or other SDKs. Remember to append `/v1` to the deployment URL if needed.
!!! note
You can adjust the **container settings** (Container URI, Container Arguments) from the Inference Endpoints UI and press **Update Endpoint**. This redeploys the endpoint with the updated container configuration. Changes to the model itself require creating a new endpoint or redeploying with a different model. For example, for this demo, you may need to update the Container URI to the nightly image (`vllm/vllm-openai:nightly`) and add the `--trust-remote-code` flag in the container arguments.
## Advanced Deployment Details
With the [transformers backend integration](https://blog.vllm.ai/2025/04/11/transformers-backend.html), vLLM now offers Day 0 support for any model compatible with `transformers`. This means you can deploy such models immediately, leveraging vLLMs optimized inference without additional backend modifications.
Hugging Face Inference Endpoints provides a fully managed environment for serving models via vLLM. You can deploy models without configuring servers, installing dependencies, or managing clusters. Endpoints also support deployment across multiple cloud providers (AWS, Azure, GCP) without the need for separate accounts.
The platform integrates seamlessly with the Hugging Face Hub, allowing you to deploy any vLLM- or `transformers`-compatible model, track usage, and update the inference engine directly. The vLLM engine comes preconfigured, enabling optimized inference and easy switching between models or engines without modifying your code. This setup simplifies production deployment: endpoints are ready in minutes, include monitoring and logging, and let you focus on serving models rather than maintaining infrastructure.
## Next Steps
- Explore the [Inference Endpoints](https://endpoints.huggingface.co/catalog) model catalog
- Read the Inference Endpoints [documentation](https://huggingface.co/docs/inference-endpoints/en/index)
- Learn about [Inference Endpoints engines](https://huggingface.co/docs/inference-endpoints/en/engines/vllm)
- Understand the [transformers backend integration](https://blog.vllm.ai/2025/04/11/transformers-backend.html)

View File

@ -20,7 +20,7 @@ To get started with Open WebUI using vLLM, follow these steps:
For example:
```console
python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 8000
vllm serve <model> --host 0.0.0.0 --port 8000
```
3. Start the Open WebUI Docker container:

View File

@ -32,6 +32,7 @@ See the vLLM SkyPilot YAML for serving, [serving.yaml](https://github.com/skypil
ports: 8081 # Expose to internet traffic.
envs:
PYTHONUNBUFFERED: 1
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
@ -47,9 +48,8 @@ See the vLLM SkyPilot YAML for serving, [serving.yaml](https://github.com/skypil
run: |
conda activate vllm
echo 'Starting vllm api server...'
python -u -m vllm.entrypoints.openai.api_server \
vllm serve $MODEL_NAME \
--port 8081 \
--model $MODEL_NAME \
--trust-remote-code \
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
2>&1 | tee api_server.log &
@ -131,6 +131,7 @@ SkyPilot can scale up the service to multiple service replicas with built-in aut
ports: 8081 # Expose to internet traffic.
envs:
PYTHONUNBUFFERED: 1
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
@ -146,9 +147,8 @@ SkyPilot can scale up the service to multiple service replicas with built-in aut
run: |
conda activate vllm
echo 'Starting vllm api server...'
python -u -m vllm.entrypoints.openai.api_server \
vllm serve $MODEL_NAME \
--port 8081 \
--model $MODEL_NAME \
--trust-remote-code \
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
2>&1 | tee api_server.log
@ -243,6 +243,7 @@ This will scale the service up to when the QPS exceeds 2 for each replica.
ports: 8081 # Expose to internet traffic.
envs:
PYTHONUNBUFFERED: 1
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
@ -258,9 +259,8 @@ This will scale the service up to when the QPS exceeds 2 for each replica.
run: |
conda activate vllm
echo 'Starting vllm api server...'
python -u -m vllm.entrypoints.openai.api_server \
vllm serve $MODEL_NAME \
--port 8081 \
--model $MODEL_NAME \
--trust-remote-code \
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
2>&1 | tee api_server.log

View File

@ -69,6 +69,11 @@ Sometimes you may see the API server entrypoint used directly instead of via the
python -m vllm.entrypoints.openai.api_server --model <model>
```
!!! warning
`python -m vllm.entrypoints.openai.api_server` is deprecated
and may become unsupported in a future release.
That code can be found in <gh-file:vllm/entrypoints/openai/api_server.py>.
More details on the API server can be found in the [OpenAI-Compatible Server](../serving/openai_compatible_server.md) document.

View File

@ -242,30 +242,8 @@ Example: `python3 -m tests.kernels.moe.modular_kernel_tools.profile_modular_kern
## FusedMoEPrepareAndFinalize Implementations
The following table lists the `FusedMoEPrepareAndFinalize` implementations at the time of writing,
| Implementation | Type | Comments |
| :--- | :--- | :--- |
| DeepEPHTPrepareAndFinalize | Contiguous / Non-Batched | Uses the DeepEP High-Throughput all2all kernels. |
| DeepEPLLPrepareAndFinalize | Batched | Uses the DeepEP Low-Latency all2all kernels. |
| PplxPrepareAndFinalize | Batched | Uses the Perplexity all2all kernels. |
| FlashInferCutlassMoEPrepareAndFinalize | Contiguous | |
| MoEPrepareAndFinalizeNoEP | Contiguous | This implementation is used when there is no EP. i.e. no all2all kernels are invoked. |
| BatchedPrepareAndFinalize | Batched | A reference prepare/finalize class that reorganizes the tokens into expert batched format, i.e. E x max_num_tokens x K. (Doesnt use any all2all kernels. This is primarily used in unit testing) |
See [Fused MoE Kernel features](./moe_kernel_features.md#fused-moe-modular-all2all-backends) for a list of all the available modular prepare and finalize subclasses.
## FusedMoEPermuteExpertsUnpermute
The following table lists the `FusedMoEPermuteExpertsUnpermute` implementations at the time of writing,
| Implementation | Type | Comment |
| :--- | :--- | :--- |
| BatchedDeepGemmExperts | Batched | Uses the DeepGemms Masked Grouped Gemm kernels for the fused_moe operation. |
| BatchedTritonExperts | Batched | Uses a Triton Kernel for the Batched matmuls. |
| BatchedTritonOrDeepGemmExperts | Batched | Chooses either the `BatchedDeepGemmExperts` or `BatchedTritonExperts` based on environment settings. |
| DeepGemmExperts | Contiguous / Non-Batched | Uses DeepGemms Grouped Gemm kernels for fused_moe operation. |
| TritonExperts | Contiguous / Non-Batched | Uses a Triton Kernel for fused_moe matmuls. |
| TritonOrDeepGemmExperts | Contiguous / Non-Batched | Chooses either the `DeepGemmExperts` or `TritonExperts` based on fused_moe inputs. |
| CutlassExpertsFP8 | Supports both Batched and Contiguous formats | Uses Cutlass Grouped Gemm implementations for the fp8 matmuls. |
| CutlassExpertsFP4 | Supports both Batched and Contiguous formats | Uses Cutlass Grouped Gemm implementations for the fp4 matmuls. |
| FlashInferExperts | Contiguous | Uses fused_moe operation from FlashInfer |
| NaiveBatchedExperts | Batched | Reference Batched Experts implementation. Primarily used in unit tests. |
See [Fused MoE Kernel features](./moe_kernel_features.md#fused-moe-experts-kernels) for a list of all the available modular experts.

View File

@ -0,0 +1,119 @@
# Fused MoE Kernel features
The purpose of this document is to provide an overview of the various MoE kernels (both modular and non-modular) so it will be easier to select an appropriate set of kernels for any particular situation. This includes information about the all2all backends used by modular kernels.
## Fused MoE Modular All2All backends
There are a number of all2all communication backends that are used to implement expert parallelism (EP) for the `FusedMoE` layer. The different `FusedMoEPrepareAndFinalize` sub-classes provide an interface for each all2all backend.
The following table describes the relevant features of each backend, i.e. activation format, supported quantization schemes and async support.
The output activation format (standard or batched) corresponds to the output of the prepare step of the `FusedMoEPrepareAndFinalize` subclass, the finalize step requires the same format. All the backend `prepare` methods expect activations in standard format and all the `finalize methods return activations in standard format. More details on the formats can be found in the [Fused MoE Modular Kernel](./fused_moe_modular_kernel.md) document.
The quantization types and formats enumerate which quantization schemes are supported by each `FusedMoEPrepareAndFinalize` class. The quantization can happen before or after the dispatch based on the format the all2all backend supports. e.g. deepep_high_throughput supports only block-quantized fp8 format, any other format will result in dispatching in higher precision and quantizing afterwards. The output of the prepare step for each backend is the quantized type. The finalize step generally requires the same input type as the original activations, e.g. if the original input is bfloat16 and the quantization scheme is fp8 w/per-tensor scales, `prepare` will return fp8/per-tensor scale activations and `finalize` will take bfloat16 activations. See the diagrams in [Fused MoE Modular Kernel](./fused_moe_modular_kernel.md) for more details on the types and formats of activations at each step of the MoE process. If no quantization type is specified, the kernel operates on float16 and/or bfloat16.
Async backends support the use of DBO (Dual Batch Overlap) and shared expert overlap (where shared experts are computed during the combine step).
Certain models require the topk weights to be applied to the input activations rather than the output activations when topk==1, e.g. llama. For modular kernels, this feature is supported by the `FusedMoEPrepareAndFinalize` subclass, for non-modular kernels, it is up to the experts function to deal with this flag.
unless otherwise specified, backends are controlled via `VLLM_ALL2ALL_BACKEND`. All backends except `flashinfer` only work with EP+DP or EP+TP. `Flashinfer` can work with EP or DP w/o EP.
<style>
td {
padding: 0.5rem !important;
white-space: nowrap;
}
th {
padding: 0.5rem !important;
min-width: 0 !important;
}
</style>
| Backend | Output act. format | Quant. types | Quant. format | Async | Apply Weight On Input | Sub-class |
|---------------------------------------|--------------------|-----------------|------------------------|-------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| naive | standard | all<sup>1</sup> | G,A,T | N | <sup>6</sup> | [layer.py][vllm.model_executor.layers.fused_moe.layer.FusedMoE.forward_impl] |
| pplx | batched | fp8,int8 | G,A,T | Y | Y | [`PplxPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.pplx_prepare_finalize.PplxPrepareAndFinalize] |
| deepep_high_throughput | standard | fp8 | G(128),A,T<sup>2</sup> | Y | Y | [`DeepEPLLPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.deepep_ll_prepare_finalize.DeepEPLLPrepareAndFinalize] |
| deepep_low_latency | batched | fp8 | G(128),A,T<sup>3</sup> | Y | Y | [`DeepEPHTPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.deepep_ht_prepare_finalize.DeepEPHTPrepareAndFinalize] |
| flashinfer_all2allv | standard | nvfp4,fp8 | G,A,T | N | N | [`FlashInferAllToAllMoEPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_prepare_finalize.FlashInferAllToAllMoEPrepareAndFinalize] |
| flashinfer<sup>4</sup> | standard | nvfp4,fp8 | G,A,T | N | N | [`FlashInferCutlassMoEPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_prepare_finalize.FlashInferCutlassMoEPrepareAndFinalize] |
| flashinfer<sup>4</sup> | standard | nvfp4,fp8 | G,A,T | N | N | [`FlashInferCutlassMoEPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_prepare_finalize.FlashInferCutlassMoEPrepareAndFinalize] |
| MoEPrepareAndFinalizeNoEP<sup>5</sup> | standard | fp8,int8 | G,A,T | N | Y | [`MoEPrepareAndFinalizeNoEP`][vllm.model_executor.layers.fused_moe.prepare_finalize.MoEPrepareAndFinalizeNoEP] |
| BatchedPrepareAndFinalize<sup>5</sup> | batched | fp8,int8 | G,A,T | N | Y | [`BatchedPrepareAndFinalize`][vllm.model_executor.layers.fused_moe.fused_batched_moe.BatchedPrepareAndFinalize] |
!!! info "Table key"
1. All types: mxfp4, nvfp4, int4, int8, fp8
2. A,T quantization occurs after dispatch.
3. All quantization happens after dispatch.
4. Controlled by different env vars (`VLLM_FLASHINFER_MOE_BACKEND` "throughput" or "latency")
5. This is a no-op dispatcher that can be used to pair with any modular experts to produce a modular kernel that runs w/o dispatch or combine. These cannot be selected via environment variable. These are generally use for testing or adapting an expert subclass to the `fused_experts` API.
6. This depends on the experts implementation.
---
- G - Grouped
- G(N) - Grouped w/block size N
- A - Per activation token
- T - Per tensor
Modular kernels are supported by the following `FusedMoEMethodBase` classes.
- [`ModelOptFp8MoEMethod`][vllm.model_executor.layers.quantization.modelopt.ModelOptFp8MoEMethod]
- [`Fp8MoEMethod`][vllm.model_executor.layers.quantization.fp8.Fp8MoEMethod]
- [`CompressedTensorsW4A4MoeMethod`][vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors_moe.CompressedTensorsW4A4MoeMethod]
- [`CompressedTensorsW8A8Fp8MoEMethod`][vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors_moe.CompressedTensorsW8A8Fp8MoEMethod]
- [`Mxfp4MoEMethod`][vllm.model_executor.layers.quantization.mxfp4.Mxfp4MoEMethod]
- [`UnquantizedFusedMoEMethod`][vllm.model_executor.layers.fused_moe.layer.UnquantizedFusedMoEMethod]
## Fused MoE Experts Kernels
The are a number of MoE experts kernel implementations for different quantization types and architectures. Most follow the general API of the base Triton [`fused_experts`][vllm.model_executor.layers.fused_moe.fused_moe.fused_experts] function. Many have modular kernel adatpers so they can be used with compatible all2all backends. This table lists each experts kernel and its particular properties.
Each kernel must be provided with one of the supported input activation formats. Some flavors of kernels support both standard and batched formats through different entry points, e.g. `TritonExperts` and `BatchedTritonExperts`. Batched format kernels are currently only needed for matching with certain all2all backends, e.g. `pplx`, `DeepEPLLPrepareAndFinalize`.
Similar to the backend kernels, each experts kernel only supports certain quantization formats. For non-modular experts, the activations will be in the original type and quantized internally by the kernel. Modular experts will expect the activations to already be in the quantized format. Both types of experts will yield outputs in the original activation type.
Each experts kernel supports one or more activation functions, e.g. silu, gelu that are applied to the intermediate results.
As with the backends, some experts support applying topk weights on the input activations. The entries in the column in this table only apply to the non-modular experts.
Most experts flavors include an equivalent modular interface which will be a subclass of `FusedMoEPermuteExpertsUnpermute`.
To be used with a particular `FusedMoEPrepareAndFinalize` sub-class, MoE kernels must have compatible activation formats, quantization types and quantization formats.
| Kernel | Input act. format | Quant. types | Quant. format | Activation function | Apply Weight On Input | Modular | Source |
|------------------------------|-----------------------|------------------|---------------|-------------------------------------------------------------|-----------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| triton | standard | all<sup>1</sup> | G,A,T | silu, gelu,</br>swigluoai,</br>silu_no_mul,</br>gelu_no_mul | Y | Y | [`fused_experts`][vllm.model_executor.layers.fused_moe.fused_moe.fused_experts],</br>[`TritonExperts`][vllm.model_executor.layers.fused_moe.fused_moe.TritonExperts] |
| triton (batched) | batched | all<sup>1</sup> | G,A,T | silu, gelu | <sup>6</sup> | Y | [`BatchedTritonExperts`][vllm.model_executor.layers.fused_moe.fused_batched_moe.BatchedTritonExperts] |
| deep gemm | standard,</br>batched | fp8 | G(128),A,T | silu, gelu | <sup>6</sup> | Y | [`deep_gemm_moe_fp8`][vllm.model_executor.layers.fused_moe.deep_gemm_moe.deep_gemm_moe_fp8],</br>[`DeepGemmExperts`][vllm.model_executor.layers.fused_moe.deep_gemm_moe.DeepGemmExperts],</br>[`BatchedDeepGemmExperts`][vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe.BatchedDeepGemmExperts] |
| cutlass_fp4 | standard,</br>batched | nvfp4 | A,T | silu | Y | Y | [`cutlass_moe_fp4`][vllm.model_executor.layers.fused_moe.cutlass_moe.cutlass_moe_fp4],</br>[`CutlassExpertsFp4`][vllm.model_executor.layers.fused_moe.cutlass_moe.CutlassExpertsFp4] |
| cutlass_fp8 | standard,</br>batched | fp8 | A,T | silu, gelu | Y | Y | [`cutlass_moe_fp8`][vllm.model_executor.layers.fused_moe.cutlass_moe.cutlass_moe_fp8],</br>[`CutlassExpertsFp8`][vllm.model_executor.layers.fused_moe.cutlass_moe.CutlassExpertsFp8],</br>[`CutlasBatchedExpertsFp8`][vllm.model_executor.layers.fused_moe.cutlass_moe.CutlassBatchedExpertsFp8] |
| flashinfer | standard | nvfp4,</br>fp8 | T | <sup>5</sup> | N | Y | [`flashinfer_cutlass_moe_fp4`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe.flashinfer_cutlass_moe_fp4],</br>[`FlashInferExperts`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe.FlashInferExperts] |
| gpt oss triton | standard | N/A | N/A | <sup>5</sup> | Y | Y | [`triton_kernel_fused_experts`][vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe.triton_kernel_fused_experts],</br>[`OAITritonExperts`][vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe.OAITritonExperts] |
| deep gemm+triton<sup>2</sup> | standard,</br>batched | all<sup>1</sup> | G(128),A,T | silu, gelu | <sup>6</sup> | Y | [`TritonOrDeepGemmExperts`][vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe.TritonOrDeepGemmExperts],</br>[`BatchedTritonOrDeepGemmExperts`][vllm.model_executor.layers.fused_moe.batched_triton_or_deep_gemm_moe.BatchedTritonOrDeepGemmExperts] |
| marlin | standard | <sup>3</sup> | <sup>3</sup> | silu,</br>swigluoai | Y | N | [`fused_marlin_moe`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.fused_marlin_moe] |
| trtllm | standard | mxfp4,</br>nvfp4 | G(16),G(32) | <sup>5</sup> | N | Y | [`TrtLlmGenExperts`][vllm.model_executor.layers.fused_moe.trtllm_moe.TrtLlmGenExperts] |
| pallas | standard | N/A | N/A | silu | N | N | [`fused_moe`][vllm.model_executor.layers.fused_moe.moe_pallas.fused_moe] |
| iterative | standard | N/A | N/A | silu | N | N | [`fused_moe`][vllm.model_executor.layers.fused_moe.moe_torch_iterative.fused_moe] |
| rocm aiter moe | standard | fp8 | G(128),A,T | silu, gelu | Y | N | [`rocm_aiter_fused_experts`][vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe.rocm_aiter_fused_moe_impl] |
| cpu_fused_moe | standard | N/A | N/A | silu | N | N | [`CPUFusedMOE`][vllm.model_executor.layers.fused_moe.cpu_fused_moe.CPUFusedMOE] |
| naive batched<sup>4</sup> | batched | int8,</br>fp8 | G,A,T | silu, gelu | <sup>6</sup> | Y | [`NaiveBatchedExperts`][vllm.model_executor.layers.fused_moe.fused_batched_moe.NaiveBatchedExperts] |
!!! info "Table key"
1. All types: mxfp4, nvfp4, int4, int8, fp8
2. A dispatcher wrapper around triton and deep gemm experts. Will select based on type + shape + quantization params
3. uint4, uint8, fp8, fp4
4. This is a naive implementation of experts that supports batched format. Mainly used for testing.
5. The `activation` parameter is ignored and SwiGlu is used by default instead.
6. Only handled by or supported when used with modular kernels.
## Modular Kernel "families"
The following table shows "families" of modular kernels that are intended to work together. There are some combinations which may work but have not yet been tested, e.g. flashinfer with other fp8 experts. Note that the "naive" backend will work with any non-modular experts.
| backend | `FusedMoEPrepareAndFinalize` subclasses | `FusedMoEPermuteExpertsUnpermute` subclasses |
|----------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| deepep_high_throughput,</br>pplx | `DeepEPHTPrepareAndFinalize`,</br>`PplxPrepareAndFinalize` | `BatchedDeepGemmExperts`,</br>`BatchedTritonExperts`,</br>`BatchedTritonOrDeepGemmExperts`,</br>`CutlassBatchedExpertsFp8` |
| deepep_low_latency | `DeepEPLLPrepareAndFinalize` | `DeepGemmExperts`,</br>`TritonExperts`,</br>`TritonOrDeepGemmExperts`,</br>`CutlassExpertsFp8` |
| flashinfer | `FlashInferCutlassMoEPrepareAndFinalize` | `FlashInferExperts` |

View File

@ -16,7 +16,7 @@ vLLM will take all the available factors into consideration, and decide a direct
The factors considered include:
- All the related configs (see the `compute_hash` functions in the [config.py](gh-file:vllm/config.py))
- All the related configs (see the `compute_hash` functions in their respective configs in the [config folder](gh-file:vllm/config))
- PyTorch configs (see the `compute_hash` functions in the [compiler_interface.py](gh-file:vllm/compilation/compiler_interface.py))
- The model's forward function and the relevant functions called by the forward function (see below)

View File

@ -52,7 +52,7 @@ th:not(:first-child) {
| [mm](multimodal_inputs.md) | ✅ | ✅ | [🟠](gh-pr:4194)<sup>^</sup> | ❔ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | | | |
| best-of | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | ✅ | ✅ | | |
| beam-search | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | ❔ | ✅ | ✅ | |
| [prompt-embeds](prompt_embeds.md) | ✅ | [](gh-issue:25096) | ? | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ? | ? | ❌ | ? | ? | ✅ |
| [prompt-embeds](prompt_embeds.md) | ✅ | [](gh-issue:25096) | | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | | | ❌ | | | ✅ |
\* Chunked prefill and prefix caching are only applicable to last-token pooling.
<sup>^</sup> LoRA is only applicable to the language backbone of multimodal models.

View File

@ -6,6 +6,13 @@ This page teaches you how to pass multi-modal inputs to [multi-modal models][sup
We are actively iterating on multi-modal support. See [this RFC](gh-issue:4194) for upcoming changes,
and [open an issue on GitHub](https://github.com/vllm-project/vllm/issues/new/choose) if you have any feedback or feature requests.
!!! tip
When serving multi-modal models, consider setting `--allowed-media-domains` to restrict domain that vLLM can access to prevent it from accessing arbitrary endpoints that can potentially be vulnerable to Server-Side Request Forgery (SSRF) attacks. You can provide a list of domains for this arg. For example: `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`
Also, consider setting `VLLM_MEDIA_URL_ALLOW_REDIRECTS=0` to prevent HTTP redirects from being followed to bypass domain restrictions.
This restriction is especially important if you run vLLM in a containerized environment where the vLLM pods may have unrestricted access to internal networks.
## Offline Inference
To input multi-modal data, follow this schema in [vllm.inputs.PromptType][]:
@ -424,7 +431,7 @@ Our OpenAI-compatible server accepts multi-modal data via the [Chat Completions
If no fallback is available, an error is raised and you have to provide the chat template manually via the `--chat-template` argument.
For certain models, we provide alternative chat templates inside <gh-dir:examples>.
For example, VLM2Vec uses <gh-file:examples/template_vlm2vec.jinja> which is different from the default one for Phi-3-Vision.
For example, VLM2Vec uses <gh-file:examples/template_vlm2vec_phi3v.jinja> which is different from the default one for Phi-3-Vision.
### Image Inputs

View File

@ -9,7 +9,7 @@ NixlConnector is a high-performance KV cache transfer connector for vLLM's disag
Install the NIXL library: `uv pip install nixl`, as a quick start.
- Refer to [NIXL official repository](https://github.com/ai-dynamo/nixl) for more installation instructions
- The specified required NIXL version can be found in [requirements/kv_connectors.txt](../../requirements/kv_connectors.txt) and other relevant config files
- The specified required NIXL version can be found in [requirements/kv_connectors.txt](gh-file:requirements/kv_connectors.txt) and other relevant config files
### Transport Configuration
@ -84,7 +84,7 @@ python tests/v1/kv_connector/nixl_integration/toy_proxy_server.py \
- Connection info is passed via KVTransferParams from prefiller to decoder for handshake
- `VLLM_NIXL_ABORT_REQUEST_TIMEOUT`: Timeout (in seconds) for automatically releasing the prefillers KV cache for a particular request. (Optional)
- Default: 120
- Default: 480
- If a request is aborted and the decoder has not yet read the KV-cache blocks through the nixl channel, the prefill instance will release its KV-cache blocks after this timeout to avoid holding them indefinitely.
## Multi-Instance Setup
@ -154,6 +154,6 @@ python tests/v1/kv_connector/nixl_integration/toy_proxy_server.py \
Refer to these example scripts in the vLLM repository:
- [run_accuracy_test.sh](../../tests/v1/kv_connector/nixl_integration/run_accuracy_test.sh)
- [toy_proxy_server.py](../../tests/v1/kv_connector/nixl_integration/toy_proxy_server.py)
- [test_accuracy.py](../../tests/v1/kv_connector/nixl_integration/test_accuracy.py)
- [run_accuracy_test.sh](gh-file:tests/v1/kv_connector/nixl_integration/run_accuracy_test.sh)
- [toy_proxy_server.py](gh-file:tests/v1/kv_connector/nixl_integration/toy_proxy_server.py)
- [test_accuracy.py](gh-file:tests/v1/kv_connector/nixl_integration/test_accuracy.py)

View File

@ -6,7 +6,11 @@ This quantization method is particularly useful for reducing model size while ma
Please visit the HF collection of [quantized INT8 checkpoints of popular LLMs ready to use with vLLM](https://huggingface.co/collections/neuralmagic/int8-llms-for-vllm-668ec32c049dca0369816415).
!!! note
INT8 computation is supported on NVIDIA GPUs with compute capability > 7.5 (Turing, Ampere, Ada Lovelace, Hopper, Blackwell).
INT8 computation is supported on NVIDIA GPUs with compute capability > 7.5 (Turing, Ampere, Ada Lovelace, Hopper).
!!! warning
**Blackwell GPU Limitation**: INT8 is not supported on compute capability >= 100 (e.g., RTX 6000 Blackwell).
Use [FP8 quantization](fp8.md) instead, or run on Hopper/Ada/Ampere architectures.
## Prerequisites

View File

@ -64,8 +64,7 @@ To enable sleep mode in a vLLM server you need to initialize it with the flag `V
When using the flag `VLLM_SERVER_DEV_MODE=1` you enable development endpoints, and these endpoints should not be exposed to users.
```bash
VLLM_SERVER_DEV_MODE=1 python -m vllm.entrypoints.openai.api_server \
--model Qwen/Qwen3-0.6B \
VLLM_SERVER_DEV_MODE=1 vllm serve Qwen/Qwen3-0.6B \
--enable-sleep-mode \
--port 8000
```

View File

@ -48,10 +48,9 @@ The following code configures vLLM in an offline mode to use speculative decodin
To perform the same with an online mode launch the server:
```bash
python -m vllm.entrypoints.openai.api_server \
vllm serve facebook/opt-6.7b \
--host 0.0.0.0 \
--port 8000 \
--model facebook/opt-6.7b \
--seed 42 \
-tp 1 \
--gpu_memory_utilization 0.8 \

View File

@ -6,6 +6,17 @@ vLLM supports the generation of structured outputs using
This document shows you some examples of the different options that are
available to generate structured outputs.
!!! warning
If you are still using the following deprecated API fields, please update your code to use `structured_outputs` as demonstrated in the rest of this document:
- `guided_json` -> `{"structured_outputs": {"json": ...}}` or `StructuredOutputsParams(json=...)`
- `guided_regex` -> `{"structured_outputs": {"regex": ...}}` or `StructuredOutputsParams(regex=...)`
- `guided_choice` -> `{"structured_outputs": {"choice": ...}}` or `StructuredOutputsParams(choice=...)`
- `guided_grammar` -> `{"structured_outputs": {"grammar": ...}}` or `StructuredOutputsParams(grammar=...)`
- `guided_whitespace_pattern` -> `{"structured_outputs": {"whitespace_pattern": ...}}` or `StructuredOutputsParams(whitespace_pattern=...)`
- `structural_tag` -> `{"structured_outputs": {"structural_tag": ...}}` or `StructuredOutputsParams(structural_tag=...)`
- `guided_decoding_backend` -> Remove this field from your request
## Online Serving (OpenAI API)
You can generate structured outputs using the OpenAI's [Completions](https://platform.openai.com/docs/api-reference/completions) and [Chat](https://platform.openai.com/docs/api-reference/chat) API.

View File

@ -310,12 +310,23 @@ Flags:
* For non-reasoning: `--tool-call-parser hunyuan_a13b`
* For reasoning: `--tool-call-parser hunyuan_a13b --reasoning-parser hunyuan_a13b --enable_reasoning`
### LongCat-Flash-Chat Models (`longcat`)
Supported models:
* `meituan-longcat/LongCat-Flash-Chat`
* `meituan-longcat/LongCat-Flash-Chat-FP8`
Flags: `--tool-call-parser longcat`
### GLM-4.5 Models (`glm45`)
Supported models:
* `ZhipuAI/GLM-4.5`
* `ZhipuAI/GLM-4.5-Air`
* `zai-org/GLM-4.5`
* `zai-org/GLM-4.5-Air`
* `zai-org/GLM-4.6`
* `zai-org/GLM-4.6-Air`
Flags: `--tool-call-parser glm45`

View File

@ -25,3 +25,4 @@ The backends below live **outside** the main `vllm` repository and follow the
| MetaX MACA GPU | N/A, install from source | <https://github.com/MetaX-MACA/vLLM-metax> |
| Rebellions ATOM / REBEL NPU | `vllm-rbln` | <https://github.com/rebellions-sw/vllm-rbln> |
| IBM Spyre AIU | `vllm-spyre` | <https://github.com/vllm-project/vllm-spyre> |
| Cambricon MLU | `vllm-mlu` | <https://github.com/Cambricon/vllm-mlu> |

View File

@ -46,22 +46,22 @@ Execute the following commands to build and install vLLM from source.
Please build the following dependencies, `torchvision`, `pyarrow` from source before building vLLM.
```bash
sed -i '/^torch/d' requirements-build.txt # remove torch from requirements-build.txt since we use nightly builds
sed -i '/^torch/d' requirements/build.txt # remove torch from requirements/build.txt since we use nightly builds
uv pip install -v \
--torch-backend auto \
-r requirements-build.txt \
-r requirements-cpu.txt \
-r requirements/build.txt \
-r requirements/cpu.txt \
VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \
uv pip install dist/*.whl
```
??? console "pip"
```bash
sed -i '/^torch/d' requirements-build.txt # remove torch from requirements-build.txt since we use nightly builds
sed -i '/^torch/d' requirements/build.txt # remove torch from requirements/build.txt since we use nightly builds
pip install -v \
--extra-index-url https://download.pytorch.org/whl/nightly/cpu \
-r requirements-build.txt \
-r requirements-cpu.txt \
-r requirements/build.txt \
-r requirements/cpu.txt \
VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \
pip install dist/*.whl
```

View File

@ -20,7 +20,80 @@ vLLM supports basic model inferencing and serving on x86 CPU platform, with data
# --8<-- [end:pre-built-wheels]
# --8<-- [start:build-wheel-from-source]
--8<-- "docs/getting_started/installation/cpu/build.inc.md"
Install recommended compiler. We recommend to use `gcc/g++ >= 12.3.0` as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run:
```bash
sudo apt-get update -y
sudo apt-get install -y gcc-12 g++-12 libnuma-dev python3-dev
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
```
Clone the vLLM project:
```bash
git clone https://github.com/vllm-project/vllm.git vllm_source
cd vllm_source
```
Install the required dependencies:
```bash
uv pip install -r requirements/cpu-build.txt --torch-backend cpu
uv pip install -r requirements/cpu.txt --torch-backend cpu
```
??? console "pip"
```bash
pip install --upgrade pip
pip install -v -r requirements/cpu-build.txt --extra-index-url https://download.pytorch.org/whl/cpu
pip install -v -r requirements/cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
```
Build and install vLLM:
```bash
VLLM_TARGET_DEVICE=cpu uv pip install . --no-build-isolation
```
If you want to develop vLLM, install it in editable mode instead.
```bash
VLLM_TARGET_DEVICE=cpu uv pip install -e . --no-build-isolation
```
Optionally, build a portable wheel which you can then install elsewhere:
```bash
VLLM_TARGET_DEVICE=cpu uv build --wheel
```
```bash
uv pip install dist/*.whl
```
??? console "pip"
```bash
VLLM_TARGET_DEVICE=cpu python -m build --wheel --no-isolation
```
```bash
pip install dist/*.whl
```
!!! example "Troubleshooting"
- **NumPy ≥2.0 error**: Downgrade using `pip install "numpy<2.0"`.
- **CMake picks up CUDA**: Add `CMAKE_DISABLE_FIND_PACKAGE_CUDA=ON` to prevent CUDA detection during CPU builds, even if CUDA is installed.
- `AMD` requies at least 4th gen processors (Zen 4/Genoa) or higher to support [AVX512](https://www.phoronix.com/review/amd-zen4-avx512) to run vLLM on CPU.
- If you receive an error such as: `Could not find a version that satisfies the requirement torch==X.Y.Z+cpu+cpu`, consider updating [pyproject.toml](https://github.com/vllm-project/vllm/blob/main/pyproject.toml) to help pip resolve the dependency.
```toml title="pyproject.toml"
[build-system]
requires = [
"cmake>=3.26.1",
...
"torch==X.Y.Z+cpu" # <-------
]
```
- If you are building vLLM from source and not using the pre-built images, remember to set `LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:$LD_PRELOAD"` on x86 machines before running vLLM.
# --8<-- [end:build-wheel-from-source]
# --8<-- [start:pre-built-images]
@ -57,4 +130,4 @@ docker run --rm \
# --8<-- [end:build-image-from-source]
# --8<-- [start:extra-information]
# --8<-- [end:extra-information]
# --8<-- [end:extra-information]

View File

@ -67,8 +67,7 @@ docker run -it \
XPU platform supports **tensor parallel** inference/serving and also supports **pipeline parallel** as a beta feature for online serving. For **pipeline parallel**, we support it on single node with mp as the backend. For example, a reference execution like following:
```bash
python -m vllm.entrypoints.openai.api_server \
--model=facebook/opt-13b \
vllm serve facebook/opt-13b \
--dtype=bfloat16 \
--max_model_len=1024 \
--distributed-executor-backend=mp \

View File

@ -32,8 +32,9 @@ def auto_mock(module, attr, max_mocks=50):
for _ in range(max_mocks):
try:
# First treat attr as an attr, then as a submodule
return getattr(importlib.import_module(module), attr,
importlib.import_module(f"{module}.{attr}"))
with patch("importlib.metadata.version", return_value="0.0.0"):
return getattr(importlib.import_module(module), attr,
importlib.import_module(f"{module}.{attr}"))
except importlib.metadata.PackageNotFoundError as e:
raise e
except ModuleNotFoundError as e:
@ -167,5 +168,5 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
doc_path = ARGPARSE_DOC_DIR / f"{stem}.md"
# Specify encoding for building on Windows
with open(doc_path, "w", encoding="utf-8") as f:
f.write(parser.format_help())
f.write(super(type(parser), parser).format_help())
logger.info("Argparse generated: %s", doc_path.relative_to(ROOT_DIR))

View File

@ -24,6 +24,13 @@ vllm serve s3://core-llm/Llama-3-8b \
--load-format runai_streamer
```
To run model from Google Cloud Storage run:
```bash
vllm serve gs://core-llm/Llama-3-8b \
--load-format runai_streamer
```
To run model from a S3 compatible object store run:
```bash

View File

@ -4,7 +4,7 @@ vLLM provides first-class support for generative models, which covers most of LL
In vLLM, generative models implement the[VllmModelForTextGeneration][vllm.model_executor.models.VllmModelForTextGeneration] interface.
Based on the final hidden states of the input, these models output log probabilities of the tokens to generate,
which are then passed through [Sampler][vllm.model_executor.layers.sampler.Sampler] to obtain the final text.
which are then passed through [Sampler][vllm.v1.sample.sampler.Sampler] to obtain the final text.
## Configuration

View File

@ -17,20 +17,21 @@ These models are what we list in [supported-text-models][supported-text-models]
### Transformers
vLLM also supports model implementations that are available in Transformers. You should expect the performance of a Transformers model implementation used in vLLM to be within <1% of the performance of a dedicated vLLM model implementation. We call this feature the "Transformers backend".
vLLM also supports model implementations that are available in Transformers. You should expect the performance of a Transformers model implementation used in vLLM to be within <5% of the performance of a dedicated vLLM model implementation. We call this feature the "Transformers backend".
Currently, the Transformers backend works for the following:
- Modalities: embedding models, language models and vision-language models*
- Architectures: encoder-only, decoder-only
- Architectures: encoder-only, decoder-only, mixture-of-experts
- Attention types: full attention and/or sliding attention
_*Vision-language models currently accept only image inputs. Support for video inputs will be added in a future release._
If the Transformers model implementation follows all the steps in [writing a custom model](#writing-custom-models) then, when used with the Transformers backend, it will be compatible with the following features of vLLM:
- All the features listed in the [compatibility matrix](../features/compatibility_matrix.md#feature-x-feature)
- All the features listed in the [compatibility matrix](../features/README.md#feature-x-feature)
- Any combination of the following vLLM parallelisation schemes:
- Data parallel
- Pipeline parallel
- Tensor parallel
@ -367,7 +368,7 @@ th {
| `Gemma3nForCausalLM` | Gemma 3n | `google/gemma-3n-E2B-it`, `google/gemma-3n-E4B-it`, etc. | | | ✅︎ |
| `GlmForCausalLM` | GLM-4 | `zai-org/glm-4-9b-chat-hf`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4ForCausalLM` | GLM-4-0414 | `zai-org/GLM-4-32B-0414`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4MoeForCausalLM` | GLM-4.5 | `zai-org/GLM-4.5`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4MoeForCausalLM` | GLM-4.5, GLM-4.6 | `zai-org/GLM-4.5`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `GPT2LMHeadModel` | GPT-2 | `gpt2`, `gpt2-xl`, etc. | | ✅︎ | ✅︎ |
| `GPTBigCodeForCausalLM` | StarCoder, SantaCoder, WizardCoder | `bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, `WizardLM/WizardCoder-15B-V1.0`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `GPTJForCausalLM` | GPT-J | `EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc. | | ✅︎ | ✅︎ |
@ -396,7 +397,6 @@ th {
| `MiniCPM3ForCausalLM` | MiniCPM3 | `openbmb/MiniCPM3-4B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MistralForCausalLM` | Mistral, Mistral-Instruct | `mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MixtralForCausalLM` | Mixtral-8x7B, Mixtral-8x7B-Instruct | `mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MotifForCausalLM` | Motif-1-Tiny | `Motif-Technologies/Motif-2.6B`, `Motif-Technologies/Motif-2.6b-v1.1-LC`, etc. | ✅︎ | ✅︎ | |
| `MPTForCausalLM` | MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter | `mosaicml/mpt-7b`, `mosaicml/mpt-7b-storywriter`, `mosaicml/mpt-30b`, etc. | | ✅︎ | ✅︎ |
| `NemotronForCausalLM` | Nemotron-3, Nemotron-4, Minitron | `nvidia/Minitron-8B-Base`, `mgoin/Nemotron-4-340B-Base-hf-FP8`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `NemotronHForCausalLM` | Nemotron-H | `nvidia/Nemotron-H-8B-Base-8K`, `nvidia/Nemotron-H-47B-Base-8K`, `nvidia/Nemotron-H-56B-Base-8K`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -404,12 +404,11 @@ th {
| `OLMo2ForCausalLM` | OLMo2 | `allenai/OLMo-2-0425-1B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `OLMo3ForCausalLM` | OLMo3 | TBA | ✅︎ | ✅︎ | ✅︎ |
| `OLMoEForCausalLM` | OLMoE | `allenai/OLMoE-1B-7B-0924`, `allenai/OLMoE-1B-7B-0924-Instruct`, etc. | | ✅︎ | ✅︎ |
| `OPTForCausalLM` | OPT, OPT-IML | `facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc. | | ✅︎ | ✅︎ |
| `OPTForCausalLM` | OPT, OPT-IML | `facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `OrionForCausalLM` | Orion | `OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc. | | ✅︎ | ✅︎ |
| `PhiForCausalLM` | Phi | `microsoft/phi-1_5`, `microsoft/phi-2`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi3ForCausalLM` | Phi-4, Phi-3 | `microsoft/Phi-4-mini-instruct`, `microsoft/Phi-4`, `microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, `microsoft/Phi-3-medium-128k-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `PhiMoEForCausalLM` | Phi-3.5-MoE | `microsoft/Phi-3.5-MoE-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi4FlashForCausalLM` | Phi-4-mini-flash-reasoning | `microsoft/microsoft/Phi-4-mini-instruct`, etc. | | | |
| `PersimmonForCausalLM` | Persimmon | `adept/persimmon-8b-base`, `adept/persimmon-8b-chat`, etc. | | ✅︎ | ✅︎ |
| `Plamo2ForCausalLM` | PLaMo2 | `pfnet/plamo-2-1b`, `pfnet/plamo-2-8b`, etc. | | ✅︎ | ✅︎ |
| `QWenLMHeadModel` | Qwen | `Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -428,6 +427,7 @@ th {
| `MiniMaxM1ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-M1-40k`, `MiniMaxAI/MiniMax-M1-80k`, etc. | | | ✅︎ |
| `MiniMaxText01ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-Text-01`, etc. | | | ✅︎ |
| `Zamba2ForCausalLM` | Zamba2 | `Zyphra/Zamba2-7B-instruct`, `Zyphra/Zamba2-2.7B-instruct`, `Zyphra/Zamba2-1.2B-instruct`, etc. | | | ✅︎ |
| `LongcatFlashForCausalLM` | LongCat-Flash | `meituan-longcat/LongCat-Flash-Chat`, `meituan-longcat/LongCat-Flash-Chat-FP8` | ✅︎ |✅︎ | ✅︎ |
Some models are supported only via the [Transformers backend](#transformers). The purpose of the table below is to acknowledge models which we officially support in this way. The logs will say that the Transformers backend is being used, and you will see no warning that this is fallback behaviour. This means that, if you have issues with any of the models listed below, please [make an issue](https://github.com/vllm-project/vllm/issues/new/choose) and we'll do our best to fix it!
@ -627,7 +627,29 @@ See [this page](../features/multimodal_inputs.md) on how to pass multi-modal inp
For hybrid-only models such as Llama-4, Step3 and Mistral-3, a text-only mode can be enabled by setting all supported multimodal modalities to 0 (e.g, `--limit-mm-per-prompt '{"image":0}`) so that their multimodal modules will not be loaded to free up more GPU memory for KV cache.
!!! note
vLLM currently only supports adding LoRA to the language backbone of multimodal models.
vLLM currently only supports dynamic LoRA adapters on the language backbone of multimodal models.
If you wish to use a model with LoRA in the multi-modal encoder,
please merge the weights into the base model first before running it in vLLM like a regular model.
```python
from peft import PeftConfig, PeftModel
from transformers import AutoModelForImageTextToText, AutoProcessor
def merge_and_save(model_id: str, output_dir: str):
base_model = AutoModelForImageTextToText.from_pretrained(model_id)
lora_model = PeftModel.from_pretrained(
base_model,
model_id,
config=PeftConfig.from_pretrained(model_id),
)
model = lora_model.merge_and_unload().to(dtype=base_model.dtype)
model._hf_peft_config_loaded = False # Needed to save the merged model
processor = AutoProcessor.from_pretrained(model_id)
model.save_pretrained(output_dir)
processor.save_pretrained(output_dir)
```
### Generative Models
@ -655,7 +677,7 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `GraniteSpeechForConditionalGeneration` | Granite Speech | T + A | `ibm-granite/granite-speech-3.3-8b` | ✅︎ | ✅︎ | ✅︎ |
| `H2OVLChatModel` | H2OVL | T + I<sup>E+</sup> | `h2oai/h2ovl-mississippi-800m`, `h2oai/h2ovl-mississippi-2b`, etc. | | ✅︎ | ✅︎ |
| `Idefics3ForConditionalGeneration` | Idefics3 | T + I | `HuggingFaceM4/Idefics3-8B-Llama3`, etc. | ✅︎ | | ✅︎ |
| `InternS1ForConditionalGeneration` | Intern-S1 | T + I<sup>E+</sup> + V<sup>E+</sup> | `internlm/Intern-S1`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `InternS1ForConditionalGeneration` | Intern-S1 | T + I<sup>E+</sup> + V<sup>E+</sup> | `internlm/Intern-S1`, `internlm/Intern-S1-mini`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `InternVLChatModel` | InternVL 3.5, InternVL 3.0, InternVideo 2.5, InternVL 2.5, Mono-InternVL, InternVL 2.0 | T + I<sup>E+</sup> + (V<sup>E+</sup>) | `OpenGVLab/InternVL3_5-14B`, `OpenGVLab/InternVL3-9B`, `OpenGVLab/InternVideo2_5_Chat_8B`, `OpenGVLab/InternVL2_5-4B`, `OpenGVLab/Mono-InternVL-2B`, `OpenGVLab/InternVL2-4B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `InternVLForConditionalGeneration` | InternVL 3.0 (HF format) | T + I<sup>E+</sup> + V<sup>E+</sup> | `OpenGVLab/InternVL3-1B-hf`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `KeyeForConditionalGeneration` | Keye-VL-8B-Preview | T + I<sup>E+</sup> + V<sup>E+</sup> | `Kwai-Keye/Keye-VL-8B-Preview` | ✅︎ | ✅︎ | ✅︎ |
@ -806,8 +828,8 @@ The following table lists those that are tested in vLLM.
| Architecture | Models | Inputs | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/parallelism_scaling.md) | [V1](gh-issue:8779) |
|--------------|--------|--------|-------------------|----------------------|---------------------------|---------------------|
| `LlavaNextForConditionalGeneration`<sup>C</sup> | LLaVA-NeXT-based | T / I | `royokong/e5-v` | | | |
| `Phi3VForCausalLM`<sup>C</sup> | Phi-3-Vision-based | T + I | `TIGER-Lab/VLM2Vec-Full` | 🚧 | ✅︎ | |
| `LlavaNextForConditionalGeneration`<sup>C</sup> | LLaVA-NeXT-based | T / I | `royokong/e5-v` | | ✅︎ | ✅︎ |
| `Phi3VForCausalLM`<sup>C</sup> | Phi-3-Vision-based | T + I | `TIGER-Lab/VLM2Vec-Full` | | ✅︎ | ✅︎ |
| `*ForConditionalGeneration`<sup>C</sup>, `*ForCausalLM`<sup>C</sup>, etc. | Generative models | \* | N/A | \* | \* | \* |
<sup>C</sup> Automatically converted into an embedding model via `--convert embed`. ([details](./pooling_models.md#model-conversion))

View File

@ -236,11 +236,33 @@ The following extra parameters are supported:
Our Embeddings API is compatible with [OpenAI's Embeddings API](https://platform.openai.com/docs/api-reference/embeddings);
you can use the [official OpenAI Python client](https://github.com/openai/openai-python) to interact with it.
If the model has a [chat template][chat-template], you can replace `inputs` with a list of `messages` (same schema as [Chat API][chat-api])
which will be treated as a single prompt to the model.
Code example: <gh-file:examples/online_serving/pooling/openai_embedding_client.py>
If the model has a [chat template][chat-template], you can replace `inputs` with a list of `messages` (same schema as [Chat API][chat-api])
which will be treated as a single prompt to the model. Here is a convenience function for calling the API while retaining OpenAI's type annotations:
??? code
```python
from openai import OpenAI
from openai._types import NOT_GIVEN, NotGiven
from openai.types.chat import ChatCompletionMessageParam
from openai.types.create_embedding_response import CreateEmbeddingResponse
def create_chat_embeddings(
client: OpenAI,
*,
messages: list[ChatCompletionMessageParam],
model: str,
encoding_format: Union[Literal["base64", "float"], NotGiven] = NOT_GIVEN,
) -> CreateEmbeddingResponse:
return client.post(
"/embeddings",
cast_to=CreateEmbeddingResponse,
body={"messages": messages, "model": model, "encoding_format": encoding_format},
)
```
#### Multi-modal inputs
You can pass multi-modal inputs to embedding models by defining a custom chat template for the server
@ -254,7 +276,7 @@ and passing a list of `messages` in the request. Refer to the examples below for
vllm serve TIGER-Lab/VLM2Vec-Full --runner pooling \
--trust-remote-code \
--max-model-len 4096 \
--chat-template examples/template_vlm2vec.jinja
--chat-template examples/template_vlm2vec_phi3v.jinja
```
!!! important
@ -262,34 +284,36 @@ and passing a list of `messages` in the request. Refer to the examples below for
to run this model in embedding mode instead of text generation mode.
The custom chat template is completely different from the original one for this model,
and can be found here: <gh-file:examples/template_vlm2vec.jinja>
and can be found here: <gh-file:examples/template_vlm2vec_phi3v.jinja>
Since the request schema is not defined by OpenAI client, we post a request to the server using the lower-level `requests` library:
??? code
```python
import requests
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="EMPTY",
)
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
response = requests.post(
"http://localhost:8000/v1/embeddings",
json={
"model": "TIGER-Lab/VLM2Vec-Full",
"messages": [{
response = create_chat_embeddings(
client,
model="TIGER-Lab/VLM2Vec-Full",
messages=[
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "text", "text": "Represent the given image."},
],
}],
"encoding_format": "float",
},
}
],
encoding_format="float",
)
response.raise_for_status()
response_json = response.json()
print("Embedding output:", response_json["data"][0]["embedding"])
print("Image embedding output:", response.data[0].embedding)
```
=== "DSE-Qwen2-MRL"
@ -351,13 +375,92 @@ you can use the [official OpenAI Python client](https://github.com/openai/openai
To use the Transcriptions API, please install with extra audio dependencies using `pip install vllm[audio]`.
Code example: <gh-file:examples/online_serving/openai_transcription_client.py>
<!-- TODO: api enforced limits + uploading audios -->
#### API Enforced Limits
Set the maximum audio file size (in MB) that VLLM will accept, via the
`VLLM_MAX_AUDIO_CLIP_FILESIZE_MB` environment variable. Default is 25 MB.
#### Uploading Audio Files
The Transcriptions API supports uploading audio files in various formats including FLAC, MP3, MP4, MPEG, MPGA, M4A, OGG, WAV, and WEBM.
**Using OpenAI Python Client:**
??? code
```python
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
# Upload audio file from disk
with open("audio.mp3", "rb") as audio_file:
transcription = client.audio.transcriptions.create(
model="openai/whisper-large-v3-turbo",
file=audio_file,
language="en",
response_format="verbose_json"
)
print(transcription.text)
```
**Using curl with multipart/form-data:**
??? code
```bash
curl -X POST "http://localhost:8000/v1/audio/transcriptions" \
-H "Authorization: Bearer token-abc123" \
-F "file=@audio.mp3" \
-F "model=openai/whisper-large-v3-turbo" \
-F "language=en" \
-F "response_format=verbose_json"
```
**Supported Parameters:**
- `file`: The audio file to transcribe (required)
- `model`: The model to use for transcription (required)
- `language`: The language code (e.g., "en", "zh") (optional)
- `prompt`: Optional text to guide the transcription style (optional)
- `response_format`: Format of the response ("json", "text") (optional)
- `temperature`: Sampling temperature between 0 and 1 (optional)
For the complete list of supported parameters including sampling parameters and vLLM extensions, see the [protocol definitions](https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/openai/protocol.py#L2182).
**Response Format:**
For `verbose_json` response format:
??? code
```json
{
"text": "Hello, this is a transcription of the audio file.",
"language": "en",
"duration": 5.42,
"segments": [
{
"id": 0,
"seek": 0,
"start": 0.0,
"end": 2.5,
"text": "Hello, this is a transcription",
"tokens": [50364, 938, 428, 307, 275, 28347],
"temperature": 0.0,
"avg_logprob": -0.245,
"compression_ratio": 1.235,
"no_speech_prob": 0.012
}
]
}
```
#### Extra Parameters
The following [sampling parameters][sampling-params] are supported.

View File

@ -1,12 +1,54 @@
# Transformers Reinforcement Learning
Transformers Reinforcement Learning (TRL) is a full stack library that provides a set of tools to train transformer language models with methods like Supervised Fine-Tuning (SFT), Group Relative Policy Optimization (GRPO), Direct Preference Optimization (DPO), Reward Modeling, and more. The library is integrated with 🤗 transformers.
[Transformers Reinforcement Learning](https://huggingface.co/docs/trl) (TRL) is a full stack library that provides a set of tools to train transformer language models with methods like Supervised Fine-Tuning (SFT), Group Relative Policy Optimization (GRPO), Direct Preference Optimization (DPO), Reward Modeling, and more. The library is integrated with 🤗 transformers.
Online methods such as GRPO or Online DPO require the model to generate completions. vLLM can be used to generate these completions!
See the guide [vLLM for fast generation in online methods](https://huggingface.co/docs/trl/main/en/speeding_up_training#vllm-for-fast-generation-in-online-methods) in the TRL documentation for more information.
See the [vLLM integration guide](https://huggingface.co/docs/trl/main/en/vllm_integration) in the TRL documentation for more information.
TRL currently supports the following online trainers with vLLM:
- [GRPO](https://huggingface.co/docs/trl/main/en/grpo_trainer)
- [Online DPO](https://huggingface.co/docs/trl/main/en/online_dpo_trainer)
- [RLOO](https://huggingface.co/docs/trl/main/en/rloo_trainer)
- [Nash-MD](https://huggingface.co/docs/trl/main/en/nash_md_trainer)
- [XPO](https://huggingface.co/docs/trl/main/en/xpo_trainer)
To enable vLLM in TRL, set the `use_vllm` flag in the trainer configuration to `True`.
## Modes of Using vLLM During Training
TRL supports **two modes** for integrating vLLM during training: **server mode** and **colocate mode**. You can control how vLLM operates during training with the `vllm_mode` parameter.
### Server mode
In **server mode**, vLLM runs as an independent process on dedicated GPUs and communicates with the trainer through HTTP requests. This configuration is ideal when you have separate GPUs for inference, as it isolates generation workloads from training, ensuring stable performance and easier scaling.
```python
from trl import GRPOConfig
training_args = GRPOConfig(
...,
use_vllm=True,
vllm_mode="server", # default value, can be omitted
)
```
### Colocate mode
In **colocate mode**, vLLM runs inside the trainer process and shares GPU memory with the training model. This avoids launching a separate server and can improve GPU utilization, but may lead to memory contention on the training GPUs.
```python
from trl import GRPOConfig
training_args = GRPOConfig(
...,
use_vllm=True,
vllm_mode="colocate",
)
```
Some trainers also support **vLLM sleep mode**, which offloads parameters and caches to GPU RAM during training, helping reduce memory usage. Learn more in the [memory optimization docs](https://huggingface.co/docs/trl/main/en/reducing_memory_usage#vllm-sleep-mode).
!!! info
For more information on the `use_vllm` flag you can provide to the configs of these online methods, see:
- [`trl.GRPOConfig.use_vllm`](https://huggingface.co/docs/trl/main/en/grpo_trainer#trl.GRPOConfig.use_vllm)
- [`trl.OnlineDPOConfig.use_vllm`](https://huggingface.co/docs/trl/main/en/online_dpo_trainer#trl.OnlineDPOConfig.use_vllm)
For detailed configuration options and flags, refer to the documentation of the specific trainer you are using.

View File

@ -1,6 +1,6 @@
# Using vLLM
First, vLLM must be [installed](../getting_started/installation) for your chosen device in either a Python or Docker environment.
First, vLLM must be [installed](../getting_started/installation/) for your chosen device in either a Python or Docker environment.
Then, vLLM supports the following usage patterns:

View File

@ -60,6 +60,15 @@ Key points from the PyTorch security guide:
- Implement proper authentication and authorization for management interfaces
- Follow the principle of least privilege for all system components
### 4. **Restrict Domains Access for Media URLs:**
Restrict domains that vLLM can access for media URLs by setting
`--allowed-media-domains` to prevent Server-Side Request Forgery (SSRF) attacks.
(e.g. `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`)
Also, consider setting `VLLM_MEDIA_URL_ALLOW_REDIRECTS=0` to prevent HTTP
redirects from being followed to bypass domain restrictions.
## Security and Firewalls: Protecting Exposed vLLM Systems
While vLLM is designed to allow unsafe network services to be isolated to

View File

@ -87,6 +87,7 @@ def main(args: dict):
use_tqdm=False,
chat_template=chat_template,
)
print_outputs(outputs)
if __name__ == "__main__":

View File

@ -0,0 +1,30 @@
# KV Load Failure Recovery Test
This example builds upon the `disaggregated-prefill-v1` example in `examples/offline_inference`.
It demonstrates vLLM's ability to recover from KV load failures in both synchronous and asynchronous loading modes. The goal is to verify that vLLM correctly identifies invalid KV blocks, reschedules the affected requests, and ensures successful and consistent output.
## Files
- `prefill_example.py` performs the prefill stage and saves KV data (same as in `disaggregated-prefill-v1`).
- `decode_example.py` performs the decode stage. Accepts:
- `--simulate-failure`: simulates KV load failure using a custom connector.
- `--async-load`: enables asynchronous KV loading mode.
- `rogue_shared_storage_connector.py` defines `RogueSharedStorageConnector`, a subclass of `SharedStorageConnector`, that simulates missing or corrupted external KV blocks by failing to load blocks for the first decode request.
- `run.sh` orchestrates the test: runs the prefill stage, then three decode stages:
1. Normal decode (baseline).
2. Decode with simulated sync KV load failure.
3. Decode with simulated async KV load failure.
Finally, it compares the output of the baseline with the recovered outputs to verify correctness.
## How It Works
- The test dynamically loads `RogueSharedStorageConnector` via `KVTransferConfig.kv_connector_module_path`, enabling controlled simulation of load failures without modifying the original connector.
- The decode stages that simulate failure are expected to trigger recovery logic in vLLM, resulting in the same output as the baseline decode.
- If recovery fails, the script prints a unified diff of the output mismatch and exits with error.
## Usage
```bash
./run.sh

View File

@ -0,0 +1,85 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
from vllm import LLM, SamplingParams
from vllm.config import KVTransferConfig
def read_prompts():
"""Read prompts from prefill_output.txt"""
prompts = []
try:
with open("prefill_output.txt") as f:
for line in f:
prompts.append(line.strip())
print(f"Loaded {len(prompts)} prompts from prefill_output.txt")
return prompts
except FileNotFoundError:
print("Error: prefill_output.txt file not found")
exit(-1)
def main():
prompts = read_prompts()
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=10)
parser = argparse.ArgumentParser()
parser.add_argument(
"--simulate-failure", action="store_true", help="Simulate KV load failure."
)
parser.add_argument(
"--async-load", action="store_true", help="Simulate async KV load"
)
args = parser.parse_args()
if args.simulate_failure:
ktc = KVTransferConfig(
kv_connector="RogueSharedStorageConnector",
kv_role="kv_both",
kv_connector_extra_config={
"shared_storage_path": "local_storage",
"async_load": args.async_load,
},
kv_connector_module_path="rogue_shared_storage_connector",
)
out_file = (
"async_decode_recovered_output.txt"
if args.async_load
else "sync_decode_recovered_output.txt"
)
else:
ktc = KVTransferConfig(
kv_connector="SharedStorageConnector",
kv_role="kv_both",
kv_connector_extra_config={
"shared_storage_path": "local_storage",
},
)
out_file = "decode_output.txt"
llm = LLM(
model="meta-llama/Llama-3.2-1B-Instruct",
enforce_eager=True,
gpu_memory_utilization=0.8,
max_num_batched_tokens=64,
max_num_seqs=16,
kv_transfer_config=ktc,
)
outputs = llm.generate(prompts, sampling_params)
sep_str = "-" * 30
with open(out_file, "w", encoding="utf-8") as f:
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
out_str = f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}"
print(out_str)
print(sep_str)
f.write(out_str)
f.write(sep_str)
if __name__ == "__main__":
main()

Some files were not shown because too many files have changed in this diff Show More