Compare commits

...

111 Commits

Author SHA1 Message Date
c7021f1270 AITER MHA off by default
Signed-off-by: Micah Williamson <micah.williamson@amd.com>
2025-10-22 14:49:01 -07:00
2072fdc044 update base image for RC
Signed-off-by: Micah Williamson <micah.williamson@amd.com>
2025-10-22 14:49:01 -07:00
6eefda507a RC specific config changes and docker changes
Signed-off-by: Micah Williamson <micah.williamson@amd.com>
2025-10-22 14:49:00 -07:00
a0003b56b0 [Chore] Separate out system utilities from vllm.utils (#27201)
Signed-off-by: dongbo910220 <1275604947@qq.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-22 20:25:25 +00:00
5beacce2ea [BugFix] bugfix for Flash Attention MLA with full cuda graph IMA following pr-25490 (#27128)
Signed-off-by: qqma <qqma@amazon.com>
Co-authored-by: qqma <qqma@amazon.com>
2025-10-22 19:36:39 +00:00
8669c69afa [Feature] publisher default set zmq in kv_event config (#26915)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-22 19:19:33 +00:00
1651003c35 [Prefix Cache] Use LoRA name for consistent KV-cache block hashing (#27211)
Signed-off-by: Sage Ahrac <sagiahrak@gmail.com>
2025-10-22 18:13:03 +00:00
1cb8c6c5fe [Doc] Fix numbering sequence in prefix caching (#27357)
Signed-off-by: William Song <jinwook@umich.edu>
2025-10-22 17:35:47 +00:00
e05a6754a8 [Model] Revert PR #26715: Restore custom PaliGemma and Gemma3-MM impl… (#27309)
Signed-off-by: Luciano Martins <lucianommartins@users.noreply.github.com>
Co-authored-by: Luciano Martins <lucianommartins@users.noreply.github.com>
2025-10-22 10:05:34 -07:00
084a9dae80 [Bugfix] Disable FlexAttention direct block mask building for encoder-only models (#27344)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-22 16:39:08 +00:00
RED
c9461e05a4 Support Anthropic API /v1/messages Endpoint (#22627)
Signed-off-by: liuli <ll407707@alibaba-inc.com>
Co-authored-by: liuli <ll407707@alibaba-inc.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-22 09:13:18 -07:00
4dfdb821c8 [P/D] Dynamic kv_output_aggregator collect size (#26734)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-22 18:07:58 +02:00
58fab50d82 [Frontend] Require flag for loading text and image embeds (#27204)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-22 15:52:02 +00:00
db6f28d898 [Bugfix] Fix HF format InternVL large variants video processing (#27330)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-22 08:39:23 -07:00
14e2f1231e [Bugfix] Make get_mrope_input_positions instance methods (#27342)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-22 08:38:34 -07:00
7c4767f1eb [NIXL] use Host buffer to support TP_ratio > 1 for XPU (#27140)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Nicolò Lucchesi <nicolo.lucchesi@gmail.com>
2025-10-22 15:28:13 +00:00
9771e0b432 [Bugfix] Add missing 'is_internal_router' attribute to FusedMoEWithLoRA (#27351)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-22 08:19:12 -07:00
980de31ca0 [bugfix] remove unused parameters to reduce unnecessary vram usage (#26789)
Signed-off-by: Reinforce-II <fate@eastal.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-22 08:16:09 -07:00
1c160841ea [Bug] Fix DeepSeek-V2.5-1210-FP8 issue (#27267)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-22 11:00:10 -04:00
4ca13a8667 [NIXL] Terminate handshake listener thread in shutdown (#26404)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-10-22 16:59:53 +02:00
675aa2ec64 [Model] Upstream Deepseek-OCR model (#27247)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-22 07:59:15 -07:00
3ae082c373 [Chore] Separate out optional dependency checks from vllm.utils (#27207)
Signed-off-by: dongbo910220 <1275604947@qq.com>
Signed-off-by: dongbo910220 <32610838+dongbo910220@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-22 10:44:21 -04:00
49c00fe304 Mirroring changes in test-pipeline.yaml into test-amd.yaml (#27242)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-10-22 09:59:45 -04:00
141d3b9fc5 [docs] Update v1 metrics design doc (#27332)
Signed-off-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: atalhens <sneh.lata@nutanix.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: atalhens <sneh.lata@nutanix.com>
2025-10-22 06:29:15 -07:00
abf3db40ef [Core] Handle MoE LoRA edge cases (#27335)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-22 13:14:33 +00:00
8e4ca4d14e Bugfix - pass 'max_num_tokens_padded' into 'moe_lora_align_block_size' (#27311)
Signed-off-by: gnovack <gnovack@amazon.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-22 12:23:57 +00:00
1a0f4defb7 [Log] Add Warning for LLM(data_parallel_size=k) single-process DP Usage (#27282)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-22 12:12:21 +00:00
843af7f7fc [Bugfix][CPU] Disable dual stream execution for experts on CPU (#27320)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-10-22 11:02:27 +00:00
1f633b8632 [Frontend][3/N] Improve all pooling task | Support binary embedding response (#27066)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-10-22 18:38:57 +08:00
a4c29e6e82 fixed reasoning streaming with tool_choice="required" (#24108)
Signed-off-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
Signed-off-by: ExtReMLapin <3909752+ExtReMLapin@users.noreply.github.com>
Co-authored-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-10-22 09:42:55 +00:00
8f18feb191 Remove last level references not removed in #26355 (#27260)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-22 09:18:17 +00:00
ed540d6d4c Update release pipeline for PyTorch 2.9.0 (#27303)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-10-22 09:18:01 +00:00
f6027b2855 [1/N][Platform] Cleanup useless function (#26982)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-10-22 09:04:57 +00:00
ab3e80042e [torch.compile] Enable silu_mul_fp8_quant fusion without custom ops enabled (#27146)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-10-22 00:22:39 -04:00
ceacedc1f9 [Benchmark] Add plot utility for parameter sweep (#27168)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-21 20:30:03 -07:00
bfa59be8f1 [CI] Nixl integration tests DP-EP (#27199)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-22 11:17:48 +08:00
265ecb05fb [DOC] [ROCm] Add ROCm quickstart guide (#26505)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-10-22 03:10:48 +00:00
09a7e6f617 [Deepseek v3.2] Remove extra logics in indexer (#26465)
Signed-off-by: Siyuan Fu <siyuanf@nvidia.com>
Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
Signed-off-by: Lain <siyuanf@nvidia.com>
Co-authored-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
2025-10-21 23:34:03 +00:00
6c2eef5a5d [P/D] KVConnector for decode benchmarking (#25986)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-10-21 16:30:47 -07:00
19748806f0 [Bugfix] skip cuda graph for drafter when running with eager (#26821)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-21 15:39:09 -07:00
4a8a567e16 Updated xgrammar backend to not deny supported string formats (#27253)
Signed-off-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
Signed-off-by: ExtReMLapin <3909752+ExtReMLapin@users.noreply.github.com>
Co-authored-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-21 22:25:23 +00:00
344a0017c0 [Performance] Dual stream execution of "shared_experts" and "selected_experts" inside FusedMoE (#26440)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-10-21 21:38:29 +00:00
becb7de40b Update PyTorch to 2.9.0+cu129 (#24994)
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-21 17:20:18 -04:00
250fb1b8ea [Bugfix] fixes the decoding metadata of dense mla's fp8 kvcache. (#27144)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-10-21 18:27:03 +00:00
647214f3d5 [V0 Deprecation] Remove V0 executors (#27142)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-21 11:09:37 -07:00
ddeec11ba9 [Bugfix][P/D] Reduce num_threads used by nixl ucx backend (#27196)
Signed-off-by: David Whyte-Gray <40244437+dagrayvid@users.noreply.github.com>
2025-10-21 13:41:52 -04:00
86ed77022d [Feature] Batch Invariant for R1 TP 8 on Blackwell (#27229)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-21 10:25:55 -07:00
aa1356ec53 [ROCm] Update Triton, Torch, and AITER branches for ROCm base Dockerfile (#27206)
Signed-off-by: Micah Williamson <micah.williamson@amd.com>
2025-10-21 12:01:23 -04:00
ecc3c0940a Add @pavanimajety to .github/codeowners for Flashinfer, ModelOpt related code (#27213)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-10-21 22:59:53 +08:00
ba09652de2 [ROCM] Enable CompressedTensorsWNA16 (#27187)
Signed-off-by: JartX <sagformas@epdcenter.es>
2025-10-21 10:43:23 -04:00
bd66b8529b [CI] Install pre-release version of apache-tvm-ffi for flashinfer (#27262)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-21 14:23:56 +00:00
6c728f7771 [Chore] Separate out NCCL utilities from vllm.utils (#27197)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-10-21 06:18:23 -07:00
80e9452984 [Deepseek v3.2] Optimize top_k_per_row (#26763)
Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
2025-10-21 08:30:07 +00:00
c3a2c6ac5f [MM][Core] Decouple ViT backend from LM backend (#27061)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-10-21 00:30:10 -07:00
72f431e709 [Nixl] Minor refactor to handshake related metadata (#26410)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-21 09:07:47 +02:00
be4445072c [Fix][Spec Decode] Fix llama4 draft loading with different quantization (#27136)
Signed-off-by: linzebing <linzebing1995@gmail.com>
2025-10-20 23:19:00 -07:00
f381cf2302 [Bugfix] Fix broken MTP weight loading for FP8 KV Scales (#27227)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-20 22:51:44 -07:00
5ff5d94e77 [Bugfix] Fix gpt-oss w4a8 DP/EP on B200 (#26729)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-21 01:51:14 -04:00
f95da13c3d [ModelOpt] Load w13/w2_input_scale for all experts, nvfp4 (#26135)
Signed-off-by: Shu Wang <shuw@nvidia.com>
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-21 01:50:31 -04:00
aef368aa08 [BugFix] GPT-OSS Attention DP + MoE TP weight loading issue (#24032)
Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
2025-10-21 04:03:47 +00:00
5f6cbf60d6 [Feature][Kernel]FusedMoE LoRA (#21229)
Signed-off-by: wuchen <cntryroa@gmail.com>
Signed-off-by: banjuede <lmklhc@163.com>
Signed-off-by: Chen Wu <cntryroa@gmail.com>
Signed-off-by: Danielle Robinson <dmmaddix@amazon.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: bk-201 <joy25810@foxmail.com>
Co-authored-by: wuchen <wuchen@zetyun.com>
Co-authored-by: Nathan Van Gheem <vangheem@gmail.com>
Co-authored-by: banjuede <lmklhc@163.com>
Co-authored-by: Danielle Robinson <dmmaddix@amazon.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: bk-201 <joy25810@foxmail.com>
2025-10-21 03:01:37 +00:00
3ada34f9cb [Frontend] Enforce tokenize=False when applying chat template (#27205)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-21 02:57:34 +00:00
0eb8f2b880 create is_in_the_same_node on cpu (#26832)
Co-authored-by: Lunwen He <lunwenh@meta.com>
2025-10-21 02:04:14 +00:00
163965d183 [cpu] Dispatch un-quantized linear to oneDNN/ACL by default for AArch64 (#27183)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
Co-authored-by: Michael Yang <Michael.Yang@arm.com>
2025-10-21 02:02:58 +00:00
a03cf9bc70 [V0 Deprecation] Remove V0 metrics code (#27215)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-21 02:02:10 +00:00
352c0c8a28 [Quantization] Automatically infer AWQ modules_to_not_convert field (#26909)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-21 01:49:28 +00:00
bfe0b4bd2a [ez] add uv lock to gitignore (#27212)
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
2025-10-21 00:37:44 +00:00
58fbbcb2f5 [ROCm] enable some tests in entrypoints test groups on AMD (#26725)
Signed-off-by: Yida <yida.wu@amd.com>
2025-10-21 00:37:16 +00:00
87778d5f00 [Feature][Quantization] auto_round support for mixed bits quantization (#23812)
Signed-off-by: n1ck-guo <heng.guo@intel.com>
Signed-off-by: Heng Guo <heng.guo@intel.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-20 22:23:30 +00:00
f9e7ad5400 [Bugfix][CI] Fix Distributed Tests (4 GPUs) async_sched+ray test (#27195)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-20 16:34:54 +00:00
4d0f266113 [Kernel][Model] Tune fused_moe Triton configs for Qwen3-30B A3/A3B on H100 (FP8/BF16) (#26268)
Signed-off-by: Shivam <shivampr.dev@gmail.com>
2025-10-20 07:48:01 -07:00
e93ff6c8b9 Nemotron Nano V2 VL + EVS Video Support (#27107)
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Signed-off-by: Natan Bagrov <nbagrov@nvidia.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Natan Bagrov <nbagrov@nvidia.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-20 22:19:11 +08:00
1c691f4a71 AArch64 CPU Docker pipeline (#26931) 2025-10-20 07:09:40 -04:00
9fce7bee74 [Kernel] Accelerate solve_tril with TMA (#26746)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-10-20 05:39:02 +00:00
b63f2143f8 [LoRA] LoRA cuda graph specialization (#25914)
Signed-off-by: Andy Lo <andy@mistral.ai>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-20 04:21:09 +00:00
f32bf7582e [Model][VLM] Support Bee-8B Model (#27012)
Signed-off-by: uyzhang <yi.zhang.4096@gmail.com>
Signed-off-by: Yi Zhang <zhangyi970819@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-20 02:31:26 +00:00
8a81d776ce Fix typo in ValueError message: use kv_role instead of kv_disagg_role (#27166)
Signed-off-by: Yongtao Huang <yongtaoh2022@gmail.com>
2025-10-19 19:47:19 +00:00
f6fdacd82c [Bugfix] Fix error with penalties when speculative decoding and structural output are enabled (#26586)
Signed-off-by: southfreebird <yvorott@gmail.com>
2025-10-19 19:24:46 +00:00
d31f7844f8 [Misc] Move utils to avoid conflicts with stdlib, and move tests (#27169)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-19 05:20:55 -07:00
7a6c8c3fa1 [Chore] Separate out vllm.utils.network_utils (#27164)
Signed-off-by: iAmir97 <Amir.balwel@embeddedllm.com>
Co-authored-by: iAmir97 <Amir.balwel@embeddedllm.com>
2025-10-19 03:06:32 -07:00
221bf72577 output type conversion fix (#27159) 2025-10-19 08:10:07 +00:00
b3aba04e5a [Benchmark] Convenience script for multiple parameter combinations (#27085)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-18 23:57:01 -07:00
8a297115e2 [Chore] Separate out hashing utilities from vllm.utils (#27151)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-10-19 11:09:38 +08:00
191eed0bb9 [BugFix] Fix lazy imports involving outlines_core (#27158)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-10-19 02:35:32 +00:00
fb860670da [Minor] Remove unused env variable (#27161) 2025-10-18 18:48:35 -07:00
83e760c57d [V1][Metrics][Plugin] Add plugin support for custom StatLoggerBase implementations (#22456)
Signed-off-by: tovam <tovam@pliops.com>
2025-10-18 15:12:46 -07:00
c2bba69065 [BugFix] Disable fp8 kv-cache by default for DeepSeek V3.2 (#27121)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-18 22:05:23 +00:00
e133d6d218 [BugFix] fix graph partition signature (#27139)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
2025-10-18 17:34:36 -04:00
a1946c9f61 [Chore] Separate out profiling utilities from vllm.utils (#27150)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-10-18 19:12:01 +00:00
9f020f4f31 [BugFix] Fix failing gemma-3-1b-it test: test_lm_eval_accuracy_v1_engine[google/gemma-3-1b-it] (#27111)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-10-18 12:44:39 -06:00
3b45075206 [Minor] Add some clarifying comments to recent changes (#27130)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-18 09:52:45 -07:00
168e578efc Fix incorrect string formatting in barrier timeout exceptions (#27149)
Signed-off-by: Yongtao Huang <yongtaoh2022@gmail.com>
2025-10-18 09:51:57 -07:00
6ac5e06f7c [Chore] Clean up pytorch helper functions in vllm.utils (#26908)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: isotr0py <2037008807@qq.com>
2025-10-18 09:48:22 -07:00
5c2acb270a [Models][QwenVL] Remove unnecessary .contiguous() calls (#27106)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-10-18 07:05:05 -07:00
b26b70bec4 [Misc] Refactor get_kv_cache_spec into AttentionLayerBase (#26587)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-18 13:51:21 +00:00
ab4be40fc5 [fix][cpu] fix prefill attention in CPU attention backend (#27035)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
2025-10-18 13:30:21 +00:00
245e4f2c01 [Feature] Batch Invariant: Support DeepGEMM and Blackwell (#27127)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-18 09:28:05 -04:00
1d165d6d85 [Chore] Separate out vllm.utils.mem_utils (#27143)
Signed-off-by: iAmir97 <Amir.balwel@embeddedllm.com>
Signed-off-by: iAmir97 <71513472+iAmir97@users.noreply.github.com>
Co-authored-by: iAmir97 <Amir.balwel@embeddedllm.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-18 10:06:59 +00:00
83004020fd [Test] Add test for /health endpoint on engine failure (#26074)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-10-18 09:59:05 +00:00
12e21701e7 [DOC][FEATURES][CPU]update cpu feature for v1 (#27135)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2025-10-18 01:10:45 -07:00
30a33b92ee [Misc] Rev DeepEP (#27122)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-10-18 14:54:29 +08:00
7c572544e4 [GPT-OSS] Structure_Tag support for gpt-oss tool-call in cot (#25515)
Signed-off-by: Hanchenli <lihanc2002@gmail.com>
Signed-off-by: Hanchenli <61769611+Hanchenli@users.noreply.github.com>
Signed-off-by: Wei Wei <wwei6@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Wei Wei <wwei6@meta.com>
Co-authored-by: Wei Wei <weiweinpu@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-17 21:55:54 -07:00
c312320764 [CI/Build] tests(v1): feed Triton attention the (num_blocks, 2, …) KV cache layout in backend-correctness tests (#26663)
Signed-off-by: Huamin Li <3ericli@gmail.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-10-17 21:11:26 -07:00
c981f0ea78 [Perf] Add H100 fused MoE config (#25398)
Signed-off-by: zitian.zhao <zitian.zhao@tencentmusic.com>
2025-10-18 02:21:27 +00:00
6367bde739 [BugFix][Core] Fix error when enable async-scheduling in multi-node env (#25887)
Signed-off-by: Lehua Ding <lehuading@tencent.com>
Signed-off-by: Lehua Ding <lehuading@qq.com>
Co-authored-by: Benjamin Chislett <chislett.ben@gmail.com>
2025-10-17 22:16:18 +00:00
f50cc221ea [Test] Make test_failure more stable for batch invariance (#27054) 2025-10-17 16:59:08 -04:00
acedc74b1a [V1][Spec Decode] Fix greedy temperature detection after sampler refactor (#27077)
Signed-off-by: Pradyun Ramadorai <pradyunr@amazon.com>
Co-authored-by: Pradyun Ramadorai <pradyunr@amazon.com>
2025-10-17 13:27:47 -07:00
d29483b58a [Minor] Remove unnecessary error message (#27115)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-10-17 20:02:12 +00:00
950cf9e58e [Bugfix] Use PIECEWISE cudagraphs on Blackwell if max_model_len > 131072 (#27114)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-17 19:47:18 +00:00
3125d79950 [Chore] Remove unused PolyNorm layer (#27110)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-17 19:03:43 +00:00
e33ee23ee3 [Bugfix] [AITER] [ROCm] Fix Quark MoE Quant Config and AITER Fused MoE quant type logic (#27029)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-10-17 12:51:10 -06:00
495 changed files with 17986 additions and 6519 deletions

View File

@ -1,5 +1,5 @@
steps:
# aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
# aarch64 + CUDA builds
- label: "Build arm64 wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-arm64-cuda-12-9
@ -15,6 +15,21 @@ steps:
env:
DOCKER_BUILDKIT: "1"
# aarch64 build
- label: "Build arm64 CPU wheel"
depends_on: ~
id: build-wheel-arm64-cpu
agents:
queue: arm64_cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg VLLM_BUILD_ACL=ON --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile.cpu ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.8"
depends_on: ~
id: build-wheel-cuda-12-8
@ -28,20 +43,6 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.6"
depends_on: ~
id: build-wheel-cuda-12-6
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-cuda-12-9
@ -55,6 +56,20 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 13.0"
depends_on: ~
id: build-wheel-cuda-13-0
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=13.0.1 --build-arg BUILD_BASE_IMAGE=nvidia/cuda:13.0.1-devel-ubuntu22.04 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# Build release images (12.9)
- label: "Build release image (x86)"
depends_on: ~
id: build-release-image-x86
@ -62,13 +77,12 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# re-tag to default image tag and push, just in case arm64 build fails
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
# PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
- label: "Build release image (arm64)"
depends_on: ~
id: build-release-image-arm64
@ -142,6 +156,22 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- block: "Build arm64 CPU release image"
key: block-arm64-cpu-release-image-build
depends_on: ~
- label: "Build and publish arm64 CPU release image"
depends_on: block-arm64-cpu-release-image-build
agents:
queue: arm64_cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"
- label: "Build and publish nightly multi-arch image to DockerHub"
depends_on:
- create-multi-arch-manifest

View File

@ -58,33 +58,25 @@ python3 .buildkite/generate_index.py --wheel "$normal_wheel"
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
if [[ $normal_wheel == *"cu129"* ]]; then
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
else
echo "Skipping index files for non-cu129 wheels"
fi
# generate index for nightly
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
if [[ $normal_wheel == *"cu129"* ]]; then
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
else
echo "Skipping index files for non-cu129 wheels"
fi
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"

View File

@ -454,8 +454,8 @@ steps:
- pytest -v -s compile/test_fusion_attn.py
- pytest -v -s compile/test_functionalization.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- pytest -v -s compile/test_async_tp.py
# - pytest -v -s compile/test_sequence_parallelism.py
# - pytest -v -s compile/test_async_tp.py
- pytest -v -s compile/test_fusion_all_reduce.py
- pytest -v -s compile/test_decorator.py
- pytest -v -s compile/test_noop_elimination.py
@ -474,8 +474,8 @@ steps:
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s compile/piecewise/
- label: PyTorch Fullgraph Test # 20min
timeout_in_minutes: 30
- label: PyTorch Fullgraph Test # 22min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
@ -485,6 +485,7 @@ steps:
- tests/compile
commands:
- pytest -v -s compile/test_full_graph.py
- pytest -v -s compile/test_fusions_e2e.py
- label: Kernels Core Operation Test # 48min
timeout_in_minutes: 75
@ -494,6 +495,7 @@ steps:
source_file_dependencies:
- csrc/
- tests/kernels/core
- tests/kernels/test_top_k_per_row.py
commands:
- pytest -v -s kernels/core kernels/test_top_k_per_row.py
@ -606,7 +608,7 @@ steps:
# we can only upgrade after this is resolved
# TODO(jerryzh168): resolve the above comment
- uv pip install --system torchao==0.13.0
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
@ -848,6 +850,18 @@ steps:
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Accuracy Eval (Small Models) # 50min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
timeout_in_minutes: 70
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- vllm/multimodal/
- vllm/inputs/
- vllm/v1/core/
commands:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
- label: Multi-Modal Models Test (Extended) 1
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
@ -923,8 +937,8 @@ steps:
# Whisper needs spawn method to avoid deadlock
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
- label: Blackwell Test # 21 min
timeout_in_minutes: 30
working_dir: "/vllm-workspace/"
gpu: b200
# optional: true
@ -937,8 +951,6 @@ steps:
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/fusion.py
- vllm/compilation/fusion_attn.py
commands:
- nvidia-smi
- python3 examples/offline_inference/basic/chat.py
@ -955,13 +967,32 @@ steps:
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_qutlass.py
- pytest -v -s tests/kernels/quantization/test_mxfp4_qutlass.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
# Fusion
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
- pytest -v -s tests/kernels/moe/test_flashinfer.py
- label: Blackwell Fusion Tests # 30 min
timeout_in_minutes: 40
working_dir: "/vllm-workspace/"
gpu: b200
source_file_dependencies:
- csrc/quantization/fp4/
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/
# can affect pattern matching
- vllm/model_executor/layers/layernorm.py
- vllm/model_executor/layers/activation.py
- vllm/model_executor/layers/quantization/input_quant_fp8.py
commands:
- nvidia-smi
- pytest -v -s tests/compile/test_fusion_attn.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
# this runner has 2 GPUs available even though num_gpus=2 is not set
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py
- label: Blackwell GPT-OSS Eval
timeout_in_minutes: 60
@ -1081,6 +1112,7 @@ steps:
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- VLLM_TEST_SAME_HOST=1 VLLM_TEST_WITH_DEFAULT_DEVICE_SET=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- pytest -v -s distributed/test_sequence_parallel.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
@ -1128,6 +1160,11 @@ steps:
- pytest -v -s plugins_tests/test_io_processor_plugins.py
- pip uninstall prithvi_io_processor_plugin -y
# end io_processor plugins test
# begin stat_logger plugins test
- pip install -e ./plugins/vllm_add_dummy_stat_logger
- pytest -v -s plugins_tests/test_stats_logger_plugins.py
- pip uninstall dummy_stat_logger -y
# end stat_logger plugins test
# other tests continue here:
- pytest -v -s plugins_tests/test_scheduler_plugins.py
- pip install -e ./plugins/vllm_add_dummy_model
@ -1172,7 +1209,6 @@ steps:
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_llm_with_multi_loras.py
- label: Weight Loading Multiple GPU Test # 33min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
@ -1201,6 +1237,18 @@ steps:
commands:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
- label: NixlConnector PD accuracy tests (Distributed) # 30min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_4
timeout_in_minutes: 30
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py
- tests/v1/kv_connector/nixl_integration/
commands:
- uv pip install --system -r /vllm-workspace/requirements/kv_connectors.txt
- bash v1/kv_connector/nixl_integration/tp_config_sweep_accuracy_test.sh
##### multi gpus test #####
##### A100 test #####
@ -1232,12 +1280,16 @@ steps:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
##### H200 test #####
- label: Distrubted Tests (H200) # optional
- label: Distributed Tests (H200) # optional
gpu: h200
optional: true
working_dir: "/vllm-workspace/"
num_gpus: 2
commands:
- pytest -v -s tests/compile/test_async_tp.py
- pytest -v -s tests/compile/test_sequence_parallelism.py
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm
- pytest -v -s tests/distributed/test_context_parallel.py
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048

View File

@ -172,6 +172,8 @@ steps:
- tests/v1/engine/test_engine_core_client.py
- tests/distributed/test_symm_mem_allreduce.py
commands:
# https://github.com/NVIDIA/nccl/issues/1838
- export NCCL_CUMEM_HOST_ENABLE=0
# test with torchrun tp=2 and external_dp=2
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with torchrun tp=2 and pp=2
@ -349,7 +351,8 @@ steps:
- python3 offline_inference/basic/embed.py
- python3 offline_inference/basic/score.py
- python3 offline_inference/spec_decode.py --test --method eagle --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
# https://github.com/vllm-project/vllm/pull/26682 uses slightly more memory in PyTorch 2.9+ causing this test to OOM in 1xL4 GPU
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 1536
- label: Platform Tests (CUDA) # 4min
timeout_in_minutes: 15
@ -384,7 +387,12 @@ steps:
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
--ignore=lora/test_chatglm3_tp.py \
--ignore=lora/test_llama_tp.py \
--ignore=lora/test_llm_with_multi_loras.py
--ignore=lora/test_llm_with_multi_loras.py \
--ignore=lora/test_olmoe_tp.py \
--ignore=lora/test_deepseekv2_tp.py \
--ignore=lora/test_gptoss.py \
--ignore=lora/test_qwen3moe_tp.py
parallelism: 4
- label: PyTorch Compilation Unit Tests # 15min
@ -529,7 +537,7 @@ steps:
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
# we can only upgrade after this is resolved
# TODO(jerryzh168): resolve the above comment
- uv pip install --system torchao==0.13.0
- uv pip install --system torchao==0.13.0 --index-url https://download.pytorch.org/whl/cu129
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
- label: LM Eval Small Models # 53min
@ -970,6 +978,8 @@ steps:
- tests/v1/shutdown
- tests/v1/worker/test_worker_memory_snapshot.py
commands:
# https://github.com/NVIDIA/nccl/issues/1838
- export NCCL_CUMEM_HOST_ENABLE=0
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
@ -977,6 +987,7 @@ steps:
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- VLLM_TEST_SAME_HOST=1 VLLM_TEST_WITH_DEFAULT_DEVICE_SET=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- pytest -v -s distributed/test_sequence_parallel.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
@ -1020,6 +1031,11 @@ steps:
- pytest -v -s plugins_tests/test_io_processor_plugins.py
- pip uninstall prithvi_io_processor_plugin -y
# end io_processor plugins test
# begin stat_logger plugins test
- pip install -e ./plugins/vllm_add_dummy_stat_logger
- pytest -v -s plugins_tests/test_stats_logger_plugins.py
- pip uninstall dummy_stat_logger -y
# end stat_logger plugins test
# other tests continue here:
- pytest -v -s plugins_tests/test_scheduler_plugins.py
- pip install -e ./plugins/vllm_add_dummy_model
@ -1059,6 +1075,7 @@ steps:
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_llm_with_multi_loras.py
- pytest -v -s -x lora/test_olmoe_tp.py
- label: Weight Loading Multiple GPU Test # 33min

9
.github/CODEOWNERS vendored
View File

@ -5,8 +5,8 @@
/vllm/attention @LucasWilkinson
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/model_executor/layers/fused_moe @mgoin
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/model_executor/layers/fused_moe @mgoin @pavanimajety
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256 @pavanimajety
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
@ -25,7 +25,8 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# vLLM V1
/vllm/v1/attention @LucasWilkinson
/vllm/v1/attention/backends/flashinfer.py @mgoin
/vllm/v1/attention/backends/mla @pavanimajety
/vllm/v1/attention/backends/flashinfer.py @mgoin @pavanimajety
/vllm/v1/attention/backends/triton_attn.py @tdoublep
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/vllm/v1/sample @22quinn @houseroad @njhill
@ -44,7 +45,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256
/tests/models @DarkLight1337 @ywang96
/tests/multimodal @DarkLight1337 @ywang96 @NickLucche
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256 @pavanimajety
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm

3
.gitignore vendored
View File

@ -94,6 +94,9 @@ ipython_config.py
# generated files
**/generated/**
# uv
uv.lock
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:

View File

@ -38,7 +38,7 @@ repos:
rev: 0.9.1
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu129, --python-platform, x86_64-manylinux_2_28]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:

View File

@ -49,8 +49,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.8.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.8.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.9.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.9.0")
#
# Try to find python package with an executable that exactly matches
@ -883,6 +883,7 @@ target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1)
set(VLLM_MOE_EXT_SRC
"csrc/moe/torch_bindings.cpp"
"csrc/moe/moe_align_sum_kernels.cu"
"csrc/moe/moe_lora_align_sum_kernels.cu"
"csrc/moe/topk_softmax_kernels.cu")
if(VLLM_GPU_LANG STREQUAL "CUDA")

View File

@ -10,7 +10,8 @@ import torch
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
from vllm.triton_utils import triton
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
def with_triton_mode(fn):

View File

@ -10,7 +10,8 @@ import vllm.model_executor.layers.activation # noqa F401
from vllm.model_executor.custom_op import CustomOp
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
batch_size_range = [1, 16, 32, 64, 128]
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]

View File

@ -7,7 +7,8 @@ import torch
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
@torch.inference_mode()

View File

@ -9,9 +9,9 @@ import torch
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random,
)

View File

@ -1,155 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
import torch
from vllm import _custom_ops as vllm_ops
from vllm.triton_utils import triton
def polynorm_naive(
x: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
def norm(x, eps: float):
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + eps)
x = x.float()
return (
(
weight[0] * norm(x**3, eps)
+ weight[1] * norm(x**2, eps)
+ weight[2] * norm(x, eps)
+ bias
)
.to(weight.dtype)
.view(orig_shape)
)
def polynorm_vllm(
x: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
out = torch.empty_like(x)
vllm_ops.poly_norm(out, x, weight, bias, eps)
output = out
output = output.view(orig_shape)
return output
def calculate_diff(batch_size, seq_len, hidden_dim):
dtype = torch.bfloat16
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
weight = torch.ones(3, dtype=dtype, device="cuda")
bias = torch.ones(1, dtype=dtype, device="cuda")
output_naive = polynorm_naive(x, weight, bias)
output_vllm = polynorm_vllm(x, weight, bias)
if torch.allclose(output_naive, output_vllm, atol=1e-2, rtol=1e-2):
print("✅ All implementations match")
else:
print("❌ Implementations differ")
batch_size_range = [2**i for i in range(0, 7, 2)]
seq_length_range = [2**i for i in range(6, 11, 1)]
dim_range = [2048, 4096]
configs = list(itertools.product(dim_range, batch_size_range, seq_length_range))
def get_benchmark():
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["dim", "batch_size", "seq_len"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["naive", "vllm"],
line_names=["Naive", "vLLM"],
styles=[("blue", "-"), ("red", "-")],
ylabel="us",
plot_name="polynorm-perf",
args={},
)
)
def benchmark(dim, batch_size, seq_len, provider):
dtype = torch.bfloat16
hidden_dim = dim * 4
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
weight = torch.ones(3, dtype=dtype, device="cuda")
bias = torch.ones(1, dtype=dtype, device="cuda")
quantiles = [0.5, 0.2, 0.8]
if provider == "naive":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: polynorm_naive(x, weight, bias),
quantiles=quantiles,
)
else:
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: polynorm_vllm(x, weight, bias),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
return benchmark
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--batch-size",
type=int,
default=4,
help="Batch size",
)
parser.add_argument(
"--seq-len",
type=int,
default=128,
help="Sequence length",
)
parser.add_argument(
"--hidden-dim",
type=int,
default=8192,
help="Intermediate size of MLP",
)
parser.add_argument(
"--save-path",
type=str,
default="./configs/polnorm/",
help="Path to save polnorm benchmark results",
)
args = parser.parse_args()
# Run correctness test
calculate_diff(
batch_size=args.batch_size,
seq_len=args.seq_len,
hidden_dim=args.hidden_dim,
)
benchmark = get_benchmark()
# Run performance benchmark
benchmark.run(print_data=True, save_path=args.save_path)

View File

@ -7,7 +7,8 @@ import torch
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
@torch.inference_mode()

View File

@ -9,9 +9,9 @@ from tabulate import tabulate
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random,
)

View File

@ -12,9 +12,9 @@ from vllm.attention.ops.triton_reshape_and_cache_flash import (
)
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random_flash,
)

View File

@ -188,16 +188,47 @@ else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
endif()
#
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
# Flag to enable ACL kernels for AARCH64 platforms
if (VLLM_BUILD_ACL STREQUAL "ON")
set(USE_ACL ON)
else()
set(USE_ACL OFF)
endif()
# Build oneDNN for GEMM kernels (only for x86-AVX512 /ARM platforms)
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
# Fetch and build Arm Compute Library (ACL) as oneDNN's backend for AArch64
# TODO [fadara01]: remove this once ACL can be fetched and built automatically as a dependency of oneDNN
if(ASIMD_FOUND)
if(DEFINED ENV{ACL_ROOT_DIR} AND IS_DIRECTORY "$ENV{ACL_ROOT_DIR}")
message(STATUS "Using ACL from specified source directory: $ENV{ACL_ROOT_DIR}")
else()
message(STATUS "Downloading Arm Compute Library (ACL) from GitHub")
FetchContent_Populate(arm_compute
SUBBUILD_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-subbuild"
SOURCE_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-src"
GIT_REPOSITORY https://github.com/ARM-software/ComputeLibrary.git
GIT_TAG v52.2.0
GIT_SHALLOW TRUE
GIT_PROGRESS TRUE
)
set(ENV{ACL_ROOT_DIR} "${arm_compute_SOURCE_DIR}")
endif()
# Build ACL with scons
include(ProcessorCount)
ProcessorCount(_NPROC)
execute_process(
COMMAND scons -j${_NPROC}
Werror=0 debug=0 neon=1 examples=0 embed_kernels=0 os=linux
arch=armv8.2-a build=native benchmark_examples=0 fixed_format_kernels=1
multi_isa=1 openmp=1 cppthreads=0
WORKING_DIRECTORY "$ENV{ACL_ROOT_DIR}"
RESULT_VARIABLE _acl_rc
)
if(NOT _acl_rc EQUAL 0)
message(FATAL_ERROR "ACL SCons build failed (exit ${_acl_rc}).")
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
add_compile_definitions(VLLM_USE_ACL)
endif()
set(FETCHCONTENT_SOURCE_DIR_ONEDNN "$ENV{FETCHCONTENT_SOURCE_DIR_ONEDNN}" CACHE PATH "Path to a local oneDNN source directory.")
if(FETCHCONTENT_SOURCE_DIR_ONEDNN)
@ -217,16 +248,6 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
)
endif()
if(USE_ACL)
find_library(ARM_COMPUTE_LIBRARY NAMES arm_compute PATHS $ENV{ACL_ROOT_DIR}/build/)
if(NOT ARM_COMPUTE_LIBRARY)
message(FATAL_ERROR "Could not find ARM Compute Library: please set ACL_ROOT_DIR")
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
add_compile_definitions(VLLM_USE_ACL)
endif()
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
set(ONEDNN_BUILD_EXAMPLES "OFF")

View File

@ -19,7 +19,7 @@ else()
FetchContent_Declare(
flashmla
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
GIT_TAG 28417e516fcbf6257a422ba117ef5b6f44da5682
GIT_PROGRESS TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
@ -66,6 +66,7 @@ if(FLASH_MLA_ARCHS)
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_metadata.cu
)
set(FlashMLA_INCLUDES

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 8f468e7da54a8e2f98abfa7c38636aac91c0cba1
GIT_TAG a893712401d70362fbb299cd9c4b3476e8e9ed54
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -148,211 +148,6 @@ fused_add_rms_norm_kernel(
}
}
/* Function specialization in the case of FP16/BF16 tensors.
Additional optimizations we can make in this case are
packed and vectorized operations, which help with the
memory latency bottleneck.
_f16VecPN struct extends _f16Vec to add operations specifically required for
polynomial normalization (poly norm).
The original _f16Vec does not include the sum-of-powers computation or
in-place polynomial normalization logic. */
template <typename scalar_t, int width>
struct alignas(16) _f16VecPN : _f16Vec<scalar_t, width> {
using Base = _f16Vec<scalar_t, width>;
using Converter = typename Base::Converter;
using T1 = typename Base::T1;
using T2 = typename Base::T2;
using Base::data;
__device__ auto sum_pows() const {
float s2 = 0.0f, s4 = 0.0f, s6 = 0.0f;
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 z = Converter::convert(T2{data[i], data[i + 1]});
float x2 = z.x * z.x;
float x4 = x2 * x2;
float x6 = x4 * x2;
float y2 = z.y * z.y;
float y4 = y2 * y2;
float y6 = y4 * y2;
s2 += x2 + y2;
s4 += x4 + y4;
s6 += x6 + y6;
}
return std::make_tuple(s2, s4, s6);
}
__device__ void poly_norm_inplace(const float w2_inv_std,
const float w1_inv_std2,
const float w0_inv_std3, const float bias) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 z = Converter::convert(T2{data[i], data[i + 1]});
float x2 = z.x * z.x;
float x3 = x2 * z.x;
z.x = w2_inv_std * z.x + w1_inv_std2 * x2 + w0_inv_std3 * x3 + bias;
float y2 = z.y * z.y;
float y3 = y2 * z.y;
z.y = w2_inv_std * z.y + w1_inv_std2 * y2 + w0_inv_std3 * y3 + bias;
auto out = Converter::convert(z);
data[i] = out.x;
data[i + 1] = out.y;
}
}
};
template <typename scalar_t, int width>
__global__ std::enable_if_t<(width > 0) && _typeConvert<scalar_t>::exists>
poly_norm_kernel(scalar_t* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [3]
const scalar_t* __restrict__ bias, // [1]
const float epsilon, const int hidden_size) {
// Sanity checks on our vector struct and type-punned pointer arithmetic
static_assert(std::is_pod_v<_f16VecPN<scalar_t, width>>);
static_assert(sizeof(_f16VecPN<scalar_t, width>) == sizeof(scalar_t) * width);
/* These and the argument pointers are all declared `restrict` as they are
not aliased in practice. Argument pointers should not be dereferenced
in this kernel as that would be undefined behavior */
auto* __restrict__ input_v =
reinterpret_cast<const _f16VecPN<scalar_t, width>*>(input);
const int vec_hidden_size = hidden_size / width;
float variance = 0.0f;
float variance2 = 0.0f;
float variance3 = 0.0f;
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16VecPN<scalar_t, width> temp = input_v[id];
auto [x2, x4, x6] = temp.sum_pows();
variance += x2;
variance2 += x4;
variance3 += x6;
}
float3 thread_variances = make_float3(variance, variance2, variance3);
struct SumOp {
__device__ float3 operator()(const float3& a, const float3& b) const {
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
}
};
using BlockReduce = cub::BlockReduce<float3, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
float3 block_variances =
BlockReduce(reduceStore).Reduce(thread_variances, SumOp{}, blockDim.x);
variance = block_variances.x;
variance2 = block_variances.y;
variance3 = block_variances.z;
__shared__ float s_w2_inv_std;
__shared__ float s_w1_inv_std2;
__shared__ float s_w0_inv_std3;
__shared__ float s_bias;
if (threadIdx.x == 0) {
float w0 = (float)weight[0];
float w1 = (float)weight[1];
float w2 = (float)weight[2];
s_bias = (float)bias[0];
s_w2_inv_std = w2 * rsqrtf(variance / hidden_size + epsilon);
s_w1_inv_std2 = w1 * rsqrtf(variance2 / hidden_size + epsilon);
s_w0_inv_std3 = w0 * rsqrtf(variance3 / hidden_size + epsilon);
}
__syncthreads();
auto* __restrict__ out_v = reinterpret_cast<_f16VecPN<scalar_t, width>*>(out);
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16VecPN<scalar_t, width> temp = input_v[id];
temp.poly_norm_inplace(s_w2_inv_std, s_w1_inv_std2, s_w0_inv_std3, s_bias);
out_v[id] = temp;
}
}
/* Generic poly_norm_kernel
The width field is not used here but necessary for other specializations.
*/
template <typename scalar_t, int width>
__global__ std::enable_if_t<(width == 0) || !_typeConvert<scalar_t>::exists>
poly_norm_kernel(scalar_t* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [3]
const scalar_t* __restrict__ bias, // [1]
const float epsilon, const int hidden_size) {
float variance = 0.0f;
float variance2 = 0.0f;
float variance3 = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)input[blockIdx.x * hidden_size + idx];
float x2 = x * x;
float x4 = x2 * x2;
float x6 = x4 * x2;
variance += x2;
variance2 += x4;
variance3 += x6;
}
float3 thread_variances = make_float3(variance, variance2, variance3);
struct SumOp {
__device__ float3 operator()(const float3& a, const float3& b) const {
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
}
};
using BlockReduce = cub::BlockReduce<float3, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
float3 block_variances =
BlockReduce(reduceStore).Reduce(thread_variances, SumOp{}, blockDim.x);
variance = block_variances.x;
variance2 = block_variances.y;
variance3 = block_variances.z;
__shared__ float s_w2_inv_std;
__shared__ float s_w1_inv_std2;
__shared__ float s_w0_inv_std3;
__shared__ float s_bias;
if (threadIdx.x == 0) {
float w0 = (float)weight[0];
float w1 = (float)weight[1];
float w2 = (float)weight[2];
s_bias = (float)bias[0];
s_w2_inv_std = w2 * rsqrtf(variance / hidden_size + epsilon);
s_w1_inv_std2 = w1 * rsqrtf(variance2 / hidden_size + epsilon);
s_w0_inv_std3 = w0 * rsqrtf(variance3 / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)input[blockIdx.x * hidden_size + idx];
float x2 = x * x;
float x3 = x2 * x;
out[blockIdx.x * hidden_size + idx] =
(scalar_t)(x * s_w2_inv_std + x2 * s_w1_inv_std2 + x3 * s_w0_inv_std3 +
s_bias);
}
}
} // namespace vllm
void rms_norm(torch::Tensor& out, // [..., hidden_size]
@ -444,50 +239,3 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
LAUNCH_FUSED_ADD_RMS_NORM(0);
}
}
#define LAUNCH_FUSED_POLY_NORM(width) \
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "poly_norm_kernel", [&] { \
vllm::poly_norm_kernel<scalar_t, width><<<grid, block, 0, stream>>>( \
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), bias.data_ptr<scalar_t>(), epsilon, \
hidden_size); \
});
void poly_norm(torch::Tensor& out, // [..., hidden_size]
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& weight, // [3]
torch::Tensor& bias, // [1]
double epsilon) {
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.data_ptr() != input.data_ptr());
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
/* This kernel is memory-latency bound in many scenarios.
When num_tokens is large, a smaller block size allows
for increased block occupancy on CUs and better latency
hiding on global mem ops. */
const int max_block_size = (num_tokens < 256) ? 1024 : 256;
dim3 block(std::min(hidden_size, max_block_size));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
/*If the tensor types are FP16/BF16, try to use the optimized kernel
with packed + vectorized ops.
Max optimization is achieved with a width-8 vector of FP16/BF16s
since we can load at most 128 bits at once in a global memory op.
However, this requires each tensor's data to be aligned to 16
bytes.
*/
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
bool batch_invariant_launch = vllm::vllm_is_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
LAUNCH_FUSED_POLY_NORM(8);
} else {
LAUNCH_FUSED_POLY_NORM(0);
}
}

View File

@ -0,0 +1,169 @@
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/ATen.h>
#include <ATen/cuda/Atomic.cuh>
#include "../cuda_compat.h"
#include "../dispatch_utils.h"
#include "core/math.hpp"
namespace {
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row,
int32_t col) {
return row * total_col + col;
}
} // namespace
// TODO: Refactor common parts with moe_align_sum_kernels
template <typename scalar_t, typename token_cnts_t>
__global__ void moe_lora_align_sum_kernel(
scalar_t* __restrict__ topk_ids, int32_t* token_lora_mapping,
int64_t block_size, int num_experts, int max_loras, size_t numel,
int max_num_tokens_padded, int max_num_m_blocks,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
int topk_num, int32_t* total_tokens_post_pad) {
const size_t tokens_per_thread = div_ceil(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
int lora_id = blockIdx.x;
extern __shared__ int32_t shared_mem[];
int32_t* cumsum = shared_mem;
token_cnts_t* tokens_cnts = (token_cnts_t*)(shared_mem + num_experts + 1);
// Initialize sorted_token_ids with numel
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
sorted_token_ids[lora_id * max_num_tokens_padded + it] = numel;
}
// Initialize expert_ids with -1
for (size_t it = threadIdx.x; it < max_num_m_blocks; it += blockDim.x) {
expert_ids[lora_id * max_num_m_blocks + it] = -1;
}
// Initialize total_tokens_post_pad with 0
if (threadIdx.x == 0) {
total_tokens_post_pad[lora_id] = 0;
}
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
}
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int mask = token_lora_mapping[i / topk_num] == lora_id;
int idx = index(num_experts, threadIdx.x + 1, topk_ids[i]);
tokens_cnts[idx] += mask;
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
if (threadIdx.x < num_experts) {
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
}
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i - 1] +
div_ceil(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
block_size) *
block_size;
}
total_tokens_post_pad[lora_id] = static_cast<int32_t>(cumsum[num_experts]);
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding
* blocks and stores the corresponding expert_id for each block.
*/
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
expert_ids[index(max_num_m_blocks, lora_id, i / block_size)] =
threadIdx.x;
}
}
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
* processed by the expert with expert_id within the current thread's token
* shard.
*/
int32_t rank_post_pad =
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
cumsum[expert_id];
int mask = (int)token_lora_mapping[i / topk_num] == lora_id;
atomicAdd(
&sorted_token_ids[index(max_num_tokens_padded, lora_id, rank_post_pad)],
(i - numel) * mask);
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] += mask;
}
}
void moe_lora_align_block_size(torch::Tensor topk_ids,
torch::Tensor token_lora_mapping,
int64_t num_experts, int64_t block_size,
int64_t max_loras, int64_t max_num_tokens_padded,
int64_t max_num_m_blocks,
torch::Tensor sorted_token_ids,
torch::Tensor expert_ids,
torch::Tensor num_tokens_post_pad) {
const int topk_num = topk_ids.size(1);
TORCH_CHECK(block_size > 0, "block_size should be greater than 0. ");
int device_max_shared_mem;
auto dev = topk_ids.get_device();
cudaDeviceGetAttribute(&device_max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
const int32_t num_thread = max((int32_t)num_experts, 128); // WARP_SIZE,
TORCH_CHECK(num_thread <= 1024,
"num_thread must be less than 1024, "
"and fallback is not implemented yet.");
const int32_t shared_mem = (num_thread + 1) * num_experts * sizeof(int32_t) +
(num_experts + 1) * sizeof(int32_t);
if (shared_mem > device_max_shared_mem) {
TORCH_CHECK(false,
"Shared memory usage exceeds device limit, and global memory "
"fallback is not implemented yet.");
}
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_lora_align_sum_kernel", [&] {
dim3 blockDim(num_thread);
auto kernel = moe_lora_align_sum_kernel<scalar_t, int32_t>;
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
(void*)kernel, shared_mem));
kernel<<<max_loras, blockDim, shared_mem, stream>>>(
topk_ids.data_ptr<scalar_t>(),
token_lora_mapping.data_ptr<int32_t>(), block_size, num_experts,
max_loras, topk_ids.numel(), max_num_tokens_padded,
max_num_m_blocks, sorted_token_ids.data_ptr<int32_t>(),
expert_ids.data_ptr<int32_t>(), topk_num,
num_tokens_post_pad.data_ptr<int32_t>());
});
}

View File

@ -20,6 +20,14 @@ void batched_moe_align_block_size(int64_t max_tokens_per_batch,
torch::Tensor expert_ids,
torch::Tensor num_tokens_post_pad);
void moe_lora_align_block_size(torch::Tensor topk_ids,
torch::Tensor token_lora_mapping,
int64_t num_experts, int64_t block_size,
int64_t max_loras, int64_t max_num_tokens_padded,
int64_t max_num_m_blocks,
torch::Tensor sorted_token_ids,
torch::Tensor expert_ids,
torch::Tensor num_tokens_post_pad);
#ifndef USE_ROCM
torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
torch::Tensor b_qweight, torch::Tensor b_scales,

View File

@ -33,6 +33,20 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
m.impl("batched_moe_align_block_size", torch::kCUDA,
&batched_moe_align_block_size);
// Aligning the number of tokens to be processed by each expert such
// that it is divisible by the block size.
m.def(
"moe_lora_align_block_size(Tensor topk_ids,"
" Tensor token_lora_mapping,"
" int num_experts,"
" int block_size, int max_loras, "
" int max_num_tokens_padded, "
" int max_num_m_blocks, "
" Tensor !sorted_token_ids,"
" Tensor !experts_ids,"
" Tensor !num_tokens_post_pad) -> () ");
m.impl("moe_lora_align_block_size", torch::kCUDA, &moe_lora_align_block_size);
#ifndef USE_ROCM
m.def(
"moe_wna16_gemm(Tensor input, Tensor! output, Tensor b_qweight, "

View File

@ -92,9 +92,6 @@ void rms_norm(torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight,
void fused_add_rms_norm(torch::Tensor& input, torch::Tensor& residual,
torch::Tensor& weight, double epsilon);
void poly_norm(torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight,
torch::Tensor& bias, double epsilon);
void apply_repetition_penalties_(torch::Tensor& logits,
const torch::Tensor& prompt_mask,
const torch::Tensor& output_mask,
@ -102,8 +99,11 @@ void apply_repetition_penalties_(torch::Tensor& logits,
void top_k_per_row(const torch::Tensor& logits, const torch::Tensor& rowStarts,
const torch::Tensor& rowEnds, torch::Tensor& indices,
torch::Tensor& values, int64_t numRows, int64_t stride0,
int64_t stride1);
int64_t numRows, int64_t stride0, int64_t stride1);
void top_k_per_row_decode(const torch::Tensor& logits, int64_t next_n,
const torch::Tensor& seq_lens, torch::Tensor& indices,
int64_t numRows, int64_t stride0, int64_t stride1);
void rms_norm_static_fp8_quant(torch::Tensor& out, torch::Tensor& input,
torch::Tensor& weight, torch::Tensor& scale,

View File

@ -54,15 +54,10 @@ static inline __device__ uint16_t extractBinIdx(float x) {
return 511 - (tmp.u16 >> 7);
}
template <int kNumThreadsPerBlock = 512>
static __global__ void topKPerRow(const float* logits, const int* rowStarts,
const int* rowEnds, int* outIndices,
float* outLogits, int stride0, int stride1) {
// The number of bins in the histogram.
static constexpr int kNumBins = 512;
// The top-k width.
static constexpr int kTopK = 2048;
template <int kNumThreadsPerBlock = 512, int kNumBins = 512, int kTopK = 2048>
__device__ void topKPerRowJob(const float* logits, const int rowStart,
const int rowEnd, const int rowIdx,
int* outIndices, int stride0, int stride1) {
// The number of elements per thread for the final top-k sort.
static constexpr int kNumTopKItemsPerThread = kTopK / kNumThreadsPerBlock;
// The class to sort the elements during the final top-k sort.
@ -103,17 +98,11 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
__shared__ int smemHistogram[kNumBins];
// Shared memory to store the selected indices.
__shared__ int smemIndices[kTopK];
// Shared memory to store the selected logits.
__shared__ float smemLogits[kTopK];
// Shared memory to store the threshold bin.
__shared__ int smemThresholdBinIdx[1];
// Shared memory counter to register the candidates for the final phase.
__shared__ int smemFinalDstIdx[1];
// The row computed by this block.
int rowIdx = blockIdx.x;
// The range of logits within the row.
int rowStart = rowStarts[rowIdx], rowEnd = rowEnds[rowIdx];
// The length of the row.
int rowLen = rowEnd - rowStart;
@ -124,13 +113,10 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
rowIt += kNumThreadsPerBlock) {
int idx = rowStart + rowIt;
outIndices[rowIdx * kTopK + rowIt] = idx - rowStart;
outLogits[rowIdx * kTopK + rowIt] =
logits[rowIdx * stride0 + idx * stride1];
}
for (int rowIt = rowLen + threadIdx.x; rowIt < kTopK;
rowIt += kNumThreadsPerBlock) {
outIndices[rowIdx * kTopK + rowIt] = -1;
outLogits[rowIdx * kTopK + rowIt] = -FLT_MAX;
}
return;
}
@ -201,7 +187,6 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
uint16_t idx = extractBinIdx(logit);
if (idx < thresholdBinIdx) {
int dstIdx = atomicAdd(&smemHistogram[idx], 1);
smemLogits[dstIdx] = logit;
smemIndices[dstIdx] = rowIt;
} else if (idx == thresholdBinIdx) {
int dstIdx = atomicAdd(&smemFinalDstIdx[0], 1);
@ -250,7 +235,6 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
int srcIdx = ii * kNumThreadsPerBlock + threadIdx.x;
int dstIdx = baseIdx + srcIdx;
if (dstIdx < kTopK) {
smemLogits[dstIdx] = finalLogits[ii];
smemIndices[dstIdx] = finalIndices[ii];
}
}
@ -258,31 +242,58 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
// Make sure the data is in shared memory.
__syncthreads();
// The topK logits.
float topKLogits[kNumTopKItemsPerThread];
// The topK indices.
int topKIndices[kNumTopKItemsPerThread];
// Load from shared memory.
#pragma unroll
for (int ii = 0; ii < kNumTopKItemsPerThread; ++ii) {
topKLogits[ii] = smemLogits[ii * kNumThreadsPerBlock + threadIdx.x];
topKIndices[ii] = smemIndices[ii * kNumThreadsPerBlock + threadIdx.x];
}
// Sort the elements.
TopKSort(smemFinal.topKSort)
.SortDescendingBlockedToStriped(topKLogits, topKIndices);
// Store to global memory.
#pragma unroll
for (int ii = 0; ii < kNumTopKItemsPerThread; ++ii) {
int offset = rowIdx * kTopK + ii * kNumThreadsPerBlock + threadIdx.x;
outIndices[offset] = topKIndices[ii] - rowStart;
outLogits[offset] = topKLogits[ii];
outIndices[offset] =
smemIndices[ii * kNumThreadsPerBlock + threadIdx.x] - rowStart;
}
}
template <int kNumThreadsPerBlock = 512>
static __global__ void topKPerRow(const float* logits, const int* rowStarts,
const int* rowEnds, int* outIndices,
int stride0, int stride1) {
// The number of bins in the histogram.
static constexpr int kNumBins = 512;
// The top-k width.
static constexpr int kTopK = 2048;
// The row computed by this block.
int rowIdx = blockIdx.x;
// The range of logits within the row.
int rowStart = rowStarts[rowIdx];
int rowEnd = rowEnds[rowIdx];
topKPerRowJob<kNumThreadsPerBlock, kNumBins, kTopK>(
logits, rowStart, rowEnd, rowIdx, outIndices, stride0, stride1);
}
template <int kNumThreadsPerBlock = 512>
static __global__ void topKPerRowDecode(const float* logits, const int* seqLens,
int* outIndices, int stride0,
int stride1, int next_n) {
// The number of bins in the histogram.
static constexpr int kNumBins = 512;
// The top-k width.
static constexpr int kTopK = 2048;
// The row computed by this block.
int rowIdx = blockIdx.x;
// The range of logits within the row.
int rowStart = 0;
int seq_len = seqLens[rowIdx / next_n];
int rowEnd = seq_len - next_n + (rowIdx % next_n) + 1;
topKPerRowJob<kNumThreadsPerBlock, kNumBins, kTopK>(
logits, rowStart, rowEnd, rowIdx, outIndices, stride0, stride1);
}
} // namespace vllm
void apply_repetition_penalties_(
@ -326,10 +337,23 @@ void apply_repetition_penalties_(
});
}
void top_k_per_row_decode(const torch::Tensor& logits, int64_t next_n,
const torch::Tensor& seqLens, torch::Tensor& indices,
int64_t numRows, int64_t stride0, int64_t stride1) {
// Compute the results on the device.
constexpr int kNumThreadsPerBlock = 512;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
vllm::topKPerRowDecode<kNumThreadsPerBlock>
<<<numRows, kNumThreadsPerBlock, 0, stream>>>(
logits.data_ptr<float>(), seqLens.data_ptr<int>(),
indices.data_ptr<int>(), static_cast<int>(stride0),
static_cast<int>(stride1), static_cast<int>(next_n));
}
void top_k_per_row(const torch::Tensor& logits, const torch::Tensor& rowStarts,
const torch::Tensor& rowEnds, torch::Tensor& indices,
torch::Tensor& values, int64_t numRows, int64_t stride0,
int64_t stride1) {
int64_t numRows, int64_t stride0, int64_t stride1) {
// Compute the results on the device.
constexpr int kNumThreadsPerBlock = 512;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -338,6 +362,5 @@ void top_k_per_row(const torch::Tensor& logits, const torch::Tensor& rowStarts,
<<<numRows, kNumThreadsPerBlock, 0, stream>>>(
logits.data_ptr<float>(), rowStarts.data_ptr<int>(),
rowEnds.data_ptr<int>(), indices.data_ptr<int>(),
values.data_ptr<float>(), static_cast<int>(stride0),
static_cast<int>(stride1));
static_cast<int>(stride0), static_cast<int>(stride1));
}

View File

@ -175,12 +175,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"float epsilon) -> ()");
ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm);
// Polynomial Normalization.
ops.def(
"poly_norm(Tensor! out, Tensor input, Tensor weight, Tensor bias, float "
"epsilon) -> ()");
ops.impl("poly_norm", torch::kCUDA, &poly_norm);
// Apply repetition penalties to logits in-place
ops.def(
"apply_repetition_penalties_(Tensor! logits, Tensor prompt_mask, "
@ -191,10 +185,16 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// Optimized top-k per row operation
ops.def(
"top_k_per_row(Tensor logits, Tensor rowStarts, Tensor rowEnds, "
"Tensor! indices, Tensor! values, int numRows, int stride0, "
"Tensor! indices, int numRows, int stride0, "
"int stride1) -> ()");
ops.impl("top_k_per_row", torch::kCUDA, &top_k_per_row);
ops.def(
"top_k_per_row_decode(Tensor logits, int next_n, "
"Tensor seq_lens, Tensor! indices, int numRows, "
"int stride0, int stride1) -> ()");
ops.impl("top_k_per_row_decode", torch::kCUDA, &top_k_per_row_decode);
// Layernorm-quant
// Apply Root Mean Square (RMS) Normalization to the input tensor.
ops.def(

View File

@ -5,7 +5,7 @@
# docs/contributing/dockerfile/dockerfile.md and
# docs/assets/contributing/dockerfile-stages-dependency.png
ARG CUDA_VERSION=12.8.1
ARG CUDA_VERSION=12.9.1
ARG PYTHON_VERSION=3.12
# By parameterizing the base images, we allow third-party to use their own
@ -132,7 +132,9 @@ WORKDIR /workspace
COPY requirements/common.txt requirements/common.txt
COPY requirements/cuda.txt requirements/cuda.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --python /opt/venv/bin/python3 -r requirements/cuda.txt \
# TODO: remove apache-tvm-ffi once FlashInfer is fixed https://github.com/flashinfer-ai/flashinfer/issues/1962
uv pip install --python /opt/venv/bin/python3 --pre apache-tvm-ffi==0.1.0b15 \
&& uv pip install --python /opt/venv/bin/python3 -r requirements/cuda.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# cuda arch list used by torch
@ -273,6 +275,7 @@ WORKDIR /vllm-workspace
ENV DEBIAN_FRONTEND=noninteractive
ARG TARGETPLATFORM
# TODO (huydhn): There is no prebuilt gdrcopy package on 12.9 at the moment
ARG GDRCOPY_CUDA_VERSION=12.8
# Keep in line with FINAL_BASE_IMAGE
ARG GDRCOPY_OS_VERSION=Ubuntu22_04
@ -353,9 +356,18 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# Install vllm wheel first, so that torch etc will be installed.
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/uv \
uv pip install --system dist/*.whl --verbose \
# TODO: remove apache-tvm-ffi once FlashInfer is fixed https://github.com/flashinfer-ai/flashinfer/issues/1962
uv pip install --system --pre apache-tvm-ffi==0.1.0b15 \
&& uv pip install --system dist/*.whl --verbose \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# TODO (huydhn): Remove this once xformers is released for 2.9.0
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
. /etc/environment
export TORCH_CUDA_ARCH_LIST='7.5 8.0+PTX 9.0a'
uv pip install --system --no-build-isolation "git+https://github.com/facebookresearch/xformers@v0.0.32.post2"
BASH
# Install FlashInfer pre-compiled kernel cache and binaries
# https://docs.flashinfer.ai/installation.html
RUN --mount=type=cache,target=/root/.cache/uv \
@ -422,6 +434,7 @@ ARG PYTHON_VERSION
ARG PIP_INDEX_URL UV_INDEX_URL
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
ARG PYTORCH_CUDA_INDEX_BASE_URL
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
@ -434,7 +447,8 @@ ENV UV_LINK_MODE=copy
RUN --mount=type=cache,target=/root/.cache/uv \
CUDA_MAJOR="${CUDA_VERSION%%.*}"; \
if [ "$CUDA_MAJOR" -ge 12 ]; then \
uv pip install --system -r requirements/dev.txt; \
uv pip install --system -r requirements/dev.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
fi
# install development dependencies (for testing)

View File

@ -31,7 +31,7 @@ ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt-get update -y \
&& apt-get install -y --no-install-recommends ccache git curl wget ca-certificates \
&& apt-get install -y --no-install-recommends sudo ccache git curl wget ca-certificates \
gcc-12 g++-12 libtcmalloc-minimal4 libnuma-dev ffmpeg libsm6 libxext6 libgl1 jq lsof \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12 \
&& curl -LsSf https://astral.sh/uv/install.sh | sh
@ -106,14 +106,106 @@ RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
#################### WHEEL BUILD IMAGE ####################
FROM base AS build
ARG TARGETPLATFORM
ARG PIP_INDEX_URL UV_INDEX_URL
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
# install build dependencies
COPY requirements/build.txt requirements/build.txt
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Use copy mode to avoid hardlink failures with Docker cache mounts
ENV UV_LINK_MODE=copy
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --python /opt/venv/bin/python3 -r requirements/build.txt
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != "0" ]; then bash tools/check_repo.sh ; fi
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
ARG USE_SCCACHE
ARG SCCACHE_DOWNLOAD_URL=https://github.com/mozilla/sccache/releases/download/v0.8.1/sccache-v0.8.1-x86_64-unknown-linux-musl.tar.gz
ARG SCCACHE_ENDPOINT
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
ARG SCCACHE_REGION_NAME=us-west-2
ARG SCCACHE_S3_NO_CREDENTIALS=0
# Flag to control whether to use pre-built vLLM wheels
ARG VLLM_USE_PRECOMPILED=""
# if USE_SCCACHE is set, use sccache to speed up compilation
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=.git,target=.git \
if [ "$USE_SCCACHE" = "1" ]; then \
echo "Installing sccache..." \
&& curl -L -o sccache.tar.gz ${SCCACHE_DOWNLOAD_URL} \
&& tar -xzf sccache.tar.gz \
&& sudo mv sccache-v0.8.1-x86_64-unknown-linux-musl/sccache /usr/bin/sccache \
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
&& if [ ! -z ${SCCACHE_ENDPOINT} ] ; then export SCCACHE_ENDPOINT=${SCCACHE_ENDPOINT} ; fi \
&& export SCCACHE_BUCKET=${SCCACHE_BUCKET_NAME} \
&& export SCCACHE_REGION=${SCCACHE_REGION_NAME} \
&& export SCCACHE_S3_NO_CREDENTIALS=${SCCACHE_S3_NO_CREDENTIALS} \
&& export SCCACHE_IDLE_TIMEOUT=0 \
&& export CMAKE_BUILD_TYPE=Release \
&& export VLLM_USE_PRECOMPILED="${VLLM_USE_PRECOMPILED}" \
&& export VLLM_DOCKER_BUILD_CONTEXT=1 \
&& sccache --show-stats \
&& python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38 \
&& sccache --show-stats; \
fi
ARG vllm_target_device="cpu"
ENV VLLM_TARGET_DEVICE=${vllm_target_device}
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=.git,target=.git \
if [ "$USE_SCCACHE" != "1" ]; then \
# Clean any existing CMake artifacts
rm -rf .deps && \
mkdir -p .deps && \
export VLLM_USE_PRECOMPILED="${VLLM_USE_PRECOMPILED}" && \
export VLLM_DOCKER_BUILD_CONTEXT=1 && \
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
fi
# Check the size of the wheel if RUN_WHEEL_CHECK is true
COPY .buildkite/check-wheel-size.py check-wheel-size.py
# sync the default value with .buildkite/check-wheel-size.py
ARG VLLM_MAX_SIZE_MB=450
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
ARG RUN_WHEEL_CHECK=true
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
python3 check-wheel-size.py dist; \
else \
echo "Skipping wheel size check."; \
fi
######################### TEST DEPS #########################
FROM base AS vllm-test-deps
WORKDIR /workspace/vllm
# TODO: Update to 2.9.0 when there is a new build for intel_extension_for_pytorch for that version
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
cp requirements/test.in requirements/cpu-test.in && \
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
sed -i 's/^torch==.*/torch==2.8.0/g' requirements/cpu-test.in && \
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
RUN --mount=type=cache,target=/root/.cache/uv \

View File

@ -1,7 +1,7 @@
# default base image
ARG REMOTE_VLLM="0"
ARG COMMON_WORKDIR=/app
ARG BASE_IMAGE=rocm/vllm-dev:base
ARG BASE_IMAGE=rocm/vllm-dev:base_custom_1020_rc1_20251008_tuned_20251008
FROM ${BASE_IMAGE} AS base

View File

@ -1,13 +1,13 @@
ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:7.0-complete
ARG TRITON_BRANCH="f9e5bf54"
ARG TRITON_BRANCH="57c693b6"
ARG TRITON_REPO="https://github.com/ROCm/triton.git"
ARG PYTORCH_BRANCH="b2fb6885"
ARG PYTORCH_BRANCH="1c57644d"
ARG PYTORCH_VISION_BRANCH="v0.23.0"
ARG PYTORCH_REPO="https://github.com/ROCm/pytorch.git"
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
ARG FA_BRANCH="0e60e394"
ARG FA_REPO="https://github.com/Dao-AILab/flash-attention.git"
ARG AITER_BRANCH="2ab9f4cd"
ARG AITER_BRANCH="eef23c7f"
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
FROM ${BASE_IMAGE} AS base

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

After

Width:  |  Height:  |  Size: 119 KiB

View File

@ -6,7 +6,8 @@ toc_depth: 4
vLLM provides comprehensive benchmarking tools for performance testing and evaluation:
- **[Benchmark CLI]**: `vllm bench` CLI tools and specialized benchmark scripts for interactive performance testing
- **[Benchmark CLI](#benchmark-cli)**: `vllm bench` CLI tools and specialized benchmark scripts for interactive performance testing
- **[Parameter sweeps](#parameter-sweeps)**: Automate `vllm bench` runs for multiple configurations
- **[Performance benchmarks](#performance-benchmarks)**: Automated CI benchmarks for development
- **[Nightly benchmarks](#nightly-benchmarks)**: Comparative benchmarks against alternatives
@ -29,7 +30,7 @@ th {
| Dataset | Online | Offline | Data Path |
|---------|--------|---------|-----------|
| ShareGPT | ✅ | ✅ | `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json` |
| ShareGPT4V (Image) | ✅ | ✅ | `wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json`<br>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:<br>`wget http://images.cocodataset.org/zips/train2017.zip` |
| ShareGPT4V (Image) | ✅ | ✅ | `wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/resolve/main/sharegpt4v_instruct_gpt4-vision_cap100k.json`<br>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:<br>`wget http://images.cocodataset.org/zips/train2017.zip` |
| ShareGPT4Video (Video) | ✅ | ✅ | `git clone https://huggingface.co/datasets/ShareGPT4Video/ShareGPT4Video` |
| BurstGPT | ✅ | ✅ | `wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv` |
| Sonnet (deprecated) | ✅ | ✅ | Local file: `benchmarks/sonnet.txt` |
@ -714,7 +715,7 @@ Generate synthetic image inputs alongside random text prompts to stress-test vis
Notes:
- Works only with online benchmark via the OpenAI backend (`--backend openai-chat`) and endpoint `/v1/chat/completions`.
- Works only with online benchmark via the OpenAI backend (`--backend openai-chat`) and endpoint `/v1/chat/completions`.
- Video sampling is not yet implemented.
Start the server (example):
@ -924,6 +925,163 @@ throughput numbers correctly is also adjusted.
</details>
## Parameter Sweeps
### Online Benchmark
[`vllm/benchmarks/sweep/serve.py`](../../vllm/benchmarks/sweep/serve.py) automatically starts `vllm serve` and runs `vllm bench serve` to evaluate vLLM over multiple configurations.
Follow these steps to run the script:
1. Construct the base command to `vllm serve`, and pass it to the `--serve-cmd` option.
2. Construct the base command to `vllm bench serve`, and pass it to the `--bench-cmd` option.
3. (Optional) If you would like to vary the settings of `vllm serve`, create a new JSON file and populate it with the parameter combinations you want to test. Pass the file path to `--serve-params`.
- Example: Tuning `--max-num-seqs` and `--max-num-batched-tokens`:
```json
[
{
"max_num_seqs": 32,
"max_num_batched_tokens": 1024
},
{
"max_num_seqs": 64,
"max_num_batched_tokens": 1024
},
{
"max_num_seqs": 64,
"max_num_batched_tokens": 2048
},
{
"max_num_seqs": 128,
"max_num_batched_tokens": 2048
},
{
"max_num_seqs": 128,
"max_num_batched_tokens": 4096
},
{
"max_num_seqs": 256,
"max_num_batched_tokens": 4096
}
]
```
4. (Optional) If you would like to vary the settings of `vllm bench serve`, create a new JSON file and populate it with the parameter combinations you want to test. Pass the file path to `--bench-params`.
- Example: Using different input/output lengths for random dataset:
```json
[
{
"random_input_len": 128,
"random_output_len": 32
},
{
"random_input_len": 256,
"random_output_len": 64
},
{
"random_input_len": 512,
"random_output_len": 128
}
]
```
5. Determine where you want to save the results, and pass that to `--output-dir`.
Example command:
```bash
python -m vllm.benchmarks.sweep.serve \
--serve-cmd 'vllm serve meta-llama/Llama-2-7b-chat-hf' \
--bench-cmd 'vllm bench serve --model meta-llama/Llama-2-7b-chat-hf --backend vllm --endpoint /v1/completions --dataset-name sharegpt --dataset-path benchmarks/ShareGPT_V3_unfiltered_cleaned_split.json' \
--serve-params benchmarks/serve_hparams.json \
--bench-params benchmarks/bench_hparams.json \
-o benchmarks/results
```
!!! important
If both `--serve-params` and `--bench-params` are passed, the script will iterate over the Cartesian product between them.
You can use `--dry-run` to preview the commands to be run.
We only start the server once for each `--serve-params`, and keep it running for multiple `--bench-params`.
Between each benchmark run, we call the `/reset_prefix_cache` and `/reset_mm_cache` endpoints to get a clean slate for the next run.
In case you are using a custom `--serve-cmd`, you can override the commands used for resetting the state by setting `--after-bench-cmd`.
!!! note
By default, each parameter combination is run 3 times to make the results more reliable. You can adjust the number of runs by setting `--num-runs`.
!!! tip
You can use the `--resume` option to continue the parameter sweep if one of the runs failed.
### SLA Auto-Tuner
[`vllm/benchmarks/sweep/serve_sla.py`](../../vllm/benchmarks/sweep/serve_sla.py) is a wrapper over [`vllm/benchmarks/sweep/serve.py`](../../vllm/benchmarks/sweep/serve.py) that tunes either the request rate or concurrency (choose using `--sla-variable`) in order to satisfy the SLA constraints given by `--sla-params`.
For example, to ensure E2E latency within different target values for 99% of requests:
```json
[
{
"p99_e2el_ms": "<=200"
},
{
"p99_e2el_ms": "<=500"
},
{
"p99_e2el_ms": "<=1000"
},
{
"p99_e2el_ms": "<=2000"
}
]
```
Example command:
```bash
python -m vllm.benchmarks.sweep.serve_sla \
--serve-cmd 'vllm serve meta-llama/Llama-2-7b-chat-hf' \
--bench-cmd 'vllm bench serve --model meta-llama/Llama-2-7b-chat-hf --backend vllm --endpoint /v1/completions --dataset-name sharegpt --dataset-path benchmarks/ShareGPT_V3_unfiltered_cleaned_split.json' \
--serve-params benchmarks/serve_hparams.json \
--bench-params benchmarks/bench_hparams.json \
--sla-params benchmarks/sla_hparams.json \
--sla-variable max_concurrency \
-o benchmarks/results
```
The algorithm for adjusting the SLA variable is as follows:
1. Run the benchmark with infinite QPS, and use the corresponding metrics to determine the initial value of the variable.
- For example, the initial request rate is set to the concurrency under infinite QPS.
2. If the SLA is still satisfied, keep doubling the value until the SLA is no longer satisfied. This gives a relatively narrow window that contains the point where the SLA is barely satisfied.
3. Apply binary search over the window to find the maximum value that still satisfies the SLA.
!!! important
SLA tuning is applied over each combination of `--serve-params`, `--bench-params`, and `--sla-params`.
For a given combination of `--serve-params` and `--bench-params`, we share the benchmark results across `--sla-params` to avoid rerunning benchmarks with the same SLA variable value.
### Visualizer
[`vllm/benchmarks/sweep/plot.py`](../../vllm/benchmarks/sweep/plot.py) can be used to plot performance curves from parameter sweep results.
Example command:
```bash
python -m vllm.benchmarks.sweep.plot benchmarks/results/<timestamp> \
--var-x max_concurrency \
--row-by random_input_len \
--col-by random_output_len \
--curve-by api_server_count,max_num_batched_tokens \
--filter-by 'max_concurrency<=1024'
```
!!! tip
You can use `--dry-run` to preview the figures to be plotted.
## Performance Benchmarks
The performance benchmarks are used for development to confirm whether new changes improve performance under various workloads. They are triggered on every commit with both the `perf-benchmarks` and `ready` labels, and when a PR is merged into vLLM.

View File

@ -87,7 +87,7 @@ is ineffective.
While ongoing efforts like <https://github.com/vllm-project/vllm/issues/17419>
address the long build time at its source, the current workaround is to set `VLLM_CI_BRANCH`
to a custom branch provided by @khluu (`VLLM_CI_BRANCH=khluu/use_postmerge_q`)
to a custom branch provided by @khluu (`VLLM_CI_BRANCH=khluu/long_build`)
when manually triggering a build on Buildkite. This branch accomplishes two things:
1. Increase the timeout limit to 10 hours so that the build doesn't time out.
@ -100,35 +100,17 @@ to warm it up so that future builds are faster.
## Update dependencies
Several vLLM dependencies, such as FlashInfer, also depend on PyTorch and need
Several vLLM dependencies like xFormers depend on PyTorch and need
to be updated accordingly. Rather than waiting for all of them to publish new
releases (which would take too much time), they can be built from
source to unblock the update process.
### FlashInfer
Here is how to build and install it from source with `torch2.7.0+cu128` in vLLM [Dockerfile](https://github.com/vllm-project/vllm/blob/27bebcd89792d5c4b08af7a65095759526f2f9e1/docker/Dockerfile#L259-L271):
```bash
export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0 10.0+PTX'
export FLASHINFER_ENABLE_SM90=1
uv pip install --system \
--no-build-isolation "git+https://github.com/flashinfer-ai/flashinfer@v0.2.6.post1"
```
One caveat is that building FlashInfer from source adds approximately 30
minutes to the vLLM build time. Therefore, it's preferable to cache the wheel in a
public location for immediate installation, such as [this FlashInfer wheel link](https://download.pytorch.org/whl/cu128/flashinfer/flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl). For future releases, contact the PyTorch release
team if you want to get the package published there.
### xFormers
Similar to FlashInfer, here is how to build and install xFormers from source:
```bash
export TORCH_CUDA_ARCH_LIST='7.0 7.5 8.0 8.9 9.0 10.0+PTX'
export TORCH_CUDA_ARCH_LIST='7.5 8.0+PTX 9.0a'
MAX_JOBS=16 uv pip install --system \
--no-build-isolation "git+https://github.com/facebookresearch/xformers@v0.0.30"
--no-build-isolation "git+https://github.com/facebookresearch/xformers@v0.0.32.post2"
```
## Update all the different vLLM platforms

View File

@ -180,9 +180,13 @@ The profiling traces generated by the continuous profiling workflow are publicly
The Python standard library includes
[cProfile](https://docs.python.org/3/library/profile.html) for profiling Python
code. vLLM includes a couple of helpers that make it easy to apply it to a section of vLLM.
Both the `vllm.utils.cprofile` and `vllm.utils.cprofile_context` functions can be
Both the `vllm.utils.profiling.cprofile` and `vllm.utils.profiling.cprofile_context` functions can be
used to profile a section of code.
!!! note
The legacy import paths `vllm.utils.cprofile` and `vllm.utils.cprofile_context` are deprecated.
Please use `vllm.utils.profiling.cprofile` and `vllm.utils.profiling.cprofile_context` instead.
### Example usage - decorator
The first helper is a Python decorator that can be used to profile a function.
@ -190,9 +194,9 @@ If a filename is specified, the profile will be saved to that file. If no filena
specified, profile data will be printed to stdout.
```python
import vllm.utils
from vllm.utils.profiling import cprofile
@vllm.utils.cprofile("expensive_function.prof")
@cprofile("expensive_function.prof")
def expensive_function():
# some expensive code
pass
@ -204,13 +208,13 @@ The second helper is a context manager that can be used to profile a block of
code. Similar to the decorator, the filename is optional.
```python
import vllm.utils
from vllm.utils.profiling import cprofile_context
def another_function():
# more expensive code
pass
with vllm.utils.cprofile_context("another_function.prof"):
with cprofile_context("another_function.prof"):
another_function()
```

View File

@ -1,12 +1,12 @@
# Metrics
Ensure the v1 LLM Engine exposes a superset of the metrics available in v0.
vLLM exposes a rich set of metrics to support observability and capacity planning for the V1 engine.
## Objectives
- Achieve parity of metrics between v0 and v1.
- The priority use case is accessing these metrics via Prometheus, as this is what we expect to be used in production environments.
- Logging support (i.e. printing metrics to the info log) is provided for more ad-hoc testing, debugging, development, and exploratory use cases.
- Provide comprehensive coverage of engine and request level metrics to aid production monitoring.
- Prioritize Prometheus integrations, as this is what we expect to be used in production environments.
- Offer logging support (i.e. printing metrics to the info log) for ad-hoc testing, debugging, development, and exploratory use cases.
## Background
@ -17,45 +17,36 @@ Metrics in vLLM can be categorized as follows:
The mental model is that server-level metrics help explain the values of request-level metrics.
### v0 Metrics
### Metrics Overview
In v0, the following metrics are exposed via a Prometheus-compatible `/metrics` endpoint using the `vllm:` prefix:
### v1 Metrics
- `vllm:num_requests_running` (Gauge)
- `vllm:num_requests_swapped` (Gauge)
- `vllm:num_requests_waiting` (Gauge)
- `vllm:gpu_cache_usage_perc` (Gauge)
- `vllm:cpu_cache_usage_perc` (Gauge)
- `vllm:gpu_prefix_cache_hit_rate` (Gauge)
- `vllm:cpu_prefix_cache_hit_rate` (Gauge)
- `vllm:prompt_tokens_total` (Counter)
- `vllm:generation_tokens_total` (Counter)
- `vllm:request_success_total` (Counter)
- `vllm:request_prompt_tokens` (Histogram)
- `vllm:request_generation_tokens` (Histogram)
- `vllm:time_to_first_token_seconds` (Histogram)
- `vllm:time_per_output_token_seconds` (Histogram)
- `vllm:e2e_request_latency_seconds` (Histogram)
- `vllm:request_queue_time_seconds` (Histogram)
- `vllm:request_inference_time_seconds` (Histogram)
- `vllm:request_prefill_time_seconds` (Histogram)
- `vllm:request_decode_time_seconds` (Histogram)
- `vllm:request_max_num_generation_tokens` (Histogram)
- `vllm:num_preemptions_total` (Counter)
- `vllm:cache_config_info` (Gauge)
- `vllm:lora_requests_info` (Gauge)
- `vllm:tokens_total` (Counter)
- `vllm:iteration_tokens_total` (Histogram)
- `vllm:time_in_queue_requests` (Histogram)
- `vllm:model_forward_time_milliseconds` (Histogram)
- `vllm:model_execute_time_milliseconds` (Histogram)
- `vllm:request_params_n` (Histogram)
- `vllm:request_params_max_tokens` (Histogram)
- `vllm:spec_decode_draft_acceptance_rate` (Gauge)
- `vllm:spec_decode_efficiency` (Gauge)
- `vllm:spec_decode_num_accepted_tokens_total` (Counter)
- `vllm:spec_decode_num_draft_tokens_total` (Counter)
- `vllm:spec_decode_num_emitted_tokens_total` (Counter)
In v1, the following metrics are exposed via a Prometheus-compatible `/metrics` endpoint using the `vllm:` prefix:
- `vllm:num_requests_running` (Gauge) - Number of requests currently running.
- `vllm:num_requests_waiting` (Gauge) - Number of requests currently waiting.
- `vllm:kv_cache_usage_perc` (Gauge) - Fraction of used KV cache blocks (01).
- `vllm:prefix_cache_queries` (Counter) - Number of prefix cache queries.
- `vllm:prefix_cache_hits` (Counter) - Number of prefix cache hits.
- `vllm:mm_cache_queries` (Counter) - (For multimodal models) Number of multimodal cache queries.
- `vllm:mm_cache_hits` (Counter) - (For multimodal models) Number of multimodal cache hits.
- `vllm:num_preemptions_total` (Counter) - Number of preemptions.
- `vllm:prompt_tokens_total` (Counter) - Total number of prompt tokens processed.
- `vllm:generation_tokens_total` (Counter) - Total number of generated tokens.
- `vllm:iteration_tokens_total` (Histogram) - Histogram of tokens processed in each engine step.
- `vllm:cache_config_info` (Gauge) - Information about the cache configuration.
- `vllm:request_success_total` (Counter) - Number of finished requests (by finish reason).
- `vllm:request_prompt_tokens` (Histogram) - Histogram of input prompt token counts.
- `vllm:request_generation_tokens` (Histogram) - Histogram of generation token counts.
- `vllm:request_params_n` (Histogram) - Histogram of request parameter n.
- `vllm:request_params_max_tokens` - (Histogram) - Histogram of max_tokens parameter in requests.
- `vllm:time_to_first_token_seconds` (Histogram) - Time to first token (TTFT).
- `vllm:inter_token_latency_seconds` (Histogram) - Inter-token latency.
- `vllm:e2e_request_latency_seconds` (Histogram) - End-to-end request latency.
- `vllm:request_queue_time_seconds` (Histogram) - Time spent in the queue.
- `vllm:request_inference_time_seconds` (Histogram) - Request inference time.
- `vllm:request_prefill_time_seconds` (Histogram) - Request prefill time.
- `vllm:request_decode_time_seconds` (Histogram) - Request decode time.
These are documented under [Inferencing and Serving -> Production Metrics](../usage/metrics.md).
@ -86,7 +77,7 @@ See [the PR which added this Dashboard](https://github.com/vllm-project/vllm/pul
Prometheus support was initially added [using the aioprometheus library](https://github.com/vllm-project/vllm/pull/1890), but a switch was made quickly to [prometheus_client](https://github.com/vllm-project/vllm/pull/2730). The rationale is discussed in both linked PRs.
With the switch to `aioprometheus`, we lost a `MetricsMiddleware` to track HTTP metrics, but this was reinstated [using prometheus_fastapi_instrumentator](https://github.com/vllm-project/vllm/pull/15657):
During those migrations we briefly lost a `MetricsMiddleware` to track HTTP metrics, but this was reinstated [using prometheus_fastapi_instrumentator](https://github.com/vllm-project/vllm/pull/15657):
```bash
$ curl http://0.0.0.0:8000/metrics 2>/dev/null | grep -P '^http_(?!.*(_bucket|_created|_sum)).*'
@ -99,7 +90,9 @@ http_request_duration_seconds_count{handler="/v1/completions",method="POST"} 201
### Multi-process Mode
In v0, metrics are collected in the engine core process and we use multiprocess mode to make them available in the API server process. See <https://github.com/vllm-project/vllm/pull/7279>.
Historically, metrics were collected in the engine core process and multiprocess mode was used to make them available in the API server process. See <https://github.com/vllm-project/vllm/pull/7279>.
More recently, metrics are collected in the API server process and multiprocess mode is only used when `--api-server-count > 1`. See <https://github.com/vllm-project/vllm/pull/17546> and details on [API server scale-out](../serving/data_parallel_deployment.md#internal-load-balancing).
### Built in Python/Process Metrics
@ -116,14 +109,15 @@ The following metrics are supported by default by `prometheus_client`, but they
- `process_open_fds`
- `process_max_fds`
This is relevant because if we move away from multiprocess mode in v1,
we get these back. However, it's questionable how relevant these are
if they don't aggregate these stats for all processes that make up a
vLLM instance.
Therefore, these metrics are unavailable when `--api-server-count > 1`. It's questionable how relevant these are since they do not aggregate these stats for all processes that make up a vLLM instance.
### v0 PRs and Issues
## Metrics Design
For background, these are some of the relevant PRs which added the v0 metrics:
The ["Even Better Observability"](https://github.com/vllm-project/vllm/issues/3616) feature where was where much of the metrics design was planned. For example, see where [a detailed roadmap was laid out](https://github.com/vllm-project/vllm/issues/3616#issuecomment-2030858781).
### Legacy PRs
To help understand the background to the metrics design, here are some of the relevant PRs which added the original, now legacy, metrics:
- <https://github.com/vllm-project/vllm/pull/1890>
- <https://github.com/vllm-project/vllm/pull/2316>
@ -131,14 +125,9 @@ For background, these are some of the relevant PRs which added the v0 metrics:
- <https://github.com/vllm-project/vllm/pull/4464>
- <https://github.com/vllm-project/vllm/pull/7279>
Also note the ["Even Better Observability"](https://github.com/vllm-project/vllm/issues/3616) feature where e.g. [a detailed roadmap was laid out](https://github.com/vllm-project/vllm/issues/3616#issuecomment-2030858781).
### Metrics Implementation PRs
## v1 Design
### v1 PRs
For background, here are the relevant v1 PRs relating to the v1
metrics issue <https://github.com/vllm-project/vllm/issues/10582>:
For background, here are the relevant PRs relating to the metrics implementation <https://github.com/vllm-project/vllm/issues/10582>:
- <https://github.com/vllm-project/vllm/pull/11962>
- <https://github.com/vllm-project/vllm/pull/11973>
@ -369,7 +358,7 @@ vllm:cache_config_info{block_size="16",cache_dtype="auto",calculate_kv_scales="F
However, `prometheus_client` has
[never supported Info metrics in multiprocessing mode](https://github.com/prometheus/client_python/pull/300) -
for [unclear reasons](https://github.com/vllm-project/vllm/pull/7279#discussion_r1710417152). We
for [unclear reasons](gh-pr:7279#discussion_r1710417152). We
simply use a `Gauge` metric set to 1 and
`multiprocess_mode="mostrecent"` instead.
@ -396,9 +385,8 @@ recent metric is used, but only from currently running processes.
This was added in <https://github.com/vllm-project/vllm/pull/9477> and there is
[at least one known user](https://github.com/kubernetes-sigs/gateway-api-inference-extension/pull/54).
If we revisit this design and deprecate the old metric, we should reduce
the need for a significant deprecation period by making the change in
v0 also and asking this project to move to the new metric.
If we revisit this design and deprecate the old metric, we should
coordinate with downstream users so they can migrate before the removal.
### Prefix Cache metrics
@ -478,22 +466,20 @@ us with:
```python
if seq_group.is_finished():
if (
seq_group.metrics.first_scheduled_time is not None
and seq_group.metrics.first_token_time is not None
):
if (seq_group.metrics.first_scheduled_time is not None and
seq_group.metrics.first_token_time is not None):
time_queue_requests.append(
seq_group.metrics.first_scheduled_time -
seq_group.metrics.arrival_time
)
seq_group.metrics.arrival_time)
...
if seq_group.metrics.time_in_queue is not None:
time_in_queue_requests.append(seq_group.metrics.time_in_queue)
time_in_queue_requests.append(
seq_group.metrics.time_in_queue)
```
This seems duplicative, and one of them should be removed. The latter
is used by the Grafana dashboard, so we should deprecate or remove the
former from v0.
former.
### Prefix Cache Hit Rate
@ -502,7 +488,7 @@ See above - we now expose 'queries' and 'hits' counters rather than a
### KV Cache Offloading
Two v0 metrics relate to a "swapped" preemption mode that is no
Two legacy metrics relate to a "swapped" preemption mode that is no
longer relevant in v1:
- `vllm:num_requests_swapped`
@ -513,7 +499,7 @@ cache to complete other requests), we swap kv cache blocks out to CPU
memory. This is also known as "KV cache offloading" and is configured
with `--swap-space` and `--preemption-mode`.
In v0, [vLLM has long supported beam search](https://github.com/vllm-project/vllm/issues/6226). The
Historically, [vLLM has long supported beam search](https://github.com/vllm-project/vllm/issues/6226). The
SequenceGroup encapsulated the idea of N Sequences which
all shared the same prompt kv blocks. This enabled KV cache block
sharing between requests, and copy-on-write to do branching. CPU
@ -526,7 +512,7 @@ and the part of the prompt that was evicted can be recomputed.
SequenceGroup was removed in V1, although a replacement will be
required for "parallel sampling" (`n>1`).
[Beam search was moved out of the core (in V0)](https://github.com/vllm-project/vllm/issues/8306). There was a
[Beam search was moved out of the core](https://github.com/vllm-project/vllm/issues/8306). There was a
lot of complex code for a very uncommon feature.
In V1, with prefix caching being better (zero over head) and therefore
@ -537,7 +523,7 @@ better.
### Parallel Sampling
Some v0 metrics are only relevant in the context of "parallel
Some legacy metrics are only relevant in the context of "parallel
sampling". This is where the `n` parameter in a request is used to
request multiple completions from the same prompt.
@ -556,7 +542,7 @@ also add these metrics.
### Speculative Decoding
Some v0 metrics are specific to "speculative decoding". This is where
Some legacy metrics are specific to "speculative decoding". This is where
we generate candidate tokens using a faster, approximate method or
model and then validate those tokens with the larger model.
@ -568,7 +554,7 @@ model and then validate those tokens with the larger model.
There is a PR under review (<https://github.com/vllm-project/vllm/pull/12193>) to add "prompt lookup (ngram)"
speculative decoding to v1. Other techniques will follow. We should
revisit the v0 metrics in this context.
revisit these metrics in this context.
!!! note
We should probably expose acceptance rate as separate accepted
@ -641,7 +627,7 @@ metrics are often relatively straightforward to add:
metrics are usually of very limited use unless they can be enabled
by default and in production.
3. They have an impact on development and maintenance of the
project. Every metric added to v0 has made this v1 effort more
project. Every metric added over time has made this effort more
time-consuming, and perhaps not all metrics justify this ongoing
investment in their maintenance.
@ -652,24 +638,24 @@ performance and health. Tracing, on the other hand, tracks individual
requests as they move through different services and components. Both
fall under the more general heading of "Observability".
v0 has support for OpenTelemetry tracing:
vLLM has support for OpenTelemetry tracing:
- Added by <https://github.com/vllm-project/vllm/pull/4687>
- Added by <https://github.com/vllm-project/vllm/pull/4687> and reinstated by <https://github.com/vllm-project/vllm/pull/20372>
- Configured with `--oltp-traces-endpoint` and `--collect-detailed-traces`
- [OpenTelemetry blog post](https://opentelemetry.io/blog/2024/llm-observability/)
- [User-facing docs](../examples/online_serving/opentelemetry.md)
- [Blog post](https://medium.com/@ronen.schaffer/follow-the-trail-supercharging-vllm-with-opentelemetry-distributed-tracing-aa655229b46f)
- [IBM product docs](https://www.ibm.com/docs/en/instana-observability/current?topic=mgaa-monitoring-large-language-models-llms-vllm-public-preview)
OpenTelemetry has a
[Gen AI Working Group](https://github.com/open-telemetry/community/blob/main/projects/gen-ai.md).
Since metrics is a big enough topic on its own, we are going to tackle
the topic of tracing in v1 separately.
Since metrics is a big enough topic on its own, we consider the topic
of tracing to be quite separate from metrics.
### OpenTelemetry Model Forward vs Execute Time
In v0, we have the following two metrics:
The current implementation exposes the following two metrics:
- `vllm:model_forward_time_milliseconds` (Histogram) - The time spent
in the model forward pass when this request was in the batch.

View File

@ -41,7 +41,7 @@ Every plugin has three parts:
1. **Plugin group**: The name of the entry point group. vLLM uses the entry point group `vllm.general_plugins` to register general plugins. This is the key of `entry_points` in the `setup.py` file. Always use `vllm.general_plugins` for vLLM's general plugins.
2. **Plugin name**: The name of the plugin. This is the value in the dictionary of the `entry_points` dictionary. In the example above, the plugin name is `register_dummy_model`. Plugins can be filtered by their names using the `VLLM_PLUGINS` environment variable. To load only a specific plugin, set `VLLM_PLUGINS` to the plugin name.
3. **Plugin value**: The fully qualified name of the function to register in the plugin system. In the example above, the plugin value is `vllm_add_dummy_model:register`, which refers to a function named `register` in the `vllm_add_dummy_model` module.
3. **Plugin value**: The fully qualified name of the function or module to register in the plugin system. In the example above, the plugin value is `vllm_add_dummy_model:register`, which refers to a function named `register` in the `vllm_add_dummy_model` module.
## Types of supported plugins
@ -51,6 +51,8 @@ Every plugin has three parts:
- **IO Processor plugins** (with group name `vllm.io_processor_plugins`): The primary use case for these plugins is to register custom pre/post processing of the model prompt and model output for pooling models. The plugin function returns the IOProcessor's class fully qualified name.
- **Stat logger plugins** (with group name `vllm.stat_logger_plugins`): The primary use case for these plugins is to register custom, out-of-the-tree loggers into vLLM. The entry point should be a class that subclasses StatLoggerBase.
## Guidelines for Writing Plugins
- **Being re-entrant**: The function specified in the entry point should be re-entrant, meaning it can be called multiple times without causing issues. This is necessary because the function might be called multiple times in some processes.

View File

@ -213,22 +213,22 @@ In this example, we assume the block size is 4 (each block can cache 4 tokens),
![Example Time 1](../assets/design/prefix_caching/example-time-1.png)
**Time 3: Request 0 makes the block 3 full and asks for a new block to keep decoding.** We cache block 3 and allocate block 4.
**Time 2: Request 0 makes the block 3 full and asks for a new block to keep decoding.** We cache block 3 and allocate block 4.
![Example Time 3](../assets/design/prefix_caching/example-time-3.png)
![Example Time 2](../assets/design/prefix_caching/example-time-3.png)
**Time 4: Request 1 comes in with the 14 prompt tokens, where the first 10 tokens are the same as request 0.** We can see that only the first 2 blocks (8 tokens) hit the cache, because the 3rd block only matches 2 of 4 tokens.
**Time 3: Request 1 comes in with the 14 prompt tokens, where the first 10 tokens are the same as request 0.** We can see that only the first 2 blocks (8 tokens) hit the cache, because the 3rd block only matches 2 of 4 tokens.
![Example Time 4](../assets/design/prefix_caching/example-time-4.png)
![Example Time 3](../assets/design/prefix_caching/example-time-4.png)
**Time 5: Request 0 is finished and free.** Blocks 2, 3 and 4 are added to the free queue in the reverse order (but block 2 and 3 are still cached). Block 0 and 1 are not added to the free queue because they are being used by Request 1.
**Time 4: Request 0 is finished and free.** Blocks 2, 3 and 4 are added to the free queue in the reverse order (but block 2 and 3 are still cached). Block 0 and 1 are not added to the free queue because they are being used by Request 1.
![Example Time 5](../assets/design/prefix_caching/example-time-5.png)
![Example Time 4](../assets/design/prefix_caching/example-time-5.png)
**Time 6: Request 1 is finished and free.**
**Time 5: Request 1 is finished and free.**
![Example Time 6](../assets/design/prefix_caching/example-time-6.png)
![Example Time 5](../assets/design/prefix_caching/example-time-6.png)
**Time 7: Request 2 comes in with the 29 prompt tokens, where the first 12 tokens are the same as request 0\.** Note that even the block order in the free queue was `7 - 8 - 9 - 4 - 3 - 2 - 6 - 5 - 1 - 0`, the cache hit blocks (i.e., 0, 1, 2) are touched and removed from the queue before allocation, so the free queue becomes `7 - 8 - 9 - 4 - 3 - 6 - 5`. As a result, the allocated blocks are 0 (cached), 1 (cached), 2 (cached), 7, 8, 9, 4, 3 (evicted).
**Time 6: Request 2 comes in with the 29 prompt tokens, where the first 12 tokens are the same as request 0\.** Note that even the block order in the free queue was `7 - 8 - 9 - 4 - 3 - 2 - 6 - 5 - 1 - 0`, the cache hit blocks (i.e., 0, 1, 2) are touched and removed from the queue before allocation, so the free queue becomes `7 - 8 - 9 - 4 - 3 - 6 - 5`. As a result, the allocated blocks are 0 (cached), 1 (cached), 2 (cached), 7, 8, 9, 4, 3 (evicted).
![Example Time 7](../assets/design/prefix_caching/example-time-7.png)
![Example Time 6](../assets/design/prefix_caching/example-time-7.png)

View File

@ -64,7 +64,7 @@ th:not(:first-child) {
| [CP](../configuration/optimization.md#chunked-prefill) | [](https://github.com/vllm-project/vllm/issues/2729) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [APC](automatic_prefix_caching.md) | [](https://github.com/vllm-project/vllm/issues/3687) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [LoRA](lora.md) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [SD](spec_decode.md) | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ❌ | [🟠](https://github.com/vllm-project/vllm/issues/26963) |
| [SD](spec_decode.md) | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ❌ | [🟠](https://github.com/vllm-project/vllm/issues/26963) |
| CUDA graph | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | [](https://github.com/vllm-project/vllm/issues/26970) |
| [pooling](../models/pooling_models.md) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ |
| <abbr title="Encoder-Decoder Models">enc-dec</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |

View File

@ -359,13 +359,19 @@ Full example: [examples/offline_inference/audio_language.py](../../examples/offl
To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model,
pass a tensor of shape `(num_items, feature_size, hidden_size of LM)` to the corresponding field of the multi-modal dictionary.
You must enable this feature via `enable_mm_embeds=True`.
!!! warning
The vLLM engine may crash if incorrect shape of embeddings is passed.
Only enable this flag for trusted users!
??? code
```python
from vllm import LLM
# Inference with image embeddings as input
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
llm = LLM(model="llava-hf/llava-1.5-7b-hf", enable_mm_embeds=True)
# Refer to the HuggingFace repo for the correct format to use
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
@ -397,7 +403,11 @@ For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embedd
image_embeds = torch.load(...)
# Qwen2-VL
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
llm = LLM(
"Qwen/Qwen2-VL-2B-Instruct",
limit_mm_per_prompt={"image": 4},
enable_mm_embeds=True,
)
mm_data = {
"image": {
"image_embeds": image_embeds,
@ -407,7 +417,12 @@ For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embedd
}
# MiniCPM-V
llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4})
llm = LLM(
"openbmb/MiniCPM-V-2_6",
trust_remote_code=True,
limit_mm_per_prompt={"image": 4},
enable_mm_embeds=True,
)
mm_data = {
"image": {
"image_embeds": image_embeds,
@ -732,7 +747,13 @@ Full example: [examples/online_serving/openai_chat_completion_client_for_multimo
### Embedding Inputs
To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model,
pass a tensor of shape to the corresponding field of the multi-modal dictionary.
pass a tensor of shape `(num_items, feature_size, hidden_size of LM)` to the corresponding field of the multi-modal dictionary.
You must enable this feature via the `--enable-mm-embeds` flag in `vllm serve`.
!!! warning
The vLLM engine may crash if incorrect shape of embeddings is passed.
Only enable this flag for trusted users!
#### Image Embedding Inputs

View File

@ -20,12 +20,16 @@ You can pass prompt embeddings from Hugging Face Transformers models to the `'p
## Online Serving
Our OpenAI-compatible server accepts prompt embeddings inputs via the [Completions API](https://platform.openai.com/docs/api-reference/completions). Prompt embeddings inputs are added via a new `'prompt_embeds'` key in the JSON package.
Our OpenAI-compatible server accepts prompt embeddings inputs via the [Completions API](https://platform.openai.com/docs/api-reference/completions). Prompt embeddings inputs are added via a new `'prompt_embeds'` key in the JSON package and are enabled by the `--enable-prompt-embeds` flag in `vllm serve`.
When a mixture of `'prompt_embeds'` and `'prompt'` inputs are provided in a single request, the prompt embeds are always returned first.
Prompt embeddings are passed in as base64 encoded torch tensors.
!!! warning
The vLLM engine may crash if incorrect shape of embeddings is passed.
Only enable this flag for trusted users!
### Transformers Inputs via OpenAI Client
First, launch the OpenAI-compatible server:

View File

@ -12,32 +12,56 @@ This guide will help you quickly get started with vLLM to perform:
## Installation
If you are using NVIDIA GPUs, you can install vLLM using [pip](https://pypi.org/project/vllm/) directly.
=== "NVIDIA CUDA"
It's recommended to use [uv](https://docs.astral.sh/uv/), a very fast Python environment manager, to create and manage Python environments. Please follow the [documentation](https://docs.astral.sh/uv/#getting-started) to install `uv`. After installing `uv`, you can create a new Python environment and install vLLM using the following commands:
If you are using NVIDIA GPUs, you can install vLLM using [pip](https://pypi.org/project/vllm/) directly.
```bash
uv venv --python 3.12 --seed
source .venv/bin/activate
uv pip install vllm --torch-backend=auto
```
It's recommended to use [uv](https://docs.astral.sh/uv/), a very fast Python environment manager, to create and manage Python environments. Please follow the [documentation](https://docs.astral.sh/uv/#getting-started) to install `uv`. After installing `uv`, you can create a new Python environment and install vLLM using the following commands:
`uv` can [automatically select the appropriate PyTorch index at runtime](https://docs.astral.sh/uv/guides/integration/pytorch/#automatic-backend-selection) by inspecting the installed CUDA driver version via `--torch-backend=auto` (or `UV_TORCH_BACKEND=auto`). To select a specific backend (e.g., `cu126`), set `--torch-backend=cu126` (or `UV_TORCH_BACKEND=cu126`).
```bash
uv venv --python 3.12 --seed
source .venv/bin/activate
uv pip install vllm --torch-backend=auto
```
Another delightful way is to use `uv run` with `--with [dependency]` option, which allows you to run commands such as `vllm serve` without creating any permanent environment:
`uv` can [automatically select the appropriate PyTorch index at runtime](https://docs.astral.sh/uv/guides/integration/pytorch/#automatic-backend-selection) by inspecting the installed CUDA driver version via `--torch-backend=auto` (or `UV_TORCH_BACKEND=auto`). To select a specific backend (e.g., `cu126`), set `--torch-backend=cu126` (or `UV_TORCH_BACKEND=cu126`).
```bash
uv run --with vllm vllm --help
```
Another delightful way is to use `uv run` with `--with [dependency]` option, which allows you to run commands such as `vllm serve` without creating any permanent environment:
You can also use [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html) to create and manage Python environments. You can install `uv` to the conda environment through `pip` if you want to manage it within the environment.
```bash
uv run --with vllm vllm --help
```
```bash
conda create -n myenv python=3.12 -y
conda activate myenv
pip install --upgrade uv
uv pip install vllm --torch-backend=auto
```
You can also use [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html) to create and manage Python environments. You can install `uv` to the conda environment through `pip` if you want to manage it within the environment.
```bash
conda create -n myenv python=3.12 -y
conda activate myenv
pip install --upgrade uv
uv pip install vllm --torch-backend=auto
```
=== "AMD ROCm"
Use a pre-built docker image from Docker Hub. The public stable image is [rocm/vllm:latest](https://hub.docker.com/r/rocm/vllm). There is also a development image at [rocm/vllm-dev](https://hub.docker.com/r/rocm/vllm-dev).
The `-v` flag in the `docker run` command below mounts a local directory into the container. Replace `<path/to/your/models>` with the path on your host machine to the directory containing your models. The models will then be accessible inside the container at `/app/models`.
???+ console "Commands"
```bash
docker pull rocm/vllm-dev:nightly # to get the latest image
docker run -it --rm \
--network=host \
--group-add=video \
--ipc=host \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--device /dev/kfd \
--device /dev/dri \
-v <path/to/your/models>:/app/models \
-e HF_HOME="/app/models" \
rocm/vllm-dev:nightly
```
!!! note
For more detail and non-CUDA platforms, please refer [here](installation/README.md) for specific instructions on how to install vLLM.
@ -246,7 +270,17 @@ Alternatively, you can use the `openai` Python package:
Currently, vLLM supports multiple backends for efficient Attention computation across different platforms and accelerator architectures. It automatically selects the most performant backend compatible with your system and model specifications.
If desired, you can also manually set the backend of your choice by configuring the environment variable `VLLM_ATTENTION_BACKEND` to one of the following options: `FLASH_ATTN`, `FLASHINFER` or `XFORMERS`.
If desired, you can also manually set the backend of your choice by configuring the environment variable `VLLM_ATTENTION_BACKEND` to one of the following options:
- On NVIDIA CUDA: `FLASH_ATTN`, `FLASHINFER` or `XFORMERS`.
- On AMD ROCm: `TRITON_ATTN`, `ROCM_ATTN`, `ROCM_AITER_FA` or `ROCM_AITER_UNIFIED_ATTN`.
For AMD ROCm, you can futher control the specific Attention implementation using the following variables:
- Triton Unified Attention: `VLLM_ROCM_USE_AITER=0 VLLM_V1_USE_PREFILL_DECODE_ATTENTION=0 VLLM_ROCM_USE_AITER_MHA=0`
- AITER Unified Attention: `VLLM_ROCM_USE_AITER=1 VLLM_USE_AITER_UNIFIED_ATTENTION=1 VLLM_V1_USE_PREFILL_DECODE_ATTENTION=0 VLLM_ROCM_USE_AITER_MHA=0`
- Triton Prefill-Decode Attention: `VLLM_ROCM_USE_AITER=1 VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1 VLLM_ROCM_USE_AITER_MHA=0`
- AITER Multi-head Attention: `VLLM_ROCM_USE_AITER=1 VLLM_V1_USE_PREFILL_DECODE_ATTENTION=0 VLLM_ROCM_USE_AITER_MHA=1`
!!! warning
There are no pre-built vllm wheels containing Flash Infer, so you must install it in your environment first. Refer to the [Flash Infer official docs](https://docs.flashinfer.ai/) or see [docker/Dockerfile](../../docker/Dockerfile) for instructions on how to install it.

View File

@ -16,8 +16,8 @@
| meta-llama/Llama-4-* | Llama4ForConditionalGeneration | ❌ |
| microsoft/Phi-3-mini-128k-instruct | Phi3ForCausalLM | 🟨 |
| microsoft/phi-4 | Phi3ForCausalLM | ❌ |
| google/gemma-3-27b-it | TransformersForMultimodalLM | 🟨 |
| google/gemma-3-4b-it | TransformersForMultimodalLM | ❌ |
| google/gemma-3-27b-it | Gemma3ForConditionalGeneration | 🟨 |
| google/gemma-3-4b-it | Gemma3ForConditionalGeneration | ❌ |
| deepseek-ai/DeepSeek-R1 | DeepseekV3ForCausalLM | ❌ |
| deepseek-ai/DeepSeek-V3 | DeepseekV3ForCausalLM | ❌ |
| RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8 | LlamaForCausalLM | ✅ |

View File

@ -634,12 +634,15 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
|--------------|--------|--------|-------------------|----------------------|---------------------------|
| `AriaForConditionalGeneration` | Aria | T + I<sup>+</sup> | `rhymes-ai/Aria` | | |
| `AyaVisionForConditionalGeneration` | Aya Vision | T + I<sup>+</sup> | `CohereForAI/aya-vision-8b`, `CohereForAI/aya-vision-32b`, etc. | | ✅︎ |
| `BeeForConditionalGeneration` | Bee-8B | T + I<sup>E+</sup> | `Open-Bee/Bee-8B-RL`, `Open-Bee/Bee-8B-SFT` | | ✅︎ |
| `Blip2ForConditionalGeneration` | BLIP-2 | T + I<sup>E</sup> | `Salesforce/blip2-opt-2.7b`, `Salesforce/blip2-opt-6.7b`, etc. | | ✅︎ |
| `ChameleonForConditionalGeneration` | Chameleon | T + I | `facebook/chameleon-7b`, etc. | | ✅︎ |
| `Cohere2VisionForConditionalGeneration` | Command A Vision | T + I<sup>+</sup> | `CohereLabs/command-a-vision-07-2025`, etc. | | ✅︎ |
| `DeepseekVLV2ForCausalLM`<sup>^</sup> | DeepSeek-VL2 | T + I<sup>+</sup> | `deepseek-ai/deepseek-vl2-tiny`, `deepseek-ai/deepseek-vl2-small`, `deepseek-ai/deepseek-vl2`, etc. | | ✅︎ |
| `DeepseekOCRForCausalLM` | DeepSeek-OCR | T + I<sup>+</sup> | `deepseek-ai/DeepSeek-OCR`, etc. | | ✅︎ |
| `Ernie4_5_VLMoeForConditionalGeneration` | Ernie4.5-VL | T + I<sup>+</sup>/ V<sup>+</sup> | `baidu/ERNIE-4.5-VL-28B-A3B-PT`, `baidu/ERNIE-4.5-VL-424B-A47B-PT` | | ✅︎ |
| `FuyuForCausalLM` | Fuyu | T + I | `adept/fuyu-8b`, etc. | | ✅︎ |
| `Gemma3ForConditionalGeneration` | Gemma 3 | T + I<sup>+</sup> | `google/gemma-3-4b-it`, `google/gemma-3-27b-it`, etc. | ✅︎ | ✅︎ |
| `Gemma3nForConditionalGeneration` | Gemma 3n | T + I + A | `google/gemma-3n-E2B-it`, `google/gemma-3n-E4B-it`, etc. | | |
| `GLM4VForCausalLM`<sup>^</sup> | GLM-4V | T + I | `zai-org/glm-4v-9b`, `zai-org/cogagent-9b-20241220`, etc. | ✅︎ | ✅︎ |
| `Glm4vForConditionalGeneration` | GLM-4.1V-Thinking | T + I<sup>E+</sup> + V<sup>E+</sup> | `zai-org/GLM-4.1V-9B-Thinking`, etc. | ✅︎ | ✅︎ |
@ -669,6 +672,7 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `NVLM_D_Model` | NVLM-D 1.0 | T + I<sup>+</sup> | `nvidia/NVLM-D-72B`, etc. | | ✅︎ |
| `Ovis` | Ovis2, Ovis1.6 | T + I<sup>+</sup> | `AIDC-AI/Ovis2-1B`, `AIDC-AI/Ovis1.6-Llama3.2-3B`, etc. | | ✅︎ |
| `Ovis2_5` | Ovis2.5 | T + I<sup>+</sup> + V | `AIDC-AI/Ovis2.5-9B`, etc. | | |
| `PaliGemmaForConditionalGeneration` | PaliGemma, PaliGemma 2 | T + I<sup>E</sup> | `google/paligemma-3b-pt-224`, `google/paligemma-3b-mix-224`, `google/paligemma2-3b-ft-docci-448`, etc. | | ✅︎ |
| `Phi3VForCausalLM` | Phi-3-Vision, Phi-3.5-Vision | T + I<sup>E+</sup> | `microsoft/Phi-3-vision-128k-instruct`, `microsoft/Phi-3.5-vision-instruct`, etc. | | ✅︎ |
| `Phi4MMForCausalLM` | Phi-4-multimodal | T + I<sup>+</sup> / T + A<sup>+</sup> / I<sup>+</sup> + A<sup>+</sup> | `microsoft/Phi-4-multimodal-instruct`, etc. | ✅︎ | ✅︎ |
| `Phi4MultimodalForCausalLM` | Phi-4-multimodal (HF Transformers) | T + I<sup>+</sup> / T + A<sup>+</sup> / I<sup>+</sup> + A<sup>+</sup> | `microsoft/Phi-4-multimodal-instruct` (with revision `refs/pr/70`), etc. | ✅︎ | ✅︎ |
@ -693,8 +697,6 @@ Some models are supported only via the [Transformers backend](#transformers). Th
| Architecture | Models | Inputs | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/parallelism_scaling.md) |
|--------------|--------|--------|-------------------|-----------------------------|-----------------------------------------|
| `Emu3ForConditionalGeneration` | Emu3 | T + I | `BAAI/Emu3-Chat-hf` | ✅︎ | ✅︎ |
| `Gemma3ForConditionalGeneration` | Gemma 3 | T + I<sup>+</sup> | `google/gemma-3-4b-it`, `google/gemma-3-27b-it`, etc. | ✅︎ | ✅︎ |
| `PaliGemmaForConditionalGeneration` | PaliGemma, PaliGemma 2 | T + I<sup>E</sup> | `google/paligemma-3b-pt-224`, `google/paligemma-3b-mix-224`, `google/paligemma2-3b-ft-docci-448`, etc. | ✅︎ | ✅︎ |
<sup>^</sup> You need to set the architecture name via `--hf-overrides` to match the one in vLLM.
&nbsp;&nbsp;&nbsp;&nbsp;• For example, to use DeepSeek-VL2 series models:
@ -703,7 +705,21 @@ Some models are supported only via the [Transformers backend](#transformers). Th
<sup>+</sup> Multiple items can be inputted per text prompt for this modality.
!!! warning
For `Gemma3ForConditionalGeneration`, `{"do_pan_and_scan": true}` is not supported in Transformers backend yet.
Both V0 and V1 support `Gemma3ForConditionalGeneration` for text-only inputs.
However, there are differences in how they handle text + image inputs:
V0 correctly implements the model's attention pattern:
- Uses bidirectional attention between the image tokens corresponding to the same image
- Uses causal attention for other tokens
- Implemented via (naive) PyTorch SDPA with masking tensors
- Note: May use significant memory for long prompts with image
V1 currently uses a simplified attention pattern:
- Uses causal attention for all tokens, including image tokens
- Generates reasonable outputs but does not match the original model's attention for text + image inputs, especially when `{"do_pan_and_scan": true}`
- Will be updated in the future to support the correct behavior
This limitation exists because the model's mixed attention pattern (bidirectional for images, causal otherwise) is not yet supported by vLLM's attention backends.
!!! note
`Gemma3nForConditionalGeneration` is only supported on V1 due to shared KV caching and it depends on `timm>=1.0.17` to make use of its
@ -755,6 +771,9 @@ Some models are supported only via the [Transformers backend](#transformers). Th
The official `openbmb/MiniCPM-V-2` doesn't work yet, so we need to use a fork (`HwwwH/MiniCPM-V-2`) for now.
For more details, please see: <https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630>
!!! warning
Our PaliGemma implementations have the same problem as Gemma 3 (see above) for both V0 and V1.
!!! note
For Qwen2.5-Omni and Qwen3-Omni, reading audio from video pre-processing (`--mm-processor-kwargs '{"use_audio_in_video": true}'`) is currently work in progress and not yet supported.

View File

@ -33,7 +33,7 @@ import os
from time import sleep
from vllm import LLM, SamplingParams
from vllm.utils import get_open_port
from vllm.utils.network_utils import get_open_port
def parse_args():

View File

@ -49,6 +49,7 @@ class PrithviMAE:
dtype="float16",
enforce_eager=True,
model_impl="terratorch",
enable_mm_embeds=True,
)
def run(self, input_data, location_coords):

View File

@ -38,6 +38,7 @@ def main():
max_num_seqs=32,
io_processor_plugin="prithvi_to_tiff",
model_impl="terratorch",
enable_mm_embeds=True,
)
pooling_params = PoolingParams(task="token_classify", activation=False)

View File

@ -38,7 +38,7 @@ from rlhf_utils import stateless_init_process_group
from transformers import AutoModelForCausalLM
from vllm import LLM, SamplingParams
from vllm.utils import get_ip, get_open_port
from vllm.utils.network_utils import get_ip, get_open_port
class MyLLM(LLM):

View File

@ -30,6 +30,7 @@ class ModelRequestData(NamedTuple):
prompts: list[str]
stop_token_ids: list[int] | None = None
lora_requests: list[LoRARequest] | None = None
sampling_params: list[SamplingParams] | None = None
# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
@ -90,6 +91,33 @@ def run_aya_vision(questions: list[str], modality: str) -> ModelRequestData:
)
# Bee-8B
def run_bee(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
model_name = "Open-Bee/Bee-8B-RL"
prompts = [
(
f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
f"<|im_start|>user\n<image>\n{question}<|im_end|>"
f"<|im_start|>assistant\n<think>\n"
)
for question in questions
]
engine_args = EngineArgs(
model=model_name,
max_model_len=16384,
limit_mm_per_prompt={modality: 1},
trust_remote_code=True,
)
return ModelRequestData(
engine_args=engine_args,
prompts=prompts,
)
# BLIP-2
def run_blip2(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
@ -126,23 +154,6 @@ def run_chameleon(questions: list[str], modality: str) -> ModelRequestData:
)
# Dots-OCR
def run_dots_ocr(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
prompts = [f"<|img|><|imgpad|><|endofimg|>{question}" for question in questions]
engine_args = EngineArgs(
model="rednote-hilab/dots.ocr",
limit_mm_per_prompt={modality: 1},
trust_remote_code=True,
)
return ModelRequestData(
engine_args=engine_args,
prompts=prompts,
)
def run_command_a_vision(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
@ -190,6 +201,66 @@ def run_deepseek_vl2(questions: list[str], modality: str) -> ModelRequestData:
)
def run_deepseek_ocr(questions: list[str], modality: str) -> ModelRequestData:
from vllm.model_executor.models.deepseek_ocr import NGramPerReqLogitsProcessor
assert modality == "image"
model_name = "deepseek-ai/DeepSeek-OCR"
engine_args = EngineArgs(
model=model_name,
limit_mm_per_prompt={modality: 1},
logits_processors=[NGramPerReqLogitsProcessor],
)
# deepseek-ocr use plain prompt template
prompts = [f"<image>\n{question}" for question in questions]
# The following sampling params config is taken from
# the official Deepseek-OCR inference example.
# (IMPORTANT) Use the custom logits processor and avoid skipping
# special tokens for this model for the optimal OCR performance.
sampling_params = [
SamplingParams(
temperature=0.0,
max_tokens=8192,
# ngram logit processor args
extra_args=dict(
ngram_size=30,
window_size=90,
# whitelist: <td>, </td>
whitelist_token_ids={128821, 128822},
),
skip_special_tokens=False,
)
for _ in questions
]
return ModelRequestData(
engine_args=engine_args,
prompts=prompts,
sampling_params=sampling_params,
)
# Dots-OCR
def run_dots_ocr(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
prompts = [f"<|img|><|imgpad|><|endofimg|>{question}" for question in questions]
engine_args = EngineArgs(
model="rednote-hilab/dots.ocr",
limit_mm_per_prompt={modality: 1},
trust_remote_code=True,
)
return ModelRequestData(
engine_args=engine_args,
prompts=prompts,
)
# Ernie4.5-VL
def run_ernie45_vl(questions: list[str], modality: str) -> ModelRequestData:
model_name = "baidu/ERNIE-4.5-VL-28B-A3B-PT"
@ -248,8 +319,7 @@ def run_gemma3(questions: list[str], modality: str) -> ModelRequestData:
model=model_name,
max_model_len=2048,
max_num_seqs=2,
# TODO: Support this in transformers backend
# mm_processor_kwargs={"do_pan_and_scan": True},
mm_processor_kwargs={"do_pan_and_scan": True},
limit_mm_per_prompt={modality: 1},
)
@ -1708,11 +1778,13 @@ def run_tarsier2(questions: list[str], modality: str) -> ModelRequestData:
model_example_map = {
"aria": run_aria,
"aya_vision": run_aya_vision,
"bee": run_bee,
"blip-2": run_blip2,
"chameleon": run_chameleon,
"dots_ocr": run_dots_ocr,
"command_a_vision": run_command_a_vision,
"deepseek_vl_v2": run_deepseek_vl2,
"deepseek_ocr": run_deepseek_ocr,
"dots_ocr": run_dots_ocr,
"ernie45_vl": run_ernie45_vl,
"fuyu": run_fuyu,
"gemma3": run_gemma3,
@ -1975,8 +2047,12 @@ def main(args):
# We set temperature to 0.2 so that outputs can be different
# even when all prompts are identical when running batch inference.
sampling_params = SamplingParams(
temperature=0.2, max_tokens=64, stop_token_ids=req_data.stop_token_ids
sampling_params = (
SamplingParams(
temperature=0.2, max_tokens=64, stop_token_ids=req_data.stop_token_ids
)
if req_data.sampling_params is None
else req_data.sampling_params
)
assert args.num_prompts > 0

View File

@ -107,6 +107,41 @@ def load_aya_vision(question: str, image_urls: list[str]) -> ModelRequestData:
)
def load_bee(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "Open-Bee/Bee-8B-RL"
engine_args = EngineArgs(
model=model_name,
max_model_len=16384,
max_num_seqs=16,
limit_mm_per_prompt={"image": len(image_urls)},
trust_remote_code=True,
)
placeholders = [{"type": "image", "image": url} for url in image_urls]
messages = [
{
"role": "user",
"content": [
*placeholders,
{"type": "text", "text": question},
],
}
]
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
prompt = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_command_a_vision(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "CohereLabs/command-a-vision-07-2025"
@ -1215,6 +1250,7 @@ def load_glm4_5v_fp8(question: str, image_urls: list[str]) -> ModelRequestData:
model_example_map = {
"aria": load_aria,
"aya_vision": load_aya_vision,
"bee": load_bee,
"command_a_vision": load_command_a_vision,
"deepseek_vl_v2": load_deepseek_vl2,
"gemma3": load_gemma3,

View File

@ -6,10 +6,16 @@
python examples/online_serving/pooling/cohere_rerank_client.py
```
## Embedding embed_dtype usage
## Embedding requests base64 encoding_format usage
```bash
python examples/online_serving/pooling/embedding_embed_dtype_client.py
python examples/online_serving/pooling/embedding_requests_base64_client.py
```
## Embedding requests bytes encoding_format usage
```bash
python examples/online_serving/pooling/embedding_requests_bytes_client.py
```
## Jinaai rerank usage

View File

@ -12,7 +12,11 @@ import base64
import requests
import torch
from vllm.entrypoints.openai.protocol import EMBED_DTYPE_TO_TORCH_DTYPE
from vllm.utils.serial_utils import (
EMBED_DTYPE_TO_TORCH_DTYPE,
ENDIANNESS,
binary2tensor,
)
def post_http_request(prompt: dict, api_url: str) -> requests.Response:
@ -34,24 +38,25 @@ def main(args):
api_url = f"http://{args.host}:{args.port}/v1/embeddings"
model_name = args.model
for embed_dtype, torch_dtype in EMBED_DTYPE_TO_TORCH_DTYPE.items():
prompt = {
"model": model_name,
"input": "vLLM is great!",
"encoding_format": "base64",
"embed_dtype": embed_dtype,
}
response = post_http_request(prompt=prompt, api_url=api_url)
# The OpenAI client does not support the embed_dtype and endianness parameters.
for embed_dtype in EMBED_DTYPE_TO_TORCH_DTYPE:
for endianness in ENDIANNESS:
prompt = {
"model": model_name,
"input": "vLLM is great!",
"encoding_format": "base64",
"embed_dtype": embed_dtype,
"endianness": endianness,
}
response = post_http_request(prompt=prompt, api_url=api_url)
embedding = []
for data in response.json()["data"]:
embedding.append(
torch.frombuffer(
base64.b64decode(data["embedding"]), dtype=torch_dtype
).to(torch.float32)
)
embedding = torch.cat(embedding)
print(embed_dtype, embedding.shape)
embedding = []
for data in response.json()["data"]:
binary = base64.b64decode(data["embedding"])
tensor = binary2tensor(binary, (-1,), embed_dtype, endianness)
embedding.append(tensor.to(torch.float32))
embedding = torch.cat(embedding)
print(embed_dtype, endianness, embedding.shape)
if __name__ == "__main__":

View File

@ -0,0 +1,66 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Example Python client for embedding API using vLLM API server
NOTE:
start a supported embeddings model server with `vllm serve`, e.g.
vllm serve intfloat/e5-small
"""
import argparse
import json
import requests
import torch
from vllm.utils.serial_utils import (
EMBED_DTYPE_TO_TORCH_DTYPE,
ENDIANNESS,
MetadataItem,
decode_pooling_output,
)
def post_http_request(prompt: dict, api_url: str) -> requests.Response:
headers = {"User-Agent": "Test Client"}
response = requests.post(api_url, headers=headers, json=prompt)
return response
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--model", type=str, default="intfloat/e5-small")
return parser.parse_args()
def main(args):
api_url = f"http://{args.host}:{args.port}/v1/embeddings"
model_name = args.model
# The OpenAI client does not support the bytes encoding_format.
# The OpenAI client does not support the embed_dtype and endianness parameters.
for embed_dtype in EMBED_DTYPE_TO_TORCH_DTYPE:
for endianness in ENDIANNESS:
prompt = {
"model": model_name,
"input": "vLLM is great!",
"encoding_format": "bytes",
"embed_dtype": embed_dtype,
"endianness": endianness,
}
response = post_http_request(prompt=prompt, api_url=api_url)
metadata = json.loads(response.headers["metadata"])
body = response.content
items = [MetadataItem(**x) for x in metadata["data"]]
embedding = decode_pooling_output(items=items, body=body)
embedding = [x.to(torch.float32) for x in embedding]
embedding = torch.cat(embedding)
print(embed_dtype, endianness, embedding.shape)
if __name__ == "__main__":
args = parse_args()
main(args)

View File

@ -19,6 +19,7 @@ import requests
# --task embed --trust-remote-code
# --skip-tokenizer-init --enforce-eager
# --io-processor-plugin prithvi_to_tiff
# --enable-mm-embeds
def main():

View File

@ -6,7 +6,7 @@ requires = [
"packaging>=24.2",
"setuptools>=77.0.3,<80.0.0",
"setuptools-scm>=8.0",
"torch == 2.8.0",
"torch == 2.9.0",
"wheel",
"jinja2",
]

View File

@ -4,7 +4,7 @@ ninja
packaging>=24.2
setuptools>=77.0.3,<80.0.0
setuptools-scm>=8
torch==2.8.0
torch==2.9.0
wheel
jinja2>=3.1.6
regex

View File

@ -48,3 +48,4 @@ pybase64 # fast base64 implementation
cbor2 # Required for cross-language serialization of hashable objects
setproctitle # Used to set process names for better debugging and monitoring
openai-harmony >= 0.0.3 # Required for gpt-oss
anthropic == 0.71.0

View File

@ -6,6 +6,7 @@ setuptools-scm>=8
--extra-index-url https://download.pytorch.org/whl/cpu
torch==2.8.0+cpu; platform_machine == "x86_64"
torch==2.8.0; platform_machine == "ppc64le" or platform_machine == "aarch64" or platform_system == "Darwin"
scons; platform_machine == "aarch64" # needed to build Arm Compute Library (ACL)
wheel
jinja2>=3.1.6
regex

View File

@ -5,11 +5,11 @@ numba == 0.61.2 # Required for N-gram speculative decoding
# Dependencies for NVIDIA GPUs
ray[cgraph]>=2.48.0 # Ray Compiled Graph, required for pipeline parallelism in V1.
torch==2.8.0
torchaudio==2.8.0
torch==2.9.0
torchaudio==2.9.0
# These must be updated alongside torch
torchvision==0.23.0 # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version
torchvision==0.24.0 # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version
# https://github.com/facebookresearch/xformers/releases/tag/v0.0.32.post1
xformers==0.0.32.post1; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch >= 2.8
# xformers==0.0.32.post1; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch >= 2.8
# FlashInfer should be updated together with the Dockerfile
flashinfer-python==0.4.1
flashinfer-python==0.4.1

View File

@ -1,12 +1,12 @@
# Common dependencies
-r common.txt
--extra-index-url https://download.pytorch.org/whl/rocm6.3
torch==2.8.0
torchvision==0.23.0
torchaudio==2.8.0
--extra-index-url https://download.pytorch.org/whl/rocm6.4
torch==2.9.0
torchvision==0.24.0
torchaudio==2.9.0
triton==3.3.0
triton==3.5.0
cmake>=3.26.1,<4
packaging>=24.2
setuptools>=77.0.3,<80.0.0

View File

@ -1,6 +1,8 @@
# Common dependencies
-r common.txt
tblib==3.1.0
bm25s==0.2.13
pystemmer==3.0.0
# entrypoints test
# librosa==0.10.2.post1 # required by audio tests in entrypoints/openai
@ -29,6 +31,8 @@ matplotlib==3.10.3
# Multi-Modal Models Test (Extended) 3
blobfile==3.0.0
schemathesis==3.39.15 # Required for openai schema test.
# Required for openai schema test.
schemathesis==3.39.15
mteb[bm25s]>=1.38.11, <2 # required for mteb test
# required for mteb test
mteb[bm25s]>=1.38.11, <2

View File

@ -24,9 +24,9 @@ soundfile # required for audio tests
jiwer # required for audio tests
tblib # for pickling test exceptions
timm >=1.0.17 # required for internvl and gemma3n-mm test
torch==2.8.0
torchaudio==2.8.0
torchvision==0.23.0
torch==2.9.0
torchaudio==2.9.0
torchvision==0.24.0
transformers_stream_generator # required for qwen-vl test
matplotlib # required for qwen-vl test
mistral_common[image,audio] >= 1.8.5 # required for voxtral test
@ -55,4 +55,4 @@ fastsafetensors>=0.1.10
pydantic>=2.12 # 2.11 leads to error on python 3.13
decord==0.6.0
terratorch @ git+https://github.com/IBM/terratorch.git@1.1.rc3 # required for PrithviMAE test
gpt-oss >= 0.0.7; python_version > '3.11'
gpt-oss >= 0.0.7; python_version > '3.11'

View File

@ -1,5 +1,5 @@
# This file was autogenerated by uv via the following command:
# uv pip compile requirements/test.in -o requirements/test.txt --index-strategy unsafe-best-match --torch-backend cu128 --python-platform x86_64-manylinux_2_28
# uv pip compile requirements/test.in -o requirements/test.txt --index-strategy unsafe-best-match --torch-backend cu129 --python-platform x86_64-manylinux_2_28
absl-py==2.1.0
# via rouge-score
accelerate==1.0.1
@ -573,42 +573,44 @@ numpy==1.26.4
# tritonclient
# vocos
# xarray
nvidia-cublas-cu12==12.8.4.1
nvidia-cublas-cu12==12.9.1.4
# via
# nvidia-cudnn-cu12
# nvidia-cusolver-cu12
# torch
nvidia-cuda-cupti-cu12==12.8.90
nvidia-cuda-cupti-cu12==12.9.79
# via torch
nvidia-cuda-nvrtc-cu12==12.8.93
nvidia-cuda-nvrtc-cu12==12.9.86
# via torch
nvidia-cuda-runtime-cu12==12.8.90
nvidia-cuda-runtime-cu12==12.9.79
# via torch
nvidia-cudnn-cu12==9.10.2.21
# via torch
nvidia-cufft-cu12==11.3.3.83
nvidia-cufft-cu12==11.4.1.4
# via torch
nvidia-cufile-cu12==1.13.1.3
nvidia-cufile-cu12==1.14.1.1
# via torch
nvidia-curand-cu12==10.3.9.90
nvidia-curand-cu12==10.3.10.19
# via torch
nvidia-cusolver-cu12==11.7.3.90
nvidia-cusolver-cu12==11.7.5.82
# via torch
nvidia-cusparse-cu12==12.5.8.93
nvidia-cusparse-cu12==12.5.10.65
# via
# nvidia-cusolver-cu12
# torch
nvidia-cusparselt-cu12==0.7.1
# via torch
nvidia-nccl-cu12==2.27.3
nvidia-nccl-cu12==2.27.5
# via torch
nvidia-nvjitlink-cu12==12.8.93
nvidia-nvjitlink-cu12==12.9.86
# via
# nvidia-cufft-cu12
# nvidia-cusolver-cu12
# nvidia-cusparse-cu12
# torch
nvidia-nvtx-cu12==12.8.90
nvidia-nvshmem-cu12==3.3.20
# via torch
nvidia-nvtx-cu12==12.9.79
# via torch
omegaconf==2.3.0
# via
@ -1017,7 +1019,6 @@ setuptools==77.0.3
# lightning-utilities
# pytablewriter
# torch
# triton
shapely==2.1.1
# via
# geopandas
@ -1122,7 +1123,7 @@ tomli==2.2.1
# via schemathesis
tomli-w==1.2.0
# via schemathesis
torch==2.8.0+cu128
torch==2.9.0+cu129
# via
# -r requirements/test.in
# accelerate
@ -1151,7 +1152,7 @@ torch==2.8.0+cu128
# torchvision
# vector-quantize-pytorch
# vocos
torchaudio==2.8.0+cu128
torchaudio==2.9.0+cu129
# via
# -r requirements/test.in
# encodec
@ -1164,7 +1165,7 @@ torchmetrics==1.7.4
# pytorch-lightning
# terratorch
# torchgeo
torchvision==0.23.0+cu128
torchvision==0.24.0+cu129
# via
# -r requirements/test.in
# lightly
@ -1205,7 +1206,7 @@ transformers==4.56.2
# transformers-stream-generator
transformers-stream-generator==0.0.5
# via -r requirements/test.in
triton==3.4.0
triton==3.5.0
# via torch
tritonclient==2.51.0
# via

View File

@ -157,11 +157,9 @@ def test_models_distributed(
and distributed_executor_backend == "ray"
and attention_backend == ""
and test_suite == "L4"
and enable_prompt_embeds
): # noqa
if enable_prompt_embeds:
pytest.skip("enable_prompt_embeds does not work with ray compiled dag.")
monkeypatch_context.setenv("VLLM_USE_RAY_SPMD_WORKER", "1")
monkeypatch_context.setenv("VLLM_USE_RAY_COMPILED_DAG", "1")
pytest.skip("enable_prompt_embeds does not work with ray compiled dag.")
if attention_backend:
monkeypatch_context.setenv(

View File

@ -6,7 +6,7 @@ import torch
from vllm import LLM, SamplingParams
from vllm.device_allocator.cumem import CuMemAllocator
from vllm.utils import GiB_bytes
from vllm.utils.mem_constants import GiB_bytes
from ..utils import create_new_process_for_each_test

View File

@ -11,7 +11,7 @@ from tests.v1.attention.utils import full_cg_backend_configs as backend_configs
from vllm import LLM, SamplingParams
from vllm.config import CompilationConfig
from vllm.platforms import current_platform
from vllm.utils import is_torch_equal_or_newer
from vllm.utils.torch_utils import is_torch_equal_or_newer
@contextlib.contextmanager

View File

@ -20,7 +20,7 @@ from vllm.config import (
set_current_vllm_config,
)
from vllm.forward_context import BatchDescriptor, set_forward_context
from vllm.utils import is_torch_equal_or_newer
from vllm.utils.torch_utils import is_torch_equal_or_newer
# This import automatically registers `torch.ops.silly.attention`
from .. import silly_attention # noqa: F401

View File

@ -19,7 +19,7 @@ from vllm.config import (
set_current_vllm_config,
)
from vllm.forward_context import BatchDescriptor, set_forward_context
from vllm.utils import is_torch_equal_or_newer
from vllm.utils.torch_utils import is_torch_equal_or_newer
# This import automatically registers `torch.ops.silly.attention`
from ..silly_attention import get_global_counter, reset_global_counter

View File

@ -27,7 +27,7 @@ from vllm.config import (
set_current_vllm_config,
)
from vllm.forward_context import BatchDescriptor, set_forward_context
from vllm.utils import is_torch_equal_or_newer
from vllm.utils.torch_utils import is_torch_equal_or_newer
# This import automatically registers `torch.ops.silly.attention`
from .. import silly_attention # noqa: F401
@ -355,13 +355,13 @@ def test_toy_llama(
)
compile_config_no_compile = CompilationConfig(
level=CompilationMode.NONE,
mode=CompilationMode.NONE,
cudagraph_mode=CUDAGraphMode.NONE,
backend="eager",
)
compile_config_no_split = CompilationConfig(
level=CompilationMode.VLLM_COMPILE,
mode=CompilationMode.VLLM_COMPILE,
use_inductor_graph_partition=use_inductor_graph_partition,
cudagraph_mode=CUDAGraphMode.PIECEWISE,
backend=backend,

View File

@ -8,7 +8,7 @@ Centralizes custom operation definitions to avoid duplicate registrations.
import torch
from torch.library import Library
from vllm.utils import direct_register_custom_op
from vllm.utils.torch_utils import direct_register_custom_op
# Shared library for all compilation test operations
# Using "silly" namespace to match existing test expectations

View File

@ -15,7 +15,7 @@ from vllm.config import (
set_current_vllm_config,
)
from vllm.forward_context import set_forward_context
from vllm.utils import is_torch_equal_or_newer
from vllm.utils.torch_utils import is_torch_equal_or_newer
def reference_fn(x: torch.Tensor):
@ -38,7 +38,7 @@ class CompiledMod(torch.nn.Module):
def make_vllm_config() -> VllmConfig:
return VllmConfig(
compilation_config=CompilationConfig(
level=CompilationMode.VLLM_COMPILE,
mode=CompilationMode.VLLM_COMPILE,
)
)

View File

@ -25,7 +25,7 @@ from vllm.distributed.parallel_state import (
initialize_model_parallel,
)
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables
from vllm.utils.system_utils import update_environment_variables
from ..models.registry import HF_EXAMPLE_MODELS
from ..utils import (

View File

@ -5,7 +5,7 @@ import dataclasses
import pytest
from vllm.config import CompilationMode
from vllm.utils import cuda_device_count_stateless
from vllm.utils.torch_utils import cuda_device_count_stateless
from ..utils import compare_all_settings

View File

@ -8,7 +8,7 @@ from vllm.compilation.counter import compilation_counter
from vllm.compilation.fix_functionalization import FixFunctionalizationPass
from vllm.config import CompilationConfig, CUDAGraphMode, VllmConfig
from vllm.config.compilation import CompilationMode
from vllm.utils import _is_torch_equal_or_newer, is_torch_equal_or_newer
from vllm.utils.torch_utils import _is_torch_equal_or_newer, is_torch_equal_or_newer
def test_version():
@ -168,7 +168,7 @@ def test_splitting_ops_dynamic():
if is_torch_equal_or_newer("2.9.0.dev"):
config = VllmConfig(
compilation_config=CompilationConfig(
level=CompilationMode.VLLM_COMPILE,
mode=CompilationMode.VLLM_COMPILE,
use_inductor_graph_partition=True,
splitting_ops=["vllm::unified_attention"],
)
@ -180,7 +180,7 @@ def test_splitting_ops_dynamic():
# When attn_fusion pass enabled, splitting_ops now default to attention ops.
config = VllmConfig(
compilation_config=CompilationConfig(
level=CompilationMode.VLLM_COMPILE,
mode=CompilationMode.VLLM_COMPILE,
pass_config={"enable_attn_fusion": True, "enable_noop": True},
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
@ -195,7 +195,7 @@ def test_splitting_ops_dynamic():
if is_torch_equal_or_newer("2.9.0.dev"):
config = VllmConfig(
compilation_config=CompilationConfig(
level=CompilationMode.VLLM_COMPILE,
mode=CompilationMode.VLLM_COMPILE,
use_inductor_graph_partition=True,
pass_config={"enable_attn_fusion": True, "enable_noop": True},
custom_ops=["+quant_fp8"],

View File

@ -15,7 +15,7 @@ from vllm.config import (
set_current_vllm_config,
)
from vllm.forward_context import BatchDescriptor, set_forward_context
from vllm.utils import is_torch_equal_or_newer
from vllm.utils.torch_utils import is_torch_equal_or_newer
# This import automatically registers `torch.ops.silly.attention`
from . import silly_attention # noqa: F401

View File

@ -12,7 +12,7 @@ from tests.quantization.utils import is_quant_method_supported
from vllm import LLM, SamplingParams
from vllm.config import CompilationConfig, CompilationMode, CUDAGraphMode, PassConfig
from vllm.platforms import current_platform
from vllm.utils import is_torch_equal_or_newer
from vllm.utils.torch_utils import is_torch_equal_or_newer
from ..utils import create_new_process_for_each_test
@ -198,7 +198,7 @@ def run_model(compile_config: int | CompilationConfig, model: str, **model_kwarg
compilation_config = (
compile_config
if isinstance(compile_config, CompilationConfig)
else CompilationConfig(level=compile_config)
else CompilationConfig(mode=compile_config)
)
prompts = [

View File

@ -31,7 +31,7 @@ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
GroupShape,
)
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables
from vllm.utils.system_utils import update_environment_variables
from ..utils import has_module_attribute, multi_gpu_test
from .backend import TestBackend

View File

@ -15,8 +15,8 @@ from tests.v1.attention.utils import _Backend
from vllm import LLM, SamplingParams
from vllm.config import CompilationConfig, CompilationMode, CUDAGraphMode, PassConfig
from vllm.platforms import current_platform
from vllm.utils import is_torch_equal_or_newer
from vllm.utils.flashinfer import has_flashinfer
from vllm.utils.torch_utils import is_torch_equal_or_newer
from ..utils import flat_product, multi_gpu_test
@ -151,7 +151,7 @@ def test_attn_quant(
cudagraph_mode=mode,
splitting_ops=splitting_ops,
# Common
level=CompilationMode.VLLM_COMPILE,
mode=CompilationMode.VLLM_COMPILE,
pass_config=PassConfig(enable_attn_fusion=True, enable_noop=True),
# Inductor caches custom passes by default as well via uuid
inductor_compile_config={"force_disable_caches": True},
@ -236,7 +236,7 @@ def test_tp2_attn_quant_allreduce_rmsnorm(
custom_ops=custom_ops_list,
splitting_ops=splitting_ops,
# Common
level=CompilationMode.VLLM_COMPILE,
mode=CompilationMode.VLLM_COMPILE,
pass_config=PassConfig(
enable_attn_fusion=True,
enable_noop=True,
@ -273,7 +273,7 @@ def run_model(compile_config: int | CompilationConfig, model: str, **model_kwarg
compilation_config = (
compile_config
if isinstance(compile_config, CompilationConfig)
else CompilationConfig(level=compile_config)
else CompilationConfig(mode=compile_config)
)
prompts = [

View File

@ -29,7 +29,7 @@ from vllm.distributed.parallel_state import (
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization.utils.w8a8_utils import Fp8LinearOp
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables
from vllm.utils.system_utils import update_environment_variables
from ..utils import multi_gpu_test
from .backend import TestBackend

View File

@ -1,6 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import cast
import itertools
import pytest
import torch
@ -16,7 +16,13 @@ from vllm.compilation.activation_quant_fusion import (
from vllm.compilation.fusion import QUANT_OPS
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.config import CompilationConfig, PassConfig, VllmConfig
from vllm.config import (
CompilationConfig,
CompilationMode,
PassConfig,
VllmConfig,
set_current_vllm_config,
)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape,
@ -25,7 +31,7 @@ from vllm.model_executor.layers.quantization.utils.quant_utils import (
)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
Fp8LinearOp,
cutlass_fp8_supported,
maybe_create_device_identity,
)
from vllm.platforms import current_platform
@ -54,6 +60,8 @@ class TestSiluMulFp8QuantModel(torch.nn.Module):
act_quant_static=True,
act_quant_group_shape=GroupShape.PER_TENSOR,
)
self.enable_silu_mul_custom_op = self.silu_and_mul.enabled()
self.enable_quant_fp8_custom_op = self.fp8_linear.quant_fp8.enabled()
def forward(self, x):
y = self.silu_and_mul(x)
@ -61,7 +69,14 @@ class TestSiluMulFp8QuantModel(torch.nn.Module):
return x2
def ops_in_model_before(self):
return [SILU_MUL_OP, QUANT_OPS[kFp8StaticTensorSym]]
return [
SILU_MUL_OP if self.enable_silu_mul_custom_op else torch.ops.aten.mul,
(
QUANT_OPS[kFp8StaticTensorSym]
if self.enable_quant_fp8_custom_op
else torch.ops.aten.reciprocal
),
]
def ops_in_model_after(self):
return [FUSED_OPS[kFp8StaticTensorSym]]
@ -77,6 +92,7 @@ class TestSiluMulNvfp4QuantModel(torch.nn.Module):
assert silu_and_mul_nvfp4_quant_supported
self.silu_and_mul = SiluAndMul()
self.enable_silu_mul_custom_op = self.silu_and_mul.enabled()
# create nvfp4 weight
w = torch.rand((hidden_size, hidden_size))
@ -101,7 +117,10 @@ class TestSiluMulNvfp4QuantModel(torch.nn.Module):
return out
def ops_in_model_before(self):
return [SILU_MUL_OP, QUANT_OPS[kNvfp4Quant]]
return [
SILU_MUL_OP if self.enable_silu_mul_custom_op else torch.ops.aten.mul,
QUANT_OPS[kNvfp4Quant],
]
def ops_in_model_after(self):
return [FUSED_OPS[kNvfp4Quant]]
@ -110,67 +129,80 @@ class TestSiluMulNvfp4QuantModel(torch.nn.Module):
@pytest.mark.parametrize("num_tokens", [32, 64])
@pytest.mark.parametrize("hidden_size", [128, 256])
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("enable_silu_mul_custom_op", [True, False])
@pytest.mark.parametrize(
"model_class",
cast(
list[type],
[TestSiluMulFp8QuantModel, TestSiluMulNvfp4QuantModel]
if is_nvfp4_supported()
else [TestSiluMulFp8QuantModel],
),
"model_class, enable_quant_fp8_custom_op, cuda_force_torch",
list(itertools.product([TestSiluMulFp8QuantModel], [True, False], [True, False]))
+ [(TestSiluMulNvfp4QuantModel, False, False)],
)
# cuda_force_torch used to test torch code path on platforms that
# cutlass_fp8_supported() == True.
@pytest.mark.parametrize(
"cuda_force_torch", [True, False] if cutlass_fp8_supported() else [True]
)
@pytest.mark.skipif(
envs.VLLM_TARGET_DEVICE not in ["cuda", "rocm"], reason="Only test on CUDA and ROCm"
)
def test_fusion_silu_and_mul_quant(
num_tokens, hidden_size, dtype, model_class, cuda_force_torch
num_tokens: int,
hidden_size: int,
dtype: torch.dtype,
model_class: type[TestSiluMulFp8QuantModel | TestSiluMulNvfp4QuantModel],
enable_silu_mul_custom_op: bool,
enable_quant_fp8_custom_op: bool,
cuda_force_torch: bool,
):
if model_class == TestSiluMulNvfp4QuantModel and cuda_force_torch:
pytest.skip("Duplicate tests for NVFP4")
if model_class is TestSiluMulNvfp4QuantModel and not is_nvfp4_supported():
pytest.skip("NVFP4 is not supported on this GPU.")
torch.set_default_device("cuda")
torch.set_default_dtype(dtype)
maybe_create_device_identity()
x = torch.rand(num_tokens, hidden_size * 2)
# Reshape pass is needed for the fusion pass to work
config = VllmConfig()
config.compilation_config = CompilationConfig(
pass_config=PassConfig(enable_fusion=True, enable_noop=True)
)
fusion_pass = ActivationQuantFusionPass(config)
passes = [NoOpEliminationPass(config), fusion_pass, PostCleanupPass(config)]
backend = TestBackend(*passes)
model = model_class(hidden_size=hidden_size, cuda_force_torch=cuda_force_torch, x=x)
# First dimension dynamic
torch._dynamo.mark_dynamic(x, 0)
result = model(x)
model2 = torch.compile(model, backend=backend)
result2 = model2(x)
# Check that it gives the same answer
if model_class == TestSiluMulFp8QuantModel:
atol, rtol = 1e-3, 1e-3
elif model_class == TestSiluMulNvfp4QuantModel:
atol, rtol = 1e-1, 1e-1
torch.testing.assert_close(
result[0].to(dtype=dtype), result2[0].to(dtype=dtype), atol=atol, rtol=rtol
custom_ops = []
if enable_silu_mul_custom_op:
custom_ops.append("+silu_and_mul")
if enable_quant_fp8_custom_op:
custom_ops.append("+quant_fp8")
config = VllmConfig(
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
custom_ops=custom_ops,
pass_config=PassConfig(enable_fusion=True, enable_noop=True),
),
)
assert fusion_pass.matched_count == 1
with set_current_vllm_config(config):
fusion_pass = ActivationQuantFusionPass(config)
# In pre-nodes, quant op should be present and fused kernels should not
backend.check_before_ops(model.ops_in_model_before())
passes = [NoOpEliminationPass(config), fusion_pass, PostCleanupPass(config)]
backend = TestBackend(*passes)
model = model_class(
hidden_size=hidden_size, cuda_force_torch=cuda_force_torch, x=x
)
# In post-nodes, fused kernels should be present and quant op should not
backend.check_after_ops(model.ops_in_model_after())
# First dimension dynamic
torch._dynamo.mark_dynamic(x, 0)
result = model(x)
model2 = torch.compile(model, backend=backend)
result2 = model2(x)
# Check that it gives the same answer
if model_class == TestSiluMulFp8QuantModel:
atol, rtol = 1e-3, 1e-3
elif model_class == TestSiluMulNvfp4QuantModel:
atol, rtol = 1e-1, 1e-1
torch.testing.assert_close(
result[0].to(dtype=dtype), result2[0].to(dtype=dtype), atol=atol, rtol=rtol
)
assert fusion_pass.matched_count == 1
# In pre-nodes, quant op should be present and fused kernels should not
backend.check_before_ops(model.ops_in_model_before())
# In post-nodes, fused kernels should be present and quant op should not
backend.check_after_ops(model.ops_in_model_after())

View File

@ -0,0 +1,25 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm.attention.backends.registry import _Backend
from vllm.config.multimodal import MultiModalConfig
def test_mm_encoder_attn_backend_str_conversion():
config = MultiModalConfig(mm_encoder_attn_backend="FLASH_ATTN")
assert config.mm_encoder_attn_backend == _Backend.FLASH_ATTN
def test_mm_encoder_attn_backend_invalid():
with pytest.raises(ValueError):
MultiModalConfig(mm_encoder_attn_backend="not_a_backend")
def test_mm_encoder_attn_backend_hash_updates():
base_hash = MultiModalConfig().compute_hash()
overridden_hash = MultiModalConfig(
mm_encoder_attn_backend=_Backend.FLASH_ATTN
).compute_hash()
assert base_hash != overridden_hash

View File

@ -60,8 +60,8 @@ from vllm.multimodal.utils import fetch_image
from vllm.outputs import RequestOutput
from vllm.sampling_params import BeamSearchParams
from vllm.transformers_utils.utils import maybe_model_redirect
from vllm.utils import set_default_torch_num_threads
from vllm.utils.collections import is_list_of
from vllm.utils.collection_utils import is_list_of
from vllm.utils.torch_utils import set_default_torch_num_threads
logger = init_logger(__name__)

View File

@ -15,7 +15,7 @@ from vllm.distributed.parallel_state import (
get_tp_group,
init_distributed_environment,
)
from vllm.utils import update_environment_variables
from vllm.utils.system_utils import update_environment_variables
def distributed_run(fn, world_size):

View File

@ -18,8 +18,8 @@ from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
from vllm import initialize_ray_cluster
from vllm.config import ParallelConfig
from vllm.executor.ray_utils import _wait_until_pg_removed
from vllm.utils import get_ip
from vllm.utils.network_utils import get_ip
from vllm.v1.executor.ray_utils import _wait_until_pg_removed
VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"

View File

@ -23,7 +23,7 @@ from vllm.distributed.parallel_state import (
initialize_model_parallel,
)
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables
from vllm.utils.system_utils import update_environment_variables
torch.manual_seed(42)
random.seed(44)

View File

@ -7,7 +7,7 @@ import torch.distributed as dist
from vllm.distributed.parallel_state import _node_count
from vllm.distributed.utils import StatelessProcessGroup
from vllm.utils import get_ip, get_open_port
from vllm.utils.network_utils import get_ip, get_open_port
if __name__ == "__main__":
dist.init_process_group(backend="gloo")

View File

@ -305,10 +305,8 @@ def _compare_tp(
common_args.extend(["--max-num-seqs", f"{max_num_seqs}"])
if distributed_backend == "ray":
# For V1, test Ray Compiled Graph for all the tests
# Test Ray Compiled Graph for all the tests
pp_env = {
"VLLM_USE_RAY_COMPILED_DAG": "1",
"VLLM_USE_RAY_SPMD_WORKER": "1",
"VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL": "1",
}
# Temporary. Currently when zeromq + SPMD is used, it does not properly

View File

@ -18,7 +18,7 @@ from vllm.distributed.parallel_state import (
graph_capture,
init_distributed_environment,
)
from vllm.utils import update_environment_variables
from vllm.utils.system_utils import update_environment_variables
def distributed_run(fn, world_size):

View File

@ -3,11 +3,24 @@
import os
import torch
import torch.distributed as dist
from vllm.distributed.parallel_state import in_the_same_node_as
from vllm.distributed.utils import StatelessProcessGroup
from vllm.utils import get_ip, get_open_port
from vllm.utils.network_utils import get_ip, get_open_port
def _run_test(pg):
test_result = all(in_the_same_node_as(pg, source_rank=0))
expected = os.environ.get("VLLM_TEST_SAME_HOST", "1") == "1"
assert test_result == expected, f"Expected {expected}, got {test_result}"
if pg == dist.group.WORLD:
print("Same node test passed! when using torch distributed!")
else:
print("Same node test passed! when using StatelessProcessGroup!")
if __name__ == "__main__":
dist.init_process_group(backend="gloo")
@ -25,11 +38,12 @@ if __name__ == "__main__":
stateless_pg = StatelessProcessGroup.create(ip, port, rank, dist.get_world_size())
for pg in [dist.group.WORLD, stateless_pg]:
test_result = all(in_the_same_node_as(pg, source_rank=0))
expected = os.environ.get("VLLM_TEST_SAME_HOST", "1") == "1"
assert test_result == expected, f"Expected {expected}, got {test_result}"
if pg == dist.group.WORLD:
print("Same node test passed! when using torch distributed!")
if os.environ.get("VLLM_TEST_WITH_DEFAULT_DEVICE_SET", "0") == "1":
default_devices = ["cpu"]
if torch.cuda.is_available():
default_devices.append("cuda")
for device in default_devices:
torch.set_default_device(device)
_run_test(pg)
else:
print("Same node test passed! when using StatelessProcessGroup!")
_run_test(pg)

View File

@ -18,7 +18,7 @@ import pytest
from vllm.config.compilation import CompilationMode
from vllm.config.model import RunnerOption
from vllm.logger import init_logger
from vllm.utils import is_torch_equal_or_newer
from vllm.utils.torch_utils import is_torch_equal_or_newer
from ..models.registry import HF_EXAMPLE_MODELS
from ..utils import compare_two_settings, create_new_process_for_each_test

View File

@ -10,7 +10,8 @@ import torch.distributed as dist
from vllm.distributed.device_communicators.shm_broadcast import MessageQueue
from vllm.distributed.utils import StatelessProcessGroup
from vllm.utils import get_open_port, update_environment_variables
from vllm.utils.network_utils import get_open_port
from vllm.utils.system_utils import update_environment_variables
def get_arrays(n: int, seed: int = 0) -> list[np.ndarray]:

View File

@ -23,7 +23,7 @@ from vllm.distributed.parallel_state import (
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.llm_engine import LLMEngine
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables
from vllm.utils.system_utils import update_environment_variables
torch.manual_seed(42)
random.seed(44)

View File

@ -10,11 +10,9 @@ import torch
import vllm.envs as envs
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
from vllm.distributed.utils import StatelessProcessGroup
from vllm.utils import (
cuda_device_count_stateless,
get_open_port,
update_environment_variables,
)
from vllm.utils.network_utils import get_open_port
from vllm.utils.system_utils import update_environment_variables
from vllm.utils.torch_utils import cuda_device_count_stateless
from ..utils import multi_gpu_test

View File

@ -0,0 +1,141 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import anthropic
import pytest
import pytest_asyncio
from ...utils import RemoteAnthropicServer
MODEL_NAME = "Qwen/Qwen3-0.6B"
@pytest.fixture(scope="module")
def server(): # noqa: F811
args = [
"--max-model-len",
"2048",
"--enforce-eager",
"--enable-auto-tool-choice",
"--tool-call-parser",
"hermes",
"--served-model-name",
"claude-3-7-sonnet-latest",
]
with RemoteAnthropicServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
async def test_simple_messages(client: anthropic.AsyncAnthropic):
resp = await client.messages.create(
model="claude-3-7-sonnet-latest",
max_tokens=1024,
messages=[{"role": "user", "content": "how are you!"}],
)
assert resp.stop_reason == "end_turn"
assert resp.role == "assistant"
print(f"Anthropic response: {resp.model_dump_json()}")
@pytest.mark.asyncio
async def test_system_message(client: anthropic.AsyncAnthropic):
resp = await client.messages.create(
model="claude-3-7-sonnet-latest",
max_tokens=1024,
system="you are a helpful assistant",
messages=[{"role": "user", "content": "how are you!"}],
)
assert resp.stop_reason == "end_turn"
assert resp.role == "assistant"
print(f"Anthropic response: {resp.model_dump_json()}")
@pytest.mark.asyncio
async def test_anthropic_streaming(client: anthropic.AsyncAnthropic):
resp = await client.messages.create(
model="claude-3-7-sonnet-latest",
max_tokens=1024,
messages=[{"role": "user", "content": "how are you!"}],
stream=True,
)
async for chunk in resp:
print(chunk.model_dump_json())
@pytest.mark.asyncio
async def test_anthropic_tool_call(client: anthropic.AsyncAnthropic):
resp = await client.messages.create(
model="claude-3-7-sonnet-latest",
max_tokens=1024,
messages=[
{"role": "user", "content": "What's the weather like in New York today?"}
],
tools=[
{
"name": "get_current_weather",
"description": "Useful for querying the weather in a specified city.",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "City or region, for example: "
"New York, London, Tokyo, etc.",
}
},
"required": ["location"],
},
}
],
stream=False,
)
assert resp.stop_reason == "tool_use"
assert resp.role == "assistant"
print(f"Anthropic response: {resp.model_dump_json()}")
@pytest.mark.asyncio
async def test_anthropic_tool_call_streaming(client: anthropic.AsyncAnthropic):
resp = await client.messages.create(
model="claude-3-7-sonnet-latest",
max_tokens=1024,
messages=[
{
"role": "user",
"content": "What's the weather like in New York today?",
}
],
tools=[
{
"name": "get_current_weather",
"description": "Useful for querying the weather "
"in a specified city.",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "City or region, for example: "
"New York, London, Tokyo, etc.",
}
},
"required": ["location"],
},
}
],
stream=True,
)
async for chunk in resp:
print(chunk.model_dump_json())

View File

@ -2,6 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from vllm import LLM
@ -12,8 +13,22 @@ def test_empty_prompt():
llm.generate([""])
@pytest.mark.skip_v1
def test_out_of_vocab_token():
llm = LLM(model="openai-community/gpt2", enforce_eager=True)
with pytest.raises(ValueError, match="out of vocabulary"):
llm.generate({"prompt_token_ids": [999999]})
def test_require_mm_embeds():
llm = LLM(
model="llava-hf/llava-1.5-7b-hf",
enforce_eager=True,
enable_mm_embeds=False,
)
with pytest.raises(ValueError, match="--enable-mm-embeds"):
llm.generate(
{
"prompt": "<image>",
"multi_modal_data": {"image": torch.empty(1, 1, 1)},
}
)

View File

@ -3,12 +3,15 @@
import asyncio
from http import HTTPStatus
from unittest.mock import AsyncMock, Mock
import openai
import pytest
import pytest_asyncio
import requests
from fastapi import Request
from vllm.v1.engine.exceptions import EngineDeadError
from vllm.version import __version__ as VLLM_VERSION
from ...utils import RemoteOpenAIServer
@ -224,3 +227,24 @@ async def test_server_load(server: RemoteOpenAIServer):
response = requests.get(server.url_for("load"))
assert response.status_code == HTTPStatus.OK
assert response.json().get("server_load") == 0
@pytest.mark.asyncio
async def test_health_check_engine_dead_error():
# Import the health function directly to test it in isolation
from vllm.entrypoints.openai.api_server import health
# Create a mock request that simulates what FastAPI would provide
mock_request = Mock(spec=Request)
mock_app_state = Mock()
mock_engine_client = AsyncMock()
mock_engine_client.check_health.side_effect = EngineDeadError()
mock_app_state.engine_client = mock_engine_client
mock_request.app.state = mock_app_state
# Test the health function directly with our mocked request
# This simulates what would happen if the engine dies
response = await health(mock_request)
# Assert that it returns 503 Service Unavailable
assert response.status_code == 503

View File

@ -194,11 +194,19 @@ async def test_function_tool_use(
)
output = []
reasoning = []
async for chunk in output_stream:
if chunk.choices and chunk.choices[0].delta.tool_calls:
output.extend(chunk.choices[0].delta.tool_calls)
if chunk.choices:
if enable_thinking and getattr(
chunk.choices[0].delta, "reasoning_content", None
):
reasoning.append(chunk.choices[0].delta.reasoning_content)
if chunk.choices[0].delta.tool_calls:
output.extend(chunk.choices[0].delta.tool_calls)
assert len(output) > 0
if enable_thinking:
assert len(reasoning) > 0
@pytest.fixture(scope="module")

View File

@ -292,3 +292,16 @@ async def test_prompt_logprobs_raises_error(
temperature=0.0,
extra_body={"prompt_embeds": encoded_embeds, "prompt_logprobs": True},
)
@pytest.mark.asyncio
async def test_empty_prompt_embeds(
client_with_prompt_embeds: openai.AsyncOpenAI,
) -> None:
await client_with_prompt_embeds.completions.create(
model=MODEL_NAME,
prompt="Hello",
max_tokens=5,
temperature=0.0,
extra_body={"prompt_embeds": []},
)

View File

@ -0,0 +1,280 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Integration tests for GPT-OSS structural tags functionality (PR #25515)."""
import json
from unittest.mock import Mock
import pytest
from vllm.entrypoints.openai.protocol import (
StructuredOutputsParams,
)
from vllm.entrypoints.tool_server import ToolServer
from vllm.reasoning.gptoss_reasoning_parser import (
GptOssReasoningParser,
)
class TestGptOssStructuralTagsIntegration:
"""Integration tests for structural tags in GPT-OSS tool calls."""
@pytest.fixture
def mock_tokenizer(self):
"""Create a mock tokenizer."""
tokenizer = Mock()
tokenizer.encode = Mock(return_value=[1, 2, 3, 4, 5])
return tokenizer
@pytest.fixture
def gptoss_parser(self, mock_tokenizer):
"""Create a real GptOssReasoningParser instance."""
return GptOssReasoningParser(mock_tokenizer)
@pytest.fixture
def tool_server_with_python(self):
"""Create a tool server with Python tool enabled."""
tool_server = Mock(spec=ToolServer)
tool_server.has_tool = Mock(side_effect=lambda tool: tool == "python")
return tool_server
@pytest.fixture
def tool_server_empty(self):
"""Create a tool server with no tools."""
tool_server = Mock(spec=ToolServer)
tool_server.has_tool = Mock(return_value=False)
return tool_server
def test_end_to_end_no_tools(self, gptoss_parser):
"""Test end-to-end flow when no tools are available."""
# Test the parser directly
result = gptoss_parser.prepare_structured_tag(None, None)
parsed_result = json.loads(result)
# Verify basic structure
assert parsed_result["type"] == "structural_tag"
assert parsed_result["format"]["type"] == "triggered_tags"
assert len(parsed_result["format"]["tags"]) == 1
# Verify only analysis channel is allowed
analysis_tag = parsed_result["format"]["tags"][0]
assert analysis_tag["begin"] == "<|channel|>analysis<|message|>"
assert analysis_tag["content"]["type"] == "any_text"
assert analysis_tag["end"] == "<|end|>"
# Verify triggers
assert parsed_result["format"]["triggers"] == ["<|channel|>analysis"]
assert parsed_result["format"]["stop_after_first"] is False
def test_end_to_end_with_python_tool(self, gptoss_parser, tool_server_with_python):
"""Test end-to-end flow with Python tool enabled."""
result = gptoss_parser.prepare_structured_tag(None, tool_server_with_python)
parsed_result = json.loads(result)
# Should have analysis tag + 2 python tags
assert len(parsed_result["format"]["tags"]) == 3
# Verify all expected tags are present
tag_begins = [tag["begin"] for tag in parsed_result["format"]["tags"]]
expected_begins = [
"<|channel|>analysis<|message|>",
"<|channel|>commentary to=python",
"<|channel|>analysis to=python",
]
for expected in expected_begins:
assert expected in tag_begins
# Verify triggers include commentary
assert "<|channel|>analysis" in parsed_result["format"]["triggers"]
assert "<|channel|>commentary to=" in parsed_result["format"]["triggers"]
def test_structured_outputs_params_integration(
self, gptoss_parser, tool_server_with_python
):
"""Test integration with StructuredOutputsParams."""
# Generate structural tag
structural_tag = gptoss_parser.prepare_structured_tag(
None, tool_server_with_python
)
# Create StructuredOutputsParams
params = StructuredOutputsParams(structural_tag=structural_tag)
# Verify the tag is properly stored and accessible
assert params.structural_tag == structural_tag
# Verify the tag is valid JSON
parsed_tag = json.loads(params.structural_tag)
assert parsed_tag["type"] == "structural_tag"
@pytest.mark.parametrize(
"browser, python, container, expected_tags",
[
# No tools
(False, False, False, 1),
# Single tool
(True, False, False, 3),
# Multiple tools
(True, True, False, 5),
# All tools
(True, True, True, 7),
],
)
def test_tool_server_interaction_flow(
self, gptoss_parser, browser, python, container, expected_tags
):
"""Test the complete tool server interaction flow."""
# Create a mock ToolServer
tool_server = Mock(spec=ToolServer)
# Simulate tool availability based on parameters
tool_server.has_tool = Mock(
side_effect=lambda tool: {
"browser": browser,
"python": python,
"container": container,
}.get(tool, False)
)
# Run the parser and verify results
result = gptoss_parser.prepare_structured_tag(None, tool_server)
parsed_result = json.loads(result)
# Validate number of tags
assert len(parsed_result["format"]["tags"]) == expected_tags
# Verify tool-specific tags exist for enabled tools
tag_begins = [tag["begin"] for tag in parsed_result["format"]["tags"]]
for tool, enabled in {
"browser": browser,
"python": python,
"container": container,
}.items():
if enabled:
assert f"<|channel|>commentary to={tool}" in tag_begins
assert f"<|channel|>analysis to={tool}" in tag_begins
def test_original_tag_preservation(self, gptoss_parser, tool_server_with_python):
"""Test that original tags are preserved when provided."""
original_tag = '{"type": "custom_tag", "data": "preserved"}'
result = gptoss_parser.prepare_structured_tag(
original_tag, tool_server_with_python
)
# Should return original tag unchanged
assert result == original_tag
@pytest.mark.parametrize(
"tools",
[
[],
["browser"],
["python"],
["container"],
["browser", "python"],
["browser", "container"],
["python", "container"],
["browser", "python", "container"],
],
)
def test_json_validity_comprehensive(self, gptoss_parser, tools):
"""Test JSON validity across all possible tool combinations."""
tool_server = Mock(spec=ToolServer)
tool_server.has_tool = Mock(side_effect=lambda tool: tool in tools)
result = gptoss_parser.prepare_structured_tag(None, tool_server)
# Should be valid JSON
parsed_result = json.loads(result)
# Should have correct structure
assert parsed_result["type"] == "structural_tag"
assert "format" in parsed_result
assert "tags" in parsed_result["format"]
assert "triggers" in parsed_result["format"]
# Tag count should be: 1 (analysis) + 2 * len(tools)
expected_tag_count = 1 + (2 * len(tools))
assert len(parsed_result["format"]["tags"]) == expected_tag_count
def test_error_handling_invalid_tool_server(self, gptoss_parser):
"""Test error handling with invalid tool server."""
# Tool server that raises exceptions
tool_server = Mock(spec=ToolServer)
tool_server.has_tool = Mock(side_effect=Exception("Tool server error"))
# Should handle gracefully and still return a valid tag
with pytest.raises(Exception, match="Tool server error"):
gptoss_parser.prepare_structured_tag(None, tool_server)
def test_concurrent_requests_isolation(self, gptoss_parser):
"""Test that concurrent requests don't interfere with each other."""
# Simulate concurrent requests with different tool servers
tool_server_1 = Mock(spec=ToolServer)
tool_server_1.has_tool = Mock(side_effect=lambda tool: tool == "python")
tool_server_2 = Mock(spec=ToolServer)
tool_server_2.has_tool = Mock(side_effect=lambda tool: tool == "browser")
# Generate tags concurrently
result_1 = gptoss_parser.prepare_structured_tag(None, tool_server_1)
result_2 = gptoss_parser.prepare_structured_tag(None, tool_server_2)
# Parse results
parsed_1 = json.loads(result_1)
parsed_2 = json.loads(result_2)
# Verify they have different tool configurations
tags_1 = [tag["begin"] for tag in parsed_1["format"]["tags"]]
tags_2 = [tag["begin"] for tag in parsed_2["format"]["tags"]]
# Result 1 should have python tags
assert "<|channel|>commentary to=python" in tags_1
assert "<|channel|>commentary to=browser" not in tags_1
# Result 2 should have browser tags
assert "<|channel|>commentary to=browser" in tags_2
assert "<|channel|>commentary to=python" not in tags_2
def test_tag_format_consistency(self, gptoss_parser):
"""Test that all generated tags follow consistent format."""
tool_server = Mock(spec=ToolServer)
tool_server.has_tool = Mock(
side_effect=lambda tool: tool in ["python", "browser"]
)
result = gptoss_parser.prepare_structured_tag(None, tool_server)
parsed_result = json.loads(result)
# Verify all tags have required fields
for tag in parsed_result["format"]["tags"]:
assert "begin" in tag
assert "content" in tag
assert "end" in tag
assert tag["content"]["type"] == "any_text"
assert tag["end"] == "<|end|>"
# Verify begin format
assert tag["begin"].startswith("<|channel|>")
def test_trigger_configuration(self, gptoss_parser):
"""Test trigger configuration for different tool setups."""
# Test with no tools
result_no_tools = gptoss_parser.prepare_structured_tag(None, None)
parsed_no_tools = json.loads(result_no_tools)
assert parsed_no_tools["format"]["triggers"] == ["<|channel|>analysis"]
# Test with tools
tool_server = Mock(spec=ToolServer)
tool_server.has_tool = Mock(side_effect=lambda tool: tool == "python")
result_with_tools = gptoss_parser.prepare_structured_tag(None, tool_server)
parsed_with_tools = json.loads(result_with_tools)
expected_triggers = ["<|channel|>analysis", "<|channel|>commentary to="]
assert set(parsed_with_tools["format"]["triggers"]) == set(expected_triggers)

View File

@ -2,6 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import io
from unittest.mock import Mock
# imports for structured outputs tests
import openai
@ -10,7 +11,8 @@ import pytest
import regex as re
import torch
from vllm.entrypoints.renderer import BaseRenderer
from vllm.config import ModelConfig
from vllm.entrypoints.renderer import CompletionRenderer
from ...utils import RemoteOpenAIServer
@ -59,6 +61,10 @@ async def test_out_of_vocab_token_ids():
def test_load_prompt_embeds(
dtype: torch.dtype, layout: torch.layout, seq_len: int, hidden_size: int
):
model_config = Mock(spec=ModelConfig)
model_config.enable_prompt_embeds = True
renderer = CompletionRenderer(model_config, tokenizer=None)
# construct arbitrary tensors of various dtypes, layouts, and sizes.
# We need to check against different layouts to make sure that if a user
# uses sparse tensors to reduce the transmission size of prompt embeddings,
@ -83,7 +89,7 @@ def test_load_prompt_embeds(
buffer.seek(0)
encoded_tensor = pybase64.b64encode(buffer.getvalue())
loaded_prompt_embeds = BaseRenderer.load_prompt_embeds(encoded_tensor)
loaded_prompt_embeds = renderer.load_prompt_embeds(encoded_tensor)
assert len(loaded_prompt_embeds) == 1
loaded_tensor = loaded_prompt_embeds[0]["prompt_embeds"]
assert loaded_tensor.device.type == "cpu"
@ -91,3 +97,22 @@ def test_load_prompt_embeds(
torch.testing.assert_close(
loaded_tensor, tensor.to("cpu").to_dense(), equal_nan=True
)
@pytest.mark.parametrize("dtype", [torch.float32])
@pytest.mark.parametrize("seq_len", [2])
@pytest.mark.parametrize("hidden_size", [2])
def test_disable_prompt_embeds(dtype: torch.dtype, seq_len: int, hidden_size: int):
model_config = Mock(spec=ModelConfig)
model_config.enable_prompt_embeds = False
renderer = CompletionRenderer(model_config, tokenizer=None)
tensor = torch.randn((seq_len, hidden_size), dtype=dtype)
buffer = io.BytesIO()
torch.save(tensor, buffer)
buffer.seek(0)
encoded_tensor = pybase64.b64encode(buffer.getvalue())
with pytest.raises(ValueError, match="--enable-prompt-embeds"):
renderer.load_prompt_embeds(encoded_tensor)

Some files were not shown because too many files have changed in this diff Show More