Compare commits

...

705 Commits

Author SHA1 Message Date
f96a3cc713 test
Signed-off-by: Roger Wang <hey@rogerw.me>
2025-05-09 13:31:08 -07:00
32c0155774 initial
Signed-off-by: Roger Wang <hey@rogerw.me>
2025-05-09 13:03:34 -07:00
22481fbfa3 Update CT WNA16MarlinMoE integration (#16666)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-09 13:19:45 -04:00
5c4c08f6f1 [Misc] Auto fallback to float16 for pre-Ampere GPUs when detected bfloat16 config (#17265)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-09 17:16:12 +00:00
c44c384b1c [Misc] Add references in ray_serve_deepseek example (#17907)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-05-09 16:59:36 +00:00
85b72cb7b1 Revert "[BugFix][AMD] Compatible patch for latest AITER(05/07/2025)" (#17910) 2025-05-09 08:58:18 -07:00
6e5595ca39 [CI/Build] Automatically retry flaky tests (#17856)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-09 09:55:17 -06:00
200da9a517 [v1] Move block management logic from KVCacheManager to SpecializedManager (#17474)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-09 15:25:34 +00:00
9f64e93415 [BugFix][AMD] Compatible patch for latest AITER(05/07/2025) (#17864)
Signed-off-by: Qiang Li <qiang.li2@amd.com>
2025-05-09 08:59:36 -06:00
ec61ea20a8 [Misc] add dify integration (#17895)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-09 03:42:39 -07:00
c6798baa9c Change top_k to be disabled with 0 (still accept -1 for now) (#17773)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-09 10:01:49 +00:00
5b2dcbf0b8 Fix Whisper crash caused by invalid`` max_num_batched_tokens`` config (#17853)
Signed-off-by: inkcherry <mingzhi.liu@intel.com>
2025-05-09 09:16:26 +00:00
6e4a93e3f7 [Bugfix][CPU] Fix broken AVX2 CPU TP support (#17252)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-09 08:55:14 +00:00
217db4baa6 [Bugfix][ROCm] Fix AITER MLA V1 (#17880)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-05-09 08:38:21 +00:00
ff8c400502 [Doc] remove visible token in doc (#17884)
Signed-off-by: yan <yanma1@habana.ai>
2025-05-09 01:21:31 -07:00
89a0315f4c [Doc] Update several links in reasoning_outputs.md (#17846)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-05-09 01:20:55 -07:00
3d1e387652 [Docs] Add Slides from NYC Meetup (#17879)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-05-08 21:46:54 -07:00
d310e6de98 [BUGFIX]: return fast when request requires prompt logprobs (#17251) 2025-05-08 21:25:41 -07:00
5e6f939484 [Attention] MLA move rotary embedding to cuda-graph region (#17668)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-09 11:14:42 +08:00
760e3ecc8f [V1][Structured Output] Update llguidance (>= 0.7.11) to avoid AttributeError (no StructTag) (#17839)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-05-08 20:14:18 -07:00
3c9396a64f [FEAT][ROCm]: Support AITER MLA on V1 Engine (#17523)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: qli88 <qiang.li2@amd.com>
Co-authored-by: Hongxia Yang <62075498+hongxiayang@users.noreply.github.com>
2025-05-09 10:42:05 +08:00
376786fac1 Add cutlass support for blackwell fp8 blockwise gemm (#14383)
Signed-off-by: Shu Wang <shuw@nvidia.com>
2025-05-08 15:09:55 -07:00
4f605a6de5 Fix noisy warning for uncalibrated q_scale/p_scale (#17414)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-08 15:56:59 -04:00
8342e3abd1 [CI] Prune down lm-eval small tests (#17012)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-08 19:00:26 +00:00
a83a0f92b5 [Test] Attempt all TPU V1 tests, even if some of them fail. (#17334)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-05-08 17:20:54 +00:00
226a4272cf [V1] Improve VLLM_ALLOW_INSECURE_SERIALIZATION logging (#17860)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-08 16:57:35 +00:00
ec54d73c31 [CI] Fix test_collective_rpc (#17858)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-08 16:47:12 +00:00
a944f8ede7 [Misc] Delete LoRA-related redundancy code (#17841)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-08 06:02:21 -07:00
015815fe01 [Bugfix] use_fast failing to be propagated to Qwen2-VL image processor (#17838)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-08 05:39:21 -07:00
e4ca6e3a99 Fix transient dependency error in docs build (#17848)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-08 03:42:03 -07:00
53d0cb7423 [Misc] add chatbox integration (#17828)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-08 10:05:26 +00:00
f50dcb7c21 [Easy] Eliminate c10::optional usage in vllm/csrc (#17819) 2025-05-08 03:05:10 -07:00
a1e19b635d [Doc] Fix a typo in the file name (#17836)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-08 18:04:18 +08:00
bb239a730f [Bugfix] Fix quark fp8 format loading on AMD GPUs (#12612)
Signed-off-by: Felix Marty <felmarty@amd.com>
Signed-off-by: kewang2 <kewang2@amd.com>
Co-authored-by: kewang2 <kewang2@amd.com>
2025-05-08 02:53:53 -07:00
a463555dee [TPU] Fix the test_sampler (#17820) 2025-05-08 05:51:33 -04:00
ca04b97c93 [Bugfix] Fix tool call template validation for Mistral models (#17644)
Signed-off-by: Rick Yuan <yuan821120@gmail.com>
Signed-off-by: RIck Yuan <yuan821120@gmail.com>
Co-authored-by: Aaron Pham <Aaronpham0103@gmail.com>
2025-05-08 09:47:19 +00:00
0a9bbaa104 [Misc] support model prefix & add deepseek vl2 tiny fused moe config (#17763)
Signed-off-by: 唯勤 <xsank.mz@alibaba-inc.com>
Co-authored-by: 唯勤 <xsank.mz@alibaba-inc.com>
2025-05-08 07:50:22 +00:00
39956efb3f [Bugfix] Fix bad words for Mistral models (#17753)
Signed-off-by: Qiong Zhou Huang <qiong@phonic.co>
2025-05-07 23:32:10 -07:00
597051e56f [Qwen3]add qwen3-235b-bf16 fused moe config on A100 (#17715) 2025-05-07 23:09:32 -07:00
96722aa81d [Frontend] Chat template fallbacks for multimodal models (#17805)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-07 23:05:54 -07:00
843b222723 [Hardware][Intel-Gaudi] Support Automatic Prefix Caching on HPU (#17648)
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
2025-05-07 22:37:03 -07:00
e515668edf [Hardware][Power] Enable compressed tensor W8A8 INT8 quantization for POWER (#17153)
Signed-off-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
Co-authored-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-05-07 22:35:03 -07:00
5a499e70d5 [Kernel][Hardware][AMD] Bf16 mfma opt for ROCm skinny GEMMs (#17071)
Signed-off-by: Hashem Hashemi <hashem.hashemi@amd.com>
Signed-off-by: charlifu <charlifu@amd.com>
Co-authored-by: charlifu <charlifu@amd.com>
2025-05-07 22:34:49 -07:00
6930a41116 [V1] Add VLLM_ALLOW_INSECURE_SERIALIZATION env var (#17490)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-05-08 13:34:02 +08:00
998eea4a0e Only log non-default CLI args for online serving (#17803)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-07 22:33:29 -07:00
c747d84576 [Installation] OpenTelemetry version update (#17771)
Signed-off-by: Mikhail Podvitskii <podvitskiymichael@gmail.com>
2025-05-07 22:32:49 -07:00
b2da14a05a Improve exception reporting in MP engine (#17800)
Signed-off-by: Vadim Markovtsev <vadim@poolside.ai>
2025-05-08 05:32:39 +00:00
7ea2adb802 [Core] Support full cuda graph in v1 (#16072)
Signed-off-by: Chanh Nguyen <cnguyen@linkedin.com>
Co-authored-by: Chanh Nguyen <cnguyen@linkedin.com>
2025-05-07 22:30:15 -07:00
3d13ca0e24 [BugFix] Fix --disable-log-stats in V1 server mode (#17600)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-08 04:08:15 +00:00
66ab3b13c9 Don't call the venv vllm (#17810)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-08 04:06:39 +00:00
a8238bbdb0 [Chore][Doc] uses model id determined from OpenAI client (#17815)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-05-08 01:48:57 +00:00
d43f914d42 [Core][Feature] Input metadata dump on crash (#13407)
Signed-off-by: Wallas Santos <wallashss@ibm.com>
2025-05-07 22:15:09 +00:00
ed5272cf21 [BugFix] Avoid secondary missing MultiprocExecutor.workers error (#17811)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-07 21:55:04 +00:00
c20ef40fd0 [Hardware][TPU][V1] Multi-LoRA implementation for the V1 TPU backend (#14238)
Signed-off-by: Akshat Tripathi <akshat@krai.ai>
Signed-off-by: Chengji Yao <chengjiyao@google.com>
Co-authored-by: Chengji Yao <chengjiyao@google.com>
2025-05-07 16:28:47 -04:00
db593aa67f [Quantization] Quark MXFP4 format loading (#16943) 2025-05-07 15:05:05 -04:00
f98e307588 [Bugfix] Fix missing lora name mapping for lora without prefix (#17793)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-07 16:17:12 +00:00
646a31e51e Fix and simplify deprecated=True CLI kwarg (#17781)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-07 16:51:06 +01:00
be8ff88e66 [Bugfix] Fix Video IO error for short video (#17791)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-07 15:36:06 +00:00
1a6af1453d Only depend on importlib-metadata for Python < 3.10 (#17776)
Signed-off-by: Christian Heimes <christian@python.org>
2025-05-07 07:51:06 -07:00
32aa74c09c [ROCm][FP8][Kernel] FP8 quantization fused into Custom Paged Attention (#17139)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-07 07:12:35 -07:00
7377dd0307 [doc] update the issue link (#17782)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-07 20:29:05 +08:00
98c89e16ff Make key optional for rotary embedding (#17566)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-05-07 00:11:46 -07:00
324a3119b0 Fix test_memory_usage_no_spec (#17754)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-05-07 00:10:33 -07:00
8a15c2603a [Frontend] Add missing chat templates for various MLLMs (#17758)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-07 00:10:01 -07:00
043e4c4955 Add NeuronxDistributedInference support, Speculative Decoding, Dynamic on-device sampling (#16357)
Signed-off-by: Satyajith Chilappagari <satchill@amazon.com>
Co-authored-by: Aaron Dou <yzdou@amazon.com>
Co-authored-by: Shashwat Srijan <sssrijan@amazon.com>
Co-authored-by: Chongming Ni <chongmni@amazon.com>
Co-authored-by: Amulya Ballakur <amulyaab@amazon.com>
Co-authored-by: Patrick Lange <patlange@amazon.com>
Co-authored-by: Elaine Zhao <elaineyz@amazon.com>
Co-authored-by: Lin Lin Pan <tailinpa@amazon.com>
Co-authored-by: Navyadhara Gogineni <navyadha@amazon.com>
Co-authored-by: Yishan McNabb <yishanm@amazon.com>
Co-authored-by: Mrinal Shukla <181322398+mrinalks@users.noreply.github.com>
2025-05-07 00:07:30 -07:00
ba7703e659 [Misc] Remove qlora_adapter_name_or_path (#17699)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-06 23:10:37 -07:00
f80ae5bdcf [Kernel] Use fused rmsnorm for some models like qwen3 series (#17735)
Signed-off-by: evian <eviantai@u.nus.edu>
Co-authored-by: evian <eviantai@u.nus.edu>
2025-05-06 23:10:02 -07:00
1a45a61387 [Kernel] GGUF MoeVec kernel (#16780)
Signed-off-by: SzymonOzog <szymon.ozog@aleph-alpha.com>
Signed-off-by: SzymonOzog <szymon.ozog@gmail.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-05-06 23:07:23 -07:00
c3e9d5060e [Misc] Use apply_rotary_emb from vllm_flash_attn for Qwen2-VL vision RoPE (#17726)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-07 04:51:33 +00:00
822de7fb94 [Misc] Split model loader (#17712)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-05-07 12:42:26 +08:00
8d84d836d1 [BugFix][Spec Decode] Fix hidden size mismatch between target and eagle head (#17740)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-05-06 19:51:26 -07:00
950b71186f Replace lm-eval bash script with pytest and use enforce_eager for faster CI (#17717)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-06 18:00:10 -07:00
e50a1f1a9c [TPU] Add kernel test for moe_pallas (#17496)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-05-06 17:59:57 -07:00
a17cef70ea Removed unused marlin cuda code (#17684)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-06 17:59:47 -07:00
18dd5e01f2 [Model] Mamba2 causal conv1d Refactor to Split Prefill and Decode Requests for Corresponding Kernels (#17146)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
2025-05-06 17:59:30 -07:00
6de3e13413 Add logging for torch nightly version (#17669)
Signed-off-by: Yang Wang <elainewy@meta.com>
2025-05-07 00:45:51 +00:00
ed3a1d2106 [ROCm] fix num_stages for default moe config to avoid triton OutOfResource error (#17744)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
2025-05-07 00:39:48 +00:00
022afbeb4e Fix doc build performance (#17748)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-07 00:36:41 +00:00
2f925e5777 [Kernel] Unified Triton kernel that doesn't distinguish between prefill + decode (#16828)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Co-authored-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-06 18:21:48 -04:00
de906b95f9 [Bugfix] Fix for the condition to accept empty encoder inputs for mllama (#17732)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-06 19:59:06 +00:00
d456aea71f [Misc] Add Next Edit Prediction (NEP) datasets support in benchmark_serving.py (#16839)
Signed-off-by: dtransposed <damian@damian-ml-machine.europe-west3-b.c.jetbrains-grazie.internal>
Signed-off-by: dtransposed <>
Co-authored-by: dtransposed <damian@damian-ml-machine.europe-west3-b.c.jetbrains-grazie.internal>
2025-05-06 15:38:45 -04:00
621ca2c0ab [TPU] Increase block size and reset block shapes (#16458) 2025-05-06 13:55:04 -04:00
6115b11582 Make right sidebar more readable in "Supported Models" (#17723)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-06 16:48:26 +00:00
5b8c390747 [Bugfix] Fix modality limits in vision language example (#17721)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-06 16:12:28 +00:00
7525d5f3d5 [doc] Add RAG Integration example (#17692)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-06 16:10:23 +00:00
aabcd2cae3 [v1] Introduce KVCacheBlocks as interface between Scheduler and KVCacheManager (#17479)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-06 08:50:34 -07:00
0d115460a7 [Docs] Use gh-file to add links to tool_calling.md (#17709)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-05-06 15:27:19 +00:00
175bda67a1 [Feat] Add deprecated=True to CLI args (#17426)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-05-06 08:11:27 -07:00
cba31c47c4 [v1] AttentionMetadata for each layer (#17394)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-05-06 07:58:37 -07:00
a6fed02068 [V1][PP] Support PP for MultiprocExecutor (#14219)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
Signed-off-by: jiang.li <jiang1.li@intel.com>
2025-05-06 07:58:05 -07:00
d419aa5dc4 [V1] Enable TPU V1 backend by default (#17673)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-06 06:49:49 -07:00
f9bc5a0693 [Bugfix] Fix triton import with local TritonPlaceholder (#17446)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-05-06 17:53:09 +08:00
05e1f96419 Fix dockerfilegraph pre-commit hook (#17698)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-06 08:56:48 +00:00
6eae34533a [Misc] Fix ScalarType float4 naming (#17690)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-06 01:07:15 -07:00
63ced7b43f [Doc] Update notes for H2O-VL and Gemma3 (#17219)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-06 07:51:02 +00:00
dc47ba32f8 [Bugfix] Fixed prompt length for random dataset (#17408)
Signed-off-by: Mikhail Podvitskii <podvitskiymichael@gmail.com>
2025-05-06 07:00:08 +00:00
edbf2d609e [easy] Fix logspam on PiecewiseBackend errors (#17138)
Signed-off-by: rzou <zou3519@gmail.com>
2025-05-05 23:46:11 -07:00
999328be0d [Model] Add GraniteMoeHybrid 4.0 model (#17497)
Signed-off-by: Thomas Ortner <boh@zurich.ibm.com>
Signed-off-by: Stanislaw Wozniak <stw@zurich.ibm.com>
Co-authored-by: Thomas Ortner <boh@zurich.ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
2025-05-06 12:00:31 +08:00
98834fefaa Update nm to rht in doc links + refine fp8 doc (#17678)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-06 00:41:14 +00:00
90bd2ae172 [Bugfix] LoRA - Retire unused maxnreg LoRA kernel argument (#17677) 2025-05-05 17:34:29 -07:00
5941e0b7ea [TPU][V1] Add support for top-logprobs (#17072)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-05-05 14:20:15 -07:00
9765940824 [TPU] Enable gemma3-27b with TP>1 on multi-chips. (#17335)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
2025-05-05 14:19:58 -07:00
5ea5c514da [BugFix] Increase timeout for startup failure test (#17642)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-05-05 20:53:19 +00:00
d3efde8176 [Benchmarks] Remove invalid option under V1 engine (#17651)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-05 16:30:22 -04:00
aea302be6c Use git-path commit in hook (#17616)
Signed-off-by: Thomas J. Fan <thomasjpfan@gmail.com>
2025-05-05 17:55:32 +00:00
cc05b90d86 [Doc] Fix broken cuda installation doc rendering (#17654)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-05 17:52:40 +00:00
1d0c9d6b2d [Kernel] some optimizations for dense marlin and moe marlin (#16850)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
2025-05-05 09:39:30 -07:00
f62cad6431 [Build/CI] Upgrade CUTLASS to 3.9.2 (#17641)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-05-04 19:23:17 -07:00
5394ad7387 [Bugfix] fix KeyError on top logprobs are special tokens (#17637)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-05-04 19:22:35 -07:00
68e1ee0072 [Bugfix][Easy] Fix whitespace in shm_broadcast.py logging (#17635)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-05-04 19:20:19 -07:00
2858830c39 [Bugfix] Prioritize dtype in root config before checking text config (#17629)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-04 12:43:05 +00:00
d6484ef3c3 Add full API docs and improve the UX of navigating them (#17485)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-03 19:42:43 -07:00
46fae69cf0 [Misc] V0 fallback for --enable-prompt-embeds (#17615)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-03 22:59:24 +00:00
f66f1e0fa3 [Bugfix] Fix broken Qwen2.5-omni tests (#17613)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-03 17:08:14 +00:00
887d7af882 [Core] Gate prompt_embeds behind a feature flag (#17607)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-04 00:19:20 +08:00
a92842454c [Bugfix][ROCm] Using device_type because on ROCm the API is still torch.cuda (#17601)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-02 22:25:47 -07:00
c8386fa61d [Build/CI] Upgrade CUTLASS to 3.9.1 (#17602)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-05-02 22:25:14 -07:00
87baebebd8 [Frontend][TPU] Add TPU default max-num-batched-tokens based on device name (#17508)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-05-02 21:42:44 -07:00
e3d0a1d190 [Quantizaton] [AMD] Add support for running DeepSeek int8 w8a8 MoE on ROCm (#17558)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-05-02 21:41:10 -07:00
d47b605eca Update test requirements to CUDA 12.8 (#17576)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-05-02 21:40:15 -07:00
22c6f6397f [Neuron][Build] Require setuptools >= 77.0.3 for PEP 639 (#17603)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
2025-05-03 02:41:59 +00:00
3ec97e2cc5 [release] Add command to clean up Docker containers/images in TPU release machine (#17606) 2025-05-02 18:54:34 -07:00
9b103a1d76 fix typo in logging (#17605) 2025-05-02 18:04:40 -07:00
b90b0852e9 [easy] Print number of needed GPUs in skip message (#17594)
Signed-off-by: rzou <zou3519@gmail.com>
2025-05-02 15:27:43 -07:00
9352cdb56d [Hardware][AMD] Improve OAM device ID + llama4 Maverick MOE tuning (#16263)
Signed-off-by: Lu Fang <lufang@fb.com>
Co-authored-by: Lu Fang <lufang@fb.com>
2025-05-02 19:44:19 +00:00
182f40ea8b Add NVIDIA TensorRT Model Optimizer in vLLM documentation (#17561) 2025-05-02 11:36:46 -07:00
3e887d2e0c permute/unpermute kernel for moe optimization (#14568)
Signed-off-by: Caleb_Du <Caleb_Du@zju.edu.cn>
2025-05-02 11:31:55 -07:00
0f87d8f7b2 [BugFix][Attention] Fix sliding window attention in V1 giving incorrect results (#17574)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-02 11:01:38 -07:00
4c33d67321 [Bugfix] fix tmp_out and exp_sums dimensions (#17438)
Signed-off-by: Hui Liu <96135754+hliuca@users.noreply.github.com>
2025-05-02 16:44:07 +00:00
cb234955df [Misc] Clean up input processing (#17582)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-02 08:11:53 -07:00
3a500cd0b6 [doc] miss result (#17589)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-02 07:04:49 -07:00
868c546da4 Support W8A8 INT8 MoE for compressed-tensors (#16745)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-02 10:03:32 -04:00
99404f53c7 [Security] Fix image hash collision (#17378)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-02 08:36:39 -04:00
785d75a03b Automatically tell users that dict args must be valid JSON in CLI (#17577)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-02 05:24:55 -07:00
6d1479ca4b [doc] add the print result (#17584)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-02 05:24:45 -07:00
b8b0859b5c add more pytorch related tests for torch nightly (#17422)
Signed-off-by: Yang Wang <elainewy@meta.com>
2025-05-02 03:29:59 -07:00
d7543862bd [Misc] Rename assets for testing (#17575)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-02 03:29:25 -07:00
c777df79f7 [BugFix] Fix Memory Leak (#17567)
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
2025-05-02 01:07:03 -07:00
cc2a77d7f1 [Core] [Bugfix] Add Input Embeddings (#15428)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: 临景 <linjing.yx@alibaba-inc.com>
Co-authored-by: Bryce1010 <bryceyx@gmail.com>
Co-authored-by: Nan2018 <nan@protopia.ai>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-02 01:06:39 -07:00
9e2de9b9e9 [Bugifx] Remove TritonPlaceholder from sys.modules (#17317)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-02 00:45:01 -07:00
109e15a335 Add pt_load_map_location to allow loading to cuda (#16869)
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
2025-05-01 23:23:42 -07:00
f192ca90e6 Fix PixtralHF missing spatial_merge_size (#17571)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-01 22:14:09 -07:00
f89d0e11bf [Misc] Continue refactoring model tests (#17573)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 22:06:08 -07:00
b4003d11fc Check if bitblas is installed during support check (#17572)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-02 04:32:54 +00:00
292fc59d61 [CI] Actually run tests/kv_transfer/test_disagg.py in CI (#17555)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-02 04:05:04 +00:00
afcb3f8863 [Attention] MLA move o_proj q_proj into cuda-graph region (#17484)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-02 03:16:26 +00:00
afb12e4294 [Doc] note that not all unit tests pass on CPU platforms (#17554)
Signed-off-by: David Xia <david@davidxia.com>
2025-05-02 02:57:21 +00:00
24aebae177 [Bugfix] Disable gptq_bitblas for <SM80 to fix GPTQ on V100/T4 (#17541)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-05-01 17:59:35 -07:00
39c0813a7f [V1][Spec Decode] Apply torch.compile & cudagraph to EAGLE3 (#17504)
Signed-off-by: qizixi <qizixi@meta.com>
2025-05-01 16:19:30 -07:00
9b70e2b4c1 [Misc][Tools][Benchmark] Publish script to auto tune server parameters (#17207)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-05-01 19:53:03 +00:00
173daac19d [Bug]change the position of cuda_graph_sizes in dataclasses (#17548)
Signed-off-by: CXIAAAAA <cxia0209@gmail.com>
2025-05-01 11:52:37 -07:00
04f2cfc894 Remove duplicate code from dbrx.py (#17550) 2025-05-01 11:51:58 -07:00
811a6c0972 [ROCM] Add gfx950 to the custom attention archs (#16034)
Signed-off-by: jpvillam <Juan.Villamizar@amd.com>
Signed-off-by: seungrokjung <seungrok.jung@amd.com>
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: seungrokjung <seungrok.jung@amd.com>
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-05-01 11:18:28 -07:00
9b1769dd9a [Bugfix] Fix lint error (#17547)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 11:12:19 -07:00
61c299f81f [Misc]add configurable cuda graph size (#17201)
Signed-off-by: CXIAAAAA <cxia0209@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-01 11:04:50 -07:00
4acfa3354a [ROCm] update installation guide to include build aiter from source instructions (#17542)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-05-01 11:01:28 -07:00
88c8304104 [Model] Refactor Ovis2 to support original tokenizer (#17537)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-05-01 11:00:53 -07:00
6768ff4a22 Move the last arguments in arg_utils.py to be in their final groups (#17531)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-01 10:31:44 -07:00
f2e7af9b86 [CI/Build] Remove awscli dependency (#17532)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 09:20:54 -07:00
7423cf0a9b [Misc] refactor example - cpu_offload_lmcache (#17460)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-01 15:05:24 +00:00
460a2b1100 [torch.compile] Add torch inductor pass for fusing silu_and_mul with subsequent scaled_fp8_quant operations (#10867)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-05-01 07:59:28 -07:00
28566d73b3 [ROCm] remove unsupported archs from rocm triton flash-attention supported list (#17536)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
2025-05-01 07:54:25 -07:00
98060b001d [Feature][Frontend]: Deprecate --enable-reasoning (#17452)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-05-01 06:46:16 -07:00
f5a3c655b2 [FEAT] [ROCm]: Add Qwen/Qwen3-235B-A22B-FP8 TP4 triton fused moe config (#17535)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-05-01 06:37:17 -07:00
7169f87ad0 [doc] add streamlit integration (#17522)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-05-01 13:34:02 +00:00
b74d888c63 Fix more broken speculative decode tests (#17450)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-05-01 06:05:58 -07:00
2007d4d54f [FEAT] [ROCm]: Add Qwen/Qwen3-30B-A3B-FP8 fused moe config for MI300X (#17530)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-05-01 06:03:13 -07:00
48e925fab5 [Misc] Clean up test docstrings and names (#17521)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 05:19:32 -07:00
1903c0b8a3 [Frontend] Show progress bar for adding requests (#17525)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 05:15:32 -07:00
86a1f67a3b [Bugfix][Benchmarks] Allow benchmark of deepspeed-mii backend to select a model (#17285)
Signed-off-by: Teruaki Ishizaki <teruaki.ishizaki@ntt.com>
2025-05-01 11:54:51 +00:00
a257d9bccc Improve configs - ObservabilityConfig (#17453)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-01 03:52:05 -07:00
015069b017 [Misc] Optimize the Qwen3_ReasoningParser extract_reasoning_content (#17515)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-05-01 03:29:01 -07:00
fbefc8a78d [Core] Enable IPv6 with vllm.utils.make_zmq_socket() (#16506)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-05-01 09:38:18 +00:00
26bc4bbcd8 Avoid overwriting vllm_compile_cache.py (#17418)
Signed-off-by: Keyun Tong <tongkeyun@gmail.com>
2025-05-01 07:30:57 +00:00
3c3d767201 [BugFix] Fix mla cpu - missing 3 required positional arguments (#17494)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-05-01 14:36:52 +08:00
13cf6b6236 [BugFix] fix speculative decoding memory leak when speculation is disabled (#15506)
Signed-off-by: Noah Yoshida <noahcy117@gmail.com>
2025-04-30 23:28:17 -07:00
90d0a54c4d [ROCm] Effort to reduce the number of environment variables in command line (#17229)
Signed-off-by: Hongxia Yang <hongxia.yang@amd.com>
2025-04-30 23:27:06 -07:00
7a0a146c54 [Build] Require setuptools >= 77.0.3 for PEP 639 (#17389)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-30 23:25:36 -07:00
7ab643e425 FIxing the AMD test failures caused by PR#16457 (#17511)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-04-30 23:23:07 -07:00
afb4429b4f [CI/Build] Reorganize models tests (#17459)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-30 23:03:08 -07:00
aa4502e7f3 [CI][Bugfix] Fix failing V1 Test due to missing 'cache_salt' arg (#17500)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-30 21:03:30 -07:00
17b4d85f63 [CI][TPU] Skip structured outputs+spec decode tests on TPU (#17510)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-30 20:36:20 -07:00
1144a8efe7 [Bugfix] Temporarily disable gptq_bitblas on ROCm (#17411)
Signed-off-by: Yan Cangang <nalanzeyu@gmail.com>
2025-04-30 19:51:45 -07:00
08fb5587b4 [Bugfix][ROCm] Fix import error on ROCm (#17495)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-30 19:51:42 -07:00
dbc18e7816 [CI][TPU] Skip Multimodal test (#17488)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-04-30 19:51:39 -07:00
02bd654846 [Misc] Rename Audios -> Audio in Qwen2audio Processing (#17507)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-30 19:51:36 -07:00
200bbf92e8 Bump Compressed Tensors version to 0.9.4 (#17478)
Signed-off-by: Rahul Tuli <rtuli@redhat.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-30 15:24:45 -07:00
81ecf425f0 [v1][Spec Decode] Make sliding window compatible with eagle prefix caching (#17398)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-04-30 18:25:53 +00:00
42d9a2c4c7 doc: fix bug report Github template formatting (#17486)
Signed-off-by: David Xia <david@davidxia.com>
2025-04-30 10:03:20 -07:00
2ac74d098e [doc] add install tips (#17373)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-30 17:02:41 +00:00
584f5fb4c6 [Bugfix][ROCm] Restrict ray version due to a breaking release (#17480)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-30 09:59:06 -07:00
d586ddc691 [BugFix] Fix authorization of openai_transcription_client.py (#17321)
Signed-off-by: zh Wang <rekind133@outlook.com>
2025-04-30 09:51:05 -07:00
0b7e701dd4 [Docs] Update optimization.md doc (#17482)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-30 09:34:02 -07:00
947f2f5375 [V1] Allow turning off pickle fallback in vllm.v1.serial_utils (#17427)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-30 16:10:54 +00:00
739e03b344 [Bugfix] Fixed mistral tokenizer path when pointing to file (#17457)
Signed-off-by: Pete Savage <psavage@redhat.com>
2025-04-30 08:08:37 -07:00
da4e7687b5 [Fix] Support passing args to logger (#17425)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-04-30 08:06:58 -07:00
39317cf42b [Docs] Add command for running mypy tests from CI (#17475)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-30 08:06:09 -07:00
2990cee95b [Feature] The Qwen3 reasoning parser supports guided decoding (#17466)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-30 07:48:21 -07:00
0be6d05b5e [V1][Metrics] add support for kv event publishing (#16750)
Signed-off-by: alec-flowers <aflowers@nvidia.com>
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Co-authored-by: Mark McLoughlin <markmc@redhat.com>
2025-04-30 07:44:45 -07:00
77073c77bc [Core] Prevent side-channel attacks via cache salting (#17045)
Signed-off-by: Marko Rosenmueller <5467316+dr75@users.noreply.github.com>
2025-04-30 20:27:21 +08:00
a7d5b016bd [TPU][V1][CI] Update regression test baseline for v6 CI (#17064)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-30 04:03:22 -07:00
d803786731 [V1][Bugfix]: vllm v1 verison metric num_gpu_blocks is None (#15755)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-30 18:20:39 +08:00
1534d389af [Misc] Remove deprecated files (#17447)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-30 01:52:19 -07:00
ece5a8b0b6 Make the _apply_rotary_emb compatible with dynamo (#17435) 2025-04-30 07:52:48 +00:00
54072f315f [MODEL ADDITION] Ovis2 Model Addition (#15826)
Signed-off-by: Marco <121761685+mlinmg@users.noreply.github.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-04-30 07:33:29 +00:00
be633fba0f [Bugfix] Fix AttributeError: 'State' object has no attribute 'engine_client' (#17434)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-30 00:11:04 -07:00
ed6cfb90c8 [Hardware][Intel GPU] Upgrade to torch 2.7 (#17444)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Qiming Zhang <qiming1.zhang@intel.com>
2025-04-30 00:03:58 -07:00
6ed9f6047e [Intel GPU] [CI]Fix XPU ci, setuptools >=80.0 have build issue (#17298)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com>
2025-04-29 22:54:10 -07:00
a44c4f1d2f Support LoRA for Mistral3 (#17428)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-29 21:10:30 -07:00
88fcf00dda Fix some speculative decode tests with tl.dot (#17371)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-04-29 19:41:02 -07:00
d1f569b1b9 Fix call to logger.info_once (#17416)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 19:39:18 -07:00
13698db634 Improve configs - ModelConfig (#17130)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-30 10:38:22 +08:00
2c4f59afc3 Update PyTorch to 2.7.0 (#16859) 2025-04-29 19:08:04 -07:00
1c2bc7ead0 Truncation control for embedding models (#14776)
Signed-off-by: Gabriel Marinho <gmarinho@ibm.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
2025-04-30 09:24:57 +08:00
4055130a85 [release] Always git fetch all to get latest tag on TPU release (#17322) 2025-04-29 17:52:11 -07:00
34120f5acd [V1][Feature] Enable Speculative Decoding with Structured Outputs (#14702)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
Signed-off-by: Benjamin Chislett <chislett.ben@gmail.com>
2025-04-30 00:02:10 +00:00
7489ec0bab Remove Bamba 9B from CI (#17407)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 21:10:31 +00:00
70788bdbdc [V1][Spec Decode] Apply torch.compile & cudagraph to EAGLE (#17211)
Signed-off-by: Bryan Lu <yuzhelu@amazon.com>
2025-04-29 21:10:00 +00:00
c9c1b59e59 Fix: Python package installation for opentelmetry (#17049)
Signed-off-by: Dilip Gowda Bhagavan <dilip.bhagavan@ibm.com>
2025-04-29 20:20:24 +00:00
0350809f3a Remove Falcon3 2x7B from CI (#17404)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 19:52:25 +00:00
a6977dbd15 Simplify (and fix) passing of guided decoding backend options (#17008)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 19:02:23 +00:00
2fa2a50bf9 [Bugfix] Fix Minicpm-O-int4 GPTQ model inference (#17397)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-29 18:21:42 +00:00
08e15defa9 [CI/Build] Add retry mechanism for add-apt-repository (#17107)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-29 10:40:52 -07:00
b37685afbb [CI] Uses Python 3.11 for TPU (#17359)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-04-29 17:39:16 +00:00
792595b59d [TPU][V1][CI] Replace python3 setup.py develop with standard pip install --e on TPU (#17374)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-29 10:36:48 -07:00
0c1c788312 [Doc][Typo] Fixing label in new model requests link in overview.md (#17400) 2025-04-29 10:29:48 -07:00
56d64fbe30 [Docs] Propose a deprecation policy for the project (#17063)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-29 10:29:44 -07:00
608968b7c5 Enabling multi-group kernel tests. (#17115)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-04-29 10:27:27 -07:00
06ffc7e1d3 [Misc][ROCm] Exclude cutlass_mla_decode for ROCm build (#17289)
Signed-off-by: Tianyuan Wu <Tianyuan.Wu@amd.com>
2025-04-29 10:26:42 -07:00
d3cf61b89b fix gemma3 results all zero (#17364)
Signed-off-by: mayuyuace <qiming1.zhang@intel.com>
2025-04-29 09:40:25 -07:00
a39203f99e [Bugfix] add qwen3 reasoning-parser fix content is None when disable … (#17369)
Signed-off-by: mofanke <mofanke@gmail.com>
2025-04-29 16:32:40 +00:00
24e6ad3f16 [V1] Remove num_input_tokens from attn_metadata (#17193)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-04-29 09:28:41 -07:00
2ef5d106bb Improve literal dataclass field conversion to argparse argument (#17391)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 16:25:08 +00:00
0ed27ef66c Fix: Spelling of inference (#17387) 2025-04-29 09:23:39 -07:00
900edfa8d4 Transformers backend tweaks (#17365)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 09:08:03 -07:00
88ad9ec6b2 [Frontend] Support chat_template_kwargs in LLM.chat (#17356)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-29 22:03:35 +08:00
40896bdf3f pre-commit autoupdate (#17380)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 06:46:55 -07:00
00ee37efa2 [Bugfix] Clean up MiniMax-VL and fix processing (#17354)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-29 20:42:16 +08:00
890f104cdf [Doc] Fix QWen3MOE info (#17381)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-29 12:38:32 +00:00
4a5e13149a Update docs requirements (#17379)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-29 11:35:47 +00:00
97cc8729f0 [Model] Ignore rotary embed load for Cohere model (#17319) 2025-04-29 00:30:40 -07:00
4464109219 [Build][Bugfix] Restrict setuptools version to <80 (#17320)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-29 00:17:23 -07:00
193e78e35d [Fix] Documentation spacing in compilation config help text (#17342)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
2025-04-29 00:16:17 -07:00
bdb2cddafc [Misc]Use a platform independent interface to obtain the device attributes (#17100) 2025-04-29 06:59:13 +00:00
ebb3930d28 [Misc] Move config fields to MultiModalConfig (#17343)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-29 06:37:21 +00:00
cde384cd92 [Model] support MiniMax-VL-01 model (#16328)
Signed-off-by: qingjun <qingjun@minimaxi.com>
2025-04-29 12:05:50 +08:00
96e06e3cb7 [Misc] Add a Jinja template to support Mistral3 function calling (#17195)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-28 19:53:44 -07:00
17eb306fcc [Bugfix] Add contiguous call inside rope kernel wrapper (#17091)
Signed-off-by: 苏政渊 <suzhengyuan@moonshot.cn>
Co-authored-by: 苏政渊 <suzhengyuan@moonshot.cn>
2025-04-28 19:24:07 -07:00
165cb56329 Ignore '<string>' filepath (#17330)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-28 19:23:29 -07:00
d6da8a8ff2 [Bugfix] Fix numel() downcast in fused_layernorm_dynamic_per_token_quant.cu (#17316) 2025-04-28 19:23:18 -07:00
b4ac4fa04d [model] make llama4 compatible with pure dense layers (#17315)
Signed-off-by: Lucia Fang <fanglu@fb.com>
2025-04-29 10:22:22 +08:00
e136000595 [V1][Spec Decode] Make Eagle model arch config driven (#17323) 2025-04-29 10:22:02 +08:00
86d9fc29cb implement Structural Tag with Guidance backend (#17333)
Signed-off-by: Michal Moskal <michal@moskal.me>
2025-04-29 02:21:32 +00:00
506475de5f [Optim] Compute multimodal hash only once per item (#17314)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-29 09:40:35 +08:00
cfe4532093 [Benchmark] Add single turn MTBench to Serving Bench (#17202) 2025-04-28 16:46:15 -07:00
8fc88d63f1 [Model] Add tuned triton fused_moe configs for Qwen3Moe (#17328)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-28 15:20:24 -07:00
6e74fd4945 Support loading transformers models with named parameters (#16868)
Signed-off-by: Alex <alexwu@character.ai>
2025-04-28 23:15:58 +01:00
dcbac4cb4b [Model] Qwen3 Dense FP8 Compat Fixes (#17318)
Signed-off-by: simon-mo <xmo@berkeley.edu>
2025-04-28 14:12:01 -07:00
ed2462030f [Bugfix] Fix moe weight losing all extra attrs after process_weights_after_loading. (#16854)
Signed-off-by: charlifu <charlifu@amd.com>
2025-04-28 21:05:07 +00:00
cc5befbced [BugFix] Fix cascade attention - RuntimeError: scheduler_metadata must have shape (metadata_size) (#17283)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-28 13:55:50 -07:00
2c89cd96a8 [Chore] cleanup license indicators in light of SPDX (#17259)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-04-28 19:43:52 +00:00
a0304dc504 [Security] Don't bind tcp zmq socket to all interfaces (#17197)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-28 10:08:20 -07:00
c7941cca18 Explicitly explain quant method override ordering and ensure all overrides are ordered (#17256)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-28 16:55:31 +00:00
b6dd32aa07 Make name of compressed-tensors quant method consistent across vLLM (#17255)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-28 16:28:13 +00:00
f94886946e Improve conversion from dataclass configs to argparse arguments (#17303)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-28 16:22:12 +00:00
72dfe4c74f [Docs] Add a security guide (#17230)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-28 15:12:17 +00:00
8b464d9660 [Misc] Clean up Qwen2.5-Omni code (#17301)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-28 06:20:45 -07:00
889ebb2638 [Misc] Minor typo/grammar in platforms/interface.py (#17307)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-28 05:45:42 -07:00
3ad986c28b [doc] update wrong model id (#17287)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-28 04:20:51 -07:00
344e193b7d [Bugfix] Add missing get_language_model to new MLLMs (#17300)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-28 04:09:57 -07:00
fb1c933ade Add missing class docstring for PromptAdapterConfig (#17302)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-28 04:06:59 -07:00
72c5b97231 Update tpu_worker.py 's typo (#17288) 2025-04-28 04:01:15 -07:00
fa93cd9f60 [Model] Add Granite Speech Support (#16246)
Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com>
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-28 10:05:00 +00:00
aec9674dbe [Core] Remove legacy input mapper/processor from V0 (#15686)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-28 15:38:48 +08:00
7fcc4223dc [Minor][Models] Pass partial_rotary_factor parameter to rope (#17266)
Signed-off-by: evian <eviantai@u.nus.edu>
Co-authored-by: evian <eviantai@u.nus.edu>
2025-04-28 04:28:59 +00:00
8262a3e23b [Misc] Validate stop_token_ids contents (#17268)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-28 03:54:05 +00:00
f211331c48 [Doc] small fix (#17277)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-28 03:53:35 +00:00
9053d0b134 [Doc] Fix wrong github link in LMCache examples (#17274)
Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
2025-04-28 03:09:11 +00:00
cb3f2d8d10 [Bugfix] Fix Mistral3 spatial merge error (#17270)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-27 19:40:05 -07:00
c12df53b60 [Bugfix] Fix cutlass dispatch for fp8/int8 to properly invoke M<=16 c… (#16751)
Signed-off-by: Ther-LF <2639852836@qq.com>
2025-04-27 19:38:42 -07:00
d1aeea7553 [Bugfix] Fix missing ARG in Dockerfile for arm64 platforms (#17261)
Signed-off-by: lkm-schulz <44176356+lkm-schulz@users.noreply.github.com>
2025-04-27 19:38:14 -07:00
d8bccde686 [BugFix] Fix vllm_flash_attn install issues (#17267)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
2025-04-27 17:27:56 -07:00
20e489eaa1 [V1][Spec Decode] Make eagle compatible with prefix caching. (#17137)
Signed-off-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2025-04-27 09:29:43 -07:00
4213475ec7 [Metrics] Fix minor inconsistencies in bucket progression (#17262)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-27 16:19:39 +00:00
d92879baf6 [doc] Add feature status legend (#17257)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-27 08:17:02 -07:00
690fe019f0 [Feature] support sequence parallelism using compilation pass (#16155)
Signed-off-by: cascade812 <cascade812@outlook.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-04-27 06:29:35 -07:00
ed7a29d9f8 [NVIDIA] Support Cutlass MLA for Blackwell GPUs (#16032)
Signed-off-by: kaixih <kaixih@nvidia.com>
2025-04-27 06:29:21 -07:00
756848e79e [Bugfix] Fix Lora Name Parsing (#17196)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-27 20:33:09 +08:00
18445edd0f [Misc] Change buckets of histogram_iteration_tokens to [1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8096] to represent number of tokens (#17033)
Signed-off-by: sfc-gh-zhwang <flex.wang@snowflake.com>
2025-04-27 12:30:53 +00:00
30215ca61f [MISC] Use string annotation types for class definitions (#17244)
Signed-off-by: Jade Zheng <zheng.shoujian@outlook.com>
2025-04-27 08:39:57 +00:00
838cedade7 [Bugfix] Get a specific type of layer from forward context (#17222)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-04-27 00:58:05 -07:00
4283a28c2f [Bugfix] Fix QWen2 VL multimodal mapping (#17240)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-27 05:53:23 +00:00
93a126fbc7 [Misc] Make cached tokenizer pickle-compatible (#17048)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-27 13:05:00 +08:00
8e4b351a0c [Kernel][Triton][FP8] Adding fp8 and variable length sequence support to Triton FAv2 kernel (#12591)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-04-27 00:35:08 +00:00
9869453c42 Update test_flash_attn.py (#17102)
Signed-off-by: ShuaibinLi <lishuaibin@live.cn>
2025-04-26 22:17:35 +00:00
3642c59aa8 [CI/Build] remove -t for run-lm-eval-gsm-hf-baseline.sh (#16271)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-26 18:25:05 +00:00
43eea2953b [Minor] Fix lint error in main branch (#17233)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-26 11:10:14 -07:00
de7eb10ce4 [Bugfix] Fix Qwen2.5-Omni M-RoPE position ids generation (#16878)
Signed-off-by: imkero <kerorek@outlook.com>
2025-04-26 10:41:35 -07:00
fd11a325b8 [MISC] rename interval to max_recent_requests (#14285) 2025-04-26 16:59:18 +00:00
4d17e20310 Disable the torch.compile cache checks when VLLM_DISABLE_COMPILE_CACHE=1 (#16573)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-04-26 09:17:58 -07:00
10fd1d7380 [Bugfix] fix error due to an uninitialized tokenizer when using skip_tokenizer_init with num_scheduler_steps (#9276)
Signed-off-by: changjun.lee <pord7457@gmail.com>
2025-04-26 11:51:17 -04:00
52b4f4a8d7 [Docs] Update structured output doc for V1 (#17135)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-26 15:12:18 +00:00
e782e0a170 [Chore] added stubs for vllm_flash_attn during development mode (#17228)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-04-26 07:45:26 -07:00
dc2ceca5c5 [BUGFIX] use random for NONE_HASH only when PYTHONHASHSEED not set (#17088)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-04-26 14:34:24 +00:00
f8acd01ff7 [V1] Add structural_tag support using xgrammar (#17085) 2025-04-26 14:06:37 +00:00
c48334d405 [Hardware][Intel-Gaudi] Update hpu-extension and update bucketing system for HPU device (#17186)
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
2025-04-26 05:55:14 -07:00
909fdaf152 [Bugfix] Fix standard models tests (#17217)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-26 02:26:41 -07:00
8c1c926d00 [Bugfix] Fix missing int type for -n in multi-image example (#17223) 2025-04-26 08:49:52 +00:00
df6f3ce883 [Core] Remove prompt string from engine core data structures (#17214)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-25 23:41:05 -07:00
513f074766 [CI/test] Fix Eagle Correctness Test (#17209)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-25 23:40:36 -07:00
b07bf83c7d [BugFix] Avoid race conditions in zero-copy tensor transmission (#17203)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-26 06:00:07 +00:00
53e8cf53a4 [V1][Metrics] Allow V1 AsyncLLM to use custom logger (#14661)
Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Mark McLoughlin <markmc@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-25 22:05:40 -07:00
54271bb766 [ROCm][Misc] Follow-ups for Skinny Gemms on ROCm. (#17011)
Signed-off-by: charlifu <charlifu@amd.com>
2025-04-25 22:05:10 -07:00
9e96f56efb Allocate kv_cache with stride order (#16605)
Signed-off-by: shuw <shuw@nvidia.com>
2025-04-25 22:03:31 -07:00
b278911229 [Minor][Models] Fix Return Types of Llama & Eagle (#17220)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-25 21:54:47 -07:00
7bd0c7745c [Doc] Minor fix for the vLLM TPU setup page (#17206)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-04-26 04:39:56 +00:00
1cf0719ebd [Minor][Spec Decode] Add use_eagle to SpeculativeConfig (#17213)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-25 21:08:15 -07:00
537d5ee025 [doc] add Anything LLM integration (#17216)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-25 21:03:23 -07:00
c8e5be35f7 [MISC][AMD] Add unused annotation to rocm kernel file (#17097)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-04-25 20:33:35 -07:00
a6e72e1e4f [Bugfix] [pytorch] Patch AOTAutogradCache._get_shape_env (#17142)
Signed-off-by: James Wu <jjwu@meta.com>
2025-04-26 11:28:20 +08:00
5e83a7277f [v1] [P/D] Adding LMCache KV connector for v1 (#16625) 2025-04-26 03:03:38 +00:00
68af5f6c5c [AMD][FP8][BugFix] Remove V1 check in arg_utils.py for FP8 since it is not necessary (#17215)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
2025-04-25 19:55:05 -07:00
8de2901fea [Bugfix] gemma[2,3] interleaved attention when sliding window is disabled (#17180)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-04-25 19:53:51 -07:00
c53e0730cb [Misc] Refine ray_serve_deepseek example (#17204)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-04-25 16:06:59 -07:00
a0e619e62a [V1][Spec Decode] EAGLE-3 Support (#16937)
Signed-off-by: Bryan Lu <yuzhelu@amazon.com>
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
Co-authored-by: Bryan Lu <yuzhelu@amazon.com>
2025-04-25 15:43:07 -07:00
70116459c3 [BugFix][Frontend] Fix LLM.chat() tokenization (#16081)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-25 22:20:05 +00:00
65e262b93b Fix Python packaging edge cases (#17159)
Signed-off-by: Christian Heimes <christian@python.org>
2025-04-26 06:15:07 +08:00
43faa0461a [Bugfix] Fix hybrid model tests (#17182)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-25 15:14:37 -07:00
48cb2109b6 [V1] Move usage stats to worker and start logging TPU hardware (#16211) 2025-04-25 14:06:01 -06:00
a5450f11c9 [Security] Use safe serialization and fix zmq setup for mooncake pipe (#17192)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
Co-authored-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-04-25 16:53:23 +00:00
9d98ab5ec6 [Misc] Inline Molmo requirements (#17190)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-25 16:41:44 +00:00
df5c879527 [doc] update wrong hf model links (#17184)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-25 16:40:54 +00:00
423e9f1cbe Use Transformers helper get_text_config() instead of checking for text_config (#17105)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-25 08:47:35 -07:00
0bd7f8fca5 Bump Transformers to 4.51.3 (#17116)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-25 08:34:34 -07:00
d5615af9ae [Bugfix] Fix Mistral ChatCompletionRequest Body Exception (#16769)
Signed-off-by: Jasmond Loh <Jasmond.Loh@hotmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-25 07:26:30 -07:00
19dcc02a72 [Bugfix] Fix mistral model tests (#17181)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-25 06:03:34 -07:00
7feae92c1f [Doc] Move todo out of beam search docstring (#17183)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-25 04:44:58 -07:00
f851b84266 [Doc] Add two links to disagg_prefill.md (#17168)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-25 10:23:57 +00:00
fc966e9cc6 Only turn on FastIncrementalDetokenizer when tokenizers >= 0.21.1 (#17158) 2025-04-25 17:10:32 +08:00
ef19e67d2c [Doc] Add headings to improve gptqmodel.md (#17164)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-25 01:13:13 -07:00
a41351f363 [Quantization][FP8] Add support for FP8 models with input_scale for output projection and QK quantization (#15734)
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Co-authored-by: Luka Govedič <lgovedic@redhat.com>
2025-04-25 00:45:02 -07:00
6aae216b4e [Bugfix] remove fallback in guided_json (int range, patterns) (#16725)
Signed-off-by: csy1204 <josang1204@gmail.com>
Co-authored-by: 조상연[플레이스 AI] <sang-yeon.cho@navercorp.com>
2025-04-25 06:54:43 +00:00
b22980a1dc [Perf]Optimize rotary_emb implementation to use Triton operator for improved inference performance (#16457)
Signed-off-by: cynthieye <yexin93@qq.com>
Co-authored-by: MagnetoWang <magnetowang@outlook.com>
2025-04-25 14:52:28 +08:00
881f735827 [Misc] Benchmark Serving Script Support Appending Results (#17028)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-24 22:53:55 -07:00
2f54045508 [Bugfix][Misc] Use TritonPlaceholderModule to defensively import triton (#15099)
Signed-off-by: Mengqing Cao <cmq0113@163.com>
2025-04-24 22:51:02 -07:00
5aa6efb9a5 [Misc] Clean up redundant code in uniproc_executor.py (#16762)
Signed-off-by: Lifu Huang <lifu.hlf@gmail.com>
2025-04-24 22:49:30 -07:00
6ca0234478 Move missed SchedulerConfig args into scheduler config group in EngineArgs (#17131)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 22:48:53 -07:00
649818995f [Docs] Fix True->true in supported_models.md (#17141) 2025-04-25 04:20:04 +00:00
7a0a9da72b [Doc] V1 : Update LoRA status (#17133)
Signed-off-by: varun sundar rabindranath <vsundarr@redhat.com>
Co-authored-by: varun sundar rabindranath <vsundarr@redhat.com>
2025-04-24 20:17:22 -07:00
69bff9bc89 fix float16 support for kimi-vl (#17156)
Co-authored-by: zhouzaida <zhouzaida@msh.team>
2025-04-24 20:16:32 -07:00
41ca7eb491 [Attention] FA3 decode perf improvement - single mma warp group support for head dim 128 (#16864)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-24 20:12:21 -07:00
eef364723c [FEAT] [ROCm]: AITER Fused MOE V1 Support (#16752)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-04-25 11:06:50 +08:00
0d6e187e88 Use custom address for listening socket (#15988)
Signed-off-by: Jens Glaser <glaserj@ornl.gov>
2025-04-25 01:57:16 +00:00
9420a1fc30 Better error message for missing mistral params.json (#17132)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-24 23:43:08 +00:00
583e900996 [Misc] Add example to run DeepSeek with Ray Serve LLM (#17134)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-04-24 22:25:21 +00:00
05e1fbfc52 Add chat template for Llama 4 models (#16428)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-04-24 20:19:36 +00:00
fe92176321 Add collective_rpc to llm engine (#16999)
Signed-off-by: Yinghai Lu <yinghai@thinkingmachines.ai>
2025-04-24 20:16:52 +00:00
6d0df0ebeb [Docs] Generate correct github links for decorated functions (#17125)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-24 10:39:43 -07:00
0fa939e2d1 Improve configs - LoRAConfig + PromptAdapterConfig (#16980)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 10:29:34 -07:00
0422ce109f Add :markdownhelp: to EngineArgs docs so markdown docstrings render properly (#17124)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 10:28:45 -07:00
47bdee409c Molmo Requirements (#17026)
Signed-off-by: Eyshika Agarwal <eyshikaengineer@gmail.com>
Signed-off-by: eyshika <eyshikaengineer@gmail.com>
2025-04-24 10:08:37 -07:00
49f189439d existing torch installation pip command fix for docs (#17059) 2025-04-24 10:07:21 -07:00
5adf6f6b7f Updating builkite job for IBM Power (#17111)
Signed-off-by: Aaruni Aggarwal <aaruniagg@gmail.com>
2025-04-24 10:06:17 -07:00
4115f19958 [CI] Add automation for the tool-calling github label (#17118)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-24 09:22:00 -07:00
340d7b1b21 [V1][Spec Decoding] Add num_drafts and num_accepted_tokens_per_position metrics (#16665)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-04-24 08:57:40 -07:00
1bcbcbf574 [Misc] refactor example series - structured outputs (#17040)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-24 07:49:48 -07:00
82e43b2d7e Add missing rocm_skinny_gemms kernel test to CI (#17060)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-24 07:49:37 -07:00
67309a1cb5 [Frontend] Using matryoshka_dimensions control the allowed output dimensions. (#16970) 2025-04-24 07:06:28 -07:00
b724afe343 [V1][Structured Output] Clear xgrammar compiler object when engine core shut down to avoid nanobind leaked warning (#16954)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-04-24 06:15:03 -07:00
21f4f1c9a4 Improve static type checking in LoRAModelRunnerMixin (#17104)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 06:14:47 -07:00
b0c1f6202d [Misc] Remove OLMo2 config copy (#17066)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-24 06:14:32 -07:00
c0dfd97519 [V1][PP] Optimization: continue scheduling prefill chunks (#17080)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-04-24 05:27:08 -07:00
a9138e85b1 Fix OOT registration test (#17099)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 04:44:12 -07:00
0a05ed57e6 Simplify TokenizerGroup (#16790)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-24 04:43:56 -07:00
14288d1332 Disable enforce_eager for V1 TPU sampler and structured output tests (#17016)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-24 02:50:09 -07:00
b411418ff0 [Chore] Remove Sampler from Model Code (#17084)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-24 02:49:33 -07:00
2bc0f72ae5 Add docs for runai_streamer_sharded (#17093)
Signed-off-by: Omer Dayan (SW-GPU) <omer@run.ai>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-24 01:03:21 -07:00
9c1244de57 [doc] update to hyperlink (#17096)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-24 00:58:08 -07:00
db2f8d915c [V1] Update structured output (#16812)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-23 23:57:17 -07:00
6167c0e5d2 [Bugfix][Core] add seq_id_to_seq_group clearing to avoid memory leak when s… (#16472)
Signed-off-by: 开哲 <kaizhe.zy@alibaba-inc.com>
Co-authored-by: 开哲 <kaizhe.zy@alibaba-inc.com>
2025-04-24 11:25:37 +08:00
ed2e464653 Addendum Fix to support FIPS enabled machines with MD5 hashing (#17043)
Signed-off-by: sydarb <areebsyed237@gmail.com>
2025-04-23 19:55:00 -07:00
2c8ed8ee48 More informative error when using Transformers backend (#16988)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 19:54:03 -07:00
ed50f46641 [Bugfix] Enable V1 usage stats (#16986)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-23 19:54:00 -07:00
46e678bcff [Minor] Use larger batch sizes for A100/B100/B200/MI300x (#17073)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-23 19:18:59 -07:00
6b2427f995 [Quantization]add prefix for commandA quantized model (#17017) 2025-04-23 17:32:40 -07:00
b07d741661 [CI/Build] workaround for CI build failure (#17070)
Signed-off-by: csy1204 <josang1204@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-04-23 16:14:18 -07:00
41fb013d29 [V1][Spec Decode] Always use argmax for sampling draft tokens (#16899)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-23 14:57:43 -07:00
32d4b669d0 [BugFix][V1] Fix int32 token index overflow when preparing input ids (#16806) 2025-04-23 12:12:35 -07:00
3cde34a4a4 [Frontend] Support guidance:no-additional-properties for compatibility with xgrammar (#15949)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2025-04-23 18:34:41 +00:00
bdb3660312 Use @property and private field for data_parallel_rank_local (#17053)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 08:50:08 -07:00
f3a21e9c68 CacheConfig.block_size should always be int when used (#17052)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 08:50:05 -07:00
8e630d680e Improve Transformers backend model loading QoL (#17039)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 07:33:51 -07:00
af869f6dff [CI] Update structured-output label automation (#17055)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-23 07:33:14 -07:00
53c0fa1e25 Ensure that pid passed to kill_process_tree is int for mypy (#17051)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-23 07:32:26 -07:00
f7912cba3d [Doc] Add top anchor and a note to quantization/bitblas.md (#17042)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-23 07:32:16 -07:00
6317a5174a Categorize tests/kernels/ based on kernel type (#16799)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-23 09:21:07 -04:00
aa72d9a4ea Mistral-format support for compressed-tensors (#16803)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-23 08:46:23 -04:00
ce17db8085 [CI] Run v1/test_serial_utils.py in CI (#16996)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-23 01:13:34 -07:00
8c87a9ad46 [Bugfix] Fix AssertionError: skip_special_tokens=False is not supported for Mistral tokenizers (#16964)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-23 07:24:09 +00:00
ec69124eb4 [Misc] Improve readability of get_open_port function. (#17024)
Signed-off-by: gitover22 <qidizou88@gmail.com>
2025-04-23 06:16:53 +00:00
d0da99fb70 [BugFix] llama4 fa3 fix - RuntimeError: scheduler_metadata must have shape (metadata_size) (#16998)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-22 21:49:24 -07:00
b2f195c429 [V1] Avoid socket errors during shutdown when requests are in in-flight (#16807)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-23 12:36:29 +08:00
047797ef90 [Bugfix] Triton FA function takes no keyword arguments (#16902)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-04-22 21:35:24 -07:00
eb8ef4224d [doc] add download path tips (#17013)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-23 04:06:30 +00:00
56a735261c [INTEL-HPU][v0] Port delayed sampling to upstream (#16949)
Signed-off-by: Michal Adamczyk <michal.adamczyk@intel.com>
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
Co-authored-by: Michal Adamczyk <madamczyk@habana.ai>
2025-04-22 20:14:11 -07:00
e1cf90e099 [misc] tune some env vars for GB200 (#16992)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-23 10:59:48 +08:00
6bc1e30ef9 Revert "[Misc] Add S3 environment variables for better support of MinIO." (#17021) 2025-04-22 19:22:29 -07:00
7e081ba7ca [BugFix] Revert ROCm Custom Paged Attention Env Flag Check (#17022)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-04-22 19:17:48 -07:00
1e013fa388 [V1][DP] More robust DP/EP dummy request coordination (#16277)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-22 19:12:15 -07:00
bc7c4d206b [Kernel][ROCM] Upstream prefix prefill speed up for vLLM V1 (#13305)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: root <root@banff-cyxtera-s73-5.ctr.dcgpu>
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: root <root@banff-cyxtera-s65-4.amd.com>
Signed-off-by: maleksan85 <maleksan@amd.com>
Signed-off-by: <>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: root <root@banff-cyxtera-s73-5.ctr.dcgpu>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: qli88 <qiang.li2@amd.com>
Co-authored-by: root <root@banff-cyxtera-s65-4.amd.com>
2025-04-22 19:11:56 -07:00
f67e9e9f22 add Dockerfile build vllm against torch nightly (#16936)
Signed-off-by: Yang Wang <elainewy@meta.com>
2025-04-22 19:08:27 -07:00
36fe78769f [Bugfix] validate urls object for multimodal content parts (#16990)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-23 09:43:06 +08:00
83d933718c [Core][V1][TPU] Enable structured decoding on TPU V1 (#16499)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-04-22 18:05:23 -06:00
5175b884f7 [BugFix] Remove default multiproc executor collective_rpc timeout (#17000)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-22 23:27:14 +00:00
5536b30a4c Fencing Kernels Tests for enabling on AMD (#16929)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-04-22 09:32:40 -07:00
7f58fb9718 Add assertion for no objects while hashing hf_config (#16930)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-22 09:32:22 -07:00
30bc3e0f66 [FEAT][ROCm]: Support AITER MLA (#15893)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: qli88 <qiang.li2@amd.com>
2025-04-22 09:31:13 -07:00
f34410715f [frontend] enhance tool_calls type check (#16882)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-22 15:40:24 +00:00
68d4c33202 [Misc] Add S3 environment variables for better support of MinIO. (#16977)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-22 14:27:36 +00:00
f961d7f6ef [BugFix] Pass in correct VLLM config in FlashInfer backend (#13207) (#16973)
Signed-off-by: 苏政渊 <suzhengyuan@moonshot.cn>
Co-authored-by: 苏政渊 <suzhengyuan@moonshot.cn>
2025-04-22 06:44:10 -07:00
d059110498 Improve configs - SpeculativeConfig (#16971)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-22 12:55:36 +00:00
571e8dd65e [Bugfix] Fix distributed bug again in Qwen2.5-VL & Qwen2.5-Omni (#16974)
Signed-off-by: fyabc <suyang.fy@alibaba-inc.com>
2025-04-22 12:23:17 +00:00
4b91c927f6 [Misc] refactor example series (#16972)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-22 11:44:21 +00:00
0e237f0035 [FEAT][ROCm] Integrate Paged Attention Kernel from AITER (#15001)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
2025-04-22 02:46:28 -07:00
8f7bace7c3 [Doc] Improve documentation for multimodal CLI args (#16960)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-22 08:35:35 +00:00
e4d6144232 [BugFix] Fix incremental detokenization perf issue (#16963)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-22 08:16:19 +00:00
8d32dc603d [Kernel] Support Microsoft Runtime Kernel Lib for our Low Precision Computation - BitBLAS (#6036)
Signed-off-by: xinyuxiao <xinyuxiao2024@gmail.com>
Co-authored-by: xinyuxiao <xinyuxiao2024@gmail.com>
2025-04-22 09:01:36 +01:00
c4ab9f3e71 [V1] Remove pre-allocation for KV cache (#16941)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-22 00:52:18 -07:00
2689d5c027 [Model] Use autoweightloader for mamba (#16950)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
2025-04-22 07:48:15 +00:00
acba33a0f1 [Bugfix] Fix the issue where llm.generate cannot be called repeatedly after setting GuidedDecodingParams (#16767)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-04-22 06:02:20 +00:00
a114bf20a3 [Perf] Optimize _update_states for GPU model runner (#16910)
Signed-off-by: snowcharm <snowcharmqq@gmail.com>
2025-04-22 14:01:54 +08:00
3097ce3a32 [Doc] Update ai_accelerator/hpu-gaudi.inc.md (#16956)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-22 05:33:27 +00:00
d6da9322c8 [Bugfix] Fix f-string for Python 3.9-3.11 (#16962)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-21 21:45:55 -07:00
71ce44047f Support S3 Sharded loading with RunAI Model Streamer (#16317)
Signed-off-by: Omer Dayan (SW-GPU) <omer@run.ai>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-21 21:21:49 -07:00
188b7f9b8c [Performance][ROCm] Add skinny gemms for unquantized linear on ROCm (#15830)
Signed-off-by: charlifu <charlifu@amd.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
2025-04-21 20:46:22 -07:00
b9b4746950 [V1] Remove additional_config check (#16710)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-04-21 20:45:27 -07:00
7b8a2ab76f [Kernel] Add expert_map support to Cutlass FP8 MOE (#16861)
Signed-off-by: varun sundar rabindranath <vsundarr@redhat.com>
Co-authored-by: varun sundar rabindranath <vsundarr@redhat.com>
2025-04-21 20:44:32 -07:00
c9acbf1141 [Misc] Remove the chunked prefill warning for LoRA (#16925)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-21 20:44:24 -07:00
5b794cae8d [ROCm] Add aiter tkw1 kernel for Llama4 fp8 (#16727)
Signed-off-by: kliuae <kuanfu.liu@embeddedllm.com>
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
Co-authored-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-04-21 20:42:34 -07:00
0e4254492f [Bugfix]: fix issue with n>1 sampling on v1 requests overriding each other (#16863)
Signed-off-by: Jeffrey Li <jeffrey.dot.li@gmail.com>
2025-04-22 11:40:19 +08:00
1311913f55 [BugFix][Spec Decode] No in-place update to draft probs (#16952)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-21 19:54:19 -07:00
29f395c97c [Doc] Remove unnecessary V1 flag (#16924)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-21 21:04:38 -04:00
fa3bba2a53 [TPU][V1] Enable Top-P (#16843)
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-22 00:46:07 +00:00
986537f1c3 [V1] V1 FlashInfer Attention (#16684)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Aurick Qiao <qiao@aurick.net>
2025-04-22 00:38:41 +00:00
210207525e [TPU][V1] Capture multimodal encoder during model compilation (#15051)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Siyuan Liu <lsiyuan@google.com>
2025-04-21 18:36:59 -06:00
71eda0bb76 Update Qwen1.5-MoE-W4A16-compressed-tensors.yaml (#16946) 2025-04-21 18:35:32 -06:00
471fe65630 [TPU][V1] Implicitly adjust page size when there's SMEM OOM (#16871)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-21 15:43:13 -06:00
3a0fba5cf4 [V1][Spec Decode] Handle draft tokens beyond max_model_len (#16087)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-21 12:38:50 -07:00
299ebb62b2 [Core] Speed up decode by remove synchronizing operation in sampler (#16436)
Signed-off-by: Chanh Nguyen <cnguyen@linkedin.com>
Co-authored-by: Chanh Nguyen <cnguyen@linkedin.com>
2025-04-21 18:18:22 +00:00
f728ab8e35 [Doc] mention how to install in CPU editable mode (#16923)
Signed-off-by: David Xia <david@davidxia.com>
2025-04-21 17:45:51 +00:00
63e26fff78 [doc] install required python3-dev apt package (#16888)
Signed-off-by: David Xia <david@davidxia.com>
2025-04-21 16:15:18 +00:00
fe3462c774 [XPU][Bugfix] minor fix for XPU (#15591)
Signed-off-by: yan ma <yan.ma@intel.com>
2025-04-22 00:02:57 +08:00
3b34fd5273 Raise error for data-parallel with benchmark_throughput (#16737)
Signed-off-by: Kartik Ramesh <kartikx2000@gmail.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-04-21 23:51:43 +08:00
55d6d3fdb8 [Bugfix] Fix GLM rotary_dim issue and support v1 (#16912)
Signed-off-by: isotr0py <2037008807@qq.com>
2025-04-21 14:26:34 +00:00
7272bfae77 [Misc] Refactor platform to get device specific stream and event (#14411)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-04-21 21:25:49 +08:00
d9ac9e3dc5 [Misc] fix collect_env version parse (#15267)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-04-21 20:29:40 +08:00
d41faaf9df Restore buffers when wake up from level 2 sleep (#16564) (#16889)
Signed-off-by: Han <zh950713@gmail.com>
2025-04-21 20:18:28 +08:00
b34f33438a [Doc] Split dummy_processor_inputs() in Multimodal Docs (#16915)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-21 11:10:01 +00:00
26c0406555 [Bugfix] Fix distributed bug in Qwen2.5-VL & Qwen2.5-Omni (#16907) 2025-04-21 10:25:21 +00:00
4c41278b77 [CI/CD][V1] Add spec decode tests to CI (#16900)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-20 22:37:16 -07:00
bb3605db85 [Bugfix] Fix v1/spec_decode/test_ngram.py (#16895)
Signed-off-by: qizixi <qizixi@meta.com>
2025-04-20 20:54:29 -07:00
fe742aef5a [easy] Pass compile_fx only the config patches (#16845)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-20 12:25:19 +08:00
4b07d36891 Improve configs - CacheConfig (#16835)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-20 12:25:04 +08:00
87aaadef73 Serialize tensors using int8 views (#16866)
Signed-off-by: Staszek Pasko <staszek@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-19 10:28:34 -07:00
682e0b6d2f Log how much time loading a compiled artifact takes (#16848)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-19 16:50:46 +00:00
d6195a748b [doc] update hyperlink (#16877)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-19 16:40:38 +00:00
205d84aaa9 [VLM] Clean up models (#16873)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-19 12:13:06 +00:00
5124f5bf51 [Model] Qwen2.5-Omni Cleanup (#16872) 2025-04-19 09:37:02 +00:00
83f3c3bd91 [Model] Refactor Phi-4-multimodal to use merged processor and support V1 (#15477)
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-19 02:26:11 -07:00
d9737ca1c6 [V1][Misc] stop update prefix cache stats when logs_stats is disabled (#16460)
Signed-off-by: vie-serendipity <2733147505@qq.com>
2025-04-19 02:25:19 -07:00
9d4ca19d50 [Misc] Benchmarks for audio models (#16505)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-19 02:24:14 -07:00
2ef0dc53b8 [Frontend] Add sampling params to v1/audio/transcriptions endpoint (#16591)
Signed-off-by: Jannis Schönleber <joennlae@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Jannis Schönleber <joennlae@gmail.com>
2025-04-19 07:03:54 +00:00
1d4680fad2 [rocm][MI300] llama4 maverick fp8 moe config tp8 (#16847)
Signed-off-by: Divakar Verma <divakar.verma@amd.com>
2025-04-19 06:21:43 +00:00
2c1bd848a6 [Model][VLM] Add Qwen2.5-Omni model support (thinker only) (#15130)
Signed-off-by: fyabc <suyang.fy@alibaba-inc.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Xiong Wang <wangxiongts@163.com>
2025-04-18 23:14:36 -07:00
5c9121203c [release] Publish neuron docker image (#16733)
Signed-off-by: omrishiv <327609+omrishiv@users.noreply.github.com>
2025-04-18 17:11:25 -07:00
490b1698a5 [Doc] Updated Llama section in tool calling docs to have llama 3.2 config info (#16857)
Signed-off-by: jmho <jaylenho734@gmail.com>
2025-04-18 23:28:53 +00:00
5a5e29de88 [Misc] refactor examples series - Chat Completion Client With Tools (#16829)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-18 23:24:42 +00:00
3d3ab3689f [New Model]: Snowflake Arctic Embed (Family) (#16649) 2025-04-18 08:11:57 -07:00
686623c5e7 Fix nullable_kvs fallback (#16837)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-18 05:58:39 -07:00
aadb656562 [Misc] Clean up Kimi-VL (#16833)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-18 05:15:09 -07:00
87e067de41 [Model] use AutoWeightsLoader for BigCode, GPT-J (#16823)
Signed-off-by: Jonghyun Choe <andy.choe729@gmail.com>
2025-04-18 10:42:41 +00:00
26507f8973 [Docs] Fix a link and grammar issue in production-stack.md (#16809)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-18 06:42:58 +00:00
9c1d5b456d [Doc] add podman setup instructions for official image (#16796)
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-04-18 06:10:49 +00:00
e31045f95c [Bugfix] fix pp for llama4 (#16746)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-04-18 13:51:30 +08:00
aaec845f8e [ROCm] [Attention] Cleanup ROCm output passing (#16431)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
2025-04-18 05:46:45 +00:00
7bdfd29a35 [Misc] add collect_env to cli and docker image (#16759)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-17 22:13:35 -07:00
e78587a64c Improve-mm-and-pooler-and-decoding-configs (#16789)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-17 22:13:32 -07:00
7eb4255628 [BugFix] Accuracy fix for llama4 int4 - improperly casted scales (#16801)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-17 22:13:29 -07:00
6a0f547561 Add hardware print to TPU V1 test (#16792) 2025-04-17 22:13:26 -07:00
30ed81b7ca [V1][Structured Output] Minor modification to _validate_structured_output() (#16748)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-04-18 13:12:54 +08:00
7a4a5de729 [Misc] Update outdated note: LMCache now supports chunked prefill (#16697)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-18 05:12:42 +00:00
c16fb5dae8 [Doc] Improve help examples for --compilation-config (#16729)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-17 21:22:34 -07:00
e37073efd7 Add property-based testing for vLLM endpoints using an API defined by an OpenAPI 3.1 schema (#16721)
Signed-off-by: Tarun Kumar <takumar@redhat.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-17 21:08:27 -07:00
183dad7a85 [Attention] Update to lastest FA3 code (#13111)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-17 15:14:07 -07:00
3408e47159 [P/D][V1] KV Connector API V1 (#15960)
Signed-off-by: ApostaC <yihua98@uchicago.edu>
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Signed-off-by: remi <remi@mistral.ai>
Co-authored-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Rémi Delacourt <54138269+Flechman@users.noreply.github.com>
Co-authored-by: Tyler Michael Smith <tysmith@redhat.com>
2025-04-17 13:22:40 -07:00
0377b8310b [MLA] Simplification to batch P/D reordering (#16673)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-17 16:12:09 -04:00
e4755f7fac [V1][Metrics] Fix http metrics middleware (#15894) 2025-04-17 19:52:18 +00:00
92edf35826 [ROCM] enable aiter fused moe kernel for llama4 bf16 checkpoints (#16674) 2025-04-17 11:44:34 -07:00
eb5819b2d9 [V1][TPU] Enable Top K (#15489)
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Hyesoo Yang <hyeygit@gmail.com>
Co-authored-by: Hyesoo Yang <hyeygit@gmail.com>
2025-04-17 18:18:11 +00:00
5989f4684d [TPU][V1] Fix padding recompilation when max-num-batched-tokens is not even (#16726)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-17 18:09:57 +00:00
5125d72f02 [Model] use AutoWeightsLoader for olmoe,opt,orion,persimmon,phi3_small (#16548)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-17 17:48:31 +00:00
a018e555fd [Kernel] Add fp8_w8a8 fused MoE kernel tuning configs for DeepSeek V3/R1 on NVIDIA H20 (#16753)
Signed-off-by: ximing.wxm <ximing.wxm@antgroup.com>
Co-authored-by: ximing.wxm <ximing.wxm@antgroup.com>
2025-04-18 00:01:30 +08:00
6211b92273 [Bugfix]Fix index out of range error in api server log (#16787)
Signed-off-by: WangErXiao <863579016@qq.com>
2025-04-17 09:01:07 -07:00
05fcd1b430 [V1][Perf] Faster incremental detokenization (#15137)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-17 07:45:24 -07:00
7c02d6a137 [Doc] Changed explanation of generation_tokens_total and prompt_tokens_total counter type metrics to avoid confusion (#16784)
Signed-off-by: insukim1994 <insu.kim@moreh.io>
2025-04-17 14:10:08 +00:00
11c3b98491 [Doc] Document Matryoshka Representation Learning support (#16770) 2025-04-17 13:37:37 +00:00
dbe7f07001 [Doc] Make sure to update vLLM when installing latest code (#16781)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-17 06:53:31 -06:00
c69bf4ee06 fix: hyperlink (#16778)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-17 11:34:20 +00:00
d27ea94034 Improve configs - TokenizerPoolConfig + DeviceConfig (#16603)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-17 11:19:42 +00:00
99ed526101 [Misc] refactor examples series - lmcache (#16758)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-17 11:02:35 +00:00
207da28186 [Doc] Fix a 404 link in installation/cpu.md (#16773)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-04-17 10:46:21 +00:00
5b1aca2ae3 [Bugfix] Fix GLM4 model (#16618)
Signed-off-by: intervitens <intervitens@tutanota.com>
2025-04-17 03:35:07 -07:00
d8e557b5e5 [doc] add open-webui example (#16747)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-17 18:27:32 +08:00
61a44a0b22 [Doc] Add more tips to avoid OOM (#16765)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-17 09:54:34 +00:00
a6481525b8 [misc] ignore marlin_moe_wna16 local gen codes (#16760)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-17 17:15:14 +08:00
8cac35ba43 [Ray] Improve documentation on batch inference (#16609)
Signed-off-by: Richard Liaw <rliaw@berkeley.edu>
2025-04-16 22:19:26 -07:00
9dbf7a2dc1 [V1] Remove log noise when idle (#16735)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-16 21:34:08 -07:00
607029e515 [Bugfix] Revert max_prompt_len validation for decoder-only models. (#16741)
Signed-off-by: David Heineman <david@davidheineman.com>
2025-04-16 21:33:15 -07:00
cb072ce93b [Bugfix] Update Florence-2 tokenizer to make grounding tasks work (#16734)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-17 04:17:39 +00:00
95aca283b4 [rocm][V0] fix selection logic for custom PA in V0 (#16426)
Signed-off-by: Divakar Verma <divakar.verma@amd.com>
2025-04-16 19:52:11 -07:00
2b05b8ce69 [V1][Frontend] Improve Shutdown And Logs (#11737)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Signed-off-by: Andrew Feldman <afeldman@neuralmagic.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Andrew Feldman <afeldman@neuralmagic.com>
Co-authored-by: afeldman-nm <156691304+afeldman-nm@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-16 19:48:34 -07:00
3c776dcefb Adding vllm buildkite job for IBM Power (#16679)
Signed-off-by: Aaruni Aggarwal <aaruniagg@gmail.com>
2025-04-17 10:47:47 +08:00
2cbd4d2999 [V1][Spec Dec Bug Fix] Respect Spec Dec Method Specification (#16636)
Signed-off-by: Bryan Lu <yuzhelu@amazon.com>
2025-04-16 19:47:26 -07:00
3092375e27 [V1][Performance] Implement custom serializaton for MultiModalKwargs [Rebased] (#16432)
Signed-off-by: Staszek Pasko <staszek@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-16 19:28:32 -07:00
3cd91dc955 Help user create custom model for Transformers backend remote code models (#16719)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-17 01:05:59 +00:00
8a7368e069 [Misc] Remove redundant comment (#16703)
Signed-off-by: Jade Zheng <zheng.shoujian@outlook.com>
2025-04-17 00:44:52 +00:00
93e561ec4d Improve error for structured output backend selection (#16717)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-17 00:35:35 +00:00
e1b004839a [Hardware] Add processor inputs to platform validation (#16680)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-04-16 09:28:42 -07:00
ee378f3d49 [Model] support modernbert (#16648)
Signed-off-by: 唯勤 <xsank.mz@alibaba-inc.com>
Co-authored-by: 唯勤 <xsank.mz@alibaba-inc.com>
2025-04-16 05:30:15 -07:00
e82ee40de3 [Bugfix][Kernel] fix potential cuda graph broken for merge_attn_states kernel (#16693)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-16 03:31:39 -07:00
facbe2a114 [Doc] Improve OOM troubleshooting (#16704)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-16 18:29:48 +08:00
7168920491 [Misc] refactor examples series (#16708)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-16 10:16:36 +00:00
21378a2323 [CI] Cleanup additional_dependencies: [toml] for pre-commit yapf hook (#16405)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-04-16 10:05:31 +00:00
976711d9db [V1][Structured Output] Move xgrammar related utils to backend_xgrammar.py (#16578)
Signed-off-by: shen-shanshan <467638484@qq.com>
2025-04-16 17:01:36 +08:00
44fa4d556c [ROCM] Bind triton version to 3.2 in requirements-built.txt (#16664)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
2025-04-16 14:05:28 +08:00
3ac98edcb1 [Feature] add model aware kv ops helper (#16020)
Signed-off-by: billishyahao <bill.he@amd.com>
2025-04-15 23:00:43 -07:00
966c742ed2 Disable remote caching when calling compile_fx (#16611)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-15 22:18:28 -07:00
0d7d05f4b6 [Misc] Modify LRUCache touch (#16689)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-16 04:51:38 +00:00
96bb8aa68b [Bugfix] fix gpu docker image mis benchmarks dir (#16628)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-15 21:21:14 -07:00
3badb0213b [Model] Add PLaMo2 (#14323)
Signed-off-by: Shinichi Hemmi <50256998+Alnusjaponica@users.noreply.github.com>
Signed-off-by: shemmi <shemmi@preferred.jp>
Co-authored-by: Kento Nozawa <nzw0301@preferred.jp>
Co-authored-by: Hiroaki Mikami <mhiroaki@preferred.jp>
Co-authored-by: Calvin Metzger <metzger@preferred.jp>
2025-04-15 19:31:30 -07:00
fdcb850f14 [Misc] Enable vLLM to Dynamically Load LoRA from a Remote Server (#10546)
Signed-off-by: Angky William <angkywilliam@Angkys-MacBook-Pro.local>
Co-authored-by: Angky William <angkywilliam@Angkys-MacBook-Pro.local>
2025-04-15 22:31:38 +00:00
54a66e5fee [Misc] Update compressed-tensors WNA16 to support zero-points (#14211) 2025-04-15 07:33:51 -06:00
280d62b8a2 [Kernel] Remove redundant Exp calculations (#16123)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-15 12:58:37 +00:00
1666e66443 Add "/server_info" endpoint in api_server to retrieve the vllm_config.  (#16572)
Signed-off-by: Xihui Cang <xihuicang@gmail.com>
2025-04-15 11:50:38 +00:00
1575c1701a [CI/Build] Fix LoRA OOM (#16624)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-15 16:38:19 +08:00
6ae996a873 [Misc] refactor argument parsing in examples (#16635)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-15 08:05:30 +00:00
b590adfdc1 Fix vLLM x torch.compile config caching (#16491)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-14 23:11:11 -07:00
b4fe16c75b Add vllm bench [latency, throughput] CLI commands (#16508)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-14 23:10:35 -07:00
bc5dd4f669 [Bugfix] Fix broken GritLM model and tests (missing pooling_metadata) (#16631)
Signed-off-by: Pooya Davoodi <pooya.davoodi@parasail.io>
2025-04-14 23:09:58 -07:00
dbb036cf61 [Bugfix] Fix tests/kernels/test_mamba_ssm_ssd.py (#16623)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-04-15 05:35:38 +00:00
70e7ed841d [BugFix]: Update minimum pyzmq version (#16549)
Signed-off-by: Taneem Ibrahim <taneem.ibrahim@gmail.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2025-04-14 20:06:03 -07:00
d06ba4ed3f [Kernel] moe wna16 marlin kernel (#14447)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-14 20:05:22 -07:00
6b40996ae8 [Core][Bugfix] Fix Offline MM Beam Search (#16390)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-04-15 10:33:02 +08:00
d2020acac7 config check sleep mode support oot platforms (#16562) 2025-04-14 16:31:50 -07:00
1eb3c2ed48 [DOC][TPU] Add core idea about avoiding recompilation after warmup (#16614)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-14 21:56:06 +00:00
c64ee87267 [Hardware][TPU] Add torchvision to tpu dependency file (#16616)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-04-14 17:50:46 -04:00
b1308b84a3 [Model][VLM] Add Kimi-VL model support (#16387)
Signed-off-by: courage17340 <courage17340@163.com>
2025-04-14 21:41:48 +00:00
7b5ecf79bd s390x: Fix PyArrow build and add CPU test script for Buildkite CI (#16036)
Signed-off-by: Nishan Acharya <Nishan.Acharya@ibm.com>
2025-04-14 10:55:32 -07:00
9883a18859 Fix triton install condition on CPU (#16600)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-14 17:06:01 +00:00
b3f2fddd17 [TPU][V1] Fix exponential padding when max-num-batched-tokens is not a power of 2 (#16596)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-14 17:01:05 +00:00
aa29841ede [Bugfix] Multi-modal caches not acting like LRU caches (#16593)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-14 09:24:16 -07:00
6bf27affb6 [fix]: Dockerfile.ppc64le fixes for opencv-python and hf-xet (#16048)
Signed-off-by: Md. Shafi Hussain <Md.Shafi.Hussain@ibm.com>
2025-04-14 17:08:39 +01:00
1dd23386ec [Misc] Update usage with mooncake lib for kv transfer (#16523)
Signed-off-by: Shangming Cai <caishangming@linux.alibaba.com>
2025-04-14 11:31:37 +00:00
7cbfc10943 [Misc] refactor examples (#16563)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-14 09:59:15 +00:00
ce4ddd2d1a [Misc] remove warning if triton>=3.2.0 (#16553)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-14 02:39:47 -07:00
e51929ebca Improve configs - SchedulerConfig (#16533)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-14 17:24:16 +08:00
dc1b4a6f13 [Core][V0] Enable regex support with xgrammar (#13228)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-14 10:13:38 +08:00
63d2705edb [Benchmark][Bugfix] Fix SonnetDataset default values in benchmark_throughput.py (#16556) 2025-04-13 17:20:26 -07:00
d085a44082 Enable PTPC FP8 for CompressedTensorsW8A8Fp8MoEMethod (triton fused_moe) (#16537)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-13 14:55:18 +00:00
f49e5aff11 [V1][Spec Decode] KV cache slots for eagle heads (#16370)
Signed-off-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2025-04-12 19:42:51 -07:00
6c11ecf8d3 [Bugfix] Validate logit biases to prevent out of vocab ids crashing engine (#16529)
Signed-off-by: Ryan McConville <ryan@ryanmcconville.com>
2025-04-12 20:19:19 +00:00
93e5f3c5fb [Perf] Optimize Preparing Inputs for GPU Model Runner (#16484)
Signed-off-by: snowcharm <snowcharmqq@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-12 22:54:37 +08:00
70363bccfa Fix syntaxWarning: invalid escape sequence '\s' (#16532)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-04-12 14:39:42 +00:00
3cdc57669f [Misc] Delete redundant code (#16530)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-04-12 11:21:37 +00:00
68bb122eb4 [MISC] Make GroupCoordinator compatible with out-of-tree devices (#16464)
Signed-off-by: hzji210@gmail.com <hzji210@gmail.com>
2025-04-12 09:20:25 +00:00
d9fc8cd9da [V1] Enable multi-input by default (#15799)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-12 08:52:39 +00:00
f069f3ea74 [Misc] Openai transcription client example use same Whisper model (#16487)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-12 07:27:03 +00:00
c5bc0e7fcc [Misc] Update chat utils tests (#16520)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-12 06:48:43 +00:00
4a3a518722 fix: spelling (#16466)
Signed-off-by: Tianer Zhou <ezhoureal@gmail.com>
2025-04-11 23:24:22 -07:00
fbf722c6e6 [Frontend] support matryoshka representation / support embedding API dimensions (#16331) 2025-04-11 23:23:10 -07:00
e92d7085bf [Feature][V1] Add xgrammar to support minLength, maxLength with test (#16516)
Signed-off-by: Leon Seidel <leon.seidel@fau.de>
2025-04-11 23:22:07 -07:00
bd6028d6b0 Optimized topk for topk=1 (Llama-4) (#16512)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-12 14:21:08 +08:00
802329dee9 [Doc] Update Llama4 Model Names in Supported Models (#16509)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-04-12 02:53:10 +00:00
41cc883c29 [BugFix] Handle non-contiguous tensors properly when serializing (#16492)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-11 17:54:06 -07:00
57504a4bcf [CI][Bugfix] Add mistral_tool_use to Ci (#16517)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-11 17:52:38 -07:00
ed4792c990 [Doc] Fix link to vLLM blog (#16519)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-04-11 17:39:23 -07:00
87b836ba77 Bugfix for PixtralHF models without spatial_merge_size (#16513)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-11 23:32:22 +00:00
56c76c2e0e [Bugfix] clean up duplicated code (#16485)
Signed-off-by: Gogs <gogs@fake.local>
Co-authored-by: Gogs <gogs@fake.local>
2025-04-11 23:19:40 +00:00
c09632a66c Update openai_compatible_server.md (#16507)
Signed-off-by: Christian Sears <csears@redhat.com>
2025-04-11 22:54:58 +00:00
a3bf8d4a2b [Kernel] Add tuned FusedMoE kernel config for Llama4 Scout, TP=8 on H100 (#16488) 2025-04-12 06:26:55 +08:00
16eda8c43a [Frontend] Added chat templates for LLaMa4 pythonic tool calling (#16463)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
Co-authored-by: Kai Wu <kaiwu@meta.com>
2025-04-12 06:26:17 +08:00
cd77382ac1 Improve configs - LoadConfig (#16422)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-11 20:27:27 +00:00
71b9cde010 [Bugfix] handle alignment of encoder_seq_lens in mllama.py (#14784)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
2025-04-11 19:59:50 +00:00
5285589f37 [Doc] Document InternVL3 support (#16495)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-11 19:41:09 +00:00
f41647ee6b [Kernel] Support W8A8 channel-wise weights and per-token activations in triton fused_moe_kernel (#16366)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-11 17:54:08 +00:00
4d022cbc75 [TPU][V1] Make --disable_chunked_mm_input mandatory for serving MM models (#16483)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-11 17:06:14 +00:00
70de35a881 Fix erroneous "model doesn't support compile" warning (#16486)
Signed-off-by: rzou <zou3519@gmail.com>
2025-04-11 16:24:36 +00:00
34b2cf3b33 [Hardware][Intel-Gaudi] Multi-step scheduling implementation for HPU (#12779)
Signed-off-by: Tomasz Zielinski <tomasz.zielinski@intel.com>
2025-04-11 07:38:36 -07:00
9e90c9f73f [Bugfix] Fix bugs of running Quark quantized models (#16236)
Signed-off-by: chaow <chaow@amd.com>
2025-04-11 10:18:32 -04:00
e9528f6dc6 [Kernel] support merge_attn_states CUDA kernel, 3x speedup (#16173)
Signed-off-by: DefTruth <qiustudent_r@163.com>
2025-04-11 06:50:50 -06:00
51baa9c333 Don't install triton on ppc64le platform (#16470)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-11 10:11:00 +00:00
35e076b3a8 [Misc] update api_client example (#16459)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-11 10:05:40 +00:00
a26f59ccbc [Misc] Raise error for V1 not supporting Long LoRA. (#16415)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-11 01:51:20 -07:00
aa3b3d76e0 Enforce valid max_num_batched_tokens when disable_chunked_mm_input=True (#16447)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-11 08:09:52 +00:00
f7030df3be [Core][LoRA][1/N] Add LoRA for EncoderDecoderModelRunner (#15990)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-11 15:32:37 +08:00
905e91e9ac Revert "[Model] use AutoWeightsLoader for deepseek_v2, internlm2" (#16453) 2025-04-11 06:44:22 +00:00
f8f9c0ba62 [Bugfix] Don't set an upper bound on repetition penalty (#16403)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-04-11 14:19:40 +08:00
dda811021a [CPU][Bugfix] Fix CPU docker issues (#16454)
Signed-off-by: jiang.li <jiang1.li@intel.com>
2025-04-11 14:19:07 +08:00
93195146ea [Bugfix][VLM] Fix failing Phi-4-MM multi-images tests and add vision-speech test (#16424)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-11 04:57:16 +00:00
ed37599544 Update supported_hardware.md for TPU INT8 (#16437) 2025-04-11 12:28:07 +08:00
99ef59cf7f [Llama4] Enable attention temperature tuning by default for long context (>32k) (#16439)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-04-10 21:26:07 -07:00
d544d141ec update benchmark_serving_structured_output to include auto backend (#16438)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-04-11 12:25:52 +08:00
3e397a9484 check input length of sonnet samples (#16423)
Signed-off-by: alexey-belyakov <alexey.belyakov@intel.com>
2025-04-11 10:15:06 +08:00
WWW
268c325078 Fix range_ratio Bug in RandomDataset (#16126)
Signed-off-by: jadewang21 <jadewangcn@outlook.com>
2025-04-10 15:31:17 -07:00
3cc9af88ff [TPU][V1] Disable per-request seed/Generator (#16172)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-10 17:05:44 -04:00
7cd0bd7212 [Bugfix] Fix output token length check logic (#16419)
Signed-off-by: look <eeslook@163.com>
2025-04-10 20:16:48 +00:00
56d4aefa33 [VLM] Avoid unnecessary dummy multimodal data during processing (#16416)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-10 19:32:14 +00:00
dd143ef541 [V1] Zero-copy tensor/ndarray serialization/transmission (#13790)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-10 19:23:14 +00:00
daefed052c [Model] Reduce redundant computations in mamba2 blocks for Bamba-9B (#15423)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
2025-04-10 19:07:07 +00:00
5fbab20e02 [Bugfix] Fix bug when dataset is json (#15899)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-04-10 18:35:41 +00:00
e8224f3dca [V1][Spec Decode] Eagle Model loading (#16035)
Signed-off-by: LiuXiaoxuanPKU <lilyliupku@gmail.com>
2025-04-10 11:21:48 -07:00
9665313c39 [V1] Set structured output backend to auto by default (#15724)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-10 17:53:26 +00:00
0c54fc7273 Improve configs - ParallelConfig (#16332)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-10 17:34:37 +00:00
c1b57855ec [TPU][V1] Use language_model interface for getting text backbone in MM (#16410)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-10 17:32:04 +00:00
83b824c8b4 [VLM] Remove BaseProcessingInfo.get_mm_max_tokens_per_item (#16408)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-10 09:06:58 -07:00
7678fcd5b6 Fix the torch version parsing logic (#15857) 2025-04-10 07:37:47 -07:00
8661c0241d [CI] Add auto update workflow for Dockerfile graph (#11879)
Signed-off-by: wineandchord <guoqizhou19@gmail.com>
2025-04-10 13:43:05 +00:00
ce8d6b75fc [doc] update the wrong link (#16401)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-10 21:02:37 +08:00
61de3ef74b [Model] Remove image mm limit for LLaMa4 (#16365)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-04-10 09:36:27 +00:00
ec1f9c8c91 Update Numba to 0.61.2 (#16376)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-10 07:59:37 +00:00
65e09094c4 [doc] add download model tips (#16389)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-10 07:45:26 +00:00
c70cf0fe06 [Kernel] Use moe_wna16 kernel for compressed tensors wna16 moe models (#16038)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-10 15:08:47 +08:00
a5d11a54dc [Bugfix] Fix validation error for text-only Mllama 3.2 (#16377)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-10 14:19:42 +08:00
3d4c87758e [Misc] Update transformers version limits of multi-modal tests (#16381)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-09 23:03:33 -07:00
a9bd832fc5 [Model] use AutoWeightsLoader for deepseek_v2, internlm2 (#16383)
Signed-off-by: Aaron Ang <aaron.angyd@gmail.com>
2025-04-09 23:01:00 -07:00
417bcefbae fix sonnet dataset sample when prefix len is very small (#16379)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-04-10 05:35:07 +00:00
baada0e737 [Bugfix][TPU] Fix TPU validate_request (#16369)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-04-10 12:55:12 +08:00
82eb61dd4c [misc] use tqdm.auto where appropriate (#16290)
Signed-off-by: Benjamin Kitor <bkitor@gigaio.com>
2025-04-09 21:54:54 -07:00
0d4d06fe2f [CI][Bugfix] Pin triton version for CPU (#16384)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-04-10 04:35:00 +00:00
4aed0ca6a2 [bugfix] Avoid the time consumption caused by creating dummy videos. (#16371) 2025-04-10 04:30:05 +00:00
1621b25288 [TPU] Fix dummy loading OOM (#16372)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-10 04:06:16 +00:00
a564797151 [Model] use AutoWeightsLoader for granite, granitemoe, granitemoeshared, grok1, mixtral (#16325)
Signed-off-by: Aaron Ang <aaron.angyd@gmail.com>
2025-04-09 20:07:40 -07:00
1da6a09274 [Bugfix]: do not shutdown server if skip_special_use=False for MistralTokenizer (#14094)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-09 19:43:09 -07:00
1e44ffc3ff Add GLM-4-0414 support (#16338)
Signed-off-by: lvfei.lv <lvfei.lv@alibaba-inc.com>
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Signed-off-by: Lu Fang <fanglu@fb.com>
Signed-off-by: Ajay Vohra <ajayvohr@amazon.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
Co-authored-by: Accelerator1996 <lvfei.lv@alibaba-inc.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: yihong <zouzou0208@gmail.com>
Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com>
Co-authored-by: ajayvohra2005 <ajayvohr@amazon.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-10 09:19:42 +08:00
a454748544 [TPU][V1] Refine tpu_model_runner to mitigate future recompilation issues (#16275)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-09 18:51:51 -06:00
1bff42c4b7 [Misc] refactor Structured Outputs example (#16322)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-09 23:32:42 +00:00
cb391d85dc [Hardware] add platform-specific request validation api (#16291)
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
2025-04-09 12:50:01 -07:00
fee5b8d37f [Build/CI] Add tracing deps to vllm container image (#15224)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-09 19:14:06 +00:00
b2ce859bd2 Fix benchmark_throughput.py --backend=hf (#16352)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-09 19:09:28 +00:00
566f10a929 [CI]Fix hpu docker and numpy version for CI (#16355)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2025-04-09 17:52:26 +00:00
c3b5189137 [Bugfix] catch AssertionError in MistralTokenizer as ValueError (#16344)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-09 17:33:24 +00:00
a25866ac8d [Bugfix] Fix profiling.py (#16202)
Signed-off-by: zh Wang <rekind133@outlook.com>
2025-04-09 17:03:34 +00:00
098900d7c2 Revert "Update label-tpu mergify and remove removal bot" (#16350) 2025-04-09 07:59:36 -07:00
98d01d3ce2 [Bugfix][Frontend] respect provided default guided decoding backend (#15476)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-04-09 05:11:10 -07:00
d55244df31 [Model] Add SupportsMultiModal.get_language_model interface (#16007)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-09 04:12:54 -07:00
04149cce27 [BugFix] fix some typos found by typos. (#16314)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-09 03:43:59 -07:00
24834f4894 update neuron config (#16289)
Signed-off-by: Ajay Vohra <ajayvohr@amazon.com>
2025-04-09 03:43:22 -07:00
ec7da6fcf3 [BugFix] llama4 qknorm should be not shared across head (#16311)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-04-09 00:59:14 -07:00
819d548e8a [BugFix] logger is not callable (#16312)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-09 00:59:02 -07:00
477d2a8aa2 Update label-tpu mergify and remove removal bot (#16298) 2025-04-09 07:56:25 +00:00
e484e02857 [Bugfix] Avoid transferring cached multi-modal items from P0 to P1 (#16273)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-09 00:51:27 -07:00
24f6b9a713 [Misc] Fix test_sharded_state_loader.py(#16004) (#16005)
Signed-off-by: lvfei.lv <lvfei.lv@alibaba-inc.com>
2025-04-09 14:47:30 +08:00
9cdde47289 [BugFix] Fix fusion test and add them to CI (#16287)
Signed-off-by: luka <luka@neuralmagic.com>
2025-04-08 23:46:45 -07:00
b1eb4ca152 [TPU] Update PyTorch/XLA (#16288)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-09 14:46:32 +08:00
87b4ac56c2 [CI][Bugfix] Fix bad tolerance for test_batch_base64_embedding (#16221)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-09 04:14:46 +00:00
cb84e45ac7 [Core] Upgrade to xgrammar 0.1.18, add cache size limit (#16283)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-08 19:13:22 -07:00
4716377fbc [Feature] Estimate max-model-len use available KV cache memory (#16168)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-08 19:12:51 -07:00
4e9cf8c1dd [Bugfix] fix gettid method is not define (#16084)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-08 19:12:44 -07:00
2976dc27e9 [Bug] [ROCm] Fix Llama 4 Enablement Bug on ROCm: V0 ROCmFlashAttentionImpl and Triton Fused MoE bugs (#16198)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
Signed-off-by: kliuae <kuanfu.liu@embeddedllm.com>
Co-authored-by: Hongxia Yang <hongxia.yang@amd.com>
Co-authored-by: kliuae <kuanfu.liu@embeddedllm.com>
2025-04-08 19:12:34 -07:00
102bf967f0 [Model] Add smolvlm support (#16017)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-08 19:12:17 -07:00
1f4b09b525 Add support to modelopt quantization of Mixtral model (#15961)
Signed-off-by: Yue <yueshen@nvidia.com>
2025-04-09 01:53:31 +00:00
86c3369eb8 [CI/Build] Fix CI LoRA failure (#16270)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-09 09:13:56 +08:00
2755c34a8f [V1] Update structured output offline inference example (#15721)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-08 22:34:09 +00:00
db10422184 [Bugfix] fix deepseek fp16 scale bug (#14809)
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-08 16:56:09 -04:00
e1a2c699dd [BugFix] Fix Llama4 - Index Error When Single Request Near Max Context (#16209)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-04-08 18:56:51 +00:00
0115ccd5c0 Add warning that content below line in template will be removed (#16276)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-08 18:18:40 +00:00
40b4284fe3 [Bugfix] Handle process_weights_after_loading for QKVCrossParallelLinear (#15328)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-08 10:02:23 -07:00
4ebc0b9640 [Bugfix] Proper input validation for multi-modal encoder-decoder models (#16156)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-08 09:45:21 -07:00
dc96fd54c6 [Misc] Avoid stripping meaningful whitespace from nvidia-smi topo -m output in collect_env.py (#16272)
Signed-off-by: imkero <kerorek@outlook.com>
2025-04-08 16:08:09 +00:00
1f5d13ab9f [New Model]: jinaai/jina-embeddings-v3 (#16120) 2025-04-08 08:39:12 -07:00
90cb44eb02 Update to transformers==4.51.1 (#16257)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-08 06:53:39 -07:00
e11880deea [Bugfix] Remove triton do_bench fast_flush arg (#16256)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-04-08 13:51:06 +00:00
9351f91be9 [BugFix][ROCm] Fix GGUF MoE Dispatch Block_Dim for ROCm (#16247)
Signed-off-by: Tianyuan Wu <Tianyuan.Wu@amd.com>
2025-04-08 05:10:26 -07:00
5a1e1c8353 [Model] use AutoWeightsLoader for phimoe,qwen2_moe,qwen3_moe (#16203)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-08 04:05:47 -07:00
69ecaa7c79 [Misc] Add warning for multimodal data in LLM.beam_search (#16241)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-08 04:05:27 -07:00
7f00899ff7 [Misc] format and refactor some examples (#16252)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-08 10:42:32 +00:00
995e3d1f41 [Docs] Add Slides from Singapore Meetup (#16213)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-04-08 07:20:22 +00:00
b4ac449a83 [Misc] Merge the logs of pp layers partitions (#16225)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-04-08 00:18:15 -07:00
8e5314a468 [V1] Add disable_chunked_mm_input arg to disable partial mm input prefill (#15837)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-07 23:24:07 -07:00
87918e40c4 [torch.compile][TPU] Make @support_torch_compile work for XLA backend (#15782)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-04-08 14:23:53 +08:00
f6b32efb7f [Bugfix] Fix and reorganize broken GGUF tests and bump gguf version (#16194)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-08 13:38:13 +08:00
b99733d092 [Bugfix] Do not skip "empty" parts of chats that are parsable (#16219)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-08 05:14:15 +00:00
05a015d6a5 Add warning for Attention backends that do not support irope yet (#16212) 2025-04-08 03:59:26 +00:00
ad971af8c7 [Bugfix] fix use-ep bug to enable ep by dp/tp size > 1 (#16161) 2025-04-07 20:48:47 -07:00
f2ebb6f541 [V1] Scatter and gather placeholders in the model runner (#16076)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Jennifer Zhao <ai.jenniferzhao@gmail.com>
2025-04-08 10:43:41 +08:00
1d01211264 Update BASE_IMAGE to 2.22 release of Neuron (#16218) 2025-04-07 19:11:18 -07:00
f94ab12f79 [Misc] Update compressed-tensors to version 0.9.3 (#16196)
Signed-off-by: Miles Williams <42222518+mlsw@users.noreply.github.com>
2025-04-07 19:09:06 -07:00
a865bc1ca6 [core] do not send error across process (#16174)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-07 19:09:03 -07:00
21802c4b6d [ROCm][Bugfix][FP8] Make fp8 quant respect fused modules mapping (#16031)
Signed-off-by: mgoin <michael@neuralmagic.com>
2025-04-07 21:28:14 -04:00
652907b354 Torchao (#14231)
Signed-off-by: drisspg <drisspguessous@gmail.com>
2025-04-07 19:39:28 -04:00
24f1c01e0f [Bugfix][V0] XGrammar structured output supports Enum (#15878)
Signed-off-by: Leon Seidel <leon.seidel@fau.de>
2025-04-07 22:38:25 +00:00
fad6e2538e [Misc] add description attribute in CLI (#15921)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-07 22:30:35 +00:00
7f6d47c1a2 [V1][BugFix] Exit properly if engine core fails during startup (#16137)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-07 15:30:15 -07:00
3147586ebd [Bugfix] Fix guidance backend for Qwen models (#16210)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-04-07 22:15:43 +00:00
ed636d99ca [Misc] Move Llama 4 projector call into encoder execution (#16201) 2025-04-07 14:02:05 -07:00
1164 changed files with 75178 additions and 30048 deletions

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m deepseek-ai/DeepSeek-V2-Lite-Chat -b "auto" -l 1000 -f 5 -t 2
model_name: "deepseek-ai/DeepSeek-V2-Lite-Chat"
tasks:

View File

@ -1,3 +1,4 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5
model_name: "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform"
tasks:

View File

@ -1,3 +1,4 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-70B-Instruct -b 32 -l 250 -f 5
model_name: "meta-llama/Meta-Llama-3-70B-Instruct"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test -b 32 -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test"
tasks:

View File

@ -1,4 +1,5 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5 -t 1
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5
model_name: "meta-llama/Meta-Llama-3-8B-Instruct"
tasks:
- name: "gsm8k"

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
tasks:

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Llama-3.2-1B-Instruct-FP8 -b "auto" -l 1319 -f 5 -t 1
model_name: "RedHatAI/Llama-3.2-1B-Instruct-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.335
- name: "exact_match,flexible-extract"
value: 0.323
limit: 1319
num_fewshot: 5

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m mgoin/Minitron-4B-Base-FP8 -b auto -l 1000 -f 5 -t 1
model_name: "mgoin/Minitron-4B-Base-FP8"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic -b "auto" -l 250 -f 5 -t 8
model_name: "neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8 -b "auto" -l 250 -f 5 -t 4
model_name: "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"
tasks:

View File

@ -1,4 +1,5 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5 -t 4
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5
model_name: "mistralai/Mixtral-8x7B-Instruct-v0.1"
tasks:
- name: "gsm8k"

View File

@ -0,0 +1,12 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16 -b auto -l 1319 -f 5 -t 1
model_name: "nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.30
- name: "exact_match,flexible-extract"
value: 0.465
limit: 1319
num_fewshot: 5

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-FP8W8 -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-FP8W8"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
tasks:

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2-57B-A14B-Instruct -b "auto" -l 250 -f 5 -t 4
model_name: "Qwen/Qwen2-57B-A14B-Instruct"
tasks:

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2.5-1.5B-Instruct -b auto -l 1319 -f 5 -t 1
model_name: "Qwen/Qwen2.5-1.5B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.54
- name: "exact_match,flexible-extract"
value: 0.59
limit: 1319
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -b auto -l 1319 -f 5 -t 1
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.47
- name: "exact_match,flexible-extract"
value: 0.64
limit: 1319
num_fewshot: 5

View File

@ -1,3 +1,4 @@
# For vllm script, with -t option (tensor parallel size).
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM -b "auto" -t 2
model_name: "nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM"
tasks:

View File

@ -3,3 +3,4 @@ Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
Qwen2-57B-A14-Instruct.yaml
DeepSeek-V2-Lite-Chat.yaml
Meta-Llama-3-8B-QQQ.yaml

View File

@ -1,10 +1,6 @@
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
Qwen2.5-1.5B-Instruct.yaml
Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Minitron-4B-Base-FP8.yaml
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
Qwen2-1.5B-Instruct-FP8W8.yaml
Meta-Llama-3-8B-QQQ.yaml
Qwen2.5-VL-3B-Instruct-FP8-dynamic.yaml
Qwen1.5-MoE-W4A16-compressed-tensors.yaml

View File

@ -0,0 +1,39 @@
# SPDX-License-Identifier: Apache-2.0
from pathlib import Path
import pytest
def pytest_addoption(parser):
parser.addoption(
"--config-list-file",
action="store",
help="Path to the file listing model config YAMLs (one per line)")
parser.addoption("--tp-size",
action="store",
default="1",
help="Tensor parallel size to use for evaluation")
@pytest.fixture(scope="session")
def config_list_file(pytestconfig, config_dir):
rel_path = pytestconfig.getoption("--config-list-file")
return config_dir / rel_path
@pytest.fixture(scope="session")
def tp_size(pytestconfig):
return pytestconfig.getoption("--tp-size")
def pytest_generate_tests(metafunc):
if "config_filename" in metafunc.fixturenames:
rel_path = metafunc.config.getoption("--config-list-file")
config_list_file = Path(rel_path).resolve()
config_dir = config_list_file.parent
with open(config_list_file, encoding="utf-8") as f:
configs = [
config_dir / line.strip() for line in f
if line.strip() and not line.startswith("#")
]
metafunc.parametrize("config_filename", configs)

View File

@ -1,59 +0,0 @@
#!/bin/bash
usage() {
echo``
echo "Runs lm eval harness on GSM8k using vllm and compares to "
echo "precomputed baseline (measured by HF transformers.)"
echo
echo "usage: ${0} <options>"
echo
echo " -c - path to the test data config (e.g. configs/small-models.txt)"
echo " -t - tensor parallel size"
echo
}
SUCCESS=0
while getopts "c:t:" OPT; do
case ${OPT} in
c )
CONFIG="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
# Parse list of configs.
IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < "$CONFIG"
for MODEL_CONFIG in "${MODEL_CONFIGS[@]}"
do
LOCAL_SUCCESS=0
echo "=== RUNNING MODEL: $MODEL_CONFIG WITH TP SIZE: $TP_SIZE==="
export LM_EVAL_TEST_DATA_FILE=$PWD/configs/${MODEL_CONFIG}
export LM_EVAL_TP_SIZE=$TP_SIZE
pytest -s test_lm_eval_correctness.py || LOCAL_SUCCESS=$?
if [[ $LOCAL_SUCCESS == 0 ]]; then
echo "=== PASSED MODEL: ${MODEL_CONFIG} ==="
else
echo "=== FAILED MODEL: ${MODEL_CONFIG} ==="
fi
SUCCESS=$((SUCCESS + LOCAL_SUCCESS))
done
if [ "${SUCCESS}" -eq "0" ]; then
exit 0
else
exit 1
fi

View File

@ -3,35 +3,25 @@
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml
* export LM_EVAL_TEST_DATA_FILE=configs/Meta-Llama-3-70B-Instruct.yaml
* export LM_EVAL_TP_SIZE=4
* pytest -s test_lm_eval_correctness.py
pytest -s -v test_lm_eval_correctness.py \
--config-list-file=configs/models-small.txt \
--tp-size=1
"""
import os
from pathlib import Path
import lm_eval
import numpy
import pytest
import numpy as np
import yaml
RTOL = 0.05
TEST_DATA_FILE = os.environ.get(
"LM_EVAL_TEST_DATA_FILE",
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1)
RTOL = 0.08
def launch_lm_eval(eval_config):
def launch_lm_eval(eval_config, tp_size):
trust_remote_code = eval_config.get('trust_remote_code', False)
model_args = f"pretrained={eval_config['model_name']}," \
f"tensor_parallel_size={TP_SIZE}," \
f"tensor_parallel_size={tp_size}," \
f"enforce_eager=true," \
f"add_bos_token=true," \
f"trust_remote_code={trust_remote_code}"
results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
@ -39,22 +29,14 @@ def launch_lm_eval(eval_config):
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
batch_size="auto")
return results
def test_lm_eval_correctness():
eval_config = yaml.safe_load(
Path(TEST_DATA_FILE).read_text(encoding="utf-8"))
def test_lm_eval_correctness_param(config_filename, tp_size):
eval_config = yaml.safe_load(config_filename.read_text(encoding="utf-8"))
if eval_config[
"model_name"] == "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform": #noqa: E501
pytest.skip("FBGEMM is currently failing on main.")
results = launch_lm_eval(eval_config, tp_size)
# Launch eval requests.
results = launch_lm_eval(eval_config)
# Confirm scores match ground truth.
success = True
for task in eval_config["tasks"]:
for metric in task["metrics"]:
@ -62,8 +44,7 @@ def test_lm_eval_correctness():
measured_value = results["results"][task["name"]][metric["name"]]
print(f'{task["name"]} | {metric["name"]}: '
f'ground_truth={ground_truth} | measured={measured_value}')
success = success and numpy.isclose(
success = success and np.isclose(
ground_truth, measured_value, rtol=RTOL)
# Assert at the end, print all scores even on failure for debugging.
assert success

View File

@ -1,20 +1,20 @@
steps:
- label: "Build wheel - CUDA 12.4"
- label: "Build wheel - CUDA 12.8"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.1"
- label: "Build wheel - CUDA 12.6"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -48,7 +48,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Build and publish TPU release image"
@ -57,6 +57,8 @@ steps:
agents:
queue: tpu_queue_postmerge
commands:
- "yes | docker system prune -a"
- "git fetch --all"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f docker/Dockerfile.tpu ."
- "docker push vllm/vllm-tpu:nightly"
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
@ -86,3 +88,18 @@ steps:
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"
- block: "Build Neuron release image"
key: block-neuron-release-image-build
depends_on: ~
- label: "Build and publish Neuron release image"
depends_on: block-neuron-release-image-build
agents:
queue: neuron-postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"

View File

@ -75,30 +75,51 @@ HF_MOUNT="/root/.cache/huggingface"
commands=$@
echo "Commands:$commands"
#ignore certain kernels tests
if [[ $commands == *" kernels "* ]]; then
if [[ $commands == *" kernels/core"* ]]; then
commands="${commands} \
--ignore=kernels/test_attention_selector.py \
--ignore=kernels/test_blocksparse_attention.py \
--ignore=kernels/test_causal_conv1d.py \
--ignore=kernels/test_cutlass.py \
--ignore=kernels/test_encoder_decoder_attn.py \
--ignore=kernels/test_flash_attn.py \
--ignore=kernels/test_flashinfer.py \
--ignore=kernels/test_int8_quant.py \
--ignore=kernels/test_machete_gemm.py \
--ignore=kernels/test_mamba_ssm.py \
--ignore=kernels/test_marlin_gemm.py \
--ignore=kernels/test_moe.py \
--ignore=kernels/test_prefix_prefill.py \
--ignore=kernels/test_rand.py \
--ignore=kernels/test_sampler.py \
--ignore=kernels/test_cascade_flash_attn.py \
--ignore=kernels/test_mamba_mixer2.py \
--ignore=kernels/test_aqlm.py \
--ignore=kernels/test_machete_mm.py \
--ignore=kernels/test_mha_attn.py \
--ignore=kernels/test_block_fp8.py \
--ignore=kernels/test_permute_cols.py"
--ignore=kernels/core/test_fused_quant_layernorm.py \
--ignore=kernels/core/test_permute_cols.py"
fi
if [[ $commands == *" kernels/attention"* ]]; then
commands="${commands} \
--ignore=kernels/attention/stest_attention_selector.py \
--ignore=kernels/attention/test_blocksparse_attention.py \
--ignore=kernels/attention/test_encoder_decoder_attn.py \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/test_flash_attn.py \
--ignore=kernels/attention/test_flashinfer.py \
--ignore=kernels/attention/test_prefix_prefill.py \
--ignore=kernels/attention/test_cascade_flash_attn.py \
--ignore=kernels/attention/test_mha_attn.py \
--ignore=kernels/attention/test_lightning_attn.py \
--ignore=kernels/attention/test_attention.py"
fi
if [[ $commands == *" kernels/quantization"* ]]; then
commands="${commands} \
--ignore=kernels/quantization/test_int8_quant.py \
--ignore=kernels/quantization/test_aqlm.py \
--ignore=kernels/quantization/test_machete_mm.py \
--ignore=kernels/quantization/test_block_fp8.py \
--ignore=kernels/quantization/test_block_int8.py \
--ignore=kernels/quantization/test_marlin_gemm.py \
--ignore=kernels/quantization/test_cutlass_scaled_mm.py \
--ignore=kernels/quantization/test_int8_kernel.py"
fi
if [[ $commands == *" kernels/mamba"* ]]; then
commands="${commands} \
--ignore=kernels/mamba/test_mamba_mixer2.py \
--ignore=kernels/mamba/test_causal_conv1d.py \
--ignore=kernels/mamba/test_mamba_ssm_ssd.py"
fi
if [[ $commands == *" kernels/moe"* ]]; then
commands="${commands} \
--ignore=kernels/moe/test_moe.py \
--ignore=kernels/moe/test_cutlass_moe.py \
--ignore=kernels/moe/test_triton_moe_ptpc_fp8.py"
fi
#ignore certain Entrypoints/openai tests

View File

@ -5,10 +5,41 @@
set -ex
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; docker system prune -f; }
remove_docker_container() {
if [[ -n "$container_id" ]]; then
podman rm -f "$container_id" || true
fi
podman system prune -f
}
trap remove_docker_container EXIT
remove_docker_container
# Try building the docker image
docker build -t cpu-test -f docker/Dockerfile.ppc64le .
podman build -t cpu-test-ubi9-ppc -f docker/Dockerfile.ppc64le .
# Run the image
container_id=$(podman run -itd --entrypoint /bin/bash -v /tmp/:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN cpu-test-ubi9-ppc)
function cpu_tests() {
# offline inference
podman exec -it "$container_id" bash -c "
set -e
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
# Run basic model test
podman exec -it "$container_id" bash -c "
set -e
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
pip install sentence-transformers datamodel_code_generator
pytest -v -s tests/models/embedding/language/test_cls_models.py::test_classification_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/embedding/language/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]
pytest -v -s tests/models/encoder_decoder/language -m cpu_model"
}
# All of CPU tests are expected to be finished less than 40 mins.
export container_id
export -f cpu_tests
timeout 40m bash -c cpu_tests

View File

@ -0,0 +1,13 @@
#!/bin/bash
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# Setup cleanup
remove_docker_container() { docker rm -f cpu-test || true; docker system prune -f; }
trap remove_docker_container EXIT
remove_docker_container
# Try building the docker image
docker build -t cpu-test -f docker/Dockerfile.s390x .

View File

@ -1,6 +1,6 @@
#!/bin/bash
set -xue
set -xu
# Build the docker image.
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
@ -17,31 +17,87 @@ source /etc/environment
docker run --privileged --net host --shm-size=16G -it \
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
&& python3 -m pip install pytest \
&& python3 -m pip install pytest pytest-asyncio tpu-info \
&& python3 -m pip install lm_eval[api]==0.4.4 \
&& export VLLM_XLA_CACHE_PATH= \
&& export VLLM_USE_V1=1 \
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
&& echo TEST_0 \
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_perf.py \
&& echo TEST_1 \
&& pytest -v -s /workspace/vllm/tests/tpu/test_compilation.py \
&& echo TEST_2 \
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_basic.py \
&& echo TEST_3 \
&& pytest -v -s /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine \
&& echo TEST_4 \
&& pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
&& echo TEST_5 \
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
&& echo TEST_6 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py \
&& echo TEST_7 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py \
&& echo TEST_8 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py \
&& echo TEST_9 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py" \
&& echo HARDWARE \
&& tpu-info \
&& { \
echo TEST_0: Running test_perf.py; \
pytest -s -v /workspace/vllm/tests/tpu/test_perf.py; \
echo TEST_0_EXIT_CODE: \$?; \
} & \
&& { \
echo TEST_1: Running test_compilation.py; \
pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py; \
echo TEST_1_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_2: Running test_basic.py; \
pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py; \
echo TEST_2_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_3: Running test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine; \
echo TEST_3_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_4: Running test_quantization_accuracy.py; \
pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py; \
echo TEST_4_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_5: Running examples/offline_inference/tpu.py; \
python3 /workspace/vllm/examples/offline_inference/tpu.py; \
echo TEST_5_EXIT_CODE: \$?; \
} & \
{ \
echo TEST_6: Running test_tpu_model_runner.py; \
pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py; \
echo TEST_6_EXIT_CODE: \$?; \
} & \
&& { \
echo TEST_7: Running test_sampler.py; \
pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py; \
echo TEST_7_EXIT_CODE: \$?; \
} & \
&& { \
echo TEST_8: Running test_topk_topp_sampler.py; \
pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py; \
echo TEST_8_EXIT_CODE: \$?; \
} & \
&& { \
echo TEST_9: Running test_multimodal.py; \
pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py; \
echo TEST_9_EXIT_CODE: \$?; \
} & \
&& { \
echo TEST_10: Running test_pallas.py; \
pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py; \
echo TEST_10_EXIT_CODE: \$?; \
} & \
&& { \
echo TEST_11: Running test_struct_output_generate.py; \
pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py; \
echo TEST_11_EXIT_CODE: \$?; \
} & \
&& { \
echo TEST_12: Running test_moe_pallas.py; \
pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py; \
echo TEST_12_EXIT_CODE: \$?; \
} & \
# Disable the TPU LoRA tests until the feature is activated
# && { \
# echo TEST_13: Running test_moe_pallas.py; \
# pytest -s -v /workspace/vllm/tests/tpu/lora/; \
# echo TEST_13_EXIT_CODE: \$?; \
# } & \
wait \
&& echo 'All tests have attempted to run. Check logs for individual test statuses and exit codes.' \
"
# TODO: This test fails because it uses RANDOM_SEED sampling
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \

View File

@ -50,11 +50,11 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
else
# only upload index.html for cu124 wheels (default wheels)
# only upload index.html for cu128 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
fi
@ -66,12 +66,12 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
else
# only upload index.html for cu124 wheels (default wheels)
# only upload index.html for cu128 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
fi
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"

View File

@ -8,6 +8,7 @@
# Documentation
# label(str): the name of the test. emoji allowed.
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
# fast_check_only(bool): run this test on fastcheck pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
# command(str): the single command to run for tests. incompatible with commands.
@ -38,7 +39,7 @@ steps:
- pip install -r ../../requirements/docs.txt
- SPHINXOPTS=\"-W\" make html
# Check API reference (if it fails, you may have missing mock imports)
- grep \"sig sig-object py\" build/html/api/inference_params.html
- grep \"sig sig-object py\" build/html/api/vllm/vllm.sampling_params.html
- label: Async Engine, Inputs, Utils, Worker Test # 24min
source_file_dependencies:
@ -70,6 +71,7 @@ steps:
- label: Basic Correctness Test # 30min
#mirror_hardwares: [amd]
fast_check: true
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_basic_correctness
@ -104,6 +106,7 @@ steps:
- label: Entrypoints Test # 40min
working_dir: "/vllm-workspace/tests"
fast_check: true
torch_nightly: true
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
@ -118,7 +121,7 @@ steps:
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_openai_schema.py
- pytest -v -s entrypoints/test_chat_utils.py
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
@ -163,11 +166,6 @@ steps:
- tests/tracing
commands:
- pytest -v -s metrics
- "pip install \
'opentelemetry-sdk>=1.26.0,<1.27.0' \
'opentelemetry-api>=1.26.0,<1.27.0' \
'opentelemetry-exporter-otlp>=1.26.0,<1.27.0' \
'opentelemetry-semantic-conventions-ai>=0.4.1,<0.5.0'"
- pytest -v -s tracing
##### fast check tests #####
@ -210,6 +208,8 @@ steps:
- pytest -v -s v1/sample
- pytest -v -s v1/worker
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_stats.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
@ -292,7 +292,18 @@ steps:
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
parallelism: 4
- label: PyTorch Compilation Unit Tests
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_pass_manager.py
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- label: PyTorch Fullgraph Smoke Test # 9min
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
@ -301,24 +312,60 @@ steps:
# these tests need to be separated, cannot combine
- pytest -v -s compile/piecewise/test_simple.py
- pytest -v -s compile/piecewise/test_toy_llama.py
- pytest -v -s compile/test_pass_manager.py
- label: PyTorch Fullgraph Test # 18min
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Test %N # 1h each
# mirror_hardwares: [amd]
- label: Kernels Core Operation Test
mirror_hardwares: [amd]
source_file_dependencies:
- csrc/
- vllm/attention
- tests/kernels
- tests/kernels/core
commands:
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 4
- pytest -v -s kernels/core
- label: Kernels Attention Test %N
mirror_hardwares: [amd]
source_file_dependencies:
- csrc/attention/
- vllm/attention
- vllm/v1/attention
- tests/kernels/attention
commands:
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels Quantization Test %N
mirror_hardwares: [amd]
source_file_dependencies:
- csrc/quantization/
- vllm/model_executor/layers/quantization
- tests/kernels/quantization
commands:
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
- label: Kernels MoE Test
#mirror_hardwares: [amd]
source_file_dependencies:
- csrc/moe/
- tests/kernels/moe
- vllm/model_executor/layers/fused_moe/
commands:
- pytest -v -s kernels/moe
- label: Kernels Mamba Test
#mirror_hardwares: [amd]
source_file_dependencies:
- csrc/mamba/
- tests/kernels/mamba
commands:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
# mirror_hardwares: [amd]
@ -339,12 +386,20 @@ steps:
commands:
- bash scripts/run-benchmarks.sh
- label: Quantization Test # 33min
- label: Benchmarks CLI Test # 10min
source_file_dependencies:
- vllm/
- tests/benchmarks/
commands:
- pytest -v -s benchmarks/
- label: Quantization Test
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
- tests/quantization
command: VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
commands:
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
@ -353,7 +408,7 @@ steps:
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: OpenAI API correctness
source_file_dependencies:
@ -376,92 +431,93 @@ steps:
source_file_dependencies:
- vllm/
- tests/tool_use
- tests/mistral_tool_use
commands:
- pytest -v -s tool_use
- pytest -v -s mistral_tool_use
##### models test #####
- label: Basic Models Test # 24min
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models
commands:
- pytest -v -s models/test_transformers.py
- pytest -v -s models/test_registry.py
- pytest -v -s models/test_utils.py
- pytest -v -s models/test_vision.py
# V1 Test: https://github.com/vllm-project/vllm/issues/14531
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'llama4'
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'plamo2'
- label: Language Models Test (Standard) # 32min
- label: Language Models Test (Standard)
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
- tests/models/language
commands:
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
- pytest -v -s models/embedding/language -m core_model
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language -m core_model
- label: Language Models Test (Extended) # 1h10min
- label: Language Models Test (Extended)
optional: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
- tests/models/language
commands:
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/language -m 'not core_model'
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language -m 'not core_model'
- label: Multi-Modal Models Test (Standard) # 40min
- label: Multi-Modal Models Test (Standard)
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/audio_language
- tests/models/encoder_decoder/vision_language
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
- pytest -v -s models/embedding/vision_language -m core_model
- pytest -v -s models/encoder_decoder/audio_language -m core_model
- pytest -v -s models/encoder_decoder/language -m core_model
- pytest -v -s models/encoder_decoder/vision_language -m core_model
- pytest -v -s models/decoder_only/vision_language/test_interleaved.py
- pytest -v -s models/multimodal/processing
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py models/multimodal -m core_model
- cd .. && pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Models Test (Extended) 1 # 48m
- label: Multi-Modal Models Test (Extended) 1
optional: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/vision_language
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
# HACK - run phi3v tests separately to sidestep this transformers bug
# https://github.com/huggingface/transformers/issues/34307
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/vision_language -m 'not core_model'
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
- pytest -v -s --ignore models/multimodal/generation/test_common.py --ignore models/multimodal/processing models/multimodal -m 'not core_model'
- label: Multi-Modal Models Test (Extended) 2 # 38m
- label: Multi-Modal Models Test (Extended) 2
optional: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/vision_language
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=1) and not core_model and not quant_model'
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=0) and not core_model'
- label: Multi-Modal Models Test (Extended) 3
optional: true
source_file_dependencies:
- vllm/
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
- label: Quantized Models Test
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/model_executor/layers/quantization
- tests/models/quantization
commands:
- pytest -v -s models/quantization
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
@ -531,14 +587,16 @@ steps:
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)'
# test sequence parallel
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
# TODO: investigate and fix
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- label: Plugin Tests (2 GPUs) # 40min
working_dir: "/vllm-workspace/tests"
@ -655,4 +713,4 @@ steps:
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-large.txt -t 4
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4

1
.github/CODEOWNERS vendored
View File

@ -12,6 +12,7 @@
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
/vllm/model_executor/guided_decoding @mgoin @russellb
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/vllm_flash_attn @LucasWilkinson
CMakeLists.txt @tlrmchlsmth
# vLLM V1

View File

@ -14,7 +14,7 @@ body:
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```

View File

@ -14,7 +14,7 @@ body:
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```

View File

@ -14,19 +14,19 @@ body:
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
value: |
<details>
<summary>The output of `python collect_env.py`</summary>
<summary>The output of <code>python collect_env.py</code></summary>
```text
Your output of `python collect_env.py` here
```
</details>
validations:
required: true
@ -75,7 +75,7 @@ body:
```
```
The error message you got, with the full traceback.
The error message you got, with the full traceback and the error logs with [dump_input.py:##] if present.
```
validations:
required: true

View File

@ -9,7 +9,7 @@ body:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/adding_model.html first to understand how to add a new model.
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/index.html first to understand how to add a new model.
- type: textarea
attributes:
label: The model to consider.

View File

@ -35,7 +35,7 @@ body:
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```

View File

@ -3,4 +3,4 @@ FILL IN THE PR DESCRIPTION HERE
FIX #xxxx (*link existing issues this PR will resolve*)
<!--- pyml disable-next-line no-emphasis-as-heading -->
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>**
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>** (anything written below this line will be removed by GitHub Actions)

34
.github/mergify.yml vendored
View File

@ -55,11 +55,19 @@ pull_request_rules:
description: Automatically apply structured-output label
conditions:
- or:
- files~=^benchmarks/structured_schemas/
- files=benchmarks/benchmark_serving_structured_output.py
- files=benchmarks/run_structured_output_benchmark.sh
- files=docs/source/features/structured_outputs.md
- files=examples/offline_inference/structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
- files~=^vllm/model_executor/guided_decoding/
- files=tests/model_executor/test_guided_processors.py
- files=tests/entrypoints/llm/test_guided_generate.py
- files=benchmarks/benchmark_serving_guided.py
- files=benchmarks/benchmark_guided.py
- files~=^tests/v1/structured_output/
- files=tests/v1/entrypoints/llm/test_guided_generate.py
- files~=^vllm/v1/structured_output/
actions:
label:
add:
@ -118,6 +126,28 @@ pull_request_rules:
remove:
- tpu
- name: label-tool-calling
description: Automatically add tool-calling label
conditions:
- or:
- files~=^tests/tool_use/
- files~=^tests/mistral_tool_use/
- files~=^tests/entrypoints/openai/tool_parsers/
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
- files~=^vllm/entrypoints/openai/tool_parsers/
- files=docs/source/features/tool_calling.md
- files=docs/source/getting_started/examples/openai_chat_completion_client_with_tools.md
- files=docs/source/getting_started/examples/chat_with_tools.md
- files~=^examples/tool_chat_*
- files=examples/offline_inference/chat_with_tools.py
- files=examples/online_serving/openai_chat_completion_client_with_tools_required.py
- files=examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py
- files=examples/online_serving/openai_chat_completion_client_with_tools.py
actions:
label:
add:
- tool-calling
- name: ping author on conflicts and add 'needs-rebase' label
conditions:
- conflict

View File

@ -66,7 +66,7 @@ jobs:
export AWS_SECRET_ACCESS_KEY=minioadmin
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
@ -79,4 +79,4 @@ jobs:
"max_tokens": 7,
"temperature": 0
}'):$CODE"
echo "$CODE"
echo "$CODE"

5
.gitignore vendored
View File

@ -3,7 +3,6 @@
# vllm-flash-attn built from source
vllm/vllm_flash_attn/*
!vllm/vllm_flash_attn/fa_utils.py
# Byte-compiled / optimized / DLL files
__pycache__/
@ -81,6 +80,7 @@ instance/
# Sphinx documentation
docs/_build/
docs/source/getting_started/examples/
docs/source/api/vllm
# PyBuilder
.pybuilder/
@ -203,3 +203,6 @@ benchmarks/**/*.json
# Linting
actionlint
shellcheck*/
# Ingore moe/marlin_moe gen code
csrc/moe/marlin_moe_wna16/kernel_*

View File

@ -11,31 +11,30 @@ repos:
hooks:
- id: yapf
args: [--in-place, --verbose]
additional_dependencies: [toml] # TODO: Remove when yapf is upgraded
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.3
rev: v0.11.7
hooks:
- id: ruff
args: [--output-format, github, --fix]
- repo: https://github.com/codespell-project/codespell
rev: v2.4.0
rev: v2.4.1
hooks:
- id: codespell
additional_dependencies: ['tomli']
args: ['--toml', 'pyproject.toml']
- repo: https://github.com/PyCQA/isort
rev: 0a0b7a830386ba6a31c2ec8316849ae4d1b8240d # 6.0.0
rev: 6.0.1
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v19.1.7
rev: v20.1.3
hooks:
- id: clang-format
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
types_or: [c++, cuda]
args: [--style=file, --verbose]
- repo: https://github.com/jackdewinter/pymarkdown
rev: v0.9.27
rev: v0.9.29
hooks:
- id: pymarkdown
args: [fix]
@ -44,10 +43,10 @@ repos:
hooks:
- id: actionlint
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.6.2
rev: 0.6.17
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
@ -102,8 +101,8 @@ repos:
args:
- -c
- |
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" .git/COMMIT_EDITMSG; then
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> .git/COMMIT_EDITMSG
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" "$(git rev-parse --git-path COMMIT_EDITMSG)"; then
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> "$(git rev-parse --git-path COMMIT_EDITMSG)"
fi
language: system
verbose: true
@ -122,6 +121,10 @@ repos:
language: system
always_run: true
pass_filenames: false
- id: update-dockerfile-graph
name: Update Dockerfile dependency graph
entry: tools/update-dockerfile-graph.sh
language: script
# Keep `suggestion` last
- id: suggestion
name: Suggestion

View File

@ -15,7 +15,6 @@ project(vllm_extensions LANGUAGES CXX)
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
@ -46,8 +45,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.6.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.6.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
#
# Try to find python package with an executable that exactly matches
@ -230,6 +229,7 @@ set(VLLM_EXT_SRC
"csrc/cache_kernels.cu"
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
"csrc/attention/merge_attn_states.cu"
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
@ -240,6 +240,7 @@ set(VLLM_EXT_SRC
"csrc/quantization/fp8/common.cu"
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/activation_kernels.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/custom_all_reduce.cu"
@ -248,9 +249,8 @@ set(VLLM_EXT_SRC
if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
# Please keep this in sync with FetchContent_Declare line below.
set(CUTLASS_REVISION "v3.8.0" CACHE STRING "CUTLASS revision to use")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v3.9.2" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -268,7 +268,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
# Please keep this in sync with CUTLASS_REVISION line above.
GIT_TAG v3.8.0
GIT_TAG ${CUTLASS_REVISION}
GIT_PROGRESS TRUE
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
@ -289,7 +289,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/cutlass_extensions/common.cpp")
"csrc/cutlass_extensions/common.cpp"
"csrc/attention/mla/cutlass_mla_entry.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
@ -300,8 +301,52 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# are not supported by Machete yet.
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
if (MARLIN_ARCHS)
#
# For the Marlin kernels we automatically generate sources for various
# preselected input type pairs and schedules.
# Generate sources:
set(MARLIN_GEN_SCRIPT
${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/gptq_marlin/generate_kernels.py)
file(MD5 ${MARLIN_GEN_SCRIPT} MARLIN_GEN_SCRIPT_HASH)
message(STATUS "Marlin generation script hash: ${MARLIN_GEN_SCRIPT_HASH}")
message(STATUS "Last run Marlin generate script hash: $CACHE{MARLIN_GEN_SCRIPT_HASH}")
if (NOT DEFINED CACHE{MARLIN_GEN_SCRIPT_HASH}
OR NOT $CACHE{MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MARLIN_GEN_SCRIPT_HASH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=$PYTHONPATH
${Python_EXECUTABLE} ${MARLIN_GEN_SCRIPT}
RESULT_VARIABLE marlin_generation_result
OUTPUT_VARIABLE marlin_generation_result
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log
)
if (NOT marlin_generation_result EQUAL 0)
message(FATAL_ERROR "Marlin generation failed."
" Result: \"${marlin_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log")
else()
set(MARLIN_GEN_SCRIPT_HASH ${MARLIN_GEN_SCRIPT_HASH}
CACHE STRING "Last run Marlin generate script hash" FORCE)
message(STATUS "Marlin generation completed successfully.")
endif()
else()
message(STATUS "Marlin generation script has not changed, skipping generation.")
endif()
file(GLOB MARLIN_TEMPLATE_KERNEL_SRC "csrc/quantization/gptq_marlin/kernel_*.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_TEMPLATE_KERNEL_SRC}"
CUDA_ARCHS "${MARLIN_ARCHS}")
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
set(MARLIN_SRCS
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
@ -373,6 +418,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm100_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -462,7 +508,26 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(FP4_ARCHS)
endif()
#
# CUTLASS MLA Archs and flags
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND MLA_ARCHS)
set(SRCS
"csrc/attention/mla/cutlass_mla_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${MLA_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MLA=1")
# Add MLA-specific include directories only to MLA source files
set_source_files_properties(${SRCS}
PROPERTIES INCLUDE_DIRECTORIES "${CUTLASS_DIR}/examples/77_blackwell_fmha;${CUTLASS_DIR}/examples/common")
message(STATUS "Building CUTLASS MLA for archs: ${MLA_ARCHS}")
else()
message(STATUS "Not building CUTLASS MLA as no compatible archs were found.")
# clear MLA_ARCHS
set(MLA_ARCHS)
endif()
# CUTLASS MoE kernels
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
@ -608,21 +673,51 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
set(MARLIN_MOE_SRC
"csrc/moe/marlin_kernels/marlin_moe_kernel.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h"
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu"
"csrc/moe/marlin_moe_ops.cu")
#
# For the Marlin MOE kernels we automatically generate sources for various
# preselected input type pairs and schedules.
# Generate sources:
set(MOE_MARLIN_GEN_SCRIPT
${CMAKE_CURRENT_SOURCE_DIR}/csrc/moe/marlin_moe_wna16/generate_kernels.py)
file(MD5 ${MOE_MARLIN_GEN_SCRIPT} MOE_MARLIN_GEN_SCRIPT_HASH)
message(STATUS "Marlin MOE generation script hash: ${MOE_MARLIN_GEN_SCRIPT_HASH}")
message(STATUS "Last run Marlin MOE generate script hash: $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}")
if (NOT DEFINED CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}
OR NOT $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MOE_MARLIN_GEN_SCRIPT_HASH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=$PYTHONPATH
${Python_EXECUTABLE} ${MOE_MARLIN_GEN_SCRIPT}
RESULT_VARIABLE moe_marlin_generation_result
OUTPUT_VARIABLE moe_marlin_generation_output
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
)
if (NOT moe_marlin_generation_result EQUAL 0)
message(FATAL_ERROR "Marlin MOE generation failed."
" Result: \"${moe_marlin_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log")
else()
set(MOE_MARLIN_GEN_SCRIPT_HASH ${MOE_MARLIN_GEN_SCRIPT_HASH}
CACHE STRING "Last run Marlin MOE generate script hash" FORCE)
message(STATUS "Marlin MOE generation completed successfully.")
endif()
else()
message(STATUS "Marlin MOE generation script has not changed, skipping generation.")
endif()
file(GLOB MOE_WNAA16_MARLIN_SRC "csrc/moe/marlin_moe_wna16/*.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_MOE_SRC}"
SRCS "${MOE_WNAA16_MARLIN_SRC}"
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MARLIN_MOE_SRC}")
list(APPEND VLLM_MOE_EXT_SRC ${MOE_WNAA16_MARLIN_SRC})
message(STATUS "Building Marlin MOE kernels for archs: ${MARLIN_MOE_ARCHS}")
else()
message(STATUS "Not building Marlin MOE kernels as no compatible archs found"
@ -630,6 +725,17 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_PERMUTE_SRC
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
"csrc/moe/moe_permute_unpermute_op.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_PERMUTE_SRC}"
CUDA_ARCHS "${MOE_PERMUTE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
endif()
message(STATUS "Enabling moe extension.")
define_gpu_extension_target(
_moe_C
@ -638,6 +744,8 @@ define_gpu_extension_target(
SOURCES ${VLLM_MOE_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
INCLUDE_DIRECTORIES ${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
USE_SABI 3
WITH_SOABI)
@ -647,6 +755,7 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
#
set(VLLM_ROCM_EXT_SRC
"csrc/rocm/torch_bindings.cpp"
"csrc/rocm/skinny_gemms.cu"
"csrc/rocm/attention.cu")
define_gpu_extension_target(

View File

@ -10,27 +10,26 @@ Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://discuss.vllm.ai"><b>User Forum</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://blog.vllm.ai/"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://discuss.vllm.ai"><b>User Forum</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
</p>
---
[2025/04] We're hosting our first-ever *vLLM Asia Developer Day* in Singapore on *April 3rd*! This is a full-day event (9 AM - 9 PM SGT) in partnership with SGInnovate, AMD, and Embedded LLM. Meet the vLLM team and learn about LLM inference for RL, MI300X, and more! [Register Now](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)
---
*Latest News* 🔥
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
<details>
<summary>Previous News</summary>
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!

212
benchmarks/auto_tune.sh Normal file
View File

@ -0,0 +1,212 @@
#!/bin/bash
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# The current server parameter combination is max_num_seqs and max_num_batched_tokens
# It also supports additional requirement: e2e latency and prefix cache.
# Pre-requisite:
# 1. Checkout to your branch, install/ update the correct running env. For TPU, activate conda env and install the corresponding torch, xla version.
# 2. If the model is customized, replace the MODEL's config with the customized config.
# 3. Set variables (ALL REQUIRED)
# BASE: your directory for vllm repo
# MODEL: the model served by vllm
# DOWNLOAD_DIR: directory to download and load model weights.
# INPUT_LEN: request input len
# OUTPUT_LEN: request output len
# MIN_CACHE_HIT_PCT: prefix cache rate
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
# 5. The final result will be saved in RESULT file.
# Example use cases
# 1. Given input_len=1800, output_len=20, what's the best max_num_seqs and max_num_batched_tokens to get highest throughput?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=100000000000
# 2. If we have latency requirement to be lower than 500ms, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=500
# 3. If we want to reach 60% prefix cache, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=60, MAX_LATENCY_ALLOWED_MS=500
TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MIN_CACHE_HIT_PCT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
echo "result file$ $RESULT"
echo "model: $MODEL"
echo
rm -rf $LOG_FOLDER
mkdir -p $LOG_FOLDER
cd "$BASE/vllm"
# create sonnet-4x.txt so that we can sample 2048 tokens for input
echo "" > benchmarks/sonnet_4x.txt
for _ in {1..4}
do
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
done
pip install datasets
current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
echo "current_hash: $current_hash"
best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
# start the server
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization 0.98 \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size 1 \
--enable-prefix-caching \
--load-format dummy \
--download-dir $DOWNLOAD_DIR \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
echo "wait for 10 minutes.."
echo
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
if grep -Fq "Application startup complete" "$vllm_log"; then
echo "Application started"
server_started=1
break
else
# echo "wait for 10 seconds..."
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
return 1
fi
echo "run benchmark test..."
echo
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate inf \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
fi
if (( ! meet_latency_requirement )); then
# start from request-rate as int(through_put) + 1
request_rate=$((${through_put%.*} + 1))
while ((request_rate > 0)); do
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
sleep 5
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore_eos \
--disable-tqdm \
--request-rate $request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
break
fi
request_rate=$((request_rate-1))
done
fi
# write the results and update the best result.
if ((meet_latency_requirement)); then
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
best_throughput=$through_put
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
fi
else
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}" >> "$RESULT"
fi
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
rm -f $vllm_log
printf '=%.0s' $(seq 1 20)
return 0
}
num_seqs_list="128 256"
num_batched_tokens_list="512 1024 2048 4096"
for num_seqs in $num_seqs_list; do
for num_batched_tokens in $num_batched_tokens_list; do
run_benchmark $num_seqs $num_batched_tokens
exit 0
done
done
echo "finish permutations"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput" >> "$RESULT"

View File

@ -1,5 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
import io
import json
import os
import sys
@ -32,6 +33,7 @@ class RequestFuncInput:
extra_body: Optional[dict] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
language: Optional[str] = None
@dataclass
@ -199,6 +201,7 @@ async def async_request_deepspeed_mii(
timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"max_tokens": request_func_input.output_len,
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
@ -258,6 +261,7 @@ async def async_request_openai_completions(
if request_func_input.model_name else request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"repetition_penalty": 1.0,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
@ -436,6 +440,110 @@ async def async_request_openai_chat_completions(
return output
async def async_request_openai_audio(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
# Lazy import without PlaceholderModule to avoid vllm dep.
import soundfile
api_url = request_func_input.api_url
assert api_url.endswith(
("transcriptions", "translations"
)), "OpenAI Chat Completions API URL must end with 'transcriptions' "
"or `translations`."
async with aiohttp.ClientSession(trust_env=True,
timeout=AIOHTTP_TIMEOUT) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
payload = {
"model": request_func_input.model_name \
if request_func_input.model_name else request_func_input.model,
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"language": "en",
# Flattened due to multipart/form-data
"stream_include_usage": True,
"stream_continuous_usage_stats": True
}
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
# Send audio file
def to_bytes(y, sr):
buffer = io.BytesIO()
soundfile.write(buffer, y, sr, format="WAV")
buffer.seek(0)
return buffer
with to_bytes(*request_func_input.multi_modal_content['audio']) as f:
form = aiohttp.FormData()
form.add_field('file', f, content_type='audio/wav')
for key, value in payload.items():
form.add_field(key, str(value))
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url,
data=form,
headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix(
"data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get(
"content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(
timestamp - most_recent_timestamp)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get(
"completion_tokens")
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
def get_model(pretrained_model_name_or_path: str) -> str:
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
from modelscope import snapshot_download
@ -493,6 +601,7 @@ ASYNC_REQUEST_FUNCS = {
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_openai_completions,
"openai-chat": async_request_openai_chat_completions,
"openai-audio": async_request_openai_audio,
"tensorrt-llm": async_request_trt_llm,
"scalellm": async_request_openai_completions,
"sglang": async_request_openai_completions,

View File

@ -64,6 +64,7 @@ class SampleRequest:
class BenchmarkDataset(ABC):
DEFAULT_SEED = 0
IS_MULTIMODAL = False
def __init__(
self,
@ -288,7 +289,7 @@ def process_image(image: Any) -> Mapping[str, Any]:
class RandomDataset(BenchmarkDataset):
# Default values copied from benchmark_serving.py for the random dataset.
DEFAULT_PREFIX_LEN = 0
DEFAULT_RANGE_RATIO = 1.0
DEFAULT_RANGE_RATIO = 0.0
DEFAULT_INPUT_LEN = 1024
DEFAULT_OUTPUT_LEN = 128
@ -308,19 +309,34 @@ class RandomDataset(BenchmarkDataset):
output_len: int = DEFAULT_OUTPUT_LEN,
**kwargs,
) -> list[SampleRequest]:
# Enforce range_ratio < 1
assert range_ratio < 1.0, (
"random_range_ratio must be < 1.0 to ensure a valid sampling range"
)
vocab_size = tokenizer.vocab_size
num_special_tokens = tokenizer.num_special_tokens_to_add()
real_input_len = input_len - num_special_tokens
prefix_token_ids = (np.random.randint(
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
input_low = int(input_len * range_ratio)
output_low = int(output_len * range_ratio)
# New sampling logic: [X * (1 - b), X * (1 + b)]
input_low = int(real_input_len * (1 - range_ratio))
input_high = int(real_input_len * (1 + range_ratio))
output_low = int(output_len * (1 - range_ratio))
output_high = int(output_len * (1 + range_ratio))
# Add logging for debugging
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
logger.info("Sampling output_len from [%s, %s]", output_low,
output_high)
input_lens = np.random.randint(input_low,
input_len + 1,
input_high + 1,
size=num_requests)
output_lens = np.random.randint(output_low,
output_len + 1,
output_high + 1,
size=num_requests)
offsets = np.random.randint(0, vocab_size, size=num_requests)
@ -330,6 +346,17 @@ class RandomDataset(BenchmarkDataset):
vocab_size).tolist()
token_sequence = prefix_token_ids + inner_seq
prompt = tokenizer.decode(token_sequence)
# After decoding the prompt we have to encode and decode it again.
# This is done because in some cases N consecutive tokens
# give a string tokenized into != N number of tokens.
# For example for GPT2Tokenizer:
# [6880, 6881] -> ['Ġcalls', 'here'] ->
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
# To avoid uncontrolled change of the prompt length,
# the encoded sequence is truncated before being decode again.
re_encoded_sequence = tokenizer.encode(
prompt, add_special_tokens=False)[:input_lens[i]]
prompt = tokenizer.decode(re_encoded_sequence)
total_input_len = prefix_len + int(input_lens[i])
requests.append(
SampleRequest(
@ -472,11 +499,11 @@ class SonnetDataset(BenchmarkDataset):
# Determine how many poem lines to use.
num_input_lines = round((input_len - base_offset) / avg_len)
num_prefix_lines = round((prefix_len - base_offset) / avg_len)
num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0)
prefix_lines = self.data[:num_prefix_lines]
samples = []
for _ in range(num_requests):
while len(samples) < num_requests:
extra_lines = random.choices(self.data,
k=num_input_lines - num_prefix_lines)
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
@ -484,13 +511,14 @@ class SonnetDataset(BenchmarkDataset):
prompt_formatted = tokenizer.apply_chat_template(
msg, add_generation_prompt=True, tokenize=False)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
samples.append(
SampleRequest(
prompt=prompt_formatted
if return_prompt_formatted else prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
))
if prompt_len <= input_len:
samples.append(
SampleRequest(
prompt=prompt_formatted
if return_prompt_formatted else prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
))
return samples
@ -607,6 +635,7 @@ class ConversationDataset(HuggingFaceDataset):
SUPPORTED_DATASET_PATHS = {
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
}
IS_MULTIMODAL = True
def sample(self,
tokenizer: PreTrainedTokenizerBase,
@ -671,6 +700,7 @@ class VisionArenaDataset(HuggingFaceDataset):
"lmarena-ai/vision-arena-bench-v0.1":
lambda x: x["turns"][0][0]["content"]
}
IS_MULTIMODAL = True
def sample(
self,
@ -754,6 +784,60 @@ class InstructCoderDataset(HuggingFaceDataset):
return sampled_requests
# -----------------------------------------------------------------------------
# MT-Bench Dataset Implementation
# -----------------------------------------------------------------------------
class MTBenchDataset(HuggingFaceDataset):
"""
MT-Bench Dataset.
https://huggingface.co/datasets/philschmid/mt-bench
We create a single turn dataset for MT-Bench.
This is similar to Spec decoding benchmark setup in vLLM
https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
""" # noqa: E501
DEFAULT_OUTPUT_LEN = 256 # avg len used in SD bench in vLLM
SUPPORTED_DATASET_PATHS = {
"philschmid/mt-bench",
}
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = item['turns'][0]
# apply template
prompt = tokenizer.apply_chat_template([{
"role": "user",
"content": prompt
}],
add_generation_prompt=True,
tokenize=False)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# AIMO Dataset Implementation
# -----------------------------------------------------------------------------
@ -801,3 +885,168 @@ class AIMODataset(HuggingFaceDataset):
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# Next Edit Prediction Dataset Implementation
# -----------------------------------------------------------------------------
zeta_prompt = """### Instruction:
You are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.
### User Edits:
{}
### User Excerpt:
{}
### Response:
""" # noqa: E501
def _format_zeta_prompt(
sample: dict,
original_start_marker: str = "<|editable_region_start|>") -> dict:
"""Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
This function formats examples from the NEP dataset
into prompts and expected outputs. It could be
further extended to support more NEP datasets.
Args:
sample: The dataset sample containing events,
inputs, and outputs.
original_start_marker: The marker indicating the
start of the editable region. Defaults to
"<|editable_region_start|>".
Returns:
A dictionary with the formatted prompts and expected outputs.
"""
events = sample["events"]
input = sample["input"]
output = sample["output"]
prompt = zeta_prompt.format(events, input)
# following the original implementation, extract the focused region
# from the raw output
output_start_index = output.find(original_start_marker)
output_focused_region = output[output_start_index:]
expected_output = output_focused_region
return {"prompt": prompt, "expected_output": expected_output}
class NextEditPredictionDataset(HuggingFaceDataset):
"""
Dataset class for processing a Next Edit Prediction dataset.
"""
SUPPORTED_DATASET_PATHS = {
"zed-industries/zeta",
}
MAPPING_PROMPT_FUNCS = {
"zed-industries/zeta": _format_zeta_prompt,
}
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int,
**kwargs):
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(
self.dataset_path)
if formatting_prompt_func is None:
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
samples = []
for sample in self.data:
sample = formatting_prompt_func(sample)
samples.append(
SampleRequest(
prompt=sample["prompt"],
prompt_len=len(tokenizer(sample["prompt"]).input_ids),
expected_output_len=len(
tokenizer(sample["expected_output"]).input_ids),
))
if len(samples) >= num_requests:
break
self.maybe_oversample_requests(samples, num_requests)
return samples
# -----------------------------------------------------------------------------
# ASR Dataset Implementation
# -----------------------------------------------------------------------------
class ASRDataset(HuggingFaceDataset):
"""
Dataset class for processing a ASR dataset for transcription.
Tested on the following set:
+----------------+----------------------------------------+--------------------------+-----------------------------+
| Dataset | Domain | Speaking Style | hf-subset |
+----------------+----------------------------------------+--------------------------+-----------------------------+
| TED-LIUM | TED talks | Oratory | release1, release2, release3|
| | | | release3-speaker-adaptation |
| VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... |
| LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" |
| GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test |
| SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test |
| AMI | Meetings | Spontaneous | ihm, sdm |
+----------------+----------------------------------------+--------------------------+-----------------------------+
""" # noqa: E501
SUPPORTED_DATASET_PATHS = {
"openslr/librispeech_asr", "facebook/voxpopuli", "LIUM/tedlium",
"edinburghcstr/ami", "speechcolab/gigaspeech", "kensho/spgispeech"
}
DEFAULT_OUTPUT_LEN = 128
IS_MULTIMODAL = True
# TODO Whisper-specific. Abstract interface when more models are supported.
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|>"\
"<|notimestamps|>"
skip_long_audios: bool = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs,
) -> list:
import librosa
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests = []
skipped = 0
for item in self.data:
if len(sampled_requests) >= num_requests:
break
audio = item["audio"]
y, sr = audio["array"], audio["sampling_rate"]
duration_s = librosa.get_duration(y=y, sr=sr)
# Whisper max supported duration
if self.skip_long_audios and duration_s > 30:
skipped += 1
continue
mm_content = {"audio": (y, sr)}
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
))
if skipped:
logger.warning("%d samples discarded from dataset due to" \
" their length being greater than" \
" what Whisper supports.", skipped)
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests

View File

@ -63,14 +63,16 @@ class Request:
output_len: int
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> str:
def sample_tokens(tokenizer: PreTrainedTokenizerBase,
length: int) -> list[int]:
vocab = tokenizer.get_vocab()
all_special_ids = set(tokenizer.all_special_ids)
# Remove the special tokens.
vocab = {
k: v
for k, v in vocab.items() if k not in tokenizer.all_special_ids
}
return random.choices(list(vocab.values()), k=length)
return random.choices(
[v for k, v in vocab.items() if k not in all_special_ids],
k=length,
)
def sample_requests_from_dataset(

View File

@ -50,9 +50,10 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
from benchmark_dataset import (AIMODataset, ASRDataset, BurstGPTDataset,
ConversationDataset, HuggingFaceDataset,
InstructCoderDataset, RandomDataset,
InstructCoderDataset, MTBenchDataset,
NextEditPredictionDataset, RandomDataset,
SampleRequest, ShareGPTDataset, SonnetDataset,
VisionArenaDataset)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
@ -156,7 +157,7 @@ def calculate_metrics(
if outputs[i].success:
output_len = outputs[i].output_tokens
if output_len is None:
if not output_len:
# We use the tokenizer to count the number of output tokens
# for some serving backends instead of looking at
# len(outputs[i].itl) since multiple output tokens may be
@ -274,10 +275,6 @@ async def benchmark(
input_requests[0].expected_output_len, \
input_requests[0].multi_modal_data
if backend != "openai-chat" and test_mm_content is not None:
# multi-modal benchmark is only available on OpenAI Chat backend.
raise ValueError(
"Multi-modal content is only supported on 'openai-chat' backend.")
assert test_mm_content is None or isinstance(test_mm_content, dict)
test_input = RequestFuncInput(
model=model_id,
@ -599,11 +596,20 @@ def main(args: argparse.Namespace):
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_class = InstructCoderDataset
args.hf_split = "train"
elif args.dataset_path in MTBenchDataset.SUPPORTED_DATASET_PATHS:
dataset_class = MTBenchDataset
args.hf_split = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ConversationDataset
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_class = AIMODataset
args.hf_split = "train"
elif args.dataset_path in NextEditPredictionDataset.SUPPORTED_DATASET_PATHS: # noqa: E501
dataset_class = NextEditPredictionDataset
args.hf_split = "train"
elif args.dataset_path in ASRDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ASRDataset
args.hf_split = "train"
else:
supported_datasets = set([
dataset_name for cls in HuggingFaceDataset.__subclasses__()
@ -615,6 +621,13 @@ def main(args: argparse.Namespace):
f" from one of following: {supported_datasets}. "
"Please consider contributing if you would "
"like to add support for additional dataset formats.")
if (dataset_class.IS_MULTIMODAL and backend not in \
["openai-chat", "openai-audio"]):
# multi-modal benchmark is only available on OpenAI Chat backend.
raise ValueError(
"Multi-modal content is only supported on 'openai-chat' and " \
"'openai-audio' backend.")
input_requests = dataset_class(
dataset_path=args.dataset_path,
dataset_subset=args.hf_subset,
@ -707,7 +720,7 @@ def main(args: argparse.Namespace):
))
# Save config and results to json
if args.save_result:
if args.save_result or args.append_result:
result_json: dict[str, Any] = {}
# Setup
@ -728,6 +741,14 @@ def main(args: argparse.Namespace):
raise ValueError(
"Invalid metadata format. Please use KEY=VALUE format."
)
# Traffic
result_json["request_rate"] = (args.request_rate if args.request_rate
< float("inf") else "inf")
result_json["burstiness"] = args.burstiness
result_json["max_concurrency"] = args.max_concurrency
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
if not args.save_detailed:
# Remove fields with too many data points
@ -738,15 +759,6 @@ def main(args: argparse.Namespace):
if field in result_json:
del result_json[field]
# Traffic
result_json["request_rate"] = (args.request_rate if args.request_rate
< float("inf") else "inf")
result_json["burstiness"] = args.burstiness
result_json["max_concurrency"] = args.max_concurrency
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
# Save to file
base_model_id = model_id.split("/")[-1]
max_concurrency_str = (f"-concurrency{args.max_concurrency}"
@ -756,7 +768,12 @@ def main(args: argparse.Namespace):
file_name = args.result_filename
if args.result_dir:
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w", encoding='utf-8') as outfile:
with open(file_name,
mode="a+" if args.append_result else "w",
encoding='utf-8') as outfile:
# Append a newline.
if args.append_result and outfile.tell() != 0:
outfile.write("\n")
json.dump(result_json, outfile)
save_to_pytorch_benchmark_format(args, result_json, file_name)
@ -888,6 +905,11 @@ if __name__ == "__main__":
help="When saving the results, whether to include per request "
"information such as response, error, ttfs, tpots, etc.",
)
parser.add_argument(
"--append-result",
action="store_true",
help="Append the benchmark result to the existing json file.",
)
parser.add_argument(
"--metadata",
metavar="KEY=VALUE",
@ -921,7 +943,7 @@ if __name__ == "__main__":
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-seperated list of selected metrics to report percentils. "
help="Comma-separated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
@ -929,7 +951,7 @@ if __name__ == "__main__":
"--metric-percentiles",
type=str,
default="99",
help="Comma-seperated list of percentiles for selected metrics. "
help="Comma-separated list of percentiles for selected metrics. "
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
@ -996,18 +1018,23 @@ if __name__ == "__main__":
random_group.add_argument(
"--random-range-ratio",
type=float,
default=1.0,
help="Range of sampled ratio of input/output length, "
"used only for random sampling.",
default=0.0,
help="Range ratio for sampling input/output length, "
"used only for random sampling. Must be in the range [0, 1) to define "
"a symmetric sampling range"
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
random_group.add_argument(
"--random-prefix-len",
type=int,
default=0,
help="Number of fixed prefix tokens before random "
" context. The length range of context in a random "
" request is [random-prefix-len, "
" random-prefix-len + random-prefix-len * random-range-ratio).")
help=("Number of fixed prefix tokens before the random context "
"in a request. "
"The total input length is the sum of `random-prefix-len` and "
"a random "
"context length sampled from [input_len * (1 - range_ratio), "
"input_len * (1 + range_ratio)]."),
)
hf_group = parser.add_argument_group("hf dataset options")
hf_group.add_argument("--hf-subset",

View File

@ -11,7 +11,7 @@ On the client side, run:
--model <your_model> \
--dataset json \
--structured-output-ratio 1.0 \
--structured-output-backend xgrammar \
--structured-output-backend auto \
--request-rate 10 \
--num-prompts 1000
@ -51,7 +51,7 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from vllm.v1.structured_output.utils import (
from vllm.v1.structured_output.backend_xgrammar import (
has_xgrammar_unsupported_json_features)
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -123,6 +123,8 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
copy.deepcopy(schema) for _ in range(args.num_prompts)
]
for i in range(len(json_schemas)):
if "properties" not in json_schemas[i]:
json_schemas[i]["properties"] = {}
json_schemas[i]["properties"][
f"__optional_field_{uuid.uuid4()}"] = {
"type":
@ -130,10 +132,11 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
"description":
"An unique optional field to avoid cached schemas"
}
else:
json_schemas = [schema] * args.num_prompts
def gen_prompt(index: int):
schema = json_schemas[index % len(json_schemas)]
return f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
return f"Generate an example of a brief user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
def get_schema(index: int):
return json_schemas[index % len(json_schemas)]
@ -149,17 +152,17 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
elif args.dataset == "grammar":
schema = """
?start: select_statement
root ::= select_statement
?select_statement: "SELECT " column_list " FROM " table_name
select_statement ::= "SELECT " column " from " table " where " condition
?column_list: column_name ("," column_name)*
column ::= "col_1 " | "col_2 "
?table_name: identifier
table ::= "table_1 " | "table_2 "
?column_name: identifier
condition ::= column "= " number
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
number ::= "1 " | "2 "
"""
prompt = "Generate an SQL query to show the 'username' \
and 'email' from the 'users' table."
@ -230,7 +233,8 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
idx -= len_dataset
schema = dataset["schema"][idx]
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
tokenize=False)
tokenize=False,
add_generation_prompt=True)
input_len = len(tokenizer(prompt).input_ids)
completion = dataset["completion"][idx]
@ -410,7 +414,6 @@ async def benchmark(
ignore_eos: bool,
max_concurrency: Optional[int],
structured_output_ratio: float,
structured_output_backend: str,
goodput_config_dict: Optional[dict[str, float]] = None,
):
if backend in ASYNC_REQUEST_FUNCS:
@ -422,8 +425,6 @@ async def benchmark(
extra_body = {}
# Add the schema to the extra_body
extra_body[request.structure_type] = request.schema
# Add the specific structured_output_backend
extra_body["guided_decoding_backend"] = structured_output_backend
return extra_body
print("Starting initial single prompt test run...")
@ -781,7 +782,6 @@ def main(args: argparse.Namespace):
ignore_eos=args.ignore_eos,
max_concurrency=args.max_concurrency,
structured_output_ratio=args.structured_output_ratio,
structured_output_backend=args.structured_output_backend,
goodput_config_dict=goodput_config_dict,
))
@ -848,7 +848,7 @@ if __name__ == "__main__":
'json', 'json-unique', 'grammar', 'regex',
'choice', 'xgrammar_bench'
])
parser.add_argument("--json_schema_path",
parser.add_argument("--json-schema-path",
type=str,
default=None,
help="Path to json schema.")
@ -963,7 +963,7 @@ if __name__ == "__main__":
"--percentile-metrics",
type=str,
default="ttft,tpot,itl",
help="Comma-seperated list of selected metrics to report percentils. "
help="Comma-separated list of selected metrics to report percentils. "
"This argument specifies the metrics to report percentiles. "
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
"Default value is \"ttft,tpot,itl\".")
@ -971,7 +971,7 @@ if __name__ == "__main__":
"--metric-percentiles",
type=str,
default="99",
help="Comma-seperated list of percentiles for selected metrics. "
help="Comma-separated list of percentiles for selected metrics. "
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
"Default value is \"99\". "
"Use \"--percentile-metrics\" to select metrics.",
@ -996,12 +996,6 @@ if __name__ == "__main__":
type=float,
default=1.0,
help="Ratio of Structured Outputs requests")
parser.add_argument(
"--structured-output-backend",
type=str,
choices=["outlines", "lm-format-enforcer", "xgrammar", "guidance"],
default="xgrammar",
help="Backend to use for structured outputs")
args = parser.parse_args()
main(args)

View File

@ -213,14 +213,17 @@ def run_hf(
max_prompt_len = 0
max_output_len = 0
for i in range(len(requests)):
prompt, prompt_len, output_len = requests[i]
prompt = requests[i].prompt
prompt_len = requests[i].prompt_len
output_len = requests[i].expected_output_len
# Add the prompt to the batch.
batch.append(prompt)
max_prompt_len = max(max_prompt_len, prompt_len)
max_output_len = max(max_output_len, output_len)
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
_, next_prompt_len, next_output_len = requests[i + 1]
next_prompt_len = requests[i + 1].prompt_len
next_output_len = requests[i + 1].expected_output_len
if (max(max_prompt_len, next_prompt_len) +
max(max_output_len, next_output_len)) <= 2048:
# We can add more requests to the batch.
@ -520,6 +523,13 @@ def validate_args(args):
raise ValueError(
"Tokenizer must be the same as the model for MII backend.")
# --data-parallel is not supported currently.
# https://github.com/vllm-project/vllm/issues/16222
if args.data_parallel_size > 1:
raise ValueError(
"Data parallel is not supported in offline benchmark, \
please use benchmark serving instead")
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
@ -591,18 +601,30 @@ if __name__ == "__main__":
default=None,
help="Path to the lora adapters to use. This can be an absolute path, "
"a relative path, or a Hugging Face model identifier.")
parser.add_argument("--prefix-len",
type=int,
default=None,
help="Number of prefix tokens per request."
"This is for the RandomDataset and SonnetDataset")
parser.add_argument(
"--prefix-len",
type=int,
default=None,
help=f"Number of prefix tokens to be used in RandomDataset "
"and SonnetDataset. For RandomDataset, the total input "
"length is the sum of prefix-len (default: "
f"{RandomDataset.DEFAULT_PREFIX_LEN}) and a random context length "
"sampled from [input_len * (1 - range_ratio), "
"input_len * (1 + range_ratio)]. For SonnetDataset, "
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
"controls how much of the input is fixed lines versus "
"random lines, but the total input length remains approximately "
"input_len tokens.")
# random dataset
parser.add_argument(
"--random-range-ratio",
type=float,
default=None,
help="Range of sampled ratio of input/output length, "
"used only for RandomDataSet.",
help=f"Range ratio (default : {RandomDataset.DEFAULT_RANGE_RATIO}) "
"for sampling input/output length, "
"used only for RandomDataset. Must be in the range [0, 1) to "
"define a symmetric sampling range "
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
# hf dtaset

View File

@ -0,0 +1,236 @@
# SPDX-License-Identifier: Apache-2.0
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
MINIMUM_BITBLAS_VERSION)
try:
import bitblas
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
raise ImportError("bitblas version is wrong. Please "
f"install bitblas>={MINIMUM_BITBLAS_VERSION}")
except ImportError as e:
bitblas_import_exception = e
raise ValueError("Trying to use the bitblas backend, but could not import"
f"with the following error: {bitblas_import_exception}. "
"Please install bitblas through the following command: "
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
) from bitblas_import_exception
from bitblas import Matmul, MatmulConfig, auto_detect_nvidia_target
from vllm.utils import FlexibleArgumentParser
parser = FlexibleArgumentParser(
description="Benchmark BitBLAS int4 on a specific target.")
# Add arguments to the parser
parser.add_argument(
"--target",
type=str,
default=auto_detect_nvidia_target(),
help="Specify the target device for benchmarking.",
)
parser.add_argument("--group_size",
type=int,
default=None,
help="Group size for grouped quantization.")
parser.add_argument(
"--A_dtype",
type=str,
default="float16",
choices=["float16", "float32", "float64", "int32", "int8"],
help="Data type of activation A.",
)
parser.add_argument(
"--W_dtype",
type=str,
default="int4",
choices=[
"float16",
"float32",
"float64",
"int32",
"int8",
"int4",
"int2",
"int1",
"nf4",
"fp4_e2m1",
],
help="Data type of weight W.",
)
parser.add_argument(
"--accum_dtype",
type=str,
default="float16",
choices=["float16", "int32"],
help="Data type for accumulation.",
)
parser.add_argument(
"--out_dtype",
type=str,
default="float16",
choices=["float16", "float32", "int32", "int8"],
help="Data type for output.",
)
parser.add_argument(
"--layout",
type=str,
default="nt",
choices=["nt", "nn"],
help="Matrix layout, 'nt' for non-transpose A and transpose W.",
)
parser.add_argument("--with_bias",
action="store_true",
help="Include bias in the benchmark.")
parser.add_argument(
"--with_scaling",
action="store_true",
help="Include scaling factor in the quantization.",
)
parser.add_argument("--with_zeros",
action="store_true",
help="Include zeros in the quantization.")
parser.add_argument(
"--zeros_mode",
type=str,
default=None,
choices=["original", "rescale", "quantized"],
help="Specify the mode for calculating zeros.",
)
# Parse the arguments
args = parser.parse_args()
# Assign arguments to variables
target = args.target
A_dtype = args.A_dtype
W_dtype = args.W_dtype
accum_dtype = args.accum_dtype
out_dtype = args.out_dtype
layout = args.layout
with_bias = args.with_bias
group_size = args.group_size
with_scaling = args.with_scaling
with_zeros = args.with_zeros
zeros_mode = args.zeros_mode
# Define a list of shared arguments that repeat in every config
shared_args = [
A_dtype,
W_dtype,
out_dtype,
accum_dtype,
layout,
with_bias,
group_size,
with_scaling,
with_zeros,
zeros_mode,
]
# Define just the (M, K, N) shapes in a more compact list
shapes = [
# square test
(1, 16384, 16384),
# BLOOM-176B
(1, 43008, 14336),
(1, 14336, 14336),
(1, 57344, 14336),
(1, 14336, 57344),
# OPT-65B
(1, 9216, 9216),
(1, 36864, 9216),
(1, 9216, 36864),
(1, 22016, 8192),
# LLAMA-70B/65B
(1, 8192, 22016),
(1, 8192, 8192),
(1, 28672, 8192),
(1, 8192, 28672),
# square test
(16384, 16384, 16384),
# BLOOM-176B
(8192, 43008, 14336),
(8192, 14336, 14336),
(8192, 57344, 14336),
(8192, 14336, 57344),
# OPT-65B
(8192, 9216, 9216),
(8192, 36864, 9216),
(8192, 9216, 36864),
(8192, 22016, 8192),
# LLAMA-70B/65B
(8192, 8192, 22016),
(8192, 8192, 8192),
(8192, 28672, 8192),
(8192, 8192, 28672),
]
# Build test shapes with all the shared arguments
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args))
for shape in shapes]
benchmark_sets = []
benchmark_sets.extend(test_shapes)
benchmark_results = {}
for config_class, operator, input_args in benchmark_sets:
config = config_class(*input_args)
matmul = operator(config, target=target, enable_tuning=True)
kernel_latency = matmul.profile_latency()
print("Time cost is: {:.3f} ms".format(kernel_latency))
profile_config = {
f"{operator.__name__}-{'-'.join([str(i) for i in input_args])}": {
"BitBLAS_top20_latency": kernel_latency,
}
}
benchmark_results.update(profile_config)
# Define headers for the table
headers = [
"PrimFunc",
"Input Arguments",
"BitBLAS Top20 Latency",
]
# Calculate column widths for pretty printing
col_widths = [0, 0, 0]
for config_key, values in benchmark_results.items():
args_split = config_key.split("-")
func_name = args_split[0]
input_args_str = "-".join(args_split[1:])
col_widths[0] = max(col_widths[0], len(func_name) + 2, len(headers[0]) + 2)
col_widths[1] = max(col_widths[1],
len(input_args_str) + 2,
len(headers[1]) + 2)
col_widths[2] = max(col_widths[2],
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
len(headers[2]) + 2)
# break only if you want to measure widths from a single example;
# otherwise, let it loop over all items.
# Print header
for i, header in enumerate(headers):
headers[i] = header.ljust(col_widths[i])
print("".join(headers))
print("-" * sum(col_widths))
# Print rows
for config_key, values in benchmark_results.items():
args_split = config_key.split("-")
func_name = args_split[0]
input_args_str = "-".join(args_split[1:])
row = [
func_name,
input_args_str,
f"{values['BitBLAS_top20_latency']:.3f} ms",
]
row_str = "".join(
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)])
print(row_str)

View File

@ -90,7 +90,8 @@ def bench_run(results: list[benchmark.Measurement], model: str,
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
topk_weights, topk_ids, token_expert_indices = fused_topk(
a, score, topk, renormalize=False)
def run_triton_moe(a: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,

View File

@ -17,8 +17,14 @@ from torch.utils.benchmark import Measurement as TMeasurement
from utils import ArgPool, Bench, CudaGraphBenchParams
from weight_shapes import WEIGHT_SHAPES
from vllm.lora.ops.triton_ops import LoRAKernelMeta, lora_expand, lora_shrink
from vllm.lora.ops.triton_ops.utils import _LORA_A_PTR_DICT, _LORA_B_PTR_DICT
from vllm.triton_utils import HAS_TRITON
if HAS_TRITON:
from vllm.lora.ops.triton_ops import (LoRAKernelMeta, lora_expand,
lora_shrink)
from vllm.lora.ops.triton_ops.utils import (_LORA_A_PTR_DICT,
_LORA_B_PTR_DICT)
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())

View File

@ -6,16 +6,17 @@ import time
from contextlib import nullcontext
from datetime import datetime
from itertools import product
from types import SimpleNamespace
from typing import Any, TypedDict
import ray
import torch
import triton
from ray.experimental.tqdm_ray import tqdm
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.platforms import current_platform
from vllm.transformers_utils.config import get_config
from vllm.triton_utils import triton
from vllm.utils import FlexibleArgumentParser
FP8_DTYPE = current_platform.fp8_dtype()
@ -115,8 +116,8 @@ def benchmark_config(config: BenchmarkConfig,
from vllm.model_executor.layers.fused_moe import override_config
with override_config(config):
if use_deep_gemm:
topk_weights, topk_ids = fused_topk(x, input_gating, topk,
False)
topk_weights, topk_ids, token_expert_indices = fused_topk(
x, input_gating, topk, False)
return fused_experts(
x,
w1,
@ -442,8 +443,14 @@ class BenchmarkWorker:
hidden_size, search_space,
is_fp16, topk)
with torch.cuda.device(self.device_id) if current_platform.is_rocm(
) else nullcontext():
need_device_guard = False
if current_platform.is_rocm():
visible_device = os.environ.get("ROCR_VISIBLE_DEVICES", None)
if visible_device != f"{self.device_id}":
need_device_guard = True
with torch.cuda.device(
self.device_id) if need_device_guard else nullcontext():
for config in tqdm(search_space):
try:
kernel_time = benchmark_config(
@ -527,9 +534,13 @@ def get_weight_block_size_safety(config, default_value=None):
def main(args: argparse.Namespace):
print(args)
block_quant_shape = None
config = AutoConfig.from_pretrained(
args.model, trust_remote_code=args.trust_remote_code)
config = get_config(model=args.model,
trust_remote_code=args.trust_remote_code)
if args.model_prefix:
config = getattr(config, args.model_prefix)
config = SimpleNamespace(**config)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
@ -540,22 +551,21 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif (config.architectures[0] == "DeepseekV3ForCausalLM"
or config.architectures[0] == "DeepseekV2ForCausalLM"):
elif (config.architectures[0]
in ("DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM")):
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
block_quant_shape = get_weight_block_size_safety(config)
elif config.architectures[0] == "Qwen2MoeForCausalLM":
elif config.architectures[0] in ("Qwen2MoeForCausalLM",
"Qwen3MoeForCausalLM"):
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
else:
if not hasattr(config, "hidden_size"):
# Support for llama4
config = config.text_config
# Support for llama4
config = config.get_text_config()
# Default: Mixtral.
E = config.num_local_experts
topk = config.num_experts_per_tok
@ -563,9 +573,11 @@ def main(args: argparse.Namespace):
shard_intermediate_size = 2 * intermediate_size // args.tp_size
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
dtype = torch.float16 if current_platform.is_rocm() else getattr(
torch, config.torch_dtype)
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
block_quant_shape = get_weight_block_size_safety(config)
if args.batch_size is None:
batch_sizes = [
@ -577,6 +589,15 @@ def main(args: argparse.Namespace):
use_deep_gemm = bool(args.use_deep_gemm)
if current_platform.is_rocm() and "HIP_VISIBLE_DEVICES" in os.environ:
# Ray will set ROCR_VISIBLE_DEVICES for device visibility
logger.warning(
"Ray uses ROCR_VISIBLE_DEVICES to control device accessibility."
"Replacing HIP_VISIBLE_DEVICES with ROCR_VISIBLE_DEVICES.")
val = os.environ["HIP_VISIBLE_DEVICES"]
os.environ["ROCR_VISIBLE_DEVICES"] = val
del os.environ["HIP_VISIBLE_DEVICES"]
ray.init()
num_gpus = int(ray.available_resources()["GPU"])
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
@ -643,6 +664,7 @@ if __name__ == "__main__":
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--tune", action="store_true")
parser.add_argument("--trust-remote-code", action="store_true")
parser.add_argument("--model-prefix", type=str, required=False)
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,349 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
from typing import Any, TypedDict
import ray
import torch
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
_moe_permute, _moe_unpermute_and_reduce)
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import *
from vllm.model_executor.layers.fused_moe.utils import _fp8_quantize
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
FP8_DTYPE = current_platform.fp8_dtype()
class BenchmarkConfig(TypedDict):
BLOCK_SIZE_M: int
BLOCK_SIZE_N: int
BLOCK_SIZE_K: int
GROUP_SIZE_M: int
num_warps: int
num_stages: int
def benchmark_permute(num_tokens: int,
num_experts: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
use_customized_permute: bool = False) -> float:
# init_dtype = torch.float16 if use_fp8_w8a8 else dtype
hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
# output_hidden_states = torch.empty_like(hidden_states)
if use_fp8_w8a8:
align_block_size = 128 # deepgemm needs 128 m aligned block
qhidden_states, scale = _fp8_quantize(hidden_states, None, None)
else:
align_block_size = None
qhidden_states = hidden_states
gating_output = torch.randn(num_iters,
num_tokens,
num_experts,
dtype=torch.float32)
input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)
topk_weights, topk_ids, token_expert_indices = fused_topk(
qhidden_states, input_gating, topk, False)
def prepare(i: int):
input_gating.copy_(gating_output[i])
def run():
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx,
m_indices) = moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
else:
(permuted_hidden_states, a1q_scale, sorted_token_ids, expert_ids,
inv_perm) = _moe_permute(qhidden_states, None, topk_ids,
num_experts, None, align_block_size)
# JIT compilation & warmup
run()
torch.cuda.synchronize()
# Capture 10 invocations with CUDA graph
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
for _ in range(10):
run()
torch.cuda.synchronize()
# Warmup
for _ in range(5):
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
prepare(i)
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
graph.reset()
return avg
def benchmark_unpermute(num_tokens: int,
num_experts: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
use_customized_permute: bool = False) -> float:
# init_dtype = torch.float16 if use_fp8_w8a8 else dtype
hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
output_hidden_states = torch.empty_like(hidden_states)
if use_fp8_w8a8:
align_block_size = 128 # deepgemm needs 128 m aligned block
qhidden_states, scale = _fp8_quantize(hidden_states, None, None)
else:
align_block_size = None
qhidden_states = hidden_states
input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)
topk_weights, topk_ids, token_expert_indices = fused_topk(
qhidden_states, input_gating, topk, False)
def prepare():
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx,
m_indices) = moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
# convert to fp16/bf16 as gemm output
return (permuted_hidden_states.to(dtype), first_token_off,
inv_perm_idx, m_indices)
else:
(permuted_qhidden_states, a1q_scale, sorted_token_ids, expert_ids,
inv_perm) = _moe_permute(qhidden_states, None, topk_ids,
num_experts, None, align_block_size)
# convert to fp16/bf16 as gemm output
return (permuted_qhidden_states.to(dtype), a1q_scale,
sorted_token_ids, expert_ids, inv_perm)
def run(input: tuple):
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx,
m_indices) = input
moe_unpermute(permuted_hidden_states, topk_weights, topk_ids,
inv_perm_idx, first_token_off, topk, num_experts,
num_experts)
else:
(permuted_hidden_states, a1q_scale, sorted_token_ids, expert_ids,
inv_perm) = input
_moe_unpermute_and_reduce(output_hidden_states,
permuted_hidden_states, inv_perm,
topk_weights)
# JIT compilation & warmup
input = prepare()
run(input)
torch.cuda.synchronize()
# Capture 10 invocations with CUDA graph
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
for _ in range(10):
run(input)
torch.cuda.synchronize()
# Warmup
for _ in range(5):
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
graph.reset()
return avg
@ray.remote(num_gpus=1)
class BenchmarkWorker:
def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
current_platform.seed_everything(seed)
self.seed = seed
# Get the device ID to allocate tensors and kernels
# on the respective GPU. This is required for Ray to work
# correctly with multi-GPU tuning on the ROCm platform.
self.device_id = int(ray.get_gpu_ids()[0])
def benchmark(
self,
num_tokens: int,
num_experts: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
use_customized_permute: bool = False,
) -> tuple[dict[str, int], float]:
current_platform.seed_everything(self.seed)
permute_time = benchmark_permute(
num_tokens,
num_experts,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
use_customized_permute=use_customized_permute)
unpermute_time = benchmark_unpermute(
num_tokens,
num_experts,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=100,
use_customized_permute=use_customized_permute)
return permute_time, unpermute_time
def get_weight_block_size_safety(config, default_value=None):
quantization_config = getattr(config, 'quantization_config', {})
if isinstance(quantization_config, dict):
return quantization_config.get('weight_block_size', default_value)
return default_value
def main(args: argparse.Namespace):
print(args)
config = AutoConfig.from_pretrained(
args.model, trust_remote_code=args.trust_remote_code)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
elif config.architectures[0] == "JambaForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
elif (config.architectures[0] == "DeepseekV3ForCausalLM"
or config.architectures[0] == "DeepseekV2ForCausalLM"):
E = config.n_routed_experts
topk = config.num_experts_per_tok
elif config.architectures[0] in [
"Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"
]:
E = config.num_experts
topk = config.num_experts_per_tok
else:
# Support for llama4
config = config.get_text_config()
# Default: Mixtral.
E = config.num_local_experts
topk = config.num_experts_per_tok
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
use_customized_permute = args.use_customized_permute
if args.batch_size is None:
batch_sizes = [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]
else:
batch_sizes = [args.batch_size]
ray.init()
num_gpus = int(ray.available_resources()["GPU"])
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
def _distribute(method: str, inputs: list[Any]) -> list[Any]:
outputs = []
worker_idx = 0
for input_args in inputs:
worker = workers[worker_idx]
worker_method = getattr(worker, method)
output = worker_method.remote(*input_args)
outputs.append(output)
worker_idx = (worker_idx + 1) % num_gpus
return ray.get(outputs)
outputs = _distribute(
"benchmark", [(batch_size, E, hidden_size, topk, dtype, use_fp8_w8a8,
use_int8_w8a16, use_customized_permute)
for batch_size in batch_sizes])
for batch_size, (permute, unpermute) in zip(batch_sizes, outputs):
print(f"Batch size: {batch_size}")
print(f"Permute time: {permute:.2f} us")
print(f"Unpermute time: {unpermute:.2f} us")
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument("--model",
type=str,
default="mistralai/Mixtral-8x7B-Instruct-v0.1")
parser.add_argument("--dtype",
type=str,
choices=["auto", "fp8_w8a8", "int8_w8a16"],
default="auto")
parser.add_argument("--use-customized-permute", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--trust-remote-code", action="store_true")
args = parser.parse_args()
main(args)

View File

@ -4,11 +4,11 @@ import itertools
from typing import Optional, Union
import torch
import triton
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
from torch import nn
from vllm import _custom_ops as vllm_ops
from vllm.triton_utils import triton
class HuggingFaceRMSNorm(nn.Module):

View File

@ -6,13 +6,13 @@ import time
# Import DeepGEMM functions
import deep_gemm
import torch
import triton
from deep_gemm import calc_diff, ceil_div, get_col_major_tma_aligned_tensor
# Import vLLM functions
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
from vllm.triton_utils import triton
# Copied from

View File

@ -9,13 +9,10 @@ BACKEND=${2:-"vllm"}
# Define the dataset to use
DATASET=${3:-"xgrammar_bench"}
# Define the guided decoding backend
GUIDED_BACKEND=${4:-"xgrammar"}
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
OUTPUT_DIR=${5:-"$SCRIPT_DIR/structured_output_benchmark_results"}
OUTPUT_DIR=${4:-"$SCRIPT_DIR/structured_output_benchmark_results"}
GUIDED_RATIO=${6:-0.5}
GUIDED_RATIO=${5:-0.5}
# Create output directory if it doesn't exist
mkdir -p "$OUTPUT_DIR"
@ -27,7 +24,6 @@ QPS_VALUES=(70 60 50 25 20 15 10)
COMMON_PARAMS="--backend $BACKEND \
--model $MODEL \
--dataset $DATASET \
--structured-output-backend $GUIDED_BACKEND \
--structured-output-ratio $GUIDED_RATIO \
--save-results \
--result-dir $OUTPUT_DIR"
@ -35,7 +31,6 @@ COMMON_PARAMS="--backend $BACKEND \
echo "Starting structured output benchmark with model: $MODEL"
echo "Backend: $BACKEND"
echo "Dataset: $DATASET"
echo "Structured output backend: $GUIDED_BACKEND"
echo "Results will be saved to: $OUTPUT_DIR"
echo "----------------------------------------"
@ -48,7 +43,7 @@ for qps in "${QPS_VALUES[@]}"; do
GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD 2>/dev/null || echo "unknown")
# Construct filename for this run
FILENAME="${GUIDED_BACKEND}_${BACKEND}_${qps}qps_$(basename $MODEL)_${DATASET}_${GIT_HASH}.json"
FILENAME="${BACKEND}_${qps}qps_$(basename $MODEL)_${DATASET}_${GIT_HASH}.json"
# Run the benchmark
python "$SCRIPT_DIR/benchmark_serving_structured_output.py" $COMMON_PARAMS \

View File

@ -167,6 +167,33 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
FetchContent_MakeAvailable(oneDNN)
list(APPEND LIBS dnnl)
elseif(POWER10_FOUND)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.7.2
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
set(ONEDNN_BUILD_EXAMPLES "OFF")
set(ONEDNN_BUILD_TESTS "OFF")
set(ONEDNN_ENABLE_WORKLOAD "INFERENCE")
set(ONEDNN_ENABLE_PRIMITIVE "MATMUL;REORDER")
set(ONEDNN_BUILD_GRAPH "OFF")
set(ONEDNN_ENABLE_JIT_PROFILING "OFF")
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
set(DNNL_CPU_RUNTIME "OMP")
FetchContent_MakeAvailable(oneDNN)
list(APPEND LIBS dnnl)
endif()
@ -197,6 +224,10 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
"csrc/cpu/quant.cpp"
"csrc/cpu/shm.cpp"
${VLLM_EXT_SRC})
elseif(POWER10_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
#
@ -214,4 +245,4 @@ define_gpu_extension_target(
WITH_SOABI
)
message(STATUS "Enabling C extension.")
message(STATUS "Enabling C extension.")

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG dc9d410b3e2d6534a4c70724c2515f4def670a22
GIT_TAG 8798f27777fb57f447070301bf33a9f9c607f491
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -0,0 +1,178 @@
#include <optional>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <algorithm>
#include "attention_dtypes.h"
#include "attention_utils.cuh"
namespace vllm {
// Implements section 2.2 of https://www.arxiv.org/pdf/2501.01005
// can be used to combine partial attention results (in the split-KV case)
template <typename scalar_t, const uint NUM_THREADS>
__global__ void merge_attn_states_kernel(
scalar_t* output, float* output_lse, const scalar_t* prefix_output,
const float* prefix_lse, const scalar_t* suffix_output,
const float* suffix_lse, const uint num_tokens, const uint num_heads,
const uint head_size) {
using pack_128b_t = uint4;
const uint pack_size = 16 / sizeof(scalar_t);
const uint threads_per_head = head_size / pack_size;
const uint global_idx = blockIdx.x * NUM_THREADS + threadIdx.x;
const uint token_head_threads = num_tokens * num_heads * threads_per_head;
if (global_idx >= token_head_threads) return;
// global_idx -> token_idx + head_idx + pack_idx
const uint token_head_idx = global_idx / threads_per_head;
const uint pack_idx = global_idx % threads_per_head;
const uint token_idx = token_head_idx / num_heads;
const uint head_idx = token_head_idx % num_heads;
const uint pack_offset = pack_idx * pack_size; // (0~15)*8, etc.
const uint head_offset =
token_idx * num_heads * head_size + head_idx * head_size;
const scalar_t* prefix_head_ptr = prefix_output + head_offset;
const scalar_t* suffix_head_ptr = suffix_output + head_offset;
scalar_t* output_head_ptr = output + head_offset;
float p_lse = prefix_lse[head_idx * num_tokens + token_idx];
float s_lse = suffix_lse[head_idx * num_tokens + token_idx];
p_lse = std::isinf(p_lse) ? -std::numeric_limits<float>::infinity() : p_lse;
s_lse = std::isinf(s_lse) ? -std::numeric_limits<float>::infinity() : s_lse;
const float max_lse = fmaxf(p_lse, s_lse);
p_lse = p_lse - max_lse;
s_lse = s_lse - max_lse;
const float p_se = expf(p_lse);
const float s_se = expf(s_lse);
const float out_se = p_se + s_se;
const float p_scale = p_se / out_se;
const float s_scale = s_se / out_se;
if (pack_offset < head_size) {
// Pack 128b load
pack_128b_t p_out_pack = reinterpret_cast<const pack_128b_t*>(
prefix_head_ptr)[pack_offset / pack_size];
pack_128b_t s_out_pack = reinterpret_cast<const pack_128b_t*>(
suffix_head_ptr)[pack_offset / pack_size];
pack_128b_t o_out_pack;
#pragma unroll
for (uint i = 0; i < pack_size; ++i) {
// Always use float for FMA to keep high precision.
// half(uint16_t), bfloat16, float -> float.
const float p_out_f =
vllm::to_float(reinterpret_cast<const scalar_t*>(&p_out_pack)[i]);
const float s_out_f =
vllm::to_float(reinterpret_cast<const scalar_t*>(&s_out_pack)[i]);
// fma: a * b + c = p_out_f * p_scale + (s_out_f * s_scale)
const float o_out_f = p_out_f * p_scale + (s_out_f * s_scale);
// float -> half(uint16_t), bfloat16, float.
vllm::from_float(reinterpret_cast<scalar_t*>(&o_out_pack)[i], o_out_f);
}
// Pack 128b storage
reinterpret_cast<pack_128b_t*>(output_head_ptr)[pack_offset / pack_size] =
o_out_pack;
}
// We only need to write to output_lse once per head.
if (output_lse != nullptr && pack_idx == 0) {
float out_lse = logf(out_se) + max_lse;
output_lse[head_idx * num_tokens + token_idx] = out_lse;
}
}
} // namespace vllm
// The following macro is used to dispatch the conversion function based on
// the output data type. The FN is a macro that calls a function with
// template<typename scalar_t>.
#define DISPATCH_BY_SCALAR_DTYPE(scalar_dtype, fn) \
{ \
if (scalar_dtype == at::ScalarType::Float) { \
fn(float); \
} else if (scalar_dtype == at::ScalarType::Half) { \
fn(uint16_t); \
} else if (scalar_dtype == at::ScalarType::BFloat16) { \
fn(__nv_bfloat16); \
} else { \
TORCH_CHECK(false, "Unsupported data type of O: ", scalar_dtype); \
} \
}
#define LAUNCH_MERGE_ATTN_STATES(scalar_t, NUM_THREADS) \
{ \
vllm::merge_attn_states_kernel<scalar_t, NUM_THREADS> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<scalar_t*>(output.data_ptr()), output_lse_ptr, \
reinterpret_cast<scalar_t*>(prefix_output.data_ptr()), \
reinterpret_cast<float*>(prefix_lse.data_ptr()), \
reinterpret_cast<scalar_t*>(suffix_output.data_ptr()), \
reinterpret_cast<float*>(suffix_lse.data_ptr()), num_tokens, \
num_heads, head_size); \
}
/*@brief Merges the attention states from prefix and suffix
* into the output tensor. NUM_TOKENS: n, NUM_HEADS: h, HEAD_SIZE: d
*
* @param output [n,h,d] The output tensor to store the merged attention states.
* @param output_lse [h,d] Optional tensor to store the log-sum-exp values.
* @param prefix_output [n,h,d] The prefix attention states.
* @param prefix_lse [h,n] The log-sum-exp values for the prefix attention
* states.
* @param suffix_output [n,h,d] The suffix attention states.
* @param suffix_lse [h,n] The log-sum-exp values for the suffix attention
* states.
*/
template <typename scalar_t>
void merge_attn_states_launcher(torch::Tensor& output,
std::optional<torch::Tensor> output_lse,
const torch::Tensor& prefix_output,
const torch::Tensor& prefix_lse,
const torch::Tensor& suffix_output,
const torch::Tensor& suffix_lse) {
constexpr uint NUM_THREADS = 128;
const uint num_tokens = output.size(0);
const uint num_heads = output.size(1);
const uint head_size = output.size(2);
const uint pack_size = 16 / sizeof(scalar_t);
TORCH_CHECK(head_size % pack_size == 0,
"headsize must be multiple of pack_size:", pack_size);
float* output_lse_ptr = nullptr;
if (output_lse.has_value()) {
output_lse_ptr = output_lse.value().data_ptr<float>();
}
// Process one pack elements per thread. for float, the
// pack_size is 4 for half/bf16, the pack_size is 8.
const uint threads_per_head = head_size / pack_size;
const uint total_threads = num_tokens * num_heads * threads_per_head;
dim3 block(NUM_THREADS);
dim3 grid((total_threads + NUM_THREADS - 1) / NUM_THREADS);
const c10::cuda::OptionalCUDAGuard device_guard(prefix_output.device());
auto stream = at::cuda::getCurrentCUDAStream();
LAUNCH_MERGE_ATTN_STATES(scalar_t, NUM_THREADS);
}
#define CALL_MERGE_ATTN_STATES_LAUNCHER(scalar_t) \
{ \
merge_attn_states_launcher<scalar_t>(output, output_lse, prefix_output, \
prefix_lse, suffix_output, \
suffix_lse); \
}
void merge_attn_states(torch::Tensor& output,
std::optional<torch::Tensor> output_lse,
const torch::Tensor& prefix_output,
const torch::Tensor& prefix_lse,
const torch::Tensor& suffix_output,
const torch::Tensor& suffix_lse) {
DISPATCH_BY_SCALAR_DTYPE(output.dtype(), CALL_MERGE_ATTN_STATES_LAUNCHER);
}

View File

@ -0,0 +1,38 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#if defined ENABLE_CUTLASS_MLA && ENABLE_CUTLASS_MLA
void cutlass_mla_decode_sm100a(torch::Tensor const& out,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
torch::Tensor const& seq_lens,
torch::Tensor const& page_table, double scale);
#endif
void cutlass_mla_decode(torch::Tensor const& out, torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
torch::Tensor const& seq_lens,
torch::Tensor const& page_table, double scale) {
#if defined ENABLE_CUTLASS_MLA && ENABLE_CUTLASS_MLA
return cutlass_mla_decode_sm100a(out, q_nope, q_pe, kv_c_and_k_pe_cache,
seq_lens, page_table, scale);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(false, "No compiled cutlass MLA");
}

View File

@ -0,0 +1,225 @@
/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "cute/tensor.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/kernel_hardware_info.h"
#include "cutlass_extensions/common.hpp"
#include "device/sm100_mla.hpp"
#include "kernel/sm100_mla_tile_scheduler.hpp"
using namespace cute;
using namespace cutlass::fmha::kernel;
template <typename T, bool PersistenceOption = true>
struct MlaSm100 {
using Element = T;
using ElementAcc = float;
using ElementOut = T;
using TileShape = Shape<_128, _128, Shape<_512, _64>>;
using TileShapeH = cute::tuple_element_t<0, TileShape>;
using TileShapeD = cute::tuple_element_t<2, TileShape>;
// H K (D_latent D_rope) B
using ProblemShape = cute::tuple<TileShapeH, int, TileShapeD, int>;
using StrideQ = cute::tuple<int64_t, _1, int64_t>; // H D B
using StrideK = cute::tuple<int64_t, _1, int64_t>; // K D B
using StrideO = StrideK; // H D B
using StrideLSE = cute::tuple<_1, int>; // H B
using TileScheduler =
std::conditional_t<PersistenceOption, Sm100MlaPersistentTileScheduler,
Sm100MlaIndividualTileScheduler>;
using FmhaKernel =
cutlass::fmha::kernel::Sm100FmhaMlaKernelTmaWarpspecialized<
TileShape, Element, ElementAcc, ElementOut, ElementAcc, TileScheduler,
/*kIsCpAsync=*/true>;
using Fmha = cutlass::fmha::device::MLA<FmhaKernel>;
};
template <typename T>
typename T::Fmha::Arguments args_from_options(
at::Tensor const& out, at::Tensor const& q_nope, at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache, at::Tensor const& seq_lens,
at::Tensor const& page_table, double scale) {
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = q_nope.device().index();
hw_info.sm_count =
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
hw_info.device_id);
int batches = q_nope.sizes()[0];
int page_count_per_seq = page_table.sizes()[1];
int page_count_total = kv_c_and_k_pe_cache.sizes()[0];
int page_size = kv_c_and_k_pe_cache.sizes()[1];
int max_seq_len = page_size * page_count_per_seq;
using TileShapeH = typename T::TileShapeH;
using TileShapeD = typename T::TileShapeD;
auto problem_shape =
cute::make_tuple(TileShapeH{}, max_seq_len, TileShapeD{}, batches);
auto [H, K, D, B] = problem_shape;
auto [D_latent, D_rope] = D;
using StrideQ = typename T::StrideQ;
using StrideK = typename T::StrideK;
using StrideO = typename T::StrideO;
using StrideLSE = typename T::StrideLSE;
StrideQ stride_Q_latent = cute::make_tuple(
static_cast<int64_t>(D_latent), _1{}, static_cast<int64_t>(H * D_latent));
StrideQ stride_Q_rope = cute::make_tuple(static_cast<int64_t>(D_rope), _1{},
static_cast<int64_t>(H * D_rope));
StrideK stride_C =
cute::make_tuple(static_cast<int64_t>(D_latent + D_rope), _1{},
static_cast<int64_t>(page_size * (D_latent + D_rope)));
StrideLSE stride_PT = cute::make_stride(_1{}, page_count_per_seq);
StrideLSE stride_LSE = cute::make_tuple(_1{}, static_cast<int>(H));
StrideO stride_O = cute::make_tuple(static_cast<int64_t>(D_latent), _1{},
static_cast<int64_t>(H * D_latent));
using Element = typename T::Element;
using ElementOut = typename T::ElementOut;
using ElementAcc = typename T::ElementAcc;
auto Q_latent_ptr = static_cast<Element*>(q_nope.data_ptr());
auto Q_rope_ptr = static_cast<Element*>(q_pe.data_ptr());
auto C_ptr = static_cast<Element*>(kv_c_and_k_pe_cache.data_ptr());
auto scale_f = static_cast<float>(scale);
typename T::Fmha::Arguments arguments{
problem_shape,
{scale_f, Q_latent_ptr, stride_Q_latent, Q_rope_ptr, stride_Q_rope, C_ptr,
stride_C, C_ptr + D_latent, stride_C,
static_cast<int*>(seq_lens.data_ptr()),
static_cast<int*>(page_table.data_ptr()), stride_PT, page_count_total,
page_size},
{static_cast<ElementOut*>(out.data_ptr()), stride_O,
static_cast<ElementAcc*>(nullptr), stride_LSE},
hw_info,
-1, // split_kv
nullptr, // is_var_split_kv
};
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute
// split_kv automatically based on batch size and sequence length to balance
// workload across available SMs. Consider using var_split_kv for manual
// control if needed.
T::Fmha::set_split_kv(arguments);
return arguments;
}
template <typename Element>
void runMla(at::Tensor const& out, at::Tensor const& q_nope,
at::Tensor const& q_pe, at::Tensor const& kv_c_and_k_pe_cache,
at::Tensor const& seq_lens, at::Tensor const& page_table,
float scale, cudaStream_t stream) {
using MlaSm100Type = MlaSm100<Element>;
typename MlaSm100Type::Fmha fmha;
auto arguments = args_from_options<MlaSm100Type>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, scale);
size_t workspace_size = MlaSm100Type::Fmha::get_workspace_size(arguments);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(q_nope.device());
auto workspace = torch::empty(workspace_size, workspace_options);
CUTLASS_CHECK(fmha.can_implement(arguments));
CUTLASS_CHECK(fmha.initialize(arguments, workspace.data_ptr(), stream));
CUTLASS_CHECK(fmha.run(arguments, workspace.data_ptr(), stream));
}
void cutlass_mla_decode_sm100a(torch::Tensor const& out,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
torch::Tensor const& seq_lens,
torch::Tensor const& page_table, double scale) {
TORCH_CHECK(q_nope.device().is_cuda(), "q_nope must be on CUDA");
TORCH_CHECK(q_nope.dim() == 3, "q_nope must be a 3D tensor");
TORCH_CHECK(q_pe.dim() == 3, "q_pe must be a 3D tensor");
TORCH_CHECK(kv_c_and_k_pe_cache.dim() == 3,
"kv_c_and_k_pe_cache must be a 3D tensor");
TORCH_CHECK(seq_lens.dim() == 1, "seq_lens must be a 1D tensor");
TORCH_CHECK(page_table.dim() == 2, "page_table must be a 2D tensor");
TORCH_CHECK(out.dim() == 3, "out must be a 3D tensor");
auto B_q_nope = q_nope.size(0);
auto H_q_nope = q_nope.size(1);
auto D_q_nope = q_nope.size(2);
auto B_q_pe = q_pe.size(0);
auto H_q_pe = q_pe.size(1);
auto D_q_pe = q_pe.size(2);
auto B_pt = page_table.size(0);
auto PAGE_NUM = page_table.size(1);
auto PAGE_SIZE = kv_c_and_k_pe_cache.size(1);
auto D_ckv = kv_c_and_k_pe_cache.size(2);
auto B_o = out.size(0);
auto H_o = out.size(1);
auto D_o = out.size(2);
TORCH_CHECK(D_q_nope == 512, "D_q_nope must be equal to 512");
TORCH_CHECK(D_q_pe == 64, "D_q_pe must be equal to 64");
TORCH_CHECK(D_ckv == 576, "D_ckv must be equal to 576");
TORCH_CHECK(H_q_nope == H_q_pe && H_q_nope == H_o && H_o == 128,
"H_q_nope, H_q_pe, and H_o must be equal to 128");
TORCH_CHECK(PAGE_SIZE > 0 && (PAGE_SIZE & (PAGE_SIZE - 1)) == 0,
"PAGE_SIZE must be a power of 2");
TORCH_CHECK(
B_q_nope == B_q_pe && B_q_nope == B_pt && B_q_nope == B_o,
"Batch dims must be same for page_table, q_nope and q_pe, and out");
TORCH_CHECK(PAGE_NUM % (128 / PAGE_SIZE) == 0,
"PAGE_NUM must be divisible by 128 / PAGE_SIZE");
TORCH_CHECK(D_o == 512, "D_o must be equal to 512");
TORCH_CHECK(q_nope.dtype() == at::ScalarType::Half ||
q_nope.dtype() == at::ScalarType::BFloat16 ||
q_nope.dtype() == at::ScalarType::Float8_e4m3fn,
"q_nope must be a half, bfloat16, or float8_e4m3fn tensor");
TORCH_CHECK(kv_c_and_k_pe_cache.dtype() == q_nope.dtype() &&
q_nope.dtype() == q_pe.dtype(),
"kv_c_and_k_pe_cache, q_nope, and q_pe must be the same type");
TORCH_CHECK(seq_lens.dtype() == torch::kInt32,
"seq_lens must be a 32-bit integer tensor");
TORCH_CHECK(page_table.dtype() == torch::kInt32,
"page_table must be a 32-bit integer tensor");
auto in_dtype = q_nope.dtype();
at::cuda::CUDAGuard device_guard{(char)q_nope.get_device()};
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(q_nope.get_device());
if (in_dtype == at::ScalarType::Half) {
runMla<cutlass::half_t>(out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens,
page_table, scale, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
runMla<cutlass::bfloat16_t>(out, q_nope, q_pe, kv_c_and_k_pe_cache,
seq_lens, page_table, scale, stream);
} else if (in_dtype == at::ScalarType::Float8_e4m3fn) {
runMla<cutlass::float_e4m3_t>(out, q_nope, q_pe, kv_c_and_k_pe_cache,
seq_lens, page_table, scale, stream);
} else {
TORCH_CHECK(false, "Unsupported input data type of MLA");
}
}

View File

@ -270,9 +270,10 @@ __global__ void reshape_and_cache_flash_kernel(
cache_t* __restrict__ value_cache, // [num_blocks, block_size, num_heads,
// head_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, const int key_stride, const int value_stride,
const int num_heads, const int head_size, const int block_size,
const float* k_scale, const float* v_scale) {
const int64_t block_stride, const int64_t page_stride,
const int64_t head_stride, const int64_t key_stride,
const int64_t value_stride, const int num_heads, const int head_size,
const int block_size, const float* k_scale, const float* v_scale) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
@ -288,8 +289,8 @@ __global__ void reshape_and_cache_flash_kernel(
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int64_t tgt_key_value_idx = block_idx * block_stride +
block_offset * num_heads * head_size +
head_idx * head_size + head_offset;
block_offset * page_stride +
head_idx * head_stride + head_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
@ -396,16 +397,16 @@ void reshape_and_cache(
// KV_T is the data type of key and value tensors.
// CACHE_T is the stored data type of kv-cache.
// KV_DTYPE is the real data type of kv-cache.
#define CALL_RESHAPE_AND_CACHE_FLASH(KV_T, CACHE_T, KV_DTYPE) \
vllm::reshape_and_cache_flash_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride, \
value_stride, num_heads, head_size, block_size, \
reinterpret_cast<const float*>(k_scale.data_ptr()), \
#define CALL_RESHAPE_AND_CACHE_FLASH(KV_T, CACHE_T, KV_DTYPE) \
vllm::reshape_and_cache_flash_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, page_stride, \
head_stride, key_stride, value_stride, num_heads, head_size, \
block_size, reinterpret_cast<const float*>(k_scale.data_ptr()), \
reinterpret_cast<const float*>(v_scale.data_ptr()));
void reshape_and_cache_flash(
@ -432,9 +433,11 @@ void reshape_and_cache_flash(
int head_size = key.size(2);
int block_size = key_cache.size(1);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
int block_stride = key_cache.stride(0);
int64_t key_stride = key.stride(0);
int64_t value_stride = value.stride(0);
int64_t block_stride = key_cache.stride(0);
int64_t page_stride = key_cache.stride(1);
int64_t head_stride = key_cache.stride(2);
TORCH_CHECK(key_cache.stride(0) == value_cache.stride(0));
dim3 grid(num_tokens);

View File

@ -7,3 +7,22 @@ inline constexpr uint32_t next_pow_2(uint32_t const num) {
if (num <= 1) return num;
return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1));
}
template <typename A, typename B>
static inline constexpr auto div_ceil(A a, B b) {
return (a + b - 1) / b;
}
// Round a down to the next multiple of b. The caller is responsible for making
// sure that b is non-zero
template <typename T>
inline constexpr T round_to_previous_multiple_of(T a, T b) {
return a % b == 0 ? a : (a / b) * b;
}
// Round a up to the next multiple of b. The caller is responsible for making
// sure that b is non-zero
template <typename T>
inline constexpr T round_to_next_multiple_of(T a, T b) {
return a % b == 0 ? a : ((a / b) + 1) * b;
}

View File

@ -4,6 +4,7 @@
#include <altivec.h>
#include <cmath>
#include <algorithm>
#include <torch/all.h>
namespace vec_op {
@ -62,6 +63,10 @@ typedef struct f32x4x4_t {
__vector float val[4];
} f32x4x4_t;
typedef struct i32x4x4_t {
__vector int32_t val[4];
} i32x4x4_t;
struct FP32Vec8;
struct FP32Vec16;
@ -98,6 +103,28 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
vec_xst(reg.val[0], 0, (signed short*)ptr);
vec_xst(reg.val[1], 16, (signed short*)ptr);
}
void save(void* ptr, const int elem_num) const {
const int clamped_elem = std::max(0, std::min(elem_num, 16));
// Calculate elements to store in each 128-bit part (8 elements each)
const int elements_val0 = std::min(clamped_elem, 8);
const int elements_val1 = std::max(clamped_elem - 8, 0);
// Convert elements to bytes (2 bytes per element)
const size_t bytes_val0 = elements_val0 * sizeof(signed short);
const size_t bytes_val1 = elements_val1 * sizeof(signed short);
signed short* dest = static_cast<signed short*>(ptr);
// Store the first part using vec_xst_len
if (bytes_val0 > 0) {
vec_xst_len(reg.val[0], dest, bytes_val0);
}
// Store the second part if needed
if (bytes_val1 > 0) {
vec_xst_len(reg.val[1], dest + elements_val0, bytes_val1);
}
}
};
const static __vector signed short zero = vec_splats((signed short)0);
@ -257,6 +284,64 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
}
};
struct INT32Vec16 : public Vec<INT32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
i32x4x4_t reg;
int32_t values[VEC_ELEM_NUM];
};
i32x4x4_t reg;
explicit INT32Vec16(const void* data_ptr) {
reg.val[0] = vec_xl(0, reinterpret_cast<const __vector int32_t*>(data_ptr));
reg.val[1] =
vec_xl(16, reinterpret_cast<const __vector int32_t*>(data_ptr));
reg.val[2] =
vec_xl(32, reinterpret_cast<const __vector int32_t*>(data_ptr));
reg.val[3] =
vec_xl(48, reinterpret_cast<const __vector int32_t*>(data_ptr));
}
void save(int32_t* ptr) const {
vec_xst(reg.val[0], 0, reinterpret_cast<__vector int32_t*>(ptr));
vec_xst(reg.val[1], 16, reinterpret_cast<__vector int32_t*>(ptr));
vec_xst(reg.val[2], 32, reinterpret_cast<__vector int32_t*>(ptr));
vec_xst(reg.val[3], 48, reinterpret_cast<__vector int32_t*>(ptr));
}
void save(int32_t* ptr, const int elem_num) const {
const int elements_in_chunk1 =
(elem_num >= 0) ? ((elem_num >= 4) ? 4 : elem_num) : 0;
const int elements_in_chunk2 =
(elem_num > 4) ? ((elem_num >= 8) ? 4 : elem_num - 4) : 0;
const int elements_in_chunk3 =
(elem_num > 8) ? ((elem_num >= 12) ? 4 : elem_num - 8) : 0;
const int elements_in_chunk4 =
(elem_num > 12) ? ((elem_num >= 16) ? 4 : elem_num - 12) : 0;
const size_t bytes_chunk1 =
static_cast<size_t>(elements_in_chunk1 * sizeof(int32_t));
const size_t bytes_chunk2 =
static_cast<size_t>(elements_in_chunk2 * sizeof(int32_t));
const size_t bytes_chunk3 =
static_cast<size_t>(elements_in_chunk3 * sizeof(int32_t));
const size_t bytes_chunk4 =
static_cast<size_t>(elements_in_chunk4 * sizeof(int32_t));
vec_xst_len(reg.val[0], reinterpret_cast<int32_t*>(ptr), bytes_chunk1);
vec_xst_len(reg.val[1],
reinterpret_cast<int32_t*>(reinterpret_cast<char*>(ptr) + 16),
bytes_chunk2);
vec_xst_len(reg.val[2],
reinterpret_cast<int32_t*>(reinterpret_cast<char*>(ptr) + 32),
bytes_chunk3);
vec_xst_len(reg.val[3],
reinterpret_cast<int32_t*>(reinterpret_cast<char*>(ptr) + 48),
bytes_chunk4);
}
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
@ -319,6 +404,13 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
explicit FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {}
explicit FP32Vec16(const INT32Vec16& v) {
reg.val[0] = vec_ctf(v.reg.val[0], 0);
reg.val[1] = vec_ctf(v.reg.val[1], 0);
reg.val[2] = vec_ctf(v.reg.val[2], 0);
reg.val[3] = vec_ctf(v.reg.val[3], 0);
}
FP32Vec16 operator*(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_mul(reg.val[0], b.reg.val[0]),
vec_mul(reg.val[1], b.reg.val[1]),
@ -347,6 +439,117 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vec_div(reg.val[3], b.reg.val[3])}));
}
FP32Vec16 clamp(const FP32Vec16& min, const FP32Vec16& max) const {
return FP32Vec16(f32x4x4_t(
{vec_min(max.reg.val[0], vec_max(min.reg.val[0], reg.val[0])),
vec_min(max.reg.val[1], vec_max(min.reg.val[1], reg.val[1])),
vec_min(max.reg.val[2], vec_max(min.reg.val[2], reg.val[2])),
vec_min(max.reg.val[3], vec_max(min.reg.val[3], reg.val[3]))}));
}
FP32Vec16 max(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_max(reg.val[0], b.reg.val[0]),
vec_max(reg.val[1], b.reg.val[1]),
vec_max(reg.val[2], b.reg.val[2]),
vec_max(reg.val[3], b.reg.val[3])}));
}
FP32Vec16 max(const FP32Vec16& b, int elem_num) const {
FP32Vec16 result;
// Create a vector of element indices for each chunk
__vector unsigned int indices = {0, 1, 2, 3};
__vector unsigned int elem_num_vec =
vec_splats(static_cast<unsigned int>(elem_num));
// Compute masks for each chunk
__vector unsigned int chunk_offset0 = {0, 0, 0,
0}; // Chunk 0: Elements 0-3
__vector unsigned int chunk_offset1 = {4, 4, 4,
4}; // Chunk 1: Elements 4-7
__vector unsigned int chunk_offset2 = {8, 8, 8,
8}; // Chunk 2: Elements 8-11
__vector unsigned int chunk_offset3 = {12, 12, 12,
12}; // Chunk 3: Elements 12-15
// Compute masks for each chunk
__vector bool int mask0 = vec_cmplt(indices + chunk_offset0, elem_num_vec);
__vector bool int mask1 = vec_cmplt(indices + chunk_offset1, elem_num_vec);
__vector bool int mask2 = vec_cmplt(indices + chunk_offset2, elem_num_vec);
__vector bool int mask3 = vec_cmplt(indices + chunk_offset3, elem_num_vec);
// Apply masks to compute the result for each chunk
result.reg.val[0] = vec_sel(this->reg.val[0],
vec_max(this->reg.val[0], b.reg.val[0]), mask0);
result.reg.val[1] = vec_sel(this->reg.val[1],
vec_max(this->reg.val[1], b.reg.val[1]), mask1);
result.reg.val[2] = vec_sel(this->reg.val[2],
vec_max(this->reg.val[2], b.reg.val[2]), mask2);
result.reg.val[3] = vec_sel(this->reg.val[3],
vec_max(this->reg.val[3], b.reg.val[3]), mask3);
return FP32Vec16(result.reg);
}
FP32Vec16 min(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_min(reg.val[0], b.reg.val[0]),
vec_min(reg.val[1], b.reg.val[1]),
vec_min(reg.val[2], b.reg.val[2]),
vec_min(reg.val[3], b.reg.val[3])}));
}
FP32Vec16 min(const FP32Vec16& b, int elem_num) const {
FP32Vec16 result;
vector unsigned int indices = {0, 1, 2, 3};
vector unsigned int elem_num_vec =
vec_splats(static_cast<unsigned int>(elem_num));
vector unsigned int chunk_offset0 = {0, 0, 0, 0};
vector unsigned int chunk_offset1 = {4, 4, 4, 4};
vector unsigned int chunk_offset2 = {8, 8, 8, 8};
vector unsigned int chunk_offset3 = {12, 12, 12, 12};
vector bool int mask0 = vec_cmplt(indices + chunk_offset0, elem_num_vec);
vector bool int mask1 = vec_cmplt(indices + chunk_offset1, elem_num_vec);
vector bool int mask2 = vec_cmplt(indices + chunk_offset2, elem_num_vec);
vector bool int mask3 = vec_cmplt(indices + chunk_offset3, elem_num_vec);
result.reg.val[0] = vec_sel(this->reg.val[0],
vec_min(this->reg.val[0], b.reg.val[0]), mask0);
result.reg.val[1] = vec_sel(this->reg.val[1],
vec_min(this->reg.val[1], b.reg.val[1]), mask1);
result.reg.val[2] = vec_sel(this->reg.val[2],
vec_min(this->reg.val[2], b.reg.val[2]), mask2);
result.reg.val[3] = vec_sel(this->reg.val[3],
vec_min(this->reg.val[3], b.reg.val[3]), mask3);
return FP32Vec16(result.reg);
}
FP32Vec16 abs() const {
return FP32Vec16(f32x4x4_t({vec_abs(reg.val[0]), vec_abs(reg.val[1]),
vec_abs(reg.val[2]), vec_abs(reg.val[3])}));
}
float reduce_max() {
__vector float max01 = vec_max(reg.val[0], reg.val[1]);
__vector float max23 = vec_max(reg.val[2], reg.val[3]);
__vector float max_all = vec_max(max01, max23);
__vector float temp = vec_max(max_all, vec_sld(max_all, max_all, 8));
temp = vec_max(temp, vec_sld(temp, temp, 4));
return vec_extract(temp, 0);
}
float reduce_min() {
__vector float min01 = vec_min(reg.val[0], reg.val[1]);
__vector float min23 = vec_min(reg.val[2], reg.val[3]);
__vector float min_all = vec_min(min01, min23);
__vector float temp = vec_min(min_all, vec_sld(min_all, min_all, 8));
temp = vec_min(temp, vec_sld(temp, temp, 4));
return vec_extract(temp, 0);
}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
@ -377,6 +580,68 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vec_xst(reg.val[2], 32, ptr);
vec_xst(reg.val[3], 48, ptr);
}
void save(float* ptr, const int elem_num) const {
const int elements_in_chunk1 =
(elem_num >= 0) ? ((elem_num >= 4) ? 4 : elem_num) : 0;
const int elements_in_chunk2 =
(elem_num > 4) ? ((elem_num >= 8) ? 4 : elem_num - 4) : 0;
const int elements_in_chunk3 =
(elem_num > 8) ? ((elem_num >= 12) ? 4 : elem_num - 8) : 0;
const int elements_in_chunk4 =
(elem_num > 12) ? ((elem_num >= 16) ? 4 : elem_num - 12) : 0;
const size_t bytes_chunk1 =
static_cast<size_t>(elements_in_chunk1 * sizeof(float));
const size_t bytes_chunk2 =
static_cast<size_t>(elements_in_chunk2 * sizeof(float));
const size_t bytes_chunk3 =
static_cast<size_t>(elements_in_chunk3 * sizeof(float));
const size_t bytes_chunk4 =
static_cast<size_t>(elements_in_chunk4 * sizeof(float));
vec_xst_len(reg.val[0], ptr, bytes_chunk1);
vec_xst_len(reg.val[1],
reinterpret_cast<float*>(reinterpret_cast<char*>(ptr) + 16),
bytes_chunk2);
vec_xst_len(reg.val[2],
reinterpret_cast<float*>(reinterpret_cast<char*>(ptr) + 32),
bytes_chunk3);
vec_xst_len(reg.val[3],
reinterpret_cast<float*>(reinterpret_cast<char*>(ptr) + 48),
bytes_chunk4);
}
};
struct INT8Vec16 : public Vec<INT8Vec16> {
constexpr static int VEC_NUM_ELEM = 16; // 128 bits / 8 bits = 16
union AliasReg {
__vector signed char reg;
int8_t values[VEC_NUM_ELEM];
};
__vector signed char reg;
explicit INT8Vec16(const FP32Vec16& vec) {
__vector signed int ret[4];
ret[0] = vec_cts(vec.reg.val[0], 0);
ret[1] = vec_cts(vec.reg.val[1], 0);
ret[2] = vec_cts(vec.reg.val[2], 0);
ret[3] = vec_cts(vec.reg.val[3], 0);
__vector signed short packed1 = vec_packs(ret[0], ret[1]);
__vector signed short packed2 = vec_packs(ret[2], ret[3]);
reg = vec_packs(packed1, packed2);
}
void save(void* ptr) const {
*reinterpret_cast<__vector signed char*>(ptr) = reg;
}
void save(signed char* ptr, const int elem_num) {
vec_xst_len(reg, ptr, static_cast<size_t>(elem_num));
}
};
template <typename T>

View File

@ -9,7 +9,8 @@ void rotary_embedding_impl(
scalar_t* __restrict__ query, /// [batch_size, seq_len, num_heads,
/// head_size] or [num_tokens, num_heads,
/// head_size]
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads,
scalar_t* __restrict__ key, // nullptr (optional) or
// [batch_size, seq_len, num_kv_heads,
// head_size] or [num_tokens, num_kv_heads,
// head_size]
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim //
@ -85,10 +86,13 @@ void rotary_embedding_impl(
compute_loop(token_head, cache_ptr, query);
}
for (int i = 0; i < num_kv_heads; ++i) {
const int head_idx = i;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
compute_loop(token_head, cache_ptr, key);
if (key != nullptr) {
for (int i = 0; i < num_kv_heads; ++i) {
const int head_idx = i;
const int64_t token_head =
token_idx * key_stride + head_idx * head_size;
compute_loop(token_head, cache_ptr, key);
}
}
}
}
@ -100,7 +104,8 @@ void rotary_embedding_gptj_impl(
scalar_t* __restrict__ query, /// [batch_size, seq_len, num_heads,
/// head_size] or [num_tokens, num_heads,
/// head_size]
scalar_t* __restrict__ key, // [batch_size, seq_len, num_kv_heads,
scalar_t* __restrict__ key, // nullptr (optional) or
// [batch_size, seq_len, num_kv_heads,
// head_size] or [num_tokens, num_kv_heads,
// head_size]
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, rot_dim //
@ -138,6 +143,10 @@ void rotary_embedding_gptj_impl(
}
}
if (key == nullptr) {
return;
}
#pragma omp parallel for collapse(2)
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (int i = 0; i < num_kv_heads; ++i) {
@ -168,13 +177,13 @@ void rotary_embedding_gptj_impl(
}; // namespace
void rotary_embedding(torch::Tensor& positions, torch::Tensor& query,
torch::Tensor& key, int64_t head_size,
std::optional<torch::Tensor> key, int64_t head_size,
torch::Tensor& cos_sin_cache, bool is_neox) {
int num_tokens = positions.numel();
int rot_dim = cos_sin_cache.size(1);
int num_heads = query.size(-1) / head_size;
int num_kv_heads = key.size(-1) / head_size;
int64_t key_stride = key.stride(-2);
int num_kv_heads = key.has_value() ? key->size(-1) / head_size : num_heads;
int64_t key_stride = key.has_value() ? key->stride(-2) : 0;
int64_t query_stride = query.stride(-2);
VLLM_DISPATCH_FLOATING_TYPES(
@ -183,15 +192,15 @@ void rotary_embedding(torch::Tensor& positions, torch::Tensor& query,
if (is_neox) {
rotary_embedding_impl(
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
head_size, num_tokens);
key.has_value() ? key->data_ptr<scalar_t>() : nullptr,
cos_sin_cache.data_ptr<scalar_t>(), rot_dim, query_stride,
key_stride, num_heads, num_kv_heads, head_size, num_tokens);
} else {
rotary_embedding_gptj_impl(
positions.data_ptr<int64_t>(), query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(), cos_sin_cache.data_ptr<scalar_t>(),
rot_dim, query_stride, key_stride, num_heads, num_kv_heads,
head_size, num_tokens);
key.has_value() ? key->data_ptr<scalar_t>() : nullptr,
cos_sin_cache.data_ptr<scalar_t>(), rot_dim, query_stride,
key_stride, num_heads, num_kv_heads, head_size, num_tokens);
}
CPU_KERNEL_GUARD_OUT(rotary_embedding_impl)

View File

@ -239,6 +239,280 @@ void static_quant_epilogue(const float* input, scalar_t* output,
}
}
template <bool AZP, bool PerChannel, bool Bias, typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const float* b_scale,
const int32_t* azp, const int32_t* azp_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
cvt_vec_t token_scale_vec(a_scale[i]);
cvt_vec_t token_zp_scale_vec;
if constexpr (AZP) {
float zp_scale_val = a_scale[i] * static_cast<float>(azp[i]);
if constexpr (!PerChannel) {
zp_scale_val *= *b_scale;
}
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
}
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
#elif defined(__powerpc64__)
template <bool AZP, typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t inv_scale(1.0 / *scale);
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
cvt_vec_t zp_vec;
if constexpr (AZP) {
zp_vec = cvt_vec_t(static_cast<float>(*azp));
}
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, typename scalar_t>
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t max_value(std::numeric_limits<float>::lowest());
cvt_vec_t min_value(std::numeric_limits<float>::max());
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if (j + vec_elem_num == hidden_size) {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
} else {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32, hidden_size - j);
min_value = min_value.min(elems_fp32, hidden_size - j);
} else {
max_value = max_value.max(elems_fp32.abs(), hidden_size - j);
}
}
}
float scale_val, azp_val;
if constexpr (AZP) {
float max_scalar = max_value.reduce_max();
float min_scalar = min_value.reduce_min();
scale_val = (max_scalar - min_scalar) / 255.0f;
azp_val = std::nearbyint(-128.0f - min_scalar / scale_val);
azp[i] = static_cast<int32_t>(azp_val);
scale[i] = scale_val;
} else {
scale_val = max_value.reduce_max() / 127.0f;
scale[i] = scale_val;
}
const cvt_vec_t inv_scale(1.0 / scale_val);
const cvt_vec_t azp_vec(azp_val);
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
}
template <bool PerChannel, typename scalar_t>
void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_output_scale_impl)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t a_scale_vec(a_scale);
cvt_vec_t b_scale_vec(*b_scale);
cvt_vec_t scale_vec = a_scale_vec * b_scale_vec;
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, bool PerChannel, bool Bias, typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const float* b_scale,
@ -324,7 +598,8 @@ void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "static_scaled_int8_quant_impl requires AVX512 support.")
TORCH_CHECK(
false, "static_scaled_int8_quant_impl requires AVX512/powerpc64 support.")
}
template <typename scalar_t>
@ -332,7 +607,9 @@ void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "dynamic_scaled_int8_quant_impl requires AVX512 support.")
TORCH_CHECK(
false,
"dynamic_scaled_int8_quant_impl requires AVX512/powerpc64 support.")
}
template <bool PerChannel, typename scalar_t>
@ -340,7 +617,7 @@ void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "static_quant_epilogue requires AVX512 support.")
TORCH_CHECK(false, "static_quant_epilogue requires AVX512/powerpc64 support.")
}
template <typename scalar_t>
@ -349,7 +626,8 @@ void dynamic_quant_epilogue(const float* input, scalar_t* output,
const int32_t* azp, const int32_t* azp_with_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "dynamic_quant_epilogue requires AVX512 support.")
TORCH_CHECK(false,
"dynamic_quant_epilogue requires AVX512/powerpc64 support.")
}
#endif
} // namespace
@ -611,3 +889,58 @@ void dynamic_scaled_int8_quant(
}
});
}
#if defined(__powerpc64__)
void int8_scaled_mm_ppc64le(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const torch::Tensor& b, // [IC, OC], column-major
const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const std::optional<torch::Tensor>& bias // [OC]
) {
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm)
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
"int8_scaled_mm_ppc64le only supports INT8 inputs.");
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
b.size(1) == c.size(1));
// We dont need this
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
// Check for strides and alignment
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
TORCH_CHECK(b.stride(0) == 1); // Column-major
TORCH_CHECK(c.stride(0) % 16 == 0 &&
b.stride(1) % 16 == 0); // 16 Byte Alignment
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (bias) {
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous() &&
bias->dim() == 1);
}
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm_ppc64le", [&] {
torch::Tensor tmp_fp32_out = torch::empty_like(c, ::at::ScalarType::Float);
// Compute C_inter=s_b * (A@B)
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
if (bias.has_value()) {
// Compute C=s_a * C_inter + bias
dynamic_quant_epilogue<false, true, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr,
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
} else {
// Compute C=s_a * C_inter
dynamic_quant_epilogue<false, true, false, scalar_t>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr, nullptr,
c.size(0), c.size(1));
}
});
}
#endif

View File

@ -18,6 +18,14 @@ void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a,
const std::optional<torch::Tensor>& azp,
const std::optional<torch::Tensor>& bias);
#if defined(__powerpc64__)
void int8_scaled_mm_ppc64le(torch::Tensor& c, const torch::Tensor& a,
const torch::Tensor& b,
const torch::Tensor& a_scales,
const torch::Tensor& b_scales,
const std::optional<torch::Tensor>& bias);
#endif
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
torch::Tensor& kv_cache, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens);
@ -117,7 +125,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// Apply GPT-NeoX or GPT-J style rotary embedding to query and key.
ops.def(
"rotary_embedding(Tensor positions, Tensor! query,"
" Tensor! key, int head_size,"
" Tensor!? key, int head_size,"
" Tensor cos_sin_cache, bool is_neox) -> ()");
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
@ -150,6 +158,33 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
#elif defined(__powerpc64__)
// Compute int8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale,"
"Tensor? azp) -> ()");
ops.impl("static_scaled_int8_quant", torch::kCPU, &static_scaled_int8_quant);
// Compute int8 quantized tensor and scaling factor
ops.def(
"dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale, "
"Tensor!? azp) -> ()");
ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
&dynamic_scaled_int8_quant);
// W8A8 GEMM, supporting symmetric quantization.
ops.def(
"cutlass_scaled_mm(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm_ppc64le);
// w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
// quantization.
ops.def(
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
#endif
// SHM CCL

View File

@ -4,6 +4,11 @@
#include <string>
#include <sched.h>
#endif
#if __GLIBC__ == 2 && __GLIBC_MINOR__ < 30
#include <unistd.h>
#include <sys/syscall.h>
#define gettid() syscall(SYS_gettid)
#endif
#include "cpu_types.hpp"

View File

@ -375,7 +375,7 @@ class CustomAllreduce {
bool fully_connected_;
RankSignals sg_;
// Stores an map from a pointer to its peer pointers from all ranks.
// Stores a map from a pointer to its peer pointers from all ranks.
std::unordered_map<void*, RankData*> buffers_;
Signal* self_sg_;

View File

@ -59,3 +59,13 @@ struct enable_sm90_only : Kernel {
#endif
}
};
template <typename Kernel>
struct enable_sm100_only : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ == 1000
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};

View File

@ -140,6 +140,10 @@ void rms_norm(torch::Tensor& out, // [..., hidden_size]
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
double epsilon) {
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(weight.is_contiguous());
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;

View File

@ -422,7 +422,7 @@ void causal_conv1d_fwd_kernel(ConvParamsBase params) {
int final_state_position = ((seqlen - (kWidth - 1)) - (n_chunks - 1) * kChunkSize);
// in case the final state is separated between the last "smem_exchange" and
// and the one before it (chunk = n_chunks - 1 and chunk = n_chunks - 2),
// (which occurs when `final_state_position` is a non-positivie index)
// (which occurs when `final_state_position` is a non-positive index)
// we load the correct data from smem_exchange from both chunks, the last chunk iteration and the one before it
if (conv_states != nullptr && final_state_position < 0 && seqlen > kWidth){
input_t vals_load[kNElts] = {0};

View File

@ -1,31 +0,0 @@
#include "marlin_moe_kernel_ku4.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku4(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks) {
bool has_zp = true;
if (false) {
}
AWQ_CALL_IF_MOE(vllm::kU4, 16, 4, 256)
AWQ_CALL_IF_MOE(vllm::kU4, 8, 8, 256)
AWQ_CALL_IF_MOE(vllm::kU4, 8, 4, 128)
AWQ_CALL_IF_MOE(vllm::kU4, 4, 8, 128)
else {
return false;
}
return true;
}
} // namespace marlin_moe

View File

@ -1,20 +0,0 @@
#pragma once
#include "marlin_moe_kernel.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku4(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks);
} // namespace marlin_moe

View File

@ -1,31 +0,0 @@
#include "marlin_moe_kernel_ku4b8.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku4b8(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks) {
bool has_zp = false;
if (false) {
}
GPTQ_CALL_IF_MOE(vllm::kU4B8, 16, 4, 256)
GPTQ_CALL_IF_MOE(vllm::kU4B8, 8, 8, 256)
GPTQ_CALL_IF_MOE(vllm::kU4B8, 8, 4, 128)
GPTQ_CALL_IF_MOE(vllm::kU4B8, 4, 8, 128)
else {
return false;
}
return true;
}
} // namespace marlin_moe

View File

@ -1,20 +0,0 @@
#pragma once
#include "marlin_moe_kernel.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku4b8(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks);
} // namespace marlin_moe

View File

@ -1,31 +0,0 @@
#include "marlin_moe_kernel_ku8b128.h"
namespace marlin_moe {
// We return bool so we can create these different kernel calls as a sequence
// of if-elseif's.
bool call_marlin_moe_kernel_ku8b128(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks) {
bool has_zp = false;
if (false) {
}
GPTQ_CALL_IF_MOE(vllm::kU8B128, 16, 4, 256)
GPTQ_CALL_IF_MOE(vllm::kU8B128, 8, 8, 256)
GPTQ_CALL_IF_MOE(vllm::kU8B128, 8, 4, 128)
GPTQ_CALL_IF_MOE(vllm::kU8B128, 4, 8, 128)
else {
return false;
}
return true;
}
} // namespace marlin_moe

View File

@ -1,18 +0,0 @@
#pragma once
#include "marlin_moe_kernel.h"
namespace marlin_moe {
bool call_marlin_moe_kernel_ku8b128(
vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks,
bool has_act_order, int group_blocks, int num_threads, int blocks,
int max_shared_mem, cudaStream_t stream, const int4* A_ptr,
const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr,
const float* topk_weights_ptr, const int4* s_ptr, const int4* zp_ptr,
const int* g_idx_ptr, int* expert_offsets_ptr, int num_groups,
int expert_idx, int num_experts, int topk, int prob_m, int prob_n,
int prob_k, int tot_m, int* locks, bool replicate_input, bool apply_weights,
int m_block, int max_par, int cfg_max_m_blocks);
}

View File

@ -1,588 +0,0 @@
/*
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <iostream>
#include "core/exception.hpp"
#include "core/scalar_type.hpp"
#include "core/registration.h"
#include "marlin_kernels/marlin_moe_kernel_ku4b8.h"
#include "marlin_kernels/marlin_moe_kernel_ku8b128.h"
#include "marlin_kernels/marlin_moe_kernel_ku4.h"
template <typename T>
inline std::string str(T x) {
return std::to_string(x);
}
namespace marlin_moe {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
// For a given "a" of size [M,K] performs a permutation of the K columns based
// on the given "perm" indices.
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr, int size_m,
int size_k, int block_rows) {
int start_row = block_rows * blockIdx.x;
int finish_row = start_row + block_rows;
if (finish_row > size_m) {
finish_row = size_m;
}
int cur_block_rows = finish_row - start_row;
int row_stride = size_k * sizeof(half) / 16;
auto permute_row = [&](int row) {
int iters = size_k / blockDim.x;
int rest = size_k % blockDim.x;
int offset = row * row_stride;
half const* a_row_half = reinterpret_cast<half const*>(a_int4_ptr + offset);
half* out_half = reinterpret_cast<half*>(out_int4_ptr + offset);
int base_k = 0;
for (int i = 0; i < iters; i++) {
int cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
base_k += blockDim.x;
}
if (rest) {
if (threadIdx.x < rest) {
int cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
}
}
};
for (int i = 0; i < cur_block_rows; i++) {
int cur_row = start_row + i;
if (cur_row < size_m) {
permute_row(cur_row);
}
}
}
__global__ void compute_expert_offsets(int const* __restrict__ topk_ids,
int* __restrict__ expert_offsets,
int topk_length, int block_size) {
int expert_id = threadIdx.x;
int num_experts = blockDim.x;
int occurrences = 0;
for (int i = 0; i < topk_length; ++i) {
occurrences += (topk_ids[i] == expert_id);
}
expert_offsets[expert_id + 1] = occurrences;
__syncthreads();
if (threadIdx.x == 0) {
int tot_offset = 0;
expert_offsets[0] = 0;
for (int i = 0; i < num_experts; ++i) {
tot_offset += ceildiv(expert_offsets[i + 1], block_size) * block_size;
expert_offsets[i + 1] = tot_offset;
}
}
__syncthreads();
}
#else
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr, int size_m,
int size_k, int block_rows) {
// Marlin is not implemented yet for SM < 8.0
assert(false);
return;
}
__global__ void compute_expert_offsets(int const* __restrict__ topk_ids,
int* __restrict__ expert_offsets,
int topk_length, int block_size) {
// Marlin is not implemented yet for SM < 8.0
assert(false);
return;
}
#endif
typedef struct {
int thread_k;
int thread_n;
int num_threads;
} thread_config_t;
typedef struct {
int max_m_blocks;
thread_config_t tb_cfg;
} exec_config_t;
thread_config_t small_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{128, 128, 256}, // Default
{128, 64, 128}, // Reduce N 2X, same K
{64, 256, 256}, // Reduce K 2X, increase N 2X
{64, 128, 128}, // Reduce K 2X, same N
{64, 64, 128}, // Reduce both 2X
};
thread_config_t large_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{64, 256, 256}, // Default
{128, 128, 256}, // Reduce N 2X, increase K 2X
{64, 128, 128}, // Reduce N 2X, same K
{128, 64, 128}, // Reduce N 4X, increase K 2X
{64, 64, 128}, // Reduce N 4X, same K
};
int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
int prob_n, int prob_k, int num_bits, int group_size,
bool has_act_order, bool is_k_full) {
bool cache_scales_chunk = has_act_order && !is_k_full;
int tb_n = th_config.thread_n;
int tb_k = th_config.thread_k;
// Get max scale groups per thread-block
int tb_groups;
if (group_size == -1) {
tb_groups = 1;
} else if (group_size == 0) {
tb_groups = ceildiv(tb_k, 32); // Worst case is 32 group size
} else {
tb_groups = ceildiv(tb_k, group_size);
}
if (cache_scales_chunk) {
int load_groups =
tb_groups * STAGES * 2; // Chunk size is 2x pipeline over dim K
load_groups = max(load_groups, 32); // We load at least 32 scale groups
return load_groups * tb_n * 4;
} else {
int tb_scales = tb_groups * tb_n * 2;
return tb_scales * STAGES;
}
}
bool is_valid_cache_size(thread_config_t const& th_config, int max_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int scales_cache_size, int max_shared_mem) {
int pack_factor = 32 / num_bits;
// Get B size
int tb_k = th_config.thread_k;
int tb_n = th_config.thread_n;
int b_size = (tb_k * tb_n / pack_factor) * 4;
// Get A size
int m_blocks = ceildiv(prob_m, 16);
int tb_max_m = 16;
while (true) {
if (m_blocks >= max_m_blocks) {
tb_max_m *= max_m_blocks;
break;
}
max_m_blocks--;
if (max_m_blocks == 0) {
TORCH_CHECK(false, "Unexpected m_blocks = ", m_blocks);
}
}
int a_size = (tb_max_m * tb_k) * 2;
float pipe_size = (a_size + b_size) * STAGES;
TORCH_CHECK(max_shared_mem / 2 > scales_cache_size); // Sanity
return pipe_size < 0.95f * (max_shared_mem - scales_cache_size);
}
bool is_valid_config(thread_config_t const& th_config, int max_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, bool has_act_order, bool is_k_full,
int max_shared_mem) {
// Sanity
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
th_config.num_threads == -1) {
return false;
}
// Verify K/N are divisible by thread K/N
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
return false;
}
// thread_k can be only 128 or 64 (because it must be less than groupsize
// which is 128)
if (th_config.thread_k != 128 && th_config.thread_k != 64) {
return false;
}
// Verify min for thread K/N
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
return false;
}
// num_threads must be at least 128 (= 4 warps)
if (th_config.num_threads < 128) {
return false;
}
// Determine cache for scales
int scales_cache_size =
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full);
// Check that pipeline fits into cache
if (!is_valid_cache_size(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, scales_cache_size, max_shared_mem)) {
return false;
}
return true;
}
exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k,
int num_bits, int group_size,
bool has_act_order, bool is_k_full,
int max_shared_mem) {
int max_m_blocks = 4;
while (max_m_blocks > 0) {
if (prob_m <= 16) {
for (auto th_config : small_batch_thread_configs) {
if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full,
max_shared_mem)) {
return exec_config_t{max_m_blocks, th_config};
}
}
} else {
for (auto th_config : large_batch_thread_configs) {
if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full,
max_shared_mem)) {
return exec_config_t{max_m_blocks, th_config};
}
}
}
max_m_blocks--; // Process less M blocks per invocation to reduce cache
// usage
}
return exec_config_t{0, {-1, -1, -1}};
}
#define CALL_MOE_KERNEL_FUNCTION(KERNEL_FUNCTION) \
else if (KERNEL_FUNCTION( \
q_type, thread_n_blocks, thread_k_blocks, has_act_order, \
group_blocks, num_threads, blocks, max_shared_mem, stream, \
A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \
zp_ptr, g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \
num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \
replicate_input, apply_weights, m_block, max_par, \
exec_cfg.max_m_blocks)) { \
}
void marlin_mm_moe(const void* A, const void* B, void* C,
const void* sorted_ids, const void* topk_weights,
const void* topk_ids, const void* s, void* zp,
const void* g_idx, const void* perm, void* a_tmp,
void* expert_offsets, int prob_m, int prob_n, int prob_k,
void* workspace, vllm::ScalarType const& q_type,
bool has_act_order, bool is_k_full, bool has_zp,
int num_groups, int group_size, int num_experts, int topk,
int moe_block_size, int dev, cudaStream_t stream,
int thread_k, int thread_n, int sms, int max_par,
bool replicate_input, bool apply_weights) {
TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
", ", prob_n, ", ", prob_k, "]");
if (sms == -1) {
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
}
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
int num_bits = q_type.size_bits();
// Set thread config
exec_config_t exec_cfg;
if (thread_k != -1 && thread_n != -1) {
// User-defined config
exec_cfg =
exec_config_t{4, thread_config_t{thread_k, thread_n, USER_THREADS}};
} else {
// Auto config
exec_cfg =
determine_thread_config(prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, max_shared_mem);
}
TORCH_CHECK(exec_cfg.max_m_blocks > 0 &&
is_valid_config(exec_cfg.tb_cfg, exec_cfg.max_m_blocks,
prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, max_shared_mem),
"Invalid thread config: max_m_blocks = ", exec_cfg.max_m_blocks,
", thread_k = ", exec_cfg.tb_cfg.thread_k,
", thread_n = ", exec_cfg.tb_cfg.thread_n,
", num_threads = ", exec_cfg.tb_cfg.num_threads, " for MKN = [",
prob_m, ", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
", group_size = ", group_size,
", has_act_order = ", has_act_order, ", is_k_full = ", is_k_full,
", max_shared_mem = ", max_shared_mem);
int num_threads = exec_cfg.tb_cfg.num_threads;
thread_k = exec_cfg.tb_cfg.thread_k;
thread_n = exec_cfg.tb_cfg.thread_n;
int thread_k_blocks = thread_k / 16;
int thread_n_blocks = thread_n / 16;
int blocks = sms;
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
" is not divisible by thread_n = ", thread_n);
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
" is not divisible by thread_k = ", thread_k);
int group_blocks = 0;
if (has_act_order) {
if (is_k_full) {
TORCH_CHECK(group_size != -1);
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
} else {
TORCH_CHECK(group_size == 0);
group_blocks = 0;
}
} else {
if (group_size == -1) {
group_blocks = -1;
} else {
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
}
}
int tot_m = prob_m;
const int* topk_ids_ptr = (const int*)topk_ids;
int* expert_offsets_ptr = (int*)expert_offsets;
compute_expert_offsets<<<1, num_experts, 0, stream>>>(
topk_ids_ptr, expert_offsets_ptr, tot_m * topk, moe_block_size);
bool do_permute_a = has_act_order;
// If we have a full K, then we can run the non-act-order version of Marlin
// (since the weight rows are reordered by increasing group ids, and by
// having a full K, we have full original groups)
if (is_k_full) {
has_act_order = false;
}
int pack_factor = 32 / q_type.size_bits();
for (int expert_idx = 0; expert_idx < num_experts; ++expert_idx) {
const int4* A_ptr = (const int4*)A;
int4* a_tmp_ptr = (int4*)a_tmp;
const int4* B_ptr =
(const int4*)B + (prob_n * prob_k / (pack_factor * 4)) * expert_idx;
int4* C_ptr = (int4*)C;
const float* topk_weights_ptr = (const float*)topk_weights;
const int* sorted_ids_ptr = (const int*)sorted_ids;
const int4* s_ptr = (const int4*)s + num_groups * prob_n / 8 * expert_idx;
const int4* zp_ptr =
(const int4*)zp + num_groups * prob_n / (pack_factor * 4) * expert_idx;
const int* g_idx_ptr = (const int*)g_idx + prob_k * expert_idx;
const int* perm_ptr = (const int*)perm + prob_k * expert_idx;
int* locks = (int*)workspace;
if (do_permute_a) {
// Permute A columns
int topk_rows = replicate_input ? tot_m : tot_m * topk;
int block_rows = ceildiv(topk_rows, blocks);
permute_cols_kernel<<<blocks, num_threads, 0, stream>>>(
A_ptr, perm_ptr, a_tmp_ptr, topk_rows, prob_k, block_rows);
A_ptr = a_tmp_ptr;
}
int tot_m_blocks = ceildiv(tot_m, 16);
for (int m_block = 0; m_block < tot_m_blocks;
m_block += 4 * exec_cfg.max_m_blocks) {
if (false) {
}
CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku4b8)
CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku8b128)
CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku4)
else {
TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " +
str(prob_n) + ", " + str(prob_k) + "]" +
", has_act_order = " + str(has_act_order) +
", num_groups = " + str(num_groups) +
", group_size = " + str(group_size) +
", thread_n_blocks = " + str(thread_n_blocks) +
", thread_k_blocks = " + str(thread_k_blocks));
}
}
}
}
} // namespace marlin_moe
torch::Tensor marlin_gemm_moe(
const torch::Tensor& a, const torch::Tensor& b_q_weights,
const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights,
const torch::Tensor& topk_ids, const torch::Tensor& b_scales,
torch::Tensor& b_zeros, const torch::Tensor& g_idx,
const torch::Tensor& perm, torch::Tensor& workspace,
vllm::ScalarTypeId const b_q_type_id, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full, int64_t num_experts, int64_t topk,
int64_t moe_block_size, bool replicate_input, bool apply_weights) {
vllm::ScalarType const b_q_type = vllm::ScalarType::from_id(b_q_type_id);
bool has_zp = b_zeros.size(1) != 0;
if (has_zp) {
TORCH_CHECK(
b_q_type == vllm::kU4,
"b_q_type must be u4 when has_zp = True. Got = ", b_q_type.str());
} else {
TORCH_CHECK(
b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128,
"b_q_type must be uint4b8 or uint8b128. Got = ", b_q_type.str());
}
int pack_factor = 32 / b_q_type.size_bits();
int max_par = 4;
int dev = a.get_device();
auto options_dtype =
torch::TensorOptions().dtype(a.dtype()).device(a.device());
auto options_int =
torch::TensorOptions().dtype(torch::kInt).device(a.device());
torch::Tensor c = torch::zeros({size_m, topk, size_n}, options_dtype);
torch::Tensor a_tmp =
replicate_input ? torch::zeros({size_m, size_k}, options_dtype)
: torch::zeros({size_m, topk, size_k}, options_dtype);
torch::Tensor expert_offsets = torch::empty({num_experts + 1}, options_int);
// thread_k: `k` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_k = -1;
// thread_n: `n` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_n = -1;
// sms: number of SMs to use for the kernel (can usually be left as auto -1)
int sms = -1;
// Detect groupsize and act_order
int num_groups = -1;
int group_size = -1;
bool has_act_order = g_idx.size(1) != 0;
int b_rank = b_scales.sizes().size();
TORCH_CHECK(b_rank == 3, "b_scales rank = ", b_rank, " is not 3");
TORCH_CHECK(b_scales.size(2) == size_n, "b_scales dim 2 = ", b_scales.size(2),
" is not size_n = ", size_n);
num_groups = b_scales.size(1);
TORCH_CHECK(VLLM_IMPLIES(!is_k_full, has_act_order),
"if is_k_full is false, has_act_order must be true");
if (has_act_order) {
if (is_k_full) {
TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1");
TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by num_groups = ", num_groups);
group_size = size_k / num_groups;
} else {
group_size = 0;
}
} else {
if (num_groups > 1) {
TORCH_CHECK(
size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by b_scales.size(0) = ", b_scales.size(0));
group_size = size_k / num_groups;
} else {
group_size = -1;
}
}
// Verify b_zeros
if (has_zp) {
int rank = b_zeros.sizes().size();
TORCH_CHECK(rank == 3, "b_zeros rank = ", rank, " is not 3");
TORCH_CHECK(b_zeros.size(1) == num_groups,
"b_zeros dim 1 = ", b_zeros.size(1),
" is not num_groups = ", num_groups);
TORCH_CHECK(b_zeros.size(2) == size_n / pack_factor,
"b_zeros dim 2 = ", b_zeros.size(2),
" is not size_n / pack_factor = ", size_n / pack_factor);
}
marlin_moe::marlin_mm_moe(
a.data_ptr(), b_q_weights.data_ptr(), c.data_ptr(), sorted_ids.data_ptr(),
topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(),
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(),
expert_offsets.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(),
b_q_type, has_act_order, is_k_full, has_zp, num_groups, group_size,
num_experts, topk, moe_block_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, max_par,
replicate_input, apply_weights);
return c;
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("marlin_gemm_moe", &marlin_gemm_moe);
}

1
csrc/moe/marlin_moe_wna16/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
kernel_*.cu

View File

@ -0,0 +1,107 @@
# SPDX-License-Identifier: Apache-2.0
import glob
import itertools
import os
import subprocess
import jinja2
FILE_HEAD = """
// auto generated by generate.py
// clang-format off
#include "kernel.h"
#include "marlin_template.h"
namespace MARLIN_NAMESPACE_NAME {
""".strip()
TEMPLATE = ("template __global__ void Marlin<"
"{{scalar_t}}, "
"{{w_type_id}}, "
"{{threads}}, "
"{{thread_m_blocks}}, "
"{{thread_n_blocks}}, "
"{{thread_k_blocks}}, "
"{{'true' if m_block_size_8 else 'false'}}, "
"{{stages}}, "
"{{group_blocks}}, "
"{{'true' if is_zp_float else 'false'}}>"
"( MARLIN_KERNEL_PARAMS );")
# int8 with zero point case (vllm::kU8) is also supported,
# we don't add it to reduce wheel size.
SCALAR_TYPES = ["vllm::kU4", "vllm::kU4B8", "vllm::kU8B128", "vllm::kFE4M3fn"]
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128)]
THREAD_M_BLOCKS = [0.5, 1, 2, 3, 4]
# group_blocks:
# = 0 : act order case
# = -1 : channelwise quantization
# > 0 : group_size=16*group_blocks
GROUP_BLOCKS = [0, -1, 2, 4, 8]
DTYPES = ["fp16", "bf16"]
def remove_old_kernels():
for filename in glob.glob(os.path.dirname(__file__) + "/kernel_*.cu"):
subprocess.call(["rm", "-f", filename])
def generate_new_kernels():
for scalar_type, dtype in itertools.product(SCALAR_TYPES, DTYPES):
all_template_str_list = []
for group_blocks, m_blocks, thread_configs in itertools.product(
GROUP_BLOCKS, THREAD_M_BLOCKS, THREAD_CONFIGS):
# act order case only support gptq-int4 and gptq-int8
if group_blocks == 0 and scalar_type not in [
"vllm::kU4B8", "vllm::kU8B128"
]:
continue
if thread_configs[2] == 256:
# for small batch (m_blocks == 1), we only need (128, 128, 256)
# for large batch (m_blocks > 1), we only need (64, 256, 256)
if m_blocks <= 1 and thread_configs[0] != 128:
continue
if m_blocks > 1 and thread_configs[0] != 64:
continue
# we only support channelwise quantization and group_size == 128
# for fp8
if scalar_type == "vllm::kFE4M3fn" and group_blocks not in [-1, 8]:
continue
k_blocks = thread_configs[0] // 16
n_blocks = thread_configs[1] // 16
threads = thread_configs[2]
c_dtype = "half" if dtype == "fp16" else "nv_bfloat16"
template_str = jinja2.Template(TEMPLATE).render(
scalar_t=c_dtype,
w_type_id=scalar_type + ".id()",
threads=threads,
thread_m_blocks=max(m_blocks, 1),
thread_n_blocks=n_blocks,
thread_k_blocks=k_blocks,
m_block_size_8=m_blocks == 0.5,
stages="pipe_stages",
group_blocks=group_blocks,
is_zp_float=False,
)
all_template_str_list.append(template_str)
file_content = FILE_HEAD + "\n\n"
file_content += "\n\n".join(all_template_str_list) + "\n\n}\n"
filename = f"kernel_{dtype}_{scalar_type[6:].lower()}.cu"
with open(os.path.join(os.path.dirname(__file__), filename), "w") as f:
f.write(file_content)
if __name__ == "__main__":
remove_old_kernels()
generate_new_kernels()

View File

@ -0,0 +1,42 @@
#ifndef MARLIN_NAMESPACE_NAME
#define MARLIN_NAMESPACE_NAME marlin_moe_wna16
#endif
#include "quantization/gptq_marlin/marlin.cuh"
#include "quantization/gptq_marlin/marlin_dtypes.cuh"
#include "core/scalar_type.hpp"
#define MARLIN_KERNEL_PARAMS \
const int4 *__restrict__ A, const int4 *__restrict__ B, \
int4 *__restrict__ C, int4 *__restrict__ C_tmp, \
const int4 *__restrict__ scales_ptr, const int4 *__restrict__ zp_ptr, \
const int *__restrict__ g_idx, \
const int32_t *__restrict__ sorted_token_ids_ptr, \
const int32_t *__restrict__ expert_ids_ptr, \
const int32_t *__restrict__ num_tokens_past_padded_ptr, \
const float *__restrict__ topk_weights_ptr, int top_k, \
bool mul_topk_weights, bool is_ep, int num_groups, int prob_m, \
int prob_n, int prob_k, int *locks, bool use_atomic_add, \
bool use_fp32_reduce, int max_shared_mem
namespace MARLIN_NAMESPACE_NAME {
template <typename scalar_t, // compute dtype, half or nv_float16
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
// threadblock
const int thread_n_blocks, // same for n dimension (output)
const int thread_k_blocks, // same for k dimension (reduction)
const bool m_block_size_8, // whether m_block_size == 8
// only works when thread_m_blocks == 1
const int stages, // number of stages for the async global->shared
// fetch pipeline
const int group_blocks, // number of consecutive 16x16 blocks
// with a separate quantization scale
const bool is_zp_float // is zero point of float16 type?
>
__global__ void Marlin(MARLIN_KERNEL_PARAMS);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,892 @@
/*
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Adapted from https://github.com/IST-DASLab/marlin
*/
#ifndef MARLIN_NAMESPACE_NAME
#define MARLIN_NAMESPACE_NAME marlin_moe_wna16
#endif
#include "kernel.h"
#include "core/registration.h"
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
static_assert(std::is_same<scalar_t, half>::value || \
std::is_same<scalar_t, nv_bfloat16>::value, \
"only float16 and bfloat16 is supported");
namespace MARLIN_NAMESPACE_NAME {
__global__ void MarlinDefault(MARLIN_KERNEL_PARAMS){};
using MarlinFuncPtr = void (*)(MARLIN_KERNEL_PARAMS);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
template <int moe_block_size>
__global__ void permute_cols_kernel(
int4 const* __restrict__ a_int4_ptr, int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr,
const int32_t* __restrict__ sorted_token_ids_ptr,
const int32_t* __restrict__ expert_ids_ptr,
const int32_t* __restrict__ num_tokens_past_padded_ptr, int size_m,
int size_k, int top_k) {};
} // namespace marlin
torch::Tensor moe_wna16_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> const& c_or_none,
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
torch::Tensor& sorted_token_ids, torch::Tensor& expert_ids,
torch::Tensor& num_tokens_past_padded, torch::Tensor& topk_weights,
int64_t moe_block_size, int64_t top_k, bool mul_topk_weights, bool is_ep,
vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
bool is_zp_float) {
TORCH_CHECK_NOT_IMPLEMENTED(false,
"marlin_gemm(..) requires CUDA_ARCH >= 8.0");
return torch::empty({1, 1});
}
#else
// For a given "a" of size [M,K] performs a permutation of the K columns based
// on the given "perm" indices.
template <int moe_block_size>
__global__ void permute_cols_kernel(
int4 const* __restrict__ a_int4_ptr, int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr,
const int32_t* __restrict__ sorted_token_ids_ptr,
const int32_t* __restrict__ expert_ids_ptr,
const int32_t* __restrict__ num_tokens_past_padded_ptr, int size_m,
int size_k, int top_k) {
int num_tokens_past_padded = num_tokens_past_padded_ptr[0];
int num_moe_blocks = div_ceil(num_tokens_past_padded, moe_block_size);
int32_t block_sorted_ids[moe_block_size];
int block_num_valid_tokens = 0;
int64_t old_expert_id = 0;
int64_t expert_id = 0;
int row_stride = size_k * sizeof(half) / 16;
auto read_moe_block_data = [&](int block_id) {
block_num_valid_tokens = moe_block_size;
int4* tmp_block_sorted_ids = reinterpret_cast<int4*>(block_sorted_ids);
for (int i = 0; i < moe_block_size / 4; i++) {
tmp_block_sorted_ids[i] =
((int4*)sorted_token_ids_ptr)[block_id * moe_block_size / 4 + i];
}
for (int i = 0; i < moe_block_size; i++) {
if (block_sorted_ids[i] >= size_m * top_k) {
block_num_valid_tokens = i;
break;
};
}
};
auto permute_row = [&](int row) {
int iters = size_k / default_threads;
int rest = size_k % default_threads;
int in_offset = (row / top_k) * row_stride;
int out_offset = row * row_stride;
half const* a_row_half =
reinterpret_cast<half const*>(a_int4_ptr + in_offset);
half* out_half = reinterpret_cast<half*>(out_int4_ptr + out_offset);
int base_k = 0;
for (int i = 0; i < iters; i++) {
auto cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
base_k += default_threads;
}
if (rest) {
if (threadIdx.x < rest) {
auto cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
}
}
};
for (int index = blockIdx.x; index < num_moe_blocks; index += gridDim.x) {
old_expert_id = expert_id;
int tmp_expert_id = expert_ids_ptr[index];
if (tmp_expert_id == -1) continue;
expert_id = tmp_expert_id;
perm_int_ptr += (expert_id - old_expert_id) * size_k;
read_moe_block_data(index);
for (int i = 0; i < block_num_valid_tokens; i++)
permute_row(block_sorted_ids[i]);
}
}
typedef struct {
int thread_k;
int thread_n;
int num_threads;
} thread_config_t;
thread_config_t small_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{128, 128, 256},
{64, 128, 128}};
thread_config_t large_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{64, 256, 256},
{64, 128, 128}};
typedef struct {
int blocks_per_sm;
thread_config_t tb_cfg;
} exec_config_t;
int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
int prob_n, int prob_k, int num_bits, int group_size,
bool has_act_order, bool is_k_full) {
bool cache_scales_chunk = has_act_order && !is_k_full;
int tb_n = th_config.thread_n;
int tb_k = th_config.thread_k;
// Get max scale groups per thread-block
int tb_groups;
if (group_size == -1) {
tb_groups = 1;
} else if (group_size == 0) {
tb_groups = div_ceil(tb_k, 32); // Worst case is 32 group size
} else {
tb_groups = div_ceil(tb_k, group_size);
}
if (cache_scales_chunk) {
int load_groups =
tb_groups * pipe_stages * 2; // Chunk size is 2x pipeline over dim K
load_groups = max(load_groups, 32); // We load at least 32 scale groups
return load_groups * tb_n * 2;
} else {
int tb_scales = tb_groups * tb_n * 2;
return tb_scales * pipe_stages;
}
}
int get_kernel_cache_size(thread_config_t const& th_config, bool m_block_size_8,
int thread_m_blocks, int prob_m, int prob_n,
int prob_k, int num_bits, int group_size,
bool has_act_order, bool is_k_full, int has_zp,
int is_zp_float) {
int pack_factor = 32 / num_bits;
// Get B size
int tb_k = th_config.thread_k;
int tb_n = th_config.thread_n;
int tb_m = thread_m_blocks * (m_block_size_8 ? 8 : 16);
// shm size for block_sorted_ids/rd_block_sorted_ids/block_topk_weights
// both of them requires tb_m * 4 bytes (tb_m * int32 or tb_m * float32)
int sh_block_meta_size = tb_m * 4;
int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
int sh_red_size = tb_m * (tb_n + 8) * 2;
int sh_s_size =
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full);
int sh_g_idx_size = has_act_order && !is_k_full ? pipe_stages * tb_k / 4 : 0;
int sh_zp_size = 0;
if (has_zp) {
if (is_zp_float)
sh_zp_size = sh_s_size;
else if (num_bits == 4)
sh_zp_size = sh_s_size / 4;
else if (num_bits == 8)
sh_zp_size = sh_s_size / 2;
}
int total_size = max(sh_b_size, sh_red_size) + sh_a_size + sh_s_size +
sh_zp_size + sh_g_idx_size + sh_block_meta_size;
return total_size;
}
bool is_valid_config(thread_config_t const& th_config, bool m_block_size_8,
int thread_m_blocks, int prob_m, int prob_n, int prob_k,
int num_bits, int group_size, bool has_act_order,
bool is_k_full, int has_zp, int is_zp_float,
int max_shared_mem) {
// Sanity
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
th_config.num_threads == -1) {
return false;
}
// Verify K/N are divisible by thread K/N
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
return false;
}
// Verify min for thread K/N
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
return false;
}
// num_threads must be at least 128 (= 4 warps)
if (th_config.num_threads < 128) {
return false;
}
// Check that pipeline fits into cache
int cache_size = get_kernel_cache_size(
th_config, m_block_size_8, thread_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float);
return cache_size <= max_shared_mem;
}
#define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
M_BLOCK_SIZE_8, GROUP_BLOCKS, NUM_THREADS, IS_ZP_FLOAT) \
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
thread_n_blocks == THREAD_N_BLOCKS && \
thread_k_blocks == THREAD_K_BLOCKS && \
m_block_size_8 == M_BLOCK_SIZE_8 && \
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
is_zp_float == IS_ZP_FLOAT) { \
kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, \
THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8, \
pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
}
// COMMON: cases for (group_blocks in [-1, 2, 4, 8] and is_zp_float == false)
// this is the most common cases
// BIGGROUP: cases for big group size (group_blocks in [-1, 8])
// FZP: cases for float-zero-point (is_zp_float = true)
// ACT: cases for act order case (group_blocks == 0)
#define COMMON_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 8, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
#define COMMON_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
\
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
\
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
#define COMMON_GET_IF(W_TYPE) \
COMMON_GET_IF_M1(W_TYPE, 8, 8, 256) \
COMMON_GET_IF_M1(W_TYPE, 8, 4, 128) \
COMMON_GET_IF_M234(W_TYPE, 16, 4, 256) \
COMMON_GET_IF_M234(W_TYPE, 8, 4, 128)
#define BIGGROUP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 8, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
#define BIGGROUP_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
\
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
#define BIGGROUP_GET_IF(W_TYPE) \
BIGGROUP_GET_IF_M1(W_TYPE, 8, 8, 256) \
BIGGROUP_GET_IF_M1(W_TYPE, 8, 4, 128) \
BIGGROUP_GET_IF_M234(W_TYPE, 16, 4, 256) \
BIGGROUP_GET_IF_M234(W_TYPE, 8, 4, 128)
// We currently have 4-bit models only with group_blocks == 4
#define FZP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, true) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true)
#define FZP_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true)
#define FZP_GET_IF(W_TYPE) \
FZP_GET_IF_M1(W_TYPE, 8, 8, 256) \
FZP_GET_IF_M1(W_TYPE, 8, 4, 128) \
FZP_GET_IF_M234(W_TYPE, 16, 4, 256) \
FZP_GET_IF_M234(W_TYPE, 8, 4, 128)
// We currently have 4-bit models only with group_blocks == 4
#define ACT_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS, false) \
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false)
#define ACT_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false) \
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false) \
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false)
#define ACT_GET_IF(W_TYPE) \
ACT_GET_IF_M1(W_TYPE, 8, 8, 256) \
ACT_GET_IF_M1(W_TYPE, 8, 4, 128) \
ACT_GET_IF_M234(W_TYPE, 16, 4, 256) \
ACT_GET_IF_M234(W_TYPE, 8, 4, 128)
template <typename scalar_t>
MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
int thread_m_blocks, int thread_n_blocks,
int thread_k_blocks, bool m_block_size_8,
bool has_act_order, bool has_zp,
int group_blocks, int num_threads,
bool is_zp_float) {
int num_bits = q_type.size_bits();
auto kernel = MarlinDefault;
if (false) {
}
COMMON_GET_IF(vllm::kU4)
COMMON_GET_IF(vllm::kU4B8)
COMMON_GET_IF(vllm::kU8B128)
BIGGROUP_GET_IF(vllm::kFE4M3fn)
ACT_GET_IF(vllm::kU4B8)
ACT_GET_IF(vllm::kU8B128)
return kernel;
}
template <typename scalar_t>
exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
int prob_n, int prob_k, int thread_m_blocks,
bool m_block_size_8, int num_bits,
int group_size, bool has_act_order,
bool is_k_full, bool has_zp,
bool is_zp_float, int max_shared_mem) {
exec_config_t exec_cfg = exec_config_t{1, thread_config_t{-1, -1, -1}};
thread_config_t* thread_configs = thread_m_blocks > 1
? large_batch_thread_configs
: small_batch_thread_configs;
int thread_configs_size =
thread_m_blocks > 1
? sizeof(large_batch_thread_configs) / sizeof(thread_config_t)
: sizeof(small_batch_thread_configs) / sizeof(thread_config_t);
int count = 0;
constexpr int device_max_reg_size = 255 * 1024;
for (int i = 0; i < thread_configs_size; i++) {
thread_config_t th_config = thread_configs[i];
if (!is_valid_config(th_config, m_block_size_8, thread_m_blocks, prob_m,
prob_n, prob_k, num_bits, group_size, has_act_order,
is_k_full, has_zp, is_zp_float, max_shared_mem)) {
continue;
}
int cache_size = get_kernel_cache_size(
th_config, m_block_size_8, thread_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float);
int group_blocks = 0;
if (!has_act_order) {
group_blocks = group_size == -1 ? -1 : (group_size / 16);
}
auto kernel = get_marlin_kernel<scalar_t>(
q_type, thread_m_blocks, th_config.thread_n / 16,
th_config.thread_k / 16, m_block_size_8, has_act_order, has_zp,
group_blocks, th_config.num_threads, is_zp_float);
if (kernel == MarlinDefault) continue;
if (thread_m_blocks > 1) {
exec_cfg = {1, th_config};
break;
} else {
cudaFuncAttributes attr;
cudaFuncGetAttributes(&attr, kernel);
int reg_size = max(attr.numRegs, 1) * th_config.num_threads * 4;
int allow_count = min(device_max_reg_size / reg_size,
max_shared_mem / (cache_size + 1024));
allow_count = max(min(allow_count, 4), 1);
if (allow_count > count) {
count = allow_count;
exec_cfg = {count, th_config};
};
}
}
return exec_cfg;
}
template <typename scalar_t>
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
void* zp, void* g_idx, void* perm, void* a_tmp,
void* sorted_token_ids, void* expert_ids,
void* num_tokens_past_padded, void* topk_weights,
int moe_block_size, int top_k, bool mul_topk_weights, bool is_ep,
int prob_m, int prob_n, int prob_k, void* workspace,
vllm::ScalarType const& q_type, bool has_act_order,
bool is_k_full, bool has_zp, int num_groups, int group_size,
int dev, cudaStream_t stream, int thread_k, int thread_n,
int sms, bool use_atomic_add, bool use_fp32_reduce,
bool is_zp_float) {
int thread_m_blocks = div_ceil(moe_block_size, 16);
bool m_block_size_8 = moe_block_size == 8;
if (has_zp) {
TORCH_CHECK(q_type == vllm::kU4,
"q_type must be u4 when has_zp = True. Got = ", q_type.str());
} else {
TORCH_CHECK(q_type == vllm::kU4B8 || q_type == vllm::kU8B128 ||
q_type == vllm::kFE4M3fn,
"q_type must be uint4b8, uint8b128 or fp8e4m3 when has_zp = "
"False. Got = ",
q_type.str());
}
TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
", ", prob_n, ", ", prob_k, "]");
int group_blocks = 0;
if (has_act_order) {
if (is_k_full) {
TORCH_CHECK(group_size != -1);
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
} else {
TORCH_CHECK(group_size == 0);
group_blocks = 0;
}
} else {
if (group_size == -1) {
group_blocks = -1;
} else {
group_blocks = group_size / 16;
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
}
}
int num_bits = q_type.size_bits();
const int4* A_ptr = (const int4*)A;
const int4* B_ptr = (const int4*)B;
int4* C_ptr = (int4*)C;
int4* C_tmp_ptr = (int4*)C_tmp;
const int4* s_ptr = (const int4*)s;
const int4* zp_ptr = (const int4*)zp;
const int* g_idx_ptr = (const int*)g_idx;
const int* perm_ptr = (const int*)perm;
int4* a_tmp_ptr = (int4*)a_tmp;
const int32_t* sorted_token_ids_ptr = (const int32_t*)sorted_token_ids;
const int32_t* expert_ids_ptr = (const int32_t*)expert_ids;
const int32_t* num_tokens_past_padded_ptr =
(const int32_t*)num_tokens_past_padded;
const float* topk_weights_ptr = (const float*)topk_weights;
int* locks = (int*)workspace;
if (has_act_order) {
// Permute A columns
auto kernel = permute_cols_kernel<8>;
if (moe_block_size == 8) {
} else if (moe_block_size == 16)
kernel = permute_cols_kernel<16>;
else if (moe_block_size == 32)
kernel = permute_cols_kernel<32>;
else if (moe_block_size == 48)
kernel = permute_cols_kernel<48>;
else if (moe_block_size == 64)
kernel = permute_cols_kernel<64>;
else
TORCH_CHECK(false, "unsupported moe_block_size ", moe_block_size);
// avoid ">>>" being formatted to "> > >"
// clang-format off
kernel<<<sms, default_threads, 0, stream>>>(
A_ptr, perm_ptr, a_tmp_ptr, sorted_token_ids_ptr, expert_ids_ptr,
num_tokens_past_padded_ptr, prob_m, prob_k, top_k);
// clang-format on
A_ptr = a_tmp_ptr;
prob_m = prob_m * top_k;
top_k = 1;
// If we have a full K, then we can run the non-act-order version of Marlin
// (since the weight rows are reordered by increasing group ids, and by
// having a full K, we have full original groups)
if (is_k_full) has_act_order = false;
}
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
// Set thread config
exec_config_t exec_cfg;
thread_config_t thread_tfg;
if (thread_k != -1 && thread_n != -1) {
thread_tfg = thread_config_t{thread_k, thread_n, default_threads};
exec_cfg = exec_config_t{1, thread_tfg};
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
" is not divisible by thread_n = ", thread_n);
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
" is not divisible by thread_k = ", thread_k);
} else {
// Auto config
exec_cfg = determine_exec_config<scalar_t>(
q_type, prob_m, prob_n, prob_k, thread_m_blocks, m_block_size_8,
num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float,
max_shared_mem);
thread_tfg = exec_cfg.tb_cfg;
}
int num_threads = thread_tfg.num_threads;
thread_k = thread_tfg.thread_k;
thread_n = thread_tfg.thread_n;
int blocks = sms * exec_cfg.blocks_per_sm;
if (exec_cfg.blocks_per_sm > 1)
max_shared_mem = max_shared_mem / exec_cfg.blocks_per_sm - 1024;
int thread_k_blocks = thread_k / 16;
int thread_n_blocks = thread_n / 16;
TORCH_CHECK(
is_valid_config(thread_tfg, m_block_size_8, thread_m_blocks, prob_m,
prob_n, prob_k, num_bits, group_size, has_act_order,
is_k_full, has_zp, is_zp_float, max_shared_mem),
"Invalid thread config: thread_m_blocks = ", thread_m_blocks,
", thread_k = ", thread_tfg.thread_k,
", thread_n = ", thread_tfg.thread_n,
", num_threads = ", thread_tfg.num_threads, " for MKN = [", prob_m, ", ",
prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
", group_size = ", group_size, ", has_act_order = ", has_act_order,
", is_k_full = ", is_k_full, ", has_zp = ", has_zp,
", is_zp_float = ", is_zp_float, ", max_shared_mem = ", max_shared_mem);
auto kernel = get_marlin_kernel<scalar_t>(
q_type, thread_m_blocks, thread_n_blocks, thread_k_blocks, m_block_size_8,
has_act_order, has_zp, group_blocks, num_threads, is_zp_float);
if (kernel == MarlinDefault) {
TORCH_CHECK(false, "Unsupported shapes: MNK = [", prob_m, ", ", prob_n,
", ", prob_k, "]", ", has_act_order = ", has_act_order,
", num_groups = ", num_groups, ", group_size = ", group_size,
", thread_m_blocks = ", thread_m_blocks,
", thread_n_blocks = ", thread_n_blocks,
", thread_k_blocks = ", thread_k_blocks,
", num_bits = ", num_bits);
}
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
max_shared_mem);
// avoid ">>>" being formatted to "> > >"
// clang-format off
kernel<<<blocks, num_threads, max_shared_mem, stream>>>(
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, zp_ptr, g_idx_ptr,
sorted_token_ids_ptr, expert_ids_ptr, num_tokens_past_padded_ptr,
topk_weights_ptr, top_k, mul_topk_weights, is_ep, num_groups, prob_m,
prob_n, prob_k, locks, use_atomic_add, use_fp32_reduce, max_shared_mem);
// clang-format on
}
} // namespace MARLIN_NAMESPACE_NAME
torch::Tensor moe_wna16_marlin_gemm(
torch::Tensor& a, std::optional<torch::Tensor> const& c_or_none,
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
std::optional<torch::Tensor> const& b_zeros_or_none,
std::optional<torch::Tensor> const& g_idx_or_none,
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
torch::Tensor& sorted_token_ids, torch::Tensor& expert_ids,
torch::Tensor& num_tokens_past_padded, torch::Tensor& topk_weights,
int64_t moe_block_size, int64_t top_k, bool mul_topk_weights, bool is_ep,
vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
bool is_zp_float) {
vllm::ScalarType const b_q_type = vllm::ScalarType::from_id(b_q_type_id);
int pack_factor = 32 / b_q_type.size_bits();
if (moe_block_size != 8) {
TORCH_CHECK(moe_block_size % 16 == 0,
"unsupported moe_block_size=", moe_block_size);
TORCH_CHECK(moe_block_size >= 16 && moe_block_size <= 64,
"unsupported moe_block_size=", moe_block_size);
}
// Verify A
TORCH_CHECK(a.size(0) == size_m, "Shape mismatch: a.size(0) = ", a.size(0),
", size_m = ", size_m);
TORCH_CHECK(a.size(1) == size_k, "Shape mismatch: a.size(1) = ", a.size(1),
", size_k = ", size_k);
// Verify B
TORCH_CHECK(
size_k % MARLIN_NAMESPACE_NAME::tile_size == 0, "size_k = ", size_k,
" is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
TORCH_CHECK((size_k / MARLIN_NAMESPACE_NAME::tile_size) == b_q_weight.size(1),
"Shape mismatch: b_q_weight.size(1) = ", b_q_weight.size(1),
", size_k = ", size_k,
", tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
TORCH_CHECK(
b_q_weight.size(2) % MARLIN_NAMESPACE_NAME::tile_size == 0,
"b_q_weight.size(2) = ", b_q_weight.size(2),
" is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
int actual_size_n =
(b_q_weight.size(2) / MARLIN_NAMESPACE_NAME::tile_size) * pack_factor;
TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
", actual_size_n = ", actual_size_n);
// Verify device and strides
TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
TORCH_CHECK(a.is_contiguous(), "A is not contiguous");
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");
// thread_k: `k` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_k = -1;
// thread_n: `n` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_n = -1;
// sms: number of SMs to use for the kernel
int sms = -1;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
// Alloc buffers
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
torch::Tensor c;
if (c_or_none.has_value()) {
c = c_or_none.value();
TORCH_CHECK(c.device().is_cuda(), "c is not on GPU");
TORCH_CHECK(c.is_contiguous(), "c is not contiguous");
TORCH_CHECK(c.size(0) == size_m * top_k,
"Shape mismatch: c.size(0) = ", c.size(0),
", size_m * topk = ", size_m * top_k);
TORCH_CHECK(c.size(1) == size_n, "Shape mismatch: c.size(1) = ", c.size(1),
", size_n = ", size_n);
} else {
c = torch::empty({size_m * top_k, size_n}, options);
}
// Alloc C tmp buffer that is going to be used for the global reduce
torch::Tensor c_tmp;
auto options_fp32 =
torch::TensorOptions().dtype(at::kFloat).device(a.device());
if (use_fp32_reduce && !use_atomic_add) {
// max num of threadblocks is sms * 4
long max_c_tmp_size = min(
(long)size_n * sorted_token_ids.size(0),
(long)sms * 4 * moe_block_size * MARLIN_NAMESPACE_NAME::max_thread_n);
if (moe_block_size == 8) max_c_tmp_size *= 2;
c_tmp = torch::empty({max_c_tmp_size}, options_fp32);
} else {
c_tmp = torch::empty({0}, options_fp32);
}
// Detect groupsize and act_order
int num_groups = -1;
int group_size = -1;
int rank = b_scales.sizes().size();
TORCH_CHECK(rank == 3, "b_scales rank = ", rank, " is not 3");
TORCH_CHECK(b_scales.size(2) == size_n, "b_scales dim 2 = ", b_scales.size(2),
" is not size_n = ", size_n);
num_groups = b_scales.size(1);
torch::Tensor g_idx, perm, a_tmp;
;
if (g_idx_or_none.has_value() && perm_or_none.has_value()) {
g_idx = g_idx_or_none.value();
perm = perm_or_none.value();
TORCH_CHECK(g_idx.device().is_cuda(), "g_idx is not on GPU");
TORCH_CHECK(g_idx.is_contiguous(), "g_idx is not contiguous");
TORCH_CHECK(perm.device().is_cuda(), "perm is not on GPU");
TORCH_CHECK(perm.is_contiguous(), "perm is not contiguous");
// Verify g_idx and perm
TORCH_CHECK((g_idx.size(-1) == 0 && perm.size(-1) == 0) ||
(g_idx.size(-1) == size_k && perm.size(-1) == size_k),
"Unexpected g_idx.size(-1) = ", g_idx.size(-1),
" and perm.size(-1) = ", perm.size(-1),
", where size_k = ", size_k);
} else {
g_idx = torch::empty({0}, options);
perm = torch::empty({0}, options);
a_tmp = torch::empty({0}, options);
}
bool has_act_order = g_idx.size(-1) > 0 && perm.size(-1) > 0;
if (has_act_order) {
a_tmp = torch::empty({size_m * top_k, size_k}, options);
if (is_k_full) {
TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1");
TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by num_groups = ", num_groups);
group_size = size_k / num_groups;
} else {
group_size = 0;
}
} else {
a_tmp = torch::empty({0}, options);
if (num_groups > 1) {
TORCH_CHECK(
size_k % num_groups == 0, "size_k = ", size_k,
", is not divisible by b_scales.size(1) = ", b_scales.size(1));
group_size = size_k / num_groups;
} else {
group_size = -1;
}
}
torch::Tensor b_zeros;
if (b_zeros_or_none.has_value()) {
b_zeros = b_zeros_or_none.value();
TORCH_CHECK(b_zeros.device().is_cuda(), "b_zeros is not on GPU");
TORCH_CHECK(b_zeros.is_contiguous(), "b_zeros is not contiguous");
} else {
b_zeros = torch::empty({0}, options);
}
bool has_zp = b_zeros.size(-1) > 0;
if (has_zp) {
TORCH_CHECK(
b_q_type == vllm::kU4,
"b_q_type must be u4 when has_zp = True. Got = ", b_q_type.str());
} else {
TORCH_CHECK(b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128 ||
b_q_type == vllm::kFE4M3fn,
"b_q_type must be uint4b8, uint8b128 or fp8e4m3 when has_zp = "
"False. Got = ",
b_q_type.str());
}
if (has_zp && is_zp_float) {
TORCH_CHECK(a.scalar_type() == at::ScalarType::Half,
"Computation type must be float16 (half) when using float zero "
"points.");
}
// Verify b_zeros
if (has_zp) {
int rank = b_zeros.sizes().size();
TORCH_CHECK(rank == 3, "b_zeros rank = ", rank, " is not 3");
if (is_zp_float) {
TORCH_CHECK(b_zeros.size(2) == size_n,
"b_zeros dim 2 = ", b_zeros.size(2),
" is not size_n = ", size_n);
TORCH_CHECK(num_groups == b_zeros.size(1),
"b_zeros dim 1 = ", b_zeros.size(1),
" is not num_groups = ", num_groups);
TORCH_CHECK(num_groups != -1, "num_groups must be != -1");
} else {
TORCH_CHECK(b_zeros.size(1) == num_groups,
"b_zeros dim 1 = ", b_zeros.size(1),
" is not num_groups = ", num_groups);
TORCH_CHECK(b_zeros.size(2) == size_n / pack_factor,
"b_zeros dim 2 = ", b_zeros.size(2),
" is not size_n / pack_factor = ", size_n / pack_factor);
}
}
// Verify workspace size
TORCH_CHECK(size_n % MARLIN_NAMESPACE_NAME::min_thread_n == 0,
"size_n = ", size_n, ", is not divisible by min_thread_n = ",
MARLIN_NAMESPACE_NAME::min_thread_n);
int max_n_tiles = size_n / MARLIN_NAMESPACE_NAME::min_thread_n;
int min_workspace_size = min(
max_n_tiles * (int)(sorted_token_ids.size(0) / moe_block_size), sms * 4);
TORCH_CHECK(workspace.numel() >= min_workspace_size,
"workspace.numel = ", workspace.numel(),
" is below min_workspace_size = ", min_workspace_size);
int dev = a.get_device();
if (a.scalar_type() == at::ScalarType::Half) {
MARLIN_NAMESPACE_NAME::marlin_mm<half>(
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
c_tmp.data_ptr<float>(), b_scales.data_ptr<at::Half>(),
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
a_tmp.data_ptr<at::Half>(), sorted_token_ids.data_ptr(),
expert_ids.data_ptr(), num_tokens_past_padded.data_ptr(),
topk_weights.data_ptr(), moe_block_size, top_k, mul_topk_weights, is_ep,
size_m, size_n, size_k, workspace.data_ptr(), b_q_type, has_act_order,
is_k_full, has_zp, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
use_atomic_add, use_fp32_reduce, is_zp_float);
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
MARLIN_NAMESPACE_NAME::marlin_mm<nv_bfloat16>(
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(),
b_scales.data_ptr<at::BFloat16>(), b_zeros.data_ptr(), g_idx.data_ptr(),
perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
sorted_token_ids.data_ptr(), expert_ids.data_ptr(),
num_tokens_past_padded.data_ptr(), topk_weights.data_ptr(),
moe_block_size, top_k, mul_topk_weights, is_ep, size_m, size_n, size_k,
workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
thread_k, thread_n, sms, use_atomic_add, use_fp32_reduce, is_zp_float);
} else {
TORCH_CHECK(false,
"moe_wna16_marlin_gemm only supports bfloat16 and float16");
}
return c;
}
#endif
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("moe_wna16_marlin_gemm", &moe_wna16_marlin_gemm);
}

View File

@ -0,0 +1,133 @@
#include <c10/core/ScalarType.h>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include "permute_unpermute_kernels/moe_permute_unpermute_kernel.h"
#include "permute_unpermute_kernels/dispatch.h"
#include "core/registration.h"
void moe_permute(
const torch::Tensor& input, // [n_token, hidden]
const torch::Tensor& topk_weights, //[n_token, topk]
torch::Tensor& topk_ids, // [n_token, topk]
const torch::Tensor& token_expert_indicies, // [n_token, topk]
const std::optional<torch::Tensor>& expert_map, // [n_expert]
int64_t n_expert, int64_t n_local_expert, int64_t topk,
const std::optional<int64_t>& align_block_size,
torch::Tensor&
permuted_input, // [topk * n_token/align_block_size_m, hidden]
torch::Tensor& expert_first_token_offset, // [n_local_expert + 1]
torch::Tensor& src_row_id2dst_row_id_map, // [n_token, topk]
torch::Tensor& m_indices) { // [align_expand_m]
TORCH_CHECK(topk_weights.scalar_type() == at::ScalarType::Float,
"topk_weights must be float32");
TORCH_CHECK(expert_first_token_offset.scalar_type() == at::ScalarType::Long,
"expert_first_token_offset must be int64");
TORCH_CHECK(topk_ids.scalar_type() == at::ScalarType::Int,
"topk_ids must be int32");
TORCH_CHECK(token_expert_indicies.scalar_type() == at::ScalarType::Int,
"token_expert_indicies must be int32");
TORCH_CHECK(src_row_id2dst_row_id_map.scalar_type() == at::ScalarType::Int,
"src_row_id2dst_row_id_map must be int32");
TORCH_CHECK(expert_first_token_offset.size(0) == n_local_expert + 1,
"expert_first_token_offset shape != n_local_expert+1")
TORCH_CHECK(
src_row_id2dst_row_id_map.sizes() == token_expert_indicies.sizes(),
"token_expert_indicies shape must be same as src_row_id2dst_row_id_map");
auto n_token = input.sizes()[0];
auto n_hidden = input.sizes()[1];
auto align_block_size_value =
align_block_size.has_value() ? align_block_size.value() : -1;
auto stream = at::cuda::getCurrentCUDAStream().stream();
const long sorter_size =
CubKeyValueSorter::getWorkspaceSize(n_token * topk, n_expert);
auto sort_workspace = torch::empty(
{sorter_size},
torch::dtype(torch::kInt8).device(torch::kCUDA).requires_grad(false));
auto permuted_experts_id = torch::empty_like(topk_ids);
auto dst_row_id2src_row_id_map = torch::empty_like(src_row_id2dst_row_id_map);
auto align_expert_first_token_offset =
torch::zeros_like(expert_first_token_offset);
CubKeyValueSorter sorter{};
int64_t* valid_num_ptr = nullptr;
// pre-process kernel for expert-parallelism:
// no local expert id plus "n_expert" offset for priority to local expert
// map local expert id [n, .., n+n_local_expert-1] to [0, n_local_expert -1]
// For example, 4 expert with ep_size=2. ep_rank=1 owns global expert id
// [2,3] with expert_map[-1, -1, 0, 1], preprocess_topk_id process topk_ids
// and map global expert id [2, 3] to local_expert id [0, 1] and map global
// expert id [0, 1] ( not in ep rank=1) to [4, 5] by plus n_expert. This map
// operation is to make local expert high priority in following sort topk_ids
// and scan local expert_first_token_offset for each ep rank for next group
// gemm.
if (expert_map.has_value()) {
const int* expert_map_ptr = get_ptr<int>(expert_map.value());
valid_num_ptr =
get_ptr<int64_t>(expert_first_token_offset) + n_local_expert;
preprocessTopkIdLauncher(get_ptr<int>(topk_ids), n_token * topk,
expert_map_ptr, n_expert, stream);
}
// expert sort topk expert id and scan expert id get expert_first_token_offset
sortAndScanExpert(get_ptr<int>(topk_ids), get_ptr<int>(token_expert_indicies),
get_ptr<int>(permuted_experts_id),
get_ptr<int>(dst_row_id2src_row_id_map),
get_ptr<int64_t>(expert_first_token_offset), n_token,
n_expert, n_local_expert, topk, sorter,
get_ptr<int>(sort_workspace), stream);
// dispatch expandInputRowsKernelLauncher
MOE_DISPATCH(input.scalar_type(), [&] {
expandInputRowsKernelLauncher<scalar_t>(
get_ptr<scalar_t>(input), get_ptr<scalar_t>(permuted_input),
get_ptr<float>(topk_weights), get_ptr<int>(permuted_experts_id),
get_ptr<int>(dst_row_id2src_row_id_map),
get_ptr<int>(src_row_id2dst_row_id_map),
get_ptr<int64_t>(expert_first_token_offset), n_token, valid_num_ptr,
n_hidden, topk, n_local_expert, align_block_size_value, stream);
});
// get m_indices and update expert_first_token_offset with align block
getMIndices(get_ptr<int64_t>(expert_first_token_offset),
get_ptr<int64_t>(align_expert_first_token_offset),
get_ptr<int>(m_indices), n_local_expert, align_block_size_value,
stream);
if (align_block_size.has_value()) {
// update align_expert_first_token_offset
expert_first_token_offset.copy_(align_expert_first_token_offset);
}
}
void moe_unpermute(
const torch::Tensor& permuted_hidden_states, // [n_token * topk, hidden]
const torch::Tensor& topk_weights, //[n_token, topk]
const torch::Tensor& topk_ids, // [n_token, topk]
const torch::Tensor& src_row_id2dst_row_id_map, // [n_token, topk]
const torch::Tensor& expert_first_token_offset, // [n_local_expert+1]
int64_t n_expert, int64_t n_local_expert, int64_t topk,
torch::Tensor& hidden_states // [n_token, hidden]
) {
TORCH_CHECK(src_row_id2dst_row_id_map.sizes() == topk_ids.sizes(),
"topk_ids shape must be same as src_row_id2dst_row_id_map");
TORCH_CHECK(topk_ids.scalar_type() == at::ScalarType::Int,
"topk_ids must be int32");
TORCH_CHECK(
permuted_hidden_states.scalar_type() == hidden_states.scalar_type(),
"topk_ids dtype must be same as src_row_id2dst_row_id_map");
auto n_token = hidden_states.size(0);
auto n_hidden = hidden_states.size(1);
auto stream = at::cuda::getCurrentCUDAStream().stream();
const int64_t* valid_ptr =
get_ptr<int64_t>(expert_first_token_offset) + n_local_expert;
MOE_DISPATCH(hidden_states.scalar_type(), [&] {
finalizeMoeRoutingKernelLauncher<scalar_t, scalar_t>(
get_ptr<scalar_t>(permuted_hidden_states),
get_ptr<scalar_t>(hidden_states), get_ptr<float>(topk_weights),
get_ptr<int>(src_row_id2dst_row_id_map), get_ptr<int>(topk_ids),
n_token, n_hidden, topk, valid_ptr, stream);
});
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("moe_permute", &moe_permute);
m.impl("moe_unpermute", &moe_unpermute);
}

View File

@ -13,7 +13,6 @@
template <typename scalar_t, int bit, int GROUPS>
__global__ void moe_wna16_gemm_kernel(
const scalar_t* __restrict__ input, scalar_t* __restrict__ output,
const uint32_t* __restrict__ qweight, const scalar_t* __restrict__ scales,
const uint32_t* __restrict__ qzeros,
@ -54,8 +53,6 @@ __global__ void moe_wna16_gemm_kernel(
if (token_index / top_k >= size_m) break;
num_valid_tokens = m + 1;
if (blockIdx.z == 0 && offset_n < size_n)
output[token_index * size_n + offset_n] = Dtype::int2num(0);
if (expert_id != -1) {
int k_per_thread = DIVIDE(BLOCK_SIZE_K, BLOCK_SIZE_N);
@ -284,8 +281,7 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
int64_t BLOCK_SIZE_M, int64_t BLOCK_SIZE_N,
int64_t BLOCK_SIZE_K, int64_t bit) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
auto options =
torch::TensorOptions().dtype(input.dtype()).device(input.device());
output.zero_();
const int num_experts = b_qweight.size(0);
const int size_m = input.size(0);
@ -302,9 +298,9 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
const uint32_t* b_qzeros_ptr;
if (b_qzeros.has_value())
b_qzeros_ptr = (const uint32_t*)b_qzeros.value().data_ptr<uint8_t>();
const float* topk_weights_ptr;
const float* topk_weights_ptr = nullptr;
if (topk_weights.has_value())
topk_weights_ptr = (const float*)topk_weights.value().data_ptr();
topk_weights_ptr = (const float*)topk_weights.value().data_ptr<float>();
int groups_per_block_row = BLOCK_SIZE_K / group_size;
TORCH_CHECK(bit == 4 || bit == 8, "bit must be 4 or 8");

View File

@ -108,11 +108,11 @@ __device__ inline void dequant<half2, 4>(int q, half2* res) {
const int MUL = 0x2c002c00;
const int ADD = 0xd400d400;
int lo0 = lop3 < (0xf0 & 0xcc) | 0xaa > (q, LO, EX);
int hi0 = lop3 < (0xf0 & 0xcc) | 0xaa > (q, HI, EX);
int lo0 = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
int hi0 = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
q >>= 8;
int lo1 = lop3 < (0xf0 & 0xcc) | 0xaa > (q, LO, EX);
int hi1 = lop3 < (0xf0 & 0xcc) | 0xaa > (q, HI, EX);
int lo1 = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
int hi1 = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
res[0] = __hsub2(*reinterpret_cast<half2*>(&lo0),
*reinterpret_cast<const half2*>(&SUB));
@ -149,13 +149,13 @@ __device__ inline void dequant<nv_bfloat162, 4>(int q, nv_bfloat162* res) {
static constexpr uint32_t MASK = 0x000f000f;
static constexpr uint32_t EX = 0x43004300;
int lo0 = lop3 < (0xf0 & 0xcc) | 0xaa > (q, MASK, EX);
int lo0 = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);
q >>= 4;
int hi0 = lop3 < (0xf0 & 0xcc) | 0xaa > (q, MASK, EX);
int hi0 = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);
q >>= 4;
int lo1 = lop3 < (0xf0 & 0xcc) | 0xaa > (q, MASK, EX);
int lo1 = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);
q >>= 4;
int hi1 = lop3 < (0xf0 & 0xcc) | 0xaa > (q, MASK, EX);
int hi1 = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);
static constexpr uint32_t MUL = 0x3F803F80;
static constexpr uint32_t ADD = 0xC300C300;

View File

@ -0,0 +1,53 @@
#pragma once
#include <cuda_fp8.h>
#define MOE_SWITCH(TYPE, ...) \
at::ScalarType _st = ::detail::scalar_type(TYPE); \
switch (_st) { \
__VA_ARGS__ \
default: \
TORCH_CHECK(false, "[moe permute]data type dispatch fail!") \
}
#define MOE_DISPATCH_CASE(enum_type, ...) \
case enum_type: { \
using scalar_t = ScalarType2CudaType<enum_type>::type; \
__VA_ARGS__(); \
break; \
}
#define MOE_DISPATCH_FLOAT_CASE(...) \
MOE_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e5m2, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__)
#define MOE_DISPATCH(TYPE, ...) \
MOE_SWITCH(TYPE, MOE_DISPATCH_FLOAT_CASE(__VA_ARGS__))
template <at::ScalarType type>
struct ScalarType2CudaType;
template <>
struct ScalarType2CudaType<at::ScalarType::Float> {
using type = float;
};
template <>
struct ScalarType2CudaType<at::ScalarType::Half> {
using type = half;
};
template <>
struct ScalarType2CudaType<at::ScalarType::BFloat16> {
using type = __nv_bfloat16;
};
// #if __CUDA_ARCH__ >= 890
// fp8
template <>
struct ScalarType2CudaType<at::ScalarType::Float8_e5m2> {
using type = __nv_fp8_e5m2;
};
template <>
struct ScalarType2CudaType<at::ScalarType::Float8_e4m3fn> {
using type = __nv_fp8_e4m3;
};
// #endif

View File

@ -0,0 +1,229 @@
#include "moe_permute_unpermute_kernel.h"
// CubKeyValueSorter definition begin
CubKeyValueSorter::CubKeyValueSorter()
: num_experts_(0), num_bits_(sizeof(int) * 8) {}
int CubKeyValueSorter::expertsToBits(int num_experts) {
// Max value we represent is V = num_experts + (num_experts - 1) = 2 *
// num_experts - 1 The maximum number of bits is therefore floor(log2(V)) + 1
return static_cast<int>(log2(2 * num_experts - 1)) + 1;
}
CubKeyValueSorter::CubKeyValueSorter(int const num_experts)
: num_experts_(num_experts), num_bits_(expertsToBits(num_experts)) {}
void CubKeyValueSorter::updateNumExperts(int const num_experts) {
num_experts_ = num_experts;
num_bits_ = expertsToBits(num_experts);
}
size_t CubKeyValueSorter::getWorkspaceSize(size_t const num_key_value_pairs,
int const num_experts) {
int num_bits = expertsToBits(num_experts);
size_t required_storage = 0;
int* null_int = nullptr;
cub::DeviceRadixSort::SortPairs(nullptr, required_storage, null_int, null_int,
null_int, null_int, num_key_value_pairs, 0,
num_bits);
// when num_key_value_pairs, num_experts, num_bits, required_storage = 64,
// 4, 3, 0 The required_storage seems to vary between 0 and 1 for the same
// inputs
if (required_storage == 0) {
required_storage = 1;
}
return required_storage;
}
void CubKeyValueSorter::run(void* workspace, size_t const workspace_size,
int const* keys_in, int* keys_out,
int const* values_in, int* values_out,
size_t const num_key_value_pairs,
cudaStream_t stream) {
size_t expected_ws_size = getWorkspaceSize(num_key_value_pairs, num_experts_);
size_t actual_ws_size = workspace_size;
TORCH_CHECK(expected_ws_size <= workspace_size,
"[CubKeyValueSorter::run] The allocated workspace is too small "
"to run this problem.");
cub::DeviceRadixSort::SortPairs(workspace, actual_ws_size, keys_in, keys_out,
values_in, values_out, num_key_value_pairs, 0,
num_bits_, stream);
}
// CubKeyValueSorter definition end
static inline size_t pad_to_multiple_of_16(size_t const& input) {
static constexpr int ALIGNMENT = 16;
return ALIGNMENT * ((input + ALIGNMENT - 1) / ALIGNMENT);
}
template <class T>
__device__ inline int64_t findTotalEltsLessThanTarget(T const* sorted_indices,
int64_t const arr_length,
T const target) {
int64_t low = 0, high = arr_length - 1, target_location = -1;
while (low <= high) {
int64_t mid = (low + high) / 2;
if (sorted_indices[mid] >= target) {
high = mid - 1;
} else {
low = mid + 1;
target_location = mid;
}
}
return target_location + 1;
}
// Calculates the start offset of the tokens for a given expert. The last
// element is the total number of valid tokens
__global__ void computeExpertFirstTokenOffsetKernel(
int const* sorted_experts, int64_t const sorted_experts_len,
int const num_experts, int64_t* expert_first_token_offset) {
// First, compute the global tid. We only need 1 thread per expert.
int const expert = blockIdx.x * blockDim.x + threadIdx.x;
// Note that expert goes [0, num_experts] (inclusive) because we want a count
// for the total number of active tokens at the end of the scan.
if (expert >= num_experts + 1) {
return;
}
expert_first_token_offset[expert] =
findTotalEltsLessThanTarget(sorted_experts, sorted_experts_len, expert);
}
void computeExpertFirstTokenOffset(int const* sorted_indices,
int const total_indices,
int const num_experts,
int64_t* expert_first_token_offset,
cudaStream_t stream) {
int const num_entries = num_experts + 1;
int const threads = std::min(1024, num_entries);
int const blocks = (num_entries + threads - 1) / threads;
computeExpertFirstTokenOffsetKernel<<<blocks, threads, 0, stream>>>(
sorted_indices, total_indices, num_experts, expert_first_token_offset);
}
void sortAndScanExpert(int* expert_for_source_row, const int* source_rows,
int* permuted_experts, int* permuted_rows,
int64_t* expert_first_token_offset, int num_rows,
int num_experts, int num_experts_per_node, int k,
CubKeyValueSorter& sorter, void* sorter_ws,
cudaStream_t stream) {
int64_t const expanded_num_rows = static_cast<int64_t>(k) * num_rows;
// We need to use the full num_experts because that is the sentinel value used
// by topk for disabled experts
sorter.updateNumExperts(num_experts);
size_t const sorter_ws_size_bytes = pad_to_multiple_of_16(
sorter.getWorkspaceSize(expanded_num_rows, num_experts));
sorter.run((void*)sorter_ws, sorter_ws_size_bytes, expert_for_source_row,
permuted_experts, source_rows, permuted_rows, expanded_num_rows,
stream);
computeExpertFirstTokenOffset(permuted_experts, expanded_num_rows,
num_experts_per_node, expert_first_token_offset,
stream);
}
__global__ void preprocessTopkIdKernel(int* topk_id_ptr, int size,
const int* expert_map_ptr,
int num_experts) {
auto tidx = threadIdx.x;
auto bidx = blockIdx.x;
auto lidx = tidx & 31;
auto widx = tidx >> 5;
auto warp_count = (blockDim.x + 31) >> 5;
auto offset = bidx * blockDim.x;
auto bound = min(offset + blockDim.x, size);
extern __shared__ int smem_expert_map[];
// store expert_map in smem
for (int i = tidx; i < num_experts; i += blockDim.x) {
smem_expert_map[i] = expert_map_ptr[i];
}
__syncthreads();
// query global expert id in expert map.
// if global expert id = -1 in exert map, plus n_expert
// else set global expert id = exert map[global expert id]
if (offset + tidx < bound) {
auto topk_id = topk_id_ptr[offset + tidx];
auto local_expert_idx = smem_expert_map[topk_id];
if (local_expert_idx == -1) {
topk_id += num_experts;
} else {
topk_id = local_expert_idx;
}
__syncwarp();
topk_id_ptr[offset + tidx] = topk_id;
}
}
void preprocessTopkIdLauncher(int* topk_id_ptr, int size,
const int* expert_map_ptr, int num_experts,
cudaStream_t stream) {
int block = std::min(size, 1024);
int grid = (size + block - 1) / block;
int smem_size = (num_experts) * sizeof(int);
preprocessTopkIdKernel<<<grid, block, smem_size, stream>>>(
topk_id_ptr, size, expert_map_ptr, num_experts);
}
template <bool ALIGN_BLOCK_SIZE>
__global__ void getMIndicesKernel(int64_t* expert_first_token_offset,
int64_t* align_expert_first_token_offset,
int* m_indices, const int num_local_expert,
const int align_block_size) {
int eidx = blockIdx.x;
int tidx = threadIdx.x;
extern __shared__ int64_t smem_expert_first_token_offset[];
for (int i = tidx; i <= num_local_expert; i += blockDim.x) {
smem_expert_first_token_offset[tidx] = __ldg(expert_first_token_offset + i);
}
__syncthreads();
auto last_token_offset = smem_expert_first_token_offset[eidx + 1];
auto first_token_offset = smem_expert_first_token_offset[eidx];
int n_token_in_expert = last_token_offset - first_token_offset;
if constexpr (ALIGN_BLOCK_SIZE) {
n_token_in_expert = (n_token_in_expert + align_block_size - 1) /
align_block_size * align_block_size;
// round up to ALIGN_BLOCK_SIZE
int64_t accumulate_align_offset = 0;
for (int i = 1; i <= eidx + 1; i++) {
int n_token = smem_expert_first_token_offset[i] -
smem_expert_first_token_offset[i - 1];
accumulate_align_offset =
accumulate_align_offset + (n_token + align_block_size - 1) /
align_block_size * align_block_size;
if (i == eidx) {
first_token_offset = accumulate_align_offset;
}
// last block store align_expert_first_token_offset
if (eidx == num_local_expert - 1 && threadIdx.x == 0) {
align_expert_first_token_offset[i] = accumulate_align_offset;
}
}
}
for (int idx = tidx; idx < n_token_in_expert; idx += blockDim.x) {
// update m_indice with expert id
m_indices[first_token_offset + idx] = eidx;
}
}
void getMIndices(int64_t* expert_first_token_offset,
int64_t* align_expert_first_token_offset, int* m_indices,
int num_local_expert, const int align_block_size,
cudaStream_t stream) {
int block = 256;
int grid = num_local_expert;
int smem_size = sizeof(int64_t) * (num_local_expert + 1);
if (align_block_size == -1) {
getMIndicesKernel<false><<<grid, block, smem_size, stream>>>(
expert_first_token_offset, align_expert_first_token_offset, m_indices,
num_local_expert, align_block_size);
} else {
getMIndicesKernel<true><<<grid, block, smem_size, stream>>>(
expert_first_token_offset, align_expert_first_token_offset, m_indices,
num_local_expert, align_block_size);
}
}

View File

@ -0,0 +1,95 @@
#pragma once
// reference from tensorrt_llm moe kernel implementation archive in
// https://github.com/BBuf/tensorrt-llm-moe/tree/master
#include <c10/core/ScalarType.h>
#include <torch/all.h>
#include "dispatch.h"
#include <cub/cub.cuh>
#include <cub/device/device_radix_sort.cuh>
#include <cub/util_type.cuh>
#include "cutlass/numeric_size.h"
#include "cutlass/array.h"
template <typename T>
inline T* get_ptr(torch::Tensor& t) {
return reinterpret_cast<T*>(t.data_ptr());
}
template <typename T>
inline const T* get_ptr(const torch::Tensor& t) {
return reinterpret_cast<const T*>(t.data_ptr());
}
class CubKeyValueSorter {
public:
CubKeyValueSorter();
CubKeyValueSorter(int const num_experts);
void updateNumExperts(int const num_experts);
static size_t getWorkspaceSize(size_t const num_key_value_pairs,
int const num_experts);
void run(void* workspace, size_t const workspace_size, int const* keys_in,
int* keys_out, int const* values_in, int* values_out,
size_t const num_key_value_pairs, cudaStream_t stream);
private:
static int expertsToBits(int experts);
int num_experts_;
int num_bits_;
};
void computeExpertFirstTokenOffset(int const* sorted_indices,
int const total_indices,
int const num_experts,
int64_t* expert_first_token_offset,
cudaStream_t stream);
void sortAndScanExpert(int* expert_for_source_row, const int* source_rows,
int* permuted_experts, int* permuted_rows,
int64_t* expert_first_token_offset, int num_rows,
int num_experts, int num_experts_per_node, int k,
CubKeyValueSorter& sorter, void* sorter_ws,
cudaStream_t stream);
template <typename T>
void expandInputRowsKernelLauncher(
T const* unpermuted_input, T* permuted_output,
const float* unpermuted_scales, int* sorted_experts,
int const* expanded_dest_row_to_expanded_source_row,
int* expanded_source_row_to_expanded_dest_row,
int64_t* expert_first_token_offset, int64_t const num_rows,
int64_t const* num_valid_tokens_ptr, int64_t const cols, int const k,
int num_local_experts, const int& align_block_size, cudaStream_t stream);
// Final kernel to unpermute and scale
// This kernel unpermutes the original data, does the k-way reduction and
// performs the final skip connection.
template <typename T, typename OutputType, bool CHECK_SKIPPED>
__global__ void finalizeMoeRoutingKernel(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const orig_cols, int64_t const k,
int64_t const* num_valid_ptr);
template <class T, class OutputType>
void finalizeMoeRoutingKernelLauncher(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const num_rows,
int64_t const cols, int64_t const k, int64_t const* num_valid_ptr,
cudaStream_t stream);
void preprocessTopkIdLauncher(int* topk_id_ptr, int size,
const int* expert_map_ptr, int num_experts,
cudaStream_t stream);
void getMIndices(int64_t* expert_first_token_offset,
int64_t* align_expert_first_token_offset, int* m_indices,
int num_local_expert, const int align_block_size,
cudaStream_t stream);
#include "moe_permute_unpermute_kernel.inl"

Some files were not shown because too many files have changed in this diff Show More