Compare commits
149 Commits
fix-precom
...
gemma3n-mm
| Author | SHA1 | Date | |
|---|---|---|---|
| b801bf30d7 | |||
| bfd63b1b10 | |||
| 3c545c0c3b | |||
| e8c3bd2cd1 | |||
| c6c983053d | |||
| aafabaa0d5 | |||
| 94a55c7681 | |||
| aa0dc77ef5 | |||
| 4ab3ac285e | |||
| d1c956dc0f | |||
| dec197e3e5 | |||
| 6e244ae091 | |||
| cd4cfee689 | |||
| e110930680 | |||
| 8b64c895c0 | |||
| 0740e29b66 | |||
| 44d2e6af63 | |||
| 2d7779f888 | |||
| a57d57fa72 | |||
| 71799fd005 | |||
| e9fd658a73 | |||
| 07b8fae219 | |||
| 562308816c | |||
| 04e1642e32 | |||
| b69781f107 | |||
| 0bceac9810 | |||
| 34878a0b48 | |||
| 6393b03986 | |||
| 0907d507bf | |||
| c894c5dc1f | |||
| 1f5d178e9c | |||
| 27c065df50 | |||
| 84c260caeb | |||
| 167aca45cb | |||
| 0567c8249f | |||
| d188913d99 | |||
| 1d7c29f5fe | |||
| 65397e40f5 | |||
| 9502c38138 | |||
| 2582683566 | |||
| 754b00edb3 | |||
| 296ce95d8e | |||
| 2d7620c3eb | |||
| 55c65ab495 | |||
| 2cc2069970 | |||
| 9f0608fc16 | |||
| 4e0db57fff | |||
| c40692bf9a | |||
| 4734704b30 | |||
| 8b8c209e35 | |||
| 23a04e0895 | |||
| 02c97d9a92 | |||
| e795d723ed | |||
| 8359f4c8d8 | |||
| bf5181583f | |||
| c53fec1fcb | |||
| 0f9e7354f5 | |||
| ba7ba35cda | |||
| 015fab8c2f | |||
| f59fc60fb3 | |||
| 879f69bed3 | |||
| 7108934142 | |||
| 3443aaf8dd | |||
| 2273ec322c | |||
| a6c4b87fbc | |||
| 1afa9948f5 | |||
| 0d06b533a0 | |||
| c01d1c5aba | |||
| ead369845d | |||
| c6e3bba8e6 | |||
| 91f7d9d0b6 | |||
| 8619e7158c | |||
| c635c5f744 | |||
| a045b7e89a | |||
| 981eeca41a | |||
| 26d34eb67e | |||
| 53da4cd397 | |||
| 9a3b88328f | |||
| 3014c920da | |||
| 0eed516951 | |||
| ee5ad8d2c5 | |||
| a738dbb2a1 | |||
| 33d5e29be9 | |||
| 4671ac6e2a | |||
| dd2ccf8dde | |||
| a3bc76e4b5 | |||
| e6327c9b3e | |||
| d0132f025d | |||
| 61f4fc5dc6 | |||
| 68aaeb3749 | |||
| c3649e4fee | |||
| 53243e5c42 | |||
| a6e6604d32 | |||
| b82e0f82cb | |||
| 5111642a6f | |||
| 1bcd15edc7 | |||
| 2ebff5b77c | |||
| f17aec0d63 | |||
| 493c275352 | |||
| f39ab2d4bd | |||
| 4a0f7888a3 | |||
| c4cf260677 | |||
| 33d51f599e | |||
| e91386cde1 | |||
| 2c11a29f0b | |||
| c76a506bd6 | |||
| ec0db6f51c | |||
| c305a2109d | |||
| 202c5df935 | |||
| 2bb246b8f7 | |||
| 4c409cabc2 | |||
| 3b1e4c6a23 | |||
| 2c5302fadd | |||
| caa680fd2e | |||
| c3bf9bad11 | |||
| 6f170f11dd | |||
| 8ca81bb069 | |||
| e773a9e1c2 | |||
| 71baf85ae1 | |||
| 79f2f1c2a1 | |||
| 2e3e3c86dc | |||
| 7e8977fcd4 | |||
| f1e840e842 | |||
| 7771d1de88 | |||
| 71d1219545 | |||
| e384f2f108 | |||
| 089a306f19 | |||
| 5e666f72cd | |||
| e3a3e4db46 | |||
| e41bf15cd0 | |||
| 5aa4a015ce | |||
| b6bad3d186 | |||
| ee9a1531aa | |||
| 10d82f9ac5 | |||
| ea10dd9d9e | |||
| ead2110297 | |||
| 01220ce89a | |||
| 6f68c49220 | |||
| 4719460644 | |||
| 466166dcfd | |||
| 1d0ae26c85 | |||
| 6021999573 | |||
| c7b370c603 | |||
| aa20d10a91 | |||
| 2de12be428 | |||
| 83ca9ae47b | |||
| e2148dc5ea | |||
| b1098b4072 | |||
| 799397ee4f |
@ -16,7 +16,7 @@ Please download the visualization scripts in the post
|
||||
- Download `nightly-benchmarks.zip`.
|
||||
- In the same folder, run the following code:
|
||||
|
||||
```console
|
||||
```bash
|
||||
export HF_TOKEN=<your HF token>
|
||||
apt update
|
||||
apt install -y git
|
||||
|
||||
@ -102,6 +102,7 @@ steps:
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest"
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
@ -117,6 +118,7 @@ steps:
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest"
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -54,10 +54,11 @@ docker run --rm -it --device=/dev/neuron0 --network bridge \
|
||||
--name "${container_name}" \
|
||||
${image_name} \
|
||||
/bin/bash -c "
|
||||
set -e; # Exit on first error
|
||||
python3 /workspace/vllm/examples/offline_inference/neuron.py;
|
||||
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
|
||||
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
|
||||
echo 'Running test file: '$f;
|
||||
echo \"Running test file: \$f\";
|
||||
python3 -m pytest \$f -v --capture=tee-sys;
|
||||
done
|
||||
"
|
||||
@ -159,6 +159,8 @@ run_and_track_test 14 "test_tpu_qkv_linear.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
|
||||
run_and_track_test 15 "test_spmd_model_weight_loading.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
|
||||
run_and_track_test 16 "test_kv_cache_update_kernel.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_kv_cache_update_kernel.py"
|
||||
|
||||
# After all tests have been attempted, exit with the overall status.
|
||||
if [ "$overall_script_exit_code" -ne 0 ]; then
|
||||
|
||||
@ -28,4 +28,5 @@ docker run \
|
||||
sh -c '
|
||||
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
|
||||
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
'
|
||||
|
||||
@ -4,8 +4,8 @@ CONTAINER_NAME=vllm-tpu
|
||||
|
||||
# vllm config
|
||||
MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
MAX_NUM_SEQS=512
|
||||
MAX_NUM_BATCHED_TOKENS=512
|
||||
MAX_NUM_SEQS=256
|
||||
MAX_NUM_BATCHED_TOKENS=1024
|
||||
TENSOR_PARALLEL_SIZE=1
|
||||
MAX_MODEL_LEN=2048
|
||||
DOWNLOAD_DIR=/mnt/disks/persist
|
||||
|
||||
@ -68,7 +68,7 @@ docker run \
|
||||
|
||||
echo "run script..."
|
||||
echo
|
||||
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/hardware_ci/run_bm.sh"
|
||||
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/tpu/run_bm.sh"
|
||||
|
||||
echo "copy result back..."
|
||||
VLLM_LOG="$LOG_ROOT/$TEST_NAME"_vllm_log.txt
|
||||
|
||||
@ -41,6 +41,16 @@ steps:
|
||||
# TODO: add `--strict` once warnings in docstrings are fixed
|
||||
- mkdocs build
|
||||
|
||||
- label: Pytorch Nightly Dependency Override Check # 2min
|
||||
# if this test fails, it means the nightly torch version is not compatible with some
|
||||
# of the dependencies. Please check the error message and add the package to whitelist
|
||||
# in /vllm/tools/generate_nightly_torch_test.py
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- requirements/nightly_torch_test.txt
|
||||
commands:
|
||||
- bash standalone_tests/pytorch_nightly_dependency.sh
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test # 24min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
@ -89,7 +99,7 @@ steps:
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
- label: Chunked Prefill Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_chunked_prefill
|
||||
@ -168,6 +178,23 @@ steps:
|
||||
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
|
||||
- popd
|
||||
|
||||
- label: EPLB Algorithm Test
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
source_file_dependencies:
|
||||
- vllm/distributed/eplb
|
||||
- tests/distributed/test_eplb_algo.py
|
||||
commands:
|
||||
- pytest -v -s distributed/test_eplb_algo.py
|
||||
|
||||
- label: EPLB Execution Test # 5min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
- vllm/distributed/eplb
|
||||
- tests/distributed/test_eplb_execute.py
|
||||
commands:
|
||||
- pytest -v -s distributed/test_eplb_execute.py
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
num_gpus: 2
|
||||
@ -271,6 +298,15 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s prefix_caching
|
||||
|
||||
|
||||
- label: Platform Tests (CUDA)
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/cuda
|
||||
commands:
|
||||
- pytest -v -s cuda/test_cuda_context.py
|
||||
|
||||
- label: Samplers Test # 36min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
@ -606,13 +642,18 @@ steps:
|
||||
- vllm/executor/
|
||||
- vllm/model_executor/models/
|
||||
- tests/distributed/
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
commands:
|
||||
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
|
||||
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=0 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
|
||||
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py
|
||||
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
|
||||
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
|
||||
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
|
||||
|
||||
- label: Distributed Tests (2 GPUs) # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -736,7 +777,7 @@ steps:
|
||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
|
||||
|
||||
- label: Weight Loading Multiple GPU Test - Large Models # optional
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
gpu: a100
|
||||
|
||||
4
.github/CODEOWNERS
vendored
4
.github/CODEOWNERS
vendored
@ -18,6 +18,10 @@
|
||||
/vllm/entrypoints @aarnphm
|
||||
CMakeLists.txt @tlrmchlsmth
|
||||
|
||||
# Any change to the VllmConfig changes can have a large user-facing impact,
|
||||
# so spam a lot of people
|
||||
/vllm/config.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm
|
||||
|
||||
15
.github/mergify.yml
vendored
15
.github/mergify.yml
vendored
@ -45,6 +45,7 @@ pull_request_rules:
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/llama.*\.py
|
||||
- files~=^vllm/model_executor/models/.*llama.*\.py
|
||||
- files~=^vllm/transformers_utils/configs/.*llama.*\.py
|
||||
- title~=(?i)llama
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
@ -65,6 +66,19 @@ pull_request_rules:
|
||||
add:
|
||||
- multi-modality
|
||||
|
||||
- name: label-performance
|
||||
description: Automatically apply performance label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^benchmarks/
|
||||
- files~=^vllm/benchmarks/
|
||||
- files~=^tests/benchmarks/
|
||||
- files~=^\.buildkite/nightly-benchmarks/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- performance
|
||||
|
||||
- name: label-qwen
|
||||
description: Automatically apply qwen label
|
||||
conditions:
|
||||
@ -74,7 +88,6 @@ pull_request_rules:
|
||||
- files~=^vllm/model_executor/models/.*qwen.*\.py
|
||||
- files~=^vllm/reasoning/.*qwen.*\.py
|
||||
- title~=(?i)Qwen
|
||||
- body~=(?i)Qwen
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
|
||||
@ -53,6 +53,11 @@ repos:
|
||||
files: ^requirements/test\.(in|txt)$
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: format-torch-nightly-test
|
||||
name: reformat nightly_torch_test.txt to be in sync with test.in
|
||||
language: python
|
||||
entry: python tools/generate_nightly_torch_test.py
|
||||
files: ^requirements/test\.(in|txt)$
|
||||
- id: mypy-local
|
||||
name: Run mypy for local Python installation
|
||||
entry: tools/mypy.sh 0 "local"
|
||||
@ -115,6 +120,11 @@ repos:
|
||||
entry: python tools/check_spdx_header.py
|
||||
language: python
|
||||
types: [python]
|
||||
- id: check-root-lazy-imports
|
||||
name: Check root lazy imports
|
||||
entry: python tools/check_init_lazy_imports.py
|
||||
language: python
|
||||
types: [python]
|
||||
- id: check-filenames
|
||||
name: Check for spaces in all filenames
|
||||
entry: bash
|
||||
|
||||
@ -513,6 +513,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
CUDA_ARCHS "${FP4_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4=1")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
|
||||
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building NVFP4 as no compatible archs were found.")
|
||||
@ -547,8 +548,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# if it's possible to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
|
||||
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
@ -566,6 +566,16 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# moe_data.cu is used by all CUTLASS MoE kernels.
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Machete kernels
|
||||
|
||||
@ -638,6 +648,14 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# if CUDA endif
|
||||
endif()
|
||||
|
||||
if (VLLM_GPU_LANG STREQUAL "HIP")
|
||||
# Add QuickReduce kernels
|
||||
list(APPEND VLLM_EXT_SRC
|
||||
"csrc/custom_quickreduce.cu"
|
||||
)
|
||||
# if ROCM endif
|
||||
endif()
|
||||
|
||||
message(STATUS "Enabling C extension.")
|
||||
define_gpu_extension_target(
|
||||
_C
|
||||
|
||||
@ -154,11 +154,13 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
|
||||
|
||||
## Contact Us
|
||||
|
||||
<!-- --8<-- [start:contact-us] -->
|
||||
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues) or [Discussions](https://github.com/vllm-project/vllm/discussions)
|
||||
- For discussing with fellow users, please use the [vLLM Forum](https://discuss.vllm.ai)
|
||||
- For coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
|
||||
- For security disclosures, please use GitHub's [Security Advisories](https://github.com/vllm-project/vllm/security/advisories) feature
|
||||
- For collaborations and partnerships, please contact us at [vllm-questions@lists.berkeley.edu](mailto:vllm-questions@lists.berkeley.edu)
|
||||
<!-- --8<-- [end:contact-us] -->
|
||||
|
||||
## Media Kit
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@ This README guides you through running benchmark tests with the extensive
|
||||
datasets supported on vLLM. It’s a living document, updated as new features and datasets
|
||||
become available.
|
||||
|
||||
## Dataset Overview
|
||||
**Dataset Overview**
|
||||
|
||||
<table style="width:100%; border-collapse: collapse;">
|
||||
<thead>
|
||||
@ -82,7 +82,10 @@ become available.
|
||||
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
|
||||
|
||||
---
|
||||
## Example - Online Benchmark
|
||||
<details>
|
||||
<summary><b>🚀 Example - Online Benchmark</b></summary>
|
||||
|
||||
<br/>
|
||||
|
||||
First start serving your model
|
||||
|
||||
@ -130,7 +133,8 @@ P99 ITL (ms): 8.39
|
||||
==================================================
|
||||
```
|
||||
|
||||
### Custom Dataset
|
||||
**Custom Dataset**
|
||||
|
||||
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
|
||||
|
||||
```
|
||||
@ -162,7 +166,7 @@ python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detaile
|
||||
|
||||
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
|
||||
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
**VisionArena Benchmark for Vision Language Models**
|
||||
|
||||
```bash
|
||||
# need a model with vision capability here
|
||||
@ -180,7 +184,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
### InstructCoder Benchmark with Speculative Decoding
|
||||
**InstructCoder Benchmark with Speculative Decoding**
|
||||
|
||||
``` bash
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
@ -197,7 +201,7 @@ python3 benchmarks/benchmark_serving.py \
|
||||
--num-prompts 2048
|
||||
```
|
||||
|
||||
### Other HuggingFaceDataset Examples
|
||||
**Other HuggingFaceDataset Examples**
|
||||
|
||||
```bash
|
||||
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
|
||||
@ -251,7 +255,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--num-prompts 80
|
||||
```
|
||||
|
||||
### Running With Sampling Parameters
|
||||
**Running With Sampling Parameters**
|
||||
|
||||
When using OpenAI-compatible backends such as `vllm`, optional sampling
|
||||
parameters can be specified. Example client command:
|
||||
@ -269,8 +273,27 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
---
|
||||
## Example - Offline Throughput Benchmark
|
||||
**Running With Ramp-Up Request Rate**
|
||||
|
||||
The benchmark tool also supports ramping up the request rate over the
|
||||
duration of the benchmark run. This can be useful for stress testing the
|
||||
server or finding the maximum throughput that it can handle, given some latency budget.
|
||||
|
||||
Two ramp-up strategies are supported:
|
||||
- `linear`: Increases the request rate linearly from a start value to an end value.
|
||||
- `exponential`: Increases the request rate exponentially.
|
||||
|
||||
The following arguments can be used to control the ramp-up:
|
||||
- `--ramp-up-strategy`: The ramp-up strategy to use (`linear` or `exponential`).
|
||||
- `--ramp-up-start-rps`: The request rate at the beginning of the benchmark.
|
||||
- `--ramp-up-end-rps`: The request rate at the end of the benchmark.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>📈 Example - Offline Throughput Benchmark</b></summary>
|
||||
|
||||
<br/>
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
@ -288,7 +311,7 @@ Total num prompt tokens: 5014
|
||||
Total num output tokens: 1500
|
||||
```
|
||||
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
**VisionArena Benchmark for Vision Language Models**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
@ -308,7 +331,7 @@ Total num prompt tokens: 14527
|
||||
Total num output tokens: 1280
|
||||
```
|
||||
|
||||
### InstructCoder Benchmark with Speculative Decoding
|
||||
**InstructCoder Benchmark with Speculative Decoding**
|
||||
|
||||
``` bash
|
||||
VLLM_WORKER_MULTIPROC_METHOD=spawn \
|
||||
@ -332,7 +355,7 @@ Total num prompt tokens: 261136
|
||||
Total num output tokens: 204800
|
||||
```
|
||||
|
||||
### Other HuggingFaceDataset Examples
|
||||
**Other HuggingFaceDataset Examples**
|
||||
|
||||
**`lmms-lab/LLaVA-OneVision-Data`**
|
||||
|
||||
@ -371,7 +394,7 @@ python3 benchmarks/benchmark_throughput.py \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
### Benchmark with LoRA Adapters
|
||||
**Benchmark with LoRA Adapters**
|
||||
|
||||
``` bash
|
||||
# download dataset
|
||||
@ -387,3 +410,196 @@ python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--enable-lora \
|
||||
--lora-path yard1/llama-2-7b-sql-lora-test
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>🛠️ Example - Structured Output Benchmark</b></summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the performance of structured output generation (JSON, grammar, regex).
|
||||
|
||||
**Server Setup**
|
||||
|
||||
```bash
|
||||
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
|
||||
```
|
||||
|
||||
**JSON Schema Benchmark**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset json \
|
||||
--structured-output-ratio 1.0 \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
**Grammar-based Generation Benchmark**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset grammar \
|
||||
--structure-type grammar \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
**Regex-based Generation Benchmark**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset regex \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
**Choice-based Generation Benchmark**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset choice \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
**XGrammar Benchmark Dataset**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset xgrammar_bench \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>📚 Example - Long Document QA Benchmark</b></summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the performance of long document question-answering with prefix caching.
|
||||
|
||||
**Basic Long Document QA Test**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-documents 16 \
|
||||
--document-length 2000 \
|
||||
--output-len 50 \
|
||||
--repeat-count 5
|
||||
```
|
||||
|
||||
**Different Repeat Modes**
|
||||
|
||||
```bash
|
||||
# Random mode (default) - shuffle prompts randomly
|
||||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-documents 8 \
|
||||
--document-length 3000 \
|
||||
--repeat-count 3 \
|
||||
--repeat-mode random
|
||||
|
||||
# Tile mode - repeat entire prompt list in sequence
|
||||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-documents 8 \
|
||||
--document-length 3000 \
|
||||
--repeat-count 3 \
|
||||
--repeat-mode tile
|
||||
|
||||
# Interleave mode - repeat each prompt consecutively
|
||||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-documents 8 \
|
||||
--document-length 3000 \
|
||||
--repeat-count 3 \
|
||||
--repeat-mode interleave
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>🗂️ Example - Prefix Caching Benchmark</b></summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the efficiency of automatic prefix caching.
|
||||
|
||||
**Fixed Prompt with Prefix Caching**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_prefix_caching.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-prompts 1 \
|
||||
--repeat-count 100 \
|
||||
--input-length-range 128:256
|
||||
```
|
||||
|
||||
**ShareGPT Dataset with Prefix Caching**
|
||||
|
||||
```bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
python3 benchmarks/benchmark_prefix_caching.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--dataset-path /path/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--enable-prefix-caching \
|
||||
--num-prompts 20 \
|
||||
--repeat-count 5 \
|
||||
--input-length-range 128:256
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>⚡ Example - Request Prioritization Benchmark</b></summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the performance of request prioritization in vLLM.
|
||||
|
||||
**Basic Prioritization Test**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_prioritization.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--input-len 128 \
|
||||
--output-len 64 \
|
||||
--num-prompts 100 \
|
||||
--scheduling-policy priority
|
||||
```
|
||||
|
||||
**Multiple Sequences per Prompt**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_prioritization.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--input-len 128 \
|
||||
--output-len 64 \
|
||||
--num-prompts 100 \
|
||||
--scheduling-policy priority \
|
||||
--n 2
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
@ -10,6 +10,7 @@
|
||||
# 3. Set variables (ALL REQUIRED)
|
||||
# BASE: your directory for vllm repo
|
||||
# MODEL: the model served by vllm
|
||||
# SYSTEM: the hardware, choice TPU or GPU, for other systems, "get best profile" might not support.
|
||||
# TP: ways of tensor parallelism
|
||||
# DOWNLOAD_DIR: directory to download and load model weights.
|
||||
# INPUT_LEN: request input len
|
||||
@ -34,6 +35,7 @@
|
||||
TAG=$(date +"%Y_%m_%d_%H_%M")
|
||||
BASE=""
|
||||
MODEL="meta-llama/Llama-3.1-8B-Instruct"
|
||||
SYSTEM="TPU"
|
||||
TP=1
|
||||
DOWNLOAD_DIR=""
|
||||
INPUT_LEN=4000
|
||||
@ -45,12 +47,15 @@ NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
|
||||
|
||||
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
|
||||
RESULT="$LOG_FOLDER/result.txt"
|
||||
PROFILE_PATH="$LOG_FOLDER/profile"
|
||||
|
||||
echo "result file: $RESULT"
|
||||
echo "model: $MODEL"
|
||||
|
||||
rm -rf $LOG_FOLDER
|
||||
rm -rf $PROFILE_PATH
|
||||
mkdir -p $LOG_FOLDER
|
||||
mkdir -p $PROFILE_PATH
|
||||
|
||||
cd "$BASE/vllm"
|
||||
|
||||
@ -70,10 +75,11 @@ start_server() {
|
||||
local max_num_seqs=$2
|
||||
local max_num_batched_tokens=$3
|
||||
local vllm_log=$4
|
||||
local profile_dir=$5
|
||||
|
||||
pkill -f vllm
|
||||
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir vllm serve $MODEL \
|
||||
--disable-log-requests \
|
||||
--port 8004 \
|
||||
--gpu-memory-utilization $gpu_memory_utilization \
|
||||
@ -105,19 +111,37 @@ start_server() {
|
||||
fi
|
||||
}
|
||||
|
||||
update_best_profile() {
|
||||
local profile_dir=$1
|
||||
local profile_index=$2
|
||||
sorted_paths=($(find "$profile_dir" -maxdepth 1 -not -path "$profile_dir" | sort))
|
||||
selected_profile_file=
|
||||
if [[ "$SYSTEM" == "TPU" ]]; then
|
||||
selected_profile_file="${sorted_paths[$profile_index]}/*.xplane.pb"
|
||||
fi
|
||||
if [[ "$SYSTEM" == "GPU" ]]; then
|
||||
selected_profile_file="${sorted_paths[$profile_index]}"
|
||||
fi
|
||||
rm -f $PROFILE_PATH/*
|
||||
cp $selected_profile_file $PROFILE_PATH
|
||||
}
|
||||
|
||||
run_benchmark() {
|
||||
local max_num_seqs=$1
|
||||
local max_num_batched_tokens=$2
|
||||
local gpu_memory_utilization=$3
|
||||
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
|
||||
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
|
||||
local profile_dir="$LOG_FOLDER/profile_${max_num_seqs}_${max_num_batched_tokens}"
|
||||
echo "vllm_log: $vllm_log"
|
||||
echo
|
||||
rm -f $vllm_log
|
||||
mkdir -p $profile_dir
|
||||
pkill -f vllm
|
||||
local profile_index=0
|
||||
|
||||
echo "starting server..."
|
||||
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log
|
||||
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log $profile_dir
|
||||
result=$?
|
||||
if [[ "$result" -eq 1 ]]; then
|
||||
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
|
||||
@ -144,7 +168,8 @@ run_benchmark() {
|
||||
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
|
||||
--num-prompts 1000 \
|
||||
--random-prefix-len $prefix_len \
|
||||
--port 8004 &> "$bm_log"
|
||||
--port 8004 \
|
||||
--profile &> "$bm_log"
|
||||
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
|
||||
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
@ -158,6 +183,7 @@ run_benchmark() {
|
||||
# start from request-rate as int(throughput) + 1
|
||||
request_rate=$((${throughput%.*} + 1))
|
||||
while ((request_rate > 0)); do
|
||||
profile_index=$((profile_index+1))
|
||||
# clear prefix cache
|
||||
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
|
||||
sleep 5
|
||||
@ -195,6 +221,12 @@ run_benchmark() {
|
||||
best_max_num_seqs=$max_num_seqs
|
||||
best_num_batched_tokens=$max_num_batched_tokens
|
||||
best_goodput=$goodput
|
||||
if [[ "$SYSTEM" == "TPU" ]]; then
|
||||
update_best_profile "$profile_dir/plugins/profile" $profile_index
|
||||
fi
|
||||
if [[ "$SYSTEM" == "GPU" ]]; then
|
||||
update_best_profile "$profile_dir" $profile_index
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
|
||||
@ -239,6 +271,6 @@ for num_seqs in "${num_seqs_list[@]}"; do
|
||||
done
|
||||
done
|
||||
echo "finish permutations"
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput" >> "$RESULT"
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"
|
||||
|
||||
|
||||
@ -404,8 +404,14 @@ async def async_request_openai_chat_completions(
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
chunk_bytes = chunk_bytes.decode("utf-8")
|
||||
# NOTE: SSE comments (often used as pings) start with a colon.
|
||||
# These are not JSON data payload and should be skipped.
|
||||
if chunk_bytes.startswith(":"):
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.removeprefix("data: ")
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
@ -349,11 +349,12 @@ class RandomDataset(BenchmarkDataset):
|
||||
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
|
||||
# To avoid uncontrolled change of the prompt length,
|
||||
# the encoded sequence is truncated before being decode again.
|
||||
total_input_len = prefix_len + int(input_lens[i])
|
||||
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
|
||||
: input_lens[i]
|
||||
:total_input_len
|
||||
]
|
||||
prompt = tokenizer.decode(re_encoded_sequence)
|
||||
total_input_len = prefix_len + int(input_lens[i])
|
||||
total_input_len = len(re_encoded_sequence)
|
||||
requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
|
||||
@ -33,7 +33,7 @@ import warnings
|
||||
from collections.abc import AsyncGenerator, Iterable
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
from tqdm.asyncio import tqdm
|
||||
@ -107,14 +107,42 @@ class BenchmarkMetrics:
|
||||
percentiles_e2el_ms: list[tuple[float, float]]
|
||||
|
||||
|
||||
def _get_current_request_rate(
|
||||
ramp_up_strategy: Optional[Literal["linear", "exponential"]],
|
||||
ramp_up_start_rps: Optional[int],
|
||||
ramp_up_end_rps: Optional[int],
|
||||
request_index: int,
|
||||
total_requests: int,
|
||||
request_rate: float,
|
||||
) -> float:
|
||||
if (
|
||||
ramp_up_strategy
|
||||
and ramp_up_start_rps is not None
|
||||
and ramp_up_end_rps is not None
|
||||
):
|
||||
progress = request_index / max(total_requests - 1, 1)
|
||||
if ramp_up_strategy == "linear":
|
||||
increase = (ramp_up_end_rps - ramp_up_start_rps) * progress
|
||||
return ramp_up_start_rps + increase
|
||||
elif ramp_up_strategy == "exponential":
|
||||
ratio = ramp_up_end_rps / ramp_up_start_rps
|
||||
return ramp_up_start_rps * (ratio**progress)
|
||||
else:
|
||||
raise ValueError(f"Unknown ramp-up strategy: {ramp_up_strategy}")
|
||||
return request_rate
|
||||
|
||||
|
||||
async def get_request(
|
||||
input_requests: list[SampleRequest],
|
||||
request_rate: float,
|
||||
burstiness: float = 1.0,
|
||||
) -> AsyncGenerator[SampleRequest, None]:
|
||||
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
|
||||
ramp_up_start_rps: Optional[int] = None,
|
||||
ramp_up_end_rps: Optional[int] = None,
|
||||
) -> AsyncGenerator[tuple[SampleRequest, float], None]:
|
||||
"""
|
||||
Asynchronously generates requests at a specified rate
|
||||
with OPTIONAL burstiness.
|
||||
with OPTIONAL burstiness and OPTIONAL ramp-up strategy.
|
||||
|
||||
Args:
|
||||
input_requests:
|
||||
@ -129,22 +157,44 @@ async def get_request(
|
||||
A lower burstiness value (0 < burstiness < 1) results
|
||||
in more bursty requests, while a higher burstiness value
|
||||
(burstiness > 1) results in a more uniform arrival of requests.
|
||||
ramp_up_strategy (optional):
|
||||
The ramp-up strategy. Can be "linear" or "exponential".
|
||||
If None, uses constant request rate (specified by request_rate).
|
||||
ramp_up_start_rps (optional):
|
||||
The starting request rate for ramp-up.
|
||||
ramp_up_end_rps (optional):
|
||||
The ending request rate for ramp-up.
|
||||
"""
|
||||
input_requests: Iterable[SampleRequest] = iter(input_requests)
|
||||
|
||||
# Calculate scale parameter theta to maintain the desired request_rate.
|
||||
assert burstiness > 0, (
|
||||
f"A positive burstiness factor is expected, but given {burstiness}."
|
||||
)
|
||||
theta = 1.0 / (request_rate * burstiness)
|
||||
# Convert to list to get length for ramp-up calculations
|
||||
if isinstance(input_requests, Iterable) and not isinstance(input_requests, list):
|
||||
input_requests = list(input_requests)
|
||||
|
||||
total_requests = len(input_requests)
|
||||
request_index = 0
|
||||
|
||||
for request in input_requests:
|
||||
yield request
|
||||
current_request_rate = _get_current_request_rate(
|
||||
ramp_up_strategy,
|
||||
ramp_up_start_rps,
|
||||
ramp_up_end_rps,
|
||||
request_index,
|
||||
total_requests,
|
||||
request_rate,
|
||||
)
|
||||
|
||||
if request_rate == float("inf"):
|
||||
yield request, current_request_rate
|
||||
|
||||
request_index += 1
|
||||
|
||||
if current_request_rate == float("inf"):
|
||||
# If the request rate is infinity, then we don't need to wait.
|
||||
continue
|
||||
|
||||
theta = 1.0 / (current_request_rate * burstiness)
|
||||
|
||||
# Sample the request interval from the gamma distribution.
|
||||
# If burstiness is 1, it follows exponential distribution.
|
||||
interval = np.random.gamma(shape=burstiness, scale=theta)
|
||||
@ -290,6 +340,9 @@ async def benchmark(
|
||||
max_concurrency: Optional[int],
|
||||
lora_modules: Optional[Iterable[str]],
|
||||
extra_body: Optional[dict],
|
||||
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
|
||||
ramp_up_start_rps: Optional[int] = None,
|
||||
ramp_up_end_rps: Optional[int] = None,
|
||||
):
|
||||
if backend in ASYNC_REQUEST_FUNCS:
|
||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||
@ -353,7 +406,15 @@ async def benchmark(
|
||||
|
||||
distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"
|
||||
|
||||
print(f"Traffic request rate: {request_rate}")
|
||||
if ramp_up_strategy is not None:
|
||||
print(
|
||||
f"Traffic ramp-up strategy: {ramp_up_strategy}. Will increase "
|
||||
f"RPS from {ramp_up_start_rps} to {ramp_up_end_rps} RPS over "
|
||||
"the duration of the benchmark."
|
||||
)
|
||||
else:
|
||||
print(f"Traffic request rate: {request_rate} RPS.")
|
||||
|
||||
print(f"Burstiness factor: {burstiness} ({distribution})")
|
||||
print(f"Maximum request concurrency: {max_concurrency}")
|
||||
|
||||
@ -373,7 +434,34 @@ async def benchmark(
|
||||
|
||||
benchmark_start_time = time.perf_counter()
|
||||
tasks: list[asyncio.Task] = []
|
||||
async for request in get_request(input_requests, request_rate, burstiness):
|
||||
|
||||
rps_change_events = []
|
||||
last_int_rps = -1
|
||||
if ramp_up_strategy is not None and ramp_up_start_rps is not None:
|
||||
last_int_rps = ramp_up_start_rps
|
||||
rps_change_events.append(
|
||||
{
|
||||
"rps": last_int_rps,
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
)
|
||||
|
||||
async for request, current_request_rate in get_request(
|
||||
input_requests,
|
||||
request_rate,
|
||||
burstiness,
|
||||
ramp_up_strategy,
|
||||
ramp_up_start_rps,
|
||||
ramp_up_end_rps,
|
||||
):
|
||||
if ramp_up_strategy is not None:
|
||||
current_int_rps = int(current_request_rate)
|
||||
if current_int_rps > last_int_rps:
|
||||
timestamp = datetime.now().isoformat()
|
||||
for rps_val in range(last_int_rps + 1, current_int_rps + 1):
|
||||
rps_change_events.append({"rps": rps_val, "timestamp": timestamp})
|
||||
last_int_rps = current_int_rps
|
||||
|
||||
prompt, prompt_len, output_len, mm_content = (
|
||||
request.prompt,
|
||||
request.prompt_len,
|
||||
@ -397,11 +485,8 @@ async def benchmark(
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
tasks.append(
|
||||
asyncio.create_task(
|
||||
limited_request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
)
|
||||
)
|
||||
task = limited_request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
tasks.append(asyncio.create_task(task))
|
||||
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
|
||||
|
||||
if profile:
|
||||
@ -477,6 +562,9 @@ async def benchmark(
|
||||
"errors": [output.error for output in outputs],
|
||||
}
|
||||
|
||||
if rps_change_events:
|
||||
result["rps_change_events"] = rps_change_events
|
||||
|
||||
def process_one_metric(
|
||||
# E.g., "ttft"
|
||||
metric_attribute_name: str,
|
||||
@ -610,6 +698,26 @@ def main(args: argparse.Namespace):
|
||||
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
|
||||
tokenizer_mode = args.tokenizer_mode
|
||||
|
||||
# Validate ramp-up arguments
|
||||
if args.ramp_up_strategy is not None:
|
||||
if args.request_rate != float("inf"):
|
||||
raise ValueError(
|
||||
"When using ramp-up, do not specify --request-rate. "
|
||||
"The request rate will be controlled by ramp-up parameters. "
|
||||
"Please remove the --request-rate argument."
|
||||
)
|
||||
if args.ramp_up_start_rps is None or args.ramp_up_end_rps is None:
|
||||
raise ValueError(
|
||||
"When using --ramp-up-strategy, both --ramp-up-start-rps and "
|
||||
"--ramp-up-end-rps must be specified"
|
||||
)
|
||||
if args.ramp_up_start_rps < 0 or args.ramp_up_end_rps < 0:
|
||||
raise ValueError("Ramp-up start and end RPS must be non-negative")
|
||||
if args.ramp_up_start_rps > args.ramp_up_end_rps:
|
||||
raise ValueError("Ramp-up start RPS must be less than end RPS")
|
||||
if args.ramp_up_strategy == "exponential" and args.ramp_up_start_rps == 0:
|
||||
raise ValueError("For exponential ramp-up, the start RPS cannot be 0.")
|
||||
|
||||
if args.base_url is not None:
|
||||
api_url = f"{args.base_url}{args.endpoint}"
|
||||
base_url = f"{args.base_url}"
|
||||
@ -802,6 +910,9 @@ def main(args: argparse.Namespace):
|
||||
max_concurrency=args.max_concurrency,
|
||||
lora_modules=args.lora_modules,
|
||||
extra_body=sampling_params,
|
||||
ramp_up_strategy=args.ramp_up_strategy,
|
||||
ramp_up_start_rps=args.ramp_up_start_rps,
|
||||
ramp_up_end_rps=args.ramp_up_end_rps,
|
||||
)
|
||||
)
|
||||
|
||||
@ -834,6 +945,11 @@ def main(args: argparse.Namespace):
|
||||
result_json["burstiness"] = args.burstiness
|
||||
result_json["max_concurrency"] = args.max_concurrency
|
||||
|
||||
if args.ramp_up_strategy is not None:
|
||||
result_json["ramp_up_strategy"] = args.ramp_up_strategy
|
||||
result_json["ramp_up_start_rps"] = args.ramp_up_start_rps
|
||||
result_json["ramp_up_end_rps"] = args.ramp_up_end_rps
|
||||
|
||||
# Merge with benchmark result
|
||||
result_json = {**result_json, **benchmark_result}
|
||||
|
||||
@ -859,7 +975,10 @@ def main(args: argparse.Namespace):
|
||||
if args.max_concurrency is not None
|
||||
else ""
|
||||
)
|
||||
file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
|
||||
if args.ramp_up_strategy is not None:
|
||||
file_name = f"{backend}-ramp-up-{args.ramp_up_strategy}-{args.ramp_up_start_rps}qps-{args.ramp_up_end_rps}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
|
||||
else:
|
||||
file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
|
||||
if args.result_filename:
|
||||
file_name = args.result_filename
|
||||
if args.result_dir:
|
||||
@ -1225,6 +1344,31 @@ def create_argument_parser():
|
||||
"script chooses a LoRA module at random.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ramp-up-strategy",
|
||||
type=str,
|
||||
default=None,
|
||||
choices=["linear", "exponential"],
|
||||
help="The ramp-up strategy. This would be used to "
|
||||
"ramp up the request rate from initial RPS to final "
|
||||
"RPS rate (specified by --ramp-up-start-rps and --ramp-up-end-rps). "
|
||||
"over the duration of the benchmark.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ramp-up-start-rps",
|
||||
type=int,
|
||||
default=None,
|
||||
help="The starting request rate for ramp-up (RPS). "
|
||||
"Needs to be specified when --ramp-up-strategy is used.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ramp-up-end-rps",
|
||||
type=int,
|
||||
default=None,
|
||||
help="The ending request rate for ramp-up (RPS). "
|
||||
"Needs to be specified when --ramp-up-strategy is used.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
|
||||
@ -97,7 +97,7 @@ def run_vllm(
|
||||
assert lora_requests is None, "BeamSearch API does not support LoRA"
|
||||
prompts = [request.prompt for request in requests]
|
||||
# output_len should be the same for all requests.
|
||||
output_len = requests[0][2]
|
||||
output_len = requests[0].expected_output_len
|
||||
for request in requests:
|
||||
assert request.expected_output_len == output_len
|
||||
start = time.perf_counter()
|
||||
|
||||
@ -19,7 +19,7 @@ from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
w8a8_block_fp8_matmul,
|
||||
)
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.utils import FlexibleArgumentParser, cdiv
|
||||
|
||||
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
|
||||
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
|
||||
@ -117,14 +117,9 @@ def bench_fp8(
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
|
||||
def ceil_div(x: int, y: int) -> int:
|
||||
return (x + y - 1) // y
|
||||
|
||||
block_scale_a = torch.rand(
|
||||
(m, ceil_div(k, 128)), device="cuda", dtype=torch.float32
|
||||
)
|
||||
block_scale_a = torch.rand((m, cdiv(k, 128)), device="cuda", dtype=torch.float32)
|
||||
block_scale_b = torch.rand(
|
||||
ceil_div(k, 128), ceil_div(n, 128), device="cuda", dtype=torch.float32
|
||||
cdiv(k, 128), cdiv(n, 128), device="cuda", dtype=torch.float32
|
||||
)
|
||||
block_scale_a_M_major = block_scale_a.t().contiguous().t()
|
||||
block_scale_b_K_major = block_scale_b.t().contiguous().t()
|
||||
|
||||
@ -22,8 +22,16 @@ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
|
||||
MARLIN_SUPPORTED_GROUP_SIZES,
|
||||
query_marlin_supported_quant_types,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
|
||||
FP4_MARLIN_SUPPORTED_GROUP_SIZES,
|
||||
rand_marlin_weight_fp4_like,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
|
||||
marlin_quant_fp8_torch,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
|
||||
MarlinWorkspace,
|
||||
awq_marlin_quantize,
|
||||
marlin_quantize,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
|
||||
@ -35,7 +43,7 @@ from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
||||
quantize_weights,
|
||||
sort_weights,
|
||||
)
|
||||
from vllm.scalar_type import ScalarType
|
||||
from vllm.scalar_type import ScalarType, scalar_types
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
DEFAULT_MODELS = ["meta-llama/Llama-2-7b-hf/TP1"]
|
||||
@ -57,80 +65,144 @@ def bench_run(
|
||||
size_n: int,
|
||||
):
|
||||
label = "Quant Matmul"
|
||||
|
||||
sub_label = "{}, act={} k_full={}, q={}, g={}, MKN=({}x{}x{})".format(
|
||||
model, act_order, is_k_full, str(quant_type), group_size, size_m, size_k, size_n
|
||||
)
|
||||
|
||||
print(f"Testing: {sub_label}")
|
||||
|
||||
a = torch.randn(size_m, size_k).to(torch.half).cuda()
|
||||
b = torch.rand(size_k, size_n).to(torch.half).cuda()
|
||||
has_zp = quant_type in [scalar_types.uint4, scalar_types.uint8]
|
||||
if act_order and (group_size == -1 or group_size == size_k or has_zp):
|
||||
return
|
||||
if size_k % group_size != 0:
|
||||
return
|
||||
|
||||
a_tmp = torch.zeros(size_m, size_k).to(torch.half).cuda()
|
||||
|
||||
# Marlin quant
|
||||
(
|
||||
marlin_w_ref,
|
||||
marlin_q_w,
|
||||
marlin_s,
|
||||
marlin_g_idx,
|
||||
marlin_sort_indices,
|
||||
marlin_rand_perm,
|
||||
) = marlin_quantize(b, quant_type, group_size, act_order)
|
||||
|
||||
# Marlin_24 quant
|
||||
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s) = (
|
||||
marlin_24_quantize(b, quant_type, group_size)
|
||||
marlin_24_supported = (
|
||||
quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
|
||||
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
|
||||
)
|
||||
|
||||
marlin_zp = torch.empty(0, dtype=torch.int, device=b.device)
|
||||
|
||||
# GPTQ quant
|
||||
(w_ref, q_w, s, g_idx, rand_perm) = gptq_quantize_weights(
|
||||
b, quant_type, group_size, act_order
|
||||
repack_supported = (
|
||||
quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
|
||||
and group_size in MARLIN_SUPPORTED_GROUP_SIZES
|
||||
)
|
||||
q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)
|
||||
|
||||
# For act_order, sort the "weights" and "g_idx"
|
||||
# so that group ids are increasing
|
||||
repack_sort_indices = torch.empty(0, dtype=torch.int, device=b.device)
|
||||
if act_order:
|
||||
(q_w, g_idx, repack_sort_indices) = sort_weights(q_w, g_idx)
|
||||
|
||||
# Prepare
|
||||
marlin_workspace = MarlinWorkspace(
|
||||
size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
|
||||
)
|
||||
|
||||
marlin_24_workspace = MarlinWorkspace(
|
||||
size_n, GPTQ_MARLIN_24_MIN_THREAD_N, GPTQ_MARLIN_24_MAX_PARALLEL
|
||||
)
|
||||
marlin_zp = torch.zeros_like(marlin_s, dtype=torch.int)
|
||||
|
||||
# AllSpark W8A16 quant
|
||||
as_supported_case = (
|
||||
allspark_supported = (
|
||||
quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
|
||||
and group_size == -1
|
||||
and not act_order
|
||||
and is_k_full
|
||||
)
|
||||
if as_supported_case:
|
||||
properties = torch.cuda.get_device_properties(b.device.index)
|
||||
sm_count = properties.multi_processor_count
|
||||
sm_version = properties.major * 10 + properties.minor
|
||||
|
||||
supported_arch = sm_version >= 80 and sm_version < 90
|
||||
as_supported_case = as_supported_case and supported_arch
|
||||
if supported_arch:
|
||||
has_zp = False
|
||||
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size, has_zp)
|
||||
qw = qw.to(torch.uint8)
|
||||
|
||||
qw_reorder, s_reorder, zp_reorder = ops.allspark_repack_weight(
|
||||
qw, s, zp, has_zp
|
||||
def gen_marlin_params():
|
||||
# Marlin quant
|
||||
marlin_g_idx = marlin_sort_indices = marlin_zp = marlin_s2 = None
|
||||
if quant_type == scalar_types.float4_e2m1f:
|
||||
if group_size != 16 or act_order:
|
||||
return
|
||||
marlin_w_ref, marlin_q_w, marlin_s, marlin_s2 = rand_marlin_weight_fp4_like(
|
||||
b.T, group_size
|
||||
)
|
||||
CUBLAS_M_THRESHOLD = ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD
|
||||
elif quant_type == scalar_types.float8_e4m3fn:
|
||||
if group_size not in [-1, 128] or act_order:
|
||||
return
|
||||
marlin_w_ref, marlin_q_w, marlin_s = marlin_quant_fp8_torch(b.T, group_size)
|
||||
elif group_size == 16:
|
||||
return
|
||||
elif has_zp:
|
||||
marlin_w_ref, marlin_q_w, marlin_s, marlin_zp = awq_marlin_quantize(
|
||||
b, quant_type, group_size
|
||||
)
|
||||
else:
|
||||
marlin_w_ref, marlin_q_w, marlin_s, marlin_g_idx, marlin_sort_indices, _ = (
|
||||
marlin_quantize(b, quant_type, group_size, act_order)
|
||||
)
|
||||
return (
|
||||
marlin_w_ref,
|
||||
marlin_q_w,
|
||||
marlin_s,
|
||||
marlin_s2,
|
||||
marlin_zp,
|
||||
marlin_g_idx,
|
||||
marlin_sort_indices,
|
||||
)
|
||||
|
||||
def gen_marlin_24_params():
|
||||
marlin_24_w_ref = marlin_24_q_w_comp = marlin_24_meta = marlin_24_s = None
|
||||
if marlin_24_supported:
|
||||
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s) = (
|
||||
marlin_24_quantize(b, quant_type, group_size)
|
||||
)
|
||||
return (marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s)
|
||||
|
||||
def gen_repack_params():
|
||||
q_w_gptq = None
|
||||
repack_sort_indices = None
|
||||
if repack_supported:
|
||||
(w_ref, q_w, s, g_idx, rand_perm) = gptq_quantize_weights(
|
||||
b, quant_type, group_size, act_order
|
||||
)
|
||||
q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)
|
||||
|
||||
# For act_order, sort the "weights" and "g_idx"
|
||||
# so that group ids are increasing
|
||||
repack_sort_indices = torch.empty(0, dtype=torch.int, device=b.device)
|
||||
if act_order:
|
||||
(q_w, g_idx, repack_sort_indices) = sort_weights(q_w, g_idx)
|
||||
return q_w_gptq, repack_sort_indices
|
||||
|
||||
def gen_allspark_params():
|
||||
qw_reorder = s_reorder = zp_reorder = sm_count = sm_version = (
|
||||
CUBLAS_M_THRESHOLD
|
||||
) = None
|
||||
nonlocal allspark_supported
|
||||
if allspark_supported:
|
||||
properties = torch.cuda.get_device_properties(b.device.index)
|
||||
sm_count = properties.multi_processor_count
|
||||
sm_version = properties.major * 10 + properties.minor
|
||||
|
||||
supported_arch = sm_version >= 80 and sm_version < 90
|
||||
allspark_supported = allspark_supported and supported_arch
|
||||
if supported_arch:
|
||||
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size, has_zp)
|
||||
qw = qw.to(torch.uint8)
|
||||
|
||||
qw_reorder, s_reorder, zp_reorder = ops.allspark_repack_weight(
|
||||
qw, s, zp, has_zp
|
||||
)
|
||||
CUBLAS_M_THRESHOLD = ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD
|
||||
return (
|
||||
qw_reorder,
|
||||
s_reorder,
|
||||
zp_reorder,
|
||||
sm_count,
|
||||
sm_version,
|
||||
CUBLAS_M_THRESHOLD,
|
||||
)
|
||||
|
||||
(
|
||||
marlin_w_ref,
|
||||
marlin_q_w,
|
||||
marlin_s,
|
||||
marlin_s2,
|
||||
marlin_zp,
|
||||
marlin_g_idx,
|
||||
marlin_sort_indices,
|
||||
) = gen_marlin_params()
|
||||
marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s = (
|
||||
gen_marlin_24_params()
|
||||
)
|
||||
q_w_gptq, repack_sort_indices = gen_repack_params()
|
||||
qw_reorder, s_reorder, zp_reorder, sm_count, sm_version, CUBLAS_M_THRESHOLD = (
|
||||
gen_allspark_params()
|
||||
)
|
||||
|
||||
# Prepare
|
||||
marlin_workspace = MarlinWorkspace(
|
||||
size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
|
||||
)
|
||||
marlin_24_workspace = MarlinWorkspace(
|
||||
size_n, GPTQ_MARLIN_24_MIN_THREAD_N, GPTQ_MARLIN_24_MAX_PARALLEL
|
||||
)
|
||||
|
||||
globals = {
|
||||
# Gen params
|
||||
@ -140,15 +212,14 @@ def bench_run(
|
||||
"size_n": size_n,
|
||||
"size_k": size_k,
|
||||
"a": a,
|
||||
"a_tmp": a_tmp,
|
||||
# Marlin params
|
||||
"marlin_w_ref": marlin_w_ref,
|
||||
"marlin_q_w": marlin_q_w,
|
||||
"marlin_s": marlin_s,
|
||||
"marlin_s2": marlin_s2,
|
||||
"marlin_zp": marlin_zp,
|
||||
"marlin_g_idx": marlin_g_idx,
|
||||
"marlin_sort_indices": marlin_sort_indices,
|
||||
"marlin_rand_perm": marlin_rand_perm,
|
||||
"marlin_workspace": marlin_workspace,
|
||||
"is_k_full": is_k_full,
|
||||
# Marlin_24 params
|
||||
@ -161,12 +232,12 @@ def bench_run(
|
||||
"q_w_gptq": q_w_gptq,
|
||||
"repack_sort_indices": repack_sort_indices,
|
||||
# AllSpark W8A16 params
|
||||
"qw_reorder": qw_reorder if as_supported_case else None,
|
||||
"s_reorder": s_reorder if as_supported_case else None,
|
||||
"zp_reorder": zp_reorder if as_supported_case else None,
|
||||
"sm_count": sm_count if as_supported_case else None,
|
||||
"sm_version": sm_version if as_supported_case else None,
|
||||
"CUBLAS_M_THRESHOLD": CUBLAS_M_THRESHOLD if as_supported_case else None,
|
||||
"qw_reorder": qw_reorder,
|
||||
"s_reorder": s_reorder,
|
||||
"zp_reorder": zp_reorder,
|
||||
"sm_count": sm_count,
|
||||
"sm_version": sm_version,
|
||||
"CUBLAS_M_THRESHOLD": CUBLAS_M_THRESHOLD,
|
||||
# Kernels
|
||||
"gptq_marlin_gemm": ops.gptq_marlin_gemm,
|
||||
"gptq_marlin_24_gemm": ops.gptq_marlin_24_gemm,
|
||||
@ -177,7 +248,7 @@ def bench_run(
|
||||
min_run_time = 1
|
||||
|
||||
# Warmup pytorch
|
||||
for i in range(5):
|
||||
for _ in range(5):
|
||||
torch.matmul(a, marlin_w_ref)
|
||||
|
||||
results.append(
|
||||
@ -192,17 +263,17 @@ def bench_run(
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
|
||||
stmt="output = gptq_marlin_gemm(a, None, marlin_q_w, marlin_s, marlin_s2, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="gptq_marlin_gemm_fp16",
|
||||
description="gptq_marlin_gemm",
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
|
||||
stmt="output = gptq_marlin_gemm(a, None, marlin_q_w, marlin_s, marlin_s2, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
@ -210,10 +281,7 @@ def bench_run(
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
if (
|
||||
quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
|
||||
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
|
||||
):
|
||||
if marlin_24_supported:
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
|
||||
@ -224,17 +292,18 @@ def bench_run(
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="gptq_marlin_repack",
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
if repack_supported:
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
description="gptq_marlin_repack",
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
)
|
||||
|
||||
if as_supported_case:
|
||||
if allspark_supported:
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="output = allspark_w8a16_gemm(a, qw_reorder, s_reorder, zp_reorder, size_n, group_size, sm_count, sm_version, CUBLAS_M_THRESHOLD, False, True)", # noqa: E501
|
||||
@ -250,7 +319,6 @@ def main(args):
|
||||
print("Benchmarking models:")
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
|
||||
results: list[benchmark.Measurement] = []
|
||||
|
||||
for model in args.models:
|
||||
@ -278,14 +346,17 @@ def main(args):
|
||||
):
|
||||
continue
|
||||
|
||||
for quant_type in query_marlin_supported_quant_types(False):
|
||||
for quant_type in query_marlin_supported_quant_types():
|
||||
if (
|
||||
len(args.limit_num_bits) > 0
|
||||
and quant_type.size_bits not in args.limit_num_bits
|
||||
):
|
||||
continue
|
||||
|
||||
for group_size in MARLIN_SUPPORTED_GROUP_SIZES:
|
||||
for group_size in (
|
||||
MARLIN_SUPPORTED_GROUP_SIZES
|
||||
+ FP4_MARLIN_SUPPORTED_GROUP_SIZES
|
||||
):
|
||||
if (
|
||||
len(args.limit_group_size) > 0
|
||||
and group_size not in args.limit_group_size
|
||||
|
||||
@ -85,12 +85,6 @@ def benchmark_shape(m: int,
|
||||
|
||||
# === DeepGEMM Implementation ===
|
||||
def deepgemm_gemm():
|
||||
# A quantization is inside the loop as it depends on activations
|
||||
# A_deepgemm, A_scale_deepgemm = per_token_cast_to_fp8(A)
|
||||
# A_deepgemm, A_scale_deepgemm = per_token_group_quant_fp8(
|
||||
# A, block_size[1])
|
||||
# A_scale_aligned = get_col_major_tma_aligned_tensor(A_scale_deepgemm)
|
||||
# C_deepgemm = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
|
||||
deep_gemm.gemm_fp8_fp8_bf16_nt((A_deepgemm, A_scale_deepgemm),
|
||||
(B_deepgemm, B_scale_deepgemm),
|
||||
C_deepgemm)
|
||||
@ -98,8 +92,6 @@ def benchmark_shape(m: int,
|
||||
|
||||
# === vLLM Triton Implementation ===
|
||||
def vllm_triton_gemm():
|
||||
# A quantization is inside the loop as it depends on activations
|
||||
# A_vllm, A_scale_vllm = per_token_group_quant_fp8(A, block_size[1])
|
||||
return w8a8_block_fp8_matmul(A_vllm,
|
||||
B_vllm,
|
||||
A_scale_vllm,
|
||||
@ -109,9 +101,6 @@ def benchmark_shape(m: int,
|
||||
|
||||
# === vLLM CUTLASS Implementation ===
|
||||
def vllm_cutlass_gemm():
|
||||
# A quantization is inside the loop as it depends on activations
|
||||
# A_vllm_cutlass, A_scale_vllm_cutlass = per_token_group_quant_fp8(
|
||||
# A, block_size[1], column_major_scales=True)
|
||||
return ops.cutlass_scaled_mm(A_vllm_cutlass,
|
||||
B_vllm.T,
|
||||
scale_a=A_scale_vllm_cutlass,
|
||||
|
||||
@ -38,7 +38,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG 763ad155a1c826f71ff318f41edb1e4e5e376ddb
|
||||
GIT_TAG 5f3644181c7a15345ce20bfc65af117d3601b524
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
|
||||
@ -207,7 +207,7 @@ void cutlass_mla_decode_sm100a(torch::Tensor const& out,
|
||||
"page_table must be a 32-bit integer tensor");
|
||||
|
||||
auto in_dtype = q_nope.dtype();
|
||||
at::cuda::CUDAGuard device_guard{(char)q_nope.get_device()};
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(q_nope));
|
||||
const cudaStream_t stream =
|
||||
at::cuda::getCurrentCUDAStream(q_nope.get_device());
|
||||
if (in_dtype == at::ScalarType::Half) {
|
||||
|
||||
@ -131,16 +131,19 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
|
||||
// Quantization
|
||||
#ifdef __AVX512F__
|
||||
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
|
||||
// Compute int8 quantized tensor for given scaling factor.
|
||||
ops.def(
|
||||
"static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale,"
|
||||
"Tensor? azp) -> ()");
|
||||
"Tensor? azp) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("static_scaled_int8_quant", torch::kCPU, &static_scaled_int8_quant);
|
||||
|
||||
// Compute int8 quantized tensor and scaling factor
|
||||
ops.def(
|
||||
"dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale, "
|
||||
"Tensor!? azp) -> ()");
|
||||
"Tensor!? azp) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
|
||||
&dynamic_scaled_int8_quant);
|
||||
// W8A8 GEMM, supporting symmetric per-tensor or per-row/column
|
||||
@ -148,7 +151,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.def(
|
||||
"cutlass_scaled_mm(Tensor! out, Tensor a,"
|
||||
" Tensor b, Tensor a_scales,"
|
||||
" Tensor b_scales, Tensor? bias) -> ()");
|
||||
" Tensor b_scales, Tensor? bias) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm);
|
||||
// w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
|
||||
// quantization.
|
||||
@ -156,7 +160,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
|
||||
" Tensor b, Tensor a_scales,"
|
||||
" Tensor b_scales, Tensor azp_adj,"
|
||||
" Tensor? azp, Tensor? bias) -> ()");
|
||||
" Tensor? azp, Tensor? bias) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
|
||||
#elif defined(__powerpc64__)
|
||||
// Compute int8 quantized tensor for given scaling factor.
|
||||
|
||||
114
csrc/custom_quickreduce.cu
Normal file
114
csrc/custom_quickreduce.cu
Normal file
@ -0,0 +1,114 @@
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <c10/cuda/CUDAStream.h>
|
||||
#include <torch/all.h>
|
||||
|
||||
#ifdef USE_ROCM
|
||||
|
||||
#include "quickreduce/quick_reduce.h"
|
||||
|
||||
quickreduce::fptr_t init_custom_qr(int64_t rank, int64_t world_size,
|
||||
std::optional<int64_t> qr_max_size) {
|
||||
if (world_size > 8)
|
||||
throw std::invalid_argument("world size > 8 is not supported");
|
||||
if (world_size == 6)
|
||||
throw std::invalid_argument("world size == 6 is not supported");
|
||||
if (world_size % 2 != 0)
|
||||
throw std::invalid_argument("Odd num gpus is not supported for now");
|
||||
if (rank < 0 || rank >= world_size)
|
||||
throw std::invalid_argument("invalid rank passed in");
|
||||
quickreduce::DeviceComms* fptr = new quickreduce::DeviceComms();
|
||||
fptr->init(world_size, rank, qr_max_size);
|
||||
return (quickreduce::fptr_t)fptr;
|
||||
}
|
||||
|
||||
void qr_destroy(quickreduce::fptr_t _fa) {
|
||||
if (_fa) {
|
||||
auto fa = reinterpret_cast<quickreduce::DeviceComms*>(_fa);
|
||||
fa->destroy();
|
||||
delete fa;
|
||||
}
|
||||
}
|
||||
|
||||
torch::Tensor qr_get_handle(quickreduce::fptr_t _fa) {
|
||||
auto fa = reinterpret_cast<quickreduce::DeviceComms*>(_fa);
|
||||
hipIpcMemHandle_t handle = fa->get_handle();
|
||||
auto options =
|
||||
torch::TensorOptions().dtype(torch::kUInt8).device(torch::kCPU);
|
||||
auto data_handle =
|
||||
torch::empty({static_cast<int64_t>(sizeof(hipIpcMemHandle_t))}, options);
|
||||
std::memcpy(data_handle.data_ptr(), &handle, sizeof(hipIpcMemHandle_t));
|
||||
return data_handle;
|
||||
}
|
||||
|
||||
void qr_open_handles(quickreduce::fptr_t _fa,
|
||||
const std::vector<torch::Tensor>& handles) {
|
||||
auto fa = reinterpret_cast<quickreduce::DeviceComms*>(_fa);
|
||||
std::vector<hipIpcMemHandle_t> ipc_handles;
|
||||
ipc_handles.reserve(handles.size());
|
||||
for (auto& handle : handles) {
|
||||
// Ensure the tensor is on the same device as the current device.
|
||||
hipIpcMemHandle_t ipc_handle;
|
||||
std::memcpy(&ipc_handle, handle.data_ptr(), sizeof(hipIpcMemHandle_t));
|
||||
ipc_handles.push_back(ipc_handle);
|
||||
}
|
||||
fa->open_ipc_handles(ipc_handles);
|
||||
}
|
||||
|
||||
void qr_all_reduce(quickreduce::fptr_t _fa, torch::Tensor& inp,
|
||||
torch::Tensor& out, int64_t quant_level, bool cast_bf2half) {
|
||||
auto fa = reinterpret_cast<quickreduce::DeviceComms*>(_fa);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
|
||||
auto stream = at::cuda::getCurrentHIPStreamMasqueradingAsCUDA();
|
||||
|
||||
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
|
||||
TORCH_CHECK_EQ(inp.numel(), out.numel());
|
||||
TORCH_CHECK_LE(out.numel(), fa->kMaxProblemSize);
|
||||
if (out.scalar_type() == at::ScalarType::Half) {
|
||||
fa->allreduce<half, false>(reinterpret_cast<half*>(inp.data_ptr()),
|
||||
reinterpret_cast<half*>(out.data_ptr()),
|
||||
out.numel(), quant_level, stream);
|
||||
} else if (out.scalar_type() == at::ScalarType::BFloat16) {
|
||||
if (cast_bf2half) {
|
||||
fa->allreduce<half, true>(reinterpret_cast<half*>(inp.data_ptr()),
|
||||
reinterpret_cast<half*>(out.data_ptr()),
|
||||
out.numel(), quant_level, stream);
|
||||
} else {
|
||||
fa->allreduce<quickreduce::nv_bfloat16, false>(
|
||||
reinterpret_cast<quickreduce::nv_bfloat16*>(inp.data_ptr()),
|
||||
reinterpret_cast<quickreduce::nv_bfloat16*>(out.data_ptr()),
|
||||
out.numel(), quant_level, stream);
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"quick allreduce only supports float16 and bfloat16");
|
||||
}
|
||||
}
|
||||
|
||||
int64_t qr_max_size() {
|
||||
// The default is 2GB (2,147,483,648 bytes)
|
||||
return static_cast<int64_t>(std::numeric_limits<int32_t>::max()) + 1;
|
||||
}
|
||||
|
||||
#define INSTANTIATE_FOR_WORLDSIZE(T, Codec, cast_bf2half) \
|
||||
template struct quickreduce::AllReduceTwoshot<T, Codec<T, 2>, \
|
||||
cast_bf2half>; \
|
||||
template struct quickreduce::AllReduceTwoshot<T, Codec<T, 4>, \
|
||||
cast_bf2half>; \
|
||||
template struct quickreduce::AllReduceTwoshot<T, Codec<T, 8>, cast_bf2half>;
|
||||
|
||||
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecFP, false)
|
||||
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ4, false)
|
||||
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ6, false)
|
||||
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ8, false)
|
||||
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecFP, true)
|
||||
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ4, true)
|
||||
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ6, true)
|
||||
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ8, true)
|
||||
|
||||
INSTANTIATE_FOR_WORLDSIZE(half, quickreduce::CodecFP, false)
|
||||
INSTANTIATE_FOR_WORLDSIZE(half, quickreduce::CodecQ4, false)
|
||||
INSTANTIATE_FOR_WORLDSIZE(half, quickreduce::CodecQ6, false)
|
||||
INSTANTIATE_FOR_WORLDSIZE(half, quickreduce::CodecQ8, false)
|
||||
|
||||
#endif // USE_ROCM
|
||||
@ -185,9 +185,7 @@ void causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
|
||||
params.conv_states_ptr = nullptr;
|
||||
}
|
||||
|
||||
// Otherwise the kernel will be launched from cuda:0 device
|
||||
// Cast to char to avoid compiler warning about narrowing
|
||||
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
||||
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] {
|
||||
causal_conv1d_fwd_cuda<input_t, weight_t>(params, stream);
|
||||
@ -278,9 +276,7 @@ void causal_conv1d_update(const at::Tensor &x,
|
||||
params.conv_state_indices_ptr = nullptr;
|
||||
}
|
||||
|
||||
// Otherwise the kernel will be launched from cuda:0 device
|
||||
// Cast to char to avoid compiler warning about narrowing
|
||||
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
||||
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] {
|
||||
causal_conv1d_update_cuda<input_t, weight_t>(params, stream);
|
||||
|
||||
@ -647,9 +647,7 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
|
||||
);
|
||||
|
||||
|
||||
// Otherwise the kernel will be launched from cuda:0 device
|
||||
// Cast to char to avoid compiler warning about narrowing
|
||||
at::cuda::CUDAGuard device_guard{(char)u.get_device()};
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(u));
|
||||
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
|
||||
selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
|
||||
|
||||
11
csrc/ops.h
11
csrc/ops.h
@ -360,3 +360,14 @@ std::tuple<int64_t, torch::Tensor> allocate_shared_buffer_and_handle(
|
||||
int64_t size);
|
||||
int64_t open_mem_handle(torch::Tensor& mem_handle);
|
||||
void free_shared_buffer(int64_t buffer);
|
||||
|
||||
#ifdef USE_ROCM
|
||||
fptr_t init_custom_qr(int64_t rank, int64_t world_size,
|
||||
std::optional<int64_t> qr_max_size = std::nullopt);
|
||||
void qr_destroy(fptr_t _fa);
|
||||
torch::Tensor qr_get_handle(fptr_t _fa);
|
||||
void qr_open_handles(fptr_t _fa, const std::vector<torch::Tensor>& handles);
|
||||
void qr_all_reduce(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out,
|
||||
int64_t quant_level, bool cast_bf2half = false);
|
||||
int64_t qr_max_size();
|
||||
#endif
|
||||
@ -29,26 +29,12 @@ struct sm100_fp8_config_default {
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_M256 {
|
||||
// M in (128, 256]
|
||||
// M in (64, 256]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_128, _128, _128>;
|
||||
using ClusterShape = Shape<_2, _2, _1>;
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_M128 {
|
||||
// M in (64, 128]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_128, _128, _256>;
|
||||
using ClusterShape = Shape<_2, _4, _1>;
|
||||
using ClusterShape = Shape<_2, _1, _1>;
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
@ -57,12 +43,26 @@ struct sm100_fp8_config_M128 {
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_M64 {
|
||||
// M in [1, 64]
|
||||
// M in (16, 64]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_64, _64, _256>;
|
||||
using ClusterShape = Shape<_1, _8, _1>;
|
||||
using TileShape = Shape<_64, _64, _128>;
|
||||
using ClusterShape = Shape<_1, _1, _1>;
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_M16 {
|
||||
// M in [1, 16]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_64, _64, _128>;
|
||||
using ClusterShape = Shape<_1, _4, _1>;
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
@ -82,27 +82,27 @@ inline void cutlass_gemm_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
using Cutlass3xGemmDefault =
|
||||
typename sm100_fp8_config_default<InType, OutType,
|
||||
Epilogue>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmM16 =
|
||||
typename sm100_fp8_config_M16<InType, OutType, Epilogue>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmM64 =
|
||||
typename sm100_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmM128 =
|
||||
typename sm100_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmM256 =
|
||||
typename sm100_fp8_config_M256<InType, OutType, Epilogue>::Cutlass3xGemm;
|
||||
|
||||
uint32_t const m = a.size(0);
|
||||
uint32_t const mp2 =
|
||||
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
|
||||
std::max(static_cast<uint32_t>(16), next_pow_2(m)); // next power of 2
|
||||
|
||||
if (mp2 <= 64) {
|
||||
// m in [1, 64]
|
||||
if (mp2 <= 16) {
|
||||
// m in [1, 16]
|
||||
return cutlass_gemm_caller<Cutlass3xGemmM16>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
} else if (mp2 <= 64) {
|
||||
// m in (16, 64]
|
||||
return cutlass_gemm_caller<Cutlass3xGemmM64>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
} else if (mp2 <= 128) {
|
||||
// m in (64, 128]
|
||||
return cutlass_gemm_caller<Cutlass3xGemmM128>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
} else if (mp2 <= 256) {
|
||||
// m in (128, 256]
|
||||
// m in (64, 256]
|
||||
return cutlass_gemm_caller<Cutlass3xGemmM256>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
} else {
|
||||
|
||||
@ -241,7 +241,7 @@ void get_cutlass_moe_mm_data(
|
||||
// mm to run it for.
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if (defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90) || \
|
||||
(defined ENABLE_SCALED_MM_SM100 && ENABLE_SCALED_MM_SM90)
|
||||
(defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100)
|
||||
get_cutlass_moe_mm_data_caller(topk_ids, expert_offsets, problem_sizes1,
|
||||
problem_sizes2, input_permutation,
|
||||
output_permutation, num_experts, n, k,
|
||||
@ -252,7 +252,7 @@ void get_cutlass_moe_mm_data(
|
||||
false,
|
||||
"No compiled get_cutlass_moe_mm_data: no cutlass_scaled_mm kernel for "
|
||||
"CUDA device capability: ",
|
||||
version_num, ". Required capability: 90");
|
||||
version_num, ". Required capability: 90 or 100");
|
||||
}
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
|
||||
@ -265,7 +265,8 @@ void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
|
||||
// This function currently gets compiled only if we have a valid cutlass moe
|
||||
// mm to run it for.
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
|
||||
#if (defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90) || \
|
||||
(defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100)
|
||||
get_cutlass_pplx_moe_mm_data_caller(expert_offsets, problem_sizes1,
|
||||
problem_sizes2, expert_num_tokens,
|
||||
num_local_experts, padded_m, n, k);
|
||||
@ -275,7 +276,7 @@ void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
|
||||
false,
|
||||
"No compiled get_cutlass_pplx_moe_mm_data: no cutlass_scaled_mm kernel "
|
||||
"for CUDA device capability: ",
|
||||
version_num, ". Required capability: 90");
|
||||
version_num, ". Required capability: 90 or 100");
|
||||
}
|
||||
|
||||
void cutlass_scaled_mm_azp(torch::Tensor& c, torch::Tensor const& a,
|
||||
|
||||
@ -561,7 +561,7 @@ void scaled_fp4_experts_quant_sm100a(
|
||||
TORCH_CHECK(output_scale.size(1) * 4 == padded_k);
|
||||
|
||||
auto in_dtype = input.dtype();
|
||||
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream =
|
||||
at::cuda::getCurrentCUDAStream(input.get_device());
|
||||
if (in_dtype == at::ScalarType::Half) {
|
||||
@ -579,4 +579,4 @@ void scaled_fp4_experts_quant_sm100a(
|
||||
} else {
|
||||
TORCH_CHECK(false, "Expected input data type to be half or bfloat16");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -347,7 +347,7 @@ void scaled_fp4_quant_sm100a(torch::Tensor const& output,
|
||||
auto input_sf_ptr = static_cast<float const*>(input_sf.data_ptr());
|
||||
auto sf_out = static_cast<int32_t*>(output_sf.data_ptr());
|
||||
auto output_ptr = static_cast<int64_t*>(output.data_ptr());
|
||||
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
|
||||
|
||||
// We don't support e8m0 scales at this moment.
|
||||
|
||||
@ -267,7 +267,7 @@ void cutlass_scaled_fp4_mm_sm100a(torch::Tensor& D, torch::Tensor const& A,
|
||||
B_sf.sizes()[1], ")");
|
||||
|
||||
auto out_dtype = D.dtype();
|
||||
at::cuda::CUDAGuard device_guard{(char)A.get_device()};
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(A.get_device());
|
||||
|
||||
if (out_dtype == at::ScalarType::Half) {
|
||||
|
||||
338
csrc/quickreduce/base.h
Normal file
338
csrc/quickreduce/base.h
Normal file
@ -0,0 +1,338 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <hip/hip_runtime.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
#include <hip/hip_bf16.h>
|
||||
|
||||
#define __quickreduce_device_inline__ __device__ __forceinline__
|
||||
#define __quickreduce_launch_bounds_two_shot__ __launch_bounds__(256, 4)
|
||||
#define __quickreduce_launch_bounds_one_shot__ __launch_bounds__(512, 4)
|
||||
|
||||
namespace quickreduce {
|
||||
|
||||
typedef __hip_bfloat16 nv_bfloat16;
|
||||
typedef __hip_bfloat162 nv_bfloat162;
|
||||
|
||||
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
|
||||
using int32x4_t = __attribute__((__vector_size__(4 * sizeof(int)))) int;
|
||||
|
||||
// Setup acquire-release semantics for vector memory reads (mubuf instruction)
|
||||
// as per architecture.
|
||||
#if defined(__gfx942__)
|
||||
// CDNA3: Scope bits sc0, sc1
|
||||
#define MUBUF_ACQUIRE 16
|
||||
#define MUBUF_RELEASE 16
|
||||
#elif (defined(__gfx908__) || defined(__gfx90a__))
|
||||
// CDNA1 and CDNA2 - glc bit
|
||||
#define MUBUF_ACQUIRE 1
|
||||
#define MUBUF_RELEASE 0
|
||||
#endif
|
||||
|
||||
static constexpr int kNegOne = 0xBC00BC00; // {-1, -1}, fp16x2_t
|
||||
|
||||
// Number of atoms (4xf16x2_t) processed by a single thread
|
||||
static constexpr int kAtoms = 8;
|
||||
|
||||
// We use a workgroup of 256 threads
|
||||
static constexpr int kBlockSize = 256;
|
||||
static constexpr int kAtomStride = kBlockSize;
|
||||
|
||||
// Size and atom stride of source/destination data that the block will
|
||||
// process.
|
||||
// Workgroup scope = Tile = (256 threads x 8 atoms x 16B)
|
||||
static constexpr int kTileSize = kBlockSize * kAtoms * sizeof(int32x4_t);
|
||||
|
||||
// Max number of blocks. 304 CUs on MI300
|
||||
static constexpr int kMaxNumBlocks = 304 * 4;
|
||||
|
||||
// Standard CDNA wavefront size.
|
||||
static constexpr int kWavefront = 64;
|
||||
|
||||
// 256 thread, 4 wavefronts.
|
||||
static dim3 constexpr kBlockTwoShot = {kWavefront, kBlockSize / kWavefront, 1};
|
||||
|
||||
// Number of threads in a group for quantization
|
||||
// It corresponds to 32 F16 elements in quantization block
|
||||
static constexpr int kThreadGroupSize = 8;
|
||||
|
||||
// Methods
|
||||
__quickreduce_device_inline__ __host__ unsigned long divceil(unsigned long x,
|
||||
unsigned long y) {
|
||||
return ((x + y - 1) / y);
|
||||
}
|
||||
|
||||
union BufferResource {
|
||||
__quickreduce_device_inline__ constexpr BufferResource()
|
||||
: config(0x00020000U) {}
|
||||
|
||||
__quickreduce_device_inline__ constexpr BufferResource(void* buffer_address,
|
||||
uint32_t buffer_size)
|
||||
: address(buffer_address), range(buffer_size), config(0x00020000U) {}
|
||||
|
||||
int32x4_t descriptor;
|
||||
struct {
|
||||
void* address; // 8B, out of which first 48b is address, and 16b is stride
|
||||
// (unused)
|
||||
uint32_t range; // Byte range for the buffer resource
|
||||
uint32_t config; // Constant, DFMT=32b
|
||||
};
|
||||
};
|
||||
|
||||
__quickreduce_device_inline__ static int32x4_t buffer_load_dwordx4(
|
||||
int32x4_t srsrc, int32_t voffset, int32_t soffset,
|
||||
int32_t aux) __asm("llvm.amdgcn.raw.buffer.load.v4i32");
|
||||
|
||||
__quickreduce_device_inline__ static void buffer_store_dwordx4(
|
||||
int32x4_t data, int32x4_t srsrc, int32_t voffset, int32_t soffset,
|
||||
int32_t aux) __asm("llvm.amdgcn.raw.buffer.store.v4i32");
|
||||
|
||||
__quickreduce_device_inline__ static void set_fp16_ovfl(bool const value) {
|
||||
#if defined(__gfx942__)
|
||||
if (value) {
|
||||
asm volatile("s_setreg_imm32_b32 0xdc1, 1;" ::);
|
||||
} else {
|
||||
asm volatile("s_setreg_imm32_b32 0xdc1, 0;" ::);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
union bf162_int_union {
|
||||
int i;
|
||||
nv_bfloat162 bf2;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__quickreduce_device_inline__ void packed_assign_add(int32x4_t* A,
|
||||
int32x4_t* B);
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ void packed_assign_add<half>(int32x4_t* A,
|
||||
int32x4_t* B) {
|
||||
int32x4_t& tR_fragment = A[0];
|
||||
int32x4_t& tA_fragment = B[0];
|
||||
|
||||
asm volatile("v_pk_add_f16 %0, %1, %2"
|
||||
: "=v"(tR_fragment[0])
|
||||
: "v"(tR_fragment[0]), "v"(tA_fragment[0]));
|
||||
asm volatile("v_pk_add_f16 %0, %1, %2"
|
||||
: "=v"(tR_fragment[1])
|
||||
: "v"(tR_fragment[1]), "v"(tA_fragment[1]));
|
||||
asm volatile("v_pk_add_f16 %0, %1, %2"
|
||||
: "=v"(tR_fragment[2])
|
||||
: "v"(tR_fragment[2]), "v"(tA_fragment[2]));
|
||||
asm volatile("v_pk_add_f16 %0, %1, %2"
|
||||
: "=v"(tR_fragment[3])
|
||||
: "v"(tR_fragment[3]), "v"(tA_fragment[3]));
|
||||
}
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ void packed_assign_add<nv_bfloat16>(
|
||||
int32x4_t* A, int32x4_t* B) {
|
||||
nv_bfloat162* tA = reinterpret_cast<nv_bfloat162*>(A);
|
||||
nv_bfloat162* tB = reinterpret_cast<nv_bfloat162*>(B);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; i++) {
|
||||
tA[i] = __hadd2(tA[i], tB[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__quickreduce_device_inline__ int packed_max(int a, int b);
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_max<half>(int a, int b) {
|
||||
int result;
|
||||
asm volatile("v_pk_max_f16 %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_max<nv_bfloat16>(int a, int b) {
|
||||
bf162_int_union A, B, R;
|
||||
A.i = a;
|
||||
B.i = b;
|
||||
R.bf2 = __hmax2(A.bf2, B.bf2);
|
||||
return R.i;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__quickreduce_device_inline__ int packed_min(int a, int b);
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_min<half>(int a, int b) {
|
||||
int result;
|
||||
asm volatile("v_pk_min_f16 %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_min<nv_bfloat16>(int a, int b) {
|
||||
bf162_int_union A, B, R;
|
||||
A.i = a;
|
||||
B.i = b;
|
||||
R.bf2 = __hmin2(A.bf2, B.bf2);
|
||||
return R.i;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__quickreduce_device_inline__ int packed_abs_max(int a, int b);
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_abs_max<half>(int a, int b) {
|
||||
half2 wmaxh2 = __builtin_bit_cast(half2, a);
|
||||
half2 wminh2 = __builtin_bit_cast(half2, b);
|
||||
half2 wblockmaxh2;
|
||||
|
||||
wblockmaxh2.x =
|
||||
__hgt(__habs(wmaxh2.x), __habs(wminh2.x)) ? wmaxh2.x : wminh2.x;
|
||||
wblockmaxh2.y =
|
||||
__hgt(__habs(wmaxh2.y), __habs(wminh2.y)) ? wmaxh2.y : wminh2.y;
|
||||
return __builtin_bit_cast(int, wblockmaxh2);
|
||||
}
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_abs_max<nv_bfloat16>(int a, int b) {
|
||||
bf162_int_union A, B, R;
|
||||
A.i = a;
|
||||
B.i = b;
|
||||
R.bf2.x = __hgt(__habs(A.bf2.x), __habs(B.bf2.x)) ? A.bf2.x : B.bf2.x;
|
||||
R.bf2.y = __hgt(__habs(A.bf2.y), __habs(B.bf2.y)) ? A.bf2.y : B.bf2.y;
|
||||
return R.i;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__quickreduce_device_inline__ int packed_add(int a, int b);
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_add<half>(int a, int b) {
|
||||
int result;
|
||||
asm volatile("v_pk_add_f16 %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_add<nv_bfloat16>(int a, int b) {
|
||||
bf162_int_union A, B, R;
|
||||
A.i = a;
|
||||
B.i = b;
|
||||
R.bf2 = __hadd2(A.bf2, B.bf2);
|
||||
return R.i;
|
||||
}
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_add<int16_t>(int a, int b) {
|
||||
int result;
|
||||
asm volatile("v_pk_add_i16 %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__quickreduce_device_inline__ int packed_sub(int a, int b);
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_sub<half>(int a, int b) {
|
||||
int result;
|
||||
|
||||
// MI300 lacks packed fp16 sub instruction. So we do -1 * min + max
|
||||
asm volatile("v_pk_fma_f16 %0, %1, %2 %3"
|
||||
: "=v"(result)
|
||||
: "v"(kNegOne), "v"(b), "v"(a));
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_sub<nv_bfloat16>(int a, int b) {
|
||||
bf162_int_union A, B, R;
|
||||
A.i = a;
|
||||
B.i = b;
|
||||
R.bf2 = __hsub2(A.bf2, B.bf2);
|
||||
return R.i;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__quickreduce_device_inline__ int packed_mul(int a, int b);
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_mul<half>(int a, int b) {
|
||||
int result;
|
||||
asm volatile("v_pk_mul_f16 %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_mul<nv_bfloat16>(int a, int b) {
|
||||
nv_bfloat162* tA = reinterpret_cast<nv_bfloat162*>(&a);
|
||||
nv_bfloat162* tB = reinterpret_cast<nv_bfloat162*>(&b);
|
||||
nv_bfloat162 tR = __hmul2(*tA, *tB);
|
||||
return *(reinterpret_cast<int*>(&tR));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__quickreduce_device_inline__ int packed_rcp(int a);
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_rcp<half>(int a) {
|
||||
return __builtin_bit_cast(int, h2rcp(__builtin_bit_cast(half2, a)));
|
||||
}
|
||||
|
||||
template <>
|
||||
__quickreduce_device_inline__ int packed_rcp<nv_bfloat16>(int a) {
|
||||
bf162_int_union A, R;
|
||||
A.i = a;
|
||||
R.bf2 = h2rcp(A.bf2);
|
||||
return R.i;
|
||||
}
|
||||
|
||||
// changes dtype
|
||||
__quickreduce_device_inline__ float T2float_cast(half a) {
|
||||
return __half2float(a);
|
||||
}
|
||||
|
||||
__quickreduce_device_inline__ float T2float_cast(nv_bfloat16 a) {
|
||||
return __bfloat162float(a);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__quickreduce_device_inline__ int group_abs_max(int32x4_t atom) {
|
||||
const int group_leader = (threadIdx.x / kThreadGroupSize) * kThreadGroupSize;
|
||||
|
||||
int wmax, wmin, wblockmax;
|
||||
int a, b;
|
||||
a = packed_max<T>(atom[0], atom[1]);
|
||||
b = packed_max<T>(atom[2], atom[3]);
|
||||
|
||||
wmax = packed_max<T>(a, b);
|
||||
|
||||
a = packed_min<T>(atom[0], atom[1]);
|
||||
b = packed_min<T>(atom[2], atom[3]);
|
||||
|
||||
wmin = packed_min<T>(a, b);
|
||||
|
||||
// Reduce the max among a group of threads
|
||||
// Note: This is basically 2 blocks of values setup as the
|
||||
// upper/lower halves of the f16x2_t
|
||||
for (int i = 1; i < kThreadGroupSize; i <<= 1) {
|
||||
int x = __shfl_down(wmax, i);
|
||||
wmax = packed_max<T>(wmax, x);
|
||||
|
||||
int y = __shfl_down(wmin, i);
|
||||
wmin = packed_min<T>(wmin, y);
|
||||
}
|
||||
wblockmax = packed_abs_max<T>(wmax, wmin);
|
||||
// Share with the cohort
|
||||
wblockmax = __shfl(wblockmax, group_leader);
|
||||
return wblockmax;
|
||||
}
|
||||
|
||||
__quickreduce_device_inline__ void set_sync_flag(uint32_t* flag_ptr,
|
||||
uint32_t flag) {
|
||||
__atomic_store_n(flag_ptr, flag, __ATOMIC_RELEASE);
|
||||
}
|
||||
|
||||
__quickreduce_device_inline__ void wait_sync_flag(uint32_t* flag_ptr,
|
||||
uint32_t flag) {
|
||||
while (__atomic_load_n(flag_ptr, __ATOMIC_RELAXED) != flag) {
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace quickreduce
|
||||
196
csrc/quickreduce/quick_reduce.h
Normal file
196
csrc/quickreduce/quick_reduce.h
Normal file
@ -0,0 +1,196 @@
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <hip/hip_runtime.h>
|
||||
#include "quick_reduce_impl.cuh"
|
||||
|
||||
#define HIP_CHECK(err) \
|
||||
do { \
|
||||
hipError_t err_ = (err); \
|
||||
if (err_ != hipSuccess) { \
|
||||
std::printf("HIP error %d at %s:%d. %s\n", err_, __FILE__, __LINE__, \
|
||||
hipGetErrorString(err_)); \
|
||||
throw std::runtime_error("HIP error"); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
namespace quickreduce {
|
||||
using fptr_t = int64_t;
|
||||
static_assert(sizeof(void*) == sizeof(fptr_t));
|
||||
|
||||
template <typename AllReduceKernel, typename T>
|
||||
__global__ __quickreduce_launch_bounds_two_shot__ static void
|
||||
allreduce_prototype_twoshot(T const* A, T* B, uint32_t N, uint32_t num_blocks,
|
||||
int rank, uint8_t** dbuffer_list,
|
||||
uint32_t data_offset, uint32_t flag_color) {
|
||||
int block = blockIdx.x;
|
||||
int grid = gridDim.x;
|
||||
|
||||
while (block < num_blocks) {
|
||||
AllReduceKernel::run(A, B, N, block, rank, dbuffer_list, data_offset,
|
||||
flag_color);
|
||||
block += grid;
|
||||
flag_color++;
|
||||
}
|
||||
}
|
||||
|
||||
#define TWOSHOT_DISPATCH(__codec) \
|
||||
if (world_size == 2) { \
|
||||
using LineCodec = __codec<T, 2>; \
|
||||
using AllReduceKernel = AllReduceTwoshot<T, LineCodec, cast_bf2half>; \
|
||||
hipLaunchKernelGGL((allreduce_prototype_twoshot<AllReduceKernel, T>), \
|
||||
dim3(grid), dim3(kBlockTwoShot), 0, stream, A, B, N, \
|
||||
num_blocks, rank, dbuffer_list, data_offset, \
|
||||
flag_color); \
|
||||
} else if (world_size == 4) { \
|
||||
using LineCodec = __codec<T, 4>; \
|
||||
using AllReduceKernel = AllReduceTwoshot<T, LineCodec, cast_bf2half>; \
|
||||
hipLaunchKernelGGL((allreduce_prototype_twoshot<AllReduceKernel, T>), \
|
||||
dim3(grid), dim3(kBlockTwoShot), 0, stream, A, B, N, \
|
||||
num_blocks, rank, dbuffer_list, data_offset, \
|
||||
flag_color); \
|
||||
} else if (world_size == 8) { \
|
||||
using LineCodec = __codec<T, 8>; \
|
||||
using AllReduceKernel = AllReduceTwoshot<T, LineCodec, cast_bf2half>; \
|
||||
hipLaunchKernelGGL((allreduce_prototype_twoshot<AllReduceKernel, T>), \
|
||||
dim3(grid), dim3(kBlockTwoShot), 0, stream, A, B, N, \
|
||||
num_blocks, rank, dbuffer_list, data_offset, \
|
||||
flag_color); \
|
||||
}
|
||||
|
||||
enum QuickReduceQuantLevel {
|
||||
F16 = 0,
|
||||
INT8 = 1,
|
||||
INT6 = 2,
|
||||
INT4 = 3,
|
||||
};
|
||||
|
||||
struct DeviceComms {
|
||||
// Max problem size is 2GB (in bytes) or half of uint32_t max value.
|
||||
int64_t kMaxProblemSize =
|
||||
static_cast<int64_t>(std::numeric_limits<int32_t>::max()) + 1;
|
||||
|
||||
// Max TP-8
|
||||
static int constexpr kMaxWorldSize = 8;
|
||||
|
||||
bool initialized = false;
|
||||
uint32_t flag_color = 1;
|
||||
int world_size;
|
||||
int rank;
|
||||
|
||||
uint8_t* dbuffer;
|
||||
uint8_t** dbuffer_list;
|
||||
hipIpcMemHandle_t buffer_ipc_handle;
|
||||
std::vector<hipIpcMemHandle_t> all_buffer_ipc_handles;
|
||||
std::vector<uint8_t*> buffer_list;
|
||||
uint32_t data_offset;
|
||||
|
||||
DeviceComms() : initialized(false), world_size(1), rank(0) {}
|
||||
~DeviceComms() { destroy(); }
|
||||
|
||||
void init(int world_size, int rank,
|
||||
std::optional<int64_t> max_problem_size = std::nullopt) {
|
||||
destroy();
|
||||
this->world_size = world_size;
|
||||
this->rank = rank;
|
||||
if (max_problem_size.has_value() && max_problem_size.value() > 0) {
|
||||
this->kMaxProblemSize = max_problem_size.value();
|
||||
}
|
||||
// Allocate buffer size for worst case: F16 2-stage buffer.
|
||||
uint32_t flags_buffer_size =
|
||||
2 * world_size * kMaxNumBlocks * sizeof(uint32_t);
|
||||
static int64_t data_buffer_size = 2 * this->kMaxProblemSize;
|
||||
int64_t total_buffer_size = flags_buffer_size + data_buffer_size;
|
||||
data_offset = flags_buffer_size;
|
||||
HIP_CHECK(hipExtMallocWithFlags((void**)&dbuffer, total_buffer_size,
|
||||
hipDeviceMallocUncached));
|
||||
|
||||
// Clear the flags buffer.
|
||||
HIP_CHECK(hipMemset(dbuffer, 0, flags_buffer_size));
|
||||
|
||||
// Device-side list of IPC buffers.
|
||||
buffer_list.resize(world_size);
|
||||
HIP_CHECK(hipMalloc(&dbuffer_list, world_size * sizeof(uint8_t*)));
|
||||
|
||||
// Create IPC handles for rank's communication buffer.
|
||||
all_buffer_ipc_handles.resize(world_size);
|
||||
HIP_CHECK(hipIpcGetMemHandle(&buffer_ipc_handle, dbuffer));
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
int get_world_size() { return world_size; }
|
||||
int get_rank() { return rank; }
|
||||
bool status() { return initialized; }
|
||||
hipIpcMemHandle_t const get_handle() { return buffer_ipc_handle; }
|
||||
|
||||
void destroy() {
|
||||
if (initialized) {
|
||||
for (int i = 0; i < world_size; i++) {
|
||||
if (i != rank) {
|
||||
HIP_CHECK(hipIpcCloseMemHandle(dbuffer_list[i]));
|
||||
}
|
||||
}
|
||||
|
||||
HIP_CHECK(hipFree(dbuffer));
|
||||
HIP_CHECK(hipFree(dbuffer_list));
|
||||
|
||||
initialized = false;
|
||||
}
|
||||
}
|
||||
|
||||
void open_ipc_handles(std::vector<hipIpcMemHandle_t> const& ipc_handles) {
|
||||
assert(ipc_handles.size() == all_buffer_ipc_handles.size());
|
||||
for (int i = 0; i < world_size; i++) {
|
||||
all_buffer_ipc_handles[i] = ipc_handles[i];
|
||||
}
|
||||
|
||||
// Open device memory access to the IPC communication buffers.
|
||||
// Note: For our own rank, we do not need to open a handle.
|
||||
for (int i = 0; i < world_size; i++) {
|
||||
if (i != rank) {
|
||||
HIP_CHECK(hipIpcOpenMemHandle((void**)&buffer_list[i],
|
||||
all_buffer_ipc_handles[i],
|
||||
hipIpcMemLazyEnablePeerAccess));
|
||||
} else {
|
||||
buffer_list[i] = dbuffer;
|
||||
}
|
||||
}
|
||||
|
||||
HIP_CHECK(hipMemcpy(dbuffer_list, buffer_list.data(),
|
||||
world_size * sizeof(uint8_t*), hipMemcpyHostToDevice));
|
||||
}
|
||||
|
||||
template <typename T, bool cast_bf2half>
|
||||
void allreduce(T const* A, T* B, uint32_t N, int quant_level,
|
||||
hipStream_t stream) {
|
||||
if (world_size != 2 && world_size != 4 && world_size != 8) {
|
||||
throw std::runtime_error("All Reduce not supported for world_size = " +
|
||||
std::to_string(world_size));
|
||||
}
|
||||
|
||||
// Configuration.
|
||||
uint32_t msg_size = N * sizeof(T);
|
||||
uint32_t num_blocks = divceil(msg_size, kTileSize);
|
||||
uint32_t grid = min(kMaxNumBlocks, num_blocks);
|
||||
auto quant_level_ = static_cast<QuickReduceQuantLevel>(quant_level);
|
||||
switch (quant_level_) {
|
||||
case QuickReduceQuantLevel::INT8:
|
||||
TWOSHOT_DISPATCH(CodecQ8)
|
||||
break;
|
||||
case QuickReduceQuantLevel::INT6:
|
||||
TWOSHOT_DISPATCH(CodecQ6)
|
||||
break;
|
||||
case QuickReduceQuantLevel::INT4:
|
||||
TWOSHOT_DISPATCH(CodecQ4)
|
||||
break;
|
||||
default:
|
||||
TWOSHOT_DISPATCH(CodecFP)
|
||||
break;
|
||||
}
|
||||
HIP_CHECK(cudaGetLastError());
|
||||
// Rotate the flag color.
|
||||
flag_color += divceil(N, grid);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace quickreduce
|
||||
698
csrc/quickreduce/quick_reduce_impl.cuh
Normal file
698
csrc/quickreduce/quick_reduce_impl.cuh
Normal file
@ -0,0 +1,698 @@
|
||||
#pragma once
|
||||
|
||||
#include <hip/hip_runtime.h>
|
||||
#include "base.h"
|
||||
|
||||
namespace quickreduce {
|
||||
|
||||
struct CodecBase {
|
||||
const int thread;
|
||||
const int rank;
|
||||
const int group_leader;
|
||||
__quickreduce_device_inline__ CodecBase(int thread, int rank)
|
||||
: thread(thread),
|
||||
rank(rank),
|
||||
group_leader((threadIdx.x / kThreadGroupSize) * kThreadGroupSize) {
|
||||
set_fp16_ovfl(true);
|
||||
}
|
||||
};
|
||||
|
||||
// Default full precision codec.
|
||||
template <typename T, int world_size>
|
||||
struct CodecFP : public CodecBase {
|
||||
static constexpr int kWorldSize = world_size;
|
||||
static constexpr int kRankAtoms = kAtoms / kWorldSize;
|
||||
|
||||
// Codec tile size process by this workgroup.
|
||||
// Each thread processes atoms of f16x8_t (16B).
|
||||
static constexpr int kRankTransmittedTileSize =
|
||||
kBlockSize * kRankAtoms * sizeof(int32x4_t);
|
||||
static_assert(kRankTransmittedTileSize % 16 == 0,
|
||||
"kRankTransmittedTileSize must be 16B aligned.");
|
||||
|
||||
// Total tile size for the collective communication.
|
||||
static constexpr int kTransmittedTileSize =
|
||||
kRankTransmittedTileSize * kWorldSize;
|
||||
|
||||
__quickreduce_device_inline__ CodecFP(int thread, int rank)
|
||||
: CodecBase(thread, rank) {}
|
||||
|
||||
__quickreduce_device_inline__ void send(int32x4_t* __restrict__ send_buffer,
|
||||
const int32x4_t* __restrict__ data) {
|
||||
for (int i = 0; i < kRankAtoms; i++) {
|
||||
__builtin_nontemporal_store(data[i], send_buffer + thread);
|
||||
send_buffer += kAtomStride;
|
||||
}
|
||||
}
|
||||
|
||||
__quickreduce_device_inline__ void recv(int32x4_t** __restrict__ recv_buffer,
|
||||
int32x4_t* __restrict__ data) {
|
||||
for (int i = 0; i < kRankAtoms; i++) {
|
||||
data[i] = __builtin_nontemporal_load(*recv_buffer + thread);
|
||||
*recv_buffer += kAtomStride;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Int4 symmetric quantization codec.
|
||||
// We quantize the FP16 data to block-scaled Int4 in blocks of 4 *
|
||||
// kThreadGroupSize.
|
||||
template <typename T, int world_size>
|
||||
struct CodecQ4 : public CodecBase {
|
||||
static constexpr int kWorldSize = world_size;
|
||||
|
||||
// Codec tile size process by this workgroup.
|
||||
// Each threads processes a fragment of fp16x8_t (16B),
|
||||
// into a int4x8_t (4B) and a fp16 scale shared among 32 values.
|
||||
static constexpr int kRankAtoms = kAtoms / kWorldSize;
|
||||
static constexpr int kRankTileStride = 1152;
|
||||
static constexpr int kRankTileScaleOffset = 1024;
|
||||
static constexpr int kRankTransmittedTileSize = kRankTileStride * kRankAtoms;
|
||||
static_assert(kRankTransmittedTileSize % 16 == 0,
|
||||
"kRankTransmittedTileSize must be 16B aligned.");
|
||||
|
||||
static constexpr int kRankBufferTileStride =
|
||||
kRankTileStride / sizeof(int32x4_t);
|
||||
|
||||
// Total tile size for the collective communication.
|
||||
static constexpr int kTransmittedTileSize =
|
||||
kRankTransmittedTileSize * kWorldSize;
|
||||
|
||||
// Constants configuration
|
||||
|
||||
// {-1/8.0h, -1/8.0h}, f16x2_t
|
||||
static constexpr int kScaleFactor =
|
||||
std::is_same<T, half>::value ? 0xB000B000 : 0xBE00BE00;
|
||||
|
||||
// {1e-7, 1e-7}, f16x2_t
|
||||
static constexpr int kScaleEpsilon =
|
||||
std::is_same<T, half>::value ? 0x00010001 : 0x33D733D7;
|
||||
|
||||
// {-8, -8}, f16x2_t
|
||||
static constexpr int kRangeMin =
|
||||
std::is_same<T, half>::value ? 0xC800C800 : 0xC100C100;
|
||||
|
||||
// {+7, +7}, f16x2_t
|
||||
static constexpr int kRangeMax =
|
||||
std::is_same<T, half>::value ? 0x47004700 : 0x40E040E0;
|
||||
|
||||
// {+8, +8}, int16x2_t
|
||||
static constexpr int kRangeBias = 0x00080008;
|
||||
|
||||
__quickreduce_device_inline__ CodecQ4(int thread, int rank)
|
||||
: CodecBase(thread, rank) {}
|
||||
|
||||
__quickreduce_device_inline__ void send(int32x4_t* __restrict__ send_buffer,
|
||||
const int32x4_t* __restrict__ data) {
|
||||
for (int k = 0; k < kRankAtoms; k++) {
|
||||
int32x4_t const atom = data[k];
|
||||
|
||||
// Compute the absolute maximum of the atom in the thread group
|
||||
// In 2 blocks of values, upper/lower halves of the f16x2_t
|
||||
int wblockmax = group_abs_max<T>(atom);
|
||||
|
||||
// Derive scales
|
||||
int decoding_scale;
|
||||
int encoding_scale;
|
||||
decoding_scale = packed_mul<T>(wblockmax, kScaleFactor);
|
||||
encoding_scale = packed_add<T>(decoding_scale, kScaleEpsilon);
|
||||
encoding_scale = packed_rcp<T>(encoding_scale);
|
||||
|
||||
// Apply scales to get quantized values
|
||||
int32x4_t w;
|
||||
for (int i = 0; i < 4; i++) {
|
||||
w[i] = packed_mul<T>(atom[i], encoding_scale);
|
||||
w[i] = packed_max<T>(w[i], kRangeMin);
|
||||
w[i] = packed_min<T>(w[i], kRangeMax);
|
||||
}
|
||||
|
||||
// Convert from f16x2_t to uint16x2_t
|
||||
int32x4_t q;
|
||||
{
|
||||
int16_t* qi = reinterpret_cast<int16_t*>(&q);
|
||||
T* wh = reinterpret_cast<T*>(&w);
|
||||
for (int i = 0; i < 8; i++) qi[i] = (int16_t)rintf(T2float_cast(wh[i]));
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
q[i] = packed_add<int16_t>(q[i], kRangeBias);
|
||||
}
|
||||
}
|
||||
|
||||
// Pack 8 x q4 into int32_t
|
||||
int qw = q[0] | (q[1] << 4) | (q[2] << 8) | (q[3] << 12);
|
||||
|
||||
// Write quantized atom to send_buffer
|
||||
// note: only the group leader stores the scale
|
||||
uint8_t* atom_ptr =
|
||||
reinterpret_cast<uint8_t*>(send_buffer + k * kRankBufferTileStride);
|
||||
int32_t* qw_ptr = reinterpret_cast<int32_t*>(atom_ptr) + thread;
|
||||
int* qs_ptr = reinterpret_cast<int*>(atom_ptr + kRankTileScaleOffset) +
|
||||
(thread / 8);
|
||||
|
||||
__builtin_nontemporal_store(qw, qw_ptr);
|
||||
if (threadIdx.x == group_leader) {
|
||||
__builtin_nontemporal_store(decoding_scale, qs_ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__quickreduce_device_inline__ void recv(int32x4_t** __restrict__ recv_buffer,
|
||||
int32x4_t* __restrict__ data) {
|
||||
for (int k = 0; k < kRankAtoms; k++) {
|
||||
// Directly read quantized atom from recv_buffer
|
||||
uint8_t* atom_ptr = reinterpret_cast<uint8_t*>(*recv_buffer);
|
||||
int32_t* qw_ptr = reinterpret_cast<int32_t*>(atom_ptr) + thread;
|
||||
int* qs_ptr = reinterpret_cast<int*>(atom_ptr + kRankTileScaleOffset) +
|
||||
(thread / 8);
|
||||
|
||||
int32_t qw = __builtin_nontemporal_load(qw_ptr);
|
||||
int qs = __builtin_nontemporal_load(qs_ptr);
|
||||
|
||||
*recv_buffer += kRankBufferTileStride;
|
||||
|
||||
// Unpack q4 into f16x8_t
|
||||
int32x4_t w;
|
||||
{
|
||||
static constexpr uint kMask000F = 0x000F000F;
|
||||
static constexpr uint kHalf2_1024 =
|
||||
0x64006400; // {1024.0, 1024.0}, fp16x2_t
|
||||
static uint constexpr kHalf2_1032 =
|
||||
0xE408E408; // {-1032.0, -1032.0}, fp16x2_t
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if constexpr (std::is_same<T, half>::value) {
|
||||
int32_t q4 = ((qw >> (i * 4)) & kMask000F) | kHalf2_1024;
|
||||
w[i] = packed_add<half>(q4, kHalf2_1032);
|
||||
} else {
|
||||
int32_t int16_2 = (qw >> (i * 4)) & kMask000F;
|
||||
int16_t low = static_cast<int16_t>(int16_2 & 0xFFFF);
|
||||
int16_t high = static_cast<int16_t>((int16_2 >> 16) & 0xFFFF);
|
||||
nv_bfloat16 bf_low = __float2bfloat16(static_cast<float>(low));
|
||||
nv_bfloat16 bf_high = __float2bfloat16(static_cast<float>(high));
|
||||
nv_bfloat162 bf2 = __halves2bfloat162(bf_low, bf_high);
|
||||
int32_t packed_bf16 = *reinterpret_cast<int32_t*>(&bf2);
|
||||
w[i] = packed_add<nv_bfloat16>(packed_bf16, kRangeMin);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply decoding scales
|
||||
for (int i = 0; i < 4; i++) {
|
||||
w[i] = packed_mul<T>(w[i], qs);
|
||||
}
|
||||
|
||||
data[k] = w;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Int6 symmetric quantization codec.
|
||||
// We quantize the FP16 data to block-scaled Int6 in blocks of 4 *
|
||||
// kThreadGroupSize.
|
||||
template <typename T, int world_size>
|
||||
struct CodecQ6 : public CodecBase {
|
||||
static constexpr int kWorldSize = world_size;
|
||||
|
||||
// Codec tile size process by this workgroup.
|
||||
// Each threads processes a fragment of fp16x8_t (16B),
|
||||
// into a int6x8_t (4B + 2B) and a fp16 scale shared among 32 values.
|
||||
static constexpr int kRankAtoms = kAtoms / kWorldSize;
|
||||
static constexpr int kRankTileStride = 1664;
|
||||
static constexpr int kRankTileQ2Offset = 1024;
|
||||
static constexpr int kRankTileScaleOffset = 1536;
|
||||
static constexpr int kRankTransmittedTileSize = kRankTileStride * kRankAtoms;
|
||||
static_assert(kRankTransmittedTileSize % 16 == 0,
|
||||
"kRankTransmittedTileSize must be 16B aligned.");
|
||||
|
||||
static constexpr int kRankBufferTileStride =
|
||||
kRankTileStride / sizeof(int32x4_t);
|
||||
|
||||
// Total tile size for the collective communication.
|
||||
static constexpr int kTransmittedTileSize =
|
||||
kRankTransmittedTileSize * kWorldSize;
|
||||
|
||||
// Constants configuration
|
||||
|
||||
// {-1/32.0h, -1/32.0h}, fp16x2_t
|
||||
static constexpr int kScaleFactor =
|
||||
std::is_same<T, half>::value ? 0xA800A800 : 0xBD00BD00;
|
||||
|
||||
// {1e-7, 1e-7}, fp16x2_t
|
||||
static constexpr int kScaleEpsilon =
|
||||
std::is_same<T, half>::value ? 0x00010001 : 0x33D733D7;
|
||||
|
||||
// {-32, -32}, fp16x2_t
|
||||
static constexpr int kRangeMin =
|
||||
std::is_same<T, half>::value ? 0xD000D000 : 0xC200C200;
|
||||
|
||||
// {+31, +31}, fp16x2_t
|
||||
static constexpr int kRangeMax =
|
||||
std::is_same<T, half>::value ? 0x4FC04FC0 : 0x41F841F8;
|
||||
|
||||
// {+32, +32}, int16x2_t
|
||||
static constexpr int kRangeBias = 0x00200020;
|
||||
|
||||
__quickreduce_device_inline__ CodecQ6(int thread, int rank)
|
||||
: CodecBase(thread, rank) {}
|
||||
|
||||
__quickreduce_device_inline__ void send(int32x4_t* __restrict__ send_buffer,
|
||||
const int32x4_t* __restrict__ data) {
|
||||
for (int k = 0; k < kRankAtoms; k++) {
|
||||
int32x4_t const atom = data[k];
|
||||
|
||||
// Compute the absolute maximum of the atom in the thread group
|
||||
// In 2 blocks of values, upper/lower halves of the f16x2_t
|
||||
int wblockmax = group_abs_max<T>(atom);
|
||||
|
||||
// Derive scales
|
||||
int decoding_scale;
|
||||
int encoding_scale;
|
||||
decoding_scale = packed_mul<T>(wblockmax, kScaleFactor);
|
||||
encoding_scale = packed_add<T>(decoding_scale, kScaleEpsilon);
|
||||
encoding_scale = packed_rcp<T>(encoding_scale);
|
||||
|
||||
// Apply scales to get quantized values
|
||||
int32x4_t w;
|
||||
for (int i = 0; i < 4; i++) {
|
||||
w[i] = packed_mul<T>(atom[i], encoding_scale);
|
||||
w[i] = packed_max<T>(w[i], kRangeMin);
|
||||
w[i] = packed_min<T>(w[i], kRangeMax);
|
||||
}
|
||||
|
||||
// Convert from f16x2_t to uint16x2_t
|
||||
int32x4_t q;
|
||||
{
|
||||
int16_t* qi = reinterpret_cast<int16_t*>(&q);
|
||||
T* wh = reinterpret_cast<T*>(&w);
|
||||
for (int i = 0; i < 8; i++) qi[i] = (int16_t)rintf(T2float_cast(wh[i]));
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
q[i] = packed_add<int16_t>(q[i], kRangeBias);
|
||||
}
|
||||
}
|
||||
|
||||
// Pack 8 x q6 into int32_t + int16_t
|
||||
uint32_t q4w;
|
||||
uint16_t q2w = 0;
|
||||
q4w = (q[0] & 0x000F000F) | ((q[1] & 0x000F000F) << 4) |
|
||||
((q[2] & 0x000F000F) << 8) | ((q[3] & 0x000F000F) << 12);
|
||||
{
|
||||
int16_t* tw = reinterpret_cast<int16_t*>(&q);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 8; i++) {
|
||||
q2w |= (tw[i] >> 4) << (i * 2);
|
||||
}
|
||||
}
|
||||
// Write quantized atom to send_buffer
|
||||
// note: only the group leader stores the scale
|
||||
uint8_t* atom_ptr =
|
||||
reinterpret_cast<uint8_t*>(send_buffer + k * kRankBufferTileStride);
|
||||
uint32_t* q4w_ptr = reinterpret_cast<uint32_t*>(atom_ptr) + thread;
|
||||
uint16_t* q2w_ptr =
|
||||
reinterpret_cast<uint16_t*>(atom_ptr + kRankTileQ2Offset) + thread;
|
||||
int* qs_ptr = reinterpret_cast<int*>(atom_ptr + kRankTileScaleOffset) +
|
||||
(thread / 8);
|
||||
|
||||
__builtin_nontemporal_store(q4w, q4w_ptr);
|
||||
__builtin_nontemporal_store(q2w, q2w_ptr);
|
||||
if (threadIdx.x == group_leader) {
|
||||
__builtin_nontemporal_store(decoding_scale, qs_ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__quickreduce_device_inline__ void recv(int32x4_t** __restrict__ recv_buffer,
|
||||
int32x4_t* __restrict__ data) {
|
||||
for (int k = 0; k < kRankAtoms; k++) {
|
||||
// Directly read quantized atom from recv_buffer
|
||||
uint8_t* atom_ptr = reinterpret_cast<uint8_t*>(*recv_buffer);
|
||||
uint32_t* q4w_ptr = reinterpret_cast<uint32_t*>(atom_ptr) + thread;
|
||||
uint16_t* q2w_ptr =
|
||||
reinterpret_cast<uint16_t*>(atom_ptr + kRankTileQ2Offset) + thread;
|
||||
int* qs_ptr = reinterpret_cast<int*>(atom_ptr + kRankTileScaleOffset) +
|
||||
(thread / 8);
|
||||
|
||||
uint32_t q4w = __builtin_nontemporal_load(q4w_ptr);
|
||||
uint16_t q2w = __builtin_nontemporal_load(q2w_ptr);
|
||||
int qs = __builtin_nontemporal_load(qs_ptr);
|
||||
|
||||
*recv_buffer += kRankBufferTileStride;
|
||||
|
||||
// Unpack q6 into fp16x8_t
|
||||
int32x4_t w;
|
||||
{
|
||||
static uint constexpr kMask000F = 0x000F000F;
|
||||
static uint constexpr kHalf2_1024 =
|
||||
0x64006400; // {1024.0, 1024.0}, fp16x2_t
|
||||
static uint constexpr kHalf2_1056 =
|
||||
0xE420E420; // {-1056.0, -1056.0}, fp16x2_t
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; i++) {
|
||||
int32_t q4 = q4w & kMask000F;
|
||||
int32_t q2 = (q2w & 0x3) | ((q2w & 0xC) << 14);
|
||||
q4w >>= 4;
|
||||
q2w >>= 4;
|
||||
if constexpr (std::is_same<T, half>::value) {
|
||||
int32_t q6 = q4 | (q2 << 4) | kHalf2_1024;
|
||||
asm volatile("v_pk_add_f16 %0, %1, %2"
|
||||
: "=v"(w[i])
|
||||
: "v"(q6), "v"(kHalf2_1056));
|
||||
} else {
|
||||
int32_t int16_2 = q4 | (q2 << 4);
|
||||
int16_t low = static_cast<int16_t>(int16_2 & 0xFFFF);
|
||||
int16_t high = static_cast<int16_t>((int16_2 >> 16) & 0xFFFF);
|
||||
|
||||
nv_bfloat16 bf_low = __float2bfloat16(static_cast<float>(low));
|
||||
nv_bfloat16 bf_high = __float2bfloat16(static_cast<float>(high));
|
||||
nv_bfloat162 bf2 = __halves2bfloat162(bf_low, bf_high);
|
||||
int32_t packed_bf16 = *reinterpret_cast<int32_t*>(&bf2);
|
||||
w[i] = packed_add<nv_bfloat16>(packed_bf16, kRangeMin);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply decoding scales
|
||||
for (int i = 0; i < 4; i++) {
|
||||
w[i] = packed_mul<T>(w[i], qs);
|
||||
}
|
||||
|
||||
// That's pretty much it...
|
||||
data[k] = w;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Int8 symmetric quantization codec.
|
||||
// We quantize the FP16 data to block-scaled Int8 in blocks of 4 *
|
||||
// kThreadGroupSize.
|
||||
template <typename T, int world_size>
|
||||
struct CodecQ8 : public CodecBase {
|
||||
static constexpr int kWorldSize = world_size;
|
||||
|
||||
// Codec tile size process by this workgroup.
|
||||
// Each threads processes a fragment of f16x8_t (16B),
|
||||
// into a int8x8_t (8B) and a f16 scale shared among 32 values.
|
||||
static constexpr int kRankAtoms = kAtoms / kWorldSize;
|
||||
static constexpr int kRankTileStride = 2176;
|
||||
static constexpr int kRankTileScaleOffset = 2048;
|
||||
static constexpr int kRankTransmittedTileSize = kRankTileStride * kRankAtoms;
|
||||
static_assert(kRankTransmittedTileSize % 16 == 0,
|
||||
"kRankTileSize must be 16B aligned.");
|
||||
|
||||
static constexpr int kRankBufferTileStride =
|
||||
kRankTileStride / sizeof(int32x4_t);
|
||||
|
||||
// Total tile size for the collective communication.
|
||||
static constexpr int kTransmittedTileSize =
|
||||
kRankTransmittedTileSize * kWorldSize;
|
||||
|
||||
// Constants configuration
|
||||
|
||||
// {-1/128.0h, -1/128.0h}, f16x2_t
|
||||
static constexpr int kScaleFactor =
|
||||
std::is_same<T, half>::value ? 0xA000A000 : 0xBC00BC00;
|
||||
|
||||
// {1e-7, 1e-7}, f16x2_t
|
||||
static constexpr int kScaleEpsilon =
|
||||
std::is_same<T, half>::value ? 0x00010001 : 0x33D733D7;
|
||||
|
||||
// {-128, -128}, f16x2_t
|
||||
static constexpr int kRangeMin =
|
||||
std::is_same<T, half>::value ? 0xD800D800 : 0xC300C300;
|
||||
// {+127, +127}, f16x2_t
|
||||
static constexpr int kRangeMax =
|
||||
std::is_same<T, half>::value ? 0x57F057F0 : 0x42FE42FE;
|
||||
|
||||
// {+128, +128}, int16x2_t
|
||||
static constexpr int kRangeBias = 0x00800080;
|
||||
|
||||
__quickreduce_device_inline__ CodecQ8(int thread, int rank)
|
||||
: CodecBase(thread, rank) {}
|
||||
|
||||
__quickreduce_device_inline__ void send(int32x4_t* __restrict__ send_buffer,
|
||||
int32x4_t const* __restrict__ data) {
|
||||
for (int k = 0; k < kRankAtoms; k++) {
|
||||
int32x4_t const atom = data[k];
|
||||
// Compute the absolute maximum of the atom in the thread group
|
||||
// In 2 blocks of values, upper/lower halves of the f16x2_t
|
||||
int wblockmax = group_abs_max<T>(atom);
|
||||
|
||||
// Derive scales
|
||||
int decoding_scale;
|
||||
int encoding_scale;
|
||||
decoding_scale = packed_mul<T>(wblockmax, kScaleFactor);
|
||||
encoding_scale = packed_add<T>(decoding_scale, kScaleEpsilon);
|
||||
encoding_scale = packed_rcp<T>(encoding_scale);
|
||||
|
||||
// Apply scales to get quantized values
|
||||
int32x4_t w;
|
||||
for (int i = 0; i < 4; i++) {
|
||||
w[i] = packed_mul<T>(atom[i], encoding_scale);
|
||||
w[i] = packed_max<T>(w[i], kRangeMin);
|
||||
w[i] = packed_min<T>(w[i], kRangeMax);
|
||||
}
|
||||
|
||||
// Convert from f16x2_t to uint16x2_t
|
||||
int32x4_t q;
|
||||
{
|
||||
int16_t* qi = reinterpret_cast<int16_t*>(&q);
|
||||
T* wh = reinterpret_cast<T*>(&w);
|
||||
for (int i = 0; i < 8; i++) qi[i] = (int16_t)rintf(T2float_cast(wh[i]));
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
q[i] = packed_add<int16_t>(q[i], kRangeBias);
|
||||
}
|
||||
}
|
||||
|
||||
// Pack 8 x q8 into int32x2_t
|
||||
int32x2_t qw;
|
||||
qw[0] = q[0] | (q[1] << 8);
|
||||
qw[1] = q[2] | (q[3] << 8);
|
||||
|
||||
// Write quantized atom to send_buffer
|
||||
// note: only the group leader stores the scale
|
||||
uint8_t* atom_ptr =
|
||||
reinterpret_cast<uint8_t*>(send_buffer + k * kRankBufferTileStride);
|
||||
int32x2_t* qw_ptr = reinterpret_cast<int32x2_t*>(atom_ptr) + thread;
|
||||
int* qs_ptr = reinterpret_cast<int*>(atom_ptr + kRankTileScaleOffset) +
|
||||
(thread / 8);
|
||||
|
||||
__builtin_nontemporal_store(qw, qw_ptr);
|
||||
if (threadIdx.x == group_leader) {
|
||||
__builtin_nontemporal_store(decoding_scale, qs_ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__quickreduce_device_inline__ void recv(int32x4_t** __restrict__ recv_buffer,
|
||||
int32x4_t* __restrict__ data) {
|
||||
for (int k = 0; k < kRankAtoms; k++) {
|
||||
// Directly read quantized atom from recv_buffer
|
||||
uint8_t* atom_ptr = reinterpret_cast<uint8_t*>(*recv_buffer);
|
||||
int32x2_t* qw_ptr = reinterpret_cast<int32x2_t*>(atom_ptr) + thread;
|
||||
int* qs_ptr = reinterpret_cast<int*>(atom_ptr + kRankTileScaleOffset) +
|
||||
(thread / 8);
|
||||
|
||||
int32x2_t qw = __builtin_nontemporal_load(qw_ptr);
|
||||
int qs = __builtin_nontemporal_load(qs_ptr);
|
||||
|
||||
*recv_buffer += kRankBufferTileStride;
|
||||
|
||||
// Unpack q8 into fp16x8_t
|
||||
int32x4_t w;
|
||||
{
|
||||
static uint constexpr kMask00FF = 0x00FF00FF;
|
||||
|
||||
// {1024.0, 1024.0}, fp16x2_t
|
||||
static uint constexpr kHalf2_1024 = 0x64006400;
|
||||
|
||||
// {-1152.0, -1152.0}, fp16x2_t
|
||||
static uint constexpr kHalf2_1152 = 0xE480E480;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if constexpr (std::is_same<T, half>::value) {
|
||||
int32_t q8 =
|
||||
((qw[i / 2] >> ((i % 2) * 8)) & kMask00FF) | kHalf2_1024;
|
||||
w[i] = packed_add<half>(q8, kHalf2_1152);
|
||||
} else {
|
||||
int32_t int16_2 = (qw[i / 2] >> ((i % 2) * 8)) & kMask00FF;
|
||||
int16_t low = static_cast<int16_t>(int16_2 & 0xFFFF);
|
||||
int16_t high = static_cast<int16_t>((int16_2 >> 16) & 0xFFFF);
|
||||
nv_bfloat16 bf_low = __float2bfloat16(static_cast<float>(low));
|
||||
nv_bfloat16 bf_high = __float2bfloat16(static_cast<float>(high));
|
||||
nv_bfloat162 bf2 = __halves2bfloat162(bf_low, bf_high);
|
||||
int32_t packed_bf16 = *reinterpret_cast<int32_t*>(&bf2);
|
||||
w[i] = packed_add<nv_bfloat16>(packed_bf16, kRangeMin);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply decoding scales
|
||||
for (int i = 0; i < 4; i++) {
|
||||
w[i] = packed_mul<T>(w[i], qs);
|
||||
}
|
||||
|
||||
data[k] = w;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Twoshot All Reduce
|
||||
template <typename T, class Codec, bool cast_bf2half>
|
||||
struct AllReduceTwoshot {
|
||||
static_assert(sizeof(T) == 2);
|
||||
|
||||
static constexpr int kWorldSize = Codec::kWorldSize;
|
||||
|
||||
__device__ static void run(
|
||||
T const* __restrict__ input, T* __restrict__ output,
|
||||
uint32_t const N, // number of elements
|
||||
int const block, // block index
|
||||
int const rank, // rank index
|
||||
uint8_t** __restrict__ buffer_list, // communication buffers
|
||||
uint32_t const data_offset, // offset to start of the data buffer
|
||||
uint32_t flag_color) {
|
||||
// Topology
|
||||
int thread = threadIdx.x + threadIdx.y * kWavefront;
|
||||
uint8_t* rank_buffer = buffer_list[rank];
|
||||
Codec codec(thread, rank);
|
||||
int block_id = blockIdx.x;
|
||||
int grid_size = gridDim.x;
|
||||
// --------------------------------------------------------
|
||||
// Read input into registers
|
||||
int32x4_t tA[kAtoms];
|
||||
|
||||
BufferResource src_buffer(const_cast<T*>(input), N * sizeof(T));
|
||||
uint32_t src_offset = block * kTileSize + thread * sizeof(int32x4_t);
|
||||
|
||||
for (int i = 0; i < kAtoms; i++) {
|
||||
tA[i] = buffer_load_dwordx4(src_buffer.descriptor, src_offset, 0, 0);
|
||||
src_offset += kAtomStride * sizeof(int32x4_t);
|
||||
if constexpr (cast_bf2half) {
|
||||
const nv_bfloat162* bf_buf =
|
||||
reinterpret_cast<const nv_bfloat162*>(&tA[i]);
|
||||
half2 half_buf[4];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
float2 f = __bfloat1622float2(bf_buf[j]);
|
||||
half_buf[j] = __float22half2_rn(f);
|
||||
}
|
||||
tA[i] = *reinterpret_cast<const int32x4_t*>(half_buf);
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------------------------
|
||||
// Phase-1A: Write segment data into the communication buffer of the target
|
||||
// rank responsible for this segment.
|
||||
uint32_t comm_data0_offset =
|
||||
data_offset + block_id * Codec::kTransmittedTileSize;
|
||||
uint32_t comm_data1_offset =
|
||||
grid_size * Codec::kTransmittedTileSize + comm_data0_offset;
|
||||
|
||||
uint32_t comm_flags0_offset = block_id * (kWorldSize * sizeof(uint32_t));
|
||||
uint32_t comm_flags1_offset =
|
||||
grid_size * (kWorldSize * sizeof(uint32_t)) + comm_flags0_offset;
|
||||
|
||||
for (int r = 0; r < kWorldSize; r++) {
|
||||
int32x4_t* send_buffer =
|
||||
reinterpret_cast<int32x4_t*>(buffer_list[r] + comm_data0_offset +
|
||||
rank * Codec::kRankTransmittedTileSize);
|
||||
codec.send(send_buffer, &tA[r * Codec::kRankAtoms]);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
if (thread < kWorldSize) {
|
||||
int r = thread;
|
||||
uint32_t* flag_ptr = reinterpret_cast<uint32_t*>(
|
||||
buffer_list[r] + comm_flags0_offset + rank * sizeof(uint32_t));
|
||||
set_sync_flag(flag_ptr, flag_color);
|
||||
}
|
||||
// --------------------------------------------------------
|
||||
// Phase-1B: Reduce the segment data from the communication buffers.
|
||||
int32x4_t tR[Codec::kRankAtoms] = {};
|
||||
{
|
||||
// Read the data from the communication buffer.
|
||||
int32x4_t* recv_buffer =
|
||||
reinterpret_cast<int32x4_t*>(rank_buffer + comm_data0_offset);
|
||||
uint32_t* flag_ptr =
|
||||
reinterpret_cast<uint32_t*>(rank_buffer + comm_flags0_offset);
|
||||
|
||||
for (int r = 0; r < kWorldSize; r++) {
|
||||
// Wait for the flags to be set.
|
||||
if (thread == 0) {
|
||||
wait_sync_flag(&flag_ptr[r], flag_color);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// note: we reuse tA as temp buffer here
|
||||
codec.recv(&recv_buffer, tA);
|
||||
|
||||
for (int i = 0; i < Codec::kRankAtoms; i++) {
|
||||
packed_assign_add<T>(&tR[i], &tA[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Phase-2: Write the reduced segment to every other rank
|
||||
for (int r = 0; r < kWorldSize; r++) {
|
||||
int32x4_t* send_buffer =
|
||||
reinterpret_cast<int32x4_t*>(buffer_list[r] + comm_data1_offset +
|
||||
rank * Codec::kRankTransmittedTileSize);
|
||||
codec.send(send_buffer, tR);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
if (thread < kWorldSize) {
|
||||
int r = thread;
|
||||
uint32_t* flag_ptr = reinterpret_cast<uint32_t*>(
|
||||
buffer_list[r] + comm_flags1_offset + rank * sizeof(uint32_t));
|
||||
set_sync_flag(flag_ptr, flag_color);
|
||||
}
|
||||
|
||||
// Phase-2: Read the gather segments from the rank's communication buffer.
|
||||
{
|
||||
// Read the data from the communication buffer.
|
||||
int32x4_t* recv_buffer =
|
||||
reinterpret_cast<int32x4_t*>(rank_buffer + comm_data1_offset);
|
||||
uint32_t* flag_ptr =
|
||||
reinterpret_cast<uint32_t*>(rank_buffer + comm_flags1_offset);
|
||||
|
||||
for (int r = 0; r < kWorldSize; r++) {
|
||||
// Wait for the flags to be set.
|
||||
if (thread == 0) {
|
||||
wait_sync_flag(&flag_ptr[r], flag_color);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Gather all reduced and final rank segments into tA.
|
||||
codec.recv(&recv_buffer, &tA[r * Codec::kRankAtoms]);
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------------------------
|
||||
// Write the result to output.
|
||||
BufferResource dst_buffer(output, N * sizeof(T));
|
||||
uint32_t dst_offset = block * kTileSize + thread * sizeof(int32x4_t);
|
||||
|
||||
for (int i = 0; i < kAtoms; i++) {
|
||||
if constexpr (cast_bf2half) {
|
||||
const half2* half_buf = reinterpret_cast<const half2*>(&tA[i]);
|
||||
nv_bfloat162 bf16_buf[4];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
float2 f = __half22float2(half_buf[j]);
|
||||
bf16_buf[j] = __float22bfloat162_rn(f);
|
||||
}
|
||||
buffer_store_dwordx4(*reinterpret_cast<const int32x4_t*>(bf16_buf),
|
||||
dst_buffer.descriptor, dst_offset, 0, 0);
|
||||
} else {
|
||||
buffer_store_dwordx4(tA[i], dst_buffer.descriptor, dst_offset, 0, 0);
|
||||
}
|
||||
dst_offset += kAtomStride * sizeof(int32x4_t);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace quickreduce
|
||||
@ -1598,7 +1598,6 @@ __launch_bounds__(NUM_THREADS, 3) void paged_attention_ll4mi_QKV_mfma16_kernel(
|
||||
const int warpid = threadIdx.x / WARP_SIZE;
|
||||
const int laneid = threadIdx.x % WARP_SIZE;
|
||||
const int lane2id = laneid % 2;
|
||||
const int lane4id = laneid % 4;
|
||||
const int lane16id = laneid % 16;
|
||||
const int rowid = laneid / 16;
|
||||
|
||||
@ -1745,7 +1744,6 @@ __launch_bounds__(NUM_THREADS, 3) void paged_attention_ll4mi_QKV_mfma16_kernel(
|
||||
const cache_t* k_ptr2 = k_ptr + kblock_number * kv_block_stride;
|
||||
const int klocal_token_idx =
|
||||
TOKENS_PER_WARP * warpid + token_depth * 16 + lane16id;
|
||||
const int kglobal_token_idx = partition_start_token_idx + klocal_token_idx;
|
||||
const int kphysical_block_offset = klocal_token_idx % BLOCK_SIZE;
|
||||
const cache_t* k_ptr3 = k_ptr2 + kphysical_block_offset * KX;
|
||||
|
||||
@ -2368,7 +2366,6 @@ __launch_bounds__(NUM_THREADS, 3) void paged_attention_ll4mi_QKV_mfma16_kernel(
|
||||
const int warpid = threadIdx.x / WARP_SIZE;
|
||||
const int laneid = threadIdx.x % WARP_SIZE;
|
||||
const int lane2id = laneid % 2;
|
||||
const int lane4id = laneid % 4;
|
||||
const int lane16id = laneid % 16;
|
||||
const int rowid = laneid / 16;
|
||||
|
||||
@ -2514,7 +2511,6 @@ __launch_bounds__(NUM_THREADS, 3) void paged_attention_ll4mi_QKV_mfma16_kernel(
|
||||
const cache_t* k_ptr2 = k_ptr + kblock_number * kv_block_stride;
|
||||
const int klocal_token_idx =
|
||||
TOKENS_PER_WARP * warpid + token_depth * 16 + lane16id;
|
||||
const int kglobal_token_idx = partition_start_token_idx + klocal_token_idx;
|
||||
const int kphysical_block_offset = klocal_token_idx % BLOCK_SIZE;
|
||||
const cache_t* k_ptr3 = k_ptr2 + kphysical_block_offset * KX;
|
||||
|
||||
|
||||
@ -725,6 +725,24 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _custom_ar), custom_ar) {
|
||||
custom_ar.impl("open_mem_handle", torch::kCPU, &open_mem_handle);
|
||||
|
||||
custom_ar.def("free_shared_buffer", &free_shared_buffer);
|
||||
#ifdef USE_ROCM
|
||||
// Quick Reduce all-reduce kernels
|
||||
custom_ar.def(
|
||||
"qr_all_reduce(int fa, Tensor inp, Tensor out, int quant_level, bool "
|
||||
"cast_bf2half) -> ()");
|
||||
custom_ar.impl("qr_all_reduce", torch::kCUDA, &qr_all_reduce);
|
||||
|
||||
custom_ar.def("init_custom_qr", &init_custom_qr);
|
||||
custom_ar.def("qr_destroy", &qr_destroy);
|
||||
|
||||
custom_ar.def("qr_get_handle", &qr_get_handle);
|
||||
|
||||
custom_ar.def("qr_open_handles(int _fa, Tensor[](b!) handles) -> ()");
|
||||
custom_ar.impl("qr_open_handles", torch::kCPU, &qr_open_handles);
|
||||
|
||||
// Max input size in bytes
|
||||
custom_ar.def("qr_max_size", &qr_max_size);
|
||||
#endif
|
||||
}
|
||||
|
||||
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|
||||
|
||||
@ -6,30 +6,106 @@
|
||||
# docs/assets/contributing/dockerfile-stages-dependency.png
|
||||
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
|
||||
# By parameterizing the base images, we allow third-party to use their own
|
||||
# base images. One use case is hermetic builds with base images stored in
|
||||
# private registries that use a different repository naming conventions.
|
||||
#
|
||||
# Example:
|
||||
# docker build --build-arg BUILD_BASE_IMAGE=registry.acme.org/mirror/nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
|
||||
ARG BUILD_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
|
||||
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
|
||||
|
||||
# By parameterizing the Deadsnakes repository URL, we allow third-party to use
|
||||
# their own mirror. When doing so, we don't benefit from the transparent
|
||||
# installation of the GPG key of the PPA, as done by add-apt-repository, so we
|
||||
# also need a URL for the GPG key.
|
||||
ARG DEADSNAKES_MIRROR_URL
|
||||
ARG DEADSNAKES_GPGKEY_URL
|
||||
|
||||
# The PyPA get-pip.py script is a self contained script+zip file, that provides
|
||||
# both the installer script and the pip base85-encoded zip archive. This allows
|
||||
# bootstrapping pip in environment where a dsitribution package does not exist.
|
||||
#
|
||||
# By parameterizing the URL for get-pip.py installation script, we allow
|
||||
# third-party to use their own copy of the script stored in a private mirror.
|
||||
# We set the default value to the PyPA owned get-pip.py script.
|
||||
#
|
||||
# Reference: https://pip.pypa.io/en/stable/installation/#get-pip-py
|
||||
ARG GET_PIP_URL="https://bootstrap.pypa.io/get-pip.py"
|
||||
|
||||
# PIP supports fetching the packages from custom indexes, allowing third-party
|
||||
# to host the packages in private mirrors. The PIP_INDEX_URL and
|
||||
# PIP_EXTRA_INDEX_URL are standard PIP environment variables to override the
|
||||
# default indexes. By letting them empty by default, PIP will use its default
|
||||
# indexes if the build process doesn't override the indexes.
|
||||
#
|
||||
# Uv uses different variables. We set them by default to the same values as
|
||||
# PIP, but they can be overridden.
|
||||
ARG PIP_INDEX_URL
|
||||
ARG PIP_EXTRA_INDEX_URL
|
||||
ARG UV_INDEX_URL=${PIP_INDEX_URL}
|
||||
ARG UV_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
|
||||
# PyTorch provides its own indexes for standard and nightly builds
|
||||
ARG PYTORCH_CUDA_INDEX_BASE_URL=https://download.pytorch.org/whl
|
||||
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL=https://download.pytorch.org/whl/nightly
|
||||
|
||||
# PIP supports multiple authentication schemes, including keyring
|
||||
# By parameterizing the PIP_KEYRING_PROVIDER variable and setting it to
|
||||
# disabled by default, we allow third-party to use keyring authentication for
|
||||
# their private Python indexes, while not changing the default behavior which
|
||||
# is no authentication.
|
||||
#
|
||||
# Reference: https://pip.pypa.io/en/stable/topics/authentication/#keyring-support
|
||||
ARG PIP_KEYRING_PROVIDER=disabled
|
||||
ARG UV_KEYRING_PROVIDER=${PIP_KEYRING_PROVIDER}
|
||||
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
# prepare basic build environment
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
FROM ${BUILD_BASE_IMAGE} AS base
|
||||
ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
ARG TARGETPLATFORM
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG DEADSNAKES_MIRROR_URL
|
||||
ARG DEADSNAKES_GPGKEY_URL
|
||||
ARG GET_PIP_URL
|
||||
|
||||
# Install Python and other dependencies
|
||||
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo \
|
||||
&& for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done \
|
||||
&& if [ ! -z ${DEADSNAKES_MIRROR_URL} ] ; then \
|
||||
if [ ! -z "${DEADSNAKES_GPGKEY_URL}" ] ; then \
|
||||
mkdir -p -m 0755 /etc/apt/keyrings ; \
|
||||
curl -L ${DEADSNAKES_GPGKEY_URL} | gpg --dearmor > /etc/apt/keyrings/deadsnakes.gpg ; \
|
||||
sudo chmod 644 /etc/apt/keyrings/deadsnakes.gpg ; \
|
||||
echo "deb [signed-by=/etc/apt/keyrings/deadsnakes.gpg] ${DEADSNAKES_MIRROR_URL} $(lsb_release -cs) main" > /etc/apt/sources.list.d/deadsnakes.list ; \
|
||||
fi ; \
|
||||
else \
|
||||
for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done ; \
|
||||
fi \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
ARG PIP_INDEX_URL UV_INDEX_URL
|
||||
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
||||
ARG PYTORCH_CUDA_INDEX_BASE_URL
|
||||
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL
|
||||
ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER
|
||||
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
@ -63,21 +139,25 @@ WORKDIR /workspace
|
||||
# after this step
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 "torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319"; \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 --pre pytorch_triton==3.3.0+gitab727c40; \
|
||||
uv pip install --system \
|
||||
--index-url ${PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
|
||||
"torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319"; \
|
||||
uv pip install --system \
|
||||
--index-url ${PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
|
||||
--pre pytorch_triton==3.3.0+gitab727c40; \
|
||||
fi
|
||||
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY requirements/cuda.txt requirements/cuda.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/cuda.txt \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
|
||||
# cuda arch list used by torch
|
||||
# can be useful for both `dev` and `test`
|
||||
# explicitly set the list to avoid issues with torch 2.2
|
||||
# see https://github.com/pytorch/pytorch/pull/123243
|
||||
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0 10.0+PTX'
|
||||
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0 10.0 12.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
# Override the arch list for flash-attn to reduce the binary size
|
||||
ARG vllm_fa_cmake_gpu_arches='80-real;90-real'
|
||||
@ -88,6 +168,10 @@ ENV VLLM_FA_CMAKE_GPU_ARCHES=${vllm_fa_cmake_gpu_arches}
|
||||
FROM base AS build
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
ARG PIP_INDEX_URL UV_INDEX_URL
|
||||
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
||||
ARG PYTORCH_CUDA_INDEX_BASE_URL
|
||||
|
||||
# install build dependencies
|
||||
COPY requirements/build.txt requirements/build.txt
|
||||
|
||||
@ -98,7 +182,7 @@ ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
@ -113,6 +197,8 @@ ARG nvcc_threads=8
|
||||
ENV NVCC_THREADS=$nvcc_threads
|
||||
|
||||
ARG USE_SCCACHE
|
||||
ARG SCCACHE_DOWNLOAD_URL=https://github.com/mozilla/sccache/releases/download/v0.8.1/sccache-v0.8.1-x86_64-unknown-linux-musl.tar.gz
|
||||
ARG SCCACHE_ENDPOINT
|
||||
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
|
||||
ARG SCCACHE_REGION_NAME=us-west-2
|
||||
ARG SCCACHE_S3_NO_CREDENTIALS=0
|
||||
@ -121,10 +207,11 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" = "1" ]; then \
|
||||
echo "Installing sccache..." \
|
||||
&& curl -L -o sccache.tar.gz https://github.com/mozilla/sccache/releases/download/v0.8.1/sccache-v0.8.1-x86_64-unknown-linux-musl.tar.gz \
|
||||
&& curl -L -o sccache.tar.gz ${SCCACHE_DOWNLOAD_URL} \
|
||||
&& tar -xzf sccache.tar.gz \
|
||||
&& sudo mv sccache-v0.8.1-x86_64-unknown-linux-musl/sccache /usr/bin/sccache \
|
||||
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
|
||||
&& if [ ! -z ${SCCACHE_ENDPOINT} ] ; then export SCCACHE_ENDPOINT=${SCCACHE_ENDPOINT} ; fi \
|
||||
&& export SCCACHE_BUCKET=${SCCACHE_BUCKET_NAME} \
|
||||
&& export SCCACHE_REGION=${SCCACHE_REGION_NAME} \
|
||||
&& export SCCACHE_S3_NO_CREDENTIALS=${SCCACHE_S3_NO_CREDENTIALS} \
|
||||
@ -162,6 +249,10 @@ RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
|
||||
#################### DEV IMAGE ####################
|
||||
FROM base as dev
|
||||
|
||||
ARG PIP_INDEX_URL UV_INDEX_URL
|
||||
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
||||
ARG PYTORCH_CUDA_INDEX_BASE_URL
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
@ -176,21 +267,25 @@ COPY requirements/test.txt requirements/test.txt
|
||||
COPY requirements/dev.txt requirements/dev.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/dev.txt \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
#################### DEV IMAGE ####################
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
# image with vLLM installed
|
||||
# TODO: Restore to base image after FlashInfer AOT wheel fixed
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS vllm-base
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
FROM ${FINAL_BASE_IMAGE} AS vllm-base
|
||||
ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
WORKDIR /vllm-workspace
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
ARG DEADSNAKES_MIRROR_URL
|
||||
ARG DEADSNAKES_GPGKEY_URL
|
||||
ARG GET_PIP_URL
|
||||
|
||||
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
|
||||
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
|
||||
|
||||
@ -200,17 +295,33 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim python3-pip \
|
||||
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
|
||||
&& for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done \
|
||||
&& if [ ! -z ${DEADSNAKES_MIRROR_URL} ] ; then \
|
||||
if [ ! -z "${DEADSNAKES_GPGKEY_URL}" ] ; then \
|
||||
mkdir -p -m 0755 /etc/apt/keyrings ; \
|
||||
curl -L ${DEADSNAKES_GPGKEY_URL} | gpg --dearmor > /etc/apt/keyrings/deadsnakes.gpg ; \
|
||||
sudo chmod 644 /etc/apt/keyrings/deadsnakes.gpg ; \
|
||||
echo "deb [signed-by=/etc/apt/keyrings/deadsnakes.gpg] ${DEADSNAKES_MIRROR_URL} $(lsb_release -cs) main" > /etc/apt/sources.list.d/deadsnakes.list ; \
|
||||
fi ; \
|
||||
else \
|
||||
for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done ; \
|
||||
fi \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
ARG PIP_INDEX_URL UV_INDEX_URL
|
||||
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
||||
ARG PYTORCH_CUDA_INDEX_BASE_URL
|
||||
ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL
|
||||
ARG PIP_KEYRING_PROVIDER UV_KEYRING_PROVIDER
|
||||
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
@ -232,19 +343,23 @@ RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
||||
# after this step
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 "torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319"; \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 --pre pytorch_triton==3.3.0+gitab727c40; \
|
||||
uv pip install --system \
|
||||
--index-url ${PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
|
||||
"torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319" ; \
|
||||
uv pip install --system \
|
||||
--index-url ${PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
|
||||
--pre pytorch_triton==3.3.0+gitab727c40 ; \
|
||||
fi
|
||||
|
||||
# Install vllm wheel first, so that torch etc will be installed.
|
||||
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system dist/*.whl --verbose \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
|
||||
# If we need to build FlashInfer wheel before its release:
|
||||
# $ # Note we remove 7.0 from the arch list compared to the list below, since FlashInfer only supports sm75+
|
||||
# $ export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0a 10.0a'
|
||||
# $ export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0a 10.0a 12.0'
|
||||
# $ git clone https://github.com/flashinfer-ai/flashinfer.git --recursive
|
||||
# $ cd flashinfer
|
||||
# $ git checkout v0.2.6.post1
|
||||
@ -254,15 +369,20 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
|
||||
# -rw-rw-r-- 1 mgoin mgoin 205M Jun 9 18:03 flashinfer_python-0.2.6.post1-cp39-abi3-linux_x86_64.whl
|
||||
# $ # upload the wheel to a public location, e.g. https://wheels.vllm.ai/flashinfer/v0.2.6.post1/flashinfer_python-0.2.6.post1-cp39-abi3-linux_x86_64.whl
|
||||
|
||||
# Allow specifying a version, Git revision or local .whl file
|
||||
ARG FLASHINFER_CUDA128_INDEX_URL="https://download.pytorch.org/whl/cu128/flashinfer"
|
||||
ARG FLASHINFER_CUDA128_WHEEL="flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl"
|
||||
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
|
||||
ARG FLASHINFER_GIT_REF="v0.2.6.post1"
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
. /etc/environment && \
|
||||
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \
|
||||
# FlashInfer already has a wheel for PyTorch 2.7.0 and CUDA 12.8. This is enough for CI use
|
||||
if [[ "$CUDA_VERSION" == 12.8* ]]; then \
|
||||
uv pip install --system https://download.pytorch.org/whl/cu128/flashinfer/flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl; \
|
||||
uv pip install --system ${FLASHINFER_CUDA128_INDEX_URL}/${FLASHINFER_CUDA128_WHEEL} ; \
|
||||
else \
|
||||
export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0a 10.0a' && \
|
||||
git clone https://github.com/flashinfer-ai/flashinfer.git --single-branch --branch v0.2.6.post1 --recursive && \
|
||||
export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0a 10.0a 12.0' && \
|
||||
git clone ${FLASHINFER_GIT_REPO} --single-branch --branch ${FLASHINFER_GIT_REF} --recursive && \
|
||||
# Needed to build AOT kernels
|
||||
(cd flashinfer && \
|
||||
python3 -m flashinfer.aot && \
|
||||
@ -286,7 +406,7 @@ uv pip list
|
||||
COPY requirements/build.txt requirements/build.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
@ -297,6 +417,11 @@ FROM vllm-base AS test
|
||||
|
||||
ADD . /vllm-workspace/
|
||||
|
||||
ARG PYTHON_VERSION
|
||||
|
||||
ARG PIP_INDEX_URL UV_INDEX_URL
|
||||
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
@ -307,7 +432,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
CUDA_MAJOR="${CUDA_VERSION%%.*}"; \
|
||||
if [ "$CUDA_MAJOR" -ge 12 ]; then \
|
||||
uv pip install --system -r requirements/dev.txt; \
|
||||
@ -323,7 +448,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
ENV HF_HUB_ENABLE_HF_TRANSFER 1
|
||||
|
||||
# Copy in the v1 package for testing (it isn't distributed yet)
|
||||
COPY vllm/v1 /usr/local/lib/python3.12/dist-packages/vllm/v1
|
||||
COPY vllm/v1 /usr/local/lib/python${PYTHON_VERSION}/dist-packages/vllm/v1
|
||||
|
||||
# doc requires source code
|
||||
# we hide them inside `test_docs/` , so that this source code
|
||||
@ -340,6 +465,9 @@ RUN mv mkdocs.yaml test_docs/
|
||||
FROM vllm-base AS vllm-openai-base
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
ARG PIP_INDEX_URL UV_INDEX_URL
|
||||
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
@ -66,7 +66,7 @@ ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,src=requirements/build.txt,target=requirements/build.txt \
|
||||
--mount=type=bind,src=requirements/cpu-build.txt,target=requirements/build.txt \
|
||||
uv pip install -r requirements/build.txt
|
||||
|
||||
COPY . .
|
||||
@ -79,6 +79,22 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
|
||||
|
||||
######################### TEST DEPS #########################
|
||||
FROM base AS vllm-test-deps
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
|
||||
cp requirements/test.in requirements/cpu-test.in && \
|
||||
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
|
||||
sed -i 's/torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
|
||||
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
|
||||
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
|
||||
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install -r requirements/cpu-test.txt
|
||||
|
||||
######################### DEV IMAGE #########################
|
||||
FROM vllm-build AS vllm-dev
|
||||
|
||||
@ -97,28 +113,19 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py develop
|
||||
|
||||
COPY --from=vllm-test-deps /workspace/vllm/requirements/cpu-test.txt requirements/test.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,src=requirements/test.in,target=requirements/test.in \
|
||||
cp requirements/test.in requirements/test-cpu.in && \
|
||||
sed -i '/mamba_ssm/d' requirements/test-cpu.in && \
|
||||
uv pip compile requirements/test-cpu.in -o requirements/test.txt && \
|
||||
uv pip install -r requirements/dev.txt && \
|
||||
pre-commit install --hook-type pre-commit --hook-type commit-msg
|
||||
|
||||
ENTRYPOINT ["bash"]
|
||||
|
||||
######################### TEST IMAGE #########################
|
||||
FROM base AS vllm-test
|
||||
FROM vllm-test-deps AS vllm-test
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,src=requirements/test.in,target=requirements/test.in \
|
||||
cp requirements/test.in requirements/test-cpu.in && \
|
||||
sed -i '/mamba_ssm/d' requirements/test-cpu.in && \
|
||||
uv pip compile requirements/test-cpu.in -o requirements/cpu-test.txt && \
|
||||
uv pip install -r requirements/cpu-test.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=vllm-build,src=/workspace/vllm/dist,target=dist \
|
||||
uv pip install dist/*.whl
|
||||
|
||||
@ -12,7 +12,7 @@ ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git"
|
||||
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
|
||||
ARG FA_BRANCH="1a7f4dfa"
|
||||
ARG FA_REPO="https://github.com/Dao-AILab/flash-attention.git"
|
||||
ARG AITER_BRANCH="c1debd8"
|
||||
ARG AITER_BRANCH="6487649"
|
||||
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
|
||||
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
|
||||
@ -35,6 +35,7 @@ RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
|
||||
|
||||
ENV VLLM_TARGET_DEVICE=xpu
|
||||
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
|
||||
@ -48,7 +48,12 @@ nav:
|
||||
- General:
|
||||
- glob: contributing/*
|
||||
flatten_single_child_sections: true
|
||||
- Model Implementation: contributing/model
|
||||
- Model Implementation:
|
||||
- contributing/model/README.md
|
||||
- contributing/model/basic.md
|
||||
- contributing/model/registration.md
|
||||
- contributing/model/tests.md
|
||||
- contributing/model/multimodal.md
|
||||
- Design Documents:
|
||||
- V0: design
|
||||
- V1: design/v1
|
||||
|
||||
@ -40,7 +40,7 @@ vLLM is flexible and easy to use with:
|
||||
- OpenAI-compatible API server
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, Gaudi® accelerators and GPUs, IBM Power CPUs, TPU, and AWS Trainium and Inferentia Accelerators.
|
||||
- Prefix caching support
|
||||
- Multi-lora support
|
||||
- Multi-LoRA support
|
||||
|
||||
For more information, check out the following:
|
||||
|
||||
|
||||
@ -91,7 +91,7 @@ source to unblock the update process.
|
||||
### FlashInfer
|
||||
Here is how to build and install it from source with torch2.7.0+cu128 in vLLM [Dockerfile](https://github.com/vllm-project/vllm/blob/27bebcd89792d5c4b08af7a65095759526f2f9e1/docker/Dockerfile#L259-L271):
|
||||
|
||||
```
|
||||
```bash
|
||||
export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0 10.0+PTX'
|
||||
export FLASHINFER_ENABLE_SM90=1
|
||||
uv pip install --system --no-build-isolation "git+https://github.com/flashinfer-ai/flashinfer@v0.2.6.post1"
|
||||
@ -105,14 +105,14 @@ team if you want to get the package published there.
|
||||
### xFormers
|
||||
Similar to FlashInfer, here is how to build and install xFormers from source:
|
||||
|
||||
```
|
||||
```bash
|
||||
export TORCH_CUDA_ARCH_LIST='7.0 7.5 8.0 8.9 9.0 10.0+PTX'
|
||||
MAX_JOBS=16 uv pip install --system --no-build-isolation "git+https://github.com/facebookresearch/xformers@v0.0.30"
|
||||
```
|
||||
|
||||
### Mamba
|
||||
|
||||
```
|
||||
```bash
|
||||
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
|
||||
```
|
||||
|
||||
|
||||
@ -16,35 +16,33 @@ vllm {chat,complete,serve,bench,collect-env,run-batch}
|
||||
|
||||
Start the vLLM OpenAI Compatible API server.
|
||||
|
||||
Examples:
|
||||
??? Examples
|
||||
|
||||
```bash
|
||||
# Start with a model
|
||||
vllm serve meta-llama/Llama-2-7b-hf
|
||||
```bash
|
||||
# Start with a model
|
||||
vllm serve meta-llama/Llama-2-7b-hf
|
||||
|
||||
# Specify the port
|
||||
vllm serve meta-llama/Llama-2-7b-hf --port 8100
|
||||
# Specify the port
|
||||
vllm serve meta-llama/Llama-2-7b-hf --port 8100
|
||||
|
||||
# Check with --help for more options
|
||||
# To list all groups
|
||||
vllm serve --help=listgroup
|
||||
# Check with --help for more options
|
||||
# To list all groups
|
||||
vllm serve --help=listgroup
|
||||
|
||||
# To view a argument group
|
||||
vllm serve --help=ModelConfig
|
||||
# To view a argument group
|
||||
vllm serve --help=ModelConfig
|
||||
|
||||
# To view a single argument
|
||||
vllm serve --help=max-num-seqs
|
||||
# To view a single argument
|
||||
vllm serve --help=max-num-seqs
|
||||
|
||||
# To search by keyword
|
||||
vllm serve --help=max
|
||||
```
|
||||
# To search by keyword
|
||||
vllm serve --help=max
|
||||
```
|
||||
|
||||
## chat
|
||||
|
||||
Generate chat completions via the running API server.
|
||||
|
||||
Examples:
|
||||
|
||||
```bash
|
||||
# Directly connect to localhost API without arguments
|
||||
vllm chat
|
||||
@ -60,8 +58,6 @@ vllm chat --quick "hi"
|
||||
|
||||
Generate text completions based on the given prompt via the running API server.
|
||||
|
||||
Examples:
|
||||
|
||||
```bash
|
||||
# Directly connect to localhost API without arguments
|
||||
vllm complete
|
||||
@ -73,6 +69,8 @@ vllm complete --url http://{vllm-serve-host}:{vllm-serve-port}/v1
|
||||
vllm complete --quick "The future of AI is"
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## bench
|
||||
|
||||
Run benchmark tests for latency online serving throughput and offline inference throughput.
|
||||
@ -89,8 +87,6 @@ vllm bench {latency, serve, throughput}
|
||||
|
||||
Benchmark the latency of a single batch of requests.
|
||||
|
||||
Example:
|
||||
|
||||
```bash
|
||||
vllm bench latency \
|
||||
--model meta-llama/Llama-3.2-1B-Instruct \
|
||||
@ -104,8 +100,6 @@ vllm bench latency \
|
||||
|
||||
Benchmark the online serving throughput.
|
||||
|
||||
Example:
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--model meta-llama/Llama-3.2-1B-Instruct \
|
||||
@ -120,8 +114,6 @@ vllm bench serve \
|
||||
|
||||
Benchmark offline inference throughput.
|
||||
|
||||
Example:
|
||||
|
||||
```bash
|
||||
vllm bench throughput \
|
||||
--model meta-llama/Llama-3.2-1B-Instruct \
|
||||
@ -143,7 +135,8 @@ vllm collect-env
|
||||
|
||||
Run batch prompts and write results to file.
|
||||
|
||||
Examples:
|
||||
<details>
|
||||
<summary>Examples</summary>
|
||||
|
||||
```bash
|
||||
# Running with a local file
|
||||
@ -159,6 +152,8 @@ vllm run-batch \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## More Help
|
||||
|
||||
For detailed options of any subcommand, use:
|
||||
|
||||
6
docs/community/contact_us.md
Normal file
6
docs/community/contact_us.md
Normal file
@ -0,0 +1,6 @@
|
||||
---
|
||||
title: Contact Us
|
||||
---
|
||||
[](){ #contactus }
|
||||
|
||||
--8<-- "README.md:contact-us"
|
||||
@ -57,19 +57,21 @@ By default, we optimize model inference using CUDA graphs which take up extra me
|
||||
|
||||
You can adjust `compilation_config` to achieve a better balance between inference speed and memory usage:
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
from vllm.config import CompilationConfig, CompilationLevel
|
||||
??? Code
|
||||
|
||||
llm = LLM(
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
compilation_config=CompilationConfig(
|
||||
level=CompilationLevel.PIECEWISE,
|
||||
# By default, it goes up to max_num_seqs
|
||||
cudagraph_capture_sizes=[1, 2, 4, 8, 16],
|
||||
),
|
||||
)
|
||||
```
|
||||
```python
|
||||
from vllm import LLM
|
||||
from vllm.config import CompilationConfig, CompilationLevel
|
||||
|
||||
llm = LLM(
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
compilation_config=CompilationConfig(
|
||||
level=CompilationLevel.PIECEWISE,
|
||||
# By default, it goes up to max_num_seqs
|
||||
cudagraph_capture_sizes=[1, 2, 4, 8, 16],
|
||||
),
|
||||
)
|
||||
```
|
||||
|
||||
You can disable graph capturing completely via the `enforce_eager` flag:
|
||||
|
||||
@ -127,18 +129,20 @@ reduce the size of the processed multi-modal inputs, which in turn saves memory.
|
||||
|
||||
Here are some examples:
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
??? Code
|
||||
|
||||
# Available for Qwen2-VL series models
|
||||
llm = LLM(model="Qwen/Qwen2.5-VL-3B-Instruct",
|
||||
mm_processor_kwargs={
|
||||
"max_pixels": 768 * 768, # Default is 1280 * 28 * 28
|
||||
})
|
||||
```python
|
||||
from vllm import LLM
|
||||
|
||||
# Available for InternVL series models
|
||||
llm = LLM(model="OpenGVLab/InternVL2-2B",
|
||||
mm_processor_kwargs={
|
||||
"max_dynamic_patch": 4, # Default is 12
|
||||
})
|
||||
```
|
||||
# Available for Qwen2-VL series models
|
||||
llm = LLM(model="Qwen/Qwen2.5-VL-3B-Instruct",
|
||||
mm_processor_kwargs={
|
||||
"max_pixels": 768 * 768, # Default is 1280 * 28 * 28
|
||||
})
|
||||
|
||||
# Available for InternVL series models
|
||||
llm = LLM(model="OpenGVLab/InternVL2-2B",
|
||||
mm_processor_kwargs={
|
||||
"max_dynamic_patch": 4, # Default is 12
|
||||
})
|
||||
```
|
||||
|
||||
@ -7,6 +7,8 @@ vLLM uses the following environment variables to configure the system:
|
||||
|
||||
All environment variables used by vLLM are prefixed with `VLLM_`. **Special care should be taken for Kubernetes users**: please do not name the service as `vllm`, otherwise environment variables set by Kubernetes might conflict with vLLM's environment variables, because [Kubernetes sets environment variables for each service with the capitalized service name as the prefix](https://kubernetes.io/docs/concepts/services-networking/service/#environment-variables).
|
||||
|
||||
```python
|
||||
--8<-- "vllm/envs.py:env-vars-definition"
|
||||
```
|
||||
??? Code
|
||||
|
||||
```python
|
||||
--8<-- "vllm/envs.py:env-vars-definition"
|
||||
```
|
||||
|
||||
@ -29,6 +29,8 @@ See <gh-file:LICENSE>.
|
||||
Depending on the kind of development you'd like to do (e.g. Python, CUDA), you can choose to build vLLM with or without compilation.
|
||||
Check out the [building from source][build-from-source] documentation for details.
|
||||
|
||||
For an optimized workflow when iterating on C++/CUDA kernels, see the [Incremental Compilation Workflow](./incremental_build.md) for recommendations.
|
||||
|
||||
### Building the docs with MkDocs
|
||||
|
||||
#### Introduction to MkDocs
|
||||
@ -93,25 +95,27 @@ For additional features and advanced configurations, refer to the official [MkDo
|
||||
|
||||
## Testing
|
||||
|
||||
```bash
|
||||
pip install -r requirements/dev.txt
|
||||
??? note "Commands"
|
||||
|
||||
# Linting, formatting and static type checking
|
||||
pre-commit install --hook-type pre-commit --hook-type commit-msg
|
||||
```bash
|
||||
pip install -r requirements/dev.txt
|
||||
|
||||
# You can manually run pre-commit with
|
||||
pre-commit run --all-files
|
||||
# Linting, formatting and static type checking
|
||||
pre-commit install --hook-type pre-commit --hook-type commit-msg
|
||||
|
||||
# To manually run something from CI that does not run
|
||||
# locally by default, you can run:
|
||||
pre-commit run mypy-3.9 --hook-stage manual --all-files
|
||||
# You can manually run pre-commit with
|
||||
pre-commit run --all-files
|
||||
|
||||
# Unit tests
|
||||
pytest tests/
|
||||
# To manually run something from CI that does not run
|
||||
# locally by default, you can run:
|
||||
pre-commit run mypy-3.9 --hook-stage manual --all-files
|
||||
|
||||
# Run tests for a single test file with detailed output
|
||||
pytest -s -v tests/test_logger.py
|
||||
```
|
||||
# Unit tests
|
||||
pytest tests/
|
||||
|
||||
# Run tests for a single test file with detailed output
|
||||
pytest -s -v tests/test_logger.py
|
||||
```
|
||||
|
||||
!!! tip
|
||||
Since the <gh-file:docker/Dockerfile> ships with Python 3.12, all tests in CI (except `mypy`) are run with Python 3.12.
|
||||
@ -147,6 +151,14 @@ the terms of the DCO.
|
||||
|
||||
Using `-s` with `git commit` will automatically add this header.
|
||||
|
||||
!!! tip
|
||||
You can enable automatic sign-off via your IDE:
|
||||
|
||||
- **PyCharm**: Click on the `Show Commit Options` icon to the right of the `Commit and Push...` button in the `Commit` window.
|
||||
It will bring up a `git` window where you can modify the `Author` and enable `Sign-off commit`.
|
||||
- **VSCode**: Open the [Settings editor](https://code.visualstudio.com/docs/configure/settings)
|
||||
and enable the `Git: Always Sign Off` (`git.alwaysSignOff`) field.
|
||||
|
||||
### PR Title and Classification
|
||||
|
||||
Only specific types of PRs will be reviewed. The PR title is prefixed
|
||||
@ -186,6 +198,7 @@ The PR needs to meet the following code quality standards:
|
||||
|
||||
### Adding or Changing Kernels
|
||||
|
||||
When actively developing or modifying kernels, using the [Incremental Compilation Workflow](./incremental_build.md) is highly recommended for faster build times.
|
||||
Each custom kernel needs a schema and one or more implementations to be registered with PyTorch.
|
||||
|
||||
- Make sure custom ops are registered following PyTorch guidelines:
|
||||
|
||||
138
docs/contributing/incremental_build.md
Normal file
138
docs/contributing/incremental_build.md
Normal file
@ -0,0 +1,138 @@
|
||||
# Incremental Compilation Workflow
|
||||
|
||||
When working on vLLM's C++/CUDA kernels located in the `csrc/` directory, recompiling the entire project with `uv pip install -e .` for every change can be time-consuming. An incremental compilation workflow using CMake allows for faster iteration by only recompiling the necessary components after an initial setup. This guide details how to set up and use such a workflow, which complements your editable Python installation.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before setting up the incremental build:
|
||||
|
||||
1. **vLLM Editable Install:** Ensure you have vLLM installed from source in an editable mode. Using pre-compiled wheels for the initial editable setup can be faster, as the CMake workflow will handle subsequent kernel recompilations.
|
||||
|
||||
```console
|
||||
uv venv --python 3.12 --seed
|
||||
source .venv/bin/activate
|
||||
VLLM_USE_PRECOMPILED=1 uv pip install -U -e . --torch-backend=auto
|
||||
```
|
||||
|
||||
2. **CUDA Toolkit:** Verify that the NVIDIA CUDA Toolkit is correctly installed and `nvcc` is accessible in your `PATH`. CMake relies on `nvcc` to compile CUDA code. You can typically find `nvcc` in `$CUDA_HOME/bin/nvcc` or by running `which nvcc`. If you encounter issues, refer to the [official CUDA Toolkit installation guides](https://developer.nvidia.com/cuda-toolkit-archive) and vLLM's main [GPU installation documentation](../getting_started/installation/gpu/cuda.inc.md#troubleshooting) for troubleshooting. The `CMAKE_CUDA_COMPILER` variable in your `CMakeUserPresets.json` should also point to your `nvcc` binary.
|
||||
|
||||
3. **Build Tools:** It is highly recommended to install `ccache` for fast rebuilds by caching compilation results (e.g., `sudo apt install ccache` or `conda install ccache`). Also, ensure the core build dependencies like `cmake` and `ninja` are installed. These are installable through `requirements/build.txt` or your system's package manager.
|
||||
|
||||
```console
|
||||
uv pip install -r requirements/build.txt --torch-backend=auto
|
||||
```
|
||||
|
||||
## Setting up the CMake Build Environment
|
||||
|
||||
The incremental build process is managed through CMake. You can configure your build settings using a `CMakeUserPresets.json` file at the root of the vLLM repository.
|
||||
|
||||
### Generate `CMakeUserPresets.json` using the helper script
|
||||
|
||||
To simplify the setup, vLLM provides a helper script that attempts to auto-detect your system's configuration (like CUDA path, Python environment, and CPU cores) and generates the `CMakeUserPresets.json` file for you.
|
||||
|
||||
**Run the script:**
|
||||
|
||||
Navigate to the root of your vLLM clone and execute the following command:
|
||||
|
||||
```console
|
||||
python tools/generate_cmake_presets.py
|
||||
```
|
||||
|
||||
The script will prompt you if it cannot automatically determine certain paths (e.g., `nvcc` or a specific Python executable for your vLLM development environment). Follow the on-screen prompts. If an existing `CMakeUserPresets.json` is found, the script will ask for confirmation before overwriting it.
|
||||
|
||||
After running the script, a `CMakeUserPresets.json` file will be created in the root of your vLLM repository.
|
||||
|
||||
### Example `CMakeUserPresets.json`
|
||||
|
||||
Below is an example of what the generated `CMakeUserPresets.json` might look like. The script will tailor these values based on your system and any input you provide.
|
||||
|
||||
```json
|
||||
{
|
||||
"version": 6,
|
||||
"cmakeMinimumRequired": {
|
||||
"major": 3,
|
||||
"minor": 26,
|
||||
"patch": 1
|
||||
},
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "release",
|
||||
"generator": "Ninja",
|
||||
"binaryDir": "${sourceDir}/cmake-build-release",
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_COMPILER": "/usr/local/cuda/bin/nvcc",
|
||||
"CMAKE_C_COMPILER_LAUNCHER": "ccache",
|
||||
"CMAKE_CXX_COMPILER_LAUNCHER": "ccache",
|
||||
"CMAKE_CUDA_COMPILER_LAUNCHER": "ccache",
|
||||
"CMAKE_BUILD_TYPE": "Release",
|
||||
"VLLM_PYTHON_EXECUTABLE": "/home/user/venvs/vllm/bin/python",
|
||||
"CMAKE_INSTALL_PREFIX": "${sourceDir}",
|
||||
"CMAKE_CUDA_FLAGS": "",
|
||||
"NVCC_THREADS": "4",
|
||||
"CMAKE_JOB_POOLS": "compile=32"
|
||||
}
|
||||
}
|
||||
],
|
||||
"buildPresets": [
|
||||
{
|
||||
"name": "release",
|
||||
"configurePreset": "release",
|
||||
"jobs": 32
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**What do the various configurations mean?**
|
||||
- `CMAKE_CUDA_COMPILER`: Path to your `nvcc` binary. The script attempts to find this automatically.
|
||||
- `CMAKE_C_COMPILER_LAUNCHER`, `CMAKE_CXX_COMPILER_LAUNCHER`, `CMAKE_CUDA_COMPILER_LAUNCHER`: Setting these to `ccache` (or `sccache`) significantly speeds up rebuilds by caching compilation results. Ensure `ccache` is installed (e.g., `sudo apt install ccache` or `conda install ccache`). The script sets these by default.
|
||||
- `VLLM_PYTHON_EXECUTABLE`: Path to the Python executable in your vLLM development environment. The script will prompt for this, defaulting to the current Python environment if suitable.
|
||||
- `CMAKE_INSTALL_PREFIX: "${sourceDir}"`: Specifies that the compiled components should be installed back into your vLLM source directory. This is crucial for the editable install, as it makes the newly built kernels immediately available to your Python environment.
|
||||
- `CMAKE_JOB_POOLS` and `jobs` in build presets: Control the parallelism of the build. The script sets these based on the number of CPU cores detected on your system.
|
||||
- `binaryDir`: Specifies where the build artifacts will be stored (e.g., `cmake-build-release`).
|
||||
|
||||
## Building and Installing with CMake
|
||||
|
||||
Once your `CMakeUserPresets.json` is configured:
|
||||
|
||||
1. **Initialize the CMake build environment:**
|
||||
This step configures the build system according to your chosen preset (e.g., `release`) and creates the build directory at `binaryDir`
|
||||
|
||||
```console
|
||||
cmake --preset release
|
||||
```
|
||||
|
||||
2. **Build and install the vLLM components:**
|
||||
This command compiles the code and installs the resulting binaries into your vLLM source directory, making them available to your editable Python installation.
|
||||
|
||||
```console
|
||||
cmake --build --preset release --target install
|
||||
```
|
||||
|
||||
3. **Make changes and repeat!**
|
||||
Now you start using your editable install of vLLM, testing and making changes as needed. If you need to build again to update based on changes, simply run the CMake command again to build only the affected files.
|
||||
|
||||
```console
|
||||
cmake --build --preset release --target install
|
||||
```
|
||||
|
||||
## Verifying the Build
|
||||
|
||||
After a successful build, you will find a populated build directory (e.g., `cmake-build-release/` if you used the `release` preset and the example configuration).
|
||||
|
||||
```console
|
||||
> ls cmake-build-release/
|
||||
bin cmake_install.cmake _deps machete_generation.log
|
||||
build.ninja CPackConfig.cmake detect_cuda_compute_capabilities.cu marlin_generation.log
|
||||
_C.abi3.so CPackSourceConfig.cmake detect_cuda_version.cc _moe_C.abi3.so
|
||||
CMakeCache.txt ctest _flashmla_C.abi3.so moe_marlin_generation.log
|
||||
CMakeFiles cumem_allocator.abi3.so install_local_manifest.txt vllm-flash-attn
|
||||
```
|
||||
|
||||
The `cmake --build ... --target install` command copies the compiled shared libraries (like `_C.abi3.so`, `_moe_C.abi3.so`, etc.) into the appropriate `vllm` package directory within your source tree. This updates your editable installation with the newly compiled kernels.
|
||||
|
||||
## Additional Tips
|
||||
|
||||
- **Adjust Parallelism:** Fine-tune the `CMAKE_JOB_POOLS` in `configurePresets` and `jobs` in `buildPresets` in your `CMakeUserPresets.json`. Too many jobs can overload systems with limited RAM or CPU cores, leading to slower builds or system instability. Too few won't fully utilize available resources.
|
||||
- **Clean Builds When Necessary:** If you encounter persistent or strange build errors, especially after significant changes or switching branches, consider removing the CMake build directory (e.g., `rm -rf cmake-build-release`) and re-running the `cmake --preset` and `cmake --build` commands.
|
||||
- **Specific Target Builds:** For even faster iterations when working on a specific module, you can sometimes build a specific target instead of the full `install` target, though `install` ensures all necessary components are updated in your Python environment. Refer to CMake documentation for more advanced target management.
|
||||
@ -1,21 +1,23 @@
|
||||
---
|
||||
title: Adding a New Model
|
||||
title: Summary
|
||||
---
|
||||
[](){ #new-model }
|
||||
|
||||
This section provides more information on how to integrate a [PyTorch](https://pytorch.org/) model into vLLM.
|
||||
!!! important
|
||||
Many decoder language models can now be automatically loaded using the [Transformers backend][transformers-backend] without having to implement them in vLLM. See if `vllm serve <model>` works first!
|
||||
|
||||
Contents:
|
||||
vLLM models are specialized [PyTorch](https://pytorch.org/) models that take advantage of various [features][compatibility-matrix] to optimize their performance.
|
||||
|
||||
- [Basic](basic.md)
|
||||
- [Registration](registration.md)
|
||||
- [Tests](tests.md)
|
||||
- [Multimodal](multimodal.md)
|
||||
The complexity of integrating a model into vLLM depends heavily on the model's architecture.
|
||||
The process is considerably straightforward if the model shares a similar architecture with an existing model in vLLM.
|
||||
However, this can be more complex for models that include new operators (e.g., a new attention mechanism).
|
||||
|
||||
!!! note
|
||||
The complexity of adding a new model depends heavily on the model's architecture.
|
||||
The process is considerably straightforward if the model shares a similar architecture with an existing model in vLLM.
|
||||
However, for models that include new operators (e.g., a new attention mechanism), the process can be a bit more complex.
|
||||
Read through these pages for a step-by-step guide:
|
||||
|
||||
- [Basic Model](basic.md)
|
||||
- [Registering a Model](registration.md)
|
||||
- [Unit Testing](tests.md)
|
||||
- [Multi-Modal Support](multimodal.md)
|
||||
|
||||
!!! tip
|
||||
If you are encountering issues while integrating your model into vLLM, feel free to open a [GitHub issue](https://github.com/vllm-project/vllm/issues)
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Implementing a Basic Model
|
||||
title: Basic Model
|
||||
---
|
||||
[](){ #new-model-basic }
|
||||
|
||||
@ -27,33 +27,35 @@ All vLLM modules within the model must include a `prefix` argument in their cons
|
||||
|
||||
The initialization code should look like this:
|
||||
|
||||
```python
|
||||
from torch import nn
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.attention import Attention
|
||||
??? Code
|
||||
|
||||
class MyAttention(nn.Module):
|
||||
def __init__(self, vllm_config: VllmConfig, prefix: str):
|
||||
super().__init__()
|
||||
self.attn = Attention(prefix=f"{prefix}.attn")
|
||||
```python
|
||||
from torch import nn
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.attention import Attention
|
||||
|
||||
class MyDecoderLayer(nn.Module):
|
||||
def __init__(self, vllm_config: VllmConfig, prefix: str):
|
||||
super().__init__()
|
||||
self.self_attn = MyAttention(prefix=f"{prefix}.self_attn")
|
||||
class MyAttention(nn.Module):
|
||||
def __init__(self, vllm_config: VllmConfig, prefix: str):
|
||||
super().__init__()
|
||||
self.attn = Attention(prefix=f"{prefix}.attn")
|
||||
|
||||
class MyModel(nn.Module):
|
||||
def __init__(self, vllm_config: VllmConfig, prefix: str):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList(
|
||||
[MyDecoderLayer(vllm_config, prefix=f"{prefix}.layers.{i}") for i in range(vllm_config.model_config.hf_config.num_hidden_layers)]
|
||||
)
|
||||
class MyDecoderLayer(nn.Module):
|
||||
def __init__(self, vllm_config: VllmConfig, prefix: str):
|
||||
super().__init__()
|
||||
self.self_attn = MyAttention(prefix=f"{prefix}.self_attn")
|
||||
|
||||
class MyModelForCausalLM(nn.Module):
|
||||
def __init__(self, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
self.model = MyModel(vllm_config, prefix=f"{prefix}.model")
|
||||
```
|
||||
class MyModel(nn.Module):
|
||||
def __init__(self, vllm_config: VllmConfig, prefix: str):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList(
|
||||
[MyDecoderLayer(vllm_config, prefix=f"{prefix}.layers.{i}") for i in range(vllm_config.model_config.hf_config.num_hidden_layers)]
|
||||
)
|
||||
|
||||
class MyModelForCausalLM(nn.Module):
|
||||
def __init__(self, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
self.model = MyModel(vllm_config, prefix=f"{prefix}.model")
|
||||
```
|
||||
|
||||
### Computation Code
|
||||
|
||||
|
||||
@ -25,59 +25,63 @@ Further update the model as follows:
|
||||
|
||||
- Implement [get_multimodal_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_multimodal_embeddings] that returns the embeddings from running the multimodal inputs through the multimodal tokenizer of the model. Below we provide a boilerplate of a typical implementation pattern, but feel free to adjust it to your own needs.
|
||||
|
||||
```python
|
||||
class YourModelForImage2Seq(nn.Module):
|
||||
...
|
||||
??? Code
|
||||
|
||||
def _process_image_input(self, image_input: YourModelImageInputs) -> torch.Tensor:
|
||||
```python
|
||||
class YourModelForImage2Seq(nn.Module):
|
||||
...
|
||||
|
||||
assert self.vision_encoder is not None
|
||||
image_features = self.vision_encoder(image_input)
|
||||
return self.multi_modal_projector(image_features)
|
||||
def _process_image_input(self, image_input: YourModelImageInputs) -> torch.Tensor:
|
||||
|
||||
def get_multimodal_embeddings(
|
||||
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
|
||||
assert self.vision_encoder is not None
|
||||
image_features = self.vision_encoder(image_input)
|
||||
return self.multi_modal_projector(image_features)
|
||||
|
||||
# Validate the multimodal input keyword arguments
|
||||
image_input = self._parse_and_validate_image_input(**kwargs)
|
||||
if image_input is None:
|
||||
return None
|
||||
def get_multimodal_embeddings(
|
||||
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
|
||||
|
||||
# Run multimodal inputs through encoder and projector
|
||||
vision_embeddings = self._process_image_input(image_input)
|
||||
return vision_embeddings
|
||||
```
|
||||
# Validate the multimodal input keyword arguments
|
||||
image_input = self._parse_and_validate_image_input(**kwargs)
|
||||
if image_input is None:
|
||||
return None
|
||||
|
||||
# Run multimodal inputs through encoder and projector
|
||||
vision_embeddings = self._process_image_input(image_input)
|
||||
return vision_embeddings
|
||||
```
|
||||
|
||||
!!! important
|
||||
The returned `multimodal_embeddings` must be either a **3D [torch.Tensor][]** of shape `(num_items, feature_size, hidden_size)`, or a **list / tuple of 2D [torch.Tensor][]'s** of shape `(feature_size, hidden_size)`, so that `multimodal_embeddings[i]` retrieves the embeddings generated from the `i`-th multimodal data item (e.g, image) of the request.
|
||||
|
||||
- Implement [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings] to merge `multimodal_embeddings` with text embeddings from the `input_ids`. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.
|
||||
|
||||
```python
|
||||
from .utils import merge_multimodal_embeddings
|
||||
??? Code
|
||||
|
||||
class YourModelForImage2Seq(nn.Module):
|
||||
...
|
||||
```python
|
||||
from .utils import merge_multimodal_embeddings
|
||||
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
||||
) -> torch.Tensor:
|
||||
class YourModelForImage2Seq(nn.Module):
|
||||
...
|
||||
|
||||
# `get_input_embeddings` should already be implemented for the language
|
||||
# model as one of the requirements of basic vLLM model implementation.
|
||||
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
if multimodal_embeddings is not None:
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids=input_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
multimodal_embeddings=multimodal_embeddings,
|
||||
placeholder_token_id=self.config.image_token_index)
|
||||
# `get_input_embeddings` should already be implemented for the language
|
||||
# model as one of the requirements of basic vLLM model implementation.
|
||||
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
||||
|
||||
return inputs_embeds
|
||||
```
|
||||
if multimodal_embeddings is not None:
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids=input_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
multimodal_embeddings=multimodal_embeddings,
|
||||
placeholder_token_id=self.config.image_token_index)
|
||||
|
||||
return inputs_embeds
|
||||
```
|
||||
|
||||
- Implement [get_language_model][vllm.model_executor.models.interfaces.SupportsMultiModal.get_language_model] getter to provide stable access to the underlying language model.
|
||||
|
||||
@ -135,42 +139,46 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
|
||||
|
||||
Looking at the code of HF's `LlavaForConditionalGeneration`:
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
|
||||
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
|
||||
n_image_features = image_features.shape[0] * image_features.shape[1]
|
||||
??? Code
|
||||
|
||||
if n_image_tokens != n_image_features:
|
||||
raise ValueError(
|
||||
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
|
||||
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
|
||||
n_image_features = image_features.shape[0] * image_features.shape[1]
|
||||
|
||||
if n_image_tokens != n_image_features:
|
||||
raise ValueError(
|
||||
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
||||
)
|
||||
special_image_mask = (
|
||||
(input_ids == self.config.image_token_index)
|
||||
.unsqueeze(-1)
|
||||
.expand_as(inputs_embeds)
|
||||
.to(inputs_embeds.device)
|
||||
)
|
||||
special_image_mask = (
|
||||
(input_ids == self.config.image_token_index)
|
||||
.unsqueeze(-1)
|
||||
.expand_as(inputs_embeds)
|
||||
.to(inputs_embeds.device)
|
||||
)
|
||||
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
||||
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
||||
```
|
||||
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
||||
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
||||
```
|
||||
|
||||
The number of placeholder feature tokens per image is `image_features.shape[1]`.
|
||||
`image_features` is calculated inside the `get_image_features` method:
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
|
||||
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
||||
??? Code
|
||||
|
||||
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
||||
if vision_feature_select_strategy == "default":
|
||||
selected_image_feature = selected_image_feature[:, 1:]
|
||||
elif vision_feature_select_strategy == "full":
|
||||
selected_image_feature = selected_image_feature
|
||||
else:
|
||||
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
|
||||
image_features = self.multi_modal_projector(selected_image_feature)
|
||||
return image_features
|
||||
```
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
|
||||
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
||||
|
||||
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
||||
if vision_feature_select_strategy == "default":
|
||||
selected_image_feature = selected_image_feature[:, 1:]
|
||||
elif vision_feature_select_strategy == "full":
|
||||
selected_image_feature = selected_image_feature
|
||||
else:
|
||||
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
|
||||
image_features = self.multi_modal_projector(selected_image_feature)
|
||||
return image_features
|
||||
```
|
||||
|
||||
We can infer that `image_features.shape[1]` is based on `image_outputs.hidden_states.shape[1]` from the vision tower
|
||||
(`CLIPVisionModel` for the [`llava-hf/llava-1.5-7b-hf`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) model).
|
||||
@ -193,20 +201,22 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
|
||||
|
||||
To find the sequence length, we turn to the code of `CLIPVisionEmbeddings`:
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
|
||||
target_dtype = self.patch_embedding.weight.dtype
|
||||
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||||
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||||
??? Code
|
||||
|
||||
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
||||
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
||||
if interpolate_pos_encoding:
|
||||
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
||||
else:
|
||||
embeddings = embeddings + self.position_embedding(self.position_ids)
|
||||
return embeddings
|
||||
```
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
|
||||
target_dtype = self.patch_embedding.weight.dtype
|
||||
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||||
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||||
|
||||
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
||||
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
||||
if interpolate_pos_encoding:
|
||||
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
||||
else:
|
||||
embeddings = embeddings + self.position_embedding(self.position_ids)
|
||||
return embeddings
|
||||
```
|
||||
|
||||
We can infer that `embeddings.shape[1] == self.num_positions`, where
|
||||
|
||||
@ -218,55 +228,59 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
|
||||
|
||||
Overall, the number of placeholder feature tokens for an image can be calculated as:
|
||||
|
||||
```python
|
||||
def get_num_image_tokens(
|
||||
self,
|
||||
*,
|
||||
image_width: int,
|
||||
image_height: int,
|
||||
) -> int:
|
||||
hf_config = self.get_hf_config()
|
||||
hf_processor = self.get_hf_processor()
|
||||
??? Code
|
||||
|
||||
image_size = hf_config.vision_config.image_size
|
||||
patch_size = hf_config.vision_config.patch_size
|
||||
```python
|
||||
def get_num_image_tokens(
|
||||
self,
|
||||
*,
|
||||
image_width: int,
|
||||
image_height: int,
|
||||
) -> int:
|
||||
hf_config = self.get_hf_config()
|
||||
hf_processor = self.get_hf_processor()
|
||||
|
||||
num_image_tokens = (image_size // patch_size) ** 2 + 1
|
||||
if hf_processor.vision_feature_select_strategy == "default":
|
||||
num_image_tokens -= 1
|
||||
image_size = hf_config.vision_config.image_size
|
||||
patch_size = hf_config.vision_config.patch_size
|
||||
|
||||
return num_image_tokens
|
||||
```
|
||||
num_image_tokens = (image_size // patch_size) ** 2 + 1
|
||||
if hf_processor.vision_feature_select_strategy == "default":
|
||||
num_image_tokens -= 1
|
||||
|
||||
return num_image_tokens
|
||||
```
|
||||
|
||||
Notice that the number of image tokens doesn't depend on the image width and height.
|
||||
We can simply use a dummy `image_size` to calculate the multimodal profiling data:
|
||||
|
||||
```python
|
||||
# NOTE: In actuality, this is usually implemented as part of the
|
||||
# model's subclass of `BaseProcessingInfo`, but we show it as is
|
||||
# here for simplicity.
|
||||
def get_image_size_with_most_features(self) -> ImageSize:
|
||||
hf_config = self.get_hf_config()
|
||||
width = height = hf_config.image_size
|
||||
return ImageSize(width=width, height=height)
|
||||
??? Code
|
||||
|
||||
def get_dummy_mm_data(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> MultiModalDataDict:
|
||||
num_images = mm_counts.get("image", 0)
|
||||
```python
|
||||
# NOTE: In actuality, this is usually implemented as part of the
|
||||
# model's subclass of `BaseProcessingInfo`, but we show it as is
|
||||
# here for simplicity.
|
||||
def get_image_size_with_most_features(self) -> ImageSize:
|
||||
hf_config = self.get_hf_config()
|
||||
width = height = hf_config.image_size
|
||||
return ImageSize(width=width, height=height)
|
||||
|
||||
target_width, target_height = \
|
||||
self.info.get_image_size_with_most_features()
|
||||
def get_dummy_mm_data(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> MultiModalDataDict:
|
||||
num_images = mm_counts.get("image", 0)
|
||||
|
||||
return {
|
||||
"image":
|
||||
self._get_dummy_images(width=target_width,
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
}
|
||||
```
|
||||
target_width, target_height = \
|
||||
self.info.get_image_size_with_most_features()
|
||||
|
||||
return {
|
||||
"image":
|
||||
self._get_dummy_images(width=target_width,
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
}
|
||||
```
|
||||
|
||||
For the text, we simply expand the multimodal image token from the model config to match the desired number of images.
|
||||
|
||||
@ -284,21 +298,23 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
|
||||
|
||||
Looking at the code of HF's `FuyuForCausalLM`:
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/modeling_fuyu.py#L311-L322
|
||||
if image_patches is not None and past_key_values is None:
|
||||
patch_embeddings = [
|
||||
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
|
||||
.squeeze(0)
|
||||
.to(inputs_embeds.device)
|
||||
for patch in image_patches
|
||||
]
|
||||
inputs_embeds = self.gather_continuous_embeddings(
|
||||
word_embeddings=inputs_embeds,
|
||||
continuous_embeddings=patch_embeddings,
|
||||
image_patch_input_indices=image_patches_indices,
|
||||
)
|
||||
```
|
||||
??? Code
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/modeling_fuyu.py#L311-L322
|
||||
if image_patches is not None and past_key_values is None:
|
||||
patch_embeddings = [
|
||||
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
|
||||
.squeeze(0)
|
||||
.to(inputs_embeds.device)
|
||||
for patch in image_patches
|
||||
]
|
||||
inputs_embeds = self.gather_continuous_embeddings(
|
||||
word_embeddings=inputs_embeds,
|
||||
continuous_embeddings=patch_embeddings,
|
||||
image_patch_input_indices=image_patches_indices,
|
||||
)
|
||||
```
|
||||
|
||||
The number of placeholder feature tokens for the `i`th item in the batch is `patch_embeddings[i].shape[0]`,
|
||||
which is the same as `image_patches[i].shape[0]`, i.e. `num_total_patches`.
|
||||
@ -312,92 +328,98 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
|
||||
In `FuyuImageProcessor.preprocess`, the images are resized and padded to the target `FuyuImageProcessor.size`,
|
||||
returning the dimensions after resizing (but before padding) as metadata.
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L541-L544
|
||||
image_encoding = self.image_processor.preprocess(images, **output_kwargs["images_kwargs"])
|
||||
batch_images = image_encoding["images"]
|
||||
image_unpadded_heights = image_encoding["image_unpadded_heights"]
|
||||
image_unpadded_widths = image_encoding["image_unpadded_widths"]
|
||||
??? Code
|
||||
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L480-L
|
||||
if do_resize:
|
||||
batch_images = [
|
||||
[self.resize(image, size=size, input_data_format=input_data_format) for image in images]
|
||||
for images in batch_images
|
||||
]
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L541-L544
|
||||
image_encoding = self.image_processor.preprocess(images, **output_kwargs["images_kwargs"])
|
||||
batch_images = image_encoding["images"]
|
||||
image_unpadded_heights = image_encoding["image_unpadded_heights"]
|
||||
image_unpadded_widths = image_encoding["image_unpadded_widths"]
|
||||
|
||||
image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
|
||||
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
|
||||
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]
|
||||
|
||||
if do_pad:
|
||||
batch_images = [
|
||||
[
|
||||
self.pad_image(
|
||||
image,
|
||||
size=size,
|
||||
mode=padding_mode,
|
||||
constant_values=padding_value,
|
||||
input_data_format=input_data_format,
|
||||
)
|
||||
for image in images
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L480-L
|
||||
if do_resize:
|
||||
batch_images = [
|
||||
[self.resize(image, size=size, input_data_format=input_data_format) for image in images]
|
||||
for images in batch_images
|
||||
]
|
||||
for images in batch_images
|
||||
]
|
||||
```
|
||||
|
||||
image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
|
||||
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
|
||||
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]
|
||||
|
||||
if do_pad:
|
||||
batch_images = [
|
||||
[
|
||||
self.pad_image(
|
||||
image,
|
||||
size=size,
|
||||
mode=padding_mode,
|
||||
constant_values=padding_value,
|
||||
input_data_format=input_data_format,
|
||||
)
|
||||
for image in images
|
||||
]
|
||||
for images in batch_images
|
||||
]
|
||||
```
|
||||
|
||||
In `FuyuImageProcessor.preprocess_with_tokenizer_info`, the images are split into patches based on this metadata:
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L425
|
||||
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
|
||||
image_input=tensor_batch_images,
|
||||
image_present=image_present,
|
||||
image_unpadded_h=image_unpadded_heights,
|
||||
image_unpadded_w=image_unpadded_widths,
|
||||
image_placeholder_id=image_placeholder_id,
|
||||
image_newline_id=image_newline_id,
|
||||
variable_sized=True,
|
||||
)
|
||||
??? Code
|
||||
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L638-L658
|
||||
image_height, image_width = image.shape[1], image.shape[2]
|
||||
if variable_sized: # variable_sized=True
|
||||
new_h = min(
|
||||
image_height,
|
||||
math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L425
|
||||
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
|
||||
image_input=tensor_batch_images,
|
||||
image_present=image_present,
|
||||
image_unpadded_h=image_unpadded_heights,
|
||||
image_unpadded_w=image_unpadded_widths,
|
||||
image_placeholder_id=image_placeholder_id,
|
||||
image_newline_id=image_newline_id,
|
||||
variable_sized=True,
|
||||
)
|
||||
new_w = min(
|
||||
image_width,
|
||||
math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
|
||||
)
|
||||
image = image[:, :new_h, :new_w]
|
||||
image_height, image_width = new_h, new_w
|
||||
|
||||
num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
|
||||
tensor_of_image_ids = torch.full(
|
||||
[num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
|
||||
)
|
||||
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
|
||||
assert num_patches == patches.shape[0]
|
||||
```
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L638-L658
|
||||
image_height, image_width = image.shape[1], image.shape[2]
|
||||
if variable_sized: # variable_sized=True
|
||||
new_h = min(
|
||||
image_height,
|
||||
math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
|
||||
)
|
||||
new_w = min(
|
||||
image_width,
|
||||
math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
|
||||
)
|
||||
image = image[:, :new_h, :new_w]
|
||||
image_height, image_width = new_h, new_w
|
||||
|
||||
num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
|
||||
tensor_of_image_ids = torch.full(
|
||||
[num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
|
||||
)
|
||||
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
|
||||
assert num_patches == patches.shape[0]
|
||||
```
|
||||
|
||||
The number of patches is in turn defined by `FuyuImageProcessor.get_num_patches`:
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L552-L562
|
||||
patch_size = patch_size if patch_size is not None else self.patch_size
|
||||
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
|
||||
??? Code
|
||||
|
||||
if image_height % patch_height != 0:
|
||||
raise ValueError(f"{image_height=} must be divisible by {patch_height}")
|
||||
if image_width % patch_width != 0:
|
||||
raise ValueError(f"{image_width=} must be divisible by {patch_width}")
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L552-L562
|
||||
patch_size = patch_size if patch_size is not None else self.patch_size
|
||||
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
|
||||
|
||||
num_patches_per_dim_h = image_height // patch_height
|
||||
num_patches_per_dim_w = image_width // patch_width
|
||||
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
|
||||
```
|
||||
if image_height % patch_height != 0:
|
||||
raise ValueError(f"{image_height=} must be divisible by {patch_height}")
|
||||
if image_width % patch_width != 0:
|
||||
raise ValueError(f"{image_width=} must be divisible by {patch_width}")
|
||||
|
||||
num_patches_per_dim_h = image_height // patch_height
|
||||
num_patches_per_dim_w = image_width // patch_width
|
||||
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
|
||||
```
|
||||
|
||||
These image patches correspond to placeholder tokens (`|SPEAKER|`). So, we just need to maximize the number of image patches. Since input images are first resized
|
||||
to fit within `image_processor.size`, we can maximize the number of image patches by inputting an image with size equal to `image_processor.size`.
|
||||
@ -419,23 +441,25 @@ Assuming that the memory usage increases with the number of tokens, the dummy in
|
||||
|
||||
For the multimodal image profiling data, the logic is very similar to LLaVA:
|
||||
|
||||
```python
|
||||
def get_dummy_mm_data(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> MultiModalDataDict:
|
||||
target_width, target_height = \
|
||||
self.info.get_image_size_with_most_features()
|
||||
num_images = mm_counts.get("image", 0)
|
||||
??? Code
|
||||
|
||||
return {
|
||||
"image":
|
||||
self._get_dummy_images(width=target_width,
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
}
|
||||
```
|
||||
```python
|
||||
def get_dummy_mm_data(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> MultiModalDataDict:
|
||||
target_width, target_height = \
|
||||
self.info.get_image_size_with_most_features()
|
||||
num_images = mm_counts.get("image", 0)
|
||||
|
||||
return {
|
||||
"image":
|
||||
self._get_dummy_images(width=target_width,
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
}
|
||||
```
|
||||
|
||||
## 4. Specify processing details
|
||||
|
||||
@ -455,6 +479,7 @@ return a schema of the tensors outputted by the HF processor that are related to
|
||||
The output of `CLIPImageProcessor` is a simple tensor with shape
|
||||
`(num_images, num_channels, image_height, image_width)`:
|
||||
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/image_processing_clip.py#L339-L345
|
||||
images = [
|
||||
@ -505,35 +530,37 @@ return a schema of the tensors outputted by the HF processor that are related to
|
||||
In order to support the use of [MultiModalFieldConfig.batched][] like in LLaVA,
|
||||
we remove the extra batch dimension by overriding [BaseMultiModalProcessor._call_hf_processor][]:
|
||||
|
||||
```python
|
||||
def _call_hf_processor(
|
||||
self,
|
||||
prompt: str,
|
||||
mm_data: Mapping[str, object],
|
||||
mm_kwargs: Mapping[str, object],
|
||||
) -> BatchFeature:
|
||||
processed_outputs = super()._call_hf_processor(
|
||||
prompt=prompt,
|
||||
mm_data=mm_data,
|
||||
mm_kwargs=mm_kwargs,
|
||||
)
|
||||
??? Code
|
||||
|
||||
image_patches = processed_outputs.get("image_patches")
|
||||
if image_patches is not None:
|
||||
images = mm_data["images"]
|
||||
assert isinstance(images, list)
|
||||
```python
|
||||
def _call_hf_processor(
|
||||
self,
|
||||
prompt: str,
|
||||
mm_data: Mapping[str, object],
|
||||
mm_kwargs: Mapping[str, object],
|
||||
) -> BatchFeature:
|
||||
processed_outputs = super()._call_hf_processor(
|
||||
prompt=prompt,
|
||||
mm_data=mm_data,
|
||||
mm_kwargs=mm_kwargs,
|
||||
)
|
||||
|
||||
# Original output: (1, num_images, Pn, Px * Py * C)
|
||||
# New output: (num_images, Pn, Px * Py * C)
|
||||
assert (isinstance(image_patches, list)
|
||||
and len(image_patches) == 1)
|
||||
assert (isinstance(image_patches[0], torch.Tensor)
|
||||
and len(image_patches[0]) == len(images))
|
||||
image_patches = processed_outputs.get("image_patches")
|
||||
if image_patches is not None:
|
||||
images = mm_data["images"]
|
||||
assert isinstance(images, list)
|
||||
|
||||
processed_outputs["image_patches"] = image_patches[0]
|
||||
# Original output: (1, num_images, Pn, Px * Py * C)
|
||||
# New output: (num_images, Pn, Px * Py * C)
|
||||
assert (isinstance(image_patches, list)
|
||||
and len(image_patches) == 1)
|
||||
assert (isinstance(image_patches[0], torch.Tensor)
|
||||
and len(image_patches[0]) == len(images))
|
||||
|
||||
return processed_outputs
|
||||
```
|
||||
processed_outputs["image_patches"] = image_patches[0]
|
||||
|
||||
return processed_outputs
|
||||
```
|
||||
|
||||
!!! note
|
||||
Our [actual code](gh-file:vllm/model_executor/models/fuyu.py) has special handling
|
||||
@ -573,35 +600,37 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
|
||||
It simply repeats each input `image_token` a number of times equal to the number of placeholder feature tokens (`num_image_tokens`).
|
||||
Based on this, we override [_get_prompt_updates][vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates] as follows:
|
||||
|
||||
```python
|
||||
def _get_prompt_updates(
|
||||
self,
|
||||
mm_items: MultiModalDataItems,
|
||||
hf_processor_mm_kwargs: Mapping[str, object],
|
||||
out_mm_kwargs: MultiModalKwargs,
|
||||
) -> Sequence[PromptUpdate]:
|
||||
hf_config = self.info.get_hf_config()
|
||||
image_token_id = hf_config.image_token_index
|
||||
??? Code
|
||||
|
||||
def get_replacement(item_idx: int):
|
||||
images = mm_items.get_items("image", ImageProcessorItems)
|
||||
```python
|
||||
def _get_prompt_updates(
|
||||
self,
|
||||
mm_items: MultiModalDataItems,
|
||||
hf_processor_mm_kwargs: Mapping[str, object],
|
||||
out_mm_kwargs: MultiModalKwargs,
|
||||
) -> Sequence[PromptUpdate]:
|
||||
hf_config = self.info.get_hf_config()
|
||||
image_token_id = hf_config.image_token_index
|
||||
|
||||
image_size = images.get_image_size(item_idx)
|
||||
num_image_tokens = self.info.get_num_image_tokens(
|
||||
image_width=image_size.width,
|
||||
image_height=image_size.height,
|
||||
)
|
||||
def get_replacement(item_idx: int):
|
||||
images = mm_items.get_items("image", ImageProcessorItems)
|
||||
|
||||
return [image_token_id] * num_image_tokens
|
||||
image_size = images.get_image_size(item_idx)
|
||||
num_image_tokens = self.info.get_num_image_tokens(
|
||||
image_width=image_size.width,
|
||||
image_height=image_size.height,
|
||||
)
|
||||
|
||||
return [
|
||||
PromptReplacement(
|
||||
modality="image",
|
||||
target=[image_token_id],
|
||||
replacement=get_replacement,
|
||||
),
|
||||
]
|
||||
```
|
||||
return [image_token_id] * num_image_tokens
|
||||
|
||||
return [
|
||||
PromptReplacement(
|
||||
modality="image",
|
||||
target=[image_token_id],
|
||||
replacement=get_replacement,
|
||||
),
|
||||
]
|
||||
```
|
||||
|
||||
=== "Handling additional tokens: Fuyu"
|
||||
|
||||
@ -616,117 +645,90 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
|
||||
|
||||
We define a helper function to return `ncols` and `nrows` directly:
|
||||
|
||||
```python
|
||||
def get_image_feature_grid_size(
|
||||
self,
|
||||
*,
|
||||
image_width: int,
|
||||
image_height: int,
|
||||
) -> tuple[int, int]:
|
||||
image_processor = self.get_image_processor()
|
||||
target_width = image_processor.size["width"]
|
||||
target_height = image_processor.size["height"]
|
||||
patch_width = image_processor.patch_size["width"]
|
||||
patch_height = image_processor.patch_size["height"]
|
||||
??? Code
|
||||
|
||||
if not (image_width <= target_width and image_height <= target_height):
|
||||
height_scale_factor = target_height / image_height
|
||||
width_scale_factor = target_width / image_width
|
||||
optimal_scale_factor = min(height_scale_factor, width_scale_factor)
|
||||
```python
|
||||
def get_image_feature_grid_size(
|
||||
self,
|
||||
*,
|
||||
image_width: int,
|
||||
image_height: int,
|
||||
) -> tuple[int, int]:
|
||||
image_processor = self.get_image_processor()
|
||||
target_width = image_processor.size["width"]
|
||||
target_height = image_processor.size["height"]
|
||||
patch_width = image_processor.patch_size["width"]
|
||||
patch_height = image_processor.patch_size["height"]
|
||||
|
||||
image_height = int(image_height * optimal_scale_factor)
|
||||
image_width = int(image_width * optimal_scale_factor)
|
||||
if not (image_width <= target_width and image_height <= target_height):
|
||||
height_scale_factor = target_height / image_height
|
||||
width_scale_factor = target_width / image_width
|
||||
optimal_scale_factor = min(height_scale_factor, width_scale_factor)
|
||||
|
||||
ncols = math.ceil(image_width / patch_width)
|
||||
nrows = math.ceil(image_height / patch_height)
|
||||
return ncols, nrows
|
||||
```
|
||||
image_height = int(image_height * optimal_scale_factor)
|
||||
image_width = int(image_width * optimal_scale_factor)
|
||||
|
||||
ncols = math.ceil(image_width / patch_width)
|
||||
nrows = math.ceil(image_height / patch_height)
|
||||
return ncols, nrows
|
||||
```
|
||||
|
||||
Based on this, we can initially define our replacement tokens as:
|
||||
|
||||
```python
|
||||
def get_replacement(item_idx: int):
|
||||
images = mm_items.get_items("image", ImageProcessorItems)
|
||||
image_size = images.get_image_size(item_idx)
|
||||
??? Code
|
||||
|
||||
ncols, nrows = self.info.get_image_feature_grid_size(
|
||||
image_width=image_size.width,
|
||||
image_height=image_size.height,
|
||||
)
|
||||
```python
|
||||
def get_replacement(item_idx: int):
|
||||
images = mm_items.get_items("image", ImageProcessorItems)
|
||||
image_size = images.get_image_size(item_idx)
|
||||
|
||||
# `_IMAGE_TOKEN_ID` corresponds to `|SPEAKER|`
|
||||
# `_NEWLINE_TOKEN_ID` corresponds to `|NEWLINE|`
|
||||
return ([_IMAGE_TOKEN_ID] * ncols + [_NEWLINE_TOKEN_ID]) * nrows
|
||||
```
|
||||
ncols, nrows = self.info.get_image_feature_grid_size(
|
||||
image_width=image_size.width,
|
||||
image_height=image_size.height,
|
||||
)
|
||||
|
||||
# `_IMAGE_TOKEN_ID` corresponds to `|SPEAKER|`
|
||||
# `_NEWLINE_TOKEN_ID` corresponds to `|NEWLINE|`
|
||||
return ([_IMAGE_TOKEN_ID] * ncols + [_NEWLINE_TOKEN_ID]) * nrows
|
||||
```
|
||||
|
||||
However, this is not entirely correct. After `FuyuImageProcessor.preprocess_with_tokenizer_info` is called,
|
||||
a BOS token (`<s>`) is also added to the promopt:
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L435
|
||||
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
|
||||
image_input=tensor_batch_images,
|
||||
image_present=image_present,
|
||||
image_unpadded_h=image_unpadded_heights,
|
||||
image_unpadded_w=image_unpadded_widths,
|
||||
image_placeholder_id=image_placeholder_id,
|
||||
image_newline_id=image_newline_id,
|
||||
variable_sized=True,
|
||||
)
|
||||
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
|
||||
tokenizer=self.tokenizer,
|
||||
prompts=prompts,
|
||||
scale_factors=scale_factors,
|
||||
max_tokens_to_generate=self.max_tokens_to_generate,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
add_BOS=True,
|
||||
add_beginning_of_answer_token=True,
|
||||
)
|
||||
```
|
||||
??? Code
|
||||
|
||||
```python
|
||||
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L435
|
||||
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
|
||||
image_input=tensor_batch_images,
|
||||
image_present=image_present,
|
||||
image_unpadded_h=image_unpadded_heights,
|
||||
image_unpadded_w=image_unpadded_widths,
|
||||
image_placeholder_id=image_placeholder_id,
|
||||
image_newline_id=image_newline_id,
|
||||
variable_sized=True,
|
||||
)
|
||||
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
|
||||
tokenizer=self.tokenizer,
|
||||
prompts=prompts,
|
||||
scale_factors=scale_factors,
|
||||
max_tokens_to_generate=self.max_tokens_to_generate,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
add_BOS=True,
|
||||
add_beginning_of_answer_token=True,
|
||||
)
|
||||
```
|
||||
|
||||
To assign the vision embeddings to only the image tokens, instead of a string
|
||||
you can return an instance of [PromptUpdateDetails][vllm.multimodal.processing.PromptUpdateDetails]:
|
||||
|
||||
```python
|
||||
hf_config = self.info.get_hf_config()
|
||||
bos_token_id = hf_config.bos_token_id # `<s>`
|
||||
assert isinstance(bos_token_id, int)
|
||||
??? Code
|
||||
|
||||
def get_replacement_fuyu(item_idx: int):
|
||||
images = mm_items.get_items("image", ImageProcessorItems)
|
||||
image_size = images.get_image_size(item_idx)
|
||||
|
||||
ncols, nrows = self.info.get_image_feature_grid_size(
|
||||
image_width=image_size.width,
|
||||
image_height=image_size.height,
|
||||
)
|
||||
image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
|
||||
[_NEWLINE_TOKEN_ID]) * nrows
|
||||
|
||||
return PromptUpdateDetails.select_token_id(
|
||||
image_tokens + [bos_token_id],
|
||||
embed_token_id=_IMAGE_TOKEN_ID,
|
||||
)
|
||||
```
|
||||
|
||||
Finally, noticing that the HF processor removes the `|ENDOFTEXT|` token from the tokenized prompt,
|
||||
we can search for it to conduct the replacement at the start of the string:
|
||||
|
||||
```python
|
||||
def _get_prompt_updates(
|
||||
self,
|
||||
mm_items: MultiModalDataItems,
|
||||
hf_processor_mm_kwargs: Mapping[str, object],
|
||||
out_mm_kwargs: MultiModalKwargs,
|
||||
) -> Sequence[PromptUpdate]:
|
||||
```python
|
||||
hf_config = self.info.get_hf_config()
|
||||
bos_token_id = hf_config.bos_token_id
|
||||
bos_token_id = hf_config.bos_token_id # `<s>`
|
||||
assert isinstance(bos_token_id, int)
|
||||
|
||||
tokenizer = self.info.get_tokenizer()
|
||||
eot_token_id = tokenizer.bos_token_id
|
||||
assert isinstance(eot_token_id, int)
|
||||
|
||||
def get_replacement_fuyu(item_idx: int):
|
||||
images = mm_items.get_items("image", ImageProcessorItems)
|
||||
image_size = images.get_image_size(item_idx)
|
||||
@ -742,15 +744,52 @@ Each [PromptUpdate][vllm.multimodal.processing.PromptUpdate] instance specifies
|
||||
image_tokens + [bos_token_id],
|
||||
embed_token_id=_IMAGE_TOKEN_ID,
|
||||
)
|
||||
```
|
||||
|
||||
return [
|
||||
PromptReplacement(
|
||||
modality="image",
|
||||
target=[eot_token_id],
|
||||
replacement=get_replacement_fuyu,
|
||||
)
|
||||
]
|
||||
```
|
||||
Finally, noticing that the HF processor removes the `|ENDOFTEXT|` token from the tokenized prompt,
|
||||
we can search for it to conduct the replacement at the start of the string:
|
||||
|
||||
??? Code
|
||||
|
||||
```python
|
||||
def _get_prompt_updates(
|
||||
self,
|
||||
mm_items: MultiModalDataItems,
|
||||
hf_processor_mm_kwargs: Mapping[str, object],
|
||||
out_mm_kwargs: MultiModalKwargs,
|
||||
) -> Sequence[PromptUpdate]:
|
||||
hf_config = self.info.get_hf_config()
|
||||
bos_token_id = hf_config.bos_token_id
|
||||
assert isinstance(bos_token_id, int)
|
||||
|
||||
tokenizer = self.info.get_tokenizer()
|
||||
eot_token_id = tokenizer.bos_token_id
|
||||
assert isinstance(eot_token_id, int)
|
||||
|
||||
def get_replacement_fuyu(item_idx: int):
|
||||
images = mm_items.get_items("image", ImageProcessorItems)
|
||||
image_size = images.get_image_size(item_idx)
|
||||
|
||||
ncols, nrows = self.info.get_image_feature_grid_size(
|
||||
image_width=image_size.width,
|
||||
image_height=image_size.height,
|
||||
)
|
||||
image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
|
||||
[_NEWLINE_TOKEN_ID]) * nrows
|
||||
|
||||
return PromptUpdateDetails.select_token_id(
|
||||
image_tokens + [bos_token_id],
|
||||
embed_token_id=_IMAGE_TOKEN_ID,
|
||||
)
|
||||
|
||||
return [
|
||||
PromptReplacement(
|
||||
modality="image",
|
||||
target=[eot_token_id],
|
||||
replacement=get_replacement_fuyu,
|
||||
)
|
||||
]
|
||||
```
|
||||
|
||||
## 5. Register processor-related classes
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Registering a Model to vLLM
|
||||
title: Registering a Model
|
||||
---
|
||||
[](){ #new-model-registration }
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Writing Unit Tests
|
||||
title: Unit Testing
|
||||
---
|
||||
[](){ #new-model-tests }
|
||||
|
||||
|
||||
@ -30,13 +30,21 @@ Refer to <gh-file:examples/offline_inference/simple_profiling.py> for an example
|
||||
#### OpenAI Server
|
||||
|
||||
```bash
|
||||
VLLM_TORCH_PROFILER_DIR=./vllm_profile python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3-70B
|
||||
VLLM_TORCH_PROFILER_DIR=./vllm_profile \
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model meta-llama/Meta-Llama-3-70B
|
||||
```
|
||||
|
||||
benchmark_serving.py:
|
||||
|
||||
```bash
|
||||
python benchmarks/benchmark_serving.py --backend vllm --model meta-llama/Meta-Llama-3-70B --dataset-name sharegpt --dataset-path sharegpt.json --profile --num-prompts 2
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model meta-llama/Meta-Llama-3-70B \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path sharegpt.json \
|
||||
--profile \
|
||||
--num-prompts 2
|
||||
```
|
||||
|
||||
## Profile with NVIDIA Nsight Systems
|
||||
@ -64,7 +72,16 @@ For basic usage, you can just append `nsys profile -o report.nsys-rep --trace-fo
|
||||
The following is an example using the `benchmarks/benchmark_latency.py` script:
|
||||
|
||||
```bash
|
||||
nsys profile -o report.nsys-rep --trace-fork-before-exec=true --cuda-graph-trace=node python benchmarks/benchmark_latency.py --model meta-llama/Llama-3.1-8B-Instruct --num-iters-warmup 5 --num-iters 1 --batch-size 16 --input-len 512 --output-len 8
|
||||
nsys profile -o report.nsys-rep \
|
||||
--trace-fork-before-exec=true \
|
||||
--cuda-graph-trace=node \
|
||||
python benchmarks/benchmark_latency.py \
|
||||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||||
--num-iters-warmup 5 \
|
||||
--num-iters 1 \
|
||||
--batch-size 16 \
|
||||
--input-len 512 \
|
||||
--output-len 8
|
||||
```
|
||||
|
||||
#### OpenAI Server
|
||||
@ -73,10 +90,21 @@ To profile the server, you will want to prepend your `vllm serve` command with `
|
||||
|
||||
```bash
|
||||
# server
|
||||
nsys profile -o report.nsys-rep --trace-fork-before-exec=true --cuda-graph-trace=node --delay 30 --duration 60 vllm serve meta-llama/Llama-3.1-8B-Instruct
|
||||
nsys profile -o report.nsys-rep \
|
||||
--trace-fork-before-exec=true \
|
||||
--cuda-graph-trace=node \
|
||||
--delay 30 \
|
||||
--duration 60 \
|
||||
vllm serve meta-llama/Llama-3.1-8B-Instruct
|
||||
|
||||
# client
|
||||
python benchmarks/benchmark_serving.py --backend vllm --model meta-llama/Llama-3.1-8B-Instruct --num-prompts 1 --dataset-name random --random-input 1024 --random-output 512
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||||
--num-prompts 1 \
|
||||
--dataset-name random \
|
||||
--random-input 1024 \
|
||||
--random-output 512
|
||||
```
|
||||
|
||||
In practice, you should set the `--duration` argument to a large value. Whenever you want the server to stop profiling, run:
|
||||
@ -97,26 +125,26 @@ to manually kill the profiler and generate your `nsys-rep` report.
|
||||
|
||||
You can view these profiles either as summaries in the CLI, using `nsys stats [profile-file]`, or in the GUI by installing Nsight [locally following the directions here](https://developer.nvidia.com/nsight-systems/get-started).
|
||||
|
||||
CLI example:
|
||||
??? CLI example
|
||||
|
||||
```bash
|
||||
nsys stats report1.nsys-rep
|
||||
...
|
||||
** CUDA GPU Kernel Summary (cuda_gpu_kern_sum):
|
||||
```bash
|
||||
nsys stats report1.nsys-rep
|
||||
...
|
||||
** CUDA GPU Kernel Summary (cuda_gpu_kern_sum):
|
||||
|
||||
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name
|
||||
-------- --------------- --------- ----------- ----------- -------- --------- ----------- ----------------------------------------------------------------------------------------------------
|
||||
46.3 10,327,352,338 17,505 589,965.9 144,383.0 27,040 3,126,460 944,263.8 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_of…
|
||||
14.8 3,305,114,764 5,152 641,520.7 293,408.0 287,296 2,822,716 867,124.9 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize256x128x64_warpgroupsize2x1x1_execute_segment_k_of…
|
||||
12.1 2,692,284,876 14,280 188,535.4 83,904.0 19,328 2,862,237 497,999.9 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off…
|
||||
9.5 2,116,600,578 33,920 62,399.8 21,504.0 15,326 2,532,285 290,954.1 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_…
|
||||
5.0 1,119,749,165 18,912 59,208.4 9,056.0 6,784 2,578,366 271,581.7 void vllm::act_and_mul_kernel<c10::BFloat16, &vllm::silu_kernel<c10::BFloat16>, (bool)1>(T1 *, cons…
|
||||
4.1 916,662,515 21,312 43,011.6 19,776.0 8,928 2,586,205 199,790.1 void cutlass::device_kernel<flash::enable_sm90_or_later<flash::FlashAttnFwdSm90<flash::CollectiveMa…
|
||||
2.6 587,283,113 37,824 15,526.7 3,008.0 2,719 2,517,756 139,091.1 std::enable_if<T2>(int)0&&vllm::_typeConvert<T1>::exists, void>::type vllm::fused_add_rms_norm_kern…
|
||||
1.9 418,362,605 18,912 22,121.5 3,871.0 3,328 2,523,870 175,248.2 void vllm::rotary_embedding_kernel<c10::BFloat16, (bool)1>(const long *, T1 *, T1 *, const T1 *, in…
|
||||
0.7 167,083,069 18,880 8,849.7 2,240.0 1,471 2,499,996 101,436.1 void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0…
|
||||
...
|
||||
```
|
||||
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name
|
||||
-------- --------------- --------- ----------- ----------- -------- --------- ----------- ----------------------------------------------------------------------------------------------------
|
||||
46.3 10,327,352,338 17,505 589,965.9 144,383.0 27,040 3,126,460 944,263.8 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_of…
|
||||
14.8 3,305,114,764 5,152 641,520.7 293,408.0 287,296 2,822,716 867,124.9 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize256x128x64_warpgroupsize2x1x1_execute_segment_k_of…
|
||||
12.1 2,692,284,876 14,280 188,535.4 83,904.0 19,328 2,862,237 497,999.9 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off…
|
||||
9.5 2,116,600,578 33,920 62,399.8 21,504.0 15,326 2,532,285 290,954.1 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_…
|
||||
5.0 1,119,749,165 18,912 59,208.4 9,056.0 6,784 2,578,366 271,581.7 void vllm::act_and_mul_kernel<c10::BFloat16, &vllm::silu_kernel<c10::BFloat16>, (bool)1>(T1 *, cons…
|
||||
4.1 916,662,515 21,312 43,011.6 19,776.0 8,928 2,586,205 199,790.1 void cutlass::device_kernel<flash::enable_sm90_or_later<flash::FlashAttnFwdSm90<flash::CollectiveMa…
|
||||
2.6 587,283,113 37,824 15,526.7 3,008.0 2,719 2,517,756 139,091.1 std::enable_if<T2>(int)0&&vllm::_typeConvert<T1>::exists, void>::type vllm::fused_add_rms_norm_kern…
|
||||
1.9 418,362,605 18,912 22,121.5 3,871.0 3,328 2,523,870 175,248.2 void vllm::rotary_embedding_kernel<c10::BFloat16, (bool)1>(const long *, T1 *, T1 *, const T1 *, in…
|
||||
0.7 167,083,069 18,880 8,849.7 2,240.0 1,471 2,499,996 101,436.1 void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0…
|
||||
...
|
||||
```
|
||||
|
||||
GUI example:
|
||||
|
||||
|
||||
@ -10,7 +10,7 @@ title: Using Docker
|
||||
vLLM offers an official Docker image for deployment.
|
||||
The image can be used to run OpenAI compatible server and is available on Docker Hub as [vllm/vllm-openai](https://hub.docker.com/r/vllm/vllm-openai/tags).
|
||||
|
||||
```console
|
||||
```bash
|
||||
docker run --runtime nvidia --gpus all \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
|
||||
@ -22,7 +22,7 @@ docker run --runtime nvidia --gpus all \
|
||||
|
||||
This image can also be used with other container engines such as [Podman](https://podman.io/).
|
||||
|
||||
```console
|
||||
```bash
|
||||
podman run --gpus all \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
@ -71,7 +71,7 @@ You can add any other [engine-args][engine-args] you need after the image tag (`
|
||||
|
||||
You can build and run vLLM from source via the provided <gh-file:docker/Dockerfile>. To build vLLM:
|
||||
|
||||
```console
|
||||
```bash
|
||||
# optionally specifies: --build-arg max_jobs=8 --build-arg nvcc_threads=2
|
||||
DOCKER_BUILDKIT=1 docker build . \
|
||||
--target vllm-openai \
|
||||
@ -97,26 +97,28 @@ of PyTorch Nightly and should be considered **experimental**. Using the flag `--
|
||||
flags to speed up build process. However, ensure your `max_jobs` is substantially larger than `nvcc_threads` to get the most benefits.
|
||||
Keep an eye on memory usage with parallel jobs as it can be substantial (see example below).
|
||||
|
||||
```console
|
||||
# Example of building on Nvidia GH200 server. (Memory usage: ~15GB, Build time: ~1475s / ~25 min, Image size: 6.93GB)
|
||||
python3 use_existing_torch.py
|
||||
DOCKER_BUILDKIT=1 docker build . \
|
||||
--file docker/Dockerfile \
|
||||
--target vllm-openai \
|
||||
--platform "linux/arm64" \
|
||||
-t vllm/vllm-gh200-openai:latest \
|
||||
--build-arg max_jobs=66 \
|
||||
--build-arg nvcc_threads=2 \
|
||||
--build-arg torch_cuda_arch_list="9.0 10.0+PTX" \
|
||||
--build-arg vllm_fa_cmake_gpu_arches="90-real"
|
||||
```
|
||||
??? Command
|
||||
|
||||
```bash
|
||||
# Example of building on Nvidia GH200 server. (Memory usage: ~15GB, Build time: ~1475s / ~25 min, Image size: 6.93GB)
|
||||
python3 use_existing_torch.py
|
||||
DOCKER_BUILDKIT=1 docker build . \
|
||||
--file docker/Dockerfile \
|
||||
--target vllm-openai \
|
||||
--platform "linux/arm64" \
|
||||
-t vllm/vllm-gh200-openai:latest \
|
||||
--build-arg max_jobs=66 \
|
||||
--build-arg nvcc_threads=2 \
|
||||
--build-arg torch_cuda_arch_list="9.0 10.0+PTX" \
|
||||
--build-arg vllm_fa_cmake_gpu_arches="90-real"
|
||||
```
|
||||
|
||||
!!! note
|
||||
If you are building the `linux/arm64` image on a non-ARM host (e.g., an x86_64 machine), you need to ensure your system is set up for cross-compilation using QEMU. This allows your host machine to emulate ARM64 execution.
|
||||
|
||||
Run the following command on your host machine to register QEMU user static handlers:
|
||||
|
||||
```console
|
||||
```bash
|
||||
docker run --rm --privileged multiarch/qemu-user-static --reset -p yes
|
||||
```
|
||||
|
||||
@ -126,7 +128,7 @@ DOCKER_BUILDKIT=1 docker build . \
|
||||
|
||||
To run vLLM with the custom-built Docker image:
|
||||
|
||||
```console
|
||||
```bash
|
||||
docker run --runtime nvidia --gpus all \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
-p 8000:8000 \
|
||||
|
||||
@ -15,7 +15,7 @@ It allows you to deploy a large language model (LLM) server with vLLM as the bac
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
vllm serve Qwen/Qwen1.5-32B-Chat-AWQ --max-model-len 4096
|
||||
```
|
||||
|
||||
|
||||
@ -11,7 +11,7 @@ title: AutoGen
|
||||
|
||||
- Setup [AutoGen](https://microsoft.github.io/autogen/0.2/docs/installation/) environment
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install vllm
|
||||
|
||||
# Install AgentChat and OpenAI client from Extensions
|
||||
@ -23,58 +23,60 @@ pip install -U "autogen-agentchat" "autogen-ext[openai]"
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model mistralai/Mistral-7B-Instruct-v0.2
|
||||
```
|
||||
|
||||
- Call it with AutoGen:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from autogen_core.models import UserMessage
|
||||
from autogen_ext.models.openai import OpenAIChatCompletionClient
|
||||
from autogen_core.models import ModelFamily
|
||||
??? Code
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from autogen_core.models import UserMessage
|
||||
from autogen_ext.models.openai import OpenAIChatCompletionClient
|
||||
from autogen_core.models import ModelFamily
|
||||
|
||||
|
||||
async def main() -> None:
|
||||
# Create a model client
|
||||
model_client = OpenAIChatCompletionClient(
|
||||
model="mistralai/Mistral-7B-Instruct-v0.2",
|
||||
base_url="http://{your-vllm-host-ip}:{your-vllm-host-port}/v1",
|
||||
api_key="EMPTY",
|
||||
model_info={
|
||||
"vision": False,
|
||||
"function_calling": False,
|
||||
"json_output": False,
|
||||
"family": ModelFamily.MISTRAL,
|
||||
"structured_output": True,
|
||||
},
|
||||
)
|
||||
async def main() -> None:
|
||||
# Create a model client
|
||||
model_client = OpenAIChatCompletionClient(
|
||||
model="mistralai/Mistral-7B-Instruct-v0.2",
|
||||
base_url="http://{your-vllm-host-ip}:{your-vllm-host-port}/v1",
|
||||
api_key="EMPTY",
|
||||
model_info={
|
||||
"vision": False,
|
||||
"function_calling": False,
|
||||
"json_output": False,
|
||||
"family": ModelFamily.MISTRAL,
|
||||
"structured_output": True,
|
||||
},
|
||||
)
|
||||
|
||||
messages = [UserMessage(content="Write a very short story about a dragon.", source="user")]
|
||||
messages = [UserMessage(content="Write a very short story about a dragon.", source="user")]
|
||||
|
||||
# Create a stream.
|
||||
stream = model_client.create_stream(messages=messages)
|
||||
# Create a stream.
|
||||
stream = model_client.create_stream(messages=messages)
|
||||
|
||||
# Iterate over the stream and print the responses.
|
||||
print("Streamed responses:")
|
||||
async for response in stream:
|
||||
if isinstance(response, str):
|
||||
# A partial response is a string.
|
||||
print(response, flush=True, end="")
|
||||
else:
|
||||
# The last response is a CreateResult object with the complete message.
|
||||
print("\n\n------------\n")
|
||||
print("The complete response:", flush=True)
|
||||
print(response.content, flush=True)
|
||||
# Iterate over the stream and print the responses.
|
||||
print("Streamed responses:")
|
||||
async for response in stream:
|
||||
if isinstance(response, str):
|
||||
# A partial response is a string.
|
||||
print(response, flush=True, end="")
|
||||
else:
|
||||
# The last response is a CreateResult object with the complete message.
|
||||
print("\n\n------------\n")
|
||||
print("The complete response:", flush=True)
|
||||
print(response.content, flush=True)
|
||||
|
||||
# Close the client when done.
|
||||
await model_client.close()
|
||||
# Close the client when done.
|
||||
await model_client.close()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
For details, see the tutorial:
|
||||
|
||||
|
||||
@ -11,14 +11,14 @@ vLLM can be run on a cloud based GPU machine with [Cerebrium](https://www.cerebr
|
||||
|
||||
To install the Cerebrium client, run:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install cerebrium
|
||||
cerebrium login
|
||||
```
|
||||
|
||||
Next, create your Cerebrium project, run:
|
||||
|
||||
```console
|
||||
```bash
|
||||
cerebrium init vllm-project
|
||||
```
|
||||
|
||||
@ -34,75 +34,81 @@ vllm = "latest"
|
||||
|
||||
Next, let us add our code to handle inference for the LLM of your choice (`mistralai/Mistral-7B-Instruct-v0.1` for this example), add the following code to your `main.py`:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
llm = LLM(model="mistralai/Mistral-7B-Instruct-v0.1")
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
def run(prompts: list[str], temperature: float = 0.8, top_p: float = 0.95):
|
||||
llm = LLM(model="mistralai/Mistral-7B-Instruct-v0.1")
|
||||
|
||||
sampling_params = SamplingParams(temperature=temperature, top_p=top_p)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
def run(prompts: list[str], temperature: float = 0.8, top_p: float = 0.95):
|
||||
|
||||
# Print the outputs.
|
||||
results = []
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
results.append({"prompt": prompt, "generated_text": generated_text})
|
||||
sampling_params = SamplingParams(temperature=temperature, top_p=top_p)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
return {"results": results}
|
||||
```
|
||||
# Print the outputs.
|
||||
results = []
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
results.append({"prompt": prompt, "generated_text": generated_text})
|
||||
|
||||
return {"results": results}
|
||||
```
|
||||
|
||||
Then, run the following code to deploy it to the cloud:
|
||||
|
||||
```console
|
||||
```bash
|
||||
cerebrium deploy
|
||||
```
|
||||
|
||||
If successful, you should be returned a CURL command that you can call inference against. Just remember to end the url with the function name you are calling (in our case`/run`)
|
||||
|
||||
```python
|
||||
curl -X POST https://api.cortex.cerebrium.ai/v4/p-xxxxxx/vllm/run \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: <JWT TOKEN>' \
|
||||
--data '{
|
||||
"prompts": [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is"
|
||||
]
|
||||
}'
|
||||
```
|
||||
??? Command
|
||||
|
||||
```python
|
||||
curl -X POST https://api.cortex.cerebrium.ai/v4/p-xxxxxx/vllm/run \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: <JWT TOKEN>' \
|
||||
--data '{
|
||||
"prompts": [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is"
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
You should get a response like:
|
||||
|
||||
```python
|
||||
{
|
||||
"run_id": "52911756-3066-9ae8-bcc9-d9129d1bd262",
|
||||
"result": {
|
||||
"result": [
|
||||
{
|
||||
"prompt": "Hello, my name is",
|
||||
"generated_text": " Sarah, and I'm a teacher. I teach elementary school students. One of"
|
||||
},
|
||||
{
|
||||
"prompt": "The president of the United States is",
|
||||
"generated_text": " elected every four years. This is a democratic system.\n\n5. What"
|
||||
},
|
||||
{
|
||||
"prompt": "The capital of France is",
|
||||
"generated_text": " Paris.\n"
|
||||
},
|
||||
{
|
||||
"prompt": "The future of AI is",
|
||||
"generated_text": " bright, but it's important to approach it with a balanced and nuanced perspective."
|
||||
}
|
||||
]
|
||||
},
|
||||
"run_time_ms": 152.53663063049316
|
||||
}
|
||||
```
|
||||
??? Response
|
||||
|
||||
```python
|
||||
{
|
||||
"run_id": "52911756-3066-9ae8-bcc9-d9129d1bd262",
|
||||
"result": {
|
||||
"result": [
|
||||
{
|
||||
"prompt": "Hello, my name is",
|
||||
"generated_text": " Sarah, and I'm a teacher. I teach elementary school students. One of"
|
||||
},
|
||||
{
|
||||
"prompt": "The president of the United States is",
|
||||
"generated_text": " elected every four years. This is a democratic system.\n\n5. What"
|
||||
},
|
||||
{
|
||||
"prompt": "The capital of France is",
|
||||
"generated_text": " Paris.\n"
|
||||
},
|
||||
{
|
||||
"prompt": "The future of AI is",
|
||||
"generated_text": " bright, but it's important to approach it with a balanced and nuanced perspective."
|
||||
}
|
||||
]
|
||||
},
|
||||
"run_time_ms": 152.53663063049316
|
||||
}
|
||||
```
|
||||
|
||||
You now have an autoscaling endpoint where you only pay for the compute you use!
|
||||
|
||||
@ -15,7 +15,7 @@ It allows you to deploy a large language model (LLM) server with vLLM as the bac
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
vllm serve qwen/Qwen1.5-0.5B-Chat
|
||||
```
|
||||
|
||||
|
||||
@ -18,13 +18,13 @@ This guide walks you through deploying Dify using a vLLM backend.
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
vllm serve Qwen/Qwen1.5-7B-Chat
|
||||
```
|
||||
|
||||
- Start the Dify server with docker compose ([details](https://github.com/langgenius/dify?tab=readme-ov-file#quick-start)):
|
||||
|
||||
```console
|
||||
```bash
|
||||
git clone https://github.com/langgenius/dify.git
|
||||
cd dify
|
||||
cd docker
|
||||
|
||||
@ -11,14 +11,14 @@ vLLM can be run on a cloud based GPU machine with [dstack](https://dstack.ai/),
|
||||
|
||||
To install dstack client, run:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install "dstack[all]
|
||||
dstack server
|
||||
```
|
||||
|
||||
Next, to configure your dstack project, run:
|
||||
|
||||
```console
|
||||
```bash
|
||||
mkdir -p vllm-dstack
|
||||
cd vllm-dstack
|
||||
dstack init
|
||||
@ -26,75 +26,81 @@ dstack init
|
||||
|
||||
Next, to provision a VM instance with LLM of your choice (`NousResearch/Llama-2-7b-chat-hf` for this example), create the following `serve.dstack.yml` file for the dstack `Service`:
|
||||
|
||||
```yaml
|
||||
type: service
|
||||
??? Config
|
||||
|
||||
python: "3.11"
|
||||
env:
|
||||
- MODEL=NousResearch/Llama-2-7b-chat-hf
|
||||
port: 8000
|
||||
resources:
|
||||
gpu: 24GB
|
||||
commands:
|
||||
- pip install vllm
|
||||
- vllm serve $MODEL --port 8000
|
||||
model:
|
||||
format: openai
|
||||
type: chat
|
||||
name: NousResearch/Llama-2-7b-chat-hf
|
||||
```
|
||||
```yaml
|
||||
type: service
|
||||
|
||||
python: "3.11"
|
||||
env:
|
||||
- MODEL=NousResearch/Llama-2-7b-chat-hf
|
||||
port: 8000
|
||||
resources:
|
||||
gpu: 24GB
|
||||
commands:
|
||||
- pip install vllm
|
||||
- vllm serve $MODEL --port 8000
|
||||
model:
|
||||
format: openai
|
||||
type: chat
|
||||
name: NousResearch/Llama-2-7b-chat-hf
|
||||
```
|
||||
|
||||
Then, run the following CLI for provisioning:
|
||||
|
||||
```console
|
||||
$ dstack run . -f serve.dstack.yml
|
||||
??? Command
|
||||
|
||||
⠸ Getting run plan...
|
||||
Configuration serve.dstack.yml
|
||||
Project deep-diver-main
|
||||
User deep-diver
|
||||
Min resources 2..xCPU, 8GB.., 1xGPU (24GB)
|
||||
Max price -
|
||||
Max duration -
|
||||
Spot policy auto
|
||||
Retry policy no
|
||||
```console
|
||||
$ dstack run . -f serve.dstack.yml
|
||||
|
||||
# BACKEND REGION INSTANCE RESOURCES SPOT PRICE
|
||||
1 gcp us-central1 g2-standard-4 4xCPU, 16GB, 1xL4 (24GB), 100GB (disk) yes $0.223804
|
||||
2 gcp us-east1 g2-standard-4 4xCPU, 16GB, 1xL4 (24GB), 100GB (disk) yes $0.223804
|
||||
3 gcp us-west1 g2-standard-4 4xCPU, 16GB, 1xL4 (24GB), 100GB (disk) yes $0.223804
|
||||
...
|
||||
Shown 3 of 193 offers, $5.876 max
|
||||
⠸ Getting run plan...
|
||||
Configuration serve.dstack.yml
|
||||
Project deep-diver-main
|
||||
User deep-diver
|
||||
Min resources 2..xCPU, 8GB.., 1xGPU (24GB)
|
||||
Max price -
|
||||
Max duration -
|
||||
Spot policy auto
|
||||
Retry policy no
|
||||
|
||||
Continue? [y/n]: y
|
||||
⠙ Submitting run...
|
||||
⠏ Launching spicy-treefrog-1 (pulling)
|
||||
spicy-treefrog-1 provisioning completed (running)
|
||||
Service is published at ...
|
||||
```
|
||||
# BACKEND REGION INSTANCE RESOURCES SPOT PRICE
|
||||
1 gcp us-central1 g2-standard-4 4xCPU, 16GB, 1xL4 (24GB), 100GB (disk) yes $0.223804
|
||||
2 gcp us-east1 g2-standard-4 4xCPU, 16GB, 1xL4 (24GB), 100GB (disk) yes $0.223804
|
||||
3 gcp us-west1 g2-standard-4 4xCPU, 16GB, 1xL4 (24GB), 100GB (disk) yes $0.223804
|
||||
...
|
||||
Shown 3 of 193 offers, $5.876 max
|
||||
|
||||
Continue? [y/n]: y
|
||||
⠙ Submitting run...
|
||||
⠏ Launching spicy-treefrog-1 (pulling)
|
||||
spicy-treefrog-1 provisioning completed (running)
|
||||
Service is published at ...
|
||||
```
|
||||
|
||||
After the provisioning, you can interact with the model by using the OpenAI SDK:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
??? Code
|
||||
|
||||
client = OpenAI(
|
||||
base_url="https://gateway.<gateway domain>",
|
||||
api_key="<YOUR-DSTACK-SERVER-ACCESS-TOKEN>"
|
||||
)
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="NousResearch/Llama-2-7b-chat-hf",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Compose a poem that explains the concept of recursion in programming.",
|
||||
}
|
||||
]
|
||||
)
|
||||
client = OpenAI(
|
||||
base_url="https://gateway.<gateway domain>",
|
||||
api_key="<YOUR-DSTACK-SERVER-ACCESS-TOKEN>"
|
||||
)
|
||||
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
completion = client.chat.completions.create(
|
||||
model="NousResearch/Llama-2-7b-chat-hf",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Compose a poem that explains the concept of recursion in programming.",
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
|
||||
!!! note
|
||||
dstack automatically handles authentication on the gateway using dstack's tokens. Meanwhile, if you don't want to configure a gateway, you can provision dstack `Task` instead of `Service`. The `Task` is for development purpose only. If you want to know more about hands-on materials how to serve vLLM using dstack, check out [this repository](https://github.com/dstackai/dstack-examples/tree/main/deployment/vllm)
|
||||
|
||||
@ -13,7 +13,7 @@ It allows you to deploy a large language model (LLM) server with vLLM as the bac
|
||||
|
||||
- Setup vLLM and Haystack environment
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install vllm haystack-ai
|
||||
```
|
||||
|
||||
@ -21,35 +21,35 @@ pip install vllm haystack-ai
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
vllm serve mistralai/Mistral-7B-Instruct-v0.1
|
||||
```
|
||||
|
||||
- Use the `OpenAIGenerator` and `OpenAIChatGenerator` components in Haystack to query the vLLM server.
|
||||
|
||||
```python
|
||||
from haystack.components.generators.chat import OpenAIChatGenerator
|
||||
from haystack.dataclasses import ChatMessage
|
||||
from haystack.utils import Secret
|
||||
??? Code
|
||||
|
||||
generator = OpenAIChatGenerator(
|
||||
# for compatibility with the OpenAI API, a placeholder api_key is needed
|
||||
api_key=Secret.from_token("VLLM-PLACEHOLDER-API-KEY"),
|
||||
model="mistralai/Mistral-7B-Instruct-v0.1",
|
||||
api_base_url="http://{your-vLLM-host-ip}:{your-vLLM-host-port}/v1",
|
||||
generation_kwargs = {"max_tokens": 512}
|
||||
)
|
||||
```python
|
||||
from haystack.components.generators.chat import OpenAIChatGenerator
|
||||
from haystack.dataclasses import ChatMessage
|
||||
from haystack.utils import Secret
|
||||
|
||||
response = generator.run(
|
||||
messages=[ChatMessage.from_user("Hi. Can you help me plan my next trip to Italy?")]
|
||||
)
|
||||
generator = OpenAIChatGenerator(
|
||||
# for compatibility with the OpenAI API, a placeholder api_key is needed
|
||||
api_key=Secret.from_token("VLLM-PLACEHOLDER-API-KEY"),
|
||||
model="mistralai/Mistral-7B-Instruct-v0.1",
|
||||
api_base_url="http://{your-vLLM-host-ip}:{your-vLLM-host-port}/v1",
|
||||
generation_kwargs = {"max_tokens": 512}
|
||||
)
|
||||
|
||||
print("-"*30)
|
||||
print(response)
|
||||
print("-"*30)
|
||||
```
|
||||
response = generator.run(
|
||||
messages=[ChatMessage.from_user("Hi. Can you help me plan my next trip to Italy?")]
|
||||
)
|
||||
|
||||
Output e.g.:
|
||||
print("-"*30)
|
||||
print(response)
|
||||
print("-"*30)
|
||||
```
|
||||
|
||||
```console
|
||||
------------------------------
|
||||
|
||||
@ -5,9 +5,9 @@ title: Helm
|
||||
|
||||
A Helm chart to deploy vLLM for Kubernetes
|
||||
|
||||
Helm is a package manager for Kubernetes. It will help you to deploy vLLM on k8s and automate the deployment of vLLM Kubernetes applications. With Helm, you can deploy the same framework architecture with different configurations to multiple namespaces by overriding variable values.
|
||||
Helm is a package manager for Kubernetes. It helps automate the deployment of vLLM applications on Kubernetes. With Helm, you can deploy the same framework architecture with different configurations to multiple namespaces by overriding variable values.
|
||||
|
||||
This guide will walk you through the process of deploying vLLM with Helm, including the necessary prerequisites, steps for helm installation and documentation on architecture and values file.
|
||||
This guide will walk you through the process of deploying vLLM with Helm, including the necessary prerequisites, steps for Helm installation and documentation on architecture and values file.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
@ -16,21 +16,27 @@ Before you begin, ensure that you have the following:
|
||||
- A running Kubernetes cluster
|
||||
- NVIDIA Kubernetes Device Plugin (`k8s-device-plugin`): This can be found at [https://github.com/NVIDIA/k8s-device-plugin](https://github.com/NVIDIA/k8s-device-plugin)
|
||||
- Available GPU resources in your cluster
|
||||
- S3 with the model which will be deployed
|
||||
- An S3 with the model which will be deployed
|
||||
|
||||
## Installing the chart
|
||||
|
||||
To install the chart with the release name `test-vllm`:
|
||||
|
||||
```console
|
||||
helm upgrade --install --create-namespace --namespace=ns-vllm test-vllm . -f values.yaml --set secrets.s3endpoint=$ACCESS_POINT --set secrets.s3bucketname=$BUCKET --set secrets.s3accesskeyid=$ACCESS_KEY --set secrets.s3accesskey=$SECRET_KEY
|
||||
```bash
|
||||
helm upgrade --install --create-namespace \
|
||||
--namespace=ns-vllm test-vllm . \
|
||||
-f values.yaml \
|
||||
--set secrets.s3endpoint=$ACCESS_POINT \
|
||||
--set secrets.s3bucketname=$BUCKET \
|
||||
--set secrets.s3accesskeyid=$ACCESS_KEY \
|
||||
--set secrets.s3accesskey=$SECRET_KEY
|
||||
```
|
||||
|
||||
## Uninstalling the Chart
|
||||
## Uninstalling the chart
|
||||
|
||||
To uninstall the `test-vllm` deployment:
|
||||
|
||||
```console
|
||||
```bash
|
||||
helm uninstall test-vllm --namespace=ns-vllm
|
||||
```
|
||||
|
||||
@ -39,57 +45,59 @@ chart **including persistent volumes** and deletes the release.
|
||||
|
||||
## Architecture
|
||||
|
||||

|
||||

|
||||
|
||||
## Values
|
||||
|
||||
| Key | Type | Default | Description |
|
||||
|--------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| autoscaling | object | {"enabled":false,"maxReplicas":100,"minReplicas":1,"targetCPUUtilizationPercentage":80} | Autoscaling configuration |
|
||||
| autoscaling.enabled | bool | false | Enable autoscaling |
|
||||
| autoscaling.maxReplicas | int | 100 | Maximum replicas |
|
||||
| autoscaling.minReplicas | int | 1 | Minimum replicas |
|
||||
| autoscaling.targetCPUUtilizationPercentage | int | 80 | Target CPU utilization for autoscaling |
|
||||
| configs | object | {} | Configmap |
|
||||
| containerPort | int | 8000 | Container port |
|
||||
| customObjects | list | [] | Custom Objects configuration |
|
||||
| deploymentStrategy | object | {} | Deployment strategy configuration |
|
||||
| externalConfigs | list | [] | External configuration |
|
||||
| extraContainers | list | [] | Additional containers configuration |
|
||||
| extraInit | object | {"pvcStorage":"1Gi","s3modelpath":"relative_s3_model_path/opt-125m", "awsEc2MetadataDisabled": true} | Additional configuration for the init container |
|
||||
| extraInit.pvcStorage | string | "50Gi" | Storage size of the s3 |
|
||||
| extraInit.s3modelpath | string | "relative_s3_model_path/opt-125m" | Path of the model on the s3 which hosts model weights and config files |
|
||||
| extraInit.awsEc2MetadataDisabled | boolean | true | Disables the use of the Amazon EC2 instance metadata service |
|
||||
| extraPorts | list | [] | Additional ports configuration |
|
||||
| gpuModels | list | ["TYPE_GPU_USED"] | Type of gpu used |
|
||||
| image | object | {"command":["vllm","serve","/data/","--served-model-name","opt-125m","--host","0.0.0.0","--port","8000"],"repository":"vllm/vllm-openai","tag":"latest"} | Image configuration |
|
||||
| image.command | list | ["vllm","serve","/data/","--served-model-name","opt-125m","--host","0.0.0.0","--port","8000"] | Container launch command |
|
||||
| image.repository | string | "vllm/vllm-openai" | Image repository |
|
||||
| image.tag | string | "latest" | Image tag |
|
||||
| livenessProbe | object | {"failureThreshold":3,"httpGet":{"path":"/health","port":8000},"initialDelaySeconds":15,"periodSeconds":10} | Liveness probe configuration |
|
||||
| livenessProbe.failureThreshold | int | 3 | Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not alive |
|
||||
| livenessProbe.httpGet | object | {"path":"/health","port":8000} | Configuration of the Kubelet http request on the server |
|
||||
| livenessProbe.httpGet.path | string | "/health" | Path to access on the HTTP server |
|
||||
| livenessProbe.httpGet.port | int | 8000 | Name or number of the port to access on the container, on which the server is listening |
|
||||
| livenessProbe.initialDelaySeconds | int | 15 | Number of seconds after the container has started before liveness probe is initiated |
|
||||
| livenessProbe.periodSeconds | int | 10 | How often (in seconds) to perform the liveness probe |
|
||||
| maxUnavailablePodDisruptionBudget | string | "" | Disruption Budget Configuration |
|
||||
| readinessProbe | object | {"failureThreshold":3,"httpGet":{"path":"/health","port":8000},"initialDelaySeconds":5,"periodSeconds":5} | Readiness probe configuration |
|
||||
| readinessProbe.failureThreshold | int | 3 | Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not ready |
|
||||
| readinessProbe.httpGet | object | {"path":"/health","port":8000} | Configuration of the Kubelet http request on the server |
|
||||
| readinessProbe.httpGet.path | string | "/health" | Path to access on the HTTP server |
|
||||
| readinessProbe.httpGet.port | int | 8000 | Name or number of the port to access on the container, on which the server is listening |
|
||||
| readinessProbe.initialDelaySeconds | int | 5 | Number of seconds after the container has started before readiness probe is initiated |
|
||||
| readinessProbe.periodSeconds | int | 5 | How often (in seconds) to perform the readiness probe |
|
||||
| replicaCount | int | 1 | Number of replicas |
|
||||
| resources | object | {"limits":{"cpu":4,"memory":"16Gi","nvidia.com/gpu":1},"requests":{"cpu":4,"memory":"16Gi","nvidia.com/gpu":1}} | Resource configuration |
|
||||
| resources.limits."nvidia.com/gpu" | int | 1 | Number of gpus used |
|
||||
| resources.limits.cpu | int | 4 | Number of CPUs |
|
||||
| resources.limits.memory | string | "16Gi" | CPU memory configuration |
|
||||
| resources.requests."nvidia.com/gpu" | int | 1 | Number of gpus used |
|
||||
| resources.requests.cpu | int | 4 | Number of CPUs |
|
||||
| resources.requests.memory | string | "16Gi" | CPU memory configuration |
|
||||
| secrets | object | {} | Secrets configuration |
|
||||
| serviceName | string | Service name | |
|
||||
| servicePort | int | 80 | Service port |
|
||||
| labels.environment | string | test | Environment name |
|
||||
The following table describes configurable parameters of the chart in `values.yaml`:
|
||||
|
||||
| Key | Type | Default | Description |
|
||||
|-----|------|---------|-------------|
|
||||
| autoscaling | object | {"enabled":false,"maxReplicas":100,"minReplicas":1,"targetCPUUtilizationPercentage":80} | Autoscaling configuration |
|
||||
| autoscaling.enabled | bool | false | Enable autoscaling |
|
||||
| autoscaling.maxReplicas | int | 100 | Maximum replicas |
|
||||
| autoscaling.minReplicas | int | 1 | Minimum replicas |
|
||||
| autoscaling.targetCPUUtilizationPercentage | int | 80 | Target CPU utilization for autoscaling |
|
||||
| configs | object | {} | Configmap |
|
||||
| containerPort | int | 8000 | Container port |
|
||||
| customObjects | list | [] | Custom Objects configuration |
|
||||
| deploymentStrategy | object | {} | Deployment strategy configuration |
|
||||
| externalConfigs | list | [] | External configuration |
|
||||
| extraContainers | list | [] | Additional containers configuration |
|
||||
| extraInit | object | {"pvcStorage":"1Gi","s3modelpath":"relative_s3_model_path/opt-125m", "awsEc2MetadataDisabled": true} | Additional configuration for the init container |
|
||||
| extraInit.pvcStorage | string | "1Gi" | Storage size of the s3 |
|
||||
| extraInit.s3modelpath | string | "relative_s3_model_path/opt-125m" | Path of the model on the s3 which hosts model weights and config files |
|
||||
| extraInit.awsEc2MetadataDisabled | boolean | true | Disables the use of the Amazon EC2 instance metadata service |
|
||||
| extraPorts | list | [] | Additional ports configuration |
|
||||
| gpuModels | list | ["TYPE_GPU_USED"] | Type of gpu used |
|
||||
| image | object | {"command":["vllm","serve","/data/","--served-model-name","opt-125m","--host","0.0.0.0","--port","8000"],"repository":"vllm/vllm-openai","tag":"latest"} | Image configuration |
|
||||
| image.command | list | ["vllm","serve","/data/","--served-model-name","opt-125m","--host","0.0.0.0","--port","8000"] | Container launch command |
|
||||
| image.repository | string | "vllm/vllm-openai" | Image repository |
|
||||
| image.tag | string | "latest" | Image tag |
|
||||
| livenessProbe | object | {"failureThreshold":3,"httpGet":{"path":"/health","port":8000},"initialDelaySeconds":15,"periodSeconds":10} | Liveness probe configuration |
|
||||
| livenessProbe.failureThreshold | int | 3 | Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not alive |
|
||||
| livenessProbe.httpGet | object | {"path":"/health","port":8000} | Configuration of the kubelet http request on the server |
|
||||
| livenessProbe.httpGet.path | string | "/health" | Path to access on the HTTP server |
|
||||
| livenessProbe.httpGet.port | int | 8000 | Name or number of the port to access on the container, on which the server is listening |
|
||||
| livenessProbe.initialDelaySeconds | int | 15 | Number of seconds after the container has started before liveness probe is initiated |
|
||||
| livenessProbe.periodSeconds | int | 10 | How often (in seconds) to perform the liveness probe |
|
||||
| maxUnavailablePodDisruptionBudget | string | "" | Disruption Budget Configuration |
|
||||
| readinessProbe | object | {"failureThreshold":3,"httpGet":{"path":"/health","port":8000},"initialDelaySeconds":5,"periodSeconds":5} | Readiness probe configuration |
|
||||
| readinessProbe.failureThreshold | int | 3 | Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not ready |
|
||||
| readinessProbe.httpGet | object | {"path":"/health","port":8000} | Configuration of the kubelet http request on the server |
|
||||
| readinessProbe.httpGet.path | string | "/health" | Path to access on the HTTP server |
|
||||
| readinessProbe.httpGet.port | int | 8000 | Name or number of the port to access on the container, on which the server is listening |
|
||||
| readinessProbe.initialDelaySeconds | int | 5 | Number of seconds after the container has started before readiness probe is initiated |
|
||||
| readinessProbe.periodSeconds | int | 5 | How often (in seconds) to perform the readiness probe |
|
||||
| replicaCount | int | 1 | Number of replicas |
|
||||
| resources | object | {"limits":{"cpu":4,"memory":"16Gi","nvidia.com/gpu":1},"requests":{"cpu":4,"memory":"16Gi","nvidia.com/gpu":1}} | Resource configuration |
|
||||
| resources.limits."nvidia.com/gpu" | int | 1 | Number of GPUs used |
|
||||
| resources.limits.cpu | int | 4 | Number of CPUs |
|
||||
| resources.limits.memory | string | "16Gi" | CPU memory configuration |
|
||||
| resources.requests."nvidia.com/gpu" | int | 1 | Number of GPUs used |
|
||||
| resources.requests.cpu | int | 4 | Number of CPUs |
|
||||
| resources.requests.memory | string | "16Gi" | CPU memory configuration |
|
||||
| secrets | object | {} | Secrets configuration |
|
||||
| serviceName | string | "" | Service name |
|
||||
| servicePort | int | 80 | Service port |
|
||||
| labels.environment | string | test | Environment name |
|
||||
|
||||
@ -18,7 +18,7 @@ And LiteLLM supports all models on VLLM.
|
||||
|
||||
- Setup vLLM and litellm environment
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install vllm litellm
|
||||
```
|
||||
|
||||
@ -28,33 +28,35 @@ pip install vllm litellm
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
vllm serve qwen/Qwen1.5-0.5B-Chat
|
||||
```
|
||||
|
||||
- Call it with litellm:
|
||||
|
||||
```python
|
||||
import litellm
|
||||
??? Code
|
||||
|
||||
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
||||
```python
|
||||
import litellm
|
||||
|
||||
# hosted_vllm is prefix key word and necessary
|
||||
response = litellm.completion(
|
||||
model="hosted_vllm/qwen/Qwen1.5-0.5B-Chat", # pass the vllm model name
|
||||
messages=messages,
|
||||
api_base="http://{your-vllm-server-host}:{your-vllm-server-port}/v1",
|
||||
temperature=0.2,
|
||||
max_tokens=80)
|
||||
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
||||
|
||||
print(response)
|
||||
```
|
||||
# hosted_vllm is prefix key word and necessary
|
||||
response = litellm.completion(
|
||||
model="hosted_vllm/qwen/Qwen1.5-0.5B-Chat", # pass the vllm model name
|
||||
messages=messages,
|
||||
api_base="http://{your-vllm-server-host}:{your-vllm-server-port}/v1",
|
||||
temperature=0.2,
|
||||
max_tokens=80)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
### Embeddings
|
||||
|
||||
- Start the vLLM server with the supported embedding model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
vllm serve BAAI/bge-base-en-v1.5
|
||||
```
|
||||
|
||||
|
||||
@ -17,99 +17,101 @@ vLLM can be deployed with [LWS](https://github.com/kubernetes-sigs/lws) on Kuber
|
||||
|
||||
Deploy the following yaml file `lws.yaml`
|
||||
|
||||
```yaml
|
||||
apiVersion: leaderworkerset.x-k8s.io/v1
|
||||
kind: LeaderWorkerSet
|
||||
metadata:
|
||||
name: vllm
|
||||
spec:
|
||||
replicas: 2
|
||||
leaderWorkerTemplate:
|
||||
size: 2
|
||||
restartPolicy: RecreateGroupOnPodRestart
|
||||
leaderTemplate:
|
||||
metadata:
|
||||
labels:
|
||||
role: leader
|
||||
spec:
|
||||
containers:
|
||||
- name: vllm-leader
|
||||
image: docker.io/vllm/vllm-openai:latest
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
value: <your-hf-token>
|
||||
command:
|
||||
- sh
|
||||
- -c
|
||||
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=$(LWS_GROUP_SIZE);
|
||||
python3 -m vllm.entrypoints.openai.api_server --port 8080 --model meta-llama/Meta-Llama-3.1-405B-Instruct --tensor-parallel-size 8 --pipeline_parallel_size 2"
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: "8"
|
||||
memory: 1124Gi
|
||||
ephemeral-storage: 800Gi
|
||||
requests:
|
||||
ephemeral-storage: 800Gi
|
||||
cpu: 125
|
||||
ports:
|
||||
- containerPort: 8080
|
||||
readinessProbe:
|
||||
tcpSocket:
|
||||
port: 8080
|
||||
initialDelaySeconds: 15
|
||||
periodSeconds: 10
|
||||
volumeMounts:
|
||||
- mountPath: /dev/shm
|
||||
name: dshm
|
||||
volumes:
|
||||
- name: dshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 15Gi
|
||||
workerTemplate:
|
||||
spec:
|
||||
containers:
|
||||
- name: vllm-worker
|
||||
image: docker.io/vllm/vllm-openai:latest
|
||||
command:
|
||||
- sh
|
||||
- -c
|
||||
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh worker --ray_address=$(LWS_LEADER_ADDRESS)"
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: "8"
|
||||
memory: 1124Gi
|
||||
ephemeral-storage: 800Gi
|
||||
requests:
|
||||
ephemeral-storage: 800Gi
|
||||
cpu: 125
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
value: <your-hf-token>
|
||||
volumeMounts:
|
||||
- mountPath: /dev/shm
|
||||
name: dshm
|
||||
volumes:
|
||||
- name: dshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 15Gi
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: vllm-leader
|
||||
spec:
|
||||
ports:
|
||||
- name: http
|
||||
port: 8080
|
||||
protocol: TCP
|
||||
targetPort: 8080
|
||||
selector:
|
||||
leaderworkerset.sigs.k8s.io/name: vllm
|
||||
role: leader
|
||||
type: ClusterIP
|
||||
```
|
||||
??? Yaml
|
||||
|
||||
```yaml
|
||||
apiVersion: leaderworkerset.x-k8s.io/v1
|
||||
kind: LeaderWorkerSet
|
||||
metadata:
|
||||
name: vllm
|
||||
spec:
|
||||
replicas: 2
|
||||
leaderWorkerTemplate:
|
||||
size: 2
|
||||
restartPolicy: RecreateGroupOnPodRestart
|
||||
leaderTemplate:
|
||||
metadata:
|
||||
labels:
|
||||
role: leader
|
||||
spec:
|
||||
containers:
|
||||
- name: vllm-leader
|
||||
image: docker.io/vllm/vllm-openai:latest
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
value: <your-hf-token>
|
||||
command:
|
||||
- sh
|
||||
- -c
|
||||
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=$(LWS_GROUP_SIZE);
|
||||
python3 -m vllm.entrypoints.openai.api_server --port 8080 --model meta-llama/Meta-Llama-3.1-405B-Instruct --tensor-parallel-size 8 --pipeline_parallel_size 2"
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: "8"
|
||||
memory: 1124Gi
|
||||
ephemeral-storage: 800Gi
|
||||
requests:
|
||||
ephemeral-storage: 800Gi
|
||||
cpu: 125
|
||||
ports:
|
||||
- containerPort: 8080
|
||||
readinessProbe:
|
||||
tcpSocket:
|
||||
port: 8080
|
||||
initialDelaySeconds: 15
|
||||
periodSeconds: 10
|
||||
volumeMounts:
|
||||
- mountPath: /dev/shm
|
||||
name: dshm
|
||||
volumes:
|
||||
- name: dshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 15Gi
|
||||
workerTemplate:
|
||||
spec:
|
||||
containers:
|
||||
- name: vllm-worker
|
||||
image: docker.io/vllm/vllm-openai:latest
|
||||
command:
|
||||
- sh
|
||||
- -c
|
||||
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh worker --ray_address=$(LWS_LEADER_ADDRESS)"
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: "8"
|
||||
memory: 1124Gi
|
||||
ephemeral-storage: 800Gi
|
||||
requests:
|
||||
ephemeral-storage: 800Gi
|
||||
cpu: 125
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
value: <your-hf-token>
|
||||
volumeMounts:
|
||||
- mountPath: /dev/shm
|
||||
name: dshm
|
||||
volumes:
|
||||
- name: dshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 15Gi
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: vllm-leader
|
||||
spec:
|
||||
ports:
|
||||
- name: http
|
||||
port: 8080
|
||||
protocol: TCP
|
||||
targetPort: 8080
|
||||
selector:
|
||||
leaderworkerset.sigs.k8s.io/name: vllm
|
||||
role: leader
|
||||
type: ClusterIP
|
||||
```
|
||||
|
||||
```bash
|
||||
kubectl apply -f lws.yaml
|
||||
@ -175,25 +177,27 @@ curl http://localhost:8080/v1/completions \
|
||||
|
||||
The output should be similar to the following
|
||||
|
||||
```text
|
||||
{
|
||||
"id": "cmpl-1bb34faba88b43f9862cfbfb2200949d",
|
||||
"object": "text_completion",
|
||||
"created": 1715138766,
|
||||
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
||||
"choices": [
|
||||
??? Output
|
||||
|
||||
```text
|
||||
{
|
||||
"index": 0,
|
||||
"text": " top destination for foodies, with",
|
||||
"logprobs": null,
|
||||
"finish_reason": "length",
|
||||
"stop_reason": null
|
||||
"id": "cmpl-1bb34faba88b43f9862cfbfb2200949d",
|
||||
"object": "text_completion",
|
||||
"created": 1715138766,
|
||||
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"text": " top destination for foodies, with",
|
||||
"logprobs": null,
|
||||
"finish_reason": "length",
|
||||
"stop_reason": null
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"prompt_tokens": 5,
|
||||
"total_tokens": 12,
|
||||
"completion_tokens": 7
|
||||
}
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"prompt_tokens": 5,
|
||||
"total_tokens": 12,
|
||||
"completion_tokens": 7
|
||||
}
|
||||
}
|
||||
```
|
||||
```
|
||||
|
||||
@ -7,13 +7,13 @@ title: Open WebUI
|
||||
|
||||
2. Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
vllm serve qwen/Qwen1.5-0.5B-Chat
|
||||
```
|
||||
|
||||
1. Start the [Open WebUI](https://github.com/open-webui/open-webui) docker container (replace the vllm serve host and vllm serve port):
|
||||
|
||||
```console
|
||||
```bash
|
||||
docker run -d -p 3000:8080 \
|
||||
--name open-webui \
|
||||
-v open-webui:/app/backend/data \
|
||||
|
||||
@ -15,7 +15,7 @@ Here are the integrations:
|
||||
|
||||
- Setup vLLM and langchain environment
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install -U vllm \
|
||||
langchain_milvus langchain_openai \
|
||||
langchain_community beautifulsoup4 \
|
||||
@ -26,14 +26,14 @@ pip install -U vllm \
|
||||
|
||||
- Start the vLLM server with the supported embedding model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
# Start embedding service (port 8000)
|
||||
vllm serve ssmits/Qwen2-7B-Instruct-embed-base
|
||||
```
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
# Start chat service (port 8001)
|
||||
vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001
|
||||
```
|
||||
@ -52,7 +52,7 @@ python retrieval_augmented_generation_with_langchain.py
|
||||
|
||||
- Setup vLLM and llamaindex environment
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install vllm \
|
||||
llama-index llama-index-readers-web \
|
||||
llama-index-llms-openai-like \
|
||||
@ -64,14 +64,14 @@ pip install vllm \
|
||||
|
||||
- Start the vLLM server with the supported embedding model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
# Start embedding service (port 8000)
|
||||
vllm serve ssmits/Qwen2-7B-Instruct-embed-base
|
||||
```
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
# Start chat service (port 8001)
|
||||
vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001
|
||||
```
|
||||
|
||||
@ -15,7 +15,7 @@ vLLM can be **run and scaled to multiple service replicas on clouds and Kubernet
|
||||
- Check that you have installed SkyPilot ([docs](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html)).
|
||||
- Check that `sky check` shows clouds or Kubernetes are enabled.
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install skypilot-nightly
|
||||
sky check
|
||||
```
|
||||
@ -24,52 +24,54 @@ sky check
|
||||
|
||||
See the vLLM SkyPilot YAML for serving, [serving.yaml](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm/serve.yaml).
|
||||
|
||||
```yaml
|
||||
resources:
|
||||
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
|
||||
use_spot: True
|
||||
disk_size: 512 # Ensure model checkpoints can fit.
|
||||
disk_tier: best
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
??? Yaml
|
||||
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
```yaml
|
||||
resources:
|
||||
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
|
||||
use_spot: True
|
||||
disk_size: 512 # Ensure model checkpoints can fit.
|
||||
disk_tier: best
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
|
||||
pip install vllm==0.4.0.post1
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
pip install flash-attn==2.5.7
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log &
|
||||
pip install vllm==0.4.0.post1
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
pip install flash-attn==2.5.7
|
||||
|
||||
echo 'Waiting for vllm api server to start...'
|
||||
while ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log &
|
||||
|
||||
echo 'Starting gradio server...'
|
||||
git clone https://github.com/vllm-project/vllm.git || true
|
||||
python vllm/examples/online_serving/gradio_openai_chatbot_webserver.py \
|
||||
-m $MODEL_NAME \
|
||||
--port 8811 \
|
||||
--model-url http://localhost:8081/v1 \
|
||||
--stop-token-ids 128009,128001
|
||||
```
|
||||
echo 'Waiting for vllm api server to start...'
|
||||
while ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done
|
||||
|
||||
echo 'Starting gradio server...'
|
||||
git clone https://github.com/vllm-project/vllm.git || true
|
||||
python vllm/examples/online_serving/gradio_openai_chatbot_webserver.py \
|
||||
-m $MODEL_NAME \
|
||||
--port 8811 \
|
||||
--model-url http://localhost:8081/v1 \
|
||||
--stop-token-ids 128009,128001
|
||||
```
|
||||
|
||||
Start the serving the Llama-3 8B model on any of the candidate GPUs listed (L4, A10g, ...):
|
||||
|
||||
```console
|
||||
```bash
|
||||
HF_TOKEN="your-huggingface-token" sky launch serving.yaml --env HF_TOKEN
|
||||
```
|
||||
|
||||
@ -81,7 +83,7 @@ Check the output of the command. There will be a shareable gradio link (like the
|
||||
|
||||
**Optional**: Serve the 70B model instead of the default 8B and use more GPU:
|
||||
|
||||
```console
|
||||
```bash
|
||||
HF_TOKEN="your-huggingface-token" \
|
||||
sky launch serving.yaml \
|
||||
--gpus A100:8 \
|
||||
@ -93,72 +95,71 @@ HF_TOKEN="your-huggingface-token" \
|
||||
|
||||
SkyPilot can scale up the service to multiple service replicas with built-in autoscaling, load-balancing and fault-tolerance. You can do it by adding a services section to the YAML file.
|
||||
|
||||
```yaml
|
||||
service:
|
||||
replicas: 2
|
||||
# An actual request for readiness probe.
|
||||
readiness_probe:
|
||||
path: /v1/chat/completions
|
||||
post_data:
|
||||
model: $MODEL_NAME
|
||||
messages:
|
||||
- role: user
|
||||
content: Hello! What is your name?
|
||||
max_completion_tokens: 1
|
||||
```
|
||||
??? Yaml
|
||||
|
||||
<details>
|
||||
<summary>Click to see the full recipe YAML</summary>
|
||||
|
||||
```yaml
|
||||
service:
|
||||
replicas: 2
|
||||
# An actual request for readiness probe.
|
||||
readiness_probe:
|
||||
path: /v1/chat/completions
|
||||
post_data:
|
||||
model: $MODEL_NAME
|
||||
messages:
|
||||
- role: user
|
||||
content: Hello! What is your name?
|
||||
```yaml
|
||||
service:
|
||||
replicas: 2
|
||||
# An actual request for readiness probe.
|
||||
readiness_probe:
|
||||
path: /v1/chat/completions
|
||||
post_data:
|
||||
model: $MODEL_NAME
|
||||
messages:
|
||||
- role: user
|
||||
content: Hello! What is your name?
|
||||
max_completion_tokens: 1
|
||||
```
|
||||
|
||||
resources:
|
||||
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
|
||||
use_spot: True
|
||||
disk_size: 512 # Ensure model checkpoints can fit.
|
||||
disk_tier: best
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
??? Yaml
|
||||
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
```yaml
|
||||
service:
|
||||
replicas: 2
|
||||
# An actual request for readiness probe.
|
||||
readiness_probe:
|
||||
path: /v1/chat/completions
|
||||
post_data:
|
||||
model: $MODEL_NAME
|
||||
messages:
|
||||
- role: user
|
||||
content: Hello! What is your name?
|
||||
max_completion_tokens: 1
|
||||
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
resources:
|
||||
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
|
||||
use_spot: True
|
||||
disk_size: 512 # Ensure model checkpoints can fit.
|
||||
disk_tier: best
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
|
||||
pip install vllm==0.4.0.post1
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
pip install flash-attn==2.5.7
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log
|
||||
```
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
|
||||
</details>
|
||||
pip install vllm==0.4.0.post1
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
pip install flash-attn==2.5.7
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log
|
||||
```
|
||||
|
||||
Start the serving the Llama-3 8B model on multiple replicas:
|
||||
|
||||
```console
|
||||
```bash
|
||||
HF_TOKEN="your-huggingface-token" \
|
||||
sky serve up -n vllm serving.yaml \
|
||||
--env HF_TOKEN
|
||||
@ -166,12 +167,11 @@ HF_TOKEN="your-huggingface-token" \
|
||||
|
||||
Wait until the service is ready:
|
||||
|
||||
```console
|
||||
```bash
|
||||
watch -n10 sky serve status vllm
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Example outputs:</summary>
|
||||
Example outputs:
|
||||
|
||||
```console
|
||||
Services
|
||||
@ -184,29 +184,29 @@ vllm 1 1 xx.yy.zz.121 18 mins ago 1x GCP([Spot]{'L4': 1}) R
|
||||
vllm 2 1 xx.yy.zz.245 18 mins ago 1x GCP([Spot]{'L4': 1}) READY us-east4
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
After the service is READY, you can find a single endpoint for the service and access the service with the endpoint:
|
||||
|
||||
```console
|
||||
ENDPOINT=$(sky serve status --endpoint 8081 vllm)
|
||||
curl -L http://$ENDPOINT/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Who are you?"
|
||||
}
|
||||
],
|
||||
"stop_token_ids": [128009, 128001]
|
||||
}'
|
||||
```
|
||||
??? Commands
|
||||
|
||||
```bash
|
||||
ENDPOINT=$(sky serve status --endpoint 8081 vllm)
|
||||
curl -L http://$ENDPOINT/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Who are you?"
|
||||
}
|
||||
],
|
||||
"stop_token_ids": [128009, 128001]
|
||||
}'
|
||||
```
|
||||
|
||||
To enable autoscaling, you could replace the `replicas` with the following configs in `service`:
|
||||
|
||||
@ -220,67 +220,64 @@ service:
|
||||
|
||||
This will scale the service up to when the QPS exceeds 2 for each replica.
|
||||
|
||||
<details>
|
||||
<summary>Click to see the full recipe YAML</summary>
|
||||
??? Yaml
|
||||
|
||||
```yaml
|
||||
service:
|
||||
replica_policy:
|
||||
min_replicas: 2
|
||||
max_replicas: 4
|
||||
target_qps_per_replica: 2
|
||||
# An actual request for readiness probe.
|
||||
readiness_probe:
|
||||
path: /v1/chat/completions
|
||||
post_data:
|
||||
model: $MODEL_NAME
|
||||
messages:
|
||||
- role: user
|
||||
content: Hello! What is your name?
|
||||
max_completion_tokens: 1
|
||||
```yaml
|
||||
service:
|
||||
replica_policy:
|
||||
min_replicas: 2
|
||||
max_replicas: 4
|
||||
target_qps_per_replica: 2
|
||||
# An actual request for readiness probe.
|
||||
readiness_probe:
|
||||
path: /v1/chat/completions
|
||||
post_data:
|
||||
model: $MODEL_NAME
|
||||
messages:
|
||||
- role: user
|
||||
content: Hello! What is your name?
|
||||
max_completion_tokens: 1
|
||||
|
||||
resources:
|
||||
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
|
||||
use_spot: True
|
||||
disk_size: 512 # Ensure model checkpoints can fit.
|
||||
disk_tier: best
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
resources:
|
||||
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
|
||||
use_spot: True
|
||||
disk_size: 512 # Ensure model checkpoints can fit.
|
||||
disk_tier: best
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
|
||||
pip install vllm==0.4.0.post1
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
pip install flash-attn==2.5.7
|
||||
pip install vllm==0.4.0.post1
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
pip install flash-attn==2.5.7
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log
|
||||
```
|
||||
|
||||
</details>
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log
|
||||
```
|
||||
|
||||
To update the service with the new config:
|
||||
|
||||
```console
|
||||
```bash
|
||||
HF_TOKEN="your-huggingface-token" sky serve update vllm serving.yaml --env HF_TOKEN
|
||||
```
|
||||
|
||||
To stop the service:
|
||||
|
||||
```console
|
||||
```bash
|
||||
sky serve down vllm
|
||||
```
|
||||
|
||||
@ -288,42 +285,39 @@ sky serve down vllm
|
||||
|
||||
It is also possible to access the Llama-3 service with a separate GUI frontend, so the user requests send to the GUI will be load-balanced across replicas.
|
||||
|
||||
<details>
|
||||
<summary>Click to see the full GUI YAML</summary>
|
||||
??? Yaml
|
||||
|
||||
```yaml
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
ENDPOINT: x.x.x.x:3031 # Address of the API server running vllm.
|
||||
```yaml
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
ENDPOINT: x.x.x.x:3031 # Address of the API server running vllm.
|
||||
|
||||
resources:
|
||||
cpus: 2
|
||||
resources:
|
||||
cpus: 2
|
||||
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
export PATH=$PATH:/sbin
|
||||
run: |
|
||||
conda activate vllm
|
||||
export PATH=$PATH:/sbin
|
||||
|
||||
echo 'Starting gradio server...'
|
||||
git clone https://github.com/vllm-project/vllm.git || true
|
||||
python vllm/examples/online_serving/gradio_openai_chatbot_webserver.py \
|
||||
-m $MODEL_NAME \
|
||||
--port 8811 \
|
||||
--model-url http://$ENDPOINT/v1 \
|
||||
--stop-token-ids 128009,128001 | tee ~/gradio.log
|
||||
```
|
||||
|
||||
</details>
|
||||
echo 'Starting gradio server...'
|
||||
git clone https://github.com/vllm-project/vllm.git || true
|
||||
python vllm/examples/online_serving/gradio_openai_chatbot_webserver.py \
|
||||
-m $MODEL_NAME \
|
||||
--port 8811 \
|
||||
--model-url http://$ENDPOINT/v1 \
|
||||
--stop-token-ids 128009,128001 | tee ~/gradio.log
|
||||
```
|
||||
|
||||
1. Start the chat web UI:
|
||||
|
||||
```console
|
||||
```bash
|
||||
sky launch \
|
||||
-c gui ./gui.yaml \
|
||||
--env ENDPOINT=$(sky serve status --endpoint vllm)
|
||||
|
||||
@ -15,13 +15,13 @@ It can be quickly integrated with vLLM as a backend API server, enabling powerfu
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
```bash
|
||||
vllm serve qwen/Qwen1.5-0.5B-Chat
|
||||
```
|
||||
|
||||
- Install streamlit and openai:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install streamlit openai
|
||||
```
|
||||
|
||||
@ -29,7 +29,7 @@ pip install streamlit openai
|
||||
|
||||
- Start the streamlit web UI and start to chat:
|
||||
|
||||
```console
|
||||
```bash
|
||||
streamlit run streamlit_openai_chatbot_webserver.py
|
||||
|
||||
# or specify the VLLM_API_BASE or VLLM_API_KEY
|
||||
|
||||
@ -7,7 +7,7 @@ vLLM is also available via [Llama Stack](https://github.com/meta-llama/llama-sta
|
||||
|
||||
To install Llama Stack, run
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install llama-stack -q
|
||||
```
|
||||
|
||||
|
||||
@ -60,22 +60,22 @@ And then you can send out a query to the OpenAI-compatible API to check the avai
|
||||
curl -o- http://localhost:30080/models
|
||||
```
|
||||
|
||||
Expected output:
|
||||
??? Output
|
||||
|
||||
```json
|
||||
{
|
||||
"object": "list",
|
||||
"data": [
|
||||
```json
|
||||
{
|
||||
"id": "facebook/opt-125m",
|
||||
"object": "model",
|
||||
"created": 1737428424,
|
||||
"owned_by": "vllm",
|
||||
"root": null
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": "facebook/opt-125m",
|
||||
"object": "model",
|
||||
"created": 1737428424,
|
||||
"owned_by": "vllm",
|
||||
"root": null
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
```
|
||||
|
||||
To send an actual chatting request, you can issue a curl request to the OpenAI `/completion` endpoint:
|
||||
|
||||
@ -89,23 +89,23 @@ curl -X POST http://localhost:30080/completions \
|
||||
}'
|
||||
```
|
||||
|
||||
Expected output:
|
||||
??? Output
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "completion-id",
|
||||
"object": "text_completion",
|
||||
"created": 1737428424,
|
||||
"model": "facebook/opt-125m",
|
||||
"choices": [
|
||||
```json
|
||||
{
|
||||
"text": " there was a brave knight who...",
|
||||
"index": 0,
|
||||
"finish_reason": "length"
|
||||
"id": "completion-id",
|
||||
"object": "text_completion",
|
||||
"created": 1737428424,
|
||||
"model": "facebook/opt-125m",
|
||||
"choices": [
|
||||
{
|
||||
"text": " there was a brave knight who...",
|
||||
"index": 0,
|
||||
"finish_reason": "length"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
```
|
||||
|
||||
### Uninstall
|
||||
|
||||
@ -121,23 +121,25 @@ sudo helm uninstall vllm
|
||||
|
||||
The core vLLM production stack configuration is managed with YAML. Here is the example configuration used in the installation above:
|
||||
|
||||
```yaml
|
||||
servingEngineSpec:
|
||||
runtimeClassName: ""
|
||||
modelSpec:
|
||||
- name: "opt125m"
|
||||
repository: "vllm/vllm-openai"
|
||||
tag: "latest"
|
||||
modelURL: "facebook/opt-125m"
|
||||
??? Yaml
|
||||
|
||||
replicaCount: 1
|
||||
```yaml
|
||||
servingEngineSpec:
|
||||
runtimeClassName: ""
|
||||
modelSpec:
|
||||
- name: "opt125m"
|
||||
repository: "vllm/vllm-openai"
|
||||
tag: "latest"
|
||||
modelURL: "facebook/opt-125m"
|
||||
|
||||
requestCPU: 6
|
||||
requestMemory: "16Gi"
|
||||
requestGPU: 1
|
||||
replicaCount: 1
|
||||
|
||||
pvcStorage: "10Gi"
|
||||
```
|
||||
requestCPU: 6
|
||||
requestMemory: "16Gi"
|
||||
requestGPU: 1
|
||||
|
||||
pvcStorage: "10Gi"
|
||||
```
|
||||
|
||||
In this YAML configuration:
|
||||
* **`modelSpec`** includes:
|
||||
|
||||
@ -29,89 +29,93 @@ Alternatively, you can deploy vLLM to Kubernetes using any of the following:
|
||||
|
||||
First, create a Kubernetes PVC and Secret for downloading and storing Hugging Face model:
|
||||
|
||||
```bash
|
||||
cat <<EOF |kubectl apply -f -
|
||||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: vllm-models
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
volumeMode: Filesystem
|
||||
resources:
|
||||
requests:
|
||||
storage: 50Gi
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Secret
|
||||
metadata:
|
||||
name: hf-token-secret
|
||||
type: Opaque
|
||||
data:
|
||||
token: $(HF_TOKEN)
|
||||
EOF
|
||||
```
|
||||
??? Config
|
||||
|
||||
```bash
|
||||
cat <<EOF |kubectl apply -f -
|
||||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: vllm-models
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
volumeMode: Filesystem
|
||||
resources:
|
||||
requests:
|
||||
storage: 50Gi
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Secret
|
||||
metadata:
|
||||
name: hf-token-secret
|
||||
type: Opaque
|
||||
data:
|
||||
token: $(HF_TOKEN)
|
||||
EOF
|
||||
```
|
||||
|
||||
Next, start the vLLM server as a Kubernetes Deployment and Service:
|
||||
|
||||
```bash
|
||||
cat <<EOF |kubectl apply -f -
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: vllm-server
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: vllm
|
||||
template:
|
||||
??? Config
|
||||
|
||||
```bash
|
||||
cat <<EOF |kubectl apply -f -
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: vllm
|
||||
name: vllm-server
|
||||
spec:
|
||||
containers:
|
||||
- name: vllm
|
||||
image: vllm/vllm-openai:latest
|
||||
command: ["/bin/sh", "-c"]
|
||||
args: [
|
||||
"vllm serve meta-llama/Llama-3.2-1B-Instruct"
|
||||
]
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
ports:
|
||||
- containerPort: 8000
|
||||
volumeMounts:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: vllm
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: vllm
|
||||
spec:
|
||||
containers:
|
||||
- name: vllm
|
||||
image: vllm/vllm-openai:latest
|
||||
command: ["/bin/sh", "-c"]
|
||||
args: [
|
||||
"vllm serve meta-llama/Llama-3.2-1B-Instruct"
|
||||
]
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
ports:
|
||||
- containerPort: 8000
|
||||
volumeMounts:
|
||||
- name: llama-storage
|
||||
mountPath: /root/.cache/huggingface
|
||||
volumes:
|
||||
- name: llama-storage
|
||||
mountPath: /root/.cache/huggingface
|
||||
volumes:
|
||||
- name: llama-storage
|
||||
persistentVolumeClaim:
|
||||
claimName: vllm-models
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: vllm-server
|
||||
spec:
|
||||
selector:
|
||||
app.kubernetes.io/name: vllm
|
||||
ports:
|
||||
- protocol: TCP
|
||||
port: 8000
|
||||
targetPort: 8000
|
||||
type: ClusterIP
|
||||
EOF
|
||||
```
|
||||
persistentVolumeClaim:
|
||||
claimName: vllm-models
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: vllm-server
|
||||
spec:
|
||||
selector:
|
||||
app.kubernetes.io/name: vllm
|
||||
ports:
|
||||
- protocol: TCP
|
||||
port: 8000
|
||||
targetPort: 8000
|
||||
type: ClusterIP
|
||||
EOF
|
||||
```
|
||||
|
||||
We can verify that the vLLM server has started successfully via the logs (this might take a couple of minutes to download the model):
|
||||
|
||||
```console
|
||||
```bash
|
||||
kubectl logs -l app.kubernetes.io/name=vllm
|
||||
...
|
||||
INFO: Started server process [1]
|
||||
@ -128,6 +132,9 @@ INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
|
||||
|
||||
PVC is used to store the model cache and it is optional, you can use hostPath or other storage options
|
||||
|
||||
<details>
|
||||
<summary>Yaml</summary>
|
||||
|
||||
```yaml
|
||||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
@ -144,6 +151,8 @@ INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
|
||||
volumeMode: Filesystem
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
Secret is optional and only required for accessing gated models, you can skip this step if you are not using gated models
|
||||
|
||||
```yaml
|
||||
@ -156,13 +165,16 @@ INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
|
||||
stringData:
|
||||
token: "REPLACE_WITH_TOKEN"
|
||||
```
|
||||
|
||||
|
||||
Next to create the deployment file for vLLM to run the model server. The following example deploys the `Mistral-7B-Instruct-v0.3` model.
|
||||
|
||||
Here are two examples for using NVIDIA GPU and AMD GPU.
|
||||
|
||||
NVIDIA GPU:
|
||||
|
||||
<details>
|
||||
<summary>Yaml</summary>
|
||||
|
||||
```yaml
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
@ -233,10 +245,15 @@ INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
|
||||
periodSeconds: 5
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
AMD GPU:
|
||||
|
||||
You can refer to the `deployment.yaml` below if using AMD ROCm GPU like MI300X.
|
||||
|
||||
<details>
|
||||
<summary>Yaml</summary>
|
||||
|
||||
```yaml
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
@ -305,12 +322,17 @@ INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
|
||||
mountPath: /dev/shm
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
You can get the full example with steps and sample yaml files from <https://github.com/ROCm/k8s-device-plugin/tree/master/example/vllm-serve>.
|
||||
|
||||
2. Create a Kubernetes Service for vLLM
|
||||
|
||||
Next, create a Kubernetes Service file to expose the `mistral-7b` deployment:
|
||||
|
||||
<details>
|
||||
<summary>Yaml</summary>
|
||||
|
||||
```yaml
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
@ -330,18 +352,20 @@ INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
|
||||
type: ClusterIP
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
3. Deploy and Test
|
||||
|
||||
Apply the deployment and service configurations using `kubectl apply -f <filename>`:
|
||||
|
||||
```console
|
||||
```bash
|
||||
kubectl apply -f deployment.yaml
|
||||
kubectl apply -f service.yaml
|
||||
```
|
||||
|
||||
To test the deployment, run the following `curl` command:
|
||||
|
||||
```console
|
||||
```bash
|
||||
curl http://mistral-7b.default.svc.cluster.local/v1/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
|
||||
@ -11,13 +11,13 @@ This document shows how to launch multiple vLLM serving containers and use Nginx
|
||||
|
||||
This guide assumes that you have just cloned the vLLM project and you're currently in the vllm root directory.
|
||||
|
||||
```console
|
||||
```bash
|
||||
export vllm_root=`pwd`
|
||||
```
|
||||
|
||||
Create a file named `Dockerfile.nginx`:
|
||||
|
||||
```console
|
||||
```dockerfile
|
||||
FROM nginx:latest
|
||||
RUN rm /etc/nginx/conf.d/default.conf
|
||||
EXPOSE 80
|
||||
@ -26,7 +26,7 @@ CMD ["nginx", "-g", "daemon off;"]
|
||||
|
||||
Build the container:
|
||||
|
||||
```console
|
||||
```bash
|
||||
docker build . -f Dockerfile.nginx --tag nginx-lb
|
||||
```
|
||||
|
||||
@ -36,36 +36,38 @@ docker build . -f Dockerfile.nginx --tag nginx-lb
|
||||
|
||||
Create a file named `nginx_conf/nginx.conf`. Note that you can add as many servers as you'd like. In the below example we'll start with two. To add more, add another `server vllmN:8000 max_fails=3 fail_timeout=10000s;` entry to `upstream backend`.
|
||||
|
||||
```console
|
||||
upstream backend {
|
||||
least_conn;
|
||||
server vllm0:8000 max_fails=3 fail_timeout=10000s;
|
||||
server vllm1:8000 max_fails=3 fail_timeout=10000s;
|
||||
}
|
||||
server {
|
||||
listen 80;
|
||||
location / {
|
||||
proxy_pass http://backend;
|
||||
proxy_set_header Host $host;
|
||||
proxy_set_header X-Real-IP $remote_addr;
|
||||
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
|
||||
proxy_set_header X-Forwarded-Proto $scheme;
|
||||
??? Config
|
||||
|
||||
```console
|
||||
upstream backend {
|
||||
least_conn;
|
||||
server vllm0:8000 max_fails=3 fail_timeout=10000s;
|
||||
server vllm1:8000 max_fails=3 fail_timeout=10000s;
|
||||
}
|
||||
}
|
||||
```
|
||||
server {
|
||||
listen 80;
|
||||
location / {
|
||||
proxy_pass http://backend;
|
||||
proxy_set_header Host $host;
|
||||
proxy_set_header X-Real-IP $remote_addr;
|
||||
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
|
||||
proxy_set_header X-Forwarded-Proto $scheme;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
[](){ #nginxloadbalancer-nginx-vllm-container }
|
||||
|
||||
## Build vLLM Container
|
||||
|
||||
```console
|
||||
```bash
|
||||
cd $vllm_root
|
||||
docker build -f docker/Dockerfile . --tag vllm
|
||||
```
|
||||
|
||||
If you are behind proxy, you can pass the proxy settings to the docker build command as shown below:
|
||||
|
||||
```console
|
||||
```bash
|
||||
cd $vllm_root
|
||||
docker build \
|
||||
-f docker/Dockerfile . \
|
||||
@ -78,7 +80,7 @@ docker build \
|
||||
|
||||
## Create Docker Network
|
||||
|
||||
```console
|
||||
```bash
|
||||
docker network create vllm_nginx
|
||||
```
|
||||
|
||||
@ -93,30 +95,32 @@ Notes:
|
||||
- The below example assumes GPU backend used. If you are using CPU backend, remove `--gpus device=ID`, add `VLLM_CPU_KVCACHE_SPACE` and `VLLM_CPU_OMP_THREADS_BIND` environment variables to the docker run command.
|
||||
- Adjust the model name that you want to use in your vLLM servers if you don't want to use `Llama-2-7b-chat-hf`.
|
||||
|
||||
```console
|
||||
mkdir -p ~/.cache/huggingface/hub/
|
||||
hf_cache_dir=~/.cache/huggingface/
|
||||
docker run \
|
||||
-itd \
|
||||
--ipc host \
|
||||
--network vllm_nginx \
|
||||
--gpus device=0 \
|
||||
--shm-size=10.24gb \
|
||||
-v $hf_cache_dir:/root/.cache/huggingface/ \
|
||||
-p 8081:8000 \
|
||||
--name vllm0 vllm \
|
||||
--model meta-llama/Llama-2-7b-chat-hf
|
||||
docker run \
|
||||
-itd \
|
||||
--ipc host \
|
||||
--network vllm_nginx \
|
||||
--gpus device=1 \
|
||||
--shm-size=10.24gb \
|
||||
-v $hf_cache_dir:/root/.cache/huggingface/ \
|
||||
-p 8082:8000 \
|
||||
--name vllm1 vllm \
|
||||
--model meta-llama/Llama-2-7b-chat-hf
|
||||
```
|
||||
??? Commands
|
||||
|
||||
```console
|
||||
mkdir -p ~/.cache/huggingface/hub/
|
||||
hf_cache_dir=~/.cache/huggingface/
|
||||
docker run \
|
||||
-itd \
|
||||
--ipc host \
|
||||
--network vllm_nginx \
|
||||
--gpus device=0 \
|
||||
--shm-size=10.24gb \
|
||||
-v $hf_cache_dir:/root/.cache/huggingface/ \
|
||||
-p 8081:8000 \
|
||||
--name vllm0 vllm \
|
||||
--model meta-llama/Llama-2-7b-chat-hf
|
||||
docker run \
|
||||
-itd \
|
||||
--ipc host \
|
||||
--network vllm_nginx \
|
||||
--gpus device=1 \
|
||||
--shm-size=10.24gb \
|
||||
-v $hf_cache_dir:/root/.cache/huggingface/ \
|
||||
-p 8082:8000 \
|
||||
--name vllm1 vllm \
|
||||
--model meta-llama/Llama-2-7b-chat-hf
|
||||
```
|
||||
|
||||
!!! note
|
||||
If you are behind proxy, you can pass the proxy settings to the docker run command via `-e http_proxy=$http_proxy -e https_proxy=$https_proxy`.
|
||||
@ -125,7 +129,7 @@ docker run \
|
||||
|
||||
## Launch Nginx
|
||||
|
||||
```console
|
||||
```bash
|
||||
docker run \
|
||||
-itd \
|
||||
-p 8000:80 \
|
||||
@ -138,7 +142,7 @@ docker run \
|
||||
|
||||
## Verify That vLLM Servers Are Ready
|
||||
|
||||
```console
|
||||
```bash
|
||||
docker logs vllm0 | grep Uvicorn
|
||||
docker logs vllm1 | grep Uvicorn
|
||||
```
|
||||
|
||||
@ -22,31 +22,33 @@ server.
|
||||
|
||||
Here is a sample of `LLM` class usage:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
# Define a list of input prompts
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The capital of France is",
|
||||
"The largest ocean is",
|
||||
]
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
# Define sampling parameters
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
# Define a list of input prompts
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The capital of France is",
|
||||
"The largest ocean is",
|
||||
]
|
||||
|
||||
# Initialize the LLM engine with the OPT-125M model
|
||||
llm = LLM(model="facebook/opt-125m")
|
||||
# Define sampling parameters
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
# Generate outputs for the input prompts
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
# Initialize the LLM engine with the OPT-125M model
|
||||
llm = LLM(model="facebook/opt-125m")
|
||||
|
||||
# Print the generated outputs
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
# Generate outputs for the input prompts
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
# Print the generated outputs
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
|
||||
More API details can be found in the [Offline Inference](#offline-inference-api) section of the API docs.
|
||||
|
||||
@ -178,32 +180,34 @@ vision-language model.
|
||||
|
||||
To avoid accidentally passing incorrect arguments, the constructor is now keyword-only. This ensures that the constructor will raise an error if old configurations are passed. vLLM developers have already made this change for all models within vLLM. For out-of-tree registered models, developers need to update their models, for example by adding shim code to adapt the old constructor signature to the new one:
|
||||
|
||||
```python
|
||||
class MyOldModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
...
|
||||
??? Code
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
class MyNewModel(MyOldModel):
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
config = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
super().__init__(config, cache_config, quant_config, lora_config, prefix)
|
||||
```python
|
||||
class MyOldModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
...
|
||||
|
||||
if __version__ >= "0.6.4":
|
||||
MyModel = MyNewModel
|
||||
else:
|
||||
MyModel = MyOldModel
|
||||
```
|
||||
from vllm.config import VllmConfig
|
||||
class MyNewModel(MyOldModel):
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
config = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
super().__init__(config, cache_config, quant_config, lora_config, prefix)
|
||||
|
||||
if __version__ >= "0.6.4":
|
||||
MyModel = MyNewModel
|
||||
else:
|
||||
MyModel = MyOldModel
|
||||
```
|
||||
|
||||
This way, the model can work with both old and new versions of vLLM.
|
||||
|
||||
|
||||
@ -448,27 +448,29 @@ elements of the entire head for all context tokens. However, overall,
|
||||
all results for output have been calculated but are just stored in
|
||||
different thread register memory.
|
||||
|
||||
```cpp
|
||||
float* out_smem = reinterpret_cast<float*>(shared_mem);
|
||||
for (int i = NUM_WARPS; i > 1; i /= 2) {
|
||||
// Upper warps write to shared memory.
|
||||
...
|
||||
float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
...
|
||||
dst[row_idx] = accs[i];
|
||||
}
|
||||
??? Code
|
||||
|
||||
// Lower warps update the output.
|
||||
const float* src = &out_smem[warp_idx * HEAD_SIZE];
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
```cpp
|
||||
float* out_smem = reinterpret_cast<float*>(shared_mem);
|
||||
for (int i = NUM_WARPS; i > 1; i /= 2) {
|
||||
// Upper warps write to shared memory.
|
||||
...
|
||||
accs[i] += src[row_idx];
|
||||
}
|
||||
float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
...
|
||||
dst[row_idx] = accs[i];
|
||||
}
|
||||
|
||||
// Write out the accs.
|
||||
}
|
||||
```
|
||||
// Lower warps update the output.
|
||||
const float* src = &out_smem[warp_idx * HEAD_SIZE];
|
||||
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
||||
...
|
||||
accs[i] += src[row_idx];
|
||||
}
|
||||
|
||||
// Write out the accs.
|
||||
}
|
||||
```
|
||||
|
||||
## Output
|
||||
|
||||
|
||||
@ -13,28 +13,30 @@ Plugins are user-registered code that vLLM executes. Given vLLM's architecture (
|
||||
|
||||
vLLM's plugin system uses the standard Python `entry_points` mechanism. This mechanism allows developers to register functions in their Python packages for use by other packages. An example of a plugin:
|
||||
|
||||
```python
|
||||
# inside `setup.py` file
|
||||
from setuptools import setup
|
||||
??? Code
|
||||
|
||||
setup(name='vllm_add_dummy_model',
|
||||
version='0.1',
|
||||
packages=['vllm_add_dummy_model'],
|
||||
entry_points={
|
||||
'vllm.general_plugins':
|
||||
["register_dummy_model = vllm_add_dummy_model:register"]
|
||||
})
|
||||
```python
|
||||
# inside `setup.py` file
|
||||
from setuptools import setup
|
||||
|
||||
# inside `vllm_add_dummy_model.py` file
|
||||
def register():
|
||||
from vllm import ModelRegistry
|
||||
setup(name='vllm_add_dummy_model',
|
||||
version='0.1',
|
||||
packages=['vllm_add_dummy_model'],
|
||||
entry_points={
|
||||
'vllm.general_plugins':
|
||||
["register_dummy_model = vllm_add_dummy_model:register"]
|
||||
})
|
||||
|
||||
if "MyLlava" not in ModelRegistry.get_supported_archs():
|
||||
ModelRegistry.register_model(
|
||||
"MyLlava",
|
||||
"vllm_add_dummy_model.my_llava:MyLlava",
|
||||
)
|
||||
```
|
||||
# inside `vllm_add_dummy_model.py` file
|
||||
def register():
|
||||
from vllm import ModelRegistry
|
||||
|
||||
if "MyLlava" not in ModelRegistry.get_supported_archs():
|
||||
ModelRegistry.register_model(
|
||||
"MyLlava",
|
||||
"vllm_add_dummy_model.my_llava:MyLlava",
|
||||
)
|
||||
```
|
||||
|
||||
For more information on adding entry points to your package, please check the [official documentation](https://setuptools.pypa.io/en/latest/userguide/entry_point.html).
|
||||
|
||||
|
||||
@ -61,23 +61,25 @@ To address the above issues, I have designed and developed a local Tensor memory
|
||||
|
||||
# Install vLLM
|
||||
|
||||
```shell
|
||||
# Enter the home directory or your working directory.
|
||||
cd /home
|
||||
??? Commands
|
||||
|
||||
# Download the installation package, and I will update the commit-id in time. You can directly copy the command.
|
||||
wget https://vllm-wheels.s3.us-west-2.amazonaws.com/9112b443a042d8d815880b8780633882ad32b183/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl
|
||||
```shell
|
||||
# Enter the home directory or your working directory.
|
||||
cd /home
|
||||
|
||||
# Download the code repository.
|
||||
git clone -b xpyd-v1 https://github.com/Abatom/vllm.git
|
||||
cd vllm
|
||||
# Download the installation package, and I will update the commit-id in time. You can directly copy the command.
|
||||
wget https://vllm-wheels.s3.us-west-2.amazonaws.com/9112b443a042d8d815880b8780633882ad32b183/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl
|
||||
|
||||
# Set the installation package path.
|
||||
export VLLM_PRECOMPILED_WHEEL_LOCATION=/home/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl
|
||||
# Download the code repository.
|
||||
git clone -b xpyd-v1 https://github.com/Abatom/vllm.git
|
||||
cd vllm
|
||||
|
||||
# installation
|
||||
pip install -e . -v
|
||||
```
|
||||
# Set the installation package path.
|
||||
export VLLM_PRECOMPILED_WHEEL_LOCATION=/home/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl
|
||||
|
||||
# installation
|
||||
pip install -e . -v
|
||||
```
|
||||
|
||||
# Run xPyD
|
||||
|
||||
@ -104,83 +106,91 @@ python3 disagg_prefill_proxy_xpyd.py &
|
||||
|
||||
### Prefill1 (e.g. 10.0.1.2 or 10.0.1.1)
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=0 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20005 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.9 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"21001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20005","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
??? Command
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=0 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20005 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.9 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"21001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20005","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
|
||||
### Decode1 (e.g. 10.0.1.3 or 10.0.1.1)
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=1 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20009 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"22001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20009","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
??? Command
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=1 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20009 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"22001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20009","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
|
||||
### Decode2 (e.g. 10.0.1.4 or 10.0.1.1)
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=2 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20003 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"23001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20003","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
??? Command
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=2 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20003 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"23001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20003","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
|
||||
### Decode3 (e.g. 10.0.1.5 or 10.0.1.1)
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=3 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20008 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"24001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20008","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
??? Command
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=3 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20008 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"24001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20008","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
|
||||
## Run 3P1D
|
||||
|
||||
@ -193,83 +203,91 @@ python3 disagg_prefill_proxy_xpyd.py &
|
||||
|
||||
### Prefill1 (e.g. 10.0.1.2 or 10.0.1.1)
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=0 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20005 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.9 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"21001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20005","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
??? Command
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=0 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20005 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.9 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"21001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20005","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
|
||||
### Prefill2 (e.g. 10.0.1.3 or 10.0.1.1)
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=1 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20009 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.9 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"22001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20009","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
??? Command
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=1 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20009 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.9 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"22001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20009","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
|
||||
### Prefill3 (e.g. 10.0.1.4 or 10.0.1.1)
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=2 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20003 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.9 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"23001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20003","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
??? Command
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=2 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20003 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.9 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"23001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20003","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
|
||||
### Decode1 (e.g. 10.0.1.5 or 10.0.1.1)
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=3 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20008 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"24001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20008","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
??? Command
|
||||
|
||||
```shell
|
||||
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=3 vllm serve {your model directory} \
|
||||
--host 0.0.0.0 \
|
||||
--port 20008 \
|
||||
--tensor-parallel-size 1 \
|
||||
--seed 1024 \
|
||||
--served-model-name base_model \
|
||||
--dtype float16 \
|
||||
--max-model-len 10000 \
|
||||
--max-num-batched-tokens 10000 \
|
||||
--max-num-seqs 256 \
|
||||
--trust-remote-code \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--disable-log-request \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"24001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20008","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
|
||||
```
|
||||
|
||||
# Single request
|
||||
|
||||
@ -286,25 +304,27 @@ curl -X POST -s http://10.0.1.1:10001/v1/completions \
|
||||
|
||||
# Benchmark
|
||||
|
||||
```shell
|
||||
python3 benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model base_model \
|
||||
--tokenizer meta-llama/Llama-3.1-8B-Instruct \
|
||||
--dataset-name "random" \
|
||||
--host 10.0.1.1 \
|
||||
--port 10001 \
|
||||
--random-input-len 1024 \
|
||||
--random-output-len 1024 \
|
||||
--ignore-eos \
|
||||
--burstiness 100 \
|
||||
--percentile-metrics "ttft,tpot,itl,e2el" \
|
||||
--metric-percentiles "90,95,99" \
|
||||
--seed $(date +%s) \
|
||||
--trust-remote-code \
|
||||
--request-rate 3 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
??? Command
|
||||
|
||||
```shell
|
||||
python3 benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model base_model \
|
||||
--tokenizer meta-llama/Llama-3.1-8B-Instruct \
|
||||
--dataset-name "random" \
|
||||
--host 10.0.1.1 \
|
||||
--port 10001 \
|
||||
--random-input-len 1024 \
|
||||
--random-output-len 1024 \
|
||||
--ignore-eos \
|
||||
--burstiness 100 \
|
||||
--percentile-metrics "ttft,tpot,itl,e2el" \
|
||||
--metric-percentiles "90,95,99" \
|
||||
--seed $(date +%s) \
|
||||
--trust-remote-code \
|
||||
--request-rate 3 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
# Shut down
|
||||
|
||||
|
||||
@ -28,27 +28,29 @@ A unique aspect of vLLM's `torch.compile` integration, is that we guarantee all
|
||||
|
||||
In the very verbose logs, we can see:
|
||||
|
||||
```
|
||||
DEBUG 03-07 03:06:52 [decorators.py:203] Start compiling function <code object forward at 0x7f08acf40c90, file "xxx/vllm/model_executor/models/llama.py", line 339>
|
||||
??? Logs
|
||||
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] Traced files (to be considered for compilation cache):
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/torch/_dynamo/polyfills/builtins.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/torch/nn/modules/container.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/torch/nn/modules/module.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/attention/layer.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/distributed/communication_op.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/distributed/parallel_state.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/custom_op.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/activation.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/layernorm.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/linear.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/rotary_embedding.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/vocab_parallel_embedding.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/models/llama.py
|
||||
```text
|
||||
DEBUG 03-07 03:06:52 [decorators.py:203] Start compiling function <code object forward at 0x7f08acf40c90, file "xxx/vllm/model_executor/models/llama.py", line 339>
|
||||
|
||||
DEBUG 03-07 03:07:07 [backends.py:462] Computation graph saved to ~/.cache/vllm/torch_compile_cache/1517964802/rank_0_0/computation_graph.py
|
||||
DEBUG 03-07 03:07:07 [wrapper.py:105] Dynamo transformed code saved to ~/.cache/vllm/torch_compile_cache/1517964802/rank_0_0/transformed_code.py
|
||||
```
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] Traced files (to be considered for compilation cache):
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/torch/_dynamo/polyfills/builtins.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/torch/nn/modules/container.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/torch/nn/modules/module.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/attention/layer.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/distributed/communication_op.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/distributed/parallel_state.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/custom_op.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/activation.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/layernorm.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/linear.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/rotary_embedding.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/layers/vocab_parallel_embedding.py
|
||||
DEBUG 03-07 03:06:54 [backends.py:370] xxx/vllm/model_executor/models/llama.py
|
||||
|
||||
DEBUG 03-07 03:07:07 [backends.py:462] Computation graph saved to ~/.cache/vllm/torch_compile_cache/1517964802/rank_0_0/computation_graph.py
|
||||
DEBUG 03-07 03:07:07 [wrapper.py:105] Dynamo transformed code saved to ~/.cache/vllm/torch_compile_cache/1517964802/rank_0_0/transformed_code.py
|
||||
```
|
||||
|
||||
This is about the Python code compilation, i.e. graph capture by Dynamo. It tries to trace the function with code `xxx/vllm/model_executor/models/llama.py:339`, which is the `forward` function of the model we compile. During the forward pass, there are also other functions called and inlined by Dynamo, as shown by the logs, including some PyTorch functions from `xxx/torch/nn/modules/module.py` (used by PyTorch `nn.Module`, because module attribute access will trigger a function call), some communication / attention / activation functions from vLLM. All the traced files will be considered when we decide the cache directory to use. This way, any code change in the above files will trigger compilation cache miss, and therefore recompilation.
|
||||
|
||||
@ -99,28 +101,31 @@ This time, Inductor compilation is completely bypassed, and we will load from di
|
||||
|
||||
The above example just uses Inductor to compile for a general shape (i.e. symbolic shape). We can also use Inductor to compile for some of the specific shapes, for example:
|
||||
|
||||
```
|
||||
vllm serve meta-llama/Llama-3.2-1B --compilation_config '{"compile_sizes": [1, 2, 4, 8]}'
|
||||
```bash
|
||||
vllm serve meta-llama/Llama-3.2-1B \
|
||||
--compilation_config '{"compile_sizes": [1, 2, 4, 8]}'
|
||||
```
|
||||
|
||||
Then it will also compile a specific kernel just for batch size `1, 2, 4, 8`. At this time, all of the shapes in the computation graph are static and known, and we will turn on auto-tuning to tune for max performance. This can be slow when you run it for the first time, but the next time you run it, we can directly bypass the tuning and run the tuned kernel.
|
||||
|
||||
When all the shapes are known, `torch.compile` can compare different configs, and often find some better configs to run the kernel. For example, we can see the following log:
|
||||
|
||||
```
|
||||
AUTOTUNE mm(8x2048, 2048x3072)
|
||||
triton_mm_4 0.0130 ms 100.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=2
|
||||
triton_mm_8 0.0134 ms 97.4% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=4
|
||||
triton_mm_12 0.0148 ms 87.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=4, num_warps=4
|
||||
mm 0.0160 ms 81.6%
|
||||
triton_mm_16 0.0165 ms 78.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=16, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=8
|
||||
triton_mm_3 0.0199 ms 65.4% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=32, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=2
|
||||
triton_mm_1 0.0203 ms 64.2% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=2, num_warps=2
|
||||
triton_mm_7 0.0203 ms 64.1% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4
|
||||
triton_mm_2 0.0208 ms 62.5% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=4
|
||||
triton_mm_11 0.0215 ms 60.5% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=16, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4
|
||||
SingleProcess AUTOTUNE benchmarking takes 2.0428 seconds and 7.5727 seconds precompiling
|
||||
```
|
||||
??? Logs
|
||||
|
||||
```
|
||||
AUTOTUNE mm(8x2048, 2048x3072)
|
||||
triton_mm_4 0.0130 ms 100.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=2
|
||||
triton_mm_8 0.0134 ms 97.4% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=4
|
||||
triton_mm_12 0.0148 ms 87.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=4, num_warps=4
|
||||
mm 0.0160 ms 81.6%
|
||||
triton_mm_16 0.0165 ms 78.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=16, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=8
|
||||
triton_mm_3 0.0199 ms 65.4% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=32, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=2
|
||||
triton_mm_1 0.0203 ms 64.2% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=2, num_warps=2
|
||||
triton_mm_7 0.0203 ms 64.1% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4
|
||||
triton_mm_2 0.0208 ms 62.5% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=4
|
||||
triton_mm_11 0.0215 ms 60.5% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=16, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4
|
||||
SingleProcess AUTOTUNE benchmarking takes 2.0428 seconds and 7.5727 seconds precompiling
|
||||
```
|
||||
|
||||
It means, for a matrix multiplication with shape `8x2048x3072`, `torch.compile` tries triton template with various configs, and it is much faster than the default code (which dispatches to cublas library).
|
||||
|
||||
@ -136,8 +141,9 @@ The cudagraphs are captured and managed by the compiler backend, and replayed wh
|
||||
|
||||
By default, vLLM will try to determine a set of sizes to capture cudagraph. You can also override it using the config `cudagraph_capture_sizes`:
|
||||
|
||||
```
|
||||
vllm serve meta-llama/Llama-3.2-1B --compilation-config '{"cudagraph_capture_sizes": [1, 2, 4, 8]}'
|
||||
```bash
|
||||
vllm serve meta-llama/Llama-3.2-1B \
|
||||
--compilation-config '{"cudagraph_capture_sizes": [1, 2, 4, 8]}'
|
||||
```
|
||||
|
||||
Then it will only capture cudagraph for the specified sizes. It can be useful to have fine-grained control over the cudagraph capture.
|
||||
|
||||
@ -29,24 +29,26 @@ We can now submit the prompts and call `llm.generate` with the `lora_request` pa
|
||||
of `LoRARequest` is a human identifiable name, the second parameter is a globally unique ID for the adapter and
|
||||
the third parameter is the path to the LoRA adapter.
|
||||
|
||||
```python
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0,
|
||||
max_tokens=256,
|
||||
stop=["[/assistant]"]
|
||||
)
|
||||
??? Code
|
||||
|
||||
prompts = [
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
|
||||
]
|
||||
```python
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0,
|
||||
max_tokens=256,
|
||||
stop=["[/assistant]"]
|
||||
)
|
||||
|
||||
outputs = llm.generate(
|
||||
prompts,
|
||||
sampling_params,
|
||||
lora_request=LoRARequest("sql_adapter", 1, sql_lora_path)
|
||||
)
|
||||
```
|
||||
prompts = [
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
|
||||
]
|
||||
|
||||
outputs = llm.generate(
|
||||
prompts,
|
||||
sampling_params,
|
||||
lora_request=LoRARequest("sql_adapter", 1, sql_lora_path)
|
||||
)
|
||||
```
|
||||
|
||||
Check out <gh-file:examples/offline_inference/multilora_inference.py> for an example of how to use LoRA adapters with the async engine and how to use more advanced configuration options.
|
||||
|
||||
@ -68,24 +70,26 @@ The server entrypoint accepts all other LoRA configuration parameters (`max_lora
|
||||
etc.), which will apply to all forthcoming requests. Upon querying the `/models` endpoint, we should see our LoRA along
|
||||
with its base model (if `jq` is not installed, you can follow [this guide](https://jqlang.org/download/) to install it.):
|
||||
|
||||
```bash
|
||||
curl localhost:8000/v1/models | jq .
|
||||
{
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": "meta-llama/Llama-2-7b-hf",
|
||||
"object": "model",
|
||||
...
|
||||
},
|
||||
{
|
||||
"id": "sql-lora",
|
||||
"object": "model",
|
||||
...
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
??? Command
|
||||
|
||||
```bash
|
||||
curl localhost:8000/v1/models | jq .
|
||||
{
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": "meta-llama/Llama-2-7b-hf",
|
||||
"object": "model",
|
||||
...
|
||||
},
|
||||
{
|
||||
"id": "sql-lora",
|
||||
"object": "model",
|
||||
...
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Requests can specify the LoRA adapter as if it were any other model via the `model` request parameter. The requests will be
|
||||
processed according to the server-wide LoRA configuration (i.e. in parallel with base model requests, and potentially other
|
||||
@ -168,36 +172,36 @@ Alternatively, follow these example steps to implement your own plugin:
|
||||
|
||||
1. Implement the LoRAResolver interface.
|
||||
|
||||
Example of a simple S3 LoRAResolver implementation:
|
||||
??? Example of a simple S3 LoRAResolver implementation
|
||||
|
||||
```python
|
||||
import os
|
||||
import s3fs
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.lora.resolver import LoRAResolver
|
||||
```python
|
||||
import os
|
||||
import s3fs
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.lora.resolver import LoRAResolver
|
||||
|
||||
class S3LoRAResolver(LoRAResolver):
|
||||
def __init__(self):
|
||||
self.s3 = s3fs.S3FileSystem()
|
||||
self.s3_path_format = os.getenv("S3_PATH_TEMPLATE")
|
||||
self.local_path_format = os.getenv("LOCAL_PATH_TEMPLATE")
|
||||
class S3LoRAResolver(LoRAResolver):
|
||||
def __init__(self):
|
||||
self.s3 = s3fs.S3FileSystem()
|
||||
self.s3_path_format = os.getenv("S3_PATH_TEMPLATE")
|
||||
self.local_path_format = os.getenv("LOCAL_PATH_TEMPLATE")
|
||||
|
||||
async def resolve_lora(self, base_model_name, lora_name):
|
||||
s3_path = self.s3_path_format.format(base_model_name=base_model_name, lora_name=lora_name)
|
||||
local_path = self.local_path_format.format(base_model_name=base_model_name, lora_name=lora_name)
|
||||
async def resolve_lora(self, base_model_name, lora_name):
|
||||
s3_path = self.s3_path_format.format(base_model_name=base_model_name, lora_name=lora_name)
|
||||
local_path = self.local_path_format.format(base_model_name=base_model_name, lora_name=lora_name)
|
||||
|
||||
# Download the LoRA from S3 to the local path
|
||||
await self.s3._get(
|
||||
s3_path, local_path, recursive=True, maxdepth=1
|
||||
)
|
||||
# Download the LoRA from S3 to the local path
|
||||
await self.s3._get(
|
||||
s3_path, local_path, recursive=True, maxdepth=1
|
||||
)
|
||||
|
||||
lora_request = LoRARequest(
|
||||
lora_name=lora_name,
|
||||
lora_path=local_path,
|
||||
lora_int_id=abs(hash(lora_name))
|
||||
)
|
||||
return lora_request
|
||||
```
|
||||
lora_request = LoRARequest(
|
||||
lora_name=lora_name,
|
||||
lora_path=local_path,
|
||||
lora_int_id=abs(hash(lora_name))
|
||||
)
|
||||
return lora_request
|
||||
```
|
||||
|
||||
2. Register `LoRAResolver` plugin.
|
||||
|
||||
@ -234,38 +238,40 @@ The new format of `--lora-modules` is mainly to support the display of parent mo
|
||||
- The `parent` field of LoRA model `sql-lora` now links to its base model `meta-llama/Llama-2-7b-hf`. This correctly reflects the hierarchical relationship between the base model and the LoRA adapter.
|
||||
- The `root` field points to the artifact location of the lora adapter.
|
||||
|
||||
```bash
|
||||
$ curl http://localhost:8000/v1/models
|
||||
??? Command output
|
||||
|
||||
{
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": "meta-llama/Llama-2-7b-hf",
|
||||
"object": "model",
|
||||
"created": 1715644056,
|
||||
"owned_by": "vllm",
|
||||
"root": "~/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-hf/snapshots/01c7f73d771dfac7d292323805ebc428287df4f9/",
|
||||
"parent": null,
|
||||
"permission": [
|
||||
```bash
|
||||
$ curl http://localhost:8000/v1/models
|
||||
|
||||
{
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
.....
|
||||
"id": "meta-llama/Llama-2-7b-hf",
|
||||
"object": "model",
|
||||
"created": 1715644056,
|
||||
"owned_by": "vllm",
|
||||
"root": "~/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-hf/snapshots/01c7f73d771dfac7d292323805ebc428287df4f9/",
|
||||
"parent": null,
|
||||
"permission": [
|
||||
{
|
||||
.....
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "sql-lora",
|
||||
"object": "model",
|
||||
"created": 1715644056,
|
||||
"owned_by": "vllm",
|
||||
"root": "~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/snapshots/0dfa347e8877a4d4ed19ee56c140fa518470028c/",
|
||||
"parent": meta-llama/Llama-2-7b-hf,
|
||||
"permission": [
|
||||
{
|
||||
....
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "sql-lora",
|
||||
"object": "model",
|
||||
"created": 1715644056,
|
||||
"owned_by": "vllm",
|
||||
"root": "~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/snapshots/0dfa347e8877a4d4ed19ee56c140fa518470028c/",
|
||||
"parent": meta-llama/Llama-2-7b-hf,
|
||||
"permission": [
|
||||
{
|
||||
....
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
}
|
||||
```
|
||||
|
||||
@ -20,111 +20,117 @@ To input multi-modal data, follow this schema in [vllm.inputs.PromptType][]:
|
||||
|
||||
You can pass a single image to the `'image'` field of the multi-modal dictionary, as shown in the following examples:
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
??? Code
|
||||
|
||||
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
||||
```python
|
||||
from vllm import LLM
|
||||
|
||||
# Refer to the HuggingFace repo for the correct format to use
|
||||
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
||||
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
||||
|
||||
# Load the image using PIL.Image
|
||||
image = PIL.Image.open(...)
|
||||
# Refer to the HuggingFace repo for the correct format to use
|
||||
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
||||
|
||||
# Single prompt inference
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {"image": image},
|
||||
})
|
||||
# Load the image using PIL.Image
|
||||
image = PIL.Image.open(...)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
# Single prompt inference
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {"image": image},
|
||||
})
|
||||
|
||||
# Batch inference
|
||||
image_1 = PIL.Image.open(...)
|
||||
image_2 = PIL.Image.open(...)
|
||||
outputs = llm.generate(
|
||||
[
|
||||
{
|
||||
"prompt": "USER: <image>\nWhat is the content of this image?\nASSISTANT:",
|
||||
"multi_modal_data": {"image": image_1},
|
||||
},
|
||||
{
|
||||
"prompt": "USER: <image>\nWhat's the color of this image?\nASSISTANT:",
|
||||
"multi_modal_data": {"image": image_2},
|
||||
}
|
||||
]
|
||||
)
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
# Batch inference
|
||||
image_1 = PIL.Image.open(...)
|
||||
image_2 = PIL.Image.open(...)
|
||||
outputs = llm.generate(
|
||||
[
|
||||
{
|
||||
"prompt": "USER: <image>\nWhat is the content of this image?\nASSISTANT:",
|
||||
"multi_modal_data": {"image": image_1},
|
||||
},
|
||||
{
|
||||
"prompt": "USER: <image>\nWhat's the color of this image?\nASSISTANT:",
|
||||
"multi_modal_data": {"image": image_2},
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
|
||||
Full example: <gh-file:examples/offline_inference/vision_language.py>
|
||||
|
||||
To substitute multiple images inside the same text prompt, you can pass in a list of images instead:
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
??? Code
|
||||
|
||||
llm = LLM(
|
||||
model="microsoft/Phi-3.5-vision-instruct",
|
||||
trust_remote_code=True, # Required to load Phi-3.5-vision
|
||||
max_model_len=4096, # Otherwise, it may not fit in smaller GPUs
|
||||
limit_mm_per_prompt={"image": 2}, # The maximum number to accept
|
||||
)
|
||||
```python
|
||||
from vllm import LLM
|
||||
|
||||
# Refer to the HuggingFace repo for the correct format to use
|
||||
prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n"
|
||||
llm = LLM(
|
||||
model="microsoft/Phi-3.5-vision-instruct",
|
||||
trust_remote_code=True, # Required to load Phi-3.5-vision
|
||||
max_model_len=4096, # Otherwise, it may not fit in smaller GPUs
|
||||
limit_mm_per_prompt={"image": 2}, # The maximum number to accept
|
||||
)
|
||||
|
||||
# Load the images using PIL.Image
|
||||
image1 = PIL.Image.open(...)
|
||||
image2 = PIL.Image.open(...)
|
||||
# Refer to the HuggingFace repo for the correct format to use
|
||||
prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n"
|
||||
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": [image1, image2]
|
||||
},
|
||||
})
|
||||
# Load the images using PIL.Image
|
||||
image1 = PIL.Image.open(...)
|
||||
image2 = PIL.Image.open(...)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": [image1, image2]
|
||||
},
|
||||
})
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
|
||||
Full example: <gh-file:examples/offline_inference/vision_language_multi_image.py>
|
||||
|
||||
Multi-image input can be extended to perform video captioning. We show this with [Qwen2-VL](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) as it supports videos:
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
??? Code
|
||||
|
||||
# Specify the maximum number of frames per video to be 4. This can be changed.
|
||||
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
|
||||
```python
|
||||
from vllm import LLM
|
||||
|
||||
# Create the request payload.
|
||||
video_frames = ... # load your video making sure it only has the number of frames specified earlier.
|
||||
message = {
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."},
|
||||
],
|
||||
}
|
||||
for i in range(len(video_frames)):
|
||||
base64_image = encode_image(video_frames[i]) # base64 encoding.
|
||||
new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
||||
message["content"].append(new_image)
|
||||
# Specify the maximum number of frames per video to be 4. This can be changed.
|
||||
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
|
||||
|
||||
# Perform inference and log output.
|
||||
outputs = llm.chat([message])
|
||||
# Create the request payload.
|
||||
video_frames = ... # load your video making sure it only has the number of frames specified earlier.
|
||||
message = {
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."},
|
||||
],
|
||||
}
|
||||
for i in range(len(video_frames)):
|
||||
base64_image = encode_image(video_frames[i]) # base64 encoding.
|
||||
new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
||||
message["content"].append(new_image)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
# Perform inference and log output.
|
||||
outputs = llm.chat([message])
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
|
||||
### Video Inputs
|
||||
|
||||
@ -144,68 +150,72 @@ Full example: <gh-file:examples/offline_inference/audio_language.py>
|
||||
To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model,
|
||||
pass a tensor of shape `(num_items, feature_size, hidden_size of LM)` to the corresponding field of the multi-modal dictionary.
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
??? Code
|
||||
|
||||
# Inference with image embeddings as input
|
||||
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
||||
```python
|
||||
from vllm import LLM
|
||||
|
||||
# Refer to the HuggingFace repo for the correct format to use
|
||||
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
||||
# Inference with image embeddings as input
|
||||
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
||||
|
||||
# Embeddings for single image
|
||||
# torch.Tensor of shape (1, image_feature_size, hidden_size of LM)
|
||||
image_embeds = torch.load(...)
|
||||
# Refer to the HuggingFace repo for the correct format to use
|
||||
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
||||
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {"image": image_embeds},
|
||||
})
|
||||
# Embeddings for single image
|
||||
# torch.Tensor of shape (1, image_feature_size, hidden_size of LM)
|
||||
image_embeds = torch.load(...)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {"image": image_embeds},
|
||||
})
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
|
||||
For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embeddings:
|
||||
|
||||
```python
|
||||
# Construct the prompt based on your model
|
||||
prompt = ...
|
||||
??? Code
|
||||
|
||||
# Embeddings for multiple images
|
||||
# torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM)
|
||||
image_embeds = torch.load(...)
|
||||
```python
|
||||
# Construct the prompt based on your model
|
||||
prompt = ...
|
||||
|
||||
# Qwen2-VL
|
||||
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
|
||||
mm_data = {
|
||||
"image": {
|
||||
"image_embeds": image_embeds,
|
||||
# image_grid_thw is needed to calculate positional encoding.
|
||||
"image_grid_thw": torch.load(...), # torch.Tensor of shape (1, 3),
|
||||
# Embeddings for multiple images
|
||||
# torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM)
|
||||
image_embeds = torch.load(...)
|
||||
|
||||
# Qwen2-VL
|
||||
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
|
||||
mm_data = {
|
||||
"image": {
|
||||
"image_embeds": image_embeds,
|
||||
# image_grid_thw is needed to calculate positional encoding.
|
||||
"image_grid_thw": torch.load(...), # torch.Tensor of shape (1, 3),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# MiniCPM-V
|
||||
llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4})
|
||||
mm_data = {
|
||||
"image": {
|
||||
"image_embeds": image_embeds,
|
||||
# image_sizes is needed to calculate details of the sliced image.
|
||||
"image_sizes": [image.size for image in images], # list of image sizes
|
||||
# MiniCPM-V
|
||||
llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4})
|
||||
mm_data = {
|
||||
"image": {
|
||||
"image_embeds": image_embeds,
|
||||
# image_sizes is needed to calculate details of the sliced image.
|
||||
"image_sizes": [image.size for image in images], # list of image sizes
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": mm_data,
|
||||
})
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": mm_data,
|
||||
})
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
```
|
||||
|
||||
## Online Serving
|
||||
|
||||
@ -235,51 +245,53 @@ vllm serve microsoft/Phi-3.5-vision-instruct --task generate \
|
||||
|
||||
Then, you can use the OpenAI client as follows:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
??? Code
|
||||
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
|
||||
# Single-image input inference
|
||||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
chat_response = client.chat.completions.create(
|
||||
model="microsoft/Phi-3.5-vision-instruct",
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": [
|
||||
# NOTE: The prompt formatting with the image token `<image>` is not needed
|
||||
# since the prompt will be processed automatically by the API server.
|
||||
{"type": "text", "text": "What’s in this image?"},
|
||||
{"type": "image_url", "image_url": {"url": image_url}},
|
||||
],
|
||||
}],
|
||||
)
|
||||
print("Chat completion output:", chat_response.choices[0].message.content)
|
||||
# Single-image input inference
|
||||
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
|
||||
# Multi-image input inference
|
||||
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
|
||||
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
|
||||
chat_response = client.chat.completions.create(
|
||||
model="microsoft/Phi-3.5-vision-instruct",
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": [
|
||||
# NOTE: The prompt formatting with the image token `<image>` is not needed
|
||||
# since the prompt will be processed automatically by the API server.
|
||||
{"type": "text", "text": "What’s in this image?"},
|
||||
{"type": "image_url", "image_url": {"url": image_url}},
|
||||
],
|
||||
}],
|
||||
)
|
||||
print("Chat completion output:", chat_response.choices[0].message.content)
|
||||
|
||||
chat_response = client.chat.completions.create(
|
||||
model="microsoft/Phi-3.5-vision-instruct",
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What are the animals in these images?"},
|
||||
{"type": "image_url", "image_url": {"url": image_url_duck}},
|
||||
{"type": "image_url", "image_url": {"url": image_url_lion}},
|
||||
],
|
||||
}],
|
||||
)
|
||||
print("Chat completion output:", chat_response.choices[0].message.content)
|
||||
```
|
||||
# Multi-image input inference
|
||||
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
|
||||
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
|
||||
|
||||
chat_response = client.chat.completions.create(
|
||||
model="microsoft/Phi-3.5-vision-instruct",
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What are the animals in these images?"},
|
||||
{"type": "image_url", "image_url": {"url": image_url_duck}},
|
||||
{"type": "image_url", "image_url": {"url": image_url_lion}},
|
||||
],
|
||||
}],
|
||||
)
|
||||
print("Chat completion output:", chat_response.choices[0].message.content)
|
||||
```
|
||||
|
||||
Full example: <gh-file:examples/online_serving/openai_chat_completion_client_for_multimodal.py>
|
||||
|
||||
@ -295,7 +307,7 @@ Full example: <gh-file:examples/online_serving/openai_chat_completion_client_for
|
||||
By default, the timeout for fetching images through HTTP URL is `5` seconds.
|
||||
You can override this by setting the environment variable:
|
||||
|
||||
```console
|
||||
```bash
|
||||
export VLLM_IMAGE_FETCH_TIMEOUT=<timeout>
|
||||
```
|
||||
|
||||
@ -311,44 +323,46 @@ vllm serve llava-hf/llava-onevision-qwen2-0.5b-ov-hf --task generate --max-model
|
||||
|
||||
Then, you can use the OpenAI client as follows:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
??? Code
|
||||
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
|
||||
video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
## Use video url in the payload
|
||||
chat_completion_from_url = client.chat.completions.create(
|
||||
messages=[{
|
||||
"role":
|
||||
"user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's in this video?"
|
||||
},
|
||||
{
|
||||
"type": "video_url",
|
||||
"video_url": {
|
||||
"url": video_url
|
||||
video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"
|
||||
|
||||
## Use video url in the payload
|
||||
chat_completion_from_url = client.chat.completions.create(
|
||||
messages=[{
|
||||
"role":
|
||||
"user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's in this video?"
|
||||
},
|
||||
},
|
||||
],
|
||||
}],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
)
|
||||
{
|
||||
"type": "video_url",
|
||||
"video_url": {
|
||||
"url": video_url
|
||||
},
|
||||
},
|
||||
],
|
||||
}],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
)
|
||||
|
||||
result = chat_completion_from_url.choices[0].message.content
|
||||
print("Chat completion output from image url:", result)
|
||||
```
|
||||
result = chat_completion_from_url.choices[0].message.content
|
||||
print("Chat completion output from image url:", result)
|
||||
```
|
||||
|
||||
Full example: <gh-file:examples/online_serving/openai_chat_completion_client_for_multimodal.py>
|
||||
|
||||
@ -356,7 +370,7 @@ Full example: <gh-file:examples/online_serving/openai_chat_completion_client_for
|
||||
By default, the timeout for fetching videos through HTTP URL is `30` seconds.
|
||||
You can override this by setting the environment variable:
|
||||
|
||||
```console
|
||||
```bash
|
||||
export VLLM_VIDEO_FETCH_TIMEOUT=<timeout>
|
||||
```
|
||||
|
||||
@ -373,84 +387,88 @@ vllm serve fixie-ai/ultravox-v0_5-llama-3_2-1b
|
||||
|
||||
Then, you can use the OpenAI client as follows:
|
||||
|
||||
```python
|
||||
import base64
|
||||
import requests
|
||||
from openai import OpenAI
|
||||
from vllm.assets.audio import AudioAsset
|
||||
??? Code
|
||||
|
||||
def encode_base64_content_from_url(content_url: str) -> str:
|
||||
"""Encode a content retrieved from a remote url to base64 format."""
|
||||
```python
|
||||
import base64
|
||||
import requests
|
||||
from openai import OpenAI
|
||||
from vllm.assets.audio import AudioAsset
|
||||
|
||||
with requests.get(content_url) as response:
|
||||
response.raise_for_status()
|
||||
result = base64.b64encode(response.content).decode('utf-8')
|
||||
def encode_base64_content_from_url(content_url: str) -> str:
|
||||
"""Encode a content retrieved from a remote url to base64 format."""
|
||||
|
||||
return result
|
||||
with requests.get(content_url) as response:
|
||||
response.raise_for_status()
|
||||
result = base64.b64encode(response.content).decode('utf-8')
|
||||
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
return result
|
||||
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
|
||||
# Any format supported by librosa is supported
|
||||
audio_url = AudioAsset("winning_call").url
|
||||
audio_base64 = encode_base64_content_from_url(audio_url)
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
chat_completion_from_base64 = client.chat.completions.create(
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's in this audio?"
|
||||
},
|
||||
{
|
||||
"type": "input_audio",
|
||||
"input_audio": {
|
||||
"data": audio_base64,
|
||||
"format": "wav"
|
||||
# Any format supported by librosa is supported
|
||||
audio_url = AudioAsset("winning_call").url
|
||||
audio_base64 = encode_base64_content_from_url(audio_url)
|
||||
|
||||
chat_completion_from_base64 = client.chat.completions.create(
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's in this audio?"
|
||||
},
|
||||
},
|
||||
],
|
||||
}],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
)
|
||||
{
|
||||
"type": "input_audio",
|
||||
"input_audio": {
|
||||
"data": audio_base64,
|
||||
"format": "wav"
|
||||
},
|
||||
},
|
||||
],
|
||||
}],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
)
|
||||
|
||||
result = chat_completion_from_base64.choices[0].message.content
|
||||
print("Chat completion output from input audio:", result)
|
||||
```
|
||||
result = chat_completion_from_base64.choices[0].message.content
|
||||
print("Chat completion output from input audio:", result)
|
||||
```
|
||||
|
||||
Alternatively, you can pass `audio_url`, which is the audio counterpart of `image_url` for image input:
|
||||
|
||||
```python
|
||||
chat_completion_from_url = client.chat.completions.create(
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's in this audio?"
|
||||
},
|
||||
{
|
||||
"type": "audio_url",
|
||||
"audio_url": {
|
||||
"url": audio_url
|
||||
},
|
||||
},
|
||||
],
|
||||
}],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
)
|
||||
??? Code
|
||||
|
||||
result = chat_completion_from_url.choices[0].message.content
|
||||
print("Chat completion output from audio url:", result)
|
||||
```
|
||||
```python
|
||||
chat_completion_from_url = client.chat.completions.create(
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's in this audio?"
|
||||
},
|
||||
{
|
||||
"type": "audio_url",
|
||||
"audio_url": {
|
||||
"url": audio_url
|
||||
},
|
||||
},
|
||||
],
|
||||
}],
|
||||
model=model,
|
||||
max_completion_tokens=64,
|
||||
)
|
||||
|
||||
result = chat_completion_from_url.choices[0].message.content
|
||||
print("Chat completion output from audio url:", result)
|
||||
```
|
||||
|
||||
Full example: <gh-file:examples/online_serving/openai_chat_completion_client_for_multimodal.py>
|
||||
|
||||
@ -458,7 +476,7 @@ Full example: <gh-file:examples/online_serving/openai_chat_completion_client_for
|
||||
By default, the timeout for fetching audios through HTTP URL is `10` seconds.
|
||||
You can override this by setting the environment variable:
|
||||
|
||||
```console
|
||||
```bash
|
||||
export VLLM_AUDIO_FETCH_TIMEOUT=<timeout>
|
||||
```
|
||||
|
||||
@ -470,61 +488,63 @@ pass a tensor of shape to the corresponding field of the multi-modal dictionary.
|
||||
For image embeddings, you can pass the base64-encoded tensor to the `image_embeds` field.
|
||||
The following example demonstrates how to pass image embeddings to the OpenAI server:
|
||||
|
||||
```python
|
||||
image_embedding = torch.load(...)
|
||||
grid_thw = torch.load(...) # Required by Qwen/Qwen2-VL-2B-Instruct
|
||||
??? Code
|
||||
|
||||
buffer = io.BytesIO()
|
||||
torch.save(image_embedding, buffer)
|
||||
buffer.seek(0)
|
||||
binary_data = buffer.read()
|
||||
base64_image_embedding = base64.b64encode(binary_data).decode('utf-8')
|
||||
```python
|
||||
image_embedding = torch.load(...)
|
||||
grid_thw = torch.load(...) # Required by Qwen/Qwen2-VL-2B-Instruct
|
||||
|
||||
client = OpenAI(
|
||||
# defaults to os.environ.get("OPENAI_API_KEY")
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
buffer = io.BytesIO()
|
||||
torch.save(image_embedding, buffer)
|
||||
buffer.seek(0)
|
||||
binary_data = buffer.read()
|
||||
base64_image_embedding = base64.b64encode(binary_data).decode('utf-8')
|
||||
|
||||
# Basic usage - this is equivalent to the LLaVA example for offline inference
|
||||
model = "llava-hf/llava-1.5-7b-hf"
|
||||
embeds = {
|
||||
"type": "image_embeds",
|
||||
"image_embeds": f"{base64_image_embedding}"
|
||||
}
|
||||
client = OpenAI(
|
||||
# defaults to os.environ.get("OPENAI_API_KEY")
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
# Pass additional parameters (available to Qwen2-VL and MiniCPM-V)
|
||||
model = "Qwen/Qwen2-VL-2B-Instruct"
|
||||
embeds = {
|
||||
"type": "image_embeds",
|
||||
"image_embeds": {
|
||||
"image_embeds": f"{base64_image_embedding}" , # Required
|
||||
"image_grid_thw": f"{base64_image_grid_thw}" # Required by Qwen/Qwen2-VL-2B-Instruct
|
||||
},
|
||||
}
|
||||
model = "openbmb/MiniCPM-V-2_6"
|
||||
embeds = {
|
||||
"type": "image_embeds",
|
||||
"image_embeds": {
|
||||
"image_embeds": f"{base64_image_embedding}" , # Required
|
||||
"image_sizes": f"{base64_image_sizes}" # Required by openbmb/MiniCPM-V-2_6
|
||||
},
|
||||
}
|
||||
chat_completion = client.chat.completions.create(
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's in this image?",
|
||||
# Basic usage - this is equivalent to the LLaVA example for offline inference
|
||||
model = "llava-hf/llava-1.5-7b-hf"
|
||||
embeds = {
|
||||
"type": "image_embeds",
|
||||
"image_embeds": f"{base64_image_embedding}"
|
||||
}
|
||||
|
||||
# Pass additional parameters (available to Qwen2-VL and MiniCPM-V)
|
||||
model = "Qwen/Qwen2-VL-2B-Instruct"
|
||||
embeds = {
|
||||
"type": "image_embeds",
|
||||
"image_embeds": {
|
||||
"image_embeds": f"{base64_image_embedding}" , # Required
|
||||
"image_grid_thw": f"{base64_image_grid_thw}" # Required by Qwen/Qwen2-VL-2B-Instruct
|
||||
},
|
||||
embeds,
|
||||
],
|
||||
},
|
||||
],
|
||||
model=model,
|
||||
)
|
||||
```
|
||||
}
|
||||
model = "openbmb/MiniCPM-V-2_6"
|
||||
embeds = {
|
||||
"type": "image_embeds",
|
||||
"image_embeds": {
|
||||
"image_embeds": f"{base64_image_embedding}" , # Required
|
||||
"image_sizes": f"{base64_image_sizes}" # Required by openbmb/MiniCPM-V-2_6
|
||||
},
|
||||
}
|
||||
chat_completion = client.chat.completions.create(
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's in this image?",
|
||||
},
|
||||
embeds,
|
||||
],
|
||||
},
|
||||
],
|
||||
model=model,
|
||||
)
|
||||
```
|
||||
|
||||
!!! note
|
||||
Only one message can contain `{"type": "image_embeds"}`.
|
||||
|
||||
@ -9,39 +9,41 @@ The main benefits are lower latency and memory usage.
|
||||
|
||||
You can quantize your own models by installing AutoAWQ or picking one of the [6500+ models on Huggingface](https://huggingface.co/models?search=awq).
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install autoawq
|
||||
```
|
||||
|
||||
After installing AutoAWQ, you are ready to quantize a model. Please refer to the [AutoAWQ documentation](https://casper-hansen.github.io/AutoAWQ/examples/#basic-quantization) for further details. Here is an example of how to quantize `mistralai/Mistral-7B-Instruct-v0.2`:
|
||||
|
||||
```python
|
||||
from awq import AutoAWQForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
??? Code
|
||||
|
||||
model_path = 'mistralai/Mistral-7B-Instruct-v0.2'
|
||||
quant_path = 'mistral-instruct-v0.2-awq'
|
||||
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
|
||||
```python
|
||||
from awq import AutoAWQForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# Load model
|
||||
model = AutoAWQForCausalLM.from_pretrained(
|
||||
model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model_path = 'mistralai/Mistral-7B-Instruct-v0.2'
|
||||
quant_path = 'mistral-instruct-v0.2-awq'
|
||||
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
|
||||
|
||||
# Quantize
|
||||
model.quantize(tokenizer, quant_config=quant_config)
|
||||
# Load model
|
||||
model = AutoAWQForCausalLM.from_pretrained(
|
||||
model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Save quantized model
|
||||
model.save_quantized(quant_path)
|
||||
tokenizer.save_pretrained(quant_path)
|
||||
# Quantize
|
||||
model.quantize(tokenizer, quant_config=quant_config)
|
||||
|
||||
print(f'Model is quantized and saved at "{quant_path}"')
|
||||
```
|
||||
# Save quantized model
|
||||
model.save_quantized(quant_path)
|
||||
tokenizer.save_pretrained(quant_path)
|
||||
|
||||
print(f'Model is quantized and saved at "{quant_path}"')
|
||||
```
|
||||
|
||||
To run an AWQ model with vLLM, you can use [TheBloke/Llama-2-7b-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-AWQ) with the following command:
|
||||
|
||||
```console
|
||||
```bash
|
||||
python examples/offline_inference/llm_engine_example.py \
|
||||
--model TheBloke/Llama-2-7b-Chat-AWQ \
|
||||
--quantization awq
|
||||
@ -49,27 +51,29 @@ python examples/offline_inference/llm_engine_example.py \
|
||||
|
||||
AWQ models are also supported directly through the LLM entrypoint:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
# Sample prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="TheBloke/Llama-2-7b-Chat-AWQ", quantization="AWQ")
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
# Sample prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="TheBloke/Llama-2-7b-Chat-AWQ", quantization="AWQ")
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
|
||||
@ -12,7 +12,7 @@ vLLM now supports [BitBLAS](https://github.com/microsoft/BitBLAS) for more effic
|
||||
|
||||
Below are the steps to utilize BitBLAS with vLLM.
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install bitblas>=0.1.0
|
||||
```
|
||||
|
||||
@ -43,17 +43,19 @@ llm = LLM(
|
||||
|
||||
## Read gptq format checkpoint
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
import torch
|
||||
??? Code
|
||||
|
||||
# "hxbgsyxh/llama-13b-4bit-g-1" is a pre-quantized checkpoint.
|
||||
model_id = "hxbgsyxh/llama-13b-4bit-g-1"
|
||||
llm = LLM(
|
||||
model=model_id,
|
||||
dtype=torch.float16,
|
||||
trust_remote_code=True,
|
||||
quantization="bitblas",
|
||||
max_model_len=1024
|
||||
)
|
||||
```
|
||||
```python
|
||||
from vllm import LLM
|
||||
import torch
|
||||
|
||||
# "hxbgsyxh/llama-13b-4bit-g-1" is a pre-quantized checkpoint.
|
||||
model_id = "hxbgsyxh/llama-13b-4bit-g-1"
|
||||
llm = LLM(
|
||||
model=model_id,
|
||||
dtype=torch.float16,
|
||||
trust_remote_code=True,
|
||||
quantization="bitblas",
|
||||
max_model_len=1024
|
||||
)
|
||||
```
|
||||
|
||||
@ -9,7 +9,7 @@ Compared to other quantization methods, BitsAndBytes eliminates the need for cal
|
||||
|
||||
Below are the steps to utilize BitsAndBytes with vLLM.
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install bitsandbytes>=0.45.3
|
||||
```
|
||||
|
||||
@ -54,6 +54,6 @@ llm = LLM(
|
||||
|
||||
Append the following to your model arguments for 4bit inflight quantization:
|
||||
|
||||
```console
|
||||
```bash
|
||||
--quantization bitsandbytes
|
||||
```
|
||||
|
||||
@ -23,7 +23,7 @@ The FP8 types typically supported in hardware have two distinct representations,
|
||||
|
||||
To produce performant FP8 quantized models with vLLM, you'll need to install the [llm-compressor](https://github.com/vllm-project/llm-compressor/) library:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install llmcompressor
|
||||
```
|
||||
|
||||
@ -58,28 +58,30 @@ For FP8 quantization, we can recover accuracy with simple RTN quantization. We r
|
||||
|
||||
Since simple RTN does not require data for weight quantization and the activations are quantized dynamically, we do not need any calibration data for this quantization flow.
|
||||
|
||||
```python
|
||||
from llmcompressor.transformers import oneshot
|
||||
from llmcompressor.modifiers.quantization import QuantizationModifier
|
||||
??? Code
|
||||
|
||||
# Configure the simple PTQ quantization
|
||||
recipe = QuantizationModifier(
|
||||
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
|
||||
```python
|
||||
from llmcompressor.transformers import oneshot
|
||||
from llmcompressor.modifiers.quantization import QuantizationModifier
|
||||
|
||||
# Apply the quantization algorithm.
|
||||
oneshot(model=model, recipe=recipe)
|
||||
# Configure the simple PTQ quantization
|
||||
recipe = QuantizationModifier(
|
||||
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
|
||||
|
||||
# Save the model: Meta-Llama-3-8B-Instruct-FP8-Dynamic
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
|
||||
model.save_pretrained(SAVE_DIR)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
```
|
||||
# Apply the quantization algorithm.
|
||||
oneshot(model=model, recipe=recipe)
|
||||
|
||||
# Save the model: Meta-Llama-3-8B-Instruct-FP8-Dynamic
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
|
||||
model.save_pretrained(SAVE_DIR)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
```
|
||||
|
||||
### 3. Evaluating Accuracy
|
||||
|
||||
Install `vllm` and `lm-evaluation-harness` for evaluation:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install vllm lm-eval==0.4.4
|
||||
```
|
||||
|
||||
@ -97,9 +99,9 @@ Evaluate accuracy with `lm_eval` (for example on 250 samples of `gsm8k`):
|
||||
!!! note
|
||||
Quantized models can be sensitive to the presence of the `bos` token. `lm_eval` does not add a `bos` token by default, so make sure to include the `add_bos_token=True` argument when running your evaluations.
|
||||
|
||||
```console
|
||||
$ MODEL=$PWD/Meta-Llama-3-8B-Instruct-FP8-Dynamic
|
||||
$ lm_eval \
|
||||
```bash
|
||||
MODEL=$PWD/Meta-Llama-3-8B-Instruct-FP8-Dynamic
|
||||
lm_eval \
|
||||
--model vllm \
|
||||
--model_args pretrained=$MODEL,add_bos_token=True \
|
||||
--tasks gsm8k --num_fewshot 5 --batch_size auto --limit 250
|
||||
|
||||
@ -11,7 +11,7 @@ title: GGUF
|
||||
|
||||
To run a GGUF model with vLLM, you can download and use the local GGUF model from [TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF) with the following command:
|
||||
|
||||
```console
|
||||
```bash
|
||||
wget https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf
|
||||
# We recommend using the tokenizer from base model to avoid long-time and buggy tokenizer conversion.
|
||||
vllm serve ./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf \
|
||||
@ -20,7 +20,7 @@ vllm serve ./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf \
|
||||
|
||||
You can also add `--tensor-parallel-size 2` to enable tensor parallelism inference with 2 GPUs:
|
||||
|
||||
```console
|
||||
```bash
|
||||
# We recommend using the tokenizer from base model to avoid long-time and buggy tokenizer conversion.
|
||||
vllm serve ./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf \
|
||||
--tokenizer TinyLlama/TinyLlama-1.1B-Chat-v1.0 \
|
||||
@ -32,7 +32,7 @@ vllm serve ./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf \
|
||||
|
||||
GGUF assumes that huggingface can convert the metadata to a config file. In case huggingface doesn't support your model you can manually create a config and pass it as hf-config-path
|
||||
|
||||
```console
|
||||
```bash
|
||||
# If you model is not supported by huggingface you can manually provide a huggingface compatible config path
|
||||
vllm serve ./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf \
|
||||
--tokenizer TinyLlama/TinyLlama-1.1B-Chat-v1.0 \
|
||||
@ -41,42 +41,44 @@ vllm serve ./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf \
|
||||
|
||||
You can also use the GGUF model directly through the LLM entrypoint:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
# In this script, we demonstrate how to pass input to the chat method:
|
||||
conversation = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hello"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Hello! How can I assist you today?"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Write an essay about the importance of higher education.",
|
||||
},
|
||||
]
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
# In this script, we demonstrate how to pass input to the chat method:
|
||||
conversation = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hello"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Hello! How can I assist you today?"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Write an essay about the importance of higher education.",
|
||||
},
|
||||
]
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
||||
tokenizer="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.chat(conversation, sampling_params)
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
# Create an LLM.
|
||||
llm = LLM(model="./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
||||
tokenizer="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.chat(conversation, sampling_params)
|
||||
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
|
||||
@ -21,7 +21,7 @@ for more details on this and other advanced features.
|
||||
|
||||
You can quantize your own models by installing [GPTQModel](https://github.com/ModelCloud/GPTQModel) or picking one of the [5000+ models on Huggingface](https://huggingface.co/models?search=gptq).
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install -U gptqmodel --no-build-isolation -v
|
||||
```
|
||||
|
||||
@ -31,34 +31,36 @@ After installing GPTQModel, you are ready to quantize a model. Please refer to t
|
||||
|
||||
Here is an example of how to quantize `meta-llama/Llama-3.2-1B-Instruct`:
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from gptqmodel import GPTQModel, QuantizeConfig
|
||||
??? Code
|
||||
|
||||
model_id = "meta-llama/Llama-3.2-1B-Instruct"
|
||||
quant_path = "Llama-3.2-1B-Instruct-gptqmodel-4bit"
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from gptqmodel import GPTQModel, QuantizeConfig
|
||||
|
||||
calibration_dataset = load_dataset(
|
||||
"allenai/c4",
|
||||
data_files="en/c4-train.00001-of-01024.json.gz",
|
||||
split="train"
|
||||
).select(range(1024))["text"]
|
||||
model_id = "meta-llama/Llama-3.2-1B-Instruct"
|
||||
quant_path = "Llama-3.2-1B-Instruct-gptqmodel-4bit"
|
||||
|
||||
quant_config = QuantizeConfig(bits=4, group_size=128)
|
||||
calibration_dataset = load_dataset(
|
||||
"allenai/c4",
|
||||
data_files="en/c4-train.00001-of-01024.json.gz",
|
||||
split="train"
|
||||
).select(range(1024))["text"]
|
||||
|
||||
model = GPTQModel.load(model_id, quant_config)
|
||||
quant_config = QuantizeConfig(bits=4, group_size=128)
|
||||
|
||||
# increase `batch_size` to match gpu/vram specs to speed up quantization
|
||||
model.quantize(calibration_dataset, batch_size=2)
|
||||
model = GPTQModel.load(model_id, quant_config)
|
||||
|
||||
model.save(quant_path)
|
||||
```
|
||||
# increase `batch_size` to match gpu/vram specs to speed up quantization
|
||||
model.quantize(calibration_dataset, batch_size=2)
|
||||
|
||||
model.save(quant_path)
|
||||
```
|
||||
|
||||
## Running a quantized model with vLLM
|
||||
|
||||
To run an GPTQModel quantized model with vLLM, you can use [DeepSeek-R1-Distill-Qwen-7B-gptqmodel-4bit-vortex-v2](https://huggingface.co/ModelCloud/DeepSeek-R1-Distill-Qwen-7B-gptqmodel-4bit-vortex-v2) with the following command:
|
||||
|
||||
```console
|
||||
```bash
|
||||
python examples/offline_inference/llm_engine_example.py \
|
||||
--model ModelCloud/DeepSeek-R1-Distill-Qwen-7B-gptqmodel-4bit-vortex-v2
|
||||
```
|
||||
@ -67,32 +69,34 @@ python examples/offline_inference/llm_engine_example.py \
|
||||
|
||||
GPTQModel quantized models are also supported directly through the LLM entrypoint:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
# Sample prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.6, top_p=0.9)
|
||||
# Sample prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="ModelCloud/DeepSeek-R1-Distill-Qwen-7B-gptqmodel-4bit-vortex-v2")
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.6, top_p=0.9)
|
||||
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
# Create an LLM.
|
||||
llm = LLM(model="ModelCloud/DeepSeek-R1-Distill-Qwen-7B-gptqmodel-4bit-vortex-v2")
|
||||
|
||||
# Print the outputs.
|
||||
print("-"*50)
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
# Print the outputs.
|
||||
print("-"*50)
|
||||
```
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
||||
print("-"*50)
|
||||
```
|
||||
|
||||
@ -14,13 +14,13 @@ Please visit the HF collection of [quantized INT4 checkpoints of popular LLMs re
|
||||
|
||||
To use INT4 quantization with vLLM, you'll need to install the [llm-compressor](https://github.com/vllm-project/llm-compressor/) library:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install llmcompressor
|
||||
```
|
||||
|
||||
Additionally, install `vllm` and `lm-evaluation-harness` for evaluation:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install vllm lm-eval==0.4.4
|
||||
```
|
||||
|
||||
@ -53,51 +53,55 @@ When quantizing weights to INT4, you need sample data to estimate the weight upd
|
||||
It's best to use calibration data that closely matches your deployment data.
|
||||
For a general-purpose instruction-tuned model, you can use a dataset like `ultrachat`:
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
??? Code
|
||||
|
||||
NUM_CALIBRATION_SAMPLES = 512
|
||||
MAX_SEQUENCE_LENGTH = 2048
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
|
||||
# Load and preprocess the dataset
|
||||
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
|
||||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
||||
NUM_CALIBRATION_SAMPLES = 512
|
||||
MAX_SEQUENCE_LENGTH = 2048
|
||||
|
||||
def preprocess(example):
|
||||
return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False)}
|
||||
ds = ds.map(preprocess)
|
||||
# Load and preprocess the dataset
|
||||
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
|
||||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
||||
|
||||
def tokenize(sample):
|
||||
return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
|
||||
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
||||
```
|
||||
def preprocess(example):
|
||||
return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False)}
|
||||
ds = ds.map(preprocess)
|
||||
|
||||
def tokenize(sample):
|
||||
return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
|
||||
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
||||
```
|
||||
|
||||
### 3. Applying Quantization
|
||||
|
||||
Now, apply the quantization algorithms:
|
||||
|
||||
```python
|
||||
from llmcompressor.transformers import oneshot
|
||||
from llmcompressor.modifiers.quantization import GPTQModifier
|
||||
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
|
||||
??? Code
|
||||
|
||||
# Configure the quantization algorithms
|
||||
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])
|
||||
```python
|
||||
from llmcompressor.transformers import oneshot
|
||||
from llmcompressor.modifiers.quantization import GPTQModifier
|
||||
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
|
||||
|
||||
# Apply quantization
|
||||
oneshot(
|
||||
model=model,
|
||||
dataset=ds,
|
||||
recipe=recipe,
|
||||
max_seq_length=MAX_SEQUENCE_LENGTH,
|
||||
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
||||
)
|
||||
# Configure the quantization algorithms
|
||||
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])
|
||||
|
||||
# Save the compressed model: Meta-Llama-3-8B-Instruct-W4A16-G128
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
|
||||
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
```
|
||||
# Apply quantization
|
||||
oneshot(
|
||||
model=model,
|
||||
dataset=ds,
|
||||
recipe=recipe,
|
||||
max_seq_length=MAX_SEQUENCE_LENGTH,
|
||||
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
||||
)
|
||||
|
||||
# Save the compressed model: Meta-Llama-3-8B-Instruct-W4A16-G128
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
|
||||
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
```
|
||||
|
||||
This process creates a W4A16 model with weights quantized to 4-bit integers.
|
||||
|
||||
@ -112,8 +116,8 @@ model = LLM("./Meta-Llama-3-8B-Instruct-W4A16-G128")
|
||||
|
||||
To evaluate accuracy, you can use `lm_eval`:
|
||||
|
||||
```console
|
||||
$ lm_eval --model vllm \
|
||||
```bash
|
||||
lm_eval --model vllm \
|
||||
--model_args pretrained="./Meta-Llama-3-8B-Instruct-W4A16-G128",add_bos_token=true \
|
||||
--tasks gsm8k \
|
||||
--num_fewshot 5 \
|
||||
@ -137,34 +141,36 @@ $ lm_eval --model vllm \
|
||||
|
||||
The following is an example of an expanded quantization recipe you can tune to your own use case:
|
||||
|
||||
```python
|
||||
from compressed_tensors.quantization import (
|
||||
QuantizationArgs,
|
||||
QuantizationScheme,
|
||||
QuantizationStrategy,
|
||||
QuantizationType,
|
||||
)
|
||||
recipe = GPTQModifier(
|
||||
targets="Linear",
|
||||
config_groups={
|
||||
"config_group": QuantizationScheme(
|
||||
targets=["Linear"],
|
||||
weights=QuantizationArgs(
|
||||
num_bits=4,
|
||||
type=QuantizationType.INT,
|
||||
strategy=QuantizationStrategy.GROUP,
|
||||
group_size=128,
|
||||
symmetric=True,
|
||||
dynamic=False,
|
||||
actorder="weight",
|
||||
??? Code
|
||||
|
||||
```python
|
||||
from compressed_tensors.quantization import (
|
||||
QuantizationArgs,
|
||||
QuantizationScheme,
|
||||
QuantizationStrategy,
|
||||
QuantizationType,
|
||||
)
|
||||
recipe = GPTQModifier(
|
||||
targets="Linear",
|
||||
config_groups={
|
||||
"config_group": QuantizationScheme(
|
||||
targets=["Linear"],
|
||||
weights=QuantizationArgs(
|
||||
num_bits=4,
|
||||
type=QuantizationType.INT,
|
||||
strategy=QuantizationStrategy.GROUP,
|
||||
group_size=128,
|
||||
symmetric=True,
|
||||
dynamic=False,
|
||||
actorder="weight",
|
||||
),
|
||||
),
|
||||
),
|
||||
},
|
||||
ignore=["lm_head"],
|
||||
update_size=NUM_CALIBRATION_SAMPLES,
|
||||
dampening_frac=0.01
|
||||
)
|
||||
```
|
||||
},
|
||||
ignore=["lm_head"],
|
||||
update_size=NUM_CALIBRATION_SAMPLES,
|
||||
dampening_frac=0.01
|
||||
)
|
||||
```
|
||||
|
||||
## Troubleshooting and Support
|
||||
|
||||
|
||||
@ -15,13 +15,13 @@ Please visit the HF collection of [quantized INT8 checkpoints of popular LLMs re
|
||||
|
||||
To use INT8 quantization with vLLM, you'll need to install the [llm-compressor](https://github.com/vllm-project/llm-compressor/) library:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install llmcompressor
|
||||
```
|
||||
|
||||
Additionally, install `vllm` and `lm-evaluation-harness` for evaluation:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install vllm lm-eval==0.4.4
|
||||
```
|
||||
|
||||
@ -54,54 +54,60 @@ When quantizing activations to INT8, you need sample data to estimate the activa
|
||||
It's best to use calibration data that closely matches your deployment data.
|
||||
For a general-purpose instruction-tuned model, you can use a dataset like `ultrachat`:
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
??? Code
|
||||
|
||||
NUM_CALIBRATION_SAMPLES = 512
|
||||
MAX_SEQUENCE_LENGTH = 2048
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
|
||||
# Load and preprocess the dataset
|
||||
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
|
||||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
||||
NUM_CALIBRATION_SAMPLES = 512
|
||||
MAX_SEQUENCE_LENGTH = 2048
|
||||
|
||||
def preprocess(example):
|
||||
return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False)}
|
||||
ds = ds.map(preprocess)
|
||||
# Load and preprocess the dataset
|
||||
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
|
||||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
||||
|
||||
def tokenize(sample):
|
||||
return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
|
||||
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
||||
```
|
||||
def preprocess(example):
|
||||
return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False)}
|
||||
ds = ds.map(preprocess)
|
||||
|
||||
def tokenize(sample):
|
||||
return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
|
||||
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### 3. Applying Quantization
|
||||
|
||||
Now, apply the quantization algorithms:
|
||||
|
||||
```python
|
||||
from llmcompressor.transformers import oneshot
|
||||
from llmcompressor.modifiers.quantization import GPTQModifier
|
||||
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
|
||||
??? Code
|
||||
|
||||
# Configure the quantization algorithms
|
||||
recipe = [
|
||||
SmoothQuantModifier(smoothing_strength=0.8),
|
||||
GPTQModifier(targets="Linear", scheme="W8A8", ignore=["lm_head"]),
|
||||
]
|
||||
```python
|
||||
from llmcompressor.transformers import oneshot
|
||||
from llmcompressor.modifiers.quantization import GPTQModifier
|
||||
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
|
||||
|
||||
# Apply quantization
|
||||
oneshot(
|
||||
model=model,
|
||||
dataset=ds,
|
||||
recipe=recipe,
|
||||
max_seq_length=MAX_SEQUENCE_LENGTH,
|
||||
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
||||
)
|
||||
# Configure the quantization algorithms
|
||||
recipe = [
|
||||
SmoothQuantModifier(smoothing_strength=0.8),
|
||||
GPTQModifier(targets="Linear", scheme="W8A8", ignore=["lm_head"]),
|
||||
]
|
||||
|
||||
# Save the compressed model: Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-W8A8-Dynamic-Per-Token"
|
||||
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
```
|
||||
# Apply quantization
|
||||
oneshot(
|
||||
model=model,
|
||||
dataset=ds,
|
||||
recipe=recipe,
|
||||
max_seq_length=MAX_SEQUENCE_LENGTH,
|
||||
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
||||
)
|
||||
|
||||
# Save the compressed model: Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-W8A8-Dynamic-Per-Token"
|
||||
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
```
|
||||
|
||||
This process creates a W8A8 model with weights and activations quantized to 8-bit integers.
|
||||
|
||||
@ -116,8 +122,8 @@ model = LLM("./Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token")
|
||||
|
||||
To evaluate accuracy, you can use `lm_eval`:
|
||||
|
||||
```console
|
||||
$ lm_eval --model vllm \
|
||||
```bash
|
||||
lm_eval --model vllm \
|
||||
--model_args pretrained="./Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token",add_bos_token=true \
|
||||
--tasks gsm8k \
|
||||
--num_fewshot 5 \
|
||||
|
||||
@ -4,7 +4,7 @@ The [NVIDIA TensorRT Model Optimizer](https://github.com/NVIDIA/TensorRT-Model-O
|
||||
|
||||
We recommend installing the library with:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install nvidia-modelopt
|
||||
```
|
||||
|
||||
@ -14,24 +14,26 @@ You can quantize HuggingFace models using the example scripts provided in the Te
|
||||
|
||||
Below is an example showing how to quantize a model using modelopt's PTQ API:
|
||||
|
||||
```python
|
||||
import modelopt.torch.quantization as mtq
|
||||
from transformers import AutoModelForCausalLM
|
||||
??? Code
|
||||
|
||||
# Load the model from HuggingFace
|
||||
model = AutoModelForCausalLM.from_pretrained("<path_or_model_id>")
|
||||
```python
|
||||
import modelopt.torch.quantization as mtq
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
# Select the quantization config, for example, FP8
|
||||
config = mtq.FP8_DEFAULT_CFG
|
||||
# Load the model from HuggingFace
|
||||
model = AutoModelForCausalLM.from_pretrained("<path_or_model_id>")
|
||||
|
||||
# Define a forward loop function for calibration
|
||||
def forward_loop(model):
|
||||
for data in calib_set:
|
||||
model(data)
|
||||
# Select the quantization config, for example, FP8
|
||||
config = mtq.FP8_DEFAULT_CFG
|
||||
|
||||
# PTQ with in-place replacement of quantized modules
|
||||
model = mtq.quantize(model, config, forward_loop)
|
||||
```
|
||||
# Define a forward loop function for calibration
|
||||
def forward_loop(model):
|
||||
for data in calib_set:
|
||||
model(data)
|
||||
|
||||
# PTQ with in-place replacement of quantized modules
|
||||
model = mtq.quantize(model, config, forward_loop)
|
||||
```
|
||||
|
||||
After the model is quantized, you can export it to a quantized checkpoint using the export API:
|
||||
|
||||
@ -48,31 +50,33 @@ with torch.inference_mode():
|
||||
|
||||
The quantized checkpoint can then be deployed with vLLM. As an example, the following code shows how to deploy `nvidia/Llama-3.1-8B-Instruct-FP8`, which is the FP8 quantized checkpoint derived from `meta-llama/Llama-3.1-8B-Instruct`, using vLLM:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
def main():
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
model_id = "nvidia/Llama-3.1-8B-Instruct-FP8"
|
||||
# Ensure you specify quantization='modelopt' when loading the modelopt checkpoint
|
||||
llm = LLM(model=model_id, quantization="modelopt", trust_remote_code=True)
|
||||
def main():
|
||||
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.9)
|
||||
model_id = "nvidia/Llama-3.1-8B-Instruct-FP8"
|
||||
# Ensure you specify quantization='modelopt' when loading the modelopt checkpoint
|
||||
llm = LLM(model=model_id, quantization="modelopt", trust_remote_code=True)
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.9)
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
@ -35,20 +35,22 @@ Studies have shown that FP8 E4M3 quantization typically only minimally degrades
|
||||
|
||||
Here is an example of how to enable FP8 quantization:
|
||||
|
||||
```python
|
||||
# To calculate kv cache scales on the fly enable the calculate_kv_scales
|
||||
# parameter
|
||||
??? Code
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
```python
|
||||
# To calculate kv cache scales on the fly enable the calculate_kv_scales
|
||||
# parameter
|
||||
|
||||
sampling_params = SamplingParams(temperature=0.7, top_p=0.8)
|
||||
llm = LLM(model="meta-llama/Llama-2-7b-chat-hf",
|
||||
kv_cache_dtype="fp8",
|
||||
calculate_kv_scales=True)
|
||||
prompt = "London is the capital of"
|
||||
out = llm.generate(prompt, sampling_params)[0].outputs[0].text
|
||||
print(out)
|
||||
```
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
sampling_params = SamplingParams(temperature=0.7, top_p=0.8)
|
||||
llm = LLM(model="meta-llama/Llama-2-7b-chat-hf",
|
||||
kv_cache_dtype="fp8",
|
||||
calculate_kv_scales=True)
|
||||
prompt = "London is the capital of"
|
||||
out = llm.generate(prompt, sampling_params)[0].outputs[0].text
|
||||
print(out)
|
||||
```
|
||||
|
||||
The `kv_cache_dtype` argument specifies the data type for KV cache storage:
|
||||
- `"auto"`: Uses the model's default "unquantized" data type
|
||||
@ -63,7 +65,7 @@ For optimal model quality when using FP8 KV Cache, we recommend using calibrated
|
||||
|
||||
First, install the required dependencies:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install llmcompressor
|
||||
```
|
||||
|
||||
@ -71,67 +73,69 @@ pip install llmcompressor
|
||||
|
||||
Here's a complete example using `meta-llama/Llama-3.1-8B-Instruct` (most models can use this same pattern):
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from llmcompressor.transformers import oneshot
|
||||
??? Code
|
||||
|
||||
# Select model and load it
|
||||
MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from llmcompressor.transformers import oneshot
|
||||
|
||||
# Select calibration dataset
|
||||
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
|
||||
DATASET_SPLIT = "train_sft"
|
||||
# Select model and load it
|
||||
MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
||||
|
||||
# Configure calibration parameters
|
||||
NUM_CALIBRATION_SAMPLES = 512 # 512 samples is a good starting point
|
||||
MAX_SEQUENCE_LENGTH = 2048
|
||||
# Select calibration dataset
|
||||
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
|
||||
DATASET_SPLIT = "train_sft"
|
||||
|
||||
# Load and preprocess dataset
|
||||
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
||||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
||||
# Configure calibration parameters
|
||||
NUM_CALIBRATION_SAMPLES = 512 # 512 samples is a good starting point
|
||||
MAX_SEQUENCE_LENGTH = 2048
|
||||
|
||||
def process_and_tokenize(example):
|
||||
text = tokenizer.apply_chat_template(example["messages"], tokenize=False)
|
||||
return tokenizer(
|
||||
text,
|
||||
padding=False,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
truncation=True,
|
||||
add_special_tokens=False,
|
||||
# Load and preprocess dataset
|
||||
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
||||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
||||
|
||||
def process_and_tokenize(example):
|
||||
text = tokenizer.apply_chat_template(example["messages"], tokenize=False)
|
||||
return tokenizer(
|
||||
text,
|
||||
padding=False,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
truncation=True,
|
||||
add_special_tokens=False,
|
||||
)
|
||||
|
||||
ds = ds.map(process_and_tokenize, remove_columns=ds.column_names)
|
||||
|
||||
# Configure quantization settings
|
||||
recipe = """
|
||||
quant_stage:
|
||||
quant_modifiers:
|
||||
QuantizationModifier:
|
||||
kv_cache_scheme:
|
||||
num_bits: 8
|
||||
type: float
|
||||
strategy: tensor
|
||||
dynamic: false
|
||||
symmetric: true
|
||||
"""
|
||||
|
||||
# Apply quantization
|
||||
oneshot(
|
||||
model=model,
|
||||
dataset=ds,
|
||||
recipe=recipe,
|
||||
max_seq_length=MAX_SEQUENCE_LENGTH,
|
||||
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
||||
)
|
||||
|
||||
ds = ds.map(process_and_tokenize, remove_columns=ds.column_names)
|
||||
|
||||
# Configure quantization settings
|
||||
recipe = """
|
||||
quant_stage:
|
||||
quant_modifiers:
|
||||
QuantizationModifier:
|
||||
kv_cache_scheme:
|
||||
num_bits: 8
|
||||
type: float
|
||||
strategy: tensor
|
||||
dynamic: false
|
||||
symmetric: true
|
||||
"""
|
||||
|
||||
# Apply quantization
|
||||
oneshot(
|
||||
model=model,
|
||||
dataset=ds,
|
||||
recipe=recipe,
|
||||
max_seq_length=MAX_SEQUENCE_LENGTH,
|
||||
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
||||
)
|
||||
|
||||
# Save quantized model: Llama-3.1-8B-Instruct-FP8-KV
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV"
|
||||
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
```
|
||||
# Save quantized model: Llama-3.1-8B-Instruct-FP8-KV
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV"
|
||||
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
```
|
||||
|
||||
The above script will create a folder in your current directory containing your quantized model (e.g., `Llama-3.1-8B-Instruct-FP8-KV`) with calibrated scales.
|
||||
|
||||
|
||||
@ -13,7 +13,7 @@ AWQ, GPTQ, Rotation and SmoothQuant.
|
||||
|
||||
Before quantizing models, you need to install Quark. The latest release of Quark can be installed with pip:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install amd-quark
|
||||
```
|
||||
|
||||
@ -22,13 +22,13 @@ for more installation details.
|
||||
|
||||
Additionally, install `vllm` and `lm-evaluation-harness` for evaluation:
|
||||
|
||||
```console
|
||||
```bash
|
||||
pip install vllm lm-eval==0.4.4
|
||||
```
|
||||
|
||||
## Quantization Process
|
||||
|
||||
After installing Quark, we will use an example to illustrate how to use Quark.
|
||||
After installing Quark, we will use an example to illustrate how to use Quark.
|
||||
The Quark quantization process can be listed for 5 steps as below:
|
||||
|
||||
1. Load the model
|
||||
@ -42,20 +42,22 @@ The Quark quantization process can be listed for 5 steps as below:
|
||||
Quark uses [Transformers](https://huggingface.co/docs/transformers/en/index)
|
||||
to fetch model and tokenizer.
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
??? Code
|
||||
|
||||
MODEL_ID = "meta-llama/Llama-2-70b-chat-hf"
|
||||
MAX_SEQ_LEN = 512
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_ID, device_map="auto", torch_dtype="auto",
|
||||
)
|
||||
model.eval()
|
||||
MODEL_ID = "meta-llama/Llama-2-70b-chat-hf"
|
||||
MAX_SEQ_LEN = 512
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, model_max_length=MAX_SEQ_LEN)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
```
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_ID, device_map="auto", torch_dtype="auto",
|
||||
)
|
||||
model.eval()
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, model_max_length=MAX_SEQ_LEN)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
```
|
||||
|
||||
### 2. Prepare the Calibration Dataloader
|
||||
|
||||
@ -63,22 +65,24 @@ Quark uses the [PyTorch Dataloader](https://pytorch.org/tutorials/beginner/basic
|
||||
to load calibration data. For more details about how to use calibration datasets efficiently, please refer
|
||||
to [Adding Calibration Datasets](https://quark.docs.amd.com/latest/pytorch/calibration_datasets.html).
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from torch.utils.data import DataLoader
|
||||
??? Code
|
||||
|
||||
BATCH_SIZE = 1
|
||||
NUM_CALIBRATION_DATA = 512
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
# Load the dataset and get calibration data.
|
||||
dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation")
|
||||
text_data = dataset["text"][:NUM_CALIBRATION_DATA]
|
||||
BATCH_SIZE = 1
|
||||
NUM_CALIBRATION_DATA = 512
|
||||
|
||||
tokenized_outputs = tokenizer(text_data, return_tensors="pt",
|
||||
padding=True, truncation=True, max_length=MAX_SEQ_LEN)
|
||||
calib_dataloader = DataLoader(tokenized_outputs['input_ids'],
|
||||
batch_size=BATCH_SIZE, drop_last=True)
|
||||
```
|
||||
# Load the dataset and get calibration data.
|
||||
dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation")
|
||||
text_data = dataset["text"][:NUM_CALIBRATION_DATA]
|
||||
|
||||
tokenized_outputs = tokenizer(text_data, return_tensors="pt",
|
||||
padding=True, truncation=True, max_length=MAX_SEQ_LEN)
|
||||
calib_dataloader = DataLoader(tokenized_outputs['input_ids'],
|
||||
batch_size=BATCH_SIZE, drop_last=True)
|
||||
```
|
||||
|
||||
### 3. Set the Quantization Configuration
|
||||
|
||||
@ -94,42 +98,44 @@ kv-cache and the quantization algorithm is AutoSmoothQuant.
|
||||
AutoSmoothQuant config file for Llama is
|
||||
`examples/torch/language_modeling/llm_ptq/models/llama/autosmoothquant_config.json`.
|
||||
|
||||
```python
|
||||
from quark.torch.quantization import (Config, QuantizationConfig,
|
||||
FP8E4M3PerTensorSpec,
|
||||
load_quant_algo_config_from_file)
|
||||
??? Code
|
||||
|
||||
# Define fp8/per-tensor/static spec.
|
||||
FP8_PER_TENSOR_SPEC = FP8E4M3PerTensorSpec(observer_method="min_max",
|
||||
is_dynamic=False).to_quantization_spec()
|
||||
```python
|
||||
from quark.torch.quantization import (Config, QuantizationConfig,
|
||||
FP8E4M3PerTensorSpec,
|
||||
load_quant_algo_config_from_file)
|
||||
|
||||
# Define global quantization config, input tensors and weight apply FP8_PER_TENSOR_SPEC.
|
||||
global_quant_config = QuantizationConfig(input_tensors=FP8_PER_TENSOR_SPEC,
|
||||
weight=FP8_PER_TENSOR_SPEC)
|
||||
# Define fp8/per-tensor/static spec.
|
||||
FP8_PER_TENSOR_SPEC = FP8E4M3PerTensorSpec(observer_method="min_max",
|
||||
is_dynamic=False).to_quantization_spec()
|
||||
|
||||
# Define quantization config for kv-cache layers, output tensors apply FP8_PER_TENSOR_SPEC.
|
||||
KV_CACHE_SPEC = FP8_PER_TENSOR_SPEC
|
||||
kv_cache_layer_names_for_llama = ["*k_proj", "*v_proj"]
|
||||
kv_cache_quant_config = {name :
|
||||
QuantizationConfig(input_tensors=global_quant_config.input_tensors,
|
||||
weight=global_quant_config.weight,
|
||||
output_tensors=KV_CACHE_SPEC)
|
||||
for name in kv_cache_layer_names_for_llama}
|
||||
layer_quant_config = kv_cache_quant_config.copy()
|
||||
# Define global quantization config, input tensors and weight apply FP8_PER_TENSOR_SPEC.
|
||||
global_quant_config = QuantizationConfig(input_tensors=FP8_PER_TENSOR_SPEC,
|
||||
weight=FP8_PER_TENSOR_SPEC)
|
||||
|
||||
# Define algorithm config by config file.
|
||||
LLAMA_AUTOSMOOTHQUANT_CONFIG_FILE =
|
||||
'examples/torch/language_modeling/llm_ptq/models/llama/autosmoothquant_config.json'
|
||||
algo_config = load_quant_algo_config_from_file(LLAMA_AUTOSMOOTHQUANT_CONFIG_FILE)
|
||||
# Define quantization config for kv-cache layers, output tensors apply FP8_PER_TENSOR_SPEC.
|
||||
KV_CACHE_SPEC = FP8_PER_TENSOR_SPEC
|
||||
kv_cache_layer_names_for_llama = ["*k_proj", "*v_proj"]
|
||||
kv_cache_quant_config = {name :
|
||||
QuantizationConfig(input_tensors=global_quant_config.input_tensors,
|
||||
weight=global_quant_config.weight,
|
||||
output_tensors=KV_CACHE_SPEC)
|
||||
for name in kv_cache_layer_names_for_llama}
|
||||
layer_quant_config = kv_cache_quant_config.copy()
|
||||
|
||||
EXCLUDE_LAYERS = ["lm_head"]
|
||||
quant_config = Config(
|
||||
global_quant_config=global_quant_config,
|
||||
layer_quant_config=layer_quant_config,
|
||||
kv_cache_quant_config=kv_cache_quant_config,
|
||||
exclude=EXCLUDE_LAYERS,
|
||||
algo_config=algo_config)
|
||||
```
|
||||
# Define algorithm config by config file.
|
||||
LLAMA_AUTOSMOOTHQUANT_CONFIG_FILE =
|
||||
'examples/torch/language_modeling/llm_ptq/models/llama/autosmoothquant_config.json'
|
||||
algo_config = load_quant_algo_config_from_file(LLAMA_AUTOSMOOTHQUANT_CONFIG_FILE)
|
||||
|
||||
EXCLUDE_LAYERS = ["lm_head"]
|
||||
quant_config = Config(
|
||||
global_quant_config=global_quant_config,
|
||||
layer_quant_config=layer_quant_config,
|
||||
kv_cache_quant_config=kv_cache_quant_config,
|
||||
exclude=EXCLUDE_LAYERS,
|
||||
algo_config=algo_config)
|
||||
```
|
||||
|
||||
### 4. Quantize the Model and Export
|
||||
|
||||
@ -139,68 +145,72 @@ HuggingFace `safetensors`, you can refer to
|
||||
[HuggingFace format exporting](https://quark.docs.amd.com/latest/pytorch/export/quark_export_hf.html)
|
||||
for more exporting format details.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from quark.torch import ModelQuantizer, ModelExporter
|
||||
from quark.torch.export import ExporterConfig, JsonExporterConfig
|
||||
??? Code
|
||||
|
||||
# Apply quantization.
|
||||
quantizer = ModelQuantizer(quant_config)
|
||||
quant_model = quantizer.quantize_model(model, calib_dataloader)
|
||||
```python
|
||||
import torch
|
||||
from quark.torch import ModelQuantizer, ModelExporter
|
||||
from quark.torch.export import ExporterConfig, JsonExporterConfig
|
||||
|
||||
# Freeze quantized model to export.
|
||||
freezed_model = quantizer.freeze(model)
|
||||
# Apply quantization.
|
||||
quantizer = ModelQuantizer(quant_config)
|
||||
quant_model = quantizer.quantize_model(model, calib_dataloader)
|
||||
|
||||
# Define export config.
|
||||
LLAMA_KV_CACHE_GROUP = ["*k_proj", "*v_proj"]
|
||||
export_config = ExporterConfig(json_export_config=JsonExporterConfig())
|
||||
export_config.json_export_config.kv_cache_group = LLAMA_KV_CACHE_GROUP
|
||||
# Freeze quantized model to export.
|
||||
freezed_model = quantizer.freeze(model)
|
||||
|
||||
# Model: Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant
|
||||
EXPORT_DIR = MODEL_ID.split("/")[1] + "-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant"
|
||||
exporter = ModelExporter(config=export_config, export_dir=EXPORT_DIR)
|
||||
with torch.no_grad():
|
||||
exporter.export_safetensors_model(freezed_model,
|
||||
quant_config=quant_config, tokenizer=tokenizer)
|
||||
```
|
||||
# Define export config.
|
||||
LLAMA_KV_CACHE_GROUP = ["*k_proj", "*v_proj"]
|
||||
export_config = ExporterConfig(json_export_config=JsonExporterConfig())
|
||||
export_config.json_export_config.kv_cache_group = LLAMA_KV_CACHE_GROUP
|
||||
|
||||
# Model: Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant
|
||||
EXPORT_DIR = MODEL_ID.split("/")[1] + "-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant"
|
||||
exporter = ModelExporter(config=export_config, export_dir=EXPORT_DIR)
|
||||
with torch.no_grad():
|
||||
exporter.export_safetensors_model(freezed_model,
|
||||
quant_config=quant_config, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
### 5. Evaluation in vLLM
|
||||
|
||||
Now, you can load and run the Quark quantized model directly through the LLM entrypoint:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
# Sample prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant",
|
||||
kv_cache_dtype='fp8',quantization='quark')
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
# Print the outputs.
|
||||
print("\nGenerated Outputs:\n" + "-" * 60)
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}")
|
||||
print(f"Output: {generated_text!r}")
|
||||
print("-" * 60)
|
||||
```
|
||||
# Sample prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant",
|
||||
kv_cache_dtype='fp8',quantization='quark')
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
# Print the outputs.
|
||||
print("\nGenerated Outputs:\n" + "-" * 60)
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}")
|
||||
print(f"Output: {generated_text!r}")
|
||||
print("-" * 60)
|
||||
```
|
||||
|
||||
Or, you can use `lm_eval` to evaluate accuracy:
|
||||
|
||||
```console
|
||||
$ lm_eval --model vllm \
|
||||
```bash
|
||||
lm_eval --model vllm \
|
||||
--model_args pretrained=Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant,kv_cache_dtype='fp8',quantization='quark' \
|
||||
--tasks gsm8k
|
||||
```
|
||||
@ -212,7 +222,7 @@ to quantize large language models more conveniently. It supports quantizing mode
|
||||
of different quantization schemes and optimization algorithms. It can export the quantized model
|
||||
and run evaluation tasks on the fly. With the script, the example above can be:
|
||||
|
||||
```console
|
||||
```bash
|
||||
python3 quantize_quark.py --model_dir meta-llama/Llama-2-70b-chat-hf \
|
||||
--output_dir /path/to/output \
|
||||
--quant_scheme w_fp8_a_fp8 \
|
||||
|
||||
@ -4,7 +4,7 @@ TorchAO is an architecture optimization library for PyTorch, it provides high pe
|
||||
|
||||
We recommend installing the latest torchao nightly with
|
||||
|
||||
```console
|
||||
```bash
|
||||
# Install the latest TorchAO nightly build
|
||||
# Choose the CUDA version that matches your system (cu126, cu128, etc.)
|
||||
pip install \
|
||||
@ -15,26 +15,28 @@ pip install \
|
||||
## Quantizing HuggingFace Models
|
||||
You can quantize your own huggingface model with torchao, e.g. [transformers](https://huggingface.co/docs/transformers/main/en/quantization/torchao) and [diffusers](https://huggingface.co/docs/diffusers/en/quantization/torchao), and save the checkpoint to huggingface hub like [this](https://huggingface.co/jerryzh168/llama3-8b-int8wo) with the following example code:
|
||||
|
||||
```Python
|
||||
import torch
|
||||
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from torchao.quantization import Int8WeightOnlyConfig
|
||||
??? Code
|
||||
|
||||
model_name = "meta-llama/Meta-Llama-3-8B"
|
||||
quantization_config = TorchAoConfig(Int8WeightOnlyConfig())
|
||||
quantized_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype="auto",
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
input_text = "What are we having for dinner?"
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
```Python
|
||||
import torch
|
||||
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from torchao.quantization import Int8WeightOnlyConfig
|
||||
|
||||
hub_repo = # YOUR HUB REPO ID
|
||||
tokenizer.push_to_hub(hub_repo)
|
||||
quantized_model.push_to_hub(hub_repo, safe_serialization=False)
|
||||
```
|
||||
model_name = "meta-llama/Meta-Llama-3-8B"
|
||||
quantization_config = TorchAoConfig(Int8WeightOnlyConfig())
|
||||
quantized_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype="auto",
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
input_text = "What are we having for dinner?"
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
hub_repo = # YOUR HUB REPO ID
|
||||
tokenizer.push_to_hub(hub_repo)
|
||||
quantized_model.push_to_hub(hub_repo, safe_serialization=False)
|
||||
```
|
||||
|
||||
Alternatively, you can use the [TorchAO Quantization space](https://huggingface.co/spaces/medmekk/TorchAO_Quantization) for quantizing models with a simple UI.
|
||||
|
||||
@ -33,34 +33,36 @@ vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
|
||||
|
||||
Next, make a request to the model that should return the reasoning content in the response.
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
??? Code
|
||||
|
||||
# Modify OpenAI's API key and API base to use vLLM's API server.
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
# Modify OpenAI's API key and API base to use vLLM's API server.
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
# Round 1
|
||||
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
|
||||
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
|
||||
# For Qwen3 series, if you want to disable thinking in reasoning mode, add:
|
||||
# extra_body={"chat_template_kwargs": {"enable_thinking": False}}
|
||||
response = client.chat.completions.create(model=model, messages=messages)
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
|
||||
reasoning_content = response.choices[0].message.reasoning_content
|
||||
content = response.choices[0].message.content
|
||||
# Round 1
|
||||
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
|
||||
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
|
||||
# For Qwen3 series, if you want to disable thinking in reasoning mode, add:
|
||||
# extra_body={"chat_template_kwargs": {"enable_thinking": False}}
|
||||
response = client.chat.completions.create(model=model, messages=messages)
|
||||
|
||||
print("reasoning_content:", reasoning_content)
|
||||
print("content:", content)
|
||||
```
|
||||
reasoning_content = response.choices[0].message.reasoning_content
|
||||
content = response.choices[0].message.content
|
||||
|
||||
print("reasoning_content:", reasoning_content)
|
||||
print("content:", content)
|
||||
```
|
||||
|
||||
The `reasoning_content` field contains the reasoning steps that led to the final conclusion, while the `content` field contains the final conclusion.
|
||||
|
||||
@ -68,77 +70,81 @@ The `reasoning_content` field contains the reasoning steps that led to the final
|
||||
|
||||
Streaming chat completions are also supported for reasoning models. The `reasoning_content` field is available in the `delta` field in [chat completion response chunks](https://platform.openai.com/docs/api-reference/chat/streaming).
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "chatcmpl-123",
|
||||
"object": "chat.completion.chunk",
|
||||
"created": 1694268190,
|
||||
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
||||
"system_fingerprint": "fp_44709d6fcb",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"delta": {
|
||||
"role": "assistant",
|
||||
"reasoning_content": "is",
|
||||
},
|
||||
"logprobs": null,
|
||||
"finish_reason": null
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
??? Json
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "chatcmpl-123",
|
||||
"object": "chat.completion.chunk",
|
||||
"created": 1694268190,
|
||||
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
||||
"system_fingerprint": "fp_44709d6fcb",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"delta": {
|
||||
"role": "assistant",
|
||||
"reasoning_content": "is",
|
||||
},
|
||||
"logprobs": null,
|
||||
"finish_reason": null
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
OpenAI Python client library does not officially support `reasoning_content` attribute for streaming output. But the client supports extra attributes in the response. You can use `hasattr` to check if the `reasoning_content` attribute is present in the response. For example:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
??? Code
|
||||
|
||||
# Modify OpenAI's API key and API base to use vLLM's API server.
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
# Modify OpenAI's API key and API base to use vLLM's API server.
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
|
||||
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
|
||||
# For Qwen3 series, if you want to disable thinking in reasoning mode, add:
|
||||
# extra_body={"chat_template_kwargs": {"enable_thinking": False}}
|
||||
stream = client.chat.completions.create(model=model,
|
||||
messages=messages,
|
||||
stream=True)
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
|
||||
print("client: Start streaming chat completions...")
|
||||
printed_reasoning_content = False
|
||||
printed_content = False
|
||||
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
|
||||
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
|
||||
# For Qwen3 series, if you want to disable thinking in reasoning mode, add:
|
||||
# extra_body={"chat_template_kwargs": {"enable_thinking": False}}
|
||||
stream = client.chat.completions.create(model=model,
|
||||
messages=messages,
|
||||
stream=True)
|
||||
|
||||
for chunk in stream:
|
||||
reasoning_content = None
|
||||
content = None
|
||||
# Check the content is reasoning_content or content
|
||||
if hasattr(chunk.choices[0].delta, "reasoning_content"):
|
||||
reasoning_content = chunk.choices[0].delta.reasoning_content
|
||||
elif hasattr(chunk.choices[0].delta, "content"):
|
||||
content = chunk.choices[0].delta.content
|
||||
print("client: Start streaming chat completions...")
|
||||
printed_reasoning_content = False
|
||||
printed_content = False
|
||||
|
||||
if reasoning_content is not None:
|
||||
if not printed_reasoning_content:
|
||||
printed_reasoning_content = True
|
||||
print("reasoning_content:", end="", flush=True)
|
||||
print(reasoning_content, end="", flush=True)
|
||||
elif content is not None:
|
||||
if not printed_content:
|
||||
printed_content = True
|
||||
print("\ncontent:", end="", flush=True)
|
||||
# Extract and print the content
|
||||
print(content, end="", flush=True)
|
||||
```
|
||||
for chunk in stream:
|
||||
reasoning_content = None
|
||||
content = None
|
||||
# Check the content is reasoning_content or content
|
||||
if hasattr(chunk.choices[0].delta, "reasoning_content"):
|
||||
reasoning_content = chunk.choices[0].delta.reasoning_content
|
||||
elif hasattr(chunk.choices[0].delta, "content"):
|
||||
content = chunk.choices[0].delta.content
|
||||
|
||||
if reasoning_content is not None:
|
||||
if not printed_reasoning_content:
|
||||
printed_reasoning_content = True
|
||||
print("reasoning_content:", end="", flush=True)
|
||||
print(reasoning_content, end="", flush=True)
|
||||
elif content is not None:
|
||||
if not printed_content:
|
||||
printed_content = True
|
||||
print("\ncontent:", end="", flush=True)
|
||||
# Extract and print the content
|
||||
print(content, end="", flush=True)
|
||||
```
|
||||
|
||||
Remember to check whether the `reasoning_content` exists in the response before accessing it. You could checkout the [example](https://github.com/vllm-project/vllm/blob/main/examples/online_serving/openai_chat_completion_with_reasoning_streaming.py).
|
||||
|
||||
@ -146,41 +152,43 @@ Remember to check whether the `reasoning_content` exists in the response before
|
||||
|
||||
The reasoning content is also available when both tool calling and the reasoning parser are enabled. Additionally, tool calling only parses functions from the `content` field, not from the `reasoning_content`.
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
??? Code
|
||||
|
||||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
tools = [{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
|
||||
},
|
||||
"required": ["location", "unit"]
|
||||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
|
||||
|
||||
tools = [{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
|
||||
},
|
||||
"required": ["location", "unit"]
|
||||
}
|
||||
}
|
||||
}
|
||||
}]
|
||||
}]
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model=client.models.list().data[0].id,
|
||||
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
)
|
||||
response = client.chat.completions.create(
|
||||
model=client.models.list().data[0].id,
|
||||
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
)
|
||||
|
||||
print(response)
|
||||
tool_call = response.choices[0].message.tool_calls[0].function
|
||||
print(response)
|
||||
tool_call = response.choices[0].message.tool_calls[0].function
|
||||
|
||||
print(f"reasoning_content: {response.choices[0].message.reasoning_content}")
|
||||
print(f"Function called: {tool_call.name}")
|
||||
print(f"Arguments: {tool_call.arguments}")
|
||||
```
|
||||
print(f"reasoning_content: {response.choices[0].message.reasoning_content}")
|
||||
print(f"Function called: {tool_call.name}")
|
||||
print(f"Arguments: {tool_call.arguments}")
|
||||
```
|
||||
|
||||
For more examples, please refer to <gh-file:examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py>.
|
||||
|
||||
@ -192,85 +200,89 @@ For more examples, please refer to <gh-file:examples/online_serving/openai_chat_
|
||||
|
||||
You can add a new `ReasoningParser` similar to <gh-file:vllm/reasoning/deepseek_r1_reasoning_parser.py>.
|
||||
|
||||
```python
|
||||
# import the required packages
|
||||
??? Code
|
||||
|
||||
from vllm.reasoning import ReasoningParser, ReasoningParserManager
|
||||
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
||||
DeltaMessage)
|
||||
```python
|
||||
# import the required packages
|
||||
|
||||
# define a reasoning parser and register it to vllm
|
||||
# the name list in register_module can be used
|
||||
# in --reasoning-parser.
|
||||
@ReasoningParserManager.register_module(["example"])
|
||||
class ExampleParser(ReasoningParser):
|
||||
def __init__(self, tokenizer: AnyTokenizer):
|
||||
super().__init__(tokenizer)
|
||||
from vllm.reasoning import ReasoningParser, ReasoningParserManager
|
||||
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
||||
DeltaMessage)
|
||||
|
||||
def extract_reasoning_content_streaming(
|
||||
self,
|
||||
previous_text: str,
|
||||
current_text: str,
|
||||
delta_text: str,
|
||||
previous_token_ids: Sequence[int],
|
||||
current_token_ids: Sequence[int],
|
||||
delta_token_ids: Sequence[int],
|
||||
) -> Union[DeltaMessage, None]:
|
||||
"""
|
||||
Instance method that should be implemented for extracting reasoning
|
||||
from an incomplete response; for use when handling reasoning calls and
|
||||
streaming. Has to be an instance method because it requires state -
|
||||
the current tokens/diffs, but also the information about what has
|
||||
previously been parsed and extracted (see constructor)
|
||||
"""
|
||||
# define a reasoning parser and register it to vllm
|
||||
# the name list in register_module can be used
|
||||
# in --reasoning-parser.
|
||||
@ReasoningParserManager.register_module(["example"])
|
||||
class ExampleParser(ReasoningParser):
|
||||
def __init__(self, tokenizer: AnyTokenizer):
|
||||
super().__init__(tokenizer)
|
||||
|
||||
def extract_reasoning_content(
|
||||
self, model_output: str, request: ChatCompletionRequest
|
||||
) -> tuple[Optional[str], Optional[str]]:
|
||||
"""
|
||||
Extract reasoning content from a complete model-generated string.
|
||||
def extract_reasoning_content_streaming(
|
||||
self,
|
||||
previous_text: str,
|
||||
current_text: str,
|
||||
delta_text: str,
|
||||
previous_token_ids: Sequence[int],
|
||||
current_token_ids: Sequence[int],
|
||||
delta_token_ids: Sequence[int],
|
||||
) -> Union[DeltaMessage, None]:
|
||||
"""
|
||||
Instance method that should be implemented for extracting reasoning
|
||||
from an incomplete response; for use when handling reasoning calls and
|
||||
streaming. Has to be an instance method because it requires state -
|
||||
the current tokens/diffs, but also the information about what has
|
||||
previously been parsed and extracted (see constructor)
|
||||
"""
|
||||
|
||||
Used for non-streaming responses where we have the entire model response
|
||||
available before sending to the client.
|
||||
def extract_reasoning_content(
|
||||
self, model_output: str, request: ChatCompletionRequest
|
||||
) -> tuple[Optional[str], Optional[str]]:
|
||||
"""
|
||||
Extract reasoning content from a complete model-generated string.
|
||||
|
||||
Parameters:
|
||||
model_output: str
|
||||
The model-generated string to extract reasoning content from.
|
||||
Used for non-streaming responses where we have the entire model response
|
||||
available before sending to the client.
|
||||
|
||||
request: ChatCompletionRequest
|
||||
The request object that was used to generate the model_output.
|
||||
Parameters:
|
||||
model_output: str
|
||||
The model-generated string to extract reasoning content from.
|
||||
|
||||
Returns:
|
||||
tuple[Optional[str], Optional[str]]
|
||||
A tuple containing the reasoning content and the content.
|
||||
"""
|
||||
```
|
||||
request: ChatCompletionRequest
|
||||
The request object that was used to generate the model_output.
|
||||
|
||||
Returns:
|
||||
tuple[Optional[str], Optional[str]]
|
||||
A tuple containing the reasoning content and the content.
|
||||
"""
|
||||
```
|
||||
|
||||
Additionally, to enable structured output, you'll need to create a new `Reasoner` similar to the one in <gh-file:vllm/reasoning/deepseek_r1_reasoning_parser.py>.
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class DeepSeekReasoner(Reasoner):
|
||||
"""
|
||||
Reasoner for DeepSeek R series models.
|
||||
"""
|
||||
start_token_id: int
|
||||
end_token_id: int
|
||||
??? Code
|
||||
|
||||
start_token: str = "<think>"
|
||||
end_token: str = "</think>"
|
||||
```python
|
||||
@dataclass
|
||||
class DeepSeekReasoner(Reasoner):
|
||||
"""
|
||||
Reasoner for DeepSeek R series models.
|
||||
"""
|
||||
start_token_id: int
|
||||
end_token_id: int
|
||||
|
||||
@classmethod
|
||||
def from_tokenizer(cls, tokenizer: PreTrainedTokenizer) -> Reasoner:
|
||||
return cls(start_token_id=tokenizer.encode(
|
||||
"<think>", add_special_tokens=False)[0],
|
||||
end_token_id=tokenizer.encode("</think>",
|
||||
add_special_tokens=False)[0])
|
||||
start_token: str = "<think>"
|
||||
end_token: str = "</think>"
|
||||
|
||||
def is_reasoning_end(self, input_ids: list[int]) -> bool:
|
||||
return self.end_token_id in input_ids
|
||||
...
|
||||
```
|
||||
@classmethod
|
||||
def from_tokenizer(cls, tokenizer: PreTrainedTokenizer) -> Reasoner:
|
||||
return cls(start_token_id=tokenizer.encode(
|
||||
"<think>", add_special_tokens=False)[0],
|
||||
end_token_id=tokenizer.encode("</think>",
|
||||
add_special_tokens=False)[0])
|
||||
|
||||
def is_reasoning_end(self, input_ids: list[int]) -> bool:
|
||||
return self.end_token_id in input_ids
|
||||
...
|
||||
```
|
||||
|
||||
The structured output engine like [xgrammar](https://github.com/mlc-ai/xgrammar) will use `end_token_id` to check if the reasoning content is present in the model output and skip the structured output if it is the case.
|
||||
|
||||
|
||||
@ -18,29 +18,31 @@ Speculative decoding is a technique which improves inter-token latency in memory
|
||||
|
||||
The following code configures vLLM in an offline mode to use speculative decoding with a draft model, speculating 5 tokens at a time.
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
llm = LLM(
|
||||
model="facebook/opt-6.7b",
|
||||
tensor_parallel_size=1,
|
||||
speculative_config={
|
||||
"model": "facebook/opt-125m",
|
||||
"num_speculative_tokens": 5,
|
||||
},
|
||||
)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
llm = LLM(
|
||||
model="facebook/opt-6.7b",
|
||||
tensor_parallel_size=1,
|
||||
speculative_config={
|
||||
"model": "facebook/opt-125m",
|
||||
"num_speculative_tokens": 5,
|
||||
},
|
||||
)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
|
||||
To perform the same with an online mode launch the server:
|
||||
|
||||
@ -60,69 +62,73 @@ python -m vllm.entrypoints.openai.api_server \
|
||||
|
||||
Then use a client:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
??? Code
|
||||
|
||||
# Modify OpenAI's API key and API base to use vLLM's API server.
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
# defaults to os.environ.get("OPENAI_API_KEY")
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
# Modify OpenAI's API key and API base to use vLLM's API server.
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
client = OpenAI(
|
||||
# defaults to os.environ.get("OPENAI_API_KEY")
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
# Completion API
|
||||
stream = False
|
||||
completion = client.completions.create(
|
||||
model=model,
|
||||
prompt="The future of AI is",
|
||||
echo=False,
|
||||
n=1,
|
||||
stream=stream,
|
||||
)
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
|
||||
print("Completion results:")
|
||||
if stream:
|
||||
for c in completion:
|
||||
print(c)
|
||||
else:
|
||||
print(completion)
|
||||
```
|
||||
# Completion API
|
||||
stream = False
|
||||
completion = client.completions.create(
|
||||
model=model,
|
||||
prompt="The future of AI is",
|
||||
echo=False,
|
||||
n=1,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
print("Completion results:")
|
||||
if stream:
|
||||
for c in completion:
|
||||
print(c)
|
||||
else:
|
||||
print(completion)
|
||||
```
|
||||
|
||||
## Speculating by matching n-grams in the prompt
|
||||
|
||||
The following code configures vLLM to use speculative decoding where proposals are generated by
|
||||
matching n-grams in the prompt. For more information read [this thread.](https://x.com/joao_gante/status/1747322413006643259)
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
llm = LLM(
|
||||
model="facebook/opt-6.7b",
|
||||
tensor_parallel_size=1,
|
||||
speculative_config={
|
||||
"method": "ngram",
|
||||
"num_speculative_tokens": 5,
|
||||
"prompt_lookup_max": 4,
|
||||
},
|
||||
)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
llm = LLM(
|
||||
model="facebook/opt-6.7b",
|
||||
tensor_parallel_size=1,
|
||||
speculative_config={
|
||||
"method": "ngram",
|
||||
"num_speculative_tokens": 5,
|
||||
"prompt_lookup_max": 4,
|
||||
},
|
||||
)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
|
||||
## Speculating using MLP speculators
|
||||
|
||||
@ -131,29 +137,31 @@ draft models that conditioning draft predictions on both context vectors and sam
|
||||
For more information see [this blog](https://pytorch.org/blog/hitchhikers-guide-speculative-decoding/) or
|
||||
[this technical report](https://arxiv.org/abs/2404.19124).
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
llm = LLM(
|
||||
model="meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
tensor_parallel_size=4,
|
||||
speculative_config={
|
||||
"model": "ibm-ai-platform/llama3-70b-accelerator",
|
||||
"draft_tensor_parallel_size": 1,
|
||||
},
|
||||
)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
llm = LLM(
|
||||
model="meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
tensor_parallel_size=4,
|
||||
speculative_config={
|
||||
"model": "ibm-ai-platform/llama3-70b-accelerator",
|
||||
"draft_tensor_parallel_size": 1,
|
||||
},
|
||||
)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
```
|
||||
|
||||
Note that these speculative models currently need to be run without tensor parallelism, although
|
||||
it is possible to run the main model using tensor parallelism (see example above). Since the
|
||||
@ -177,31 +185,33 @@ A variety of speculative models of this type are available on HF hub:
|
||||
The following code configures vLLM to use speculative decoding where proposals are generated by
|
||||
an [EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency)](https://arxiv.org/pdf/2401.15077) based draft model. A more detailed example for offline mode, including how to extract request level acceptance rate, can be found [here](gh-file:examples/offline_inference/eagle.py).
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
??? Code
|
||||
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
llm = LLM(
|
||||
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
tensor_parallel_size=4,
|
||||
speculative_config={
|
||||
"model": "yuhuili/EAGLE-LLaMA3-Instruct-8B",
|
||||
"draft_tensor_parallel_size": 1,
|
||||
},
|
||||
)
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
llm = LLM(
|
||||
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
tensor_parallel_size=4,
|
||||
speculative_config={
|
||||
"model": "yuhuili/EAGLE-LLaMA3-Instruct-8B",
|
||||
"draft_tensor_parallel_size": 1,
|
||||
},
|
||||
)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
```
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
```
|
||||
|
||||
A few important things to consider when using the EAGLE based draft models:
|
||||
|
||||
|
||||
@ -33,39 +33,43 @@ text.
|
||||
|
||||
Now let´s see an example for each of the cases, starting with the `guided_choice`, as it´s the easiest one:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:8000/v1",
|
||||
api_key="-",
|
||||
)
|
||||
model = client.models.list().data[0].id
|
||||
??? Code
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
|
||||
],
|
||||
extra_body={"guided_choice": ["positive", "negative"]},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
```python
|
||||
from openai import OpenAI
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:8000/v1",
|
||||
api_key="-",
|
||||
)
|
||||
model = client.models.list().data[0].id
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
|
||||
],
|
||||
extra_body={"guided_choice": ["positive", "negative"]},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
|
||||
The next example shows how to use the `guided_regex`. The idea is to generate an email address, given a simple regex template:
|
||||
|
||||
```python
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate an example email address for Alan Turing, who works in Enigma. End in .com and new line. Example result: alan.turing@enigma.com\n",
|
||||
}
|
||||
],
|
||||
extra_body={"guided_regex": r"\w+@\w+\.com\n", "stop": ["\n"]},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
??? Code
|
||||
|
||||
```python
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate an example email address for Alan Turing, who works in Enigma. End in .com and new line. Example result: alan.turing@enigma.com\n",
|
||||
}
|
||||
],
|
||||
extra_body={"guided_regex": r"\w+@\w+\.com\n", "stop": ["\n"]},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
|
||||
One of the most relevant features in structured text generation is the option to generate a valid JSON with pre-defined fields and formats.
|
||||
For this we can use the `guided_json` parameter in two different ways:
|
||||
@ -75,41 +79,43 @@ For this we can use the `guided_json` parameter in two different ways:
|
||||
|
||||
The next example shows how to use the `guided_json` parameter with a Pydantic model:
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
from enum import Enum
|
||||
??? Code
|
||||
|
||||
class CarType(str, Enum):
|
||||
sedan = "sedan"
|
||||
suv = "SUV"
|
||||
truck = "Truck"
|
||||
coupe = "Coupe"
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
from enum import Enum
|
||||
|
||||
class CarDescription(BaseModel):
|
||||
brand: str
|
||||
model: str
|
||||
car_type: CarType
|
||||
class CarType(str, Enum):
|
||||
sedan = "sedan"
|
||||
suv = "SUV"
|
||||
truck = "Truck"
|
||||
coupe = "Coupe"
|
||||
|
||||
json_schema = CarDescription.model_json_schema()
|
||||
class CarDescription(BaseModel):
|
||||
brand: str
|
||||
model: str
|
||||
car_type: CarType
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate a JSON with the brand, model and car_type of the most iconic car from the 90's",
|
||||
}
|
||||
],
|
||||
"response_format": {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "car-description",
|
||||
"schema": CarDescription.model_json_schema()
|
||||
json_schema = CarDescription.model_json_schema()
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate a JSON with the brand, model and car_type of the most iconic car from the 90's",
|
||||
}
|
||||
],
|
||||
"response_format": {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "car-description",
|
||||
"schema": CarDescription.model_json_schema()
|
||||
},
|
||||
},
|
||||
},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
|
||||
!!! tip
|
||||
While not strictly necessary, normally it´s better to indicate in the prompt the
|
||||
@ -121,33 +127,35 @@ difficult to use, but it´s really powerful. It allows us to define complete
|
||||
languages like SQL queries. It works by using a context free EBNF grammar.
|
||||
As an example, we can use to define a specific format of simplified SQL queries:
|
||||
|
||||
```python
|
||||
simplified_sql_grammar = """
|
||||
root ::= select_statement
|
||||
??? Code
|
||||
|
||||
select_statement ::= "SELECT " column " from " table " where " condition
|
||||
```python
|
||||
simplified_sql_grammar = """
|
||||
root ::= select_statement
|
||||
|
||||
column ::= "col_1 " | "col_2 "
|
||||
select_statement ::= "SELECT " column " from " table " where " condition
|
||||
|
||||
table ::= "table_1 " | "table_2 "
|
||||
column ::= "col_1 " | "col_2 "
|
||||
|
||||
condition ::= column "= " number
|
||||
table ::= "table_1 " | "table_2 "
|
||||
|
||||
number ::= "1 " | "2 "
|
||||
"""
|
||||
condition ::= column "= " number
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate an SQL query to show the 'username' and 'email' from the 'users' table.",
|
||||
}
|
||||
],
|
||||
extra_body={"guided_grammar": simplified_sql_grammar},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
number ::= "1 " | "2 "
|
||||
"""
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate an SQL query to show the 'username' and 'email' from the 'users' table.",
|
||||
}
|
||||
],
|
||||
extra_body={"guided_grammar": simplified_sql_grammar},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
```
|
||||
|
||||
See also: [full example](https://docs.vllm.ai/en/latest/examples/online_serving/structured_outputs.html)
|
||||
|
||||
@ -161,34 +169,36 @@ vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --reasoning-parser deepseek_r
|
||||
|
||||
Note that you can use reasoning with any provided structured outputs feature. The following uses one with JSON schema:
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
??? Code
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class People(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
class People(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate a JSON with the name and age of one random person.",
|
||||
}
|
||||
],
|
||||
response_format={
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "people",
|
||||
"schema": People.model_json_schema()
|
||||
}
|
||||
},
|
||||
)
|
||||
print("reasoning_content: ", completion.choices[0].message.reasoning_content)
|
||||
print("content: ", completion.choices[0].message.content)
|
||||
```
|
||||
completion = client.chat.completions.create(
|
||||
model=model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate a JSON with the name and age of one random person.",
|
||||
}
|
||||
],
|
||||
response_format={
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "people",
|
||||
"schema": People.model_json_schema()
|
||||
}
|
||||
},
|
||||
)
|
||||
print("reasoning_content: ", completion.choices[0].message.reasoning_content)
|
||||
print("content: ", completion.choices[0].message.content)
|
||||
```
|
||||
|
||||
See also: [full example](https://docs.vllm.ai/en/latest/examples/online_serving/structured_outputs.html)
|
||||
|
||||
@ -202,33 +212,33 @@ For the following examples, vLLM was setup using `vllm serve meta-llama/Llama-3.
|
||||
|
||||
Here is a simple example demonstrating how to get structured output using Pydantic models:
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
from openai import OpenAI
|
||||
??? Code
|
||||
|
||||
class Info(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="dummy")
|
||||
model = client.models.list().data[0].id
|
||||
completion = client.beta.chat.completions.parse(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "My name is Cameron, I'm 28. What's my name and age?"},
|
||||
],
|
||||
response_format=Info,
|
||||
)
|
||||
class Info(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
|
||||
message = completion.choices[0].message
|
||||
print(message)
|
||||
assert message.parsed
|
||||
print("Name:", message.parsed.name)
|
||||
print("Age:", message.parsed.age)
|
||||
```
|
||||
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="dummy")
|
||||
model = client.models.list().data[0].id
|
||||
completion = client.beta.chat.completions.parse(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "My name is Cameron, I'm 28. What's my name and age?"},
|
||||
],
|
||||
response_format=Info,
|
||||
)
|
||||
|
||||
Output:
|
||||
message = completion.choices[0].message
|
||||
print(message)
|
||||
assert message.parsed
|
||||
print("Name:", message.parsed.name)
|
||||
print("Age:", message.parsed.age)
|
||||
```
|
||||
|
||||
```console
|
||||
ParsedChatCompletionMessage[Testing](content='{"name": "Cameron", "age": 28}', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=[], parsed=Testing(name='Cameron', age=28))
|
||||
@ -238,35 +248,37 @@ Age: 28
|
||||
|
||||
Here is a more complex example using nested Pydantic models to handle a step-by-step math solution:
|
||||
|
||||
```python
|
||||
from typing import List
|
||||
from pydantic import BaseModel
|
||||
from openai import OpenAI
|
||||
??? Code
|
||||
|
||||
class Step(BaseModel):
|
||||
explanation: str
|
||||
output: str
|
||||
```python
|
||||
from typing import List
|
||||
from pydantic import BaseModel
|
||||
from openai import OpenAI
|
||||
|
||||
class MathResponse(BaseModel):
|
||||
steps: list[Step]
|
||||
final_answer: str
|
||||
class Step(BaseModel):
|
||||
explanation: str
|
||||
output: str
|
||||
|
||||
completion = client.beta.chat.completions.parse(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful expert math tutor."},
|
||||
{"role": "user", "content": "Solve 8x + 31 = 2."},
|
||||
],
|
||||
response_format=MathResponse,
|
||||
)
|
||||
class MathResponse(BaseModel):
|
||||
steps: list[Step]
|
||||
final_answer: str
|
||||
|
||||
message = completion.choices[0].message
|
||||
print(message)
|
||||
assert message.parsed
|
||||
for i, step in enumerate(message.parsed.steps):
|
||||
print(f"Step #{i}:", step)
|
||||
print("Answer:", message.parsed.final_answer)
|
||||
```
|
||||
completion = client.beta.chat.completions.parse(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful expert math tutor."},
|
||||
{"role": "user", "content": "Solve 8x + 31 = 2."},
|
||||
],
|
||||
response_format=MathResponse,
|
||||
)
|
||||
|
||||
message = completion.choices[0].message
|
||||
print(message)
|
||||
assert message.parsed
|
||||
for i, step in enumerate(message.parsed.steps):
|
||||
print(f"Step #{i}:", step)
|
||||
print("Answer:", message.parsed.final_answer)
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
@ -296,19 +308,21 @@ These parameters can be used in the same way as the parameters from the Online
|
||||
Serving examples above. One example for the usage of the `choice` parameter is
|
||||
shown below:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.sampling_params import GuidedDecodingParams
|
||||
??? Code
|
||||
|
||||
llm = LLM(model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.sampling_params import GuidedDecodingParams
|
||||
|
||||
guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"])
|
||||
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
|
||||
outputs = llm.generate(
|
||||
prompts="Classify this sentiment: vLLM is wonderful!",
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
print(outputs[0].outputs[0].text)
|
||||
```
|
||||
llm = LLM(model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
|
||||
|
||||
guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"])
|
||||
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
|
||||
outputs = llm.generate(
|
||||
prompts="Classify this sentiment: vLLM is wonderful!",
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
print(outputs[0].outputs[0].text)
|
||||
```
|
||||
|
||||
See also: [full example](https://docs.vllm.ai/en/latest/examples/online_serving/structured_outputs.html)
|
||||
|
||||
@ -15,44 +15,46 @@ vllm serve meta-llama/Llama-3.1-8B-Instruct \
|
||||
|
||||
Next, make a request to the model that should result in it using the available tools:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
import json
|
||||
??? Code
|
||||
|
||||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
|
||||
```python
|
||||
from openai import OpenAI
|
||||
import json
|
||||
|
||||
def get_weather(location: str, unit: str):
|
||||
return f"Getting the weather for {location} in {unit}..."
|
||||
tool_functions = {"get_weather": get_weather}
|
||||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
|
||||
|
||||
tools = [{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
|
||||
},
|
||||
"required": ["location", "unit"]
|
||||
def get_weather(location: str, unit: str):
|
||||
return f"Getting the weather for {location} in {unit}..."
|
||||
tool_functions = {"get_weather": get_weather}
|
||||
|
||||
tools = [{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
|
||||
},
|
||||
"required": ["location", "unit"]
|
||||
}
|
||||
}
|
||||
}
|
||||
}]
|
||||
}]
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model=client.models.list().data[0].id,
|
||||
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
)
|
||||
response = client.chat.completions.create(
|
||||
model=client.models.list().data[0].id,
|
||||
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
)
|
||||
|
||||
tool_call = response.choices[0].message.tool_calls[0].function
|
||||
print(f"Function called: {tool_call.name}")
|
||||
print(f"Arguments: {tool_call.arguments}")
|
||||
print(f"Result: {get_weather(**json.loads(tool_call.arguments))}")
|
||||
```
|
||||
tool_call = response.choices[0].message.tool_calls[0].function
|
||||
print(f"Function called: {tool_call.name}")
|
||||
print(f"Arguments: {tool_call.arguments}")
|
||||
print(f"Result: {get_weather(**json.loads(tool_call.arguments))}")
|
||||
```
|
||||
|
||||
Example output:
|
||||
|
||||
@ -226,6 +228,25 @@ AI21's Jamba-1.5 models are supported.
|
||||
|
||||
Flags: `--tool-call-parser jamba`
|
||||
|
||||
### xLAM Models (`xlam`)
|
||||
|
||||
The xLAM tool parser is designed to support models that generate tool calls in various JSON formats. It detects function calls in several different output styles:
|
||||
|
||||
1. Direct JSON arrays: Output strings that are JSON arrays starting with `[` and ending with `]`
|
||||
2. Thinking tags: Using `<think>...</think>` tags containing JSON arrays
|
||||
3. Code blocks: JSON in code blocks (```json ...```)
|
||||
4. Tool calls tags: Using `[TOOL_CALLS]` or `<tool_call>...</tool_call>` tags
|
||||
|
||||
Parallel function calls are supported, and the parser can effectively separate text content from tool calls.
|
||||
|
||||
Supported models:
|
||||
* Salesforce Llama-xLAM models: `Salesforce/Llama-xLAM-2-8B-fc-r`, `Salesforce/Llama-xLAM-2-70B-fc-r`
|
||||
* Qwen-xLAM models: `Salesforce/xLAM-1B-fc-r`, `Salesforce/xLAM-3B-fc-r`, `Salesforce/Qwen-xLAM-32B-fc-r`
|
||||
|
||||
Flags:
|
||||
* For Llama-based xLAM models: `--tool-call-parser xlam --chat-template examples/tool_chat_template_xlam_llama.jinja`
|
||||
* For Qwen-based xLAM models: `--tool-call-parser xlam --chat-template examples/tool_chat_template_xlam_qwen.jinja`
|
||||
|
||||
### Qwen Models
|
||||
|
||||
For Qwen2.5, the chat template in tokenizer_config.json has already included support for the Hermes-style tool use. Therefore, you can use the `hermes` parser to enable tool calls for Qwen models. For more detailed information, please refer to the official [Qwen documentation](https://qwen.readthedocs.io/en/latest/framework/function_call.html#vllm)
|
||||
@ -282,53 +303,55 @@ A tool parser plugin is a Python file containing one or more ToolParser implemen
|
||||
|
||||
Here is a summary of a plugin file:
|
||||
|
||||
```python
|
||||
??? Code
|
||||
|
||||
# import the required packages
|
||||
```python
|
||||
|
||||
# define a tool parser and register it to vllm
|
||||
# the name list in register_module can be used
|
||||
# in --tool-call-parser. you can define as many
|
||||
# tool parsers as you want here.
|
||||
@ToolParserManager.register_module(["example"])
|
||||
class ExampleToolParser(ToolParser):
|
||||
def __init__(self, tokenizer: AnyTokenizer):
|
||||
super().__init__(tokenizer)
|
||||
# import the required packages
|
||||
|
||||
# adjust request. e.g.: set skip special tokens
|
||||
# to False for tool call output.
|
||||
def adjust_request(
|
||||
self, request: ChatCompletionRequest) -> ChatCompletionRequest:
|
||||
return request
|
||||
# define a tool parser and register it to vllm
|
||||
# the name list in register_module can be used
|
||||
# in --tool-call-parser. you can define as many
|
||||
# tool parsers as you want here.
|
||||
@ToolParserManager.register_module(["example"])
|
||||
class ExampleToolParser(ToolParser):
|
||||
def __init__(self, tokenizer: AnyTokenizer):
|
||||
super().__init__(tokenizer)
|
||||
|
||||
# implement the tool call parse for stream call
|
||||
def extract_tool_calls_streaming(
|
||||
self,
|
||||
previous_text: str,
|
||||
current_text: str,
|
||||
delta_text: str,
|
||||
previous_token_ids: Sequence[int],
|
||||
current_token_ids: Sequence[int],
|
||||
delta_token_ids: Sequence[int],
|
||||
request: ChatCompletionRequest,
|
||||
) -> Union[DeltaMessage, None]:
|
||||
return delta
|
||||
# adjust request. e.g.: set skip special tokens
|
||||
# to False for tool call output.
|
||||
def adjust_request(
|
||||
self, request: ChatCompletionRequest) -> ChatCompletionRequest:
|
||||
return request
|
||||
|
||||
# implement the tool parse for non-stream call
|
||||
def extract_tool_calls(
|
||||
self,
|
||||
model_output: str,
|
||||
request: ChatCompletionRequest,
|
||||
) -> ExtractedToolCallInformation:
|
||||
return ExtractedToolCallInformation(tools_called=False,
|
||||
tool_calls=[],
|
||||
content=text)
|
||||
# implement the tool call parse for stream call
|
||||
def extract_tool_calls_streaming(
|
||||
self,
|
||||
previous_text: str,
|
||||
current_text: str,
|
||||
delta_text: str,
|
||||
previous_token_ids: Sequence[int],
|
||||
current_token_ids: Sequence[int],
|
||||
delta_token_ids: Sequence[int],
|
||||
request: ChatCompletionRequest,
|
||||
) -> Union[DeltaMessage, None]:
|
||||
return delta
|
||||
|
||||
```
|
||||
# implement the tool parse for non-stream call
|
||||
def extract_tool_calls(
|
||||
self,
|
||||
model_output: str,
|
||||
request: ChatCompletionRequest,
|
||||
) -> ExtractedToolCallInformation:
|
||||
return ExtractedToolCallInformation(tools_called=False,
|
||||
tool_calls=[],
|
||||
content=text)
|
||||
|
||||
```
|
||||
|
||||
Then you can use this plugin in the command line like this.
|
||||
|
||||
```console
|
||||
```bash
|
||||
--enable-auto-tool-choice \
|
||||
--tool-parser-plugin <absolute path of the plugin file>
|
||||
--tool-call-parser example \
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user