Compare commits
604 Commits
copilot/fi
...
codex/remo
| Author | SHA1 | Date | |
|---|---|---|---|
| 944913c0fa | |||
| b8f603cebe | |||
| fc679696f8 | |||
| ab5e7d93f4 | |||
| 0340f45553 | |||
| 19a00eb210 | |||
| 391612e78b | |||
| 77c95f72f7 | |||
| 59f30d0448 | |||
| 43c146ca42 | |||
| 7c2ec0fe87 | |||
| 039b6bade3 | |||
| 6c04638214 | |||
| 91ac7f764d | |||
| 4be7d7c1c9 | |||
| 59b477645c | |||
| 778f554157 | |||
| d3c84297c3 | |||
| f509a20846 | |||
| 60bc25e74c | |||
| b893d661b1 | |||
| 6b6e98775f | |||
| 9c3c21c519 | |||
| 512b8affa4 | |||
| 1c0c68202c | |||
| 5f317530ec | |||
| 557b2e961d | |||
| 4e256cadc2 | |||
| d6953beb91 | |||
| 17edd8a807 | |||
| 3303cfb4ac | |||
| b7e8e4e6be | |||
| 432e1cbc23 | |||
| 201c971e96 | |||
| e0986ea07b | |||
| a964e5e6c3 | |||
| 78c1d5bfd2 | |||
| 59a85c366e | |||
| 119f00630b | |||
| a42d2df75f | |||
| 5c057e068f | |||
| ed3aeb25a4 | |||
| 86ee949128 | |||
| 4570535ec4 | |||
| 2a6dc67eb5 | |||
| f05fea1f5e | |||
| d0df145c2a | |||
| 1838cd4860 | |||
| 7d6b03381e | |||
| 7c2e91c4e0 | |||
| 736fbf4c89 | |||
| 44ea85137a | |||
| d3d649efec | |||
| ea507c3a93 | |||
| 9705fba7b7 | |||
| 2f7dbc9b42 | |||
| ea25a76c05 | |||
| 67bc0c003e | |||
| 5a05f26603 | |||
| 7ef40bb983 | |||
| 767cbb011d | |||
| 7cfa4b24bf | |||
| b71fcd4905 | |||
| 75003f34e8 | |||
| 78b8015a4d | |||
| 831b124151 | |||
| c1ffcb55da | |||
| 0879736aab | |||
| a26917332f | |||
| cd9e5b8340 | |||
| 300a59c4c3 | |||
| d76541a6c5 | |||
| dd96465fd7 | |||
| 4f8f47e87e | |||
| d78fda7cda | |||
| 73a99cc2a5 | |||
| adae0c1f43 | |||
| cbf9221992 | |||
| 5f42fc53b6 | |||
| 8ee846c27c | |||
| 812b7f54a8 | |||
| 5f2cacdb1e | |||
| aa5053e3fe | |||
| 79aa244678 | |||
| 2ed3f20dba | |||
| 48f309029a | |||
| 0e93ac0b3a | |||
| 5446ad1d24 | |||
| f9a8084e48 | |||
| 3e70e3d4d5 | |||
| eb0fa43868 | |||
| 0ad9951c41 | |||
| 8c9117181d | |||
| c4b48d3c0f | |||
| 10d765482d | |||
| 39b643dc1a | |||
| 711f485643 | |||
| 9c5ee91b2a | |||
| 27edd2aeb4 | |||
| e5017cd6d6 | |||
| 6a7796e871 | |||
| 47b9339546 | |||
| 5d5146eee3 | |||
| 2aaa423842 | |||
| ad2d788016 | |||
| 36ce76c632 | |||
| f1fc2107a3 | |||
| 13cdc02173 | |||
| 502640c3f9 | |||
| 3d5f1c8640 | |||
| 1cab2f9cad | |||
| 1e50f1be70 | |||
| ad87ba927a | |||
| decf7f794b | |||
| d00d652998 | |||
| 3b279a84be | |||
| 5e4a8223c6 | |||
| e51de388a2 | |||
| cc253b73d3 | |||
| 7d6fb905d9 | |||
| 418d111f8c | |||
| be8921fbba | |||
| d4e7a1152d | |||
| be22bb6f3d | |||
| 169313b9f8 | |||
| 0b018d8baf | |||
| c31246800c | |||
| 4134312b35 | |||
| da554f932e | |||
| aac622e0cd | |||
| 1726e93ef1 | |||
| ee04c0cd04 | |||
| c36f0aa300 | |||
| 5234dc7451 | |||
| 3b7c20a6b5 | |||
| f9e714813a | |||
| 2518230d3e | |||
| a332b84578 | |||
| 1405f0c7ba | |||
| 84d57342b6 | |||
| 57b46d769e | |||
| f48b6a03ba | |||
| 2a69ab4899 | |||
| 8d7da92fd7 | |||
| e952eee698 | |||
| 66bca9b8bd | |||
| 99028fda44 | |||
| 1244948885 | |||
| a73f6491c8 | |||
| 001e50c92c | |||
| 96ebcaa3ad | |||
| 5db1870bb9 | |||
| 2ce26b9b5d | |||
| a388252ac4 | |||
| 9a9f48dff7 | |||
| 67f3fb0844 | |||
| 43b752c325 | |||
| cfd302db9b | |||
| fb610ae684 | |||
| 2f652e6cdf | |||
| e6a226efba | |||
| a2e6fa7e03 | |||
| 9f1c4ecaf2 | |||
| ef283548f7 | |||
| f4db5e6de1 | |||
| 099aaee536 | |||
| 35fe398c7c | |||
| bb6d43047e | |||
| bc546f76a1 | |||
| 80608ba5af | |||
| e184c9c510 | |||
| d7e34b4210 | |||
| ef6e0e7132 | |||
| 1ad3aca682 | |||
| 8d0afa9b42 | |||
| fa7e254a7f | |||
| e23cacda35 | |||
| 2e1b8bc2b6 | |||
| e47433b3c1 | |||
| 23194d83e8 | |||
| 61aedb5ffe | |||
| d3bd171123 | |||
| 89e4050af4 | |||
| 78a47f87ce | |||
| 6a113d9aed | |||
| 2e4fe48c37 | |||
| 8eb0a1d906 | |||
| fea3e476aa | |||
| 61a3431613 | |||
| 9bedac9623 | |||
| c42ff4f4fd | |||
| d5ab28511c | |||
| e61eb5e09d | |||
| 0899ba5b42 | |||
| 145ac73317 | |||
| d0d138bc55 | |||
| 43227236ec | |||
| 8616300ae2 | |||
| edbaadd91f | |||
| 9360d34fa1 | |||
| 1b67b04656 | |||
| bd51f78e39 | |||
| 65ecb4f134 | |||
| 143844fa43 | |||
| 219cfbe7f6 | |||
| 9b44a7d926 | |||
| a3ae45a38c | |||
| 0307428d65 | |||
| 471997adf6 | |||
| b1ded114b9 | |||
| f4e4088c99 | |||
| 0efd540dbc | |||
| 6144754014 | |||
| 69311446ba | |||
| da63274d9f | |||
| c216119d64 | |||
| 5546acb463 | |||
| c0ec81836f | |||
| b65e56babe | |||
| 49996cd597 | |||
| ecb37e276a | |||
| a5354b3ed2 | |||
| f9df8b4ad7 | |||
| ec152c8748 | |||
| 7977e5027c | |||
| 3f5d902d2a | |||
| 27d7638b94 | |||
| 176173989a | |||
| 23b8ee672d | |||
| 3939152069 | |||
| cd87bfbf37 | |||
| b3613e3ace | |||
| d346ec695e | |||
| c242c98031 | |||
| f1d53d150c | |||
| 92da847cf5 | |||
| 3958b96bf5 | |||
| 8bf8f45822 | |||
| 6f5c0931c1 | |||
| 4e33a7ea85 | |||
| dc48ba0c75 | |||
| 4778b42660 | |||
| c70ac4b8ff | |||
| cf89202855 | |||
| f075693da7 | |||
| f708bd4904 | |||
| 0002b7f0d1 | |||
| 11aafd9886 | |||
| b761df963c | |||
| 33f6aaf972 | |||
| 56aafa8c0b | |||
| 8d52f2b3a7 | |||
| 984d18498a | |||
| d4d9899860 | |||
| db1e42f627 | |||
| bc9d7b5595 | |||
| fe6b19c314 | |||
| 2827b3f4a3 | |||
| 2b6b1d7809 | |||
| 633f943e30 | |||
| b03b1b97f6 | |||
| dfb9af2014 | |||
| 19f76ee68e | |||
| dd70437a4f | |||
| 99b3a504c5 | |||
| 6e30010d2f | |||
| 52621c8f5c | |||
| d48f4d6daf | |||
| e84e0735c7 | |||
| 3edf87d25f | |||
| 392edee34a | |||
| 983056e456 | |||
| 13dd93c667 | |||
| 53a30845be | |||
| 8b77328ffe | |||
| 9fe4c2bdb9 | |||
| 081b5594a2 | |||
| 57329a8c01 | |||
| 8c435c9bce | |||
| e71b8e210d | |||
| 89fa54e6f7 | |||
| 3d54bdcb73 | |||
| 6b0fcbbf43 | |||
| 0fa673af4c | |||
| 3468f17ebe | |||
| 71b25b0d48 | |||
| 0ea80c87d9 | |||
| b8d9e4a326 | |||
| 13cc7f5370 | |||
| 916bd9204d | |||
| e04a1b6b21 | |||
| 2e5df88c92 | |||
| 0754ac4c49 | |||
| 03858e6d1c | |||
| 532a6cfccb | |||
| eb32335e35 | |||
| 69a8c8e99a | |||
| 6c340da4df | |||
| 2f17117606 | |||
| 1e9a77e037 | |||
| d2af67441d | |||
| 0bcc3a160d | |||
| 70fbdb26e9 | |||
| 7f570f1caa | |||
| eaeca3cd7f | |||
| 12c1287d64 | |||
| 17b4c6685c | |||
| 3c2b2ccece | |||
| 7be9ffcd9f | |||
| 393de22d2e | |||
| 1260180c67 | |||
| af4ee63e0e | |||
| bc092ea873 | |||
| 755ed7b05b | |||
| a676e668ee | |||
| c85be1f6dd | |||
| 845adb3ec6 | |||
| 90b139cfff | |||
| 4492e3a554 | |||
| 05c19485a5 | |||
| 52d0cb8458 | |||
| 5c1e496a75 | |||
| e7f27ea648 | |||
| 1f29141258 | |||
| 6160ba4151 | |||
| fea8006062 | |||
| e6750d0b18 | |||
| 8c853050e7 | |||
| f84a472a03 | |||
| 54e42b72db | |||
| 2dda3e35d0 | |||
| d83f3f7cb3 | |||
| 302eb941f3 | |||
| 487745ff49 | |||
| 9313be5017 | |||
| 8938774c79 | |||
| e18b714b2e | |||
| b1068903fd | |||
| 164299500b | |||
| 58c360d9be | |||
| 42488dae69 | |||
| b67dece2d8 | |||
| 2338daffd3 | |||
| 2e19a848d4 | |||
| 77a7fce1bb | |||
| 6488f3481b | |||
| 27ec3c78f3 | |||
| 1cbcfb94de | |||
| fed8a9b107 | |||
| 190c45a6af | |||
| 5caaeb714c | |||
| d747c2ef18 | |||
| c30b405b8f | |||
| 77d906995c | |||
| 359d293006 | |||
| 9df8da548e | |||
| bf68fd76a9 | |||
| de94289a98 | |||
| 1983609239 | |||
| d06b5a95cb | |||
| be0bb568c9 | |||
| c8bde93367 | |||
| 88d7bdbd23 | |||
| 0d235b874a | |||
| 7ad5e50adf | |||
| dc464a3d39 | |||
| 1210e4d95b | |||
| e0b24ea030 | |||
| bde2a1a8a4 | |||
| 5e25b12236 | |||
| c85d75cf08 | |||
| abad204be6 | |||
| 7361ab379f | |||
| 95bc60e4cb | |||
| 4f2954f724 | |||
| eca7be9077 | |||
| 969b4da3a6 | |||
| 4f8c4b890a | |||
| ae002924e9 | |||
| 690f948e4a | |||
| 08275ec0a2 | |||
| c828d1bf98 | |||
| 8b8a8afc89 | |||
| 8bdd8b5c51 | |||
| a8ffc4f0f2 | |||
| d5944d5146 | |||
| 24fab45d96 | |||
| 63400259d0 | |||
| 8c1c81a3de | |||
| a3a7828010 | |||
| 5abb117901 | |||
| 867ecdd1c8 | |||
| 24e8222745 | |||
| 100b630a60 | |||
| 527821d191 | |||
| 846197f505 | |||
| 2357480b1a | |||
| f11e3c516b | |||
| 875d6def90 | |||
| cc1dc7ed6d | |||
| a903669e10 | |||
| 2c58742dff | |||
| 4c966e440e | |||
| da5e7e4329 | |||
| f05a4f0e34 | |||
| 61d1b35561 | |||
| b6a136b58c | |||
| 0d9fe260dd | |||
| 273690a50a | |||
| 231c2c63e4 | |||
| 4322c553a6 | |||
| babad6e5dd | |||
| 9383cd6f10 | |||
| ba8d2165b6 | |||
| c98be0a232 | |||
| 5774b0a1da | |||
| e8db44f883 | |||
| fafbe11af4 | |||
| 78237e43bf | |||
| eea1783989 | |||
| f225ea7dd9 | |||
| fc97733da8 | |||
| 4741239db7 | |||
| c625f9043c | |||
| 6fa78d8f23 | |||
| 9949aa2ef1 | |||
| 0b7bed9c38 | |||
| ac0048c0ae | |||
| 090197034f | |||
| f31ff87460 | |||
| d588cd2406 | |||
| 45d7d852d3 | |||
| 8bed179109 | |||
| f552d5e578 | |||
| 8db2939289 | |||
| d5e0fca264 | |||
| 8d0ee5a564 | |||
| 922979bfcc | |||
| 239ef0c1ac | |||
| 1d7f95b85c | |||
| cfbee3d0e7 | |||
| 06a41334c7 | |||
| 175811e3b5 | |||
| c10101a3eb | |||
| ac243886b0 | |||
| 3d2c56b7a9 | |||
| 64c824cd78 | |||
| 417a164af6 | |||
| b6f01bd9a7 | |||
| 4cf71cc88a | |||
| a66d131381 | |||
| 21467f9a1c | |||
| f92d952632 | |||
| 6d0b827cbd | |||
| 0eecb31663 | |||
| 793be8d057 | |||
| 7b57a433da | |||
| 5aeb925452 | |||
| 04d3752329 | |||
| bc6e542d9f | |||
| af7dfb0d1a | |||
| 1c3ffdbecc | |||
| c438b2951c | |||
| 0ff8ebb2d7 | |||
| 26e673fe93 | |||
| 65a5910ce3 | |||
| 9aea7373ff | |||
| 30d08911f7 | |||
| cf56cf78b4 | |||
| 7ed82d1974 | |||
| 12dbd834cf | |||
| 035fd2bd2c | |||
| 1cd885bd54 | |||
| 62b38dc832 | |||
| c99db8c8dd | |||
| 72dd1595b4 | |||
| 572ddf83ce | |||
| 86647d1cd0 | |||
| 52c2a8d4ad | |||
| 367a480bd3 | |||
| bef180f009 | |||
| d88918e4c2 | |||
| 3c713a9711 | |||
| bf8b26cad1 | |||
| 032d661d27 | |||
| e08a3a3fdb | |||
| 3d9a1d2de5 | |||
| be874c0201 | |||
| 9607d5eb44 | |||
| c60e6137f0 | |||
| f91480b2d4 | |||
| 6c5f82e5aa | |||
| b7f186bbb3 | |||
| 3642909617 | |||
| c308501cb6 | |||
| 535d80056b | |||
| a25ade5d47 | |||
| 8945b001db | |||
| b8a287a0a8 | |||
| c7e713616a | |||
| a36c675817 | |||
| 3da17c2cc2 | |||
| 14c1432789 | |||
| ee7a66dd9a | |||
| 431535b522 | |||
| 711e912946 | |||
| e69e0b8b5f | |||
| ddc9048394 | |||
| b1a63d1b3b | |||
| 48ecb4438b | |||
| e57fc15971 | |||
| 4bdf400218 | |||
| 7852b82b93 | |||
| a2a5f79e09 | |||
| c59a0eca42 | |||
| b716ab93a7 | |||
| 138f0d1e75 | |||
| 2506ce5189 | |||
| 47fd08aaf9 | |||
| 12aed7e453 | |||
| d90e212a3a | |||
| 2821986450 | |||
| 6c117cff7d | |||
| 7ac67ea525 | |||
| ce75e15373 | |||
| aed16879a9 | |||
| cf278ff3b2 | |||
| 838d7116ba | |||
| 5089fd749c | |||
| a3d087adec | |||
| 058525b997 | |||
| 1dfea5f4a9 | |||
| cea91a32f2 | |||
| a684c0124c | |||
| f2718d2948 | |||
| 825fdb11ad | |||
| 8c1d4acbfe | |||
| 486c5599e3 | |||
| a6149aa587 | |||
| 6c8a3c099b | |||
| 31a8a2a7bc | |||
| 1a0a04dae9 | |||
| 6d8246aaff | |||
| 9d1c50a5ac | |||
| 9a4600e4dc | |||
| 9fac6aa30b | |||
| a53ad626d6 | |||
| 1c3dad22ff | |||
| d2a30a2d93 | |||
| 75fb112d80 | |||
| 38db529f66 | |||
| 064cac7bb7 | |||
| e19bce40a1 | |||
| 505805b645 | |||
| bbdc0f2366 | |||
| dc34059360 | |||
| c4cb0af98a | |||
| 1c3b1634aa | |||
| 2ea50e977a | |||
| b419937c78 | |||
| 5f696c33b1 | |||
| 67244c86f0 | |||
| 072d7e53e5 | |||
| 01a583fea4 | |||
| bc19d75985 | |||
| fbd6523ac0 | |||
| 470484a4f5 | |||
| 21da73343a | |||
| 66072b36db | |||
| 3ed1ec4af2 | |||
| 5a33ae9a3f | |||
| c9ff9e6f0c | |||
| eaffe4486c | |||
| 8ed039d527 | |||
| 37970105fe | |||
| cc935fdd7e | |||
| abdfcd4f3d | |||
| 4f02b77de4 | |||
| 29283e8976 | |||
| 05b044e698 | |||
| aa3f105c59 | |||
| ef7eefe17a | |||
| 350c94deb3 | |||
| f4cd80f944 | |||
| 349e0e3462 | |||
| 81b16a2bc9 | |||
| e111d5b0ae | |||
| a904ea78ea | |||
| b7433ca1a4 | |||
| 5c65a72bb1 | |||
| 9d8a2d86d2 | |||
| 3bc18127ff | |||
| bec060fd99 | |||
| 52bc9d5b3e | |||
| dc2979c585 | |||
| 027d37df38 | |||
| b98219670f | |||
| 32baf1d036 | |||
| 3127274d02 | |||
| 4ac510f484 | |||
| 7fb2a5be28 | |||
| 6c036615dc | |||
| 2fc24e94f9 | |||
| 2c3c1bd07a |
@ -368,7 +368,7 @@ if __name__ == "__main__":
|
||||
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
|
||||
# we want to turn it into "8xGPUTYPE"
|
||||
df["GPU"] = df["GPU"].apply(
|
||||
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}"
|
||||
lambda x: f"{len(x.splitlines())}x{x.splitlines()[0]}"
|
||||
)
|
||||
|
||||
# get markdown tables
|
||||
|
||||
@ -181,18 +181,14 @@ launch_vllm_server() {
|
||||
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
|
||||
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
|
||||
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
|
||||
server_command="python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
server_command="vllm serve $model \
|
||||
-tp $tp \
|
||||
--model $model \
|
||||
--port $port \
|
||||
$server_args"
|
||||
else
|
||||
echo "Key 'fp8' does not exist in common params."
|
||||
server_command="python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
server_command="vllm serve $model \
|
||||
-tp $tp \
|
||||
--model $model \
|
||||
--port $port \
|
||||
$server_args"
|
||||
fi
|
||||
|
||||
@ -365,8 +365,7 @@ run_serving_tests() {
|
||||
continue
|
||||
fi
|
||||
|
||||
server_command="$server_envs python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
server_command="$server_envs vllm serve \
|
||||
$server_args"
|
||||
|
||||
# run the server
|
||||
|
||||
@ -1,46 +0,0 @@
|
||||
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||
# following differences:
|
||||
# - ruff line length is overridden to 88
|
||||
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 88
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"vllm/third_party/**" = ["ALL"]
|
||||
"vllm/version.py" = ["F401"]
|
||||
"vllm/_version.py" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
# pycodestyle
|
||||
"E",
|
||||
# Pyflakes
|
||||
"F",
|
||||
# pyupgrade
|
||||
"UP",
|
||||
# flake8-bugbear
|
||||
"B",
|
||||
# flake8-simplify
|
||||
"SIM",
|
||||
# isort
|
||||
"I",
|
||||
# flake8-logging-format
|
||||
"G",
|
||||
]
|
||||
ignore = [
|
||||
# star imports
|
||||
"F405", "F403",
|
||||
# lambda expression assignment
|
||||
"E731",
|
||||
# Loop control variable not used within loop body
|
||||
"B007",
|
||||
# f-string format
|
||||
"UP032",
|
||||
# Can remove once 3.10+ is the minimum Python version
|
||||
"UP007",
|
||||
]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
||||
@ -76,7 +76,7 @@ steps:
|
||||
queue: arm64_cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||
|
||||
# Add job to create multi-arch manifest
|
||||
@ -150,11 +150,16 @@ steps:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||
- "docker push vllm/vllm-openai:nightly"
|
||||
- "docker push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64"
|
||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64 vllm/vllm-openai:nightly-x86_64"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64 vllm/vllm-openai:nightly-aarch64"
|
||||
- "docker push vllm/vllm-openai:nightly-x86_64"
|
||||
- "docker push vllm/vllm-openai:nightly-aarch64"
|
||||
- "docker manifest create vllm/vllm-openai:nightly vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
|
||||
- "docker manifest create vllm/vllm-openai:nightly-$BUILDKITE_COMMIT vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
|
||||
- "docker manifest push vllm/vllm-openai:nightly"
|
||||
- "docker manifest push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||
# Clean up old nightly builds (keep only last 14)
|
||||
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
|
||||
plugins:
|
||||
@ -163,3 +168,4 @@ steps:
|
||||
password-env: DOCKERHUB_TOKEN
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
DOCKERHUB_USERNAME: "vllmbot"
|
||||
|
||||
@ -8,20 +8,41 @@ set -ex
|
||||
# DockerHub API endpoint for vllm/vllm-openai repository
|
||||
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
|
||||
|
||||
# Get DockerHub token from environment
|
||||
# Get DockerHub credentials from environment
|
||||
if [ -z "$DOCKERHUB_TOKEN" ]; then
|
||||
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "$DOCKERHUB_USERNAME" ]; then
|
||||
echo "Error: DOCKERHUB_USERNAME environment variable is not set"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Get DockerHub bearer token
|
||||
echo "Getting DockerHub bearer token..."
|
||||
set +x
|
||||
BEARER_TOKEN=$(curl -s -X POST \
|
||||
-H "Content-Type: application/json" \
|
||||
-d "{\"username\": \"$DOCKERHUB_USERNAME\", \"password\": \"$DOCKERHUB_TOKEN\"}" \
|
||||
"https://hub.docker.com/v2/users/login" | jq -r '.token')
|
||||
set -x
|
||||
|
||||
if [ -z "$BEARER_TOKEN" ] || [ "$BEARER_TOKEN" = "null" ]; then
|
||||
echo "Error: Failed to get DockerHub bearer token"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Function to get all tags from DockerHub
|
||||
get_all_tags() {
|
||||
local page=1
|
||||
local all_tags=""
|
||||
|
||||
while true; do
|
||||
local response=$(curl -s -H "Authorization: Bearer $DOCKERHUB_TOKEN" \
|
||||
set +x
|
||||
local response=$(curl -s -H "Authorization: Bearer $BEARER_TOKEN" \
|
||||
"$REPO_API_URL?page=$page&page_size=100")
|
||||
set -x
|
||||
|
||||
# Get both last_updated timestamp and tag name, separated by |
|
||||
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
|
||||
@ -43,7 +64,9 @@ delete_tag() {
|
||||
echo "Deleting tag: $tag_name"
|
||||
|
||||
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
|
||||
local response=$(curl -s -X DELETE -H "Authorization: Bearer $DOCKERHUB_TOKEN" "$delete_url")
|
||||
set +x
|
||||
local response=$(curl -s -X DELETE -H "Authorization: Bearer $BEARER_TOKEN" "$delete_url")
|
||||
set -x
|
||||
|
||||
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
|
||||
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"
|
||||
|
||||
@ -86,10 +86,6 @@ if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
|
||||
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
|
||||
fi
|
||||
@ -167,12 +163,6 @@ if [[ $commands == *" entrypoints/llm "* ]]; then
|
||||
--ignore=entrypoints/llm/test_prompt_validation.py "}
|
||||
fi
|
||||
|
||||
#Obsolete currently
|
||||
##ignore certain Entrypoints/llm tests
|
||||
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
|
||||
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
|
||||
#fi
|
||||
|
||||
# --ignore=entrypoints/openai/test_encoder_decoder.py \
|
||||
# --ignore=entrypoints/openai/test_embedding.py \
|
||||
# --ignore=entrypoints/openai/test_oot_registration.py
|
||||
|
||||
@ -58,11 +58,8 @@ function cpu_tests() {
|
||||
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
||||
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||
|
||||
# Note: disable Bart until supports V1
|
||||
pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||
--ignore=tests/models/language/generation/test_bart.py
|
||||
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||
--ignore=tests/models/language/generation/test_bart.py
|
||||
pytest -x -v -s tests/models/language/generation -m cpu_model
|
||||
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model
|
||||
|
||||
pytest -x -v -s tests/models/language/pooling -m cpu_model
|
||||
pytest -x -v -s tests/models/multimodal/generation \
|
||||
|
||||
191
.buildkite/scripts/hardware_ci/run-npu-test.sh
Normal file
191
.buildkite/scripts/hardware_ci/run-npu-test.sh
Normal file
@ -0,0 +1,191 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the Ascend NPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Base ubuntu image with basic ascend development libraries and python installed
|
||||
VLLM_ASCEND_REPO="https://github.com/vllm-project/vllm-ascend.git"
|
||||
CONFIG_FILE_REMOTE_PATH="tests/e2e/vllm_interface/vllm_test.cfg"
|
||||
TEST_RUN_CONFIG_FILE="vllm_test.cfg"
|
||||
VLLM_ASCEND_TMP_DIR=
|
||||
# Get the test run configuration file from the vllm-ascend repository
|
||||
fetch_vllm_test_cfg() {
|
||||
VLLM_ASCEND_TMP_DIR=$(mktemp -d)
|
||||
# Ensure that the temporary directory is cleaned up when an exception occurs during configuration file retrieval
|
||||
cleanup() {
|
||||
rm -rf "${VLLM_ASCEND_TMP_DIR}"
|
||||
}
|
||||
trap cleanup EXIT
|
||||
|
||||
GIT_TRACE=1 git clone -v --depth 1 "${VLLM_ASCEND_REPO}" "${VLLM_ASCEND_TMP_DIR}"
|
||||
if [ ! -f "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" ]; then
|
||||
echo "Error: file '${CONFIG_FILE_REMOTE_PATH}' does not exist in the warehouse" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# If the file already exists locally, just overwrite it
|
||||
cp "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" "${TEST_RUN_CONFIG_FILE}"
|
||||
echo "Copied ${CONFIG_FILE_REMOTE_PATH} to ${TEST_RUN_CONFIG_FILE}"
|
||||
|
||||
# Since the trap will be overwritten later, and when it is executed here, the task of cleaning up resources
|
||||
# when the trap is abnormal has been completed, so the temporary resources are manually deleted here.
|
||||
rm -rf "${VLLM_ASCEND_TMP_DIR}"
|
||||
trap - EXIT
|
||||
}
|
||||
|
||||
# Downloads test run configuration file from a remote URL.
|
||||
# Loads the configuration into the current script environment.
|
||||
get_config() {
|
||||
if [ ! -f "${TEST_RUN_CONFIG_FILE}" ]; then
|
||||
echo "Error: file '${TEST_RUN_CONFIG_FILE}' does not exist in the warehouse" >&2
|
||||
exit 1
|
||||
fi
|
||||
source "${TEST_RUN_CONFIG_FILE}"
|
||||
echo "Base docker image name that get from configuration: ${BASE_IMAGE_NAME}"
|
||||
return 0
|
||||
}
|
||||
|
||||
# get test running configuration.
|
||||
fetch_vllm_test_cfg
|
||||
get_config
|
||||
# Check if the function call was successful. If not, exit the script.
|
||||
if [ $? -ne 0 ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
image_name="npu/vllm-ci:${BUILDKITE_COMMIT}_${EPOCHSECONDS}"
|
||||
container_name="npu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
|
||||
# BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards
|
||||
agent_idx=$(echo "${BUILDKITE_AGENT_NAME}" | awk -F'-' '{print $(NF-1)}')
|
||||
echo "agent_idx: ${agent_idx}"
|
||||
builder_name="cachebuilder${agent_idx}"
|
||||
builder_cache_dir="/mnt/docker-cache${agent_idx}"
|
||||
mkdir -p ${builder_cache_dir}
|
||||
|
||||
# Try building the docker image
|
||||
cat <<EOF | DOCKER_BUILDKIT=1 docker build \
|
||||
--add-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_HOST} \
|
||||
--builder ${builder_name} --cache-from type=local,src=${builder_cache_dir} \
|
||||
--cache-to type=local,dest=${builder_cache_dir},mode=max \
|
||||
--progress=plain --load -t ${image_name} -f - .
|
||||
FROM ${BASE_IMAGE_NAME}
|
||||
|
||||
# Define environments
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN pip config set global.index-url http://cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_PORT}/pypi/simple && \
|
||||
pip config set global.trusted-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local && \
|
||||
apt-get update -y && \
|
||||
apt-get install -y python3-pip git vim wget net-tools gcc g++ cmake libnuma-dev && \
|
||||
rm -rf /var/cache/apt/* && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install for pytest to make the docker build cache layer always valid
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install pytest>=6.0 modelscope
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
# Install vLLM dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
|
||||
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -r requirements/common.txt
|
||||
|
||||
COPY . .
|
||||
|
||||
# Install vLLM
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
VLLM_TARGET_DEVICE="empty" python3 -m pip install -v -e /workspace/vllm/ --extra-index https://download.pytorch.org/whl/cpu/ && \
|
||||
python3 -m pip uninstall -y triton
|
||||
|
||||
# Install vllm-ascend
|
||||
WORKDIR /workspace
|
||||
ARG VLLM_ASCEND_REPO=https://github.com/vllm-project/vllm-ascend.git
|
||||
ARG VLLM_ASCEND_TAG=main
|
||||
RUN git config --global url."https://gh-proxy.test.osinfra.cn/https://github.com/".insteadOf "https://github.com/" && \
|
||||
git clone --depth 1 \$VLLM_ASCEND_REPO --branch \$VLLM_ASCEND_TAG /workspace/vllm-ascend
|
||||
|
||||
# Install vllm dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -r /workspace/vllm-ascend/requirements.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
export PIP_EXTRA_INDEX_URL=https://mirrors.huaweicloud.com/ascend/repos/pypi && \
|
||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh && \
|
||||
source /usr/local/Ascend/nnal/atb/set_env.sh && \
|
||||
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/Ascend/ascend-toolkit/latest/`uname -i`-linux/devlib && \
|
||||
python3 -m pip install -v -e /workspace/vllm-ascend/ --extra-index https://download.pytorch.org/whl/cpu/
|
||||
|
||||
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
ENV VLLM_USE_MODELSCOPE=True
|
||||
|
||||
WORKDIR /workspace/vllm-ascend
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
EOF
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
docker rm -f "${container_name}" || true;
|
||||
docker image rm -f "${image_name}" || true;
|
||||
docker system prune -f || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Generate corresponding --device args based on BUILDKITE_AGENT_NAME
|
||||
# Ascend NPU BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards, and agent_idx starts from 1.
|
||||
# e.g. atlas-a2-001-1-2cards means this is the 1-th agent on atlas-a2-001 host, and it has 2 NPU cards.
|
||||
# returns --device /dev/davinci0 --device /dev/davinci1
|
||||
parse_and_gen_devices() {
|
||||
local input="$1"
|
||||
local index cards_num
|
||||
if [[ "$input" =~ ([0-9]+)-([0-9]+)cards$ ]]; then
|
||||
index="${BASH_REMATCH[1]}"
|
||||
cards_num="${BASH_REMATCH[2]}"
|
||||
else
|
||||
echo "parse error" >&2
|
||||
return 1
|
||||
fi
|
||||
|
||||
local devices=""
|
||||
local i=0
|
||||
while (( i < cards_num )); do
|
||||
local dev_idx=$(((index - 1)*cards_num + i ))
|
||||
devices="$devices --device /dev/davinci${dev_idx}"
|
||||
((i++))
|
||||
done
|
||||
|
||||
# trim leading space
|
||||
devices="${devices#"${devices%%[![:space:]]*}"}"
|
||||
# Output devices: assigned to the caller variable
|
||||
printf '%s' "$devices"
|
||||
}
|
||||
|
||||
devices=$(parse_and_gen_devices "${BUILDKITE_AGENT_NAME}") || exit 1
|
||||
|
||||
# Run the image and execute the Out-Of-Tree (OOT) platform interface test case on Ascend NPU hardware.
|
||||
# This test checks whether the OOT platform interface is functioning properly in conjunction with
|
||||
# the hardware plugin vllm-ascend.
|
||||
model_cache_dir=/mnt/modelscope${agent_idx}
|
||||
mkdir -p ${model_cache_dir}
|
||||
docker run \
|
||||
${devices} \
|
||||
--device /dev/davinci_manager \
|
||||
--device /dev/devmm_svm \
|
||||
--device /dev/hisi_hdc \
|
||||
-v /usr/local/dcmi:/usr/local/dcmi \
|
||||
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
|
||||
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
|
||||
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
|
||||
-v /etc/ascend_install.info:/etc/ascend_install.info \
|
||||
-v ${model_cache_dir}:/root/.cache/modelscope \
|
||||
--entrypoint="" \
|
||||
--name "${container_name}" \
|
||||
"${image_name}" \
|
||||
bash -c '
|
||||
set -e
|
||||
pytest -v -s tests/e2e/vllm_interface/
|
||||
'
|
||||
@ -62,7 +62,7 @@ echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||
|
||||
@ -62,7 +62,7 @@ echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||
|
||||
@ -35,16 +35,15 @@ docker run \
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
||||
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
cd tests
|
||||
pytest -v -s v1/core
|
||||
pytest -v -s v1/engine
|
||||
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
|
||||
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
|
||||
pytest -v -s v1/structured_output
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
||||
pytest -v -s v1/test_metrics
|
||||
pytest -v -s v1/test_serial_utils.py
|
||||
pytest -v -s v1/test_utils.py
|
||||
pytest -v -s v1/test_metrics_reader.py
|
||||
'
|
||||
|
||||
@ -18,7 +18,7 @@ vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_
|
||||
bench_throughput_exit_code=$?
|
||||
|
||||
# run server-based benchmarks and upload the result to buildkite
|
||||
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
|
||||
vllm serve meta-llama/Llama-2-7b-chat-hf &
|
||||
server_pid=$!
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
|
||||
59
.buildkite/scripts/run-prime-rl-test.sh
Executable file
59
.buildkite/scripts/run-prime-rl-test.sh
Executable file
@ -0,0 +1,59 @@
|
||||
#!/bin/bash
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Setup script for Prime-RL integration tests
|
||||
# This script prepares the environment for running Prime-RL tests with nightly vLLM
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
REPO_ROOT="$(cd "${SCRIPT_DIR}/../.." && pwd)"
|
||||
PRIME_RL_REPO="https://github.com/PrimeIntellect-ai/prime-rl.git"
|
||||
PRIME_RL_DIR="${REPO_ROOT}/prime-rl"
|
||||
|
||||
echo "Setting up Prime-RL integration test environment..."
|
||||
|
||||
# Clean up any existing Prime-RL directory
|
||||
if [ -d "${PRIME_RL_DIR}" ]; then
|
||||
echo "Removing existing Prime-RL directory..."
|
||||
rm -rf "${PRIME_RL_DIR}"
|
||||
fi
|
||||
|
||||
# Install UV if not available
|
||||
if ! command -v uv &> /dev/null; then
|
||||
echo "Installing UV package manager..."
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
source $HOME/.local/bin/env
|
||||
fi
|
||||
|
||||
# Clone Prime-RL repository at specific branch for reproducible tests
|
||||
PRIME_RL_BRANCH="integ-vllm-main"
|
||||
echo "Cloning Prime-RL repository at branch: ${PRIME_RL_BRANCH}..."
|
||||
git clone --branch "${PRIME_RL_BRANCH}" --single-branch "${PRIME_RL_REPO}" "${PRIME_RL_DIR}"
|
||||
cd "${PRIME_RL_DIR}"
|
||||
|
||||
echo "Setting up UV project environment..."
|
||||
export UV_PROJECT_ENVIRONMENT=/usr/local
|
||||
ln -s /usr/bin/python3 /usr/local/bin/python
|
||||
|
||||
# Remove vllm pin from pyproject.toml
|
||||
echo "Removing vllm pin from pyproject.toml..."
|
||||
sed -i '/vllm==/d' pyproject.toml
|
||||
|
||||
# Sync Prime-RL dependencies
|
||||
echo "Installing Prime-RL dependencies..."
|
||||
uv sync --inexact && uv sync --inexact --all-extras
|
||||
|
||||
# Verify installation
|
||||
echo "Verifying installations..."
|
||||
uv run python -c "import vllm; print(f'vLLM version: {vllm.__version__}')"
|
||||
uv run python -c "import prime_rl; print('Prime-RL imported successfully')"
|
||||
|
||||
echo "Prime-RL integration test environment setup complete!"
|
||||
|
||||
echo "Running Prime-RL integration tests..."
|
||||
export WANDB_MODE=offline # this makes this test not require a WANDB_API_KEY
|
||||
uv run pytest -vs tests/integration/test_rl.py -m gpu
|
||||
|
||||
echo "Prime-RL integration tests completed!"
|
||||
@ -6,24 +6,28 @@
|
||||
# to generate the final pipeline yaml file.
|
||||
|
||||
# Documentation
|
||||
# label(str): the name of the test. emoji allowed.
|
||||
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
|
||||
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
|
||||
# fast_check_only(bool): run this test on fastcheck pipeline only
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
|
||||
# label(str): the name of the test. emojis allowed.
|
||||
# fast_check(bool): whether to run this on each commit on the fastcheck pipeline.
|
||||
# torch_nightly(bool): whether to run this on vllm against the torch nightly pipeline.
|
||||
# fast_check_only(bool): run this test on the fastcheck pipeline only
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's a scheduled nightly run.
|
||||
# soft_fail(bool): allow this step to fail without failing the entire pipeline (useful for flaky or experimental tests).
|
||||
# command(str): the single command to run for tests. incompatible with commands.
|
||||
# commands(list): the list of commands to run for test. incompatbile with command.
|
||||
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
|
||||
# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100
|
||||
# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4.
|
||||
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
|
||||
# in this case, commands must be specified. the first command runs on first host, the second
|
||||
# commands(list): the list of commands to run for the test. incompatible with command.
|
||||
# mirror_hardwares(list): the list of hardware to run the test on as well. currently only supports [amdexperimental]
|
||||
# gpu(str): override the GPU selection for the test. default is L4 GPUs. supports a100, b200, h200
|
||||
# num_gpus(int): override the number of GPUs for the test. defaults to 1 GPU. currently supports 2,4.
|
||||
# num_nodes(int): whether to simulate multi-node setup by launching multiple containers on one host,
|
||||
# in this case, commands must be specified. the first command runs on the first host, the second
|
||||
# command runs on the second host.
|
||||
# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests
|
||||
# source_file_dependencies(list): the list of prefix to opt-in the test for, if empty, the test will always run.
|
||||
# timeout_in_minutes(int): sets a timeout for the step in minutes. if not specified, uses the default timeout.
|
||||
# parallelism(int): number of parallel jobs to run for this step. enables test sharding using $$BUILDKITE_PARALLEL_JOB
|
||||
# and $$BUILDKITE_PARALLEL_JOB_COUNT environment variables.
|
||||
# working_dir(str): specify the place where the command should execute, default to /vllm-workspace/tests
|
||||
# source_file_dependencies(list): the list of prefixes to opt-in the test for, if empty, the test will always run.
|
||||
|
||||
# When adding a test
|
||||
# - If the test belong to an existing group, add it there
|
||||
# - If the test belongs to an existing group, add it there
|
||||
# - If the test is short, add to any existing step
|
||||
# - If the test takes more than 10min, then it is okay to create a new step.
|
||||
# Note that all steps execute in parallel.
|
||||
@ -46,23 +50,28 @@ steps:
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/async_engine
|
||||
- tests/multimodal
|
||||
- tests/utils_
|
||||
commands:
|
||||
- pytest -v -s -m 'not cpu_test' multimodal
|
||||
- pytest -v -s utils_
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test (CPU) # 4 mins
|
||||
timeout_in_minutes: 10
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_inputs.py
|
||||
- tests/test_outputs.py
|
||||
- tests/multimodal
|
||||
- tests/utils_
|
||||
- tests/worker
|
||||
- tests/standalone_tests/lazy_imports.py
|
||||
- tests/transformers_utils
|
||||
no_gpu: true
|
||||
commands:
|
||||
- python3 standalone_tests/lazy_imports.py
|
||||
- pytest -v -s async_engine # AsyncLLMEngine
|
||||
- pytest -v -s test_inputs.py
|
||||
- pytest -v -s test_outputs.py
|
||||
- pytest -v -s multimodal
|
||||
- pytest -v -s utils_ # Utils
|
||||
- pytest -v -s worker # Worker
|
||||
- pytest -v -s transformers_utils # transformers_utils
|
||||
- pytest -v -s -m 'cpu_test' multimodal
|
||||
- pytest -v -s transformers_utils
|
||||
|
||||
- label: Python-only Installation Test # 10min
|
||||
timeout_in_minutes: 20
|
||||
@ -82,14 +91,12 @@ steps:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_basic_correctness
|
||||
- tests/basic_correctness/test_cpu_offload
|
||||
- tests/basic_correctness/test_preemption
|
||||
- tests/basic_correctness/test_cumem.py
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s basic_correctness/test_cumem.py
|
||||
- pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
- label: Entrypoints Unit Tests # 5min
|
||||
timeout_in_minutes: 10
|
||||
@ -114,10 +121,9 @@ steps:
|
||||
- tests/entrypoints/offline_mode
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
- label: Entrypoints Integration Test (API Server) # 100min
|
||||
timeout_in_minutes: 130
|
||||
@ -155,7 +161,6 @@ steps:
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
- vllm/distributed/
|
||||
- vllm/core/
|
||||
- tests/distributed/test_utils
|
||||
- tests/distributed/test_pynccl
|
||||
- tests/distributed/test_events
|
||||
@ -163,28 +168,34 @@ steps:
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/test_internal_lb_dp.py
|
||||
- tests/v1/test_hybrid_lb_dp.py
|
||||
- tests/v1/distributed
|
||||
- tests/v1/engine/test_engine_core_client.py
|
||||
- tests/distributed/test_symm_mem_allreduce.py
|
||||
commands:
|
||||
# test with tp=2 and external_dp=2
|
||||
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with torchrun tp=2 and external_dp=2
|
||||
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with tp=2 and pp=2
|
||||
# test with torchrun tp=2 and pp=2
|
||||
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with torchrun tp=4 and dp=1
|
||||
- TP_SIZE=4 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with torchrun tp=2, pp=2 and dp=1
|
||||
- PP_SIZE=2 TP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with torchrun tp=1 and dp=4 with ep
|
||||
- DP_SIZE=4 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with torchrun tp=2 and dp=2 with ep
|
||||
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with internal dp
|
||||
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
|
||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
- pytest -v -s distributed/test_events.py
|
||||
- pytest -v -s distributed/test_symm_mem_allreduce.py
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- pushd ../examples/offline_inference
|
||||
@ -217,16 +228,14 @@ steps:
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/metrics
|
||||
- tests/v1/tracing
|
||||
commands:
|
||||
- pytest -v -s metrics
|
||||
- "pip install \
|
||||
'opentelemetry-sdk>=1.26.0' \
|
||||
'opentelemetry-api>=1.26.0' \
|
||||
'opentelemetry-exporter-otlp>=1.26.0' \
|
||||
'opentelemetry-semantic-conventions-ai>=0.4.1'"
|
||||
- pytest -v -s tracing
|
||||
- pytest -v -s v1/tracing
|
||||
|
||||
##### fast check tests #####
|
||||
##### 1 GPU test #####
|
||||
@ -287,23 +296,34 @@ steps:
|
||||
- tests/v1
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/executor
|
||||
- pytest -v -s v1/kv_offload
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/logits_processors
|
||||
- pytest -v -s v1/worker
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/kv_connector/unit
|
||||
- pytest -v -s v1/metrics
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s -m 'not cpu_test' v1/kv_connector/unit
|
||||
- pytest -v -s -m 'not cpu_test' v1/metrics
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
- pytest -v -s v1/test_metrics_reader.py
|
||||
- pytest -v -s v1/test_request.py
|
||||
# Integration test for streaming correctness (requires special branch).
|
||||
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
|
||||
- label: V1 Test others (CPU) # 5 mins
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/v1
|
||||
no_gpu: true
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s -m 'cpu_test' v1/kv_connector/unit
|
||||
- pytest -v -s -m 'cpu_test' v1/metrics
|
||||
|
||||
|
||||
- label: Examples Test # 30min
|
||||
timeout_in_minutes: 45
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -322,12 +342,13 @@ steps:
|
||||
- python3 offline_inference/vision_language.py --seed 0
|
||||
- python3 offline_inference/vision_language_pooling.py --seed 0
|
||||
- python3 offline_inference/vision_language_multi_image.py --seed 0
|
||||
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
|
||||
- python3 offline_inference/basic/classify.py
|
||||
- python3 offline_inference/basic/embed.py
|
||||
- python3 offline_inference/basic/score.py
|
||||
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
- python3 offline_inference/spec_decode.py --test --method eagle --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
|
||||
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
|
||||
|
||||
- label: Platform Tests (CUDA) # 4min
|
||||
timeout_in_minutes: 15
|
||||
@ -376,6 +397,7 @@ steps:
|
||||
- pytest -v -s compile/test_pass_manager.py
|
||||
- pytest -v -s compile/test_fusion.py
|
||||
- pytest -v -s compile/test_fusion_attn.py
|
||||
- pytest -v -s compile/test_functionalization.py
|
||||
- pytest -v -s compile/test_silu_mul_quant_fusion.py
|
||||
- pytest -v -s compile/test_sequence_parallelism.py
|
||||
- pytest -v -s compile/test_async_tp.py
|
||||
@ -455,32 +477,22 @@ steps:
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
- tests/kernels/mamba
|
||||
- vllm/model_executor/layers/mamba/ops
|
||||
commands:
|
||||
- pytest -v -s kernels/mamba
|
||||
|
||||
- label: Tensorizer Test # 14min
|
||||
timeout_in_minutes: 25
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
- tests/tensorizer_loader
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s tensorizer_loader
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Model Executor Test # 7min
|
||||
timeout_in_minutes: 20
|
||||
- label: Model Executor Test # 23min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor
|
||||
- tests/model_executor
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s model_executor
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Benchmarks # 11min
|
||||
timeout_in_minutes: 20
|
||||
@ -515,7 +527,7 @@ steps:
|
||||
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
|
||||
# we can only upgrade after this is resolved
|
||||
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
timeout_in_minutes: 75
|
||||
@ -543,10 +555,17 @@ steps:
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
- tests/mistral_tool_use
|
||||
commands:
|
||||
- pytest -v -s tool_use
|
||||
- pytest -v -s mistral_tool_use
|
||||
- pytest -v -s -m 'not cpu_test' tool_use
|
||||
|
||||
- label: OpenAI-Compatible Tool Use (CPU) # 5 mins
|
||||
timeout_in_minutes: 10
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
no_gpu: true
|
||||
commands:
|
||||
- pytest -v -s -m 'cpu_test' tool_use
|
||||
|
||||
##### models test #####
|
||||
|
||||
@ -586,13 +605,19 @@ steps:
|
||||
- vllm/
|
||||
- tests/models/test_transformers.py
|
||||
- tests/models/test_registry.py
|
||||
commands:
|
||||
- pytest -v -s models/test_transformers.py models/test_registry.py
|
||||
|
||||
- label: Basic Models Test (Other CPU) # 5min
|
||||
timeout_in_minutes: 10
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/test_utils.py
|
||||
- tests/models/test_vision.py
|
||||
no_gpu: true
|
||||
commands:
|
||||
- pytest -v -s models/test_transformers.py \
|
||||
models/test_registry.py \
|
||||
models/test_utils.py \
|
||||
models/test_vision.py
|
||||
- pytest -v -s models/test_utils.py models/test_vision.py
|
||||
|
||||
- label: Language Models Tests (Standard)
|
||||
timeout_in_minutes: 25
|
||||
@ -762,11 +787,13 @@ steps:
|
||||
commands:
|
||||
- pip install --upgrade git+https://github.com/huggingface/transformers
|
||||
- pytest -v -s tests/models/test_initialization.py
|
||||
- pytest -v -s tests/models/test_transformers.py
|
||||
- pytest -v -s tests/models/multimodal/processing/
|
||||
- pytest -v -s tests/models/multimodal/test_mapping.py
|
||||
- python3 examples/offline_inference/basic/chat.py
|
||||
- python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
|
||||
# Whisper needs spawn method to avoid deadlock
|
||||
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||
|
||||
- label: Blackwell Test # 38 min
|
||||
timeout_in_minutes: 60
|
||||
@ -808,11 +835,11 @@ steps:
|
||||
- pytest -v -s tests/kernels/moe/test_flashinfer.py
|
||||
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
|
||||
|
||||
- label: GPT-OSS Eval (Blackwell)
|
||||
- label: Blackwell GPT-OSS Eval
|
||||
timeout_in_minutes: 60
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
optional: true # disable while debugging
|
||||
optional: true # run on nightlies
|
||||
source_file_dependencies:
|
||||
- tests/evals/gpt_oss
|
||||
- vllm/model_executor/models/gpt_oss.py
|
||||
@ -820,7 +847,34 @@ steps:
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
commands:
|
||||
- uv pip install --system 'gpt-oss[eval]==0.0.5'
|
||||
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58 --server-args '--tensor-parallel-size 2'
|
||||
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
|
||||
|
||||
- label: Blackwell Quantized MoE Test
|
||||
timeout_in_minutes: 60
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
source_file_dependencies:
|
||||
- tests/quantization/test_blackwell_moe.py
|
||||
- vllm/model_executor/models/deepseek_v2.py
|
||||
- vllm/model_executor/models/gpt_oss.py
|
||||
- vllm/model_executor/models/llama4.py
|
||||
- vllm/model_executor/layers/fused_moe
|
||||
- vllm/model_executor/layers/quantization/compressed_tensors
|
||||
- vllm/model_executor/layers/quantization/modelopt.py
|
||||
- vllm/model_executor/layers/quantization/mxfp4.py
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
commands:
|
||||
- pytest -s -v tests/quantization/test_blackwell_moe.py
|
||||
|
||||
- label: Blackwell LM Eval Small Models
|
||||
timeout_in_minutes: 75
|
||||
gpu: b200
|
||||
optional: true # run on nightlies
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/model_executor/layers/quantization
|
||||
commands:
|
||||
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-blackwell.txt --tp-size=1
|
||||
|
||||
##### 1 GPU test #####
|
||||
##### multi gpus test #####
|
||||
@ -864,47 +918,58 @@ steps:
|
||||
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
|
||||
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
|
||||
|
||||
- label: Distributed Tests (2 GPUs) # 110min
|
||||
timeout_in_minutes: 150
|
||||
- label: Distributed Tests (2 GPUs) # 68min
|
||||
timeout_in_minutes: 90
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/compilation/
|
||||
- vllm/distributed/
|
||||
- vllm/engine/
|
||||
- vllm/executor/
|
||||
- vllm/model_executor/models/
|
||||
- tests/distributed/
|
||||
- vllm/compilation
|
||||
- vllm/worker/worker_base.py
|
||||
- vllm/worker/worker.py
|
||||
- vllm/worker/model_runner.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- vllm/v1/engine/
|
||||
- vllm/v1/worker/
|
||||
- tests/compile/test_basic_correctness.py
|
||||
- tests/compile/test_wrapper.py
|
||||
- tests/distributed/
|
||||
- tests/entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/distributed
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- tests/v1/shutdown
|
||||
- tests/v1/worker/test_worker_memory_snapshot.py
|
||||
commands:
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
||||
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
- pytest -v -s distributed/test_sequence_parallel.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
|
||||
|
||||
- label: Distributed Model Tests (2 GPUs) # 37min
|
||||
timeout_in_minutes: 50
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader/sharded_state_loader.py
|
||||
- vllm/model_executor/models/
|
||||
- tests/basic_correctness/
|
||||
- tests/model_executor/model_loader/test_sharded_state_loader.py
|
||||
- tests/models/
|
||||
commands:
|
||||
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s model_executor/model_loader/test_sharded_state_loader.py
|
||||
# Avoid importing model tests that cause CUDA reinitialization error
|
||||
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)' --ignore models/multimodal/generation/test_whisper.py
|
||||
- VLLM_WORKER_MULTIPROC_METHOD=spawn pytest models/multimodal/generation/test_whisper.py -v -s -m 'distributed(num_gpus=2)'
|
||||
# test sequence parallel
|
||||
- pytest -v -s distributed/test_sequence_parallel.py
|
||||
# this test fails consistently.
|
||||
# TODO: investigate and fix
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
- pytest -v -s models/multimodal/generation/test_maverick.py
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
timeout_in_minutes: 60
|
||||
@ -1038,3 +1103,16 @@ steps:
|
||||
num_gpus: 2
|
||||
commands:
|
||||
- pytest -v -s tests/distributed/test_context_parallel.py
|
||||
- pytest -v -s tests/distributed/test_nccl_symm_mem_allreduce.py
|
||||
|
||||
##### RL Integration Tests #####
|
||||
- label: Prime-RL Integration Test # 15min
|
||||
timeout_in_minutes: 30
|
||||
optional: true
|
||||
num_gpus: 2
|
||||
working_dir: "/vllm-workspace"
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- .buildkite/scripts/run-prime-rl-test.sh
|
||||
commands:
|
||||
- bash .buildkite/scripts/run-prime-rl-test.sh
|
||||
|
||||
34
.github/CODEOWNERS
vendored
34
.github/CODEOWNERS
vendored
@ -4,19 +4,14 @@
|
||||
# This lists cover the "core" components of vLLM that require careful review
|
||||
/vllm/attention @LucasWilkinson
|
||||
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/fused_moe @mgoin
|
||||
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @NickLucche
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
|
||||
/vllm/model_executor/layers/mamba @tdoublep
|
||||
/vllm/model_executor/model_loader @22quinn
|
||||
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
|
||||
/vllm/v1/attention @LucasWilkinson
|
||||
/vllm/v1/sample @22quinn @houseroad
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
/vllm/reasoning @aarnphm @chaunceyjiang
|
||||
@ -28,20 +23,22 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
# Any change to the VllmConfig changes can have a large user-facing impact,
|
||||
# so spam a lot of people
|
||||
/vllm/config @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
|
||||
/vllm/config/cache.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||
/vllm/v1/spec_decode @benchislett @luccafong
|
||||
/vllm/v1/attention @LucasWilkinson
|
||||
/vllm/v1/attention/backends/flashinfer.py @mgoin
|
||||
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
||||
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
|
||||
/vllm/v1/sample @22quinn @houseroad @njhill
|
||||
/vllm/v1/spec_decode @benchislett @luccafong
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||
/vllm/v1/kv_cache_interface.py @heheda12345
|
||||
/vllm/v1/offloading @ApostaC
|
||||
|
||||
# Test ownership
|
||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
|
||||
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
||||
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
||||
/tests/distributed/test_same_node.py @youkaichao
|
||||
@ -50,7 +47,6 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
/tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256
|
||||
/tests/models @DarkLight1337 @ywang96
|
||||
/tests/multimodal @DarkLight1337 @ywang96 @NickLucche
|
||||
/tests/prefix_caching @comaniac @KuntaiDu
|
||||
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256
|
||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
|
||||
@ -59,23 +55,35 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
/tests/weight_loading @mgoin @youkaichao @yewentao256
|
||||
/tests/lora @jeejeelee
|
||||
/tests/models/language/generation/test_hybrid.py @tdoublep
|
||||
/tests/v1/kv_connector/nixl_integration @NickLucche
|
||||
/tests/v1/kv_connector/nixl_integration @NickLucche
|
||||
/tests/v1/kv_connector @ApostaC
|
||||
/tests/v1/offloading @ApostaC
|
||||
|
||||
# Transformers backend
|
||||
/vllm/model_executor/models/transformers.py @hmellor
|
||||
/tests/models/test_transformers.py @hmellor
|
||||
|
||||
# Docs
|
||||
/docs @hmellor
|
||||
/docs/mkdocs @hmellor
|
||||
/docs/**/*.yml @hmellor
|
||||
/requirements/docs.txt @hmellor
|
||||
.readthedocs.yaml @hmellor
|
||||
mkdocs.yaml @hmellor
|
||||
|
||||
# Linting
|
||||
.markdownlint.yaml @hmellor
|
||||
.pre-commit-config.yaml @hmellor
|
||||
/tools/pre_commit @hmellor
|
||||
|
||||
# CPU
|
||||
/vllm/v1/worker/^cpu @bigPYJ1151
|
||||
/vllm/v1/worker/cpu* @bigPYJ1151
|
||||
/csrc/cpu @bigPYJ1151
|
||||
/vllm/platforms/cpu.py @bigPYJ1151
|
||||
/cmake/cpu_extension.cmake @bigPYJ1151
|
||||
/docker/Dockerfile.cpu @bigPYJ1151
|
||||
|
||||
# Intel GPU
|
||||
/vllm/v1/worker/^xpu @jikunshang
|
||||
/vllm/v1/worker/xpu* @jikunshang
|
||||
/vllm/platforms/xpu.py @jikunshang
|
||||
/docker/Dockerfile.xpu @jikunshang
|
||||
|
||||
|
||||
4
.github/ISSUE_TEMPLATE/750-RFC.yml
vendored
4
.github/ISSUE_TEMPLATE/750-RFC.yml
vendored
@ -43,10 +43,6 @@ body:
|
||||
Any other things you would like to mention.
|
||||
validations:
|
||||
required: false
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉! The vLLM core team hosts a biweekly RFC review session at 9:30AM Pacific Time, while most RFCs can be discussed online, you can optionally sign up for a slot to discuss your RFC online [here](https://docs.google.com/document/d/1CiLVBZeIVfR7_PNAKVSusxpceywkoOOB78qoWqHvSZc/edit).
|
||||
- type: checkboxes
|
||||
id: askllm
|
||||
attributes:
|
||||
|
||||
52
.github/mergify.yml
vendored
52
.github/mergify.yml
vendored
@ -2,6 +2,7 @@ pull_request_rules:
|
||||
- name: label-documentation
|
||||
description: Automatically apply documentation label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^[^/]+\.md$
|
||||
- files~=^docs/
|
||||
@ -14,6 +15,7 @@ pull_request_rules:
|
||||
- name: label-ci-build
|
||||
description: Automatically apply ci/build label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^\.github/
|
||||
- files~=\.buildkite/
|
||||
@ -30,6 +32,7 @@ pull_request_rules:
|
||||
- name: label-deepseek
|
||||
description: Automatically apply deepseek label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*deepseek.*\.py
|
||||
- files~=^tests/.*deepseek.*\.py
|
||||
@ -46,6 +49,7 @@ pull_request_rules:
|
||||
- name: label-frontend
|
||||
description: Automatically apply frontend label
|
||||
conditions:
|
||||
- label != stale
|
||||
- files~=^vllm/entrypoints/
|
||||
actions:
|
||||
label:
|
||||
@ -55,6 +59,7 @@ pull_request_rules:
|
||||
- name: label-llama
|
||||
description: Automatically apply llama label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*llama.*\.py
|
||||
- files~=^tests/.*llama.*\.py
|
||||
@ -70,6 +75,7 @@ pull_request_rules:
|
||||
- name: label-multi-modality
|
||||
description: Automatically apply multi-modality label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/multimodal/
|
||||
- files~=^tests/multimodal/
|
||||
@ -83,6 +89,7 @@ pull_request_rules:
|
||||
- name: label-new-model
|
||||
description: Automatically apply new-model label
|
||||
conditions:
|
||||
- label != stale
|
||||
- and:
|
||||
- files~=^vllm/model_executor/models/
|
||||
- files=vllm/model_executor/models/registry.py
|
||||
@ -94,6 +101,7 @@ pull_request_rules:
|
||||
- name: label-performance
|
||||
description: Automatically apply performance label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^benchmarks/
|
||||
- files~=^vllm/benchmarks/
|
||||
@ -107,6 +115,7 @@ pull_request_rules:
|
||||
- name: label-qwen
|
||||
description: Automatically apply qwen label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*qwen.*\.py
|
||||
- files~=^tests/.*qwen.*\.py
|
||||
@ -121,6 +130,7 @@ pull_request_rules:
|
||||
- name: label-gpt-oss
|
||||
description: Automatically apply gpt-oss label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*gpt[-_]?oss.*\.py
|
||||
- files~=^tests/.*gpt[-_]?oss.*\.py
|
||||
@ -142,6 +152,7 @@ pull_request_rules:
|
||||
- name: label-rocm
|
||||
description: Automatically apply rocm label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^csrc/rocm/
|
||||
- files~=^docker/Dockerfile.rocm
|
||||
@ -162,6 +173,7 @@ pull_request_rules:
|
||||
- name: label-structured-output
|
||||
description: Automatically apply structured-output label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^benchmarks/structured_schemas/
|
||||
- files=benchmarks/benchmark_serving_structured_output.py
|
||||
@ -171,7 +183,7 @@ pull_request_rules:
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
|
||||
- files~=^tests/v1/structured_output/
|
||||
- files=tests/v1/entrypoints/llm/test_guided_generate.py
|
||||
- files=tests/v1/entrypoints/llm/test_struct_output_generate.py
|
||||
- files~=^vllm/v1/structured_output/
|
||||
actions:
|
||||
label:
|
||||
@ -181,6 +193,7 @@ pull_request_rules:
|
||||
- name: label-speculative-decoding
|
||||
description: Automatically apply speculative-decoding label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/v1/spec_decode/
|
||||
- files~=^tests/v1/spec_decode/
|
||||
@ -196,6 +209,7 @@ pull_request_rules:
|
||||
- name: label-v1
|
||||
description: Automatically apply v1 label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/v1/
|
||||
- files~=^tests/v1/
|
||||
@ -208,6 +222,7 @@ pull_request_rules:
|
||||
description: Automatically apply tpu label
|
||||
# Keep this list in sync with `label-tpu-remove` conditions
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=tpu.py
|
||||
- files~=_tpu
|
||||
@ -223,6 +238,7 @@ pull_request_rules:
|
||||
description: Automatically remove tpu label
|
||||
# Keep this list in sync with `label-tpu` conditions
|
||||
conditions:
|
||||
- label != stale
|
||||
- and:
|
||||
- -files~=tpu.py
|
||||
- -files~=_tpu
|
||||
@ -237,9 +253,9 @@ pull_request_rules:
|
||||
- name: label-tool-calling
|
||||
description: Automatically add tool-calling label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^tests/tool_use/
|
||||
- files~=^tests/mistral_tool_use/
|
||||
- files~=^tests/entrypoints/openai/tool_parsers/
|
||||
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/
|
||||
@ -256,8 +272,9 @@ pull_request_rules:
|
||||
|
||||
- name: ping author on conflicts and add 'needs-rebase' label
|
||||
conditions:
|
||||
- conflict
|
||||
- -closed
|
||||
- label != stale
|
||||
- conflict
|
||||
- -closed
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
@ -271,10 +288,12 @@ pull_request_rules:
|
||||
|
||||
- name: assign reviewer for tensorizer changes
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer.py
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
|
||||
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
- files~=^tests/tensorizer_loader/
|
||||
- files~=^tests/model_executor/model_loader/tensorizer_loader/
|
||||
actions:
|
||||
assign:
|
||||
users:
|
||||
@ -282,6 +301,7 @@ pull_request_rules:
|
||||
|
||||
- name: assign reviewer for modelopt changes
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
|
||||
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
|
||||
@ -296,9 +316,27 @@ pull_request_rules:
|
||||
|
||||
- name: remove 'needs-rebase' label when conflict is resolved
|
||||
conditions:
|
||||
- -conflict
|
||||
- -closed
|
||||
- -conflict
|
||||
- -closed
|
||||
actions:
|
||||
label:
|
||||
remove:
|
||||
- needs-rebase
|
||||
|
||||
- name: label-kv-connector
|
||||
description: Automatically apply kv-connector label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/online_serving/disaggregated[^/]*/.*
|
||||
- files~=^examples/offline_inference/disaggregated[^/]*/.*
|
||||
- files~=^examples/others/lmcache/
|
||||
- files~=^tests/v1/kv_connector/
|
||||
- files~=^vllm/distributed/kv_transfer/
|
||||
- title~=(?i)\bP/?D\b
|
||||
- title~=(?i)NIXL
|
||||
- title~=(?i)LMCache
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- kv-connector
|
||||
2
.github/workflows/stale.yml
vendored
2
.github/workflows/stale.yml
vendored
@ -13,7 +13,7 @@ jobs:
|
||||
actions: write
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@3a9db7e6a41a89f618792c92c0e97cc736e1b13f # v10.0.0
|
||||
- uses: actions/stale@5f858e3efba33a5ca4407a664cc011ad407f2008 # v10.1.0
|
||||
with:
|
||||
# Increasing this value ensures that changes to this workflow
|
||||
# propagate to all issues and PRs in days rather than months
|
||||
|
||||
@ -6,28 +6,16 @@ default_stages:
|
||||
- manual # Run in CI
|
||||
exclude: 'vllm/third_party/.*'
|
||||
repos:
|
||||
- repo: https://github.com/google/yapf
|
||||
rev: v0.43.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
|
||||
exclude: '(.buildkite|benchmarks|build|examples)/.*'
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.7
|
||||
rev: v0.13.3
|
||||
hooks:
|
||||
- id: ruff
|
||||
- id: ruff-check
|
||||
args: [--output-format, github, --fix]
|
||||
- id: ruff-format
|
||||
files: ^(.buildkite|benchmarks|examples)/.*
|
||||
- repo: https://github.com/crate-ci/typos
|
||||
rev: v1.35.5
|
||||
hooks:
|
||||
- id: typos
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 6.0.1
|
||||
hooks:
|
||||
- id: isort
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v20.1.3
|
||||
hooks:
|
||||
@ -49,7 +37,7 @@ repos:
|
||||
rev: 0.6.17
|
||||
hooks:
|
||||
- id: pip-compile
|
||||
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
|
||||
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
|
||||
files: ^requirements/test\.(in|txt)$
|
||||
- repo: local
|
||||
hooks:
|
||||
@ -60,38 +48,32 @@ repos:
|
||||
files: ^requirements/test\.(in|txt)$
|
||||
- id: mypy-local
|
||||
name: Run mypy for local Python installation
|
||||
entry: tools/mypy.sh 0 "local"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
|
||||
entry: python tools/pre_commit/mypy.py 0 "local"
|
||||
stages: [pre-commit] # Don't run in CI
|
||||
<<: &mypy_common
|
||||
language: python
|
||||
types_or: [python, pyi]
|
||||
require_serial: true
|
||||
additional_dependencies: [mypy==1.11.1, regex, types-cachetools, types-setuptools, types-PyYAML, types-requests, types-torch, pydantic]
|
||||
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.9
|
||||
entry: tools/mypy.sh 1 "3.9"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
entry: python tools/pre_commit/mypy.py 1 "3.9"
|
||||
<<: *mypy_common
|
||||
stages: [manual] # Only run in CI
|
||||
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.10
|
||||
entry: tools/mypy.sh 1 "3.10"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
entry: python tools/pre_commit/mypy.py 1 "3.10"
|
||||
<<: *mypy_common
|
||||
stages: [manual] # Only run in CI
|
||||
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.11
|
||||
entry: tools/mypy.sh 1 "3.11"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
entry: python tools/pre_commit/mypy.py 1 "3.11"
|
||||
<<: *mypy_common
|
||||
stages: [manual] # Only run in CI
|
||||
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.12
|
||||
entry: tools/mypy.sh 1 "3.12"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
entry: python tools/pre_commit/mypy.py 1 "3.12"
|
||||
<<: *mypy_common
|
||||
stages: [manual] # Only run in CI
|
||||
- id: shellcheck
|
||||
name: Lint shell scripts
|
||||
@ -155,18 +137,15 @@ repos:
|
||||
additional_dependencies: [regex]
|
||||
- id: check-pickle-imports
|
||||
name: Prevent new pickle/cloudpickle imports
|
||||
entry: python tools/check_pickle_imports.py
|
||||
entry: python tools/pre_commit/check_pickle_imports.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: false
|
||||
additional_dependencies: [pathspec, regex]
|
||||
additional_dependencies: [regex]
|
||||
- id: validate-config
|
||||
name: Validate configuration has default values and that each field has a docstring
|
||||
entry: python tools/validate_config.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: true
|
||||
files: vllm/config.py|tests/test_config.py|vllm/entrypoints/openai/cli_args.py
|
||||
additional_dependencies: [regex]
|
||||
# Keep `suggestion` last
|
||||
- id: suggestion
|
||||
name: Suggestion
|
||||
|
||||
@ -13,6 +13,7 @@ build:
|
||||
|
||||
mkdocs:
|
||||
configuration: mkdocs.yaml
|
||||
fail_on_warning: true
|
||||
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
|
||||
@ -37,7 +37,7 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
|
||||
|
||||
#
|
||||
# Supported/expected torch versions for CUDA/ROCm.
|
||||
@ -86,6 +86,9 @@ find_package(Torch REQUIRED)
|
||||
# Supported NVIDIA architectures.
|
||||
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
|
||||
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
|
||||
set(CUDA_SUPPORTED_ARCHS "7.5;8.0;8.6;8.7;8.9;9.0;10.0;11.0;12.0")
|
||||
elseif(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
else()
|
||||
@ -175,6 +178,15 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Set compression mode for CUDA >=13.x.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA" AND
|
||||
DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
|
||||
list(APPEND VLLM_GPU_FLAGS "--compress-mode=size")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Set CUDA include flags for CXX compiler.
|
||||
#
|
||||
@ -270,7 +282,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
|
||||
|
||||
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
|
||||
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
|
||||
set(CUTLASS_REVISION "v4.2.1" CACHE STRING "CUTLASS revision to use")
|
||||
|
||||
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
|
||||
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
|
||||
@ -305,7 +317,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||
"csrc/cutlass_extensions/common.cpp"
|
||||
"csrc/quantization/fp8/per_token_group_quant.cu")
|
||||
@ -440,7 +451,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
|
||||
# CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
|
||||
@ -470,7 +485,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
|
||||
# require CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
|
||||
@ -550,7 +569,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
|
||||
# CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
@ -569,7 +592,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
# FP4 Archs and flags
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0a;10.1a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
@ -591,7 +618,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
# CUTLASS MLA Archs and flags
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
|
||||
@ -635,7 +666,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
@ -656,7 +691,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
# moe_data.cu is used by all CUTLASS MoE kernels.
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
@ -675,7 +714,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
|
||||
@ -21,6 +21,7 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
|
||||
|
||||
*Latest News* 🔥
|
||||
|
||||
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
|
||||
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
|
||||
|
||||
@ -103,10 +103,15 @@ start_server() {
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 \
|
||||
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
||||
fi
|
||||
local server_pid=$!
|
||||
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
# This line checks whether the server is still alive or not,
|
||||
# since that we should always have permission to send signal to the server process.
|
||||
kill -0 $server_pid 2> /dev/null || break
|
||||
|
||||
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
|
||||
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
|
||||
if [[ "$STATUS_CODE" -eq 200 ]]; then
|
||||
@ -118,7 +123,7 @@ start_server() {
|
||||
done
|
||||
|
||||
if (( ! server_started )); then
|
||||
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
|
||||
echo "server did not start within 10 minutes or crashed. Please check server log at $vllm_log".
|
||||
return 1
|
||||
else
|
||||
return 0
|
||||
|
||||
@ -2,9 +2,9 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import gc
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from tabulate import tabulate
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.v1.core.block_pool import BlockPool
|
||||
|
||||
|
||||
@ -1,17 +1,31 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import gc
|
||||
import time
|
||||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
from benchmark_utils import TimeCollector
|
||||
from tabulate import tabulate
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
|
||||
from vllm.config import (
|
||||
CacheConfig,
|
||||
DeviceConfig,
|
||||
LoadConfig,
|
||||
ModelConfig,
|
||||
ParallelConfig,
|
||||
SchedulerConfig,
|
||||
SpeculativeConfig,
|
||||
VllmConfig,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
|
||||
from vllm.v1.worker.gpu_input_batch import InputBatch
|
||||
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
|
||||
|
||||
|
||||
def main(args):
|
||||
def benchmark_propose(args):
|
||||
rows = []
|
||||
for max_ngram in args.max_ngram:
|
||||
collector = TimeCollector(TimeCollector.US)
|
||||
@ -69,10 +83,88 @@ def main(args):
|
||||
)
|
||||
|
||||
|
||||
def benchmark_batched_propose(args):
|
||||
NUM_SPECULATIVE_TOKENS_NGRAM = 10
|
||||
PROMPT_LOOKUP_MIN = 5
|
||||
PROMPT_LOOKUP_MAX = 15
|
||||
MAX_MODEL_LEN = int(1e7)
|
||||
DEVICE = current_platform.device_type
|
||||
|
||||
model_config = ModelConfig(model="facebook/opt-125m", runner="generate")
|
||||
|
||||
speculative_config = SpeculativeConfig(
|
||||
target_model_config=model_config,
|
||||
target_parallel_config=ParallelConfig(),
|
||||
method="ngram",
|
||||
num_speculative_tokens=NUM_SPECULATIVE_TOKENS_NGRAM,
|
||||
prompt_lookup_max=PROMPT_LOOKUP_MAX,
|
||||
prompt_lookup_min=PROMPT_LOOKUP_MIN,
|
||||
)
|
||||
|
||||
vllm_config = VllmConfig(
|
||||
model_config=model_config,
|
||||
cache_config=CacheConfig(),
|
||||
speculative_config=speculative_config,
|
||||
device_config=DeviceConfig(device=current_platform.device_type),
|
||||
parallel_config=ParallelConfig(),
|
||||
load_config=LoadConfig(),
|
||||
scheduler_config=SchedulerConfig(),
|
||||
)
|
||||
|
||||
# monkey patch vllm.v1.worker.gpu_model_runner.get_pp_group
|
||||
mock_pp_group = mock.MagicMock()
|
||||
mock_pp_group.world_size = 1
|
||||
with mock.patch(
|
||||
"vllm.v1.worker.gpu_model_runner.get_pp_group", return_value=mock_pp_group
|
||||
):
|
||||
runner = GPUModelRunner(vllm_config, DEVICE)
|
||||
|
||||
# hack max model len
|
||||
runner.max_model_len = MAX_MODEL_LEN
|
||||
runner.drafter.max_model_len = MAX_MODEL_LEN
|
||||
|
||||
dummy_input_batch = InputBatch(
|
||||
max_num_reqs=args.num_req,
|
||||
max_model_len=MAX_MODEL_LEN,
|
||||
max_num_batched_tokens=args.num_req * args.num_token,
|
||||
device=DEVICE,
|
||||
pin_memory=False,
|
||||
vocab_size=256000,
|
||||
block_sizes=[16],
|
||||
)
|
||||
dummy_input_batch._req_ids = list(str(id) for id in range(args.num_req))
|
||||
dummy_input_batch.spec_decode_unsupported_reqs = ()
|
||||
dummy_input_batch.num_tokens_no_spec = [args.num_token] * args.num_req
|
||||
dummy_input_batch.token_ids_cpu = np.random.randint(
|
||||
0, 20, (args.num_req, args.num_token)
|
||||
)
|
||||
|
||||
runner.input_batch = dummy_input_batch
|
||||
|
||||
sampled_token_ids = [[0]] * args.num_req
|
||||
|
||||
print("Starting benchmark")
|
||||
# first run is warmup so ignore it
|
||||
for _ in range(args.num_iteration):
|
||||
start = time.time()
|
||||
runner.drafter.propose(
|
||||
sampled_token_ids,
|
||||
dummy_input_batch.req_ids,
|
||||
dummy_input_batch.num_tokens_no_spec,
|
||||
dummy_input_batch.token_ids_cpu,
|
||||
dummy_input_batch.spec_decode_unsupported_reqs,
|
||||
)
|
||||
end = time.time()
|
||||
print(f"Iteration time (s): {end - start}")
|
||||
|
||||
|
||||
def invoke_main() -> None:
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the performance of N-gram speculative decode drafting"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batched", action="store_true", help="consider time to prepare batch"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-iteration",
|
||||
type=int,
|
||||
@ -105,8 +197,17 @@ def invoke_main() -> None:
|
||||
help="Number of speculative tokens to generate",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
if not args.batched:
|
||||
benchmark_propose(args)
|
||||
else:
|
||||
benchmark_batched_propose(args)
|
||||
|
||||
|
||||
"""
|
||||
# Example command lines:
|
||||
# time python3 benchmarks/benchmark_ngram_proposer.py
|
||||
# time python3 benchmarks/benchmark_ngram_proposer.py --batched --num-iteration 4 --num-token 1000000 --num-req 128
|
||||
""" # noqa: E501
|
||||
if __name__ == "__main__":
|
||||
invoke_main() # pragma: no cover
|
||||
|
||||
@ -37,14 +37,13 @@ from typing import Optional
|
||||
import datasets
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
from backend_request_func import (
|
||||
ASYNC_REQUEST_FUNCS,
|
||||
RequestFuncInput,
|
||||
RequestFuncOutput,
|
||||
)
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
@ -449,7 +448,8 @@ async def benchmark(
|
||||
def prepare_extra_body(request) -> dict:
|
||||
extra_body = {}
|
||||
# Add the schema to the extra_body
|
||||
extra_body[request.structure_type] = request.schema
|
||||
extra_body["structured_outputs"] = {}
|
||||
extra_body["structured_outputs"][request.structure_type] = request.schema
|
||||
return extra_body
|
||||
|
||||
print("Starting initial single prompt test run...")
|
||||
@ -696,11 +696,11 @@ def evaluate(ret, args):
|
||||
return re.match(args.regex, actual) is not None
|
||||
|
||||
def _eval_correctness(expected, actual):
|
||||
if args.structure_type == "guided_json":
|
||||
if args.structure_type == "json":
|
||||
return _eval_correctness_json(expected, actual)
|
||||
elif args.structure_type == "guided_regex":
|
||||
elif args.structure_type == "regex":
|
||||
return _eval_correctness_regex(expected, actual)
|
||||
elif args.structure_type == "guided_choice":
|
||||
elif args.structure_type == "choice":
|
||||
return _eval_correctness_choice(expected, actual)
|
||||
else:
|
||||
return None
|
||||
@ -780,18 +780,18 @@ def main(args: argparse.Namespace):
|
||||
)
|
||||
|
||||
if args.dataset == "grammar":
|
||||
args.structure_type = "guided_grammar"
|
||||
args.structure_type = "grammar"
|
||||
elif args.dataset == "regex":
|
||||
args.structure_type = "guided_regex"
|
||||
args.structure_type = "regex"
|
||||
elif args.dataset == "choice":
|
||||
args.structure_type = "guided_choice"
|
||||
args.structure_type = "choice"
|
||||
else:
|
||||
args.structure_type = "guided_json"
|
||||
args.structure_type = "json"
|
||||
|
||||
if args.no_structured_output:
|
||||
args.structured_output_ratio = 0
|
||||
if args.save_results:
|
||||
result_file_name = f"{args.structured_output_ratio}guided"
|
||||
result_file_name = f"{args.structured_output_ratio}so"
|
||||
result_file_name += f"_{backend}"
|
||||
result_file_name += f"_{args.request_rate}qps"
|
||||
result_file_name += f"_{args.model.split('/')[-1]}"
|
||||
@ -909,13 +909,13 @@ def create_argument_parser():
|
||||
parser.add_argument(
|
||||
"--tokenizer",
|
||||
type=str,
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer-mode",
|
||||
type=str,
|
||||
default="auto",
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
|
||||
@ -17,7 +17,7 @@ from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
w8a8_block_fp8_matmul,
|
||||
w8a8_triton_block_scaled_mm,
|
||||
)
|
||||
from vllm.utils import FlexibleArgumentParser, cdiv
|
||||
|
||||
@ -158,7 +158,7 @@ def bench_fp8(
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
|
||||
),
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_triton_block_scaled_mm(
|
||||
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
|
||||
),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
|
||||
|
||||
@ -55,9 +55,7 @@ benchmark() {
|
||||
output_len=$2
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
@ -65,9 +63,7 @@ benchmark() {
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
|
||||
@ -38,16 +38,12 @@ wait_for_server() {
|
||||
launch_chunked_prefill() {
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
# disagg prefill
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--enable-chunked-prefill \
|
||||
--gpu-memory-utilization 0.6 &
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--enable-chunked-prefill \
|
||||
@ -62,18 +58,14 @@ launch_chunked_prefill() {
|
||||
launch_disagg_prefill() {
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
# disagg prefill
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
import os
|
||||
|
||||
import torch
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
@ -23,21 +24,45 @@ PROVIDER_CFGS = {
|
||||
"torch-bf16": dict(enabled=True),
|
||||
"nvfp4": dict(no_a_quant=False, enabled=True),
|
||||
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
|
||||
"fbgemm-nvfp4": dict(fbgemm=True, no_a_quant=False, enabled=True),
|
||||
"fbgemm-nvfp4-noquant": dict(fbgemm=True, no_a_quant=True, enabled=True),
|
||||
}
|
||||
|
||||
_needs_fbgemm = any(
|
||||
v.get("fbgemm", False) for v in PROVIDER_CFGS.values() if v.get("enabled", False)
|
||||
)
|
||||
if _needs_fbgemm:
|
||||
try:
|
||||
from fbgemm_gpu.experimental.gemm.triton_gemm.fp4_quantize import (
|
||||
triton_scale_nvfp4_quant,
|
||||
)
|
||||
except ImportError:
|
||||
print(
|
||||
"WARNING: FBGEMM providers are enabled but fbgemm_gpu is not installed. "
|
||||
"These providers will be skipped. Please install fbgemm_gpu with: "
|
||||
"'pip install fbgemm-gpu-genai' to run them."
|
||||
)
|
||||
# Disable FBGEMM providers so the benchmark can run.
|
||||
for cfg in PROVIDER_CFGS.values():
|
||||
if cfg.get("fbgemm"):
|
||||
cfg["enabled"] = False
|
||||
|
||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
||||
|
||||
|
||||
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
|
||||
def _quant_weight_nvfp4(b: torch.Tensor, device: str, cfg):
|
||||
# Compute global scale for weight
|
||||
b_amax = torch.abs(b).max().to(torch.float32)
|
||||
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
|
||||
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
|
||||
if "fbgemm" in cfg and cfg["fbgemm"]:
|
||||
b_fp4, scale_b_fp4 = triton_scale_nvfp4_quant(b, b_global_scale)
|
||||
else:
|
||||
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
|
||||
return b_fp4, scale_b_fp4, b_global_scale
|
||||
|
||||
|
||||
def build_nvfp4_runner(cfg, a, b, dtype, device):
|
||||
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
|
||||
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device, cfg)
|
||||
|
||||
# Compute global scale for activation
|
||||
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
|
||||
@ -46,6 +71,35 @@ def build_nvfp4_runner(cfg, a, b, dtype, device):
|
||||
|
||||
# Alpha for the GEMM operation
|
||||
alpha = 1.0 / (a_global_scale * b_global_scale)
|
||||
if "fbgemm" in cfg and cfg["fbgemm"]:
|
||||
if cfg["no_a_quant"]:
|
||||
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
|
||||
|
||||
def run():
|
||||
return torch.ops.fbgemm.f4f4bf16(
|
||||
a_fp4,
|
||||
b_fp4,
|
||||
scale_a_fp4,
|
||||
scale_b_fp4,
|
||||
global_scale=alpha,
|
||||
use_mx=False,
|
||||
)
|
||||
|
||||
return run
|
||||
else:
|
||||
|
||||
def run():
|
||||
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
|
||||
return torch.ops.fbgemm.f4f4bf16(
|
||||
a_fp4,
|
||||
b_fp4,
|
||||
scale_a_fp4,
|
||||
scale_b_fp4,
|
||||
global_scale=alpha,
|
||||
use_mx=False,
|
||||
)
|
||||
|
||||
return run
|
||||
|
||||
if cfg["no_a_quant"]:
|
||||
# Pre-quantize activation
|
||||
@ -130,10 +184,13 @@ if __name__ == "__main__":
|
||||
|
||||
for K, N, model in prepare_shapes(args):
|
||||
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
|
||||
save_dir = f"bench_nvfp4_res_n{N}_k{K}"
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
benchmark.run(
|
||||
print_data=True,
|
||||
show_plots=True,
|
||||
save_path=f"bench_nvfp4_res_n{N}_k{K}",
|
||||
save_path=save_dir,
|
||||
N=N,
|
||||
K=K,
|
||||
)
|
||||
|
||||
@ -51,7 +51,7 @@ def calculate_diff(
|
||||
):
|
||||
"""Calculate the difference between Inductor and CUDA implementations."""
|
||||
device = torch.device("cuda")
|
||||
x = torch.rand((batch_size * hidden_size, 4096), dtype=dtype, device=device)
|
||||
x = torch.randn((batch_size, hidden_size), dtype=dtype, device=device)
|
||||
|
||||
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=False)
|
||||
|
||||
@ -59,23 +59,25 @@ def calculate_diff(
|
||||
torch_eager_out, torch_eager_scale = quant_fp8.forward_native(x)
|
||||
cuda_out, cuda_scale = quant_fp8.forward_cuda(x)
|
||||
|
||||
out_allclose = lambda o1, o2: torch.allclose(
|
||||
o1.to(torch.float32),
|
||||
o2.to(torch.float32),
|
||||
rtol=1e-3,
|
||||
atol=1e-5,
|
||||
)
|
||||
scale_allclose = lambda s1, s2: torch.allclose(s1, s2, rtol=1e-3, atol=1e-5)
|
||||
|
||||
if (
|
||||
out_allclose(cuda_out, torch_out)
|
||||
and scale_allclose(cuda_scale, torch_scale)
|
||||
and out_allclose(cuda_out, torch_eager_out)
|
||||
and scale_allclose(cuda_scale, torch_eager_scale)
|
||||
):
|
||||
try:
|
||||
torch.testing.assert_close(
|
||||
cuda_out.to(torch.float32),
|
||||
torch_out.to(torch.float32),
|
||||
rtol=1e-3,
|
||||
atol=1e-5,
|
||||
)
|
||||
torch.testing.assert_close(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5)
|
||||
torch.testing.assert_close(
|
||||
cuda_out.to(torch.float32),
|
||||
torch_eager_out.to(torch.float32),
|
||||
rtol=1e-3,
|
||||
atol=1e-5,
|
||||
)
|
||||
torch.testing.assert_close(cuda_scale, torch_eager_scale, rtol=1e-3, atol=1e-5)
|
||||
print("✅ All implementations match")
|
||||
else:
|
||||
except AssertionError as e:
|
||||
print("❌ Implementations differ")
|
||||
print(e)
|
||||
|
||||
|
||||
configs = []
|
||||
@ -91,7 +93,7 @@ def benchmark_quantization(
|
||||
):
|
||||
device = torch.device("cuda")
|
||||
|
||||
x = torch.randn(batch_size * hidden_size, 4096, device=device, dtype=dtype)
|
||||
x = torch.randn(batch_size, hidden_size, device=device, dtype=dtype)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=col_major)
|
||||
@ -157,21 +159,21 @@ if __name__ == "__main__":
|
||||
)
|
||||
parser.add_argument("-c", "--check", action="store_true")
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
|
||||
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden-sizes",
|
||||
type=int,
|
||||
nargs="+",
|
||||
default=None,
|
||||
help="Hidden sizes to benchmark (default: 1,16,64,128,256,512,1024,2048,4096)",
|
||||
default=[896, 1024, 2048, 4096, 7168],
|
||||
help="Hidden sizes to benchmark",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-sizes",
|
||||
type=int,
|
||||
nargs="+",
|
||||
default=None,
|
||||
help="Batch sizes to benchmark (default: 1,16,32,64,128)",
|
||||
default=[1, 16, 128, 512, 1024],
|
||||
help="Batch sizes to benchmark",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--group-sizes",
|
||||
@ -192,8 +194,8 @@ if __name__ == "__main__":
|
||||
|
||||
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
|
||||
|
||||
hidden_sizes = args.hidden_sizes or [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
|
||||
batch_sizes = args.batch_sizes or [1, 16, 32, 64, 128]
|
||||
hidden_sizes = args.hidden_sizes
|
||||
batch_sizes = args.batch_sizes
|
||||
|
||||
if args.group_sizes is not None:
|
||||
group_shapes = []
|
||||
|
||||
406
benchmarks/kernels/benchmark_cutlass_moe_fp8.py
Normal file
406
benchmarks/kernels/benchmark_cutlass_moe_fp8.py
Normal file
@ -0,0 +1,406 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Benchmark the performance of the cutlass_moe_fp8 kernel vs the triton_moe
|
||||
kernel. Both kernels take in fp8 quantized weights and 16-bit activations,
|
||||
but use different quantization strategies and backends.
|
||||
"""
|
||||
|
||||
import nvtx
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.fused_moe.config import fp8_w8a8_moe_quant_config
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
# Weight shapes for different models: [num_experts, topk, hidden_size,
|
||||
# intermediate_size]
|
||||
WEIGHT_SHAPES_MOE = {
|
||||
"mixtral-8x7b": [
|
||||
[8, 2, 4096, 14336],
|
||||
],
|
||||
"deepseek-v2": [
|
||||
[160, 6, 5120, 12288],
|
||||
],
|
||||
"custom-small": [
|
||||
[8, 2, 2048, 7168],
|
||||
],
|
||||
"glm45-fp8": [
|
||||
[128, 8, 4096, 1408],
|
||||
],
|
||||
"Llama-4-Maverick-17B-128E-Instruct-FP8": [
|
||||
[128, 1, 5120, 8192],
|
||||
],
|
||||
}
|
||||
|
||||
DEFAULT_MODELS = [
|
||||
"mixtral-8x7b",
|
||||
]
|
||||
|
||||
DEFAULT_BATCH_SIZES = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
|
||||
DEFAULT_TP_SIZES = [1]
|
||||
|
||||
PER_ACT_TOKEN_OPTS = [False, True]
|
||||
PER_OUT_CH_OPTS = [False, True]
|
||||
|
||||
FP8_DTYPE = current_platform.fp8_dtype()
|
||||
|
||||
|
||||
def bench_run(
|
||||
results: list,
|
||||
model: str,
|
||||
num_experts: int,
|
||||
topk: int,
|
||||
per_act_token: bool,
|
||||
per_out_ch: bool,
|
||||
mkn: tuple[int, int, int],
|
||||
):
|
||||
(m, k, n) = mkn
|
||||
|
||||
dtype = torch.half
|
||||
device = "cuda"
|
||||
|
||||
# Create input activations
|
||||
a = torch.randn((m, k), device=device, dtype=dtype) / 10
|
||||
|
||||
# Create weights
|
||||
w1 = torch.randn((num_experts, 2 * n, k), device=device, dtype=dtype) / 10
|
||||
w2 = torch.randn((num_experts, k, n), device=device, dtype=dtype) / 10
|
||||
|
||||
# Create FP8 quantized weights and scales for both kernels
|
||||
w1_fp8q = torch.empty((num_experts, 2 * n, k), device=device, dtype=FP8_DTYPE)
|
||||
w2_fp8q = torch.empty((num_experts, k, n), device=device, dtype=FP8_DTYPE)
|
||||
|
||||
# Create scales based on quantization strategy
|
||||
if per_out_ch:
|
||||
# Per-channel quantization
|
||||
w1_scale = torch.empty(
|
||||
(num_experts, 2 * n, 1), device=device, dtype=torch.float32
|
||||
)
|
||||
w2_scale = torch.empty((num_experts, k, 1), device=device, dtype=torch.float32)
|
||||
else:
|
||||
# Per-tensor quantization
|
||||
w1_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
|
||||
w2_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
|
||||
|
||||
# Quantize weights
|
||||
for expert in range(num_experts):
|
||||
if per_out_ch:
|
||||
# Per-channel quantization - not yet implemented properly
|
||||
# For now, fall back to per-tensor quantization
|
||||
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
|
||||
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
|
||||
# Expand scalar scales to the expected per-channel shape
|
||||
w1_scale[expert] = w1_scale_temp.expand(2 * n, 1)
|
||||
w2_scale[expert] = w2_scale_temp.expand(k, 1)
|
||||
else:
|
||||
# Per-tensor quantization
|
||||
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
|
||||
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
|
||||
# Store scalar scales in [1, 1] tensors
|
||||
w1_scale[expert, 0, 0] = w1_scale_temp
|
||||
w2_scale[expert, 0, 0] = w2_scale_temp
|
||||
|
||||
# Prepare weights for CUTLASS (no transpose needed)
|
||||
w1_fp8q_cutlass = w1_fp8q # Keep original [E, 2N, K]
|
||||
w2_fp8q_cutlass = w2_fp8q # Keep original [E, K, N]
|
||||
|
||||
# Create router scores and get topk
|
||||
score = torch.randn((m, num_experts), device=device, dtype=dtype)
|
||||
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
|
||||
|
||||
# WORKAROUND: CUTLASS MoE FP8 has issues with per-token quantization
|
||||
# Force per-tensor quantization for all cases to match working e2e setup
|
||||
a1_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
|
||||
a2_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
|
||||
|
||||
# Force per-tensor quantization for all cases
|
||||
per_act_token = False
|
||||
|
||||
# Create stride tensors for CUTLASS
|
||||
ab_strides1 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
|
||||
ab_strides2 = torch.full((num_experts,), n, dtype=torch.int64, device=device)
|
||||
c_strides1 = torch.full((num_experts,), 2 * n, dtype=torch.int64, device=device)
|
||||
c_strides2 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
|
||||
|
||||
def run_triton_moe(
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
a1_scale: torch.Tensor,
|
||||
a2_scale: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
per_act_token_quant=per_act_token,
|
||||
per_out_ch_quant=per_out_ch,
|
||||
)
|
||||
|
||||
for _ in range(num_repeats):
|
||||
fused_experts(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def run_cutlass_moe_fp8(
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor,
|
||||
c_strides1: torch.Tensor,
|
||||
c_strides2: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
a1_scale: torch.Tensor,
|
||||
a2_scale: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
per_act_token_quant=per_act_token,
|
||||
per_out_ch_quant=per_out_ch,
|
||||
)
|
||||
|
||||
for _ in range(num_repeats):
|
||||
with nvtx.annotate("cutlass_moe_fp8", color="blue"):
|
||||
cutlass_moe_fp8(
|
||||
a=a,
|
||||
w1_q=w1,
|
||||
w2_q=w2,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
ab_strides1=ab_strides1,
|
||||
ab_strides2=ab_strides2,
|
||||
c_strides1=c_strides1,
|
||||
c_strides2=c_strides2,
|
||||
quant_config=quant_config,
|
||||
activation="silu",
|
||||
global_num_experts=num_experts,
|
||||
)
|
||||
|
||||
# Pre-create quantization config to avoid creating it inside CUDA graph
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
per_act_token_quant=per_act_token,
|
||||
per_out_ch_quant=per_out_ch,
|
||||
)
|
||||
|
||||
# Create CUDA graphs for CUTLASS (match benchmark_moe.py pattern exactly)
|
||||
cutlass_stream = torch.cuda.Stream()
|
||||
cutlass_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
|
||||
# Capture 10 invocations like benchmark_moe.py
|
||||
for _ in range(10):
|
||||
cutlass_moe_fp8(
|
||||
a=a,
|
||||
w1_q=w1_fp8q_cutlass,
|
||||
w2_q=w2_fp8q_cutlass,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
ab_strides1=ab_strides1,
|
||||
ab_strides2=ab_strides2,
|
||||
c_strides1=c_strides1,
|
||||
c_strides2=c_strides2,
|
||||
quant_config=quant_config,
|
||||
activation="silu",
|
||||
global_num_experts=num_experts,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
# Create CUDA graphs for Triton (match benchmark_moe.py pattern exactly)
|
||||
triton_stream = torch.cuda.Stream()
|
||||
triton_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(triton_graph, stream=triton_stream):
|
||||
# Capture 10 invocations like benchmark_moe.py
|
||||
for _ in range(10):
|
||||
fused_experts(
|
||||
a,
|
||||
w1_fp8q,
|
||||
w2_fp8q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
def bench_cuda_graph(graph, num_warmup=5, num_iters=100):
|
||||
"""Benchmark CUDA graph using events like benchmark_moe.py"""
|
||||
# Warmup
|
||||
for _ in range(num_warmup):
|
||||
graph.replay()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
# Timing
|
||||
start_event = torch.cuda.Event(enable_timing=True)
|
||||
end_event = torch.cuda.Event(enable_timing=True)
|
||||
|
||||
latencies = []
|
||||
for _ in range(num_iters):
|
||||
torch.cuda.synchronize()
|
||||
start_event.record()
|
||||
graph.replay()
|
||||
end_event.record()
|
||||
end_event.synchronize()
|
||||
latencies.append(start_event.elapsed_time(end_event))
|
||||
|
||||
# Divide by 10 since graph contains 10 calls
|
||||
return sum(latencies) / (num_iters * 10)
|
||||
|
||||
# Benchmark parameters
|
||||
num_warmup = 5
|
||||
num_iters = 100
|
||||
|
||||
# Benchmark only CUDA graphs (more reliable and faster)
|
||||
# Benchmark Triton MoE with CUDA graphs
|
||||
triton_graph_time = bench_cuda_graph(
|
||||
triton_graph, num_warmup=num_warmup, num_iters=num_iters
|
||||
)
|
||||
|
||||
# Benchmark CUTLASS MoE with CUDA graphs
|
||||
cutlass_graph_time = bench_cuda_graph(
|
||||
cutlass_graph, num_warmup=num_warmup, num_iters=num_iters
|
||||
)
|
||||
|
||||
# Convert ms to us and return results
|
||||
triton_time_us = triton_graph_time * 1000
|
||||
cutlass_time_us = cutlass_graph_time * 1000
|
||||
|
||||
return {
|
||||
"batch_size": m,
|
||||
"triton_time_us": triton_time_us,
|
||||
"cutlass_time_us": cutlass_time_us,
|
||||
}
|
||||
|
||||
|
||||
def main(args):
|
||||
print("Benchmarking models:")
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
|
||||
all_results = []
|
||||
|
||||
for model in args.models:
|
||||
for tp in args.tp_sizes:
|
||||
for layer in WEIGHT_SHAPES_MOE[model]:
|
||||
num_experts = layer[0]
|
||||
topk = layer[1]
|
||||
size_k = layer[2]
|
||||
size_n = layer[3] // tp
|
||||
|
||||
if len(args.limit_k) > 0 and size_k not in args.limit_k:
|
||||
continue
|
||||
|
||||
if len(args.limit_n) > 0 and size_n not in args.limit_n:
|
||||
continue
|
||||
|
||||
for per_act_token in args.per_act_token_opts:
|
||||
for per_out_ch in args.per_out_ch_opts:
|
||||
print(
|
||||
f"\n=== {model}, experts={num_experts}, topk={topk},"
|
||||
f"per_act={per_act_token}, per_out_ch={per_out_ch} ==="
|
||||
)
|
||||
|
||||
config_results = []
|
||||
for size_m in args.batch_sizes:
|
||||
mkn = (size_m, size_k, size_n)
|
||||
result = bench_run(
|
||||
[], # Not used anymore
|
||||
model,
|
||||
num_experts,
|
||||
topk,
|
||||
per_act_token,
|
||||
per_out_ch,
|
||||
mkn,
|
||||
)
|
||||
if result:
|
||||
config_results.append(result)
|
||||
|
||||
# Print results table for this configuration
|
||||
if config_results:
|
||||
print(
|
||||
f"\n{'Batch Size':<12}"
|
||||
f"{'Triton (us)':<15}"
|
||||
f"{'CUTLASS (us)':<15}"
|
||||
)
|
||||
print("-" * 45)
|
||||
for result in config_results:
|
||||
print(
|
||||
f"{result['batch_size']:<12}"
|
||||
f"{result['triton_time_us']:<15.2f}"
|
||||
f"{result['cutlass_time_us']:<15.2f}"
|
||||
)
|
||||
|
||||
all_results.extend(config_results)
|
||||
|
||||
print(f"\nTotal benchmarks completed: {len(all_results)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="""Benchmark CUTLASS FP8 MOE vs Triton FP8 FUSED MOE
|
||||
across specified models/shapes/batches
|
||||
|
||||
Example usage:
|
||||
python benchmark_cutlass_moe_fp8.py \
|
||||
--model "Llama-4-Maverick-17B-128E-Instruct-FP8" \
|
||||
--tp-sizes 8 \
|
||||
--batch-size 2 4 8 \
|
||||
--per-act-token-opts false \
|
||||
--per-out-ch-opts false
|
||||
|
||||
"""
|
||||
)
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES_MOE.keys(),
|
||||
)
|
||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
|
||||
parser.add_argument(
|
||||
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
|
||||
)
|
||||
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
|
||||
parser.add_argument(
|
||||
"--per-act-token-opts",
|
||||
nargs="+",
|
||||
type=lambda x: x.lower() == "true",
|
||||
default=[False, True],
|
||||
help="Per-activation token quantization options (true/false)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per-out-ch-opts",
|
||||
nargs="+",
|
||||
type=lambda x: x.lower() == "true",
|
||||
default=[False, True],
|
||||
help="Per-output channel quantization options (true/false)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
@ -7,6 +7,10 @@ Benchmark script for device communicators:
|
||||
CustomAllreduce (oneshot, twoshot), PyNcclCommunicator,
|
||||
and SymmMemCommunicator (multimem, two-shot).
|
||||
|
||||
for NCCL symmetric memory you need to set the environment variables
|
||||
NCCL_NVLS_ENABLE=1 NCCL_CUMEM_ENABLE=1 VLLM_USE_NCCL_SYMM_MEM=1, otherwise NCCL does
|
||||
not use fast NVLS implementation for all reduce.
|
||||
|
||||
Usage:
|
||||
torchrun --nproc_per_node=<N> benchmark_device_communicators.py [options]
|
||||
|
||||
@ -26,7 +30,13 @@ import torch.distributed as dist
|
||||
from torch.distributed import ProcessGroup
|
||||
|
||||
from vllm.distributed.device_communicators.custom_all_reduce import CustomAllreduce
|
||||
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
|
||||
from vllm.distributed.device_communicators.pynccl import (
|
||||
PyNcclCommunicator,
|
||||
register_nccl_symmetric_ops,
|
||||
)
|
||||
from vllm.distributed.device_communicators.pynccl_allocator import (
|
||||
set_graph_pool_id,
|
||||
)
|
||||
from vllm.distributed.device_communicators.symm_mem import SymmMemCommunicator
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
@ -98,6 +108,7 @@ class CommunicatorBenchmark:
|
||||
)
|
||||
if not self.pynccl_comm.disabled:
|
||||
logger.info("Rank %s: PyNcclCommunicator initialized", self.rank)
|
||||
register_nccl_symmetric_ops(self.pynccl_comm)
|
||||
else:
|
||||
logger.info("Rank %s: PyNcclCommunicator disabled", self.rank)
|
||||
self.pynccl_comm = None
|
||||
@ -194,6 +205,15 @@ class CommunicatorBenchmark:
|
||||
None, # no env variable needed
|
||||
)
|
||||
)
|
||||
communicators.append(
|
||||
(
|
||||
"pynccl-symm",
|
||||
lambda t: torch.ops.vllm.all_reduce_symmetric_with_copy(t),
|
||||
lambda t: True, # Always available if initialized
|
||||
nullcontext(),
|
||||
None, # no env variable needed
|
||||
)
|
||||
)
|
||||
|
||||
if self.symm_mem_comm_multimem is not None:
|
||||
comm = self.symm_mem_comm_multimem
|
||||
@ -271,7 +291,9 @@ class CommunicatorBenchmark:
|
||||
# Capture the graph using context manager
|
||||
with context:
|
||||
graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(graph):
|
||||
graph_pool = torch.cuda.graph_pool_handle()
|
||||
set_graph_pool_id(graph_pool)
|
||||
with torch.cuda.graph(graph, pool=graph_pool):
|
||||
for _ in range(CUDA_GRAPH_CAPTURE_CYCLES):
|
||||
allreduce_fn(graph_input)
|
||||
|
||||
|
||||
@ -79,9 +79,9 @@ def make_rand_lora_weight_tensor(
|
||||
|
||||
|
||||
def make_rand_tensors(
|
||||
a_shape: tuple[int],
|
||||
b_shape: tuple[int],
|
||||
c_shape: tuple[int],
|
||||
a_shape: tuple[int, ...],
|
||||
b_shape: tuple[int, ...],
|
||||
c_shape: tuple[int, ...],
|
||||
a_dtype: torch.dtype,
|
||||
b_dtype: torch.dtype,
|
||||
c_dtype: torch.dtype,
|
||||
@ -243,7 +243,7 @@ class OpType(Enum):
|
||||
lora_rank: int,
|
||||
num_loras: int,
|
||||
num_slices: int,
|
||||
) -> tuple[tuple[int], tuple[int], tuple[int]]:
|
||||
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
|
||||
"""
|
||||
Given num_slices, return the shapes of the A, B, and C matrices
|
||||
in A x B = C, for the op_type
|
||||
|
||||
@ -584,8 +584,9 @@ def main(args: argparse.Namespace):
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.intermediate_size
|
||||
elif config.architectures[0] in (
|
||||
"DeepseekV3ForCausalLM",
|
||||
"DeepseekV2ForCausalLM",
|
||||
"DeepseekV3ForCausalLM",
|
||||
"DeepseekV32ForCausalLM",
|
||||
"Glm4MoeForCausalLM",
|
||||
):
|
||||
E = config.n_routed_experts
|
||||
|
||||
174
benchmarks/kernels/benchmark_reshape_and_cache.py
Normal file
174
benchmarks/kernels/benchmark_reshape_and_cache.py
Normal file
@ -0,0 +1,174 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from __future__ import annotations
|
||||
|
||||
import random
|
||||
import time
|
||||
|
||||
import torch
|
||||
from tabulate import tabulate
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import (
|
||||
STR_DTYPE_TO_TORCH_DTYPE,
|
||||
FlexibleArgumentParser,
|
||||
create_kv_caches_with_random,
|
||||
)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def run_benchmark(
|
||||
num_tokens: int,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
block_size: int,
|
||||
num_blocks: int,
|
||||
dtype: torch.dtype,
|
||||
kv_cache_dtype: str,
|
||||
num_iters: int,
|
||||
benchmark_mode: str,
|
||||
device: str = "cuda",
|
||||
) -> float:
|
||||
"""Return latency (seconds) for given num_tokens."""
|
||||
|
||||
if kv_cache_dtype == "fp8" and head_size % 16:
|
||||
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
|
||||
|
||||
current_platform.seed_everything(42)
|
||||
torch.set_default_device(device)
|
||||
|
||||
# create random key / value tensors [T, H, D].
|
||||
key = torch.randn(num_tokens, num_heads, head_size, dtype=dtype, device=device)
|
||||
value = torch.randn_like(key)
|
||||
|
||||
# prepare the slot mapping.
|
||||
# each token is assigned a unique slot in the KV-cache.
|
||||
num_slots = block_size * num_blocks
|
||||
if num_tokens > num_slots:
|
||||
raise ValueError("num_tokens cannot exceed the total number of cache slots")
|
||||
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
|
||||
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long, device=device)
|
||||
|
||||
key_caches, value_caches = create_kv_caches_with_random(
|
||||
num_blocks,
|
||||
block_size,
|
||||
1, # num_layers
|
||||
num_heads,
|
||||
head_size,
|
||||
kv_cache_dtype,
|
||||
dtype,
|
||||
device=device,
|
||||
)
|
||||
key_cache, value_cache = key_caches[0], value_caches[0]
|
||||
# to free unused memory
|
||||
del key_caches, value_caches
|
||||
|
||||
# compute per-kernel scaling factors for fp8 conversion (if used).
|
||||
k_scale = (key.amax() / 64.0).to(torch.float32)
|
||||
v_scale = (value.amax() / 64.0).to(torch.float32)
|
||||
|
||||
function_under_test = lambda: ops.reshape_and_cache(
|
||||
key, # noqa: F821
|
||||
value, # noqa: F821
|
||||
key_cache, # noqa: F821
|
||||
value_cache, # noqa: F821
|
||||
slot_mapping, # noqa: F821
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
|
||||
if benchmark_mode == "cudagraph":
|
||||
g = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(g):
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
function_under_test = lambda: g.replay()
|
||||
|
||||
def run_cuda_benchmark(n_iters: int) -> float:
|
||||
nonlocal key, value, key_cache, value_cache, slot_mapping
|
||||
torch.cuda.synchronize()
|
||||
start = time.perf_counter()
|
||||
for _ in range(n_iters):
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
end = time.perf_counter()
|
||||
return (end - start) / n_iters
|
||||
|
||||
# warm-up
|
||||
run_cuda_benchmark(3)
|
||||
|
||||
lat = run_cuda_benchmark(num_iters)
|
||||
|
||||
# free tensors to mitigate OOM when sweeping
|
||||
del key, value, key_cache, value_cache, slot_mapping
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return lat
|
||||
|
||||
|
||||
def main(args):
|
||||
rows = []
|
||||
for exp in range(1, 17):
|
||||
n_tok = 2**exp
|
||||
lat = run_benchmark(
|
||||
num_tokens=n_tok,
|
||||
num_heads=args.num_heads,
|
||||
head_size=args.head_size,
|
||||
block_size=args.block_size,
|
||||
num_blocks=args.num_blocks,
|
||||
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
|
||||
kv_cache_dtype=args.kv_cache_dtype,
|
||||
num_iters=args.iters,
|
||||
benchmark_mode=args.mode,
|
||||
device="cuda",
|
||||
)
|
||||
rows.append([n_tok, lat * 1e6]) # convert to microseconds
|
||||
|
||||
print(f"Benchmark results for implementation cuda (measuring with {args.mode}):")
|
||||
print(tabulate(rows, headers=["num_tokens", "latency (µs)"], floatfmt=".3f"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser()
|
||||
|
||||
parser.add_argument("--num-heads", type=int, default=128)
|
||||
parser.add_argument(
|
||||
"--head-size",
|
||||
type=int,
|
||||
choices=[64, 80, 96, 112, 120, 128, 192, 256],
|
||||
default=128,
|
||||
)
|
||||
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
|
||||
parser.add_argument("--num-blocks", type=int, default=128 * 128)
|
||||
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
type=str,
|
||||
choices=["half", "bfloat16", "float"],
|
||||
default="bfloat16",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--kv-cache-dtype",
|
||||
type=str,
|
||||
choices=["auto", "fp8"],
|
||||
default="auto",
|
||||
)
|
||||
|
||||
parser.add_argument("--iters", type=int, default=200)
|
||||
|
||||
parser.add_argument(
|
||||
"--mode",
|
||||
type=str,
|
||||
choices=["cudagraph", "no_graph"],
|
||||
default="cudagraph",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
@ -9,6 +9,9 @@ import torch
|
||||
from tabulate import tabulate
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.attention.ops.triton_reshape_and_cache_flash import (
|
||||
triton_reshape_and_cache_flash,
|
||||
)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import (
|
||||
@ -31,6 +34,8 @@ def run_benchmark(
|
||||
kv_cache_dtype: str,
|
||||
kv_cache_layout: str,
|
||||
num_iters: int,
|
||||
implementation: str,
|
||||
benchmark_mode: str,
|
||||
device: str = "cuda",
|
||||
) -> float:
|
||||
"""Return latency (seconds) for given num_tokens."""
|
||||
@ -38,6 +43,14 @@ def run_benchmark(
|
||||
if kv_cache_dtype == "fp8" and head_size % 16:
|
||||
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
|
||||
|
||||
if implementation not in ("cuda", "triton"):
|
||||
raise ValueError(
|
||||
f"Unsupported implementation: {implementation}. "
|
||||
"Only 'cuda' and 'triton' are supported."
|
||||
)
|
||||
if implementation == "triton" and kv_cache_layout == "HND":
|
||||
return float("nan") # Triton does not support HND layout yet.
|
||||
|
||||
current_platform.seed_everything(42)
|
||||
torch.set_default_device(device)
|
||||
|
||||
@ -65,27 +78,49 @@ def run_benchmark(
|
||||
cache_layout=kv_cache_layout,
|
||||
)
|
||||
key_cache, value_cache = key_caches[0], value_caches[0]
|
||||
# to free unused memory
|
||||
del key_caches, value_caches
|
||||
|
||||
# compute per-kernel scaling factors for fp8 conversion (if used).
|
||||
k_scale = (key.amax() / 64.0).to(torch.float32)
|
||||
v_scale = (value.amax() / 64.0).to(torch.float32)
|
||||
|
||||
if implementation == "cuda":
|
||||
function_under_test = lambda: ops.reshape_and_cache_flash(
|
||||
key, # noqa: F821
|
||||
value, # noqa: F821
|
||||
key_cache, # noqa: F821
|
||||
value_cache, # noqa: F821
|
||||
slot_mapping, # noqa: F821
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
else:
|
||||
function_under_test = lambda: triton_reshape_and_cache_flash(
|
||||
key, # noqa: F821
|
||||
value, # noqa: F821
|
||||
key_cache, # noqa: F821
|
||||
value_cache, # noqa: F821
|
||||
slot_mapping, # noqa: F821
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
if benchmark_mode == "cudagraph":
|
||||
g = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(g):
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
function_under_test = lambda: g.replay()
|
||||
|
||||
def run_cuda_benchmark(n_iters: int) -> float:
|
||||
nonlocal key, value, key_cache, value_cache, slot_mapping
|
||||
torch.cuda.synchronize()
|
||||
start = time.perf_counter()
|
||||
for _ in range(n_iters):
|
||||
ops.reshape_and_cache_flash(
|
||||
key,
|
||||
value,
|
||||
key_cache,
|
||||
value_cache,
|
||||
slot_mapping,
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
end = time.perf_counter()
|
||||
return (end - start) / n_iters
|
||||
|
||||
@ -116,10 +151,16 @@ def main(args):
|
||||
kv_cache_dtype=args.kv_cache_dtype,
|
||||
kv_cache_layout=layout,
|
||||
num_iters=args.iters,
|
||||
implementation=args.implementation,
|
||||
benchmark_mode=args.mode,
|
||||
device="cuda",
|
||||
)
|
||||
rows.append([n_tok, layout, f"{lat * 1e6:.3f}"])
|
||||
|
||||
print(
|
||||
f"Benchmark results for implementation {args.implementation}"
|
||||
f" (measuring with {args.mode}):"
|
||||
)
|
||||
print(tabulate(rows, headers=["num_tokens", "layout", "latency (µs)"]))
|
||||
|
||||
|
||||
@ -151,6 +192,21 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
parser.add_argument("--iters", type=int, default=100)
|
||||
|
||||
parser.add_argument(
|
||||
"--implementation",
|
||||
type=str,
|
||||
choices=["cuda", "triton"],
|
||||
default="cuda",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--mode",
|
||||
type=str,
|
||||
choices=["cudagraph", "no_graph"],
|
||||
default="cudagraph",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
|
||||
@ -11,13 +11,13 @@ from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import triton
|
||||
from tqdm import tqdm
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
_w8a8_block_fp8_matmul,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.triton_utils import triton
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
mp.set_start_method("spawn", force=True)
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# fmt: off
|
||||
# ruff: noqa: E501
|
||||
import time
|
||||
|
||||
@ -8,27 +7,33 @@ import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
get_col_major_tma_aligned_tensor,
|
||||
per_token_group_quant_fp8,
|
||||
w8a8_block_fp8_matmul,
|
||||
w8a8_triton_block_scaled_mm,
|
||||
)
|
||||
from vllm.triton_utils import triton
|
||||
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
|
||||
from vllm.utils.deep_gemm import (
|
||||
calc_diff,
|
||||
fp8_gemm_nt,
|
||||
get_col_major_tma_aligned_tensor,
|
||||
per_block_cast_to_fp8,
|
||||
)
|
||||
|
||||
|
||||
def benchmark_shape(m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
warmup: int = 100,
|
||||
repeat: int = 10000,
|
||||
verbose: bool = False) -> dict:
|
||||
def benchmark_shape(
|
||||
m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
warmup: int = 100,
|
||||
repeat: int = 10000,
|
||||
verbose: bool = False,
|
||||
) -> dict:
|
||||
"""Benchmark all implementations for a specific (m, n, k) shape."""
|
||||
if verbose:
|
||||
print(f"\n=== Benchmarking shape: m={m}, n={n}, k={k} ===")
|
||||
|
||||
# Create test tensors
|
||||
A = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
|
||||
B = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
|
||||
A = torch.randn((m, k), device="cuda", dtype=torch.bfloat16)
|
||||
B = torch.randn((n, k), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
# Reference result in BF16
|
||||
torch.cuda.synchronize()
|
||||
@ -45,34 +50,39 @@ def benchmark_shape(m: int,
|
||||
# Pre-quantize A for all implementations
|
||||
A_deepgemm, A_scale_deepgemm = per_token_group_quant_fp8(A, block_size[1])
|
||||
A_scale_deepgemm = get_col_major_tma_aligned_tensor(A_scale_deepgemm)
|
||||
C_deepgemm = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
|
||||
C_deepgemm = torch.empty((m, n), device="cuda", dtype=torch.bfloat16)
|
||||
A_vllm, A_scale_vllm = per_token_group_quant_fp8(A, block_size[1])
|
||||
A_vllm_cutlass, A_scale_vllm_cutlass = per_token_group_quant_fp8(
|
||||
A, block_size[1], column_major_scales=True)
|
||||
A, block_size[1], column_major_scales=True
|
||||
)
|
||||
|
||||
# === DeepGEMM Implementation ===
|
||||
def deepgemm_gemm():
|
||||
fp8_gemm_nt((A_deepgemm, A_scale_deepgemm),
|
||||
(B_deepgemm, B_scale_deepgemm),
|
||||
C_deepgemm)
|
||||
fp8_gemm_nt(
|
||||
(A_deepgemm, A_scale_deepgemm), (B_deepgemm, B_scale_deepgemm), C_deepgemm
|
||||
)
|
||||
return C_deepgemm
|
||||
|
||||
# === vLLM Triton Implementation ===
|
||||
def vllm_triton_gemm():
|
||||
return w8a8_block_fp8_matmul(A_vllm,
|
||||
B_vllm,
|
||||
A_scale_vllm,
|
||||
B_scale_vllm,
|
||||
block_size,
|
||||
output_dtype=torch.bfloat16)
|
||||
return w8a8_triton_block_scaled_mm(
|
||||
A_vllm,
|
||||
B_vllm,
|
||||
A_scale_vllm,
|
||||
B_scale_vllm,
|
||||
block_size,
|
||||
output_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# === vLLM CUTLASS Implementation ===
|
||||
def vllm_cutlass_gemm():
|
||||
return ops.cutlass_scaled_mm(A_vllm_cutlass,
|
||||
B_vllm.T,
|
||||
scale_a=A_scale_vllm_cutlass,
|
||||
scale_b=B_scale_vllm.T,
|
||||
out_dtype=torch.bfloat16)
|
||||
return ops.cutlass_scaled_mm(
|
||||
A_vllm_cutlass,
|
||||
B_vllm.T,
|
||||
scale_a=A_scale_vllm_cutlass,
|
||||
scale_b=B_scale_vllm.T,
|
||||
out_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# Run correctness check first
|
||||
if verbose:
|
||||
@ -89,26 +99,23 @@ def benchmark_shape(m: int,
|
||||
print(f"DeepGEMM vs Reference difference: {deepgemm_diff:.6f}")
|
||||
print(f"vLLM Triton vs Reference difference: {vllm_triton_diff:.6f}")
|
||||
print(f"vLLM CUTLASS vs Reference difference: {vllm_cutlass_diff:.6f}")
|
||||
print("vLLM Triton vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}")
|
||||
print("vLLM CUTLASS vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}")
|
||||
print(
|
||||
"vLLM Triton vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}"
|
||||
)
|
||||
print(
|
||||
"vLLM CUTLASS vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}"
|
||||
)
|
||||
|
||||
# Benchmark implementations
|
||||
implementations = {
|
||||
"DeepGEMM": deepgemm_gemm,
|
||||
"vLLM Triton": vllm_triton_gemm,
|
||||
"vLLM CUTLASS": vllm_cutlass_gemm
|
||||
"vLLM CUTLASS": vllm_cutlass_gemm,
|
||||
}
|
||||
|
||||
benchmark_results = {
|
||||
"shape": {
|
||||
"m": m,
|
||||
"n": n,
|
||||
"k": k
|
||||
},
|
||||
"implementations": {}
|
||||
}
|
||||
benchmark_results = {"shape": {"m": m, "n": n, "k": k}, "implementations": {}}
|
||||
|
||||
for name, func in implementations.items():
|
||||
# Warmup
|
||||
@ -136,38 +143,36 @@ def benchmark_shape(m: int,
|
||||
"tflops": tflops,
|
||||
"gb_s": gb_s,
|
||||
"diff": {
|
||||
"DeepGEMM":
|
||||
0.0 if name == "DeepGEMM" else calc_diff(func(), C_deepgemm),
|
||||
"Reference":
|
||||
deepgemm_diff if name == "DeepGEMM" else
|
||||
(vllm_triton_diff
|
||||
if name == "vLLM Triton" else vllm_cutlass_diff)
|
||||
}
|
||||
"DeepGEMM": 0.0
|
||||
if name == "DeepGEMM"
|
||||
else calc_diff(func(), C_deepgemm),
|
||||
"Reference": deepgemm_diff
|
||||
if name == "DeepGEMM"
|
||||
else (vllm_triton_diff if name == "vLLM Triton" else vllm_cutlass_diff),
|
||||
},
|
||||
}
|
||||
|
||||
if verbose:
|
||||
print(
|
||||
f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s"
|
||||
)
|
||||
print(f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s")
|
||||
|
||||
# Calculate speedups
|
||||
baseline = benchmark_results["implementations"]["DeepGEMM"]["time_ms"]
|
||||
for name, data in benchmark_results["implementations"].items():
|
||||
if name != "DeepGEMM":
|
||||
speedup = baseline / data["time_ms"]
|
||||
benchmark_results["implementations"][name][
|
||||
"speedup_vs_deepgemm"] = speedup
|
||||
benchmark_results["implementations"][name]["speedup_vs_deepgemm"] = speedup
|
||||
if verbose:
|
||||
print(f"DeepGEMM is {1/speedup:.2f}x "
|
||||
f"{'faster' if 1/speedup > 1 else 'slower'} than {name}")
|
||||
print(
|
||||
f"DeepGEMM is {1 / speedup:.2f}x "
|
||||
f"{'faster' if 1 / speedup > 1 else 'slower'} than {name}"
|
||||
)
|
||||
|
||||
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"][
|
||||
"time_ms"]
|
||||
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"][
|
||||
"time_ms"]
|
||||
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"]["time_ms"]
|
||||
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"]["time_ms"]
|
||||
cutlass_vs_triton = vllm_triton_time / vllm_cutlass_time
|
||||
benchmark_results["implementations"]["vLLM CUTLASS"][
|
||||
"speedup_vs_triton"] = cutlass_vs_triton
|
||||
benchmark_results["implementations"]["vLLM CUTLASS"]["speedup_vs_triton"] = (
|
||||
cutlass_vs_triton
|
||||
)
|
||||
if verbose:
|
||||
print(
|
||||
f"vLLM CUTLASS is {cutlass_vs_triton:.2f}x "
|
||||
@ -179,8 +184,7 @@ def benchmark_shape(m: int,
|
||||
|
||||
def format_table_row(values, widths):
|
||||
"""Format a row with specified column widths."""
|
||||
return "| " + " | ".join(f"{val:{w}}"
|
||||
for val, w in zip(values, widths)) + " |"
|
||||
return "| " + " | ".join(f"{val:{w}}" for val, w in zip(values, widths)) + " |"
|
||||
|
||||
|
||||
def print_table(headers, rows, title=None):
|
||||
@ -288,38 +292,50 @@ def run_benchmarks(verbose: bool = False):
|
||||
for result in all_results:
|
||||
shape = result["shape"]
|
||||
impl_data = result["implementations"]["DeepGEMM"]
|
||||
deepgemm_rows.append([
|
||||
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}"
|
||||
])
|
||||
deepgemm_rows.append(
|
||||
[
|
||||
shape["m"],
|
||||
shape["n"],
|
||||
shape["k"],
|
||||
f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}",
|
||||
f"{impl_data['gb_s']:.1f}",
|
||||
]
|
||||
)
|
||||
|
||||
print_table(deepgemm_headers,
|
||||
deepgemm_rows,
|
||||
title="DeepGEMM Implementation:")
|
||||
print_table(deepgemm_headers, deepgemm_rows, title="DeepGEMM Implementation:")
|
||||
|
||||
# Print vLLM Triton table
|
||||
triton_headers = [
|
||||
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"
|
||||
]
|
||||
triton_headers = ["m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"]
|
||||
triton_rows = []
|
||||
for result in all_results:
|
||||
shape = result["shape"]
|
||||
impl_data = result["implementations"]["vLLM Triton"]
|
||||
speedup = impl_data.get("speedup_vs_deepgemm", 1.0)
|
||||
triton_rows.append([
|
||||
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(speedup)
|
||||
])
|
||||
triton_rows.append(
|
||||
[
|
||||
shape["m"],
|
||||
shape["n"],
|
||||
shape["k"],
|
||||
f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}",
|
||||
f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(speedup),
|
||||
]
|
||||
)
|
||||
|
||||
print_table(triton_headers,
|
||||
triton_rows,
|
||||
title="vLLM Triton Implementation:")
|
||||
print_table(triton_headers, triton_rows, title="vLLM Triton Implementation:")
|
||||
|
||||
# Print vLLM CUTLASS table
|
||||
cutlass_headers = [
|
||||
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM",
|
||||
"vs Triton"
|
||||
"m",
|
||||
"n",
|
||||
"k",
|
||||
"Time (μs)",
|
||||
"TFLOPS",
|
||||
"GB/s",
|
||||
"vs DeepGEMM",
|
||||
"vs Triton",
|
||||
]
|
||||
cutlass_rows = []
|
||||
for result in all_results:
|
||||
@ -327,28 +343,27 @@ def run_benchmarks(verbose: bool = False):
|
||||
impl_data = result["implementations"]["vLLM CUTLASS"]
|
||||
vs_deepgemm = impl_data.get("speedup_vs_deepgemm", 1.0)
|
||||
vs_triton = impl_data.get("speedup_vs_triton", 1.0)
|
||||
cutlass_rows.append([
|
||||
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(vs_deepgemm),
|
||||
format_speedup(vs_triton)
|
||||
])
|
||||
cutlass_rows.append(
|
||||
[
|
||||
shape["m"],
|
||||
shape["n"],
|
||||
shape["k"],
|
||||
f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}",
|
||||
f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(vs_deepgemm),
|
||||
format_speedup(vs_triton),
|
||||
]
|
||||
)
|
||||
|
||||
print_table(cutlass_headers,
|
||||
cutlass_rows,
|
||||
title="vLLM CUTLASS Implementation:")
|
||||
print_table(cutlass_headers, cutlass_rows, title="vLLM CUTLASS Implementation:")
|
||||
|
||||
# Calculate and print averages
|
||||
print("\n===== AVERAGE PERFORMANCE =====")
|
||||
|
||||
implementations = ["DeepGEMM", "vLLM Triton", "vLLM CUTLASS"]
|
||||
avg_metrics = {
|
||||
impl: {
|
||||
"tflops": 0,
|
||||
"gb_s": 0,
|
||||
"time_ms": 0
|
||||
}
|
||||
for impl in implementations
|
||||
impl: {"tflops": 0, "gb_s": 0, "time_ms": 0} for impl in implementations
|
||||
}
|
||||
|
||||
for result in all_results:
|
||||
@ -366,9 +381,9 @@ def run_benchmarks(verbose: bool = False):
|
||||
avg_tflops = avg_metrics[impl]["tflops"] / num_shapes
|
||||
avg_mem_bw = avg_metrics[impl]["gb_s"] / num_shapes
|
||||
avg_time = avg_metrics[impl]["time_ms"] / num_shapes
|
||||
avg_rows.append([
|
||||
impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"
|
||||
])
|
||||
avg_rows.append(
|
||||
[impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"]
|
||||
)
|
||||
|
||||
print_table(avg_headers, avg_rows)
|
||||
|
||||
@ -376,21 +391,19 @@ def run_benchmarks(verbose: bool = False):
|
||||
avg_speedups = {
|
||||
"DeepGEMM vs vLLM Triton": 0,
|
||||
"DeepGEMM vs vLLM CUTLASS": 0,
|
||||
"vLLM CUTLASS vs vLLM Triton": 0
|
||||
"vLLM CUTLASS vs vLLM Triton": 0,
|
||||
}
|
||||
|
||||
for result in all_results:
|
||||
deepgemm_time = result["implementations"]["DeepGEMM"]["time_ms"]
|
||||
vllm_triton_time = result["implementations"]["vLLM Triton"]["time_ms"]
|
||||
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"][
|
||||
"time_ms"]
|
||||
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"]["time_ms"]
|
||||
|
||||
avg_speedups[
|
||||
"DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
|
||||
avg_speedups[
|
||||
"DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
|
||||
avg_speedups[
|
||||
"vLLM CUTLASS vs vLLM Triton"] += vllm_triton_time / vllm_cutlass_time
|
||||
avg_speedups["DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
|
||||
avg_speedups["DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
|
||||
avg_speedups["vLLM CUTLASS vs vLLM Triton"] += (
|
||||
vllm_triton_time / vllm_cutlass_time
|
||||
)
|
||||
|
||||
print("\n===== AVERAGE SPEEDUPS =====")
|
||||
speedup_headers = ["Comparison", "Speedup"]
|
||||
@ -408,8 +421,7 @@ def run_benchmarks(verbose: bool = False):
|
||||
|
||||
for result in all_results:
|
||||
for impl in implementations:
|
||||
avg_diff[impl] += result["implementations"][impl]["diff"][
|
||||
"Reference"]
|
||||
avg_diff[impl] += result["implementations"][impl]["diff"]["Reference"]
|
||||
|
||||
diff_headers = ["Implementation", "Avg Diff vs Reference"]
|
||||
diff_rows = []
|
||||
|
||||
@ -1,49 +0,0 @@
|
||||
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||
# following differences:
|
||||
# - ruff line length is overridden to 88
|
||||
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 88
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"vllm/third_party/**" = ["ALL"]
|
||||
"vllm/version.py" = ["F401"]
|
||||
"vllm/_version.py" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
# pycodestyle
|
||||
"E",
|
||||
# Pyflakes
|
||||
"F",
|
||||
# pyupgrade
|
||||
"UP",
|
||||
# flake8-bugbear
|
||||
"B",
|
||||
# flake8-simplify
|
||||
"SIM",
|
||||
# isort
|
||||
"I",
|
||||
# flake8-logging-format
|
||||
"G",
|
||||
]
|
||||
ignore = [
|
||||
# star imports
|
||||
"F405", "F403",
|
||||
# lambda expression assignment
|
||||
"E731",
|
||||
# Loop control variable not used within loop body
|
||||
"B007",
|
||||
# f-string format
|
||||
"UP032",
|
||||
# Can remove once 3.10+ is the minimum Python version
|
||||
"UP007",
|
||||
]
|
||||
|
||||
[tool.ruff.lint.isort]
|
||||
known-first-party = ["vllm"]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
||||
@ -101,6 +101,7 @@ else()
|
||||
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
||||
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
|
||||
find_isa(${CPUINFO} "S390" S390_FOUND)
|
||||
find_isa(${CPUINFO} "v" RVV_FOUND) # Check for RISC-V RVV support
|
||||
endif()
|
||||
|
||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
@ -177,8 +178,14 @@ elseif (S390_FOUND)
|
||||
"-mzvector"
|
||||
"-march=native"
|
||||
"-mtune=native")
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "riscv64")
|
||||
if(RVV_FOUND)
|
||||
message(FAIL_ERROR "Can't support rvv now.")
|
||||
else()
|
||||
list(APPEND CXX_COMPILE_FLAGS "-march=rv64gc")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
|
||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
|
||||
endif()
|
||||
|
||||
#
|
||||
@ -206,6 +213,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
|
||||
endif()
|
||||
set(ONEDNN_AARCH64_USE_ACL "ON")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
|
||||
add_compile_definitions(VLLM_USE_ACL)
|
||||
endif()
|
||||
|
||||
set(ONEDNN_LIBRARY_TYPE "STATIC")
|
||||
@ -219,7 +227,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
|
||||
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
|
||||
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
|
||||
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
|
||||
set(ONEDNN_VERBOSE "OFF")
|
||||
set(ONEDNN_VERBOSE "ON")
|
||||
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
|
||||
|
||||
FetchContent_MakeAvailable(oneDNN)
|
||||
@ -258,7 +266,8 @@ set(VLLM_EXT_SRC
|
||||
"csrc/cpu/layernorm.cpp"
|
||||
"csrc/cpu/mla_decode.cpp"
|
||||
"csrc/cpu/pos_encoding.cpp"
|
||||
"csrc/cpu/torch_bindings.cpp")
|
||||
"csrc/cpu/torch_bindings.cpp"
|
||||
"csrc/moe/dynamic_4bit_int_moe_cpu.cpp")
|
||||
|
||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
set(VLLM_EXT_SRC
|
||||
|
||||
@ -18,8 +18,8 @@ if(FLASH_MLA_SRC_DIR)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
flashmla
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
|
||||
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
|
||||
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
|
||||
GIT_PROGRESS TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND ""
|
||||
@ -33,23 +33,64 @@ message(STATUS "FlashMLA is available at ${flashmla_SOURCE_DIR}")
|
||||
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
|
||||
# Only build FlashMLA kernels if we are building for something compatible with
|
||||
# sm90a
|
||||
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
|
||||
set(SUPPORT_ARCHS)
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3)
|
||||
list(APPEND SUPPORT_ARCHS 9.0a)
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8)
|
||||
list(APPEND SUPPORT_ARCHS 10.0a)
|
||||
endif()
|
||||
|
||||
|
||||
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "${SUPPORT_ARCHS}" "${CUDA_ARCHS}")
|
||||
if(FLASH_MLA_ARCHS)
|
||||
set(VLLM_FLASHMLA_GPU_FLAGS ${VLLM_GPU_FLAGS})
|
||||
list(APPEND VLLM_FLASHMLA_GPU_FLAGS "--expt-relaxed-constexpr" "--expt-extended-lambda" "--use_fast_math")
|
||||
|
||||
set(FlashMLA_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
|
||||
${flashmla_SOURCE_DIR}/csrc/torch_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/pybind.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/smxx/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/smxx/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/dense/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/sparse_fp8/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/prefill/sparse/fwd.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/decode/sparse_fp8/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_fwd_sm100.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_bwd_sm100.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/sparse/fwd.cu
|
||||
)
|
||||
|
||||
set(FlashMLA_Extension_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
|
||||
)
|
||||
|
||||
set(FlashMLA_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc)
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
||||
)
|
||||
|
||||
set(FlashMLA_Extension_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
||||
)
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_SOURCES}"
|
||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_Extension_SOURCES}"
|
||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
||||
|
||||
define_gpu_extension_target(
|
||||
_flashmla_C
|
||||
DESTINATION vllm
|
||||
@ -60,8 +101,32 @@ if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
||||
target_compile_options(_flashmla_C PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
||||
|
||||
define_gpu_extension_target(
|
||||
_flashmla_extension_C
|
||||
DESTINATION vllm
|
||||
LANGUAGE ${VLLM_GPU_LANG}
|
||||
SOURCES ${FlashMLA_Extension_SOURCES}
|
||||
COMPILE_FLAGS ${VLLM_FLASHMLA_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
||||
INCLUDE_DIRECTORIES ${FlashMLA_Extension_INCLUDES}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
||||
target_compile_options(_flashmla_extension_C PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
||||
else()
|
||||
# Create an empty target for setup.py when not targeting sm90a systems
|
||||
# Create empty targets for setup.py when not targeting sm90a systems
|
||||
add_custom_target(_flashmla_C)
|
||||
add_custom_target(_flashmla_extension_C)
|
||||
endif()
|
||||
|
||||
|
||||
@ -38,7 +38,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG ee4d25bd84e0cbc7e0b9b9685085fd5db2dcb62a
|
||||
GIT_TAG 4695e6bed5366c41e28c06cd86170166e4f43d00
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
|
||||
@ -16,7 +16,7 @@ import shutil
|
||||
|
||||
from torch.utils.hipify.hipify_python import hipify
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Project directory where all the source + include files live.
|
||||
@ -34,15 +34,14 @@ if __name__ == '__main__':
|
||||
)
|
||||
|
||||
# Source files to convert.
|
||||
parser.add_argument("sources",
|
||||
help="Source files to hipify.",
|
||||
nargs="*",
|
||||
default=[])
|
||||
parser.add_argument(
|
||||
"sources", help="Source files to hipify.", nargs="*", default=[]
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Limit include scope to project_dir only
|
||||
includes = [os.path.join(args.project_dir, '*')]
|
||||
includes = [os.path.join(args.project_dir, "*")]
|
||||
|
||||
# Get absolute path for all source files.
|
||||
extra_files = [os.path.abspath(s) for s in args.sources]
|
||||
@ -51,25 +50,31 @@ if __name__ == '__main__':
|
||||
# The directory might already exist to hold object files so we ignore that.
|
||||
shutil.copytree(args.project_dir, args.output_dir, dirs_exist_ok=True)
|
||||
|
||||
hipify_result = hipify(project_directory=args.project_dir,
|
||||
output_directory=args.output_dir,
|
||||
header_include_dirs=[],
|
||||
includes=includes,
|
||||
extra_files=extra_files,
|
||||
show_detailed=True,
|
||||
is_pytorch_extension=True,
|
||||
hipify_extra_files_only=True)
|
||||
hipify_result = hipify(
|
||||
project_directory=args.project_dir,
|
||||
output_directory=args.output_dir,
|
||||
header_include_dirs=[],
|
||||
includes=includes,
|
||||
extra_files=extra_files,
|
||||
show_detailed=True,
|
||||
is_pytorch_extension=True,
|
||||
hipify_extra_files_only=True,
|
||||
)
|
||||
|
||||
hipified_sources = []
|
||||
for source in args.sources:
|
||||
s_abs = os.path.abspath(source)
|
||||
hipified_s_abs = (hipify_result[s_abs].hipified_path if
|
||||
(s_abs in hipify_result
|
||||
and hipify_result[s_abs].hipified_path is not None)
|
||||
else s_abs)
|
||||
hipified_s_abs = (
|
||||
hipify_result[s_abs].hipified_path
|
||||
if (
|
||||
s_abs in hipify_result
|
||||
and hipify_result[s_abs].hipified_path is not None
|
||||
)
|
||||
else s_abs
|
||||
)
|
||||
hipified_sources.append(hipified_s_abs)
|
||||
|
||||
assert (len(hipified_sources) == len(args.sources))
|
||||
assert len(hipified_sources) == len(args.sources)
|
||||
|
||||
# Print hipified source files.
|
||||
print("\n".join(hipified_sources))
|
||||
|
||||
@ -310,13 +310,13 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
|
||||
list(REMOVE_DUPLICATES _PTX_ARCHS)
|
||||
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
|
||||
|
||||
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
|
||||
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
|
||||
# If x.0a or x.0f is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
|
||||
# remove x.0a or x.0f from SRC_CUDA_ARCHS and add x.0a or x.0f to _CUDA_ARCHS
|
||||
set(_CUDA_ARCHS)
|
||||
foreach(_arch ${_SRC_CUDA_ARCHS})
|
||||
if(_arch MATCHES "\\a$")
|
||||
if(_arch MATCHES "[af]$")
|
||||
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
|
||||
string(REPLACE "a" "" _base "${_arch}")
|
||||
string(REGEX REPLACE "[af]$" "" _base "${_arch}")
|
||||
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
|
||||
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
|
||||
list(APPEND _CUDA_ARCHS "${_arch}")
|
||||
|
||||
@ -135,10 +135,10 @@ public:
|
||||
max_splits = min(16, max_splits);
|
||||
|
||||
// TODO: This avoids a hang when the batch size larger than 1 and
|
||||
// there is more than 4 kv_splits.
|
||||
// there is more than 1 kv_splits.
|
||||
// Discuss with NVIDIA how this can be fixed.
|
||||
if (B > 1) {
|
||||
max_splits = min(2, max_splits);
|
||||
max_splits = min(1, max_splits);
|
||||
}
|
||||
|
||||
// printf(" max_splits = %d\n", max_splits);
|
||||
|
||||
@ -580,22 +580,22 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
load_page_table(
|
||||
blk_coord,
|
||||
problem_shape,
|
||||
params.mainloop,
|
||||
shared_storage.tensors,
|
||||
pipeline_page_table, pipeline_pt_producer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -604,15 +604,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
load_cpasync(
|
||||
blk_coord,
|
||||
@ -621,7 +621,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
params.mainloop_params,
|
||||
shared_storage.tensors,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
local_split_kv,
|
||||
local_split_kv,
|
||||
/* must be shared pipe */
|
||||
pipeline_page_table, pipeline_pt_consumer_state
|
||||
);
|
||||
@ -633,15 +633,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
load_tma</* paged= */ true>(
|
||||
blk_coord,
|
||||
@ -651,7 +651,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
shared_storage.tensors,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
|
||||
}
|
||||
@ -660,15 +660,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
load_tma<false>(
|
||||
blk_coord,
|
||||
@ -678,7 +678,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
shared_storage.tensors,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
|
||||
}
|
||||
@ -694,14 +694,14 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto local_split_kv = params.split_kv;
|
||||
auto local_split_kv = params.split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
mma(blk_coord,
|
||||
problem_shape,
|
||||
@ -711,7 +711,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
pipeline_mma_s, pipeline_mma_s_producer_state,
|
||||
pipeline_p_mma, pipeline_p_mma_consumer_state,
|
||||
pipeline_mma_o, pipeline_mma_o_producer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -726,15 +726,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||
auto blk_coord = tile_scheduler.get_block_coord();
|
||||
auto problem_shape = params.problem_shape;
|
||||
auto split_kv = params.split_kv;
|
||||
auto local_split_kv = split_kv;
|
||||
auto split_kv = params.split_kv;
|
||||
auto local_split_kv = split_kv;
|
||||
if (params.mainloop.ptr_seq != nullptr) {
|
||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
if (params.ptr_split_kv != nullptr) {
|
||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||
}
|
||||
}
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
if (local_split_kv <= get<3>(blk_coord))
|
||||
continue;
|
||||
compute(
|
||||
blk_coord,
|
||||
@ -745,7 +745,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
pipeline_mma_s, pipeline_mma_s_consumer_state,
|
||||
pipeline_p_mma, pipeline_p_mma_producer_state,
|
||||
pipeline_mma_o, pipeline_mma_o_consumer_state,
|
||||
local_split_kv
|
||||
local_split_kv
|
||||
);
|
||||
}
|
||||
|
||||
@ -1900,7 +1900,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
||||
cutlass::arch::NamedBarrier(
|
||||
(kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp,
|
||||
kNamedBarrierEpilogue
|
||||
).arrive();
|
||||
).arrive_and_wait();
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
@ -56,3 +56,11 @@ void cp_gather_cache(
|
||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
||||
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
|
||||
|
||||
// Indexer K quantization and cache function
|
||||
void indexer_k_quant_and_cache(
|
||||
torch::Tensor& k, // [num_tokens, head_dim]
|
||||
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
||||
torch::Tensor& slot_mapping, // [num_tokens]
|
||||
int64_t quant_block_size, // quantization block size
|
||||
const std::string& scale_fmt);
|
||||
|
||||
@ -16,8 +16,7 @@
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <cfloat>
|
||||
|
||||
#ifdef USE_ROCM
|
||||
#include <hip/hip_bf16.h>
|
||||
@ -209,6 +208,20 @@ void copy_blocks_mla(std::vector<torch::Tensor> const& kv_caches,
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Used to copy/convert one element
|
||||
template <typename OutT, typename InT, Fp8KVCacheDataType kv_dt>
|
||||
struct CopyWithScaleOp {
|
||||
float scale;
|
||||
|
||||
__device__ __forceinline__ void operator()(OutT& dst, const InT src) const {
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
dst = static_cast<OutT>(src);
|
||||
} else {
|
||||
dst = fp8::scaled_convert<OutT, InT, kv_dt>(src, scale);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void reshape_and_cache_kernel(
|
||||
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
|
||||
@ -224,59 +237,51 @@ __global__ void reshape_and_cache_kernel(
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
if (slot_idx < 0) {
|
||||
// Padding token that should be ignored.
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t block_idx = slot_idx / block_size;
|
||||
const int64_t block_offset = slot_idx % block_size;
|
||||
const int h_block_count = head_size / x; // head_size//x
|
||||
|
||||
const int n = num_heads * head_size;
|
||||
for (int i = threadIdx.x; i < n; i += blockDim.x) {
|
||||
const int64_t src_key_idx = token_idx * key_stride + i;
|
||||
const int64_t src_value_idx = token_idx * value_stride + i;
|
||||
const int h_block_idx = threadIdx.x;
|
||||
if (h_block_idx >= num_heads * h_block_count) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int head_idx = i / head_size;
|
||||
const int head_offset = i % head_size;
|
||||
const int x_idx = head_offset / x;
|
||||
const int x_offset = head_offset % x;
|
||||
const int head_idx = h_block_idx / h_block_count;
|
||||
const int h_block = h_block_idx % h_block_count;
|
||||
|
||||
const int64_t tgt_key_idx =
|
||||
block_idx * num_heads * (head_size / x) * block_size * x +
|
||||
head_idx * (head_size / x) * block_size * x + x_idx * block_size * x +
|
||||
block_offset * x + x_offset;
|
||||
const int64_t tgt_value_idx =
|
||||
block_idx * num_heads * head_size * block_size +
|
||||
head_idx * head_size * block_size + head_offset * block_size +
|
||||
block_offset;
|
||||
scalar_t tgt_key = key[src_key_idx];
|
||||
scalar_t tgt_value = value[src_value_idx];
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
key_cache[tgt_key_idx] = tgt_key;
|
||||
value_cache[tgt_value_idx] = tgt_value;
|
||||
} else {
|
||||
key_cache[tgt_key_idx] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, *k_scale);
|
||||
value_cache[tgt_value_idx] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, *v_scale);
|
||||
}
|
||||
const scalar_t* __restrict__ key_src =
|
||||
key + token_idx * key_stride + head_idx * head_size + h_block * x;
|
||||
const int64_t src_value_start =
|
||||
token_idx * value_stride + head_idx * head_size + h_block * x;
|
||||
|
||||
cache_t* __restrict__ key_dst =
|
||||
key_cache + block_idx * num_heads * h_block_count * block_size * x +
|
||||
head_idx * h_block_count * block_size * x + h_block * block_size * x +
|
||||
block_offset * x;
|
||||
const int64_t tgt_value_start =
|
||||
block_idx * num_heads * h_block_count * x * block_size +
|
||||
head_idx * h_block_count * x * block_size + h_block * x * block_size +
|
||||
block_offset;
|
||||
|
||||
constexpr int VEC_SIZE = (sizeof(scalar_t) == 2) ? 8 : 4;
|
||||
float k_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *k_scale;
|
||||
CopyWithScaleOp<cache_t, scalar_t, kv_dt> k_op{k_scale_val};
|
||||
float v_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *v_scale;
|
||||
CopyWithScaleOp<cache_t, scalar_t, kv_dt> v_op{v_scale_val};
|
||||
|
||||
vectorize_with_alignment<VEC_SIZE>(key_src, key_dst, x, 0, 1, k_op);
|
||||
|
||||
const scalar_t* __restrict__ value_src = value + src_value_start;
|
||||
cache_t* __restrict__ value_dst = value_cache + tgt_value_start;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < x; i++) {
|
||||
v_op(value_dst[i * block_size], value_src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Used by vectorization_utils to copy/convert one element
|
||||
template <typename OutT, typename InT, Fp8KVCacheDataType kv_dt>
|
||||
struct CopyWithScaleOp {
|
||||
float scale;
|
||||
|
||||
__device__ __forceinline__ void operator()(OutT& dst, const InT src) const {
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
dst = static_cast<OutT>(src);
|
||||
} else {
|
||||
dst = fp8::scaled_convert<OutT, InT, kv_dt>(src, scale);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void reshape_and_cache_flash_kernel(
|
||||
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
|
||||
@ -396,6 +401,177 @@ __global__ void concat_and_cache_mla_kernel(
|
||||
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void concat_and_cache_ds_mla_kernel(
|
||||
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
|
||||
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
|
||||
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
|
||||
// + pe_dim)]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int block_stride, //
|
||||
const int entry_stride, //
|
||||
const int kv_c_stride, //
|
||||
const int k_pe_stride, //
|
||||
const int kv_lora_rank, //
|
||||
const int pe_dim, //
|
||||
const int block_size, //
|
||||
const float* scale //
|
||||
) {
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
// NOTE: slot_idx can be -1 if the token is padded
|
||||
if (slot_idx < 0) {
|
||||
return;
|
||||
}
|
||||
const int64_t block_idx = slot_idx / block_size;
|
||||
const int64_t block_offset = slot_idx % block_size;
|
||||
const int64_t dst_idx_start =
|
||||
block_idx * block_stride + block_offset * entry_stride;
|
||||
|
||||
// For the NoPE part, each tile of 128 elements is handled by half of one warp
|
||||
// (16 threads). There are 4 total tiles, so 2 warps (64 threads).
|
||||
// Lanes 0 and 16 of each warp write the scale values for that warp's tiles.
|
||||
// The RoPE part (last 64 elements) is handled by another 1 warp (32 threads).
|
||||
// So in total, we use 3 warps (96 threads) per block.
|
||||
|
||||
// Cast kv_cache to 16_bit for RoPE values
|
||||
scalar_t* kv_cache_16bit =
|
||||
reinterpret_cast<scalar_t*>(&kv_cache[dst_idx_start]);
|
||||
|
||||
// The last warp handles the RoPE part
|
||||
if (threadIdx.x >= 64) {
|
||||
// Each thread handles two elements of RoPE
|
||||
const int8_t pe_idx_start = (threadIdx.x - 64) * 2;
|
||||
const int64_t src_idx = token_idx * k_pe_stride + pe_idx_start;
|
||||
// Vectorized load of two 16-bit values, performed as one 32-bit load
|
||||
const int32_t vals = *reinterpret_cast<const int32_t*>(&k_pe[src_idx]);
|
||||
// RoPE values start after the packed 8-bit NoPE values and the
|
||||
// 32-bit scales
|
||||
const int64_t dst_idx = kv_lora_rank / 2 + 8 + pe_idx_start;
|
||||
// Vectorized store of two 16-bit values, performed as one 32-bit store
|
||||
*reinterpret_cast<int32_t*>(&kv_cache_16bit[dst_idx]) = vals;
|
||||
return;
|
||||
}
|
||||
|
||||
// The first two warps handle the NoPE part
|
||||
const int8_t warp_idx = threadIdx.x >> 5;
|
||||
const int8_t lane_idx = threadIdx.x & 31;
|
||||
const int8_t tile_idx = warp_idx * 2 + (lane_idx >> 4);
|
||||
|
||||
// Each thread handles 8 elements of NoPE
|
||||
// Load the NoPE elements for this thread into registers
|
||||
const int64_t src_idx_start = token_idx * kv_c_stride + (threadIdx.x * 8);
|
||||
// Vectorized load of eight 16-bit values, performed as an int4 load
|
||||
const int4 vals_i4 = *reinterpret_cast<const int4*>(&kv_c[src_idx_start]);
|
||||
const scalar_t* vals = reinterpret_cast<const scalar_t*>(&vals_i4);
|
||||
|
||||
// Max absolute value of this thread's elements
|
||||
float max_abs = fmaxf(fmaxf(fmaxf(fabsf(vals[0]), fabsf(vals[1])),
|
||||
fmaxf(fabsf(vals[2]), fabsf(vals[3]))),
|
||||
fmaxf(fmaxf(fabsf(vals[4]), fabsf(vals[5])),
|
||||
fmaxf(fabsf(vals[6]), fabsf(vals[7]))));
|
||||
|
||||
// Warp-level reduction to find the max absolute value in each half-warp
|
||||
#pragma unroll
|
||||
for (int offset = 8; offset > 0; offset /= 2) {
|
||||
max_abs = fmaxf(max_abs, VLLM_SHFL_XOR_SYNC_WIDTH(max_abs, offset, 16));
|
||||
}
|
||||
|
||||
// Compute the scale for the tile
|
||||
float tile_scale = max_abs / 448.f;
|
||||
tile_scale = fmaxf(tile_scale, FLT_MIN);
|
||||
|
||||
// The first lane of each half-warp writes the scale to kv_cache
|
||||
if ((lane_idx == 0) || (lane_idx == 16)) {
|
||||
float* kv_cache_32bit = reinterpret_cast<float*>(&kv_cache[dst_idx_start]);
|
||||
const uint64_t dst_idx = kv_lora_rank / 4 + tile_idx;
|
||||
kv_cache_32bit[dst_idx] = tile_scale;
|
||||
}
|
||||
|
||||
// Now all threads in the block scale and write their elements
|
||||
// NoPE data is packed in the first kv_lora_rank/2 bytes (first 256 bytes)
|
||||
const int64_t dst_idx_base = dst_idx_start + (threadIdx.x * 8);
|
||||
|
||||
uint8_t result[8];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 8; i++) {
|
||||
result[i] =
|
||||
fp8::scaled_convert<uint8_t, scalar_t, Fp8KVCacheDataType::kFp8E4M3>(
|
||||
vals[i], tile_scale);
|
||||
}
|
||||
|
||||
// Store as aligned 64-bit writes
|
||||
*reinterpret_cast<uint64_t*>(&kv_cache[dst_idx_base]) =
|
||||
*reinterpret_cast<const uint64_t*>(result);
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void indexer_k_quant_and_cache_kernel(
|
||||
const scalar_t* __restrict__ k, // [num_tokens, head_dim]
|
||||
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, cache_stride]
|
||||
const int64_t* __restrict__ slot_mapping, // [num_tokens]
|
||||
const int head_dim, // dimension of each head
|
||||
const int quant_block_size, // quantization block size
|
||||
const int cache_block_size, // cache block size
|
||||
const int cache_stride, // stride for each token in kv_cache
|
||||
const bool use_ue8m0 // use ue8m0 scale format
|
||||
) {
|
||||
constexpr int VEC_SIZE = 4;
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
const int64_t head_dim_idx = (blockIdx.y * blockDim.y * blockDim.x +
|
||||
threadIdx.y * blockDim.x + threadIdx.x) *
|
||||
VEC_SIZE;
|
||||
const int64_t slot_idx = slot_mapping[token_idx];
|
||||
const int64_t block_idx = slot_idx / cache_block_size;
|
||||
const int64_t block_offset = slot_idx % cache_block_size;
|
||||
|
||||
// NOTE: slot_idx can be -1 if the token is padded
|
||||
if (slot_idx < 0 || (head_dim_idx >= head_dim)) {
|
||||
return;
|
||||
}
|
||||
|
||||
float2 k_val = (reinterpret_cast<const float2*>(
|
||||
k))[(token_idx * head_dim + head_dim_idx) / VEC_SIZE];
|
||||
scalar_t* k_val_ptr = reinterpret_cast<scalar_t*>(&k_val);
|
||||
float amax = 0.0f;
|
||||
for (int i = 0; i < VEC_SIZE; i++) {
|
||||
amax = fmaxf(amax, fabsf(float(k_val_ptr[i])));
|
||||
}
|
||||
#ifndef USE_ROCM
|
||||
__syncwarp();
|
||||
#endif
|
||||
|
||||
// Reduced amax
|
||||
for (int mask = 16; mask > 0; mask /= 2) {
|
||||
#ifdef USE_ROCM
|
||||
amax = fmaxf(amax, __shfl_xor_sync(uint64_t(-1), amax, mask));
|
||||
#else
|
||||
amax = fmaxf(amax, __shfl_xor_sync(unsigned(-1), amax, mask));
|
||||
#endif
|
||||
}
|
||||
#ifndef USE_ROCM
|
||||
__syncwarp();
|
||||
#endif
|
||||
float scale = fmaxf(amax, 1e-4) / 448.0f;
|
||||
if (use_ue8m0) {
|
||||
scale = exp2f(ceilf(log2f(scale)));
|
||||
}
|
||||
|
||||
const int64_t dst_offset = block_idx * cache_block_size * cache_stride +
|
||||
block_offset * head_dim + head_dim_idx;
|
||||
for (int i = 0; i < VEC_SIZE; i++) {
|
||||
kv_cache[dst_offset + i] =
|
||||
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(k_val_ptr[i], scale);
|
||||
}
|
||||
if (threadIdx.x == 0) {
|
||||
const int64_t dst_scale_idx =
|
||||
block_idx * cache_block_size * cache_stride +
|
||||
cache_block_size * head_dim +
|
||||
(block_offset * head_dim + head_dim_idx) * 4 / quant_block_size;
|
||||
reinterpret_cast<float*>(kv_cache)[dst_scale_idx / 4] = scale;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
// KV_T is the data type of key and value tensors.
|
||||
@ -431,14 +607,15 @@ void reshape_and_cache(
|
||||
|
||||
int key_stride = key.stride(0);
|
||||
int value_stride = value.stride(0);
|
||||
int head_div_x = head_size / x;
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * head_size, 512));
|
||||
dim3 block(std::min(num_heads * head_div_x, 512));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
|
||||
CALL_RESHAPE_AND_CACHE)
|
||||
CALL_RESHAPE_AND_CACHE);
|
||||
}
|
||||
|
||||
// KV_T is the data type of key and value tensors.
|
||||
@ -509,6 +686,18 @@ void reshape_and_cache_flash(
|
||||
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
|
||||
reinterpret_cast<const float*>(scale.data_ptr()));
|
||||
|
||||
// KV_T is the data type of key and value tensors.
|
||||
// CACHE_T is the stored data type of kv-cache.
|
||||
#define CALL_CONCAT_AND_CACHE_DS_MLA(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::concat_and_cache_ds_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
|
||||
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
|
||||
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
|
||||
reinterpret_cast<const float*>(scale.data_ptr()));
|
||||
|
||||
void concat_and_cache_mla(
|
||||
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
|
||||
torch::Tensor& k_pe, // [num_tokens, pe_dim]
|
||||
@ -531,20 +720,43 @@ void concat_and_cache_mla(
|
||||
int pe_dim = k_pe.size(1);
|
||||
int block_size = kv_cache.size(1);
|
||||
|
||||
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
|
||||
if (kv_cache_dtype == "fp8_ds_mla") {
|
||||
TORCH_CHECK(kv_lora_rank == 512, "kv_lora_rank must be 512 for fp8_ds_mla");
|
||||
TORCH_CHECK(pe_dim == 64, "pe_dim must be 64 for fp8_ds_mla");
|
||||
TORCH_CHECK(kv_cache.size(2) == 656 / kv_cache.itemsize(),
|
||||
"kv_cache.size(2) must be 656 bytes for fp8_ds_mla");
|
||||
TORCH_CHECK(kv_c.itemsize() == 2,
|
||||
"kv_c.itemsize() must be 2 for fp8_ds_mla");
|
||||
TORCH_CHECK(k_pe.itemsize() == 2,
|
||||
"k_pe.itemsize() must be 2 for fp8_ds_mla");
|
||||
} else {
|
||||
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
|
||||
}
|
||||
|
||||
int kv_c_stride = kv_c.stride(0);
|
||||
int k_pe_stride = k_pe.stride(0);
|
||||
int block_stride = kv_cache.stride(0);
|
||||
int entry_stride = kv_cache.stride(1);
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(kv_lora_rank, 512));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_c));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
||||
CALL_CONCAT_AND_CACHE_MLA);
|
||||
if (kv_cache_dtype == "fp8_ds_mla") {
|
||||
dim3 grid(num_tokens);
|
||||
// For the NoPE part, each tile of 128 elements is handled by half of one
|
||||
// warp (16 threads). There are 4 total tiles, so 2 warps (64 threads).
|
||||
// Lanes 0 and 16 of each warp write the scale values for that warp's tiles.
|
||||
// The RoPE part (last 64 elements) is handled by another 1 warp (32
|
||||
// threads). So in total, we use 3 warps (96 threads) per block.
|
||||
dim3 block(96);
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
||||
CALL_CONCAT_AND_CACHE_DS_MLA);
|
||||
} else {
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(kv_lora_rank, 512));
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
|
||||
CALL_CONCAT_AND_CACHE_MLA);
|
||||
}
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
@ -922,3 +1134,42 @@ void cp_gather_cache(
|
||||
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
|
||||
}
|
||||
}
|
||||
|
||||
// Macro to dispatch the kernel based on the data type.
|
||||
#define CALL_INDEXER_K_QUANT_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::indexer_k_quant_and_cache_kernel<KV_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<KV_T*>(k.data_ptr()), \
|
||||
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
|
||||
slot_mapping.data_ptr<int64_t>(), head_dim, quant_block_size, \
|
||||
cache_block_size, cache_stride, use_ue8m0);
|
||||
|
||||
void indexer_k_quant_and_cache(
|
||||
torch::Tensor& k, // [num_tokens, head_dim]
|
||||
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
||||
torch::Tensor& slot_mapping, // [num_tokens]
|
||||
int64_t quant_block_size, // quantization block size
|
||||
const std::string& scale_fmt) {
|
||||
int num_tokens = k.size(0);
|
||||
int head_dim = k.size(1);
|
||||
int cache_block_size = kv_cache.size(1);
|
||||
int cache_stride = kv_cache.size(2);
|
||||
bool use_ue8m0 = scale_fmt == "ue8m0";
|
||||
|
||||
TORCH_CHECK(k.device() == kv_cache.device(),
|
||||
"k and kv_cache must be on the same device");
|
||||
TORCH_CHECK(k.device() == slot_mapping.device(),
|
||||
"k and slot_mapping must be on the same device");
|
||||
TORCH_CHECK(head_dim % quant_block_size == 0,
|
||||
"head_dim must be divisible by quant_block_size");
|
||||
|
||||
constexpr int vec_size = 4;
|
||||
dim3 grid(num_tokens, (head_dim + quant_block_size * vec_size - 1) /
|
||||
(quant_block_size * vec_size));
|
||||
dim3 block(32, vec_size);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(k));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3",
|
||||
CALL_INDEXER_K_QUANT_AND_CACHE);
|
||||
}
|
||||
|
||||
16
csrc/core/batch_invariant.hpp
Normal file
16
csrc/core/batch_invariant.hpp
Normal file
@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include <cctype>
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// vllm_kernel_override_batch_invariant(); returns true
|
||||
// if env VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT=1
|
||||
inline bool vllm_kernel_override_batch_invariant() {
|
||||
std::string env_key = "VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT";
|
||||
const char* val = std::getenv(env_key.c_str());
|
||||
return (val && std::atoi(val) != 0) ? 1 : 0;
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
@ -14,7 +14,12 @@
|
||||
// arm implementation
|
||||
#include "cpu_types_arm.hpp"
|
||||
#else
|
||||
#warning "unsupported vLLM cpu implementation"
|
||||
#warning "unsupported vLLM cpu implementation, vLLM will compile with scalar"
|
||||
#include "cpu_types_scalar.hpp"
|
||||
#endif
|
||||
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#endif
|
||||
513
csrc/cpu/cpu_types_scalar.hpp
Normal file
513
csrc/cpu/cpu_types_scalar.hpp
Normal file
@ -0,0 +1,513 @@
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <torch/all.h>
|
||||
#include "float_convert.hpp"
|
||||
|
||||
namespace vec_op {
|
||||
|
||||
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
|
||||
|
||||
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
||||
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
||||
|
||||
#ifndef CPU_OP_GUARD
|
||||
#define CPU_KERNEL_GUARD_IN(NAME)
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME)
|
||||
#else
|
||||
#define CPU_KERNEL_GUARD_IN(NAME) \
|
||||
std::cout << #NAME << " invoked." << std::endl;
|
||||
#define CPU_KERNEL_GUARD_OUT(NAME) \
|
||||
std::cout << #NAME << " exit." << std::endl;
|
||||
#endif
|
||||
|
||||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
#define __max(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define __min(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define __abs(a) ((a) < (0) ? (0 - a) : (a))
|
||||
|
||||
typedef struct f16x8_t {
|
||||
uint16_t val[8];
|
||||
} f16x8_t;
|
||||
|
||||
typedef struct f16x16_t {
|
||||
uint16_t val[16];
|
||||
} f16x16_t;
|
||||
|
||||
typedef struct f16x32_t {
|
||||
uint16_t val[32];
|
||||
} f16x32_t;
|
||||
|
||||
typedef struct f32x4_t {
|
||||
float val[4];
|
||||
} f32x4_t;
|
||||
|
||||
typedef struct f32x8_t {
|
||||
float val[8];
|
||||
} f32x8_t;
|
||||
|
||||
typedef struct f32x16_t {
|
||||
float val[16];
|
||||
} f32x16_t;
|
||||
|
||||
namespace {
|
||||
template <typename T, T... indexes, typename F>
|
||||
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
|
||||
(f(std::integral_constant<T, indexes>{}), ...);
|
||||
};
|
||||
}; // namespace
|
||||
|
||||
template <typename T, T count, typename F,
|
||||
typename = std::enable_if_t<std::is_invocable_v<F, T> > >
|
||||
constexpr void unroll_loop(F&& f) {
|
||||
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct Vec {
|
||||
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
|
||||
};
|
||||
|
||||
struct FP32Vec8;
|
||||
struct FP32Vec16;
|
||||
|
||||
struct FP16Vec8 : public Vec<FP16Vec8> {
|
||||
constexpr static int VEC_ELEM_NUM = 8;
|
||||
f16x8_t reg;
|
||||
|
||||
explicit FP16Vec8(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
|
||||
|
||||
explicit FP16Vec8(const FP32Vec8&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct FP16Vec16 : public Vec<FP16Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
f16x16_t reg;
|
||||
|
||||
explicit FP16Vec16(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
|
||||
|
||||
explicit FP16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
|
||||
|
||||
void save(void* ptr, const int elem_num) const {
|
||||
int num = __min(elem_num, VEC_ELEM_NUM);
|
||||
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
|
||||
}
|
||||
};
|
||||
|
||||
struct BF16Vec8 : public Vec<BF16Vec8> {
|
||||
constexpr static int VEC_ELEM_NUM = 8;
|
||||
f16x8_t reg;
|
||||
|
||||
explicit BF16Vec8(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
|
||||
|
||||
explicit BF16Vec8(const FP32Vec8&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
f16x16_t reg;
|
||||
|
||||
explicit BF16Vec16(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
|
||||
|
||||
explicit BF16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
|
||||
|
||||
void save(void* ptr, const int elem_num) const {
|
||||
int num = __min(elem_num, VEC_ELEM_NUM);
|
||||
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
|
||||
}
|
||||
};
|
||||
|
||||
struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
constexpr static int VEC_ELEM_NUM = 32;
|
||||
f16x32_t reg;
|
||||
|
||||
explicit BF16Vec32(const void* ptr)
|
||||
: reg(*reinterpret_cast<const f16x32_t*>(ptr)) {};
|
||||
|
||||
explicit BF16Vec32(f16x32_t data) : reg(data) {};
|
||||
|
||||
explicit BF16Vec32(BF16Vec8& vec8_data) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = vec8_data.reg.val[i % BF16Vec8::VEC_ELEM_NUM];
|
||||
}
|
||||
}
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f16x32_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct FP32Vec4 : public Vec<FP32Vec4> {
|
||||
constexpr static int VEC_ELEM_NUM = 4;
|
||||
|
||||
f32x4_t reg;
|
||||
|
||||
explicit FP32Vec4(float v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = v;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec4() {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec4(const float* ptr)
|
||||
: reg(*reinterpret_cast<const f32x4_t*>(ptr)) {};
|
||||
|
||||
explicit FP32Vec4(f32x4_t data) : reg(data) {};
|
||||
|
||||
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {};
|
||||
};
|
||||
|
||||
struct FP32Vec8 : public Vec<FP32Vec8> {
|
||||
constexpr static int VEC_ELEM_NUM = 8;
|
||||
|
||||
f32x8_t reg;
|
||||
|
||||
explicit FP32Vec8(float v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = v;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec8() {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec8(const float* ptr)
|
||||
: reg(*reinterpret_cast<const f32x8_t*>(ptr)) {};
|
||||
|
||||
explicit FP32Vec8(f32x8_t data) : reg(data) {};
|
||||
|
||||
explicit FP32Vec8(const FP32Vec8& data) : reg(data.reg) {};
|
||||
|
||||
explicit FP32Vec8(const FP16Vec8& v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = fp16_to_float(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
FP32Vec8(const BF16Vec8& v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = bf16_to_float(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
float reduce_sum() const {
|
||||
float result = 0;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result += reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec8 exp() const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = expf(reg.val[i]);
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 tanh() const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = tanhf(reg.val[i]);
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 er() const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = erf(reg.val[i]);
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 operator*(const FP32Vec8& b) const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = reg.val[i] * b.reg.val[i];
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 operator+(const FP32Vec8& b) const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = reg.val[i] + b.reg.val[i];
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 operator-(const FP32Vec8& b) const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = reg.val[i] - b.reg.val[i];
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
FP32Vec8 operator/(const FP32Vec8& b) const {
|
||||
f32x8_t ret;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
ret.val[i] = reg.val[i] / b.reg.val[i];
|
||||
}
|
||||
return FP32Vec8(ret);
|
||||
}
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f32x8_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
struct FP32Vec16 : public Vec<FP32Vec16> {
|
||||
constexpr static int VEC_ELEM_NUM = 16;
|
||||
f32x16_t reg;
|
||||
|
||||
explicit FP32Vec16(float v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = v;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec16() {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const float* ptr)
|
||||
: reg(*reinterpret_cast<const f32x16_t*>(ptr)) {};
|
||||
|
||||
explicit FP32Vec16(f32x16_t data) : reg(data) {};
|
||||
|
||||
FP32Vec16(const FP32Vec4& data) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = data.reg.val[i % FP32Vec4::VEC_ELEM_NUM];
|
||||
}
|
||||
}
|
||||
|
||||
FP32Vec16(const FP32Vec8& data) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = data.reg.val[i % FP32Vec8::VEC_ELEM_NUM];
|
||||
}
|
||||
}
|
||||
|
||||
FP32Vec16(const FP32Vec16& data) : reg(data.reg) {};
|
||||
|
||||
explicit FP32Vec16(const FP16Vec16& v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = fp16_to_float(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const BF16Vec16& v) {
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = bf16_to_float(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
explicit FP32Vec16(const FP16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
|
||||
|
||||
FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
|
||||
|
||||
FP32Vec16 operator*(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = reg.val[i] * b.reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 operator+(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = reg.val[i] + b.reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 operator-(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = reg.val[i] - b.reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 operator/(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = reg.val[i] / b.reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 max(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = __max(reg.val[i], b.reg.val[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 min(const FP32Vec16& b) const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = __min(reg.val[i], b.reg.val[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
FP32Vec16 abs() const {
|
||||
FP32Vec16 result(0.0f);
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result.reg.val[i] = __abs(reg.val[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
float reduce_sum() const {
|
||||
float result = 0.0f;
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result += reg.val[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
float reduce_max() const {
|
||||
float result = reg.val[0];
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result = __max(reg.val[i], result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
float reduce_min() const {
|
||||
float result = reg.val[0];
|
||||
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
|
||||
result = __min(reg.val[i], result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
template <int group_size>
|
||||
float reduce_sub_sum(int idx) {
|
||||
static_assert(VEC_ELEM_NUM % group_size == 0);
|
||||
float sum = 0.0;
|
||||
int start = idx * group_size;
|
||||
int end = (idx + 1) * group_size;
|
||||
|
||||
for (; (start < VEC_ELEM_NUM) && (start < end); ++start) {
|
||||
sum += reg.val[start];
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<f32x16_t*>(ptr) = reg; }
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct VecType {
|
||||
using vec_type = void;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
using vec_t = typename VecType<T>::vec_type;
|
||||
|
||||
template <>
|
||||
struct VecType<float> {
|
||||
using vec_type = FP32Vec8;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct VecType<c10::Half> {
|
||||
using vec_type = FP16Vec8;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct VecType<c10::BFloat16> {
|
||||
using vec_type = BF16Vec8;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
void storeFP32(float v, T* ptr) {
|
||||
*ptr = v;
|
||||
}
|
||||
|
||||
/*
|
||||
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
|
||||
c10::Half __attribute__((__may_alias__)) *v_ptr =
|
||||
reinterpret_cast<c10::Half *>(&v);
|
||||
*ptr = *(v_ptr + 1);
|
||||
}
|
||||
*/
|
||||
|
||||
template <>
|
||||
inline void storeFP32<c10::Half>(float v, c10::Half* ptr) {
|
||||
uint16_t fp16 = float_to_fp16(v);
|
||||
*reinterpret_cast<uint16_t*>(ptr) = fp16;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
|
||||
c10::BFloat16 __attribute__((__may_alias__))* v_ptr =
|
||||
reinterpret_cast<c10::BFloat16*>(&v);
|
||||
*ptr = *(v_ptr + 1);
|
||||
}
|
||||
|
||||
inline FP16Vec16::FP16Vec16(const FP32Vec16& v) {
|
||||
int i = 0;
|
||||
for (i = 0; i < FP16Vec16::VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = float_to_fp16(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline FP16Vec8 ::FP16Vec8(const FP32Vec8& v) {
|
||||
int i = 0;
|
||||
for (i = 0; i < FP16Vec8::VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = float_to_fp16(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
|
||||
acc = acc + a * b;
|
||||
}
|
||||
|
||||
inline BF16Vec8::BF16Vec8(const FP32Vec8& v) {
|
||||
int i = 0;
|
||||
for (i = 0; i < BF16Vec8::VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = float_to_bf16(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
|
||||
int i = 0;
|
||||
for (i = 0; i < BF16Vec16::VEC_ELEM_NUM; ++i) {
|
||||
reg.val[i] = float_to_bf16(v.reg.val[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline void prefetch(const void* addr) { __builtin_prefetch(addr, 0, 3); }
|
||||
|
||||
}; // namespace vec_op
|
||||
@ -137,9 +137,8 @@ DNNLMatMulPrimitiveHandler::DNNLMatMulPrimitiveHandler(
|
||||
}
|
||||
|
||||
void DNNLMatMulPrimitiveHandler::prepack_weight(
|
||||
void* original_b_ptr, dnnl::memory::desc b_target_mem_desc) {
|
||||
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
|
||||
{b_k_stride_, b_n_stride_});
|
||||
void* original_b_ptr, dnnl::memory::desc original_b_md,
|
||||
dnnl::memory::desc b_target_mem_desc) {
|
||||
dnnl::memory original_weight(original_b_md, default_engine(), original_b_ptr);
|
||||
dnnl::memory packed_weight(b_target_mem_desc, default_engine());
|
||||
{
|
||||
@ -250,7 +249,9 @@ W8A8MatMulPrimitiveHandler::W8A8MatMulPrimitiveHandler(const Args& args)
|
||||
if (a_qs_ == QuantizationStrategy::PER_TOKEN) {
|
||||
assert(!use_azp_);
|
||||
};
|
||||
prepack_weight(args.b_ptr,
|
||||
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
|
||||
{b_k_stride_, b_n_stride_});
|
||||
prepack_weight(args.b_ptr, original_b_md,
|
||||
create_primitive_desc(
|
||||
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
|
||||
.use_bias = false,
|
||||
@ -412,12 +413,25 @@ MatMulPrimitiveHandler::MatMulPrimitiveHandler(const Args& args)
|
||||
assert(ab_type_ == dnnl::memory::data_type::f32 ||
|
||||
ab_type_ == dnnl::memory::data_type::bf16 ||
|
||||
ab_type_ == dnnl::memory::data_type::f16);
|
||||
prepack_weight(args.b_ptr,
|
||||
|
||||
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
|
||||
{b_k_stride_, b_n_stride_});
|
||||
|
||||
prepack_weight(args.b_ptr, original_b_md,
|
||||
create_primitive_desc(
|
||||
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
|
||||
.a_m_stride = DNNL_RUNTIME_DIM_VAL,
|
||||
.use_bias = false,
|
||||
.bias_type = dnnl::memory::data_type::undef},
|
||||
MSizeCacheKey{
|
||||
#ifdef VLLM_USE_ACL
|
||||
// Arm Compute Library (ACL) backend for oneDNN does
|
||||
// not support runtime
|
||||
// dimensions, so we set M to a default value
|
||||
.a_m_size = 128,
|
||||
.a_m_stride = b_k_size_,
|
||||
#else
|
||||
.a_m_size = DNNL_RUNTIME_DIM_VAL,
|
||||
.a_m_stride = DNNL_RUNTIME_DIM_VAL,
|
||||
#endif
|
||||
.use_bias = false,
|
||||
.bias_type = dnnl::memory::data_type::undef},
|
||||
true)
|
||||
.weights_desc());
|
||||
init_runtime_memory_cache(args);
|
||||
@ -443,13 +457,31 @@ void MatMulPrimitiveHandler::execute(ExecArgs& args) {
|
||||
c_storage->set_data_handle((void*)args.c_ptr);
|
||||
c_mem_desc->dims[0] = args.a_m_size;
|
||||
|
||||
#ifndef VLLM_USE_ACL
|
||||
// We do not support in ACL backend of oneDNN, we handle bias by:
|
||||
// 1. copying it into the result tensor
|
||||
// 2. attaching a fused-sum post-op to the matmul primitive
|
||||
if (args.use_bias) {
|
||||
auto&& [bias_storage, bias_mem_desc] = get_runtime_memory_ptr(2);
|
||||
bias_storage->set_data_handle((void*)args.bias_ptr);
|
||||
}
|
||||
|
||||
#endif
|
||||
dnnl::matmul matmul = get_matmul_cache(args);
|
||||
|
||||
// With ACL backend of oneDNN, the required memory format might change when the
|
||||
// source tensor dims change. This does not really happen in practice, so isn't
|
||||
// a performance hit, but we need to support it because the API allows for it.
|
||||
#ifdef VLLM_USE_ACL
|
||||
auto new_expected_wei_desc =
|
||||
dnnl::matmul::primitive_desc(
|
||||
const_cast<dnnl_primitive_desc_t>(matmul.get_primitive_desc()))
|
||||
.weights_desc();
|
||||
if (new_expected_wei_desc != b_target_mem_desc_) {
|
||||
prepack_weight(memory_cache_[DNNL_ARG_WEIGHTS].get_data_handle(),
|
||||
b_target_mem_desc_, new_expected_wei_desc);
|
||||
}
|
||||
#endif
|
||||
|
||||
auto&& [scratchpad_storage, scratchpad_mem_desc] = get_runtime_memory_ptr(3);
|
||||
scratchpad_storage->set_data_handle(
|
||||
DNNLScratchPadManager::get_dnnl_scratchpad_manager()->get_data<void>());
|
||||
@ -484,7 +516,13 @@ dnnl::matmul::primitive_desc MatMulPrimitiveHandler::create_primitive_desc(
|
||||
} else {
|
||||
a_md = dnnl::memory::desc({key.a_m_size, b_k_size_}, b_type_,
|
||||
{key.a_m_stride, 1});
|
||||
#ifdef VLLM_USE_ACL
|
||||
// ACL's backend of oneDNN always expects the weight format to be "any"
|
||||
b_md = dnnl::memory::desc({b_k_size_, b_n_size_}, b_type_,
|
||||
dnnl::memory::format_tag::any);
|
||||
#else
|
||||
b_md = b_target_mem_desc_;
|
||||
#endif
|
||||
}
|
||||
dnnl::memory::desc c_md({key.a_m_size, b_n_size_}, c_type_,
|
||||
dnnl::memory::format_tag::ab);
|
||||
@ -494,8 +532,18 @@ dnnl::matmul::primitive_desc MatMulPrimitiveHandler::create_primitive_desc(
|
||||
|
||||
if (key.use_bias) {
|
||||
dnnl::memory::desc bias_md({1, b_n_size_}, key.bias_type, {b_n_size_, 1});
|
||||
// Since ACL's matmuls don't support passing a bias_md, we apply the bias
|
||||
// through a fused-sum post-op
|
||||
#ifdef VLLM_USE_ACL
|
||||
dnnl::post_ops post_ops;
|
||||
post_ops.append_sum();
|
||||
attr.set_post_ops(post_ops);
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
|
||||
attr);
|
||||
#else
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, bias_md,
|
||||
c_md, attr);
|
||||
#endif
|
||||
} else {
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
|
||||
attr);
|
||||
@ -511,13 +559,23 @@ void MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(1, memory_cache_[DNNL_ARG_DST].get());
|
||||
|
||||
// ACL matmuls don't support bias_md, so we don't need these
|
||||
#ifndef VLLM_USE_ACL
|
||||
memory_cache_[DNNL_ARG_BIAS] =
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(2, memory_cache_[DNNL_ARG_BIAS].get());
|
||||
|
||||
#endif
|
||||
memory_cache_[DNNL_ARG_SCRATCHPAD] =
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(3, memory_cache_[DNNL_ARG_SCRATCHPAD].get());
|
||||
}
|
||||
|
||||
bool is_onednn_acl_supported() {
|
||||
#ifdef VLLM_USE_ACL
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -101,7 +101,7 @@ class DNNLMatMulPrimitiveHandler {
|
||||
protected:
|
||||
DNNLMatMulPrimitiveHandler(const Args& args, dnnl::memory::data_type b_type);
|
||||
|
||||
void prepack_weight(void* original_b_ptr,
|
||||
void prepack_weight(void* original_b_ptr, dnnl::memory::desc original_b_md,
|
||||
dnnl::memory::desc b_target_mem_desc);
|
||||
|
||||
void set_runtime_memory_ptr(size_t index, dnnl_memory* memory_ptr);
|
||||
|
||||
@ -527,21 +527,42 @@ void onednn_mm(torch::Tensor& c, // [M, OC], row-major
|
||||
MatMulPrimitiveHandler* ptr =
|
||||
reinterpret_cast<MatMulPrimitiveHandler*>(handler);
|
||||
|
||||
// ACL matmuls expect contiguous source tensors
|
||||
#ifdef VLLM_USE_ACL
|
||||
torch::Tensor a_contig = a.contiguous();
|
||||
#endif
|
||||
|
||||
MatMulPrimitiveHandler::ExecArgs exec_args;
|
||||
|
||||
#ifdef VLLM_USE_ACL
|
||||
exec_args.a_m_size = a_contig.size(0);
|
||||
exec_args.a_m_stride = a_contig.stride(0);
|
||||
#else
|
||||
exec_args.a_m_size = a.size(0);
|
||||
exec_args.a_m_stride = a.stride(0);
|
||||
|
||||
#endif
|
||||
VLLM_DISPATCH_FLOATING_TYPES(a.scalar_type(), "onednn_mm", [&] {
|
||||
if (bias.has_value()) {
|
||||
exec_args.use_bias = true;
|
||||
exec_args.bias_type = get_dnnl_type<scalar_t>();
|
||||
#ifdef VLLM_USE_ACL
|
||||
// ACL matmuls in oneDNN do not support a bias.
|
||||
// We handle a matmul with bias by doing: c = bias; c += matmul(a, b)
|
||||
c.copy_(bias.value());
|
||||
#else
|
||||
exec_args.bias_ptr = bias->data_ptr<scalar_t>();
|
||||
#endif
|
||||
} else {
|
||||
exec_args.use_bias = false;
|
||||
exec_args.bias_type = get_dnnl_type<void>();
|
||||
exec_args.bias_ptr = nullptr;
|
||||
}
|
||||
#ifdef VLLM_USE_ACL
|
||||
exec_args.a_ptr = a_contig.data_ptr<scalar_t>();
|
||||
#else
|
||||
exec_args.a_ptr = a.data_ptr<scalar_t>();
|
||||
|
||||
#endif
|
||||
exec_args.c_ptr = c.data_ptr<scalar_t>();
|
||||
|
||||
ptr->execute(exec_args);
|
||||
|
||||
106
csrc/cpu/float_convert.hpp
Normal file
106
csrc/cpu/float_convert.hpp
Normal file
@ -0,0 +1,106 @@
|
||||
|
||||
static float bf16_to_float(uint16_t bf16) {
|
||||
uint32_t bits = static_cast<uint32_t>(bf16) << 16;
|
||||
float fp32;
|
||||
std::memcpy(&fp32, &bits, sizeof(fp32));
|
||||
return fp32;
|
||||
}
|
||||
|
||||
static uint16_t float_to_bf16(float fp32) {
|
||||
uint32_t bits;
|
||||
std::memcpy(&bits, &fp32, sizeof(fp32));
|
||||
return static_cast<uint16_t>(bits >> 16);
|
||||
}
|
||||
|
||||
/************************************************
|
||||
* Copyright (c) 2015 Princeton Vision Group
|
||||
* Licensed under the MIT license.
|
||||
* Codes below copied from
|
||||
* https://github.com/PrincetonVision/marvin/tree/master/tools/tensorIO_matlab
|
||||
*************************************************/
|
||||
static uint16_t float_to_fp16(float fp32) {
|
||||
uint16_t fp16;
|
||||
|
||||
unsigned x;
|
||||
unsigned u, remainder, shift, lsb, lsb_s1, lsb_m1;
|
||||
unsigned sign, exponent, mantissa;
|
||||
|
||||
std::memcpy(&x, &fp32, sizeof(fp32));
|
||||
u = (x & 0x7fffffff);
|
||||
|
||||
// Get rid of +NaN/-NaN case first.
|
||||
if (u > 0x7f800000) {
|
||||
fp16 = 0x7fffU;
|
||||
return fp16;
|
||||
}
|
||||
|
||||
sign = ((x >> 16) & 0x8000);
|
||||
|
||||
// Get rid of +Inf/-Inf, +0/-0.
|
||||
if (u > 0x477fefff) {
|
||||
fp16 = sign | 0x7c00U;
|
||||
return fp16;
|
||||
}
|
||||
if (u < 0x33000001) {
|
||||
fp16 = (sign | 0x0000);
|
||||
return fp16;
|
||||
}
|
||||
|
||||
exponent = ((u >> 23) & 0xff);
|
||||
mantissa = (u & 0x7fffff);
|
||||
|
||||
if (exponent > 0x70) {
|
||||
shift = 13;
|
||||
exponent -= 0x70;
|
||||
} else {
|
||||
shift = 0x7e - exponent;
|
||||
exponent = 0;
|
||||
mantissa |= 0x800000;
|
||||
}
|
||||
lsb = (1 << shift);
|
||||
lsb_s1 = (lsb >> 1);
|
||||
lsb_m1 = (lsb - 1);
|
||||
|
||||
// Round to nearest even.
|
||||
remainder = (mantissa & lsb_m1);
|
||||
mantissa >>= shift;
|
||||
if (remainder > lsb_s1 || (remainder == lsb_s1 && (mantissa & 0x1))) {
|
||||
++mantissa;
|
||||
if (!(mantissa & 0x3ff)) {
|
||||
++exponent;
|
||||
mantissa = 0;
|
||||
}
|
||||
}
|
||||
|
||||
fp16 = (sign | (exponent << 10) | mantissa);
|
||||
|
||||
return fp16;
|
||||
}
|
||||
|
||||
static float fp16_to_float(uint16_t fp16) {
|
||||
unsigned sign = ((fp16 >> 15) & 1);
|
||||
unsigned exponent = ((fp16 >> 10) & 0x1f);
|
||||
unsigned mantissa = ((fp16 & 0x3ff) << 13);
|
||||
int temp;
|
||||
float fp32;
|
||||
if (exponent == 0x1f) { /* NaN or Inf */
|
||||
mantissa = (mantissa ? (sign = 0, 0x7fffff) : 0);
|
||||
exponent = 0xff;
|
||||
} else if (!exponent) { /* Denorm or Zero */
|
||||
if (mantissa) {
|
||||
unsigned int msb;
|
||||
exponent = 0x71;
|
||||
do {
|
||||
msb = (mantissa & 0x400000);
|
||||
mantissa <<= 1; /* normalize */
|
||||
--exponent;
|
||||
} while (!msb);
|
||||
mantissa &= 0x7fffff; /* 1.mantissa is implicit */
|
||||
}
|
||||
} else {
|
||||
exponent += 0x70;
|
||||
}
|
||||
temp = ((sign << 31) | (exponent << 23) | mantissa);
|
||||
std::memcpy(&fp32, &temp, sizeof(temp));
|
||||
return fp32;
|
||||
}
|
||||
@ -27,6 +27,8 @@ int64_t create_onednn_mm_handler(const torch::Tensor& b,
|
||||
void onednn_mm(torch::Tensor& c, const torch::Tensor& a,
|
||||
const std::optional<torch::Tensor>& bias, int64_t handler);
|
||||
|
||||
bool is_onednn_acl_supported();
|
||||
|
||||
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
|
||||
torch::Tensor& kv_cache, double scale,
|
||||
torch::Tensor& block_tables, torch::Tensor& seq_lens);
|
||||
@ -88,8 +90,18 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" int tp_rank, int blocksparse_local_blocks,"
|
||||
" int blocksparse_vert_stride, int blocksparse_block_size,"
|
||||
" int blocksparse_head_sliding_step) -> ()");
|
||||
|
||||
ops.impl("paged_attention_v1", torch::kCPU, &paged_attention_v1);
|
||||
|
||||
ops.def(
|
||||
"dynamic_4bit_int_moe("
|
||||
"Tensor x, Tensor topk_ids, Tensor topk_weights,"
|
||||
"Tensor w13_packed, Tensor w2_packed, int H, int I, int I2,"
|
||||
"int group_size, bool apply_router_weight_on_input, int activation_kind"
|
||||
") -> Tensor");
|
||||
|
||||
ops.impl("dynamic_4bit_int_moe", torch::kCPU, &dynamic_4bit_int_moe_cpu);
|
||||
|
||||
// PagedAttention V2.
|
||||
ops.def(
|
||||
"paged_attention_v2("
|
||||
@ -171,6 +183,9 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
"int handler) -> ()");
|
||||
ops.impl("onednn_mm", torch::kCPU, &onednn_mm);
|
||||
|
||||
// Check if oneDNN was built with ACL backend
|
||||
ops.def("is_onednn_acl_supported() -> bool", &is_onednn_acl_supported);
|
||||
|
||||
// Create oneDNN W8A8 handler
|
||||
ops.def(
|
||||
"create_onednn_scaled_mm_handler(Tensor b, Tensor b_scales, ScalarType "
|
||||
|
||||
@ -27,7 +27,7 @@ VLLMDataTypeNames: dict[Union[VLLMDataType, DataType], str] = {
|
||||
**{
|
||||
VLLMDataType.u4b8: "u4b8",
|
||||
VLLMDataType.u8b128: "u8b128",
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
VLLMDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||
@ -35,7 +35,7 @@ VLLMDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||
**{
|
||||
VLLMDataType.u4b8: "cutlass::vllm_uint4b8_t",
|
||||
VLLMDataType.u8b128: "cutlass::vllm_uint8b128_t",
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
VLLMDataTypeSize: dict[Union[VLLMDataType, DataType], int] = {
|
||||
@ -43,7 +43,7 @@ VLLMDataTypeSize: dict[Union[VLLMDataType, DataType], int] = {
|
||||
**{
|
||||
VLLMDataType.u4b8: 4,
|
||||
VLLMDataType.u8b128: 8,
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
VLLMDataTypeVLLMScalarTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||
@ -67,15 +67,13 @@ VLLMDataTypeTorchDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||
DataType.f32: "at::ScalarType::Float",
|
||||
}
|
||||
|
||||
VLLMKernelScheduleTag: dict[Union[
|
||||
MixedInputKernelScheduleType, KernelScheduleType], str] = {
|
||||
**KernelScheduleTag, # type: ignore
|
||||
**{
|
||||
MixedInputKernelScheduleType.TmaWarpSpecialized:
|
||||
"cutlass::gemm::KernelTmaWarpSpecialized",
|
||||
MixedInputKernelScheduleType.TmaWarpSpecializedPingpong:
|
||||
"cutlass::gemm::KernelTmaWarpSpecializedPingpong",
|
||||
MixedInputKernelScheduleType.TmaWarpSpecializedCooperative:
|
||||
"cutlass::gemm::KernelTmaWarpSpecializedCooperative",
|
||||
}
|
||||
}
|
||||
VLLMKernelScheduleTag: dict[
|
||||
Union[MixedInputKernelScheduleType, KernelScheduleType], str
|
||||
] = {
|
||||
**KernelScheduleTag, # type: ignore
|
||||
**{
|
||||
MixedInputKernelScheduleType.TmaWarpSpecialized: "cutlass::gemm::KernelTmaWarpSpecialized", # noqa: E501
|
||||
MixedInputKernelScheduleType.TmaWarpSpecializedPingpong: "cutlass::gemm::KernelTmaWarpSpecializedPingpong", # noqa: E501
|
||||
MixedInputKernelScheduleType.TmaWarpSpecializedCooperative: "cutlass::gemm::KernelTmaWarpSpecializedCooperative", # noqa: E501
|
||||
},
|
||||
}
|
||||
|
||||
64
csrc/launch_bounds_utils.h
Normal file
64
csrc/launch_bounds_utils.h
Normal file
@ -0,0 +1,64 @@
|
||||
#pragma once
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <algorithm>
|
||||
|
||||
// maximum blocks per SM cap
|
||||
#ifndef VLLM_LAUNCH_BLOCKS_CAP
|
||||
#define VLLM_LAUNCH_BLOCKS_CAP 4
|
||||
#endif
|
||||
|
||||
// Compile-time estimate of max threads per SM for launch bounds.
|
||||
// Families: 1024, 1536, 2048 threads/SM.
|
||||
#ifndef VLLM_MAX_THREADS_PER_SM
|
||||
#ifdef __CUDA_ARCH__
|
||||
|
||||
/* 1024 thr/SM: Turing (sm_75) */
|
||||
#if (__CUDA_ARCH__ == 750)
|
||||
#define VLLM_MAX_THREADS_PER_SM 1024
|
||||
|
||||
/* 1536 thr/SM: Ampere GA10x (sm_86/87), Ada (sm_89),
|
||||
GB20x consumer (sm_120/121), Thor (sm_101 or sm_110) */
|
||||
#elif (__CUDA_ARCH__ == 860) || (__CUDA_ARCH__ == 870) || \
|
||||
(__CUDA_ARCH__ == 890) || (__CUDA_ARCH__ == 1010) || \
|
||||
(__CUDA_ARCH__ == 1100) || (__CUDA_ARCH__ == 1200) || \
|
||||
(__CUDA_ARCH__ == 1210)
|
||||
#define VLLM_MAX_THREADS_PER_SM 1536
|
||||
|
||||
/* 2048 thr/SM: Volta (sm_70/72), Ampere GA100 (sm_80),
|
||||
Hopper (sm_90), Blackwell (sm_100/103) */
|
||||
#elif (__CUDA_ARCH__ == 700) || (__CUDA_ARCH__ == 720) || \
|
||||
(__CUDA_ARCH__ == 800) || (__CUDA_ARCH__ == 900) || \
|
||||
(__CUDA_ARCH__ == 1000) || (__CUDA_ARCH__ == 1030)
|
||||
#define VLLM_MAX_THREADS_PER_SM 2048
|
||||
|
||||
/* Fallback: use 2048 for unknown future CCs */
|
||||
#else
|
||||
#define VLLM_MAX_THREADS_PER_SM 2048
|
||||
#endif
|
||||
|
||||
#else
|
||||
/* Host pass (no __CUDA_ARCH__): neutral default */
|
||||
#define VLLM_MAX_THREADS_PER_SM 2048
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// compute the number of blocks per SM to request in __launch_bounds__
|
||||
#define VLLM_BLOCKS_DIV(VAL) (VLLM_MAX_THREADS_PER_SM / (VAL))
|
||||
#define VLLM_CLAMP_BLOCKS_PER_SM(VAL) \
|
||||
(((VAL) <= 0) \
|
||||
? 1 \
|
||||
: (((VAL) < VLLM_LAUNCH_BLOCKS_CAP) ? (VAL) : VLLM_LAUNCH_BLOCKS_CAP))
|
||||
#define VLLM_BLOCKS_PER_SM(BLOCK_THREADS) \
|
||||
VLLM_CLAMP_BLOCKS_PER_SM(VLLM_BLOCKS_DIV(BLOCK_THREADS))
|
||||
|
||||
// runtime-time helper to compute blocks/SM
|
||||
static inline int vllm_runtime_blocks_per_sm(int block_threads) {
|
||||
int device = -1;
|
||||
cudaGetDevice(&device);
|
||||
int max_threads_per_sm = VLLM_MAX_THREADS_PER_SM;
|
||||
cudaDeviceGetAttribute(&max_threads_per_sm,
|
||||
cudaDevAttrMaxThreadsPerMultiProcessor, device);
|
||||
int blocks = (block_threads > 0) ? (max_threads_per_sm / block_threads) : 1;
|
||||
return VLLM_CLAMP_BLOCKS_PER_SM(blocks);
|
||||
}
|
||||
@ -1,6 +1,7 @@
|
||||
#include "type_convert.cuh"
|
||||
#include "dispatch_utils.h"
|
||||
#include "cub_helpers.h"
|
||||
#include "core/batch_invariant.hpp"
|
||||
|
||||
#include <torch/cuda.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
@ -413,7 +414,9 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
|
||||
wt_ptr % req_alignment_bytes == 0;
|
||||
bool offsets_are_multiple_of_vector_width =
|
||||
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
|
||||
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width) {
|
||||
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
|
||||
!batch_invariant_launch) {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||
@ -459,7 +462,8 @@ void poly_norm(torch::Tensor& out, // [..., hidden_size]
|
||||
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
|
||||
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
|
||||
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0) {
|
||||
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
|
||||
LAUNCH_FUSED_POLY_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_POLY_NORM(0);
|
||||
|
||||
@ -9,6 +9,7 @@
|
||||
#include "quantization/fp8/common.cuh"
|
||||
#include "dispatch_utils.h"
|
||||
#include "cub_helpers.h"
|
||||
#include "core/batch_invariant.hpp"
|
||||
|
||||
#include <torch/cuda.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
@ -240,7 +241,9 @@ void fused_add_rms_norm_static_fp8_quant(
|
||||
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
|
||||
bool ptrs_are_aligned =
|
||||
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0) {
|
||||
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
|
||||
!batch_invariant_launch) {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||
|
||||
156
csrc/moe/dynamic_4bit_int_moe_cpu.cpp
Normal file
156
csrc/moe/dynamic_4bit_int_moe_cpu.cpp
Normal file
@ -0,0 +1,156 @@
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/Parallel.h>
|
||||
#include <torch/all.h>
|
||||
|
||||
// _dyn_quant_matmul_4bit is only available on AArch64.
|
||||
#if defined(__aarch64__)
|
||||
#include <ATen/ops/_dyn_quant_matmul_4bit.h>
|
||||
#endif
|
||||
|
||||
inline torch::Tensor mm(const torch::Tensor& a, const torch::Tensor& packed_w,
|
||||
int64_t group_size_eff, int64_t in_features,
|
||||
int64_t out_features) {
|
||||
#if defined(__aarch64__)
|
||||
return at::_ops::_dyn_quant_matmul_4bit::call(a, packed_w, group_size_eff,
|
||||
in_features, out_features);
|
||||
#else
|
||||
TORCH_CHECK(false,
|
||||
"dynamic 4-bit int MoE path requires AArch64 (ARM64); "
|
||||
"_dyn_quant_matmul_4bit is unavailable on this architecture");
|
||||
return {};
|
||||
#endif
|
||||
}
|
||||
|
||||
enum ActivationKind : int64_t {
|
||||
SwiGLU_Gu = 0, // act = SiLU(g) * u
|
||||
SwiGLUOAI = 1, // act = SiLU(u) * g
|
||||
SiLU = 2 // SiLU
|
||||
};
|
||||
|
||||
torch::Tensor dynamic_4bit_int_moe_cpu(
|
||||
torch::Tensor x, torch::Tensor topk_ids, torch::Tensor topk_weights,
|
||||
torch::Tensor w13_packed, torch::Tensor w2_packed, int64_t H, int64_t I,
|
||||
int64_t I2, int64_t group_size, bool apply_router_weight_on_input,
|
||||
int64_t activation_kind) {
|
||||
TORCH_CHECK(x.dim() == 2, "x must be 2D");
|
||||
TORCH_CHECK(topk_ids.dim() == 2 && topk_weights.dim() == 2,
|
||||
"topk tensors must be [T, K]");
|
||||
TORCH_CHECK(
|
||||
w13_packed.size(0) == w2_packed.size(0),
|
||||
"w13_packed and w2_packed must have same number of experts in dim 0");
|
||||
TORCH_CHECK(I2 == 2 * I, "I2 must equal 2*I");
|
||||
|
||||
const int64_t T = x.size(0);
|
||||
const int64_t K = topk_ids.size(1);
|
||||
const int64_t E = w13_packed.size(0);
|
||||
const int64_t N = T * K;
|
||||
|
||||
auto x_c = x.contiguous();
|
||||
auto ids_c = topk_ids.contiguous();
|
||||
auto gates_c = topk_weights.to(at::kFloat).contiguous();
|
||||
|
||||
// bucketing tokens -> experts
|
||||
c10::SmallVector<int64_t, 64> counts(
|
||||
E, 0); // Small vector uses stack allocation
|
||||
{
|
||||
const auto* ids_ptr = ids_c.data_ptr<int64_t>();
|
||||
for (int64_t i = 0; i < N; ++i) {
|
||||
const int64_t e_id = ids_ptr[i];
|
||||
TORCH_CHECK(0 <= e_id && e_id < E, "expert id out of range");
|
||||
counts[e_id]++;
|
||||
}
|
||||
}
|
||||
c10::SmallVector<int64_t, 65> offsets(E + 1, 0); // ( E +1 )
|
||||
for (int64_t e = 0; e < E; ++e) offsets[e + 1] = offsets[e] + counts[e];
|
||||
|
||||
auto expert_tokens = at::empty({offsets[E]}, ids_c.options());
|
||||
auto expert_gates = at::empty({offsets[E]}, gates_c.options());
|
||||
{
|
||||
c10::SmallVector<int64_t, 64> cursor(E, 0);
|
||||
const auto* ids_ptr = ids_c.data_ptr<int64_t>();
|
||||
const auto* gts_ptr = gates_c.data_ptr<float>();
|
||||
auto* tok_ptr = expert_tokens.data_ptr<int64_t>();
|
||||
auto* gate_ptr = expert_gates.data_ptr<float>();
|
||||
|
||||
for (int64_t t = 0; t < T; ++t) {
|
||||
const int64_t base = t * K;
|
||||
for (int64_t k = 0; k < K; ++k) {
|
||||
const int64_t idx = base + k;
|
||||
const int64_t e = ids_ptr[idx];
|
||||
const int64_t p = offsets[e] + (cursor[e]++);
|
||||
tok_ptr[p] = t;
|
||||
gate_ptr[p] = gts_ptr[idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t g_eff_13 = (group_size != -1) ? group_size : H;
|
||||
const int64_t g_eff_2 = (group_size != -1) ? group_size : I;
|
||||
|
||||
// Per-expert outputs filled in parallel
|
||||
std::vector<torch::Tensor> y_list(E);
|
||||
y_list.resize(E);
|
||||
|
||||
at::parallel_for(0, E, 1, [&](int64_t e_begin, int64_t e_end) {
|
||||
for (int64_t e = e_begin; e < e_end; ++e) {
|
||||
const int64_t te = counts[e];
|
||||
if (te == 0) {
|
||||
y_list[e] = at::empty({0, H}, x_c.options());
|
||||
continue;
|
||||
}
|
||||
|
||||
const int64_t start = offsets[e];
|
||||
|
||||
auto sel_tokens =
|
||||
expert_tokens.narrow(/*dim=*/0, /*start=*/start, /*length=*/te);
|
||||
auto gates_e =
|
||||
expert_gates.narrow(/*dim=*/0, /*start=*/start, /*length=*/te);
|
||||
|
||||
auto x_e = x_c.index_select(/*dim=*/0, sel_tokens);
|
||||
|
||||
if (apply_router_weight_on_input) {
|
||||
x_e = x_e.mul(gates_e.unsqueeze(1));
|
||||
}
|
||||
|
||||
auto w13_e = w13_packed.select(/*dim=*/0, e);
|
||||
auto w2_e = w2_packed.select(/*dim=*/0, e);
|
||||
|
||||
// W13
|
||||
auto y13 =
|
||||
mm(x_e, w13_e, g_eff_13, /*in_features=*/H, /*out_features=*/I2);
|
||||
|
||||
auto g_part = y13.narrow(/*dim=*/1, /*start=*/0, /*length=*/I);
|
||||
auto u_part = y13.narrow(/*dim=*/1, /*start=*/I, /*length=*/I);
|
||||
|
||||
torch::Tensor act;
|
||||
if (activation_kind == ActivationKind::SwiGLUOAI) { // SwiGLUOAI
|
||||
constexpr double kAlpha = 1.702; // GPT-OSS default
|
||||
constexpr double kLimit = 7.0; // GPT-OSS default
|
||||
auto gate_c = at::clamp_max(g_part, kLimit);
|
||||
auto up_c = at::clamp(u_part, -kLimit, kLimit);
|
||||
auto glu = gate_c.mul(at::sigmoid(gate_c.mul(kAlpha)));
|
||||
act = up_c.add(1.0).mul(glu);
|
||||
} else { // SiLU , SwiGLU_GU, vLLM maps silu to SiluAndMul()
|
||||
act = at::silu(g_part).mul(u_part);
|
||||
}
|
||||
|
||||
// W2
|
||||
auto y = mm(act, w2_e, g_eff_2, /*in_features=*/I, /*out_features=*/H);
|
||||
|
||||
if (!apply_router_weight_on_input) {
|
||||
y = y.mul(gates_e.unsqueeze(1));
|
||||
}
|
||||
|
||||
// Store per-expert result
|
||||
y_list[e] = y;
|
||||
}
|
||||
});
|
||||
|
||||
// Concatenate all expert outputs to match expert_tokens order
|
||||
auto Y_all = at::cat(y_list, /*dim=*/0);
|
||||
auto out = at::zeros({T, H}, x.options());
|
||||
out =
|
||||
at::index_add(out, /*dim=*/0, /*index=*/expert_tokens, /*source=*/Y_all);
|
||||
|
||||
return out;
|
||||
}
|
||||
@ -21,6 +21,7 @@
|
||||
#include <torch/all.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda/std/limits>
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
namespace cg = cooperative_groups;
|
||||
@ -28,7 +29,6 @@ namespace cg = cooperative_groups;
|
||||
namespace vllm {
|
||||
namespace moe {
|
||||
|
||||
constexpr float kNegInfinity = INFINITY * -1;
|
||||
constexpr unsigned FULL_WARP_MASK = 0xffffffff;
|
||||
constexpr int32_t WARP_SIZE = 32;
|
||||
constexpr int32_t BLOCK_SIZE = 512;
|
||||
@ -411,14 +411,30 @@ __device__ inline float cuda_cast<float, __nv_bfloat16>(__nv_bfloat16 val) {
|
||||
return __bfloat162float(val);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ inline T neg_inf() {
|
||||
// cuda::std::numeric_limits<T>::infinity() returns `0` for [T=bf16 or fp16]
|
||||
// so we need to cast from fp32
|
||||
return cuda_cast<T, float>(-cuda::std::numeric_limits<float>::infinity());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ inline bool is_finite(const T val) {
|
||||
#if (__CUDACC_VER_MAJOR__ * 10000 + __CUDACC_VER_MINOR__ * 100 >= 120800)
|
||||
return cuda::std::isfinite(val);
|
||||
#else
|
||||
return isfinite(cuda_cast<float, T>(val));
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ void topk_with_k2(T* output, T const* input,
|
||||
cg::thread_block_tile<32> const& tile,
|
||||
int32_t const lane_id,
|
||||
int const num_experts_per_group) {
|
||||
// Get the top2 per thread
|
||||
T largest = -INFINITY;
|
||||
T second_largest = -INFINITY;
|
||||
T largest = neg_inf<T>();
|
||||
T second_largest = neg_inf<T>();
|
||||
|
||||
if (num_experts_per_group > WARP_SIZE) {
|
||||
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
|
||||
@ -513,8 +529,8 @@ __global__ void group_idx_and_topk_idx_kernel(
|
||||
warp_id * topk;
|
||||
s_topk_idx += warp_id * topk;
|
||||
|
||||
T value = kNegInfinity;
|
||||
T topk_group_value = kNegInfinity;
|
||||
T value = neg_inf<T>();
|
||||
T topk_group_value = neg_inf<T>();
|
||||
int32_t num_equalto_topkth_group;
|
||||
|
||||
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
||||
@ -525,11 +541,8 @@ __global__ void group_idx_and_topk_idx_kernel(
|
||||
if (case_id < num_tokens) {
|
||||
// calculate group_idx
|
||||
int32_t target_num_min = WARP_SIZE - n_group + topk_group;
|
||||
if (lane_id < n_group &&
|
||||
(isfinite(cuda_cast<float, T>(
|
||||
group_scores[lane_id])))) // The check is necessary to avoid
|
||||
// abnormal input
|
||||
{
|
||||
// The check is necessary to avoid abnormal input
|
||||
if (lane_id < n_group && is_finite(group_scores[lane_id])) {
|
||||
value = group_scores[lane_id];
|
||||
}
|
||||
|
||||
@ -540,11 +553,11 @@ __global__ void group_idx_and_topk_idx_kernel(
|
||||
__syncwarp(); // Ensure all threads have valid data before reduction
|
||||
topk_group_value = cg::reduce(tile, value, cg::greater<T>());
|
||||
if (value == topk_group_value) {
|
||||
value = kNegInfinity;
|
||||
value = neg_inf<T>();
|
||||
}
|
||||
pre_count_equal_to_top_value = count_equal_to_top_value;
|
||||
count_equal_to_top_value = __popc(__ballot_sync(
|
||||
FULL_WARP_MASK, (value == cuda_cast<T, float>(kNegInfinity))));
|
||||
count_equal_to_top_value =
|
||||
__popc(__ballot_sync(FULL_WARP_MASK, (value == neg_inf<T>())));
|
||||
}
|
||||
num_equalto_topkth_group = target_num_min - pre_count_equal_to_top_value;
|
||||
}
|
||||
@ -552,11 +565,10 @@ __global__ void group_idx_and_topk_idx_kernel(
|
||||
|
||||
warp_topk::WarpSelect</*capability*/ WARP_SIZE, /*greater*/ true, T, int32_t,
|
||||
/* is_stable */ true>
|
||||
queue((int32_t)topk, -INFINITY);
|
||||
queue((int32_t)topk, neg_inf<T>());
|
||||
|
||||
int count_equalto_topkth_group = 0;
|
||||
bool if_proceed_next_topk =
|
||||
(topk_group_value != cuda_cast<T, float>(kNegInfinity));
|
||||
bool if_proceed_next_topk = topk_group_value != neg_inf<T>();
|
||||
if (case_id < num_tokens && if_proceed_next_topk) {
|
||||
for (int i_group = 0; i_group < n_group; i_group++) {
|
||||
if ((group_scores[i_group] > topk_group_value) ||
|
||||
@ -565,11 +577,10 @@ __global__ void group_idx_and_topk_idx_kernel(
|
||||
int32_t offset = i_group * num_experts_per_group;
|
||||
for (int32_t i = lane_id; i < align_num_experts_per_group;
|
||||
i += WARP_SIZE) {
|
||||
T candidates =
|
||||
(i < num_experts_per_group) && isfinite(cuda_cast<float, T>(
|
||||
scores_with_bias[offset + i]))
|
||||
? scores_with_bias[offset + i]
|
||||
: cuda_cast<T, float>(kNegInfinity);
|
||||
T candidates = (i < num_experts_per_group) &&
|
||||
is_finite(scores_with_bias[offset + i])
|
||||
? scores_with_bias[offset + i]
|
||||
: neg_inf<T>();
|
||||
queue.add(candidates, offset + i);
|
||||
}
|
||||
if (group_scores[i_group] == topk_group_value) {
|
||||
@ -598,7 +609,8 @@ __global__ void group_idx_and_topk_idx_kernel(
|
||||
if (i < topk) {
|
||||
s_topk_value[i] = value;
|
||||
}
|
||||
topk_sum += reduce(tile, cuda_cast<float, T>(value), cg::plus<float>());
|
||||
topk_sum +=
|
||||
cg::reduce(tile, cuda_cast<float, T>(value), cg::plus<float>());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -17,25 +17,30 @@ FILE_HEAD = """
|
||||
namespace MARLIN_NAMESPACE_NAME {
|
||||
""".strip()
|
||||
|
||||
TEMPLATE = ("template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
"{{thread_k_blocks}}, "
|
||||
"{{'true' if m_block_size_8 else 'false'}}, "
|
||||
"{{stages}}, "
|
||||
"{{group_blocks}}, "
|
||||
"{{'true' if is_zp_float else 'false'}}>"
|
||||
"( MARLIN_KERNEL_PARAMS );")
|
||||
TEMPLATE = (
|
||||
"template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
"{{thread_k_blocks}}, "
|
||||
"{{'true' if m_block_size_8 else 'false'}}, "
|
||||
"{{stages}}, "
|
||||
"{{group_blocks}}, "
|
||||
"{{'true' if is_zp_float else 'false'}}>"
|
||||
"( MARLIN_KERNEL_PARAMS );"
|
||||
)
|
||||
|
||||
# int8 with zero point case (vllm::kU8) is also supported,
|
||||
# we don't add it to reduce wheel size.
|
||||
SCALAR_TYPES = [
|
||||
"vllm::kU4", "vllm::kU4B8", "vllm::kU8B128", "vllm::kFE4M3fn",
|
||||
"vllm::kFE2M1f"
|
||||
"vllm::kU4",
|
||||
"vllm::kU4B8",
|
||||
"vllm::kU8B128",
|
||||
"vllm::kFE4M3fn",
|
||||
"vllm::kFE2M1f",
|
||||
]
|
||||
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128)]
|
||||
|
||||
@ -58,11 +63,12 @@ def generate_new_kernels():
|
||||
all_template_str_list = []
|
||||
|
||||
for group_blocks, m_blocks, thread_configs in itertools.product(
|
||||
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS):
|
||||
|
||||
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS
|
||||
):
|
||||
# act order case only support gptq-int4 and gptq-int8
|
||||
if group_blocks == 0 and scalar_type not in [
|
||||
"vllm::kU4B8", "vllm::kU8B128"
|
||||
"vllm::kU4B8",
|
||||
"vllm::kU8B128",
|
||||
]:
|
||||
continue
|
||||
if thread_configs[2] == 256:
|
||||
|
||||
@ -44,6 +44,9 @@ __global__ void moe_align_block_size_kernel(
|
||||
|
||||
for (size_t i = tid; i < numel; i += stride) {
|
||||
int expert_id = topk_ids[i];
|
||||
if (expert_id >= num_experts) {
|
||||
continue;
|
||||
}
|
||||
int warp_idx = expert_id / experts_per_warp;
|
||||
int expert_offset = expert_id % experts_per_warp;
|
||||
atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset], 1);
|
||||
@ -95,12 +98,15 @@ template <typename scalar_t>
|
||||
__global__ void count_and_sort_expert_tokens_kernel(
|
||||
const scalar_t* __restrict__ topk_ids,
|
||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
|
||||
size_t numel) {
|
||||
size_t numel, int32_t num_experts) {
|
||||
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const size_t stride = blockDim.x * gridDim.x;
|
||||
|
||||
for (size_t i = tid; i < numel; i += stride) {
|
||||
int32_t expert_id = topk_ids[i];
|
||||
if (expert_id >= num_experts) {
|
||||
continue;
|
||||
}
|
||||
int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
|
||||
sorted_token_ids[rank_post_pad] = i;
|
||||
}
|
||||
@ -269,7 +275,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
|
||||
topk_ids.data_ptr<scalar_t>(),
|
||||
sorted_token_ids.data_ptr<int32_t>(),
|
||||
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel());
|
||||
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel(), num_experts);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@ -21,6 +21,7 @@
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include "../cuda_compat.h"
|
||||
#include "../cub_helpers.h"
|
||||
#include "../core/batch_invariant.hpp"
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
@ -405,7 +406,8 @@ void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, f
|
||||
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
|
||||
static constexpr int VPT = Constants::VPT;
|
||||
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
|
||||
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
|
||||
const bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||
const int num_warps = batch_invariant_launch ? 32 : (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
|
||||
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
|
||||
|
||||
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);
|
||||
|
||||
@ -328,6 +328,12 @@ void selective_scan_fwd(const torch::Tensor& u, const torch::Tensor& delta,
|
||||
const std::optional<torch::Tensor>& has_initial_state,
|
||||
const torch::Tensor& ssm_states, int64_t pad_slot_id);
|
||||
|
||||
torch::Tensor dynamic_4bit_int_moe_cpu(
|
||||
torch::Tensor x, torch::Tensor topk_ids, torch::Tensor topk_weights,
|
||||
torch::Tensor w13_packed, torch::Tensor w2_packed, int64_t H, int64_t I,
|
||||
int64_t I2, int64_t group_size, bool apply_router_weight_on_input,
|
||||
int64_t activation_kind);
|
||||
|
||||
using fptr_t = int64_t;
|
||||
fptr_t init_custom_ar(const std::vector<int64_t>& fake_ipc_ptrs,
|
||||
torch::Tensor& rank_data, int64_t rank,
|
||||
|
||||
@ -23,9 +23,14 @@
|
||||
typedef __hip_bfloat162 __nv_bfloat162;
|
||||
typedef __hip_bfloat16 __nv_bfloat16;
|
||||
typedef __hip_bfloat16_raw __nv_bfloat16_raw;
|
||||
|
||||
#if defined(HIP_FP8_TYPE_OCP)
|
||||
typedef __hip_fp8_e4m3 __nv_fp8_e4m3;
|
||||
typedef __hip_fp8x4_e4m3 __nv_fp8x4_e4m3;
|
||||
#else
|
||||
// ROCm 6.2 fallback: only *_fnuz types exist
|
||||
typedef __hip_fp8_e4m3_fnuz __nv_fp8_e4m3;
|
||||
typedef __hip_fp8x4_e4m3_fnuz __nv_fp8x4_e4m3;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include "core/registration.h"
|
||||
@ -365,7 +370,6 @@ __global__ void silu_mul_fp8_quant_deep_gemm_kernel(
|
||||
int32_t compute_pipeline_offset_64 = 0;
|
||||
|
||||
for (int32_t t = n_tokens_lower; t < n_tokens_upper; ++t) {
|
||||
__nv_bfloat16 y_max_bf16 = EPS;
|
||||
__nv_bfloat162 results_bf162[2];
|
||||
|
||||
cp_async_wait<NUM_STAGES - 2>();
|
||||
@ -405,7 +409,7 @@ __global__ void silu_mul_fp8_quant_deep_gemm_kernel(
|
||||
auto _y_max2 =
|
||||
__hmax2(__habs2(results_bf162[0]), __habs2(results_bf162[1]));
|
||||
|
||||
y_max_bf16 = __hmax(_y_max2.x, _y_max2.y);
|
||||
__nv_bfloat16 y_max_bf16 = __hmax(EPS, __hmax(_y_max2.x, _y_max2.y));
|
||||
|
||||
// An entire group is assigned to a single warp, so a simple warp reduce
|
||||
// is used.
|
||||
|
||||
@ -231,7 +231,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
@ -245,7 +245,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
@ -259,7 +259,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
|
||||
Shape<_2, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized2Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
@ -271,10 +271,10 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
// TMA epilogue isn't compatible with Swap A/B
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
} // namespace vllm
|
||||
@ -25,7 +25,10 @@ void dispatch_scaled_mm(torch::Tensor& c, torch::Tensor const& a,
|
||||
if constexpr (!std::is_same_v<Int8Func, std::nullptr_t>) {
|
||||
int8_func(c, a, b, a_scales, b_scales, bias);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Int8 not supported for this architecture");
|
||||
int32_t version_num = get_sm_version_num();
|
||||
TORCH_CHECK(
|
||||
false, "Int8 not supported on SM", version_num,
|
||||
". Use FP8 quantization instead, or run on older arch (SM < 100).");
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
@ -133,4 +133,4 @@ void cutlass_scaled_mm_sm100_fp8_epilogue(torch::Tensor& out,
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
} // namespace vllm
|
||||
|
||||
@ -67,8 +67,9 @@ void cutlass_scaled_mm_sm100(torch::Tensor& c, torch::Tensor const& a,
|
||||
std::optional<torch::Tensor> const& bias);
|
||||
#endif
|
||||
|
||||
#if defined(ENABLE_SCALED_MM_SM90) && ENABLE_SCALED_MM_SM90 || \
|
||||
defined(ENABLE_SCALED_MM_SM100) && ENABLE_SCALED_MM_SM100
|
||||
#if defined(ENABLE_SCALED_MM_SM90) && ENABLE_SCALED_MM_SM90 || \
|
||||
defined(ENABLE_SCALED_MM_SM100) && ENABLE_SCALED_MM_SM100 || \
|
||||
defined(ENABLE_SCALED_MM_SM120) && ENABLE_SCALED_MM_SM120
|
||||
void get_cutlass_moe_mm_data_caller(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
@ -253,7 +254,7 @@ void cutlass_moe_mm(
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100
|
||||
if (version_num >= 100) {
|
||||
if (version_num >= 100 && version_num < 110) {
|
||||
cutlass_moe_mm_sm100(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
@ -261,7 +262,7 @@ void cutlass_moe_mm(
|
||||
}
|
||||
#endif
|
||||
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
|
||||
if (version_num >= 90) {
|
||||
if (version_num >= 90 && version_num < 100) {
|
||||
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
|
||||
@ -26,6 +26,7 @@
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "launch_bounds_utils.h"
|
||||
#include "nvfp4_utils.cuh"
|
||||
|
||||
namespace vllm {
|
||||
@ -63,7 +64,7 @@ __inline__ __device__ PackedVec<Type> compute_silu_mul(PackedVec<Type>& vec,
|
||||
|
||||
// Use UE4M3 by default.
|
||||
template <class Type, bool UE8M0_SF = false>
|
||||
__global__ void __launch_bounds__(1024, 4)
|
||||
__global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024))
|
||||
silu_mul_cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
|
||||
float const* SFScale, uint32_t* out,
|
||||
uint32_t* SFout) {
|
||||
@ -131,7 +132,8 @@ void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output, // [..., d]
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
|
||||
dim3 block(std::min(int(n / ELTS_PER_THREAD), 1024));
|
||||
int const numBlocksPerSM = 2048 / block.x;
|
||||
int const numBlocksPerSM =
|
||||
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
|
||||
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
|
||||
|
||||
VLLM_DISPATCH_HALF_TYPES(
|
||||
|
||||
@ -14,6 +14,8 @@
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "core/registration.h"
|
||||
|
||||
#include <torch/all.h>
|
||||
#include <cutlass/arch/arch.h>
|
||||
|
||||
@ -418,3 +420,7 @@ void cutlass_fp4_group_mm(
|
||||
"12.8 or above.");
|
||||
#endif
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
|
||||
m.impl("cutlass_fp4_group_mm", &cutlass_fp4_group_mm);
|
||||
}
|
||||
|
||||
@ -26,12 +26,13 @@
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
#include "nvfp4_utils.cuh"
|
||||
#include "launch_bounds_utils.h"
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Use UE4M3 by default.
|
||||
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
|
||||
__global__ void __launch_bounds__(512, 4)
|
||||
__global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
|
||||
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
|
||||
float const* SFScale, uint32_t* out, uint32_t* SFout,
|
||||
uint32_t* input_offset_by_experts,
|
||||
@ -129,7 +130,7 @@ __global__ void __launch_bounds__(512, 4)
|
||||
|
||||
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
|
||||
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
|
||||
__global__ void __launch_bounds__(1024, 4)
|
||||
__global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024))
|
||||
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
|
||||
float const* SFScale, uint32_t* out, uint32_t* SFout,
|
||||
uint32_t* input_offset_by_experts,
|
||||
@ -233,8 +234,9 @@ void quant_impl(void* output, void* output_scale, void* input,
|
||||
int const workSizePerRow = k / ELTS_PER_THREAD;
|
||||
int const totalWorkSize = m_topk * workSizePerRow;
|
||||
dim3 block(std::min(workSizePerRow, 512));
|
||||
// Get number of blocks per SM (assume we can fully utilize the SM).
|
||||
int const numBlocksPerSM = 2048 / block.x;
|
||||
// Get number of blocks per SM
|
||||
int const numBlocksPerSM =
|
||||
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
|
||||
dim3 grid(std::min(static_cast<int>((totalWorkSize + block.x - 1) / block.x),
|
||||
multiProcessorCount * numBlocksPerSM));
|
||||
while (grid.x <= multiProcessorCount && block.x > 64) {
|
||||
|
||||
@ -26,13 +26,14 @@
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "launch_bounds_utils.h"
|
||||
#include "nvfp4_utils.cuh"
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Use UE4M3 by default.
|
||||
template <class Type, bool UE8M0_SF = false>
|
||||
__global__ void __launch_bounds__(512, 4)
|
||||
__global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
|
||||
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
|
||||
float const* SFScale, uint32_t* out, uint32_t* SFout) {
|
||||
using PackedVec = PackedVec<Type>;
|
||||
@ -75,8 +76,9 @@ void invokeFP4Quantization(int m, int n, T const* input, float const* SFScale,
|
||||
// Grid, Block size.
|
||||
// Each thread converts 8 values.
|
||||
dim3 block(std::min(int(n / ELTS_PER_THREAD), 512));
|
||||
// Get number of blocks per SM (assume we can fully utilize the SM).
|
||||
int const numBlocksPerSM = 2048 / block.x;
|
||||
// Get number of blocks per SM
|
||||
int const numBlocksPerSM =
|
||||
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
|
||||
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
|
||||
|
||||
// Launch the cvt kernel.
|
||||
|
||||
@ -576,6 +576,17 @@ __inline__ __device__ Tout scaled_convert(const Tin& x, const float scale) {
|
||||
TORCH_CHECK(false, \
|
||||
"Unsupported input type of kv cache: ", SRC_DTYPE); \
|
||||
} \
|
||||
} else if (KV_DTYPE == "fp8_ds_mla") { \
|
||||
if (SRC_DTYPE == at::ScalarType::Float) { \
|
||||
FN(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
|
||||
} else if (SRC_DTYPE == at::ScalarType::Half) { \
|
||||
FN(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
|
||||
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
|
||||
FN(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
|
||||
} else { \
|
||||
TORCH_CHECK(false, \
|
||||
"Unsupported input type of kv cache: ", SRC_DTYPE); \
|
||||
} \
|
||||
} else { \
|
||||
TORCH_CHECK(false, "Unsupported data type of kv cache: ", KV_DTYPE); \
|
||||
} \
|
||||
|
||||
@ -12,8 +12,8 @@
|
||||
#include "../vectorization_utils.cuh"
|
||||
#include "../../dispatch_utils.h"
|
||||
|
||||
__device__ __forceinline__ float GroupReduceMax(float val, const int tid) {
|
||||
unsigned mask = 0xffff;
|
||||
__device__ __forceinline__ float GroupReduceMax(float val) {
|
||||
unsigned mask = threadIdx.x % 32 >= 16 ? 0xffff0000 : 0x0000ffff;
|
||||
|
||||
val = fmaxf(val, __shfl_xor_sync(mask, val, 8));
|
||||
val = fmaxf(val, __shfl_xor_sync(mask, val, 4));
|
||||
@ -86,7 +86,7 @@ __global__ void per_token_group_quant_8bit_kernel(
|
||||
threads_per_group, // stride in group
|
||||
scalar_op_cache); // scalar handler
|
||||
|
||||
local_absmax = GroupReduceMax(local_absmax, lane_id);
|
||||
local_absmax = GroupReduceMax(local_absmax);
|
||||
|
||||
float y_s = local_absmax / max_8bit;
|
||||
if constexpr (SCALE_UE8M0) {
|
||||
|
||||
@ -17,28 +17,32 @@ FILE_HEAD = """
|
||||
namespace MARLIN_NAMESPACE_NAME {
|
||||
""".strip()
|
||||
|
||||
TEMPLATE = ("template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
"{{thread_k_blocks}}, "
|
||||
"{{'true' if m_block_size_8 else 'false'}}, "
|
||||
"{{stages}}, "
|
||||
"{{group_blocks}}, "
|
||||
"{{'true' if is_zp_float else 'false'}}>"
|
||||
"( MARLIN_KERNEL_PARAMS );")
|
||||
TEMPLATE = (
|
||||
"template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
"{{thread_k_blocks}}, "
|
||||
"{{'true' if m_block_size_8 else 'false'}}, "
|
||||
"{{stages}}, "
|
||||
"{{group_blocks}}, "
|
||||
"{{'true' if is_zp_float else 'false'}}>"
|
||||
"( MARLIN_KERNEL_PARAMS );"
|
||||
)
|
||||
|
||||
# int8 with zero point case (vllm::kU8) is also supported,
|
||||
# we don't add it to reduce wheel size.
|
||||
SCALAR_TYPES = [
|
||||
"vllm::kU4", "vllm::kU4B8", "vllm::kU8B128", "vllm::kFE4M3fn",
|
||||
"vllm::kFE2M1f"
|
||||
"vllm::kU4",
|
||||
"vllm::kU4B8",
|
||||
"vllm::kU8B128",
|
||||
"vllm::kFE4M3fn",
|
||||
"vllm::kFE2M1f",
|
||||
]
|
||||
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128),
|
||||
(128, 64, 128)]
|
||||
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128), (128, 64, 128)]
|
||||
|
||||
THREAD_M_BLOCKS = [0.5, 1, 2, 3, 4]
|
||||
# group_blocks:
|
||||
@ -59,11 +63,12 @@ def generate_new_kernels():
|
||||
all_template_str_list = []
|
||||
|
||||
for group_blocks, m_blocks, thread_configs in itertools.product(
|
||||
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS):
|
||||
|
||||
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS
|
||||
):
|
||||
# act order case only support gptq-int4 and gptq-int8
|
||||
if group_blocks == 0 and scalar_type not in [
|
||||
"vllm::kU4B8", "vllm::kU8B128"
|
||||
"vllm::kU4B8",
|
||||
"vllm::kU8B128",
|
||||
]:
|
||||
continue
|
||||
if thread_configs[2] == 256:
|
||||
@ -93,8 +98,7 @@ def generate_new_kernels():
|
||||
c_dtype = "half" if dtype == "fp16" else "nv_bfloat16"
|
||||
|
||||
is_zp_float_list = [False]
|
||||
if dtype == "fp16" and scalar_type == "vllm::kU4" and \
|
||||
group_blocks == 4:
|
||||
if dtype == "fp16" and scalar_type == "vllm::kU4" and group_blocks == 4:
|
||||
# HQQ (is_zp_float = true) only supports
|
||||
# 4bit quantization and fp16
|
||||
is_zp_float_list.append(True)
|
||||
|
||||
@ -12,20 +12,21 @@ from functools import reduce
|
||||
from typing import Optional, Union
|
||||
|
||||
import jinja2
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
from vllm_cutlass_library_extension import (DataType, EpilogueScheduleTag,
|
||||
EpilogueScheduleType,
|
||||
MixedInputKernelScheduleType,
|
||||
TileSchedulerTag,
|
||||
TileSchedulerType, VLLMDataType,
|
||||
VLLMDataTypeNames,
|
||||
VLLMDataTypeSize, VLLMDataTypeTag,
|
||||
VLLMDataTypeTorchDataTypeTag,
|
||||
VLLMDataTypeVLLMScalarTypeTag,
|
||||
VLLMKernelScheduleTag)
|
||||
|
||||
# yapf: enable
|
||||
from vllm_cutlass_library_extension import (
|
||||
DataType,
|
||||
EpilogueScheduleTag,
|
||||
EpilogueScheduleType,
|
||||
MixedInputKernelScheduleType,
|
||||
TileSchedulerTag,
|
||||
TileSchedulerType,
|
||||
VLLMDataType,
|
||||
VLLMDataTypeNames,
|
||||
VLLMDataTypeSize,
|
||||
VLLMDataTypeTag,
|
||||
VLLMDataTypeTorchDataTypeTag,
|
||||
VLLMDataTypeVLLMScalarTypeTag,
|
||||
VLLMKernelScheduleTag,
|
||||
)
|
||||
|
||||
#
|
||||
# Generator templating
|
||||
@ -286,18 +287,23 @@ def generate_sch_sig(schedule_config: ScheduleConfig) -> str:
|
||||
tile_shape = (
|
||||
f"{schedule_config.tile_shape_mn[0]}x{schedule_config.tile_shape_mn[1]}"
|
||||
)
|
||||
cluster_shape = (f"{schedule_config.cluster_shape_mnk[0]}" +
|
||||
f"x{schedule_config.cluster_shape_mnk[1]}" +
|
||||
f"x{schedule_config.cluster_shape_mnk[2]}")
|
||||
kernel_schedule = VLLMKernelScheduleTag[schedule_config.kernel_schedule]\
|
||||
.split("::")[-1]
|
||||
epilogue_schedule = EpilogueScheduleTag[
|
||||
schedule_config.epilogue_schedule].split("::")[-1]
|
||||
tile_scheduler = TileSchedulerTag[schedule_config.tile_scheduler]\
|
||||
.split("::")[-1]
|
||||
cluster_shape = (
|
||||
f"{schedule_config.cluster_shape_mnk[0]}"
|
||||
+ f"x{schedule_config.cluster_shape_mnk[1]}"
|
||||
+ f"x{schedule_config.cluster_shape_mnk[2]}"
|
||||
)
|
||||
kernel_schedule = VLLMKernelScheduleTag[schedule_config.kernel_schedule].split(
|
||||
"::"
|
||||
)[-1]
|
||||
epilogue_schedule = EpilogueScheduleTag[schedule_config.epilogue_schedule].split(
|
||||
"::"
|
||||
)[-1]
|
||||
tile_scheduler = TileSchedulerTag[schedule_config.tile_scheduler].split("::")[-1]
|
||||
|
||||
return (f"{tile_shape}_{cluster_shape}_{kernel_schedule}" +
|
||||
f"_{epilogue_schedule}_{tile_scheduler}")
|
||||
return (
|
||||
f"{tile_shape}_{cluster_shape}_{kernel_schedule}"
|
||||
+ f"_{epilogue_schedule}_{tile_scheduler}"
|
||||
)
|
||||
|
||||
|
||||
# mostly unique shorter sch_sig
|
||||
@ -316,18 +322,24 @@ def generate_terse_sch_sig(schedule_config: ScheduleConfig) -> str:
|
||||
|
||||
# unique type_name
|
||||
def generate_type_signature(kernel_types: TypeConfig):
|
||||
return str("".join([
|
||||
VLLMDataTypeNames[getattr(kernel_types, field.name)]
|
||||
for field in fields(TypeConfig)
|
||||
]))
|
||||
return str(
|
||||
"".join(
|
||||
[
|
||||
VLLMDataTypeNames[getattr(kernel_types, field.name)]
|
||||
for field in fields(TypeConfig)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def generate_type_option_name(kernel_types: TypeConfig):
|
||||
return ", ".join([
|
||||
f"{field.name.replace('b_', 'with_')+'_type'}=" +
|
||||
VLLMDataTypeNames[getattr(kernel_types, field.name)]
|
||||
for field in fields(TypeConfig)
|
||||
])
|
||||
return ", ".join(
|
||||
[
|
||||
f"{field.name.replace('b_', 'with_') + '_type'}="
|
||||
+ VLLMDataTypeNames[getattr(kernel_types, field.name)]
|
||||
for field in fields(TypeConfig)
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def is_power_of_two(n):
|
||||
@ -335,7 +347,6 @@ def is_power_of_two(n):
|
||||
|
||||
|
||||
def to_cute_constant(value: list[int]):
|
||||
|
||||
def _to_cute_constant(value: int):
|
||||
if is_power_of_two(value):
|
||||
return f"_{value}"
|
||||
@ -350,11 +361,11 @@ def to_cute_constant(value: list[int]):
|
||||
|
||||
def unique_schedules(impl_configs: list[ImplConfig]):
|
||||
# Use dict over set for deterministic ordering
|
||||
return list({
|
||||
sch: None
|
||||
for impl_config in impl_configs
|
||||
for sch in impl_config.schedules
|
||||
}.keys())
|
||||
return list(
|
||||
{
|
||||
sch: None for impl_config in impl_configs for sch in impl_config.schedules
|
||||
}.keys()
|
||||
)
|
||||
|
||||
|
||||
def unsigned_type_with_bitwidth(num_bits):
|
||||
@ -380,7 +391,7 @@ template_globals = {
|
||||
"gen_type_sig": generate_type_signature,
|
||||
"unique_schedules": unique_schedules,
|
||||
"unsigned_type_with_bitwidth": unsigned_type_with_bitwidth,
|
||||
"gen_type_option_name": generate_type_option_name
|
||||
"gen_type_option_name": generate_type_option_name,
|
||||
}
|
||||
|
||||
|
||||
@ -398,23 +409,28 @@ prepack_dispatch_template = create_template(PREPACK_TEMPLATE)
|
||||
def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
|
||||
sources = []
|
||||
|
||||
sources.append((
|
||||
"machete_mm_dispatch",
|
||||
mm_dispatch_template.render(impl_configs=impl_configs),
|
||||
))
|
||||
sources.append(
|
||||
(
|
||||
"machete_mm_dispatch",
|
||||
mm_dispatch_template.render(impl_configs=impl_configs),
|
||||
)
|
||||
)
|
||||
|
||||
prepack_types = []
|
||||
for impl_config in impl_configs:
|
||||
convert_type = impl_config.types.a \
|
||||
if impl_config.types.b_group_scale == DataType.void \
|
||||
else impl_config.types.b_group_scale
|
||||
convert_type = (
|
||||
impl_config.types.a
|
||||
if impl_config.types.b_group_scale == DataType.void
|
||||
else impl_config.types.b_group_scale
|
||||
)
|
||||
prepack_types.append(
|
||||
PrepackTypeConfig(
|
||||
a=impl_config.types.a,
|
||||
b_num_bits=VLLMDataTypeSize[impl_config.types.b],
|
||||
convert=convert_type,
|
||||
accumulator=impl_config.types.accumulator,
|
||||
))
|
||||
)
|
||||
)
|
||||
|
||||
def prepacked_type_key(prepack_type: PrepackTypeConfig):
|
||||
# For now, we can just use the first accumulator type seen since
|
||||
@ -430,10 +446,14 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
|
||||
unique_prepack_types.append(prepack_type)
|
||||
prepack_types_seen.add(key)
|
||||
|
||||
sources.append((
|
||||
"machete_prepack",
|
||||
prepack_dispatch_template.render(types=unique_prepack_types, ),
|
||||
))
|
||||
sources.append(
|
||||
(
|
||||
"machete_prepack",
|
||||
prepack_dispatch_template.render(
|
||||
types=unique_prepack_types,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# Split up impls across files
|
||||
num_impls = reduce(lambda x, y: x + len(y.schedules), impl_configs, 0)
|
||||
@ -466,10 +486,12 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
|
||||
curr_impl_in_file += len(files_impls[-1][-1].schedules)
|
||||
|
||||
for part, file_impls in enumerate(files_impls):
|
||||
sources.append((
|
||||
f"machete_mm_impl_part{part+1}",
|
||||
mm_impl_template.render(impl_configs=file_impls),
|
||||
))
|
||||
sources.append(
|
||||
(
|
||||
f"machete_mm_impl_part{part + 1}",
|
||||
mm_impl_template.render(impl_configs=file_impls),
|
||||
)
|
||||
)
|
||||
|
||||
return sources
|
||||
|
||||
@ -514,8 +536,7 @@ def generate():
|
||||
# For now we use the same heuristic for all types
|
||||
# Heuristic is currently tuned for H100s
|
||||
default_heuristic = [
|
||||
(cond, ScheduleConfig(*tile_config,
|
||||
**sch_common_params)) # type: ignore
|
||||
(cond, ScheduleConfig(*tile_config, **sch_common_params)) # type: ignore
|
||||
for cond, tile_config in default_tile_heuristic_config.items()
|
||||
]
|
||||
|
||||
@ -541,14 +562,18 @@ def generate():
|
||||
a_token_scale=DataType.void,
|
||||
out=a,
|
||||
accumulator=DataType.f32,
|
||||
) for b in (VLLMDataType.u4b8, VLLMDataType.u8b128)
|
||||
for a in (DataType.f16, DataType.bf16))
|
||||
)
|
||||
for b in (VLLMDataType.u4b8, VLLMDataType.u8b128)
|
||||
for a in (DataType.f16, DataType.bf16)
|
||||
)
|
||||
|
||||
impl_configs += [
|
||||
ImplConfig(x[0], x[1], x[2])
|
||||
for x in zip(GPTQ_kernel_type_configs,
|
||||
itertools.repeat(get_unique_schedules(default_heuristic)),
|
||||
itertools.repeat(default_heuristic))
|
||||
for x in zip(
|
||||
GPTQ_kernel_type_configs,
|
||||
itertools.repeat(get_unique_schedules(default_heuristic)),
|
||||
itertools.repeat(default_heuristic),
|
||||
)
|
||||
]
|
||||
|
||||
AWQ_kernel_type_configs = list(
|
||||
@ -561,14 +586,18 @@ def generate():
|
||||
a_token_scale=DataType.void,
|
||||
out=a,
|
||||
accumulator=DataType.f32,
|
||||
) for b in (DataType.u4, DataType.u8)
|
||||
for a in (DataType.f16, DataType.bf16))
|
||||
)
|
||||
for b in (DataType.u4, DataType.u8)
|
||||
for a in (DataType.f16, DataType.bf16)
|
||||
)
|
||||
|
||||
impl_configs += [
|
||||
ImplConfig(x[0], x[1], x[2])
|
||||
for x in zip(AWQ_kernel_type_configs,
|
||||
itertools.repeat(get_unique_schedules(default_heuristic)),
|
||||
itertools.repeat(default_heuristic))
|
||||
for x in zip(
|
||||
AWQ_kernel_type_configs,
|
||||
itertools.repeat(get_unique_schedules(default_heuristic)),
|
||||
itertools.repeat(default_heuristic),
|
||||
)
|
||||
]
|
||||
|
||||
# TODO: Support W4A8 when ready
|
||||
|
||||
@ -25,6 +25,12 @@
|
||||
#include "../attention/dtype_fp8.cuh"
|
||||
#include "../quantization/fp8/amd/quant_utils.cuh"
|
||||
|
||||
// ROCm 6.2 compatibility: map OCP fp8 types to FNUZ variants if OCP is absent
|
||||
#if !defined(HIP_FP8_TYPE_OCP)
|
||||
using __hip_fp8_e4m3 = __hip_fp8_e4m3_fnuz;
|
||||
using __hip_fp8_e5m2 = __hip_fp8_e5m2_fnuz;
|
||||
#endif
|
||||
|
||||
#if defined(__HIPCC__) && \
|
||||
(defined(__gfx90a__) || defined(__gfx942__) || defined(__gfx950__))
|
||||
#define __HIP__GFX9__
|
||||
@ -34,7 +40,8 @@
|
||||
#define __HIP__FP8MFMA__
|
||||
#endif
|
||||
|
||||
#if defined(__HIPCC__) && (defined(__gfx1100__) || defined(__gfx1101__))
|
||||
#if defined(__HIPCC__) && (defined(__gfx1100__) || defined(__gfx1101__) || \
|
||||
defined(__gfx1150__) || defined(__gfx1151__))
|
||||
#define __HIP__GFX11__
|
||||
#endif
|
||||
|
||||
|
||||
@ -5,11 +5,14 @@
|
||||
torch::Tensor LLMM1(at::Tensor& in_a, at::Tensor& in_b,
|
||||
const int64_t rows_per_block);
|
||||
|
||||
torch::Tensor wvSplitK(at::Tensor& in_a, at::Tensor& in_b,
|
||||
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
|
||||
const std::optional<at::Tensor>& in_bias,
|
||||
const int64_t CuCount);
|
||||
|
||||
void wvSplitKQ(at::Tensor& in_a, at::Tensor& in_b, at::Tensor& out_c,
|
||||
at::Tensor& scale_a, at::Tensor& scale_b, const int64_t CuCount);
|
||||
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
|
||||
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
|
||||
const at::Tensor& scale_a, const at::Tensor& scale_b,
|
||||
const int64_t CuCount);
|
||||
|
||||
void paged_attention(
|
||||
torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits,
|
||||
|
||||
@ -292,8 +292,9 @@ torch::Tensor LLMM1(at::Tensor& in_a, at::Tensor& in_b,
|
||||
template <typename scalar_t, int THRDS, int YTILE, int WvPrGrp, int A_CHUNK,
|
||||
int UNRL, int N>
|
||||
__global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
wvSplitK_hf_sml_(const int K, const int M, const scalar_t* B,
|
||||
const scalar_t* __restrict__ A, scalar_t* C,
|
||||
wvSplitK_hf_sml_(const int K, const int M, const int Bx, const int By,
|
||||
const scalar_t* B, const scalar_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS, scalar_t* C,
|
||||
const int _WvPrGrp, const int CuCount) {
|
||||
constexpr int max_lds_len = LDS_SIZE / 2;
|
||||
#if defined(__HIP__MI3XX__)
|
||||
@ -484,7 +485,14 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
if (threadIdx.x == 63) {
|
||||
for (int n = 0; n < N; n++) {
|
||||
for (int i = 0; i < YTILE; i++) {
|
||||
// if (commitColumn[i]) C[m + i + n * M] = __float2half(sum[n][i]);
|
||||
if constexpr (std::is_same_v<scalar_t, half>) {
|
||||
if (BIAS)
|
||||
sum[n][i] += __half2float(BIAS[(m + i) % Bx + (n % By) * M]);
|
||||
} else if constexpr (std::is_same_v<scalar_t, __hip_bfloat16>) {
|
||||
if (BIAS)
|
||||
sum[n][i] +=
|
||||
__bfloat162float(BIAS[(m + i) % Bx + (n % By) * M]);
|
||||
}
|
||||
C[m + i + n * M] = __float2s<scalar_t>(sum[n][i]);
|
||||
}
|
||||
}
|
||||
@ -529,7 +537,9 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
if (threadIdx.x == 63) {
|
||||
for (int n = 0; n < N; n++) {
|
||||
for (int i = 0; i < YTILE; i++) {
|
||||
// if (commitColumn[i]) C[n + i + m * N] = __float2half(sum[n][i]);
|
||||
if (BIAS)
|
||||
sum4[n][i][0] +=
|
||||
__bfloat162float(BIAS[(m + i) % Bx + (n % By) * M]);
|
||||
C[m + i + n * M] = __float2bfloat16(sum4[n][i][0]);
|
||||
}
|
||||
}
|
||||
@ -541,8 +551,10 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
#else // !defined(__HIP__GFX9__) TODO: Add NAVI support
|
||||
template <typename scalar_t, int THRDS, int YTILE, int WvPrGrp, int A_CHUNK,
|
||||
int UNRL, int N>
|
||||
__global__ void wvSplitK_hf_sml_(const int K, const int M, const scalar_t* B,
|
||||
const scalar_t* __restrict__ A, scalar_t* C,
|
||||
__global__ void wvSplitK_hf_sml_(const int K, const int M, const int Bx,
|
||||
const int By, const scalar_t* B,
|
||||
const scalar_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS, scalar_t* C,
|
||||
const int _WvPrGrp, const int CuCount) {
|
||||
UNREACHABLE_CODE
|
||||
}
|
||||
@ -553,8 +565,9 @@ __global__ void wvSplitK_hf_sml_(const int K, const int M, const scalar_t* B,
|
||||
template <typename scalar_t, int THRDS, int YTILE, int WvPrGrp, int A_CHUNK,
|
||||
int UNRL, int N>
|
||||
__global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
wvSplitK_hf_(const int K, const int M, const scalar_t* B,
|
||||
const scalar_t* __restrict__ A, scalar_t* C,
|
||||
wvSplitK_hf_(const int K, const int M, const int Bx, const int By,
|
||||
const scalar_t* B, const scalar_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS, scalar_t* C,
|
||||
const int _WvPrGrp, const int CuCount) {
|
||||
constexpr int max_lds_len = LDS_SIZE / 2;
|
||||
#if defined(__HIP__MI3XX__)
|
||||
@ -772,8 +785,17 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
if (threadIdx.x == 63) {
|
||||
for (int n = 0; n < N; n++) {
|
||||
for (int i = 0; i < YTILE; i++) {
|
||||
if (commitColumn[i])
|
||||
if (commitColumn[i]) {
|
||||
if constexpr (std::is_same_v<scalar_t, half>) {
|
||||
if (BIAS)
|
||||
sum[n][i] += __half2float(BIAS[(m + i) % Bx + (n % By) * M]);
|
||||
} else if constexpr (std::is_same_v<scalar_t, __hip_bfloat16>) {
|
||||
if (BIAS)
|
||||
sum[n][i] +=
|
||||
__bfloat162float(BIAS[(m + i) % Bx + (n % By) * M]);
|
||||
}
|
||||
C[m + i + n * M] = __float2s<scalar_t>(sum[n][i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -818,8 +840,12 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
if (threadIdx.x == 63) {
|
||||
for (int n = 0; n < N; n++) {
|
||||
for (int i = 0; i < YTILE; i++) {
|
||||
// if (commitColumn[i]) C[n + i + m * N] = __float2half(sum[n][i]);
|
||||
C[m + i + n * M] = __float2bfloat16(sum4[n][i][0]);
|
||||
if (commitColumn[i]) {
|
||||
if (BIAS)
|
||||
sum4[n][i][0] +=
|
||||
__bfloat162float(BIAS[(m + i) % Bx + (n % By) * M]);
|
||||
C[m + i + n * M] = __float2bfloat16(sum4[n][i][0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -842,8 +868,10 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
#else // !defined(__HIP__GFX9__) TODO: Add NAVI support
|
||||
template <typename scalar_t, int THRDS, int YTILE, int WvPrGrp, int A_CHUNK,
|
||||
int UNRL, int N>
|
||||
__global__ void wvSplitK_hf_(const int K, const int M, const scalar_t* B,
|
||||
const scalar_t* __restrict__ A, scalar_t* C,
|
||||
__global__ void wvSplitK_hf_(const int K, const int M, const int Bx,
|
||||
const int By, const scalar_t* B,
|
||||
const scalar_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS, scalar_t* C,
|
||||
const int _WvPrGrp, const int CuCount) {
|
||||
UNREACHABLE_CODE
|
||||
}
|
||||
@ -854,8 +882,9 @@ __global__ void wvSplitK_hf_(const int K, const int M, const scalar_t* B,
|
||||
template <typename scalar_t, int THRDS, int YTILE, int WvPrGrp, int A_CHUNK,
|
||||
int UNRL, int N>
|
||||
__global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
wvSplitK_hf_big_(const int K, const int M, const scalar_t* B,
|
||||
const scalar_t* __restrict__ A, scalar_t* C,
|
||||
wvSplitK_hf_big_(const int K, const int M, const int Bx, const int By,
|
||||
const scalar_t* B, const scalar_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS, scalar_t* C,
|
||||
const int _WvPrGrp, const int CuCount) {
|
||||
constexpr int max_lds_len = LDS_SIZE / 2;
|
||||
#if defined(__HIP__MI3XX__)
|
||||
@ -1124,8 +1153,17 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
if (threadIdx.x == 63) {
|
||||
for (int n = 0; n < N; n++) {
|
||||
for (int i = 0; i < YTILE; i++) {
|
||||
if (commitColumn[i])
|
||||
if (commitColumn[i]) {
|
||||
if constexpr (std::is_same_v<scalar_t, half>) {
|
||||
if (BIAS)
|
||||
sum[n][i] += __half2float(BIAS[(m + i) % Bx + (n % By) * M]);
|
||||
} else if constexpr (std::is_same_v<scalar_t, __hip_bfloat16>) {
|
||||
if (BIAS)
|
||||
sum[n][i] +=
|
||||
__bfloat162float(BIAS[(m + i) % Bx + (n % By) * M]);
|
||||
}
|
||||
C[m + i + n * M] = __float2s<scalar_t>(sum[n][i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1166,8 +1204,12 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
if (threadIdx.x == 63) {
|
||||
for (int n = 0; n < N; n++) {
|
||||
for (int i = 0; i < YTILE; i++) {
|
||||
// if (commitColumn[i]) C[n + i + m * N] = __float2half(sum[n][i]);
|
||||
C[m + i + n * M] = __float2bfloat16(sum4[n][i][0]);
|
||||
if (commitColumn[i]) {
|
||||
if (BIAS)
|
||||
sum4[n][i][0] +=
|
||||
__bfloat162float(BIAS[(m + i) % Bx + (n % By) * M]);
|
||||
C[m + i + n * M] = __float2bfloat16(sum4[n][i][0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1190,8 +1232,10 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
#else // !defined(__HIP__GFX9__) TODO: Add NAVI support
|
||||
template <typename scalar_t, int THRDS, int YTILE, int WvPrGrp, int A_CHUNK,
|
||||
int UNRL, int N>
|
||||
__global__ void wvSplitK_hf_big_(const int K, const int M, const scalar_t* B,
|
||||
const scalar_t* __restrict__ A, scalar_t* C,
|
||||
__global__ void wvSplitK_hf_big_(const int K, const int M, const int Bx,
|
||||
const int By, const scalar_t* B,
|
||||
const scalar_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS, scalar_t* C,
|
||||
const int _WvPrGrp, const int CuCount) {
|
||||
UNREACHABLE_CODE
|
||||
}
|
||||
@ -1226,11 +1270,20 @@ int mindiv(int N, int div1, int div2) {
|
||||
return rtn;
|
||||
}
|
||||
|
||||
torch::Tensor wvSplitK(at::Tensor& in_a, at::Tensor& in_b,
|
||||
torch::Tensor wvSplitK(const at::Tensor& in_a, const at::Tensor& in_b,
|
||||
const std::optional<at::Tensor>& in_bias,
|
||||
const int64_t CuCount) {
|
||||
auto M_in = in_a.size(0);
|
||||
auto K_in = in_a.size(1);
|
||||
auto N_in = in_b.size(0);
|
||||
auto Bx_in =
|
||||
(in_bias.has_value() && in_bias->numel() > 0)
|
||||
? (in_bias->sizes().size() == 2) ? in_bias->size(1) : in_bias->size(0)
|
||||
: 1;
|
||||
auto By_in = (in_bias.has_value() && in_bias->numel() > 0 &&
|
||||
in_bias->sizes().size() == 2)
|
||||
? in_bias->size(0)
|
||||
: 1;
|
||||
|
||||
TORCH_CHECK(in_a.dtype() == in_b.dtype());
|
||||
TORCH_CHECK(K_in % 8 == 0, "k % 8 == 0");
|
||||
@ -1254,18 +1307,18 @@ torch::Tensor wvSplitK(at::Tensor& in_a, at::Tensor& in_b,
|
||||
if ((K_in * N_in <= max_lds_len) && (M_in % _YTILEs == 0)) { \
|
||||
int __wvPrGrp = mindiv(M_in, CuCount * _YTILEs, _WvPrGrp); \
|
||||
wvSplitK_hf_sml_<fptype, 64, _YTILEs, _WvPrGrp, 8, _UNRLs, _N> \
|
||||
<<<grid, block, 0, stream>>>(K_in, M_in, af4, bf4, c, __wvPrGrp, \
|
||||
CuCount); \
|
||||
<<<grid, block, 0, stream>>>(K_in, M_in, Bx_in, By_in, af4, bf4, \
|
||||
biasf4, c, __wvPrGrp, CuCount); \
|
||||
} else if (K_in * N_in <= max_lds_len * 1.2) { \
|
||||
int __wvPrGrp = mindiv(M_in, CuCount * _YTILEm, _WvPrGrp); \
|
||||
wvSplitK_hf_<fptype, 64, _YTILEm, _WvPrGrp, 8, _UNRLm, _N> \
|
||||
<<<grid, block, 0, stream>>>(K_in, M_in, af4, bf4, c, __wvPrGrp, \
|
||||
CuCount); \
|
||||
<<<grid, block, 0, stream>>>(K_in, M_in, Bx_in, By_in, af4, bf4, \
|
||||
biasf4, c, __wvPrGrp, CuCount); \
|
||||
} else { \
|
||||
int __wvPrGrp = mindiv(M_in, CuCount * _YTILEb, _WvPrGrp); \
|
||||
wvSplitK_hf_big_<fptype, 64, _YTILEb, _WvPrGrp, 8, _UNRLb, _N> \
|
||||
<<<grid, block, 0, stream>>>(K_in, M_in, af4, bf4, c, __wvPrGrp, \
|
||||
CuCount); \
|
||||
<<<grid, block, 0, stream>>>(K_in, M_in, Bx_in, By_in, af4, bf4, \
|
||||
biasf4, c, __wvPrGrp, CuCount); \
|
||||
} \
|
||||
}
|
||||
|
||||
@ -1273,6 +1326,10 @@ torch::Tensor wvSplitK(at::Tensor& in_a, at::Tensor& in_b,
|
||||
using fptype = typename scalar<scalar_t>::type;
|
||||
fptype* af4 = reinterpret_cast<fptype*>(in_a.data_ptr());
|
||||
const fptype* bf4 = reinterpret_cast<const fptype*>(in_b.data_ptr());
|
||||
const fptype* biasf4 =
|
||||
(in_bias.has_value() && in_bias->numel() > 0)
|
||||
? reinterpret_cast<const fptype*>(in_bias->data_ptr())
|
||||
: nullptr;
|
||||
fptype* c = reinterpret_cast<fptype*>(out_c.data_ptr());
|
||||
switch (N_in) {
|
||||
case 1:
|
||||
@ -1300,8 +1357,9 @@ torch::Tensor wvSplitK(at::Tensor& in_a, at::Tensor& in_b,
|
||||
template <typename scalar_t, typename fp8_t, int THRDS, int YTILE, int WvPrGrp,
|
||||
int A_CHUNK, int UNRL, int N>
|
||||
__global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
wvSplitKQ_hf_sml_(const int K, const int Kp, const int M, const fp8_t* B,
|
||||
const fp8_t* __restrict__ A, scalar_t* C,
|
||||
wvSplitKQ_hf_sml_(const int K, const int Kp, const int M, const int Bx,
|
||||
const int By, const fp8_t* B, const fp8_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS, scalar_t* C,
|
||||
const float* __restrict__ s_A,
|
||||
const float* __restrict__ s_B, const int _WvPrGrp,
|
||||
const int CuCount) {
|
||||
@ -1453,7 +1511,17 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
if (threadIdx.x == 0) {
|
||||
for (int n = 0; n < N; n++) {
|
||||
for (int y = 0; y < YTILE; y++) {
|
||||
C[m + y + n * M] = __float2s<scalar_t>(sum[n][y][0] * sA * sB);
|
||||
if (y + m >= M) break; // To avoid mem access fault.
|
||||
sum[n][y][0] *= sA * sB;
|
||||
if constexpr (std::is_same_v<scalar_t, half>) {
|
||||
if (BIAS)
|
||||
sum[n][y][0] += __half2float(BIAS[(m + y) % Bx + (n % By) * M]);
|
||||
} else if constexpr (std::is_same_v<scalar_t, __hip_bfloat16>) {
|
||||
if (BIAS)
|
||||
sum[n][y][0] +=
|
||||
__bfloat162float(BIAS[(m + y) % Bx + (n % By) * M]);
|
||||
}
|
||||
C[m + y + n * M] = __float2s<scalar_t>(sum[n][y][0]); // * sA * sB);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1465,7 +1533,9 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
template <typename scalar_t, typename fp8_t, int THRDS, int YTILE, int WvPrGrp,
|
||||
int A_CHUNK, int UNRL, int N>
|
||||
__global__ void wvSplitKQ_hf_sml_(const int K, const int Kp, const int M,
|
||||
const fp8_t* B, const fp8_t* __restrict__ A,
|
||||
const int Bx, const int By, const fp8_t* B,
|
||||
const fp8_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS,
|
||||
scalar_t* C, const float* __restrict__ s_A,
|
||||
const float* __restrict__ s_B,
|
||||
const int _WvPrGrp, const int CuCount) {
|
||||
@ -1477,8 +1547,9 @@ __global__ void wvSplitKQ_hf_sml_(const int K, const int Kp, const int M,
|
||||
template <typename scalar_t, typename fp8_t, int THRDS, int YTILE, int WvPrGrp,
|
||||
int A_CHUNK, int UNRL, int N>
|
||||
__global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
wvSplitKQ_hf_(const int K, const int Kp, const int M, const fp8_t* B,
|
||||
const fp8_t* __restrict__ A, scalar_t* C,
|
||||
wvSplitKQ_hf_(const int K, const int Kp, const int M, const int Bx,
|
||||
const int By, const fp8_t* B, const fp8_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS, scalar_t* C,
|
||||
const float* __restrict__ s_A, const float* __restrict__ s_B,
|
||||
const int _WvPrGrp, const int CuCount) {
|
||||
constexpr int max_lds_len = LDS_SIZE;
|
||||
@ -1626,7 +1697,16 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
for (int n = 0; n < N; n++) {
|
||||
for (int y = 0; y < YTILE; y++) {
|
||||
if (y + m >= M) break; // To avoid mem access fault.
|
||||
C[m + y + n * M] = __float2s<scalar_t>(sum[n][y][0] * sA * sB);
|
||||
sum[n][y][0] *= sA * sB;
|
||||
if constexpr (std::is_same_v<scalar_t, half>) {
|
||||
if (BIAS)
|
||||
sum[n][y][0] += __half2float(BIAS[(m + y) % Bx + (n % By) * M]);
|
||||
} else if constexpr (std::is_same_v<scalar_t, __hip_bfloat16>) {
|
||||
if (BIAS)
|
||||
sum[n][y][0] +=
|
||||
__bfloat162float(BIAS[(m + y) % Bx + (n % By) * M]);
|
||||
}
|
||||
C[m + y + n * M] = __float2s<scalar_t>(sum[n][y][0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1638,16 +1718,19 @@ __global__ void __launch_bounds__(WvPrGrp* THRDS)
|
||||
template <typename scalar_t, typename fp8_t, int THRDS, int YTILE, int WvPrGrp,
|
||||
int A_CHUNK, int UNRL, int N>
|
||||
__global__ void wvSplitKQ_hf_(const int K, const int Kp, const int M,
|
||||
const fp8_t* B, const fp8_t* __restrict__ A,
|
||||
scalar_t* C, const float* __restrict__ s_A,
|
||||
const int Bx, const int By, const fp8_t* B,
|
||||
const fp8_t* __restrict__ A,
|
||||
const scalar_t* __restrict__ BIAS, scalar_t* C,
|
||||
const float* __restrict__ s_A,
|
||||
const float* __restrict__ s_B, const int _WvPrGrp,
|
||||
const int CuCount) {
|
||||
UNREACHABLE_CODE
|
||||
}
|
||||
#endif // defined(__HIP__MI3XX__) TODO: Add NAVI support
|
||||
|
||||
void wvSplitKQ(at::Tensor& in_a, at::Tensor& in_b, at::Tensor& out_c,
|
||||
at::Tensor& scale_a, at::Tensor& scale_b,
|
||||
void wvSplitKQ(const at::Tensor& in_a, const at::Tensor& in_b,
|
||||
const std::optional<at::Tensor>& in_bias, at::Tensor& out_c,
|
||||
const at::Tensor& scale_a, const at::Tensor& scale_b,
|
||||
const int64_t CuCount) {
|
||||
static c10::ScalarType kFp8Type = is_fp8_ocp()
|
||||
? c10::ScalarType::Float8_e4m3fn
|
||||
@ -1656,6 +1739,15 @@ void wvSplitKQ(at::Tensor& in_a, at::Tensor& in_b, at::Tensor& out_c,
|
||||
auto K_in = in_a.size(1);
|
||||
auto N_in = in_b.size(0);
|
||||
auto Kp_in = in_a.stride(0);
|
||||
auto Bx_in =
|
||||
(in_bias.has_value() && in_bias->numel() > 0)
|
||||
? (in_bias->sizes().size() == 2) ? in_bias->size(1) : in_bias->size(0)
|
||||
: 1;
|
||||
auto By_in = (in_bias.has_value() && in_bias->numel() > 0 &&
|
||||
in_bias->sizes().size() == 2)
|
||||
? in_bias->size(0)
|
||||
: 1;
|
||||
|
||||
TORCH_CHECK(K_in % 16 == 0, "k % 16 == 0");
|
||||
TORCH_CHECK(in_a.dtype() == in_b.dtype() && in_a.dtype() == kFp8Type);
|
||||
TORCH_CHECK(out_c.dtype() == torch::kFloat16 ||
|
||||
@ -1673,13 +1765,15 @@ void wvSplitKQ(at::Tensor& in_a, at::Tensor& in_b, at::Tensor& out_c,
|
||||
if ((K_in * N_in <= max_lds_len) && (M_in % _YTILEs == 0)) { \
|
||||
int __wvPrGrp = mindiv(M_in, CuCount * _YTILEs, _WvPrGrp); \
|
||||
wvSplitKQ_hf_sml_<fptype, fp8_t, 64, _YTILEs, _WvPrGrp, 16, _UNRLs, _N> \
|
||||
<<<grid, block, 0, stream>>>(K_in, Kp_in, M_in, a_ptr, b_ptr, c_ptr, \
|
||||
s_a, s_b, __wvPrGrp, CuCount); \
|
||||
<<<grid, block, 0, stream>>>(K_in, Kp_in, M_in, Bx_in, By_in, a_ptr, \
|
||||
b_ptr, bias_ptr, c_ptr, s_a, s_b, \
|
||||
__wvPrGrp, CuCount); \
|
||||
} else { \
|
||||
int __wvPrGrp = mindiv(M_in, CuCount * _YTILEm, _WvPrGrp); \
|
||||
wvSplitKQ_hf_<fptype, fp8_t, 64, _YTILEm, _WvPrGrp, 16, _UNRLm, _N> \
|
||||
<<<grid, block, 0, stream>>>(K_in, Kp_in, M_in, a_ptr, b_ptr, c_ptr, \
|
||||
s_a, s_b, __wvPrGrp, CuCount); \
|
||||
<<<grid, block, 0, stream>>>(K_in, Kp_in, M_in, Bx_in, By_in, a_ptr, \
|
||||
b_ptr, bias_ptr, c_ptr, s_a, s_b, \
|
||||
__wvPrGrp, CuCount); \
|
||||
} \
|
||||
}
|
||||
|
||||
@ -1691,6 +1785,9 @@ void wvSplitKQ(at::Tensor& in_a, at::Tensor& in_b, at::Tensor& out_c,
|
||||
VLLM_DISPATCH_FP8_TYPES(in_a.scalar_type(), "wvSplitKQ", [&] {
|
||||
auto a_ptr = in_a.data_ptr<fp8_t>();
|
||||
auto b_ptr = in_b.data_ptr<fp8_t>();
|
||||
auto bias_ptr = (in_bias.has_value() && in_bias->numel() > 0)
|
||||
? reinterpret_cast<fptype*>(in_bias->data_ptr())
|
||||
: nullptr;
|
||||
switch (N_in) {
|
||||
case 1:
|
||||
WVSPLITKQ(16, 2, 2, 2, 2, 2, 2, 1)
|
||||
|
||||
@ -22,13 +22,14 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, rocm_ops) {
|
||||
|
||||
// Custom gemm op for skinny matrix-matrix multiplication
|
||||
rocm_ops.def(
|
||||
"wvSplitK(Tensor in_a, Tensor in_b, int CuCount) -> "
|
||||
"wvSplitK(Tensor in_a, Tensor in_b, Tensor? in_bias, int CuCount) -> "
|
||||
"Tensor");
|
||||
rocm_ops.impl("wvSplitK", torch::kCUDA, &wvSplitK);
|
||||
|
||||
// wvSplitK for fp8
|
||||
rocm_ops.def(
|
||||
"wvSplitKQ(Tensor in_a, Tensor in_b, Tensor! out_c, Tensor scale_a, "
|
||||
"wvSplitKQ(Tensor in_a, Tensor in_b, Tensor? in_bias, Tensor! out_c, "
|
||||
"Tensor scale_a, "
|
||||
" Tensor scale_b, int CuCount) -> ()");
|
||||
rocm_ops.impl("wvSplitKQ", torch::kCUDA, &wvSplitKQ);
|
||||
|
||||
|
||||
@ -397,7 +397,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor a_blockscale, Tensor b_blockscales, Tensor alphas,"
|
||||
" Tensor problem_sizes, Tensor expert_offsets, Tensor sf_offsets) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("cutlass_fp4_group_mm", torch::kCUDA, &cutlass_fp4_group_mm);
|
||||
// conditionally compiled so impl registration is in source file
|
||||
|
||||
// CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column
|
||||
// quantization, as well as bias
|
||||
@ -713,6 +713,13 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
"cp_gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
|
||||
"Tensor cu_seq_lens, int batch_size, Tensor? seq_starts) -> ()");
|
||||
cache_ops.impl("cp_gather_cache", torch::kCUDA, &cp_gather_cache);
|
||||
|
||||
cache_ops.def(
|
||||
"indexer_k_quant_and_cache(Tensor k, Tensor! kv_cache, Tensor "
|
||||
"slot_mapping, "
|
||||
"int quant_block_size, str kv_cache_dtype) -> ()");
|
||||
cache_ops.impl("indexer_k_quant_and_cache", torch::kCUDA,
|
||||
&indexer_k_quant_and_cache);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {
|
||||
|
||||
@ -14,6 +14,11 @@ ARG PYTHON_VERSION=3.12
|
||||
#
|
||||
# Example:
|
||||
# docker build --build-arg BUILD_BASE_IMAGE=registry.acme.org/mirror/nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
|
||||
|
||||
# Important: We build with an old version of Ubuntu to maintain broad
|
||||
# compatibility with other Linux OSes. The main reason for this is that the
|
||||
# glibc version is baked into the distro, and binaries built with one glibc
|
||||
# version are not backwards compatible with OSes that use an earlier version.
|
||||
ARG BUILD_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
|
||||
# TODO: Restore to base image after FlashInfer AOT wheel fixed
|
||||
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
|
||||
@ -75,34 +80,19 @@ ARG TARGETPLATFORM
|
||||
ARG INSTALL_KV_CONNECTORS=false
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG DEADSNAKES_MIRROR_URL
|
||||
ARG DEADSNAKES_GPGKEY_URL
|
||||
ARG GET_PIP_URL
|
||||
|
||||
# Install Python and other dependencies
|
||||
# Install system dependencies and uv, then create Python virtual environment
|
||||
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo \
|
||||
&& if [ ! -z ${DEADSNAKES_MIRROR_URL} ] ; then \
|
||||
if [ ! -z "${DEADSNAKES_GPGKEY_URL}" ] ; then \
|
||||
mkdir -p -m 0755 /etc/apt/keyrings ; \
|
||||
curl -L ${DEADSNAKES_GPGKEY_URL} | gpg --dearmor > /etc/apt/keyrings/deadsnakes.gpg ; \
|
||||
sudo chmod 644 /etc/apt/keyrings/deadsnakes.gpg ; \
|
||||
echo "deb [signed-by=/etc/apt/keyrings/deadsnakes.gpg] ${DEADSNAKES_MIRROR_URL} $(lsb_release -cs) main" > /etc/apt/sources.list.d/deadsnakes.list ; \
|
||||
fi ; \
|
||||
else \
|
||||
for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done ; \
|
||||
fi \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo python3-pip \
|
||||
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
|
||||
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
|
||||
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
|
||||
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
|
||||
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
|
||||
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
ARG PIP_INDEX_URL UV_INDEX_URL
|
||||
@ -111,9 +101,9 @@ ARG PYTORCH_CUDA_INDEX_BASE_URL
|
||||
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL
|
||||
ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER
|
||||
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
# Activate virtual environment and add uv to PATH
|
||||
ENV PATH="/opt/venv/bin:/root/.local/bin:$PATH"
|
||||
ENV VIRTUAL_ENV="/opt/venv"
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
@ -142,7 +132,7 @@ WORKDIR /workspace
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY requirements/cuda.txt requirements/cuda.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/cuda.txt \
|
||||
uv pip install --python /opt/venv/bin/python3 -r requirements/cuda.txt \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
|
||||
# cuda arch list used by torch
|
||||
@ -172,7 +162,7 @@ ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt \
|
||||
uv pip install --python /opt/venv/bin/python3 -r requirements/build.txt \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
|
||||
COPY . .
|
||||
@ -269,7 +259,7 @@ COPY requirements/lint.txt requirements/lint.txt
|
||||
COPY requirements/test.txt requirements/test.txt
|
||||
COPY requirements/dev.txt requirements/dev.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/dev.txt \
|
||||
uv pip install --python /opt/venv/bin/python3 -r requirements/dev.txt \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
#################### DEV IMAGE ####################
|
||||
|
||||
@ -391,19 +381,32 @@ RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
|
||||
git clone --depth 1 --recursive --shallow-submodules \
|
||||
--branch ${FLASHINFER_GIT_REF} \
|
||||
${FLASHINFER_GIT_REPO} flashinfer
|
||||
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
|
||||
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
|
||||
if [[ "${CUDA_VERSION}" == 11.* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
|
||||
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
|
||||
else
|
||||
# CUDA 12.8+ supports 10.0a and 12.0
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
|
||||
fi
|
||||
pushd flashinfer
|
||||
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
|
||||
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
|
||||
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
|
||||
if [[ "${CUDA_VERSION}" == 11.* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
|
||||
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
|
||||
else
|
||||
# CUDA 12.8+ supports 10.0a and 12.0
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
|
||||
if [[ "${CUDA_VERSION}" == 12.8.* ]] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then
|
||||
# NOTE: To make new precompiled wheels, see tools/flashinfer-build.sh
|
||||
echo "🏗️ Installing FlashInfer from pre-compiled wheel"
|
||||
uv pip install --system https://wheels.vllm.ai/flashinfer-python/flashinfer_python-0.3.1-cp39-abi3-manylinux1_x86_64.whl \
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
|
||||
# Download pre-compiled cubins
|
||||
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
|
||||
python3 -m flashinfer --download-cubin || echo "WARNING: Failed to download flashinfer cubins."
|
||||
fi
|
||||
elif [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
|
||||
echo "🏗️ Installing FlashInfer with AOT compilation for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
|
||||
export FLASHINFER_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}"
|
||||
# HACK: We need these to run flashinfer.aot before installing flashinfer, get from the package in the future
|
||||
uv pip install --system cuda-python==$(echo $CUDA_VERSION | cut -d. -f1,2) pynvml==$(echo $CUDA_VERSION | cut -d. -f1) nvidia-nvshmem-cu$(echo $CUDA_VERSION | cut -d. -f1)
|
||||
# Build AOT kernels
|
||||
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
|
||||
python3 -m flashinfer.aot
|
||||
@ -443,7 +446,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
ARG DEEPGEMM_GIT_REF
|
||||
COPY tools/install_deepgemm.sh /tmp/install_deepgemm.sh
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
VLLM_DOCKER_BUILD_CONTEXT=1 /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
|
||||
VLLM_DOCKER_BUILD_CONTEXT=1 TORCH_CUDA_ARCH_LIST="9.0a 10.0a" /tmp/install_deepgemm.sh --cuda-version "${CUDA_VERSION}" ${DEEPGEMM_GIT_REF:+--ref "$DEEPGEMM_GIT_REF"}
|
||||
|
||||
COPY tools/install_gdrcopy.sh install_gdrcopy.sh
|
||||
RUN set -eux; \
|
||||
@ -461,6 +464,12 @@ ENV CUDA_HOME=/usr/local/cuda
|
||||
RUN export TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST:-9.0a+PTX}" \
|
||||
&& bash install_python_libraries.sh
|
||||
|
||||
# CUDA image changed from /usr/local/nvidia to /usr/local/cuda in 12.8 but will
|
||||
# return to /usr/local/nvidia in 13.0 to allow container providers to mount drivers
|
||||
# consistently from the host (see https://github.com/vllm-project/vllm/issues/18859).
|
||||
# Until then, add /usr/local/nvidia/lib64 before the image cuda path to allow override.
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib64:${LD_LIBRARY_PATH}
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
#################### TEST IMAGE ####################
|
||||
@ -533,7 +542,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
else \
|
||||
BITSANDBYTES_VERSION="0.46.1"; \
|
||||
fi; \
|
||||
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' boto3 runai-model-streamer runai-model-streamer[s3]
|
||||
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm>=1.0.17' 'runai-model-streamer[s3]>=0.14.0'
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image
|
||||
|
||||
@ -546,5 +555,5 @@ ENTRYPOINT ["./sagemaker-entrypoint.sh"]
|
||||
|
||||
FROM vllm-openai-base AS vllm-openai
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
#################### OPENAI API SERVER ####################
|
||||
|
||||
@ -47,7 +47,7 @@ ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
# Install Python dependencies
|
||||
# Install Python dependencies
|
||||
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
ENV UV_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
@ -104,7 +104,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/workspace/vllm/.deps,sharing=locked \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
|
||||
|
||||
######################### TEST DEPS #########################
|
||||
FROM base AS vllm-test-deps
|
||||
@ -114,13 +114,10 @@ WORKDIR /workspace/vllm
|
||||
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
|
||||
cp requirements/test.in requirements/cpu-test.in && \
|
||||
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
|
||||
sed -i 's/^torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
|
||||
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
|
||||
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
|
||||
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install -r requirements/cpu-test.txt
|
||||
uv pip install -r requirements/cpu-test.txt
|
||||
|
||||
######################### DEV IMAGE #########################
|
||||
FROM vllm-build AS vllm-dev
|
||||
@ -133,12 +130,12 @@ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install -e tests/vllm_test_utils
|
||||
uv pip install -e tests/vllm_test_utils
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py develop
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py develop
|
||||
|
||||
COPY --from=vllm-test-deps /workspace/vllm/requirements/cpu-test.txt requirements/test.txt
|
||||
|
||||
@ -163,11 +160,12 @@ ADD ./benchmarks/ ./benchmarks/
|
||||
ADD ./vllm/collect_env.py .
|
||||
ADD ./.buildkite/ ./.buildkite/
|
||||
|
||||
# Create symlink for vllm-workspace to maintain CI compatibility
|
||||
RUN ln -sf /workspace /vllm-workspace
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install -e tests/vllm_test_utils
|
||||
|
||||
ENTRYPOINT ["bash"]
|
||||
uv pip install -e tests/vllm_test_utils
|
||||
|
||||
######################### RELEASE IMAGE #########################
|
||||
FROM base AS vllm-openai
|
||||
@ -179,4 +177,4 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=vllm-build,src=/workspace/vllm/dist,target=dist \
|
||||
uv pip install dist/*.whl
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
|
||||
@ -6,7 +6,7 @@ ARG CUDA_VERSION=12.8.0
|
||||
#
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
# prepare basic build environment
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS base
|
||||
ARG CUDA_VERSION=12.8.0
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
@ -314,4 +314,4 @@ WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
|
||||
@ -29,7 +29,10 @@ ARG VLLM_BRANCH="main"
|
||||
ONBUILD RUN git clone ${VLLM_REPO} \
|
||||
&& cd vllm \
|
||||
&& git fetch -v --prune -- origin ${VLLM_BRANCH} \
|
||||
&& git checkout FETCH_HEAD
|
||||
&& git checkout FETCH_HEAD \
|
||||
&& if [ ${VLLM_REPO} != "https://github.com/vllm-project/vllm.git" ] ; then \
|
||||
git remote add upstream "https://github.com/vllm-project/vllm.git" \
|
||||
&& git fetch upstream ; fi
|
||||
FROM fetch_vllm_${REMOTE_VLLM} AS fetch_vllm
|
||||
|
||||
# -----------------------
|
||||
|
||||
@ -1,25 +1,23 @@
|
||||
ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:6.4.1-complete
|
||||
ARG HIPBLASLT_BRANCH="aa0bda7b"
|
||||
ARG HIPBLAS_COMMON_BRANCH="9b80ba8e"
|
||||
ARG LEGACY_HIPBLASLT_OPTION=
|
||||
ARG TRITON_BRANCH="e5be006"
|
||||
ARG TRITON_REPO="https://github.com/triton-lang/triton.git"
|
||||
ARG PYTORCH_BRANCH="f717b2af"
|
||||
ARG PYTORCH_VISION_BRANCH="v0.21.0"
|
||||
ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:7.0-complete
|
||||
ARG TRITON_BRANCH="f9e5bf54"
|
||||
ARG TRITON_REPO="https://github.com/ROCm/triton.git"
|
||||
ARG PYTORCH_BRANCH="b2fb6885"
|
||||
ARG PYTORCH_VISION_BRANCH="v0.23.0"
|
||||
ARG PYTORCH_REPO="https://github.com/ROCm/pytorch.git"
|
||||
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
|
||||
ARG FA_BRANCH="1a7f4dfa"
|
||||
ARG FA_BRANCH="0e60e394"
|
||||
ARG FA_REPO="https://github.com/Dao-AILab/flash-attention.git"
|
||||
ARG AITER_BRANCH="4822e675"
|
||||
ARG AITER_BRANCH="2ab9f4cd"
|
||||
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
|
||||
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
|
||||
ENV PATH=/opt/rocm/llvm/bin:$PATH
|
||||
ENV PATH=/opt/rocm/llvm/bin:/opt/rocm/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
ENV ROCM_PATH=/opt/rocm
|
||||
ENV LD_LIBRARY_PATH=/opt/rocm/lib:/usr/local/lib:
|
||||
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942;gfx1100;gfx1101;gfx1200;gfx1201
|
||||
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942;gfx950;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151
|
||||
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
|
||||
ENV AITER_ROCM_ARCH=gfx942;gfx950
|
||||
|
||||
ARG PYTHON_VERSION=3.12
|
||||
|
||||
@ -45,29 +43,6 @@ RUN apt-get update -y \
|
||||
|
||||
RUN pip install -U packaging 'cmake<4' ninja wheel 'setuptools<80' pybind11 Cython
|
||||
|
||||
FROM base AS build_hipblaslt
|
||||
ARG HIPBLASLT_BRANCH
|
||||
ARG HIPBLAS_COMMON_BRANCH
|
||||
# Set to "--legacy_hipblas_direct" for ROCm<=6.2
|
||||
ARG LEGACY_HIPBLASLT_OPTION
|
||||
RUN git clone https://github.com/ROCm/hipBLAS-common.git
|
||||
RUN apt-get remove -y hipblaslt && apt-get autoremove -y && apt-get autoclean -y
|
||||
RUN cd hipBLAS-common \
|
||||
&& git checkout ${HIPBLAS_COMMON_BRANCH} \
|
||||
&& mkdir build \
|
||||
&& cd build \
|
||||
&& cmake .. \
|
||||
&& make package \
|
||||
&& dpkg -i ./*.deb
|
||||
RUN git clone https://github.com/ROCm/hipBLASLt
|
||||
RUN cd hipBLASLt \
|
||||
&& git checkout ${HIPBLASLT_BRANCH} \
|
||||
&& apt-get install -y llvm-dev \
|
||||
&& ./install.sh -dc --architecture ${PYTORCH_ROCM_ARCH} ${LEGACY_HIPBLASLT_OPTION} \
|
||||
&& cd build/release \
|
||||
&& make package
|
||||
RUN mkdir -p /app/install && cp /app/hipBLASLt/build/release/*.deb /app/hipBLAS-common/build/*.deb /app/install
|
||||
|
||||
FROM base AS build_triton
|
||||
ARG TRITON_BRANCH
|
||||
ARG TRITON_REPO
|
||||
@ -90,8 +65,6 @@ ARG PYTORCH_BRANCH
|
||||
ARG PYTORCH_VISION_BRANCH
|
||||
ARG PYTORCH_REPO
|
||||
ARG PYTORCH_VISION_REPO
|
||||
ARG FA_BRANCH
|
||||
ARG FA_REPO
|
||||
RUN git clone ${PYTORCH_REPO} pytorch
|
||||
RUN cd pytorch && git checkout ${PYTORCH_BRANCH} && \
|
||||
pip install -r requirements.txt && git submodule update --init --recursive \
|
||||
@ -102,14 +75,20 @@ RUN git clone ${PYTORCH_VISION_REPO} vision
|
||||
RUN cd vision && git checkout ${PYTORCH_VISION_BRANCH} \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=dist \
|
||||
&& pip install dist/*.whl
|
||||
RUN mkdir -p /app/install && cp /app/pytorch/dist/*.whl /app/install \
|
||||
&& cp /app/vision/dist/*.whl /app/install
|
||||
|
||||
FROM base AS build_fa
|
||||
ARG FA_BRANCH
|
||||
ARG FA_REPO
|
||||
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN git clone ${FA_REPO}
|
||||
RUN cd flash-attention \
|
||||
&& git checkout ${FA_BRANCH} \
|
||||
&& git submodule update --init \
|
||||
&& GPU_ARCHS=$(echo ${PYTORCH_ROCM_ARCH} | sed -e 's/;gfx1[0-9]\{3\}//g') python3 setup.py bdist_wheel --dist-dir=dist
|
||||
RUN mkdir -p /app/install && cp /app/pytorch/dist/*.whl /app/install \
|
||||
&& cp /app/vision/dist/*.whl /app/install \
|
||||
&& cp /app/flash-attention/dist/*.whl /app/install
|
||||
RUN mkdir -p /app/install && cp /app/flash-attention/dist/*.whl /app/install
|
||||
|
||||
FROM base AS build_aiter
|
||||
ARG AITER_BRANCH
|
||||
@ -121,15 +100,15 @@ RUN cd aiter \
|
||||
&& git checkout ${AITER_BRANCH} \
|
||||
&& git submodule update --init --recursive \
|
||||
&& pip install -r requirements.txt
|
||||
RUN pip install pyyaml && cd aiter && PREBUILD_KERNELS=1 GPU_ARCHS=gfx942 python3 setup.py bdist_wheel --dist-dir=dist && ls /app/aiter/dist/*.whl
|
||||
RUN pip install pyyaml && cd aiter && PREBUILD_KERNELS=1 GPU_ARCHS=${AITER_ROCM_ARCH} python3 setup.py bdist_wheel --dist-dir=dist && ls /app/aiter/dist/*.whl
|
||||
RUN mkdir -p /app/install && cp /app/aiter/dist/*.whl /app/install
|
||||
|
||||
FROM base AS debs
|
||||
RUN mkdir /app/debs
|
||||
RUN --mount=type=bind,from=build_hipblaslt,src=/app/install/,target=/install \
|
||||
cp /install/*.deb /app/debs
|
||||
RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \
|
||||
cp /install/*.whl /app/debs
|
||||
RUN --mount=type=bind,from=build_fa,src=/app/install/,target=/install \
|
||||
cp /install/*.whl /app/debs
|
||||
RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
|
||||
cp /install/*.whl /app/debs
|
||||
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
|
||||
@ -138,24 +117,10 @@ RUN --mount=type=bind,from=build_aiter,src=/app/install/,target=/install \
|
||||
cp /install/*.whl /app/debs
|
||||
|
||||
FROM base AS final
|
||||
RUN --mount=type=bind,from=build_hipblaslt,src=/app/install/,target=/install \
|
||||
dpkg -i /install/*deb \
|
||||
&& perl -p -i -e 's/, hipblas-common-dev \([^)]*?\), /, /g' /var/lib/dpkg/status \
|
||||
&& perl -p -i -e 's/, hipblaslt-dev \([^)]*?\), /, /g' /var/lib/dpkg/status \
|
||||
&& perl -p -i -e 's/, hipblaslt \([^)]*?\), /, /g' /var/lib/dpkg/status
|
||||
RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN --mount=type=bind,from=build_aiter,src=/app/install/,target=/install \
|
||||
RUN --mount=type=bind,from=debs,src=/app/debs,target=/install \
|
||||
pip install /install/*.whl
|
||||
|
||||
ARG BASE_IMAGE
|
||||
ARG HIPBLAS_COMMON_BRANCH
|
||||
ARG HIPBLASLT_BRANCH
|
||||
ARG LEGACY_HIPBLASLT_OPTION
|
||||
ARG TRITON_BRANCH
|
||||
ARG TRITON_REPO
|
||||
ARG PYTORCH_BRANCH
|
||||
@ -167,9 +132,6 @@ ARG FA_REPO
|
||||
ARG AITER_BRANCH
|
||||
ARG AITER_REPO
|
||||
RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
|
||||
&& echo "HIPBLAS_COMMON_BRANCH: ${HIPBLAS_COMMON_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "HIPBLASLT_BRANCH: ${HIPBLASLT_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "LEGACY_HIPBLASLT_OPTION: ${LEGACY_HIPBLASLT_OPTION}" >> /app/versions.txt \
|
||||
&& echo "TRITON_BRANCH: ${TRITON_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "TRITON_REPO: ${TRITON_REPO}" >> /app/versions.txt \
|
||||
&& echo "PYTORCH_BRANCH: ${PYTORCH_BRANCH}" >> /app/versions.txt \
|
||||
@ -177,5 +139,6 @@ RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
|
||||
&& echo "PYTORCH_REPO: ${PYTORCH_REPO}" >> /app/versions.txt \
|
||||
&& echo "PYTORCH_VISION_REPO: ${PYTORCH_VISION_REPO}" >> /app/versions.txt \
|
||||
&& echo "FA_BRANCH: ${FA_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "FA_REPO: ${FA_REPO}" >> /app/versions.txt \
|
||||
&& echo "AITER_BRANCH: ${AITER_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt
|
||||
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt
|
||||
|
||||
@ -309,4 +309,4 @@ USER 2000
|
||||
WORKDIR /home/vllm
|
||||
|
||||
# Set the default entrypoint
|
||||
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
|
||||
@ -69,4 +69,4 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
ENTRYPOINT ["vllm", "serve"]
|
||||
|
||||
@ -14,7 +14,7 @@ API documentation for vLLM's configuration classes.
|
||||
- [vllm.config.LoRAConfig][]
|
||||
- [vllm.config.MultiModalConfig][]
|
||||
- [vllm.config.PoolerConfig][]
|
||||
- [vllm.config.DecodingConfig][]
|
||||
- [vllm.config.StructuredOutputsConfig][]
|
||||
- [vllm.config.ObservabilityConfig][]
|
||||
- [vllm.config.KVTransferConfig][]
|
||||
- [vllm.config.CompilationConfig][]
|
||||
@ -46,7 +46,6 @@ Engine classes for offline and online inference.
|
||||
Inference parameters for vLLM APIs.
|
||||
|
||||
[](){ #sampling-params }
|
||||
[](){ #pooling-params }
|
||||
|
||||
- [vllm.SamplingParams][]
|
||||
- [vllm.PoolingParams][]
|
||||
|
||||
@ -1,2 +1,2 @@
|
||||
search:
|
||||
boost: 0.5
|
||||
exclude: true
|
||||
|
||||
BIN
docs/assets/deployment/hf-inference-endpoints-catalog.png
Normal file
BIN
docs/assets/deployment/hf-inference-endpoints-catalog.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 627 KiB |
BIN
docs/assets/deployment/hf-inference-endpoints-choose-infra.png
Normal file
BIN
docs/assets/deployment/hf-inference-endpoints-choose-infra.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 350 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 814 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 267 KiB |
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user