Compare commits

...

777 Commits

Author SHA1 Message Date
22bf5c5077 fix
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-10-11 11:38:33 -07:00
3a8990743e add truncation
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-10-11 11:20:31 -07:00
fbc2cc8217 merge 2025-10-11 11:09:22 -07:00
5be7ca1b99 [Benchmark] Support Infinity API (#26641)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-12 01:45:32 +08:00
f0a30a067b [Bugfix] Fix qwen-moe packed_modules_mapping (#26634)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-11 15:21:33 +00:00
9d6cff3ede [Bugfix][Qwen3VL] fix deepstack in qwen3vl (#26626)
Signed-off-by: liuye.hj <liuye.hj@alibaba-inc.com>
Signed-off-by: JJJYmmm <92386084+JJJYmmm@users.noreply.github.com>
Co-authored-by: liuye.hj <liuye.hj@alibaba-inc.com>
2025-10-11 05:58:33 -07:00
a25f2adee9 [compile] Add patched_fused_scaled_matmul_reduce_scatter (#26604)
Signed-off-by: angelayi <yiangela7@gmail.com>
2025-10-11 05:44:43 -07:00
d0bed837ac [Refactor]Reduce duplicate code in serving_chat (#26627)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-10-11 12:04:49 +00:00
f7ee69868a [CPU] fix the issue when the node is '-' cause json decode error. (#26562)
Signed-off-by: muzian666 <andylee_2001@163.com>
Co-authored-by: qingan.li <qingan.li@wizpresso.com>
2025-10-11 12:04:04 +00:00
d2a71530c1 Add EAGLE-3 Speculative Decoding Support for Qwen3 MoE (#26485)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
2025-10-11 10:14:41 +00:00
086609de64 fix(nix): Allow local oneDNN path to fix vLLM CPU build failure (#26401)
Signed-off-by: lyd1992 <liuyudong@iscas.ac.cn>
Signed-off-by: ihb2032 <1355790728@qq.com>
2025-10-11 09:12:16 +00:00
727144bed1 [Refactor]: Use M-RoPE interface directly while defining model class instead of maintaining model specific M-RoPE implementation in mrope.py (#24172)
Signed-off-by: Divyansh Singhvi <divyanshsinghvi@gmail.com>
Signed-off-by: dsinghvi <divyanshsinghvi@gmail.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: wwl2755 <wangwenlong2755@gmail.com>
2025-10-11 07:21:04 +00:00
55392bc879 [Bugfix][Multi Modal] Fix incorrect Molmo image processing (#26563)
Signed-off-by: sanghol <sanghol@allenai.org>
2025-10-10 22:28:23 -07:00
ddaff2938e [MM] Move Qwen3Omni MRoPE impl to model file (#26608)
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-10 22:17:24 -07:00
27ed39a347 [XPU] Upgrade NIXL to remove CUDA dependency (#26570)
Signed-off-by: zhenwei-intel <zhenwei.liu@intel.com>
2025-10-11 05:15:23 +00:00
8f8474fbe3 [CI/Build] Fix ppc64le CPU build and tests (#22443)
Signed-off-by: Nishidha Panpaliya <nishidha.panpaliya@partner.ibm.com>
2025-10-11 13:04:42 +08:00
be067861c6 [Frontend] Improve the performance of is_reasoning_end (#25735)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-10-11 10:43:39 +08:00
5bc26c438d [BugFix] Make penalties and bad_words work with async scheduling (#26467)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-10 23:27:04 +00:00
eef921f45e AOT Compilation for torch.compile (Bundled) (#24274)
Signed-off-by: zhxchen17 <zhxchen17@fb.com>
2025-10-10 19:02:11 -04:00
e317414ce1 Cache the environment variable check for batch invariance (#26510)
Signed-off-by: Bram Wasti <bwasti@meta.com>
2025-10-10 22:47:34 +00:00
949cb0170d [BugFix] Fix async scheduling + request preemption (#26385)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-10 20:29:57 +00:00
e94cfd51da [BUG] Qwen3-next MTP. Fix attn metadata build bug (#26564)
Signed-off-by: Vadim Gimpelson <vadim.gimpelson@gmail.com>
2025-10-10 14:59:03 -04:00
7c12763b24 Fix some typing issues found by mypy==1.18.2 (#26596)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-10 18:21:25 +00:00
3b780a4bbb Update CUDA architecture list in build pipeline for 12.9.1 wheels (#26592)
Signed-off-by: Will Eaton <wseaton@users.noreply.github.com>
2025-10-10 11:15:27 -07:00
30f78af147 Update pre-commit hook versions (#26591)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-10 17:03:44 +00:00
19a9b169bf Add Qwen3-Omni moe thinker (#25550)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Xiong Wang <feizi.wx@alibaba-inc.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-10 17:00:56 +00:00
96ad65b7fe [Transform] [Quantization] Add QuTLASS support to vLLM (#24440)
Signed-off-by: LopezCastroRoberto <roberto.lopez.castro@udc.es>
Signed-off-by: Roberto L. Castro <38211239+LopezCastroRoberto@users.noreply.github.com>
Signed-off-by: Andrei Panferov <andrei@panferov.org>
Co-authored-by: Andrei Panferov <andrei@panferov.org>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-10 09:43:40 -07:00
8d2b8c0ff2 [Model] Add FlexOlmo model implementation (#24923)
Signed-off-by: Shane A <shanea@allenai.org>
2025-10-10 09:43:15 -07:00
b2155ed317 [Model][Qwen3VL] Compute cu_seqlens on CPU to remove (#26496)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-10 09:42:17 -07:00
910abdbd08 [Bugfix] fixed top_logprobs: -1 does not appear to work as intended (#26470)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-10-11 00:41:17 +08:00
cddce79fda [torch.compile] Make inductor partition rules respect splitting_ops #25691 (#25845)
Signed-off-by: baonudesifeizhai <baonudesifeizhai@gmail.com>
Signed-off-by: baonudesifeizhai <85092850+baonudesifeizhai@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-10 16:35:28 +00:00
e519281920 [Metrics] Add test for multi-modal cache stats logging (#26588)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-10-10 16:00:50 +00:00
7b03584de8 Silu v2 (#25074)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: elvircrn <elvircrn@gmail.com>
Signed-off-by: Elvir Crnčević <elvircrn@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Varun Sundar Rabindranath <varunsundar08@gmail.com>
2025-10-10 15:19:53 +00:00
ae9d0e7da5 [Bugfix] Make DP padding optional in coordinate_batch_across_dp (#26375)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-10-10 10:53:33 -04:00
0e67102d93 Added test_top_k_per_row to test-pipeline.yaml. (#26569)
Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
2025-10-10 10:48:33 -04:00
f4ba2061cf [BugFix][torch.compile] Fix fused_scaled_matmul_reduce_scatter signature for PyTorch 2.8 (#26038)
Signed-off-by: jasonlizhengjian <jasonlizhengjian@gmail.com>
Signed-off-by: <>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-10 07:42:13 -07:00
1e6848a65d [CI] fix test_run_batch.py::test_completions - AssertionError (#26578)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-10-10 22:16:28 +08:00
67661375fa [BugFix] Fix noop elimination edge case (#26394)
Signed-off-by: Andy Lo <andy@mistral.ai>
2025-10-10 13:33:04 +00:00
213b64452a [Bugfix] Convert untraceable GroupShape to list for AMD impl (#26535)
Signed-off-by: Lucas Kabela <lucaskabela@meta.com>
2025-10-10 13:32:29 +00:00
784c231151 [NIXL] Ignore abort on already-finished request (#25067)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-10-10 12:21:56 +02:00
606b00e80f [bugfix][DCP] fix block_size of hash in DCP prefix caching (#26296)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-10-10 03:02:49 -07:00
720d3cd0f0 [CI] fix ruff format (#26579)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-10-10 03:02:12 -07:00
ab196edefb Remove LoRA bias support (#25807)
Signed-off-by: Ashwin Phadke <ashwinphadke12@rediffmail.com>
Signed-off-by: Ashwin Phadke <23502062+ashwin-phadke@users.noreply.github.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-10 09:50:33 +00:00
3ee202ea1e [GPT-OSS] Add support for arrays at tool message content (#25593)
Signed-off-by: Luis Tomas Bolivar <ltomasbo@redhat.com>
2025-10-10 09:00:45 +00:00
ad430a67ca [Metrics] Log multi-modal cache stats and fix reset (#26285)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-10 01:45:55 -07:00
6f0f570c43 [deepseek] kernel block size for UniformTypeKVCacheSpecs (#26559)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-10-10 16:40:41 +08:00
b545a0b207 fix test_simple_inductor_graph_partition (#26522)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
2025-10-10 06:39:19 +00:00
29255cfc3b [Spec-Decode] Support piecewise cudagraphs for Eagle head (#25109)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: Benjamin Chislett <chislett.ben@gmail.com>
2025-10-10 01:20:31 -04:00
da4455609d [Chore]: One pythonic tool parser test uses the wrong parser (#26515)
Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-10-10 04:03:55 +00:00
aafb99a4d4 [Core] Small simplification in GPUModelRunner._update_states() (#26508)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-10 10:53:58 +08:00
757fa4a4da [DP][ray] Support different VLLM_RAY_DP_PACK_STRATEGY (#23849)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-10-09 19:53:43 -07:00
c6187f55f7 Refactor MistralTokenizer (#26358)
Signed-off-by: Julien Denize <julien.denize@mistral.ai>
2025-10-09 22:48:58 +00:00
8983e0216f [CI] Fix Pre-commit Issue Cannot determine type of "rank" and "world_size" (#26448)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-09 15:16:48 -07:00
1ee35382cb [Bug] Fix modular_kernel: ZeroDivisionError: integer division or modulo by zero (#26528)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-09 15:13:27 -07:00
6e783bc54b [Bugfix] Fix CUDA graph selection bug in FlashInfer at high concurrency (#26499)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-09 17:12:34 -04:00
c9d33c60dc [UX] Add FlashInfer as default CUDA dependency (#26443)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-09 14:10:02 -07:00
2e54db4d2b [Core] Remove unused prev_sampled_token_ids_invalid_indices input batch field (#26514)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-09 20:22:14 +00:00
44f633dba1 [Flashinfer][gpt-oss] Support FP8-qkv Flashinfer TRTLLM Sinks Attention (#25674)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-10-09 16:13:39 -04:00
a462331e36 [Bugfix] Disable moe inplace for torch >= 2.9 (#26497)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-10-09 18:07:38 +00:00
4069db3f2e [Bugfix] Enable padded FP4 quantization (#25947)
Signed-off-by: Roi Koren <roik@nvidia.com>
2025-10-09 10:59:41 -07:00
0d37450eb7 [BUGFIX] Add cu_tokens_across_sp to DPMetadata (#26457)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-10-09 17:13:56 +00:00
47e66c24e2 [Model] Apply shared experts overlap optimization to all models with shared experts (#26145)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-10-09 11:31:04 -04:00
3b736e1c38 [Attention][DCP] Support DCP with query length > 1 (MTP) with FA3 (#25049)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-10-09 08:06:29 -07:00
2c1c7dfb35 [Models][Qwen] Replace pad with cat for better performance (#26486)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-10-09 14:51:26 +00:00
e246ad6f0c Upgrade Pydantic to v2.12.0 and remove hack for Python 3.13 (#26481)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-09 06:02:40 -07:00
5728da11ea Revert #26113 "[Frontend] CompilationConfig overhaul (#20283): deprecate use_inductor in favor of backend, simplify custom_ops" (#26472)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-10-09 05:43:55 -07:00
92be3f3517 [Feature] Use pydantic validation in parallel.py config (#26417)
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-09 12:41:31 +00:00
d1ddf340c8 [V0 deprecation] Remove QKVCrossParallelLinear implementation (#26475)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-09 10:52:27 +00:00
ec10fd0abc [Bugfix] Move current_platform import to avoid python import cache. (#16601)
Signed-off-by: iwzbi <wzbi@zju.edu.cn>
2025-10-09 10:46:19 +00:00
0426e3c5e1 [Models][Qwen3VL] Optimise _validate_and_reshape_mm_tensor (#26426)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-10-09 10:25:48 +00:00
4bdf7ac593 [Bugfix] Fix SHM cache initialization (#26427)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-09 02:48:04 -07:00
dc7976dd9f [Misc] Upgrade more code to Python 3.10 (#26463)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-09 10:43:53 +01:00
e4791438ed [Feature] Use pydantic validation in lora.py and load.py configs (#26413)
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
2025-10-09 02:38:33 -07:00
e6e898f95d [doc] add Volcengine as a compute sponsor (#26477)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-10-09 17:11:47 +08:00
ddcbc2f334 [Misc] Misc code simplifications (#26450)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-09 02:10:06 -07:00
a83ff278d6 [torchao] Add support for ModuleFqnToConfig using regex (#26001)
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
2025-10-09 08:32:32 +00:00
cf4cd6c24f Add: Support for multiple hidden layers in Eagle3 (#26164)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
2025-10-09 07:30:50 +00:00
b960441812 Enable RMSNorm substitution for Transformers backend (#26353)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-09 07:28:51 +00:00
1317028aa8 [Model] Gemma3: Fix GGUF loading and quantization (#26189)
Signed-off-by: Luciano Martins <lucianommartins@users.noreply.github.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Luciano Martins <lucianommartins@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-09 07:00:53 +00:00
5e49c3e777 Bump Flashinfer to v0.4.0 (#26326)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-10-08 23:58:44 -07:00
0d7c3cb51d Update Dockerfile and install runai-model-streamer[gcs] package (#26464)
Signed-off-by: Peter Schuurman <psch@google.com>
2025-10-08 23:48:51 -07:00
1b2c440cd6 [Core] Relax the LoRA max rank (#26461)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-08 23:47:14 -07:00
0f29dca988 [CI/Build] Fix model nightly tests (#26466)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-08 23:44:16 -07:00
d24cf322e1 [Hybrid]: Decouple Kernel Block Size from KV Page Size (#24486)
Signed-off-by: lizhiyuan <uniartisan2017@gmail.com>
Signed-off-by: Zhiyuan Li <uniartisan2017@gmail.com>
2025-10-08 23:43:39 -07:00
d17f0fbf30 [Core][KVConnector] Propagate all tokens on resumed preemptions (#24926)
Signed-off-by: Qier Li <kevin44036@gmail.com>
Co-authored-by: Qier Li <qier@fb.com>
2025-10-09 14:43:31 +08:00
43ab8cfaa5 [MM][Doc] Add documentation for configurable mm profiling (#26200)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-10-08 23:21:20 -07:00
de253d63b7 [Hardware][AMD] Enable FlexAttention backend on ROCm (#26439)
Signed-off-by: Matthew Wong <Matthew.Wong2@amd.com>
2025-10-09 06:20:18 +00:00
8bd696fa53 [Bugfix] Incorrect another MM data format in vllm bench throughput (#26462)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-10-09 05:58:46 +00:00
bb6d8c21f9 [Bugfix] Catch and log invalid token ids in detokenizer #2 (#26445)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-08 21:20:25 -07:00
ebf6ef1a9b [Minor] Change warning->warning_once in preprocess (#26455)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-10-08 21:09:06 -07:00
0c52d6ef81 [Bugfix] Set the minimum python version for gpt-oss (#26392)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-08 20:35:49 -07:00
467a4f98f1 [Misc] Redact ray runtime env before logging (#26302)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-10-08 17:43:34 -07:00
e614ab7806 Separate MLAAttention class from Attention (#25103)
Signed-off-by: Naveenraj Kamalakannan <therealnaveenkamal@gmail.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-08 17:11:11 -07:00
2a03f93de9 [Attention] Register FLASHMLA_SPARSE (#26441)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-08 22:28:52 +00:00
da364615fc [Kernels] Modular kernel refactor (#24812)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-10-08 17:51:52 -04:00
f08919b7d1 [Bugfix] Respect min_tokens in scheduler stop check (#26317)
Signed-off-by: Elaine Zhao <elaineyz@amazon.com>
2025-10-08 14:08:24 -07:00
93f2c0aa08 [Models] Improve iteration over layers (#26425)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-10-08 20:48:33 +00:00
4ebc9108a7 [Kernel] Centralize platform kernel import in current_platform.import_kernels (#26286)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-08 20:25:31 +00:00
e1ba235668 [BugFix] Fix failing test quantization/test_compressed_tensors.py::test_compressed_tensors_fp8_block_enabled (#26436)
Signed-off-by: morrison-turnansky <mturnans@redhat.com>
2025-10-08 20:04:12 +00:00
b82f4307c9 [Bugfix][Flashinfer] fix VLLM_USE_TRTLLM_ATTENTION issue for models with diff hyperparameters (#25924)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-10-08 19:54:48 +00:00
76879cc160 [Attention] Implement universal BACKEND_MAP (#25900)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-08 12:00:25 -07:00
b25d7b5657 [Feature] Change cache.py with pydantic validation (#26390)
Signed-off-by: Vinay Damodaran <vrdn@hey.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-08 11:12:59 -07:00
e09d1753ec Remove Python 3.9 support ahead of PyTorch 2.9 in v0.11.1 (#26416)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-08 10:40:42 -07:00
4ba8875749 [Bug] Fix Test in Batch Invariant (#26128)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-08 10:13:47 -07:00
6273fe8d3d [Benchmarks] Fix imports in FP8 tuning script (#26407)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-10-08 16:31:59 +00:00
9fb3ae4e6f [Bug] Fix DeepGEMM Attention Test (#26423)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-08 12:23:41 -04:00
76afe4edf8 [Bugfix] Fix vllm bench ... on CPU-only head nodes (#25283)
Signed-off-by: Aydin Abiar <aydin@anyscale.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Aydin Abiar <aydin@anyscale.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-08 16:06:42 +00:00
c1b06fc182 [CI Failure] Fix pre-commit issue for install_nixl_from_source_ubuntu.py (#26424)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-08 07:55:43 -07:00
241b4cfe66 [Refactor] Refactor FP8 & INT8 Quant Folder inside w8a8 (#25293)
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: courage17340 <courage17340@163.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Jacob Kahn <jacobkahn1@gmail.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: zxw <1020938856@qq.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: wang.yuqi <noooop@126.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Signed-off-by: chenlang <chen.lang5@zte.com.cn>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: AlonKejzman <alonkeizman@gmail.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: taohui <taohui3@gmail.com>
Signed-off-by: Tao Hui <taohui3@gmail.com>
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Signed-off-by: Eugene Khvedchenya <ekhvedchenya@gmail.com>
Signed-off-by: yiting.jiang <yiting.jiang@daocloud.io>
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: xaguilar <Xavier.AguilarFruto@amd.com>
Signed-off-by: Iceber Gu <caiwei95@hotmail.com>
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
Signed-off-by: Icey <1790571317@qq.com>
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: 许文卿 <xwq391974@alibaba-inc.com>
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Kosseila (CloudThrill) <klouddude@gmail.com>
Signed-off-by: frankwang28 <frank.wbb@hotmail.com>
Signed-off-by: Frank Wang <41319051+frankwang28@users.noreply.github.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
Signed-off-by: zixi-qi <qizixi@meta.com>
Signed-off-by: Bram Wasti <bwasti@meta.com>
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Junhong <liujunhong11@huawei.com>
Signed-off-by: Junhong Liu <98734602+LJH-LBJ@users.noreply.github.com>
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Signed-off-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: Patrick Toulme <ptoulme@meta.com>
Signed-off-by: Patrick Toulme <pctoulme+1@gmail.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Signed-off-by: Clayton Coleman <smarterclayton@gmail.com>
Signed-off-by: Jialin Ouyang <jialino@meta.com>
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
Signed-off-by: liuye.hj <liuye.hj@alibaba-inc.com>
Signed-off-by: Juechen Liu <jueliu@meta.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: isotr0py <2037008807@qq.com>
Signed-off-by: yingjun-mou <renzomou@gmail.com>
Signed-off-by: zhoukz <me@zhoukz.com>
Signed-off-by: Chenxi Yang <cxyang@fb.com>
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
Signed-off-by: Lee Nau <lnau@nvidia.com>
Signed-off-by: adabeyta <aabeyta@redhat.com>
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: Yongye Zhu <zyy1102000@gmail.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: Lucia Fang <fanglu@meta.com>
Signed-off-by: a120092009 <zhaoty0121@gmail.com>
Signed-off-by: sergiopaniego <sergiopaniegoblanco@gmail.com>
Signed-off-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
Signed-off-by: Lehua Ding <lehuading@tencent.com>
Signed-off-by: lyd1992 <liuyudong@iscas.ac.cn>
Signed-off-by: ihb2032 <1355790728@qq.com>
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
Signed-off-by: anion <1005128408@qq.com>
Signed-off-by: Anion <123177548+Anionex@users.noreply.github.com>
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
Signed-off-by: Bill Nell <bnell@redhat.com>
Signed-off-by: bnellnm <49004751+bnellnm@users.noreply.github.com>
Signed-off-by: Or Ozeri <oro@il.ibm.com>
Signed-off-by: cjackal <44624812+cjackal@users.noreply.github.com>
Signed-off-by: David Ben-David <davidb@pliops.com>
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: Andrew Xia <axia@fb.com>
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: Salvatore Cena <cena@cenas.it>
Signed-off-by: padg9912 <phone.and.desktop@gmail.com>
Signed-off-by: nadathurv <work.vnadathur@gmail.com>
Signed-off-by: WorldExplored <srreyansh.sethi@gmail.com>
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Signed-off-by: billishyahao <bill.he@amd.com>
Signed-off-by: Nathan Scott <nathans@redhat.com>
Signed-off-by: Kenichi Maehashi <maehashi@preferred.jp>
Signed-off-by: Johnny <johnnynuca14@gmail.com>
Signed-off-by: johnnynunez <johnnynuca14@gmail.com>
Signed-off-by: Johnny <johnnync13@gmail.com>
Signed-off-by: Huamin Li <3ericli@gmail.com>
Signed-off-by: Hosang Yoon <hosang.yoon@amd.com>
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
Signed-off-by: Peter Schuurman <psch@google.com>
Signed-off-by: Huy Do <huydhn@gmail.com>
Signed-off-by: leo-pony <nengjunma@outlook.com>
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: ElizaWszola <elizaw.9289@gmail.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Signed-off-by: zhewenli <zhewenli@meta.com>
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Signed-off-by: huijjj <huijong.jeong@squeezebits.com>
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
Signed-off-by: kyt <eluban4532@gmail.com>
Signed-off-by: Egor <e.a.krivov@gmail.com>
Signed-off-by: Yang <lymailforjob@gmail.com>
Signed-off-by: Paul Pak <paulpak58@gmail.com>
Signed-off-by: whx-sjtu <2952154980@qq.com>
Signed-off-by: Xiang Si <sixiang@google.com>
Signed-off-by: Aleksandr Samarin <astrlrd@nebius.com>
Signed-off-by: Jun Jiang <jasl9187@hotmail.com>
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
Signed-off-by: Nikhil Ghosh <nikhil@anyscale.com>
Co-authored-by: Nicole LiHui 🥜 <nicolelihui@outlook.com>
Co-authored-by: courage17340 <courage17340@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Jacob Kahn <jacobkahn1@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Nicole LiHui 🥜 <nicole.li@daocloud.io>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Fadi Arafeh <115173828+fadara01@users.noreply.github.com>
Co-authored-by: Agata Dobrzyniewicz <160237065+adobrzyn@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: yyzxw <34639446+yyzxw@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: wang.yuqi <noooop@126.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: chenlang <chen.lang5@zte.com.cn>
Co-authored-by: chenlang <10346245@zte.com.cn>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Jonas M. Kübler <44084297+jmkuebler@users.noreply.github.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: AlonKejzman <alonkeizman@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: Tao Hui <taohui3@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Co-authored-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: Shu Wang <shuw@nvidia.com>
Co-authored-by: Aleksandr Malyshev <164964928+maleksan85@users.noreply.github.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Doug Lehr <douglehr@amd.com>
Co-authored-by: Eugene Khvedchenya <ekhvedchenya@gmail.com>
Co-authored-by: yitingdc <59356937+yitingdc@users.noreply.github.com>
Co-authored-by: Andrew Sansom <andrew@protopia.ai>
Co-authored-by: xaguilar-amd <xavier.aguilarfruto@amd.com>
Co-authored-by: Iceber Gu <caiwei95@hotmail.com>
Co-authored-by: Tao He <linzhu.ht@alibaba-inc.com>
Co-authored-by: Icey <1790571317@qq.com>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Xu Wenqing <121550081+Xu-Wenqing@users.noreply.github.com>
Co-authored-by: Chih-Chieh Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: RishiAstra <40644327+RishiAstra@users.noreply.github.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
Co-authored-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Co-authored-by: Rui Qiao <161574667+ruisearch42@users.noreply.github.com>
Co-authored-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: 阿丹(adan) <47373076+LDLINGLINGLING@users.noreply.github.com>
Co-authored-by: liudan <adan@minicpm.com>
Co-authored-by: liudan <liudan@qq.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: Clouddude <kouss.hd@gmail.com>
Co-authored-by: Frank Wang <41319051+frankwang28@users.noreply.github.com>
Co-authored-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
Co-authored-by: qizixi <22851944+zixi-qi@users.noreply.github.com>
Co-authored-by: Bram Wasti <bwasti@fb.com>
Co-authored-by: Naman Lalit <nl2688@nyu.edu>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: WeiQing Chen <40507679+david6666666@users.noreply.github.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: 22quinn <33176974+22quinn@users.noreply.github.com>
Co-authored-by: Xiaohan Zou <renovamenzxh@gmail.com>
Co-authored-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Peter Pan <peter.pan@daocloud.io>
Co-authored-by: Patrick C. Toulme <135739773+patrick-toulme@users.noreply.github.com>
Co-authored-by: Clayton Coleman <smarterclayton@gmail.com>
Co-authored-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Co-authored-by: Jialin Ouyang <jialino@meta.com>
Co-authored-by: weiliang <weiliangl@nvidia.com>
Co-authored-by: Yuxuan Zhang <2448370773@qq.com>
Co-authored-by: JJJYmmm <92386084+JJJYmmm@users.noreply.github.com>
Co-authored-by: liuye.hj <liuye.hj@alibaba-inc.com>
Co-authored-by: Juechen Liu <grinchcoder@gmail.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Yingjun Mou <renzomou@gmail.com>
Co-authored-by: Zhou Jiahao <me@zhoukz.com>
Co-authored-by: Chenxi Yang <cxyang@cs.utexas.edu>
Co-authored-by: Chenxi Yang <cxyang@fb.com>
Co-authored-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: Lee Nau <lee.nau@gmail.com>
Co-authored-by: Adrian Abeyta <aabeyta@redhat.com>
Co-authored-by: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: acisseJZhong <40467976+acisseJZhong@users.noreply.github.com>
Co-authored-by: Simon Danielsson <70206058+simondanielsson@users.noreply.github.com>
Co-authored-by: Yongye Zhu <zyy1102000@gmail.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Xiaozhu Meng <mxz297@gmail.com>
Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Co-authored-by: a120092009 <33205509+a120092009@users.noreply.github.com>
Co-authored-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>
Co-authored-by: CSWYF3634076 <wangyafeng@baidu.com>
Co-authored-by: Lehua Ding <lehuading@tencent.com>
Co-authored-by: Reza Barazesh <3146276+rzabarazesh@users.noreply.github.com>
Co-authored-by: ihb2032 <40718643+ihb2032@users.noreply.github.com>
Co-authored-by: Asaf Joseph Gardin <39553475+Josephasafg@users.noreply.github.com>
Co-authored-by: Anion <123177548+Anionex@users.noreply.github.com>
Co-authored-by: Pavani Majety <pmajety@nvidia.com>
Co-authored-by: bnellnm <49004751+bnellnm@users.noreply.github.com>
Co-authored-by: Or Ozeri <oro@il.ibm.com>
Co-authored-by: cjackal <44624812+cjackal@users.noreply.github.com>
Co-authored-by: David Ben-David <sdavidbd@gmail.com>
Co-authored-by: David Ben-David <davidb@pliops.com>
Co-authored-by: Andrew Xia <axia@mit.edu>
Co-authored-by: Andrew Xia <axia@fb.com>
Co-authored-by: Salvatore Cena <cena@cenas.it>
Co-authored-by: Param <psch@cs.unc.edu>
Co-authored-by: Zhewen Li <zhewenli@meta.com>
Co-authored-by: nadathurv <work.vnadathur@gmail.com>
Co-authored-by: Srreyansh Sethi <107075589+WorldExplored@users.noreply.github.com>
Co-authored-by: Wenlong Wang <wangwenlong2755@gmail.com>
Co-authored-by: billishyahao <bill.he@amd.com>
Co-authored-by: Nathan Scott <natoscott@users.noreply.github.com>
Co-authored-by: Kenichi Maehashi <939877+kmaehashi@users.noreply.github.com>
Co-authored-by: Johnny <johnnync13@gmail.com>
Co-authored-by: Aidyn-A <31858918+Aidyn-A@users.noreply.github.com>
Co-authored-by: Huamin Li <3ericli@gmail.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Hosang <156028780+hyoon1@users.noreply.github.com>
Co-authored-by: Jerry Zhang <jerryzh168@gmail.com>
Co-authored-by: pwschuurman <psch@google.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
Co-authored-by: leo-pony <nengjunma@outlook.com>
Co-authored-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: ElizaWszola <ewszola@redhat.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
Co-authored-by: Benjamin Chislett <bchislett@nvidia.com>
Co-authored-by: Andrew Xia <axia@meta.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: TJian <tunjian.tan@embeddedllm.com>
Co-authored-by: ahao-anyscale <ahao@anyscale.com>
Co-authored-by: Varun Sundar Rabindranath <varunsundar08@gmail.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Liu-congo <1502632128@qq.com>
Co-authored-by: HUIJONG JEONG <64083281+huijjj@users.noreply.github.com>
Co-authored-by: Yannick Schnider <Yannick.Schnider1@ibm.com>
Co-authored-by: kyt <eluban4532@gmail.com>
Co-authored-by: Egor <e.a.krivov@gmail.com>
Co-authored-by: Yang Liu <127183760+KKSK-DON@users.noreply.github.com>
Co-authored-by: Paul Pak <52512091+paulpak58@users.noreply.github.com>
Co-authored-by: whx <56632993+whx-sjtu@users.noreply.github.com>
Co-authored-by: Xiang Si <sixiang@google.com>
Co-authored-by: Aleksandr Samarin <samarin_ad@mail.ru>
Co-authored-by: Jun Jiang <jasl9187@hotmail.com>
Co-authored-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Nikhil G <nrghosh@users.noreply.github.com>
2025-10-08 10:20:48 -04:00
9fc983c707 [NIXL][non-cuda] Add install script for nixl with non-cuda ucx (#25959)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
2025-10-08 14:19:53 +00:00
2f99f2f506 Tidy vllm/config/__init__.py to only add classes and functions (#26405)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-08 07:10:00 -07:00
338b1bf04f [Benchmarks] Add support for Qwen 3 VL MoE tuning (#26419)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-10-08 14:01:08 +00:00
e39dc46f8f [CI] Pooling models mteb test disable enforce_eager (#26408)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-10-08 12:15:36 +00:00
10c75b5439 [Docs] Have mergify leave a comment with the docs preview link (#26412)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-08 12:04:00 +00:00
f9582fd8f4 [Model] Allow passing custom number of max tiles to Nano 2 VL (#26403)
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
2025-10-08 11:19:39 +00:00
f377333bd7 [Misc] add usedforsecurity=False in md5 hash call (#26357)
Signed-off-by: Daniele Trifirò <dtrifiro@redhat.com>
2025-10-08 10:18:32 +00:00
f8607863d8 [Feature] Enable E8M0 by Default on Hopper for DeepGEMM, 5% E2E throughput improvement (#26197)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-08 15:33:56 +08:00
335b28f7d1 [TPU] Rename tpu_commons to tpu_inference (#26279)
Signed-off-by: Utkarsh Sharma <utksharma@google.com>
Co-authored-by: Utkarsh Sharma <utksharma@google.com>
Co-authored-by: Chengji Yao <chengjiyao@google.com>
2025-10-07 23:30:52 -07:00
5e65d6b2ad fix[DP][v1]: Prevent hangs from mismatched worker configurations (#26218)
Signed-off-by: Ayush Satyam <ayushsatyam146@gmail.com>
2025-10-07 22:55:08 -07:00
0d4f48fa10 [Bugfix] Incorrect MM data format in vllm bench throughput (#26395)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-08 13:52:19 +08:00
127c8b782a Add gather_indexer_k_quant_cache kernel (#25931)
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Yongye Zhu <zyy1102000@gmail.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
2025-10-08 04:58:57 +00:00
cd9890544b fix(v1/kv_cache): resolve async KV transfer bug in cascade attention (#23485)
Signed-off-by: Ayush Satyam <ayushsatyam146@gmail.com>
2025-10-08 04:46:33 +00:00
067da2d1df [Core] Simplify setting new_token_ids in CachedRequestData (#26388)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-08 03:32:37 +00:00
046118b938 Add SwigluOAI implementation for CPUFusedMOE (#26347)
Signed-off-by: Sharif Inamdar <sharif.inamdar@arm.com>
2025-10-07 20:17:49 -06:00
b32260ab85 [torchao] safetensors integration (#25969)
Signed-off-by: Angel Li <liangel@meta.com>
2025-10-07 20:12:35 -06:00
f80e7866c0 [Misc] Clean up cruft from previous FlashMLA sparse implementation (#26125)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-10-08 10:09:34 +08:00
31a4b3e6c4 Revert #24446 and #26168 (#26332)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-10-07 16:38:19 -06:00
caf8b1c084 [Bugfix] Fix MTP+FlashInfer crash when trtllm kernels are available but disabled (#26361)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
Signed-off-by: Benjamin Chislett <chislett.ben@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-07 22:12:26 +00:00
1b86bd8e18 Add more libraries to rlhf.md (#26374)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-10-07 20:59:41 +00:00
59012df99b [TPU] update TPU benchmark threshold (#25713)
Signed-off-by: Johnny Yang <johnnyyang@google.com>
2025-10-07 13:53:09 -07:00
3d1f67616d [Spec Decode] Enable efficient speculative decoding with FlashInfer-MLA (#25984)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-07 16:05:59 -04:00
6ebaf43ee4 [V1] Logit processors for rejection sampler (#19482)
Signed-off-by: southfreebird <yvorott@gmail.com>
Signed-off-by: Sergei Skvortsov <sergeyskv@nebius.com>
Signed-off-by: Sergei Skvortsov <yvorott@gmail.com>
Co-authored-by: Sergei Skvortsov <sergeyskv@nebius.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-10-07 13:02:49 -07:00
0c824fc46f [Frontend] CompilationConfig overhaul (#20283): deprecate use_inductor in favor of backend, simplify custom_ops (#26113)
Signed-off-by: morrison-turnansky <mturnans@redhat.com>
Signed-off-by: Morrison Turnansky <mturnans@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
2025-10-07 12:53:43 -07:00
eb577e4655 [Bugfix] Add missing sink tensor into flash attn cascade attn implementation (#26325) 2025-10-07 18:56:39 +00:00
8f36850f73 [Bug] Fix Shape Validation for Fallback while Enabling E8M0 for DeepGEMM (#26322)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-07 13:50:30 -04:00
29fd2662ba [deepseek] add EP8 FusedMOE config for H200 and B200 (#26331)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-10-07 10:38:54 -07:00
30a3e5af69 [CI] Add Qwen3 MoE NVFP4 to Blackwell lm-eval (#26316)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-07 10:36:15 -07:00
a38c1bfe09 [ci] Rename test_mxfp4_moe.py to test_ocp_mx_moe.py (#26364)
Signed-off-by: Felix Marty <Felix.Marty@amd.com>
2025-10-07 09:52:24 -07:00
320feae6f5 [Model] Lfm2Moe (#26344)
Signed-off-by: Paul Pak <paulpak58@gmail.com>
2025-10-07 16:03:05 +00:00
1e4ecca1d0 [V0 Deprecation] Remove VLLM_USE_V1 from tests (#26341)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-07 15:42:31 +00:00
c0a7b89d8e [Misc] Move LRUCache into its own file (#26342)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-07 15:08:40 +00:00
6f59beaf0b [Model] Add support for ModernBertForTokenClassification (#26340)
Signed-off-by: Antoine Recanati Le Goat <antoine.recanati@sancare.fr>
Signed-off-by: antrec <antoine.recanati@gmail.com>
Co-authored-by: Antoine Recanati Le Goat <antoine.recanati@sancare.fr>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-07 14:29:19 +00:00
41f1cf38f2 [Feature][OCP MX] Support mxfp6 and mixed mxfp6-mxfp4 (#21166) 2025-10-07 09:35:26 -04:00
08d26a1b7e [Model] Use merge_by_field_config for MM models (Ovis family) (#26308)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-07 12:54:22 +00:00
63773a6200 [Docs] add docs for cuda graph v1 (#24374)
Signed-off-by: fhl <2410591650@qq.com>
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-07 05:25:05 -07:00
883b42896a Add TRL example notebook to RLHF docs (#26346)
Signed-off-by: sergiopaniego <sergiopaniegoblanco@gmail.com>
2025-10-07 11:31:28 +00:00
e1098ced95 Add topk logits torch op for DS3.2. (#25945)
Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
Signed-off-by: Daniel Cámpora <961215+dcampora@users.noreply.github.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-10-07 10:07:32 +00:00
d100d78eb3 Optimize KV cache distribution for asymmetric pipeline parallelism (#25164)
Signed-off-by: gholmes829 <g.holmes429@gmail.com>
2025-10-07 09:20:30 +00:00
7e4cd070b0 [V0 Deprecation] Remove VLLM_USE_V1 from docs and scripts (#26336)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-07 16:46:44 +08:00
46b0779996 [BugFix] Update KV block hash type from BlockHash to ExternalBlockHash in kv_events_subscriber - #26264 (#26265)
Signed-off-by: atalhens <sneh.lata@nutanix.com>
2025-10-07 08:42:28 +00:00
de342585ff [Model] Define merge_by_field_config MM interface (R-T) (#26260)
Signed-off-by: Ayush Satyam <ayushsatyam146@gmail.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-07 16:10:55 +08:00
185d8ed44f [responsesAPI][bugfix] serialize harmony messages (#26185)
Signed-off-by: Andrew Xia <axia@meta.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-10-07 07:07:53 +00:00
d9836d4517 [Deprecation] Deprecate LLM.set_tokenizer (#26333)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-07 06:50:57 +00:00
5f7e8a916a [Model] Define merge_by_field_config MM interface (U-Z) (#26261)
Signed-off-by: Ayush Satyam <ayushsatyam146@gmail.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-07 06:45:49 +00:00
4dbdf4a294 [BUG] Fix file parsing for load_format runai_streamer_sharded (#26324)
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
2025-10-07 11:23:07 +08:00
c6873c4e6d [UX] Support nested dicts in hf_overrides (#25727)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-07 11:19:16 +08:00
2111b4643c [Core] Simplify the Dp padding/should ubatch coordination logic (#25768)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-10-07 01:57:49 +00:00
c50901f3b9 [Docs][DBO] Add initial doc that describes the DBO implementation (#26024)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-10-07 00:47:28 +00:00
8229280a9c [Misc] Define EP kernel arch list in Dockerfile (#25635)
Signed-off-by: Simon Mo <simon.mo@hey.com>
2025-10-07 00:05:33 +00:00
f77df94647 [Perf] Add decode full-graph support to FlashInfer-MLA backend (#26313)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-06 23:03:49 +00:00
f231e5bc21 [ROCm] Split AITER unified attention into its own backend (#25507)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-10-06 22:49:23 +00:00
2161efe978 [Bugfix] Allow skipping MoE in NVFP4 (fix for MTP) (#25987)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-06 16:16:30 -04:00
f23b4c04fd [BugFix] Pad input buffers in _dummy_run (#26209)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-10-06 16:07:51 -04:00
93540958b8 [Docs] Fix broken table in moe_kernel_features doc (#26314)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-10-06 15:58:05 -04:00
44b9af5bb2 [Benchmark] Enable MM Embedding benchmarks (#26310)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-06 19:51:58 +00:00
7cd95dc8a3 [Bugfix] Fix gemma3 with transformers backend (#23178)
Signed-off-by: raushan <raushan@huggingface.co>
Signed-off-by: Raushan Turganbay <raushan@huggingface.co>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-06 18:42:32 +00:00
c02058c222 Add bias handling to CPUFusedMOE kernel (#26289)
Signed-off-by: Crefeda Rodrigues <crefeda.rodrigues@arm.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Crefeda Rodrigues <65665931+cfRod@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Sharif Inamdar <Sharif.Inamdar@arm.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-10-06 18:39:10 +00:00
b2ea5ba677 [Bugfix][Spec Decode] Fix wrong valid_mask for padded speculation when chunked prefill occurs (#26231)
Signed-off-by: seven-mile <i@7li.moe>
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
Co-authored-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-06 18:24:22 +00:00
824a3f403f [Misc] auto_tune: kill specific vllm process (#26304)
Signed-off-by: Karan Goel <karangoel@google.com>
2025-10-06 18:02:51 +00:00
05f6846ede Support llama3 eagle3 head with llama4 verifier (#25961)
Signed-off-by: rahul-tuli <rtuli@redhat.com>
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
2025-10-06 13:56:08 -04:00
20db99cc69 [CI Bugfix] Make sure TRTLLM attention is available in test_blackwell_moe (#26188)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-06 13:50:11 -04:00
6431be808f [Tests] conftest: Extending VllmRunner and HfRunner to accept token_ids as input (#26295)
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
Signed-off-by: Yannick Schnider <Yannick.Schnider1@ibm.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-06 17:19:34 +00:00
4727a8afa7 [Attention] Remove unused reorder_batch method (#24463)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-06 13:13:39 -04:00
b8f603cebe [Model] EVS support for nano_nemotron_vl (#26269)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
2025-10-07 00:23:37 +08:00
fc679696f8 Fix DotsOCR tensor type (#26281)
Signed-off-by: what_in_the_nim <chatcharinsang@gmail.com>
2025-10-06 12:23:43 +00:00
ab5e7d93f4 [Bugfix] Fix mrope in Transformers Backend (#26087)
Signed-off-by: raushan <raushan@huggingface.co>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-06 11:40:50 +00:00
0340f45553 Support expert parallel load balancing in Transformers backend (#26287)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-06 11:20:16 +00:00
19a00eb210 [Model] Use merge_by_field_config for MM models (Llava family) (#26280)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-06 09:45:26 +00:00
391612e78b [Frontend] Consolidate tokenizer init code (#26276)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-06 09:34:52 +00:00
77c95f72f7 [Doc] add KAITO to integrations (#25521)
Signed-off-by: "Abhishek Sheth" <absheth@microsoft.com>
2025-10-06 17:30:03 +08:00
59f30d0448 [Docs] Edit HF Inference Endpoints documentation (#26275)
Signed-off-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
Signed-off-by: ariG23498 <aritra.born2fly@gmail.com>
2025-10-06 10:13:09 +01:00
43c146ca42 [Misc] Clean up unnecessary E501 ignore (#26274)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-10-06 07:29:18 +00:00
7c2ec0fe87 [Benchmarking] Add disable_shuffle option for dataset loading (#26258)
Signed-off-by: Yasmin Moslem <48152713+ymoslem@users.noreply.github.com>
2025-10-06 07:05:44 +00:00
039b6bade3 Bump actions/stale from 10.0.0 to 10.1.0 (#26272)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-10-06 07:01:21 +00:00
6c04638214 Fix per file ruff ignores related to line length (#26262)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-06 05:12:40 +00:00
91ac7f764d [CI][gpt-oss] Enable python tool tests in CI (#24315)
Signed-off-by: wuhang <wuhang6@huawei.com>
2025-10-06 04:20:06 +00:00
4be7d7c1c9 [MISC] Add heheda12345 to CODEOWNERS of vllm/config/cache.py (#26270)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-10-06 10:58:59 +08:00
59b477645c [Doc] Edited minor typo (#26266)
Signed-off-by: Orange Ng <ngquanhao@outlook.com>
2025-10-05 19:53:09 -07:00
778f554157 [V1] [Hybrid] Some additional clean-up in Mamba2 prefix caching (#26222)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-10-06 10:40:30 +08:00
d3c84297c3 [CI] Add comment about the single cudagraph capture size that is used (#26252) 2025-10-06 02:35:37 +00:00
f509a20846 [DOC] Update production-stack.md (#26177)
Signed-off-by: Elieser Pereira <elieser.pereiraa@gmail.com>
2025-10-05 21:32:48 +00:00
60bc25e74c [CI] Add Blackwell LM Eval Small Models test to nightly (#26052)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-05 14:59:50 -06:00
b893d661b1 Fix per file ruff ignores related to simplification (#26259)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 20:31:53 +00:00
6b6e98775f [NVIDIA] flashinfer TRTLLM attention prefill token limit (#25998)
Signed-off-by: jasonlizhengjian <jason.li@centml.ai>
Signed-off-by: jasonlizhengjian <jasonlizhengjian@gmail.com>
2025-10-05 14:24:37 -06:00
9c3c21c519 [CI] fix mamba kernel test (#26250)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-10-05 18:26:59 +00:00
512b8affa4 Update ruff pre-commit hooks version (#26255)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-05 09:50:50 -07:00
1c0c68202c Fix per file ruff ignores related to typing (#26254)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 16:37:55 +00:00
5f317530ec fix(tests): Resolve late binding of loop variable in assert message lambda (#26249)
Signed-off-by: lyd1992 <liuyudong@iscas.ac.cn>
Signed-off-by: ihb2032 <1355790728@qq.com
2025-10-05 09:18:22 -07:00
557b2e961d Remove all cases of fmt: on/off (#26253)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 09:18:14 -07:00
4e256cadc2 Remove all references to yapf as it's no longer used (#26251)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 09:18:11 -07:00
d6953beb91 Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00
17edd8a807 [Platform][Kernel] platform-specific kernel loading (#25823)
Signed-off-by: Hank <hcc.mayday@gmail.com>
2025-10-05 13:25:15 +02:00
3303cfb4ac [Bugfix][Hardware][RISC-V] Limit supported dtypes to float32 to avoid scheduler segfault (#26228)
Signed-off-by: lyd1992 <liuyudong@iscas.ac.cn>
Signed-off-by: ihb2032 <1355790728@qq.com>
2025-10-05 10:36:54 +00:00
b7e8e4e6be [Bugfix] Always apply MM processor even when no MM items are passed (#26240)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-05 10:10:20 +00:00
432e1cbc23 [Bugfix]: Assertion error when using FlashInfer backend (#25933)
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-05 16:46:36 +08:00
201c971e96 [Perf][Easy] Early stop in request_block_hasher (#26112)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-10-05 16:46:03 +08:00
e0986ea07b Add documentation for granite 4 tool calling (#26175)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-10-05 07:35:42 +00:00
a964e5e6c3 [Bugfix] Allow --skip-tokenizer-init with echo and return_token_ids (#26238)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-05 05:38:53 +00:00
78c1d5bfd2 [Easy] Add str repr for IterationStats (#26232)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-10-05 05:00:21 +00:00
59a85c366e [Model] Use merge_by_field_config for MM models (H-L) (#26230)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-05 11:54:17 +08:00
119f00630b [Renderer] Clean up renderer code (#26216)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-04 17:05:29 +00:00
a42d2df75f [Frontend] Cache chat template kwargs resolution (#26227)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-04 15:32:30 +00:00
5c057e068f [CPU] Refine batch reorder of CPU attention backend (#26096)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-10-04 21:54:35 +08:00
ed3aeb25a4 [V1] [Hybrid] Remove code to override default CUDA graph configuration (#26226)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-10-04 13:47:48 +00:00
86ee949128 Fix tensor device and dtype placement in Qwen2VL model (#26219)
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Yuanfeng Li <yuanfengli@meta.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-10-04 06:41:39 -07:00
4570535ec4 [Model] CLIP Embedding Support (#26010)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-04 06:21:42 -07:00
2a6dc67eb5 [Bugfix] Fix _reqs_to_process leak on abort (#26012)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-04 11:39:31 +00:00
f05fea1f5e [Core] Enable decode of context length equal to max model length (#26168)
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
2025-10-04 09:59:26 +00:00
d0df145c2a Add Olmo 3 reasoning parser (#26054)
Signed-off-by: Luca Soldaini <luca@soldaini.net>
2025-10-04 17:48:29 +08:00
1838cd4860 Revert "Add batch invariant kernel override for FlashInfer backend [2/n]" (#26220) 2025-10-04 02:45:08 -07:00
7d6b03381e [CI Failure] fix_test_auto_prefix_cache_support (#26053)
Signed-off-by: Huamin Li <3ericli@gmail.com>
2025-10-04 02:44:49 -07:00
7c2e91c4e0 [Misc] Remove unused executor.apply_model (#26215)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-04 01:45:53 -07:00
736fbf4c89 [Misc] Require merge_by_field_config argument (#26214)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-04 01:40:14 -07:00
44ea85137a [Model] Support nested structures for TensorSchema (#26212)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-04 01:20:32 -07:00
d3d649efec Support expert parallel in Transformers backend (#26162)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-04 04:35:04 +00:00
ea507c3a93 [V1] [Hybrid] Mamba2 Automatic Prefix Caching (#25752)
Signed-off-by: Stanislaw Wozniak <stw@zurich.ibm.com>
Signed-off-by: Thomas Ortner <boh@zurich.ibm.com>
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Thomas Ortner <boh@zurich.ibm.com>
Co-authored-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-10-04 06:34:22 +02:00
9705fba7b7 [cpu][perf] Accelerate unquantized-linear for AArch64 through oneDNN/ACL and weight prepack (#25948)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
Co-authored-by: Li, Jiang <jiang1.li@intel.com>
2025-10-04 12:16:38 +08:00
2f7dbc9b42 Add batch invariant kernel override for FlashInfer backend [2/n] (#25769)
Signed-off-by: Bram Wasti <bwasti@meta.com>
Signed-off-by: Bram Wasti <bwasti@fb.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-03 19:49:30 -07:00
ea25a76c05 [BugFix] Use async Mistral Tokenizer in Chat Completions (#26134)
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-04 09:42:08 +08:00
67bc0c003e [Bugfix] Fix qwen3 vl dummy data generation with overrides (#26193)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-10-04 01:40:20 +00:00
5a05f26603 Fix issue of using only the part of video frame [Nemotron Nano] (#26186)
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
2025-10-04 00:21:00 +00:00
7ef40bb983 [GPTOSS][DP/EP][Marlin] Enable GPTOSS DP/EP using Marlin kernels (#25488)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-10-03 20:13:13 -04:00
767cbb011d [CI] Fix Pre-commit Mypy Error (#26181)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 16:08:03 -07:00
7cfa4b24bf [BugFix] Fix de-functionalization pass for rotary_embedding (#23953)
Signed-off-by: angelayi <yiangela7@gmail.com>
2025-10-03 15:44:18 -07:00
b71fcd4905 [Misc] Add penalties sampling parameters to serve tool (#25974)
Signed-off-by: Sergei Skvortsov <sergeyskv@nebius.com>
Co-authored-by: Sergei Skvortsov <sergeyskv@nebius.com>
2025-10-03 15:43:14 -07:00
75003f34e8 [CI] Push multiarch manifests as nightly builds (#25764)
Signed-off-by: Sahithi Chigurupati <chigurupati.sahithi@gmail.com>
2025-10-03 15:42:55 -07:00
78b8015a4d [Bugfix] Relax tokenizer regex for mixtral to include 'tokenizer.model' (#25964)
Signed-off-by: Bowen Bao <bowenbao@amd.com>
2025-10-03 18:31:59 -04:00
831b124151 [responsesAPI] add better error messaging for long prompts (#25724)
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
2025-10-03 14:33:13 -07:00
c1ffcb55da [Refactor] Optimize FP8 MOE Backend Choice and Log (#26044)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 15:23:42 -06:00
0879736aab [Perf] Remove hardcoded num_warps=1 (#26183)
Signed-off-by: Corey Lowman <clowman1993@gmail.com>
2025-10-03 20:38:50 +00:00
a26917332f [Quantization/NVFP4] Speed up TRTLLM NVFP4 MOE weight loading and fix K/V scale loading for MLA Attn (#25968)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-10-03 19:35:06 +00:00
cd9e5b8340 Fix V1 engine serialization error with Ray distributed executor (#26148)
Signed-off-by: Nikhil Ghosh <nikhil@anyscale.com>
2025-10-03 18:39:45 +00:00
300a59c4c3 Avoid division by zero in cache DS MLA kernel (#26174)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-03 17:35:17 +00:00
d76541a6c5 Stop mergify from keeping stale PRs alive (#26169)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-03 16:42:34 +00:00
dd96465fd7 [BugFix][QWEN-VL]fix wrong apply_rotary_emb_torch selection introduced by #24642 (#26123)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-03 08:52:26 -07:00
4f8f47e87e Fix undefined symbol: cutlass_moe_mm_sm100 (#26098)
Signed-off-by: Jun Jiang <jasl9187@hotmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-03 15:48:32 +00:00
d78fda7cda [Renderer] Move Processor out of LLMEngine (#26165)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-03 15:08:22 +00:00
73a99cc2a5 [Model] Fixed stream generator for gpt-oss + spec-decoding (#26027)
Signed-off-by: Aleksandr Samarin <astrlrd@nebius.com>
2025-10-03 13:43:41 +00:00
adae0c1f43 [CI/Build] do not enforce precompilation on tpu ci tests (#25992)
Signed-off-by: Xiang Si <sixiang@google.com>
2025-10-03 13:38:42 +00:00
whx
cbf9221992 [Model] Supplement to PR 24862: Pass param prefix to LLMHead (#25805)
Signed-off-by: whx-sjtu <2952154980@qq.com>
2025-10-03 21:34:53 +08:00
5f42fc53b6 [backends][short_conv] CUDA graph piecewise edits (#24215)
Signed-off-by: Paul Pak <paulpak58@gmail.com>
2025-10-03 12:59:48 +00:00
8ee846c27c [Bugfix] Re-enable prefill of max model length (#24446)
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
2025-10-03 14:13:34 +02:00
812b7f54a8 [Renderer] Move Processor out of AsyncLLM (#24138)
Signed-off-by: Yang <lymailforjob@gmail.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-03 11:29:45 +00:00
5f2cacdb1e Quick fix for IMA with the Prefix Prefill kernel during graph capture (#25983)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-10-03 11:28:22 +00:00
aa5053e3fe [Doc] Fixed shape description for fused_batched_moe.py (#25668)
Signed-off-by: Egor <e.a.krivov@gmail.com>
2025-10-03 04:00:23 -07:00
79aa244678 [Multi Modal] Configurable MM Profiling (#25631)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-03 03:59:10 -07:00
kyt
2ed3f20dba [openai] Fix missing tool usage check (system message) (#24768)
Signed-off-by: kyt <eluban4532@gmail.com>
2025-10-03 18:55:44 +08:00
48f309029a [NIXL][Misc] Expose metrics from NIXL for logging to CLI (#25388)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-03 10:47:59 +00:00
0e93ac0b3a [CI] Fix distributed hybrid tests in CI (#26155)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-10-03 09:14:18 +00:00
5446ad1d24 [test utils] correct wrong typing (#26159)
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
2025-10-03 02:11:49 -07:00
f9a8084e48 [Model] Use merge_by_field_config for MM models (InternVL family) (#26153)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-03 01:59:06 -07:00
3e70e3d4d5 add(v1): RequestStatesStats to RequestOutput (#24947)
Signed-off-by: huijjj <huijong.jeong@squeezebits.com>
2025-10-03 08:56:25 +00:00
eb0fa43868 [Perf] Optimize reshape_and_cache CUDA Kernel (#25955)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Co-authored-by: Liu-congo <1502632128@qq.com>
2025-10-03 01:33:46 -07:00
0ad9951c41 [Input] Remove unused prompt field (#26097)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-03 00:23:21 -07:00
8c9117181d [Misc] Remove typing.List (#26150)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-10-03 07:00:33 +00:00
c4b48d3c0f [BUG] Reorder model config creation (#26124)
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
2025-10-03 14:59:36 +08:00
10d765482d FusedMoE support for the Transformers backend (#22650)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-02 23:12:15 -07:00
39b643dc1a [Model] Use merge_by_field_config for MM models (G) (#26117)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-02 22:38:29 -07:00
711f485643 [Bugfix] Fix import gemm_afp4wfp4 failure on AMD (#26068)
Signed-off-by: zhewenli <zhewenli@meta.com>
2025-10-02 22:37:25 -07:00
9c5ee91b2a [ROCm] [VL] [Bugfix] Fix vit flash attn dispatcher logic for ROCm (#26104)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-10-02 22:34:53 -07:00
27edd2aeb4 [Build/CI] Revert back to Ubuntu 20.04, install python 3.12 with uv (#26103)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-10-02 22:21:01 -07:00
e5017cd6d6 [gpt-oss] disable tool server initialization if no tool in request (#25790)
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
2025-10-03 05:08:35 +00:00
6a7796e871 [Bug]: Limit num_reqs in dummy_run when max_num_seqs is small (#26144)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-03 04:00:20 +00:00
47b9339546 [DeepSeek] Improve performance of DS MLA cache kernel (#26132)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-02 20:35:47 -07:00
5d5146eee3 [CI/Build] Conditionally register cutlass_fp4_group_mm to fix building on Hopper (#26138)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-02 20:32:38 -07:00
2aaa423842 [Attention] Move Backend enum into registry (#25893)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-02 20:32:24 -07:00
ad2d788016 [Bug][Benchmark] Fix duplicate req in oversampling (#26140)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-03 02:55:24 +00:00
36ce76c632 [Log] Optimize DeepGEMM Missing Log (#26106)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-02 20:02:26 -06:00
f1fc2107a3 [Bugfix] Disable cascade attention with FlashInfer (#26130)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-02 16:30:37 -07:00
13cdc02173 Fix MTP with deepep_low_latency (#25904)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-02 21:29:49 +00:00
502640c3f9 [Perf] Fix and reapply move apply w8a8 block fp8 linear to class (#25696)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: ElizaWszola <elizaw.9289@gmail.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
2025-10-02 19:35:13 +00:00
3d5f1c8640 [Mamba][KVCacheManager] Simplify kv cache manage logic for mamba + MTP (#25119)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-10-02 18:48:31 +00:00
1cab2f9cad EAGLE 3: Fix preamble so that measured speedup over Eagle 1 becomes 32% instead of 5% on MTBench (#25916)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
2025-10-02 11:29:35 -07:00
1e50f1be70 [Deepseek v3.2] Support indexer prefill chunking (#25999)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-10-02 10:29:12 -07:00
ad87ba927a [Small] Prevent bypassing media domain restriction via HTTP redirects (#26035)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
2025-10-02 10:27:10 -07:00
decf7f794b [BugFix] Fix FI accuracy issue when used for MLA prefill (#26063)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-10-02 17:18:13 +00:00
d00d652998 [CI/Build] Replace vllm.entrypoints.openai.api_server entrypoint with vllm serve command (#25967)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-02 10:04:57 -07:00
3b279a84be [CI] Add Blackwell DeepSeek FP8 FlashInfer MoE tests (#26040)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-02 09:07:19 -07:00
5e4a8223c6 [Qwen][ROCm] Flash Attention Rotary Embeddings (#24642)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-10-02 08:26:08 -07:00
e51de388a2 [Platform][CI] Added OOT platform interface e2e test that running on Ascend NPU (#25470)
Signed-off-by: leo-pony <nengjunma@outlook.com>
2025-10-02 23:19:22 +08:00
cc253b73d3 [Model] Use merge_by_field_config for MM models (D-F) (#26076)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-02 08:17:35 -07:00
7d6fb905d9 [Model] Use merge_by_field_config for MM models (A-C) (#26073)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-02 08:17:31 -07:00
418d111f8c [FA/Chore] Bump vllm-flash-attention (#25537)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-10-02 11:06:14 -04:00
be8921fbba Change size of single CUDA graph for CI to 4 (#26089)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-10-02 14:14:28 +00:00
d4e7a1152d Update base image to 22.04 (jammy) (#26065)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-10-02 05:48:04 -07:00
be22bb6f3d Run:ai model streamer add GCS package support (#24909)
Signed-off-by: Peter Schuurman <psch@google.com>
2025-10-01 20:59:13 -07:00
169313b9f8 [Misc] Make handling of SamplingParams clearer in n>1 case (#26032)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-01 19:31:39 -07:00
0b018d8baf [ROCm][Bugfix] Add missing parameter to ROCm backend (#26029)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-10-01 19:23:14 -07:00
c31246800c Support RL online quantization with torchao (#23014)
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
2025-10-01 16:39:29 -07:00
4134312b35 [BugFix] ChunkedLocalAttention is currently not CG compatible (#26034)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-10-01 16:28:00 -07:00
da554f932e [Bug] Fix Negative Cuda Memory Usage (#25683)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-01 18:16:26 -04:00
aac622e0cd [ROCm][Build] Add support for AMD Ryzen AI MAX / AI 300 Series (#25908)
Signed-off-by: Hosang Yoon <hosang.yoon@amd.com>
2025-10-01 21:39:49 +00:00
1726e93ef1 [BugFix][DP/EP] Fix CUTLASS MLA hang under load (#26026)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2025-10-01 12:30:00 -07:00
ee04c0cd04 [CI] Tweaks to GPT-OSS Eval (Blackwell) for stability (#26030)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-01 12:02:17 -07:00
c36f0aa300 Fix test_mamba_ssm_ssd.py due to missing _query_start_loc_to_chunk_indices_offsets (#25995)
Signed-off-by: Huamin Li <3ericli@gmail.com>
2025-10-01 18:18:36 +00:00
5234dc7451 [NVIDIA] Blackwell Family (#24673)
Signed-off-by: Johnny <johnnynuca14@gmail.com>
Signed-off-by: johnnynunez <johnnynuca14@gmail.com>
Signed-off-by: Johnny <johnnync13@gmail.com>
Signed-off-by: Salvatore Cena <cena@cenas.it>
Co-authored-by: Aidyn-A <31858918+Aidyn-A@users.noreply.github.com>
Co-authored-by: Salvatore Cena <cena@cenas.it>
2025-10-01 10:50:54 -07:00
3b7c20a6b5 [Bugfix] Apply same sampling parameters for both n=1 and n>1 (#26005)
Signed-off-by: Kenichi Maehashi <maehashi@preferred.jp>
2025-10-01 14:37:35 +00:00
f9e714813a [Benchmark] Finish documented v0.11.0 deprecation of --endpoint-type (#26007)
Signed-off-by: Nathan Scott <nathans@redhat.com>
2025-10-01 12:41:57 +00:00
2518230d3e [MISC] Fix misleading batch_size_capture_list when cuda_graph_sizes < 4 (#25829)
Signed-off-by: billishyahao <bill.he@amd.com>
Co-authored-by: Luka Govedic <ProExpertProg@users.noreply.github.com>
2025-10-01 08:39:45 -04:00
a332b84578 [CI] Only capture a single CUDA graph size in CI by default (#25951)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-01 10:03:44 +01:00
1405f0c7ba [Misc] Factor out common _apply_feature_select_strategy (#26003)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-01 01:31:03 -07:00
84d57342b6 [BugFix][MM] Fix Nonetype error when video is cache in qwen2.5-omni-thinker (#26004)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-10-01 08:03:25 +00:00
57b46d769e [Doc] updating torch.compile doc link (#25989)
Signed-off-by: nadathurv <work.vnadathur@gmail.com>
Signed-off-by: WorldExplored <srreyansh.sethi@gmail.com>
Co-authored-by: Srreyansh Sethi <107075589+WorldExplored@users.noreply.github.com>
2025-10-01 07:04:56 +00:00
f48b6a03ba [Misc]allow disable pynccl (#25421)
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
2025-10-01 06:04:13 +00:00
2a69ab4899 Update to Transformers v4.56.2 (#24638)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-30 22:07:07 -07:00
8d7da92fd7 [BugFix] Fix default kv-cache-dtype default for DeepseekV3.2 (#25988)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-30 21:58:31 -07:00
e952eee698 [Bugfix] Fix __syncwarp on ROCM (#25996) 2025-09-30 21:15:11 -07:00
66bca9b8bd [MM] Add text-only mode for Qwen3-VL (#26000) 2025-09-30 21:13:42 -07:00
99028fda44 Fix INT8 quantization error on Blackwell GPUs (SM100+) (#25935)
Signed-off-by: padg9912 <phone.and.desktop@gmail.com>
2025-09-30 19:19:53 -07:00
1244948885 [Log] Optimize Log for FP8MOE (#25709)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-30 19:18:43 -07:00
a73f6491c8 Update launch_bounds_utils.h for correct compile on Multiple Cuda Arch - PTXAS out of range Warning (#25843)
Signed-off-by: Salvatore Cena <cena@cenas.it>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-30 19:18:19 -07:00
001e50c92c [Model] MTP fallback to eager for DeepSeek v32 (#25982)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-10-01 01:53:22 +00:00
96ebcaa3ad [Misc] Make EP kernels install script support uv (#25785)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-30 23:38:34 +00:00
5db1870bb9 [gpt-oss] use vLLM instead of openai types for streaming (#25186)
Signed-off-by: Andrew Xia <axia@meta.com>
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
2025-09-30 22:47:07 +00:00
2ce26b9b5d [Docs] Remove API Reference from search index (#25949)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 22:10:02 +00:00
a388252ac4 Add explicit pooling classes for the Transformers backend (#25322)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-30 23:07:06 +01:00
9a9f48dff7 [V1] [P/D] Add Support for KV Load Failure Recovery (#19330)
Signed-off-by: David Ben-David <davidb@pliops.com>
Co-authored-by: David Ben-David <davidb@pliops.com>
2025-09-30 14:57:08 -07:00
67f3fb0844 [Bench] Add DeepSeekV32 to MoE benchmark (#25962)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-30 14:13:48 -07:00
43b752c325 [Llama4] [multimodal] Fix misplaced dtype cast of cos_sin_cache in Llama4VisionRotaryEmbedding (#25889)
Signed-off-by: cjackal <44624812+cjackal@users.noreply.github.com>
2025-09-30 20:35:15 +00:00
cfd302db9b OffloadingConnector: Fix GPU block tracking bug (#25856)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-30 19:53:04 +00:00
fb610ae684 [Docs] Add moe kernel features doc (#25297)
Signed-off-by: Bill Nell <bnell@redhat.com>
Signed-off-by: bnellnm <49004751+bnellnm@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 19:03:15 +00:00
2f652e6cdf [Doc] Improve MM Pooling model documentation (#25966)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-30 18:58:29 +00:00
e6a226efba [Bug] Fix AttributeError: 'QKVParallelLinear' object has no attribute 'orig_dtype' (#25958)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-30 11:13:03 -07:00
a2e6fa7e03 [bugfix][deepseek] fix flashmla kernel selection (#25956)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-10-01 00:30:36 +08:00
9f1c4ecaf2 [Bugfix] Token type and position embeddings fail to be applied to inputs_embeds (#25922)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-01 00:23:12 +08:00
ef283548f7 [Bugfix] Fix accuracy issue of TRTLLM FP8 MOE and improve logging (#25895)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-09-30 10:51:31 -04:00
f4db5e6de1 [Bugfix][Model] Fix inference for Hunyuan dense models (#25354)
Signed-off-by: anion <1005128408@qq.com>
Signed-off-by: Anion <123177548+Anionex@users.noreply.github.com>
2025-09-30 14:38:07 +00:00
099aaee536 Add Hugging Face Inference Endpoints guide to Deployment docs (#25886)
Signed-off-by: sergiopaniego <sergiopaniegoblanco@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 14:35:06 +00:00
35fe398c7c [Kernel][Moe Configs] Add more tuned triton configs for ExpertsInt8 and FP8 (#25858)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-09-30 07:30:44 -07:00
bb6d43047e [Fix] Improve CPU backend compatibility for RISC-V (#25816)
Signed-off-by: lyd1992 <liuyudong@iscas.ac.cn>
Signed-off-by: ihb2032 <1355790728@qq.com>
2025-09-30 13:48:07 +00:00
bc546f76a1 [CI] Move applicable tests to CPU (#24080)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 14:45:20 +01:00
80608ba5af [NIXL] Add support for MLA caches with different latent dim (#25902)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
2025-09-30 12:18:29 +00:00
e184c9c510 [perf] Use CPU tensor to reduce GPU->CPU sync (#25884)
Signed-off-by: Lehua Ding <lehuading@tencent.com>
2025-09-30 19:51:16 +08:00
d7e34b4210 [Model] Move vision_feature_select_strategy into resolve_visual_encoder_outputs (#25938)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-30 11:24:57 +00:00
ef6e0e7132 [Bugfix][Model]fix ernie45 moe gate&bias dtype to float32 (#25936)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-09-30 19:11:21 +08:00
1ad3aca682 Updated TRL integration docs (#25684)
Signed-off-by: sergiopaniego <sergiopaniegoblanco@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-30 03:10:55 -07:00
8d0afa9b42 [Doc] Add Cambricon MLU support (#25942)
Signed-off-by: a120092009 <zhaoty0121@gmail.com>
2025-09-30 17:59:47 +08:00
fa7e254a7f [New Model] DeepSeek-V3.2 (Rebased to Main) (#25896)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Yongye Zhu <zyy1102000@gmail.com>
Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: Lucia Fang <fanglu@meta.com>
Co-authored-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Xiaozhu Meng <mxz297@gmail.com>
Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
2025-09-30 17:14:41 +08:00
e23cacda35 [Bugfix]: Clean up chunked prefill logging when using whisper (#25075)
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
2025-09-30 08:17:49 +00:00
2e1b8bc2b6 [Model][Bugfix] Fix MiDashengLM audio encoder mask by removing incorrect logical_not (#25925)
Signed-off-by: zhoukz <me@zhoukz.com>
2025-09-30 08:15:23 +00:00
e47433b3c1 [BugFix] Pass config_format via try_get_generation_config (#25912) 2025-09-30 05:09:50 +00:00
23194d83e8 [BugFix] Fix DP/EP hang (#25906)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-30 04:18:59 +00:00
61aedb5ffe MoveVllmConfig from config/__init__.py to config/vllm.py (#25271)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-29 19:49:49 -07:00
d3bd171123 [Benchmark] Support benchmark throughput for external launcher DP (#25913)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-30 01:43:57 +00:00
89e4050af4 [Bug] Fix Weight Loading for Block FP8 Cutlass SM90 (#25909)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-30 09:15:19 +08:00
78a47f87ce Test Prompt Embeds/LoRA compatibility and Enable LoRA Support for OPT Models (#25717)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-30 08:10:58 +08:00
6a113d9aed [V0 Deprecation] Remove vllm.worker and update according imports (#25901) 2025-09-29 23:26:11 +00:00
2e4fe48c37 [NIXL] Increase default KV block eviction timeout on P (#25897)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-29 21:35:14 +00:00
8eb0a1d906 [Doc] Polish example for torchrun dp (#25899) 2025-09-29 21:31:34 +00:00
fea3e476aa [Kernel] Chunk-aligned mamba2 (#24683) 2025-09-29 23:18:25 +02:00
61a3431613 [Bugfix][ROCm] Fixing trying to import non-existent symbols from libnccl.so (#25605)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-29 17:01:50 -04:00
9bedac9623 [Doc] Add documentation for vLLM continuous benchmarking and profiling (#25819)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
2025-09-29 20:49:49 +00:00
c42ff4f4fd [BugFix][torch.compile] KV scale calculation issues with FP8 quantization (#25513)
Signed-off-by: adabeyta <aabeyta@redhat.com>
2025-09-29 15:52:04 -04:00
d5ab28511c [Bugfix] Use correct key "ignore" for config.json non-quantized layers (#25706)
Signed-off-by: Lee Nau <lnau@nvidia.com>
2025-09-29 15:07:29 -04:00
e61eb5e09d [Model] Remove MotifForCausalLM (#25866)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-30 00:36:30 +08:00
0899ba5b42 [CI/Build] Include Transformers backend test in nightly transformers test (#25885)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-29 09:33:39 -07:00
145ac73317 [Bugfix][Speculative Decoding] Fix Eagle3 quantization config issue (#25883)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
2025-09-29 11:37:20 -04:00
d0d138bc55 [Nixl][P/D] Add cuda2cpu support (HD->DH transfer) (#24690)
Signed-off-by: Chenxi Yang <cxyang@fb.com>
Co-authored-by: Chenxi Yang <cxyang@fb.com>
2025-09-29 14:31:51 +00:00
43227236ec [torch.compile] serialize cudagraph_mode as its enum name instead of value (#25868)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-09-29 13:54:52 +00:00
8616300ae2 [Model][Bugfix] Fix issues in MiDashengLM implementation for quantized models (#25854)
Signed-off-by: zhoukz <me@zhoukz.com>
2025-09-29 10:59:04 +00:00
edbaadd91f [Bugfix] Fix requirements paths in install instructions (#25827)
Signed-off-by: yingjun-mou <renzomou@gmail.com>
2025-09-29 03:49:35 -07:00
9360d34fa1 update to latest deepgemm for dsv3.2 (#25871)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-29 17:51:43 +08:00
1b67b04656 [Misc] Remove more get_input_embeddings_v0 (#25857)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-29 08:03:37 +00:00
bd51f78e39 [V0 Deprecation][Models] Remove all V0 condition for mm embeddings merge (#25331)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: isotr0py <2037008807@qq.com>
2025-09-29 14:09:18 +08:00
65ecb4f134 [Bugfix] Fallback ViT attn backend to SDPA for blackwell (#25851)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-29 06:03:51 +00:00
143844fa43 [XPU]Fix xpu spec decoding UTs, avoid using cuda graph (#25847)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-29 05:15:10 +00:00
219cfbe7f6 Add Phi4FlashForCausalLM to _PREVIOUSLY_SUPPORTED_MODELS (#25832)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-09-29 05:08:17 +00:00
9b44a7d926 [P/D] NIXL Updates (#25844)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: simon-mo <simon.mo@hey.com>
Signed-off-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-09-29 04:46:30 +00:00
a3ae45a38c [Misc] fix tests failure by using current_platform (#25825)
Signed-off-by: Juechen Liu <jueliu@meta.com>
2025-09-29 04:18:57 +00:00
0307428d65 Remove redundant cudagraph dispatcher warning (#25841) 2025-09-28 17:12:42 -04:00
471997adf6 [Bugfix] fix Qwen3VLMoe load when pp > 1 (#25838)
Signed-off-by: liuye.hj <liuye.hj@alibaba-inc.com>
Co-authored-by: liuye.hj <liuye.hj@alibaba-inc.com>
2025-09-28 17:56:12 +00:00
b1ded114b9 Update GLM-4.5 Doc transformers version (#25830)
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
2025-09-28 12:05:51 +00:00
f4e4088c99 Fix random dataset mismatched token length with config. (#24937)
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-28 08:23:44 +00:00
0efd540dbc [VLM] Update Qwen3-VL max_num_video_tokens calculation for configurable video profiling (#25557)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-28 04:21:01 +00:00
6144754014 [Bugfix] Fix Qwen3-VL regression from #24982 (#25814)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-28 03:21:09 +00:00
69311446ba [MM] Optimize memory profiling for scattered multimodal embeddings (#25810)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-28 02:17:58 +00:00
da63274d9f [Bugfix][NIXL] Fix Async Scheduler timeout issue (#25808)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-27 15:17:35 -04:00
c216119d64 [Core] GC Debug callback (#24829)
Signed-off-by: Jialin Ouyang <jialino@meta.com>
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Co-authored-by: Jialin Ouyang <jialino@meta.com>
2025-09-27 17:53:31 +00:00
5546acb463 [Bug]: Set LD_LIBRARY_PATH to include the 'standard' CUDA location (#25766)
Signed-off-by: Clayton Coleman <smarterclayton@gmail.com>
2025-09-27 13:36:28 -04:00
c0ec81836f [torch.compile]: Add VLLM_DEBUG_DUMP_PATH environment variable (#25651)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Signed-off-by: Jiangyun Zhu <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-27 16:09:00 +00:00
b65e56babe [Core] Refactor self.model() to call a helper for subclassing. (#25084)
Signed-off-by: Patrick Toulme <ptoulme@meta.com>
Signed-off-by: Patrick Toulme <pctoulme+1@gmail.com>
2025-09-27 08:40:59 -07:00
49996cd597 [env] default nixl side port conflicts with kv-event zmq port (#25056)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2025-09-27 15:02:40 +00:00
ecb37e276a [docs] transcriptions API audio upload (#25446)
Signed-off-by: zxw <1020938856@qq.com>
2025-09-27 15:00:35 +00:00
a5354b3ed2 [Bugfix][WideEP] Apply TP Attn + EP MoE fix to other models (#24982)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-27 14:22:28 +00:00
f9df8b4ad7 [Bugfix] Fix triton import precommit failure (#25803)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-27 07:13:11 -07:00
ec152c8748 Fix GPTQ model loading in Transformers backend (#25770)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-27 12:18:20 +00:00
7977e5027c Add filtering for chat template kwargs (#25794)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-27 10:46:49 +00:00
3f5d902d2a Validate API tokens in constant time (#25781)
Signed-off-by: rentianyue-jk <rentianyue-jk@360shuke.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: rentianyue-jk <rentianyue-jk@360shuke.com>
2025-09-27 18:09:26 +08:00
27d7638b94 [Bugfix] Merge MM embeddings by index instead of token IDs (#16229)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-27 08:15:12 +00:00
176173989a [Bugfix] Add missing image_size for phi4_multimodal (#25796) 2025-09-27 07:59:22 +00:00
23b8ee672d [Misc] Update openai client example file for multimodal (#25795)
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-27 07:57:07 +00:00
3939152069 [Misc] Fix codeowners override for v1 sample and attention (#25037)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-27 07:47:29 +00:00
cd87bfbf37 [CI/Build] Reorganize root-level V1 tests (#25767)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-27 13:51:15 +08:00
b3613e3ace [CI/Build] Add timing to Model Executor Test (#25799)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-26 21:57:27 -07:00
d346ec695e [CI/Build] Consolidate model loader tests and requirements (#25765)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 21:45:20 -07:00
c242c98031 [Bugfix] Allow Only SDPA Backend for ViT on B200 for Qwen3-VL (#25788) 2025-09-26 20:44:52 -07:00
f1d53d150c [Multimodal][Speculative Decoding]Eagle Eagle3 mm support, enablement on qwen2.5vl (#22872)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Signed-off-by: Junhong Liu <98734602+LJH-LBJ@users.noreply.github.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: LJH-LBJ <98734602+LJH-LBJ@users.noreply.github.com>
2025-09-27 03:35:47 +00:00
92da847cf5 Add flashinfer-build.sh and register precompiled cu128 wheel in Dockerfile (#25782)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 18:54:09 -07:00
3958b96bf5 Add option to restrict media domains (#25783)
Signed-off-by: Chenheli Hua <huachenheli@outlook.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Chenheli Hua <huachenheli@outlook.com>
2025-09-27 01:23:52 +00:00
8bf8f45822 [Core] Don't count preempted tokens in prefix cache hit rate (#25787)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-27 00:16:40 +00:00
6f5c0931c1 [Spec decode] automatically disable mm for text-only draft models (#25667)
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
2025-09-27 08:10:21 +08:00
4e33a7ea85 [Bugfix] Optimize CpuGpuBuffer initialization (#25447)
Signed-off-by: Naman Lalit <nl2688@nyu.edu>
2025-09-27 08:07:36 +08:00
dc48ba0c75 Kernel-override Determinism [1/n] (#25603)
Signed-off-by: Bram Wasti <bwasti@meta.com>
2025-09-26 16:59:09 -07:00
4778b42660 Reduce the Cuda Graph memory footprint when running with DBO (#25779)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-09-26 22:29:56 +00:00
c70ac4b8ff [spec decode] Consolidate speculative decode method name for MTP (#25232)
Signed-off-by: zixi-qi <qizixi@meta.com>
2025-09-26 22:27:05 +00:00
cf89202855 [CI] Fix FlashInfer AOT in release docker image (#25730)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 14:11:40 -07:00
f075693da7 [V1] address post issues related to #20059 (part 1) (#23046)
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-26 15:58:19 -04:00
f708bd4904 [CI] Add E2E Blackwell Quantized MoE Test (#25723)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 12:23:00 -07:00
0002b7f0d1 [Docs] Add Toronto Meetup (#25773)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-26 12:00:46 -07:00
11aafd9886 [Bugfix] Improve GLM4 MoE Reasoning Parser's is_reasoning_end Condition (#25355)
Signed-off-by: frankwang28 <frank.wbb@hotmail.com>
Signed-off-by: Frank Wang <41319051+frankwang28@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-09-26 11:54:00 -07:00
b761df963c [Doc]: improve CPU(x86) build-wheel-from-source section (#25617)
Signed-off-by: Kosseila (CloudThrill) <klouddude@gmail.com>
2025-09-26 10:26:33 -07:00
33f6aaf972 Eagle3 that supports the Minicpm3 model (#24243)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: liudan <adan@minicpm.com>
Co-authored-by: liudan <liudan@qq.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
2025-09-26 10:04:57 -07:00
56aafa8c0b [Misc] fix unique_filepath (#25732)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-26 16:56:15 +00:00
8d52f2b3a7 [ray][metrics] Replace ':' with '_' for OpenTelemetry compatibility in Ray (#25439)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <58963096+eicherseiji@users.noreply.github.com>
Co-authored-by: Rui Qiao <161574667+ruisearch42@users.noreply.github.com>
2025-09-26 09:43:30 -07:00
984d18498a [BugFix] Fix using dbo_decode_token_threshold always (and ignoring dbo_prefill_token_threshold) (#25622)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-26 16:22:49 +00:00
d4d9899860 [Quantization] Add field to skip unquantized modules for GPTQ config (#25455)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-26 15:47:41 +00:00
db1e42f627 [CI/Build] Fix some V1 tests not being run (#25569)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 20:52:36 +08:00
bc9d7b5595 [CI/Build] Split up Distributed Tests (#25572)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 14:49:33 +02:00
fe6b19c314 [Bugfix] Properly abort pooling request. (#25734)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-26 05:47:34 -07:00
2827b3f4a3 [CI] Fix test_shared_storage_connector_hashes (#25748)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-26 20:46:17 +08:00
2b6b1d7809 [Model] Mamba2 varlen refactor (#21467)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: RishiAstra <40644327+RishiAstra@users.noreply.github.com>
2025-09-26 11:31:14 +00:00
633f943e30 [Doc] Update Batch-level DP docs (#25757)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-26 02:37:40 -07:00
b03b1b97f6 Support LongCat-Flash-Chat tool call (#24083)
Signed-off-by: 许文卿 <xwq391974@alibaba-inc.com>
2025-09-26 09:25:39 +00:00
dfb9af2014 [Bugfix] Fix Shared Expert/Zero expert code in FusedMoE.process_chunk (#25698)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
2025-09-26 01:25:28 -07:00
19f76ee68e [misc] refactor speculative config (#25657)
Signed-off-by: zxw <1020938856@qq.com>
2025-09-26 01:22:06 -07:00
dd70437a4f Remove cuda hard-code in compute_causal_conv1d_metadata (#25555)
Signed-off-by: Icey <1790571317@qq.com>
2025-09-26 01:19:20 -07:00
99b3a504c5 [Qwen3-Next][GDN] fixes cuda graph capturing bug in GDN metadata and a stride bug in causal_conv_1d. (#25743)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-09-26 01:18:58 -07:00
6e30010d2f fix: print outputt offline_inference/base/chat.py example (#25744)
Signed-off-by: Iceber Gu <caiwei95@hotmail.com>
2025-09-26 01:18:24 -07:00
52621c8f5c [Harware][AMD][Model] Triton MoE tuning configs for GLM-4.5 for MI300X (#25703)
Signed-off-by: xaguilar <Xavier.AguilarFruto@amd.com>
2025-09-26 01:18:20 -07:00
d48f4d6daf perf: Avoid copying inputs_embeds tensors to GPU unless prompt_embeds is enabled (#25739)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-26 01:18:09 -07:00
e84e0735c7 fix: revert cast to cpu in MsgpackEncoder._encode_tensor to avoid hidden performance regressions (#25738)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-26 01:18:05 -07:00
3edf87d25f [CI/Build] fix doc build warning: Failed to get 'name: description' pair (#25733)
Signed-off-by: yiting.jiang <yiting.jiang@daocloud.io>
2025-09-26 01:18:02 -07:00
392edee34a EVS Support (Video tokens pruning) (#22980)
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Signed-off-by: Eugene Khvedchenya <ekhvedchenya@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-26 11:54:54 +08:00
983056e456 [Misc] Remove unnecessary memoryviews in shm_broadcast.py (#25721)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-26 03:11:44 +00:00
13dd93c667 [Core] Force PIECEWISE CUDAGraph mode for encoder-decoder (#25701)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-25 18:21:56 -07:00
53a30845be Llamas 3.1 405B fp4 changes upstreaming from 355_wip (#25135)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Doug Lehr <douglehr@amd.com>
2025-09-25 19:16:53 -06:00
8b77328ffe [Misc] Don't log shm dequeue delay warning on worker side (#25720)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-26 01:08:30 +00:00
9fe4c2bdb9 [Refactor] Remove DeepGEMM OP Register (#25710)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-25 20:13:41 -04:00
081b5594a2 Fix routing_bias dtype (#25711)
Signed-off-by: Shu Wang. <shuw@nvidia.com>
2025-09-25 23:35:14 +00:00
57329a8c01 [Model] rename NemotronH_Nano_VL -> NemotronH_Nano_VL_V2 (#25708)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
2025-09-25 16:10:29 -07:00
8c435c9bce [Core] Enable command line logging for LLMEngine (#25610)
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-25 15:31:17 -07:00
e71b8e210d [Spec Decode] Add Batch Parallel Ngram. Upto 8x lower overhead. (#24986)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-09-25 15:22:03 -07:00
89fa54e6f7 [Optimization] Use a cheaper cache key in get_model_architecture (#25682)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 17:54:20 -04:00
3d54bdcb73 [Optimization] Streamline InputPreprocessor (#25702)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 21:06:49 +00:00
6b0fcbbf43 [Misc] Simplify test_argsort_mm_positions (#25690)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 18:23:01 +00:00
0fa673af4c [V0 deprecation] Clean up LoRA (#25686)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-25 18:12:33 +00:00
3468f17ebe [V0 deprecation] Remove _VLLM_V1 suffixes from attention backend names (#25489)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com>
2025-09-25 17:37:50 +00:00
71b25b0d48 [V0 deprecation] Clean up V0 fallback in compilation config (#25675)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-25 17:29:51 +00:00
0ea80c87d9 [Model] Define merge_by_field_config MM interface (#25676)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 17:13:07 +00:00
b8d9e4a326 [Model] Add optional parameter to reasoning parser constructor (#25554)
Signed-off-by: taohui <taohui3@gmail.com>
Signed-off-by: Tao Hui <taohui3@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-26 01:12:50 +08:00
13cc7f5370 [BugFix] Fix DBO hang (#25625)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-25 17:04:48 +00:00
916bd9204d Revert "[Bug] Dynamo Unsupported due to BasevLLMParameter.torch_function calling disabled super()" (#25681)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-25 09:45:06 -07:00
e04a1b6b21 [BUGFIX] Fix crash in Eagle Speculative Decoding models when exceedin… (#24662)
Signed-off-by: AlonKejzman <alonkeizman@gmail.com>
2025-09-25 15:40:14 +00:00
2e5df88c92 [Logging] Remove TORCH_NCCL_AVOID_RECORD_STREAMS to squash a warning (#25532)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-25 15:16:06 +00:00
0754ac4c49 [Misc] Remove cruft file in repo (#25678)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-25 08:05:12 -07:00
03858e6d1c [Bugfix] Fix InternS1 video processing after Transformers v4.56 (#25644)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-25 14:46:04 +00:00
532a6cfccb [ux] Switch a warning to debug about a pytorch fallback (#23750)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-25 14:38:16 +00:00
eb32335e35 [CPU] update torch 2.8 and fix missing fields in TorchSDPAMetadata (#25652)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-25 13:29:11 +00:00
69a8c8e99a [torch.compile] Make Query Quantization Fusable (#24914)
Signed-off-by: Jonas Kuebler <kuebj@amazon.com>
2025-09-25 09:25:12 -04:00
6c340da4df [misc] log info messages by default for hanging / busy / idle (#25627)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-25 21:14:57 +08:00
2f17117606 [mypy] Fix wrong type annotations related to tuple (#25660)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 13:00:45 +00:00
1e9a77e037 [Hardware][RISC-V] Add riscv64 support for vLLM with scalar (#22112)
Signed-off-by: chenlang <chen.lang5@zte.com.cn>
Co-authored-by: chenlang <10346245@zte.com.cn>
2025-09-25 20:46:11 +08:00
d2af67441d [XPU][Triton]add xpu config in triton_reshape_and_cache_flash (#25643)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-25 12:38:11 +00:00
0bcc3a160d [CI/Build] Fix flaky entrypoints test (#25663)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 12:19:40 +00:00
70fbdb26e9 Add backward compatibility for guided_... API (#25615)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-25 19:45:25 +08:00
7f570f1caa [V0 deprecation] Remove unreachable model_config.supported_tasks (#25642)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-25 11:26:31 +00:00
eaeca3cd7f [Bugfix] Parse SpeculativeConfig Error (#25142)
Signed-off-by: zxw <1020938856@qq.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-25 11:09:39 +00:00
12c1287d64 [mypy] Further improve MM type annotations (#25654)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 10:57:36 +00:00
17b4c6685c [Bugfix] Fix Qwen3-VL max_num_video_tokens calculation for video profiling (#25648)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-25 18:36:01 +08:00
3c2b2ccece [Bugfix] Add triton.language.tensor placeholder (#25649)
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
2025-09-25 10:31:14 +00:00
7be9ffcd9f [Misc] Fix Qwen3-VL video_grid_thw typing (#25646)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-25 10:16:45 +00:00
393de22d2e [fix] Update torch version in cpu-build.txt for AArch64/ppc64le and Darwin (#25579)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
2025-09-25 09:39:18 +00:00
1260180c67 Revert "[Performance] Move apply_w8a8_block_fp8_linear to an op class… (#25607)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-25 08:05:21 +00:00
af4ee63e0e typo: remove duplicate is (#25641)
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
2025-09-25 00:46:22 -07:00
bc092ea873 Map CwmForCausalLM to llama and LlamaForCausalLM (#25611)
Signed-off-by: Jacob Kahn <jacobkahn1@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-25 07:37:03 +00:00
755ed7b05b [Misc] Simplify PoolerOutput and move to v1/outputs (#25629)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-25 06:47:03 +00:00
a676e668ee [Bugfix] fix apply_temperature to avoid nan in probs (#24734)
Signed-off-by: courage17340 <courage17340@163.com>
2025-09-25 05:32:21 +00:00
c85be1f6dd optimize: eliminate duplicate split_enc_dec_inputs calls (#25573)
Signed-off-by: nicole-lihui <nicole.li@daocloud.io>
2025-09-25 05:03:25 +00:00
845adb3ec6 [Model] Add LongCat-Flash (#23991)
Signed-off-by: yangxurui <yangxurui@meituan.com>
Co-authored-by: yangxurui <yangxurui@meituan.com>
2025-09-24 21:53:40 -07:00
90b139cfff Enable Fbgemm NVFP4 on Dense models (#25609)
Signed-off-by: Saman Keon <samanamp@outlook.com>
2025-09-24 21:12:53 -07:00
4492e3a554 [Bug] Dynamo Unsupported due to BasevLLMParameter.torch_function calling disabled super() (#25613)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-24 18:52:52 -07:00
05c19485a5 [Kernel] Support DCP for Triton backend (#25132)
Signed-off-by: Wei Wei <wwei6@meta.com>
2025-09-24 18:09:34 -07:00
52d0cb8458 [Model] Improve DotsOCRForCausalLM (#25466)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-25 07:58:08 +08:00
5c1e496a75 [MISC] replace c10::optional with std::optional (#25602)
Signed-off-by: Shiyan Deng <dsy842974287@meta.com>
2025-09-24 16:56:21 -07:00
e7f27ea648 Improve --help for enhanced user experience (#24903)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-24 23:08:18 +00:00
1f29141258 [Refactor] Use DeepGEMM Col Major TMA Aligned Tensor (#25517)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-24 18:52:36 -04:00
6160ba4151 feat: BF16 FlashInfer Fused Cutlass MOE for Hopper and Blackwell Expert Parallel (#25503)
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
2025-09-24 18:50:04 -04:00
fea8006062 [Logging] Improve log for when DeepEP HT disables CUDA Graphs (#25531)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-24 22:43:06 +00:00
e6750d0b18 [V0 Deprecation] Remove unused classes in attention (#25541)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-24 13:24:40 -07:00
8c853050e7 [Docs] Enable fail_on_warning for the docs build in CI (#25580)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-24 19:30:33 +00:00
f84a472a03 Suppress benign cuBLAS warning when capturing cudagraphs with DBO (#25596)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-09-24 19:02:08 +00:00
54e42b72db Support mnnvl all2allv from Flashinfer (#21003)
Signed-off-by: Shu Wang <shuw@nvidia.com>
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-09-24 14:38:16 -04:00
2dda3e35d0 [Bugfix] add cache model when from object storage get model (#24764)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-09-24 18:11:16 +00:00
d83f3f7cb3 Fixes and updates to bench_per_token_quant_fp8 (#25591)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-09-24 08:30:15 -07:00
302eb941f3 [ROCm][Build][Bugfix] Fix ROCm base docker whls installation order (#25415)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-24 11:25:10 -04:00
487745ff49 [ROCm][Bugfix] Only enable +rms_norm based on aiter if not explicitly disabled (#25275)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-24 11:24:39 -04:00
9313be5017 [Misc] Improve type annotations for jsontree (#25577)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-24 22:49:58 +08:00
8938774c79 Move DeviceConfig, ObservabilityConfig, SpeechToTextConfig to their own files (#25564)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-24 13:59:05 +00:00
e18b714b2e [Bugfix] Fix DeepSeekV31ToolParser to correctly parse multiple tools in non-streaming output (#25405)
Signed-off-by: taohui <taohui3@gmail.com>
2025-09-24 20:58:00 +08:00
b1068903fd [docs] fix nixl kv_connector_extra_config.backends key (#25565)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: Peter Pan <peter.pan@daocloud.io>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-24 11:00:27 +00:00
164299500b [Benchmark] Fix regression in structured output benchmark (#25500)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-24 10:40:42 +00:00
58c360d9be [Bug] fix import and unit test (#25558)
Signed-off-by: Jonas M. Kübler <44084297+jmkuebler@users.noreply.github.com>
2025-09-24 10:17:59 +00:00
42488dae69 [Bugfix] Fix dummy video number of frames calculation (#25553)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-24 09:47:30 +00:00
b67dece2d8 [misc] update the warning message (#25566)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-09-24 17:24:35 +08:00
2338daffd3 [BugFix] Potential Fix for FA3 full-cudagraph IMA (#25490)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-24 02:04:04 -07:00
2e19a848d4 [V0 Deprecation] Remove max_seq_len_to_capture (#25543)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-24 01:51:39 -07:00
77a7fce1bb [CI/Build] add nightly prime-rl integration tests (#25207)
Signed-off-by: Jackmin801 <ongjackm@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-24 08:44:22 +00:00
6488f3481b [Misc]] Move processing context to multimodal directory (#25548)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-24 08:15:00 +00:00
27ec3c78f3 [CI/Build] Fix v1 OOT registration test (#25547)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-24 08:03:13 +00:00
1cbcfb94de [Bugfix][CPU] Skip unsupported custom op register on CPU (#25534)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-24 06:21:51 +00:00
fed8a9b107 [Misc] Retry HF processing if "Already borrowed" error occurs (#25535)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-23 22:32:11 -07:00
190c45a6af [TPU][Bugfix] fix the missing apply_model in tpu worker (#25526)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-09-24 05:18:08 +00:00
5caaeb714c [Bugfix] [Frontend] Cleanup gpt-oss non-streaming chat tool calls (#25514)
Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-09-24 03:20:38 +00:00
d747c2ef18 [Perf] Fix jit compiles at runtime of fla gated delta rule (#25432)
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-24 11:16:13 +08:00
c30b405b8f [Spec Decode] Enable FlashInfer Spec Decoding (#25196)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
Co-authored-by: lhsjohn <huashuoli@tencent.com>
2025-09-23 22:29:58 -04:00
77d906995c [KV sharing] Re-land Gemma3n model changes from #22628 (#24357)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-09-23 19:25:34 -07:00
359d293006 [fix]: add Arm 4bit fused moe support (#23809)
Signed-off-by: Nikhil Gupta <nikhil.gupta2@arm.com>
2025-09-24 01:32:22 +00:00
9df8da548e [BugFix] Fix MLA assert with CUTLASS MLA (#25478)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-23 21:09:43 -04:00
bf68fd76a9 [Compile] Fix AMD Compile Error (#25518)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-24 00:42:48 +00:00
de94289a98 [Core] Support weight_loader_v2 for UnquantizedLinearMethod (#23036)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-09-23 18:30:26 -06:00
1983609239 [Bugfix] Use a separate FlashInfer workspace buffer for trtllm-gen (#25520) 2025-09-24 00:19:56 +00:00
d06b5a95cb [V1][Metrics] Add per-request TPOT histogram (#24015)
Signed-off-by: baxingpiaochong <771405853@qq.com>
2025-09-23 18:19:04 -06:00
be0bb568c9 [Model] Support SeedOss Reason Parser (#24263)
Signed-off-by: Yan Lu <luyan@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-23 18:15:51 -06:00
c8bde93367 [BUG] Allows for RunAI Streamer and Torch.compile cache to be used together (#24922)
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
2025-09-23 18:13:32 -06:00
88d7bdbd23 [Bug] Fix AttributeError: 'FusedMoE' object has no attribute 'w13_weight_scale'. Did you mean: 'w13_weight_scale_inv' (#25519)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-24 00:07:51 +00:00
0d235b874a Add CUTLASS FP8 MOE benchmark scripts and kernel config (#25302)
Signed-off-by: Chenxi Yang <cxyang@fb.com>
Co-authored-by: Chenxi Yang <cxyang@fb.com>
2025-09-23 18:07:42 -06:00
7ad5e50adf Improve output when failing json.loads() on structured output test (#25483)
Signed-off-by: dougbtv <dosmith@redhat.com>
2025-09-23 18:03:31 -06:00
dc464a3d39 [BugFix] AssertionError: Do not capture num_reqs > max_num_reqs for uniform batch (#25505)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-23 18:00:29 -06:00
1210e4d95b [Bugfix] [B200] cutlass_mla - ensure kv_split == 1 for batch size > 1 (#25509)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-09-23 16:57:55 -07:00
e0b24ea030 [Perf] Increase default max splits for FA3 full cudagraphs (#25495)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-23 16:53:34 -07:00
bde2a1a8a4 [ROCm] Small functional changes for gptoss (#25201)
Signed-off-by: jpvillam <jpvillam@amd.com>
Co-authored-by: jpvillam <jpvillam@amd.com>
2025-09-23 23:39:50 +00:00
5e25b12236 [Kernel] [Mamba] Remove BLOCK_H=1 from list of tuneable configurations for _chunk_cumsum_fwd_kernel (#25197)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Chih-Chieh-Yang <chih.chieh.yang@ibm.com>
2025-09-23 23:23:30 +00:00
c85d75cf08 Add VLLM_NVTX_SCOPES_FOR_PROFILING=1 to enable nvtx.annotate scopes (#25501)
Signed-off-by: Corey Lowman <clowman1993@gmail.com>
2025-09-23 22:50:09 +00:00
abad204be6 [BugFix] Fix OOM in vLLM replicas by ensuring consistent NCCL memory accounting (#25359)
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>
2025-09-23 15:49:09 -07:00
7361ab379f Remove redundant mutates_args and dispatch_key for direct_register_custom_op (#25512)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-23 22:48:40 +00:00
95bc60e4cb [gpt-oss][bugfix] remove logic to require resp_ in ResponseAPI (#25428)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-23 15:46:46 -07:00
4f2954f724 Fix triton_reshape_and_cache_flash.py triton import (#25522)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-23 15:26:10 -07:00
eca7be9077 Add VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE & VLLM_ENABLE_INDUCTOR_COORDINA… (#25493)
Signed-off-by: rouchenzi <ruochenwen@gmail.com>
Signed-off-by: rouchenzi <40842833+rouchenzi@users.noreply.github.com>
2025-09-23 22:17:49 +00:00
969b4da3a6 [V0 Deprecation] Remove placeholder attn (#25510)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-09-23 22:12:14 +00:00
4f8c4b890a [Core] Use KVCacheBlock as much as possible instead of dict[block_id, KVCacheBlock] (#24830)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-09-23 15:11:14 -07:00
ae002924e9 [CI/Build] Fix and re-enable v1 PP test on CI (#25496)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-23 21:58:25 +00:00
690f948e4a [Bugfix] Fix for the import error from #24588 (#25481)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-23 21:31:08 +00:00
08275ec0a2 [Build] Update Xgrammar to 0.1.25 (#25467)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-23 21:25:46 +00:00
c828d1bf98 [Bugfix] gpt-oss container tool output bug (#25485)
Signed-off-by: Alec Solder <alecs@fb.com>
Co-authored-by: Alec Solder <alecs@fb.com>
2025-09-23 20:43:45 +00:00
8b8a8afc89 [CI] Fix Pre-commit Issue (#25497)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-24 04:09:37 +08:00
8bdd8b5c51 Enable symmetric memory all reduce by default only enabling for TP (#25070)
Signed-off-by: ilmarkov <markovilya197@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-23 15:53:00 -04:00
a8ffc4f0f2 [Bugfix] Lower gpt-oss max cudagraph size to 992 to be compatible with FA3 (#25508)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-23 12:49:55 -07:00
d5944d5146 [Speculators][Speculative Decoding] Fix gpt-oss eagle3 accuracy issue (#25406)
Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com>
2025-09-23 15:44:35 -04:00
24fab45d96 [Perf] Change default CUDAGraphMode from PIECEWISE to FULL_AND_PIECEWISE (#25444)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-23 15:29:26 -04:00
63400259d0 [Performance] Move apply_w8a8_block_fp8_linear to an op class (#24666)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: ElizaWszola <elizaw.9289@gmail.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
2025-09-23 12:03:10 -07:00
8c1c81a3de [core] add nccl symmetric memory for all reduce (#24532)
Signed-off-by: Amir Samani <asamani@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-23 14:33:06 -04:00
a3a7828010 [ROCm] Add skinny gemm bias support for dtypes fp16,bf16,fp8 (#24988)
Signed-off-by: Hashem Hashemi <hashem.hashemi@amd.com>
Signed-off-by: Hashem Hashemi <159079214+amd-hhashemi@users.noreply.github.com>
2025-09-23 14:31:45 -04:00
5abb117901 [Core] Ensure LoRA linear respect the base_layer's tp_size and tp_rank (#25487)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-23 18:19:25 +00:00
867ecdd1c8 [Spec Decode][CI] Add e2e test for examples/spec_decode.py and prevent breaking Acceptance Length (#24531)
Signed-off-by: Ekagra Ranjan <3116519+ekagra-ranjan@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-23 10:46:40 -07:00
24e8222745 [Misc] Reduce initialization time of auto_tune (#23682)
Signed-off-by: Weida Hong <wdhongtw@google.com>
2025-09-23 17:34:58 +00:00
100b630a60 [V1][Kernel] Add triton implementation for reshape_and_cache_flash (#24503)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
Co-authored-by: Chih-Chieh Yang <chih.chieh.yang@ibm.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-23 12:52:40 -04:00
527821d191 Use macro guard CUDA functions for back compatibility in grouped_topk_kernel.cu (#25346)
Signed-off-by: Ming Yang <minos.future@gmail.com>
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-23 09:45:39 -07:00
846197f505 [Log] Optimize kv cache memory log from Bytes to GiB (#25204)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-23 12:44:37 -04:00
2357480b1a [BugFix] Fix UB in per_token_group_quant.cu (#24913)
Signed-off-by: Shreeasish Kumar <shreeasish@rivosinc.com>
2025-09-23 09:14:22 -07:00
f11e3c516b [Kernels] Support blocked fp8 quantization for compressed tensors MoE (#25219)
Signed-off-by: Bill Nell <bnell@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-23 16:11:34 +00:00
875d6def90 Add backward compatibility for GuidedDecodingParams (#25422)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-23 17:07:30 +01:00
cc1dc7ed6d [Core/DBO][2/N] Dual-Batch Overlap add DeepEP High Throughput support and Prefill support (#24845)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-23 16:02:10 +00:00
a903669e10 [V1] Remove V0 code paths for Hybrid models (#25400)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-09-23 08:26:13 -07:00
2c58742dff [UX] Change kv-cache-memory log level to debug (#25479)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-09-23 08:01:24 -07:00
4c966e440e [XPU] Fix MOE DP accuracy issue on XPU (#25465) 2025-09-23 14:32:57 +00:00
da5e7e4329 [Docs] NixlConnector quickstart guide (#24249)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Signed-off-by: Peter Pan <peter.pan@daocloud.io>
Signed-off-by: Nicolò Lucchesi<nicolo.lucchesi@gmail.com>
Co-authored-by: Nicolò Lucchesi <nicolo.lucchesi@gmail.com>
2025-09-23 14:23:22 +00:00
f05a4f0e34 [P/D] Support NIXL connector to disconnect during a clean shutdown (#24423)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: Mark McLoughlin <markmc@redhat.com>
2025-09-23 16:08:02 +02:00
61d1b35561 [BugFix] Register expert_map as named buffer for wake_up and sleep (#25458)
Signed-off-by: wuxibin <wuxibin@bytedance.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2025-09-23 21:49:13 +08:00
b6a136b58c [CI/Build] Fix disabled v1 attention backend selection test (#25471)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-23 13:05:46 +00:00
0d9fe260dd [docs] Benchmark Serving Incorrect Arg (#25474)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-09-23 06:05:11 -07:00
273690a50a [Core] Optimize LoRA weight loading (#25403)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-23 18:19:45 +08:00
231c2c63e4 [Bugfix] Fix idefics3 tie_word_embeddings (#25454)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-23 10:06:48 +00:00
4322c553a6 [Test]: Hermes tool parser stream output error in Qwen3 case (#25203)
Signed-off-by: Andreas Hartel <andreas.hartel@aleph-alpha.com>
2025-09-23 17:56:31 +08:00
babad6e5dd [Misc] Move DP for ViT code inside model executor dir (#25459)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-23 09:20:52 +00:00
9383cd6f10 [Frontend] Add a new xml-based tool parser for qwen3-coder (#25028)
Signed-off-by: Zhikaiiii <1658973216@qq.com>
2025-09-23 16:07:27 +08:00
ba8d2165b6 Handle triton kernel import exception (#25319)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-09-23 00:56:00 -07:00
c98be0a232 [Model] Enable DP for ViT in Qwen2-VL (#25445)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-23 05:17:10 +00:00
5774b0a1da [NIXL][OOT platform] support nixl_connector with oot platform and other nixl_backend (#25121)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
2025-09-23 04:17:42 +00:00
e8db44f883 [DP/EP][GPTOSS] Use triton matmul-ogs kernels for GPTOSS DP/EP (#24588)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-09-22 21:01:09 -07:00
fafbe11af4 [Docs] Fix griffe warnings in vllm/lora/ops (#25369)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-23 03:42:58 +00:00
78237e43bf [Bugfix] Remove contiguous output req for context parallel MLA (#25414)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-09-22 20:26:32 -07:00
eea1783989 [benchmarks]allow skip ready check for bench serve (#25420)
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
2025-09-23 03:21:48 +00:00
f225ea7dd9 [XPU] Fix compile_size is None case. (#25433)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-09-23 03:09:00 +00:00
fc97733da8 [feat] Support MRoPE + YaRN (#25384)
Signed-off-by: liuye.hj <liuye.hj@alibaba-inc.com>
Co-authored-by: liuye.hj <liuye.hj@alibaba-inc.com>
2025-09-23 03:04:47 +00:00
4741239db7 [Bug] Fix Long Context OOM Issue (#25290)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-22 22:04:15 -04:00
c625f9043c [V0 deprecation] Remove _set_default_args_v0 function (#25409)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-23 01:52:09 +00:00
6fa78d8f23 [V0 deprecation] Remove platform v1 controling interface (#25410)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-23 01:48:12 +00:00
9949aa2ef1 [Perf] Apply torch.compile for per_block_cast_to_fp8 (#24611)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-22 19:42:45 -06:00
0b7bed9c38 [Performance] Remove input pads in cutlass_mla and optimize v_proj output handling (#25184)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-09-22 19:20:53 -06:00
ac0048c0ae [BugFix] [DP/EP] Fix slow execution when BS <= DP (#25407)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Chris Bamford <chrisbam4d@gmail.com>
2025-09-22 17:26:17 -07:00
090197034f [Bugfix] Fix missing clear_connector_metadata (#25397)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-23 08:10:59 +08:00
f31ff87460 [Core] Drop overly aggressive whisper assertion (#25408)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-22 17:09:52 -07:00
d588cd2406 [Bugfix] fix custom op test (#25429)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
2025-09-23 00:07:43 +00:00
45d7d852d3 [Frontend] Responses API MCP tools for built in tools and to pass through headers (#24628)
Signed-off-by: Alec Solder <alecs@fb.com>
Signed-off-by: Alec S <10566873+alecsolder@users.noreply.github.com>
Co-authored-by: Alec Solder <alecs@fb.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-22 23:38:19 +00:00
8bed179109 [TPU] update torch_xla dependency for PyPI compatibility (#25278)
Signed-off-by: Johnny Yang <johnnyyang@google.com>
Co-authored-by: Chengji Yao <chengjiyao@google.com>
2025-09-22 16:14:44 -07:00
f552d5e578 [CI/Build] Skip Qwen3-VL initialization tests until models are actually released (#25394)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-22 13:18:24 -07:00
8db2939289 [KV offload][5/N] Add CPUOffloadingSpec (#24251)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-22 12:30:36 -07:00
d5e0fca264 [torch.compile] Cleanup compilation tests and custom passes, add debug utils, fix DCE bug (#23091), fix test (#24376), and prep for custom op matching (#24604) (#24542)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: luka <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-22 12:30:05 -07:00
8d0ee5a564 [misc] Remove RFC review hours reference (#25416) 2025-09-22 12:16:59 -07:00
922979bfcc [DP] support torchrun external launcher with Data Parallelism (#24899)
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2025-09-22 12:06:05 -07:00
239ef0c1ac [CI Failure] Fix fp8 kv cache on <SM90 (#25396)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-22 18:27:51 +00:00
1d7f95b85c [Compiler] Disable Inductor standalone compile by default (#25391)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
2025-09-22 17:37:46 +00:00
cfbee3d0e7 [CLI env var] Add VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH in env variables (#25274)
Signed-off-by: qqma <qqma@amazon.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: qqma <qqma@amazon.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-22 10:37:43 -07:00
06a41334c7 [EPLB] Reduce EPLB Inference Overhead (#24573)
Signed-off-by: Bowen Wang <abmfy@icloud.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-22 16:31:05 +00:00
175811e3b5 [V1][Attention] Split triton_attn in triton-only and rocm specific backends (#24648)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
2025-09-22 15:20:28 +00:00
c10101a3eb [Bugfix] Fix several issues with p2p xPyD in GET type (#23993)
Signed-off-by: Csrayz <jover@cmbchina.com>
Signed-off-by: ivyilike <pww123@cmbchina.com>
Co-authored-by: ivyilike <pww123@cmbchina.com>
2025-09-22 14:53:13 +00:00
ac243886b0 [Kernel] MI-300X triton moe configs (#23445)
Signed-off-by: Sara Kokkila Schumacher <saraks@ibm.com>
2025-09-22 14:29:54 +00:00
3d2c56b7a9 Make mypy behave like a proper pre-commit hook (#25313)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-22 12:23:45 +00:00
64c824cd78 Make pickle import check fast (#25379)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-22 04:08:25 -07:00
417a164af6 [Misc] Remove unused encoder-decoder error strings (#25374)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-22 11:04:32 +00:00
b6f01bd9a7 refactor: abstract graph mode support into platform interface (#25161)
Signed-off-by: Yizhou Liu <liu_yizhou@outlook.com>
2025-09-22 10:22:29 +00:00
4cf71cc88a [TPU] Deprecate xm.mark_step in favor of `torch_xla.sync (#25254)
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-22 10:12:57 +00:00
a66d131381 [TPU][Bugfix][CI] Fix broken tests/build dependency (#25255)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-22 09:55:04 +00:00
21467f9a1c Enable Eagle3 speculative decoding for GPT-OSS model (#25246)
Signed-off-by: Eldar Kurtic <8884008+eldarkurtic@users.noreply.github.com>
2025-09-22 08:50:39 +00:00
f92d952632 [V0 Deprecation] Remove MultiModalPlaceholderMap (#25366)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-22 08:49:19 +00:00
6d0b827cbd [V0 Deprecation] Remove V0-only methods in multi-modal registry (#25362)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-22 13:58:26 +08:00
0eecb31663 [Bugfix] Fix hermes tool parser handling of non-string argument types (#22002)
Signed-off-by: wangzi <3220100013@zju.edu.cn>
Signed-off-by: David Chen <530634352@qq.com>
Co-authored-by: wangzi <3220100013@zju.edu.cn>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-09-22 11:35:39 +08:00
793be8d057 [Docs] GSM8K Accuracy Evaluation doc update (#25360)
Signed-off-by: David Chen <530634352@qq.com>
2025-09-22 02:49:13 +00:00
7b57a433da [Model] Support Dots OCR (#24645)
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: yinz-aizip <yinz@aizip.ai>
2025-09-22 02:24:40 +00:00
5aeb925452 Multimodal - audio tests (#25285)
Signed-off-by: Debolina Roy <debroy@redhat.com>
2025-09-22 07:07:11 +08:00
04d3752329 [Bugfix][V0 Deprecation][CI] use async mock and await for async method (#25325)
Signed-off-by: Yang <lymailforjob@gmail.com>
2025-09-22 07:06:16 +08:00
bc6e542d9f Remove V0 attention backends (#25351)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-21 16:03:28 -07:00
af7dfb0d1a [Perf] Further optimization for Qwen3-VL fast_pos_embed_interpolate (#25347)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-21 20:12:45 +00:00
1c3ffdbecc [V0 Deprecation] Remove V0 sampling metadata (#25345)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-21 10:37:11 -07:00
c438b2951c feat: Enable engine-level arguments with speculators models (#25250)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: Claude <noreply@anthropic.com>
2025-09-21 11:04:45 -06:00
0ff8ebb2d7 [V0 Deprecation] Remove async_output_proc, preemption mode, delay factor (#25334)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-21 08:52:32 -07:00
26e673fe93 [V0 Deprecation] Remove V0 Sequence class & Sampler (#25332)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-21 08:52:15 -07:00
65a5910ce3 [Optimization] Cache chat template result when processor fails to be loaded (#25341)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-21 19:41:02 +08:00
9aea7373ff [Bugfix] Typos in error message for missing model config file (#25339)
Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
2025-09-21 04:36:47 -07:00
30d08911f7 [MM][Perf] Minor Optimization on Qwen3-VL fast_pos_embed_interpolate (#25337)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-21 11:05:20 +00:00
cf56cf78b4 [V1] Add sliding window support to Flex Attention backend (#24089)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-21 05:08:07 +00:00
7ed82d1974 [V0 Deprecation] Remove V0 MP executor (#25329)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-20 21:26:35 -07:00
12dbd834cf [V0 Deprecation] Remove from_seq_group methods (#25330)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-20 21:10:48 -07:00
035fd2bd2c [Multi Modal][Performance] Fused Q,K's apply_rope in more models (#25005)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-21 03:55:10 +00:00
1cd885bd54 [V0 Deprecation] Remove V0 model runner base & simplify worker base (#25328)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-20 20:49:09 -07:00
62b38dc832 [Doc] improve test-pipeline.yaml documentation (#25305)
Signed-off-by: Huamin Li <3ericli@gmail.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
2025-09-20 20:29:12 -07:00
c99db8c8dd [V0 Deprecation] Remove V0 core (#25321)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-20 19:58:26 -07:00
72dd1595b4 [CI] Skip tests failing on main (#25326)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-20 19:57:46 -07:00
572ddf83ce [Chore] Remove unused sampler in models (#25324)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-20 19:53:20 -07:00
86647d1cd0 [V0 Deprecation] Remove V0 Output Processor (#25320)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-20 17:57:20 -07:00
52c2a8d4ad [V0 Deprecation] Remove LLMEngine (#25033)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-20 17:56:30 -07:00
367a480bd3 [Docs] Fix warnings in vllm/profiler and vllm/transformers_utils (#25220)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-20 16:39:47 -07:00
bef180f009 [V0 Deprecation] Enable the remaining multimodal tests in V1 (#25307)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-20 17:50:58 +00:00
d88918e4c2 [Core] Enable sharded state loader for V1 engine and enhance test coverage (#25308)
Signed-off-by: pengdrumli <pengdrumli@tencent.com>
2025-09-20 21:15:22 +08:00
3c713a9711 [Model] Cleanup InternViT's data parallel implementation (#25306)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-20 05:46:24 -07:00
bf8b26cad1 Generate _ModelInfo properties file when loading to improve loading speed (#23558)
Signed-off-by: Manoel Marques <manoel.marques@ibm.com>
Signed-off-by: Manoel Marques <manoelmrqs@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-20 11:51:13 +00:00
032d661d27 [Docs] Fix warnings in mkdocs build (continued) (#25042)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-09-20 11:45:18 +00:00
e08a3a3fdb [CI Failure] Disable FlashInfer RoPE to unblock CI (#25299)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-09-20 08:16:56 +00:00
3d9a1d2de5 [V1] Support LLM.apply_model (#18465)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-20 07:14:35 +00:00
be874c0201 [Bugfix] Fix Qwen3-VL-MoE weight loading for EP (#25300)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-20 00:04:05 -07:00
9607d5eb44 [Hybrid Allocator] Support full attention with different hidden size (#25101)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-09-19 23:43:59 -07:00
c60e6137f0 [Optimization] Avoid repeated model architecture conversion for pooling models (#25261)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-20 13:30:22 +08:00
f91480b2d4 [Bugfix] fix tool call arguments is empty (#25223)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: xin.li <xin.li@daocloud.io>
2025-09-20 13:29:54 +08:00
6c5f82e5aa [BUG FIX][NON-CUDA]quick fix to avoid call cudagraph_unsafe in attention (#25298)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
2025-09-20 04:41:23 +00:00
b7f186bbb3 [BugFix] Exclude self when checking for port collision (#25286)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-20 12:28:31 +08:00
3642909617 [BUGFIX] GPTQ quantization compatibility for Qwen3 Next MOE models (AutoGPTQ and AutoRound-GPTQ) (#25268)
Signed-off-by: JartX <sagformas@epdcenter.es>
2025-09-20 11:18:13 +08:00
c308501cb6 Improve weight loading for encoder models in Transformers backend (#25289)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-20 03:11:03 +00:00
535d80056b [Misc] Support more collective_rpc return types (#25294)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-20 02:02:38 +00:00
a25ade5d47 [BugFix] Ensure appropriate guards in destructors (#25284)
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-20 09:06:34 +08:00
8945b001db [torch.compile] CUDAGraph Inductor partition integration (#24281)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
Signed-off-by: Boyuan Feng <fby.1994@gmail.com>
Signed-off-by: boyuanfeng <boyuan@meta.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-20 01:02:15 +00:00
b8a287a0a8 [docs] Prompt Embedding feature support (#25288)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-19 17:46:23 -07:00
c7e713616a test: Remove vestigial skip for prompt embeds tests after landing v1 Prompt Embeds support (#25291)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-19 17:33:40 -07:00
a36c675817 Don't skip special tokens with hermes-style tool calling (#25281)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-09-19 17:33:25 -07:00
3da17c2cc2 [Bugfix] Remove VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE #2969 (#25090)
Signed-off-by: Lucas Kabela <lucaskabela@meta.com>
2025-09-19 20:27:21 -04:00
14c1432789 [BugFix] Fix async scheduling CPU tensor race take 2 (#25279)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-09-19 16:34:07 -07:00
ee7a66dd9a allow disable flashinfer prefill (#25276)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-19 22:59:41 +00:00
431535b522 Enable modelopt gemma3 nvfp4/fp8, make workflow more robust (#22771)
Signed-off-by: Zhiyu Cheng <zhiyuc@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-19 22:40:33 +00:00
711e912946 [Compile] Fix Compile Warning for Ignoring MIN_BLOCK_PER_SM (#25193)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-19 16:23:19 -06:00
e69e0b8b5f [Frontend] Responses API messages out, just harmony for now (#24985)
Signed-off-by: Alec Solder <alecs@fb.com>
Co-authored-by: Alec Solder <alecs@fb.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-19 21:40:16 +00:00
ddc9048394 Fix: Correct FusedMoE layer reference in auto_round quantization (#24818)
Signed-off-by: David-Wen <18927700430@163.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-19 20:44:24 +00:00
b1a63d1b3b [BugFix] Make FlashInferMetadataBuilder non-blocking (#25040)
Signed-off-by: Julien Lin <jullin@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-19 20:36:34 +00:00
48ecb4438b [Perf] Use FlashInfer RoPE for RotaryEmbedding.forward_cuda when available (#21126)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-19 14:06:49 -06:00
e57fc15971 Specify platform in pip-compile pre-commit hook so it runs on MacOS (#25273)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 12:43:33 -07:00
4bdf400218 [Bugfix] Fix chunked a2_scales in modular kernels (#25264)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-19 19:42:01 +00:00
7852b82b93 [Bugfix] GPT OSS Attritbute error on H100 (#25228)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-09-19 13:14:09 -06:00
a2a5f79e09 Optimize triton unified attention performance for sliding window attention (#24390)
Signed-off-by: zixi-qi <qizixi@meta.com>
2025-09-19 13:07:26 -06:00
c59a0eca42 [KV offload][4/N] Offloading KV connector (#22595)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-19 19:07:17 +00:00
b716ab93a7 [bugfix] fix structured outputs key missing issue from #24929 (#25195)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-19 18:37:57 +00:00
138f0d1e75 [Docs] add __init__.py to vllm/model_executor/layers/quantization/compressed_tensors/transform (#24974)
Signed-off-by: samzong <samzong.lu@gmail.com>
2025-09-19 18:32:27 +00:00
2506ce5189 [Core][Prefix Hash] Fix prefix hash metrics sliding window maintainance (#24990)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-09-19 12:22:53 -06:00
47fd08aaf9 [CI/Build] fix test function_calling (#25072)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-19 12:16:32 -06:00
12aed7e453 Encoder model support for the Transformers backend (#25174)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 19:15:22 +01:00
d90e212a3a Remove Redundant Assignment in Qwen3_VisionPatchMerger (#25224)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-19 12:15:13 -06:00
2821986450 [Core] Modify the initialization parameters of the lora manager (#25249)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-19 18:01:28 +00:00
6c117cff7d [Frontend] Pass API server count to each process (#23717)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-20 01:15:19 +08:00
7ac67ea525 [KV offload][3/N] Add worker-side CPU support (#21448)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-19 09:53:45 -07:00
ce75e15373 refactor(benchmarks): add type annotations to wait_for_endpoint parameters (#25218)
Signed-off-by: samzong <samzong.lu@gmail.com>
2025-09-19 16:36:52 +00:00
aed16879a9 Move ModelConfig from config/__init__.py to config/model.py (#25252)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 16:22:33 +00:00
cf278ff3b2 Update CODEOWNERS (#25269)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 09:12:55 -07:00
838d7116ba [Qwen] Remove cuda hard-code in qwen3 next (#25243)
Signed-off-by: Icey <1790571317@qq.com>
2025-09-19 12:25:12 +00:00
5089fd749c [V0 Deprecation] Remove V0 logic from get_input_embeddings interface (#25242)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-19 11:10:52 +00:00
a3d087adec [P/D][Nixl] Introduce KVTransferMetrics and aggregation strategy (#22188)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-19 11:09:14 +00:00
058525b997 Move PoolerConfig from config/__init__.py to config/pooler.py (#25181)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 11:02:55 +00:00
1dfea5f4a9 [Bugfix][Perf] Misc fixes for Qwen3 VL (#25238)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-19 10:46:16 +00:00
cea91a32f2 [Kernel][Performance] Add Triton kernel for Qwen3-VL interleaved MRoPE (#25055)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-19 10:27:49 +00:00
a684c0124c [bugfix] fix MHA for models like OpenGVLab/InternVL3_5-38B (#25146)
Signed-off-by: Yan Ma <yan.ma@intel.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-19 08:45:06 +00:00
f2718d2948 [Misc] Cleanup test conftest for deprecated encoder-decoder models (#25231)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-19 07:44:56 +00:00
825fdb11ad [Bugfix][CPU] Add placeholder to avoid import errors when using fused_moe ops on platforms without triton (#25137)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-19 07:41:12 +00:00
8c1d4acbfe [CPU] Disable oneDNN linear on non-x86 platforms (#25166)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-19 07:27:22 +00:00
486c5599e3 [Build] Update Xgrammar to 0.1.24 to get a CVE fix (#25188)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-19 14:27:17 +08:00
a6149aa587 [OOT] Support sync_model_loading for OOT (#25126)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
2025-09-19 05:41:53 +00:00
6c8a3c099b [Docs] Fix griffe warnings in vllm/multimodal (#25216)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-18 22:10:44 -07:00
31a8a2a7bc [Misc] Clean up MM profiling warnings (#25222)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-19 04:46:57 +00:00
1a0a04dae9 [Perf] Optimize memory peak during EAGLE model loading. (#24585)
Signed-off-by: Chen Ding <candy.dc@alibaba-inc.com>
2025-09-19 03:31:16 +00:00
6d8246aaff [gpt-oss] Add ResponseReasoningPartAddedEvent, ResponseReasoningPartDoneEvent for streaming (#24938)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-18 19:11:59 -07:00
9d1c50a5ac [KV offload][2/N] Introduce LRU-based CPU offloading management (#20075)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-19 00:20:51 +00:00
9a4600e4dc [CORE] Prompt Embeddings Support for v1 Engine (#24278)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: Andrew Sansom <qthequartermasterman@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-19 08:03:09 +08:00
9fac6aa30b [BugFix] Fix DeepGEMM warmup, no m.weight_scale_inv (#25206)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-09-18 14:26:28 -07:00
a53ad626d6 [KV offload][1b/N] rename offloading to kv_offload (#25191)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-18 20:53:52 +00:00
1c3dad22ff [V0 Deprecation] Remove unused async_timeout.py (#25190)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-18 20:35:21 +00:00
d2a30a2d93 [Bug] Fix torch Compilation Cache Hit Error (#25093)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-18 12:38:37 -07:00
75fb112d80 [Bug] Fix returned_lse not Defined issue (#25106)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-18 19:32:24 +00:00
38db529f66 [feat]: Create interface for model-specific M-RoPE (#24194)
Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
Signed-off-by: Aziz <azizbenothman76@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-18 19:18:56 +00:00
064cac7bb7 [fix]: remove data type hardcoding from gptoss model implementation (#23807)
Signed-off-by: Nikhil Gupta <nikhil.gupta2@arm.com>
2025-09-18 18:15:23 +00:00
e19bce40a1 [V0 Deprecation] Remove AsyncLLMEngine (#25025)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-18 11:07:42 -07:00
505805b645 [KV offload][1/N] Introduce an offloading component (#19848)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-18 10:57:07 -07:00
bbdc0f2366 [ROCm][AITER][Bugfix] Switch AITER to use PIECEWISE_AND_FULL compilation (#25104)
Signed-off-by: Rohan138 <rohanpotdar138@gmail.com>
2025-09-18 17:46:47 +00:00
dc34059360 [ROCm][CI/Build] Use ROCm7.0 as the base (#25178)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-09-18 09:36:55 -07:00
c4cb0af98a [spec decode] Fix MTP inference path for MiMo-7B model (#25136)
Signed-off-by: zixi-qi <qizixi@meta.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-18 09:12:19 -07:00
1c3b1634aa [Misc] Add codeowner for Transformers backend (#25180)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 09:01:50 -07:00
2ea50e977a Enable Allgather/ReduceScatter backend for NaiveAllToAll (#23964)
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: Shu Wang <shuw@nvidia.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-18 15:52:58 +00:00
b419937c78 [Docs] Fix warnings in mkdocs build (continued) (#25163)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
2025-09-18 08:23:26 -07:00
5f696c33b1 [New Model] Support BertForTokenClassification / Named Entity Recognition (NER) task (#24872)
Signed-off-by: wang.yuqi <noooop@126.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-18 23:22:01 +08:00
67244c86f0 feat(api): Return 503 on /health when engine is dead (#24897)
Signed-off-by: dongbo910220 <1275604947@qq.com>
Co-authored-by: Claude <noreply@anthropic.com>
2025-09-18 14:29:40 +00:00
072d7e53e5 [PERF] Add conv1d metadata to GDN attn (#25105)
Signed-off-by: Vadim Gimpelson <vadim.gimpelson@gmail.com>
2025-09-18 14:27:49 +00:00
01a583fea4 [Kernel] Decouple Tile Size from Block Size in Triton Unified Attention Kernel (#21197)
Signed-off-by: Jan van Lunteren <jvl@zurich.ibm.com>
2025-09-18 14:27:01 +00:00
bc19d75985 [Misc] Add kv-connector label (#25156)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-18 13:56:07 +00:00
fbd6523ac0 Refactor dense FP8 tensor/channel/block utils and add CT FP8 block (#21404) 2025-09-18 08:53:45 -04:00
470484a4f5 [Structured Output][Refactor] Move apply_grammar_bitmask() method from ModelRunner to structured output utils (#21999)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-09-18 20:44:31 +08:00
21da73343a [Misc] Clean up flags in vllm bench serve (#25138)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-18 12:43:33 +00:00
66072b36db [Bugfix][Mamba] - Fix Conv State Kernel FP32 Support (#24883)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-09-18 12:21:17 +00:00
3ed1ec4af2 Fix validate-config pre-commit check (#25157)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 12:06:28 +00:00
5a33ae9a3f Fix forward reference warning in documentation (#25150)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 11:41:41 +00:00
c9ff9e6f0c [Docs] add the parallel sampling usage in LLMEngine and AsyncLLM (#24222) 2025-09-18 04:37:08 -07:00
eaffe4486c [Docs] Fix pooling-params doc references in openai_compatible_server.md (#24939) 2025-09-18 04:36:47 -07:00
8ed039d527 Move StructuredOutputsConfig from config/__init__.py to config/structured_outputs.py (#25153)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 11:24:27 +00:00
37970105fe [Model] Improve Pooling Model (#25149)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-18 11:04:21 +00:00
cc935fdd7e [Frontend] Support setting logprobs to -1 (#25031)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-18 10:34:42 +00:00
abdfcd4f3d silu-v1: Fix EPS not being used during max-reduction (#25069)
Signed-off-by: elvircrn <elvircrn@gmail.com>
2025-09-18 10:25:12 +00:00
4f02b77de4 Fix: Add explicit #include <omp.h> for OpenMP compatibility on certain toolchains (#24951)
Signed-off-by: lyd1992 <liuyudong@iscas.ac.cn>
Signed-off-by: ihb2032 <1355790728@qq.com>
2025-09-18 17:43:23 +08:00
29283e8976 [Chore] Cleanup guided namespace, move to structured outputs config (#22772)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 09:20:27 +00:00
05b044e698 [Doc] Fix cross-reference warnings (#25058)
Signed-off-by: Punit Vara <punitvara@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 02:05:16 -07:00
aa3f105c59 Add 'path' option to ImagePrompt data_format (#25081)
Signed-off-by: Gerard Finol <gerard.finol@urv.cat>
2025-09-18 02:02:14 -07:00
ef7eefe17a [Qwen] Add fp8 checkpoint support for qwen3-next. (#25079)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-09-18 08:16:04 +00:00
350c94deb3 [Bugfix] when use s3 model cannot use default load_format (#24435)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
Co-authored-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-09-18 07:47:43 +00:00
f4cd80f944 Retrieve sliding_window from text config in Gemma3 MM (#25085)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-18 06:29:05 +00:00
349e0e3462 [Docs] Fix API Reference (#25140)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-17 23:23:29 -07:00
81b16a2bc9 [Kernel] Better inf handling for grouped topk cu (#24886)
Signed-off-by: lumina37 <starry.qvq@gmail.com>
2025-09-18 05:53:55 +00:00
e111d5b0ae [CLI] Use streaming in CLI chat and completion commands (#23769)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-09-17 22:30:26 -07:00
a904ea78ea [benchmark] add peak throughput metrics and plot (#23867)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-09-17 22:30:02 -07:00
b7433ca1a4 [Spec Decode] Efficient padded speculation (#24539)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-09-18 01:07:24 -04:00
5c65a72bb1 [V0 Deprecation] Remove more V0 tests (#25117)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 22:05:25 -07:00
9d8a2d86d2 [EPLB] Add EPLB support for hunyuan_v1 (#23078) 2025-09-18 04:51:35 +00:00
3bc18127ff [XPU] Whisper model support on XPU Platform (#25123)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-09-18 04:30:10 +00:00
bec060fd99 Mark prompt logprobs as incompatible with prompt embeds at API level (#25077)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-09-17 21:25:07 -07:00
52bc9d5b3e [Model] enable data parallel for InternVL vision encoder (#23909)
Signed-off-by: Yiwen Chen <yiwen66@berkeley.edu>
Signed-off-by: YiwenC <54658925+666even666@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-17 21:11:46 -07:00
dc2979c585 [Kernels] Overlap shared experts with combine instead of dispatch (#24254)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-18 12:10:21 +08:00
027d37df38 [Bugfix][Qwen3-Next] add prefixes to shared_expert in qwen3-next and mlp in qwen2moe to successfully load ignored params in quantized models (#24960)
Signed-off-by: toncao <cpatonn@gmail.com>
Co-authored-by: toncao <cpatonn@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-18 12:08:50 +08:00
b98219670f [Core][MM] Cleanup MultiModalCache (#25006)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-09-17 21:08:41 -07:00
32baf1d036 [Docs] Clean up the contributing README (#25099)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-17 21:05:18 -07:00
3127274d02 [MM Encoder] Apply DP ViT for Qwen3-VL model series (#24955)
Signed-off-by: Roger Wang <hey@rogerw.io>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Huang Jie <92386084+JJJYmmm@users.noreply.github.com>
Co-authored-by: 松灵 <26085463+wulipc@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-17 21:04:21 -07:00
4ac510f484 [Kernels] Enable DeepGEMM by default (#24462)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-17 20:19:52 -07:00
7fb2a5be28 [V0 Deprecation] Skip PP test (#25128)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 20:18:36 -07:00
6c036615dc [V0 Deprecation] Remove misc V0 tests (#25118)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 19:41:55 -07:00
2fc24e94f9 [V0 Deprecation] Remove V0 Tracing & Metrics tests (#25115)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 19:40:44 -07:00
2c3c1bd07a [V0 Deprecation] Remove V0 Engine tests (#25114)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-09-17 19:38:09 -07:00
efd4bc967d [Misc] Remove in ModelRunnerOutput
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-23 21:09:20 -07:00
1929 changed files with 181955 additions and 147665 deletions

View File

@ -368,7 +368,7 @@ if __name__ == "__main__":
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
# we want to turn it into "8xGPUTYPE"
df["GPU"] = df["GPU"].apply(
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}"
lambda x: f"{len(x.splitlines())}x{x.splitlines()[0]}"
)
# get markdown tables

View File

@ -181,18 +181,14 @@ launch_vllm_server() {
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
server_command="vllm serve $model \
-tp $tp \
--model $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
server_command="vllm serve $model \
-tp $tp \
--model $model \
--port $port \
$server_args"
fi

View File

@ -365,8 +365,7 @@ run_serving_tests() {
continue
fi
server_command="$server_envs python3 \
-m vllm.entrypoints.openai.api_server \
server_command="$server_envs vllm serve \
$server_args"
# run the server
@ -455,11 +454,6 @@ main() {
fi
check_hf_token
# Set to v1 to run v1 benchmark
if [[ "${ENGINE_VERSION:-v0}" == "v1" ]]; then
export VLLM_USE_V1=1
fi
# dependencies
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)

View File

@ -1,46 +0,0 @@
# This local pyproject file is part of the migration from yapf to ruff format.
# It uses the same core rules as the main pyproject.toml file, but with the
# following differences:
# - ruff line length is overridden to 88
# - deprecated typing ignores (UP006, UP035) have been removed
[tool.ruff]
line-length = 88
[tool.ruff.lint.per-file-ignores]
"vllm/third_party/**" = ["ALL"]
"vllm/version.py" = ["F401"]
"vllm/_version.py" = ["ALL"]
[tool.ruff.lint]
select = [
# pycodestyle
"E",
# Pyflakes
"F",
# pyupgrade
"UP",
# flake8-bugbear
"B",
# flake8-simplify
"SIM",
# isort
"I",
# flake8-logging-format
"G",
]
ignore = [
# star imports
"F405", "F403",
# lambda expression assignment
"E731",
# Loop control variable not used within loop body
"B007",
# f-string format
"UP032",
# Can remove once 3.10+ is the minimum Python version
"UP007",
]
[tool.ruff.format]
docstring-code-format = true

View File

@ -48,7 +48,7 @@ steps:
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -76,7 +76,7 @@ steps:
queue: arm64_cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# Add job to create multi-arch manifest
@ -150,11 +150,16 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
- "docker push vllm/vllm-openai:nightly"
- "docker push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64"
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64 vllm/vllm-openai:nightly-x86_64"
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64 vllm/vllm-openai:nightly-aarch64"
- "docker push vllm/vllm-openai:nightly-x86_64"
- "docker push vllm/vllm-openai:nightly-aarch64"
- "docker manifest create vllm/vllm-openai:nightly vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
- "docker manifest create vllm/vllm-openai:nightly-$BUILDKITE_COMMIT vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
- "docker manifest push vllm/vllm-openai:nightly"
- "docker manifest push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
# Clean up old nightly builds (keep only last 14)
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
plugins:
@ -163,3 +168,4 @@ steps:
password-env: DOCKERHUB_TOKEN
env:
DOCKER_BUILDKIT: "1"
DOCKERHUB_USERNAME: "vllmbot"

View File

@ -8,20 +8,41 @@ set -ex
# DockerHub API endpoint for vllm/vllm-openai repository
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
# Get DockerHub token from environment
# Get DockerHub credentials from environment
if [ -z "$DOCKERHUB_TOKEN" ]; then
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
exit 1
fi
if [ -z "$DOCKERHUB_USERNAME" ]; then
echo "Error: DOCKERHUB_USERNAME environment variable is not set"
exit 1
fi
# Get DockerHub bearer token
echo "Getting DockerHub bearer token..."
set +x
BEARER_TOKEN=$(curl -s -X POST \
-H "Content-Type: application/json" \
-d "{\"username\": \"$DOCKERHUB_USERNAME\", \"password\": \"$DOCKERHUB_TOKEN\"}" \
"https://hub.docker.com/v2/users/login" | jq -r '.token')
set -x
if [ -z "$BEARER_TOKEN" ] || [ "$BEARER_TOKEN" = "null" ]; then
echo "Error: Failed to get DockerHub bearer token"
exit 1
fi
# Function to get all tags from DockerHub
get_all_tags() {
local page=1
local all_tags=""
while true; do
local response=$(curl -s -H "Authorization: Bearer $DOCKERHUB_TOKEN" \
set +x
local response=$(curl -s -H "Authorization: Bearer $BEARER_TOKEN" \
"$REPO_API_URL?page=$page&page_size=100")
set -x
# Get both last_updated timestamp and tag name, separated by |
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
@ -43,7 +64,9 @@ delete_tag() {
echo "Deleting tag: $tag_name"
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
local response=$(curl -s -X DELETE -H "Authorization: Bearer $DOCKERHUB_TOKEN" "$delete_url")
set +x
local response=$(curl -s -X DELETE -H "Authorization: Bearer $BEARER_TOKEN" "$delete_url")
set -x
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"

View File

@ -86,10 +86,6 @@ if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
fi
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
fi
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
fi
@ -167,12 +163,6 @@ if [[ $commands == *" entrypoints/llm "* ]]; then
--ignore=entrypoints/llm/test_prompt_validation.py "}
fi
#Obsolete currently
##ignore certain Entrypoints/llm tests
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
#fi
# --ignore=entrypoints/openai/test_encoder_decoder.py \
# --ignore=entrypoints/openai/test_embedding.py \
# --ignore=entrypoints/openai/test_oot_registration.py

View File

@ -25,25 +25,28 @@ function cpu_tests() {
# offline inference
podman exec -it "$container_id" bash -c "
set -e
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
set -xve
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m" >> $HOME/test_basic.log
# Run basic model test
podman exec -it "$container_id" bash -c "
set -e
set -evx
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
pip install sentence-transformers datamodel_code_generator
pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
# Note: disable Bart until supports V1
# pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
# TODO: Below test case tests/models/language/pooling/test_embedding.py::test_models[True-ssmits/Qwen2-7B-Instruct-embed-base] fails on ppc64le. Disabling it for time being.
# pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model" >> $HOME/test_rest.log
}
# All of CPU tests are expected to be finished less than 40 mins.
export container_id
export -f cpu_tests
timeout 40m bash -c cpu_tests
timeout 120m bash -c cpu_tests

View File

@ -58,11 +58,8 @@ function cpu_tests() {
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# Note: disable Bart until supports V1
pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
pytest -x -v -s tests/models/language/generation -m cpu_model
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model
pytest -x -v -s tests/models/language/pooling -m cpu_model
pytest -x -v -s tests/models/multimodal/generation \

View File

@ -0,0 +1,191 @@
#!/bin/bash
# This script build the Ascend NPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Base ubuntu image with basic ascend development libraries and python installed
VLLM_ASCEND_REPO="https://github.com/vllm-project/vllm-ascend.git"
CONFIG_FILE_REMOTE_PATH="tests/e2e/vllm_interface/vllm_test.cfg"
TEST_RUN_CONFIG_FILE="vllm_test.cfg"
VLLM_ASCEND_TMP_DIR=
# Get the test run configuration file from the vllm-ascend repository
fetch_vllm_test_cfg() {
VLLM_ASCEND_TMP_DIR=$(mktemp -d)
# Ensure that the temporary directory is cleaned up when an exception occurs during configuration file retrieval
cleanup() {
rm -rf "${VLLM_ASCEND_TMP_DIR}"
}
trap cleanup EXIT
GIT_TRACE=1 git clone -v --depth 1 "${VLLM_ASCEND_REPO}" "${VLLM_ASCEND_TMP_DIR}"
if [ ! -f "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" ]; then
echo "Error: file '${CONFIG_FILE_REMOTE_PATH}' does not exist in the warehouse" >&2
exit 1
fi
# If the file already exists locally, just overwrite it
cp "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" "${TEST_RUN_CONFIG_FILE}"
echo "Copied ${CONFIG_FILE_REMOTE_PATH} to ${TEST_RUN_CONFIG_FILE}"
# Since the trap will be overwritten later, and when it is executed here, the task of cleaning up resources
# when the trap is abnormal has been completed, so the temporary resources are manually deleted here.
rm -rf "${VLLM_ASCEND_TMP_DIR}"
trap - EXIT
}
# Downloads test run configuration file from a remote URL.
# Loads the configuration into the current script environment.
get_config() {
if [ ! -f "${TEST_RUN_CONFIG_FILE}" ]; then
echo "Error: file '${TEST_RUN_CONFIG_FILE}' does not exist in the warehouse" >&2
exit 1
fi
source "${TEST_RUN_CONFIG_FILE}"
echo "Base docker image name that get from configuration: ${BASE_IMAGE_NAME}"
return 0
}
# get test running configuration.
fetch_vllm_test_cfg
get_config
# Check if the function call was successful. If not, exit the script.
if [ $? -ne 0 ]; then
exit 1
fi
image_name="npu/vllm-ci:${BUILDKITE_COMMIT}_${EPOCHSECONDS}"
container_name="npu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
# BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards
agent_idx=$(echo "${BUILDKITE_AGENT_NAME}" | awk -F'-' '{print $(NF-1)}')
echo "agent_idx: ${agent_idx}"
builder_name="cachebuilder${agent_idx}"
builder_cache_dir="/mnt/docker-cache${agent_idx}"
mkdir -p ${builder_cache_dir}
# Try building the docker image
cat <<EOF | DOCKER_BUILDKIT=1 docker build \
--add-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_HOST} \
--builder ${builder_name} --cache-from type=local,src=${builder_cache_dir} \
--cache-to type=local,dest=${builder_cache_dir},mode=max \
--progress=plain --load -t ${image_name} -f - .
FROM ${BASE_IMAGE_NAME}
# Define environments
ENV DEBIAN_FRONTEND=noninteractive
RUN pip config set global.index-url http://cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_PORT}/pypi/simple && \
pip config set global.trusted-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local && \
apt-get update -y && \
apt-get install -y python3-pip git vim wget net-tools gcc g++ cmake libnuma-dev && \
rm -rf /var/cache/apt/* && \
rm -rf /var/lib/apt/lists/*
# Install for pytest to make the docker build cache layer always valid
RUN --mount=type=cache,target=/root/.cache/pip \
pip install pytest>=6.0 modelscope
WORKDIR /workspace/vllm
# Install vLLM dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements/common.txt
COPY . .
# Install vLLM
RUN --mount=type=cache,target=/root/.cache/pip \
VLLM_TARGET_DEVICE="empty" python3 -m pip install -v -e /workspace/vllm/ --extra-index https://download.pytorch.org/whl/cpu/ && \
python3 -m pip uninstall -y triton
# Install vllm-ascend
WORKDIR /workspace
ARG VLLM_ASCEND_REPO=https://github.com/vllm-project/vllm-ascend.git
ARG VLLM_ASCEND_TAG=main
RUN git config --global url."https://gh-proxy.test.osinfra.cn/https://github.com/".insteadOf "https://github.com/" && \
git clone --depth 1 \$VLLM_ASCEND_REPO --branch \$VLLM_ASCEND_TAG /workspace/vllm-ascend
# Install vllm dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r /workspace/vllm-ascend/requirements.txt
RUN --mount=type=cache,target=/root/.cache/pip \
export PIP_EXTRA_INDEX_URL=https://mirrors.huaweicloud.com/ascend/repos/pypi && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh && \
source /usr/local/Ascend/nnal/atb/set_env.sh && \
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/Ascend/ascend-toolkit/latest/`uname -i`-linux/devlib && \
python3 -m pip install -v -e /workspace/vllm-ascend/ --extra-index https://download.pytorch.org/whl/cpu/
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV VLLM_USE_MODELSCOPE=True
WORKDIR /workspace/vllm-ascend
CMD ["/bin/bash"]
EOF
# Setup cleanup
remove_docker_container() {
docker rm -f "${container_name}" || true;
docker image rm -f "${image_name}" || true;
docker system prune -f || true;
}
trap remove_docker_container EXIT
# Generate corresponding --device args based on BUILDKITE_AGENT_NAME
# Ascend NPU BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards, and agent_idx starts from 1.
# e.g. atlas-a2-001-1-2cards means this is the 1-th agent on atlas-a2-001 host, and it has 2 NPU cards.
# returns --device /dev/davinci0 --device /dev/davinci1
parse_and_gen_devices() {
local input="$1"
local index cards_num
if [[ "$input" =~ ([0-9]+)-([0-9]+)cards$ ]]; then
index="${BASH_REMATCH[1]}"
cards_num="${BASH_REMATCH[2]}"
else
echo "parse error" >&2
return 1
fi
local devices=""
local i=0
while (( i < cards_num )); do
local dev_idx=$(((index - 1)*cards_num + i ))
devices="$devices --device /dev/davinci${dev_idx}"
((i++))
done
# trim leading space
devices="${devices#"${devices%%[![:space:]]*}"}"
# Output devices: assigned to the caller variable
printf '%s' "$devices"
}
devices=$(parse_and_gen_devices "${BUILDKITE_AGENT_NAME}") || exit 1
# Run the image and execute the Out-Of-Tree (OOT) platform interface test case on Ascend NPU hardware.
# This test checks whether the OOT platform interface is functioning properly in conjunction with
# the hardware plugin vllm-ascend.
model_cache_dir=/mnt/modelscope${agent_idx}
mkdir -p ${model_cache_dir}
docker run \
${devices} \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v ${model_cache_dir}:/root/.cache/modelscope \
--entrypoint="" \
--name "${container_name}" \
"${image_name}" \
bash -c '
set -e
pytest -v -s tests/e2e/vllm_interface/
'

View File

@ -62,12 +62,11 @@ echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
&& python3 -m pip install --progress-bar off hf-transfer
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1
export VLLM_XLA_CACHE_PATH=
echo "Using VLLM V1"
echo "--- Hardware Information ---"
# tpu-info

View File

@ -62,12 +62,11 @@ echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
&& python3 -m pip install --progress-bar off hf-transfer
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1
export VLLM_XLA_CACHE_PATH=
echo "Using VLLM V1"
echo "--- Hardware Information ---"
# tpu-info

View File

@ -35,16 +35,14 @@ docker run \
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
pytest -v -s v1/test_serial_utils.py
pytest -v -s v1/test_utils.py
pytest -v -s v1/test_metrics_reader.py
'

View File

@ -18,7 +18,7 @@ vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
vllm serve meta-llama/Llama-2-7b-chat-hf &
server_pid=$!
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

View File

@ -0,0 +1,59 @@
#!/bin/bash
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Setup script for Prime-RL integration tests
# This script prepares the environment for running Prime-RL tests with nightly vLLM
set -euo pipefail
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
REPO_ROOT="$(cd "${SCRIPT_DIR}/../.." && pwd)"
PRIME_RL_REPO="https://github.com/PrimeIntellect-ai/prime-rl.git"
PRIME_RL_DIR="${REPO_ROOT}/prime-rl"
echo "Setting up Prime-RL integration test environment..."
# Clean up any existing Prime-RL directory
if [ -d "${PRIME_RL_DIR}" ]; then
echo "Removing existing Prime-RL directory..."
rm -rf "${PRIME_RL_DIR}"
fi
# Install UV if not available
if ! command -v uv &> /dev/null; then
echo "Installing UV package manager..."
curl -LsSf https://astral.sh/uv/install.sh | sh
source $HOME/.local/bin/env
fi
# Clone Prime-RL repository at specific branch for reproducible tests
PRIME_RL_BRANCH="integ-vllm-main"
echo "Cloning Prime-RL repository at branch: ${PRIME_RL_BRANCH}..."
git clone --branch "${PRIME_RL_BRANCH}" --single-branch "${PRIME_RL_REPO}" "${PRIME_RL_DIR}"
cd "${PRIME_RL_DIR}"
echo "Setting up UV project environment..."
export UV_PROJECT_ENVIRONMENT=/usr/local
ln -s /usr/bin/python3 /usr/local/bin/python
# Remove vllm pin from pyproject.toml
echo "Removing vllm pin from pyproject.toml..."
sed -i '/vllm==/d' pyproject.toml
# Sync Prime-RL dependencies
echo "Installing Prime-RL dependencies..."
uv sync --inexact && uv sync --inexact --all-extras
# Verify installation
echo "Verifying installations..."
uv run python -c "import vllm; print(f'vLLM version: {vllm.__version__}')"
uv run python -c "import prime_rl; print('Prime-RL imported successfully')"
echo "Prime-RL integration test environment setup complete!"
echo "Running Prime-RL integration tests..."
export WANDB_MODE=offline # this makes this test not require a WANDB_API_KEY
uv run pytest -vs tests/integration/test_rl.py -m gpu
echo "Prime-RL integration tests completed!"

View File

@ -9,6 +9,6 @@ MAX_NUM_BATCHED_TOKENS=1024
TENSOR_PARALLEL_SIZE=1
MAX_MODEL_LEN=2048
DOWNLOAD_DIR=/mnt/disks/persist
EXPECTED_THROUGHPUT=10.0
EXPECTED_THROUGHPUT=8.7
INPUT_LEN=1800
OUTPUT_LEN=128

View File

@ -42,7 +42,7 @@ echo "lanching vllm..."
echo "logging to $VLLM_LOG"
echo
VLLM_USE_V1=1 vllm serve $MODEL \
vllm serve $MODEL \
--seed 42 \
--max-num-seqs $MAX_NUM_SEQS \
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \

View File

@ -6,24 +6,28 @@
# to generate the final pipeline yaml file.
# Documentation
# label(str): the name of the test. emoji allowed.
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
# fast_check_only(bool): run this test on fastcheck pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
# label(str): the name of the test. emojis allowed.
# fast_check(bool): whether to run this on each commit on the fastcheck pipeline.
# torch_nightly(bool): whether to run this on vllm against the torch nightly pipeline.
# fast_check_only(bool): run this test on the fastcheck pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's a scheduled nightly run.
# soft_fail(bool): allow this step to fail without failing the entire pipeline (useful for flaky or experimental tests).
# command(str): the single command to run for tests. incompatible with commands.
# commands(list): the list of commands to run for test. incompatbile with command.
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100
# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4.
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
# in this case, commands must be specified. the first command runs on first host, the second
# commands(list): the list of commands to run for the test. incompatible with command.
# mirror_hardwares(list): the list of hardware to run the test on as well. currently only supports [amdexperimental]
# gpu(str): override the GPU selection for the test. default is L4 GPUs. supports a100, b200, h200
# num_gpus(int): override the number of GPUs for the test. defaults to 1 GPU. currently supports 2,4.
# num_nodes(int): whether to simulate multi-node setup by launching multiple containers on one host,
# in this case, commands must be specified. the first command runs on the first host, the second
# command runs on the second host.
# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests
# source_file_dependencies(list): the list of prefix to opt-in the test for, if empty, the test will always run.
# timeout_in_minutes(int): sets a timeout for the step in minutes. if not specified, uses the default timeout.
# parallelism(int): number of parallel jobs to run for this step. enables test sharding using $$BUILDKITE_PARALLEL_JOB
# and $$BUILDKITE_PARALLEL_JOB_COUNT environment variables.
# working_dir(str): specify the place where the command should execute, default to /vllm-workspace/tests
# source_file_dependencies(list): the list of prefixes to opt-in the test for, if empty, the test will always run.
# When adding a test
# - If the test belong to an existing group, add it there
# - If the test belongs to an existing group, add it there
# - If the test is short, add to any existing step
# - If the test takes more than 10min, then it is okay to create a new step.
# Note that all steps execute in parallel.
@ -46,23 +50,28 @@ steps:
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/async_engine
- tests/multimodal
- tests/utils_
commands:
- pytest -v -s -m 'not cpu_test' multimodal
- pytest -v -s utils_
- label: Async Engine, Inputs, Utils, Worker Test (CPU) # 4 mins
timeout_in_minutes: 10
source_file_dependencies:
- vllm/
- tests/test_inputs.py
- tests/test_outputs.py
- tests/multimodal
- tests/utils_
- tests/worker
- tests/standalone_tests/lazy_imports.py
- tests/transformers_utils
no_gpu: true
commands:
- python3 standalone_tests/lazy_imports.py
- pytest -v -s async_engine # AsyncLLMEngine
- pytest -v -s test_inputs.py
- pytest -v -s test_outputs.py
- pytest -v -s multimodal
- pytest -v -s utils_ # Utils
- pytest -v -s worker # Worker
- pytest -v -s transformers_utils # transformers_utils
- pytest -v -s -m 'cpu_test' multimodal
- pytest -v -s transformers_utils
- label: Python-only Installation Test # 10min
timeout_in_minutes: 20
@ -82,14 +91,12 @@ steps:
- vllm/
- tests/basic_correctness/test_basic_correctness
- tests/basic_correctness/test_cpu_offload
- tests/basic_correctness/test_preemption
- tests/basic_correctness/test_cumem.py
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s basic_correctness/test_cumem.py
- pytest -v -s basic_correctness/test_basic_correctness.py
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Entrypoints Unit Tests # 5min
timeout_in_minutes: 10
@ -114,10 +121,9 @@ steps:
- tests/entrypoints/offline_mode
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Entrypoints Integration Test (API Server) # 100min
timeout_in_minutes: 130
@ -155,7 +161,6 @@ steps:
num_gpus: 4
source_file_dependencies:
- vllm/distributed/
- vllm/core/
- tests/distributed/test_utils
- tests/distributed/test_pynccl
- tests/distributed/test_events
@ -163,28 +168,34 @@ steps:
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/test_internal_lb_dp.py
- tests/v1/test_hybrid_lb_dp.py
- tests/v1/distributed
- tests/v1/engine/test_engine_core_client.py
- tests/distributed/test_symm_mem_allreduce.py
commands:
# test with tp=2 and external_dp=2
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with torchrun tp=2 and external_dp=2
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with tp=2 and pp=2
# test with torchrun tp=2 and pp=2
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with torchrun tp=4 and dp=1
- TP_SIZE=4 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with torchrun tp=2, pp=2 and dp=1
- PP_SIZE=2 TP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with torchrun tp=1 and dp=4 with ep
- DP_SIZE=4 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with torchrun tp=2 and dp=2 with ep
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s distributed/test_events.py
- pytest -v -s distributed/test_symm_mem_allreduce.py
# TODO: create a dedicated test section for multi-GPU example tests
# when we have multiple distributed example tests
- pushd ../examples/offline_inference
@ -217,16 +228,14 @@ steps:
num_gpus: 2
source_file_dependencies:
- vllm/
- tests/metrics
- tests/v1/tracing
commands:
- pytest -v -s metrics
- "pip install \
'opentelemetry-sdk>=1.26.0' \
'opentelemetry-api>=1.26.0' \
'opentelemetry-exporter-otlp>=1.26.0' \
'opentelemetry-semantic-conventions-ai>=0.4.1'"
- pytest -v -s tracing
- pytest -v -s v1/tracing
##### fast check tests #####
##### 1 GPU test #####
@ -287,23 +296,35 @@ steps:
- tests/v1
commands:
# split the test to avoid interference
- pytest -v -s v1/core
- pytest -v -s -m 'not cpu_test' v1/core
- pytest -v -s v1/executor
- pytest -v -s v1/kv_offload
- pytest -v -s v1/sample
- pytest -v -s v1/logits_processors
- pytest -v -s v1/worker
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/metrics
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_utils.py
- pytest -v -s -m 'not cpu_test' v1/kv_connector/unit
- pytest -v -s -m 'not cpu_test' v1/metrics
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_metrics_reader.py
- pytest -v -s v1/test_request.py
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: V1 Test others (CPU) # 5 mins
source_file_dependencies:
- vllm/
- tests/v1
no_gpu: true
commands:
# split the test to avoid interference
- pytest -v -s -m 'cpu_test' v1/core
- pytest -v -s v1/structured_output
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s -m 'cpu_test' v1/kv_connector/unit
- pytest -v -s -m 'cpu_test' v1/metrics
- label: Examples Test # 30min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
@ -322,12 +343,13 @@ steps:
- python3 offline_inference/vision_language.py --seed 0
- python3 offline_inference/vision_language_pooling.py --seed 0
- python3 offline_inference/vision_language_multi_image.py --seed 0
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
- python3 offline_inference/basic/classify.py
- python3 offline_inference/basic/embed.py
- python3 offline_inference/basic/score.py
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- python3 offline_inference/spec_decode.py --test --method eagle --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
- label: Platform Tests (CUDA) # 4min
timeout_in_minutes: 15
@ -376,12 +398,12 @@ steps:
- pytest -v -s compile/test_pass_manager.py
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_fusion_attn.py
- pytest -v -s compile/test_functionalization.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- pytest -v -s compile/test_async_tp.py
- pytest -v -s compile/test_fusion_all_reduce.py
- pytest -v -s compile/test_decorator.py
- pytest -v -s compile/test_noop_elimination.py
- pytest -v -s compile/test_aot_compile.py
- label: PyTorch Fullgraph Smoke Test # 15min
timeout_in_minutes: 30
@ -410,8 +432,9 @@ steps:
source_file_dependencies:
- csrc/
- tests/kernels/core
- tests/kernels/test_top_k_per_row.py
commands:
- pytest -v -s kernels/core
- pytest -v -s kernels/core kernels/test_top_k_per_row.py
- label: Kernels Attention Test %N # 23min
timeout_in_minutes: 35
@ -455,32 +478,22 @@ steps:
source_file_dependencies:
- csrc/mamba/
- tests/kernels/mamba
- vllm/model_executor/layers/mamba/ops
commands:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 14min
timeout_in_minutes: 25
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/model_loader
- tests/tensorizer_loader
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s tensorizer_loader
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Model Executor Test # 7min
timeout_in_minutes: 20
- label: Model Executor Test # 23min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor
- tests/model_executor
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
commands:
- apt-get update && apt-get install -y curl libsodium23
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s model_executor
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
- label: Benchmarks # 11min
timeout_in_minutes: 20
@ -515,7 +528,7 @@ steps:
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
# we can only upgrade after this is resolved
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
@ -543,10 +556,17 @@ steps:
source_file_dependencies:
- vllm/
- tests/tool_use
- tests/mistral_tool_use
commands:
- pytest -v -s tool_use
- pytest -v -s mistral_tool_use
- pytest -v -s -m 'not cpu_test' tool_use
- label: OpenAI-Compatible Tool Use (CPU) # 5 mins
timeout_in_minutes: 10
source_file_dependencies:
- vllm/
- tests/tool_use
no_gpu: true
commands:
- pytest -v -s -m 'cpu_test' tool_use
##### models test #####
@ -586,13 +606,19 @@ steps:
- vllm/
- tests/models/test_transformers.py
- tests/models/test_registry.py
commands:
- pytest -v -s models/test_transformers.py models/test_registry.py
- label: Basic Models Test (Other CPU) # 5min
timeout_in_minutes: 10
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models/test_utils.py
- tests/models/test_vision.py
no_gpu: true
commands:
- pytest -v -s models/test_transformers.py \
models/test_registry.py \
models/test_utils.py \
models/test_vision.py
- pytest -v -s models/test_utils.py models/test_vision.py
- label: Language Models Tests (Standard)
timeout_in_minutes: 25
@ -762,11 +788,13 @@ steps:
commands:
- pip install --upgrade git+https://github.com/huggingface/transformers
- pytest -v -s tests/models/test_initialization.py
- pytest -v -s tests/models/test_transformers.py
- pytest -v -s tests/models/multimodal/processing/
- pytest -v -s tests/models/multimodal/test_mapping.py
- python3 examples/offline_inference/basic/chat.py
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
# Whisper needs spawn method to avoid deadlock
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
@ -801,18 +829,20 @@ steps:
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
- pytest -v -s tests/kernels/moe/test_mxfp4_moe.py
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
# Fusion
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
- pytest -v -s tests/kernels/moe/test_flashinfer.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_qutlass.py
- pytest -v -s tests/kernels/quantization/test_mxfp4_qutlass.py
- label: GPT-OSS Eval (Blackwell)
- label: Blackwell GPT-OSS Eval
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
gpu: b200
optional: true # disable while debugging
optional: true # run on nightlies
source_file_dependencies:
- tests/evals/gpt_oss
- vllm/model_executor/models/gpt_oss.py
@ -820,7 +850,34 @@ steps:
- vllm/v1/attention/backends/flashinfer.py
commands:
- uv pip install --system 'gpt-oss[eval]==0.0.5'
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58 --server-args '--tensor-parallel-size 2'
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
- label: Blackwell Quantized MoE Test
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
gpu: b200
source_file_dependencies:
- tests/quantization/test_blackwell_moe.py
- vllm/model_executor/models/deepseek_v2.py
- vllm/model_executor/models/gpt_oss.py
- vllm/model_executor/models/llama4.py
- vllm/model_executor/layers/fused_moe
- vllm/model_executor/layers/quantization/compressed_tensors
- vllm/model_executor/layers/quantization/modelopt.py
- vllm/model_executor/layers/quantization/mxfp4.py
- vllm/v1/attention/backends/flashinfer.py
commands:
- pytest -s -v tests/quantization/test_blackwell_moe.py
- label: Blackwell LM Eval Small Models
timeout_in_minutes: 120
gpu: b200
optional: true # run on nightlies
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-blackwell.txt --tp-size=1
##### 1 GPU test #####
##### multi gpus test #####
@ -864,47 +921,58 @@ steps:
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- label: Distributed Tests (2 GPUs) # 110min
timeout_in_minutes: 150
- label: Distributed Tests (2 GPUs) # 68min
timeout_in_minutes: 90
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/compilation/
- vllm/distributed/
- vllm/engine/
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
- vllm/compilation
- vllm/worker/worker_base.py
- vllm/worker/worker.py
- vllm/worker/model_runner.py
- entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- vllm/v1/engine/
- vllm/v1/worker/
- tests/compile/test_basic_correctness.py
- tests/compile/test_wrapper.py
- tests/distributed/
- tests/entrypoints/llm/test_collective_rpc.py
- tests/v1/distributed
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- tests/v1/shutdown
- tests/v1/worker/test_worker_memory_snapshot.py
commands:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- pytest -v -s distributed/test_sequence_parallel.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
- label: Distributed Model Tests (2 GPUs) # 37min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
- vllm/model_executor/model_loader/sharded_state_loader.py
- vllm/model_executor/models/
- tests/basic_correctness/
- tests/model_executor/model_loader/test_sharded_state_loader.py
- tests/models/
commands:
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s model_executor/model_loader/test_sharded_state_loader.py
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)' --ignore models/multimodal/generation/test_whisper.py
- VLLM_WORKER_MULTIPROC_METHOD=spawn pytest models/multimodal/generation/test_whisper.py -v -s -m 'distributed(num_gpus=2)'
# test sequence parallel
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
# TODO: investigate and fix
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s models/multimodal/generation/test_maverick.py
- label: Plugin Tests (2 GPUs) # 40min
timeout_in_minutes: 60
@ -1027,6 +1095,8 @@ steps:
working_dir: "/vllm-workspace/"
num_gpus: 2
commands:
- pytest -v -s tests/compile/test_async_tp.py
- pytest -v -s tests/compile/test_sequence_parallelism.py
- pytest -v -s tests/distributed/test_context_parallel.py
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
@ -1038,3 +1108,16 @@ steps:
num_gpus: 2
commands:
- pytest -v -s tests/distributed/test_context_parallel.py
- pytest -v -s tests/distributed/test_nccl_symm_mem_allreduce.py
##### RL Integration Tests #####
- label: Prime-RL Integration Test # 15min
timeout_in_minutes: 30
optional: true
num_gpus: 2
working_dir: "/vllm-workspace"
source_file_dependencies:
- vllm/
- .buildkite/scripts/run-prime-rl-test.sh
commands:
- bash .buildkite/scripts/run-prime-rl-test.sh

34
.github/CODEOWNERS vendored
View File

@ -4,19 +4,14 @@
# This lists cover the "core" components of vLLM that require careful review
/vllm/attention @LucasWilkinson
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/fused_moe @mgoin
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @NickLucche
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
/vllm/v1/attention @LucasWilkinson
/vllm/v1/sample @22quinn @houseroad
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm @chaunceyjiang
@ -28,20 +23,22 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Any change to the VllmConfig changes can have a large user-facing impact,
# so spam a lot of people
/vllm/config @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
/vllm/config/cache.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/attention @LucasWilkinson
/vllm/v1/attention/backends/flashinfer.py @mgoin
/vllm/v1/attention/backends/triton_attn.py @tdoublep
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/vllm/v1/sample @22quinn @houseroad @njhill
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/kv_cache_interface.py @heheda12345
/vllm/v1/offloading @ApostaC
# Test ownership
/.buildkite/lm-eval-harness @mgoin @simon-mo
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
@ -50,7 +47,6 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256
/tests/models @DarkLight1337 @ywang96
/tests/multimodal @DarkLight1337 @ywang96 @NickLucche
/tests/prefix_caching @comaniac @KuntaiDu
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
@ -59,23 +55,35 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/lora @jeejeelee
/tests/models/language/generation/test_hybrid.py @tdoublep
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector @ApostaC
/tests/v1/offloading @ApostaC
# Transformers backend
/vllm/model_executor/models/transformers.py @hmellor
/tests/models/test_transformers.py @hmellor
# Docs
/docs @hmellor
/docs/mkdocs @hmellor
/docs/**/*.yml @hmellor
/requirements/docs.txt @hmellor
.readthedocs.yaml @hmellor
mkdocs.yaml @hmellor
# Linting
.markdownlint.yaml @hmellor
.pre-commit-config.yaml @hmellor
/tools/pre_commit @hmellor
# CPU
/vllm/v1/worker/^cpu @bigPYJ1151
/vllm/v1/worker/cpu* @bigPYJ1151
/csrc/cpu @bigPYJ1151
/vllm/platforms/cpu.py @bigPYJ1151
/cmake/cpu_extension.cmake @bigPYJ1151
/docker/Dockerfile.cpu @bigPYJ1151
# Intel GPU
/vllm/v1/worker/^xpu @jikunshang
/vllm/v1/worker/xpu* @jikunshang
/vllm/platforms/xpu.py @jikunshang
/docker/Dockerfile.xpu @jikunshang

View File

@ -43,10 +43,6 @@ body:
Any other things you would like to mention.
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉! The vLLM core team hosts a biweekly RFC review session at 9:30AM Pacific Time, while most RFCs can be discussed online, you can optionally sign up for a slot to discuss your RFC online [here](https://docs.google.com/document/d/1CiLVBZeIVfR7_PNAKVSusxpceywkoOOB78qoWqHvSZc/edit).
- type: checkboxes
id: askllm
attributes:

54
.github/mergify.yml vendored
View File

@ -2,6 +2,7 @@ pull_request_rules:
- name: label-documentation
description: Automatically apply documentation label
conditions:
- label != stale
- or:
- files~=^[^/]+\.md$
- files~=^docs/
@ -10,10 +11,13 @@ pull_request_rules:
label:
add:
- documentation
comment:
message: "Documentation preview: https://vllm--{{number}}.org.readthedocs.build/en/{{number}}/"
- name: label-ci-build
description: Automatically apply ci/build label
conditions:
- label != stale
- or:
- files~=^\.github/
- files~=\.buildkite/
@ -30,6 +34,7 @@ pull_request_rules:
- name: label-deepseek
description: Automatically apply deepseek label
conditions:
- label != stale
- or:
- files~=^examples/.*deepseek.*\.py
- files~=^tests/.*deepseek.*\.py
@ -46,6 +51,7 @@ pull_request_rules:
- name: label-frontend
description: Automatically apply frontend label
conditions:
- label != stale
- files~=^vllm/entrypoints/
actions:
label:
@ -55,6 +61,7 @@ pull_request_rules:
- name: label-llama
description: Automatically apply llama label
conditions:
- label != stale
- or:
- files~=^examples/.*llama.*\.py
- files~=^tests/.*llama.*\.py
@ -70,6 +77,7 @@ pull_request_rules:
- name: label-multi-modality
description: Automatically apply multi-modality label
conditions:
- label != stale
- or:
- files~=^vllm/multimodal/
- files~=^tests/multimodal/
@ -83,6 +91,7 @@ pull_request_rules:
- name: label-new-model
description: Automatically apply new-model label
conditions:
- label != stale
- and:
- files~=^vllm/model_executor/models/
- files=vllm/model_executor/models/registry.py
@ -94,6 +103,7 @@ pull_request_rules:
- name: label-performance
description: Automatically apply performance label
conditions:
- label != stale
- or:
- files~=^benchmarks/
- files~=^vllm/benchmarks/
@ -107,6 +117,7 @@ pull_request_rules:
- name: label-qwen
description: Automatically apply qwen label
conditions:
- label != stale
- or:
- files~=^examples/.*qwen.*\.py
- files~=^tests/.*qwen.*\.py
@ -121,6 +132,7 @@ pull_request_rules:
- name: label-gpt-oss
description: Automatically apply gpt-oss label
conditions:
- label != stale
- or:
- files~=^examples/.*gpt[-_]?oss.*\.py
- files~=^tests/.*gpt[-_]?oss.*\.py
@ -142,6 +154,7 @@ pull_request_rules:
- name: label-rocm
description: Automatically apply rocm label
conditions:
- label != stale
- or:
- files~=^csrc/rocm/
- files~=^docker/Dockerfile.rocm
@ -162,6 +175,7 @@ pull_request_rules:
- name: label-structured-output
description: Automatically apply structured-output label
conditions:
- label != stale
- or:
- files~=^benchmarks/structured_schemas/
- files=benchmarks/benchmark_serving_structured_output.py
@ -171,7 +185,7 @@ pull_request_rules:
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
- files~=^tests/v1/structured_output/
- files=tests/v1/entrypoints/llm/test_guided_generate.py
- files=tests/v1/entrypoints/llm/test_struct_output_generate.py
- files~=^vllm/v1/structured_output/
actions:
label:
@ -181,6 +195,7 @@ pull_request_rules:
- name: label-speculative-decoding
description: Automatically apply speculative-decoding label
conditions:
- label != stale
- or:
- files~=^vllm/v1/spec_decode/
- files~=^tests/v1/spec_decode/
@ -196,6 +211,7 @@ pull_request_rules:
- name: label-v1
description: Automatically apply v1 label
conditions:
- label != stale
- or:
- files~=^vllm/v1/
- files~=^tests/v1/
@ -208,6 +224,7 @@ pull_request_rules:
description: Automatically apply tpu label
# Keep this list in sync with `label-tpu-remove` conditions
conditions:
- label != stale
- or:
- files~=tpu.py
- files~=_tpu
@ -223,6 +240,7 @@ pull_request_rules:
description: Automatically remove tpu label
# Keep this list in sync with `label-tpu` conditions
conditions:
- label != stale
- and:
- -files~=tpu.py
- -files~=_tpu
@ -237,9 +255,9 @@ pull_request_rules:
- name: label-tool-calling
description: Automatically add tool-calling label
conditions:
- label != stale
- or:
- files~=^tests/tool_use/
- files~=^tests/mistral_tool_use/
- files~=^tests/entrypoints/openai/tool_parsers/
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
- files~=^vllm/entrypoints/openai/tool_parsers/
@ -256,8 +274,9 @@ pull_request_rules:
- name: ping author on conflicts and add 'needs-rebase' label
conditions:
- conflict
- -closed
- label != stale
- conflict
- -closed
actions:
label:
add:
@ -271,10 +290,12 @@ pull_request_rules:
- name: assign reviewer for tensorizer changes
conditions:
- label != stale
- or:
- files~=^vllm/model_executor/model_loader/tensorizer.py
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
- files~=^tests/tensorizer_loader/
- files~=^tests/model_executor/model_loader/tensorizer_loader/
actions:
assign:
users:
@ -282,6 +303,7 @@ pull_request_rules:
- name: assign reviewer for modelopt changes
conditions:
- label != stale
- or:
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
@ -296,9 +318,27 @@ pull_request_rules:
- name: remove 'needs-rebase' label when conflict is resolved
conditions:
- -conflict
- -closed
- -conflict
- -closed
actions:
label:
remove:
- needs-rebase
- name: label-kv-connector
description: Automatically apply kv-connector label
conditions:
- label != stale
- or:
- files~=^examples/online_serving/disaggregated[^/]*/.*
- files~=^examples/offline_inference/disaggregated[^/]*/.*
- files~=^examples/others/lmcache/
- files~=^tests/v1/kv_connector/
- files~=^vllm/distributed/kv_transfer/
- title~=(?i)\bP/?D\b
- title~=(?i)NIXL
- title~=(?i)LMCache
actions:
label:
add:
- kv-connector

View File

@ -13,7 +13,7 @@ jobs:
actions: write
runs-on: ubuntu-latest
steps:
- uses: actions/stale@3a9db7e6a41a89f618792c92c0e97cc736e1b13f # v10.0.0
- uses: actions/stale@5f858e3efba33a5ca4407a664cc011ad407f2008 # v10.1.0
with:
# Increasing this value ensures that changes to this workflow
# propagate to all issues and PRs in days rather than months

View File

@ -6,30 +6,18 @@ default_stages:
- manual # Run in CI
exclude: 'vllm/third_party/.*'
repos:
- repo: https://github.com/google/yapf
rev: v0.43.0
hooks:
- id: yapf
args: [--in-place, --verbose]
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
exclude: '(.buildkite|benchmarks|build|examples)/.*'
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.7
rev: v0.14.0
hooks:
- id: ruff
- id: ruff-check
args: [--output-format, github, --fix]
- id: ruff-format
files: ^(.buildkite|benchmarks|examples)/.*
- repo: https://github.com/crate-ci/typos
rev: v1.35.5
rev: v1.38.1
hooks:
- id: typos
- repo: https://github.com/PyCQA/isort
rev: 6.0.1
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v20.1.3
rev: v21.1.2
hooks:
- id: clang-format
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
@ -46,10 +34,10 @@ repos:
hooks:
- id: actionlint
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.6.17
rev: 0.9.1
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
@ -60,38 +48,32 @@ repos:
files: ^requirements/test\.(in|txt)$
- id: mypy-local
name: Run mypy for local Python installation
entry: tools/mypy.sh 0 "local"
language: python
types: [python]
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
entry: python tools/pre_commit/mypy.py 0 "local"
stages: [pre-commit] # Don't run in CI
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.9
entry: tools/mypy.sh 1 "3.9"
language: python
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
<<: &mypy_common
language: python
types_or: [python, pyi]
require_serial: true
additional_dependencies: [mypy==1.11.1, regex, types-cachetools, types-setuptools, types-PyYAML, types-requests, types-torch, pydantic]
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.10
entry: tools/mypy.sh 1 "3.10"
language: python
types: [python]
additional_dependencies: *mypy_deps
entry: python tools/pre_commit/mypy.py 1 "3.10"
<<: *mypy_common
stages: [manual] # Only run in CI
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.11
entry: tools/mypy.sh 1 "3.11"
language: python
types: [python]
additional_dependencies: *mypy_deps
entry: python tools/pre_commit/mypy.py 1 "3.11"
<<: *mypy_common
stages: [manual] # Only run in CI
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.12
entry: tools/mypy.sh 1 "3.12"
language: python
types: [python]
additional_dependencies: *mypy_deps
entry: python tools/pre_commit/mypy.py 1 "3.12"
<<: *mypy_common
stages: [manual] # Only run in CI
- id: mypy-3.13 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.13
entry: python tools/pre_commit/mypy.py 1 "3.13"
<<: *mypy_common
stages: [manual] # Only run in CI
- id: shellcheck
name: Lint shell scripts
@ -155,18 +137,15 @@ repos:
additional_dependencies: [regex]
- id: check-pickle-imports
name: Prevent new pickle/cloudpickle imports
entry: python tools/check_pickle_imports.py
entry: python tools/pre_commit/check_pickle_imports.py
language: python
types: [python]
pass_filenames: false
additional_dependencies: [pathspec, regex]
additional_dependencies: [regex]
- id: validate-config
name: Validate configuration has default values and that each field has a docstring
entry: python tools/validate_config.py
language: python
types: [python]
pass_filenames: true
files: vllm/config.py|tests/test_config.py|vllm/entrypoints/openai/cli_args.py
additional_dependencies: [regex]
# Keep `suggestion` last
- id: suggestion
name: Suggestion

View File

@ -13,6 +13,7 @@ build:
mkdocs:
configuration: mkdocs.yaml
fail_on_warning: true
# Optionally declare the Python requirements required to build your docs
python:

View File

@ -34,10 +34,10 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
set(PYTHON_SUPPORTED_VERSIONS "3.10" "3.11" "3.12" "3.13")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
#
# Supported/expected torch versions for CUDA/ROCm.
@ -86,6 +86,9 @@ find_package(Torch REQUIRED)
# Supported NVIDIA architectures.
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
set(CUDA_SUPPORTED_ARCHS "7.5;8.0;8.6;8.7;8.9;9.0;10.0;11.0;12.0")
elseif(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
else()
@ -175,6 +178,15 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Set compression mode for CUDA >=13.x.
#
if(VLLM_GPU_LANG STREQUAL "CUDA" AND
DEFINED CMAKE_CUDA_COMPILER_VERSION AND
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
list(APPEND VLLM_GPU_FLAGS "--compress-mode=size")
endif()
#
# Set CUDA include flags for CXX compiler.
#
@ -257,8 +269,8 @@ set(VLLM_EXT_SRC
"csrc/sampler.cu"
"csrc/cuda_view.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
"csrc/quantization/w8a8/int8/scaled_quant.cu"
"csrc/quantization/w8a8/fp8/common.cu"
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/activation_kernels.cu"
@ -270,7 +282,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
set(CUTLASS_REVISION "v4.2.1" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -302,13 +314,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_EXT_SRC
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/permute_cols.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/w8a8/cutlass/scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/cutlass_extensions/common.cpp"
"csrc/quantization/fp8/per_token_group_quant.cu")
"csrc/quantization/w8a8/fp8/per_token_group_quant.cu"
"csrc/quantization/w8a8/int8/per_token_group_quant.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
@ -412,11 +424,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_int8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_azp_sm90_int8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm90_fp8.cu")
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm90.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_fp8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_int8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_azp_sm90_int8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm90_fp8.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -440,12 +452,16 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm120_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm120_fp8.cu"
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm120.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm120_fp8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm120_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -470,12 +486,16 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
# require CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm100_fp8.cu"
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm100.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm100_fp8.cu"
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm100_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -506,7 +526,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/scaled_mm_c2x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_2X_ARCHS}")
@ -550,7 +570,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
# CUDA 12.8 or later
cuda_archs_loose_intersection(FP4_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(FP4_ARCHS "12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(FP4_ARCHS "12.0a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
@ -569,7 +593,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# FP4 Archs and flags
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(FP4_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(FP4_ARCHS "10.0a;10.1a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
@ -591,7 +619,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# CUTLASS MLA Archs and flags
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(MLA_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(MLA_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
set(SRCS
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
@ -617,7 +649,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# if it's possible to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm90.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm90.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -635,9 +667,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm100.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -656,9 +692,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# moe_data.cu is used by all CUTLASS MoE kernels.
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/moe/moe_data.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
@ -675,9 +715,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
set(SRCS "csrc/quantization/w8a8/cutlass/moe/blockwise_scaled_group_mm_sm100.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -963,6 +1007,7 @@ endif()
# For CUDA we also build and ship some external projects.
if (VLLM_GPU_LANG STREQUAL "CUDA")
include(cmake/external_projects/flashmla.cmake)
include(cmake/external_projects/qutlass.cmake)
# vllm-flash-attn should be last as it overwrites some CMake functions
include(cmake/external_projects/vllm_flash_attn.cmake)

View File

@ -21,6 +21,7 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
*Latest News* 🔥
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
@ -148,6 +149,7 @@ Compute Resources:
- Trainy
- UC Berkeley
- UC San Diego
- Volcengine
Slack Sponsor: Anyscale

View File

@ -74,7 +74,7 @@ start_server() {
local vllm_log=$4
local profile_dir=$5
pkill -if vllm
pkill -if "vllm serve" || true
# Define the common arguments as a bash array.
# Each argument and its value are separate elements.
@ -96,17 +96,22 @@ start_server() {
# This correctly passes each element as a separate argument.
if [[ -n "$profile_dir" ]]; then
# Start server with profiling enabled
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
else
# Start server without profiling
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 \
VLLM_SERVER_DEV_MODE=1 \
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
fi
local server_pid=$!
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
# This line checks whether the server is still alive or not,
# since that we should always have permission to send signal to the server process.
kill -0 $server_pid 2> /dev/null || break
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
if [[ "$STATUS_CODE" -eq 200 ]]; then
@ -118,7 +123,7 @@ start_server() {
done
if (( ! server_started )); then
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
echo "server did not start within 10 minutes or crashed. Please check server log at $vllm_log".
return 1
else
return 0
@ -134,7 +139,7 @@ run_benchmark() {
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
pkill -if vllm
pkill -if "vllm serve" || true
echo "starting server..."
# Call start_server without a profile_dir to avoid profiling overhead
@ -227,7 +232,7 @@ run_benchmark() {
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
pkill -if vllm
pkill -if "vllm serve" || true
sleep 10
echo "===================="
return 0
@ -303,6 +308,6 @@ if (( $(echo "$best_throughput > 0" | bc -l) )); then
else
echo "No configuration met the latency requirements. Skipping final profiling run."
fi
pkill -if vllm
pkill -if "vllm serve" || true
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"

View File

@ -2,9 +2,9 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
from benchmark_utils import TimeCollector
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.utils import FlexibleArgumentParser
from vllm.v1.core.block_pool import BlockPool

View File

@ -1,17 +1,31 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import time
from unittest import mock
import numpy as np
from benchmark_utils import TimeCollector
from tabulate import tabulate
from benchmark_utils import TimeCollector
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
from vllm.config import (
CacheConfig,
DeviceConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
SchedulerConfig,
SpeculativeConfig,
VllmConfig,
)
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
from vllm.v1.worker.gpu_input_batch import InputBatch
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
def main(args):
def benchmark_propose(args):
rows = []
for max_ngram in args.max_ngram:
collector = TimeCollector(TimeCollector.US)
@ -69,10 +83,88 @@ def main(args):
)
def benchmark_batched_propose(args):
NUM_SPECULATIVE_TOKENS_NGRAM = 10
PROMPT_LOOKUP_MIN = 5
PROMPT_LOOKUP_MAX = 15
MAX_MODEL_LEN = int(1e7)
DEVICE = current_platform.device_type
model_config = ModelConfig(model="facebook/opt-125m", runner="generate")
speculative_config = SpeculativeConfig(
target_model_config=model_config,
target_parallel_config=ParallelConfig(),
method="ngram",
num_speculative_tokens=NUM_SPECULATIVE_TOKENS_NGRAM,
prompt_lookup_max=PROMPT_LOOKUP_MAX,
prompt_lookup_min=PROMPT_LOOKUP_MIN,
)
vllm_config = VllmConfig(
model_config=model_config,
cache_config=CacheConfig(),
speculative_config=speculative_config,
device_config=DeviceConfig(device=current_platform.device_type),
parallel_config=ParallelConfig(),
load_config=LoadConfig(),
scheduler_config=SchedulerConfig(),
)
# monkey patch vllm.v1.worker.gpu_model_runner.get_pp_group
mock_pp_group = mock.MagicMock()
mock_pp_group.world_size = 1
with mock.patch(
"vllm.v1.worker.gpu_model_runner.get_pp_group", return_value=mock_pp_group
):
runner = GPUModelRunner(vllm_config, DEVICE)
# hack max model len
runner.max_model_len = MAX_MODEL_LEN
runner.drafter.max_model_len = MAX_MODEL_LEN
dummy_input_batch = InputBatch(
max_num_reqs=args.num_req,
max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=args.num_req * args.num_token,
device=DEVICE,
pin_memory=False,
vocab_size=256000,
block_sizes=[16],
)
dummy_input_batch._req_ids = list(str(id) for id in range(args.num_req))
dummy_input_batch.spec_decode_unsupported_reqs = ()
dummy_input_batch.num_tokens_no_spec = [args.num_token] * args.num_req
dummy_input_batch.token_ids_cpu = np.random.randint(
0, 20, (args.num_req, args.num_token)
)
runner.input_batch = dummy_input_batch
sampled_token_ids = [[0]] * args.num_req
print("Starting benchmark")
# first run is warmup so ignore it
for _ in range(args.num_iteration):
start = time.time()
runner.drafter.propose(
sampled_token_ids,
dummy_input_batch.req_ids,
dummy_input_batch.num_tokens_no_spec,
dummy_input_batch.token_ids_cpu,
dummy_input_batch.spec_decode_unsupported_reqs,
)
end = time.time()
print(f"Iteration time (s): {end - start}")
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of N-gram speculative decode drafting"
)
parser.add_argument(
"--batched", action="store_true", help="consider time to prepare batch"
)
parser.add_argument(
"--num-iteration",
type=int,
@ -105,8 +197,17 @@ def invoke_main() -> None:
help="Number of speculative tokens to generate",
)
args = parser.parse_args()
main(args)
if not args.batched:
benchmark_propose(args)
else:
benchmark_batched_propose(args)
"""
# Example command lines:
# time python3 benchmarks/benchmark_ngram_proposer.py
# time python3 benchmarks/benchmark_ngram_proposer.py --batched --num-iteration 4 --num-token 1000000 --num-req 128
""" # noqa: E501
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -37,14 +37,13 @@ from typing import Optional
import datasets
import numpy as np
import pandas as pd
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
RequestFuncInput,
RequestFuncOutput,
)
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
try:
from vllm.transformers_utils.tokenizer import get_tokenizer
@ -449,7 +448,8 @@ async def benchmark(
def prepare_extra_body(request) -> dict:
extra_body = {}
# Add the schema to the extra_body
extra_body[request.structure_type] = request.schema
extra_body["structured_outputs"] = {}
extra_body["structured_outputs"][request.structure_type] = request.schema
return extra_body
print("Starting initial single prompt test run...")
@ -696,11 +696,11 @@ def evaluate(ret, args):
return re.match(args.regex, actual) is not None
def _eval_correctness(expected, actual):
if args.structure_type == "guided_json":
if args.structure_type == "json":
return _eval_correctness_json(expected, actual)
elif args.structure_type == "guided_regex":
elif args.structure_type == "regex":
return _eval_correctness_regex(expected, actual)
elif args.structure_type == "guided_choice":
elif args.structure_type == "choice":
return _eval_correctness_choice(expected, actual)
else:
return None
@ -780,18 +780,18 @@ def main(args: argparse.Namespace):
)
if args.dataset == "grammar":
args.structure_type = "guided_grammar"
args.structure_type = "grammar"
elif args.dataset == "regex":
args.structure_type = "guided_regex"
args.structure_type = "regex"
elif args.dataset == "choice":
args.structure_type = "guided_choice"
args.structure_type = "choice"
else:
args.structure_type = "guided_json"
args.structure_type = "json"
if args.no_structured_output:
args.structured_output_ratio = 0
if args.save_results:
result_file_name = f"{args.structured_output_ratio}guided"
result_file_name = f"{args.structured_output_ratio}so"
result_file_name += f"_{backend}"
result_file_name += f"_{args.request_rate}qps"
result_file_name += f"_{args.model.split('/')[-1]}"
@ -909,13 +909,13 @@ def create_argument_parser():
parser.add_argument(
"--tokenizer",
type=str,
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
help="Name or path of the tokenizer, if not using the default tokenizer.",
)
parser.add_argument(
"--tokenizer-mode",
type=str,
default="auto",
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
help="Name or path of the tokenizer, if not using the default tokenizer.",
)
parser.add_argument(
"--num-prompts",

View File

@ -17,7 +17,7 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul,
w8a8_triton_block_scaled_mm,
)
from vllm.utils import FlexibleArgumentParser, cdiv
@ -158,7 +158,7 @@ def bench_fp8(
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
),
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_triton_block_scaled_mm(
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
),
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(

View File

@ -55,9 +55,7 @@ benchmark() {
output_len=$2
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
@ -65,9 +63,7 @@ benchmark() {
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \

View File

@ -38,16 +38,12 @@ wait_for_server() {
launch_chunked_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
--port 8100 \
--max-model-len 10000 \
--enable-chunked-prefill \
--gpu-memory-utilization 0.6 &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
--port 8200 \
--max-model-len 10000 \
--enable-chunked-prefill \
@ -62,18 +58,14 @@ launch_chunked_prefill() {
launch_disagg_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
--port 8100 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
--model $model \
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
--port 8200 \
--max-model-len 10000 \
--gpu-memory-utilization 0.6 \

View File

@ -0,0 +1,191 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
#
# Copyright (C) 2025 Roberto L. Castro (Roberto.LopezCastro@ist.ac.at).
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import copy
import itertools
import torch
from compressed_tensors.transform.utils.hadamard import deterministic_hadamard_matrix
from weight_shapes import WEIGHT_SHAPES
from vllm._custom_ops import fusedQuantizeMx, matmul_mxf4_bf16_tn
from vllm.model_executor.layers.quantization.qutlass_utils import to_blocked
from vllm.triton_utils import triton
PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"mxfp4": dict(no_a_quant=False, enabled=True),
"mxfp4-noquant": dict(no_a_quant=True, enabled=True),
}
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def get_hadamard_matrix(group_size: int, dtype: torch.dtype, device: torch.device):
return (
deterministic_hadamard_matrix(group_size, dtype=dtype, device=device)
* group_size**-0.5
)
def _quant_weight_mxfp4(
b: torch.Tensor, forward_hadamard_matrix: torch.Tensor, device: str
):
weight_hf_e2m1, weight_hf_e8m0 = fusedQuantizeMx(
b, forward_hadamard_matrix, method="abs_max"
)
weight_hf_scale_block = to_blocked(weight_hf_e8m0, backend="triton")
return weight_hf_e2m1, weight_hf_scale_block
def build_mxfp4_runner(cfg, a, b, forward_hadamard_matrix, dtype, device):
weight_hf_e2m1, weight_hf_scale_block = _quant_weight_mxfp4(
b, forward_hadamard_matrix, device
)
alpha = torch.tensor([1.0], device="cuda")
if cfg["no_a_quant"]:
# Pre-quantize activation
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeMx(
a, forward_hadamard_matrix, method="abs_max"
)
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton")
def run():
return matmul_mxf4_bf16_tn(
input_hf_e2m1,
weight_hf_e2m1,
input_hf_scale_block,
weight_hf_scale_block,
alpha,
)
return run
# Quantize activation on-the-fly
def run():
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeMx(
a, forward_hadamard_matrix, method="abs_max"
)
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton")
return matmul_mxf4_bf16_tn(
input_hf_e2m1,
weight_hf_e2m1,
input_hf_scale_block,
weight_hf_scale_block,
alpha,
)
return run
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[
1,
4,
8,
16,
32,
64,
128,
256,
512,
1024,
2048,
4096,
8192,
16384,
24576,
32768,
],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=_enabled,
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs MXFP4 GEMMs",
args={},
)
)
def benchmark(batch_size, provider, N, K, had_size):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
forward_hadamard_matrix = get_hadamard_matrix(had_size, dtype, device)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), rep=200, quantiles=quantiles
)
else:
cfg = PROVIDER_CFGS[provider]
run_quant = build_mxfp4_runner(
cfg, a, b, forward_hadamard_matrix, dtype, device
)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), rep=200, quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
def prepare_shapes(args):
out = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN.append(model)
out.append(KN)
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.3-70B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
args = parser.parse_args()
for K, N, model in prepare_shapes(args):
for had_size in [32, 64, 128]:
print(f"{model}, N={N} K={K}, HAD={had_size}, BF16 vs MXFP4 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_mxfp4_res_n{N}_k{K}",
N=N,
K=K,
had_size=had_size,
)
print("Benchmark finished!")

View File

@ -3,6 +3,7 @@
import argparse
import copy
import itertools
import os
import torch
from weight_shapes import WEIGHT_SHAPES
@ -23,21 +24,45 @@ PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"nvfp4": dict(no_a_quant=False, enabled=True),
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
"fbgemm-nvfp4": dict(fbgemm=True, no_a_quant=False, enabled=True),
"fbgemm-nvfp4-noquant": dict(fbgemm=True, no_a_quant=True, enabled=True),
}
_needs_fbgemm = any(
v.get("fbgemm", False) for v in PROVIDER_CFGS.values() if v.get("enabled", False)
)
if _needs_fbgemm:
try:
from fbgemm_gpu.experimental.gemm.triton_gemm.fp4_quantize import (
triton_scale_nvfp4_quant,
)
except ImportError:
print(
"WARNING: FBGEMM providers are enabled but fbgemm_gpu is not installed. "
"These providers will be skipped. Please install fbgemm_gpu with: "
"'pip install fbgemm-gpu-genai' to run them."
)
# Disable FBGEMM providers so the benchmark can run.
for cfg in PROVIDER_CFGS.values():
if cfg.get("fbgemm"):
cfg["enabled"] = False
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
def _quant_weight_nvfp4(b: torch.Tensor, device: str, cfg):
# Compute global scale for weight
b_amax = torch.abs(b).max().to(torch.float32)
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
if "fbgemm" in cfg and cfg["fbgemm"]:
b_fp4, scale_b_fp4 = triton_scale_nvfp4_quant(b, b_global_scale)
else:
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
return b_fp4, scale_b_fp4, b_global_scale
def build_nvfp4_runner(cfg, a, b, dtype, device):
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device, cfg)
# Compute global scale for activation
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
@ -46,6 +71,35 @@ def build_nvfp4_runner(cfg, a, b, dtype, device):
# Alpha for the GEMM operation
alpha = 1.0 / (a_global_scale * b_global_scale)
if "fbgemm" in cfg and cfg["fbgemm"]:
if cfg["no_a_quant"]:
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
def run():
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
else:
def run():
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
return torch.ops.fbgemm.f4f4bf16(
a_fp4,
b_fp4,
scale_a_fp4,
scale_b_fp4,
global_scale=alpha,
use_mx=False,
)
return run
if cfg["no_a_quant"]:
# Pre-quantize activation
@ -130,10 +184,13 @@ if __name__ == "__main__":
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
save_dir = f"bench_nvfp4_res_n{N}_k{K}"
os.makedirs(save_dir, exist_ok=True)
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_nvfp4_res_n{N}_k{K}",
save_path=save_dir,
N=N,
K=K,
)

View File

@ -0,0 +1,207 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
#
# Copyright (C) 2025 Roberto L. Castro (Roberto.LopezCastro@ist.ac.at).
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import copy
import itertools
import torch
from compressed_tensors.transform.utils.hadamard import deterministic_hadamard_matrix
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops # use existing nvfp4 gemm in vllm
from vllm._custom_ops import fusedQuantizeNv
from vllm.model_executor.layers.quantization.qutlass_utils import to_blocked
from vllm.triton_utils import triton
PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"nvfp4": dict(no_a_quant=False, enabled=True),
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
}
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def get_hadamard_matrix(group_size: int, dtype: torch.dtype, device: torch.device):
return (
deterministic_hadamard_matrix(group_size, dtype=dtype, device=device)
* group_size**-0.5
)
def _quant_weight_nvfp4(
b: torch.Tensor,
forward_hadamard_matrix: torch.Tensor,
global_scale: torch.Tensor,
device: str,
M: int,
N: int,
K: int,
):
weight_hf_e2m1, weight_hf_e8m0 = fusedQuantizeNv(
b, forward_hadamard_matrix, global_scale
)
weight_hf_scale_block = to_blocked(weight_hf_e8m0, backend="triton").view(
-1, K // 16
)
return weight_hf_e2m1, weight_hf_scale_block
def build_nvfp4_runner(cfg, a, b, forward_hadamard_matrix, dtype, device, M, N, K):
alpha = torch.tensor([1.0], device="cuda")
global_scale = torch.tensor([1.0], device="cuda")
weight_hf_e2m1, weight_hf_scale_block = _quant_weight_nvfp4(
b, forward_hadamard_matrix, global_scale, device, M, N, K
)
if cfg["no_a_quant"]:
# Pre-quantize activation
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeNv(
a, forward_hadamard_matrix, global_scale
)
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton").view(
-1, K // 16
)
def run():
return ops.cutlass_scaled_fp4_mm(
input_hf_e2m1,
weight_hf_e2m1,
input_hf_scale_block,
weight_hf_scale_block,
alpha,
torch.bfloat16,
)
return run
# Quantize activation on-the-fly
def run():
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeNv(
a, forward_hadamard_matrix, global_scale
)
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton").view(
-1, K // 16
)
return ops.cutlass_scaled_fp4_mm(
input_hf_e2m1,
weight_hf_e2m1,
input_hf_scale_block,
weight_hf_scale_block,
alpha,
torch.bfloat16,
)
return run
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[
1,
4,
8,
16,
32,
64,
128,
256,
512,
1024,
2048,
4096,
8192,
16384,
24576,
32768,
],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=_enabled,
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs NVFP4 GEMMs",
args={},
)
)
def benchmark(batch_size, provider, N, K, had_size):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
forward_hadamard_matrix = get_hadamard_matrix(had_size, dtype, device)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), rep=200, quantiles=quantiles
)
else:
cfg = PROVIDER_CFGS[provider]
run_quant = build_nvfp4_runner(
cfg, a, b, forward_hadamard_matrix, dtype, device, M, N, K
)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), rep=200, quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
def prepare_shapes(args):
out = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN.append(model)
out.append(KN)
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.3-70B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
args = parser.parse_args()
for K, N, model in prepare_shapes(args):
for had_size in [16, 32, 64, 128]:
print(f"{model}, N={N} K={K}, HAD={had_size}, BF16 vs NVFP4 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_nvfp4_res_n{N}_k{K}",
N=N,
K=K,
had_size=had_size,
)
print("Benchmark finished!")

View File

@ -51,7 +51,7 @@ def calculate_diff(
):
"""Calculate the difference between Inductor and CUDA implementations."""
device = torch.device("cuda")
x = torch.rand((batch_size * hidden_size, 4096), dtype=dtype, device=device)
x = torch.randn((batch_size, hidden_size), dtype=dtype, device=device)
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=False)
@ -59,23 +59,25 @@ def calculate_diff(
torch_eager_out, torch_eager_scale = quant_fp8.forward_native(x)
cuda_out, cuda_scale = quant_fp8.forward_cuda(x)
out_allclose = lambda o1, o2: torch.allclose(
o1.to(torch.float32),
o2.to(torch.float32),
rtol=1e-3,
atol=1e-5,
)
scale_allclose = lambda s1, s2: torch.allclose(s1, s2, rtol=1e-3, atol=1e-5)
if (
out_allclose(cuda_out, torch_out)
and scale_allclose(cuda_scale, torch_scale)
and out_allclose(cuda_out, torch_eager_out)
and scale_allclose(cuda_scale, torch_eager_scale)
):
try:
torch.testing.assert_close(
cuda_out.to(torch.float32),
torch_out.to(torch.float32),
rtol=1e-3,
atol=1e-5,
)
torch.testing.assert_close(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5)
torch.testing.assert_close(
cuda_out.to(torch.float32),
torch_eager_out.to(torch.float32),
rtol=1e-3,
atol=1e-5,
)
torch.testing.assert_close(cuda_scale, torch_eager_scale, rtol=1e-3, atol=1e-5)
print("✅ All implementations match")
else:
except AssertionError as e:
print("❌ Implementations differ")
print(e)
configs = []
@ -91,7 +93,7 @@ def benchmark_quantization(
):
device = torch.device("cuda")
x = torch.randn(batch_size * hidden_size, 4096, device=device, dtype=dtype)
x = torch.randn(batch_size, hidden_size, device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=col_major)
@ -157,21 +159,21 @@ if __name__ == "__main__":
)
parser.add_argument("-c", "--check", action="store_true")
parser.add_argument(
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
)
parser.add_argument(
"--hidden-sizes",
type=int,
nargs="+",
default=None,
help="Hidden sizes to benchmark (default: 1,16,64,128,256,512,1024,2048,4096)",
default=[896, 1024, 2048, 4096, 7168],
help="Hidden sizes to benchmark",
)
parser.add_argument(
"--batch-sizes",
type=int,
nargs="+",
default=None,
help="Batch sizes to benchmark (default: 1,16,32,64,128)",
default=[1, 16, 128, 512, 1024],
help="Batch sizes to benchmark",
)
parser.add_argument(
"--group-sizes",
@ -192,8 +194,8 @@ if __name__ == "__main__":
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
hidden_sizes = args.hidden_sizes or [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
batch_sizes = args.batch_sizes or [1, 16, 32, 64, 128]
hidden_sizes = args.hidden_sizes
batch_sizes = args.batch_sizes
if args.group_sizes is not None:
group_shapes = []

View File

@ -0,0 +1,406 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark the performance of the cutlass_moe_fp8 kernel vs the triton_moe
kernel. Both kernels take in fp8 quantized weights and 16-bit activations,
but use different quantization strategies and backends.
"""
import nvtx
import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.fused_moe.config import fp8_w8a8_moe_quant_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
# Weight shapes for different models: [num_experts, topk, hidden_size,
# intermediate_size]
WEIGHT_SHAPES_MOE = {
"mixtral-8x7b": [
[8, 2, 4096, 14336],
],
"deepseek-v2": [
[160, 6, 5120, 12288],
],
"custom-small": [
[8, 2, 2048, 7168],
],
"glm45-fp8": [
[128, 8, 4096, 1408],
],
"Llama-4-Maverick-17B-128E-Instruct-FP8": [
[128, 1, 5120, 8192],
],
}
DEFAULT_MODELS = [
"mixtral-8x7b",
]
DEFAULT_BATCH_SIZES = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
DEFAULT_TP_SIZES = [1]
PER_ACT_TOKEN_OPTS = [False, True]
PER_OUT_CH_OPTS = [False, True]
FP8_DTYPE = current_platform.fp8_dtype()
def bench_run(
results: list,
model: str,
num_experts: int,
topk: int,
per_act_token: bool,
per_out_ch: bool,
mkn: tuple[int, int, int],
):
(m, k, n) = mkn
dtype = torch.half
device = "cuda"
# Create input activations
a = torch.randn((m, k), device=device, dtype=dtype) / 10
# Create weights
w1 = torch.randn((num_experts, 2 * n, k), device=device, dtype=dtype) / 10
w2 = torch.randn((num_experts, k, n), device=device, dtype=dtype) / 10
# Create FP8 quantized weights and scales for both kernels
w1_fp8q = torch.empty((num_experts, 2 * n, k), device=device, dtype=FP8_DTYPE)
w2_fp8q = torch.empty((num_experts, k, n), device=device, dtype=FP8_DTYPE)
# Create scales based on quantization strategy
if per_out_ch:
# Per-channel quantization
w1_scale = torch.empty(
(num_experts, 2 * n, 1), device=device, dtype=torch.float32
)
w2_scale = torch.empty((num_experts, k, 1), device=device, dtype=torch.float32)
else:
# Per-tensor quantization
w1_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
w2_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
# Quantize weights
for expert in range(num_experts):
if per_out_ch:
# Per-channel quantization - not yet implemented properly
# For now, fall back to per-tensor quantization
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
# Expand scalar scales to the expected per-channel shape
w1_scale[expert] = w1_scale_temp.expand(2 * n, 1)
w2_scale[expert] = w2_scale_temp.expand(k, 1)
else:
# Per-tensor quantization
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
# Store scalar scales in [1, 1] tensors
w1_scale[expert, 0, 0] = w1_scale_temp
w2_scale[expert, 0, 0] = w2_scale_temp
# Prepare weights for CUTLASS (no transpose needed)
w1_fp8q_cutlass = w1_fp8q # Keep original [E, 2N, K]
w2_fp8q_cutlass = w2_fp8q # Keep original [E, K, N]
# Create router scores and get topk
score = torch.randn((m, num_experts), device=device, dtype=dtype)
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
# WORKAROUND: CUTLASS MoE FP8 has issues with per-token quantization
# Force per-tensor quantization for all cases to match working e2e setup
a1_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
a2_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
# Force per-tensor quantization for all cases
per_act_token = False
# Create stride tensors for CUTLASS
ab_strides1 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
ab_strides2 = torch.full((num_experts,), n, dtype=torch.int64, device=device)
c_strides1 = torch.full((num_experts,), 2 * n, dtype=torch.int64, device=device)
c_strides2 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
def run_triton_moe(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a1_scale: torch.Tensor,
a2_scale: torch.Tensor,
num_repeats: int,
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
per_act_token_quant=per_act_token,
per_out_ch_quant=per_out_ch,
)
for _ in range(num_repeats):
fused_experts(
a,
w1,
w2,
topk_weights,
topk_ids,
quant_config=quant_config,
)
def run_cutlass_moe_fp8(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides1: torch.Tensor,
c_strides2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a1_scale: torch.Tensor,
a2_scale: torch.Tensor,
num_repeats: int,
):
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
per_act_token_quant=per_act_token,
per_out_ch_quant=per_out_ch,
)
for _ in range(num_repeats):
with nvtx.annotate("cutlass_moe_fp8", color="blue"):
cutlass_moe_fp8(
a=a,
w1_q=w1,
w2_q=w2,
topk_weights=topk_weights,
topk_ids=topk_ids,
ab_strides1=ab_strides1,
ab_strides2=ab_strides2,
c_strides1=c_strides1,
c_strides2=c_strides2,
quant_config=quant_config,
activation="silu",
global_num_experts=num_experts,
)
# Pre-create quantization config to avoid creating it inside CUDA graph
quant_config = fp8_w8a8_moe_quant_config(
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
per_act_token_quant=per_act_token,
per_out_ch_quant=per_out_ch,
)
# Create CUDA graphs for CUTLASS (match benchmark_moe.py pattern exactly)
cutlass_stream = torch.cuda.Stream()
cutlass_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
# Capture 10 invocations like benchmark_moe.py
for _ in range(10):
cutlass_moe_fp8(
a=a,
w1_q=w1_fp8q_cutlass,
w2_q=w2_fp8q_cutlass,
topk_weights=topk_weights,
topk_ids=topk_ids,
ab_strides1=ab_strides1,
ab_strides2=ab_strides2,
c_strides1=c_strides1,
c_strides2=c_strides2,
quant_config=quant_config,
activation="silu",
global_num_experts=num_experts,
)
torch.cuda.synchronize()
# Create CUDA graphs for Triton (match benchmark_moe.py pattern exactly)
triton_stream = torch.cuda.Stream()
triton_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(triton_graph, stream=triton_stream):
# Capture 10 invocations like benchmark_moe.py
for _ in range(10):
fused_experts(
a,
w1_fp8q,
w2_fp8q,
topk_weights,
topk_ids,
quant_config=quant_config,
)
torch.cuda.synchronize()
def bench_cuda_graph(graph, num_warmup=5, num_iters=100):
"""Benchmark CUDA graph using events like benchmark_moe.py"""
# Warmup
for _ in range(num_warmup):
graph.replay()
torch.cuda.synchronize()
# Timing
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies = []
for _ in range(num_iters):
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
# Divide by 10 since graph contains 10 calls
return sum(latencies) / (num_iters * 10)
# Benchmark parameters
num_warmup = 5
num_iters = 100
# Benchmark only CUDA graphs (more reliable and faster)
# Benchmark Triton MoE with CUDA graphs
triton_graph_time = bench_cuda_graph(
triton_graph, num_warmup=num_warmup, num_iters=num_iters
)
# Benchmark CUTLASS MoE with CUDA graphs
cutlass_graph_time = bench_cuda_graph(
cutlass_graph, num_warmup=num_warmup, num_iters=num_iters
)
# Convert ms to us and return results
triton_time_us = triton_graph_time * 1000
cutlass_time_us = cutlass_graph_time * 1000
return {
"batch_size": m,
"triton_time_us": triton_time_us,
"cutlass_time_us": cutlass_time_us,
}
def main(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
all_results = []
for model in args.models:
for tp in args.tp_sizes:
for layer in WEIGHT_SHAPES_MOE[model]:
num_experts = layer[0]
topk = layer[1]
size_k = layer[2]
size_n = layer[3] // tp
if len(args.limit_k) > 0 and size_k not in args.limit_k:
continue
if len(args.limit_n) > 0 and size_n not in args.limit_n:
continue
for per_act_token in args.per_act_token_opts:
for per_out_ch in args.per_out_ch_opts:
print(
f"\n=== {model}, experts={num_experts}, topk={topk},"
f"per_act={per_act_token}, per_out_ch={per_out_ch} ==="
)
config_results = []
for size_m in args.batch_sizes:
mkn = (size_m, size_k, size_n)
result = bench_run(
[], # Not used anymore
model,
num_experts,
topk,
per_act_token,
per_out_ch,
mkn,
)
if result:
config_results.append(result)
# Print results table for this configuration
if config_results:
print(
f"\n{'Batch Size':<12}"
f"{'Triton (us)':<15}"
f"{'CUTLASS (us)':<15}"
)
print("-" * 45)
for result in config_results:
print(
f"{result['batch_size']:<12}"
f"{result['triton_time_us']:<15.2f}"
f"{result['cutlass_time_us']:<15.2f}"
)
all_results.extend(config_results)
print(f"\nTotal benchmarks completed: {len(all_results)}")
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="""Benchmark CUTLASS FP8 MOE vs Triton FP8 FUSED MOE
across specified models/shapes/batches
Example usage:
python benchmark_cutlass_moe_fp8.py \
--model "Llama-4-Maverick-17B-128E-Instruct-FP8" \
--tp-sizes 8 \
--batch-size 2 4 8 \
--per-act-token-opts false \
--per-out-ch-opts false
"""
)
parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES_MOE.keys(),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
parser.add_argument(
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument(
"--per-act-token-opts",
nargs="+",
type=lambda x: x.lower() == "true",
default=[False, True],
help="Per-activation token quantization options (true/false)",
)
parser.add_argument(
"--per-out-ch-opts",
nargs="+",
type=lambda x: x.lower() == "true",
default=[False, True],
help="Per-output channel quantization options (true/false)",
)
args = parser.parse_args()
main(args)

View File

@ -7,6 +7,10 @@ Benchmark script for device communicators:
CustomAllreduce (oneshot, twoshot), PyNcclCommunicator,
and SymmMemCommunicator (multimem, two-shot).
for NCCL symmetric memory you need to set the environment variables
NCCL_NVLS_ENABLE=1 NCCL_CUMEM_ENABLE=1 VLLM_USE_NCCL_SYMM_MEM=1, otherwise NCCL does
not use fast NVLS implementation for all reduce.
Usage:
torchrun --nproc_per_node=<N> benchmark_device_communicators.py [options]
@ -26,7 +30,13 @@ import torch.distributed as dist
from torch.distributed import ProcessGroup
from vllm.distributed.device_communicators.custom_all_reduce import CustomAllreduce
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
from vllm.distributed.device_communicators.pynccl import (
PyNcclCommunicator,
register_nccl_symmetric_ops,
)
from vllm.distributed.device_communicators.pynccl_allocator import (
set_graph_pool_id,
)
from vllm.distributed.device_communicators.symm_mem import SymmMemCommunicator
from vllm.logger import init_logger
from vllm.utils import FlexibleArgumentParser
@ -98,6 +108,7 @@ class CommunicatorBenchmark:
)
if not self.pynccl_comm.disabled:
logger.info("Rank %s: PyNcclCommunicator initialized", self.rank)
register_nccl_symmetric_ops(self.pynccl_comm)
else:
logger.info("Rank %s: PyNcclCommunicator disabled", self.rank)
self.pynccl_comm = None
@ -194,6 +205,15 @@ class CommunicatorBenchmark:
None, # no env variable needed
)
)
communicators.append(
(
"pynccl-symm",
lambda t: torch.ops.vllm.all_reduce_symmetric_with_copy(t),
lambda t: True, # Always available if initialized
nullcontext(),
None, # no env variable needed
)
)
if self.symm_mem_comm_multimem is not None:
comm = self.symm_mem_comm_multimem
@ -271,7 +291,9 @@ class CommunicatorBenchmark:
# Capture the graph using context manager
with context:
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
graph_pool = torch.cuda.graph_pool_handle()
set_graph_pool_id(graph_pool)
with torch.cuda.graph(graph, pool=graph_pool):
for _ in range(CUDA_GRAPH_CAPTURE_CYCLES):
allreduce_fn(graph_input)

View File

@ -79,9 +79,9 @@ def make_rand_lora_weight_tensor(
def make_rand_tensors(
a_shape: tuple[int],
b_shape: tuple[int],
c_shape: tuple[int],
a_shape: tuple[int, ...],
b_shape: tuple[int, ...],
c_shape: tuple[int, ...],
a_dtype: torch.dtype,
b_dtype: torch.dtype,
c_dtype: torch.dtype,
@ -243,7 +243,7 @@ class OpType(Enum):
lora_rank: int,
num_loras: int,
num_slices: int,
) -> tuple[tuple[int], tuple[int], tuple[int]]:
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
"""
Given num_slices, return the shapes of the A, B, and C matrices
in A x B = C, for the op_type

View File

@ -579,18 +579,22 @@ def main(args: argparse.Namespace):
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
intermediate_size = config.ffn_config.ffn_hidden_size
hidden_size = config.hidden_size
elif config.architectures[0] == "JambaForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
hidden_size = config.hidden_size
elif config.architectures[0] in (
"DeepseekV3ForCausalLM",
"DeepseekV2ForCausalLM",
"DeepseekV3ForCausalLM",
"DeepseekV32ForCausalLM",
"Glm4MoeForCausalLM",
):
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
hidden_size = config.hidden_size
elif config.architectures[0] in (
"Qwen2MoeForCausalLM",
"Qwen3MoeForCausalLM",
@ -599,10 +603,18 @@ def main(args: argparse.Namespace):
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
hidden_size = config.hidden_size
elif config.architectures[0] == "Qwen3VLMoeForConditionalGeneration":
text_config = config.get_text_config()
E = text_config.num_experts
topk = text_config.num_experts_per_tok
intermediate_size = text_config.moe_intermediate_size
hidden_size = text_config.hidden_size
elif config.architectures[0] in ("HunYuanMoEV1ForCausalLM"):
E = config.num_experts
topk = config.moe_topk[0]
intermediate_size = config.moe_intermediate_size[0]
hidden_size = config.hidden_size
else:
# Support for llama4
config = config.get_text_config()
@ -610,6 +622,7 @@ def main(args: argparse.Namespace):
E = config.num_local_experts
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
hidden_size = config.hidden_size
enable_ep = bool(args.enable_expert_parallel)
if enable_ep:
ensure_divisibility(E, args.tp_size, "Number of experts")
@ -618,7 +631,6 @@ def main(args: argparse.Namespace):
else:
ensure_divisibility(intermediate_size, args.tp_size, "intermediate_size")
shard_intermediate_size = 2 * intermediate_size // args.tp_size
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"

View File

@ -0,0 +1,174 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from __future__ import annotations
import random
import time
import torch
from tabulate import tabulate
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random,
)
logger = init_logger(__name__)
@torch.inference_mode()
def run_benchmark(
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
kv_cache_dtype: str,
num_iters: int,
benchmark_mode: str,
device: str = "cuda",
) -> float:
"""Return latency (seconds) for given num_tokens."""
if kv_cache_dtype == "fp8" and head_size % 16:
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
current_platform.seed_everything(42)
torch.set_default_device(device)
# create random key / value tensors [T, H, D].
key = torch.randn(num_tokens, num_heads, head_size, dtype=dtype, device=device)
value = torch.randn_like(key)
# prepare the slot mapping.
# each token is assigned a unique slot in the KV-cache.
num_slots = block_size * num_blocks
if num_tokens > num_slots:
raise ValueError("num_tokens cannot exceed the total number of cache slots")
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long, device=device)
key_caches, value_caches = create_kv_caches_with_random(
num_blocks,
block_size,
1, # num_layers
num_heads,
head_size,
kv_cache_dtype,
dtype,
device=device,
)
key_cache, value_cache = key_caches[0], value_caches[0]
# to free unused memory
del key_caches, value_caches
# compute per-kernel scaling factors for fp8 conversion (if used).
k_scale = (key.amax() / 64.0).to(torch.float32)
v_scale = (value.amax() / 64.0).to(torch.float32)
function_under_test = lambda: ops.reshape_and_cache(
key, # noqa: F821
value, # noqa: F821
key_cache, # noqa: F821
value_cache, # noqa: F821
slot_mapping, # noqa: F821
kv_cache_dtype,
k_scale,
v_scale,
)
if benchmark_mode == "cudagraph":
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
function_under_test()
torch.cuda.synchronize()
function_under_test = lambda: g.replay()
def run_cuda_benchmark(n_iters: int) -> float:
nonlocal key, value, key_cache, value_cache, slot_mapping
torch.cuda.synchronize()
start = time.perf_counter()
for _ in range(n_iters):
function_under_test()
torch.cuda.synchronize()
end = time.perf_counter()
return (end - start) / n_iters
# warm-up
run_cuda_benchmark(3)
lat = run_cuda_benchmark(num_iters)
# free tensors to mitigate OOM when sweeping
del key, value, key_cache, value_cache, slot_mapping
torch.cuda.empty_cache()
return lat
def main(args):
rows = []
for exp in range(1, 17):
n_tok = 2**exp
lat = run_benchmark(
num_tokens=n_tok,
num_heads=args.num_heads,
head_size=args.head_size,
block_size=args.block_size,
num_blocks=args.num_blocks,
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
kv_cache_dtype=args.kv_cache_dtype,
num_iters=args.iters,
benchmark_mode=args.mode,
device="cuda",
)
rows.append([n_tok, lat * 1e6]) # convert to microseconds
print(f"Benchmark results for implementation cuda (measuring with {args.mode}):")
print(tabulate(rows, headers=["num_tokens", "latency (µs)"], floatfmt=".3f"))
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument("--num-heads", type=int, default=128)
parser.add_argument(
"--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128,
)
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
parser.add_argument("--num-blocks", type=int, default=128 * 128)
parser.add_argument(
"--dtype",
type=str,
choices=["half", "bfloat16", "float"],
default="bfloat16",
)
parser.add_argument(
"--kv-cache-dtype",
type=str,
choices=["auto", "fp8"],
default="auto",
)
parser.add_argument("--iters", type=int, default=200)
parser.add_argument(
"--mode",
type=str,
choices=["cudagraph", "no_graph"],
default="cudagraph",
)
args = parser.parse_args()
main(args)

View File

@ -9,6 +9,9 @@ import torch
from tabulate import tabulate
from vllm import _custom_ops as ops
from vllm.attention.ops.triton_reshape_and_cache_flash import (
triton_reshape_and_cache_flash,
)
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
@ -31,6 +34,8 @@ def run_benchmark(
kv_cache_dtype: str,
kv_cache_layout: str,
num_iters: int,
implementation: str,
benchmark_mode: str,
device: str = "cuda",
) -> float:
"""Return latency (seconds) for given num_tokens."""
@ -38,6 +43,14 @@ def run_benchmark(
if kv_cache_dtype == "fp8" and head_size % 16:
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
if implementation not in ("cuda", "triton"):
raise ValueError(
f"Unsupported implementation: {implementation}. "
"Only 'cuda' and 'triton' are supported."
)
if implementation == "triton" and kv_cache_layout == "HND":
return float("nan") # Triton does not support HND layout yet.
current_platform.seed_everything(42)
torch.set_default_device(device)
@ -65,27 +78,49 @@ def run_benchmark(
cache_layout=kv_cache_layout,
)
key_cache, value_cache = key_caches[0], value_caches[0]
# to free unused memory
del key_caches, value_caches
# compute per-kernel scaling factors for fp8 conversion (if used).
k_scale = (key.amax() / 64.0).to(torch.float32)
v_scale = (value.amax() / 64.0).to(torch.float32)
if implementation == "cuda":
function_under_test = lambda: ops.reshape_and_cache_flash(
key, # noqa: F821
value, # noqa: F821
key_cache, # noqa: F821
value_cache, # noqa: F821
slot_mapping, # noqa: F821
kv_cache_dtype,
k_scale,
v_scale,
)
else:
function_under_test = lambda: triton_reshape_and_cache_flash(
key, # noqa: F821
value, # noqa: F821
key_cache, # noqa: F821
value_cache, # noqa: F821
slot_mapping, # noqa: F821
kv_cache_dtype,
k_scale,
v_scale,
)
if benchmark_mode == "cudagraph":
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
function_under_test()
torch.cuda.synchronize()
function_under_test = lambda: g.replay()
def run_cuda_benchmark(n_iters: int) -> float:
nonlocal key, value, key_cache, value_cache, slot_mapping
torch.cuda.synchronize()
start = time.perf_counter()
for _ in range(n_iters):
ops.reshape_and_cache_flash(
key,
value,
key_cache,
value_cache,
slot_mapping,
kv_cache_dtype,
k_scale,
v_scale,
)
torch.cuda.synchronize()
function_under_test()
torch.cuda.synchronize()
end = time.perf_counter()
return (end - start) / n_iters
@ -116,10 +151,16 @@ def main(args):
kv_cache_dtype=args.kv_cache_dtype,
kv_cache_layout=layout,
num_iters=args.iters,
implementation=args.implementation,
benchmark_mode=args.mode,
device="cuda",
)
rows.append([n_tok, layout, f"{lat * 1e6:.3f}"])
print(
f"Benchmark results for implementation {args.implementation}"
f" (measuring with {args.mode}):"
)
print(tabulate(rows, headers=["num_tokens", "layout", "latency (µs)"]))
@ -151,6 +192,21 @@ if __name__ == "__main__":
)
parser.add_argument("--iters", type=int, default=100)
parser.add_argument(
"--implementation",
type=str,
choices=["cuda", "triton"],
default="cuda",
)
parser.add_argument(
"--mode",
type=str,
choices=["cudagraph", "no_graph"],
default="cudagraph",
)
args = parser.parse_args()
main(args)

View File

@ -1,5 +1,19 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Comprehensive 3-way SiLU Benchmark Suite
This benchmark compares three SiLU implementations:
1. SiLU V2 (CUDA) - Optimized CUDA kernel implementation
2. Triton Kernel - Triton-based implementation
The suite generates detailed performance comparisons including:
- Memory bandwidth utilization
- Speedup ratios (baseline vs optimized implementations)
- Performance across different expert configurations and token distributions
"""
from collections.abc import Callable
import matplotlib.pyplot as plt
@ -7,7 +21,7 @@ import numpy as np
import torch
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
silu_mul_fp8_quant_deep_gemm_cuda,
persistent_masked_m_silu_mul_quant,
)
from vllm.platforms import current_platform
from vllm.triton_utils import tl, triton
@ -94,6 +108,7 @@ def silu_mul_fp8_quant_deep_gemm_triton(
num_parallel_tokens,
group_size: int = 128,
eps: float = 1e-10,
expert_offsets: torch.Tensor = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Quantize silu(y[..., :H]) * y[..., H:] to FP8 with group per-token scales
@ -174,7 +189,7 @@ def silu_mul_fp8_quant_deep_gemm_triton(
# Parse generation strategies
strategies = ["uniform", "max_t", "first_t"]
strategies = ["random_imbalanced", "uniform", "max_t"]
def benchmark(
@ -195,15 +210,27 @@ def benchmark(
current_platform.seed_everything(42 + seed_offset)
y = torch.rand((E, T, 2 * H), dtype=torch.bfloat16, device="cuda").contiguous()
if gen_strategy == "uniform":
r = torch.rand(size=(E,), device="cuda")
if gen_strategy == "random_imbalanced":
def generate_expert_loads(n_e, total_tokens, ratio, device="cuda"):
mean = total_tokens // n_e
min_max = mean // ratio
e = torch.ones(size=(E,), dtype=torch.int64, device=device) * mean
e[0] = min_max
r = torch.rand(size=(E - 1,))
r /= r.sum()
r *= total_tokens - min_max
r = r.round().long()
e[1:] = r.to(device=device)
return e
tokens_per_expert = generate_expert_loads(E, total_tokens, 0.7, "cuda")
elif gen_strategy == "uniform":
r = torch.rand(size=(E,))
r /= r.sum()
r *= total_tokens
tokens_per_expert = r.int()
tokens_per_expert = torch.minimum(
tokens_per_expert,
torch.ones((E,), device=r.device, dtype=torch.int) * T,
)
r = r.round().long()
tokens_per_expert = r
elif gen_strategy == "max_t":
tokens_per_expert = torch.empty(size=(E,), dtype=torch.int32, device="cuda")
tokens_per_expert.fill_(total_tokens / E)
@ -281,40 +308,34 @@ def benchmark(
def create_comparison_plot(
ratio, cuda_times, baseline_times, config_labels, strategy_name, id
ratios, silu_v2_times, triton_times, config_labels, strategy_name, id
):
"""Create a comparison plot for a specific generation strategy"""
fig, ax = plt.subplots(1, 1, figsize=(16, 6))
fig, ax = plt.subplots(1, 1, figsize=(18, 6))
# Configure x-axis positions
x = np.arange(len(config_labels))
width = 0.35
width = 0.25
# Execution Time plot (lower is better)
ax.bar(x, silu_v2_times, width, label="SiLU V2 (CUDA)", alpha=0.8, color="blue")
ax.bar(
x - width / 2, cuda_times, width, label="CUDA Kernel", alpha=0.8, color="blue"
)
ax.bar(
x + width / 2,
baseline_times,
width,
label="Baseline",
alpha=0.8,
color="orange",
x + width, triton_times, width, label="Triton Kernel", alpha=0.8, color="green"
)
# Add speedup labels over each bar pair
# Add speedup labels over each bar trio
for i in range(len(x)):
speedup = ratio[i]
max_height = max(cuda_times[i], baseline_times[i])
triton_v2_speedup = ratios[i][1] # triton/v2
max_height = max(silu_v2_times[i], triton_times[i])
# Triton/V2 speedup
ax.text(
x[i],
x[i] + width / 2,
max_height + max_height * 0.02,
f"{speedup:.2f}x",
f"{triton_v2_speedup:.2f}x",
ha="center",
va="bottom",
fontweight="bold",
fontsize=9,
fontsize=8,
)
ax.set_xlabel("Configuration")
@ -332,56 +353,75 @@ def create_comparison_plot(
def create_combined_plot(all_results):
"""Create a combined plot with all strategies in one PNG"""
num_strategies = len(all_results)
fig, axes = plt.subplots(num_strategies, 1, figsize=(20, 6 * num_strategies))
fig, axes = plt.subplots(num_strategies, 1, figsize=(22, 7 * num_strategies))
if num_strategies == 1:
axes = [axes]
for idx, (
strategy_name,
ratio,
cuda_times,
baseline_times,
all_ratios,
all_silu_v2_results,
all_triton_results,
config_labels,
config_x_axis,
) in enumerate(all_results):
ax = axes[idx]
# Flatten the nested results to get bandwidth percentages for plotting
silu_v2_bandwidths = []
triton_bandwidths = []
flat_ratios = []
for config_results in all_silu_v2_results:
for result in config_results:
silu_v2_bandwidths.append(result[3]) # bandwidth percentage
for config_results in all_triton_results:
for result in config_results:
triton_bandwidths.append(result[3]) # bandwidth percentage
for config_ratios in all_ratios:
for ratio in config_ratios:
flat_ratios.append(ratio)
# Configure x-axis positions
x = np.arange(len(config_labels))
width = 0.35
width = 0.25
# Execution Time plot (lower is better)
# Bandwidth utilization plot (higher is better)
ax.bar(
x - width / 2,
cuda_times,
x,
silu_v2_bandwidths,
width,
label="CUDA Kernel",
label="SiLU V2 (CUDA)",
alpha=0.8,
color="blue",
)
ax.bar(
x + width / 2,
baseline_times,
x + width,
triton_bandwidths,
width,
label="Baseline",
label="Triton Kernel",
alpha=0.8,
color="orange",
color="green",
)
# Add speedup labels over each bar pair
# Add speedup labels over each bar trio
for i in range(len(x)):
speedup = ratio[i]
max_height = max(cuda_times[i], baseline_times[i])
triton_v2_speedup = flat_ratios[i] # triton/v2
max_height = max(silu_v2_bandwidths[i], triton_bandwidths[i])
# Triton/V2 speedup
ax.text(
x[i],
x[i] + width / 2,
max_height + max_height * 0.02,
f"{speedup:.2f}x",
f"{triton_v2_speedup:.2f}x",
ha="center",
va="bottom",
fontweight="bold",
fontsize=9,
fontsize=8,
)
ax.set_xlabel("Configuration")
@ -395,7 +435,7 @@ def create_combined_plot(all_results):
ax.grid(True, alpha=0.3)
plt.tight_layout()
filename = "../../silu_bench/silu_benchmark_combined.png"
filename = "silu_benchmark_combined_3way.png"
plt.savefig(filename, dpi=300, bbox_inches="tight")
plt.show()
@ -405,7 +445,9 @@ def create_combined_plot(all_results):
outer_dim = 7168
configs = [
# DeepSeekV3 Configs
# (1, 56, 7168),
(8, 1024, 7168),
# (32, 56, 7168),
# DeepSeekV3 Configs
(32, 1024, 7168),
# DeepSeekV3 Configs
@ -417,6 +459,7 @@ num_warmups = 20
strategy_descriptions = {
"uniform": "Uniform Random",
"random_imbalanced": "Imbalanced Random",
"max_t": "Even Assignment",
"first_t": "experts[0] = T, experts[1:] = 0",
}
@ -433,28 +476,31 @@ for id, strategy in enumerate(strategies):
print(f"Testing strategy: {strategy_descriptions[strategy]}")
print(f"{'=' * 60}")
# Collect benchmark data for both algorithms
# Collect benchmark data for all three algorithms
config_labels = []
config_x_axis = []
all_cuda_results = []
all_baseline_results = []
all_silu_v2_results = []
all_triton_results = []
all_ratios = []
for E, T, H in configs:
total_tokens_config = [8 * E, 16 * E, 32 * E, 64 * E, 128 * E, 256 * E]
total_tokens_config = []
for i in [8, 16, 32, 64, 128, 256, 512]:
if i <= T:
total_tokens_config.append(i * E)
config_x_axis.append(total_tokens_config)
cuda_results = []
baseline_results = []
silu_v2_results = []
triton_results = []
ratios = []
for total_tokens in total_tokens_config:
config_label = f"E={E},T={T},H={H},TT={total_tokens}"
config_labels.append(config_label)
# CUDA kernel results
time_ms_cuda, gflops, gbps, perc = benchmark(
silu_mul_fp8_quant_deep_gemm_cuda,
# SiLU V2 (CUDA kernel) results
time_ms_silu_v2, gflops, gbps, perc = benchmark(
persistent_masked_m_silu_mul_quant,
E,
T,
H,
@ -463,9 +509,9 @@ for id, strategy in enumerate(strategies):
num_warmups=num_warmups,
gen_strategy=strategy,
)
cuda_results.append((time_ms_cuda, gflops, gbps, perc))
silu_v2_results.append((time_ms_silu_v2, gflops, gbps, perc))
# Baseline results
# Triton kernel results
time_ms_triton, gflops, gbps, perc = benchmark(
silu_mul_fp8_quant_deep_gemm_triton,
E,
@ -476,12 +522,20 @@ for id, strategy in enumerate(strategies):
num_warmups=num_warmups,
gen_strategy=strategy,
)
baseline_results.append((time_ms_triton, gflops, gbps, perc))
ratios.append(time_ms_triton / time_ms_cuda)
triton_results.append((time_ms_triton, gflops, gbps, perc))
print(f"Completed: {config_label}")
all_cuda_results.append(cuda_results)
all_baseline_results.append(baseline_results)
# Calculate speedup ratios (triton baseline / implementation)
triton_v2_ratio = time_ms_triton / time_ms_silu_v2
ratios.append(triton_v2_ratio)
print(
f"Completed: {config_label}:"
f" V2: {time_ms_silu_v2:.3f}ms,"
f" Triton: {time_ms_triton:.3f}ms"
)
all_silu_v2_results.append(silu_v2_results)
all_triton_results.append(triton_results)
all_ratios.append(ratios)
# Store results for combined plotting
@ -489,8 +543,8 @@ for id, strategy in enumerate(strategies):
(
strategy_descriptions[strategy],
all_ratios,
all_cuda_results,
all_baseline_results,
all_silu_v2_results,
all_triton_results,
config_labels,
config_x_axis,
)
@ -498,15 +552,18 @@ for id, strategy in enumerate(strategies):
# Print summary table for this strategy
print(f"\nSummary Table - {strategy_descriptions[strategy]}:")
print(f"{'Config':<20} {'CUDA Time(ms)':<12} {'Base Time(ms)':<12} {'Speedup':<8}")
print("-" * 60)
print(f" {'V2 Time(ms)':<12} {'Triton Time(ms)':<14} {'Triton/V2':<10}")
print("-" * 90)
for i, (E, T, H) in enumerate(configs):
speedup = baseline_results[i][0] / cuda_results[i][0]
# Get the first result for each config (simplifying for summary)
v2_time = silu_v2_results[i][0]
triton_time = triton_results[i][0]
triton_v2_speedup = triton_time / v2_time
config_label = f"E={E:3d},T={T:4d},H={H:4d}"
print(
f"{config_label:<20} {cuda_results[i][0]:8.5f} "
f"{baseline_results[i][0]:8.5f} {speedup:6.2f}x"
f"{config_label:<20} {v2_time:8.5f} {triton_time:10.5f} "
f"{triton_v2_speedup:8.2f}x"
)
@ -514,15 +571,14 @@ def create_total_tokens_plot(all_results):
num_strategies = len(all_results)
num_configs = len(configs)
# Create side-by-side subplots: 2 columns for speedup and bandwidth percentage
fig, axs = plt.subplots(
num_strategies, num_configs * 2, figsize=(28, 6 * num_strategies)
num_strategies, num_configs * 2, figsize=(32, 8 * num_strategies)
)
# Add main title to the entire figure
fig.suptitle(
"Performance Analysis: Speedup vs Bandwidth Utilization (Triton & CUDA)",
fontsize=16,
"Performance Analysis: Speedup vs Bandwidth Utilization (SiLU V2, and Triton)",
fontsize=18,
fontweight="bold",
y=0.98,
)
@ -539,8 +595,8 @@ def create_total_tokens_plot(all_results):
(
strategy_name,
all_ratios,
all_cuda_results,
all_baseline_results,
all_silu_v2_results,
all_triton_results,
config_labels,
config_x_axis,
) = result
@ -555,42 +611,54 @@ def create_total_tokens_plot(all_results):
ratios = all_ratios[config_idx]
total_tokens_values = config_x_axis[config_idx]
# Extract CUDA and Triton bandwidth percentages
cuda_bandwidth_percentages = [
result[3] for result in all_cuda_results[config_idx]
# Extract speedup ratios
triton_v2_ratios = [ratio for ratio in ratios]
# Extract bandwidth percentages for all implementations
v2_bandwidth_percentages = [
result[3] for result in all_silu_v2_results[config_idx]
]
triton_bandwidth_percentages = [
result[3] for result in all_baseline_results[config_idx]
result[3] for result in all_triton_results[config_idx]
]
# Plot speedup ratios vs total tokens (left plot)
ax_speedup.plot(
total_tokens_values, ratios, "bo-", linewidth=3, markersize=8
total_tokens_values,
triton_v2_ratios,
"go-",
linewidth=3,
markersize=8,
label="Triton/V2 Speedup",
)
ax_speedup.set_title(
f"{strategy_name}\nSpeedup (CUDA/Triton)\nE={E}, T={T}, H={H}",
f"{strategy_name}\nSpeedup vs Baseline (Triton)\nE={E}, T={T}, H={H}",
fontsize=12,
fontweight="bold",
)
ax_speedup.set_xlabel("Total Tokens", fontweight="bold", fontsize=11)
ax_speedup.set_ylabel("Speedup Ratio", fontweight="bold", fontsize=11)
ax_speedup.legend(prop={"weight": "bold"})
ax_speedup.grid(True, alpha=0.3)
# Plot bandwidth utilization (right plot)
ax_bandwidth.plot(
total_tokens_values,
cuda_bandwidth_percentages,
"ro-",
v2_bandwidth_percentages,
"o-",
linewidth=3,
markersize=8,
label="CUDA",
label="SiLU V2",
color="blue",
)
ax_bandwidth.plot(
total_tokens_values,
triton_bandwidth_percentages,
"go-",
"o-",
linewidth=3,
markersize=8,
label="Triton",
color="green",
)
ax_bandwidth.set_title(
f"{strategy_name}\nBandwidth Utilization (Hopper)\nE={E}, T={T}, H={H}",
@ -618,38 +686,12 @@ def create_total_tokens_plot(all_results):
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontweight("bold")
# Add value labels on speedup points
for x, y in zip(total_tokens_values, ratios):
# Add value labels on Triton/V2 speedup points
for x, y in zip(total_tokens_values, triton_v2_ratios):
ax_speedup.annotate(
f"{y:.2f}x",
(x, y),
textcoords="offset points",
xytext=(0, 12),
ha="center",
fontsize=10,
fontweight="bold",
bbox=dict(boxstyle="round,pad=0.3", facecolor="white", alpha=0.7),
)
# Add value labels on CUDA bandwidth points
for x, y in zip(total_tokens_values, cuda_bandwidth_percentages):
ax_bandwidth.annotate(
f"{y:.1f}%",
(x, y),
textcoords="offset points",
xytext=(0, 12),
ha="center",
fontsize=9,
fontweight="bold",
bbox=dict(boxstyle="round,pad=0.2", facecolor="red", alpha=0.3),
)
# Add value labels on Triton bandwidth points
for x, y in zip(total_tokens_values, triton_bandwidth_percentages):
ax_bandwidth.annotate(
f"{y:.1f}%",
(x, y),
textcoords="offset points",
xytext=(0, -15),
ha="center",
fontsize=9,
@ -659,17 +701,20 @@ def create_total_tokens_plot(all_results):
plt.tight_layout()
plt.subplots_adjust(top=0.93) # Make room for main title
filename = "silu_benchmark_total_tokens.png"
filename = "silu_benchmark_total_tokens_3way.png"
plt.savefig(filename, dpi=300, bbox_inches="tight")
plt.show()
return filename
# Create combined plot with all strategies
combined_plot_filename = create_total_tokens_plot(all_results)
# Create comprehensive 3-way comparison plots
combined_plot_filename = create_combined_plot(all_results)
total_tokens_plot_filename = create_total_tokens_plot(all_results)
print(f"\n{'=' * 60}")
print("Benchmark Complete!")
print(f"Generated combined plot: {combined_plot_filename}")
print(f"{'=' * 60}")
print(f"\n{'=' * 80}")
print("3-Way Benchmark Suite Complete!")
print(f"Generated combined comparison plot: {combined_plot_filename}")
print(f"Generated total tokens analysis plot: {total_tokens_plot_filename}")
print("Compared: SiLU V2 (CUDA), and Triton implementations")
print(f"{'=' * 80}")

View File

@ -11,13 +11,13 @@ from datetime import datetime
from typing import Any
import torch
import triton
from tqdm import tqdm
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul,
_w8a8_triton_block_scaled_mm,
)
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import FlexibleArgumentParser
mp.set_start_method("spawn", force=True)
@ -83,7 +83,7 @@ def w8a8_block_matmul(
)
if A.dtype == torch.float8_e4m3fn:
kernel = _w8a8_block_fp8_matmul
kernel = _w8a8_triton_block_scaled_mm
else:
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")

View File

@ -1,6 +1,5 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# fmt: off
# ruff: noqa: E501
import time
@ -8,27 +7,33 @@ import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
get_col_major_tma_aligned_tensor,
per_token_group_quant_fp8,
w8a8_block_fp8_matmul,
w8a8_triton_block_scaled_mm,
)
from vllm.triton_utils import triton
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
from vllm.utils.deep_gemm import (
calc_diff,
fp8_gemm_nt,
get_col_major_tma_aligned_tensor,
per_block_cast_to_fp8,
)
def benchmark_shape(m: int,
n: int,
k: int,
warmup: int = 100,
repeat: int = 10000,
verbose: bool = False) -> dict:
def benchmark_shape(
m: int,
n: int,
k: int,
warmup: int = 100,
repeat: int = 10000,
verbose: bool = False,
) -> dict:
"""Benchmark all implementations for a specific (m, n, k) shape."""
if verbose:
print(f"\n=== Benchmarking shape: m={m}, n={n}, k={k} ===")
# Create test tensors
A = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
B = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
A = torch.randn((m, k), device="cuda", dtype=torch.bfloat16)
B = torch.randn((n, k), device="cuda", dtype=torch.bfloat16)
# Reference result in BF16
torch.cuda.synchronize()
@ -45,34 +50,39 @@ def benchmark_shape(m: int,
# Pre-quantize A for all implementations
A_deepgemm, A_scale_deepgemm = per_token_group_quant_fp8(A, block_size[1])
A_scale_deepgemm = get_col_major_tma_aligned_tensor(A_scale_deepgemm)
C_deepgemm = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
C_deepgemm = torch.empty((m, n), device="cuda", dtype=torch.bfloat16)
A_vllm, A_scale_vllm = per_token_group_quant_fp8(A, block_size[1])
A_vllm_cutlass, A_scale_vllm_cutlass = per_token_group_quant_fp8(
A, block_size[1], column_major_scales=True)
A, block_size[1], column_major_scales=True
)
# === DeepGEMM Implementation ===
def deepgemm_gemm():
fp8_gemm_nt((A_deepgemm, A_scale_deepgemm),
(B_deepgemm, B_scale_deepgemm),
C_deepgemm)
fp8_gemm_nt(
(A_deepgemm, A_scale_deepgemm), (B_deepgemm, B_scale_deepgemm), C_deepgemm
)
return C_deepgemm
# === vLLM Triton Implementation ===
def vllm_triton_gemm():
return w8a8_block_fp8_matmul(A_vllm,
B_vllm,
A_scale_vllm,
B_scale_vllm,
block_size,
output_dtype=torch.bfloat16)
return w8a8_triton_block_scaled_mm(
A_vllm,
B_vllm,
A_scale_vllm,
B_scale_vllm,
block_size,
output_dtype=torch.bfloat16,
)
# === vLLM CUTLASS Implementation ===
def vllm_cutlass_gemm():
return ops.cutlass_scaled_mm(A_vllm_cutlass,
B_vllm.T,
scale_a=A_scale_vllm_cutlass,
scale_b=B_scale_vllm.T,
out_dtype=torch.bfloat16)
return ops.cutlass_scaled_mm(
A_vllm_cutlass,
B_vllm.T,
scale_a=A_scale_vllm_cutlass,
scale_b=B_scale_vllm.T,
out_dtype=torch.bfloat16,
)
# Run correctness check first
if verbose:
@ -89,26 +99,23 @@ def benchmark_shape(m: int,
print(f"DeepGEMM vs Reference difference: {deepgemm_diff:.6f}")
print(f"vLLM Triton vs Reference difference: {vllm_triton_diff:.6f}")
print(f"vLLM CUTLASS vs Reference difference: {vllm_cutlass_diff:.6f}")
print("vLLM Triton vs DeepGEMM difference: "
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}")
print("vLLM CUTLASS vs DeepGEMM difference: "
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}")
print(
"vLLM Triton vs DeepGEMM difference: "
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}"
)
print(
"vLLM CUTLASS vs DeepGEMM difference: "
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}"
)
# Benchmark implementations
implementations = {
"DeepGEMM": deepgemm_gemm,
"vLLM Triton": vllm_triton_gemm,
"vLLM CUTLASS": vllm_cutlass_gemm
"vLLM CUTLASS": vllm_cutlass_gemm,
}
benchmark_results = {
"shape": {
"m": m,
"n": n,
"k": k
},
"implementations": {}
}
benchmark_results = {"shape": {"m": m, "n": n, "k": k}, "implementations": {}}
for name, func in implementations.items():
# Warmup
@ -136,38 +143,36 @@ def benchmark_shape(m: int,
"tflops": tflops,
"gb_s": gb_s,
"diff": {
"DeepGEMM":
0.0 if name == "DeepGEMM" else calc_diff(func(), C_deepgemm),
"Reference":
deepgemm_diff if name == "DeepGEMM" else
(vllm_triton_diff
if name == "vLLM Triton" else vllm_cutlass_diff)
}
"DeepGEMM": 0.0
if name == "DeepGEMM"
else calc_diff(func(), C_deepgemm),
"Reference": deepgemm_diff
if name == "DeepGEMM"
else (vllm_triton_diff if name == "vLLM Triton" else vllm_cutlass_diff),
},
}
if verbose:
print(
f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s"
)
print(f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s")
# Calculate speedups
baseline = benchmark_results["implementations"]["DeepGEMM"]["time_ms"]
for name, data in benchmark_results["implementations"].items():
if name != "DeepGEMM":
speedup = baseline / data["time_ms"]
benchmark_results["implementations"][name][
"speedup_vs_deepgemm"] = speedup
benchmark_results["implementations"][name]["speedup_vs_deepgemm"] = speedup
if verbose:
print(f"DeepGEMM is {1/speedup:.2f}x "
f"{'faster' if 1/speedup > 1 else 'slower'} than {name}")
print(
f"DeepGEMM is {1 / speedup:.2f}x "
f"{'faster' if 1 / speedup > 1 else 'slower'} than {name}"
)
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"][
"time_ms"]
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"][
"time_ms"]
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"]["time_ms"]
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"]["time_ms"]
cutlass_vs_triton = vllm_triton_time / vllm_cutlass_time
benchmark_results["implementations"]["vLLM CUTLASS"][
"speedup_vs_triton"] = cutlass_vs_triton
benchmark_results["implementations"]["vLLM CUTLASS"]["speedup_vs_triton"] = (
cutlass_vs_triton
)
if verbose:
print(
f"vLLM CUTLASS is {cutlass_vs_triton:.2f}x "
@ -179,8 +184,7 @@ def benchmark_shape(m: int,
def format_table_row(values, widths):
"""Format a row with specified column widths."""
return "| " + " | ".join(f"{val:{w}}"
for val, w in zip(values, widths)) + " |"
return "| " + " | ".join(f"{val:{w}}" for val, w in zip(values, widths)) + " |"
def print_table(headers, rows, title=None):
@ -288,38 +292,50 @@ def run_benchmarks(verbose: bool = False):
for result in all_results:
shape = result["shape"]
impl_data = result["implementations"]["DeepGEMM"]
deepgemm_rows.append([
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}"
])
deepgemm_rows.append(
[
shape["m"],
shape["n"],
shape["k"],
f"{impl_data['time_us']:.1f}",
f"{impl_data['tflops']:.1f}",
f"{impl_data['gb_s']:.1f}",
]
)
print_table(deepgemm_headers,
deepgemm_rows,
title="DeepGEMM Implementation:")
print_table(deepgemm_headers, deepgemm_rows, title="DeepGEMM Implementation:")
# Print vLLM Triton table
triton_headers = [
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"
]
triton_headers = ["m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"]
triton_rows = []
for result in all_results:
shape = result["shape"]
impl_data = result["implementations"]["vLLM Triton"]
speedup = impl_data.get("speedup_vs_deepgemm", 1.0)
triton_rows.append([
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
format_speedup(speedup)
])
triton_rows.append(
[
shape["m"],
shape["n"],
shape["k"],
f"{impl_data['time_us']:.1f}",
f"{impl_data['tflops']:.1f}",
f"{impl_data['gb_s']:.1f}",
format_speedup(speedup),
]
)
print_table(triton_headers,
triton_rows,
title="vLLM Triton Implementation:")
print_table(triton_headers, triton_rows, title="vLLM Triton Implementation:")
# Print vLLM CUTLASS table
cutlass_headers = [
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM",
"vs Triton"
"m",
"n",
"k",
"Time (μs)",
"TFLOPS",
"GB/s",
"vs DeepGEMM",
"vs Triton",
]
cutlass_rows = []
for result in all_results:
@ -327,28 +343,27 @@ def run_benchmarks(verbose: bool = False):
impl_data = result["implementations"]["vLLM CUTLASS"]
vs_deepgemm = impl_data.get("speedup_vs_deepgemm", 1.0)
vs_triton = impl_data.get("speedup_vs_triton", 1.0)
cutlass_rows.append([
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
format_speedup(vs_deepgemm),
format_speedup(vs_triton)
])
cutlass_rows.append(
[
shape["m"],
shape["n"],
shape["k"],
f"{impl_data['time_us']:.1f}",
f"{impl_data['tflops']:.1f}",
f"{impl_data['gb_s']:.1f}",
format_speedup(vs_deepgemm),
format_speedup(vs_triton),
]
)
print_table(cutlass_headers,
cutlass_rows,
title="vLLM CUTLASS Implementation:")
print_table(cutlass_headers, cutlass_rows, title="vLLM CUTLASS Implementation:")
# Calculate and print averages
print("\n===== AVERAGE PERFORMANCE =====")
implementations = ["DeepGEMM", "vLLM Triton", "vLLM CUTLASS"]
avg_metrics = {
impl: {
"tflops": 0,
"gb_s": 0,
"time_ms": 0
}
for impl in implementations
impl: {"tflops": 0, "gb_s": 0, "time_ms": 0} for impl in implementations
}
for result in all_results:
@ -366,9 +381,9 @@ def run_benchmarks(verbose: bool = False):
avg_tflops = avg_metrics[impl]["tflops"] / num_shapes
avg_mem_bw = avg_metrics[impl]["gb_s"] / num_shapes
avg_time = avg_metrics[impl]["time_ms"] / num_shapes
avg_rows.append([
impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"
])
avg_rows.append(
[impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"]
)
print_table(avg_headers, avg_rows)
@ -376,21 +391,19 @@ def run_benchmarks(verbose: bool = False):
avg_speedups = {
"DeepGEMM vs vLLM Triton": 0,
"DeepGEMM vs vLLM CUTLASS": 0,
"vLLM CUTLASS vs vLLM Triton": 0
"vLLM CUTLASS vs vLLM Triton": 0,
}
for result in all_results:
deepgemm_time = result["implementations"]["DeepGEMM"]["time_ms"]
vllm_triton_time = result["implementations"]["vLLM Triton"]["time_ms"]
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"][
"time_ms"]
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"]["time_ms"]
avg_speedups[
"DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
avg_speedups[
"DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
avg_speedups[
"vLLM CUTLASS vs vLLM Triton"] += vllm_triton_time / vllm_cutlass_time
avg_speedups["DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
avg_speedups["DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
avg_speedups["vLLM CUTLASS vs vLLM Triton"] += (
vllm_triton_time / vllm_cutlass_time
)
print("\n===== AVERAGE SPEEDUPS =====")
speedup_headers = ["Comparison", "Speedup"]
@ -408,8 +421,7 @@ def run_benchmarks(verbose: bool = False):
for result in all_results:
for impl in implementations:
avg_diff[impl] += result["implementations"][impl]["diff"][
"Reference"]
avg_diff[impl] += result["implementations"][impl]["diff"]["Reference"]
diff_headers = ["Implementation", "Avg Diff vs Reference"]
diff_rows = []

View File

@ -13,7 +13,7 @@ from datetime import datetime
from enum import Enum
from http import HTTPStatus
from statistics import mean
from typing import NamedTuple, Optional, Union
from typing import NamedTuple, Union
import aiohttp # type: ignore
import numpy as np # type: ignore
@ -46,9 +46,9 @@ class ConversationSampling(str, Enum):
class ClientArgs(NamedTuple):
seed: int
max_num_requests: Optional[int]
max_num_requests: int | None
skip_first_turn: bool
max_turns: Optional[int]
max_turns: int | None
max_active_conversations: int
verbose: bool
print_content: bool
@ -109,9 +109,9 @@ class RequestStats(NamedTuple):
class MetricStats:
def __init__(self) -> None:
self.min: Optional[float] = None
self.max: Optional[float] = None
self.avg: Optional[float] = None
self.min: float | None = None
self.max: float | None = None
self.avg: float | None = None
self.sum = 0.0
self.count = 0
@ -143,7 +143,7 @@ class MovingAverage:
self.index = 0
self.sum = 0.0
self.count = 0
self.avg: Optional[float] = None
self.avg: float | None = None
def update(self, new_value: float) -> None:
if self.count < self.window_size:
@ -198,14 +198,6 @@ class DebugStats:
self.logger.info("-" * 50)
# Must support Python 3.8, we can't use str.removeprefix(prefix)
# introduced in Python 3.9
def remove_prefix(text: str, prefix: str) -> str:
if text.startswith(prefix):
return text[len(prefix) :]
return text
def nanosec_to_millisec(value: float) -> float:
return value / 1000000.0
@ -220,8 +212,8 @@ async def send_request(
chat_url: str,
model: str,
stream: bool = True,
min_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
min_tokens: int | None = None,
max_tokens: int | None = None,
) -> ServerResponse:
payload = {
"model": model,
@ -250,9 +242,9 @@ async def send_request(
timeout = aiohttp.ClientTimeout(total=timeout_sec)
valid_response = True
ttft: Optional[float] = None
ttft: float | None = None
chunk_delay: list[int] = []
latency: Optional[float] = None
latency: float | None = None
first_chunk = ""
generated_text = ""
@ -269,7 +261,7 @@ async def send_request(
if not chunk_bytes:
continue
chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk == "[DONE]":
# End of stream
latency = time.perf_counter_ns() - start_time
@ -364,7 +356,7 @@ async def send_turn(
req_args: RequestArgs,
verbose: bool,
verify_output: bool,
) -> Optional[RequestStats]:
) -> RequestStats | None:
assert messages_to_use > 0
assert messages_to_use <= len(conversation_messages)
@ -769,7 +761,7 @@ def get_client_config(
"Number of conversations must be equal or larger than the number of clients"
)
max_req_per_client: Optional[int] = None
max_req_per_client: int | None = None
if args.max_num_requests is not None:
# Max number of requests per client
req_per_client = args.max_num_requests // args.num_clients
@ -1032,7 +1024,7 @@ def process_statistics(
warmup_percentages: list[float],
test_params: dict,
verbose: bool,
gen_conv_args: Optional[GenConvArgs] = None,
gen_conv_args: GenConvArgs | None = None,
excel_output: bool = False,
) -> None:
if len(client_metrics) == 0:

View File

@ -1,49 +0,0 @@
# This local pyproject file is part of the migration from yapf to ruff format.
# It uses the same core rules as the main pyproject.toml file, but with the
# following differences:
# - ruff line length is overridden to 88
# - deprecated typing ignores (UP006, UP035) have been removed
[tool.ruff]
line-length = 88
[tool.ruff.lint.per-file-ignores]
"vllm/third_party/**" = ["ALL"]
"vllm/version.py" = ["F401"]
"vllm/_version.py" = ["ALL"]
[tool.ruff.lint]
select = [
# pycodestyle
"E",
# Pyflakes
"F",
# pyupgrade
"UP",
# flake8-bugbear
"B",
# flake8-simplify
"SIM",
# isort
"I",
# flake8-logging-format
"G",
]
ignore = [
# star imports
"F405", "F403",
# lambda expression assignment
"E731",
# Loop control variable not used within loop body
"B007",
# f-string format
"UP032",
# Can remove once 3.10+ is the minimum Python version
"UP007",
]
[tool.ruff.lint.isort]
known-first-party = ["vllm"]
[tool.ruff.format]
docstring-code-format = true

View File

@ -101,6 +101,7 @@ else()
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
find_isa(${CPUINFO} "S390" S390_FOUND)
find_isa(${CPUINFO} "v" RVV_FOUND) # Check for RISC-V RVV support
endif()
if (AVX512_FOUND AND NOT AVX512_DISABLED)
@ -177,8 +178,14 @@ elseif (S390_FOUND)
"-mzvector"
"-march=native"
"-mtune=native")
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "riscv64")
if(RVV_FOUND)
message(FAIL_ERROR "Can't support rvv now.")
else()
list(APPEND CXX_COMPILE_FLAGS "-march=rv64gc")
endif()
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
endif()
#
@ -191,13 +198,24 @@ else()
endif()
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.9
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)
set(FETCHCONTENT_SOURCE_DIR_ONEDNN "$ENV{FETCHCONTENT_SOURCE_DIR_ONEDNN}" CACHE PATH "Path to a local oneDNN source directory.")
if(FETCHCONTENT_SOURCE_DIR_ONEDNN)
message(STATUS "Using oneDNN from specified source directory: ${FETCHCONTENT_SOURCE_DIR_ONEDNN}")
FetchContent_Declare(
oneDNN
SOURCE_DIR ${FETCHCONTENT_SOURCE_DIR_ONEDNN}
)
else()
message(STATUS "Downloading oneDNN from GitHub")
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.9
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)
endif()
if(USE_ACL)
find_library(ARM_COMPUTE_LIBRARY NAMES arm_compute PATHS $ENV{ACL_ROOT_DIR}/build/)
@ -206,6 +224,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
add_compile_definitions(VLLM_USE_ACL)
endif()
set(ONEDNN_LIBRARY_TYPE "STATIC")
@ -258,7 +277,8 @@ set(VLLM_EXT_SRC
"csrc/cpu/layernorm.cpp"
"csrc/cpu/mla_decode.cpp"
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/torch_bindings.cpp")
"csrc/cpu/torch_bindings.cpp"
"csrc/moe/dynamic_4bit_int_moe_cpu.cpp")
if (AVX512_FOUND AND NOT AVX512_DISABLED)
set(VLLM_EXT_SRC
@ -300,4 +320,4 @@ define_gpu_extension_target(
WITH_SOABI
)
message(STATUS "Enabling C extension.")
message(STATUS "Enabling C extension.")

View File

@ -18,8 +18,8 @@ if(FLASH_MLA_SRC_DIR)
else()
FetchContent_Declare(
flashmla
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
GIT_PROGRESS TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
@ -33,23 +33,64 @@ message(STATUS "FlashMLA is available at ${flashmla_SOURCE_DIR}")
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
# Only build FlashMLA kernels if we are building for something compatible with
# sm90a
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
set(SUPPORT_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3)
list(APPEND SUPPORT_ARCHS 9.0a)
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8)
list(APPEND SUPPORT_ARCHS 10.0a)
endif()
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "${SUPPORT_ARCHS}" "${CUDA_ARCHS}")
if(FLASH_MLA_ARCHS)
set(VLLM_FLASHMLA_GPU_FLAGS ${VLLM_GPU_FLAGS})
list(APPEND VLLM_FLASHMLA_GPU_FLAGS "--expt-relaxed-constexpr" "--expt-extended-lambda" "--use_fast_math")
set(FlashMLA_SOURCES
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
${flashmla_SOURCE_DIR}/csrc/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/smxx/get_mla_metadata.cu
${flashmla_SOURCE_DIR}/csrc/smxx/mla_combine.cu
${flashmla_SOURCE_DIR}/csrc/sm90/decode/dense/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm90/decode/sparse_fp8/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm90/prefill/sparse/fwd.cu
${flashmla_SOURCE_DIR}/csrc/sm100/decode/sparse_fp8/splitkv_mla.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_fwd_sm100.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_bwd_sm100.cu
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/sparse/fwd.cu
)
set(FlashMLA_Extension_SOURCES
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
)
set(FlashMLA_INCLUDES
${flashmla_SOURCE_DIR}/csrc
${flashmla_SOURCE_DIR}/csrc/sm90
${flashmla_SOURCE_DIR}/csrc/cutlass/include
${flashmla_SOURCE_DIR}/csrc)
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
)
set(FlashMLA_Extension_INCLUDES
${flashmla_SOURCE_DIR}/csrc
${flashmla_SOURCE_DIR}/csrc/sm90
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/
${flashmla_SOURCE_DIR}/csrc/cutlass/include
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
)
set_gencode_flags_for_srcs(
SRCS "${FlashMLA_SOURCES}"
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
set_gencode_flags_for_srcs(
SRCS "${FlashMLA_Extension_SOURCES}"
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
define_gpu_extension_target(
_flashmla_C
DESTINATION vllm
@ -60,8 +101,32 @@ if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
USE_SABI 3
WITH_SOABI)
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
target_compile_options(_flashmla_C PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
define_gpu_extension_target(
_flashmla_extension_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${FlashMLA_Extension_SOURCES}
COMPILE_FLAGS ${VLLM_FLASHMLA_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${FlashMLA_Extension_INCLUDES}
USE_SABI 3
WITH_SOABI)
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
target_compile_options(_flashmla_extension_C PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
else()
# Create an empty target for setup.py when not targeting sm90a systems
# Create empty targets for setup.py when not targeting sm90a systems
add_custom_target(_flashmla_C)
add_custom_target(_flashmla_extension_C)
endif()

View File

@ -0,0 +1,97 @@
include(FetchContent)
set(CUTLASS_INCLUDE_DIR "${CUTLASS_INCLUDE_DIR}" CACHE PATH "Path to CUTLASS include/ directory")
if(DEFINED ENV{QUTLASS_SRC_DIR})
set(QUTLASS_SRC_DIR $ENV{QUTLASS_SRC_DIR})
endif()
if(QUTLASS_SRC_DIR)
FetchContent_Declare(
qutlass
SOURCE_DIR ${QUTLASS_SRC_DIR}
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
)
else()
FetchContent_Declare(
qutlass
GIT_REPOSITORY https://github.com/IST-DASLab/qutlass.git
GIT_TAG 830d2c4537c7396e14a02a46fbddd18b5d107c65
GIT_PROGRESS TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
)
FetchContent_Populate(qutlass)
set(qutlass_SOURCE_DIR "${qutlass_SOURCE_DIR}")
endif()
if(NOT qutlass_SOURCE_DIR)
message(FATAL_ERROR "[QUTLASS] source directory could not be resolved.")
endif()
message(STATUS "[QUTLASS] QuTLASS is available at ${qutlass_SOURCE_DIR}")
cuda_archs_loose_intersection(QUTLASS_ARCHS "12.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND QUTLASS_ARCHS)
if(QUTLASS_ARCHS MATCHES "10\\.0a")
set(QUTLASS_TARGET_CC 100)
elseif(QUTLASS_ARCHS MATCHES "12\\.0a")
set(QUTLASS_TARGET_CC 120)
else()
message(FATAL_ERROR "[QUTLASS] internal error parsing CUDA_ARCHS='${QUTLASS_ARCHS}'.")
endif()
set(QUTLASS_SOURCES
${qutlass_SOURCE_DIR}/qutlass/csrc/bindings.cpp
${qutlass_SOURCE_DIR}/qutlass/csrc/gemm.cu
${qutlass_SOURCE_DIR}/qutlass/csrc/gemm_ada.cu
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_mx.cu
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_nv.cu
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_mx_sm100.cu
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_nv_sm100.cu
)
set(QUTLASS_INCLUDES
${qutlass_SOURCE_DIR}
${qutlass_SOURCE_DIR}/qutlass
${qutlass_SOURCE_DIR}/qutlass/csrc/include
${qutlass_SOURCE_DIR}/qutlass/csrc/include/cutlass_extensions
)
if(CUTLASS_INCLUDE_DIR AND EXISTS "${CUTLASS_INCLUDE_DIR}/cutlass/cutlass.h")
list(APPEND QUTLASS_INCLUDES "${CUTLASS_INCLUDE_DIR}")
elseif(EXISTS "${qutlass_SOURCE_DIR}/qutlass/third_party/cutlass/include/cutlass/cutlass.h")
list(APPEND QUTLASS_INCLUDES "${qutlass_SOURCE_DIR}/qutlass/third_party/cutlass/include")
message(STATUS "[QUTLASS] Using QuTLASS vendored CUTLASS headers (no vLLM CUTLASS detected).")
else()
message(FATAL_ERROR "[QUTLASS] CUTLASS headers not found. "
"Set -DCUTLASS_INCLUDE_DIR=/path/to/cutlass/include")
endif()
set_gencode_flags_for_srcs(
SRCS "${QUTLASS_SOURCES}"
CUDA_ARCHS "${QUTLASS_ARCHS}"
)
target_sources(_C PRIVATE ${QUTLASS_SOURCES})
target_include_directories(_C PRIVATE ${QUTLASS_INCLUDES})
target_compile_definitions(_C PRIVATE
QUTLASS_DISABLE_PYBIND=1
TARGET_CUDA_ARCH=${QUTLASS_TARGET_CC}
)
set_property(SOURCE ${QUTLASS_SOURCES} APPEND PROPERTY COMPILE_OPTIONS
$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr --use_fast_math -O3>
)
else()
if("${CMAKE_CUDA_COMPILER_VERSION}" VERSION_LESS "12.8")
message(STATUS
"[QUTLASS] Skipping build: CUDA 12.8 or newer is required (found ${CMAKE_CUDA_COMPILER_VERSION}).")
else()
message(STATUS
"[QUTLASS] Skipping build: no supported arch (12.0a / 10.0a) found in "
"CUDA_ARCHS='${CUDA_ARCHS}'.")
endif()
endif()

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG ee4d25bd84e0cbc7e0b9b9685085fd5db2dcb62a
GIT_TAG 8f468e7da54a8e2f98abfa7c38636aac91c0cba1
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -16,7 +16,7 @@ import shutil
from torch.utils.hipify.hipify_python import hipify
if __name__ == '__main__':
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Project directory where all the source + include files live.
@ -34,15 +34,14 @@ if __name__ == '__main__':
)
# Source files to convert.
parser.add_argument("sources",
help="Source files to hipify.",
nargs="*",
default=[])
parser.add_argument(
"sources", help="Source files to hipify.", nargs="*", default=[]
)
args = parser.parse_args()
# Limit include scope to project_dir only
includes = [os.path.join(args.project_dir, '*')]
includes = [os.path.join(args.project_dir, "*")]
# Get absolute path for all source files.
extra_files = [os.path.abspath(s) for s in args.sources]
@ -51,25 +50,31 @@ if __name__ == '__main__':
# The directory might already exist to hold object files so we ignore that.
shutil.copytree(args.project_dir, args.output_dir, dirs_exist_ok=True)
hipify_result = hipify(project_directory=args.project_dir,
output_directory=args.output_dir,
header_include_dirs=[],
includes=includes,
extra_files=extra_files,
show_detailed=True,
is_pytorch_extension=True,
hipify_extra_files_only=True)
hipify_result = hipify(
project_directory=args.project_dir,
output_directory=args.output_dir,
header_include_dirs=[],
includes=includes,
extra_files=extra_files,
show_detailed=True,
is_pytorch_extension=True,
hipify_extra_files_only=True,
)
hipified_sources = []
for source in args.sources:
s_abs = os.path.abspath(source)
hipified_s_abs = (hipify_result[s_abs].hipified_path if
(s_abs in hipify_result
and hipify_result[s_abs].hipified_path is not None)
else s_abs)
hipified_s_abs = (
hipify_result[s_abs].hipified_path
if (
s_abs in hipify_result
and hipify_result[s_abs].hipified_path is not None
)
else s_abs
)
hipified_sources.append(hipified_s_abs)
assert (len(hipified_sources) == len(args.sources))
assert len(hipified_sources) == len(args.sources)
# Print hipified source files.
print("\n".join(hipified_sources))

View File

@ -310,13 +310,13 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
list(REMOVE_DUPLICATES _PTX_ARCHS)
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
# If x.0a or x.0f is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a or x.0f from SRC_CUDA_ARCHS and add x.0a or x.0f to _CUDA_ARCHS
set(_CUDA_ARCHS)
foreach(_arch ${_SRC_CUDA_ARCHS})
if(_arch MATCHES "\\a$")
if(_arch MATCHES "[af]$")
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
string(REPLACE "a" "" _base "${_arch}")
string(REGEX REPLACE "[af]$" "" _base "${_arch}")
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
list(APPEND _CUDA_ARCHS "${_arch}")

View File

@ -28,10 +28,10 @@
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
#include "../quantization/fp8/amd/quant_utils.cuh"
#include "../quantization/w8a8/fp8/amd/quant_utils.cuh"
typedef __hip_bfloat16 __nv_bfloat16;
#else
#include "../quantization/fp8/nvidia/quant_utils.cuh"
#include "../quantization/w8a8/fp8/nvidia/quant_utils.cuh"
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))

View File

@ -135,10 +135,10 @@ public:
max_splits = min(16, max_splits);
// TODO: This avoids a hang when the batch size larger than 1 and
// there is more than 4 kv_splits.
// there is more than 1 kv_splits.
// Discuss with NVIDIA how this can be fixed.
if (B > 1) {
max_splits = min(2, max_splits);
max_splits = min(1, max_splits);
}
// printf(" max_splits = %d\n", max_splits);

View File

@ -580,22 +580,22 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
continue;
if (local_split_kv <= get<3>(blk_coord))
continue;
load_page_table(
blk_coord,
problem_shape,
params.mainloop,
shared_storage.tensors,
pipeline_page_table, pipeline_pt_producer_state,
local_split_kv
local_split_kv
);
}
}
@ -604,15 +604,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
CUTLASS_PRAGMA_NO_UNROLL
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
load_cpasync(
blk_coord,
@ -621,7 +621,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
params.mainloop_params,
shared_storage.tensors,
pipeline_load_qk, pipeline_load_qk_producer_state,
local_split_kv,
local_split_kv,
/* must be shared pipe */
pipeline_page_table, pipeline_pt_consumer_state
);
@ -633,15 +633,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
CUTLASS_PRAGMA_NO_UNROLL
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
load_tma</* paged= */ true>(
blk_coord,
@ -651,7 +651,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
shared_storage.tensors,
pipeline_load_qk, pipeline_load_qk_producer_state,
pipeline_load_qk, pipeline_load_qk_producer_state,
local_split_kv
local_split_kv
);
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
}
@ -660,15 +660,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
CUTLASS_PRAGMA_NO_UNROLL
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
load_tma<false>(
blk_coord,
@ -678,7 +678,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
shared_storage.tensors,
pipeline_load_qk, pipeline_load_qk_producer_state,
pipeline_load_qk, pipeline_load_qk_producer_state,
local_split_kv
local_split_kv
);
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
}
@ -694,14 +694,14 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto local_split_kv = params.split_kv;
auto local_split_kv = params.split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
mma(blk_coord,
problem_shape,
@ -711,7 +711,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
pipeline_mma_s, pipeline_mma_s_producer_state,
pipeline_p_mma, pipeline_p_mma_consumer_state,
pipeline_mma_o, pipeline_mma_o_producer_state,
local_split_kv
local_split_kv
);
}
}
@ -726,15 +726,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
auto blk_coord = tile_scheduler.get_block_coord();
auto problem_shape = params.problem_shape;
auto split_kv = params.split_kv;
auto local_split_kv = split_kv;
auto split_kv = params.split_kv;
auto local_split_kv = split_kv;
if (params.mainloop.ptr_seq != nullptr) {
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
if (params.ptr_split_kv != nullptr) {
if (params.ptr_split_kv != nullptr) {
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
}
}
if (local_split_kv <= get<3>(blk_coord))
if (local_split_kv <= get<3>(blk_coord))
continue;
compute(
blk_coord,
@ -745,7 +745,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
pipeline_mma_s, pipeline_mma_s_consumer_state,
pipeline_p_mma, pipeline_p_mma_producer_state,
pipeline_mma_o, pipeline_mma_o_consumer_state,
local_split_kv
local_split_kv
);
}
@ -1900,7 +1900,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
cutlass::arch::NamedBarrier(
(kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp,
kNamedBarrierEpilogue
).arrive();
).arrive_and_wait();
return;
}

View File

@ -56,3 +56,19 @@ void cp_gather_cache(
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
// Indexer K quantization and cache function
void indexer_k_quant_and_cache(
torch::Tensor& k, // [num_tokens, head_dim]
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& slot_mapping, // [num_tokens]
int64_t quant_block_size, // quantization block size
const std::string& scale_fmt);
// Extract function to gather quantized K cache
void cp_gather_indexer_k_quant_cache(
const torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& dst_k, // [num_tokens, head_dim]
torch::Tensor& dst_scale, // [num_tokens, head_dim / quant_block_size * 4]
const torch::Tensor& block_table, // [batch_size, num_blocks]
const torch::Tensor& cu_seq_lens); // [batch_size + 1]

View File

@ -9,15 +9,14 @@
#include "quantization/vectorization_utils.cuh"
#ifdef USE_ROCM
#include "quantization/fp8/amd/quant_utils.cuh"
#include "quantization/w8a8/fp8/amd/quant_utils.cuh"
#else
#include "quantization/fp8/nvidia/quant_utils.cuh"
#include "quantization/w8a8/fp8/nvidia/quant_utils.cuh"
#endif
#include <algorithm>
#include <cassert>
#include <map>
#include <vector>
#include <cfloat>
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
@ -209,6 +208,20 @@ void copy_blocks_mla(std::vector<torch::Tensor> const& kv_caches,
namespace vllm {
// Used to copy/convert one element
template <typename OutT, typename InT, Fp8KVCacheDataType kv_dt>
struct CopyWithScaleOp {
float scale;
__device__ __forceinline__ void operator()(OutT& dst, const InT src) const {
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
dst = static_cast<OutT>(src);
} else {
dst = fp8::scaled_convert<OutT, InT, kv_dt>(src, scale);
}
}
};
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void reshape_and_cache_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
@ -224,59 +237,51 @@ __global__ void reshape_and_cache_kernel(
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx < 0) {
// Padding token that should be ignored.
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int h_block_count = head_size / x; // head_size//x
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int64_t src_key_idx = token_idx * key_stride + i;
const int64_t src_value_idx = token_idx * value_stride + i;
const int h_block_idx = threadIdx.x;
if (h_block_idx >= num_heads * h_block_count) {
return;
}
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int x_idx = head_offset / x;
const int x_offset = head_offset % x;
const int head_idx = h_block_idx / h_block_count;
const int h_block = h_block_idx % h_block_count;
const int64_t tgt_key_idx =
block_idx * num_heads * (head_size / x) * block_size * x +
head_idx * (head_size / x) * block_size * x + x_idx * block_size * x +
block_offset * x + x_offset;
const int64_t tgt_value_idx =
block_idx * num_heads * head_size * block_size +
head_idx * head_size * block_size + head_offset * block_size +
block_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
key_cache[tgt_key_idx] = tgt_key;
value_cache[tgt_value_idx] = tgt_value;
} else {
key_cache[tgt_key_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, *k_scale);
value_cache[tgt_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, *v_scale);
}
const scalar_t* __restrict__ key_src =
key + token_idx * key_stride + head_idx * head_size + h_block * x;
const int64_t src_value_start =
token_idx * value_stride + head_idx * head_size + h_block * x;
cache_t* __restrict__ key_dst =
key_cache + block_idx * num_heads * h_block_count * block_size * x +
head_idx * h_block_count * block_size * x + h_block * block_size * x +
block_offset * x;
const int64_t tgt_value_start =
block_idx * num_heads * h_block_count * x * block_size +
head_idx * h_block_count * x * block_size + h_block * x * block_size +
block_offset;
constexpr int VEC_SIZE = (sizeof(scalar_t) == 2) ? 8 : 4;
float k_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *k_scale;
CopyWithScaleOp<cache_t, scalar_t, kv_dt> k_op{k_scale_val};
float v_scale_val = (kv_dt == Fp8KVCacheDataType::kAuto) ? 0.f : *v_scale;
CopyWithScaleOp<cache_t, scalar_t, kv_dt> v_op{v_scale_val};
vectorize_with_alignment<VEC_SIZE>(key_src, key_dst, x, 0, 1, k_op);
const scalar_t* __restrict__ value_src = value + src_value_start;
cache_t* __restrict__ value_dst = value_cache + tgt_value_start;
#pragma unroll
for (int i = 0; i < x; i++) {
v_op(value_dst[i * block_size], value_src[i]);
}
}
// Used by vectorization_utils to copy/convert one element
template <typename OutT, typename InT, Fp8KVCacheDataType kv_dt>
struct CopyWithScaleOp {
float scale;
__device__ __forceinline__ void operator()(OutT& dst, const InT src) const {
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
dst = static_cast<OutT>(src);
} else {
dst = fp8::scaled_convert<OutT, InT, kv_dt>(src, scale);
}
}
};
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void reshape_and_cache_flash_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
@ -396,6 +401,241 @@ __global__ void concat_and_cache_mla_kernel(
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
}
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void concat_and_cache_ds_mla_kernel(
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
// + pe_dim)]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, //
const int entry_stride, //
const int kv_c_stride, //
const int k_pe_stride, //
const int kv_lora_rank, //
const int pe_dim, //
const int block_size, //
const float* scale //
) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int64_t dst_idx_start =
block_idx * block_stride + block_offset * entry_stride;
// For the NoPE part, each tile of 128 elements is handled by half of one warp
// (16 threads). There are 4 total tiles, so 2 warps (64 threads).
// Lanes 0 and 16 of each warp write the scale values for that warp's tiles.
// The RoPE part (last 64 elements) is handled by another 1 warp (32 threads).
// So in total, we use 3 warps (96 threads) per block.
// Cast kv_cache to 16_bit for RoPE values
scalar_t* kv_cache_16bit =
reinterpret_cast<scalar_t*>(&kv_cache[dst_idx_start]);
// The last warp handles the RoPE part
if (threadIdx.x >= 64) {
// Each thread handles two elements of RoPE
const int8_t pe_idx_start = (threadIdx.x - 64) * 2;
const int64_t src_idx = token_idx * k_pe_stride + pe_idx_start;
// Vectorized load of two 16-bit values, performed as one 32-bit load
const int32_t vals = *reinterpret_cast<const int32_t*>(&k_pe[src_idx]);
// RoPE values start after the packed 8-bit NoPE values and the
// 32-bit scales
const int64_t dst_idx = kv_lora_rank / 2 + 8 + pe_idx_start;
// Vectorized store of two 16-bit values, performed as one 32-bit store
*reinterpret_cast<int32_t*>(&kv_cache_16bit[dst_idx]) = vals;
return;
}
// The first two warps handle the NoPE part
const int8_t warp_idx = threadIdx.x >> 5;
const int8_t lane_idx = threadIdx.x & 31;
const int8_t tile_idx = warp_idx * 2 + (lane_idx >> 4);
// Each thread handles 8 elements of NoPE
// Load the NoPE elements for this thread into registers
const int64_t src_idx_start = token_idx * kv_c_stride + (threadIdx.x * 8);
// Vectorized load of eight 16-bit values, performed as an int4 load
const int4 vals_i4 = *reinterpret_cast<const int4*>(&kv_c[src_idx_start]);
const scalar_t* vals = reinterpret_cast<const scalar_t*>(&vals_i4);
// Max absolute value of this thread's elements
float max_abs = fmaxf(fmaxf(fmaxf(fabsf(vals[0]), fabsf(vals[1])),
fmaxf(fabsf(vals[2]), fabsf(vals[3]))),
fmaxf(fmaxf(fabsf(vals[4]), fabsf(vals[5])),
fmaxf(fabsf(vals[6]), fabsf(vals[7]))));
// Warp-level reduction to find the max absolute value in each half-warp
#pragma unroll
for (int offset = 8; offset > 0; offset /= 2) {
max_abs = fmaxf(max_abs, VLLM_SHFL_XOR_SYNC_WIDTH(max_abs, offset, 16));
}
// Compute the scale for the tile
float tile_scale = max_abs / 448.f;
tile_scale = fmaxf(tile_scale, FLT_MIN);
// The first lane of each half-warp writes the scale to kv_cache
if ((lane_idx == 0) || (lane_idx == 16)) {
float* kv_cache_32bit = reinterpret_cast<float*>(&kv_cache[dst_idx_start]);
const uint64_t dst_idx = kv_lora_rank / 4 + tile_idx;
kv_cache_32bit[dst_idx] = tile_scale;
}
// Now all threads in the block scale and write their elements
// NoPE data is packed in the first kv_lora_rank/2 bytes (first 256 bytes)
const int64_t dst_idx_base = dst_idx_start + (threadIdx.x * 8);
uint8_t result[8];
#pragma unroll
for (int i = 0; i < 8; i++) {
result[i] =
fp8::scaled_convert<uint8_t, scalar_t, Fp8KVCacheDataType::kFp8E4M3>(
vals[i], tile_scale);
}
// Store as aligned 64-bit writes
*reinterpret_cast<uint64_t*>(&kv_cache[dst_idx_base]) =
*reinterpret_cast<const uint64_t*>(result);
}
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void indexer_k_quant_and_cache_kernel(
const scalar_t* __restrict__ k, // [num_tokens, head_dim]
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, cache_stride]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int head_dim, // dimension of each head
const int quant_block_size, // quantization block size
const int cache_block_size, // cache block size
const int cache_stride, // stride for each token in kv_cache
const bool use_ue8m0 // use ue8m0 scale format
) {
constexpr int VEC_SIZE = 4;
const int64_t token_idx = blockIdx.x;
const int64_t head_dim_idx = (blockIdx.y * blockDim.y * blockDim.x +
threadIdx.y * blockDim.x + threadIdx.x) *
VEC_SIZE;
const int64_t slot_idx = slot_mapping[token_idx];
const int64_t block_idx = slot_idx / cache_block_size;
const int64_t block_offset = slot_idx % cache_block_size;
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0 || (head_dim_idx >= head_dim)) {
return;
}
float2 k_val = (reinterpret_cast<const float2*>(
k))[(token_idx * head_dim + head_dim_idx) / VEC_SIZE];
scalar_t* k_val_ptr = reinterpret_cast<scalar_t*>(&k_val);
float amax = 0.0f;
for (int i = 0; i < VEC_SIZE; i++) {
amax = fmaxf(amax, fabsf(float(k_val_ptr[i])));
}
#ifndef USE_ROCM
__syncwarp();
#endif
// Reduced amax
for (int mask = 16; mask > 0; mask /= 2) {
#ifdef USE_ROCM
amax = fmaxf(amax, __shfl_xor_sync(uint64_t(-1), amax, mask));
#else
amax = fmaxf(amax, __shfl_xor_sync(unsigned(-1), amax, mask));
#endif
}
#ifndef USE_ROCM
__syncwarp();
#endif
float scale = fmaxf(amax, 1e-4) / 448.0f;
if (use_ue8m0) {
scale = exp2f(ceilf(log2f(scale)));
}
const int64_t dst_offset = block_idx * cache_block_size * cache_stride +
block_offset * head_dim + head_dim_idx;
for (int i = 0; i < VEC_SIZE; i++) {
kv_cache[dst_offset + i] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(k_val_ptr[i], scale);
}
if (threadIdx.x == 0) {
const int64_t dst_scale_idx =
block_idx * cache_block_size * cache_stride +
cache_block_size * head_dim +
(block_offset * head_dim + head_dim_idx) * 4 / quant_block_size;
reinterpret_cast<float*>(kv_cache)[dst_scale_idx / 4] = scale;
}
}
template <int BLOCK_Y_SIZE>
__global__ void cp_gather_indexer_k_quant_cache_kernel(
const char* __restrict__ kv_cache, // [num_blocks, block_size,
// cache_stride]
char* __restrict__ dst_k, // [num_tokens, head_dim]
char* __restrict__ dst_scale, // [num_tokens, head_dim / quant_block_size *
// 4]
const int* __restrict__ block_table, // [batch_size, num_blocks]
const int* __restrict__ cu_seq_lens, // [batch_size + 1]
const int batch_size, // batch size
const int64_t token_stride, // stride for each token in dst_k
const int64_t head_dim, // dimension of each head
const int64_t block_stride, // stride for each block in kv_cache
const int64_t cache_token_stride, // stride for each token in kv_cache
const int64_t cache_block_size, // num_tokens for each block in kv_cache
const int num_blocks, // number of blocks
const int num_tokens, // number of tokens
const int quant_block_size // quantization block size
) {
constexpr int VEC_SIZE = sizeof(float4) / sizeof(char);
const int token_idx = blockIdx.x * blockDim.y + threadIdx.y;
const int head_idx = (blockIdx.y * blockDim.x + threadIdx.x) * VEC_SIZE;
// Find batch index within a block
__shared__ int batch_idx[BLOCK_Y_SIZE];
for (int iter = 0; iter < cuda_utils::ceil_div(batch_size, int(blockDim.x));
iter++) {
int tid = iter * blockDim.x + threadIdx.x;
if (tid < batch_size) {
const int seq_start = cu_seq_lens[tid];
const int seq_end = cu_seq_lens[tid + 1];
if (token_idx >= seq_start && token_idx < seq_end) {
batch_idx[threadIdx.y] = tid;
}
}
}
#ifndef USE_ROCM
__syncwarp();
#endif
if (head_idx >= head_dim || token_idx >= num_tokens) {
return;
}
const int inbatch_seq_idx = token_idx - cu_seq_lens[batch_idx[threadIdx.y]];
const int block_idx = block_table[batch_idx[threadIdx.y] * num_blocks +
inbatch_seq_idx / cache_block_size];
const int64_t src_block_offset = block_idx * block_stride;
const int64_t cache_inblock_offset =
(inbatch_seq_idx % cache_block_size) * head_dim + head_idx;
const int64_t src_inblock_offset = src_block_offset + cache_inblock_offset;
const int64_t dst_inblock_offset = token_idx * token_stride + head_idx;
reinterpret_cast<float4*>(dst_k)[dst_inblock_offset / VEC_SIZE] =
reinterpret_cast<const float4*>(kv_cache)[src_inblock_offset / VEC_SIZE];
;
if (threadIdx.x == 0) {
const int64_t src_scale_offset =
src_block_offset + cache_block_size * head_dim +
cache_inblock_offset * 4 / quant_block_size;
reinterpret_cast<float*>(dst_scale)[dst_inblock_offset / quant_block_size] =
reinterpret_cast<const float*>(kv_cache)[src_scale_offset / 4];
}
}
} // namespace vllm
// KV_T is the data type of key and value tensors.
@ -431,14 +671,15 @@ void reshape_and_cache(
int key_stride = key.stride(0);
int value_stride = value.stride(0);
int head_div_x = head_size / x;
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
dim3 block(std::min(num_heads * head_div_x, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
CALL_RESHAPE_AND_CACHE)
CALL_RESHAPE_AND_CACHE);
}
// KV_T is the data type of key and value tensors.
@ -509,6 +750,18 @@ void reshape_and_cache_flash(
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
// KV_T is the data type of key and value tensors.
// CACHE_T is the stored data type of kv-cache.
#define CALL_CONCAT_AND_CACHE_DS_MLA(KV_T, CACHE_T, KV_DTYPE) \
vllm::concat_and_cache_ds_mla_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(kv_c.data_ptr()), \
reinterpret_cast<KV_T*>(k_pe.data_ptr()), \
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, entry_stride, \
kv_c_stride, k_pe_stride, kv_lora_rank, pe_dim, block_size, \
reinterpret_cast<const float*>(scale.data_ptr()));
void concat_and_cache_mla(
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
torch::Tensor& k_pe, // [num_tokens, pe_dim]
@ -531,20 +784,43 @@ void concat_and_cache_mla(
int pe_dim = k_pe.size(1);
int block_size = kv_cache.size(1);
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
if (kv_cache_dtype == "fp8_ds_mla") {
TORCH_CHECK(kv_lora_rank == 512, "kv_lora_rank must be 512 for fp8_ds_mla");
TORCH_CHECK(pe_dim == 64, "pe_dim must be 64 for fp8_ds_mla");
TORCH_CHECK(kv_cache.size(2) == 656 / kv_cache.itemsize(),
"kv_cache.size(2) must be 656 bytes for fp8_ds_mla");
TORCH_CHECK(kv_c.itemsize() == 2,
"kv_c.itemsize() must be 2 for fp8_ds_mla");
TORCH_CHECK(k_pe.itemsize() == 2,
"k_pe.itemsize() must be 2 for fp8_ds_mla");
} else {
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
}
int kv_c_stride = kv_c.stride(0);
int k_pe_stride = k_pe.stride(0);
int block_stride = kv_cache.stride(0);
int entry_stride = kv_cache.stride(1);
dim3 grid(num_tokens);
dim3 block(std::min(kv_lora_rank, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_c));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_MLA);
if (kv_cache_dtype == "fp8_ds_mla") {
dim3 grid(num_tokens);
// For the NoPE part, each tile of 128 elements is handled by half of one
// warp (16 threads). There are 4 total tiles, so 2 warps (64 threads).
// Lanes 0 and 16 of each warp write the scale values for that warp's tiles.
// The RoPE part (last 64 elements) is handled by another 1 warp (32
// threads). So in total, we use 3 warps (96 threads) per block.
dim3 block(96);
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_DS_MLA);
} else {
dim3 grid(num_tokens);
dim3 block(std::min(kv_lora_rank, 512));
DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_MLA);
}
}
namespace vllm {
@ -922,3 +1198,98 @@ void cp_gather_cache(
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
}
}
// Macro to dispatch the kernel based on the data type.
#define CALL_INDEXER_K_QUANT_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \
vllm::indexer_k_quant_and_cache_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(k.data_ptr()), \
reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), head_dim, quant_block_size, \
cache_block_size, cache_stride, use_ue8m0);
void indexer_k_quant_and_cache(
torch::Tensor& k, // [num_tokens, head_dim]
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& slot_mapping, // [num_tokens]
int64_t quant_block_size, // quantization block size
const std::string& scale_fmt) {
int num_tokens = k.size(0);
int head_dim = k.size(1);
int cache_block_size = kv_cache.size(1);
int cache_stride = kv_cache.size(2);
bool use_ue8m0 = scale_fmt == "ue8m0";
TORCH_CHECK(k.device() == kv_cache.device(),
"k and kv_cache must be on the same device");
TORCH_CHECK(k.device() == slot_mapping.device(),
"k and slot_mapping must be on the same device");
TORCH_CHECK(head_dim % quant_block_size == 0,
"head_dim must be divisible by quant_block_size");
constexpr int vec_size = 4;
dim3 grid(num_tokens, (head_dim + quant_block_size * vec_size - 1) /
(quant_block_size * vec_size));
dim3 block(32, vec_size);
const at::cuda::OptionalCUDAGuard device_guard(device_of(k));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3",
CALL_INDEXER_K_QUANT_AND_CACHE);
}
// Macro to dispatch the kernel based on the data amount.
#define CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(BLOCK_Y_SIZE) \
vllm::cp_gather_indexer_k_quant_cache_kernel<BLOCK_Y_SIZE> \
<<<dim3((num_tokens + BLOCK_Y_SIZE - 1) / BLOCK_Y_SIZE, \
(head_dim + 8 * vec_size - 1) / (8 * vec_size)), \
dim3(8, BLOCK_Y_SIZE), 0, stream>>>( \
reinterpret_cast<char*>(kv_cache.data_ptr()), \
reinterpret_cast<char*>(dst_k.data_ptr()), \
reinterpret_cast<char*>(dst_scale.data_ptr()), \
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
batch_size, dst_k.stride(0), dst_k.size(1), kv_cache.stride(0), \
kv_cache.stride(1), kv_cache.size(1), block_table.size(1), \
num_tokens, quant_block_size);
void cp_gather_indexer_k_quant_cache(
const torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& dst_k, // [num_tokens, head_dim]
torch::Tensor& dst_scale, // [num_tokens, head_dim / quant_block_size * 4]
const torch::Tensor& block_table, // [batch_size, num_blocks]
const torch::Tensor& cu_seq_lens // [batch_size + 1]
) {
int batch_size = block_table.size(0);
int num_tokens = dst_k.size(0);
int head_dim = dst_k.size(1);
int quant_block_size = head_dim * 4 / dst_scale.size(1);
TORCH_CHECK(kv_cache.device() == dst_k.device(),
"kv_cache and dst_k must be on the same device");
TORCH_CHECK(kv_cache.device() == dst_scale.device(),
"kv_cache and dst_scale must be on the same device");
TORCH_CHECK(kv_cache.device() == block_table.device(),
"kv_cache and block_table must be on the same device");
TORCH_CHECK(kv_cache.device() == cu_seq_lens.device(),
"kv_cache and cu_seq_lens must be on the same device");
TORCH_CHECK(head_dim % quant_block_size == 0,
"head_dim must be divisible by quant_block_size");
constexpr int vec_size = 16;
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_cache));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (num_tokens < 32) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(1);
} else if (num_tokens < 64) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(2);
} else if (num_tokens < 128) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(4);
} else if (num_tokens < 256) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(8);
} else if (num_tokens < 512) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(16);
} else {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(32);
}
}

View File

@ -0,0 +1,19 @@
#pragma once
#include <cstdlib>
#include <string>
#include <cctype>
namespace vllm {
// vllm_kernel_override_batch_invariant(); returns true
// if env VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT=1
inline bool vllm_kernel_override_batch_invariant() {
static bool cached = []() {
std::string env_key = "VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT";
const char* val = std::getenv(env_key.c_str());
return (val && std::atoi(val) != 0) ? 1 : 0;
}();
return cached;
}
} // namespace vllm

View File

@ -14,7 +14,12 @@
// arm implementation
#include "cpu_types_arm.hpp"
#else
#warning "unsupported vLLM cpu implementation"
#warning "unsupported vLLM cpu implementation, vLLM will compile with scalar"
#include "cpu_types_scalar.hpp"
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
#endif

View File

@ -0,0 +1,513 @@
#include <cmath>
#include <cstdint>
#include <cstring>
#include <torch/all.h>
#include "float_convert.hpp"
namespace vec_op {
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#ifndef CPU_OP_GUARD
#define CPU_KERNEL_GUARD_IN(NAME)
#define CPU_KERNEL_GUARD_OUT(NAME)
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) \
std::cout << #NAME << " exit." << std::endl;
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
#define __max(a, b) ((a) > (b) ? (a) : (b))
#define __min(a, b) ((a) < (b) ? (a) : (b))
#define __abs(a) ((a) < (0) ? (0 - a) : (a))
typedef struct f16x8_t {
uint16_t val[8];
} f16x8_t;
typedef struct f16x16_t {
uint16_t val[16];
} f16x16_t;
typedef struct f16x32_t {
uint16_t val[32];
} f16x32_t;
typedef struct f32x4_t {
float val[4];
} f32x4_t;
typedef struct f32x8_t {
float val[8];
} f32x8_t;
typedef struct f32x16_t {
float val[16];
} f32x16_t;
namespace {
template <typename T, T... indexes, typename F>
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
(f(std::integral_constant<T, indexes>{}), ...);
};
}; // namespace
template <typename T, T count, typename F,
typename = std::enable_if_t<std::is_invocable_v<F, T> > >
constexpr void unroll_loop(F&& f) {
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
}
template <typename T>
struct Vec {
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
};
struct FP32Vec8;
struct FP32Vec16;
struct FP16Vec8 : public Vec<FP16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f16x8_t reg;
explicit FP16Vec8(const void* ptr)
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
explicit FP16Vec8(const FP32Vec8&);
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
};
struct FP16Vec16 : public Vec<FP16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f16x16_t reg;
explicit FP16Vec16(const void* ptr)
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
explicit FP16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
void save(void* ptr, const int elem_num) const {
int num = __min(elem_num, VEC_ELEM_NUM);
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
}
};
struct BF16Vec8 : public Vec<BF16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f16x8_t reg;
explicit BF16Vec8(const void* ptr)
: reg(*reinterpret_cast<const f16x8_t*>(ptr)) {};
explicit BF16Vec8(const FP32Vec8&);
void save(void* ptr) const { *reinterpret_cast<f16x8_t*>(ptr) = reg; }
};
struct BF16Vec16 : public Vec<BF16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f16x16_t reg;
explicit BF16Vec16(const void* ptr)
: reg(*reinterpret_cast<const f16x16_t*>(ptr)) {};
explicit BF16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<f16x16_t*>(ptr) = reg; }
void save(void* ptr, const int elem_num) const {
int num = __min(elem_num, VEC_ELEM_NUM);
std::memcpy(ptr, &(reg.val[0]), num * sizeof(uint16_t));
}
};
struct BF16Vec32 : public Vec<BF16Vec32> {
constexpr static int VEC_ELEM_NUM = 32;
f16x32_t reg;
explicit BF16Vec32(const void* ptr)
: reg(*reinterpret_cast<const f16x32_t*>(ptr)) {};
explicit BF16Vec32(f16x32_t data) : reg(data) {};
explicit BF16Vec32(BF16Vec8& vec8_data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = vec8_data.reg.val[i % BF16Vec8::VEC_ELEM_NUM];
}
}
void save(void* ptr) const { *reinterpret_cast<f16x32_t*>(ptr) = reg; }
};
struct FP32Vec4 : public Vec<FP32Vec4> {
constexpr static int VEC_ELEM_NUM = 4;
f32x4_t reg;
explicit FP32Vec4(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec4() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec4(const float* ptr)
: reg(*reinterpret_cast<const f32x4_t*>(ptr)) {};
explicit FP32Vec4(f32x4_t data) : reg(data) {};
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {};
};
struct FP32Vec8 : public Vec<FP32Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
f32x8_t reg;
explicit FP32Vec8(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec8() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec8(const float* ptr)
: reg(*reinterpret_cast<const f32x8_t*>(ptr)) {};
explicit FP32Vec8(f32x8_t data) : reg(data) {};
explicit FP32Vec8(const FP32Vec8& data) : reg(data.reg) {};
explicit FP32Vec8(const FP16Vec8& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = fp16_to_float(v.reg.val[i]);
}
}
FP32Vec8(const BF16Vec8& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = bf16_to_float(v.reg.val[i]);
}
}
float reduce_sum() const {
float result = 0;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result += reg.val[i];
}
return result;
}
FP32Vec8 exp() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = expf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 tanh() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = tanhf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 er() const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = erf(reg.val[i]);
}
return FP32Vec8(ret);
}
FP32Vec8 operator*(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] * b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator+(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] + b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator-(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] - b.reg.val[i];
}
return FP32Vec8(ret);
}
FP32Vec8 operator/(const FP32Vec8& b) const {
f32x8_t ret;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
ret.val[i] = reg.val[i] / b.reg.val[i];
}
return FP32Vec8(ret);
}
void save(void* ptr) const { *reinterpret_cast<f32x8_t*>(ptr) = reg; }
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
f32x16_t reg;
explicit FP32Vec16(float v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = v;
}
}
explicit FP32Vec16() {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = 0.0f;
}
}
explicit FP32Vec16(const float* ptr)
: reg(*reinterpret_cast<const f32x16_t*>(ptr)) {};
explicit FP32Vec16(f32x16_t data) : reg(data) {};
FP32Vec16(const FP32Vec4& data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = data.reg.val[i % FP32Vec4::VEC_ELEM_NUM];
}
}
FP32Vec16(const FP32Vec8& data) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = data.reg.val[i % FP32Vec8::VEC_ELEM_NUM];
}
}
FP32Vec16(const FP32Vec16& data) : reg(data.reg) {};
explicit FP32Vec16(const FP16Vec16& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = fp16_to_float(v.reg.val[i]);
}
}
explicit FP32Vec16(const BF16Vec16& v) {
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
reg.val[i] = bf16_to_float(v.reg.val[i]);
}
}
explicit FP32Vec16(const FP16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {};
FP32Vec16 operator*(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] * b.reg.val[i];
}
return result;
}
FP32Vec16 operator+(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] + b.reg.val[i];
}
return result;
}
FP32Vec16 operator-(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] - b.reg.val[i];
}
return result;
}
FP32Vec16 operator/(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = reg.val[i] / b.reg.val[i];
}
return result;
}
FP32Vec16 max(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __max(reg.val[i], b.reg.val[i]);
}
return result;
}
FP32Vec16 min(const FP32Vec16& b) const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __min(reg.val[i], b.reg.val[i]);
}
return result;
}
FP32Vec16 abs() const {
FP32Vec16 result(0.0f);
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result.reg.val[i] = __abs(reg.val[i]);
}
return result;
}
float reduce_sum() const {
float result = 0.0f;
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result += reg.val[i];
}
return result;
}
float reduce_max() const {
float result = reg.val[0];
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result = __max(reg.val[i], result);
}
return result;
}
float reduce_min() const {
float result = reg.val[0];
for (int i = 0; i < VEC_ELEM_NUM; ++i) {
result = __min(reg.val[i], result);
}
return result;
}
template <int group_size>
float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
float sum = 0.0;
int start = idx * group_size;
int end = (idx + 1) * group_size;
for (; (start < VEC_ELEM_NUM) && (start < end); ++start) {
sum += reg.val[start];
}
return sum;
}
void save(void* ptr) const { *reinterpret_cast<f32x16_t*>(ptr) = reg; }
};
template <typename T>
struct VecType {
using vec_type = void;
};
template <typename T>
using vec_t = typename VecType<T>::vec_type;
template <>
struct VecType<float> {
using vec_type = FP32Vec8;
};
template <>
struct VecType<c10::Half> {
using vec_type = FP16Vec8;
};
template <>
struct VecType<c10::BFloat16> {
using vec_type = BF16Vec8;
};
template <typename T>
void storeFP32(float v, T* ptr) {
*ptr = v;
}
/*
template <> inline void storeFP32<c10::Half>(float v, c10::Half *ptr) {
c10::Half __attribute__((__may_alias__)) *v_ptr =
reinterpret_cast<c10::Half *>(&v);
*ptr = *(v_ptr + 1);
}
*/
template <>
inline void storeFP32<c10::Half>(float v, c10::Half* ptr) {
uint16_t fp16 = float_to_fp16(v);
*reinterpret_cast<uint16_t*>(ptr) = fp16;
}
template <>
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
c10::BFloat16 __attribute__((__may_alias__))* v_ptr =
reinterpret_cast<c10::BFloat16*>(&v);
*ptr = *(v_ptr + 1);
}
inline FP16Vec16::FP16Vec16(const FP32Vec16& v) {
int i = 0;
for (i = 0; i < FP16Vec16::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_fp16(v.reg.val[i]);
}
}
inline FP16Vec8 ::FP16Vec8(const FP32Vec8& v) {
int i = 0;
for (i = 0; i < FP16Vec8::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_fp16(v.reg.val[i]);
}
}
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
acc = acc + a * b;
}
inline BF16Vec8::BF16Vec8(const FP32Vec8& v) {
int i = 0;
for (i = 0; i < BF16Vec8::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_bf16(v.reg.val[i]);
}
}
inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
int i = 0;
for (i = 0; i < BF16Vec16::VEC_ELEM_NUM; ++i) {
reg.val[i] = float_to_bf16(v.reg.val[i]);
}
}
inline void prefetch(const void* addr) { __builtin_prefetch(addr, 0, 3); }
}; // namespace vec_op

View File

@ -137,9 +137,8 @@ DNNLMatMulPrimitiveHandler::DNNLMatMulPrimitiveHandler(
}
void DNNLMatMulPrimitiveHandler::prepack_weight(
void* original_b_ptr, dnnl::memory::desc b_target_mem_desc) {
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
{b_k_stride_, b_n_stride_});
void* original_b_ptr, dnnl::memory::desc original_b_md,
dnnl::memory::desc b_target_mem_desc) {
dnnl::memory original_weight(original_b_md, default_engine(), original_b_ptr);
dnnl::memory packed_weight(b_target_mem_desc, default_engine());
{
@ -250,7 +249,9 @@ W8A8MatMulPrimitiveHandler::W8A8MatMulPrimitiveHandler(const Args& args)
if (a_qs_ == QuantizationStrategy::PER_TOKEN) {
assert(!use_azp_);
};
prepack_weight(args.b_ptr,
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
{b_k_stride_, b_n_stride_});
prepack_weight(args.b_ptr, original_b_md,
create_primitive_desc(
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
.use_bias = false,
@ -412,12 +413,25 @@ MatMulPrimitiveHandler::MatMulPrimitiveHandler(const Args& args)
assert(ab_type_ == dnnl::memory::data_type::f32 ||
ab_type_ == dnnl::memory::data_type::bf16 ||
ab_type_ == dnnl::memory::data_type::f16);
prepack_weight(args.b_ptr,
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
{b_k_stride_, b_n_stride_});
prepack_weight(args.b_ptr, original_b_md,
create_primitive_desc(
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
.a_m_stride = DNNL_RUNTIME_DIM_VAL,
.use_bias = false,
.bias_type = dnnl::memory::data_type::undef},
MSizeCacheKey{
#ifdef VLLM_USE_ACL
// Arm Compute Library (ACL) backend for oneDNN does
// not support runtime
// dimensions, so we set M to a default value
.a_m_size = 128,
.a_m_stride = b_k_size_,
#else
.a_m_size = DNNL_RUNTIME_DIM_VAL,
.a_m_stride = DNNL_RUNTIME_DIM_VAL,
#endif
.use_bias = false,
.bias_type = dnnl::memory::data_type::undef},
true)
.weights_desc());
init_runtime_memory_cache(args);
@ -443,13 +457,31 @@ void MatMulPrimitiveHandler::execute(ExecArgs& args) {
c_storage->set_data_handle((void*)args.c_ptr);
c_mem_desc->dims[0] = args.a_m_size;
#ifndef VLLM_USE_ACL
// We do not support in ACL backend of oneDNN, we handle bias by:
// 1. copying it into the result tensor
// 2. attaching a fused-sum post-op to the matmul primitive
if (args.use_bias) {
auto&& [bias_storage, bias_mem_desc] = get_runtime_memory_ptr(2);
bias_storage->set_data_handle((void*)args.bias_ptr);
}
#endif
dnnl::matmul matmul = get_matmul_cache(args);
// With ACL backend of oneDNN, the required memory format might change when the
// source tensor dims change. This does not really happen in practice, so isn't
// a performance hit, but we need to support it because the API allows for it.
#ifdef VLLM_USE_ACL
auto new_expected_wei_desc =
dnnl::matmul::primitive_desc(
const_cast<dnnl_primitive_desc_t>(matmul.get_primitive_desc()))
.weights_desc();
if (new_expected_wei_desc != b_target_mem_desc_) {
prepack_weight(memory_cache_[DNNL_ARG_WEIGHTS].get_data_handle(),
b_target_mem_desc_, new_expected_wei_desc);
}
#endif
auto&& [scratchpad_storage, scratchpad_mem_desc] = get_runtime_memory_ptr(3);
scratchpad_storage->set_data_handle(
DNNLScratchPadManager::get_dnnl_scratchpad_manager()->get_data<void>());
@ -484,7 +516,13 @@ dnnl::matmul::primitive_desc MatMulPrimitiveHandler::create_primitive_desc(
} else {
a_md = dnnl::memory::desc({key.a_m_size, b_k_size_}, b_type_,
{key.a_m_stride, 1});
#ifdef VLLM_USE_ACL
// ACL's backend of oneDNN always expects the weight format to be "any"
b_md = dnnl::memory::desc({b_k_size_, b_n_size_}, b_type_,
dnnl::memory::format_tag::any);
#else
b_md = b_target_mem_desc_;
#endif
}
dnnl::memory::desc c_md({key.a_m_size, b_n_size_}, c_type_,
dnnl::memory::format_tag::ab);
@ -494,8 +532,18 @@ dnnl::matmul::primitive_desc MatMulPrimitiveHandler::create_primitive_desc(
if (key.use_bias) {
dnnl::memory::desc bias_md({1, b_n_size_}, key.bias_type, {b_n_size_, 1});
// Since ACL's matmuls don't support passing a bias_md, we apply the bias
// through a fused-sum post-op
#ifdef VLLM_USE_ACL
dnnl::post_ops post_ops;
post_ops.append_sum();
attr.set_post_ops(post_ops);
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
attr);
#else
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, bias_md,
c_md, attr);
#endif
} else {
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
attr);
@ -511,13 +559,23 @@ void MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
default_engine(), nullptr);
set_runtime_memory_ptr(1, memory_cache_[DNNL_ARG_DST].get());
// ACL matmuls don't support bias_md, so we don't need these
#ifndef VLLM_USE_ACL
memory_cache_[DNNL_ARG_BIAS] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(2, memory_cache_[DNNL_ARG_BIAS].get());
#endif
memory_cache_[DNNL_ARG_SCRATCHPAD] =
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
default_engine(), nullptr);
set_runtime_memory_ptr(3, memory_cache_[DNNL_ARG_SCRATCHPAD].get());
}
bool is_onednn_acl_supported() {
#ifdef VLLM_USE_ACL
return true;
#else
return false;
#endif
}

View File

@ -101,7 +101,7 @@ class DNNLMatMulPrimitiveHandler {
protected:
DNNLMatMulPrimitiveHandler(const Args& args, dnnl::memory::data_type b_type);
void prepack_weight(void* original_b_ptr,
void prepack_weight(void* original_b_ptr, dnnl::memory::desc original_b_md,
dnnl::memory::desc b_target_mem_desc);
void set_runtime_memory_ptr(size_t index, dnnl_memory* memory_ptr);

View File

@ -527,21 +527,42 @@ void onednn_mm(torch::Tensor& c, // [M, OC], row-major
MatMulPrimitiveHandler* ptr =
reinterpret_cast<MatMulPrimitiveHandler*>(handler);
// ACL matmuls expect contiguous source tensors
#ifdef VLLM_USE_ACL
torch::Tensor a_contig = a.contiguous();
#endif
MatMulPrimitiveHandler::ExecArgs exec_args;
#ifdef VLLM_USE_ACL
exec_args.a_m_size = a_contig.size(0);
exec_args.a_m_stride = a_contig.stride(0);
#else
exec_args.a_m_size = a.size(0);
exec_args.a_m_stride = a.stride(0);
#endif
VLLM_DISPATCH_FLOATING_TYPES(a.scalar_type(), "onednn_mm", [&] {
if (bias.has_value()) {
exec_args.use_bias = true;
exec_args.bias_type = get_dnnl_type<scalar_t>();
#ifdef VLLM_USE_ACL
// ACL matmuls in oneDNN do not support a bias.
// We handle a matmul with bias by doing: c = bias; c += matmul(a, b)
c.copy_(bias.value());
#else
exec_args.bias_ptr = bias->data_ptr<scalar_t>();
#endif
} else {
exec_args.use_bias = false;
exec_args.bias_type = get_dnnl_type<void>();
exec_args.bias_ptr = nullptr;
}
#ifdef VLLM_USE_ACL
exec_args.a_ptr = a_contig.data_ptr<scalar_t>();
#else
exec_args.a_ptr = a.data_ptr<scalar_t>();
#endif
exec_args.c_ptr = c.data_ptr<scalar_t>();
ptr->execute(exec_args);

106
csrc/cpu/float_convert.hpp Normal file
View File

@ -0,0 +1,106 @@
static float bf16_to_float(uint16_t bf16) {
uint32_t bits = static_cast<uint32_t>(bf16) << 16;
float fp32;
std::memcpy(&fp32, &bits, sizeof(fp32));
return fp32;
}
static uint16_t float_to_bf16(float fp32) {
uint32_t bits;
std::memcpy(&bits, &fp32, sizeof(fp32));
return static_cast<uint16_t>(bits >> 16);
}
/************************************************
* Copyright (c) 2015 Princeton Vision Group
* Licensed under the MIT license.
* Codes below copied from
* https://github.com/PrincetonVision/marvin/tree/master/tools/tensorIO_matlab
*************************************************/
static uint16_t float_to_fp16(float fp32) {
uint16_t fp16;
unsigned x;
unsigned u, remainder, shift, lsb, lsb_s1, lsb_m1;
unsigned sign, exponent, mantissa;
std::memcpy(&x, &fp32, sizeof(fp32));
u = (x & 0x7fffffff);
// Get rid of +NaN/-NaN case first.
if (u > 0x7f800000) {
fp16 = 0x7fffU;
return fp16;
}
sign = ((x >> 16) & 0x8000);
// Get rid of +Inf/-Inf, +0/-0.
if (u > 0x477fefff) {
fp16 = sign | 0x7c00U;
return fp16;
}
if (u < 0x33000001) {
fp16 = (sign | 0x0000);
return fp16;
}
exponent = ((u >> 23) & 0xff);
mantissa = (u & 0x7fffff);
if (exponent > 0x70) {
shift = 13;
exponent -= 0x70;
} else {
shift = 0x7e - exponent;
exponent = 0;
mantissa |= 0x800000;
}
lsb = (1 << shift);
lsb_s1 = (lsb >> 1);
lsb_m1 = (lsb - 1);
// Round to nearest even.
remainder = (mantissa & lsb_m1);
mantissa >>= shift;
if (remainder > lsb_s1 || (remainder == lsb_s1 && (mantissa & 0x1))) {
++mantissa;
if (!(mantissa & 0x3ff)) {
++exponent;
mantissa = 0;
}
}
fp16 = (sign | (exponent << 10) | mantissa);
return fp16;
}
static float fp16_to_float(uint16_t fp16) {
unsigned sign = ((fp16 >> 15) & 1);
unsigned exponent = ((fp16 >> 10) & 0x1f);
unsigned mantissa = ((fp16 & 0x3ff) << 13);
int temp;
float fp32;
if (exponent == 0x1f) { /* NaN or Inf */
mantissa = (mantissa ? (sign = 0, 0x7fffff) : 0);
exponent = 0xff;
} else if (!exponent) { /* Denorm or Zero */
if (mantissa) {
unsigned int msb;
exponent = 0x71;
do {
msb = (mantissa & 0x400000);
mantissa <<= 1; /* normalize */
--exponent;
} while (!msb);
mantissa &= 0x7fffff; /* 1.mantissa is implicit */
}
} else {
exponent += 0x70;
}
temp = ((sign << 31) | (exponent << 23) | mantissa);
std::memcpy(&fp32, &temp, sizeof(temp));
return fp32;
}

View File

@ -27,6 +27,8 @@ int64_t create_onednn_mm_handler(const torch::Tensor& b,
void onednn_mm(torch::Tensor& c, const torch::Tensor& a,
const std::optional<torch::Tensor>& bias, int64_t handler);
bool is_onednn_acl_supported();
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
torch::Tensor& kv_cache, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens);
@ -88,8 +90,18 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
" int tp_rank, int blocksparse_local_blocks,"
" int blocksparse_vert_stride, int blocksparse_block_size,"
" int blocksparse_head_sliding_step) -> ()");
ops.impl("paged_attention_v1", torch::kCPU, &paged_attention_v1);
ops.def(
"dynamic_4bit_int_moe("
"Tensor x, Tensor topk_ids, Tensor topk_weights,"
"Tensor w13_packed, Tensor w2_packed, int H, int I, int I2,"
"int group_size, bool apply_router_weight_on_input, int activation_kind"
") -> Tensor");
ops.impl("dynamic_4bit_int_moe", torch::kCPU, &dynamic_4bit_int_moe_cpu);
// PagedAttention V2.
ops.def(
"paged_attention_v2("
@ -171,6 +183,9 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"int handler) -> ()");
ops.impl("onednn_mm", torch::kCPU, &onednn_mm);
// Check if oneDNN was built with ACL backend
ops.def("is_onednn_acl_supported() -> bool", &is_onednn_acl_supported);
// Create oneDNN W8A8 handler
ops.def(
"create_onednn_scaled_mm_handler(Tensor b, Tensor b_scales, ScalarType "

View File

@ -12,6 +12,7 @@ using CubMaxOp = cub::Max;
#endif // CUB_VERSION
#else
#include <hipcub/hipcub.hpp>
using CubAddOp = cub::Sum;
using CubMaxOp = cub::Max;
namespace cub = hipcub;
using CubAddOp = hipcub::Sum;
using CubMaxOp = hipcub::Max;
#endif // USE_ROCM

View File

@ -27,7 +27,7 @@ VLLMDataTypeNames: dict[Union[VLLMDataType, DataType], str] = {
**{
VLLMDataType.u4b8: "u4b8",
VLLMDataType.u8b128: "u8b128",
}
},
}
VLLMDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
@ -35,7 +35,7 @@ VLLMDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
**{
VLLMDataType.u4b8: "cutlass::vllm_uint4b8_t",
VLLMDataType.u8b128: "cutlass::vllm_uint8b128_t",
}
},
}
VLLMDataTypeSize: dict[Union[VLLMDataType, DataType], int] = {
@ -43,7 +43,7 @@ VLLMDataTypeSize: dict[Union[VLLMDataType, DataType], int] = {
**{
VLLMDataType.u4b8: 4,
VLLMDataType.u8b128: 8,
}
},
}
VLLMDataTypeVLLMScalarTypeTag: dict[Union[VLLMDataType, DataType], str] = {
@ -67,15 +67,13 @@ VLLMDataTypeTorchDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
DataType.f32: "at::ScalarType::Float",
}
VLLMKernelScheduleTag: dict[Union[
MixedInputKernelScheduleType, KernelScheduleType], str] = {
**KernelScheduleTag, # type: ignore
**{
MixedInputKernelScheduleType.TmaWarpSpecialized:
"cutlass::gemm::KernelTmaWarpSpecialized",
MixedInputKernelScheduleType.TmaWarpSpecializedPingpong:
"cutlass::gemm::KernelTmaWarpSpecializedPingpong",
MixedInputKernelScheduleType.TmaWarpSpecializedCooperative:
"cutlass::gemm::KernelTmaWarpSpecializedCooperative",
}
}
VLLMKernelScheduleTag: dict[
Union[MixedInputKernelScheduleType, KernelScheduleType], str
] = {
**KernelScheduleTag, # type: ignore
**{
MixedInputKernelScheduleType.TmaWarpSpecialized: "cutlass::gemm::KernelTmaWarpSpecialized", # noqa: E501
MixedInputKernelScheduleType.TmaWarpSpecializedPingpong: "cutlass::gemm::KernelTmaWarpSpecializedPingpong", # noqa: E501
MixedInputKernelScheduleType.TmaWarpSpecializedCooperative: "cutlass::gemm::KernelTmaWarpSpecializedCooperative", # noqa: E501
},
}

View File

@ -0,0 +1,64 @@
#pragma once
#include <cuda_runtime_api.h>
#include <algorithm>
// maximum blocks per SM cap
#ifndef VLLM_LAUNCH_BLOCKS_CAP
#define VLLM_LAUNCH_BLOCKS_CAP 4
#endif
// Compile-time estimate of max threads per SM for launch bounds.
// Families: 1024, 1536, 2048 threads/SM.
#ifndef VLLM_MAX_THREADS_PER_SM
#ifdef __CUDA_ARCH__
/* 1024 thr/SM: Turing (sm_75) */
#if (__CUDA_ARCH__ == 750)
#define VLLM_MAX_THREADS_PER_SM 1024
/* 1536 thr/SM: Ampere GA10x (sm_86/87), Ada (sm_89),
GB20x consumer (sm_120/121), Thor (sm_101 or sm_110) */
#elif (__CUDA_ARCH__ == 860) || (__CUDA_ARCH__ == 870) || \
(__CUDA_ARCH__ == 890) || (__CUDA_ARCH__ == 1010) || \
(__CUDA_ARCH__ == 1100) || (__CUDA_ARCH__ == 1200) || \
(__CUDA_ARCH__ == 1210)
#define VLLM_MAX_THREADS_PER_SM 1536
/* 2048 thr/SM: Volta (sm_70/72), Ampere GA100 (sm_80),
Hopper (sm_90), Blackwell (sm_100/103) */
#elif (__CUDA_ARCH__ == 700) || (__CUDA_ARCH__ == 720) || \
(__CUDA_ARCH__ == 800) || (__CUDA_ARCH__ == 900) || \
(__CUDA_ARCH__ == 1000) || (__CUDA_ARCH__ == 1030)
#define VLLM_MAX_THREADS_PER_SM 2048
/* Fallback: use 2048 for unknown future CCs */
#else
#define VLLM_MAX_THREADS_PER_SM 2048
#endif
#else
/* Host pass (no __CUDA_ARCH__): neutral default */
#define VLLM_MAX_THREADS_PER_SM 2048
#endif
#endif
// compute the number of blocks per SM to request in __launch_bounds__
#define VLLM_BLOCKS_DIV(VAL) (VLLM_MAX_THREADS_PER_SM / (VAL))
#define VLLM_CLAMP_BLOCKS_PER_SM(VAL) \
(((VAL) <= 0) \
? 1 \
: (((VAL) < VLLM_LAUNCH_BLOCKS_CAP) ? (VAL) : VLLM_LAUNCH_BLOCKS_CAP))
#define VLLM_BLOCKS_PER_SM(BLOCK_THREADS) \
VLLM_CLAMP_BLOCKS_PER_SM(VLLM_BLOCKS_DIV(BLOCK_THREADS))
// runtime-time helper to compute blocks/SM
static inline int vllm_runtime_blocks_per_sm(int block_threads) {
int device = -1;
cudaGetDevice(&device);
int max_threads_per_sm = VLLM_MAX_THREADS_PER_SM;
cudaDeviceGetAttribute(&max_threads_per_sm,
cudaDevAttrMaxThreadsPerMultiProcessor, device);
int blocks = (block_threads > 0) ? (max_threads_per_sm / block_threads) : 1;
return VLLM_CLAMP_BLOCKS_PER_SM(blocks);
}

View File

@ -1,6 +1,7 @@
#include "type_convert.cuh"
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -413,7 +414,9 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
wt_ptr % req_alignment_bytes == 0;
bool offsets_are_multiple_of_vector_width =
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width) {
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
!batch_invariant_launch) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);
@ -459,7 +462,8 @@ void poly_norm(torch::Tensor& out, // [..., hidden_size]
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0) {
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
LAUNCH_FUSED_POLY_NORM(8);
} else {
LAUNCH_FUSED_POLY_NORM(0);

View File

@ -6,9 +6,10 @@
*/
#include "type_convert.cuh"
#include "quantization/fp8/common.cuh"
#include "quantization/w8a8/fp8/common.cuh"
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -240,7 +241,9 @@ void fused_add_rms_norm_static_fp8_quant(
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned =
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0) {
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
!batch_invariant_launch) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);

View File

@ -0,0 +1,156 @@
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <torch/all.h>
// _dyn_quant_matmul_4bit is only available on AArch64.
#if defined(__aarch64__)
#include <ATen/ops/_dyn_quant_matmul_4bit.h>
#endif
inline torch::Tensor mm(const torch::Tensor& a, const torch::Tensor& packed_w,
int64_t group_size_eff, int64_t in_features,
int64_t out_features) {
#if defined(__aarch64__)
return at::_ops::_dyn_quant_matmul_4bit::call(a, packed_w, group_size_eff,
in_features, out_features);
#else
TORCH_CHECK(false,
"dynamic 4-bit int MoE path requires AArch64 (ARM64); "
"_dyn_quant_matmul_4bit is unavailable on this architecture");
return {};
#endif
}
enum ActivationKind : int64_t {
SwiGLU_Gu = 0, // act = SiLU(g) * u
SwiGLUOAI = 1, // act = SiLU(u) * g
SiLU = 2 // SiLU
};
torch::Tensor dynamic_4bit_int_moe_cpu(
torch::Tensor x, torch::Tensor topk_ids, torch::Tensor topk_weights,
torch::Tensor w13_packed, torch::Tensor w2_packed, int64_t H, int64_t I,
int64_t I2, int64_t group_size, bool apply_router_weight_on_input,
int64_t activation_kind) {
TORCH_CHECK(x.dim() == 2, "x must be 2D");
TORCH_CHECK(topk_ids.dim() == 2 && topk_weights.dim() == 2,
"topk tensors must be [T, K]");
TORCH_CHECK(
w13_packed.size(0) == w2_packed.size(0),
"w13_packed and w2_packed must have same number of experts in dim 0");
TORCH_CHECK(I2 == 2 * I, "I2 must equal 2*I");
const int64_t T = x.size(0);
const int64_t K = topk_ids.size(1);
const int64_t E = w13_packed.size(0);
const int64_t N = T * K;
auto x_c = x.contiguous();
auto ids_c = topk_ids.contiguous();
auto gates_c = topk_weights.to(at::kFloat).contiguous();
// bucketing tokens -> experts
c10::SmallVector<int64_t, 64> counts(
E, 0); // Small vector uses stack allocation
{
const auto* ids_ptr = ids_c.data_ptr<int64_t>();
for (int64_t i = 0; i < N; ++i) {
const int64_t e_id = ids_ptr[i];
TORCH_CHECK(0 <= e_id && e_id < E, "expert id out of range");
counts[e_id]++;
}
}
c10::SmallVector<int64_t, 65> offsets(E + 1, 0); // ( E +1 )
for (int64_t e = 0; e < E; ++e) offsets[e + 1] = offsets[e] + counts[e];
auto expert_tokens = at::empty({offsets[E]}, ids_c.options());
auto expert_gates = at::empty({offsets[E]}, gates_c.options());
{
c10::SmallVector<int64_t, 64> cursor(E, 0);
const auto* ids_ptr = ids_c.data_ptr<int64_t>();
const auto* gts_ptr = gates_c.data_ptr<float>();
auto* tok_ptr = expert_tokens.data_ptr<int64_t>();
auto* gate_ptr = expert_gates.data_ptr<float>();
for (int64_t t = 0; t < T; ++t) {
const int64_t base = t * K;
for (int64_t k = 0; k < K; ++k) {
const int64_t idx = base + k;
const int64_t e = ids_ptr[idx];
const int64_t p = offsets[e] + (cursor[e]++);
tok_ptr[p] = t;
gate_ptr[p] = gts_ptr[idx];
}
}
}
const int64_t g_eff_13 = (group_size != -1) ? group_size : H;
const int64_t g_eff_2 = (group_size != -1) ? group_size : I;
// Per-expert outputs filled in parallel
std::vector<torch::Tensor> y_list(E);
y_list.resize(E);
at::parallel_for(0, E, 1, [&](int64_t e_begin, int64_t e_end) {
for (int64_t e = e_begin; e < e_end; ++e) {
const int64_t te = counts[e];
if (te == 0) {
y_list[e] = at::empty({0, H}, x_c.options());
continue;
}
const int64_t start = offsets[e];
auto sel_tokens =
expert_tokens.narrow(/*dim=*/0, /*start=*/start, /*length=*/te);
auto gates_e =
expert_gates.narrow(/*dim=*/0, /*start=*/start, /*length=*/te);
auto x_e = x_c.index_select(/*dim=*/0, sel_tokens);
if (apply_router_weight_on_input) {
x_e = x_e.mul(gates_e.unsqueeze(1));
}
auto w13_e = w13_packed.select(/*dim=*/0, e);
auto w2_e = w2_packed.select(/*dim=*/0, e);
// W13
auto y13 =
mm(x_e, w13_e, g_eff_13, /*in_features=*/H, /*out_features=*/I2);
auto g_part = y13.narrow(/*dim=*/1, /*start=*/0, /*length=*/I);
auto u_part = y13.narrow(/*dim=*/1, /*start=*/I, /*length=*/I);
torch::Tensor act;
if (activation_kind == ActivationKind::SwiGLUOAI) { // SwiGLUOAI
constexpr double kAlpha = 1.702; // GPT-OSS default
constexpr double kLimit = 7.0; // GPT-OSS default
auto gate_c = at::clamp_max(g_part, kLimit);
auto up_c = at::clamp(u_part, -kLimit, kLimit);
auto glu = gate_c.mul(at::sigmoid(gate_c.mul(kAlpha)));
act = up_c.add(1.0).mul(glu);
} else { // SiLU , SwiGLU_GU, vLLM maps silu to SiluAndMul()
act = at::silu(g_part).mul(u_part);
}
// W2
auto y = mm(act, w2_e, g_eff_2, /*in_features=*/I, /*out_features=*/H);
if (!apply_router_weight_on_input) {
y = y.mul(gates_e.unsqueeze(1));
}
// Store per-expert result
y_list[e] = y;
}
});
// Concatenate all expert outputs to match expert_tokens order
auto Y_all = at::cat(y_list, /*dim=*/0);
auto out = at::zeros({T, H}, x.options());
out =
at::index_add(out, /*dim=*/0, /*index=*/expert_tokens, /*source=*/Y_all);
return out;
}

View File

@ -21,6 +21,7 @@
#include <torch/all.h>
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <cuda/std/limits>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
@ -28,7 +29,6 @@ namespace cg = cooperative_groups;
namespace vllm {
namespace moe {
constexpr float kNegInfinity = INFINITY * -1;
constexpr unsigned FULL_WARP_MASK = 0xffffffff;
constexpr int32_t WARP_SIZE = 32;
constexpr int32_t BLOCK_SIZE = 512;
@ -411,14 +411,30 @@ __device__ inline float cuda_cast<float, __nv_bfloat16>(__nv_bfloat16 val) {
return __bfloat162float(val);
}
template <typename T>
__device__ inline T neg_inf() {
// cuda::std::numeric_limits<T>::infinity() returns `0` for [T=bf16 or fp16]
// so we need to cast from fp32
return cuda_cast<T, float>(-cuda::std::numeric_limits<float>::infinity());
}
template <typename T>
__device__ inline bool is_finite(const T val) {
#if (__CUDACC_VER_MAJOR__ * 10000 + __CUDACC_VER_MINOR__ * 100 >= 120800)
return cuda::std::isfinite(val);
#else
return isfinite(cuda_cast<float, T>(val));
#endif
}
template <typename T>
__device__ void topk_with_k2(T* output, T const* input,
cg::thread_block_tile<32> const& tile,
int32_t const lane_id,
int const num_experts_per_group) {
// Get the top2 per thread
T largest = -INFINITY;
T second_largest = -INFINITY;
T largest = neg_inf<T>();
T second_largest = neg_inf<T>();
if (num_experts_per_group > WARP_SIZE) {
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
@ -513,8 +529,8 @@ __global__ void group_idx_and_topk_idx_kernel(
warp_id * topk;
s_topk_idx += warp_id * topk;
T value = kNegInfinity;
T topk_group_value = kNegInfinity;
T value = neg_inf<T>();
T topk_group_value = neg_inf<T>();
int32_t num_equalto_topkth_group;
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
@ -525,11 +541,8 @@ __global__ void group_idx_and_topk_idx_kernel(
if (case_id < num_tokens) {
// calculate group_idx
int32_t target_num_min = WARP_SIZE - n_group + topk_group;
if (lane_id < n_group &&
(isfinite(cuda_cast<float, T>(
group_scores[lane_id])))) // The check is necessary to avoid
// abnormal input
{
// The check is necessary to avoid abnormal input
if (lane_id < n_group && is_finite(group_scores[lane_id])) {
value = group_scores[lane_id];
}
@ -540,11 +553,11 @@ __global__ void group_idx_and_topk_idx_kernel(
__syncwarp(); // Ensure all threads have valid data before reduction
topk_group_value = cg::reduce(tile, value, cg::greater<T>());
if (value == topk_group_value) {
value = kNegInfinity;
value = neg_inf<T>();
}
pre_count_equal_to_top_value = count_equal_to_top_value;
count_equal_to_top_value = __popc(__ballot_sync(
FULL_WARP_MASK, (value == cuda_cast<T, float>(kNegInfinity))));
count_equal_to_top_value =
__popc(__ballot_sync(FULL_WARP_MASK, (value == neg_inf<T>())));
}
num_equalto_topkth_group = target_num_min - pre_count_equal_to_top_value;
}
@ -552,11 +565,10 @@ __global__ void group_idx_and_topk_idx_kernel(
warp_topk::WarpSelect</*capability*/ WARP_SIZE, /*greater*/ true, T, int32_t,
/* is_stable */ true>
queue((int32_t)topk, -INFINITY);
queue((int32_t)topk, neg_inf<T>());
int count_equalto_topkth_group = 0;
bool if_proceed_next_topk =
(topk_group_value != cuda_cast<T, float>(kNegInfinity));
bool if_proceed_next_topk = topk_group_value != neg_inf<T>();
if (case_id < num_tokens && if_proceed_next_topk) {
for (int i_group = 0; i_group < n_group; i_group++) {
if ((group_scores[i_group] > topk_group_value) ||
@ -565,11 +577,10 @@ __global__ void group_idx_and_topk_idx_kernel(
int32_t offset = i_group * num_experts_per_group;
for (int32_t i = lane_id; i < align_num_experts_per_group;
i += WARP_SIZE) {
T candidates =
(i < num_experts_per_group) && isfinite(cuda_cast<float, T>(
scores_with_bias[offset + i]))
? scores_with_bias[offset + i]
: cuda_cast<T, float>(kNegInfinity);
T candidates = (i < num_experts_per_group) &&
is_finite(scores_with_bias[offset + i])
? scores_with_bias[offset + i]
: neg_inf<T>();
queue.add(candidates, offset + i);
}
if (group_scores[i_group] == topk_group_value) {
@ -598,7 +609,8 @@ __global__ void group_idx_and_topk_idx_kernel(
if (i < topk) {
s_topk_value[i] = value;
}
topk_sum += reduce(tile, cuda_cast<float, T>(value), cg::plus<float>());
topk_sum +=
cg::reduce(tile, cuda_cast<float, T>(value), cg::plus<float>());
}
}

View File

@ -17,25 +17,30 @@ FILE_HEAD = """
namespace MARLIN_NAMESPACE_NAME {
""".strip()
TEMPLATE = ("template __global__ void Marlin<"
"{{scalar_t}}, "
"{{w_type_id}}, "
"{{s_type_id}}, "
"{{threads}}, "
"{{thread_m_blocks}}, "
"{{thread_n_blocks}}, "
"{{thread_k_blocks}}, "
"{{'true' if m_block_size_8 else 'false'}}, "
"{{stages}}, "
"{{group_blocks}}, "
"{{'true' if is_zp_float else 'false'}}>"
"( MARLIN_KERNEL_PARAMS );")
TEMPLATE = (
"template __global__ void Marlin<"
"{{scalar_t}}, "
"{{w_type_id}}, "
"{{s_type_id}}, "
"{{threads}}, "
"{{thread_m_blocks}}, "
"{{thread_n_blocks}}, "
"{{thread_k_blocks}}, "
"{{'true' if m_block_size_8 else 'false'}}, "
"{{stages}}, "
"{{group_blocks}}, "
"{{'true' if is_zp_float else 'false'}}>"
"( MARLIN_KERNEL_PARAMS );"
)
# int8 with zero point case (vllm::kU8) is also supported,
# we don't add it to reduce wheel size.
SCALAR_TYPES = [
"vllm::kU4", "vllm::kU4B8", "vllm::kU8B128", "vllm::kFE4M3fn",
"vllm::kFE2M1f"
"vllm::kU4",
"vllm::kU4B8",
"vllm::kU8B128",
"vllm::kFE4M3fn",
"vllm::kFE2M1f",
]
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128)]
@ -58,11 +63,12 @@ def generate_new_kernels():
all_template_str_list = []
for group_blocks, m_blocks, thread_configs in itertools.product(
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS):
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS
):
# act order case only support gptq-int4 and gptq-int8
if group_blocks == 0 and scalar_type not in [
"vllm::kU4B8", "vllm::kU8B128"
"vllm::kU4B8",
"vllm::kU8B128",
]:
continue
if thread_configs[2] == 256:

View File

@ -44,6 +44,9 @@ __global__ void moe_align_block_size_kernel(
for (size_t i = tid; i < numel; i += stride) {
int expert_id = topk_ids[i];
if (expert_id >= num_experts) {
continue;
}
int warp_idx = expert_id / experts_per_warp;
int expert_offset = expert_id % experts_per_warp;
atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset], 1);
@ -95,12 +98,15 @@ template <typename scalar_t>
__global__ void count_and_sort_expert_tokens_kernel(
const scalar_t* __restrict__ topk_ids,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
size_t numel) {
size_t numel, int32_t num_experts) {
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = blockDim.x * gridDim.x;
for (size_t i = tid; i < numel; i += stride) {
int32_t expert_id = topk_ids[i];
if (expert_id >= num_experts) {
continue;
}
int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
sorted_token_ids[rank_post_pad] = i;
}
@ -269,7 +275,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel());
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel(), num_experts);
}
});
}

View File

@ -21,6 +21,7 @@
#include <c10/cuda/CUDAGuard.h>
#include "../cuda_compat.h"
#include "../cub_helpers.h"
#include "../core/batch_invariant.hpp"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -405,7 +406,8 @@ void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, f
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
const int num_warps = batch_invariant_launch ? 32 : (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);

View File

@ -100,6 +100,11 @@ void apply_repetition_penalties_(torch::Tensor& logits,
const torch::Tensor& output_mask,
const torch::Tensor& repetition_penalties);
void top_k_per_row(const torch::Tensor& logits, const torch::Tensor& rowStarts,
const torch::Tensor& rowEnds, torch::Tensor& indices,
torch::Tensor& values, int64_t numRows, int64_t stride0,
int64_t stride1);
void rms_norm_static_fp8_quant(torch::Tensor& out, torch::Tensor& input,
torch::Tensor& weight, torch::Tensor& scale,
double epsilon);
@ -133,12 +138,12 @@ void silu_and_mul_nvfp4_quant(torch::Tensor& out,
torch::Tensor& input,
torch::Tensor& input_global_scale);
#endif
void silu_mul_fp8_quant_deep_gemm_cuda(
void persistent_masked_m_silu_mul_quant(
const at::Tensor& input, // (E, T, 2*H)
const at::Tensor& counts, // (E)
at::Tensor& y_q, // (E, T, H) [OUT]
at::Tensor& y_s, // (E, T, H//group_size) [OUT]
int64_t group_size, bool use_ue8m0, int64_t num_parallel_tokens);
bool use_ue8m0);
void mul_and_silu(torch::Tensor& out, torch::Tensor& input);
@ -328,6 +333,12 @@ void selective_scan_fwd(const torch::Tensor& u, const torch::Tensor& delta,
const std::optional<torch::Tensor>& has_initial_state,
const torch::Tensor& ssm_states, int64_t pad_slot_id);
torch::Tensor dynamic_4bit_int_moe_cpu(
torch::Tensor x, torch::Tensor topk_ids, torch::Tensor topk_weights,
torch::Tensor w13_packed, torch::Tensor w2_packed, int64_t H, int64_t I,
int64_t I2, int64_t group_size, bool apply_router_weight_on_input,
int64_t activation_kind);
using fptr_t = int64_t;
fptr_t init_custom_ar(const std::vector<int64_t>& fake_ipc_ptrs,
torch::Tensor& rank_data, int64_t rank,

View File

@ -7,7 +7,7 @@
#include "../cuda_compat.h"
#include "dispatch_utils.h"
#include "quantization/fp8/common.cuh"
#include "quantization/w8a8/fp8/common.cuh"
#include <c10/util/Float8_e4m3fn.h>
@ -23,9 +23,14 @@
typedef __hip_bfloat162 __nv_bfloat162;
typedef __hip_bfloat16 __nv_bfloat16;
typedef __hip_bfloat16_raw __nv_bfloat16_raw;
#if defined(HIP_FP8_TYPE_OCP)
typedef __hip_fp8_e4m3 __nv_fp8_e4m3;
typedef __hip_fp8x4_e4m3 __nv_fp8x4_e4m3;
#else
// ROCm 6.2 fallback: only *_fnuz types exist
typedef __hip_fp8_e4m3_fnuz __nv_fp8_e4m3;
typedef __hip_fp8x4_e4m3_fnuz __nv_fp8x4_e4m3;
#endif
#endif
#include "core/registration.h"
@ -109,13 +114,22 @@ __global__ void act_and_mul_quant_kernel(
}
__device__ __forceinline__ float silu(float x) {
return (__fdividef(x, (1.f + expf(-x))));
return __fdividef(x, (1.f + expf(-x)));
}
__device__ __forceinline__ float2 silu2(float2 x) {
return make_float2(silu(x.x), silu(x.y));
}
__device__ __forceinline__ __nv_bfloat162 silu2_v2(float2 x) {
#ifndef USE_ROCM
return make_bfloat162(__float2bfloat16_rn(silu(x.x)),
__float2bfloat16_rn(silu(x.y)));
#else
return __float22bfloat162_rn(make_float2(silu(x.x), silu(x.y)));
#endif
}
#ifndef USE_ROCM
__device__ __forceinline__ float warp_max(float v) {
static constexpr unsigned FULL_MASK = 0xffffffffu;
@ -218,225 +232,308 @@ constexpr __nv_bfloat16 get_fp8_min() {
return __nv_bfloat16(__nv_bfloat16_raw{.x = 50032});
}
}
#ifndef USE_ROCM
template <typename fp8_type, int32_t NUM_WARPS, typename Idx_t,
int NUM_PARALLEL_TOKENS, bool USE_UE8M0, int GROUP_SIZE = 128,
template <typename Idx_t>
__device__ __forceinline__ int warp_expert_search(
int idx, int n, const Idx_t* __restrict__ input, Idx_t val) {
const Idx_t* input_ptr = input + idx;
int base_offset = 0;
for (;;) {
bool move_on = (idx < n && *input_ptr <= val);
unsigned mask = __ballot_sync(0xffffffff, move_on);
if (mask != 0xffffffffu) {
int last_lane = 31 - __clz(mask);
return base_offset + last_lane;
}
input_ptr += 32;
base_offset += 32;
idx += 32;
}
}
template <int num_parallel_tokens>
__device__ __forceinline__ void token_bounds(int32_t n_tokens,
int32_t worker_id,
int32_t& n_tokens_lower,
int32_t& n_tokens_upper) {
if (n_tokens < num_parallel_tokens && worker_id < n_tokens) {
if (worker_id >= num_parallel_tokens) return;
n_tokens_lower = worker_id;
n_tokens_upper = worker_id + 1;
} else {
int32_t chunk_size = n_tokens / num_parallel_tokens;
int32_t residual = n_tokens - chunk_size * num_parallel_tokens;
auto calc_id = [&](int32_t id) {
if (id < residual)
return min(n_tokens, id * (chunk_size + 1));
else
return min(n_tokens, id * chunk_size + residual);
};
n_tokens_lower = calc_id(worker_id);
n_tokens_upper = calc_id(worker_id + 1);
}
}
template <int BLOCK_COUNT, int SMEM_SIZE_BYTES_Y, typename fp8_type,
int THREADS, typename Idx_t, bool USE_UE8M0, int GROUP_SIZE = 128,
int NUM_STAGES = 3>
__global__ void silu_mul_fp8_quant_deep_gemm_kernel(
const __nv_bfloat16* __restrict__ _input, fp8_type* __restrict__ _y_q,
float* __restrict__ _y_s, const int32_t* __restrict__ counts,
float* __restrict__ _y_s, const int32_t* __restrict__ tokens_per_expert,
// sizes
int H, int G,
Idx_t E, Idx_t T, Idx_t H,
// strides (in elements)
Idx_t stride_i_e, Idx_t stride_i_t, Idx_t stride_i_h, Idx_t stride_yq_e,
Idx_t stride_yq_t, Idx_t stride_yq_h, Idx_t stride_ys_e, Idx_t stride_ys_t,
Idx_t stride_ys_g, Idx_t stride_counts_e) {
#ifndef USE_ROCM
static constexpr int NUM_WARPS = THREADS / WARP_SIZE;
static constexpr int LOAD_STAGE_SIZE = 2 * GROUP_SIZE / 8;
static constexpr int LOAD_STAGE_MOD = NUM_STAGES * LOAD_STAGE_SIZE;
static constexpr int COMPUTE_STAGE_SIZE = 2 * GROUP_SIZE / 4;
static constexpr int COMPUTE_STAGE_MOD = COMPUTE_STAGE_SIZE * NUM_STAGES;
extern __shared__ __align__(16) __int128_t smem_128[];
int* s_expert_offsets =
reinterpret_cast<int*>(smem_128 + (SMEM_SIZE_BYTES_Y / 16));
static constexpr __nv_bfloat16 fp8_min = get_fp8_min<fp8_type>();
static constexpr __nv_bfloat16 fp8_max = get_fp8_max<fp8_type>();
// We assign EPS with its 16-bit unsigned counterpart to allow constexpr.
// We assign EPS with it's 16-bit unsigned counterpart to allow constexpr.
static constexpr __nv_bfloat16 EPS = (__nv_bfloat16_raw{.x = 11996});
int tid = threadIdx.x;
int warp_id = tid >> 5;
int lane_id = tid & 0x1f;
// We pack 8 16-bit bfloat16 values into a 128-bit __int128_t.
static constexpr int32_t BFLOAT16_PER_GROUP = 8;
int running_sum{};
if (!warp_id) {
for (int i = 0; i < E; i += WARP_SIZE) {
bool valid = (i + threadIdx.x) < E;
int value =
(valid ? tokens_per_expert[i + threadIdx.x * stride_counts_e] : 0) +
(!lane_id ? running_sum : 0);
// We split the shared memory in half, corresponding to gate and up matrices:
// [...gate_i, ...up_i] where 0 <= i < stages.
static constexpr int32_t S_NUM_128 =
2u * (GROUP_SIZE / BFLOAT16_PER_GROUP) * NUM_WARPS * NUM_STAGES;
static constexpr auto THREAD_COUNT = NUM_WARPS * WARP_SIZE;
static constexpr int HALF_THREAD_COUNT = THREAD_COUNT / 2;
static constexpr int32_t S_NUM_64 = S_NUM_128 * 2;
__shared__ __int128_t __align__(16) s_buff_128[S_NUM_128];
for (int offset = 1; offset < 32; offset *= 2) {
int n = __shfl_up_sync(0xFFFFFFFFu, value, offset);
if (lane_id >= offset) value += n;
}
const int32_t tid = threadIdx.x;
const int32_t warp_id = tid / WARP_SIZE;
const int32_t lane_id = tid % WARP_SIZE;
if (valid) {
s_expert_offsets[i + threadIdx.x + 1] = value;
}
auto s_buff_compute_32 = reinterpret_cast<__nv_bfloat162*>(s_buff_128);
running_sum = __shfl_sync(0xFFFFFFFFu, value, WARP_SIZE - 1);
}
// block handles one (expert e, group g)
int32_t pid = blockIdx.x;
int32_t e = pid / G;
int32_t g = pid % G;
const int32_t n_tokens = counts[e * stride_counts_e];
if (!n_tokens) {
return; // Exit ASAP.
if (!lane_id) {
s_expert_offsets[0] = 0;
}
}
const Idx_t stride_i_t_128 = stride_i_t / 8u;
__syncthreads();
int32_t n_tokens_lower, n_tokens_upper;
int32_t total_tokens = s_expert_offsets[E];
const int warp_position_yq = warp_id * (H / NUM_WARPS);
const int warp_position_scales = warp_id * (H / (GROUP_SIZE * NUM_WARPS));
// A single block will handle tokens_per_block tokens.
// Each block i iterates over tokens of a slice of n_tokens =
// expert_counts[i], with the size of chunk being
// (n_tokens / NUM_PARALLEL_TOKENS) + residual, instead of
// updiv(n_tokens, NUM_PARALLEL_TOKENS) for better scheduling.
if (n_tokens < NUM_PARALLEL_TOKENS && blockIdx.y < n_tokens) {
// Specialize this, but can be likely fused.
if (blockIdx.y >= NUM_PARALLEL_TOKENS) {
return;
}
n_tokens_lower = blockIdx.y;
n_tokens_upper = blockIdx.y + 1;
} else {
auto chunk_size = n_tokens / NUM_PARALLEL_TOKENS;
auto residual = n_tokens - chunk_size * NUM_PARALLEL_TOKENS;
auto calc_id = [&](int32_t id) {
if (id < residual) {
return min(n_tokens, id * (chunk_size + 1));
} else {
return min(n_tokens, id * chunk_size + residual);
}
};
n_tokens_lower = calc_id(blockIdx.y);
n_tokens_upper = calc_id(blockIdx.y + 1);
}
if (n_tokens_lower >= n_tokens_upper) {
// Each warp will get space to store its hidden dim for gate and up.
__int128_t* s_hidden_load = smem_128 + warp_id * ((2 * 128 / 8) * NUM_STAGES);
__int128_t* smem_load_ptr = s_hidden_load + lane_id;
const __nv_bfloat16 fp8_inv = __hdiv(__float2bfloat16(1.f), fp8_max);
int32_t compute_pipeline_offset_64 = 0;
int32_t load_stage_offset{};
const __nv_bfloat16 one_bf16 = __float2bfloat16_rn(1.f);
__int64_t* smem_compute_ptr = reinterpret_cast<__int64_t*>(smem_128) +
warp_id * (2 * (GROUP_SIZE / 4) * NUM_STAGES) +
lane_id;
__int64_t* s_gate64_ptr = smem_compute_ptr;
__int64_t* s_up64_ptr = smem_compute_ptr + GROUP_SIZE / 4;
int tokens_lower, tokens_upper;
token_bounds<BLOCK_COUNT>(total_tokens, blockIdx.x, tokens_lower,
tokens_upper);
Idx_t expert_id{}, expert_offset{}, next_expert_offset{};
int token_id = tokens_lower;
int32_t t_load{};
if (token_id < tokens_upper) {
expert_id = warp_expert_search<int>(lane_id, E, s_expert_offsets, token_id);
expert_offset = s_expert_offsets[expert_id];
next_expert_offset = s_expert_offsets[expert_id + 1];
} else {
// This thread block has no work to do.
return;
}
// We do calculations here, using constexpr wherever possible.
const Idx_t base_i = e * stride_i_e + NUM_WARPS * g * GROUP_SIZE * stride_i_h;
const Idx_t base_ys = e * stride_ys_e + NUM_WARPS * g * stride_ys_g;
const Idx_t base_yq =
e * stride_yq_e + NUM_WARPS * g * GROUP_SIZE * stride_yq_h;
Idx_t gate_off_128 = (base_i / static_cast<Idx_t>(8u));
auto input_128_ptr = reinterpret_cast<const __int128_t*>(_input);
auto gate_128_ptr = input_128_ptr + gate_off_128 + (tid % HALF_THREAD_COUNT) +
stride_i_t_128 * n_tokens_lower;
auto up_128_ptr = gate_128_ptr + (H * stride_i_h) / 8u;
auto y_s_ptr =
_y_s + base_ys + warp_id * stride_ys_g + n_tokens_lower * stride_ys_t;
auto y_q_ptr = _y_q + base_yq + warp_id * GROUP_SIZE +
stride_yq_t * n_tokens_lower + 4 * lane_id;
int32_t t_load = n_tokens_lower, load_stage_id = 0;
auto s_buff_gate_load_128 = s_buff_128 + (tid % HALF_THREAD_COUNT);
auto s_buff_up_load_128 = s_buff_gate_load_128 + S_NUM_128 / 2u;
int32_t stage_offset{};
int t_load_bound = H / (GROUP_SIZE * NUM_WARPS);
static constexpr int32_t LOAD_STAGE_SIZE = (NUM_WARPS * WARP_SIZE / 2);
static constexpr int32_t LOAD_STAGE_MOD =
NUM_STAGES * (NUM_WARPS * WARP_SIZE / 2);
Idx_t base_i = ((expert_id * stride_i_e) / 8) +
(token_id - expert_offset) * stride_i_t / 8;
const Idx_t gate_warp_offset =
warp_id * ((stride_i_h * H) / (8 * NUM_WARPS)) + (lane_id & 0b1111);
const __int128_t* input_128_ptr =
reinterpret_cast<const __int128_t*>(_input) + gate_warp_offset +
((lane_id < 16) ? 0 : ((H * stride_i_h) / 8));
__int128_t* load_ptr = const_cast<__int128_t*>(input_128_ptr + base_i);
auto token_offset = token_id - expert_offset;
// Two halves of all threads in a block conduct global loads for gate and up,
// repsectively.
auto load_and_advance_y_pred = [&] {
if (t_load < n_tokens_upper) {
auto s_gate_stage_128_staged_ptr = s_buff_gate_load_128 + stage_offset;
auto s_up_stage_128_staged_ptr = s_buff_up_load_128 + stage_offset;
if (t_load < t_load_bound) {
// Here we are simply continuing to load data
// from the current token.
auto smem_load_ptr_staged = smem_load_ptr + load_stage_offset;
// It is very important that LOAD_STAGE_SIZE is constexpr to avoid
// unnecessary ALU ops.
stage_offset += LOAD_STAGE_SIZE;
stage_offset %= LOAD_STAGE_MOD;
load_stage_offset += LOAD_STAGE_SIZE;
load_stage_offset %= LOAD_STAGE_MOD;
if (tid < HALF_THREAD_COUNT) {
cp_async4(s_gate_stage_128_staged_ptr, gate_128_ptr);
gate_128_ptr += stride_i_t_128;
} else {
cp_async4(s_up_stage_128_staged_ptr, up_128_ptr);
up_128_ptr += stride_i_t_128;
}
cp_async4(smem_load_ptr_staged, load_ptr);
load_ptr += GROUP_SIZE / 8;
++t_load;
} else if (token_id + 1 < tokens_upper) {
// We loaded everything from the current token, let's move on
// to the next one, and we checked that we have more tokens to load.
++token_id;
t_load = 0;
if (token_id >= next_expert_offset) {
// We need to find the next expert.
do {
// This is a loop because it's possible
// that some experts are assigned 0 tokens.
// NOTE: We are guaranteed that there's at least
// one more token left so we don't have to check for
// expert_id bounds.
++expert_id;
// This skips 1 memory read.
expert_offset = next_expert_offset;
next_expert_offset = s_expert_offsets[expert_id + 1];
} while (next_expert_offset == expert_offset);
base_i = expert_id * (stride_i_e / 8);
token_offset = 0;
load_ptr = const_cast<__int128_t*>(input_128_ptr + base_i);
} else {
// We remain within the same expert, so just
// move by H/4 __int128_t (2 * H/8).
base_i += stride_yq_t / 4;
token_offset++;
}
load_ptr = const_cast<__int128_t*>(input_128_ptr + base_i);
auto smem_load_ptr_staged = smem_load_ptr + load_stage_offset;
// It is very important that LOAD_STAGE_SIZE is constexpr to avoid
// unnecessary ALU ops.
load_stage_offset += LOAD_STAGE_SIZE;
load_stage_offset %= LOAD_STAGE_MOD;
cp_async4(smem_load_ptr_staged, load_ptr);
load_ptr += GROUP_SIZE / 8;
++t_load;
++load_stage_id;
}
// We fence even if there is nothing to load to simplify pipelining.
cp_async_fence();
};
// We need to warm-up the pipeline.
#pragma unroll
for (int i = 0; i < NUM_STAGES - 1; i++) {
load_and_advance_y_pred();
}
__int64_t* s_gate_ptr = reinterpret_cast<__int64_t*>(
s_buff_compute_32 + warp_id * (GROUP_SIZE / 2)) +
lane_id;
__int64_t* s_up_ptr = s_gate_ptr + S_NUM_64 / 2;
__nv_fp8x4_e4m3* y_q_base_ptr =
reinterpret_cast<__nv_fp8x4_e4m3*>(_y_q) + lane_id;
auto y_scale_base_ptr = _y_s + warp_position_scales * stride_ys_g;
static constexpr int32_t STAGE_SIZE = (GROUP_SIZE * NUM_WARPS) / 4u;
static constexpr int32_t STAGE_MOD = STAGE_SIZE * NUM_STAGES;
for (auto j = tokens_lower; j < tokens_upper; j++) {
const Idx_t base_ys = expert_id * stride_ys_e;
auto y_s_ptr = y_scale_base_ptr + base_ys + token_offset * stride_ys_t;
__nv_fp8x4_e4m3* y_q_ptr =
y_q_base_ptr + (expert_id * stride_yq_e + token_offset * stride_yq_t +
warp_position_yq * stride_yq_h) /
4;
const int COMPUTE_LIMIT = H / (GROUP_SIZE * NUM_WARPS);
int32_t compute_pipeline_offset_64 = 0;
for (int i = 0; i < COMPUTE_LIMIT; i++) {
cp_async_wait<NUM_STAGES - 2>();
__syncthreads();
load_and_advance_y_pred();
for (int32_t t = n_tokens_lower; t < n_tokens_upper; ++t) {
__nv_bfloat16 y_max_bf16 = EPS;
__nv_bfloat162 results_bf162[2];
__int64_t* gate64_ptr = s_gate64_ptr + compute_pipeline_offset_64;
__int64_t* up64_ptr = s_up64_ptr + compute_pipeline_offset_64;
cp_async_wait<NUM_STAGES - 2>();
__syncthreads();
// COMPUTE_STAGE_SIZE/MOD must also be constexpr!
compute_pipeline_offset_64 += COMPUTE_STAGE_SIZE;
compute_pipeline_offset_64 %= COMPUTE_STAGE_MOD;
// We double-buffer pipelined loads so that the next load will
// concurrently run with compute without overwrites.
load_and_advance_y_pred();
__int64_t gate64 = *gate64_ptr;
__int64_t up64 = *up64_ptr;
auto s_gate_compute_64 = s_gate_ptr + compute_pipeline_offset_64;
auto s_up_compute_64 = s_up_ptr + compute_pipeline_offset_64;
// STAGE_SIZE must also be constexpr!
compute_pipeline_offset_64 += STAGE_SIZE;
compute_pipeline_offset_64 %= STAGE_MOD;
// Each thread loads (gate/up) 2X 4X bfloat16 values into registers.
__int64_t gate64 = *s_gate_compute_64;
__nv_bfloat162* s_gate_compute_32 =
reinterpret_cast<__nv_bfloat162*>(&gate64);
__int64_t up64 = *s_up_compute_64;
__nv_bfloat162* s_up_compute_32 = reinterpret_cast<__nv_bfloat162*>(&up64);
// Compute
__nv_bfloat162 res[2];
__nv_bfloat162* s_up_comp = reinterpret_cast<__nv_bfloat162*>(&up64);
__nv_bfloat162* s_gate_comp = reinterpret_cast<__nv_bfloat162*>(&gate64);
#pragma unroll
for (int i = 0; i < 2; i++) {
// For silu, we make sure that div is emitted.
float2 gate = silu2(__bfloat1622float2(s_gate_compute_32[i]));
results_bf162[i] = __float22bfloat162_rn(gate);
}
for (int32_t k = 0; k < 2; ++k) {
__nv_bfloat162 gate = silu2_v2(__bfloat1622float2(s_gate_comp[k]));
res[k] = __hmul2(gate, s_up_comp[k]);
}
auto _y_max2 = __hmax2(__habs2(res[0]), __habs2(res[1]));
_y_max2.x = __hmax(__hmax(_y_max2.x, _y_max2.y), EPS);
__nv_bfloat16 y_s = __hmul(warp_max(_y_max2.x), fp8_inv);
if constexpr (USE_UE8M0) {
y_s = hexp2(hceil(hlog2(y_s)));
}
__nv_bfloat16 inv_y = __hdiv(one_bf16, y_s);
auto y_s2 = make_bfloat162(inv_y, inv_y);
#pragma unroll
for (int i = 0; i < 2; i++) {
results_bf162[i] = __hmul2(results_bf162[i], s_up_compute_32[i]);
}
for (int32_t k = 0; k < 2; ++k) {
res[k] = clip(__hmul2(res[k], y_s2), __bfloat162bfloat162(fp8_min),
__bfloat162bfloat162(fp8_max));
}
auto _y_max2 =
__hmax2(__habs2(results_bf162[0]), __habs2(results_bf162[1]));
*y_q_ptr = __nv_fp8x4_e4m3(res[0], res[1]);
y_q_ptr += WARP_SIZE * stride_yq_h;
y_max_bf16 = __hmax(_y_max2.x, _y_max2.y);
// An entire group is assigned to a single warp, so a simple warp reduce
// is used.
__nv_bfloat16 y_s = warp_max(y_max_bf16) / fp8_max;
if constexpr (USE_UE8M0) {
y_s = hexp2(hceil(hlog2(y_s)));
}
auto inv_y = __float2bfloat16_rn(1.f) / y_s;
auto y_s2 = make_bfloat162(inv_y, inv_y);
#pragma unroll
for (int32_t i = 0; i < 2; ++i) {
results_bf162[i] =
clip(__hmul2(results_bf162[i], y_s2), __bfloat162bfloat162(fp8_min),
__bfloat162bfloat162(fp8_max));
}
auto fp8x4 = __nv_fp8x4_e4m3(results_bf162[0], results_bf162[1]);
*reinterpret_cast<__nv_fp8x4_e4m3*>(y_q_ptr) = fp8x4;
y_q_ptr += stride_yq_t;
if (lane_id == 0) {
*y_s_ptr = y_s;
y_s_ptr += stride_ys_t;
if (!lane_id) {
*y_s_ptr = y_s;
y_s_ptr += stride_ys_g;
}
}
}
}
#endif
}
} // namespace vllm
@ -471,14 +568,14 @@ void silu_and_mul_quant(torch::Tensor& out, // [..., d]
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
}
void silu_mul_fp8_quant_deep_gemm_cuda(
const at::Tensor& input, // (E, T, 2*H)
const at::Tensor& counts, // (E)
at::Tensor& y_q, // (E, T, H) [OUT]
at::Tensor& y_s, // (E, T, H//group_size) [OUT]
int64_t group_size, bool use_ue8m0, int64_t num_parallel_tokens) {
void persistent_masked_m_silu_mul_quant(
const at::Tensor& input, // (E, T, 2*H)
const at::Tensor& tokens_per_expert, // (E)
at::Tensor& y_q, // (E, T, H) [OUT]
at::Tensor& y_s, // (E, T, H//group_size) [OUT]
bool use_ue8m0) {
#ifndef USE_ROCM
// This kernel relies heavily on cp.async and fp8 support.
// This kernel currently only supports H % 128 == 0 and assumes a
// fixed GROUP_SIZE of 128.
TORCH_CHECK(input.dtype() == torch::kBFloat16);
@ -487,10 +584,6 @@ void silu_mul_fp8_quant_deep_gemm_cuda(
TORCH_CHECK(y_s.dtype() == torch::kFloat32);
TORCH_CHECK(input.size(-1) % 256 == 0);
// Check that num_parallel_tokens is of power of 2 and between 1 and 64.
TORCH_CHECK(1 <= num_parallel_tokens && num_parallel_tokens <= 64);
TORCH_CHECK(!(num_parallel_tokens & (num_parallel_tokens - 1)));
using Idx_t = int64_t;
Idx_t E = input.size(0);
@ -506,81 +599,54 @@ void silu_mul_fp8_quant_deep_gemm_cuda(
Idx_t stride_ys_t = y_s.stride(1);
Idx_t stride_ys_g = y_s.stride(2);
Idx_t stride_counts_e = counts.stride(0);
Idx_t stride_counts_e = tokens_per_expert.stride(0);
static constexpr int GROUP_SIZE = 128;
#define KERNEL_FN \
if (use_ue8m0) { \
vllm::silu_mul_fp8_quant_deep_gemm_kernel<fp8_t, NUM_WARPS, Idx_t, \
NUM_PARALLEL_TOKENS, true> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<__nv_bfloat16*>(input.data_ptr()), \
(fp8_t*)y_q.data_ptr(), y_s.data_ptr<float>(), \
reinterpret_cast<int32_t*>(counts.data_ptr<int>()), H, G, \
stride_i_e, stride_i_t, stride_i_h, stride_yq_e, stride_yq_t, \
stride_yq_h, stride_ys_e, stride_ys_t, stride_ys_g, \
stride_counts_e); \
} else { \
vllm::silu_mul_fp8_quant_deep_gemm_kernel<fp8_t, NUM_WARPS, Idx_t, \
NUM_PARALLEL_TOKENS, false> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<__nv_bfloat16*>(input.data_ptr()), \
(fp8_t*)y_q.data_ptr(), y_s.data_ptr<float>(), \
reinterpret_cast<int32_t*>(counts.data_ptr<int>()), H, G, \
stride_i_e, stride_i_t, stride_i_h, stride_yq_e, stride_yq_t, \
stride_yq_h, stride_ys_e, stride_ys_t, stride_ys_g, \
stride_counts_e); \
}
#define KERNEL_CALL_H \
if (H % (4 * GROUP_SIZE) == 0) { \
static constexpr int NUM_WARPS = 4; \
populate_launch_params(NUM_WARPS, NUM_PARALLEL_TOKENS); \
KERNEL_FN \
} else { \
static constexpr int NUM_WARPS = 1; \
populate_launch_params(NUM_WARPS, NUM_PARALLEL_TOKENS); \
KERNEL_FN \
}
#define KERNEL_CALL_TOP_LEVEL \
if (num_parallel_tokens == 1) { \
static constexpr int NUM_PARALLEL_TOKENS = 1; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 2) { \
static constexpr int NUM_PARALLEL_TOKENS = 2; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 4) { \
static constexpr int NUM_PARALLEL_TOKENS = 4; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 8) { \
static constexpr int NUM_PARALLEL_TOKENS = 8; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 16) { \
static constexpr int NUM_PARALLEL_TOKENS = 16; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 32) { \
static constexpr int NUM_PARALLEL_TOKENS = 32; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 64) { \
static constexpr int NUM_PARALLEL_TOKENS = 64; \
KERNEL_CALL_H \
}
Idx_t G;
dim3 block, grid;
auto populate_launch_params = [&](int num_warps, int _num_parallel_tokens) {
G = H / Idx_t(group_size * num_warps);
grid = dim3(E * G, _num_parallel_tokens);
block = dim3(num_warps * WARP_SIZE);
};
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
VLLM_DISPATCH_FP8_TYPES(y_q.scalar_type(),
"silu_mul_fp8_quant_deep_gemm_kernel",
[&] { KERNEL_CALL_TOP_LEVEL });
#define KERNEL(BLOCK_COUNT, USE_UE8M0, THREAD_COUNT, STAGES) \
static constexpr int NUM_WARPS = THREAD_COUNT / WARP_SIZE; \
int sms = SILU_V2_BLOCK_COUNT; \
static constexpr int max_shared_mem_bytes = \
GROUP_SIZE * 2 * STAGES * NUM_WARPS * 2; \
dim3 grid(sms), block(THREAD_COUNT); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
VLLM_DISPATCH_FP8_TYPES( \
y_q.scalar_type(), "silu_mul_fp8_quant_deep_gemm_kernel", [&] { \
vllm::silu_mul_fp8_quant_deep_gemm_kernel< \
BLOCK_COUNT, max_shared_mem_bytes, fp8_t, THREAD_COUNT, Idx_t, \
USE_UE8M0, GROUP_SIZE, STAGES> \
<<<grid, block, max_shared_mem_bytes + (E + 1) * 16, stream>>>( \
reinterpret_cast<__nv_bfloat16*>(input.data_ptr()), \
(fp8_t*)y_q.data_ptr(), y_s.data_ptr<float>(), \
reinterpret_cast<int32_t*>(tokens_per_expert.data_ptr()), E, \
T, H, stride_i_e, stride_i_t, stride_i_h, stride_yq_e, \
stride_yq_t, stride_yq_h, stride_ys_e, stride_ys_t, \
stride_ys_g, stride_counts_e); \
});
static constexpr int SILU_V2_BLOCK_COUNT = 132 * 32;
if (!use_ue8m0) {
if (H >= 4096) {
static constexpr int NUM_STAGES = 4;
static constexpr int THREAD_COUNT = 256;
KERNEL(SILU_V2_BLOCK_COUNT, false, THREAD_COUNT, NUM_STAGES);
} else {
static constexpr int THREAD_COUNT = 32;
KERNEL(SILU_V2_BLOCK_COUNT, false, THREAD_COUNT, 2);
}
} else {
if (H >= 4096) {
static constexpr int NUM_STAGES = 4;
static constexpr int THREAD_COUNT = 256;
KERNEL(SILU_V2_BLOCK_COUNT, true, THREAD_COUNT, NUM_STAGES);
} else {
static constexpr int THREAD_COUNT = 32;
KERNEL(SILU_V2_BLOCK_COUNT, true, THREAD_COUNT, 2);
}
}
#endif
}

View File

@ -26,6 +26,7 @@
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "launch_bounds_utils.h"
#include "nvfp4_utils.cuh"
namespace vllm {
@ -63,7 +64,7 @@ __inline__ __device__ PackedVec<Type> compute_silu_mul(PackedVec<Type>& vec,
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void __launch_bounds__(1024, 4)
__global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024))
silu_mul_cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out,
uint32_t* SFout) {
@ -131,7 +132,8 @@ void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output, // [..., d]
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
dim3 block(std::min(int(n / ELTS_PER_THREAD), 1024));
int const numBlocksPerSM = 2048 / block.x;
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
VLLM_DISPATCH_HALF_TYPES(

View File

@ -14,6 +14,8 @@
* limitations under the License.
*/
#include "core/registration.h"
#include <torch/all.h>
#include <cutlass/arch/arch.h>
@ -418,3 +420,7 @@ void cutlass_fp4_group_mm(
"12.8 or above.");
#endif
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("cutlass_fp4_group_mm", &cutlass_fp4_group_mm);
}

View File

@ -26,12 +26,13 @@
#include "dispatch_utils.h"
#include "nvfp4_utils.cuh"
#include "launch_bounds_utils.h"
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void __launch_bounds__(512, 4)
__global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
@ -129,7 +130,7 @@ __global__ void __launch_bounds__(512, 4)
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void __launch_bounds__(1024, 4)
__global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024))
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
@ -233,8 +234,9 @@ void quant_impl(void* output, void* output_scale, void* input,
int const workSizePerRow = k / ELTS_PER_THREAD;
int const totalWorkSize = m_topk * workSizePerRow;
dim3 block(std::min(workSizePerRow, 512));
// Get number of blocks per SM (assume we can fully utilize the SM).
int const numBlocksPerSM = 2048 / block.x;
// Get number of blocks per SM
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
dim3 grid(std::min(static_cast<int>((totalWorkSize + block.x - 1) / block.x),
multiProcessorCount * numBlocksPerSM));
while (grid.x <= multiProcessorCount && block.x > 64) {

View File

@ -26,13 +26,14 @@
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "launch_bounds_utils.h"
#include "nvfp4_utils.cuh"
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void __launch_bounds__(512, 4)
__global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout) {
using PackedVec = PackedVec<Type>;
@ -75,8 +76,9 @@ void invokeFP4Quantization(int m, int n, T const* input, float const* SFScale,
// Grid, Block size.
// Each thread converts 8 values.
dim3 block(std::min(int(n / ELTS_PER_THREAD), 512));
// Get number of blocks per SM (assume we can fully utilize the SM).
int const numBlocksPerSM = 2048 / block.x;
// Get number of blocks per SM
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
// Launch the cvt kernel.

View File

@ -6,7 +6,7 @@
#include "quantization/vectorization.cuh"
// TODO(luka/varun):refactor common.cuh to use this file instead
#include "quantization/fp8/common.cuh"
#include "quantization/w8a8/fp8/common.cuh"
namespace vllm {

View File

@ -17,28 +17,32 @@ FILE_HEAD = """
namespace MARLIN_NAMESPACE_NAME {
""".strip()
TEMPLATE = ("template __global__ void Marlin<"
"{{scalar_t}}, "
"{{w_type_id}}, "
"{{s_type_id}}, "
"{{threads}}, "
"{{thread_m_blocks}}, "
"{{thread_n_blocks}}, "
"{{thread_k_blocks}}, "
"{{'true' if m_block_size_8 else 'false'}}, "
"{{stages}}, "
"{{group_blocks}}, "
"{{'true' if is_zp_float else 'false'}}>"
"( MARLIN_KERNEL_PARAMS );")
TEMPLATE = (
"template __global__ void Marlin<"
"{{scalar_t}}, "
"{{w_type_id}}, "
"{{s_type_id}}, "
"{{threads}}, "
"{{thread_m_blocks}}, "
"{{thread_n_blocks}}, "
"{{thread_k_blocks}}, "
"{{'true' if m_block_size_8 else 'false'}}, "
"{{stages}}, "
"{{group_blocks}}, "
"{{'true' if is_zp_float else 'false'}}>"
"( MARLIN_KERNEL_PARAMS );"
)
# int8 with zero point case (vllm::kU8) is also supported,
# we don't add it to reduce wheel size.
SCALAR_TYPES = [
"vllm::kU4", "vllm::kU4B8", "vllm::kU8B128", "vllm::kFE4M3fn",
"vllm::kFE2M1f"
"vllm::kU4",
"vllm::kU4B8",
"vllm::kU8B128",
"vllm::kFE4M3fn",
"vllm::kFE2M1f",
]
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128),
(128, 64, 128)]
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128), (128, 64, 128)]
THREAD_M_BLOCKS = [0.5, 1, 2, 3, 4]
# group_blocks:
@ -59,11 +63,12 @@ def generate_new_kernels():
all_template_str_list = []
for group_blocks, m_blocks, thread_configs in itertools.product(
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS):
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS
):
# act order case only support gptq-int4 and gptq-int8
if group_blocks == 0 and scalar_type not in [
"vllm::kU4B8", "vllm::kU8B128"
"vllm::kU4B8",
"vllm::kU8B128",
]:
continue
if thread_configs[2] == 256:
@ -93,8 +98,7 @@ def generate_new_kernels():
c_dtype = "half" if dtype == "fp16" else "nv_bfloat16"
is_zp_float_list = [False]
if dtype == "fp16" and scalar_type == "vllm::kU4" and \
group_blocks == 4:
if dtype == "fp16" and scalar_type == "vllm::kU4" and group_blocks == 4:
# HQQ (is_zp_float = true) only supports
# 4bit quantization and fp16
is_zp_float_list.append(True)

View File

@ -12,20 +12,21 @@ from functools import reduce
from typing import Optional, Union
import jinja2
# yapf conflicts with isort for this block
# yapf: disable
from vllm_cutlass_library_extension import (DataType, EpilogueScheduleTag,
EpilogueScheduleType,
MixedInputKernelScheduleType,
TileSchedulerTag,
TileSchedulerType, VLLMDataType,
VLLMDataTypeNames,
VLLMDataTypeSize, VLLMDataTypeTag,
VLLMDataTypeTorchDataTypeTag,
VLLMDataTypeVLLMScalarTypeTag,
VLLMKernelScheduleTag)
# yapf: enable
from vllm_cutlass_library_extension import (
DataType,
EpilogueScheduleTag,
EpilogueScheduleType,
MixedInputKernelScheduleType,
TileSchedulerTag,
TileSchedulerType,
VLLMDataType,
VLLMDataTypeNames,
VLLMDataTypeSize,
VLLMDataTypeTag,
VLLMDataTypeTorchDataTypeTag,
VLLMDataTypeVLLMScalarTypeTag,
VLLMKernelScheduleTag,
)
#
# Generator templating
@ -286,18 +287,23 @@ def generate_sch_sig(schedule_config: ScheduleConfig) -> str:
tile_shape = (
f"{schedule_config.tile_shape_mn[0]}x{schedule_config.tile_shape_mn[1]}"
)
cluster_shape = (f"{schedule_config.cluster_shape_mnk[0]}" +
f"x{schedule_config.cluster_shape_mnk[1]}" +
f"x{schedule_config.cluster_shape_mnk[2]}")
kernel_schedule = VLLMKernelScheduleTag[schedule_config.kernel_schedule]\
.split("::")[-1]
epilogue_schedule = EpilogueScheduleTag[
schedule_config.epilogue_schedule].split("::")[-1]
tile_scheduler = TileSchedulerTag[schedule_config.tile_scheduler]\
.split("::")[-1]
cluster_shape = (
f"{schedule_config.cluster_shape_mnk[0]}"
+ f"x{schedule_config.cluster_shape_mnk[1]}"
+ f"x{schedule_config.cluster_shape_mnk[2]}"
)
kernel_schedule = VLLMKernelScheduleTag[schedule_config.kernel_schedule].split(
"::"
)[-1]
epilogue_schedule = EpilogueScheduleTag[schedule_config.epilogue_schedule].split(
"::"
)[-1]
tile_scheduler = TileSchedulerTag[schedule_config.tile_scheduler].split("::")[-1]
return (f"{tile_shape}_{cluster_shape}_{kernel_schedule}" +
f"_{epilogue_schedule}_{tile_scheduler}")
return (
f"{tile_shape}_{cluster_shape}_{kernel_schedule}"
+ f"_{epilogue_schedule}_{tile_scheduler}"
)
# mostly unique shorter sch_sig
@ -316,18 +322,24 @@ def generate_terse_sch_sig(schedule_config: ScheduleConfig) -> str:
# unique type_name
def generate_type_signature(kernel_types: TypeConfig):
return str("".join([
VLLMDataTypeNames[getattr(kernel_types, field.name)]
for field in fields(TypeConfig)
]))
return str(
"".join(
[
VLLMDataTypeNames[getattr(kernel_types, field.name)]
for field in fields(TypeConfig)
]
)
)
def generate_type_option_name(kernel_types: TypeConfig):
return ", ".join([
f"{field.name.replace('b_', 'with_')+'_type'}=" +
VLLMDataTypeNames[getattr(kernel_types, field.name)]
for field in fields(TypeConfig)
])
return ", ".join(
[
f"{field.name.replace('b_', 'with_') + '_type'}="
+ VLLMDataTypeNames[getattr(kernel_types, field.name)]
for field in fields(TypeConfig)
]
)
def is_power_of_two(n):
@ -335,7 +347,6 @@ def is_power_of_two(n):
def to_cute_constant(value: list[int]):
def _to_cute_constant(value: int):
if is_power_of_two(value):
return f"_{value}"
@ -350,11 +361,11 @@ def to_cute_constant(value: list[int]):
def unique_schedules(impl_configs: list[ImplConfig]):
# Use dict over set for deterministic ordering
return list({
sch: None
for impl_config in impl_configs
for sch in impl_config.schedules
}.keys())
return list(
{
sch: None for impl_config in impl_configs for sch in impl_config.schedules
}.keys()
)
def unsigned_type_with_bitwidth(num_bits):
@ -380,7 +391,7 @@ template_globals = {
"gen_type_sig": generate_type_signature,
"unique_schedules": unique_schedules,
"unsigned_type_with_bitwidth": unsigned_type_with_bitwidth,
"gen_type_option_name": generate_type_option_name
"gen_type_option_name": generate_type_option_name,
}
@ -398,23 +409,28 @@ prepack_dispatch_template = create_template(PREPACK_TEMPLATE)
def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
sources = []
sources.append((
"machete_mm_dispatch",
mm_dispatch_template.render(impl_configs=impl_configs),
))
sources.append(
(
"machete_mm_dispatch",
mm_dispatch_template.render(impl_configs=impl_configs),
)
)
prepack_types = []
for impl_config in impl_configs:
convert_type = impl_config.types.a \
if impl_config.types.b_group_scale == DataType.void \
else impl_config.types.b_group_scale
convert_type = (
impl_config.types.a
if impl_config.types.b_group_scale == DataType.void
else impl_config.types.b_group_scale
)
prepack_types.append(
PrepackTypeConfig(
a=impl_config.types.a,
b_num_bits=VLLMDataTypeSize[impl_config.types.b],
convert=convert_type,
accumulator=impl_config.types.accumulator,
))
)
)
def prepacked_type_key(prepack_type: PrepackTypeConfig):
# For now, we can just use the first accumulator type seen since
@ -430,10 +446,14 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
unique_prepack_types.append(prepack_type)
prepack_types_seen.add(key)
sources.append((
"machete_prepack",
prepack_dispatch_template.render(types=unique_prepack_types, ),
))
sources.append(
(
"machete_prepack",
prepack_dispatch_template.render(
types=unique_prepack_types,
),
)
)
# Split up impls across files
num_impls = reduce(lambda x, y: x + len(y.schedules), impl_configs, 0)
@ -466,10 +486,12 @@ def create_sources(impl_configs: list[ImplConfig], num_impl_files=8):
curr_impl_in_file += len(files_impls[-1][-1].schedules)
for part, file_impls in enumerate(files_impls):
sources.append((
f"machete_mm_impl_part{part+1}",
mm_impl_template.render(impl_configs=file_impls),
))
sources.append(
(
f"machete_mm_impl_part{part + 1}",
mm_impl_template.render(impl_configs=file_impls),
)
)
return sources
@ -514,8 +536,7 @@ def generate():
# For now we use the same heuristic for all types
# Heuristic is currently tuned for H100s
default_heuristic = [
(cond, ScheduleConfig(*tile_config,
**sch_common_params)) # type: ignore
(cond, ScheduleConfig(*tile_config, **sch_common_params)) # type: ignore
for cond, tile_config in default_tile_heuristic_config.items()
]
@ -541,14 +562,18 @@ def generate():
a_token_scale=DataType.void,
out=a,
accumulator=DataType.f32,
) for b in (VLLMDataType.u4b8, VLLMDataType.u8b128)
for a in (DataType.f16, DataType.bf16))
)
for b in (VLLMDataType.u4b8, VLLMDataType.u8b128)
for a in (DataType.f16, DataType.bf16)
)
impl_configs += [
ImplConfig(x[0], x[1], x[2])
for x in zip(GPTQ_kernel_type_configs,
itertools.repeat(get_unique_schedules(default_heuristic)),
itertools.repeat(default_heuristic))
for x in zip(
GPTQ_kernel_type_configs,
itertools.repeat(get_unique_schedules(default_heuristic)),
itertools.repeat(default_heuristic),
)
]
AWQ_kernel_type_configs = list(
@ -561,14 +586,18 @@ def generate():
a_token_scale=DataType.void,
out=a,
accumulator=DataType.f32,
) for b in (DataType.u4, DataType.u8)
for a in (DataType.f16, DataType.bf16))
)
for b in (DataType.u4, DataType.u8)
for a in (DataType.f16, DataType.bf16)
)
impl_configs += [
ImplConfig(x[0], x[1], x[2])
for x in zip(AWQ_kernel_type_configs,
itertools.repeat(get_unique_schedules(default_heuristic)),
itertools.repeat(default_heuristic))
for x in zip(
AWQ_kernel_type_configs,
itertools.repeat(get_unique_schedules(default_heuristic)),
itertools.repeat(default_heuristic),
)
]
# TODO: Support W4A8 when ready

View File

@ -231,7 +231,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
@ -245,7 +245,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
@ -259,7 +259,7 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
Shape<_2, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
}
@ -271,10 +271,10 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
// TMA epilogue isn't compatible with Swap A/B
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
Shape<_1, _1, _1>, cutlass::epilogue::BlockwiseNoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
out, a, b, a_scales, b_scales);
}
}
} // namespace vllm
} // namespace vllm

View File

@ -25,7 +25,10 @@ void dispatch_scaled_mm(torch::Tensor& c, torch::Tensor const& a,
if constexpr (!std::is_same_v<Int8Func, std::nullptr_t>) {
int8_func(c, a, b, a_scales, b_scales, bias);
} else {
TORCH_CHECK(false, "Int8 not supported for this architecture");
int32_t version_num = get_sm_version_num();
TORCH_CHECK(
false, "Int8 not supported on SM", version_num,
". Use FP8 quantization instead, or run on older arch (SM < 100).");
}
}
} else {

View File

@ -133,4 +133,4 @@ void cutlass_scaled_mm_sm100_fp8_epilogue(torch::Tensor& out,
}
}
} // namespace vllm
} // namespace vllm

Some files were not shown because too many files have changed in this diff Show More