Compare commits

...

11 Commits

Author SHA1 Message Date
cb439737db skip detokenize 2025-10-23 05:40:20 +00:00
a1cac48477 Turn off usage 2025-10-23 05:40:02 +00:00
6102536d65 Fix oom 2025-10-23 03:18:29 +00:00
f65da69c72 mem 2025-10-23 00:19:05 +00:00
a5281395e9 Fix uv error from tvm-ffi 2025-10-21 19:15:34 +00:00
eda71c2847 Remove /generate API 2025-10-21 02:55:24 +00:00
1bff9a59ec Add /generate API 2025-10-20 22:29:52 +00:00
69c9a01538 disable flashinfer warmup 2025-10-16 16:49:29 +00:00
8935ca208d Merge branch 'main' into woosuk/test-router 2025-10-16 00:32:13 +00:00
dddad8a81c minor 2025-10-14 22:41:25 +00:00
7f783b8a4a merge 2025-10-14 22:39:55 +00:00
11 changed files with 131 additions and 13 deletions

View File

@ -12,4 +12,5 @@ torchvision==0.23.0 # Required for phi3v processor. See https://github.com/pytor
# https://github.com/facebookresearch/xformers/releases/tag/v0.0.32.post1
xformers==0.0.32.post1; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch >= 2.8
# FlashInfer should be updated together with the Dockerfile
flashinfer-python==0.4.0
flashinfer-python==0.4.0
apache-tvm-ffi==0.1.0b15

View File

@ -649,5 +649,65 @@ async def test_serving_chat_did_set_correct_cache_salt(model_type):
req.cache_salt = "test_salt"
with suppress(Exception):
await serving_chat.create_chat_completion(req)
engine_prompt = serving_chat._process_inputs.await_args_list[1].args[1]
assert engine_prompt.get("cache_salt") == "test_salt"
assert mock_engine.generate.call_args.args[0]["cache_salt"] == "test_salt"
@pytest.mark.asyncio
async def test_serving_chat_data_parallel_rank_extraction():
"""Test that data_parallel_rank is properly extracted from header and passed to engine."""
mock_engine = MagicMock(spec=MQLLMEngineClient)
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
models = OpenAIServingModels(engine_client=mock_engine,
base_model_paths=BASE_MODEL_PATHS,
model_config=MockModelConfig())
serving_chat = OpenAIServingChat(mock_engine,
MockModelConfig(),
models,
response_role="assistant",
chat_template=CHAT_TEMPLATE,
chat_template_content_format="auto",
request_logger=None)
# Test when data_parallel_rank is present in header
req = ChatCompletionRequest(
model=MODEL_NAME,
messages=[{
"role": "user",
"content": "what is 1+1?"
}],
)
# Mock request with X-data-parallel-rank header
mock_raw_request = MagicMock()
mock_raw_request.headers = {"X-data-parallel-rank": "2"}
mock_raw_request.state = MagicMock()
with suppress(Exception):
await serving_chat.create_chat_completion(req, mock_raw_request)
# Verify that data_parallel_rank was passed to engine.generate
assert 'data_parallel_rank' in mock_engine.generate.call_args.kwargs
assert mock_engine.generate.call_args.kwargs['data_parallel_rank'] == 2
# Test when data_parallel_rank is not present (defaults to None)
req_no_dp = ChatCompletionRequest(
model=MODEL_NAME,
messages=[{
"role": "user",
"content": "what is 2+2?"
}],
)
# Mock request with no header
mock_raw_request_no_dp = MagicMock()
mock_raw_request_no_dp.headers = {}
mock_raw_request_no_dp.state = MagicMock()
with suppress(Exception):
await serving_chat.create_chat_completion(req_no_dp, mock_raw_request_no_dp)
# Verify that data_parallel_rank defaults to None
assert 'data_parallel_rank' in mock_engine.generate.call_args.kwargs
assert mock_engine.generate.call_args.kwargs['data_parallel_rank'] is None

View File

@ -75,7 +75,7 @@ class SampleRequest:
Represents a single inference request for benchmarking.
"""
prompt: str | list[str]
prompt: str | list[str] | list[int]
prompt_len: int
expected_output_len: int
multi_modal_data: MultiModalDataDict | dict | list[dict] | None = None
@ -402,8 +402,9 @@ def gen_prompt_decode_to_target_len(
remain_num_try = max_retry
token_mismatch = 0
while True:
prompt = tokenizer.decode(token_sequence)
token_sequence = tokenizer.encode(prompt, add_special_tokens=add_special_tokens)
# prompt = tokenizer.decode(token_sequence)
# token_sequence = tokenizer.encode(prompt, add_special_tokens=add_special_tokens)
prompt = token_sequence
if remain_num_try <= 0:
if len(token_sequence) != target_token_len:
token_mismatch = len(token_sequence) - target_token_len

View File

@ -165,9 +165,10 @@ async def async_request_openai_completions(
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
"stream_options": {
"include_usage": True,
},
# NOTE(woosuk): Disabled for PD.
# "stream_options": {
# "include_usage": True,
# },
}
_update_payload_common(payload, request_func_input)

View File

@ -386,6 +386,24 @@ async def get_server_load_metrics(request: Request):
return JSONResponse(content={"server_load": request.app.state.server_load_metrics})
@router.get("/get_server_info")
async def get_server_info(raw_request: Request):
"""Returns server information including DP size for router"""
config = raw_request.app.state.vllm_config
# Extract dp_size from parallel_config
dp_size = 1 # Default value
if hasattr(config, 'parallel_config') and hasattr(config.parallel_config, 'data_parallel_size'):
dp_size = config.parallel_config.data_parallel_size
server_info = {
"vllm_config": str(config),
"dp_size": dp_size
}
return JSONResponse(content=server_info)
@router.get("/ping", response_class=Response)
@router.post("/ping", response_class=Response)
async def ping(raw_request: Request) -> Response:

View File

@ -264,6 +264,9 @@ class OpenAIServingChat(OpenAIServing):
if raw_request:
raw_request.state.request_metadata = request_metadata
# Extract data_parallel_rank from header (router can inject it)
data_parallel_rank = self._get_data_parallel_rank(raw_request)
# Schedule the request and get the result generator.
generators: list[AsyncGenerator[RequestOutput, None]] = []
try:
@ -331,6 +334,7 @@ class OpenAIServingChat(OpenAIServing):
priority=request.priority,
prompt_text=prompt_text,
tokenization_kwargs=tokenization_kwargs,
data_parallel_rank=data_parallel_rank,
)
generators.append(generator)

View File

@ -141,6 +141,10 @@ class OpenAIServingCompletion(OpenAIServing):
logger.exception("Error in preprocessing prompt inputs")
return self.create_error_response(str(e))
# Extract data_parallel_rank from header (router can inject it)
data_parallel_rank = self._get_data_parallel_rank(raw_request)
# Schedule the request and get the result generator.
generators: list[AsyncGenerator[RequestOutput, None]] = []
try:
@ -224,6 +228,7 @@ class OpenAIServingCompletion(OpenAIServing):
priority=request.priority,
prompt_text=prompt_text,
tokenization_kwargs=tokenization_kwargs,
data_parallel_rank=data_parallel_rank,
)
generators.append(generator)

View File

@ -1297,6 +1297,21 @@ class OpenAIServing:
return raw_request.headers.get("X-Request-Id", default)
@staticmethod
def _get_data_parallel_rank(raw_request: Request | None) -> int | None:
"""Pulls the data parallel rank from a header, if provided"""
if raw_request is None:
return None
rank_str = raw_request.headers.get("X-data-parallel-rank")
if rank_str is None:
return None
try:
return int(rank_str)
except ValueError:
return None
@staticmethod
def _get_decoded_token(
logprob: Logprob,

View File

@ -36,9 +36,9 @@ def kernel_warmup(worker: "Worker"):
max_tokens = worker.scheduler_config.max_num_batched_tokens
deep_gemm_warmup(model, max_tokens)
# FlashInfer autotune for Hopper (SM 9.0) and Blackwell (SM 10.0) GPUs
if has_flashinfer() and current_platform.has_device_capability(90):
flashinfer_autotune(worker.model_runner)
# # FlashInfer autotune for Hopper (SM 9.0) and Blackwell (SM 10.0) GPUs
# if has_flashinfer() and current_platform.has_device_capability(90):
# flashinfer_autotune(worker.model_runner)
# FlashInfer attention warmup
# Only warmup if the model has FlashInfer attention groups

View File

@ -116,9 +116,14 @@ class FlashMLAMetadataBuilder(MLACommonMetadataBuilder[FlashMLAMetadata]):
num_decode_tokens: int,
dcp_tot_seq_lens_device: torch.Tensor | None,
) -> FlashMLADecodeMetadata:
query_lens_cpu = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1]
# we use the max but all should be the same due to uniform length requirement
max_query_len = query_lens_cpu.max().item()
num_q_tokens_per_head_k = max_query_len * self.num_q_heads // 1
tile_scheduler_metadata, num_splits = get_mla_metadata(
seq_lens_device,
self.num_q_heads,
num_q_tokens_per_head_k,
1, # MQA for the decode path
)

View File

@ -509,6 +509,14 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
pin_memory=self.pin_memory,
)
# device_id = self.device.index
# def cb(_device, _alloc, _device_alloc, _device_free):
# torch.cuda.memory._dump_snapshot(f"/tmp/vllm_oom_{device_id}.pickle")
# torch.cuda.memory._record_memory_history(max_entries=100_000)
# torch._C._cuda_attach_out_of_memory_observer(cb)
def reset_mm_cache(self) -> None:
if self.mm_budget:
self.mm_budget.reset_cache()