Compare commits

..

20 Commits

Author SHA1 Message Date
1236aebf0e Merge remote-tracking branch 'origin/main' into fp8_ep_dp 2025-06-02 14:53:27 -04:00
95c40f9b09 hacks
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-30 02:33:58 +00:00
a0efd3106c hack fix MoEConfig.quant_dtype
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-30 02:08:21 +00:00
e69879996f re-enable cudagraph+torch.compile
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-30 00:12:54 +00:00
922165cba3 fp8 + pplx tests + fixes
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-29 21:25:33 +00:00
12ea698498 pplx + fp8 test
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-29 18:50:37 +00:00
caca0b718a fixes
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-29 02:08:22 +00:00
d86e3f0172 lint
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:56 +00:00
3ca8322b74 lint
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:56 +00:00
03b41b6cad fix merge
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:56 +00:00
cad6447664 fix
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:56 +00:00
c169b05541 merge
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:56 +00:00
468d16654a cleanup quantization
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:53 +00:00
909f234faa stuff
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:27 +00:00
f8510587c2 tests + fix
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:27 +00:00
9cfebf51ba basic working test
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:27 +00:00
77f95b99a6 test
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:27 +00:00
bbe888d033 wip
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:27 +00:00
25ed6738d4 wip
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:27 +00:00
e568e401da fp8 support
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-05-28 23:40:27 +00:00
1628 changed files with 7799 additions and 29277 deletions

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import sys

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import os

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from pathlib import Path
import pytest

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import os

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from lmdeploy.serve.openai.api_client import APIClient

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import datetime
import json

View File

@ -1,6 +1,5 @@
steps:
- label: "Build wheel - CUDA 12.8"
id: build-wheel-cuda-12-8
agents:
queue: cpu_queue_postmerge
commands:
@ -12,7 +11,6 @@ steps:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.6"
id: build-wheel-cuda-12-6
agents:
queue: cpu_queue_postmerge
commands:
@ -30,7 +28,6 @@ steps:
- label: "Build wheel - CUDA 11.8"
# depends_on: block-build-cu118-wheel
id: build-wheel-cuda-11-8
agents:
queue: cpu_queue_postmerge
commands:
@ -47,7 +44,6 @@ steps:
- label: "Build release image"
depends_on: block-release-image-build
id: build-release-image
agents:
queue: cpu_queue_postmerge
commands:
@ -55,18 +51,6 @@ steps:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Annotate release workflow"
depends_on:
- build-release-image
- build-wheel-cuda-12-8
- build-wheel-cuda-12-6
- build-wheel-cuda-11-8
id: annotate-release-workflow
agents:
queue: cpu_queue_postmerge
commands:
- "bash .buildkite/scripts/annotate-release.sh"
- label: "Build and publish TPU release image"
depends_on: ~
if: build.env("NIGHTLY") == "1"
@ -86,10 +70,9 @@ steps:
DOCKER_BUILDKIT: "1"
- input: "Provide Release version here"
id: input-release-version
fields:
- text: "What is the release version?"
key: release-version
key: "release-version"
- block: "Build CPU release image"
key: block-cpu-release-image-build

View File

@ -1,31 +0,0 @@
#!/bin/bash
set -ex
# Get release version and strip leading 'v' if present
RELEASE_VERSION=$(buildkite-agent meta-data get release-version | sed 's/^v//')
if [ -z "$RELEASE_VERSION" ]; then
echo "Error: RELEASE_VERSION is empty. 'release-version' metadata might not be set or is invalid."
exit 1
fi
buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
To download the wheel:
\`\`\`
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu118/vllm-${RELEASE_VERSION}+cu118-cp38-abi3-manylinux1_x86_64.whl .
\`\`\`
To download and upload the image:
\`\`\`
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} vllm/vllm-openai
docker tag vllm/vllm-openai vllm/vllm-openai:latest
docker tag vllm/vllm-openai vllm/vllm-openai:v${RELEASE_VERSION}
docker push vllm/vllm-openai:latest
docker push vllm/vllm-openai:v${RELEASE_VERSION}
\`\`\`
EOF

View File

@ -1,17 +0,0 @@
#!/bin/bash
# Usage: ./ci_clean_log.sh ci.log
# This script strips timestamps and color codes from CI log files.
# Check if argument is given
if [ $# -lt 1 ]; then
echo "Usage: $0 ci.log"
exit 1
fi
INPUT_FILE="$1"
# Strip timestamps
sed -i 's/^\[[0-9]\{4\}-[0-9]\{2\}-[0-9]\{2\}T[0-9]\{2\}:[0-9]\{2\}:[0-9]\{2\}Z\] //' "$INPUT_FILE"
# Strip colorization
sed -i -r 's/\x1B\[[0-9;]*[mK]//g' "$INPUT_FILE"

View File

@ -94,10 +94,6 @@ if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
fi
if [[ $commands == *"pytest -v -s lora"* ]]; then
commands=${commands//"pytest -v -s lora"/"VLLM_ROCM_CUSTOM_PAGED_ATTN=0 pytest -v -s lora"}
fi
#ignore certain kernels tests
if [[ $commands == *" kernels/core"* ]]; then
commands="${commands} \

View File

@ -7,7 +7,6 @@ set -ex
# Setup cleanup
remove_docker_container() {
if [[ -n "$container_id" ]]; then
podman stop --all -t0
podman rm -f "$container_id" || true
fi
podman system prune -f
@ -38,7 +37,7 @@ function cpu_tests() {
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
pytest -v -s tests/models/language/pooling/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]"
}
# All of CPU tests are expected to be finished less than 40 mins.

View File

@ -6,82 +6,75 @@ set -ex
# allow to bind to different cores
CORE_RANGE=${CORE_RANGE:-48-95}
OMP_CORE_RANGE=${OMP_CORE_RANGE:-48-95}
NUMA_NODE=${NUMA_NODE:-1}
export CMAKE_BUILD_PARALLEL_LEVEL=32
# Setup cleanup
remove_docker_container() {
set -e;
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true;
docker image rm cpu-test-"$BUILDKITE_BUILD_NUMBER" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 || true;
}
trap remove_docker_container EXIT
remove_docker_container
# Try building the docker image
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE" --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$BUILDKITE_BUILD_NUMBER" --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --env VLLM_CPU_CI_ENV=1 --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --env VLLM_CPU_CI_ENV=1 --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
function cpu_tests() {
set -e
export NUMA_NODE=$2
# list packages
docker exec cpu-test-"$NUMA_NODE"-avx2 bash -c "
set -e
pip list"
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pip list"
export BUILDKITE_BUILD_NUMBER=$3
# offline inference
docker exec cpu-test-"$NUMA_NODE"-avx2 bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
set -e
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
# Run basic model test
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
pytest -v -s tests/models/language/generation -m cpu_model
pytest -v -s tests/models/language/pooling -m cpu_model
pytest -v -s tests/models/multimodal/generation \
--ignore=tests/models/multimodal/generation/test_mllama.py \
--ignore=tests/models/multimodal/generation/test_pixtral.py \
-m cpu_model"
pytest -v -s tests/kernels/test_cache.py -m cpu_model
pytest -v -s tests/kernels/test_mla_decode_cpu.py -m cpu_model
pytest -v -s tests/models/decoder_only/language -m cpu_model
pytest -v -s tests/models/embedding/language -m cpu_model
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
# Run compressed-tensor test
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
# Run AWQ test
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
VLLM_USE_V1=0 pytest -s -v \
pytest -s -v \
tests/quantization/test_ipex_quant.py"
# Run chunked-prefill and prefix-cache test
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v -k cpu_model \
tests/basic_correctness/test_chunked_prefill.py"
# online serving
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=$1
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
VLLM_CPU_CI_ENV=0 python3 benchmarks/benchmark_serving.py \
python3 benchmarks/benchmark_serving.py \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
@ -90,7 +83,7 @@ function cpu_tests() {
--tokenizer facebook/opt-125m"
# Run multi-lora tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/lora/test_qwen2vl.py"
@ -98,4 +91,4 @@ function cpu_tests() {
# All of CPU tests are expected to be finished less than 40 mins.
export -f cpu_tests
timeout 1h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE $BUILDKITE_BUILD_NUMBER"

View File

@ -150,15 +150,11 @@ run_and_track_test 9 "test_multimodal.py" \
run_and_track_test 10 "test_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
run_and_track_test 11 "test_struct_output_generate.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py"
run_and_track_test 12 "test_moe_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
run_and_track_test 13 "test_lora.py" \
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
run_and_track_test 14 "test_tpu_qkv_linear.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
run_and_track_test 15 "test_spmd_model_weight_loading.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
# After all tests have been attempted, exit with the overall status.
if [ "$overall_script_exit_code" -ne 0 ]; then

View File

@ -1,18 +0,0 @@
#!/bin/bash
# Usage: ./rerun_test.sh path/to/test.py::test_name
# Check if argument is given
if [ $# -lt 1 ]; then
echo "Usage: $0 path/to/test.py::test_name"
echo "Example: $0 tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]"
exit 1
fi
TEST=$1
COUNT=1
while pytest -sv "$TEST"; do
COUNT=$((COUNT + 1))
echo "RUN NUMBER ${COUNT}"
done

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -euo pipefail
docker_root=$(docker info -f '{{.DockerRootDir}}')
if [ -z "$docker_root" ]; then
echo "Failed to determine Docker root directory."
exit 1
fi
echo "Docker root directory: $docker_root"
# Check disk usage of the filesystem where Docker's root directory is located
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
# Define the threshold
threshold=70
if [ "$disk_usage" -gt "$threshold" ]; then
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
fi

View File

@ -1,14 +0,0 @@
# Environment config
TEST_NAME=llama8b
CONTAINER_NAME=vllm-tpu
# vllm config
MODEL=meta-llama/Llama-3.1-8B-Instruct
MAX_NUM_SEQS=512
MAX_NUM_BATCHED_TOKENS=512
TENSOR_PARALLEL_SIZE=1
MAX_MODEL_LEN=2048
DOWNLOAD_DIR=/mnt/disks/persist
EXPECTED_THROUGHPUT=8.0
INPUT_LEN=1800
OUTPUT_LEN=128

View File

@ -1,102 +0,0 @@
#!/bin/bash
if [ ! -f "$1" ]; then
echo "Error: The env file '$1' does not exist."
exit 1 # Exit the script with a non-zero status to indicate an error
fi
ENV_FILE=$1
# For testing on local vm, use `set -a` to export all variables
source /etc/environment
source $ENV_FILE
remove_docker_container() {
docker rm -f tpu-test || true;
docker rm -f vllm-tpu || true;
docker rm -f $CONTAINER_NAME || true;
}
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# Build docker image.
# TODO: build the image outside the script and share the image with other
# tpu test if building time is too long.
DOCKER_BUILDKIT=1 docker build \
--build-arg max_jobs=16 \
--build-arg USE_SCCACHE=1 \
--build-arg GIT_REPO_CHECK=0 \
--tag vllm/vllm-tpu-bm \
--progress plain -f docker/Dockerfile.tpu .
LOG_ROOT=$(mktemp -d)
# If mktemp fails, set -e will cause the script to exit.
echo "Results will be stored in: $LOG_ROOT"
if [ -z "$HF_TOKEN" ]; then
echo "Error: HF_TOKEN is not set or is empty."
exit 1
fi
# Make sure mounted disk or dir exists
if [ ! -d "$DOWNLOAD_DIR" ]; then
echo "Error: Folder $DOWNLOAD_DIR does not exist. This is useually a mounted drive. If no mounted drive, just create a folder."
exit 1
fi
echo "Run model $MODEL"
echo
echo "starting docker...$CONTAINER_NAME"
echo
docker run \
-v $DOWNLOAD_DIR:$DOWNLOAD_DIR \
--env-file $ENV_FILE \
-e HF_TOKEN="$HF_TOKEN" \
-e TARGET_COMMIT=$BUILDKITE_COMMIT \
-e MODEL=$MODEL \
-e WORKSPACE=/workspace \
--name $CONTAINER_NAME \
-d \
--privileged \
--network host \
-v /dev/shm:/dev/shm \
vllm/vllm-tpu-bm tail -f /dev/null
echo "run script..."
echo
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/hardware_ci/run_bm.sh"
echo "copy result back..."
VLLM_LOG="$LOG_ROOT/$TEST_NAME"_vllm_log.txt
BM_LOG="$LOG_ROOT/$TEST_NAME"_bm_log.txt
docker cp "$CONTAINER_NAME:/workspace/vllm_log.txt" "$VLLM_LOG"
docker cp "$CONTAINER_NAME:/workspace/bm_log.txt" "$BM_LOG"
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
echo "throughput for $TEST_NAME at $BUILDKITE_COMMIT: $throughput"
if [ "$BUILDKITE" = "true" ]; then
echo "Running inside Buildkite"
buildkite-agent artifact upload "$VLLM_LOG"
buildkite-agent artifact upload "$BM_LOG"
else
echo "Not running inside Buildkite"
fi
#
# compare the throughput with EXPECTED_THROUGHPUT
# and assert meeting the expectation
#
if [[ -z "$throughput" || ! "$throughput" =~ ^[0-9]+([.][0-9]+)?$ ]]; then
echo "Failed to get the throughput"
exit 1
fi
if (( $(echo "$throughput < $EXPECTED_THROUGHPUT" | bc -l) )); then
echo "Error: throughput($throughput) is less than expected($EXPECTED_THROUGHPUT)"
exit 1
fi

View File

@ -1,94 +0,0 @@
#!/bin/bash
set -euo pipefail
VLLM_LOG="$WORKSPACE/vllm_log.txt"
BM_LOG="$WORKSPACE/bm_log.txt"
if [ -n "$TARGET_COMMIT" ]; then
head_hash=$(git rev-parse HEAD)
if [ "$TARGET_COMMIT" != "$head_hash" ]; then
echo "Error: target commit $TARGET_COMMIT does not match HEAD: $head_hash"
exit 1
fi
fi
echo "model: $MODEL"
echo
#
# create a log folder
#
mkdir "$WORKSPACE/log"
# TODO: Move to image building.
pip install pandas
pip install datasets
#
# create sonnet_4x
#
echo "Create sonnet_4x.txt"
echo "" > benchmarks/sonnet_4x.txt
for _ in {1..4}
do
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
done
#
# start vllm service in backend
#
echo "lanching vllm..."
echo "logging to $VLLM_LOG"
echo
VLLM_USE_V1=1 vllm serve $MODEL \
--seed 42 \
--disable-log-requests \
--max-num-seqs $MAX_NUM_SEQS \
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
--tensor-parallel-size $TENSOR_PARALLEL_SIZE \
--no-enable-prefix-caching \
--download_dir $DOWNLOAD_DIR \
--max-model-len $MAX_MODEL_LEN > "$VLLM_LOG" 2>&1 &
echo "wait for 20 minutes.."
echo
# sleep 1200
# wait for 10 minutes...
for i in {1..120}; do
# TODO: detect other type of errors.
if grep -Fq "raise RuntimeError" "$VLLM_LOG"; then
echo "Detected RuntimeError, exiting."
exit 1
elif grep -Fq "Application startup complete" "$VLLM_LOG"; then
echo "Application started"
break
else
echo "wait for 10 seconds..."
sleep 10
fi
done
#
# run test
#
echo "run benchmark test..."
echo "logging to $BM_LOG"
echo
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore-eos > "$BM_LOG"
echo "completed..."
echo
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
echo "throughput: $throughput"
echo

View File

@ -145,7 +145,6 @@ steps:
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/test_async_llm_dp.py
- tests/v1/engine/test_engine_core_client.py
commands:
# test with tp=2 and external_dp=2
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
@ -155,7 +154,6 @@ steps:
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
@ -177,11 +175,6 @@ steps:
- tests/tracing
commands:
- pytest -v -s metrics
- "pip install \
'opentelemetry-sdk>=1.26.0' \
'opentelemetry-api>=1.26.0' \
'opentelemetry-exporter-otlp>=1.26.0' \
'opentelemetry-semantic-conventions-ai>=0.4.1'"
- pytest -v -s tracing
##### fast check tests #####
@ -294,7 +287,7 @@ steps:
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
- label: LoRA Test %N # 15min each
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/lora
- tests/lora
@ -310,7 +303,6 @@ steps:
commands:
- pytest -v -s compile/test_pass_manager.py
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_fusion_attn.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- pytest -v -s compile/test_async_tp.py
@ -326,7 +318,6 @@ steps:
# these tests need to be separated, cannot combine
- pytest -v -s compile/piecewise/test_simple.py
- pytest -v -s compile/piecewise/test_toy_llama.py
- pytest -v -s compile/piecewise/test_full_cudagraph.py
- label: PyTorch Fullgraph Test # 18min
mirror_hardwares: [amdexperimental, amdproduction]
@ -430,9 +421,6 @@ steps:
- vllm/model_executor/layers/quantization
- tests/quantization
commands:
# temporary install here since we need nightly, will move to requirements/test.in
# after torchao 0.12 release
- pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
@ -675,7 +663,7 @@ steps:
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
- label: Multi-step Tests (4 GPUs) # 36min
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:

16
.github/CODEOWNERS vendored
View File

@ -10,17 +10,15 @@
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
/vllm/model_executor/guided_decoding @mgoin @russellb @aarnphm
/vllm/model_executor/guided_decoding @mgoin @russellb
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
/vllm/entrypoints @aarnphm
CMakeLists.txt @tlrmchlsmth
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb @aarnphm
/vllm/v1/structured_output @mgoin @russellb
# Test ownership
/.buildkite/lm-eval-harness @mgoin @simon-mo
@ -29,8 +27,8 @@ CMakeLists.txt @tlrmchlsmth
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb @aarnphm
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb
/tests/kernels @tlrmchlsmth @WoosukKwon
/tests/model_executor/test_guided_processors.py @mgoin @russellb
/tests/models @DarkLight1337 @ywang96
@ -40,11 +38,11 @@ CMakeLists.txt @tlrmchlsmth
/tests/quantization @mgoin @robertgshaw2-redhat
/tests/spec_decode @njhill @LiuXiaoxuanPKU
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
/tests/v1/structured_output @mgoin @russellb
/tests/weight_loading @mgoin @youkaichao
/tests/lora @jeejeelee
# Docs
/docs @hmellor
mkdocs.yaml @hmellor
mkdocs.yaml @hmellor

View File

@ -8,16 +8,6 @@ body:
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: markdown
attributes:
value: |
⚠️ **SECURITY WARNING:** Please review any text you paste to ensure it does not contain sensitive information such as:
- API tokens or keys (e.g., Hugging Face tokens, OpenAI API keys)
- Passwords or authentication credentials
- Private URLs or endpoints
- Personal or confidential data
Consider redacting or replacing sensitive values with placeholders like `<YOUR_TOKEN_HERE>` when sharing configuration or code examples.
- type: textarea
attributes:
label: Your current environment

View File

@ -1,18 +1,6 @@
## Essential Elements of an Effective PR Description Checklist
- [ ] The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
- [ ] The test plan, such as providing test command.
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
FILL IN THE PR DESCRIPTION HERE
PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS ABOVE HAVE BEEN CONSIDERED.
## Purpose
## Test Plan
## Test Result
## (Optional) Documentation Update
FIX #xxxx (*link existing issues this PR will resolve*)
<!--- pyml disable-next-line no-emphasis-as-heading -->
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)

49
.github/mergify.yml vendored
View File

@ -36,20 +36,6 @@ pull_request_rules:
add:
- frontend
- name: label-llama
description: Automatically apply llama label
conditions:
- or:
- files~=^examples/.*llama.*\.py
- files~=^tests/.*llama.*\.py
- files~=^vllm/entrypoints/openai/tool_parsers/llama.*\.py
- files~=^vllm/model_executor/models/.*llama.*\.py
- files~=^vllm/transformers_utils/configs/.*llama.*\.py
actions:
label:
add:
- llama
- name: label-multi-modality
description: Automatically apply multi-modality label
conditions:
@ -65,41 +51,6 @@ pull_request_rules:
add:
- multi-modality
- name: label-qwen
description: Automatically apply qwen label
conditions:
- or:
- files~=^examples/.*qwen.*\.py
- files~=^tests/.*qwen.*\.py
- files~=^vllm/model_executor/models/.*qwen.*\.py
- files~=^vllm/reasoning/.*qwen.*\.py
- title~=(?i)Qwen
- body~=(?i)Qwen
actions:
label:
add:
- qwen
- name: label-rocm
description: Automatically apply rocm label
conditions:
- or:
- files~=^csrc/rocm/
- files~=^docker/Dockerfile.rocm
- files~=^requirements/rocm.*\.txt
- files~=^vllm/attention/backends/rocm.*\.py
- files~=^vllm/attention/ops/rocm.*\.py
- files~=^vllm/model_executor/layers/fused_moe/rocm.*\.py
- files~=^vllm/v1/attention/backends/mla/rocm.*\.py
- files~=^tests/kernels/.*_rocm.*\.py
- files=vllm/platforms/rocm.py
- title~=(?i)AMD
- title~=(?i)ROCm
actions:
label:
add:
- rocm
- name: label-structured-output
description: Automatically apply structured-output label
conditions:

2
.gitignore vendored
View File

@ -200,5 +200,5 @@ benchmarks/**/*.json
actionlint
shellcheck*/
# Ignore moe/marlin_moe gen code
# Ingore moe/marlin_moe gen code
csrc/moe/marlin_moe_wna16/kernel_*

View File

@ -11,8 +11,6 @@ repos:
hooks:
- id: yapf
args: [--in-place, --verbose]
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
exclude: '(.buildkite|benchmarks|build|examples)/.*'
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.7
hooks:
@ -20,10 +18,12 @@ repos:
args: [--output-format, github, --fix]
- id: ruff-format
files: ^(.buildkite|benchmarks|examples)/.*
- repo: https://github.com/crate-ci/typos
rev: v1.32.0
- repo: https://github.com/codespell-project/codespell
rev: v2.4.1
hooks:
- id: typos
- id: codespell
additional_dependencies: ['tomli']
args: ['--toml', 'pyproject.toml']
- repo: https://github.com/PyCQA/isort
rev: 6.0.1
hooks:
@ -143,13 +143,6 @@ repos:
types: [python]
pass_filenames: false
additional_dependencies: [regex]
- id: check-pickle-imports
name: Prevent new pickle/cloudpickle imports
entry: python tools/check_pickle_imports.py
language: python
types: [python]
pass_filenames: false
additional_dependencies: [pathspec, regex]
# Keep `suggestion` last
- id: suggestion
name: Suggestion

View File

@ -182,6 +182,9 @@ include(FetchContent)
file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
#
# Set rocm version dev int.
#
if(VLLM_GPU_LANG STREQUAL "HIP")
#
# Overriding the default -O set up by cmake, adding ggdb3 for the most verbose devug info
@ -189,6 +192,7 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
set(CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG "${CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG} -O0 -ggdb3")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -ggdb3")
#
# Certain HIP functions are marked as [[nodiscard]], yet vllm ignores the result which generates
# a lot of warnings that always mask real issues. Suppressing until this is properly addressed.
@ -242,7 +246,6 @@ set(VLLM_EXT_SRC
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/layernorm_quant_kernels.cu"
"csrc/sampler.cu"
"csrc/cuda_view.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
@ -308,7 +311,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
if (MARLIN_ARCHS)
#
@ -420,9 +423,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
# require CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
# The cutlass_scaled_mm kernels for Blackwell (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
@ -454,7 +457,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# kernels for the remaining archs that are not already built for 3x.
# (Build 8.9 for FP8)
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
"7.5;8.0;8.7;8.9+PTX" "${CUDA_ARCHS}")
"7.5;8.0;8.9+PTX" "${CUDA_ARCHS}")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
@ -542,10 +545,10 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# CUTLASS MoE kernels
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and ONLY works
# on Hopper). get_cutlass_(pplx_)moe_mm_data should only be compiled
# if it's possible to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
# to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
@ -684,7 +687,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
#

View File

@ -58,8 +58,8 @@ vLLM is fast with:
- Efficient management of attention key and value memory with [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html)
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [AutoRound](https://arxiv.org/abs/2309.05516), INT4, INT8, and FP8
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [AutoRound](https://arxiv.org/abs/2309.05516),INT4, INT8, and FP8.
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
- Speculative decoding
- Chunked prefill
@ -72,14 +72,14 @@ vLLM is flexible and easy to use with:
- Tensor parallelism and pipeline parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
- Prefix caching support
- Multi-LoRA support
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
- Mixture-of-Expert LLMs (e.g., Mixtral, Deepseek-V2 and V3)
- Embedding Models (e.g., E5-Mistral)
- Embedding Models (e.g. E5-Mistral)
- Multi-modal LLMs (e.g., LLaVA)
Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).
@ -156,10 +156,10 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues) or [Discussions](https://github.com/vllm-project/vllm/discussions)
- For discussing with fellow users, please use the [vLLM Forum](https://discuss.vllm.ai)
- For coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
- coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
- For security disclosures, please use GitHub's [Security Advisories](https://github.com/vllm-project/vllm/security/advisories) feature
- For collaborations and partnerships, please contact us at [vllm-questions@lists.berkeley.edu](mailto:vllm-questions@lists.berkeley.edu)
## Media Kit
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit)
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).

View File

@ -10,15 +10,11 @@
# 3. Set variables (ALL REQUIRED)
# BASE: your directory for vllm repo
# MODEL: the model served by vllm
# TP: ways of tensor parallelism
# DOWNLOAD_DIR: directory to download and load model weights.
# INPUT_LEN: request input len
# OUTPUT_LEN: request output len
# MIN_CACHE_HIT_PCT: prefix cache rate
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
# NUM_SEQS_LIST: a list of `max-num-seqs` you want to loop with.
# NUM_BATCHED_TOKENS_LIST: a list of `max-num-batched-tokens` you want to loop with.
# Note that the default NUM_SEQS_LIST and NUM_BATCHED_TOKENS_LIST are set for medium size input/output len, for extra short context (such as 20:20), you might need to include larger numbers in NUM_SEQS_LIST.
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
# 5. The final result will be saved in RESULT file.
@ -34,27 +30,31 @@
TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MIN_CACHE_HIT_PCT=0
MIN_CACHE_HIT_PCT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
echo "result file: $RESULT"
echo "result file$ $RESULT"
echo "model: $MODEL"
echo
rm -rf $LOG_FOLDER
mkdir -p $LOG_FOLDER
cd "$BASE/vllm"
# create sonnet-4x.txt so that we can sample 2048 tokens for input
echo "" > benchmarks/sonnet_4x.txt
for _ in {1..4}
do
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
done
pip install -q datasets
pip install datasets
current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
@ -64,69 +64,53 @@ best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0
start_server() {
local gpu_memory_utilization=$1
local max_num_seqs=$2
local max_num_batched_tokens=$3
local vllm_log=$4
pkill -f vllm
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization $gpu_memory_utilization \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size $TP \
--enable-prefix-caching \
--load-format dummy \
--download-dir "$DOWNLOAD_DIR" \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
if [[ "$STATUS_CODE" -eq 200 ]]; then
server_started=1
break
else
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
return 1
else
return 0
fi
}
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
local gpu_memory_utilization=$3
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
pkill -f vllm
echo "starting server..."
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log
result=$?
if [[ "$result" -eq 1 ]]; then
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
else
echo "server started."
fi
# start the server
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization 0.98 \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size 1 \
--enable-prefix-caching \
--load-format dummy \
--download-dir $DOWNLOAD_DIR \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
echo "wait for 10 minutes.."
echo
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
if grep -Fq "Application startup complete" "$vllm_log"; then
echo "Application started"
server_started=1
break
else
# echo "wait for 10 seconds..."
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
return 1
fi
echo "run benchmark test..."
echo
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
@ -134,29 +118,29 @@ run_benchmark() {
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $INPUT_LEN \
--random-output-len $OUTPUT_LEN \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate inf \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 1000 \
--random-prefix-len $prefix_len \
--port 8004 &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
request_rate=inf
fi
if (( ! meet_latency_requirement )); then
# start from request-rate as int(throughput) + 1
request_rate=$((${throughput%.*} + 1))
# start from request-rate as int(through_put) + 1
request_rate=$((${through_put%.*} + 1))
while ((request_rate > 0)); do
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
@ -165,18 +149,19 @@ run_benchmark() {
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $INPUT_LEN \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore_eos \
--disable-tqdm \
--request-rate $request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--random-prefix-len $prefix_len \
--port 8004 &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
@ -188,10 +173,10 @@ run_benchmark() {
fi
# write the results and update the best result.
if ((meet_latency_requirement)); then
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput" >> "$RESULT"
if (( $(echo "$throughput > $best_throughput" | bc -l) )); then
best_throughput=$throughput
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
best_throughput=$through_put
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
@ -203,39 +188,22 @@ run_benchmark() {
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
rm -f $vllm_log
printf '=%.0s' $(seq 1 20)
return 0
}
read -r -a num_seqs_list <<< "$NUM_SEQS_LIST"
read -r -a num_batched_tokens_list <<< "$NUM_BATCHED_TOKENS_LIST"
# first find out the max gpu-memory-utilization without HBM OOM.
gpu_memory_utilization=0.98
find_gpu_memory_utilization=0
while (( $(echo "$gpu_memory_utilization >= 0.9" | bc -l) )); do
start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log"
result=$?
if [[ "$result" -eq 0 ]]; then
find_gpu_memory_utilization=1
break
else
gpu_memory_utilization=$(echo "$gpu_memory_utilization - 0.01" | bc)
fi
done
if [[ "$find_gpu_memory_utilization" -eq 1 ]]; then
echo "Using gpu_memory_utilization=$gpu_memory_utilization to serve model."
else
echo "Cannot find a proper gpu_memory_utilization over 0.9 to serve the model, please check logs in $LOG_FOLDER."
exit 1
fi
for num_seqs in "${num_seqs_list[@]}"; do
for num_batched_tokens in "${num_batched_tokens_list[@]}"; do
run_benchmark $num_seqs $num_batched_tokens $gpu_memory_utilization
num_seqs_list="128 256"
num_batched_tokens_list="512 1024 2048 4096"
for num_seqs in $num_seqs_list; do
for num_batched_tokens in $num_batched_tokens_list; do
run_benchmark $num_seqs $num_batched_tokens
exit 0
done
done
echo "finish permutations"

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import io
import json

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This module defines a framework for sampling benchmark requests from various
datasets. Each dataset subclass of BenchmarkDataset must implement sample
@ -865,15 +864,7 @@ class InstructCoderDataset(HuggingFaceDataset):
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = f"{item['input']}\n\n{item['instruction']} Just output \
the code, do not include any explanation."
# apply template
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=False,
)
prompt = f"{item['instruction']}:\n{item['input']}"
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark the latency of processing a single batch of requests."""
import argparse
@ -123,7 +122,7 @@ def main(args: argparse.Namespace):
save_to_pytorch_benchmark_format(args, results)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the latency of processing a single batch of "
"requests till completion."
@ -171,12 +170,6 @@ def create_argument_parser():
# V1 enables prefix caching by default which skews the latency
# numbers. We need to disable prefix caching by default.
parser.set_defaults(enable_prefix_caching=False)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
raise OSError(

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Offline benchmark to test the long document QA throughput.
@ -142,7 +141,7 @@ def main(args):
)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the performance with or "
"without automatic prefix caching."
@ -192,11 +191,5 @@ def create_argument_parser():
)
parser = EngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark the efficiency of prefix caching.
@ -218,7 +217,7 @@ def main(args):
)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the performance with or without "
"automatic prefix caching."
@ -268,11 +267,5 @@ def create_argument_parser():
)
parser = EngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark offline prioritization."""
import argparse
@ -161,7 +160,7 @@ def main(args: argparse.Namespace):
json.dump(results, f, indent=4)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument(
"--backend", type=str, choices=["vllm", "hf", "mii"], default="vllm"
@ -204,12 +203,6 @@ def create_argument_parser():
)
parser = EngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
r"""Benchmark online serving throughput.
On the server side, run one of the following commands:
@ -875,7 +874,7 @@ def main(args: argparse.Namespace):
save_to_pytorch_benchmark_format(args, result_json, file_name)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput."
)
@ -1225,10 +1224,6 @@ def create_argument_parser():
"script chooses a LoRA module at random.",
)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
r"""Benchmark online serving throughput with structured outputs.
On the server side, run one of the following commands:
@ -12,6 +11,7 @@ On the client side, run:
--model <your_model> \
--dataset json \
--structured-output-ratio 1.0 \
--structured-output-backend auto \
--request-rate 10 \
--num-prompts 1000
@ -850,7 +850,7 @@ def main(args: argparse.Namespace):
json.dump(results, outfile, indent=4)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the online serving throughput."
)
@ -1034,10 +1034,5 @@ def create_argument_parser():
help="Ratio of Structured Outputs requests",
)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
main(args)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Benchmark offline inference throughput."""
import argparse
@ -595,7 +594,7 @@ def validate_args(args):
)
def create_argument_parser():
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument(
"--backend",
@ -717,12 +716,6 @@ def create_argument_parser():
)
parser = AsyncEngineArgs.add_cli_args(parser)
return parser
if __name__ == "__main__":
parser = create_argument_parser()
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
@ -66,9 +65,4 @@ class InfEncoder(json.JSONEncoder):
def write_to_json(filename: str, records: list) -> None:
with open(filename, "w") as f:
json.dump(
records,
f,
cls=InfEncoder,
default=lambda o: f"<{type(o).__name__} object is not JSON serializable>",
)
json.dump(records, f, cls=InfEncoder)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Cutlass bench utils
from collections.abc import Iterable

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Weight Shapes are in the format
# ([K, N], TP_SPLIT_DIM)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import itertools

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pickle as pkl
import time

View File

@ -4,85 +4,11 @@ import copy
import itertools
import torch
import triton
from weight_shapes import WEIGHT_SHAPES
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant
from vllm.triton_utils import triton
PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"fp8-tensor-w-token-a": dict(
w="tensor", a="token", no_a_quant=False, enabled=False
),
"fp8-tensor-w-tensor-a": dict(
w="tensor", a="tensor", no_a_quant=False, enabled=True
),
"fp8-channel-w-token-a": dict(
w="channel", a="token", no_a_quant=False, enabled=True
),
"fp8-channel-w-tensor-a": dict(
w="channel", a="tensor", no_a_quant=False, enabled=False
),
"fp8-tensor-w-token-a-noquant": dict(
w="tensor", a="token", no_a_quant=True, enabled=False
),
"fp8-tensor-w-tensor-a-noquant": dict(
w="tensor", a="tensor", no_a_quant=True, enabled=True
),
"fp8-channel-w-token-a-noquant": dict(
w="channel", a="token", no_a_quant=True, enabled=True
),
"fp8-channel-w-tensor-a-noquant": dict(
w="channel", a="tensor", no_a_quant=True, enabled=False
),
}
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_fp8(b: torch.Tensor, w_type: str, device: str):
if w_type == "tensor":
scale_b = torch.ones(1, device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
else:
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, use_per_token_if_dynamic=True)
return b_fp8.t(), scale_b_fp8
def build_fp8_runner(cfg, a, b, dtype, device):
b_fp8, scale_b_fp8 = _quant_weight_fp8(b, cfg["w"], device)
scale_a_const = (
torch.ones(1, device=device, dtype=torch.float32)
if cfg["a"] == "tensor"
else None
)
if cfg["no_a_quant"]:
if cfg["a"] == "tensor":
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a_const)
else:
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, use_per_token_if_dynamic=True)
def run():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
return run
if cfg["a"] == "tensor":
def run():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a_const)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
else:
def run():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, use_per_token_if_dynamic=True)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
return run
@triton.testing.perf_report(
@ -91,8 +17,28 @@ def build_fp8_runner(cfg, a, b, dtype, device):
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=_enabled,
line_vals=[
"torch-bf16",
# "fp8-tensor-w-token-a",
"fp8-tensor-w-tensor-a",
"fp8-channel-w-token-a",
# "fp8-channel-w-tensor-a",
# "fp8-tensor-w-token-a-noquant",
"fp8-tensor-w-tensor-a-noquant",
"fp8-channel-w-token-a-noquant",
# "fp8-channel-w-tensor-a-noquant",
],
line_names=[
"torch-bf16",
# "fp8-tensor-w-token-a",
"fp8-tensor-w-tensor-a",
"fp8-channel-w-token-a",
# "fp8-channel-w-tensor-a",
# "fp8-tensor-w-token-a-noquant",
"fp8-tensor-w-tensor-a-noquant",
"fp8-channel-w-token-a-noquant",
# "fp8-channel-w-tensor-a-noquant",
],
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs FP8 GEMMs",
args={},
@ -103,34 +49,144 @@ def benchmark(batch_size, provider, N, K):
device = "cuda"
dtype = torch.bfloat16
# Create input tensors
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
if "torch-bf16" in provider:
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
else:
cfg = PROVIDER_CFGS[provider]
run_quant = build_fp8_runner(cfg, a, b, dtype, device)
elif "fp8" in provider:
# Weights are always quantized ahead of time
if "noquant" in provider:
# For no quantization, we just measure the GEMM
if "tensor-w-token-a" in provider:
# Dynamic per-token quant for A, per-tensor quant for B
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b)
assert scale_b_fp8.numel() == 1
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
a, use_per_token_if_dynamic=True
)
def run_quant():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "tensor-w-tensor-a" in provider:
# Static per-tensor quantization with fixed scales
# for both A and B
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
scale_b = torch.tensor([1.0], device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
assert scale_b_fp8.numel() == 1
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
def run_quant():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "channel-w-token-a" in provider:
# Static per-channel quantization for weights, per-token
# quant for A
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
assert scale_b_fp8.numel() == N
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
a, use_per_token_if_dynamic=True
)
def run_quant():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "channel-w-tensor-a" in provider:
# Static per-channel quantization for weights, per-tensor
# quant for A
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
assert scale_b_fp8.numel() == N
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
def run_quant():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
else:
# In these cases, we quantize the activations during the GEMM call
if "tensor-w-token-a" in provider:
# Dynamic per-token quant for A, per-tensor quant for B
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b)
assert scale_b_fp8.numel() == 1
def run_quant():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
a, use_per_token_if_dynamic=True
)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "tensor-w-tensor-a" in provider:
# Static per-tensor quantization with fixed scales
# for both A and B
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
scale_b = torch.tensor([1.0], device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
assert scale_b_fp8.numel() == 1
def run_quant():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "channel-w-token-a" in provider:
# Static per-channel quantization for weights, per-token
# quant for A
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
assert scale_b_fp8.numel() == N
def run_quant():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
a, use_per_token_if_dynamic=True
)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "channel-w-tensor-a" in provider:
# Static per-channel quantization for weights, per-tensor
# quant for A
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
assert scale_b_fp8.numel() == N
def run_quant():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
b_fp8 = b_fp8.t()
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
# Calculate TFLOP/s, two flops per multiply-add
tflops = lambda ms: (2 * M * N * K) * 1e-12 / (ms * 1e-3)
return tflops(ms), tflops(max_ms), tflops(min_ms)
def prepare_shapes(args):
out = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN_model_names = []
models_tps = list(itertools.product(args.models, args.tp_sizes))
for model, tp_size in models_tps:
assert model in WEIGHT_SHAPES
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
KN.append(model)
out.append(KN)
return out
KN_model_names.append(KN)
return KN_model_names
if __name__ == "__main__":
@ -140,13 +196,21 @@ if __name__ == "__main__":
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
choices=[*WEIGHT_SHAPES.keys()],
help="List of models to benchmark",
)
parser.add_argument(
"--tp-sizes",
nargs="+",
type=int,
default=[1],
help="List of tensor parallel sizes",
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
args = parser.parse_args()
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs FP8 GEMMs TFLOP/s:")
KN_model_names = prepare_shapes(args)
for K, N, model_name in KN_model_names:
print(f"{model_name}, N={N} K={K}, BF16 vs FP8 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,

View File

@ -1,169 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools
import torch
from weight_shapes import WEIGHT_SHAPES
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
from vllm._custom_ops import scaled_int8_quant as vllm_scaled_int8_quant
from vllm.triton_utils import triton
PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"int8-tensor-w-token-a": dict(
w="tensor", a="token", no_a_quant=False, enabled=False
),
"int8-tensor-w-tensor-a": dict(
w="tensor", a="tensor", no_a_quant=False, enabled=True
),
"int8-channel-w-token-a": dict(
w="channel", a="token", no_a_quant=False, enabled=True
),
"int8-channel-w-tensor-a": dict(
w="channel", a="tensor", no_a_quant=False, enabled=False
),
"int8-tensor-w-token-a-noquant": dict(
w="tensor", a="token", no_a_quant=True, enabled=False
),
"int8-tensor-w-tensor-a-noquant": dict(
w="tensor", a="tensor", no_a_quant=True, enabled=True
),
"int8-channel-w-token-a-noquant": dict(
w="channel", a="token", no_a_quant=True, enabled=True
),
"int8-channel-w-tensor-a-noquant": dict(
w="channel", a="tensor", no_a_quant=True, enabled=False
),
}
def _quant_weight(b, w_type, device):
if w_type == "tensor":
scale_b = torch.ones(1, device=device, dtype=torch.float32)
b_int8, scale_b_int8, _ = vllm_scaled_int8_quant(b, scale_b)
assert scale_b_int8.numel() == 1
else: # channel
b_int8, scale_b_int8, _ = vllm_scaled_int8_quant(b)
assert scale_b_int8.numel() == b.shape[0]
return b_int8.t(), scale_b_int8
def build_int8_runner(cfg, a, b, dtype, device):
# quant before running the kernel
b_int8, scale_b_int8 = _quant_weight(b, cfg["w"], device)
scale_a_const = None
if cfg["a"] == "tensor":
scale_a_const = torch.ones(1, device=device, dtype=torch.float32)
# no quant, create activation ahead
if cfg["no_a_quant"]:
if cfg["a"] == "tensor":
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a, scale_a_const)
else: # token
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a)
def run_quant():
return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)
return run_quant
# dynamic quant, create activation inside
if cfg["a"] == "tensor":
def run_quant():
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a, scale_a_const)
return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)
else: # token
def run_quant():
a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a)
return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)
return run_quant
_enabled = [k for k, v in PROVIDER_CFGS.items() if v.get("enabled")]
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=[k for k in _enabled],
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs INT8 GEMMs",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
else:
cfg = PROVIDER_CFGS[provider]
run_quant = build_int8_runner(cfg, a, b, dtype, device)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
def prepare_shapes(args):
KN_model_names = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN.append(model)
KN_model_names.append(KN)
return KN_model_names
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
help="List of models to benchmark",
)
parser.add_argument(
"--tp-sizes",
nargs="+",
type=int,
default=[1],
help="List of tensor parallel sizes",
)
args = parser.parse_args()
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs INT8 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_int8_res_n{N}_k{K}",
N=N,
K=K,
)
print("Benchmark finished!")

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import sys

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark the performance of the cutlass_moe_fp4 kernel vs the triton_moe
kernel. The cutlass_moe_fp4 kernel takes in fp4 quantized weights and 16-bit
@ -91,7 +90,7 @@ def bench_run(
score = torch.randn((m, num_experts), device=device, dtype=dtype)
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
quant_blocksize = 16
w1_blockscale = torch.empty(

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
import torch.utils.benchmark as benchmark
@ -7,8 +6,8 @@ from benchmark_shapes import WEIGHT_SHAPES_MOE
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
from vllm.model_executor.layers.fused_moe.fused_moe import (
cutlass_moe_fp8,
fused_experts,
fused_topk,
)
@ -70,9 +69,18 @@ def bench_run(
w1_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
w2_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
ab_strides1 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((num_experts,), 2 * n, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((num_experts,), n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
for expert in range(num_experts):
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(w1[expert])
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(w2[expert])
w1_q_notransp = w1_q.clone()
w2_q_notransp = w2_q.clone()
w1_q = w1_q.transpose(1, 2)
w2_q = w2_q.transpose(1, 2)
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
@ -113,6 +121,10 @@ def bench_run(
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
c_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides2: torch.Tensor,
num_repeats: int,
):
for _ in range(num_repeats):
@ -120,10 +132,14 @@ def bench_run(
a,
w1,
w2,
topk_weights,
topk_ids,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale,
)
@ -136,6 +152,10 @@ def bench_run(
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
c_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides2: torch.Tensor,
):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
@ -144,10 +164,14 @@ def bench_run(
a,
w1_q,
w2_q,
topk_weights,
topk_ids,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale,
)
@ -193,6 +217,10 @@ def bench_run(
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
)
torch.cuda.synchronize()
@ -201,8 +229,8 @@ def bench_run(
with torch.cuda.graph(triton_graph, stream=triton_stream):
run_triton_from_graph(
a,
w1_q,
w2_q,
w1_q_notransp,
w2_q_notransp,
topk_weights,
topk_ids,
w1_scale,
@ -221,12 +249,18 @@ def bench_run(
"w2": w2,
"score": score,
"topk": topk,
"w1_q_notransp": w1_q_notransp,
"w2_q_notransp": w2_q_notransp,
# Cutlass params
"a_scale": a_scale,
"w1_q": w1_q,
"w2_q": w2_q,
"w1_scale": w1_scale,
"w2_scale": w2_scale,
"ab_strides1": ab_strides1,
"c_strides1": c_strides1,
"ab_strides2": ab_strides2,
"c_strides2": c_strides2,
# cuda graph params
"cutlass_graph": cutlass_graph,
"triton_graph": triton_graph,
@ -244,8 +278,8 @@ def bench_run(
# Warmup
run_triton_moe(
a,
w1_q,
w2_q,
w1_q_notransp,
w2_q_notransp,
topk_weights,
topk_ids,
w1_scale,
@ -256,7 +290,7 @@ def bench_run(
results.append(
benchmark.Timer(
stmt="run_triton_moe(a, w1_q, w2_q, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
stmt="run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
@ -287,12 +321,16 @@ def bench_run(
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
num_warmup,
)
results.append(
benchmark.Timer(
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, num_runs)", # noqa: E501
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import time

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
import torch.utils.benchmark as benchmark

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
@ -7,6 +6,7 @@ import time
from contextlib import nullcontext
from datetime import datetime
from itertools import product
from types import SimpleNamespace
from typing import Any, TypedDict
import ray
@ -42,7 +42,7 @@ def benchmark_config(
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
block_quant_shape: list[int] = None,
block_quant_shape: List[int] = None,
use_deep_gemm: bool = False,
) -> float:
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
@ -399,7 +399,7 @@ class BenchmarkWorker:
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
block_quant_shape: list[int] = None,
block_quant_shape: List[int] = None,
use_deep_gemm: bool = False,
) -> tuple[dict[str, int], float]:
current_platform.seed_everything(self.seed)
@ -531,7 +531,7 @@ def save_configs(
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
block_quant_shape: list[int],
block_quant_shape: List[int],
) -> None:
dtype_str = get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
@ -562,6 +562,7 @@ def main(args: argparse.Namespace):
config = get_config(model=args.model, trust_remote_code=args.trust_remote_code)
if args.model_prefix:
config = getattr(config, args.model_prefix)
config = SimpleNamespace(**config)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
@ -593,7 +594,11 @@ def main(args: argparse.Namespace):
shard_intermediate_size = 2 * intermediate_size // args.tp_size
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
dtype = (
torch.float16
if current_platform.is_rocm()
else getattr(torch, config.torch_dtype)
)
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
block_quant_shape = get_weight_block_size_safety(config)

View File

@ -1,159 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import itertools
import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
moe_align_block_size_triton,
)
from vllm.triton_utils import triton
def get_topk_ids(num_tokens: int, num_experts: int, topk: int) -> torch.Tensor:
return torch.stack(
[
torch.randperm(num_experts, dtype=torch.int32, device="cuda")[:topk]
for _ in range(num_tokens)
]
)
def check_correctness(num_tokens, num_experts=256, block_size=256, topk=8):
"""
Verifies vllm vs. Triton
"""
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
# 1. malloc space for triton and vllm
# malloc enough space (max_num_tokens_padded) for the sorted ids
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
sorted_ids_triton = torch.empty(
(max_num_tokens_padded,), dtype=torch.int32, device="cuda"
)
sorted_ids_triton.fill_(topk_ids.numel()) # fill with sentinel value
expert_ids_triton = torch.zeros(
(max_num_tokens_padded // block_size,), dtype=torch.int32, device="cuda"
)
num_tokens_post_pad_triton = torch.empty((1,), dtype=torch.int32, device="cuda")
sorted_ids_vllm = torch.empty_like(sorted_ids_triton)
sorted_ids_vllm.fill_(topk_ids.numel())
expert_ids_vllm = torch.zeros_like(expert_ids_triton)
num_tokens_post_pad_vllm = torch.empty_like(num_tokens_post_pad_triton)
# 2. run implementations
moe_align_block_size_triton(
topk_ids,
num_experts,
block_size,
sorted_ids_triton,
expert_ids_triton,
num_tokens_post_pad_triton,
)
ops.moe_align_block_size(
topk_ids,
num_experts,
block_size,
sorted_ids_vllm,
expert_ids_vllm,
num_tokens_post_pad_vllm,
)
print(f"✅ VLLM implementation works with {num_experts} experts!")
# 3. compare results
if torch.allclose(expert_ids_triton, expert_ids_vllm) and torch.allclose(
num_tokens_post_pad_triton, num_tokens_post_pad_vllm
):
print("✅ Triton and VLLM implementations match.")
else:
print("❌ Triton and VLLM implementations DO NOT match.")
print("Triton expert_ids:", expert_ids_triton)
print("VLLM expert_ids:", expert_ids_vllm)
print("Triton num_tokens_post_pad:", num_tokens_post_pad_triton)
print("VLLM num_tokens_post_pad:", num_tokens_post_pad_vllm)
# test configurations
num_tokens_range = [1, 16, 256, 4096]
num_experts_range = [16, 64, 224, 256, 280, 512]
topk_range = [1, 2, 8]
configs = list(itertools.product(num_tokens_range, num_experts_range, topk_range))
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["num_tokens", "num_experts", "topk"],
x_vals=configs,
line_arg="provider",
line_vals=["vllm", "triton"], # "triton"
line_names=["VLLM", "Triton"], # "Triton"
plot_name="moe-align-block-size-performance",
args={},
)
)
def benchmark(num_tokens, num_experts, topk, provider):
"""Benchmark function for Triton."""
block_size = 256
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
sorted_ids = torch.empty((max_num_tokens_padded,), dtype=torch.int32, device="cuda")
sorted_ids.fill_(topk_ids.numel())
max_num_m_blocks = max_num_tokens_padded // block_size
expert_ids = torch.empty((max_num_m_blocks,), dtype=torch.int32, device="cuda")
num_tokens_post_pad = torch.empty((1,), dtype=torch.int32, device="cuda")
quantiles = [0.5, 0.2, 0.8]
if provider == "vllm":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: ops.moe_align_block_size(
topk_ids,
num_experts,
block_size,
sorted_ids.clone(),
expert_ids.clone(),
num_tokens_post_pad.clone(),
),
quantiles=quantiles,
)
elif provider == "triton":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: moe_align_block_size_triton(
topk_ids,
num_experts,
block_size,
sorted_ids.clone(),
expert_ids.clone(),
num_tokens_post_pad.clone(),
),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--num_experts",
type=int,
default=64,
choices=[8, 16, 32, 64, 128, 256],
)
parser.add_argument(
"--topk",
type=int,
default=8,
choices=[2, 4, 8],
help="Top-k value for correctness check.",
)
args = parser.parse_args()
print("Running correctness check...")
check_correctness(num_tokens=1024, num_experts=args.num_experts, topk=args.topk)
benchmark.run(print_data=True, show_plots=True)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
from typing import Any, TypedDict

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import random
import time

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import time

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
from typing import Optional, Union

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from itertools import accumulate
from typing import Optional

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
WEIGHT_SHAPES = {
"ideal": [[4 * 256 * 32, 256 * 32]],

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from sglang quantization/tuning_block_wise_kernel.py
import argparse

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# fmt: off
# ruff: noqa: E501
import time

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import math
import pickle

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import dataclasses
from collections.abc import Iterable

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Weight Shapes are in the format
# ([K, N], TP_SPLIT_DIM)

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import cProfile
import pstats

View File

@ -75,7 +75,6 @@ if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
else()
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
find_isa(${CPUINFO} "Power11" POWER11_FOUND)
find_isa(${CPUINFO} "POWER10" POWER10_FOUND)
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
@ -107,19 +106,13 @@ elseif (AVX2_FOUND)
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
message(WARNING "vLLM CPU backend using AVX2 ISA")
elseif (POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
elseif (POWER9_FOUND OR POWER10_FOUND)
message(STATUS "PowerPC detected")
if (POWER9_FOUND)
list(APPEND CXX_COMPILE_FLAGS
"-mvsx"
"-mcpu=power9"
"-mtune=power9")
elseif (POWER10_FOUND OR POWER11_FOUND)
list(APPEND CXX_COMPILE_FLAGS
"-mvsx"
"-mcpu=power10"
"-mtune=power10")
endif()
# Check for PowerPC VSX support
list(APPEND CXX_COMPILE_FLAGS
"-mvsx"
"-mcpu=native"
"-mtune=native")
elseif (ASIMD_FOUND)
message(STATUS "ARMv8 or later architecture detected")

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 763ad155a1c826f71ff318f41edb1e4e5e376ddb
GIT_TAG 8798f27777fb57f447070301bf33a9f9c607f491
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -1,6 +1,5 @@
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
#
# A command line tool for running pytorch's hipify preprocessor on CUDA

View File

@ -122,7 +122,6 @@ function (get_torch_gpu_compiler_flags OUT_GPU_FLAGS GPU_LANG)
"-DENABLE_FP8"
"-U__HIP_NO_HALF_CONVERSIONS__"
"-U__HIP_NO_HALF_OPERATORS__"
"-Werror=unused-variable"
"-fno-gpu-rdc")
endif()

View File

@ -119,7 +119,7 @@ typename T::Fmha::Arguments args_from_options(
{static_cast<ElementOut*>(out.data_ptr()), stride_O,
static_cast<ElementAcc*>(nullptr), stride_LSE},
hw_info,
1, // split_kv
-1, // split_kv
nullptr, // is_var_split_kv
};
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute

View File

@ -65,6 +65,9 @@ void paged_attention_v1_launcher(
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
[[maybe_unused]] int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
assert(head_size % thread_group_size == 0);
// NOTE: alibi_slopes is optional.
const float* alibi_slopes_ptr =
alibi_slopes
@ -190,4 +193,4 @@ void paged_attention_v1(
#undef WARP_SIZE
#undef MAX
#undef MIN
#undef DIVIDE_ROUND_UP
#undef DIVIDE_ROUND_UP

View File

@ -66,6 +66,9 @@ void paged_attention_v2_launcher(
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
[[maybe_unused]] int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
assert(head_size % thread_group_size == 0);
// NOTE: alibi_slopes is optional.
const float* alibi_slopes_ptr =
alibi_slopes
@ -200,4 +203,4 @@ void paged_attention_v2(
#undef WARP_SIZE
#undef MAX
#undef MIN
#undef DIVIDE_ROUND_UP
#undef DIVIDE_ROUND_UP

View File

@ -137,8 +137,8 @@ FORCE_INLINE std::pair<T, T> reduceSoftmaxAlibi(T* data, const int size,
}
template <typename T>
FORCE_INLINE void reducePartitionSoftmax(const T* max_data, T* sum_data,
const int size) {
FORCE_INLINE void reducePartitonSoftmax(const T* max_data, T* sum_data,
const int size) {
T max = max_data[0];
for (int i = 1; i < size; ++i) {
max = max >= max_data[i] ? max : max_data[i];
@ -634,7 +634,7 @@ struct paged_attention_v2_impl {
if (partition_num == 1) continue;
reducePartitionSoftmax(
reducePartitonSoftmax(
max_logits + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions,
exp_sums + seq_idx * num_heads * max_num_partitions +

View File

@ -83,7 +83,7 @@ struct FP16Vec16 : public Vec<FP16Vec16> {
explicit FP16Vec16(const void* ptr)
: reg((__m256i)_mm256_loadu_si256((__m256i*)ptr)) {}
// non-temporal load
// non-temproal load
explicit FP16Vec16(bool, void* ptr)
: reg(_mm256_stream_load_si256((__m256i*)ptr)) {}
@ -120,7 +120,7 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
explicit BF16Vec16(const void* ptr)
: reg((__m256i)_mm256_loadu_si256((__m256i*)ptr)) {}
// non-temporal load
// non-temproal load
explicit BF16Vec16(bool, void* ptr)
: reg(_mm256_stream_load_si256((__m256i*)ptr)) {}
@ -327,7 +327,7 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
// normal load
explicit FP32Vec16(const float* ptr) : reg(_mm512_loadu_ps(ptr)) {}
// non-temporal load
// non-temproal load
explicit FP32Vec16(bool, void* ptr)
: reg((__m512)_mm512_stream_load_si512(ptr)) {}
@ -576,7 +576,7 @@ struct INT8Vec64 : public Vec<INT8Vec64> {
// normal load
explicit INT8Vec64(void* ptr) : reg(_mm512_loadu_epi8(ptr)) {}
// non-temporal load
// non-temproal load
explicit INT8Vec64(bool, void* ptr) : reg(_mm512_stream_load_si512(ptr)) {}
void save(void* ptr) const { _mm512_storeu_epi8(ptr, reg); }
@ -587,7 +587,7 @@ struct INT8Vec64 : public Vec<INT8Vec64> {
_mm512_mask_storeu_epi8(ptr, mask, reg);
}
// non-temporal save
// non-temproal save
void nt_save(int8_t* ptr) { _mm512_stream_si512((__m512i*)ptr, reg); }
};
#endif

View File

@ -54,7 +54,8 @@ std::string init_cpu_threads_env(const std::string& cpu_ids) {
*(src_mask->maskp) = *(src_mask->maskp) ^ *(mask->maskp);
int page_num = numa_migrate_pages(pid, src_mask, mask);
if (page_num == -1) {
TORCH_WARN("numa_migrate_pages failed. errno: " + std::to_string(errno));
TORCH_CHECK(false,
"numa_migrate_pages failed. errno: " + std::to_string(errno));
}
// restrict memory allocation node.
@ -104,4 +105,4 @@ std::string init_cpu_threads_env(const std::string& cpu_ids) {
return ss.str();
}
#endif
#endif

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import enum
from typing import Union

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import glob
import itertools
import os

View File

@ -13,45 +13,232 @@
namespace vllm {
namespace moe {
template <typename scalar_t>
__global__ void moe_align_block_size_kernel(
const scalar_t* __restrict__ topk_ids,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
int32_t* __restrict__ total_tokens_post_pad, int32_t num_experts,
int32_t padded_num_experts, int32_t experts_per_warp, int32_t block_size,
size_t numel, int32_t* __restrict__ cumsum) {
extern __shared__ int32_t shared_counts[];
namespace {
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row,
int32_t col) {
// don't worry about overflow because num_experts is relatively small
return row * total_col + col;
}
} // namespace
const int warp_id = threadIdx.x / WARP_SIZE;
const int my_expert_start = warp_id * experts_per_warp;
template <typename scalar_t, typename token_cnts_t>
__global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids,
int32_t* sorted_token_ids,
int32_t* expert_ids,
int32_t* total_tokens_post_pad,
int32_t num_experts,
int32_t block_size, size_t numel) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
for (int i = 0; i < experts_per_warp; ++i) {
if (my_expert_start + i < padded_num_experts) {
shared_counts[warp_id * experts_per_warp + i] = 0;
extern __shared__ int32_t shared_mem[];
int32_t* cumsum = shared_mem; // 1d tensor with shape (num_experts + 1)
token_cnts_t* tokens_cnts =
(token_cnts_t*)(shared_mem + num_experts +
1); // 2d tensor with shape (blockDim.x + 1, num_experts)
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
}
/**
* In the first step we compute token_cnts[thread_index + 1][expert_index],
* which counts how many tokens in the token shard of thread_index are
* assigned to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
if (threadIdx.x < num_experts) {
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
}
}
__syncthreads();
const size_t tid = threadIdx.x;
const size_t stride = blockDim.x;
for (size_t i = tid; i < numel; i += stride) {
int expert_id = topk_ids[i];
int warp_idx = expert_id / experts_per_warp;
int expert_offset = expert_id % experts_per_warp;
atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset], 1);
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i - 1] +
CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
block_size) *
block_size;
}
*total_tokens_post_pad = static_cast<int32_t>(cumsum[num_experts]);
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding
* blocks and stores the corresponding expert_id for each block.
*/
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
}
/**
* Each thread processes a token shard, calculating the index of each token
* after sorting by expert number. Given the example topk_ids =
* [0,1,2,1,2,3,0,3,4] and block_size = 4, then the output would be [0, 6, *,
* *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *], where * represents a
* padding value(preset in python).
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
* processed by the expert with expert_id within the current thread's token
* shard.
*/
int32_t rank_post_pad =
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
}
}
// TODO(simon): this is temporarily adapted from
// https://github.com/sgl-project/sglang/commit/31548116a8dc8c6df7e146e0587335a59fc5b9d7
// we did this to unblock Deepseek V3 but there should be a better
// implementation to manage shared memory.
template <typename scalar_t>
__global__ void moe_align_block_size_global_mem_kernel(
scalar_t* __restrict__ topk_ids, int32_t* sorted_token_ids,
int32_t* expert_ids, int32_t* total_tokens_post_pad, int32_t num_experts,
int32_t block_size, size_t numel, int32_t* tokens_cnts, int32_t* cumsum) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
}
/**
* In the first step we compute token_cnts[thread_index + 1][expert_index],
* which counts how many tokens in the token shard of thread_index are
* assigned to expert expert_index.
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
if (threadIdx.x < num_experts) {
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
}
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i - 1] +
CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
block_size) *
block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding
* blocks and stores the corresponding expert_id for each block.
*/
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
}
/**
* Each thread processes a token shard, calculating the index of each token
* after sorting by expert number. Given the example topk_ids =
* [0,1,2,1,2,3,0,3,4] and block_size = 4, then the output would be [0, 6, *,
* *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *], where * represents a
* padding value(preset in python).
*/
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
* processed by the expert with expert_id within the current thread's token
* shard.
*/
int32_t rank_post_pad =
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
}
}
// taken from
// https://github.com/sgl-project/sglang/commit/cdae77b03dfc6fec3863630550b45bbfc789f957
template <typename scalar_t>
__global__ void sgl_moe_align_block_size_kernel(
scalar_t* __restrict__ topk_ids, int32_t* sorted_token_ids,
int32_t* expert_ids, int32_t* total_tokens_post_pad, int32_t num_experts,
int32_t block_size, size_t numel, int32_t* cumsum) {
__shared__ int32_t shared_counts[32][8];
const int warp_id = threadIdx.x / 32;
const int experts_per_warp = 8;
const int my_expert_start = warp_id * experts_per_warp;
// Initialize shared_counts for this warp's experts
for (int i = 0; i < experts_per_warp; ++i) {
if (my_expert_start + i < num_experts) {
shared_counts[warp_id][i] = 0;
}
}
__syncthreads();
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int expert_id = topk_ids[i];
int warp_idx = expert_id / experts_per_warp;
int expert_offset = expert_id % experts_per_warp;
atomicAdd(&shared_counts[warp_idx][expert_offset], 1);
}
__syncthreads();
// Single thread computes cumulative sum and total tokens
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
int expert_count = 0;
int warp_idx = (i - 1) / experts_per_warp;
int expert_offset = (i - 1) % experts_per_warp;
expert_count = shared_counts[warp_idx * experts_per_warp + expert_offset];
expert_count = shared_counts[warp_idx][expert_offset];
cumsum[i] =
cumsum[i - 1] + CEILDIV(expert_count, block_size) * block_size;
@ -61,6 +248,7 @@ __global__ void moe_align_block_size_kernel(
__syncthreads();
// Assign expert IDs to blocks
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
@ -69,11 +257,13 @@ __global__ void moe_align_block_size_kernel(
}
}
// taken from
// https://github.com/sgl-project/sglang/commit/cdae77b03dfc6fec3863630550b45bbfc789f957
template <typename scalar_t>
__global__ void count_and_sort_expert_tokens_kernel(
const scalar_t* __restrict__ topk_ids,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
size_t numel) {
__global__ void sgl_moe_token_sort_kernel(scalar_t* __restrict__ topk_ids,
int32_t* sorted_token_ids,
int32_t* cumsum_buffer,
size_t numel) {
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = blockDim.x * gridDim.x;
@ -100,138 +290,132 @@ __global__ void moe_sum_kernel(
}
}
template <typename scalar_t>
__global__ void moe_align_block_size_small_batch_expert_kernel(
const scalar_t* __restrict__ topk_ids,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
int32_t* __restrict__ total_tokens_post_pad, int32_t num_experts,
int32_t block_size, size_t numel) {
const size_t tid = threadIdx.x;
const size_t stride = blockDim.x;
extern __shared__ int32_t shared_mem[];
int32_t* cumsum = shared_mem;
int32_t* tokens_cnts = (int32_t*)(shared_mem + num_experts + 1);
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[(threadIdx.x + 1) * num_experts + i] = 0;
}
for (size_t i = tid; i < numel; i += stride) {
++tokens_cnts[(threadIdx.x + 1) * num_experts + topk_ids[i]];
}
__syncthreads();
if (threadIdx.x < num_experts) {
tokens_cnts[threadIdx.x] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[i * num_experts + threadIdx.x] +=
tokens_cnts[(i - 1) * num_experts + threadIdx.x];
}
}
__syncthreads();
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] =
cumsum[i - 1] +
CEILDIV(tokens_cnts[blockDim.x * num_experts + i - 1], block_size) *
block_size;
}
*total_tokens_post_pad = static_cast<int32_t>(cumsum[num_experts]);
}
__syncthreads();
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
expert_ids[i / block_size] = threadIdx.x;
}
}
for (size_t i = tid; i < numel; i += stride) {
int32_t expert_id = topk_ids[i];
int32_t rank_post_pad =
tokens_cnts[threadIdx.x * num_experts + expert_id] + cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[threadIdx.x * num_experts + expert_id];
}
}
} // namespace moe
} // namespace vllm
// taken from
// https://github.com/sgl-project/sglang/blob/8b5f83ed3b7d2a49ad5c5cd5aa61c5d502f47dbc
void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int64_t block_size, torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
int64_t padded_num_experts =
((num_experts + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
int experts_per_warp = WARP_SIZE;
int threads = 1024;
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
int device_max_shared_mem;
auto dev = topk_ids.get_device();
cudaDeviceGetAttribute(&device_max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `cumsum` tensors
auto options_int =
torch::TensorOptions().dtype(torch::kInt).device(topk_ids.device());
torch::Tensor cumsum_buffer =
torch::zeros({num_experts + 1}, options_int);
bool small_batch_expert_mode =
(topk_ids.numel() < 1024) && (num_experts <= 64);
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
const int32_t shared_mem_i32 =
((num_thread + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);
const int32_t shared_mem_i16 =
((num_thread + 1) * num_experts) * sizeof(uint16_t) +
(num_experts + 1) * sizeof(int32_t);
if (small_batch_expert_mode) {
const int32_t threads = max((int32_t)num_experts, WARP_SIZE);
const int32_t shared_mem_size =
((threads + 1) * num_experts + (num_experts + 1)) *
sizeof(int32_t);
bool use_global_memory = false;
bool use_i16 = false; // Use uint16_t for shared memory token counts
if (shared_mem_i32 < device_max_shared_mem) {
// Do nothing in this case. We're all set to use int32_t token counts
} else if (shared_mem_i16 < device_max_shared_mem &&
topk_ids.numel() <= 65535) {
// when nelements of topk_ids is smaller than 65535 (max value of uint16),
// element value of token_cnts would also smaller than 65535,
// so we can use uint16 as dtype of token_cnts
use_i16 = true;
} else {
use_global_memory = true;
}
auto small_batch_expert_kernel =
vllm::moe::moe_align_block_size_small_batch_expert_kernel<
scalar_t>;
small_batch_expert_kernel<<<1, threads, shared_mem_size, stream>>>(
if (use_global_memory) {
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_global_mem_kernel", [&] {
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
// tensors
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
auto options_int = torch::TensorOptions()
.dtype(torch::kInt)
.device(topk_ids.device());
torch::Tensor token_cnts_buffer =
torch::empty({(num_experts + 1) * num_experts}, options_int);
torch::Tensor cumsum_buffer =
torch::empty({num_experts + 1}, options_int);
auto kernel =
vllm::moe::moe_align_block_size_global_mem_kernel<scalar_t>;
kernel<<<1, num_thread, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel(), token_cnts_buffer.data_ptr<int32_t>(),
cumsum_buffer.data_ptr<int32_t>());
});
} else if (use_i16) {
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
// set dynamic shared mem
auto kernel =
vllm::moe::moe_align_block_size_kernel<scalar_t, uint16_t>;
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
(void*)kernel, shared_mem_i16));
kernel<<<1, num_thread, shared_mem_i16, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel());
} else {
auto align_kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
size_t num_warps = CEILDIV(padded_num_experts, experts_per_warp);
size_t shared_mem_size =
num_warps * experts_per_warp * sizeof(int32_t);
align_kernel<<<1, threads, shared_mem_size, stream>>>(
});
} else {
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
auto kernel =
vllm::moe::moe_align_block_size_kernel<scalar_t, int32_t>;
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
(void*)kernel, shared_mem_i32));
kernel<<<1, num_thread, shared_mem_i32, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts,
padded_num_experts, experts_per_warp, block_size,
topk_ids.numel(), cumsum_buffer.data_ptr<int32_t>());
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel());
});
}
}
const int block_threads = std::min(256, (int)threads);
const int num_blocks =
(topk_ids.numel() + block_threads - 1) / block_threads;
const int max_blocks = 65535;
const int actual_blocks = std::min(num_blocks, max_blocks);
void sgl_moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int64_t block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
TORCH_CHECK(num_experts == 256,
"sgl_moe_align_block_size kernel only supports deepseek v3.");
auto sort_kernel =
vllm::moe::count_and_sort_expert_tokens_kernel<scalar_t>;
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel());
}
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "sgl_moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `cumsum` tensors
auto options_int =
torch::TensorOptions().dtype(torch::kInt).device(topk_ids.device());
torch::Tensor cumsum_buffer =
torch::zeros({num_experts + 1}, options_int);
auto align_kernel =
vllm::moe::sgl_moe_align_block_size_kernel<scalar_t>;
align_kernel<<<1, 1024, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(), sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel(), cumsum_buffer.data_ptr<int32_t>());
const int block_threads = 256;
const int num_blocks =
(topk_ids.numel() + block_threads - 1) / block_threads;
const int max_blocks = 65535;
const int actual_blocks = std::min(num_blocks, max_blocks);
auto sort_kernel = vllm::moe::sgl_moe_token_sort_kernel<scalar_t>;
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(), sorted_token_ids.data_ptr<int32_t>(),
cumsum_buffer.data_ptr<int32_t>(), topk_ids.numel());
});
}

View File

@ -12,6 +12,12 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int64_t block_size, torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);
void sgl_moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int64_t block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);
#ifndef USE_ROCM
torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
torch::Tensor b_qweight, torch::Tensor b_scales,
@ -24,8 +30,4 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
int64_t BLOCK_SIZE_K, int64_t bit);
#endif
bool moe_permute_unpermute_supported();
void shuffle_rows(const torch::Tensor& input_tensor,
const torch::Tensor& dst2src_map,
torch::Tensor& output_tensor);
bool moe_permute_unpermute_supported();

View File

@ -12,7 +12,7 @@ void moe_permute(
const torch::Tensor& input, // [n_token, hidden]
const torch::Tensor& topk_weights, //[n_token, topk]
torch::Tensor& topk_ids, // [n_token, topk]
const torch::Tensor& token_expert_indices, // [n_token, topk]
const torch::Tensor& token_expert_indicies, // [n_token, topk]
const std::optional<torch::Tensor>& expert_map, // [n_expert]
int64_t n_expert, int64_t n_local_expert, int64_t topk,
const std::optional<int64_t>& align_block_size,
@ -27,15 +27,15 @@ void moe_permute(
"expert_first_token_offset must be int64");
TORCH_CHECK(topk_ids.scalar_type() == at::ScalarType::Int,
"topk_ids must be int32");
TORCH_CHECK(token_expert_indices.scalar_type() == at::ScalarType::Int,
"token_expert_indices must be int32");
TORCH_CHECK(token_expert_indicies.scalar_type() == at::ScalarType::Int,
"token_expert_indicies must be int32");
TORCH_CHECK(src_row_id2dst_row_id_map.scalar_type() == at::ScalarType::Int,
"src_row_id2dst_row_id_map must be int32");
TORCH_CHECK(expert_first_token_offset.size(0) == n_local_expert + 1,
"expert_first_token_offset shape != n_local_expert+1")
TORCH_CHECK(
src_row_id2dst_row_id_map.sizes() == token_expert_indices.sizes(),
"token_expert_indices shape must be same as src_row_id2dst_row_id_map");
src_row_id2dst_row_id_map.sizes() == token_expert_indicies.sizes(),
"token_expert_indicies shape must be same as src_row_id2dst_row_id_map");
auto n_token = input.sizes()[0];
auto n_hidden = input.sizes()[1];
auto align_block_size_value =
@ -71,7 +71,7 @@ void moe_permute(
expert_map_ptr, n_expert, stream);
}
// expert sort topk expert id and scan expert id get expert_first_token_offset
sortAndScanExpert(get_ptr<int>(topk_ids), get_ptr<int>(token_expert_indices),
sortAndScanExpert(get_ptr<int>(topk_ids), get_ptr<int>(token_expert_indicies),
get_ptr<int>(permuted_experts_id),
get_ptr<int>(dst_row_id2src_row_id_map),
get_ptr<int64_t>(expert_first_token_offset), n_token,
@ -130,67 +130,11 @@ void moe_unpermute(
});
}
template <typename T>
__global__ void shuffleInputRowsKernel(const T* input,
const int32_t* dst2src_map, T* output,
int64_t num_src_rows,
int64_t num_dst_rows, int64_t num_cols) {
int64_t dest_row_idx = blockIdx.x;
int64_t const source_row_idx = dst2src_map[dest_row_idx];
if (blockIdx.x < num_dst_rows) {
// Load 128-bits per thread
constexpr int64_t ELEM_PER_THREAD = 128 / sizeof(T) / 8;
using DataElem = cutlass::Array<T, ELEM_PER_THREAD>;
// Duplicate and permute rows
auto const* source_row_ptr =
reinterpret_cast<DataElem const*>(input + source_row_idx * num_cols);
auto* dest_row_ptr =
reinterpret_cast<DataElem*>(output + dest_row_idx * num_cols);
int64_t const start_offset = threadIdx.x;
int64_t const stride = blockDim.x;
int64_t const num_elems_in_col = num_cols / ELEM_PER_THREAD;
for (int elem_index = start_offset; elem_index < num_elems_in_col;
elem_index += stride) {
dest_row_ptr[elem_index] = source_row_ptr[elem_index];
}
}
}
void shuffle_rows(const torch::Tensor& input_tensor,
const torch::Tensor& dst2src_map,
torch::Tensor& output_tensor) {
TORCH_CHECK(input_tensor.scalar_type() == output_tensor.scalar_type(),
"Input and output tensors must have the same data type");
auto stream = at::cuda::getCurrentCUDAStream().stream();
int64_t const blocks = output_tensor.size(0);
int64_t const threads = 256;
int64_t const num_dest_rows = output_tensor.size(0);
int64_t const num_src_rows = input_tensor.size(0);
int64_t const num_cols = input_tensor.size(1);
TORCH_CHECK(!(num_cols % (128 / sizeof(input_tensor.scalar_type()) / 8)),
"num_cols must be divisible by 128 / "
"sizeof(input_tensor.scalar_type()) / 8");
MOE_DISPATCH(input_tensor.scalar_type(), [&] {
shuffleInputRowsKernel<scalar_t><<<blocks, threads, 0, stream>>>(
reinterpret_cast<scalar_t*>(input_tensor.data_ptr()),
dst2src_map.data_ptr<int32_t>(),
reinterpret_cast<scalar_t*>(output_tensor.data_ptr()), num_src_rows,
num_dest_rows, num_cols);
});
}
#else
void moe_permute(const torch::Tensor& input, const torch::Tensor& topk_weights,
torch::Tensor& topk_ids,
const torch::Tensor& token_expert_indices,
const torch::Tensor& token_expert_indicies,
const std::optional<torch::Tensor>& expert_map,
int64_t n_expert, int64_t n_local_expert, int64_t topk,
const std::optional<int64_t>& align_block_size,
@ -203,7 +147,7 @@ void moe_permute(const torch::Tensor& input, const torch::Tensor& topk_weights,
void moe_unpermute(const torch::Tensor& input,
const torch::Tensor& topk_weights, torch::Tensor& topk_ids,
const torch::Tensor& token_expert_indices,
const torch::Tensor& token_expert_indicies,
const std::optional<torch::Tensor>& expert_map,
int64_t n_expert, int64_t n_local_expert, int64_t topk,
const std::optional<int64_t>& align_block_size,

View File

@ -14,13 +14,12 @@
__VA_ARGS__(); \
break; \
}
#define MOE_DISPATCH_FLOAT_CASE(...) \
MOE_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e5m2, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
#define MOE_DISPATCH_FLOAT_CASE(...) \
MOE_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e5m2, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__)
#define MOE_DISPATCH(TYPE, ...) \
MOE_SWITCH(TYPE, MOE_DISPATCH_FLOAT_CASE(__VA_ARGS__))
@ -40,11 +39,6 @@ template <>
struct ScalarType2CudaType<at::ScalarType::BFloat16> {
using type = __nv_bfloat16;
};
// uint8 for packed fp4
template <>
struct ScalarType2CudaType<at::ScalarType::Byte> {
using type = uint8_t;
};
// #if __CUDA_ARCH__ >= 890
// fp8

View File

@ -20,6 +20,7 @@ __global__ void expandInputRowsKernel(
int expert_id = sorted_experts[expanded_dest_row];
extern __shared__ int64_t smem_expert_first_token_offset[];
int64_t align_expanded_row_accumulate = 0;
if constexpr (ALIGN_BLOCK_SIZE) {
// load g2s
for (int idx = threadIdx.x; idx < num_local_experts + 1;
@ -62,6 +63,7 @@ __global__ void expandInputRowsKernel(
using DataElem = cutlass::Array<T, ELEM_PER_THREAD>;
// Duplicate and permute rows
int64_t const source_k_rank = expanded_source_row / num_rows;
int64_t const source_row = expanded_source_row % num_rows;
auto const* source_row_ptr =
@ -158,6 +160,7 @@ __global__ void finalizeMoeRoutingKernel(
elem_index += stride) {
ComputeElem thread_output;
thread_output.fill(0);
float row_rescale{0.f};
for (int k_idx = 0; k_idx < k; ++k_idx) {
int64_t const expanded_original_row = original_row + k_idx * num_rows;
int64_t const expanded_permuted_row =
@ -174,6 +177,8 @@ __global__ void finalizeMoeRoutingKernel(
auto const* expanded_permuted_rows_row_ptr =
expanded_permuted_rows_v + expanded_permuted_row * num_elems_in_col;
int64_t const expert_idx = expert_for_source_row[k_offset];
ComputeElem expert_result = arrayConvert<InputElem, ComputeElem>(
expanded_permuted_rows_row_ptr[elem_index]);
thread_output = thread_output + row_scale * (expert_result);

View File

@ -425,7 +425,7 @@ void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, f
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB) \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB>( \
gating_output, nullptr, topk_weights, topk_indices, \
gating_output, nullptr, topk_weights, topk_indicies, \
token_expert_indices, num_tokens, topk, 0, num_experts, \
stream);
@ -433,7 +433,7 @@ template <typename IndType>
void topkGatingSoftmaxKernelLauncher(
const float* gating_output,
float* topk_weights,
IndType* topk_indices,
IndType* topk_indicies,
int* token_expert_indices,
float* softmax_workspace,
const int num_tokens,
@ -476,7 +476,7 @@ void topkGatingSoftmaxKernelLauncher(
moeSoftmax<TPB><<<num_tokens, TPB, 0, stream>>>(
gating_output, nullptr, softmax_workspace, num_experts);
moeTopK<TPB><<<num_tokens, TPB, 0, stream>>>(
softmax_workspace, nullptr, topk_weights, topk_indices, token_expert_indices,
softmax_workspace, nullptr, topk_weights, topk_indicies, token_expert_indices,
num_experts, topk, 0, num_experts);
}
}
@ -516,8 +516,9 @@ void topk_softmax(
topk,
stream);
}
else if (topk_indices.scalar_type() == at::ScalarType::UInt32)
else
{
assert(topk_indices.scalar_type() == at::ScalarType::UInt32);
vllm::moe::topkGatingSoftmaxKernelLauncher(
gating_output.data_ptr<float>(),
topk_weights.data_ptr<float>(),
@ -529,17 +530,4 @@ void topk_softmax(
topk,
stream);
}
else {
assert(topk_indices.scalar_type() == at::ScalarType::Int64);
vllm::moe::topkGatingSoftmaxKernelLauncher(
gating_output.data_ptr<float>(),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<int64_t>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens,
num_experts,
topk,
stream);
}
}

View File

@ -22,6 +22,15 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
" Tensor! num_tokens_post_pad) -> ()");
m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
// temporarily adapted from
// https://github.com/sgl-project/sglang/commit/ded9fcd09a43d5e7d5bb31a2bc3e9fc21bf65d2a
m.def(
"sgl_moe_align_block_size(Tensor topk_ids, int num_experts,"
" int block_size, Tensor! sorted_token_ids,"
" Tensor! experts_ids,"
" Tensor! num_tokens_post_pad) -> ()");
m.impl("sgl_moe_align_block_size", torch::kCUDA, &sgl_moe_align_block_size);
#ifndef USE_ROCM
m.def(
"moe_wna16_gemm(Tensor input, Tensor! output, Tensor b_qweight, "
@ -57,7 +66,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
m.def(
"moe_permute(Tensor input, Tensor topk_weight, Tensor! topk_ids,"
"Tensor token_expert_indices, Tensor? expert_map, int n_expert,"
"Tensor token_expert_indicies, Tensor? expert_map, int n_expert,"
"int n_local_expert,"
"int topk, int? align_block_size,Tensor! permuted_input, Tensor! "
"expert_first_token_offset, Tensor! src_row_id2dst_row_id_map, Tensor! "
@ -72,12 +81,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
m.def("moe_permute_unpermute_supported() -> bool");
m.impl("moe_permute_unpermute_supported", &moe_permute_unpermute_supported);
// Row shuffle for MoE
m.def(
"shuffle_rows(Tensor input_tensor, Tensor dst2src_map, Tensor! "
"output_tensor) -> ()");
m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
#endif
}

View File

@ -92,11 +92,6 @@ void rms_norm(torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight,
void fused_add_rms_norm(torch::Tensor& input, torch::Tensor& residual,
torch::Tensor& weight, double epsilon);
void apply_repetition_penalties_(torch::Tensor& logits,
const torch::Tensor& prompt_mask,
const torch::Tensor& output_mask,
const torch::Tensor& repetition_penalties);
void rms_norm_static_fp8_quant(torch::Tensor& out, torch::Tensor& input,
torch::Tensor& weight, torch::Tensor& scale,
double epsilon);
@ -236,8 +231,7 @@ void cutlass_moe_mm(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch);
torch::Tensor const& b_strides, torch::Tensor const& c_strides);
void cutlass_fp4_group_mm(
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
@ -249,16 +243,7 @@ void get_cutlass_moe_mm_data(
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
const int64_t num_experts, const int64_t n, const int64_t k,
const std::optional<torch::Tensor>& blockscale_offsets);
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2,
const torch::Tensor& expert_num_tokens,
const int64_t num_local_experts,
const int64_t padded_m, const int64_t n,
const int64_t k);
const int64_t num_experts, const int64_t n, const int64_t k);
void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,

View File

@ -274,6 +274,7 @@ void advance_step_flashinfer(
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
cudaDeviceGetAttribute(&threads, cudaDevAttrMaxThreadsPerBlock, dev);
[[maybe_unused]] int block_tables_stride = block_tables.stride(0);
TORCH_CHECK((blocks * threads > num_queries),
"multi-step: not enough threads to map to num_queries = ",
num_queries, " block_tables.stride(0) = ", block_tables.stride(0),

View File

@ -1,17 +1,15 @@
#include <ATen/cuda/CUDAContext.h>
#include <torch/all.h>
#include <cmath>
#include "../../dispatch_utils.h"
#include "../vectorization_utils.cuh"
#ifndef USE_ROCM
#include <cub/cub.cuh>
#include <cub/util_type.cuh>
#include <cub/cub.cuh>
#else
#include <hipcub/hipcub.hpp>
#include <hipcub/util_type.hpp>
#include <hipcub/hipcub.hpp>
#endif
static inline __device__ int8_t float_to_int8_rn(float x) {
@ -105,170 +103,134 @@ static inline __device__ int8_t int32_to_int8(int32_t x) {
namespace vllm {
template <typename scalar_t, typename scale_t>
template <typename scalar_t, typename scale_type>
__global__ void static_scaled_int8_quant_kernel(
const scalar_t* __restrict__ input, int8_t* __restrict__ output,
const scale_t* scale_ptr, const int hidden_size) {
const int tid = threadIdx.x;
const int stride = blockDim.x;
const int64_t token_idx = blockIdx.x;
const float scale = *scale_ptr;
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
scale_type const* scale_ptr, const int hidden_size) {
int const tid = threadIdx.x;
int64_t const token_idx = blockIdx.x;
scale_type const scale = *scale_ptr;
// Must be performed using 64-bit math to avoid integer overflow.
const scalar_t* row_in = input + token_idx * hidden_size;
int8_t* row_out = output + token_idx * hidden_size;
out += token_idx * hidden_size;
input += token_idx * hidden_size;
vectorize_with_alignment<16>(
row_in, row_out, hidden_size, tid, stride,
[=] __device__(int8_t& dst, const scalar_t& src) {
dst = float_to_int8_rn(static_cast<float>(src) / scale);
});
for (int i = tid; i < hidden_size; i += blockDim.x) {
out[i] = float_to_int8_rn(static_cast<float>(input[i]) / scale);
}
}
template <typename scalar_t, typename scale_t, typename azp_t>
template <typename scalar_t, typename scale_type, typename azp_type>
__global__ void static_scaled_int8_azp_quant_kernel(
const scalar_t* __restrict__ input, int8_t* __restrict__ output,
const scale_t* scale_ptr, const azp_t* azp_ptr, const int hidden_size) {
const int tid = threadIdx.x;
const int stride = blockDim.x;
const int64_t token_idx = blockIdx.x;
const float scale = *scale_ptr;
const azp_t azp = *azp_ptr;
const float inv_s = 1.0f / scale;
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
scale_type const* scale_ptr, azp_type const* azp_ptr,
const int hidden_size) {
int const tid = threadIdx.x;
int64_t const token_idx = blockIdx.x;
scale_type const scale = *scale_ptr;
azp_type const azp = *azp_ptr;
// Must be performed using 64-bit math to avoid integer overflow.
const scalar_t* row_in = input + token_idx * hidden_size;
int8_t* row_out = output + token_idx * hidden_size;
out += token_idx * hidden_size;
input += token_idx * hidden_size;
vectorize_with_alignment<16>(
row_in, row_out, hidden_size, tid, stride,
[=] __device__(int8_t& dst, const scalar_t& src) {
const auto v = static_cast<float>(src) * inv_s;
dst = int32_to_int8(float_to_int32_rn(v) + azp);
});
for (int i = tid; i < hidden_size; i += blockDim.x) {
auto const val = static_cast<float>(input[i]);
auto const quant_val = int32_to_int8(float_to_int32_rn(val / scale) + azp);
out[i] = quant_val;
}
}
template <typename scalar_t, typename scale_t>
template <typename scalar_t, typename scale_type>
__global__ void dynamic_scaled_int8_quant_kernel(
const scalar_t* __restrict__ input, int8_t* __restrict__ output,
scale_t* scale_out, const int hidden_size) {
const int tid = threadIdx.x;
const int stride = blockDim.x;
const int64_t token_idx = blockIdx.x;
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
scale_type* scale, const int hidden_size) {
int const tid = threadIdx.x;
int64_t const token_idx = blockIdx.x;
float absmax_val = 0.0f;
float const zero = 0.0f;
// Must be performed using 64-bit math to avoid integer overflow.
const scalar_t* row_in = input + token_idx * hidden_size;
int8_t* row_out = output + token_idx * hidden_size;
out += token_idx * hidden_size;
input += token_idx * hidden_size;
// calculate for absmax
float thread_max = 0.f;
for (int i = tid; i < hidden_size; i += stride) {
const auto v = fabsf(static_cast<float>(row_in[i]));
thread_max = fmaxf(thread_max, v);
for (int i = tid; i < hidden_size; i += blockDim.x) {
float val = static_cast<float>(input[i]);
val = val > zero ? val : -val;
absmax_val = val > absmax_val ? val : absmax_val;
}
using BlockReduce = cub::BlockReduce<float, 256>;
__shared__ typename BlockReduce::TempStorage tmp;
float block_max = BlockReduce(tmp).Reduce(thread_max, cub::Max{}, blockDim.x);
__shared__ float absmax;
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStorage;
float const block_absmax_val_maybe =
BlockReduce(reduceStorage).Reduce(absmax_val, cub::Max{}, blockDim.x);
__shared__ float block_absmax_val;
if (tid == 0) {
absmax = block_max;
scale_out[blockIdx.x] = absmax / 127.f;
block_absmax_val = block_absmax_val_maybe;
scale[token_idx] = block_absmax_val / 127.0f;
}
__syncthreads();
float inv_s = (absmax == 0.f) ? 0.f : 127.f / absmax;
// 2. quantize
vectorize_with_alignment<16>(
row_in, row_out, hidden_size, tid, stride,
[=] __device__(int8_t& dst, const scalar_t& src) {
dst = float_to_int8_rn(static_cast<float>(src) * inv_s);
});
}
// MinMax structure to hold min and max values in one go
struct MinMax {
float min, max;
__host__ __device__ MinMax()
: min(std::numeric_limits<float>::max()),
max(std::numeric_limits<float>::lowest()) {}
__host__ __device__ explicit MinMax(float v) : min(v), max(v) {}
// add a value to the MinMax
__host__ __device__ MinMax& operator+=(float v) {
min = fminf(min, v);
max = fmaxf(max, v);
return *this;
float const tmp_scale = 127.0f / block_absmax_val;
for (int i = tid; i < hidden_size; i += blockDim.x) {
out[i] = float_to_int8_rn(static_cast<float>(input[i]) * tmp_scale);
}
// merge two MinMax objects
__host__ __device__ MinMax& operator&=(const MinMax& other) {
min = fminf(min, other.min);
max = fmaxf(max, other.max);
return *this;
}
};
__host__ __device__ inline MinMax operator+(MinMax a, float v) {
return a += v;
}
__host__ __device__ inline MinMax operator&(MinMax a, const MinMax& b) {
return a &= b;
}
template <typename scalar_t, typename scale_t, typename azp_t>
template <typename scalar_t, typename scale_type, typename azp_type>
__global__ void dynamic_scaled_int8_azp_quant_kernel(
const scalar_t* __restrict__ input, int8_t* __restrict__ output,
scale_t* scale_out, azp_t* azp_out, const int hidden_size) {
const int tid = threadIdx.x;
const int stride = blockDim.x;
const int64_t token_idx = blockIdx.x;
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
scale_type* scale, azp_type* azp, const int hidden_size) {
int64_t const token_idx = blockIdx.x;
// Must be performed using 64-bit math to avoid integer overflow.
const scalar_t* row_in = input + token_idx * hidden_size;
int8_t* row_out = output + token_idx * hidden_size;
out += token_idx * hidden_size;
input += token_idx * hidden_size;
// 1. calculate min & max
MinMax thread_mm;
for (int i = tid; i < hidden_size; i += stride) {
thread_mm += static_cast<float>(row_in[i]);
// Scan for the min and max value for this token
float max_val = std::numeric_limits<float>::min();
float min_val = std::numeric_limits<float>::max();
for (int i = threadIdx.x; i < hidden_size; i += blockDim.x) {
auto val = static_cast<float>(input[i]);
max_val = std::max(max_val, val);
min_val = std::min(min_val, val);
}
using BlockReduce = cub::BlockReduce<MinMax, 256>;
__shared__ typename BlockReduce::TempStorage tmp;
// Reduce the max and min values across the block
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStorage;
max_val = BlockReduce(reduceStorage).Reduce(max_val, cub::Max{}, blockDim.x);
__syncthreads(); // Make sure min doesn't mess with max shared memory
min_val = BlockReduce(reduceStorage).Reduce(min_val, cub::Min{}, blockDim.x);
MinMax mm = BlockReduce(tmp).Reduce(
thread_mm,
[] __device__(MinMax a, const MinMax& b) {
a &= b;
return a;
},
blockDim.x);
__shared__ scale_type scale_sh;
__shared__ azp_type azp_sh;
__shared__ float scale_sh;
__shared__ azp_t azp_sh;
if (tid == 0) {
float s = (mm.max - mm.min) / 255.f;
float zp = nearbyintf(-128.f - mm.min / s); // round-to-even
scale_sh = s;
azp_sh = azp_t(zp);
scale_out[blockIdx.x] = s;
azp_out[blockIdx.x] = azp_sh;
// Compute the scale and zero point and store them, only on the first thread
if (threadIdx.x == 0) {
float const scale_val = (max_val - min_val) / 255.0f;
// Use rounding to even (same as torch.round)
auto const azp_float = std::nearbyint(-128.0f - min_val / scale_val);
auto const azp_val = static_cast<azp_type>(azp_float);
// Store the scale and azp into shared and global
scale[token_idx] = scale_sh = scale_val;
azp[token_idx] = azp_sh = azp_val;
}
// Wait for the scale and azp to be computed
__syncthreads();
const float inv_s = 1.f / scale_sh;
const azp_t azp = azp_sh;
float const scale_val = scale_sh;
azp_type const azp_val = azp_sh;
// 2. quantize
vectorize_with_alignment<16>(
row_in, row_out, hidden_size, tid, stride,
[=] __device__(int8_t& dst, const scalar_t& src) {
const auto v = static_cast<float>(src) * inv_s;
dst = int32_to_int8(float_to_int32_rn(v) + azp);
});
// Quantize the values
for (int i = threadIdx.x; i < hidden_size; i += blockDim.x) {
auto const val = static_cast<float>(input[i]);
auto const quant_val =
int32_to_int8(float_to_int32_rn(val / scale_val) + azp_val);
out[i] = quant_val;
}
}
} // namespace vllm
@ -285,7 +247,7 @@ void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
dim3 const grid(num_tokens);
dim3 const block(std::min(hidden_size, 256));
dim3 const block(std::min(hidden_size, 1024));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "static_scaled_int8_quant_kernel", [&] {
@ -316,7 +278,7 @@ void dynamic_scaled_int8_quant(
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
dim3 const grid(num_tokens);
dim3 const block(std::min(hidden_size, 256));
dim3 const block(std::min(hidden_size, 1024));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "dynamic_scaled_int8_quant_kernel", [&] {

View File

@ -9,6 +9,10 @@ void cutlass_scaled_mm_blockwise_sm100_fp8(torch::Tensor& out,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
TORCH_CHECK(
a.size(0) % 4 == 0,
"Input tensor must have a number of rows that is a multiple of 4. ",
"but got: ", a.size(0), " rows.");
if (out.dtype() == torch::kBFloat16) {
cutlass_gemm_blockwise_sm100_fp8_dispatch<cutlass::bfloat16_t>(
out, a, b, a_scales, b_scales);

View File

@ -1,6 +1,5 @@
#pragma once
#include "cuda_utils.h"
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
@ -23,49 +22,49 @@ namespace vllm {
using namespace cute;
// clang-format off
template <class OutType, int ScaleGranularityM,
int ScaleGranularityN, int ScaleGranularityK,
class MmaTileShape, class ClusterShape,
class EpilogueScheduler, class MainloopScheduler,
bool swap_ab_ = false>
template <typename OutType, typename MmaTileShape, typename ScalesPerTile,
class ClusterShape, typename EpilogueScheduler,
typename MainloopScheduler>
struct cutlass_3x_gemm_fp8_blockwise {
static constexpr bool swap_ab = swap_ab_;
using ElementAB = cutlass::float_e4m3_t;
using ElementA = ElementAB;
using LayoutA = cutlass::layout::RowMajor;
using LayoutA_Transpose = typename cutlass::layout::LayoutTranspose<LayoutA>::type;
static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
using ElementB = ElementAB;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutB_Transpose = typename cutlass::layout::LayoutTranspose<LayoutB>::type;
static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
using ElementC = void;
using ElementD = OutType;
using LayoutD = cutlass::layout::RowMajor;
using LayoutD_Transpose = typename cutlass::layout::LayoutTranspose<LayoutD>::type;
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
using ElementC = void; // TODO: support bias
using LayoutC = LayoutD;
using LayoutC_Transpose = LayoutD_Transpose;
static constexpr int AlignmentC = AlignmentD;
using ElementAccumulator = float;
using ElementCompute = float;
using ElementBlockScale = float;
using ScaleConfig = conditional_t<swap_ab,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::K, cute::UMMA::Major::MN>,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::MN, cute::UMMA::Major::K>>;
// MMA and Cluster Tile Shapes
// Shape of the tile computed by tcgen05 MMA, could be across 2 SMs if Cluster
// Shape %2 == 0 using MmaTileShape_MNK = Shape<_128,_128,_128>;
static constexpr int ScaleMsPerTile = size<0>(ScalesPerTile{});
static constexpr int ScaleGranularityM =
size<0>(MmaTileShape{}) / ScaleMsPerTile;
static constexpr int ScaleGranularityN =
size<1>(MmaTileShape{}) / size<1>(ScalesPerTile{});
static constexpr int ScaleGranularityK =
size<2>(MmaTileShape{}) / size<2>(ScalesPerTile{});
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
// Shape of the threadblocks in a cluster
using ClusterShape_MNK = ClusterShape;
using ScaleConfig = cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::MN, cute::UMMA::Major::K>;
using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
@ -74,6 +73,7 @@ struct cutlass_3x_gemm_fp8_blockwise {
static constexpr auto RoundStyle = cutlass::FloatRoundStyle::round_to_nearest;
using ElementScalar = float;
// clang-format off
using DefaultOperation = cutlass::epilogue::fusion::LinearCombination<ElementD, ElementCompute, ElementC, ElementScalar, RoundStyle>;
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag,
@ -84,47 +84,33 @@ struct cutlass_3x_gemm_fp8_blockwise {
ElementAccumulator,
ElementCompute,
ElementC,
conditional_t<swap_ab, LayoutC_Transpose, LayoutC>,
LayoutC,
AlignmentC,
ElementD,
conditional_t<swap_ab, LayoutD_Transpose, LayoutD>,
LayoutD,
AlignmentD,
EpilogueScheduler,
DefaultOperation
>::CollectiveOp;
using StageCountType = cutlass::gemm::collective::StageCountAuto;
using CollectiveMainloop = conditional_t<swap_ab,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementB,
cute::tuple<LayoutB_Transpose, LayoutSFA>,
AlignmentB,
ElementA,
cute::tuple<LayoutA_Transpose, LayoutSFB>,
AlignmentA,
ElementAccumulator,
MmaTileShape,
ClusterShape,
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementA,
cute::tuple<LayoutA, LayoutSFA>,
AlignmentA,
ElementB,
cute::tuple<LayoutB, LayoutSFB>,
AlignmentB,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementA,
cute::tuple<LayoutA, LayoutSFA>,
AlignmentA,
ElementB,
cute::tuple<LayoutB, LayoutSFB>,
AlignmentB,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp>;
MainloopScheduler
>::CollectiveOp;
// clang-format on
using KernelType = enable_sm100_only<cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue>>;
@ -137,7 +123,6 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
static constexpr bool swap_ab = Gemm::swap_ab;
using GemmKernel = typename Gemm::GemmKernel;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
@ -151,6 +136,7 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0), n = b.size(1), k = a.size(1);
auto prob_shape = cute::make_shape(m, n, k, 1);
StrideA a_stride;
StrideB b_stride;
@ -160,13 +146,11 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
b_stride =
cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(n, k, 1));
c_stride =
cutlass::make_cute_packed_stride(StrideC{}, swap_ab ? cute::make_shape(n, m, 1) : cute::make_shape(m, n, 1));
cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(m, n, 1));
LayoutSFA layout_SFA = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFA(make_shape(n, m, k, 1)) :
LayoutSFA layout_SFA =
ScaleConfig::tile_atom_to_shape_SFA(make_shape(m, n, k, 1));
LayoutSFB layout_SFB = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFB(make_shape(n, m, k, 1)) :
LayoutSFB layout_SFB =
ScaleConfig::tile_atom_to_shape_SFB(make_shape(m, n, k, 1));
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
@ -174,22 +158,9 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
auto a_scales_ptr = static_cast<float*>(a_scales.data_ptr());
auto b_scales_ptr = static_cast<float*>(b_scales.data_ptr());
auto mainloop_args = [&](){
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
if (swap_ab) {
return typename GemmKernel::MainloopArguments{
b_ptr, b_stride, a_ptr, a_stride,
b_scales_ptr, layout_SFA, a_scales_ptr, layout_SFB
};
}
else {
return typename GemmKernel::MainloopArguments{
a_ptr, a_stride, b_ptr, b_stride,
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB
};
}
}();
auto prob_shape = swap_ab ? cute::make_shape(n, m, k, 1) : cute::make_shape(m, n, k, 1);
typename GemmKernel::MainloopArguments mainloop_args{
a_ptr, a_stride, b_ptr, b_stride,
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB};
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
@ -204,74 +175,29 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
int32_t m = a.size(0), n = b.size(1), k = a.size(1), sms;
auto m = a.size(0);
auto k = a.size(1);
auto n = b.size(1);
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
constexpr int TILE_K = 128;
// TODO: better heuristics
bool swap_ab = (m < 16) || (m % 4 != 0);
bool use_tma_epilogue = (m * n) % 4 == 0;
if (!swap_ab) {
constexpr int TILE_N = 128;
int tile_m = 256;
if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 64) <= sms) {
tile_m = 64;
}
else if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 128) <= sms) {
tile_m = 128;
}
if (tile_m == 64) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else if (tile_m == 128) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else { // tile_m == 256
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
}
}
} else {
// TODO: Test more tile N configs
constexpr int TILE_M = 128;
constexpr int TILE_N = 16;
// TMA epilogue isn't compatible with Swap A/B
auto should_use_2sm = [&sms](int m, int n, int tile1SM = 128) {
return std::ceil(static_cast<float>(m) / tile1SM) *
std::ceil(static_cast<float>(n) / tile1SM) >=
sms;
};
bool use_2sm = should_use_2sm(m, n);
if (use_2sm) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
OutType, Shape<_256, _128, _128>, Shape<_256, _1, _1>,
Shape<_2, _2, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, Shape<_128, _128, _128>, Shape<_128, _1, _1>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
}

View File

@ -15,59 +15,16 @@ using c3x::cutlass_gemm_caller;
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_default {
// M in (256, inf)
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_256, _128, _128>;
using TileShape = Shape<_256, _128, _64>;
using ClusterShape = Shape<_2, _2, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M256 {
// M in (128, 256]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _2, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M128 {
// M in (64, 128]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_2, _4, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M64 {
// M in [1, 64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
@ -82,34 +39,8 @@ inline void cutlass_gemm_sm100_fp8_dispatch(torch::Tensor& out,
using Cutlass3xGemmDefault =
typename sm100_fp8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm100_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm100_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM256 =
typename sm100_fp8_config_M256<InType, OutType, Epilogue>::Cutlass3xGemm;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
if (mp2 <= 64) {
// m in [1, 64]
return cutlass_gemm_caller<Cutlass3xGemmM64>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_gemm_caller<Cutlass3xGemmM128>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 256) {
// m in (128, 256]
return cutlass_gemm_caller<Cutlass3xGemmM256>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// m in (256, inf)
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
template <template <typename, typename, typename> typename Epilogue,

View File

@ -84,8 +84,7 @@ void run_cutlass_moe_mm_sm90(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
TORCH_CHECK(a_tensors.size(0) > 0, "No input A tensors provided.");
TORCH_CHECK(b_tensors.size(0) > 0, "No input B tensors provided.");
TORCH_CHECK(out_tensors.size(0) > 0, "No output tensors provided.");
@ -114,23 +113,19 @@ void run_cutlass_moe_mm_sm90(
if (n >= 8192) {
cutlass_group_gemm_caller<Cutlass3xGemmN8192>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
problem_sizes, a_strides, b_strides, c_strides);
} else if (k >= 8192) {
cutlass_group_gemm_caller<Cutlass3xGemmK8192>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
problem_sizes, a_strides, b_strides, c_strides);
} else if (m <= 16) {
cutlass_group_gemm_caller<Cutlass3xGemmM16>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
problem_sizes, a_strides, b_strides, c_strides);
} else {
cutlass_group_gemm_caller<Cutlass3xGemmDefault>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
problem_sizes, a_strides, b_strides, c_strides);
}
}
@ -139,18 +134,15 @@ void dispatch_moe_mm_sm90(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
if (out_tensors.dtype() == torch::kBFloat16) {
run_cutlass_moe_mm_sm90<cutlass::float_e4m3_t, cutlass::bfloat16_t>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
problem_sizes, a_strides, b_strides, c_strides);
} else {
run_cutlass_moe_mm_sm90<cutlass::float_e4m3_t, cutlass::half_t>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
problem_sizes, a_strides, b_strides, c_strides);
}
}
@ -161,9 +153,8 @@ void cutlass_moe_mm_sm90(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
dispatch_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
expert_offsets, problem_sizes, a_strides, b_strides,
c_strides, per_act_token, per_out_ch);
c_strides);
}

View File

@ -76,8 +76,7 @@ void cutlass_group_gemm_caller(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
@ -85,6 +84,9 @@ void cutlass_group_gemm_caller(
int k_size = a_tensors.size(1);
int n_size = out_tensors.size(1);
bool per_act_token = a_scales.numel() != 1;
bool per_out_ch = b_scales.numel() != num_experts;
auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());
auto options_int =

Some files were not shown because too many files have changed in this diff Show More