Compare commits
161 Commits
avoid-doub
...
fix_ds_eag
| Author | SHA1 | Date | |
|---|---|---|---|
| 9ffb182ba3 | |||
| 80608ba5af | |||
| e184c9c510 | |||
| d7e34b4210 | |||
| ef6e0e7132 | |||
| 1ad3aca682 | |||
| 8d0afa9b42 | |||
| fa7e254a7f | |||
| e23cacda35 | |||
| 2e1b8bc2b6 | |||
| e47433b3c1 | |||
| 23194d83e8 | |||
| 61aedb5ffe | |||
| d3bd171123 | |||
| 89e4050af4 | |||
| 78a47f87ce | |||
| 6a113d9aed | |||
| 2e4fe48c37 | |||
| 8eb0a1d906 | |||
| fea3e476aa | |||
| 61a3431613 | |||
| 9bedac9623 | |||
| c42ff4f4fd | |||
| d5ab28511c | |||
| e61eb5e09d | |||
| 0899ba5b42 | |||
| 145ac73317 | |||
| d0d138bc55 | |||
| 43227236ec | |||
| 8616300ae2 | |||
| edbaadd91f | |||
| 9360d34fa1 | |||
| 1b67b04656 | |||
| bd51f78e39 | |||
| 65ecb4f134 | |||
| 143844fa43 | |||
| 219cfbe7f6 | |||
| 9b44a7d926 | |||
| a3ae45a38c | |||
| 0307428d65 | |||
| 471997adf6 | |||
| b1ded114b9 | |||
| f4e4088c99 | |||
| 0efd540dbc | |||
| 6144754014 | |||
| 69311446ba | |||
| da63274d9f | |||
| c216119d64 | |||
| 5546acb463 | |||
| c0ec81836f | |||
| b65e56babe | |||
| 49996cd597 | |||
| ecb37e276a | |||
| a5354b3ed2 | |||
| f9df8b4ad7 | |||
| ec152c8748 | |||
| 7977e5027c | |||
| 3f5d902d2a | |||
| 27d7638b94 | |||
| 176173989a | |||
| 23b8ee672d | |||
| 3939152069 | |||
| cd87bfbf37 | |||
| b3613e3ace | |||
| d346ec695e | |||
| c242c98031 | |||
| f1d53d150c | |||
| 92da847cf5 | |||
| 3958b96bf5 | |||
| 8bf8f45822 | |||
| 6f5c0931c1 | |||
| 4e33a7ea85 | |||
| dc48ba0c75 | |||
| 4778b42660 | |||
| c70ac4b8ff | |||
| cf89202855 | |||
| f075693da7 | |||
| f708bd4904 | |||
| 0002b7f0d1 | |||
| 11aafd9886 | |||
| b761df963c | |||
| 33f6aaf972 | |||
| 56aafa8c0b | |||
| 8d52f2b3a7 | |||
| 984d18498a | |||
| d4d9899860 | |||
| db1e42f627 | |||
| bc9d7b5595 | |||
| fe6b19c314 | |||
| 2827b3f4a3 | |||
| 2b6b1d7809 | |||
| 633f943e30 | |||
| b03b1b97f6 | |||
| dfb9af2014 | |||
| 19f76ee68e | |||
| dd70437a4f | |||
| 99b3a504c5 | |||
| 6e30010d2f | |||
| 52621c8f5c | |||
| d48f4d6daf | |||
| e84e0735c7 | |||
| 3edf87d25f | |||
| 392edee34a | |||
| 983056e456 | |||
| 13dd93c667 | |||
| 53a30845be | |||
| 8b77328ffe | |||
| 9fe4c2bdb9 | |||
| 081b5594a2 | |||
| 57329a8c01 | |||
| 8c435c9bce | |||
| e71b8e210d | |||
| 89fa54e6f7 | |||
| 3d54bdcb73 | |||
| 6b0fcbbf43 | |||
| 0fa673af4c | |||
| 3468f17ebe | |||
| 71b25b0d48 | |||
| 0ea80c87d9 | |||
| b8d9e4a326 | |||
| 13cc7f5370 | |||
| 916bd9204d | |||
| e04a1b6b21 | |||
| 2e5df88c92 | |||
| 0754ac4c49 | |||
| 03858e6d1c | |||
| 532a6cfccb | |||
| eb32335e35 | |||
| 69a8c8e99a | |||
| 6c340da4df | |||
| 2f17117606 | |||
| 1e9a77e037 | |||
| d2af67441d | |||
| 0bcc3a160d | |||
| 70fbdb26e9 | |||
| 7f570f1caa | |||
| eaeca3cd7f | |||
| 12c1287d64 | |||
| 17b4c6685c | |||
| 3c2b2ccece | |||
| 7be9ffcd9f | |||
| 393de22d2e | |||
| 1260180c67 | |||
| af4ee63e0e | |||
| bc092ea873 | |||
| 755ed7b05b | |||
| a676e668ee | |||
| c85be1f6dd | |||
| 845adb3ec6 | |||
| 90b139cfff | |||
| 4492e3a554 | |||
| 05c19485a5 | |||
| 52d0cb8458 | |||
| 5c1e496a75 | |||
| e7f27ea648 | |||
| 1f29141258 | |||
| 6160ba4151 | |||
| fea8006062 | |||
| e6750d0b18 | |||
| 8c853050e7 | |||
| f84a472a03 |
@ -76,7 +76,7 @@ steps:
|
||||
queue: arm64_cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||
|
||||
# Add job to create multi-arch manifest
|
||||
|
||||
@ -58,11 +58,8 @@ function cpu_tests() {
|
||||
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
||||
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||
|
||||
# Note: disable Bart until supports V1
|
||||
pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||
--ignore=tests/models/language/generation/test_bart.py
|
||||
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||
--ignore=tests/models/language/generation/test_bart.py
|
||||
pytest -x -v -s tests/models/language/generation -m cpu_model
|
||||
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model
|
||||
|
||||
pytest -x -v -s tests/models/language/pooling -m cpu_model
|
||||
pytest -x -v -s tests/models/multimodal/generation \
|
||||
|
||||
@ -35,16 +35,15 @@ docker run \
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
||||
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
cd tests
|
||||
pytest -v -s v1/core
|
||||
pytest -v -s v1/engine
|
||||
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
|
||||
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
|
||||
pytest -v -s v1/structured_output
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
||||
pytest -v -s v1/test_metrics
|
||||
pytest -v -s v1/test_serial_utils.py
|
||||
pytest -v -s v1/test_utils.py
|
||||
pytest -v -s v1/test_metrics_reader.py
|
||||
'
|
||||
|
||||
@ -159,10 +159,7 @@ steps:
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/test_internal_lb_dp.py
|
||||
- tests/v1/test_hybrid_lb_dp.py
|
||||
- tests/v1/distributed
|
||||
- tests/v1/engine/test_engine_core_client.py
|
||||
- tests/distributed/test_symm_mem_allreduce.py
|
||||
commands:
|
||||
@ -180,10 +177,10 @@ steps:
|
||||
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with internal dp
|
||||
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
|
||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
@ -300,10 +297,9 @@ steps:
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/kv_connector/unit
|
||||
- pytest -v -s v1/metrics
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
- pytest -v -s v1/test_metrics_reader.py
|
||||
- pytest -v -s v1/test_request.py
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
# Integration test for streaming correctness (requires special branch).
|
||||
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
@ -463,29 +459,18 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s kernels/mamba
|
||||
|
||||
- label: Tensorizer Test # 14min
|
||||
timeout_in_minutes: 25
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
- tests/tensorizer_loader
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s tensorizer_loader
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Model Executor Test # 7min
|
||||
timeout_in_minutes: 20
|
||||
- label: Model Executor Test # 23min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor
|
||||
- tests/model_executor
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s model_executor
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Benchmarks # 11min
|
||||
timeout_in_minutes: 20
|
||||
@ -520,7 +505,7 @@ steps:
|
||||
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
|
||||
# we can only upgrade after this is resolved
|
||||
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
timeout_in_minutes: 75
|
||||
@ -767,11 +752,13 @@ steps:
|
||||
commands:
|
||||
- pip install --upgrade git+https://github.com/huggingface/transformers
|
||||
- pytest -v -s tests/models/test_initialization.py
|
||||
- pytest -v -s tests/models/test_transformers.py
|
||||
- pytest -v -s tests/models/multimodal/processing/
|
||||
- pytest -v -s tests/models/multimodal/test_mapping.py
|
||||
- python3 examples/offline_inference/basic/chat.py
|
||||
- python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
|
||||
# Whisper needs spawn method to avoid deadlock
|
||||
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||
|
||||
- label: Blackwell Test # 38 min
|
||||
timeout_in_minutes: 60
|
||||
@ -827,6 +814,23 @@ steps:
|
||||
- uv pip install --system 'gpt-oss[eval]==0.0.5'
|
||||
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58 --server-args '--tensor-parallel-size 2'
|
||||
|
||||
- label: Blackwell Quantized MoE Test
|
||||
timeout_in_minutes: 60
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
source_file_dependencies:
|
||||
- tests/quantization/test_blackwell_moe.py
|
||||
- vllm/model_executor/models/deepseek_v2.py
|
||||
- vllm/model_executor/models/gpt_oss.py
|
||||
- vllm/model_executor/models/llama4.py
|
||||
- vllm/model_executor/layers/fused_moe
|
||||
- vllm/model_executor/layers/quantization/compressed_tensors
|
||||
- vllm/model_executor/layers/quantization/modelopt.py
|
||||
- vllm/model_executor/layers/quantization/mxfp4.py
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
commands:
|
||||
- pytest -s -v tests/quantization/test_blackwell_moe.py
|
||||
|
||||
##### 1 GPU test #####
|
||||
##### multi gpus test #####
|
||||
|
||||
@ -869,48 +873,58 @@ steps:
|
||||
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
|
||||
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
|
||||
|
||||
- label: Distributed Tests (2 GPUs) # 110min
|
||||
timeout_in_minutes: 150
|
||||
- label: Distributed Tests (2 GPUs) # 68min
|
||||
timeout_in_minutes: 90
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/compilation/
|
||||
- vllm/distributed/
|
||||
- vllm/engine/
|
||||
- vllm/executor/
|
||||
- vllm/model_executor/models/
|
||||
- tests/distributed/
|
||||
- vllm/compilation
|
||||
- vllm/worker/worker_base.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- vllm/v1/engine/
|
||||
- vllm/v1/worker/
|
||||
- tests/compile/test_basic_correctness.py
|
||||
- tests/compile/test_wrapper.py
|
||||
- tests/distributed/
|
||||
- tests/entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/distributed
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- tests/v1/shutdown
|
||||
- tests/v1/worker/test_worker_memory_snapshot.py
|
||||
commands:
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
||||
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
- pytest -v -s distributed/test_sequence_parallel.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
|
||||
|
||||
- label: Distributed Model Tests (2 GPUs) # 37min
|
||||
timeout_in_minutes: 50
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader/sharded_state_loader.py
|
||||
- vllm/model_executor/models/
|
||||
- tests/basic_correctness/
|
||||
- tests/model_executor/model_loader/test_sharded_state_loader.py
|
||||
- tests/models/
|
||||
commands:
|
||||
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s model_executor/model_loader/test_sharded_state_loader.py
|
||||
# Avoid importing model tests that cause CUDA reinitialization error
|
||||
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)' --ignore models/multimodal/generation/test_whisper.py
|
||||
- VLLM_WORKER_MULTIPROC_METHOD=spawn pytest models/multimodal/generation/test_whisper.py -v -s -m 'distributed(num_gpus=2)'
|
||||
# test sequence parallel
|
||||
- pytest -v -s distributed/test_sequence_parallel.py
|
||||
# this test fails consistently.
|
||||
# TODO: investigate and fix
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
- pytest -v -s models/multimodal/generation/test_maverick.py
|
||||
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
timeout_in_minutes: 60
|
||||
|
||||
10
.github/CODEOWNERS
vendored
10
.github/CODEOWNERS
vendored
@ -12,8 +12,6 @@
|
||||
/vllm/model_executor/layers/mamba @tdoublep
|
||||
/vllm/model_executor/model_loader @22quinn
|
||||
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
|
||||
/vllm/v1/attention @LucasWilkinson
|
||||
/vllm/v1/sample @22quinn @houseroad
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
/vllm/reasoning @aarnphm @chaunceyjiang
|
||||
@ -28,11 +26,13 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||
/vllm/v1/spec_decode @benchislett @luccafong
|
||||
/vllm/v1/attention @LucasWilkinson
|
||||
/vllm/v1/attention/backends/flashinfer.py @mgoin
|
||||
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
||||
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
|
||||
/vllm/v1/sample @22quinn @houseroad @njhill
|
||||
/vllm/v1/spec_decode @benchislett @luccafong
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||
/vllm/v1/kv_cache_interface.py @heheda12345
|
||||
/vllm/v1/offloading @ApostaC
|
||||
|
||||
@ -54,7 +54,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
/tests/weight_loading @mgoin @youkaichao @yewentao256
|
||||
/tests/lora @jeejeelee
|
||||
/tests/models/language/generation/test_hybrid.py @tdoublep
|
||||
/tests/v1/kv_connector/nixl_integration @NickLucche
|
||||
/tests/v1/kv_connector/nixl_integration @NickLucche
|
||||
/tests/v1/kv_connector @ApostaC
|
||||
/tests/v1/offloading @ApostaC
|
||||
|
||||
|
||||
2
.github/mergify.yml
vendored
2
.github/mergify.yml
vendored
@ -274,7 +274,7 @@ pull_request_rules:
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer.py
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
|
||||
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
- files~=^tests/tensorizer_loader/
|
||||
- files~=^tests/model_executor/model_loader/tensorizer_loader/
|
||||
actions:
|
||||
assign:
|
||||
users:
|
||||
|
||||
@ -13,6 +13,7 @@ build:
|
||||
|
||||
mkdocs:
|
||||
configuration: mkdocs.yaml
|
||||
fail_on_warning: true
|
||||
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
|
||||
@ -21,6 +21,7 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
|
||||
|
||||
*Latest News* 🔥
|
||||
|
||||
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
|
||||
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
|
||||
|
||||
@ -1,17 +1,31 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import gc
|
||||
import time
|
||||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
from tabulate import tabulate
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
|
||||
from vllm.config import (
|
||||
CacheConfig,
|
||||
DeviceConfig,
|
||||
LoadConfig,
|
||||
ModelConfig,
|
||||
ParallelConfig,
|
||||
SchedulerConfig,
|
||||
SpeculativeConfig,
|
||||
VllmConfig,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
|
||||
from vllm.v1.worker.gpu_input_batch import InputBatch
|
||||
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
|
||||
|
||||
|
||||
def main(args):
|
||||
def benchmark_propose(args):
|
||||
rows = []
|
||||
for max_ngram in args.max_ngram:
|
||||
collector = TimeCollector(TimeCollector.US)
|
||||
@ -69,10 +83,88 @@ def main(args):
|
||||
)
|
||||
|
||||
|
||||
def benchmark_batched_propose(args):
|
||||
NUM_SPECULATIVE_TOKENS_NGRAM = 10
|
||||
PROMPT_LOOKUP_MIN = 5
|
||||
PROMPT_LOOKUP_MAX = 15
|
||||
MAX_MODEL_LEN = int(1e7)
|
||||
DEVICE = current_platform.device_type
|
||||
|
||||
model_config = ModelConfig(model="facebook/opt-125m", runner="generate")
|
||||
|
||||
speculative_config = SpeculativeConfig(
|
||||
target_model_config=model_config,
|
||||
target_parallel_config=ParallelConfig(),
|
||||
method="ngram",
|
||||
num_speculative_tokens=NUM_SPECULATIVE_TOKENS_NGRAM,
|
||||
prompt_lookup_max=PROMPT_LOOKUP_MAX,
|
||||
prompt_lookup_min=PROMPT_LOOKUP_MIN,
|
||||
)
|
||||
|
||||
vllm_config = VllmConfig(
|
||||
model_config=model_config,
|
||||
cache_config=CacheConfig(),
|
||||
speculative_config=speculative_config,
|
||||
device_config=DeviceConfig(device=current_platform.device_type),
|
||||
parallel_config=ParallelConfig(),
|
||||
load_config=LoadConfig(),
|
||||
scheduler_config=SchedulerConfig(),
|
||||
)
|
||||
|
||||
# monkey patch vllm.v1.worker.gpu_model_runner.get_pp_group
|
||||
mock_pp_group = mock.MagicMock()
|
||||
mock_pp_group.world_size = 1
|
||||
with mock.patch(
|
||||
"vllm.v1.worker.gpu_model_runner.get_pp_group", return_value=mock_pp_group
|
||||
):
|
||||
runner = GPUModelRunner(vllm_config, DEVICE)
|
||||
|
||||
# hack max model len
|
||||
runner.max_model_len = MAX_MODEL_LEN
|
||||
runner.drafter.max_model_len = MAX_MODEL_LEN
|
||||
|
||||
dummy_input_batch = InputBatch(
|
||||
max_num_reqs=args.num_req,
|
||||
max_model_len=MAX_MODEL_LEN,
|
||||
max_num_batched_tokens=args.num_req * args.num_token,
|
||||
device=DEVICE,
|
||||
pin_memory=False,
|
||||
vocab_size=256000,
|
||||
block_sizes=[16],
|
||||
)
|
||||
dummy_input_batch._req_ids = list(str(id) for id in range(args.num_req))
|
||||
dummy_input_batch.spec_decode_unsupported_reqs = ()
|
||||
dummy_input_batch.num_tokens_no_spec = [args.num_token] * args.num_req
|
||||
dummy_input_batch.token_ids_cpu = np.random.randint(
|
||||
0, 20, (args.num_req, args.num_token)
|
||||
)
|
||||
|
||||
runner.input_batch = dummy_input_batch
|
||||
|
||||
sampled_token_ids = [[0]] * args.num_req
|
||||
|
||||
print("Starting benchmark")
|
||||
# first run is warmup so ignore it
|
||||
for _ in range(args.num_iteration):
|
||||
start = time.time()
|
||||
runner.drafter.propose(
|
||||
sampled_token_ids,
|
||||
dummy_input_batch.req_ids,
|
||||
dummy_input_batch.num_tokens_no_spec,
|
||||
dummy_input_batch.token_ids_cpu,
|
||||
dummy_input_batch.spec_decode_unsupported_reqs,
|
||||
)
|
||||
end = time.time()
|
||||
print(f"Iteration time (s): {end - start}")
|
||||
|
||||
|
||||
def invoke_main() -> None:
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the performance of N-gram speculative decode drafting"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batched", action="store_true", help="consider time to prepare batch"
|
||||
) # noqa: E501
|
||||
parser.add_argument(
|
||||
"--num-iteration",
|
||||
type=int,
|
||||
@ -105,8 +197,17 @@ def invoke_main() -> None:
|
||||
help="Number of speculative tokens to generate",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
if not args.batched:
|
||||
benchmark_propose(args)
|
||||
else:
|
||||
benchmark_batched_propose(args)
|
||||
|
||||
|
||||
"""
|
||||
# Example command lines:
|
||||
# time python3 benchmarks/benchmark_ngram_proposer.py
|
||||
# time python3 benchmarks/benchmark_ngram_proposer.py --batched --num-iteration 4 --num-token 1000000 --num-req 128
|
||||
""" # noqa: E501
|
||||
if __name__ == "__main__":
|
||||
invoke_main() # pragma: no cover
|
||||
|
||||
@ -17,7 +17,7 @@ from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
w8a8_triton_block_scaled_mm,
|
||||
w8a8_block_fp8_matmul,
|
||||
)
|
||||
from vllm.utils import FlexibleArgumentParser, cdiv
|
||||
|
||||
@ -158,7 +158,7 @@ def bench_fp8(
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
|
||||
),
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_triton_block_scaled_mm(
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
|
||||
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
|
||||
),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
import os
|
||||
|
||||
import torch
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
@ -23,21 +24,45 @@ PROVIDER_CFGS = {
|
||||
"torch-bf16": dict(enabled=True),
|
||||
"nvfp4": dict(no_a_quant=False, enabled=True),
|
||||
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
|
||||
"fbgemm-nvfp4": dict(fbgemm=True, no_a_quant=False, enabled=True),
|
||||
"fbgemm-nvfp4-noquant": dict(fbgemm=True, no_a_quant=True, enabled=True),
|
||||
}
|
||||
|
||||
_needs_fbgemm = any(
|
||||
v.get("fbgemm", False) for v in PROVIDER_CFGS.values() if v.get("enabled", False)
|
||||
)
|
||||
if _needs_fbgemm:
|
||||
try:
|
||||
from fbgemm_gpu.experimental.gemm.triton_gemm.fp4_quantize import (
|
||||
triton_scale_nvfp4_quant,
|
||||
)
|
||||
except ImportError:
|
||||
print(
|
||||
"WARNING: FBGEMM providers are enabled but fbgemm_gpu is not installed. "
|
||||
"These providers will be skipped. Please install fbgemm_gpu with: "
|
||||
"'pip install fbgemm-gpu-genai' to run them."
|
||||
)
|
||||
# Disable FBGEMM providers so the benchmark can run.
|
||||
for cfg in PROVIDER_CFGS.values():
|
||||
if cfg.get("fbgemm"):
|
||||
cfg["enabled"] = False
|
||||
|
||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
||||
|
||||
|
||||
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
|
||||
def _quant_weight_nvfp4(b: torch.Tensor, device: str, cfg):
|
||||
# Compute global scale for weight
|
||||
b_amax = torch.abs(b).max().to(torch.float32)
|
||||
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
|
||||
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
|
||||
if "fbgemm" in cfg and cfg["fbgemm"]:
|
||||
b_fp4, scale_b_fp4 = triton_scale_nvfp4_quant(b, b_global_scale)
|
||||
else:
|
||||
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
|
||||
return b_fp4, scale_b_fp4, b_global_scale
|
||||
|
||||
|
||||
def build_nvfp4_runner(cfg, a, b, dtype, device):
|
||||
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
|
||||
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device, cfg)
|
||||
|
||||
# Compute global scale for activation
|
||||
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
|
||||
@ -46,6 +71,35 @@ def build_nvfp4_runner(cfg, a, b, dtype, device):
|
||||
|
||||
# Alpha for the GEMM operation
|
||||
alpha = 1.0 / (a_global_scale * b_global_scale)
|
||||
if "fbgemm" in cfg and cfg["fbgemm"]:
|
||||
if cfg["no_a_quant"]:
|
||||
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
|
||||
|
||||
def run():
|
||||
return torch.ops.fbgemm.f4f4bf16(
|
||||
a_fp4,
|
||||
b_fp4,
|
||||
scale_a_fp4,
|
||||
scale_b_fp4,
|
||||
global_scale=alpha,
|
||||
use_mx=False,
|
||||
)
|
||||
|
||||
return run
|
||||
else:
|
||||
|
||||
def run():
|
||||
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
|
||||
return torch.ops.fbgemm.f4f4bf16(
|
||||
a_fp4,
|
||||
b_fp4,
|
||||
scale_a_fp4,
|
||||
scale_b_fp4,
|
||||
global_scale=alpha,
|
||||
use_mx=False,
|
||||
)
|
||||
|
||||
return run
|
||||
|
||||
if cfg["no_a_quant"]:
|
||||
# Pre-quantize activation
|
||||
@ -130,10 +184,13 @@ if __name__ == "__main__":
|
||||
|
||||
for K, N, model in prepare_shapes(args):
|
||||
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
|
||||
save_dir = f"bench_nvfp4_res_n{N}_k{K}"
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
benchmark.run(
|
||||
print_data=True,
|
||||
show_plots=True,
|
||||
save_path=f"bench_nvfp4_res_n{N}_k{K}",
|
||||
save_path=save_dir,
|
||||
N=N,
|
||||
K=K,
|
||||
)
|
||||
|
||||
@ -79,9 +79,9 @@ def make_rand_lora_weight_tensor(
|
||||
|
||||
|
||||
def make_rand_tensors(
|
||||
a_shape: tuple[int],
|
||||
b_shape: tuple[int],
|
||||
c_shape: tuple[int],
|
||||
a_shape: tuple[int, ...],
|
||||
b_shape: tuple[int, ...],
|
||||
c_shape: tuple[int, ...],
|
||||
a_dtype: torch.dtype,
|
||||
b_dtype: torch.dtype,
|
||||
c_dtype: torch.dtype,
|
||||
@ -243,7 +243,7 @@ class OpType(Enum):
|
||||
lora_rank: int,
|
||||
num_loras: int,
|
||||
num_slices: int,
|
||||
) -> tuple[tuple[int], tuple[int], tuple[int]]:
|
||||
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
|
||||
"""
|
||||
Given num_slices, return the shapes of the A, B, and C matrices
|
||||
in A x B = C, for the op_type
|
||||
|
||||
@ -8,12 +8,16 @@ import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
get_col_major_tma_aligned_tensor,
|
||||
per_token_group_quant_fp8,
|
||||
w8a8_triton_block_scaled_mm,
|
||||
w8a8_block_fp8_matmul,
|
||||
)
|
||||
from vllm.triton_utils import triton
|
||||
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
|
||||
from vllm.utils.deep_gemm import (
|
||||
calc_diff,
|
||||
fp8_gemm_nt,
|
||||
get_col_major_tma_aligned_tensor,
|
||||
per_block_cast_to_fp8,
|
||||
)
|
||||
|
||||
|
||||
def benchmark_shape(m: int,
|
||||
@ -59,7 +63,7 @@ def benchmark_shape(m: int,
|
||||
|
||||
# === vLLM Triton Implementation ===
|
||||
def vllm_triton_gemm():
|
||||
return w8a8_triton_block_scaled_mm(A_vllm,
|
||||
return w8a8_block_fp8_matmul(A_vllm,
|
||||
B_vllm,
|
||||
A_scale_vllm,
|
||||
B_scale_vllm,
|
||||
|
||||
@ -101,6 +101,7 @@ else()
|
||||
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
||||
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
|
||||
find_isa(${CPUINFO} "S390" S390_FOUND)
|
||||
find_isa(${CPUINFO} "v" RVV_FOUND) # Check for RISC-V RVV support
|
||||
endif()
|
||||
|
||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
@ -177,8 +178,14 @@ elseif (S390_FOUND)
|
||||
"-mzvector"
|
||||
"-march=native"
|
||||
"-mtune=native")
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "riscv64")
|
||||
if(RVV_FOUND)
|
||||
message(FAIL_ERROR "Can't support rvv now.")
|
||||
else()
|
||||
list(APPEND CXX_COMPILE_FLAGS "-march=rv64gc")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
|
||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
|
||||
endif()
|
||||
|
||||
#
|
||||
|
||||
@ -18,8 +18,8 @@ if(FLASH_MLA_SRC_DIR)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
flashmla
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
|
||||
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
|
||||
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
|
||||
GIT_PROGRESS TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND ""
|
||||
@ -33,23 +33,64 @@ message(STATUS "FlashMLA is available at ${flashmla_SOURCE_DIR}")
|
||||
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
|
||||
# Only build FlashMLA kernels if we are building for something compatible with
|
||||
# sm90a
|
||||
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
|
||||
set(SUPPORT_ARCHS)
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3)
|
||||
list(APPEND SUPPORT_ARCHS 9.0a)
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8)
|
||||
list(APPEND SUPPORT_ARCHS 10.0a)
|
||||
endif()
|
||||
|
||||
|
||||
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "${SUPPORT_ARCHS}" "${CUDA_ARCHS}")
|
||||
if(FLASH_MLA_ARCHS)
|
||||
set(VLLM_FLASHMLA_GPU_FLAGS ${VLLM_GPU_FLAGS})
|
||||
list(APPEND VLLM_FLASHMLA_GPU_FLAGS "--expt-relaxed-constexpr" "--expt-extended-lambda" "--use_fast_math")
|
||||
|
||||
set(FlashMLA_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
|
||||
${flashmla_SOURCE_DIR}/csrc/torch_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/pybind.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/smxx/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/smxx/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/dense/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/sparse_fp8/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/prefill/sparse/fwd.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/decode/sparse_fp8/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_fwd_sm100.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_bwd_sm100.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/sparse/fwd.cu
|
||||
)
|
||||
|
||||
set(FlashMLA_Extension_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
|
||||
)
|
||||
|
||||
set(FlashMLA_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc)
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
||||
)
|
||||
|
||||
set(FlashMLA_Extension_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
||||
)
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_SOURCES}"
|
||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_Extension_SOURCES}"
|
||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
||||
|
||||
define_gpu_extension_target(
|
||||
_flashmla_C
|
||||
DESTINATION vllm
|
||||
@ -60,8 +101,32 @@ if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
||||
target_compile_options(_flashmla_C PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
||||
|
||||
define_gpu_extension_target(
|
||||
_flashmla_extension_C
|
||||
DESTINATION vllm
|
||||
LANGUAGE ${VLLM_GPU_LANG}
|
||||
SOURCES ${FlashMLA_Extension_SOURCES}
|
||||
COMPILE_FLAGS ${VLLM_FLASHMLA_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
||||
INCLUDE_DIRECTORIES ${FlashMLA_Extension_INCLUDES}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
||||
target_compile_options(_flashmla_extension_C PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
||||
else()
|
||||
# Create an empty target for setup.py when not targeting sm90a systems
|
||||
# Create empty targets for setup.py when not targeting sm90a systems
|
||||
add_custom_target(_flashmla_C)
|
||||
add_custom_target(_flashmla_extension_C)
|
||||
endif()
|
||||
|
||||
|
||||
@ -56,3 +56,11 @@ void cp_gather_cache(
|
||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
||||
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
|
||||
|
||||
// Indexer K quantization and cache function
|
||||
void indexer_k_quant_and_cache(
|
||||
torch::Tensor& k, // [num_tokens, head_dim]
|
||||
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
||||
torch::Tensor& slot_mapping, // [num_tokens]
|
||||
int64_t quant_block_size, // quantization block size
|
||||
const std::string& scale_fmt);
|
||||
|
||||
@ -16,6 +16,7 @@
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cfloat> // FLT_MIN
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
@ -396,6 +397,176 @@ __global__ void concat_and_cache_mla_kernel(
|
||||
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void concat_and_cache_ds_mla_kernel(
|
||||
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
|
||||
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
|
||||
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
|
||||
// + pe_dim)]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int block_stride, //
|
||||
const int entry_stride, //
|
||||
const int kv_c_stride, //
|
||||
const int k_pe_stride, //
|
||||
const int kv_lora_rank, //
|
||||
const int pe_dim, //
|
||||
const int block_size, //
|
||||
const float* scale //
|
||||
) {
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
// NOTE: slot_idx can be -1 if the token is padded
|
||||
if (slot_idx < 0) {
|
||||
return;
|
||||
}
|
||||
const int64_t block_idx = slot_idx / block_size;
|
||||
const int64_t block_offset = slot_idx % block_size;
|
||||
const int64_t dst_idx_start =
|
||||
block_idx * block_stride + block_offset * entry_stride;
|
||||
|
||||
// Create 4 tile scales in shared memory
|
||||
__shared__ float smem[20];
|
||||
float* shard_abs_max = smem;
|
||||
float* tile_scales = smem + 16;
|
||||
|
||||
// For the NoPE part, each tile of 128 elements is handled by 4 warps
|
||||
// (128 threads). There are 4 total tiles, so 16 warps (512 threads).
|
||||
// The first thread of the first warp in each tile writes the scale
|
||||
// value for the tile. The RoPE part (last 64 elements) is handled
|
||||
// by another 2 warps (64 threads).
|
||||
// So in total, we use 18 warps (576 threads) per block.
|
||||
|
||||
// Cast kv_cache to 16_bit for RoPE values
|
||||
scalar_t* kv_cache_16bit =
|
||||
reinterpret_cast<scalar_t*>(&kv_cache[dst_idx_start]);
|
||||
|
||||
// The last 64 threads handle the RoPE part
|
||||
if (threadIdx.x >= kv_lora_rank) {
|
||||
const int8_t pe_idx = threadIdx.x - kv_lora_rank;
|
||||
const int64_t src_idx = token_idx * k_pe_stride + pe_idx;
|
||||
// RoPE values start after the packed 8-bit NoPE values and the
|
||||
// 32-bit scales
|
||||
const int64_t dst_idx = kv_lora_rank / 2 + 8 + pe_idx;
|
||||
kv_cache_16bit[dst_idx] = k_pe[src_idx];
|
||||
return;
|
||||
}
|
||||
|
||||
// Determine the scale for each chunk of NoPE
|
||||
const int16_t tile_idx = threadIdx.x >> 7;
|
||||
const int16_t warp_idx = (threadIdx.x & 127) >> 5;
|
||||
const int16_t lane_idx = threadIdx.x & 31;
|
||||
|
||||
// Load the NoPE element for this thread into registers
|
||||
const int64_t src_idx = token_idx * kv_c_stride + threadIdx.x;
|
||||
const scalar_t src_val = kv_c[src_idx];
|
||||
|
||||
// Warp-level reduction to find the max absolute value in the warp
|
||||
float max_abs = fabsf(src_val);
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 0; offset /= 2) {
|
||||
#ifdef USE_ROCM
|
||||
max_abs = fmaxf(max_abs, __shfl_down_sync(UINT64_MAX, max_abs, offset));
|
||||
#else
|
||||
max_abs = fmaxf(max_abs, __shfl_down_sync(0xFFFFFFFF, max_abs, offset));
|
||||
#endif
|
||||
}
|
||||
|
||||
// The first lane of each warp in each tile writes the max_abs of this part
|
||||
// of the tile to shared memory
|
||||
if (lane_idx == 0) {
|
||||
shard_abs_max[tile_idx * 4 + warp_idx] = max_abs;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// The first lane of the first warp in each tile computes the scale for the
|
||||
// tile and writes it to shared memory and to kv_cache
|
||||
if (warp_idx == 0 && lane_idx == 0) {
|
||||
float4 shard_abs_max_vec =
|
||||
reinterpret_cast<float4*>(shard_abs_max)[tile_idx];
|
||||
float tile_scale = fmaxf(fmaxf(shard_abs_max_vec.x, shard_abs_max_vec.y),
|
||||
fmaxf(shard_abs_max_vec.z, shard_abs_max_vec.w)) /
|
||||
448.f;
|
||||
|
||||
// Avoid division by zero in `scaled_convert`
|
||||
tile_scales[tile_idx] = fmaxf(tile_scale, FLT_MIN);
|
||||
float* kv_cache_32bit = reinterpret_cast<float*>(&kv_cache[dst_idx_start]);
|
||||
const uint64_t dst_idx = kv_lora_rank / 4 + tile_idx;
|
||||
kv_cache_32bit[dst_idx] = tile_scales[tile_idx];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Now all threads in the block scale and write their element
|
||||
const float scale_val = tile_scales[tile_idx];
|
||||
const int64_t dst_idx = dst_idx_start + threadIdx.x;
|
||||
kv_cache[dst_idx] =
|
||||
fp8::scaled_convert<uint8_t, scalar_t, Fp8KVCacheDataType::kFp8E4M3>(
|
||||
src_val, scale_val);
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void indexer_k_quant_and_cache_kernel(
|
||||
const scalar_t* __restrict__ k, // [num_tokens, head_dim]
|
||||
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, cache_stride]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int head_dim, // dimension of each head
|
||||
const int quant_block_size, // quantization block size
|
||||
const int cache_block_size, // cache block size
|
||||
const int cache_stride, // stride for each token in kv_cache
|
||||
const bool use_ue8m0 // use ue8m0 scale format
|
||||
) {
|
||||
constexpr int VEC_SIZE = 4;
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t head_dim_idx = (blockIdx.y * blockDim.y * blockDim.x +
|
||||
threadIdx.y * blockDim.x + threadIdx.x) *
|
||||
VEC_SIZE;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
const int64_t block_idx = slot_idx / cache_block_size;
|
||||
const int64_t block_offset = slot_idx % cache_block_size;
|
||||
|
||||
// NOTE: slot_idx can be -1 if the token is padded
|
||||
if (slot_idx < 0 || (head_dim_idx >= head_dim)) {
|
||||
return;
|
||||
}
|
||||
|
||||
float2 k_val = (reinterpret_cast<const float2*>(
|
||||
k))[(token_idx * head_dim + head_dim_idx) / VEC_SIZE];
|
||||
scalar_t* k_val_ptr = reinterpret_cast<scalar_t*>(&k_val);
|
||||
float amax = 0.0f;
|
||||
for (int i = 0; i < VEC_SIZE; i++) {
|
||||
amax = fmaxf(amax, fabsf(float(k_val_ptr[i])));
|
||||
}
|
||||
__syncwarp();
|
||||
|
||||
// Reduced amax
|
||||
for (int mask = 16; mask > 0; mask /= 2) {
|
||||
#ifdef USE_ROCM
|
||||
amax = fmaxf(amax, __shfl_xor_sync(uint64_t(-1), amax, mask));
|
||||
#else
|
||||
amax = fmaxf(amax, __shfl_xor_sync(unsigned(-1), amax, mask));
|
||||
#endif
|
||||
}
|
||||
__syncwarp();
|
||||
float scale = fmaxf(amax, 1e-4) / 448.0f;
|
||||
if (use_ue8m0) {
|
||||
scale = exp2f(ceilf(log2f(scale)));
|
||||
}
|
||||
|
||||
const int64_t dst_offset = block_idx * cache_block_size * cache_stride +
|
||||
block_offset * head_dim + head_dim_idx;
|
||||
for (int i = 0; i < VEC_SIZE; i++) {
|
||||
kv_cache[dst_offset + i] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(k_val_ptr[i], scale);
|
||||
}
|
||||
if (threadIdx.x == 0) {
|
||||
const int64_t dst_scale_idx =
|
||||
block_idx * cache_block_size * cache_stride +
|
||||
cache_block_size * head_dim +
|
||||
(block_offset * head_dim + head_dim_idx) * 4 / quant_block_size;
|
||||
reinterpret_cast<float*>(kv_cache)[dst_scale_idx / 4] = scale;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
// KV_T is the data type of key and value tensors.
|
||||
@ -438,7 +609,7 @@ void reshape_and_cache(
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
|
||||
CALL_RESHAPE_AND_CACHE)
|
||||
CALL_RESHAPE_AND_CACHE);
|
||||
}
|
||||
|
||||
// KV_T is the data type of key and value tensors.
|
||||
@ -509,6 +680,18 @@ void reshape_and_cache_flash(
|
||||
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
|
||||
reinterpret_cast<const float*>(scale.data_ptr()));
|
||||
|
||||
// KV_T is the data type of key and value tensors.
|
||||
// CACHE_T is the stored data type of kv-cache.
|
||||
#define CALL_CONCAT_AND_CACHE_DS_MLA(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::concat_and_cache_ds_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
|
||||
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
|
||||
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
|
||||
reinterpret_cast<const float*>(scale.data_ptr()));
|
||||
|
||||
void concat_and_cache_mla(
|
||||
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
|
||||
torch::Tensor& k_pe, // [num_tokens, pe_dim]
|
||||
@ -531,20 +714,44 @@ void concat_and_cache_mla(
|
||||
int pe_dim = k_pe.size(1);
|
||||
int block_size = kv_cache.size(1);
|
||||
|
||||
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
|
||||
if (kv_cache_dtype == "fp8_ds_mla") {
|
||||
TORCH_CHECK(kv_lora_rank == 512, "kv_lora_rank must be 512 for fp8_ds_mla");
|
||||
TORCH_CHECK(pe_dim == 64, "pe_dim must be 64 for fp8_ds_mla");
|
||||
TORCH_CHECK(kv_cache.size(2) == 656 / kv_cache.itemsize(),
|
||||
"kv_cache.size(2) must be 656 bytes for fp8_ds_mla");
|
||||
TORCH_CHECK(kv_c.itemsize() == 2,
|
||||
"kv_c.itemsize() must be 2 for fp8_ds_mla");
|
||||
TORCH_CHECK(k_pe.itemsize() == 2,
|
||||
"k_pe.itemsize() must be 2 for fp8_ds_mla");
|
||||
} else {
|
||||
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
|
||||
}
|
||||
|
||||
int kv_c_stride = kv_c.stride(0);
|
||||
int k_pe_stride = k_pe.stride(0);
|
||||
int block_stride = kv_cache.stride(0);
|
||||
int entry_stride = kv_cache.stride(1);
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(kv_lora_rank, 512));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_c));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
||||
CALL_CONCAT_AND_CACHE_MLA);
|
||||
if (kv_cache_dtype == "fp8_ds_mla") {
|
||||
dim3 grid(num_tokens);
|
||||
// For the NoPE part, each tile of 128 elements is handled by 4 warps
|
||||
// (128 threads). There are 4 total tiles, so 16 warps (512 threads).
|
||||
// The first thread of the first warp in each tile writes the scale
|
||||
// value for the tile. The RoPE part (last 64 elements) is handled
|
||||
// by another 2 warps (64 threads).
|
||||
// So in total, we use 18 warps (576 threads) per block.
|
||||
dim3 block(576);
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
||||
CALL_CONCAT_AND_CACHE_DS_MLA);
|
||||
} else {
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(kv_lora_rank, 512));
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
||||
CALL_CONCAT_AND_CACHE_MLA);
|
||||
}
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
@ -922,3 +1129,42 @@ void cp_gather_cache(
|
||||
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
|
||||
}
|
||||
}
|
||||
|
||||
// Macro to dispatch the kernel based on the data type.
|
||||
#define CALL_INDEXER_K_QUANT_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::indexer_k_quant_and_cache_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<KV_T*>(k.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), head_dim, quant_block_size, \
|
||||
cache_block_size, cache_stride, use_ue8m0);
|
||||
|
||||
void indexer_k_quant_and_cache(
|
||||
torch::Tensor& k, // [num_tokens, head_dim]
|
||||
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
||||
torch::Tensor& slot_mapping, // [num_tokens]
|
||||
int64_t quant_block_size, // quantization block size
|
||||
const std::string& scale_fmt) {
|
||||
int num_tokens = k.size(0);
|
||||
int head_dim = k.size(1);
|
||||
int cache_block_size = kv_cache.size(1);
|
||||
int cache_stride = kv_cache.size(2);
|
||||
bool use_ue8m0 = scale_fmt == "ue8m0";
|
||||
|
||||
TORCH_CHECK(k.device() == kv_cache.device(),
|
||||
"k and kv_cache must be on the same device");
|
||||
TORCH_CHECK(k.device() == slot_mapping.device(),
|
||||
"k and slot_mapping must be on the same device");
|
||||
TORCH_CHECK(head_dim % quant_block_size == 0,
|
||||
"head_dim must be divisible by quant_block_size");
|
||||
|
||||
constexpr int vec_size = 4;
|
||||
dim3 grid(num_tokens, (head_dim + quant_block_size * vec_size - 1) /
|
||||
(quant_block_size * vec_size));
|
||||
dim3 block(32, vec_size);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(k));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3",
|
||||
CALL_INDEXER_K_QUANT_AND_CACHE);
|
||||
}
|
||||
16
csrc/core/batch_invariant.hpp
Normal file
16
csrc/core/batch_invariant.hpp
Normal file
@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include <cctype>
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// vllm_kernel_override_batch_invariant(); returns true
|
||||
// if env VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT=1
|
||||
inline bool vllm_kernel_override_batch_invariant() {
|
||||
std::string env_key = "VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT";
|
||||
const char* val = std::getenv(env_key.c_str());
|
||||
return (val && std::atoi(val) != 0) ? 1 : 0;
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
@ -14,7 +14,8 @@
|
||||
// arm implementation
|
||||
#include "cpu_types_arm.hpp"
|
||||
#else
|
||||
#warning "unsupported vLLM cpu implementation"
|
||||
#warning "unsupported vLLM cpu implementation, vLLM will compile with scalar"
|
||||
#include "cpu_types_scalar.hpp"
|
||||
#endif
|
||||
|
||||
#ifdef _OPENMP
|
||||
|
||||
513
csrc/cpu/cpu_types_scalar.hpp
Normal file
513
csrc/cpu/cpu_types_scalar.hpp
Normal file
@ -0,0 +1,513 @@
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <torch/all.h>
|
||||
#include "float_convert.hpp"
|
||||
|
||||
namespace vec_op {
|
||||
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
|
||||
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
||||
|
||||
#ifndef CPU_OP_GUARD
|
||||
#define CPU_KERNEL_GUARD_IN(NAME)
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#else
|
||||
#define CPU_KERNEL_GUARD_IN(NAME) \
|
||||
std::cout << #NAME << " invoked." << std::endl;
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME) \
|
||||
std::cout << #NAME << " exit." << std::endl;
|
||||
#endif
|
||||
|
||||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
#define __max(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define __min(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define __abs(a) ((a) < (0) ? (0 - a) : (a))
|
||||
|
||||
typedef struct f16x8_t {
|
||||
uint16_t val[8];
|
||||
} f16x8_t;
|
||||
|
||||
typedef struct f16x16_t {
|
||||
uint16_t val[16];
|
||||
} f16x16_t;
|
||||
|
||||
typedef struct f16x32_t {
|
||||
uint16_t val[32];
|
||||
} f16x32_t;
|
||||
|
||||
typedef struct f32x4_t {
|
||||
float val[4];
|
||||
} f32x4_t;
|
||||
|
||||
typedef struct f32x8_t {
|
||||
float val[8];
|
||||
} f32x8_t;
|
||||
|
||||
typedef struct f32x16_t {
|
||||
float val[16];
|
||||
} f32x16_t;
|
||||
|
||||
namespace {
|
||||
template <typename T, T... indexes, typename F>
|
||||
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
|
||||
(f(std::integral_constant<T, indexes>{}), ...);
|
||||
};
|
||||
}; // namespace
|
||||
|
||||
template <typename T, T count, typename F,
|
||||
typename = std::enable_if_t<std::is_invocable_v<F, T> > >
|
||||
constexpr void unroll_loop(F&& f) {
|
||||
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct Vec {
|
||||
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
|
||||
};
|
||||
|
||||
struct FP32Vec8;
|
||||
struct FP32Vec16;
|
||||
|
||||
struct FP16Vec8 : public Vec<FP16Vec8> {
|
||||
constexpr static int VEC_ELEM_NUM = 8;
|
||||
f16x8_t reg;
|
||||
|
||||
explicit FP16Vec8(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
|
||||
|
||||
explicit FP16Vec8(const FP32Vec8&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct FP16Vec16 : public Vec<FP16Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
f16x16_t reg;
|
||||
|
||||
explicit FP16Vec16(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
|
||||
|
||||
explicit FP16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
|
||||
|
||||
void save(void* ptr, const int elem_num) const {
|
||||
int num = __min(elem_num, VEC_ELEM_NUM);
|
||||
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
|
||||
}
|
||||
};
|
||||
|
||||
struct BF16Vec8 : public Vec<BF16Vec8> {
|
||||
constexpr static int VEC_ELEM_NUM = 8;
|
||||
f16x8_t reg;
|
||||
|
||||
explicit BF16Vec8(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
|
||||
|
||||
explicit BF16Vec8(const FP32Vec8&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
f16x16_t reg;
|
||||
|
||||
explicit BF16Vec16(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
|
||||
|
||||
explicit BF16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
|
||||
|
||||
void save(void* ptr, const int elem_num) const {
|
||||
int num = __min(elem_num, VEC_ELEM_NUM);
|
||||
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
|
||||
}
|
||||
};
|
||||
|
||||
struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
constexpr static int VEC_ELEM_NUM = 32;
|
||||
f16x32_t reg;
|
||||
|
||||
explicit BF16Vec32(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x32_t*>(ptr)) {};
|
||||
|
||||
explicit BF16Vec32(f16x32_t data) : reg(data) {};
|
||||
|
||||
explicit BF16Vec32(BF16Vec8& vec8_data) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = vec8_data.reg.val[i % BF16Vec8::VEC_ELEM_NUM];
|
||||
}
|
||||
}
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x32_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct FP32Vec4 : public Vec<FP32Vec4> {
|
||||
constexpr static int VEC_ELEM_NUM = 4;
|
||||
|
||||
f32x4_t reg;
|
||||
|
||||
explicit FP32Vec4(float v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = v;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec4() {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec4(const float* ptr)
|
||||
: reg(*reinterpret_cast<const f32x4_t*>(ptr)) {};
|
||||
|
||||
explicit FP32Vec4(f32x4_t data) : reg(data) {};
|
||||
|
||||
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {};
|
||||
};
|
||||
|
||||
struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
constexpr static int VEC_ELEM_NUM = 8;
|
||||
|
||||
f32x8_t reg;
|
||||
|
||||
explicit FP32Vec8(float v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = v;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec8() {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec8(const float* ptr)
|
||||
: reg(*reinterpret_cast<const f32x8_t*>(ptr)) {};
|
||||
|
||||
explicit FP32Vec8(f32x8_t data) : reg(data) {};
|
||||
|
||||
explicit FP32Vec8(const FP32Vec8& data) : reg(data.reg) {};
|
||||
|
||||
explicit FP32Vec8(const FP16Vec8& v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = fp16_to_float(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
FP32Vec8(const BF16Vec8& v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = bf16_to_float(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
float reduce_sum() const {
|
||||
float result = 0;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result += reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec8 exp() const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = expf(reg.val[i]);
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 tanh() const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = tanhf(reg.val[i]);
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 er() const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = erf(reg.val[i]);
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 operator*(const FP32Vec8& b) const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = reg.val[i] * b.reg.val[i];
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 operator+(const FP32Vec8& b) const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = reg.val[i] + b.reg.val[i];
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 operator-(const FP32Vec8& b) const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = reg.val[i] - b.reg.val[i];
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 operator/(const FP32Vec8& b) const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = reg.val[i] / b.reg.val[i];
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f32x8_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
f32x16_t reg;
|
||||
|
||||
explicit FP32Vec16(float v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = v;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec16() {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const float* ptr)
|
||||
: reg(*reinterpret_cast<const f32x16_t*>(ptr)) {};
|
||||
|
||||
explicit FP32Vec16(f32x16_t data) : reg(data) {};
|
||||
|
||||
FP32Vec16(const FP32Vec4& data) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = data.reg.val[i % FP32Vec4::VEC_ELEM_NUM];
|
||||
}
|
||||
}
|
||||
|
||||
FP32Vec16(const FP32Vec8& data) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = data.reg.val[i % FP32Vec8::VEC_ELEM_NUM];
|
||||
}
|
||||
}
|
||||
|
||||
FP32Vec16(const FP32Vec16& data) : reg(data.reg) {};
|
||||
|
||||
explicit FP32Vec16(const FP16Vec16& v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = fp16_to_float(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec16& v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = bf16_to_float(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const FP16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
|
||||
|
||||
FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
|
||||
|
||||
FP32Vec16 operator*(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = reg.val[i] * b.reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 operator+(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = reg.val[i] + b.reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 operator-(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = reg.val[i] - b.reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 operator/(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = reg.val[i] / b.reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 max(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = __max(reg.val[i], b.reg.val[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 min(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = __min(reg.val[i], b.reg.val[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 abs() const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = __abs(reg.val[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
float reduce_sum() const {
|
||||
float result = 0.0f;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result += reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
float reduce_max() const {
|
||||
float result = reg.val[0];
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result = __max(reg.val[i], result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
float reduce_min() const {
|
||||
float result = reg.val[0];
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result = __min(reg.val[i], result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
template <int group_size>
|
||||
float reduce_sub_sum(int idx) {
|
||||
static_assert(VEC_ELEM_NUM % group_size == 0);
|
||||
float sum = 0.0;
|
||||
int start = idx * group_size;
|
||||
int end = (idx + 1) * group_size;
|
||||
|
||||
for (; (start < VEC_ELEM_NUM) && (start < end); ++start) {
|
||||
sum += reg.val[start];
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f32x16_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct VecType {
|
||||
using vec_type = void;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
using vec_t = typename VecType<T>::vec_type;
|
||||
|
||||
template <>
|
||||
struct VecType<float> {
|
||||
using vec_type = FP32Vec8;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct VecType<c10::Half> {
|
||||
using vec_type = FP16Vec8;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct VecType<c10::BFloat16> {
|
||||
using vec_type = BF16Vec8;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
void storeFP32(float v, T* ptr) {
|
||||
*ptr = v;
|
||||
}
|
||||
|
||||
/*
|
||||
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
|
||||
c10::Half __attribute__((__may_alias__)) *v_ptr =
|
||||
reinterpret_cast<c10::Half *>(&v);
|
||||
*ptr = *(v_ptr + 1);
|
||||
}
|
||||
*/
|
||||
|
||||
template <>
|
||||
inline void storeFP32<c10::Half>(float v, c10::Half* ptr) {
|
||||
uint16_t fp16 = float_to_fp16(v);
|
||||
*reinterpret_cast<uint16_t*>(ptr) = fp16;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
|
||||
c10::BFloat16 __attribute__((__may_alias__))* v_ptr =
|
||||
reinterpret_cast<c10::BFloat16*>(&v);
|
||||
*ptr = *(v_ptr + 1);
|
||||
}
|
||||
|
||||
inline FP16Vec16::FP16Vec16(const FP32Vec16& v) {
|
||||
int i = 0;
|
||||
for (i = 0; i < FP16Vec16::VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = float_to_fp16(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline FP16Vec8 ::FP16Vec8(const FP32Vec8& v) {
|
||||
int i = 0;
|
||||
for (i = 0; i < FP16Vec8::VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = float_to_fp16(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
|
||||
acc = acc + a * b;
|
||||
}
|
||||
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8& v) {
|
||||
int i = 0;
|
||||
for (i = 0; i < BF16Vec8::VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = float_to_bf16(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
|
||||
int i = 0;
|
||||
for (i = 0; i < BF16Vec16::VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = float_to_bf16(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline void prefetch(const void* addr) { __builtin_prefetch(addr, 0, 3); }
|
||||
|
||||
}; // namespace vec_op
|
||||
106
csrc/cpu/float_convert.hpp
Normal file
106
csrc/cpu/float_convert.hpp
Normal file
@ -0,0 +1,106 @@
|
||||
|
||||
static float bf16_to_float(uint16_t bf16) {
|
||||
uint32_t bits = static_cast<uint32_t>(bf16) << 16;
|
||||
float fp32;
|
||||
std::memcpy(&fp32, &bits, sizeof(fp32));
|
||||
return fp32;
|
||||
}
|
||||
|
||||
static uint16_t float_to_bf16(float fp32) {
|
||||
uint32_t bits;
|
||||
std::memcpy(&bits, &fp32, sizeof(fp32));
|
||||
return static_cast<uint16_t>(bits >> 16);
|
||||
}
|
||||
|
||||
/************************************************
|
||||
* Copyright (c) 2015 Princeton Vision Group
|
||||
* Licensed under the MIT license.
|
||||
* Codes below copied from
|
||||
* https://github.com/PrincetonVision/marvin/tree/master/tools/tensorIO_matlab
|
||||
*************************************************/
|
||||
static uint16_t float_to_fp16(float fp32) {
|
||||
uint16_t fp16;
|
||||
|
||||
unsigned x;
|
||||
unsigned u, remainder, shift, lsb, lsb_s1, lsb_m1;
|
||||
unsigned sign, exponent, mantissa;
|
||||
|
||||
std::memcpy(&x, &fp32, sizeof(fp32));
|
||||
u = (x & 0x7fffffff);
|
||||
|
||||
// Get rid of +NaN/-NaN case first.
|
||||
if (u > 0x7f800000) {
|
||||
fp16 = 0x7fffU;
|
||||
return fp16;
|
||||
}
|
||||
|
||||
sign = ((x >> 16) & 0x8000);
|
||||
|
||||
// Get rid of +Inf/-Inf, +0/-0.
|
||||
if (u > 0x477fefff) {
|
||||
fp16 = sign | 0x7c00U;
|
||||
return fp16;
|
||||
}
|
||||
if (u < 0x33000001) {
|
||||
fp16 = (sign | 0x0000);
|
||||
return fp16;
|
||||
}
|
||||
|
||||
exponent = ((u >> 23) & 0xff);
|
||||
mantissa = (u & 0x7fffff);
|
||||
|
||||
if (exponent > 0x70) {
|
||||
shift = 13;
|
||||
exponent -= 0x70;
|
||||
} else {
|
||||
shift = 0x7e - exponent;
|
||||
exponent = 0;
|
||||
mantissa |= 0x800000;
|
||||
}
|
||||
lsb = (1 << shift);
|
||||
lsb_s1 = (lsb >> 1);
|
||||
lsb_m1 = (lsb - 1);
|
||||
|
||||
// Round to nearest even.
|
||||
remainder = (mantissa & lsb_m1);
|
||||
mantissa >>= shift;
|
||||
if (remainder > lsb_s1 || (remainder == lsb_s1 && (mantissa & 0x1))) {
|
||||
++mantissa;
|
||||
if (!(mantissa & 0x3ff)) {
|
||||
++exponent;
|
||||
mantissa = 0;
|
||||
}
|
||||
}
|
||||
|
||||
fp16 = (sign | (exponent << 10) | mantissa);
|
||||
|
||||
return fp16;
|
||||
}
|
||||
|
||||
static float fp16_to_float(uint16_t fp16) {
|
||||
unsigned sign = ((fp16 >> 15) & 1);
|
||||
unsigned exponent = ((fp16 >> 10) & 0x1f);
|
||||
unsigned mantissa = ((fp16 & 0x3ff) << 13);
|
||||
int temp;
|
||||
float fp32;
|
||||
if (exponent == 0x1f) { /* NaN or Inf */
|
||||
mantissa = (mantissa ? (sign = 0, 0x7fffff) : 0);
|
||||
exponent = 0xff;
|
||||
} else if (!exponent) { /* Denorm or Zero */
|
||||
if (mantissa) {
|
||||
unsigned int msb;
|
||||
exponent = 0x71;
|
||||
do {
|
||||
msb = (mantissa & 0x400000);
|
||||
mantissa <<= 1; /* normalize */
|
||||
--exponent;
|
||||
} while (!msb);
|
||||
mantissa &= 0x7fffff; /* 1.mantissa is implicit */
|
||||
}
|
||||
} else {
|
||||
exponent += 0x70;
|
||||
}
|
||||
temp = ((sign << 31) | (exponent << 23) | mantissa);
|
||||
std::memcpy(&fp32, &temp, sizeof(temp));
|
||||
return fp32;
|
||||
}
|
||||
@ -1,6 +1,7 @@
|
||||
#include "type_convert.cuh"
|
||||
#include "dispatch_utils.h"
|
||||
#include "cub_helpers.h"
|
||||
#include "core/batch_invariant.hpp"
|
||||
|
||||
#include <torch/cuda.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
@ -413,7 +414,9 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
|
||||
wt_ptr % req_alignment_bytes == 0;
|
||||
bool offsets_are_multiple_of_vector_width =
|
||||
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
|
||||
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width) {
|
||||
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
|
||||
!batch_invariant_launch) {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||
@ -459,7 +462,8 @@ void poly_norm(torch::Tensor& out, // [..., hidden_size]
|
||||
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
|
||||
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
|
||||
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0) {
|
||||
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
|
||||
LAUNCH_FUSED_POLY_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_POLY_NORM(0);
|
||||
|
||||
@ -9,6 +9,7 @@
|
||||
#include "quantization/fp8/common.cuh"
|
||||
#include "dispatch_utils.h"
|
||||
#include "cub_helpers.h"
|
||||
#include "core/batch_invariant.hpp"
|
||||
|
||||
#include <torch/cuda.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
@ -240,7 +241,9 @@ void fused_add_rms_norm_static_fp8_quant(
|
||||
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
|
||||
bool ptrs_are_aligned =
|
||||
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0) {
|
||||
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
|
||||
!batch_invariant_launch) {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||
|
||||
@ -44,6 +44,9 @@ __global__ void moe_align_block_size_kernel(
|
||||
|
||||
for (size_t i = tid; i < numel; i += stride) {
|
||||
int expert_id = topk_ids[i];
|
||||
if (expert_id >= num_experts) {
|
||||
continue;
|
||||
}
|
||||
int warp_idx = expert_id / experts_per_warp;
|
||||
int expert_offset = expert_id % experts_per_warp;
|
||||
atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset], 1);
|
||||
@ -95,12 +98,15 @@ template <typename scalar_t>
|
||||
__global__ void count_and_sort_expert_tokens_kernel(
|
||||
const scalar_t* __restrict__ topk_ids,
|
||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
|
||||
size_t numel) {
|
||||
size_t numel, int32_t num_experts) {
|
||||
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const size_t stride = blockDim.x * gridDim.x;
|
||||
|
||||
for (size_t i = tid; i < numel; i += stride) {
|
||||
int32_t expert_id = topk_ids[i];
|
||||
if (expert_id >= num_experts) {
|
||||
continue;
|
||||
}
|
||||
int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
|
||||
sorted_token_ids[rank_post_pad] = i;
|
||||
}
|
||||
@ -269,7 +275,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
|
||||
topk_ids.data_ptr<scalar_t>(),
|
||||
sorted_token_ids.data_ptr<int32_t>(),
|
||||
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel());
|
||||
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel(), num_experts);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@ -21,6 +21,7 @@
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include "../cuda_compat.h"
|
||||
#include "../cub_helpers.h"
|
||||
#include "../core/batch_invariant.hpp"
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
@ -405,7 +406,8 @@ void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, f
|
||||
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
|
||||
static constexpr int VPT = Constants::VPT;
|
||||
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
|
||||
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
|
||||
const bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
const int num_warps = batch_invariant_launch ? 32 : (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
|
||||
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
|
||||
|
||||
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);
|
||||
|
||||
@ -576,6 +576,17 @@ __inline__ __device__ Tout scaled_convert(const Tin& x, const float scale) {
|
||||
TORCH_CHECK(false, \
|
||||
"Unsupported input type of kv cache: ", SRC_DTYPE); \
|
||||
} \
|
||||
} else if (KV_DTYPE == "fp8_ds_mla") { \
|
||||
if (SRC_DTYPE == at::ScalarType::Float) { \
|
||||
FN(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
|
||||
} else if (SRC_DTYPE == at::ScalarType::Half) { \
|
||||
FN(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
|
||||
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
|
||||
FN(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
|
||||
} else { \
|
||||
TORCH_CHECK(false, \
|
||||
"Unsupported input type of kv cache: ", SRC_DTYPE); \
|
||||
} \
|
||||
} else { \
|
||||
TORCH_CHECK(false, "Unsupported data type of kv cache: ", KV_DTYPE); \
|
||||
} \
|
||||
|
||||
@ -6,11 +6,11 @@ torch::Tensor LLMM1(at::Tensor& in_a, at::Tensor& in_b,
|
||||
const int64_t rows_per_block);
|
||||
|
||||
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
|
||||
const c10::optional<at::Tensor>& in_bias,
|
||||
const std::optional<at::Tensor>& in_bias,
|
||||
const int64_t CuCount);
|
||||
|
||||
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
|
||||
const c10::optional<at::Tensor>& in_bias, at::Tensor& out_c,
|
||||
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
|
||||
const at::Tensor& scale_a, const at::Tensor& scale_b,
|
||||
const int64_t CuCount);
|
||||
|
||||
|
||||
@ -1271,7 +1271,7 @@ int mindiv(int N, int div1, int div2) {
|
||||
}
|
||||
|
||||
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
|
||||
const c10::optional<at::Tensor>& in_bias,
|
||||
const std::optional<at::Tensor>& in_bias,
|
||||
const int64_t CuCount) {
|
||||
auto M_in = in_a.size(0);
|
||||
auto K_in = in_a.size(1);
|
||||
@ -1729,7 +1729,7 @@ __global__ void wvSplitKQ_hf_(const int K, const int Kp, const int M,
|
||||
#endif // defined(__HIP__MI3XX__) TODO: Add NAVI support
|
||||
|
||||
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
|
||||
const c10::optional<at::Tensor>& in_bias, at::Tensor& out_c,
|
||||
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
|
||||
const at::Tensor& scale_a, const at::Tensor& scale_b,
|
||||
const int64_t CuCount) {
|
||||
static c10::ScalarType kFp8Type = is_fp8_ocp()
|
||||
|
||||
@ -713,6 +713,13 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
"cp_gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
|
||||
"Tensor cu_seq_lens, int batch_size, Tensor? seq_starts) -> ()");
|
||||
cache_ops.impl("cp_gather_cache", torch::kCUDA, &cp_gather_cache);
|
||||
|
||||
cache_ops.def(
|
||||
"indexer_k_quant_and_cache(Tensor k, Tensor! kv_cache, Tensor "
|
||||
"slot_mapping, "
|
||||
"int quant_block_size, str kv_cache_dtype) -> ()");
|
||||
cache_ops.impl("indexer_k_quant_and_cache", torch::kCUDA,
|
||||
&indexer_k_quant_and_cache);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {
|
||||
|
||||
@ -391,19 +391,32 @@ RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
|
||||
git clone --depth 1 --recursive --shallow-submodules \
|
||||
--branch ${FLASHINFER_GIT_REF} \
|
||||
${FLASHINFER_GIT_REPO} flashinfer
|
||||
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
|
||||
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
|
||||
if [[ "${CUDA_VERSION}" == 11.* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
|
||||
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
|
||||
else
|
||||
# CUDA 12.8+ supports 10.0a and 12.0
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
|
||||
fi
|
||||
pushd flashinfer
|
||||
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
|
||||
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
|
||||
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
|
||||
if [[ "${CUDA_VERSION}" == 11.* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
|
||||
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
|
||||
else
|
||||
# CUDA 12.8+ supports 10.0a and 12.0
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
|
||||
if [[ "${CUDA_VERSION}" == 12.8.* ]] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then
|
||||
# NOTE: To make new precompiled wheels, see tools/flashinfer-build.sh
|
||||
echo "🏗️ Installing FlashInfer from pre-compiled wheel"
|
||||
uv pip install --system https://wheels.vllm.ai/flashinfer-python/flashinfer_python-0.3.1-cp39-abi3-manylinux1_x86_64.whl \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
|
||||
# Download pre-compiled cubins
|
||||
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
|
||||
python3 -m flashinfer --download-cubin || echo "WARNING: Failed to download flashinfer cubins."
|
||||
fi
|
||||
elif [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
|
||||
echo "🏗️ Installing FlashInfer with AOT compilation for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
|
||||
export FLASHINFER_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}"
|
||||
# HACK: We need these to run flashinfer.aot before installing flashinfer, get from the package in the future
|
||||
uv pip install --system cuda-python==$(echo $CUDA_VERSION | cut -d. -f1,2) pynvml==$(echo $CUDA_VERSION | cut -d. -f1) nvidia-nvshmem-cu$(echo $CUDA_VERSION | cut -d. -f1)
|
||||
# Build AOT kernels
|
||||
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
|
||||
python3 -m flashinfer.aot
|
||||
@ -443,7 +456,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
ARG DEEPGEMM_GIT_REF
|
||||
COPY tools/install_deepgemm.sh /tmp/install_deepgemm.sh
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
VLLM_DOCKER_BUILD_CONTEXT=1 /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
|
||||
VLLM_DOCKER_BUILD_CONTEXT=1 TORCH_CUDA_ARCH_LIST="9.0a 10.0a" /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
|
||||
|
||||
COPY tools/install_gdrcopy.sh install_gdrcopy.sh
|
||||
RUN set -eux; \
|
||||
@ -461,6 +474,12 @@ ENV CUDA_HOME=/usr/local/cuda
|
||||
RUN export TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST:-9.0a+PTX}" \
|
||||
&& bash install_python_libraries.sh
|
||||
|
||||
# CUDA image changed from /usr/local/nvidia to /usr/local/cuda in 12.8 but will
|
||||
# return to /usr/local/nvidia in 13.0 to allow container providers to mount drivers
|
||||
# consistently from the host (see https://github.com/vllm-project/vllm/issues/18859).
|
||||
# Until then, add /usr/local/nvidia/lib64 before the image cuda path to allow override.
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib64:${LD_LIBRARY_PATH}
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
#################### TEST IMAGE ####################
|
||||
@ -533,7 +552,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
else \
|
||||
BITSANDBYTES_VERSION="0.46.1"; \
|
||||
fi; \
|
||||
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' boto3 runai-model-streamer runai-model-streamer[s3]
|
||||
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3]>=0.14.0'
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image
|
||||
|
||||
|
||||
@ -114,9 +114,6 @@ WORKDIR /workspace/vllm
|
||||
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
|
||||
cp requirements/test.in requirements/cpu-test.in && \
|
||||
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
|
||||
sed -i 's/^torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
|
||||
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
|
||||
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
|
||||
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
|
||||
We host regular meetups in San Francisco Bay Area every 2 months. We will share the project updates from the vLLM team and have guest speakers from the industry to share their experience and insights. Please find the materials of our previous meetups below:
|
||||
|
||||
- [vLLM Toronto Meetup](https://luma.com/e80e0ymm), September 25th 2025. [[Slides]](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing)
|
||||
- [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ), August 30th 2025. [[Slides]](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA)
|
||||
- [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet), August 27th 2025. [[Slides]](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing)
|
||||
- [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg), August 23rd 2025. [[Slides]](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH)
|
||||
|
||||
@ -139,9 +139,9 @@ there is relatively little gain from TP. On the other hand, TP incurs significan
|
||||
overhead because of all-reduce being performed after every layer.
|
||||
|
||||
Given this, it may be advantageous to instead shard the batched input data using TP, essentially
|
||||
performing batch-level DP. This has been shown to improve the throughput by around 10% for
|
||||
performing batch-level DP. This has been shown to improve the throughput and TTFT by around 10% for
|
||||
`tensor_parallel_size=8`. For vision encoders that use hardware-unoptimized Conv3D operations,
|
||||
batch-level DP can provide another 40% increase to throughput compared to regular TP.
|
||||
batch-level DP can provide another 40% improvement compared to regular TP.
|
||||
|
||||
Nevertheless, since the weights of the multi-modal encoder are replicated across each TP rank,
|
||||
there will be a minor increase in memory consumption and may cause OOM if you can barely fit the model already.
|
||||
@ -172,14 +172,15 @@ Batch-level DP needs to be implemented on a per-model basis,
|
||||
and enabled by setting `supports_encoder_tp_data = True` in the model class.
|
||||
Regardless, you need to set `mm_encoder_tp_mode="data"` in engine arguments to use this feature.
|
||||
|
||||
Known supported models:
|
||||
Known supported models (with corresponding benchmarks):
|
||||
|
||||
- GLM-4.5V GLM-4.1V (<gh-pr:23168>)
|
||||
- dots_ocr (<gh-pr:25466>)
|
||||
- GLM-4.1V or above (<gh-pr:23168>)
|
||||
- InternVL (<gh-pr:23909>)
|
||||
- Kimi-VL (<gh-pr:23817>)
|
||||
- Llama4 (<gh-pr:18368>)
|
||||
- MiniCPM-V-2.5 or above (<gh-pr:23327>, <gh-pr:23948>)
|
||||
- Qwen2.5-VL (<gh-pr:22742>)
|
||||
- Qwen2-VL or above (<gh-pr:22742>, <gh-pr:24955>, <gh-pr:25445>)
|
||||
- Step3 (<gh-pr:22697>)
|
||||
|
||||
## Input Processing
|
||||
|
||||
@ -823,6 +823,30 @@ The latest performance results are hosted on the public [vLLM Performance Dashbo
|
||||
|
||||
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
|
||||
|
||||
### Continuous Benchmarking
|
||||
|
||||
The continuous benchmarking provides automated performance monitoring for vLLM across different models and GPU devices. This helps track vLLM's performance characteristics over time and identify any performance regressions or improvements.
|
||||
|
||||
#### How It Works
|
||||
|
||||
The continuous benchmarking is triggered via a [GitHub workflow CI](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) in the PyTorch infrastructure repository, which runs automatically every 4 hours. The workflow executes three types of performance tests:
|
||||
|
||||
- **Serving tests**: Measure request handling and API performance
|
||||
- **Throughput tests**: Evaluate token generation rates
|
||||
- **Latency tests**: Assess response time characteristics
|
||||
|
||||
#### Benchmark Configuration
|
||||
|
||||
The benchmarking currently runs on a predefined set of models configured in the [vllm-benchmarks directory](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks). To add new models for benchmarking:
|
||||
|
||||
1. Navigate to the appropriate GPU directory in the benchmarks configuration
|
||||
2. Add your model specifications to the corresponding configuration files
|
||||
3. The new models will be included in the next scheduled benchmark run
|
||||
|
||||
#### Viewing Results
|
||||
|
||||
All continuous benchmarking results are automatically published to the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
|
||||
|
||||
[](){ #nightly-benchmarks }
|
||||
|
||||
## Nightly Benchmarks
|
||||
|
||||
@ -66,35 +66,12 @@ Further update the model as follows:
|
||||
!!! important
|
||||
The returned `multimodal_embeddings` must be either a **3D [torch.Tensor][]** of shape `(num_items, feature_size, hidden_size)`, or a **list / tuple of 2D [torch.Tensor][]'s** of shape `(feature_size, hidden_size)`, so that `multimodal_embeddings[i]` retrieves the embeddings generated from the `i`-th multimodal data item (e.g, image) of the request.
|
||||
|
||||
- Implement [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings] to merge `multimodal_embeddings` with text embeddings from the `input_ids`. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.
|
||||
!!! note
|
||||
By default, vLLM merges the multimodal embeddings into text embeddings depending on the information of their locations defined in
|
||||
[PlaceholderRange][vllm.multimodal.inputs.PlaceholderRange] from input processing.
|
||||
This logic can be found at [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings].
|
||||
|
||||
??? code
|
||||
|
||||
```python
|
||||
from .utils import merge_multimodal_embeddings
|
||||
|
||||
class YourModelForImage2Seq(nn.Module):
|
||||
...
|
||||
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
# `get_input_embeddings` should already be implemented for the language
|
||||
# model as one of the requirements of basic vLLM model implementation.
|
||||
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
||||
|
||||
if multimodal_embeddings is not None:
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids=input_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
multimodal_embeddings=multimodal_embeddings,
|
||||
placeholder_token_id=self.config.image_token_index)
|
||||
|
||||
return inputs_embeds
|
||||
```
|
||||
You may override this method if additional logic is required for your model when merging embeddings.
|
||||
|
||||
- Implement [get_language_model][vllm.model_executor.models.interfaces.SupportsMultiModal.get_language_model] getter to provide stable access to the underlying language model.
|
||||
|
||||
|
||||
@ -160,6 +160,22 @@ GUI example:
|
||||
|
||||
<img width="1799" alt="Screenshot 2025-03-05 at 11 48 42 AM" src="https://github.com/user-attachments/assets/c7cff1ae-6d6f-477d-a342-bd13c4fc424c" />
|
||||
|
||||
## Continuous Profiling
|
||||
|
||||
There is a [GitHub CI workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-profiling.yml) in the PyTorch infrastructure repository that provides continuous profiling for different models on vLLM. This automated profiling helps track performance characteristics over time and across different model configurations.
|
||||
|
||||
### How It Works
|
||||
|
||||
The workflow currently runs weekly profiling sessions for selected models, generating detailed performance traces that can be analyzed using different tools to identify performance regressions or optimization opportunities. But, it can be triggered manually as well, using the Github Action tool.
|
||||
|
||||
### Adding New Models
|
||||
|
||||
To extend the continuous profiling to additional models, you can modify the [profiling-tests.json](https://github.com/pytorch/pytorch-integration-testing/blob/main/vllm-profiling/cuda/profiling-tests.json) configuration file in the PyTorch integration testing repository. Simply add your model specifications to this file to include them in the automated profiling runs.
|
||||
|
||||
### Viewing Profiling Results
|
||||
|
||||
The profiling traces generated by the continuous profiling workflow are publicly available on the [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm). Look for the **Profiling traces** table to access and download the traces for different models and runs.
|
||||
|
||||
## Profiling vLLM Python Code
|
||||
|
||||
The Python standard library includes
|
||||
@ -208,3 +224,11 @@ One example is [snakeviz](https://jiffyclub.github.io/snakeviz/).
|
||||
pip install snakeviz
|
||||
snakeviz expensive_function.prof
|
||||
```
|
||||
|
||||
### Analyzing Garbage Collection Costs
|
||||
|
||||
Leverage VLLM_GC_DEBUG environment variable to debug GC costs.
|
||||
|
||||
- VLLM_GC_DEBUG=1: enable GC debugger with gc.collect elpased times
|
||||
- VLLM_GC_DEBUG='{"top_objects":5}': enable GC debugger to log top 5
|
||||
collected objects for each gc.collect
|
||||
|
||||
@ -52,7 +52,7 @@ th:not(:first-child) {
|
||||
| [mm](multimodal_inputs.md) | ✅ | ✅ | [🟠](gh-pr:4194)<sup>^</sup> | ❔ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | | | |
|
||||
| best-of | ✅ | ✅ | ✅ | [❌](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [❌](gh-issue:7968) | ✅ | ✅ | | |
|
||||
| beam-search | ✅ | ✅ | ✅ | [❌](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [❌](gh-issue:7968) | ❔ | ✅ | ✅ | |
|
||||
| [prompt-embeds](prompt_embeds.md) | ✅ | [❌](gh-issue:25096) | ? | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ? | ? | ❌ | ? | ? | ✅ |
|
||||
| [prompt-embeds](prompt_embeds.md) | ✅ | [❌](gh-issue:25096) | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❔ | ❔ | ❌ | ❔ | ❔ | ✅ |
|
||||
|
||||
\* Chunked prefill and prefix caching are only applicable to last-token pooling.
|
||||
<sup>^</sup> LoRA is only applicable to the language backbone of multimodal models.
|
||||
|
||||
@ -6,6 +6,10 @@ This page teaches you how to pass multi-modal inputs to [multi-modal models][sup
|
||||
We are actively iterating on multi-modal support. See [this RFC](gh-issue:4194) for upcoming changes,
|
||||
and [open an issue on GitHub](https://github.com/vllm-project/vllm/issues/new/choose) if you have any feedback or feature requests.
|
||||
|
||||
!!! tip
|
||||
When serving multi-modal models, consider setting `--allowed-media-domains` to restrict domain that vLLM can access to prevent it from accessing arbitrary endpoints that can potentially be vulnerable to Server-Side Request Forgery (SSRF) attacks. You can provide a list of domains for this arg. For example: `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`
|
||||
This restriction is especially important if you run vLLM in a containerized environment where the vLLM pods may have unrestricted access to internal networks.
|
||||
|
||||
## Offline Inference
|
||||
|
||||
To input multi-modal data, follow this schema in [vllm.inputs.PromptType][]:
|
||||
|
||||
@ -9,7 +9,7 @@ NixlConnector is a high-performance KV cache transfer connector for vLLM's disag
|
||||
Install the NIXL library: `uv pip install nixl`, as a quick start.
|
||||
|
||||
- Refer to [NIXL official repository](https://github.com/ai-dynamo/nixl) for more installation instructions
|
||||
- The specified required NIXL version can be found in [requirements/kv_connectors.txt](../../requirements/kv_connectors.txt) and other relevant config files
|
||||
- The specified required NIXL version can be found in [requirements/kv_connectors.txt](gh-file:requirements/kv_connectors.txt) and other relevant config files
|
||||
|
||||
### Transport Configuration
|
||||
|
||||
@ -84,7 +84,7 @@ python tests/v1/kv_connector/nixl_integration/toy_proxy_server.py \
|
||||
- Connection info is passed via KVTransferParams from prefiller to decoder for handshake
|
||||
|
||||
- `VLLM_NIXL_ABORT_REQUEST_TIMEOUT`: Timeout (in seconds) for automatically releasing the prefiller’s KV cache for a particular request. (Optional)
|
||||
- Default: 120
|
||||
- Default: 480
|
||||
- If a request is aborted and the decoder has not yet read the KV-cache blocks through the nixl channel, the prefill instance will release its KV-cache blocks after this timeout to avoid holding them indefinitely.
|
||||
|
||||
## Multi-Instance Setup
|
||||
@ -154,6 +154,6 @@ python tests/v1/kv_connector/nixl_integration/toy_proxy_server.py \
|
||||
|
||||
Refer to these example scripts in the vLLM repository:
|
||||
|
||||
- [run_accuracy_test.sh](../../tests/v1/kv_connector/nixl_integration/run_accuracy_test.sh)
|
||||
- [toy_proxy_server.py](../../tests/v1/kv_connector/nixl_integration/toy_proxy_server.py)
|
||||
- [test_accuracy.py](../../tests/v1/kv_connector/nixl_integration/test_accuracy.py)
|
||||
- [run_accuracy_test.sh](gh-file:tests/v1/kv_connector/nixl_integration/run_accuracy_test.sh)
|
||||
- [toy_proxy_server.py](gh-file:tests/v1/kv_connector/nixl_integration/toy_proxy_server.py)
|
||||
- [test_accuracy.py](gh-file:tests/v1/kv_connector/nixl_integration/test_accuracy.py)
|
||||
|
||||
@ -6,6 +6,17 @@ vLLM supports the generation of structured outputs using
|
||||
This document shows you some examples of the different options that are
|
||||
available to generate structured outputs.
|
||||
|
||||
!!! warning
|
||||
If you are still using the following deprecated API fields, please update your code to use `structured_outputs` as demonstrated in the rest of this document:
|
||||
|
||||
- `guided_json` -> `{"structured_outputs": {"json": ...}}` or `StructuredOutputsParams(json=...)`
|
||||
- `guided_regex` -> `{"structured_outputs": {"regex": ...}}` or `StructuredOutputsParams(regex=...)`
|
||||
- `guided_choice` -> `{"structured_outputs": {"choice": ...}}` or `StructuredOutputsParams(choice=...)`
|
||||
- `guided_grammar` -> `{"structured_outputs": {"grammar": ...}}` or `StructuredOutputsParams(grammar=...)`
|
||||
- `guided_whitespace_pattern` -> `{"structured_outputs": {"whitespace_pattern": ...}}` or `StructuredOutputsParams(whitespace_pattern=...)`
|
||||
- `structural_tag` -> `{"structured_outputs": {"structural_tag": ...}}` or `StructuredOutputsParams(structural_tag=...)`
|
||||
- `guided_decoding_backend` -> Remove this field from your request
|
||||
|
||||
## Online Serving (OpenAI API)
|
||||
|
||||
You can generate structured outputs using the OpenAI's [Completions](https://platform.openai.com/docs/api-reference/completions) and [Chat](https://platform.openai.com/docs/api-reference/chat) API.
|
||||
|
||||
@ -310,12 +310,23 @@ Flags:
|
||||
* For non-reasoning: `--tool-call-parser hunyuan_a13b`
|
||||
* For reasoning: `--tool-call-parser hunyuan_a13b --reasoning-parser hunyuan_a13b --enable_reasoning`
|
||||
|
||||
### LongCat-Flash-Chat Models (`longcat`)
|
||||
|
||||
Supported models:
|
||||
|
||||
* `meituan-longcat/LongCat-Flash-Chat`
|
||||
* `meituan-longcat/LongCat-Flash-Chat-FP8`
|
||||
|
||||
Flags: `--tool-call-parser longcat`
|
||||
|
||||
### GLM-4.5 Models (`glm45`)
|
||||
|
||||
Supported models:
|
||||
|
||||
* `ZhipuAI/GLM-4.5`
|
||||
* `ZhipuAI/GLM-4.5-Air`
|
||||
* `zai-org/GLM-4.5`
|
||||
* `zai-org/GLM-4.5-Air`
|
||||
* `zai-org/GLM-4.6`
|
||||
* `zai-org/GLM-4.6-Air`
|
||||
|
||||
Flags: `--tool-call-parser glm45`
|
||||
|
||||
|
||||
@ -25,3 +25,4 @@ The backends below live **outside** the main `vllm` repository and follow the
|
||||
| MetaX MACA GPU | N/A, install from source | <https://github.com/MetaX-MACA/vLLM-metax> |
|
||||
| Rebellions ATOM / REBEL NPU | `vllm-rbln` | <https://github.com/rebellions-sw/vllm-rbln> |
|
||||
| IBM Spyre AIU | `vllm-spyre` | <https://github.com/vllm-project/vllm-spyre> |
|
||||
| Cambricon MLU | `vllm-mlu` | <https://github.com/Cambricon/vllm-mlu> |
|
||||
|
||||
@ -46,22 +46,22 @@ Execute the following commands to build and install vLLM from source.
|
||||
Please build the following dependencies, `torchvision`, `pyarrow` from source before building vLLM.
|
||||
|
||||
```bash
|
||||
sed -i '/^torch/d' requirements-build.txt # remove torch from requirements-build.txt since we use nightly builds
|
||||
sed -i '/^torch/d' requirements/build.txt # remove torch from requirements/build.txt since we use nightly builds
|
||||
uv pip install -v \
|
||||
--torch-backend auto \
|
||||
-r requirements-build.txt \
|
||||
-r requirements-cpu.txt \
|
||||
-r requirements/build.txt \
|
||||
-r requirements/cpu.txt \
|
||||
VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \
|
||||
uv pip install dist/*.whl
|
||||
```
|
||||
|
||||
??? console "pip"
|
||||
```bash
|
||||
sed -i '/^torch/d' requirements-build.txt # remove torch from requirements-build.txt since we use nightly builds
|
||||
sed -i '/^torch/d' requirements/build.txt # remove torch from requirements/build.txt since we use nightly builds
|
||||
pip install -v \
|
||||
--extra-index-url https://download.pytorch.org/whl/nightly/cpu \
|
||||
-r requirements-build.txt \
|
||||
-r requirements-cpu.txt \
|
||||
-r requirements/build.txt \
|
||||
-r requirements/cpu.txt \
|
||||
VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \
|
||||
pip install dist/*.whl
|
||||
```
|
||||
|
||||
@ -20,7 +20,80 @@ vLLM supports basic model inferencing and serving on x86 CPU platform, with data
|
||||
# --8<-- [end:pre-built-wheels]
|
||||
# --8<-- [start:build-wheel-from-source]
|
||||
|
||||
--8<-- "docs/getting_started/installation/cpu/build.inc.md"
|
||||
Install recommended compiler. We recommend to use `gcc/g++ >= 12.3.0` as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run:
|
||||
|
||||
```bash
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y gcc-12 g++-12 libnuma-dev python3-dev
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
```
|
||||
|
||||
Clone the vLLM project:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/vllm-project/vllm.git vllm_source
|
||||
cd vllm_source
|
||||
```
|
||||
|
||||
Install the required dependencies:
|
||||
|
||||
```bash
|
||||
uv pip install -r requirements/cpu-build.txt --torch-backend cpu
|
||||
uv pip install -r requirements/cpu.txt --torch-backend cpu
|
||||
```
|
||||
|
||||
??? console "pip"
|
||||
```bash
|
||||
pip install --upgrade pip
|
||||
pip install -v -r requirements/cpu-build.txt --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -v -r requirements/cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
```
|
||||
|
||||
Build and install vLLM:
|
||||
|
||||
```bash
|
||||
VLLM_TARGET_DEVICE=cpu uv pip install . --no-build-isolation
|
||||
```
|
||||
|
||||
If you want to develop vLLM, install it in editable mode instead.
|
||||
|
||||
```bash
|
||||
VLLM_TARGET_DEVICE=cpu uv pip install -e . --no-build-isolation
|
||||
```
|
||||
|
||||
Optionally, build a portable wheel which you can then install elsewhere:
|
||||
|
||||
```bash
|
||||
VLLM_TARGET_DEVICE=cpu uv build --wheel
|
||||
```
|
||||
|
||||
```bash
|
||||
uv pip install dist/*.whl
|
||||
```
|
||||
|
||||
??? console "pip"
|
||||
```bash
|
||||
VLLM_TARGET_DEVICE=cpu python -m build --wheel --no-isolation
|
||||
```
|
||||
|
||||
```bash
|
||||
pip install dist/*.whl
|
||||
```
|
||||
|
||||
!!! example "Troubleshooting"
|
||||
- **NumPy ≥2.0 error**: Downgrade using `pip install "numpy<2.0"`.
|
||||
- **CMake picks up CUDA**: Add `CMAKE_DISABLE_FIND_PACKAGE_CUDA=ON` to prevent CUDA detection during CPU builds, even if CUDA is installed.
|
||||
- `AMD` requies at least 4th gen processors (Zen 4/Genoa) or higher to support [AVX512](https://www.phoronix.com/review/amd-zen4-avx512) to run vLLM on CPU.
|
||||
- If you receive an error such as: `Could not find a version that satisfies the requirement torch==X.Y.Z+cpu+cpu`, consider updating [pyproject.toml](https://github.com/vllm-project/vllm/blob/main/pyproject.toml) to help pip resolve the dependency.
|
||||
```toml title="pyproject.toml"
|
||||
[build-system]
|
||||
requires = [
|
||||
"cmake>=3.26.1",
|
||||
...
|
||||
"torch==X.Y.Z+cpu" # <-------
|
||||
]
|
||||
```
|
||||
- If you are building vLLM from source and not using the pre-built images, remember to set `LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:$LD_PRELOAD"` on x86 machines before running vLLM.
|
||||
|
||||
# --8<-- [end:build-wheel-from-source]
|
||||
# --8<-- [start:pre-built-images]
|
||||
@ -57,4 +130,4 @@ docker run --rm \
|
||||
|
||||
# --8<-- [end:build-image-from-source]
|
||||
# --8<-- [start:extra-information]
|
||||
# --8<-- [end:extra-information]
|
||||
# --8<-- [end:extra-information]
|
||||
@ -32,8 +32,9 @@ def auto_mock(module, attr, max_mocks=50):
|
||||
for _ in range(max_mocks):
|
||||
try:
|
||||
# First treat attr as an attr, then as a submodule
|
||||
return getattr(importlib.import_module(module), attr,
|
||||
importlib.import_module(f"{module}.{attr}"))
|
||||
with patch("importlib.metadata.version", return_value="0.0.0"):
|
||||
return getattr(importlib.import_module(module), attr,
|
||||
importlib.import_module(f"{module}.{attr}"))
|
||||
except importlib.metadata.PackageNotFoundError as e:
|
||||
raise e
|
||||
except ModuleNotFoundError as e:
|
||||
@ -167,5 +168,5 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
|
||||
doc_path = ARGPARSE_DOC_DIR / f"{stem}.md"
|
||||
# Specify encoding for building on Windows
|
||||
with open(doc_path, "w", encoding="utf-8") as f:
|
||||
f.write(parser.format_help())
|
||||
f.write(super(type(parser), parser).format_help())
|
||||
logger.info("Argparse generated: %s", doc_path.relative_to(ROOT_DIR))
|
||||
|
||||
@ -4,7 +4,7 @@ vLLM provides first-class support for generative models, which covers most of LL
|
||||
|
||||
In vLLM, generative models implement the[VllmModelForTextGeneration][vllm.model_executor.models.VllmModelForTextGeneration] interface.
|
||||
Based on the final hidden states of the input, these models output log probabilities of the tokens to generate,
|
||||
which are then passed through [Sampler][vllm.model_executor.layers.sampler.Sampler] to obtain the final text.
|
||||
which are then passed through [Sampler][vllm.v1.sample.sampler.Sampler] to obtain the final text.
|
||||
|
||||
## Configuration
|
||||
|
||||
|
||||
@ -29,7 +29,7 @@ _*Vision-language models currently accept only image inputs. Support for video i
|
||||
|
||||
If the Transformers model implementation follows all the steps in [writing a custom model](#writing-custom-models) then, when used with the Transformers backend, it will be compatible with the following features of vLLM:
|
||||
|
||||
- All the features listed in the [compatibility matrix](../features/compatibility_matrix.md#feature-x-feature)
|
||||
- All the features listed in the [compatibility matrix](../features/README.md#feature-x-feature)
|
||||
- Any combination of the following vLLM parallelisation schemes:
|
||||
- Pipeline parallel
|
||||
- Tensor parallel
|
||||
@ -367,7 +367,7 @@ th {
|
||||
| `Gemma3nForCausalLM` | Gemma 3n | `google/gemma-3n-E2B-it`, `google/gemma-3n-E4B-it`, etc. | | | ✅︎ |
|
||||
| `GlmForCausalLM` | GLM-4 | `zai-org/glm-4-9b-chat-hf`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `Glm4ForCausalLM` | GLM-4-0414 | `zai-org/GLM-4-32B-0414`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `Glm4MoeForCausalLM` | GLM-4.5 | `zai-org/GLM-4.5`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `Glm4MoeForCausalLM` | GLM-4.5, GLM-4.6 | `zai-org/GLM-4.5`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `GPT2LMHeadModel` | GPT-2 | `gpt2`, `gpt2-xl`, etc. | | ✅︎ | ✅︎ |
|
||||
| `GPTBigCodeForCausalLM` | StarCoder, SantaCoder, WizardCoder | `bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, `WizardLM/WizardCoder-15B-V1.0`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `GPTJForCausalLM` | GPT-J | `EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc. | | ✅︎ | ✅︎ |
|
||||
@ -396,7 +396,6 @@ th {
|
||||
| `MiniCPM3ForCausalLM` | MiniCPM3 | `openbmb/MiniCPM3-4B`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `MistralForCausalLM` | Mistral, Mistral-Instruct | `mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `MixtralForCausalLM` | Mixtral-8x7B, Mixtral-8x7B-Instruct | `mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `MotifForCausalLM` | Motif-1-Tiny | `Motif-Technologies/Motif-2.6B`, `Motif-Technologies/Motif-2.6b-v1.1-LC`, etc. | ✅︎ | ✅︎ | |
|
||||
| `MPTForCausalLM` | MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter | `mosaicml/mpt-7b`, `mosaicml/mpt-7b-storywriter`, `mosaicml/mpt-30b`, etc. | | ✅︎ | ✅︎ |
|
||||
| `NemotronForCausalLM` | Nemotron-3, Nemotron-4, Minitron | `nvidia/Minitron-8B-Base`, `mgoin/Nemotron-4-340B-Base-hf-FP8`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `NemotronHForCausalLM` | Nemotron-H | `nvidia/Nemotron-H-8B-Base-8K`, `nvidia/Nemotron-H-47B-Base-8K`, `nvidia/Nemotron-H-56B-Base-8K`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
@ -404,12 +403,11 @@ th {
|
||||
| `OLMo2ForCausalLM` | OLMo2 | `allenai/OLMo-2-0425-1B`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `OLMo3ForCausalLM` | OLMo3 | TBA | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `OLMoEForCausalLM` | OLMoE | `allenai/OLMoE-1B-7B-0924`, `allenai/OLMoE-1B-7B-0924-Instruct`, etc. | | ✅︎ | ✅︎ |
|
||||
| `OPTForCausalLM` | OPT, OPT-IML | `facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc. | | ✅︎ | ✅︎ |
|
||||
| `OPTForCausalLM` | OPT, OPT-IML | `facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `OrionForCausalLM` | Orion | `OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc. | | ✅︎ | ✅︎ |
|
||||
| `PhiForCausalLM` | Phi | `microsoft/phi-1_5`, `microsoft/phi-2`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `Phi3ForCausalLM` | Phi-4, Phi-3 | `microsoft/Phi-4-mini-instruct`, `microsoft/Phi-4`, `microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, `microsoft/Phi-3-medium-128k-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `PhiMoEForCausalLM` | Phi-3.5-MoE | `microsoft/Phi-3.5-MoE-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `Phi4FlashForCausalLM` | Phi-4-mini-flash-reasoning | `microsoft/microsoft/Phi-4-mini-instruct`, etc. | | | |
|
||||
| `PersimmonForCausalLM` | Persimmon | `adept/persimmon-8b-base`, `adept/persimmon-8b-chat`, etc. | | ✅︎ | ✅︎ |
|
||||
| `Plamo2ForCausalLM` | PLaMo2 | `pfnet/plamo-2-1b`, `pfnet/plamo-2-8b`, etc. | | ✅︎ | ✅︎ |
|
||||
| `QWenLMHeadModel` | Qwen | `Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
@ -428,6 +426,7 @@ th {
|
||||
| `MiniMaxM1ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-M1-40k`, `MiniMaxAI/MiniMax-M1-80k`, etc. | | | ✅︎ |
|
||||
| `MiniMaxText01ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-Text-01`, etc. | | | ✅︎ |
|
||||
| `Zamba2ForCausalLM` | Zamba2 | `Zyphra/Zamba2-7B-instruct`, `Zyphra/Zamba2-2.7B-instruct`, `Zyphra/Zamba2-1.2B-instruct`, etc. | | | ✅︎ |
|
||||
| `LongcatFlashForCausalLM` | LongCat-Flash | `meituan-longcat/LongCat-Flash-Chat`, `meituan-longcat/LongCat-Flash-Chat-FP8` | ✅︎ |✅︎ | ✅︎ |
|
||||
|
||||
Some models are supported only via the [Transformers backend](#transformers). The purpose of the table below is to acknowledge models which we officially support in this way. The logs will say that the Transformers backend is being used, and you will see no warning that this is fallback behaviour. This means that, if you have issues with any of the models listed below, please [make an issue](https://github.com/vllm-project/vllm/issues/new/choose) and we'll do our best to fix it!
|
||||
|
||||
|
||||
@ -351,13 +351,92 @@ you can use the [official OpenAI Python client](https://github.com/openai/openai
|
||||
To use the Transcriptions API, please install with extra audio dependencies using `pip install vllm[audio]`.
|
||||
|
||||
Code example: <gh-file:examples/online_serving/openai_transcription_client.py>
|
||||
<!-- TODO: api enforced limits + uploading audios -->
|
||||
|
||||
#### API Enforced Limits
|
||||
|
||||
Set the maximum audio file size (in MB) that VLLM will accept, via the
|
||||
`VLLM_MAX_AUDIO_CLIP_FILESIZE_MB` environment variable. Default is 25 MB.
|
||||
|
||||
#### Uploading Audio Files
|
||||
|
||||
The Transcriptions API supports uploading audio files in various formats including FLAC, MP3, MP4, MPEG, MPGA, M4A, OGG, WAV, and WEBM.
|
||||
|
||||
**Using OpenAI Python Client:**
|
||||
|
||||
??? code
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:8000/v1",
|
||||
api_key="token-abc123",
|
||||
)
|
||||
|
||||
# Upload audio file from disk
|
||||
with open("audio.mp3", "rb") as audio_file:
|
||||
transcription = client.audio.transcriptions.create(
|
||||
model="openai/whisper-large-v3-turbo",
|
||||
file=audio_file,
|
||||
language="en",
|
||||
response_format="verbose_json"
|
||||
)
|
||||
|
||||
print(transcription.text)
|
||||
```
|
||||
|
||||
**Using curl with multipart/form-data:**
|
||||
|
||||
??? code
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:8000/v1/audio/transcriptions" \
|
||||
-H "Authorization: Bearer token-abc123" \
|
||||
-F "file=@audio.mp3" \
|
||||
-F "model=openai/whisper-large-v3-turbo" \
|
||||
-F "language=en" \
|
||||
-F "response_format=verbose_json"
|
||||
```
|
||||
|
||||
**Supported Parameters:**
|
||||
|
||||
- `file`: The audio file to transcribe (required)
|
||||
- `model`: The model to use for transcription (required)
|
||||
- `language`: The language code (e.g., "en", "zh") (optional)
|
||||
- `prompt`: Optional text to guide the transcription style (optional)
|
||||
- `response_format`: Format of the response ("json", "text") (optional)
|
||||
- `temperature`: Sampling temperature between 0 and 1 (optional)
|
||||
|
||||
For the complete list of supported parameters including sampling parameters and vLLM extensions, see the [protocol definitions](https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/openai/protocol.py#L2182).
|
||||
|
||||
**Response Format:**
|
||||
|
||||
For `verbose_json` response format:
|
||||
|
||||
??? code
|
||||
|
||||
```json
|
||||
{
|
||||
"text": "Hello, this is a transcription of the audio file.",
|
||||
"language": "en",
|
||||
"duration": 5.42,
|
||||
"segments": [
|
||||
{
|
||||
"id": 0,
|
||||
"seek": 0,
|
||||
"start": 0.0,
|
||||
"end": 2.5,
|
||||
"text": "Hello, this is a transcription",
|
||||
"tokens": [50364, 938, 428, 307, 275, 28347],
|
||||
"temperature": 0.0,
|
||||
"avg_logprob": -0.245,
|
||||
"compression_ratio": 1.235,
|
||||
"no_speech_prob": 0.012
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
#### Extra Parameters
|
||||
|
||||
The following [sampling parameters][sampling-params] are supported.
|
||||
|
||||
@ -1,12 +1,54 @@
|
||||
# Transformers Reinforcement Learning
|
||||
|
||||
Transformers Reinforcement Learning (TRL) is a full stack library that provides a set of tools to train transformer language models with methods like Supervised Fine-Tuning (SFT), Group Relative Policy Optimization (GRPO), Direct Preference Optimization (DPO), Reward Modeling, and more. The library is integrated with 🤗 transformers.
|
||||
[Transformers Reinforcement Learning](https://huggingface.co/docs/trl) (TRL) is a full stack library that provides a set of tools to train transformer language models with methods like Supervised Fine-Tuning (SFT), Group Relative Policy Optimization (GRPO), Direct Preference Optimization (DPO), Reward Modeling, and more. The library is integrated with 🤗 transformers.
|
||||
|
||||
Online methods such as GRPO or Online DPO require the model to generate completions. vLLM can be used to generate these completions!
|
||||
|
||||
See the guide [vLLM for fast generation in online methods](https://huggingface.co/docs/trl/main/en/speeding_up_training#vllm-for-fast-generation-in-online-methods) in the TRL documentation for more information.
|
||||
See the [vLLM integration guide](https://huggingface.co/docs/trl/main/en/vllm_integration) in the TRL documentation for more information.
|
||||
|
||||
TRL currently supports the following online trainers with vLLM:
|
||||
|
||||
- [GRPO](https://huggingface.co/docs/trl/main/en/grpo_trainer)
|
||||
- [Online DPO](https://huggingface.co/docs/trl/main/en/online_dpo_trainer)
|
||||
- [RLOO](https://huggingface.co/docs/trl/main/en/rloo_trainer)
|
||||
- [Nash-MD](https://huggingface.co/docs/trl/main/en/nash_md_trainer)
|
||||
- [XPO](https://huggingface.co/docs/trl/main/en/xpo_trainer)
|
||||
|
||||
To enable vLLM in TRL, set the `use_vllm` flag in the trainer configuration to `True`.
|
||||
|
||||
## Modes of Using vLLM During Training
|
||||
|
||||
TRL supports **two modes** for integrating vLLM during training: **server mode** and **colocate mode**. You can control how vLLM operates during training with the `vllm_mode` parameter.
|
||||
|
||||
### Server mode
|
||||
|
||||
In **server mode**, vLLM runs as an independent process on dedicated GPUs and communicates with the trainer through HTTP requests. This configuration is ideal when you have separate GPUs for inference, as it isolates generation workloads from training, ensuring stable performance and easier scaling.
|
||||
|
||||
```python
|
||||
from trl import GRPOConfig
|
||||
|
||||
training_args = GRPOConfig(
|
||||
...,
|
||||
use_vllm=True,
|
||||
vllm_mode="server", # default value, can be omitted
|
||||
)
|
||||
```
|
||||
|
||||
### Colocate mode
|
||||
|
||||
In **colocate mode**, vLLM runs inside the trainer process and shares GPU memory with the training model. This avoids launching a separate server and can improve GPU utilization, but may lead to memory contention on the training GPUs.
|
||||
|
||||
```python
|
||||
from trl import GRPOConfig
|
||||
|
||||
training_args = GRPOConfig(
|
||||
...,
|
||||
use_vllm=True,
|
||||
vllm_mode="colocate",
|
||||
)
|
||||
```
|
||||
|
||||
Some trainers also support **vLLM sleep mode**, which offloads parameters and caches to GPU RAM during training, helping reduce memory usage. Learn more in the [memory optimization docs](https://huggingface.co/docs/trl/main/en/reducing_memory_usage#vllm-sleep-mode).
|
||||
|
||||
!!! info
|
||||
For more information on the `use_vllm` flag you can provide to the configs of these online methods, see:
|
||||
- [`trl.GRPOConfig.use_vllm`](https://huggingface.co/docs/trl/main/en/grpo_trainer#trl.GRPOConfig.use_vllm)
|
||||
- [`trl.OnlineDPOConfig.use_vllm`](https://huggingface.co/docs/trl/main/en/online_dpo_trainer#trl.OnlineDPOConfig.use_vllm)
|
||||
For detailed configuration options and flags, refer to the documentation of the specific trainer you are using.
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# Using vLLM
|
||||
|
||||
First, vLLM must be [installed](../getting_started/installation) for your chosen device in either a Python or Docker environment.
|
||||
First, vLLM must be [installed](../getting_started/installation/) for your chosen device in either a Python or Docker environment.
|
||||
|
||||
Then, vLLM supports the following usage patterns:
|
||||
|
||||
|
||||
@ -60,6 +60,12 @@ Key points from the PyTorch security guide:
|
||||
- Implement proper authentication and authorization for management interfaces
|
||||
- Follow the principle of least privilege for all system components
|
||||
|
||||
### 4. **Restrict Domains Access for Media URLs:**
|
||||
|
||||
Restrict domains that vLLM can access for media URLs by setting
|
||||
`--allowed-media-domains` to prevent Server-Side Request Forgery (SSRF) attacks.
|
||||
(e.g. `--allowed-media-domains upload.wikimedia.org github.com www.bogotobogo.com`)
|
||||
|
||||
## Security and Firewalls: Protecting Exposed vLLM Systems
|
||||
|
||||
While vLLM is designed to allow unsafe network services to be isolated to
|
||||
|
||||
@ -87,6 +87,7 @@ def main(args: dict):
|
||||
use_tqdm=False,
|
||||
chat_template=chat_template,
|
||||
)
|
||||
print_outputs(outputs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -54,6 +54,7 @@ def parse_args():
|
||||
"--method",
|
||||
type=str,
|
||||
default="eagle",
|
||||
choices=["ngram", "eagle", "eagle3", "mtp"],
|
||||
)
|
||||
parser.add_argument("--num-spec-tokens", type=int, default=2)
|
||||
parser.add_argument("--prompt-lookup-max", type=int, default=5)
|
||||
@ -118,9 +119,9 @@ def main(args):
|
||||
"prompt_lookup_max": args.prompt_lookup_max,
|
||||
"prompt_lookup_min": args.prompt_lookup_min,
|
||||
}
|
||||
elif args.method.endswith("mtp"):
|
||||
elif args.method == "mtp":
|
||||
speculative_config = {
|
||||
"method": args.method,
|
||||
"method": "mtp",
|
||||
"num_speculative_tokens": args.num_spec_tokens,
|
||||
}
|
||||
else:
|
||||
|
||||
@ -4,6 +4,11 @@
|
||||
experimental support for data-parallel inference with torchrun
|
||||
Note the data load balancing and distribution is done out of the vllm engine,
|
||||
no internal lb supported in external_launcher mode.
|
||||
|
||||
To run this example:
|
||||
```bash
|
||||
$ torchrun --nproc-per-node=2 examples/offline_inference/torchrun_dp_example.py
|
||||
```
|
||||
"""
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
@ -14,7 +19,7 @@ prompts = [
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
] * 50
|
||||
]
|
||||
|
||||
# Create sampling parameters, the same across all ranks
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
@ -45,14 +50,13 @@ prompts = [
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
|
||||
# all ranks will have the same outputs
|
||||
print("-" * 50)
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}\n")
|
||||
print("-" * 50)
|
||||
print(
|
||||
f"DP Rank: {dp_rank} Prompt: {prompt!r}\nGenerated text: {generated_text!r}\n"
|
||||
)
|
||||
|
||||
"""
|
||||
Further tips:
|
||||
|
||||
|
||||
@ -11,9 +11,9 @@ vLLM performance and metrics.
|
||||
|
||||
## Dashboard Descriptions
|
||||
|
||||
- **[performance_statistics.json](./performance_statistics.json)**: Tracks performance metrics including latency and
|
||||
- **performance_statistics.json**: Tracks performance metrics including latency and
|
||||
throughput for your vLLM service.
|
||||
- **[query_statistics.json](./query_statistics.json)**: Tracks query performance, request volume, and key
|
||||
- **query_statistics.json**: Tracks query performance, request volume, and key
|
||||
performance indicators for your vLLM service.
|
||||
|
||||
## Deployment Options
|
||||
|
||||
@ -21,9 +21,9 @@ deployment methods:
|
||||
|
||||
## Dashboard Descriptions
|
||||
|
||||
- **[performance_statistics.yaml](./performance_statistics.yaml)**: Performance metrics with aggregated latency
|
||||
- **performance_statistics.yaml**: Performance metrics with aggregated latency
|
||||
statistics
|
||||
- **[query_statistics.yaml](./query_statistics.yaml)**: Query performance and deployment metrics
|
||||
- **query_statistics.yaml**: Query performance and deployment metrics
|
||||
|
||||
## Deployment Options
|
||||
|
||||
|
||||
@ -38,11 +38,13 @@ client = OpenAI(
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
headers = {"User-Agent": "vLLM Example Client"}
|
||||
|
||||
|
||||
def encode_base64_content_from_url(content_url: str) -> str:
|
||||
"""Encode a content retrieved from a remote url to base64 format."""
|
||||
|
||||
with requests.get(content_url) as response:
|
||||
with requests.get(content_url, headers=headers) as response:
|
||||
response.raise_for_status()
|
||||
result = base64.b64encode(response.content).decode("utf-8")
|
||||
|
||||
@ -50,19 +52,19 @@ def encode_base64_content_from_url(content_url: str) -> str:
|
||||
|
||||
|
||||
# Text-only inference
|
||||
def run_text_only(model: str) -> None:
|
||||
def run_text_only(model: str, max_completion_tokens: int) -> None:
|
||||
chat_completion = client.chat.completions.create(
|
||||
messages=[{"role": "user", "content": "What's the capital of France?"}],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion.choices[0].message.content
|
||||
print("Chat completion output:", result)
|
||||
print("Chat completion output:\n", result)
|
||||
|
||||
|
||||
# Single-image input inference
|
||||
def run_single_image(model: str) -> None:
|
||||
def run_single_image(model: str, max_completion_tokens: int) -> None:
|
||||
## Use image url in the payload
|
||||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
chat_completion_from_url = client.chat.completions.create(
|
||||
@ -79,11 +81,11 @@ def run_single_image(model: str) -> None:
|
||||
}
|
||||
],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion_from_url.choices[0].message.content
|
||||
print("Chat completion output from image url:", result)
|
||||
print("Chat completion output from image url:\n", result)
|
||||
|
||||
## Use base64 encoded image in the payload
|
||||
image_base64 = encode_base64_content_from_url(image_url)
|
||||
@ -101,7 +103,7 @@ def run_single_image(model: str) -> None:
|
||||
}
|
||||
],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion_from_base64.choices[0].message.content
|
||||
@ -109,7 +111,7 @@ def run_single_image(model: str) -> None:
|
||||
|
||||
|
||||
# Multi-image input inference
|
||||
def run_multi_image(model: str) -> None:
|
||||
def run_multi_image(model: str, max_completion_tokens: int) -> None:
|
||||
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
|
||||
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
|
||||
chat_completion_from_url = client.chat.completions.create(
|
||||
@ -130,15 +132,15 @@ def run_multi_image(model: str) -> None:
|
||||
}
|
||||
],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion_from_url.choices[0].message.content
|
||||
print("Chat completion output:", result)
|
||||
print("Chat completion output:\n", result)
|
||||
|
||||
|
||||
# Video input inference
|
||||
def run_video(model: str) -> None:
|
||||
def run_video(model: str, max_completion_tokens: int) -> None:
|
||||
video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"
|
||||
video_base64 = encode_base64_content_from_url(video_url)
|
||||
|
||||
@ -157,11 +159,11 @@ def run_video(model: str) -> None:
|
||||
}
|
||||
],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion_from_url.choices[0].message.content
|
||||
print("Chat completion output from image url:", result)
|
||||
print("Chat completion output from video url:\n", result)
|
||||
|
||||
## Use base64 encoded video in the payload
|
||||
chat_completion_from_base64 = client.chat.completions.create(
|
||||
@ -178,15 +180,15 @@ def run_video(model: str) -> None:
|
||||
}
|
||||
],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion_from_base64.choices[0].message.content
|
||||
print("Chat completion output from base64 encoded image:", result)
|
||||
print("Chat completion output from base64 encoded video:\n", result)
|
||||
|
||||
|
||||
# Audio input inference
|
||||
def run_audio(model: str) -> None:
|
||||
def run_audio(model: str, max_completion_tokens: int) -> None:
|
||||
from vllm.assets.audio import AudioAsset
|
||||
|
||||
audio_url = AudioAsset("winning_call").url
|
||||
@ -211,11 +213,11 @@ def run_audio(model: str) -> None:
|
||||
}
|
||||
],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion_from_base64.choices[0].message.content
|
||||
print("Chat completion output from input audio:", result)
|
||||
print("Chat completion output from input audio:\n", result)
|
||||
|
||||
# HTTP URL
|
||||
chat_completion_from_url = client.chat.completions.create(
|
||||
@ -235,11 +237,11 @@ def run_audio(model: str) -> None:
|
||||
}
|
||||
],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion_from_url.choices[0].message.content
|
||||
print("Chat completion output from audio url:", result)
|
||||
print("Chat completion output from audio url:\n", result)
|
||||
|
||||
# base64 URL
|
||||
chat_completion_from_base64 = client.chat.completions.create(
|
||||
@ -259,14 +261,14 @@ def run_audio(model: str) -> None:
|
||||
}
|
||||
],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion_from_base64.choices[0].message.content
|
||||
print("Chat completion output from base64 encoded audio:", result)
|
||||
print("Chat completion output from base64 encoded audio:\n", result)
|
||||
|
||||
|
||||
def run_multi_audio(model: str) -> None:
|
||||
def run_multi_audio(model: str, max_completion_tokens: int) -> None:
|
||||
from vllm.assets.audio import AudioAsset
|
||||
|
||||
# Two different audios to showcase batched inference.
|
||||
@ -300,11 +302,11 @@ def run_multi_audio(model: str) -> None:
|
||||
}
|
||||
],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
)
|
||||
|
||||
result = chat_completion_from_base64.choices[0].message.content
|
||||
print("Chat completion output from input audio:", result)
|
||||
print("Chat completion output from input audio:\n", result)
|
||||
|
||||
|
||||
example_function_map = {
|
||||
@ -330,13 +332,20 @@ def parse_args():
|
||||
choices=list(example_function_map.keys()),
|
||||
help="Conversation type with multimodal data.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-completion-tokens",
|
||||
"-n",
|
||||
type=int,
|
||||
default=128,
|
||||
help="Maximum number of tokens to generate for each completion.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main(args) -> None:
|
||||
chat_type = args.chat_type
|
||||
model = get_first_model(client)
|
||||
example_function_map[chat_type](model)
|
||||
example_function_map[chat_type](model, args.max_completion_tokens)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -102,7 +102,6 @@ plugins:
|
||||
- https://numpy.org/doc/stable/objects.inv
|
||||
- https://pytorch.org/docs/stable/objects.inv
|
||||
- https://psutil.readthedocs.io/en/stable/objects.inv
|
||||
- https://huggingface.co/docs/transformers/main/en/objects.inv
|
||||
|
||||
markdown_extensions:
|
||||
- attr_list
|
||||
|
||||
@ -1,12 +1,11 @@
|
||||
# Temporarily used for x86 CPU backend to avoid performance regression of torch>2.6.0+cpu,
|
||||
# see https://github.com/pytorch/pytorch/pull/151218
|
||||
cmake>=3.26.1
|
||||
ninja
|
||||
packaging>=24.2
|
||||
setuptools>=77.0.3,<80.0.0
|
||||
setuptools-scm>=8
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
torch==2.6.0+cpu
|
||||
torch==2.8.0+cpu; platform_machine == "x86_64"
|
||||
torch==2.8.0; platform_machine == "ppc64le" or platform_machine == "aarch64" or platform_system == "Darwin"
|
||||
wheel
|
||||
jinja2>=3.1.6
|
||||
regex
|
||||
|
||||
@ -8,7 +8,7 @@ numba == 0.61.2; python_version > '3.9' and platform_machine != "s390x"
|
||||
packaging>=24.2
|
||||
setuptools>=77.0.3,<80.0.0
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
torch==2.6.0+cpu; platform_machine == "x86_64" # torch>2.6.0+cpu has performance regression on x86 platform, see https://github.com/pytorch/pytorch/pull/151218
|
||||
torch==2.8.0+cpu; platform_machine == "x86_64"
|
||||
torch==2.8.0; platform_system == "Darwin"
|
||||
torch==2.8.0; platform_machine == "ppc64le" or platform_machine == "aarch64"
|
||||
|
||||
@ -23,7 +23,7 @@ datasets # for benchmark scripts
|
||||
|
||||
# Intel Extension for PyTorch, only for x86_64 CPUs
|
||||
intel-openmp==2024.2.1; platform_machine == "x86_64"
|
||||
intel_extension_for_pytorch==2.6.0; platform_machine == "x86_64" # torch>2.6.0+cpu has performance regression on x86 platform, see https://github.com/pytorch/pytorch/pull/151218
|
||||
intel_extension_for_pytorch==2.8.0; platform_machine == "x86_64"
|
||||
triton==3.2.0; platform_machine == "x86_64" # Triton is required for torch 2.6+cpu, as it is imported in torch.compile.
|
||||
|
||||
# Use this to gather CPU info and optimize based on ARM Neoverse cores
|
||||
|
||||
@ -43,7 +43,6 @@ tritonclient==2.51.0
|
||||
numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Required for N-gram speculative decoding
|
||||
numba == 0.61.2; python_version > '3.9'
|
||||
numpy
|
||||
runai-model-streamer==0.11.0
|
||||
runai-model-streamer-s3==0.11.0
|
||||
runai-model-streamer[s3]==0.14.0
|
||||
fastsafetensors>=0.1.10
|
||||
pydantic>=2.10 # 2.9 leads to error on python 3.10
|
||||
|
||||
@ -5,8 +5,6 @@ numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Req
|
||||
numba == 0.61.2; python_version > '3.9'
|
||||
|
||||
# Dependencies for AMD GPUs
|
||||
boto3
|
||||
botocore
|
||||
datasets
|
||||
ray[cgraph]>=2.48.0 # Ray Compiled Graph, required for pipeline parallelism in V1.
|
||||
peft
|
||||
@ -15,7 +13,6 @@ tensorizer==2.10.1
|
||||
packaging>=24.2
|
||||
setuptools>=77.0.3,<80.0.0
|
||||
setuptools-scm>=8
|
||||
runai-model-streamer==0.11.0
|
||||
runai-model-streamer-s3==0.11.0
|
||||
runai-model-streamer[s3]==0.14.0
|
||||
conch-triton-kernels==1.2.1
|
||||
timm>=1.0.17
|
||||
@ -51,8 +51,7 @@ tritonclient==2.51.0
|
||||
numba == 0.60.0; python_version == '3.9' # v0.61 doesn't support Python 3.9. Required for N-gram speculative decoding
|
||||
numba == 0.61.2; python_version > '3.9'
|
||||
numpy
|
||||
runai-model-streamer==0.11.0
|
||||
runai-model-streamer-s3==0.11.0
|
||||
runai-model-streamer[s3]==0.14.0
|
||||
fastsafetensors>=0.1.10
|
||||
pydantic>=2.10 # 2.9 leads to error on python 3.10
|
||||
decord==0.6.0
|
||||
|
||||
@ -72,7 +72,9 @@ blobfile==3.0.0
|
||||
bm25s==0.2.13
|
||||
# via mteb
|
||||
boto3==1.35.57
|
||||
# via tensorizer
|
||||
# via
|
||||
# runai-model-streamer-s3
|
||||
# tensorizer
|
||||
botocore==1.35.57
|
||||
# via
|
||||
# boto3
|
||||
@ -925,10 +927,10 @@ rsa==4.9.1
|
||||
# via google-auth
|
||||
rtree==1.4.0
|
||||
# via torchgeo
|
||||
runai-model-streamer==0.11.0
|
||||
# via -r requirements/test.in
|
||||
runai-model-streamer-s3==0.11.0
|
||||
runai-model-streamer==0.14.0
|
||||
# via -r requirements/test.in
|
||||
runai-model-streamer-s3==0.14.0
|
||||
# via runai-model-streamer
|
||||
s3transfer==0.10.3
|
||||
# via boto3
|
||||
sacrebleu==2.4.3
|
||||
|
||||
9
setup.py
9
setup.py
@ -322,6 +322,8 @@ class precompiled_wheel_utils:
|
||||
"vllm/_C.abi3.so",
|
||||
"vllm/_moe_C.abi3.so",
|
||||
"vllm/_flashmla_C.abi3.so",
|
||||
"vllm/_flashmla_extension_C.abi3.so",
|
||||
"vllm/_sparse_flashmla_C.abi3.so",
|
||||
"vllm/vllm_flash_attn/_vllm_fa2_C.abi3.so",
|
||||
"vllm/vllm_flash_attn/_vllm_fa3_C.abi3.so",
|
||||
"vllm/cumem_allocator.abi3.so",
|
||||
@ -589,6 +591,8 @@ if _is_cuda():
|
||||
# not targeting a hopper system
|
||||
ext_modules.append(
|
||||
CMakeExtension(name="vllm._flashmla_C", optional=True))
|
||||
ext_modules.append(
|
||||
CMakeExtension(name="vllm._flashmla_extension_C", optional=True))
|
||||
ext_modules.append(CMakeExtension(name="vllm.cumem_allocator"))
|
||||
|
||||
if _build_custom_ops():
|
||||
@ -654,10 +658,7 @@ setup(
|
||||
"bench": ["pandas", "datasets"],
|
||||
"tensorizer": ["tensorizer==2.10.1"],
|
||||
"fastsafetensors": ["fastsafetensors >= 0.1.10"],
|
||||
"runai": [
|
||||
"runai-model-streamer >= 0.14.0", "runai-model-streamer-gcs",
|
||||
"google-cloud-storage", "runai-model-streamer-s3", "boto3"
|
||||
],
|
||||
"runai": ["runai-model-streamer[s3,gcs] >= 0.14.0"],
|
||||
"audio": ["librosa", "soundfile",
|
||||
"mistral_common[audio]"], # Required for audio processing
|
||||
"video": [], # Kept for backwards compatibility
|
||||
|
||||
@ -3,12 +3,11 @@
|
||||
import contextlib
|
||||
import os
|
||||
import weakref
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.utils import wait_for_gpu_memory_to_clear
|
||||
from tests.v1.attention.utils import full_cg_backend_configs as backend_configs
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.config import CompilationConfig
|
||||
from vllm.platforms import current_platform
|
||||
@ -33,89 +32,6 @@ def temporary_environ(env_vars):
|
||||
os.environ[k] = v
|
||||
|
||||
|
||||
@dataclass
|
||||
class BackendConfig:
|
||||
name: str
|
||||
env_vars: dict
|
||||
comp_config: dict
|
||||
specific_gpu_arch: Optional[tuple] = None
|
||||
|
||||
|
||||
# Define all backend configurations of full cudagraph to be tested
|
||||
backend_configs = {
|
||||
# FA3 on Hopper
|
||||
"FA3":
|
||||
BackendConfig(name="FA3",
|
||||
env_vars={
|
||||
"VLLM_FLASH_ATTN_VERSION": "3",
|
||||
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
|
||||
},
|
||||
comp_config={
|
||||
"cudagraph_mode": "FULL",
|
||||
},
|
||||
specific_gpu_arch=(9, 0)),
|
||||
# FlashMLA on Hopper
|
||||
"FlashMLA":
|
||||
BackendConfig(name="FlashMLA",
|
||||
env_vars={
|
||||
"VLLM_ATTENTION_BACKEND": "FLASHMLA",
|
||||
},
|
||||
comp_config={
|
||||
"cudagraph_mode": "FULL_AND_PIECEWISE",
|
||||
},
|
||||
specific_gpu_arch=(9, 0)),
|
||||
# FlashAttention MLA on Hopper
|
||||
"FlashAttentionMLA":
|
||||
BackendConfig(name="FlashAttentionMLA",
|
||||
env_vars={
|
||||
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN_MLA",
|
||||
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
|
||||
},
|
||||
comp_config={
|
||||
"cudagraph_mode": "FULL_DECODE_ONLY",
|
||||
},
|
||||
specific_gpu_arch=(9, 0)),
|
||||
# Cutlass MLA on Blackwell
|
||||
"CutlassMLA":
|
||||
BackendConfig(
|
||||
name="CutlassMLA",
|
||||
env_vars={
|
||||
"VLLM_USE_V1": "1",
|
||||
"VLLM_ATTENTION_BACKEND": "CUTLASS_MLA",
|
||||
"FORCE_NUM_KV_SPLITS":
|
||||
"1", # TODO: remove this when hang issue is fixed
|
||||
},
|
||||
comp_config={
|
||||
"cudagraph_mode": "FULL_AND_PIECEWISE",
|
||||
"cudagraph_capture_sizes": [16, 32, 64, 128, 256, 512],
|
||||
},
|
||||
specific_gpu_arch=(10, 0)),
|
||||
# FA2
|
||||
"FA2":
|
||||
BackendConfig(name="FA2",
|
||||
env_vars={
|
||||
"VLLM_FLASH_ATTN_VERSION": "2",
|
||||
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
|
||||
},
|
||||
comp_config={
|
||||
"cudagraph_mode": "FULL",
|
||||
}),
|
||||
# Triton Attention
|
||||
"TritonAttn":
|
||||
BackendConfig(name="TritonAttn",
|
||||
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN_VLLM_V1"},
|
||||
comp_config={
|
||||
"cudagraph_mode": "FULL",
|
||||
}),
|
||||
# FlashInfer
|
||||
"FlashInfer":
|
||||
BackendConfig(name="FlashInfer",
|
||||
env_vars={"VLLM_ATTENTION_BACKEND": "FLASHINFER"},
|
||||
comp_config={
|
||||
"cudagraph_mode": "FULL_AND_PIECEWISE",
|
||||
}),
|
||||
}
|
||||
|
||||
test_params_full_cudagraph = []
|
||||
|
||||
# deepseek-ai/DeepSeek-V2-Lite with MLA
|
||||
|
||||
@ -4,7 +4,7 @@ import pytest
|
||||
|
||||
import vllm
|
||||
from vllm.compilation.counter import compilation_counter
|
||||
from vllm.config import CompilationConfig, VllmConfig
|
||||
from vllm.config import CompilationConfig, CUDAGraphMode, VllmConfig
|
||||
from vllm.utils import _is_torch_equal_or_newer
|
||||
|
||||
|
||||
@ -106,7 +106,6 @@ def test_dynamo_as_is(vllm_runner, monkeypatch):
|
||||
def test_no_compilation(vllm_runner, monkeypatch):
|
||||
# Disable multiprocessing so that the counter is in the same process
|
||||
monkeypatch.setenv('VLLM_ENABLE_V1_MULTIPROCESSING', '0')
|
||||
|
||||
with (
|
||||
compilation_counter.expect(num_graphs_seen=0,
|
||||
dynamo_as_is_count=0),
|
||||
@ -131,3 +130,67 @@ def test_enforce_eager(vllm_runner, monkeypatch):
|
||||
enforce_eager=True,
|
||||
gpu_memory_utilization=0.4) as _):
|
||||
pass
|
||||
|
||||
|
||||
def test_splitting_ops_dynamic():
|
||||
# Default config
|
||||
config = VllmConfig()
|
||||
assert config.compilation_config.cudagraph_mode == \
|
||||
CUDAGraphMode.FULL_AND_PIECEWISE
|
||||
assert config.compilation_config.splitting_ops_contain_attention()
|
||||
|
||||
# When use_inductor_graph_partition=True
|
||||
if _is_torch_equal_or_newer('2.9.0.dev'):
|
||||
# inductor graph partition is only available in PyTorch 2.9+.
|
||||
# this is a fast config check so we are not using pytest.skip.
|
||||
config = VllmConfig(compilation_config=CompilationConfig(
|
||||
use_inductor_graph_partition=True,
|
||||
splitting_ops=["silly_attention"]))
|
||||
# should ignore splitting_ops
|
||||
assert config.compilation_config.splitting_ops == []
|
||||
|
||||
# When attn_fusion pass enabled.
|
||||
config = VllmConfig(compilation_config=CompilationConfig(
|
||||
pass_config={
|
||||
"enable_attn_fusion": True,
|
||||
"enable_noop": True
|
||||
},
|
||||
custom_ops=["+quant_fp8"],
|
||||
cudagraph_mode=CUDAGraphMode.PIECEWISE,
|
||||
))
|
||||
assert config.compilation_config.splitting_ops == []
|
||||
# cudagraph mode also fall back to FULL
|
||||
assert config.compilation_config.cudagraph_mode == \
|
||||
CUDAGraphMode.FULL
|
||||
|
||||
# splitting_ops can not contain attention ops when attn_fusion
|
||||
# pass enabled.
|
||||
with pytest.raises(AssertionError):
|
||||
config = VllmConfig(compilation_config=CompilationConfig(
|
||||
pass_config={
|
||||
"enable_attn_fusion": True,
|
||||
"enable_noop": True
|
||||
},
|
||||
custom_ops=["+quant_fp8"],
|
||||
cudagraph_mode=CUDAGraphMode.PIECEWISE,
|
||||
# work around for accessing all attntion ops
|
||||
splitting_ops=CompilationConfig()._attention_ops,
|
||||
))
|
||||
|
||||
# When both use_inductor_graph_partition and attn_fusion pass enabled.
|
||||
if _is_torch_equal_or_newer('2.9.0.dev'):
|
||||
config = VllmConfig(compilation_config=CompilationConfig(
|
||||
use_inductor_graph_partition=True,
|
||||
pass_config={
|
||||
"enable_attn_fusion": True,
|
||||
"enable_noop": True
|
||||
},
|
||||
custom_ops=["+quant_fp8"],
|
||||
cudagraph_mode=CUDAGraphMode.PIECEWISE,
|
||||
))
|
||||
assert config.compilation_config.splitting_ops == []
|
||||
# enable_attn_fusion is directly support under
|
||||
# use_inductor_graph_partition=True, and cudagraph_mode
|
||||
# is unchanged.
|
||||
assert config.compilation_config.cudagraph_mode == \
|
||||
CUDAGraphMode.PIECEWISE
|
||||
|
||||
@ -139,6 +139,21 @@ def test_custom_compile_config(
|
||||
run_model(compilation_config, model, model_kwargs)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"optimization_level",
|
||||
[CompilationLevel.NO_COMPILATION, CompilationLevel.PIECEWISE],
|
||||
)
|
||||
def test_fp8_kv_scale_compile(optimization_level: int):
|
||||
model = "Qwen/Qwen2-0.5B"
|
||||
model_kwargs = {
|
||||
"quantization": "fp8",
|
||||
"kv_cache_dtype": "fp8_e4m3",
|
||||
"calculate_kv_scales": True,
|
||||
"max_model_len": 512,
|
||||
}
|
||||
run_model(optimization_level, model, model_kwargs)
|
||||
|
||||
|
||||
def test_inductor_graph_partition_attn_fusion(caplog_vllm):
|
||||
if not is_torch_equal_or_newer("2.9.0.dev"):
|
||||
pytest.skip("inductor graph partition is only available "
|
||||
|
||||
@ -191,7 +191,6 @@ class AttentionQuantPatternModel(torch.nn.Module):
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
head_size=self.head_size,
|
||||
dtype=self.kv_cache_dtype,
|
||||
use_mla=False,
|
||||
),
|
||||
layer_names=[self.attn.layer_name],
|
||||
vllm_config=self.vllm_config,
|
||||
@ -338,7 +337,7 @@ else:
|
||||
@pytest.mark.parametrize("model_name, model_class", MODELS)
|
||||
@pytest.mark.parametrize("backend",
|
||||
[_Backend.FLASHINFER] if current_platform.is_cuda()
|
||||
else [_Backend.TRITON_ATTN_VLLM_V1])
|
||||
else [_Backend.TRITON_ATTN])
|
||||
@pytest.mark.parametrize(
|
||||
"split_attention",
|
||||
[False, True] if current_platform.is_rocm() else [False])
|
||||
|
||||
@ -50,8 +50,11 @@ def test_is_type(type_hint, type, expected):
|
||||
|
||||
@pytest.mark.parametrize(("type_hints", "type", "expected"), [
|
||||
({float, int}, int, True),
|
||||
({int, tuple}, int, True),
|
||||
({int, tuple[int]}, int, True),
|
||||
({int, tuple[int, ...]}, int, True),
|
||||
({int, tuple[int]}, float, False),
|
||||
({int, tuple[int, ...]}, float, False),
|
||||
({str, Literal["x", "y"]}, Literal, True),
|
||||
])
|
||||
def test_contains_type(type_hints, type, expected):
|
||||
|
||||
@ -208,3 +208,11 @@ def zephyr_lora_files():
|
||||
"""Download zephyr LoRA files once per test session."""
|
||||
from huggingface_hub import snapshot_download
|
||||
return snapshot_download(repo_id="typeof/zephyr-7b-beta-lora")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def opt125_lora_files() -> str:
|
||||
"""Download opt-125m LoRA files once per test session."""
|
||||
from huggingface_hub import snapshot_download
|
||||
return snapshot_download(
|
||||
repo_id="peft-internal-testing/opt-125m-dummy-lora")
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
|
||||
import openai # use the official client for correctness check
|
||||
import pytest
|
||||
@ -15,19 +16,21 @@ from transformers import AutoConfig
|
||||
from ...utils import RemoteOpenAIServer
|
||||
|
||||
# any model with a chat template should work here
|
||||
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
||||
MODEL_NAME = "facebook/opt-125m"
|
||||
LORA_SERVING_MODEL_NAME = "opt125m-lora"
|
||||
|
||||
CONFIG = AutoConfig.from_pretrained(MODEL_NAME)
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def default_server_args() -> list[str]:
|
||||
return [
|
||||
@pytest.fixture(scope="module", params=["use-lora"])
|
||||
def default_server_args(request: pytest.FixtureRequest,
|
||||
opt125_lora_files: str) -> list[str]:
|
||||
args = [
|
||||
# use half precision for speed and memory savings in CI environment
|
||||
"--dtype",
|
||||
"bfloat16",
|
||||
"--max-model-len",
|
||||
"8192",
|
||||
"2048",
|
||||
"--max-num-seqs",
|
||||
"128",
|
||||
"--enforce-eager",
|
||||
@ -35,6 +38,46 @@ def default_server_args() -> list[str]:
|
||||
"--enable-prompt-embeds",
|
||||
]
|
||||
|
||||
if request.param == "use-lora":
|
||||
lora_module_1 = {
|
||||
"name": LORA_SERVING_MODEL_NAME,
|
||||
"path": opt125_lora_files,
|
||||
"base_model_name": MODEL_NAME
|
||||
}
|
||||
|
||||
args.extend([
|
||||
"--enable-lora",
|
||||
"--lora-module",
|
||||
json.dumps(lora_module_1),
|
||||
"--max-lora-rank",
|
||||
"64",
|
||||
"--max-cpu-loras",
|
||||
"2",
|
||||
])
|
||||
|
||||
return args
|
||||
|
||||
|
||||
EXAMPLE_PROMPTS = [
|
||||
"Hello, my name is",
|
||||
"What is an LLM?",
|
||||
]
|
||||
|
||||
|
||||
def _encode_embeds(embeds: torch.Tensor):
|
||||
buffer = io.BytesIO()
|
||||
torch.save(embeds, buffer)
|
||||
return base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def example_prompt_embeds(hf_runner):
|
||||
"""Create example embeddings and return them as base64 encoded string."""
|
||||
with hf_runner(MODEL_NAME) as hf_model:
|
||||
example_embeddings = hf_model.get_prompt_embeddings(EXAMPLE_PROMPTS)
|
||||
|
||||
return [_encode_embeds(item) for item in example_embeddings]
|
||||
|
||||
|
||||
@pytest.fixture(scope="module",
|
||||
params=["", "--disable-frontend-multiprocessing"])
|
||||
@ -52,21 +95,16 @@ async def client_with_prompt_embeds(server_with_prompt_embeds):
|
||||
yield async_client
|
||||
|
||||
|
||||
def create_dummy_embeds(num_tokens: int = 5) -> str:
|
||||
"""Create dummy embeddings and return them as base64 encoded string."""
|
||||
dummy_embeds = torch.randn(num_tokens, CONFIG.hidden_size)
|
||||
buffer = io.BytesIO()
|
||||
torch.save(dummy_embeds, buffer)
|
||||
return base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||||
|
||||
|
||||
@pytest.mark.skip("This test is skipped because it is flaky.")
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME, LORA_SERVING_MODEL_NAME])
|
||||
async def test_completions_with_prompt_embeds(
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
|
||||
example_prompt_embeds,
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI,
|
||||
model_name: str,
|
||||
):
|
||||
encoded_embeds, encoded_embeds2 = example_prompt_embeds
|
||||
|
||||
# Test case: Single prompt embeds input
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -77,7 +115,6 @@ async def test_completions_with_prompt_embeds(
|
||||
assert completion.choices[0].prompt_logprobs is None
|
||||
|
||||
# Test case: batch completion with prompt_embeds
|
||||
encoded_embeds2 = create_dummy_embeds()
|
||||
completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -89,7 +126,6 @@ async def test_completions_with_prompt_embeds(
|
||||
assert len(completion.choices[1].text) >= 1
|
||||
|
||||
# Test case: streaming with prompt_embeds
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
single_completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -117,7 +153,6 @@ async def test_completions_with_prompt_embeds(
|
||||
assert "".join(chunks) == single_output
|
||||
|
||||
# Test case: batch streaming with prompt_embeds
|
||||
encoded_embeds2 = create_dummy_embeds()
|
||||
stream = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -139,7 +174,6 @@ async def test_completions_with_prompt_embeds(
|
||||
assert len(chunks_stream_embeds[1]) > 0
|
||||
|
||||
# Test case: mixed text and prompt_embeds
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
completion_mixed = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="This is a prompt",
|
||||
@ -167,7 +201,7 @@ async def test_completions_with_prompt_embeds(
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME, LORA_SERVING_MODEL_NAME])
|
||||
async def test_completions_errors_with_prompt_embeds(
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
|
||||
# Test error case: invalid prompt_embeds
|
||||
@ -182,12 +216,16 @@ async def test_completions_errors_with_prompt_embeds(
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("logprobs_arg", [1, 0])
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME, LORA_SERVING_MODEL_NAME])
|
||||
async def test_completions_with_logprobs_and_prompt_embeds(
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI, logprobs_arg: int,
|
||||
model_name: str):
|
||||
example_prompt_embeds,
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI,
|
||||
logprobs_arg: int,
|
||||
model_name: str,
|
||||
):
|
||||
encoded_embeds, encoded_embeds2 = example_prompt_embeds
|
||||
|
||||
# Test case: Logprobs using prompt_embeds
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -207,7 +245,6 @@ async def test_completions_with_logprobs_and_prompt_embeds(
|
||||
assert len(logprobs.tokens) == 5
|
||||
|
||||
# Test case: Log probs with batch completion and prompt_embeds
|
||||
encoded_embeds2 = create_dummy_embeds()
|
||||
completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -232,9 +269,12 @@ async def test_completions_with_logprobs_and_prompt_embeds(
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_prompt_logprobs_raises_error(
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI):
|
||||
example_prompt_embeds,
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI,
|
||||
):
|
||||
encoded_embeds, _ = example_prompt_embeds
|
||||
|
||||
with pytest.raises(BadRequestError, match="not compatible"):
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
await client_with_prompt_embeds.completions.create(
|
||||
model=MODEL_NAME,
|
||||
prompt="",
|
||||
|
||||
@ -45,6 +45,7 @@ class MockModelConfig:
|
||||
logits_processor_pattern: Optional[str] = None
|
||||
diff_sampling_param: Optional[dict] = None
|
||||
allowed_local_media_path: str = ""
|
||||
allowed_media_domains: Optional[list[str]] = None
|
||||
encoder_config = None
|
||||
generation_config: str = "auto"
|
||||
skip_tokenizer_init: bool = False
|
||||
|
||||
@ -68,7 +68,7 @@ def default_server_args(with_tool_parser: bool):
|
||||
def gptoss_server(monkeypatch_module: pytest.MonkeyPatch,
|
||||
default_server_args: list[str]):
|
||||
with monkeypatch_module.context() as m:
|
||||
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN_VLLM_V1")
|
||||
m.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN")
|
||||
with RemoteOpenAIServer(GPT_OSS_MODEL_NAME,
|
||||
default_server_args) as remote_server:
|
||||
yield remote_server
|
||||
@ -240,6 +240,7 @@ class MockModelConfig:
|
||||
logits_processor_pattern = None
|
||||
diff_sampling_param: Optional[dict] = None
|
||||
allowed_local_media_path: str = ""
|
||||
allowed_media_domains: Optional[list[str]] = None
|
||||
encoder_config = None
|
||||
generation_config: str = "auto"
|
||||
media_io_kwargs: dict[str, dict[str, Any]] = field(default_factory=dict)
|
||||
|
||||
@ -19,6 +19,7 @@ from vllm.entrypoints.chat_utils import (_try_extract_ast, load_chat_template,
|
||||
parse_chat_messages,
|
||||
parse_chat_messages_futures,
|
||||
resolve_chat_template_content_format,
|
||||
resolve_chat_template_kwargs,
|
||||
resolve_hf_chat_template)
|
||||
from vllm.multimodal import MultiModalDataDict, MultiModalUUIDDict
|
||||
from vllm.multimodal.utils import (encode_audio_base64, encode_image_base64,
|
||||
@ -37,6 +38,7 @@ QWEN2AUDIO_MODEL_ID = "Qwen/Qwen2-Audio-7B-Instruct"
|
||||
QWEN2VL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
|
||||
QWEN25VL_MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
|
||||
QWEN25OMNI_MODEL_ID = "Qwen/Qwen2.5-Omni-7B"
|
||||
QWEN3_MODEL_ID = "Qwen/Qwen3-8B"
|
||||
LLAMA_GUARD_MODEL_ID = "meta-llama/Llama-Guard-3-1B"
|
||||
HERMES_MODEL_ID = "NousResearch/Hermes-3-Llama-3.1-8B"
|
||||
MISTRAL_MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
@ -2255,6 +2257,89 @@ def test_resolve_hf_chat_template(sample_json_schema, model, use_tools):
|
||||
assert isinstance(chat_template, str)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model, expected_kwargs",
|
||||
[
|
||||
(
|
||||
QWEN2VL_MODEL_ID,
|
||||
{
|
||||
"add_vision_id", "add_generation_prompt",
|
||||
"continue_final_message", "tools"
|
||||
},
|
||||
),
|
||||
(
|
||||
QWEN3_MODEL_ID,
|
||||
{
|
||||
"enable_thinking", "add_generation_prompt",
|
||||
"continue_final_message", "tools"
|
||||
},
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_resolve_hf_chat_template_kwargs(sample_json_schema, model,
|
||||
expected_kwargs):
|
||||
"""checks that chat_template is a dict type for HF models."""
|
||||
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
|
||||
model_info.check_available_online(on_fail="skip")
|
||||
|
||||
tools = ([{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "dummy_function_name",
|
||||
"description": "This is a dummy function",
|
||||
"parameters": sample_json_schema,
|
||||
},
|
||||
}])
|
||||
|
||||
chat_template_kwargs = {
|
||||
# both unused
|
||||
"unsed_kwargs_1": 123,
|
||||
"unsed_kwargs_2": "abc",
|
||||
# should not appear
|
||||
"chat_template": "{% Hello world! %}",
|
||||
# used by tokenizer
|
||||
"continue_final_message": True,
|
||||
"tools": tools,
|
||||
# both used by Qwen2-VL and Qwen3
|
||||
"add_generation_prompt": True,
|
||||
# only used by Qwen2-VL
|
||||
"add_vision_id": True,
|
||||
# only used by Qwen3
|
||||
"enable_thinking": True,
|
||||
}
|
||||
|
||||
model_config = ModelConfig(
|
||||
model,
|
||||
tokenizer=model_info.tokenizer or model,
|
||||
tokenizer_mode=model_info.tokenizer_mode,
|
||||
revision=model_info.revision,
|
||||
trust_remote_code=model_info.trust_remote_code,
|
||||
hf_overrides=model_info.hf_overrides,
|
||||
skip_tokenizer_init=model_info.skip_tokenizer_init,
|
||||
enforce_eager=model_info.enforce_eager,
|
||||
dtype=model_info.dtype)
|
||||
|
||||
# Build the tokenizer
|
||||
tokenizer = get_tokenizer(
|
||||
model,
|
||||
trust_remote_code=model_config.trust_remote_code,
|
||||
)
|
||||
|
||||
# Test detecting the tokenizer's chat_template
|
||||
chat_template = resolve_hf_chat_template(
|
||||
tokenizer,
|
||||
chat_template=None,
|
||||
tools=tools,
|
||||
model_config=model_config,
|
||||
)
|
||||
resolved_chat_template_kwargs = resolve_chat_template_kwargs(
|
||||
tokenizer,
|
||||
chat_template=chat_template,
|
||||
chat_template_kwargs=chat_template_kwargs,
|
||||
)
|
||||
assert set(resolved_chat_template_kwargs.keys()) == expected_kwargs
|
||||
|
||||
|
||||
# NOTE: Qwen2-Audio default chat template is specially defined inside
|
||||
# processor class instead of using `tokenizer_config.json`
|
||||
# yapf: disable
|
||||
|
||||
@ -31,7 +31,7 @@ DEVICE_MLA_BACKENDS = {
|
||||
}
|
||||
|
||||
DEVICE_REGULAR_ATTN_BACKENDS = {
|
||||
"cuda": ["XFORMERS", "FLASHINFER"],
|
||||
"cuda": ["XFORMERS", "FLASHINFER", "FLASH_ATTN"],
|
||||
"hip": ["ROCM_FLASH"],
|
||||
"cpu": ["TORCH_SDPA"],
|
||||
}
|
||||
@ -86,7 +86,7 @@ def test_env(
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
CpuPlatform()):
|
||||
backend = get_attn_backend(16, torch.float16, None, block_size)
|
||||
assert backend.get_name() == "TORCH_SDPA_VLLM_V1"
|
||||
assert backend.get_name() == "TORCH_SDPA"
|
||||
|
||||
elif device == "hip":
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
@ -125,7 +125,7 @@ def test_env(
|
||||
None,
|
||||
block_size,
|
||||
use_mla=use_mla)
|
||||
expected = f"{name}_VLLM_V1"
|
||||
expected = name
|
||||
assert backend.get_name() == expected
|
||||
else:
|
||||
backend = get_attn_backend(16,
|
||||
@ -133,7 +133,7 @@ def test_env(
|
||||
None,
|
||||
block_size,
|
||||
use_mla=use_mla)
|
||||
expected = "TRITON_ATTN_VLLM_V1"
|
||||
expected = "TRITON_ATTN"
|
||||
assert backend.get_name() == expected
|
||||
|
||||
elif device == "cuda":
|
||||
@ -160,7 +160,7 @@ def test_env(
|
||||
None,
|
||||
block_size,
|
||||
use_mla=use_mla)
|
||||
expected = "CUTLASS_MLA_VLLM_V1"
|
||||
expected = "CUTLASS_MLA"
|
||||
assert backend.get_name() == expected
|
||||
elif name == "FLASHINFER_MLA":
|
||||
if block_size not in [32, 64]:
|
||||
@ -193,7 +193,7 @@ def test_env(
|
||||
None,
|
||||
block_size,
|
||||
use_mla=use_mla)
|
||||
expected = f"{name}_VLLM_V1"
|
||||
expected = name
|
||||
assert backend.get_name() == expected
|
||||
elif name == "FLASH_ATTN_MLA":
|
||||
backend = get_attn_backend(16,
|
||||
@ -210,7 +210,7 @@ def test_env(
|
||||
None,
|
||||
block_size,
|
||||
use_mla=use_mla)
|
||||
expected = "TRITON_MLA_VLLM_V1"
|
||||
expected = "TRITON_MLA"
|
||||
assert backend.get_name() == expected
|
||||
elif name == "FLASHINFER":
|
||||
backend = get_attn_backend(16,
|
||||
@ -218,25 +218,24 @@ def test_env(
|
||||
None,
|
||||
block_size,
|
||||
use_mla=use_mla)
|
||||
expected = "FLASHINFER_VLLM_V1"
|
||||
expected = "FLASHINFER"
|
||||
assert backend.get_name() == expected
|
||||
else:
|
||||
elif name == "XFORMERS":
|
||||
backend = get_attn_backend(32,
|
||||
torch.float16,
|
||||
None,
|
||||
block_size,
|
||||
use_mla=use_mla)
|
||||
expected = "FLASH_ATTN_VLLM_V1"
|
||||
expected = "XFORMERS"
|
||||
assert backend.get_name() == expected
|
||||
|
||||
backend = get_attn_backend(16,
|
||||
elif name == "FLASH_ATTN":
|
||||
backend = get_attn_backend(32,
|
||||
torch.float16,
|
||||
None,
|
||||
block_size,
|
||||
use_mla=use_mla)
|
||||
assert backend.get_name() == "FLEX_ATTENTION", (
|
||||
"Should fallback to FlexAttention if head size is "
|
||||
"not supported by FlashAttention")
|
||||
expected = "FLASH_ATTN"
|
||||
assert backend.get_name() == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize("device", ["cpu", "cuda"])
|
||||
@ -252,7 +251,7 @@ def test_fp32_fallback(
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
CpuPlatform()):
|
||||
backend = get_attn_backend(16, torch.float32, None, 16)
|
||||
assert backend.get_name() == "TORCH_SDPA_VLLM_V1"
|
||||
assert backend.get_name() == "TORCH_SDPA"
|
||||
|
||||
elif device == "cuda":
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
@ -266,6 +265,9 @@ def test_flash_attn(monkeypatch: pytest.MonkeyPatch):
|
||||
# TODO: When testing for v1, pipe in `use_v1` as an argument to
|
||||
# get_attn_backend
|
||||
|
||||
pytest.skip("Skipping as current backend selector does not " \
|
||||
"handle fallbacks when a backend is set via env var.")
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, STR_FLASH_ATTN_VAL)
|
||||
|
||||
|
||||
@ -593,6 +593,119 @@ def test_concat_and_cache_mla(
|
||||
torch.testing.assert_close(kv_cache, ref_kv_cache)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
|
||||
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
|
||||
@pytest.mark.parametrize("num_tokens", NUM_TOKENS_MLA)
|
||||
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)
|
||||
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS_MLA)
|
||||
@pytest.mark.parametrize("dtype", DTYPES)
|
||||
@pytest.mark.parametrize("seed", SEEDS)
|
||||
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
||||
@torch.inference_mode()
|
||||
def test_concat_and_cache_ds_mla(
|
||||
kv_lora_rank: int,
|
||||
qk_rope_head_dim: int,
|
||||
num_tokens: int,
|
||||
block_size: int,
|
||||
num_blocks: int,
|
||||
dtype: torch.dtype,
|
||||
seed: int,
|
||||
device: str,
|
||||
) -> None:
|
||||
if dtype.itemsize != 2:
|
||||
pytest.skip("ds_mla only supports 16-bit input")
|
||||
kv_cache_dtype = "fp8_ds_mla"
|
||||
current_platform.seed_everything(seed)
|
||||
torch.set_default_device(device)
|
||||
|
||||
total_slots = num_blocks * block_size
|
||||
slot_mapping_lst = random.sample(range(total_slots), num_tokens)
|
||||
slot_mapping = torch.tensor(slot_mapping_lst,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
kv_c = torch.randn(num_tokens, kv_lora_rank, dtype=dtype, device=device)
|
||||
k_pe = torch.randn(num_tokens,
|
||||
qk_rope_head_dim,
|
||||
dtype=dtype,
|
||||
device=device)
|
||||
entry_size = kv_lora_rank + (4 * 4) + (2 * qk_rope_head_dim)
|
||||
|
||||
scale = torch.tensor(1.0, dtype=torch.float32, device=device)
|
||||
kv_cache = _create_mla_cache(num_blocks,
|
||||
block_size,
|
||||
entry_size,
|
||||
dtype=torch.uint8,
|
||||
kv_cache_dtype=kv_cache_dtype,
|
||||
device=device)
|
||||
|
||||
ref_cache = torch.zeros_like(kv_cache, dtype=kv_cache.dtype)
|
||||
tile_data = torch.zeros(128, dtype=dtype, device=device)
|
||||
|
||||
for i in range(num_tokens):
|
||||
slot = slot_mapping[i].item()
|
||||
block_idx = slot // block_size
|
||||
block_offset = slot % block_size
|
||||
|
||||
ref_cache_slice = ref_cache[block_idx, block_offset]
|
||||
ref_cache_16bit = ref_cache_slice.view(dtype)
|
||||
ref_cache_32bit = ref_cache_slice.view(torch.float32)
|
||||
|
||||
kv_c_data = kv_c[i]
|
||||
for tile_idx in range(4):
|
||||
tile_start = tile_idx * 128
|
||||
tile_end = (tile_idx + 1) * 128
|
||||
tile_data[:] = kv_c_data[tile_start:tile_end]
|
||||
|
||||
# tile_scale = tile_data.amax().to(torch.float32) / 448.
|
||||
# NOTE: Using torch's amax() gives different results,
|
||||
# so this must be manually computed.
|
||||
tile_data_float = tile_data.to(torch.float32)
|
||||
manual_max = abs(tile_data_float[0])
|
||||
for j in range(1, 128):
|
||||
manual_max = max(manual_max, abs(tile_data_float[j]))
|
||||
tile_scale = manual_max / 448.
|
||||
|
||||
ref_cache_32bit[kv_lora_rank // 4 + tile_idx] = tile_scale
|
||||
|
||||
ops.convert_fp8(ref_cache_slice[tile_start:tile_end],
|
||||
tile_data,
|
||||
tile_scale.item(),
|
||||
kv_dtype="fp8")
|
||||
|
||||
for j in range(qk_rope_head_dim):
|
||||
ref_cache_16bit[kv_lora_rank // 2 + 8 + j] = k_pe[i, j]
|
||||
|
||||
opcheck(
|
||||
torch.ops._C_cache_ops.concat_and_cache_mla,
|
||||
(kv_c, k_pe, kv_cache, slot_mapping, kv_cache_dtype, scale),
|
||||
test_utils=DEFAULT_OPCHECK_TEST_UTILS,
|
||||
)
|
||||
|
||||
ops.concat_and_cache_mla(kv_c, k_pe, kv_cache, slot_mapping,
|
||||
kv_cache_dtype, scale)
|
||||
|
||||
for i in range(num_tokens):
|
||||
slot = slot_mapping[i].item()
|
||||
block_idx = slot // block_size
|
||||
block_offset = slot % block_size
|
||||
kv_cache_slice = kv_cache[block_idx, block_offset]
|
||||
ref_cache_slice = ref_cache[block_idx, block_offset]
|
||||
|
||||
kv_nope = kv_cache_slice[:kv_lora_rank]
|
||||
ref_nope = ref_cache_slice[:kv_lora_rank]
|
||||
kv_scales = kv_cache_slice.view(torch.float32)[kv_lora_rank //
|
||||
4:kv_lora_rank // 4 + 4]
|
||||
ref_scales = ref_cache_slice.view(
|
||||
torch.float32)[kv_lora_rank // 4:kv_lora_rank // 4 + 4]
|
||||
kv_rope = kv_cache_slice.view(dtype)[kv_lora_rank // 2 + 8:]
|
||||
ref_rope = ref_cache_slice.view(dtype)[kv_lora_rank // 2 + 8:]
|
||||
|
||||
torch.testing.assert_close(kv_nope, ref_nope, atol=0.001, rtol=0.1)
|
||||
torch.testing.assert_close(kv_scales, ref_scales, atol=0.001, rtol=0.1)
|
||||
torch.testing.assert_close(kv_rope, ref_rope, atol=0.001, rtol=0.1)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("kv_lora_rank", KV_LORA_RANKS)
|
||||
@pytest.mark.parametrize("qk_rope_head_dim", QK_ROPE_HEAD_DIMS)
|
||||
@pytest.mark.parametrize("block_size", BLOCK_SIZES_MLA)
|
||||
|
||||
279
tests/kernels/attention/test_deepgemm_attention.py
Normal file
279
tests/kernels/attention/test_deepgemm_attention.py
Normal file
@ -0,0 +1,279 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import random
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import cdiv, has_deep_gemm
|
||||
from vllm.utils.deep_gemm import (_ceil_to_ue8m0, calc_diff, fp8_mqa_logits,
|
||||
fp8_paged_mqa_logits, get_num_sms,
|
||||
get_paged_mqa_logits_metadata)
|
||||
|
||||
|
||||
def kv_cache_cast_to_fp8(x: torch.Tensor) -> torch.Tensor:
|
||||
# x: (num_blocks, block_size, 1, head_dim)
|
||||
num_blocks, block_size, num_heads, head_dim = x.shape
|
||||
assert num_heads == 1
|
||||
x_amax = x.abs().float().amax(dim=3, keepdim=True).clamp(1e-4)
|
||||
sf = x_amax / 448.0
|
||||
x_scaled = (x * (1.0 / sf)).to(torch.float8_e4m3fn)
|
||||
x_fp8 = torch.empty(
|
||||
(num_blocks, block_size * (head_dim + 4)),
|
||||
device=x.device,
|
||||
dtype=torch.uint8,
|
||||
)
|
||||
x_fp8[:, :block_size * head_dim] = x_scaled.view(
|
||||
num_blocks, block_size * head_dim).view(dtype=torch.uint8)
|
||||
x_fp8[:,
|
||||
block_size * head_dim:] = sf.view(num_blocks,
|
||||
block_size).view(dtype=torch.uint8)
|
||||
return x_fp8.view(num_blocks, block_size, num_heads, head_dim + 4)
|
||||
|
||||
|
||||
def per_custom_dims_cast_to_fp8(
|
||||
x: torch.Tensor, dims: tuple,
|
||||
use_ue8m0: bool) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
excluded_dims = tuple([i for i in range(x.dim()) if i not in set(dims)])
|
||||
x_amax = x.abs().float().amax(dim=excluded_dims, keepdim=True).clamp(1e-4)
|
||||
sf = x_amax / 448.0
|
||||
sf = _ceil_to_ue8m0(sf) if use_ue8m0 else sf
|
||||
x_scaled = (x * (1.0 / sf)).to(torch.float8_e4m3fn)
|
||||
return x_scaled, sf.squeeze()
|
||||
|
||||
|
||||
def _generate_cp_test_data(seq_len: int, seq_len_kv: int):
|
||||
assert seq_len_kv % seq_len == 0 and seq_len % 2 == 0
|
||||
chunk_size = seq_len // 2
|
||||
cp_size = seq_len_kv // seq_len
|
||||
cp_id = cp_size // 3
|
||||
ks = torch.zeros(seq_len, dtype=torch.int, device="cuda")
|
||||
ke = torch.zeros(seq_len, dtype=torch.int, device="cuda")
|
||||
for i in range(chunk_size):
|
||||
ke[i] = cp_id * chunk_size + i
|
||||
ke[i + chunk_size] = (cp_size * 2 - 1 - cp_id) * chunk_size + i
|
||||
return ks, ke
|
||||
|
||||
|
||||
def _ref_fp8_mqa_logits(
|
||||
q: torch.Tensor,
|
||||
kv: torch.Tensor,
|
||||
weights: torch.Tensor,
|
||||
cu_seqlen_ks: torch.Tensor,
|
||||
cu_seqlen_ke: torch.Tensor,
|
||||
):
|
||||
seq_len_kv = kv.shape[0]
|
||||
|
||||
k = kv
|
||||
q = q.float()
|
||||
k = k.float()
|
||||
|
||||
mask_lo = (torch.arange(0, seq_len_kv, device="cuda")[None, :]
|
||||
>= cu_seqlen_ks[:, None])
|
||||
mask_hi = (torch.arange(0, seq_len_kv, device="cuda")[None, :]
|
||||
< cu_seqlen_ke[:, None])
|
||||
mask = mask_lo & mask_hi
|
||||
|
||||
score = torch.einsum("mhd,and->hmn", q, k)
|
||||
logits = (score.relu() * weights.unsqueeze(-1).transpose(0, 1)).sum(dim=0)
|
||||
logits = logits.masked_fill(~mask, float("-inf"))
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
@pytest.mark.skipif(not current_platform.is_cuda(), reason="CUDA only")
|
||||
@pytest.mark.skipif(not has_deep_gemm(), reason="DeepGEMM not available")
|
||||
@pytest.mark.skipif(not current_platform.has_device_capability(90),
|
||||
reason="SM90 and SM100 only")
|
||||
def test_deepgemm_fp8_mqa_logits():
|
||||
torch.manual_seed(0)
|
||||
random.seed(0)
|
||||
num_heads, head_dim = 32, 128
|
||||
for seq_len in (512, ):
|
||||
for seq_len_kv in (1024, ):
|
||||
for disable_cp in (False, True):
|
||||
q = torch.randn(
|
||||
seq_len,
|
||||
num_heads,
|
||||
head_dim,
|
||||
device="cuda",
|
||||
dtype=torch.bfloat16,
|
||||
)
|
||||
kv = torch.randn(seq_len_kv,
|
||||
head_dim,
|
||||
device="cuda",
|
||||
dtype=torch.bfloat16)
|
||||
weights = torch.randn(seq_len,
|
||||
num_heads,
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
|
||||
if disable_cp:
|
||||
ks = torch.zeros(seq_len, dtype=torch.int, device="cuda")
|
||||
ke = torch.arange(seq_len, dtype=torch.int,
|
||||
device="cuda") + (seq_len_kv - seq_len)
|
||||
else:
|
||||
ks, ke = _generate_cp_test_data(seq_len, seq_len_kv)
|
||||
|
||||
q_fp8 = q.to(torch.float8_e4m3fn)
|
||||
kv_fp8 = per_custom_dims_cast_to_fp8(kv, (0, ), False)
|
||||
logits = fp8_mqa_logits(q_fp8, kv_fp8, weights, ks, ke)
|
||||
|
||||
ref_logits = _ref_fp8_mqa_logits(
|
||||
q=q,
|
||||
kv=kv,
|
||||
weights=weights,
|
||||
cu_seqlen_ks=ks,
|
||||
cu_seqlen_ke=ke,
|
||||
)
|
||||
|
||||
ref_neginf_mask = ref_logits == float("-inf")
|
||||
neginf_mask = logits == float("-inf")
|
||||
assert torch.equal(neginf_mask, ref_neginf_mask)
|
||||
|
||||
ref_logits = ref_logits.masked_fill(ref_neginf_mask, 0)
|
||||
logits = logits.masked_fill(neginf_mask, 0)
|
||||
diff = calc_diff(logits, ref_logits)
|
||||
assert diff < 1e-3, f"{diff=}"
|
||||
|
||||
|
||||
def _ref_fp8_paged_mqa_logits(
|
||||
q: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
weights: torch.Tensor,
|
||||
context_lens: torch.Tensor,
|
||||
block_tables: torch.Tensor,
|
||||
max_model_len: int,
|
||||
):
|
||||
batch_size, next_n, _, _ = q.size()
|
||||
_, block_size, _, _ = kv_cache.size()
|
||||
logits = torch.full(
|
||||
[batch_size * next_n, max_model_len],
|
||||
float("-inf"),
|
||||
device=q.device,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
context_lens_list = context_lens.tolist()
|
||||
for i in range(batch_size):
|
||||
context_len = context_lens_list[i]
|
||||
q_offsets = torch.arange(context_len - next_n,
|
||||
context_len,
|
||||
device="cuda")
|
||||
weight_slice = (weights[i * next_n:(i + 1) * next_n, :].transpose(
|
||||
0, 1).contiguous())
|
||||
for block_rk in range(cdiv(context_len, block_size)):
|
||||
block_idx = block_tables[i][block_rk]
|
||||
qx, kx = q[i], kv_cache[block_idx]
|
||||
k_offsets = torch.arange(
|
||||
block_rk * block_size,
|
||||
(block_rk + 1) * block_size,
|
||||
device="cuda",
|
||||
)
|
||||
mask = (k_offsets[None, :] < context_len) & (k_offsets[None, :]
|
||||
<= q_offsets[:, None])
|
||||
s = torch.where(
|
||||
mask[None, :, :],
|
||||
(qx.transpose(0, 1) @ kx.transpose(0, 1).transpose(1, 2)).to(
|
||||
logits.dtype),
|
||||
float("-inf"),
|
||||
)
|
||||
s = torch.relu(s) * weight_slice[..., None]
|
||||
s = s.sum(dim=0)
|
||||
logits[
|
||||
i * next_n:(i + 1) * next_n,
|
||||
block_rk * block_size:(block_rk + 1) * block_size,
|
||||
] = torch.where(k_offsets[None, :] <= q_offsets[:, None], s,
|
||||
float("-inf"))
|
||||
return logits
|
||||
|
||||
|
||||
@pytest.mark.skipif(not current_platform.is_cuda(), reason="CUDA only")
|
||||
@pytest.mark.skipif(not has_deep_gemm(), reason="DeepGEMM not available")
|
||||
@pytest.mark.skipif(not current_platform.has_device_capability(90),
|
||||
reason="SM90 and SM100 only")
|
||||
def test_deepgemm_fp8_paged_mqa_logits():
|
||||
torch.manual_seed(0)
|
||||
random.seed(0)
|
||||
|
||||
max_model_len = 4096
|
||||
for batch_size, next_n in [(4, 1), (2, 2)]:
|
||||
for heads, index_dim in [(32, 128)]:
|
||||
for avg_kv in (2048, ):
|
||||
num_blocks, blocksize = max_model_len * 2, 64
|
||||
|
||||
q = torch.randn(
|
||||
(batch_size, next_n, heads, index_dim),
|
||||
device="cuda",
|
||||
dtype=torch.bfloat16,
|
||||
)
|
||||
kv_cache = torch.randn(
|
||||
(num_blocks, blocksize, 1, index_dim),
|
||||
device="cuda",
|
||||
dtype=torch.bfloat16,
|
||||
)
|
||||
weights = torch.randn(
|
||||
(batch_size * next_n, heads),
|
||||
device="cuda",
|
||||
dtype=torch.float32,
|
||||
)
|
||||
|
||||
context_lens = (torch.randint(int(0.8 * avg_kv),
|
||||
int(1.2 * avg_kv),
|
||||
(batch_size, )).cuda().to(
|
||||
torch.int32))
|
||||
max_block_len = ((context_lens.max().item() + blocksize - 1) //
|
||||
blocksize * blocksize)
|
||||
block_tables = torch.zeros(
|
||||
(batch_size, max_block_len),
|
||||
device="cuda",
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
counter = 0
|
||||
block_idx_pool = list(range(num_blocks))
|
||||
random.shuffle(block_idx_pool)
|
||||
for i in range(batch_size):
|
||||
ctx_len = int(context_lens[i].item())
|
||||
for j in range((ctx_len + blocksize - 1) // blocksize):
|
||||
block_tables[i][j] = block_idx_pool[counter]
|
||||
counter += 1
|
||||
|
||||
q_fp8 = q.to(torch.float8_e4m3fn)
|
||||
kv_cache_fp8 = kv_cache_cast_to_fp8(kv_cache)
|
||||
|
||||
schedule_metadata = get_paged_mqa_logits_metadata(
|
||||
context_lens, blocksize, get_num_sms())
|
||||
logits = fp8_paged_mqa_logits(
|
||||
q_fp8,
|
||||
kv_cache_fp8,
|
||||
weights,
|
||||
context_lens,
|
||||
block_tables,
|
||||
schedule_metadata,
|
||||
max_model_len,
|
||||
)
|
||||
|
||||
ref_logits = _ref_fp8_paged_mqa_logits(
|
||||
q,
|
||||
kv_cache,
|
||||
weights,
|
||||
context_lens,
|
||||
block_tables,
|
||||
max_model_len,
|
||||
)
|
||||
|
||||
positions = (torch.arange(max_model_len,
|
||||
device="cuda").unsqueeze(0).expand(
|
||||
batch_size * next_n, -1))
|
||||
row_indices = (
|
||||
torch.arange(batch_size * next_n, device="cuda") // next_n)
|
||||
next_n_offset = (
|
||||
torch.arange(batch_size * next_n, device="cuda") % next_n)
|
||||
mask = positions <= (context_lens[row_indices] - next_n +
|
||||
next_n_offset).unsqueeze(1)
|
||||
|
||||
logits = logits.masked_fill(~mask, 0)
|
||||
ref_logits = ref_logits.masked_fill(~mask, 0)
|
||||
diff = calc_diff(logits, ref_logits)
|
||||
assert diff < 1e-3, f"{diff=}"
|
||||
@ -97,18 +97,16 @@ def test_flash_mla(b, s_q, mean_sk, h_q, h_kv, d, dv, block_size, causal,
|
||||
descale_k = None
|
||||
|
||||
def flash_mla():
|
||||
return flash_mla_with_kvcache(
|
||||
q,
|
||||
blocked_k,
|
||||
block_table,
|
||||
cache_seqlens,
|
||||
dv,
|
||||
tile_scheduler_metadata,
|
||||
num_splits,
|
||||
causal=causal,
|
||||
descale_q=descale_q,
|
||||
descale_k=descale_k,
|
||||
)
|
||||
return flash_mla_with_kvcache(q,
|
||||
blocked_k,
|
||||
block_table,
|
||||
cache_seqlens,
|
||||
dv,
|
||||
tile_scheduler_metadata,
|
||||
num_splits,
|
||||
causal=causal,
|
||||
descale_q=descale_q,
|
||||
descale_k=descale_k)
|
||||
|
||||
def scaled_dot_product_attention(query, key, value, is_causal=False):
|
||||
query = query.float()
|
||||
|
||||
119
tests/kernels/attention/test_flashmla_sparse.py
Normal file
119
tests/kernels/attention/test_flashmla_sparse.py
Normal file
@ -0,0 +1,119 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
|
||||
def _cuda_sm90_available() -> bool:
|
||||
if not torch.cuda.is_available():
|
||||
return False
|
||||
major, _ = torch.cuda.get_device_capability()
|
||||
return major == 9
|
||||
|
||||
|
||||
def test_sparse_flashmla_metadata_smoke():
|
||||
import vllm.attention.ops.flashmla as fm
|
||||
ok, reason = fm.is_flashmla_supported()
|
||||
if not ok or not _cuda_sm90_available():
|
||||
pytest.skip(reason or "SM90 not available")
|
||||
|
||||
device = torch.device("cuda")
|
||||
batch_size = 1
|
||||
seqlen_q = 1
|
||||
num_heads_q = 128
|
||||
num_heads_k = 1
|
||||
q_seq_per_hk = seqlen_q * num_heads_q // num_heads_k
|
||||
topk = 128
|
||||
|
||||
cache_seqlens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
|
||||
tile_md, num_splits = fm.get_mla_metadata(cache_seqlens,
|
||||
q_seq_per_hk,
|
||||
num_heads_k,
|
||||
num_heads_q=num_heads_q,
|
||||
topk=topk,
|
||||
is_fp8_kvcache=True)
|
||||
assert tile_md.dtype == torch.int32
|
||||
assert num_splits.dtype == torch.int32
|
||||
|
||||
|
||||
def test_sparse_flashmla_decode_smoke():
|
||||
import vllm.attention.ops.flashmla as fm
|
||||
ok, reason = fm.is_flashmla_supported()
|
||||
if not ok or not _cuda_sm90_available():
|
||||
pytest.skip(reason or "SM90 not available")
|
||||
|
||||
device = torch.device("cuda")
|
||||
batch_size = 1
|
||||
seqlen_q = 1
|
||||
num_heads_q = 1
|
||||
head_dim_k = 576
|
||||
head_dim_v = 512
|
||||
num_heads_k = 1
|
||||
page_block_size = 64
|
||||
bytes_per_token = 656
|
||||
topk = 128
|
||||
|
||||
# Metadata
|
||||
q_seq_per_hk = seqlen_q * num_heads_q // num_heads_k
|
||||
# q_heads_per_hk = num_heads_q // num_heads_k
|
||||
cache_seqlens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
tile_md, num_splits = fm.get_mla_metadata(cache_seqlens,
|
||||
q_seq_per_hk,
|
||||
num_heads_k,
|
||||
num_heads_q=num_heads_q,
|
||||
topk=topk,
|
||||
is_fp8_kvcache=True)
|
||||
|
||||
# Inputs
|
||||
q = torch.zeros((batch_size, seqlen_q, num_heads_q, head_dim_k),
|
||||
dtype=torch.bfloat16,
|
||||
device=device)
|
||||
k_cache = torch.zeros((1, page_block_size, num_heads_k, bytes_per_token),
|
||||
dtype=torch.uint8,
|
||||
device=device)
|
||||
indices = torch.zeros((batch_size, seqlen_q, topk),
|
||||
dtype=torch.int32,
|
||||
device=device)
|
||||
|
||||
block_table = torch.zeros((batch_size, 128),
|
||||
dtype=torch.int32,
|
||||
device=device)
|
||||
out, lse = fm.flash_mla_with_kvcache(q,
|
||||
k_cache,
|
||||
block_table,
|
||||
cache_seqlens,
|
||||
head_dim_v,
|
||||
tile_md,
|
||||
num_splits,
|
||||
indices=indices,
|
||||
is_fp8_kvcache=True)
|
||||
assert out.shape[0] == batch_size
|
||||
assert out.shape[-1] == head_dim_v
|
||||
assert lse.shape[0] == batch_size
|
||||
|
||||
|
||||
def test_sparse_flashmla_prefill_smoke():
|
||||
import vllm.attention.ops.flashmla as fm
|
||||
ok, reason = fm.is_flashmla_supported()
|
||||
if not ok or not _cuda_sm90_available():
|
||||
pytest.skip(reason or "SM90 not available")
|
||||
|
||||
device = torch.device("cuda")
|
||||
s_q = 1
|
||||
s_kv = 1
|
||||
h_q = 64 # kernel expects multiple of 64
|
||||
h_kv = 1
|
||||
d_qk = 576
|
||||
d_v = 512
|
||||
topk = 128
|
||||
|
||||
q = torch.zeros((s_q, h_q, d_qk), dtype=torch.bfloat16, device=device)
|
||||
kv = torch.zeros((s_kv, h_kv, d_qk), dtype=torch.bfloat16, device=device)
|
||||
indices = torch.zeros((s_q, h_kv, topk), dtype=torch.int32, device=device)
|
||||
|
||||
out, max_logits, lse = fm.flash_mla_sparse_prefill(q, kv, indices, 1.0,
|
||||
d_v)
|
||||
assert out.shape == (s_q, h_q, d_v)
|
||||
assert max_logits.shape == (s_q, h_q)
|
||||
assert lse.shape == (s_q, h_q)
|
||||
245
tests/kernels/attention/test_pack_unpack_triton.py
Normal file
245
tests/kernels/attention/test_pack_unpack_triton.py
Normal file
@ -0,0 +1,245 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import torch
|
||||
from torch.testing import assert_close
|
||||
|
||||
from vllm.attention.ops.common import pack_seq_triton, unpack_seq_triton
|
||||
|
||||
|
||||
def test_pack_seq_basic_fp8():
|
||||
"""Test basic functionality of pack_seq_triton with fp8 and 3D tensors."""
|
||||
device = "cuda"
|
||||
dtype = torch.float8_e4m3fn
|
||||
|
||||
# Test cases with 3D tensors (N, H, D)
|
||||
test_cases = [
|
||||
(6, 8, 4, 2, [3, 3]), # (6, 8, 4) -> (2, 3, 8, 4)
|
||||
(10, 4, 8, 3, [2, 4, 4]), # (10, 4, 8) -> (3, 4, 4, 8)
|
||||
(20, 16, 32, 4, [5, 5, 5, 5]), # (20, 16, 32) -> (4, 5, 16, 32)
|
||||
]
|
||||
|
||||
for N, H, D, B, lengths_list in test_cases:
|
||||
# Create input tensor with small values for fp8
|
||||
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
lengths = torch.tensor(lengths_list, device=device)
|
||||
|
||||
# Pack the data
|
||||
packed = pack_seq_triton(x, lengths)
|
||||
|
||||
# Check output shape and properties
|
||||
expected_shape = (B, max(lengths_list), H, D)
|
||||
assert packed.shape == expected_shape
|
||||
assert packed.dtype == dtype
|
||||
assert packed.device == x.device
|
||||
|
||||
# Check that valid data is preserved (within fp8 precision)
|
||||
for b in range(B):
|
||||
start_idx = sum(lengths_list[:b])
|
||||
seq_len = lengths_list[b]
|
||||
|
||||
expected_data = x[start_idx:start_idx + seq_len].to(torch.float32)
|
||||
actual_data = packed[b, :seq_len].to(torch.float32)
|
||||
|
||||
assert_close(actual_data, expected_data, rtol=1e-1, atol=1e-2)
|
||||
|
||||
|
||||
def test_pack_seq_custom_padding_fp8():
|
||||
"""Test pack_seq_triton with custom padding values for fp8."""
|
||||
device = "cuda"
|
||||
dtype = torch.float8_e4m3fn
|
||||
N, H, D, B = 20, 8, 16, 2
|
||||
lengths = torch.tensor([10, 10], device=device)
|
||||
|
||||
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
|
||||
# Test with different padding values
|
||||
for pad_value in [-100.0, -10.0, 0.0, 10.0, 100.0]:
|
||||
result = pack_seq_triton(x, lengths, pad_value=pad_value)
|
||||
|
||||
# Check valid data
|
||||
for b in range(B):
|
||||
start_idx = b * 10
|
||||
expected_data = x[start_idx:start_idx + 10].to(torch.float32)
|
||||
actual_data = result[b, :10].to(torch.float32)
|
||||
assert_close(actual_data, expected_data, rtol=1e-1, atol=1e-2)
|
||||
|
||||
# Check padding (fp8 has limited range, so check for large values)
|
||||
padded_data = result[:, 10:].to(torch.float32)
|
||||
if pad_value < 0:
|
||||
assert torch.all(padded_data < -50) # Large negative values
|
||||
elif pad_value > 0:
|
||||
assert torch.all(padded_data > 50) # Large positive values
|
||||
else:
|
||||
assert torch.allclose(padded_data,
|
||||
torch.zeros_like(padded_data),
|
||||
atol=1e-2)
|
||||
|
||||
|
||||
def test_pack_seq_default_negative_inf_padding_fp8():
|
||||
"""Test that pack_seq_triton uses -inf padding by default for fp8."""
|
||||
device = "cuda"
|
||||
dtype = torch.float8_e4m3fn
|
||||
# B = 2
|
||||
N, H, D = 20, 8, 16
|
||||
lengths = torch.tensor([10, 10], device=device)
|
||||
|
||||
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
result = pack_seq_triton(x, lengths)
|
||||
|
||||
# Check that padding is large negative values (fp8 representation of -inf)
|
||||
padded_data = result[:, 10:].to(torch.float32)
|
||||
assert torch.all(
|
||||
padded_data < -100) # fp8 -inf is represented as large negative number
|
||||
|
||||
|
||||
def test_pack_seq_edge_cases_fp8():
|
||||
"""Test pack_seq_triton with edge cases for fp8."""
|
||||
device = "cuda"
|
||||
dtype = torch.float8_e4m3fn
|
||||
|
||||
# Test with single batch element
|
||||
x = torch.randn(10, 8, 16, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
lengths = torch.tensor([10], device=device)
|
||||
result = pack_seq_triton(x, lengths)
|
||||
assert result.shape == (1, 10, 8, 16)
|
||||
|
||||
# Test with very short sequences
|
||||
x = torch.randn(20, 4, 8, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
lengths = torch.tensor([1, 1, 1], device=device)
|
||||
result = pack_seq_triton(x, lengths)
|
||||
assert result.shape == (3, 1, 4, 8)
|
||||
|
||||
# Test with different sequence lengths
|
||||
x = torch.randn(15, 8, 16, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
lengths = torch.tensor([5, 7, 3], device=device)
|
||||
result = pack_seq_triton(x, lengths)
|
||||
assert result.shape == (3, 7, 8, 16)
|
||||
|
||||
|
||||
def test_pack_seq_different_block_sizes_fp8():
|
||||
"""Test pack_seq_triton with different block sizes for fp8."""
|
||||
device = "cuda"
|
||||
dtype = torch.float8_e4m3fn
|
||||
N, H, D, B = 100, 16, 32, 4
|
||||
lengths = torch.tensor([25, 25, 25, 25], device=device)
|
||||
|
||||
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
|
||||
# Test different block sizes
|
||||
for block_t, block_d in [(32, 32), (64, 64), (128, 128)]:
|
||||
result = pack_seq_triton(x, lengths, block_t=block_t, block_d=block_d)
|
||||
|
||||
assert result.shape == (B, 25, H, D)
|
||||
|
||||
# Check that valid data is preserved (within fp8 precision)
|
||||
for b in range(B):
|
||||
start_idx = b * 25
|
||||
expected_data = x[start_idx:start_idx + 25].to(torch.float32)
|
||||
actual_data = result[b, :25].to(torch.float32)
|
||||
assert_close(actual_data, expected_data, rtol=1e-1, atol=1e-2)
|
||||
|
||||
|
||||
def test_pack_seq_shape_consistency():
|
||||
"""Test that pack_seq_triton maintains shape consistency."""
|
||||
device = "cuda"
|
||||
dtype = torch.float8_e4m3fn
|
||||
N, H, D, B = 20, 8, 16, 2
|
||||
lengths = torch.tensor([10, 10], device=device)
|
||||
|
||||
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
|
||||
result = pack_seq_triton(x, lengths)
|
||||
|
||||
# Check shape consistency
|
||||
assert result.shape[0] == B # Batch dimension
|
||||
assert result.shape[1] == lengths.max().item() # Max sequence length
|
||||
assert result.shape[2:] == x.shape[1:] # Feature dimensions preserved
|
||||
|
||||
|
||||
def test_pack_unpack_roundtrip_fp8():
|
||||
"""Test that pack -> unpack gives us back the original data for fp8."""
|
||||
device = "cuda"
|
||||
dtype = torch.float8_e4m3fn
|
||||
|
||||
# Test cases with 3D tensors
|
||||
test_cases = [
|
||||
(6, 8, 4, 2, [3, 3]),
|
||||
(10, 4, 8, 3, [2, 4, 4]),
|
||||
(20, 16, 32, 4, [5, 5, 5, 5]),
|
||||
(15, 8, 16, 3, [7, 5, 3]),
|
||||
]
|
||||
|
||||
for N, H, D, B, lengths_list in test_cases:
|
||||
# Create input tensor with small values for fp8
|
||||
x = torch.randn(N, H, D, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
lengths = torch.tensor(lengths_list, device=device)
|
||||
|
||||
# Pack the data
|
||||
packed = pack_seq_triton(x, lengths)
|
||||
|
||||
# Unpack the data
|
||||
unpacked = unpack_seq_triton(packed, lengths)
|
||||
|
||||
# Check that we get back the original data (within fp8 precision)
|
||||
assert unpacked.shape == x.shape
|
||||
x_f32 = x.to(torch.float32)
|
||||
unpacked_f32 = unpacked.to(torch.float32)
|
||||
assert_close(x_f32, unpacked_f32, rtol=1e-3, atol=1e-3)
|
||||
|
||||
# Unpack without explicit start locations (computed in kernel)
|
||||
unpacked_with_loc = unpack_seq_triton(packed, lengths)
|
||||
assert_close(x_f32,
|
||||
unpacked_with_loc.to(torch.float32),
|
||||
rtol=1e-3,
|
||||
atol=1e-2)
|
||||
|
||||
|
||||
def test_unpack_seq_triton_edge_cases_fp8():
|
||||
"""Test unpack function with edge cases for fp8."""
|
||||
device = "cuda"
|
||||
dtype = torch.float8_e4m3fn
|
||||
|
||||
# Test with single batch element
|
||||
x = torch.randn(10, 8, 16, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
lengths = torch.tensor([10], device=device)
|
||||
packed = pack_seq_triton(x, lengths)
|
||||
unpacked = unpack_seq_triton(packed, lengths)
|
||||
assert unpacked.shape == x.shape
|
||||
assert_close(x.to(torch.float32),
|
||||
unpacked.to(torch.float32),
|
||||
rtol=1e-1,
|
||||
atol=1e-2)
|
||||
|
||||
# Test with very short sequences
|
||||
x = torch.randn(20, 4, 8, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
lengths = torch.tensor([1, 1, 1], device=device)
|
||||
packed = pack_seq_triton(x, lengths)
|
||||
unpacked = unpack_seq_triton(packed, lengths)
|
||||
# Only compare the first 3 elements that were actually packed
|
||||
assert_close(x[:3].to(torch.float32),
|
||||
unpacked.to(torch.float32),
|
||||
rtol=1e-1,
|
||||
atol=1e-2)
|
||||
|
||||
x = torch.randn(15, 8, 16, dtype=torch.float32, device=device) * 0.1
|
||||
x = x.to(dtype=dtype)
|
||||
lengths = torch.tensor([5, 7, 3], device=device)
|
||||
packed = pack_seq_triton(x, lengths)
|
||||
unpacked = unpack_seq_triton(packed, lengths)
|
||||
assert unpacked.shape == x.shape
|
||||
assert_close(x.to(torch.float32),
|
||||
unpacked.to(torch.float32),
|
||||
rtol=1e-1,
|
||||
atol=1e-2)
|
||||
@ -28,7 +28,7 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
|
||||
# Test standard ROCm attention
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16, 16, False)
|
||||
assert (backend.get_name() == "ROCM_FLASH"
|
||||
or backend.get_name() == "TRITON_ATTN_VLLM_V1")
|
||||
or backend.get_name() == "TRITON_ATTN")
|
||||
|
||||
# MLA test for deepseek related
|
||||
|
||||
@ -40,8 +40,7 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
|
||||
16,
|
||||
False,
|
||||
use_mla=True)
|
||||
assert (backend.get_name() == "TRITON_MLA"
|
||||
or backend.get_name() == "TRITON_MLA_VLLM_V1")
|
||||
assert backend.get_name() == "TRITON_MLA"
|
||||
|
||||
# If attention backend is None
|
||||
# If use_mla is true
|
||||
@ -53,8 +52,7 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
|
||||
16,
|
||||
False,
|
||||
use_mla=True)
|
||||
assert (backend.get_name() == "TRITON_MLA"
|
||||
or backend.get_name() == "TRITON_MLA_VLLM_V1")
|
||||
assert backend.get_name() == "TRITON_MLA"
|
||||
|
||||
# change the attention backend to AITER MLA
|
||||
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_AITER_MLA")
|
||||
@ -64,8 +62,7 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
|
||||
1,
|
||||
False,
|
||||
use_mla=True)
|
||||
assert (backend.get_name() == "ROCM_AITER_MLA"
|
||||
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")
|
||||
assert backend.get_name() == "ROCM_AITER_MLA"
|
||||
|
||||
# If attention backend is None
|
||||
# If use_mla is true
|
||||
@ -79,5 +76,4 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
|
||||
1,
|
||||
False,
|
||||
use_mla=True)
|
||||
assert (backend.get_name() == "ROCM_AITER_MLA"
|
||||
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")
|
||||
assert backend.get_name() == "ROCM_AITER_MLA"
|
||||
|
||||
@ -46,6 +46,8 @@ def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
|
||||
# o will have the same shape as q
|
||||
o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
|
||||
|
||||
lse = torch.zeros(B, H_Q, dtype=dtype, device="cuda")
|
||||
|
||||
b_seq_len = torch.full((B, ), seq_len, device="cuda")
|
||||
|
||||
attn_logits = torch.empty(
|
||||
@ -60,6 +62,7 @@ def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
|
||||
k_buffer,
|
||||
v_buffer,
|
||||
o,
|
||||
lse,
|
||||
req_to_token,
|
||||
b_seq_len,
|
||||
attn_logits,
|
||||
@ -72,12 +75,14 @@ def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
|
||||
v_buffer = v_buffer.view(CACHE_SIZE // PAGE_SIZE, PAGE_SIZE, H_KV, D_V)
|
||||
|
||||
o1 = torch.zeros_like(o)
|
||||
lse1 = torch.zeros_like(lse)
|
||||
|
||||
decode_attention_fwd(
|
||||
q,
|
||||
k_buffer,
|
||||
v_buffer,
|
||||
o1,
|
||||
lse1,
|
||||
req_to_page,
|
||||
b_seq_len,
|
||||
attn_logits,
|
||||
|
||||
@ -60,7 +60,7 @@ TENSORS_SHAPES_FN = [
|
||||
@torch.inference_mode()
|
||||
def test_rotary_embedding(
|
||||
is_neox_style: bool,
|
||||
tensor_shape_fn: Callable[[int, int, int, int], tuple[int]],
|
||||
tensor_shape_fn: Callable[[int, int, int, int], tuple[int, ...]],
|
||||
batch_size: int,
|
||||
seq_len: int,
|
||||
num_heads: int,
|
||||
|
||||
@ -7,7 +7,7 @@ import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from vllm.model_executor.layers.mamba.ops.ssd_combined import (
|
||||
mamba_chunk_scan_combined)
|
||||
mamba_chunk_scan_combined_varlen)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.v1.attention.backends.mamba2_attn import (
|
||||
_query_start_loc_to_chunk_indices_offsets)
|
||||
@ -185,9 +185,14 @@ def generate_continuous_batched_examples(example_lens_by_batch,
|
||||
IND_S = [x % full_length for x in IND_E]
|
||||
IND_E = [end_boundary(x + y) for x, y in zip(IND_S, spec)]
|
||||
|
||||
# varlen has implicit batch=1
|
||||
dt2 = dt2.squeeze(0)
|
||||
X2 = X2.squeeze(0)
|
||||
B2 = B2.squeeze(0)
|
||||
C2 = C2.squeeze(0)
|
||||
yield ([Y_min[s, IND_S[s]:IND_E[s]]
|
||||
for s in range(num_examples)] if return_naive_ref else None,
|
||||
cu_seqlens, seq_idx.unsqueeze(0), (A, dt2, X2, B2, C2))
|
||||
cu_seqlens, seq_idx, (A, dt2, X2, B2, C2))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("itype",
|
||||
@ -198,7 +203,7 @@ def generate_continuous_batched_examples(example_lens_by_batch,
|
||||
def test_mamba_chunk_scan_single_example(d_head, n_heads, seq_len_chunk_size,
|
||||
itype):
|
||||
|
||||
# this tests the kernels on a single example (no batching)
|
||||
# this tests the kernels on a single example (bs=1)
|
||||
|
||||
# TODO: the bfloat16 case requires higher thresholds. To be investigated
|
||||
|
||||
@ -219,23 +224,40 @@ def test_mamba_chunk_scan_single_example(d_head, n_heads, seq_len_chunk_size,
|
||||
|
||||
Y_min, final_state_min = ssd_minimal_discrete(X * dt.unsqueeze(-1), A * dt,
|
||||
B, C, chunk_size)
|
||||
|
||||
cu_seqlens = torch.tensor((0, seqlen), device='cuda').cumsum(dim=0)
|
||||
seq_idx = torch.zeros(seqlen, dtype=torch.int32, device=cu_seqlens.device)
|
||||
|
||||
chunk_indices, chunk_offsets = \
|
||||
_query_start_loc_to_chunk_indices_offsets(
|
||||
cu_seqlens, chunk_size, cu_seqlens[-1])
|
||||
|
||||
# varlen has implicit batch=1
|
||||
X = X.squeeze(0)
|
||||
dt = dt.squeeze(0)
|
||||
A = A.squeeze(0)
|
||||
B = B.squeeze(0)
|
||||
C = C.squeeze(0)
|
||||
Y = torch.empty_like(X)
|
||||
final_state = mamba_chunk_scan_combined(X,
|
||||
dt,
|
||||
A,
|
||||
B,
|
||||
C,
|
||||
chunk_size,
|
||||
D=None,
|
||||
return_final_states=True,
|
||||
out=Y)
|
||||
final_state = mamba_chunk_scan_combined_varlen(X,
|
||||
dt,
|
||||
A,
|
||||
B,
|
||||
C,
|
||||
chunk_size,
|
||||
D=None,
|
||||
cu_seqlens=cu_seqlens,
|
||||
seq_idx=seq_idx,
|
||||
chunk_indices=chunk_indices,
|
||||
chunk_offsets=chunk_offsets,
|
||||
out=Y)
|
||||
|
||||
# just test the last in sequence
|
||||
torch.testing.assert_close(Y[:, -1], Y_min[:, -1], atol=atol, rtol=rtol)
|
||||
torch.testing.assert_close(Y[-1], Y_min[0, -1], atol=atol, rtol=rtol)
|
||||
|
||||
# just test the last head
|
||||
# NOTE, in the kernel we always cast states to fp32
|
||||
torch.testing.assert_close(final_state[:, -1],
|
||||
torch.testing.assert_close(final_state[:, -1].to(torch.float32),
|
||||
final_state_min[:, -1].to(torch.float32),
|
||||
atol=atol,
|
||||
rtol=rtol)
|
||||
@ -300,7 +322,7 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
|
||||
cu_seqlens, chunk_size, cu_seqlens[-1])
|
||||
|
||||
Y = torch.empty_like(X)
|
||||
new_states = mamba_chunk_scan_combined(
|
||||
new_states = mamba_chunk_scan_combined_varlen(
|
||||
X,
|
||||
dt,
|
||||
A,
|
||||
@ -312,7 +334,6 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
|
||||
seq_idx=seq_idx,
|
||||
chunk_indices=chunk_indices,
|
||||
chunk_offsets=chunk_offsets,
|
||||
return_varlen_states=True,
|
||||
initial_states=states,
|
||||
out=Y,
|
||||
)
|
||||
@ -321,7 +342,7 @@ def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases,
|
||||
for i in range(num_examples):
|
||||
|
||||
# just test one dim and dstate
|
||||
Y_eg = Y[0, cu_seqlens[i]:cu_seqlens[i + 1], 0, 0]
|
||||
Y_eg = Y[cu_seqlens[i]:cu_seqlens[i + 1], 0, 0]
|
||||
Y_min_eg = Y_min[i][:, 0, 0]
|
||||
torch.testing.assert_close(Y_eg, Y_min_eg, atol=atol, rtol=rtol)
|
||||
|
||||
@ -386,7 +407,7 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
|
||||
_query_start_loc_to_chunk_indices_offsets(
|
||||
cu_seqlens, chunk_size, cu_seqlens[-1])
|
||||
Y_ref = torch.empty_like(X)
|
||||
state_ref = mamba_chunk_scan_combined(
|
||||
state_ref = mamba_chunk_scan_combined_varlen(
|
||||
X,
|
||||
dt,
|
||||
A,
|
||||
@ -398,7 +419,6 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
|
||||
seq_idx=seq_idx,
|
||||
chunk_indices=chunk_indices,
|
||||
chunk_offsets=chunk_offsets,
|
||||
return_varlen_states=True,
|
||||
initial_states=None,
|
||||
out=Y_ref,
|
||||
)
|
||||
@ -414,27 +434,27 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
|
||||
chunked_seq_idx = torch.repeat_interleave(
|
||||
torch.arange(len(chunked_seqlens), device=device),
|
||||
chunked_seqlens,
|
||||
output_size=chunked_cu_seqlens[-1]).unsqueeze(0).to(torch.int32)
|
||||
output_size=chunked_cu_seqlens[-1]).to(torch.int32)
|
||||
chunked_input_seq_len = chunked_cu_seqlens[-1]
|
||||
X_chunked = torch.zeros_like(X)[:, :chunked_input_seq_len, ...]
|
||||
dt_chunked = torch.zeros_like(dt)[:, :chunked_input_seq_len, ...]
|
||||
B_chunked = torch.zeros_like(B)[:, :chunked_input_seq_len, ...]
|
||||
C_chunked = torch.zeros_like(C)[:, :chunked_input_seq_len, ...]
|
||||
X_chunked = torch.zeros_like(X)[:chunked_input_seq_len, ...]
|
||||
dt_chunked = torch.zeros_like(dt)[:chunked_input_seq_len, ...]
|
||||
B_chunked = torch.zeros_like(B)[:chunked_input_seq_len, ...]
|
||||
C_chunked = torch.zeros_like(C)[:chunked_input_seq_len, ...]
|
||||
for i in range(num_sequences):
|
||||
# fmt: off
|
||||
chunk_f = lambda x, i: x[:, cu_seqlens[i]:cu_seqlens[i] + chunked_seqlens[i], ...] # noqa: E501
|
||||
chunk_f = lambda x, i: x[cu_seqlens[i]:cu_seqlens[i] + chunked_seqlens[i], ...] # noqa: E501
|
||||
|
||||
X_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(X, i) # noqa: E501
|
||||
dt_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(dt, i) # noqa: E501
|
||||
B_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(B, i) # noqa: E501
|
||||
C_chunked[:, chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(C, i) # noqa: E501
|
||||
X_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(X, i) # noqa: E501
|
||||
dt_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(dt, i) # noqa: E501
|
||||
B_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(B, i) # noqa: E501
|
||||
C_chunked[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1], ...] = chunk_f(C, i) # noqa: E501
|
||||
# fmt: on
|
||||
|
||||
chunk_indices, chunk_offsets = \
|
||||
_query_start_loc_to_chunk_indices_offsets(
|
||||
chunked_cu_seqlens, chunk_size, chunked_cu_seqlens[-1])
|
||||
Y_partial = torch.empty_like(X_chunked)
|
||||
partial_state = mamba_chunk_scan_combined(
|
||||
partial_state = mamba_chunk_scan_combined_varlen(
|
||||
X_chunked,
|
||||
dt_chunked,
|
||||
A,
|
||||
@ -446,7 +466,6 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
|
||||
seq_idx=chunked_seq_idx,
|
||||
chunk_indices=chunk_indices,
|
||||
chunk_offsets=chunk_offsets,
|
||||
return_varlen_states=True,
|
||||
initial_states=None,
|
||||
out=Y_partial,
|
||||
)
|
||||
@ -461,29 +480,28 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
|
||||
remaining_chunked_seq_idx = torch.repeat_interleave(
|
||||
torch.arange(len(remaining_chunked_seqlens), device=device),
|
||||
remaining_chunked_seqlens,
|
||||
output_size=remaining_chunked_cu_seqlens[-1]).unsqueeze(0).to(
|
||||
torch.int32)
|
||||
output_size=remaining_chunked_cu_seqlens[-1]).to(torch.int32)
|
||||
remaining_chunked_input_seq_len = remaining_chunked_cu_seqlens[-1]
|
||||
# fmt: off
|
||||
remaining_X_chunked = torch.zeros_like(X)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
|
||||
remaining_dt_chunked = torch.zeros_like(dt)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
|
||||
remaining_B_chunked = torch.zeros_like(B)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
|
||||
remaining_C_chunked = torch.zeros_like(C)[:, :remaining_chunked_input_seq_len, ...] # noqa: E501
|
||||
remaining_X_chunked = torch.zeros_like(X)[:remaining_chunked_input_seq_len, ...] # noqa: E501
|
||||
remaining_dt_chunked = torch.zeros_like(dt)[:remaining_chunked_input_seq_len, ...] # noqa: E501
|
||||
remaining_B_chunked = torch.zeros_like(B)[:remaining_chunked_input_seq_len, ...] # noqa: E501
|
||||
remaining_C_chunked = torch.zeros_like(C)[:remaining_chunked_input_seq_len, ...] # noqa: E501
|
||||
for i in range(num_sequences):
|
||||
remaining_chunk_f = lambda x, i: x[:, cu_seqlens[i] + chunked_seqlens[i]:cu_seqlens[i+1], ...] # noqa: E501
|
||||
remaining_chunk_f = lambda x, i: x[cu_seqlens[i] + chunked_seqlens[i]:cu_seqlens[i+1], ...] # noqa: E501
|
||||
|
||||
remaining_X_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(X, i) # noqa: E501
|
||||
remaining_dt_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(dt, i) # noqa: E501
|
||||
remaining_B_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(B, i) # noqa: E501
|
||||
remaining_C_chunked[:, remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(C, i) # noqa: E501
|
||||
remaining_X_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(X, i) # noqa: E501
|
||||
remaining_dt_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(dt, i) # noqa: E501
|
||||
remaining_B_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(B, i) # noqa: E501
|
||||
remaining_C_chunked[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1], ...] = remaining_chunk_f(C, i) # noqa: E501
|
||||
|
||||
# assert input chunking is correct
|
||||
concat_chunk_f = lambda pt1, pt2, i: torch.cat([
|
||||
pt1[:,chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1],...],
|
||||
pt2[:,remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1],...],
|
||||
pt1[chunked_cu_seqlens[i]:chunked_cu_seqlens[i+1],...],
|
||||
pt2[remaining_chunked_cu_seqlens[i]:remaining_chunked_cu_seqlens[i+1],...],
|
||||
],
|
||||
dim=1)
|
||||
concat_batch_f = lambda pt1, pt2: torch.cat([concat_chunk_f(pt1, pt2, i) for i in range(num_sequences)], dim=1) # noqa: E501
|
||||
dim=0)
|
||||
concat_batch_f = lambda pt1, pt2: torch.cat([concat_chunk_f(pt1, pt2, i) for i in range(num_sequences)], dim=0) # noqa: E501
|
||||
# fmt: on
|
||||
|
||||
assert concat_batch_f(X_chunked, remaining_X_chunked).equal(X)
|
||||
@ -498,7 +516,7 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
|
||||
remaining_chunked_cu_seqlens[-1])
|
||||
|
||||
Y_chunked = torch.empty_like(remaining_X_chunked)
|
||||
state_chunked = mamba_chunk_scan_combined(
|
||||
state_chunked = mamba_chunk_scan_combined_varlen(
|
||||
remaining_X_chunked,
|
||||
remaining_dt_chunked,
|
||||
A,
|
||||
@ -510,7 +528,6 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
|
||||
seq_idx=remaining_chunked_seq_idx,
|
||||
chunk_indices=chunk_indices,
|
||||
chunk_offsets=chunk_offsets,
|
||||
return_varlen_states=True,
|
||||
initial_states=partial_state,
|
||||
out=Y_chunked,
|
||||
)
|
||||
@ -518,17 +535,17 @@ def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
|
||||
|
||||
# kernel chunked is same as kernel overall
|
||||
for i in range(num_sequences):
|
||||
Y_seq = Y[:, cu_seqlens[i]:cu_seqlens[i + 1], ...]
|
||||
Y_ref_seq = Y_ref[:, cu_seqlens[i]:cu_seqlens[i + 1], ...]
|
||||
Y_seq = Y[cu_seqlens[i]:cu_seqlens[i + 1], ...]
|
||||
Y_ref_seq = Y_ref[cu_seqlens[i]:cu_seqlens[i + 1], ...]
|
||||
torch.testing.assert_close(
|
||||
Y_seq[:, :chunked_seqlens[i], ...],
|
||||
Y_ref_seq[:, :chunked_seqlens[i], ...],
|
||||
Y_seq[:chunked_seqlens[i], ...],
|
||||
Y_ref_seq[:chunked_seqlens[i], ...],
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
msg=lambda x: f"seq{i} output part1 " + x) # noqa: B023
|
||||
torch.testing.assert_close(
|
||||
Y_seq[:, chunked_seqlens[i]:, ...],
|
||||
Y_ref_seq[:, chunked_seqlens[i]:, ...],
|
||||
Y_seq[chunked_seqlens[i]:, ...],
|
||||
Y_ref_seq[chunked_seqlens[i]:, ...],
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
msg=lambda x: f"seq{i} output part2 " + x) # noqa: B023
|
||||
|
||||
@ -138,7 +138,7 @@ def test_flashinfer_per_tensor_moe_fp8_no_graph(
|
||||
td = TestData.make_moe_tensors_8bit(m, k, n, e, reorder=True)
|
||||
|
||||
score = torch.randn((m, e), device="cuda", dtype=torch.bfloat16)
|
||||
topk_weights, topk_ids = FusedMoE.select_experts(
|
||||
topk_weights, topk_ids, _ = FusedMoE.select_experts(
|
||||
hidden_states=td.hidden_states,
|
||||
router_logits=score,
|
||||
use_grouped_topk=False,
|
||||
@ -206,7 +206,7 @@ def test_flashinfer_cutlass_moe_fp8_no_graph(
|
||||
td = TestData.make_moe_tensors_8bit(m, k, n, e, reorder=False)
|
||||
|
||||
score = torch.randn((m, e), device="cuda", dtype=torch.bfloat16)
|
||||
topk_weights, topk_ids = FusedMoE.select_experts(
|
||||
topk_weights, topk_ids, _ = FusedMoE.select_experts(
|
||||
hidden_states=td.hidden_states,
|
||||
router_logits=score,
|
||||
use_grouped_topk=False,
|
||||
|
||||
@ -11,11 +11,12 @@ from tests.kernels.quant_utils import (native_per_token_group_quant_fp8,
|
||||
native_w8a8_block_matmul)
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
cutlass_scaled_mm, get_col_major_tma_aligned_tensor,
|
||||
per_token_group_quant_fp8, w8a8_triton_block_scaled_mm)
|
||||
cutlass_scaled_mm, per_token_group_quant_fp8, w8a8_block_fp8_matmul)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import has_deep_gemm
|
||||
from vllm.utils.deep_gemm import fp8_gemm_nt, per_block_cast_to_fp8
|
||||
from vllm.utils.deep_gemm import (fp8_gemm_nt,
|
||||
get_col_major_tma_aligned_tensor,
|
||||
per_block_cast_to_fp8)
|
||||
|
||||
if current_platform.get_device_capability() < (9, 0):
|
||||
pytest.skip("FP8 Triton requires CUDA 9.0 or higher",
|
||||
@ -90,8 +91,7 @@ def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed):
|
||||
|
||||
ref_out = native_w8a8_block_matmul(A_fp8, B_fp8, As, Bs, block_size,
|
||||
out_dtype)
|
||||
out = w8a8_triton_block_scaled_mm(A_fp8, B_fp8, As, Bs, block_size,
|
||||
out_dtype)
|
||||
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
|
||||
|
||||
rel_diff = (torch.mean(
|
||||
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
|
||||
|
||||
@ -20,11 +20,9 @@ from vllm.platforms import current_platform
|
||||
(8, 513, 64), # Non-divisible (native only)
|
||||
])
|
||||
@pytest.mark.parametrize("seed", [42])
|
||||
@pytest.mark.parametrize("use_ue8m0", [True, False])
|
||||
@torch.inference_mode()
|
||||
def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
|
||||
group_size: int, seed: int,
|
||||
use_ue8m0: bool) -> None:
|
||||
group_size: int, seed: int) -> None:
|
||||
"""Test QuantFP8 group quantization with various configurations.
|
||||
|
||||
Tests both CUDA and native implementations, column-major scales,
|
||||
@ -40,8 +38,7 @@ def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
|
||||
group_shape = GroupShape(1, group_size)
|
||||
quant_op = QuantFP8(static=False,
|
||||
group_shape=group_shape,
|
||||
column_major_scales=False,
|
||||
use_ue8m0=use_ue8m0)
|
||||
column_major_scales=False)
|
||||
|
||||
# 1. Test native implementation (always available)
|
||||
x_quant_native, scales_native = quant_op.forward_native(x.clone())
|
||||
@ -51,15 +48,9 @@ def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
|
||||
# 2. Test column-major scales configuration
|
||||
quant_op_col = QuantFP8(static=False,
|
||||
group_shape=group_shape,
|
||||
column_major_scales=True,
|
||||
use_ue8m0=use_ue8m0)
|
||||
column_major_scales=True)
|
||||
_, scales_col = quant_op_col.forward_native(x.clone())
|
||||
assert scales_col.shape == (batch_size, expected_num_groups)
|
||||
assert scales_col.stride(0) == 1
|
||||
assert scales_col.stride(1) == batch_size
|
||||
|
||||
# Test column-major scales consistency
|
||||
assert torch.allclose(scales_col, scales_native, rtol=1e-9, atol=1e-8)
|
||||
assert scales_col.shape == (expected_num_groups, batch_size)
|
||||
|
||||
# 3. Test CUDA implementation (only for divisible dimensions)
|
||||
if is_divisible:
|
||||
@ -77,9 +68,8 @@ def test_quantfp8_group_functionality(batch_size: int, hidden_dim: int,
|
||||
|
||||
|
||||
@pytest.mark.parametrize("seed", [42])
|
||||
@pytest.mark.parametrize("use_ue8m0", [True, False])
|
||||
@torch.inference_mode()
|
||||
def test_quantfp8_group_multidimensional(seed: int, use_ue8m0: bool) -> None:
|
||||
def test_quantfp8_group_multidimensional(seed: int) -> None:
|
||||
current_platform.seed_everything(seed)
|
||||
|
||||
group_size = 64
|
||||
@ -92,8 +82,7 @@ def test_quantfp8_group_multidimensional(seed: int, use_ue8m0: bool) -> None:
|
||||
group_shape = GroupShape(1, group_size)
|
||||
quant_op = QuantFP8(static=False,
|
||||
group_shape=group_shape,
|
||||
column_major_scales=False,
|
||||
use_ue8m0=use_ue8m0)
|
||||
column_major_scales=False)
|
||||
|
||||
x_quant, scales = quant_op.forward_native(x_3d.clone())
|
||||
assert x_quant.shape == x_3d.shape
|
||||
@ -102,8 +91,7 @@ def test_quantfp8_group_multidimensional(seed: int, use_ue8m0: bool) -> None:
|
||||
# Test column_major_scales with multi-dim
|
||||
quant_op_col = QuantFP8(static=False,
|
||||
group_shape=group_shape,
|
||||
column_major_scales=True,
|
||||
use_ue8m0=use_ue8m0)
|
||||
column_major_scales=True)
|
||||
_, scales_col = quant_op_col.forward_native(x_3d.clone())
|
||||
assert scales_col.shape == (batch1, hidden_dim // group_size, batch2)
|
||||
|
||||
|
||||
@ -165,7 +165,7 @@ def onednn_gemm_test_helper(primitive_cache_size: int,
|
||||
def test_onednn_int8_scaled_gemm(
|
||||
n: int,
|
||||
k: int,
|
||||
m_list: tuple[int],
|
||||
m_list: tuple[int, ...],
|
||||
per_tensor_a_scale: bool,
|
||||
per_tensor_b_scale: bool,
|
||||
use_bias: bool,
|
||||
@ -196,7 +196,7 @@ def test_onednn_int8_scaled_gemm(
|
||||
def test_onednn_gemm(
|
||||
n: int,
|
||||
k: int,
|
||||
m_list: tuple[int],
|
||||
m_list: tuple[int, ...],
|
||||
use_bias: bool,
|
||||
use_stride: bool,
|
||||
dtype: torch.dtype,
|
||||
|
||||
@ -524,14 +524,14 @@ def make_backend(backend_name: str) -> AttentionBackend:
|
||||
|
||||
* Backend instance
|
||||
'''
|
||||
if backend_name in (STR_XFORMERS_ATTN_VAL, "XFORMERS_VLLM_V1"):
|
||||
if backend_name == STR_XFORMERS_ATTN_VAL:
|
||||
from vllm.v1.attention.backends.xformers import (
|
||||
XFormersAttentionBackend)
|
||||
return XFormersAttentionBackend()
|
||||
if backend_name in (STR_FLASH_ATTN_VAL, "FLASH_ATTN_VLLM_V1"):
|
||||
if backend_name == STR_FLASH_ATTN_VAL:
|
||||
from vllm.v1.attention.backends.flash_attn import FlashAttentionBackend
|
||||
return FlashAttentionBackend()
|
||||
if backend_name == "TRITON_ATTN_VLLM_V1":
|
||||
if backend_name == "TRITON_ATTN":
|
||||
from vllm.v1.attention.backends.triton_attn import (
|
||||
TritonAttentionBackend)
|
||||
return TritonAttentionBackend()
|
||||
@ -539,7 +539,7 @@ def make_backend(backend_name: str) -> AttentionBackend:
|
||||
from vllm.v1.attention.backends.flex_attention import (
|
||||
FlexAttentionBackend)
|
||||
return FlexAttentionBackend()
|
||||
if backend_name in ("TORCH_SDPA", "TORCH_SDPA_VLLM_V1"):
|
||||
if backend_name == "TORCH_SDPA":
|
||||
from vllm.v1.attention.backends.cpu_attn import TorchSDPABackend
|
||||
return TorchSDPABackend()
|
||||
if backend_name == "FLASHINFER":
|
||||
|
||||
@ -1,52 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_regex():
|
||||
return (r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}"
|
||||
r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_json_schema():
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {
|
||||
"type": "string"
|
||||
},
|
||||
"age": {
|
||||
"type": "integer"
|
||||
},
|
||||
"skills": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "string",
|
||||
"maxLength": 10
|
||||
},
|
||||
"minItems": 3
|
||||
},
|
||||
"work_history": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"company": {
|
||||
"type": "string"
|
||||
},
|
||||
"duration": {
|
||||
"type": "number"
|
||||
},
|
||||
"position": {
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": ["company", "position"]
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": ["name", "age", "skills", "work_history"]
|
||||
}
|
||||
@ -10,7 +10,7 @@ from vllm.model_executor.model_loader import tensorizer as tensorizer_mod
|
||||
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
|
||||
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
|
||||
from vllm.v1.executor.abstract import UniProcExecutor
|
||||
from vllm.worker.worker_base import WorkerWrapperBase
|
||||
from vllm.v1.worker.worker_base import WorkerWrapperBase
|
||||
|
||||
MODEL_REF = "facebook/opt-125m"
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user