Compare commits

..

2 Commits

Author SHA1 Message Date
85013bf094 Prune Ray v1 non-SPMD code paths 2025-09-18 20:42:46 -07:00
07665f8679 Fix Ray executor futures to resolve asynchronously 2025-09-18 17:22:42 -07:00
499 changed files with 31247 additions and 13759 deletions

View File

@ -86,6 +86,10 @@ if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
fi
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
fi
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
fi

View File

@ -62,7 +62,7 @@ echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
&& python3 -m pip install --progress-bar off hf-transfer
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1

View File

@ -62,7 +62,7 @@ echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
&& python3 -m pip install --progress-bar off hf-transfer
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1

View File

@ -6,28 +6,24 @@
# to generate the final pipeline yaml file.
# Documentation
# label(str): the name of the test. emojis allowed.
# fast_check(bool): whether to run this on each commit on the fastcheck pipeline.
# torch_nightly(bool): whether to run this on vllm against the torch nightly pipeline.
# fast_check_only(bool): run this test on the fastcheck pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's a scheduled nightly run.
# soft_fail(bool): allow this step to fail without failing the entire pipeline (useful for flaky or experimental tests).
# label(str): the name of the test. emoji allowed.
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
# fast_check_only(bool): run this test on fastcheck pipeline only
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
# command(str): the single command to run for tests. incompatible with commands.
# commands(list): the list of commands to run for the test. incompatible with command.
# mirror_hardwares(list): the list of hardware to run the test on as well. currently only supports [amdexperimental]
# gpu(str): override the GPU selection for the test. default is L4 GPUs. supports a100, b200, h200
# num_gpus(int): override the number of GPUs for the test. defaults to 1 GPU. currently supports 2,4.
# num_nodes(int): whether to simulate multi-node setup by launching multiple containers on one host,
# in this case, commands must be specified. the first command runs on the first host, the second
# commands(list): the list of commands to run for test. incompatbile with command.
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100
# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4.
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
# in this case, commands must be specified. the first command runs on first host, the second
# command runs on the second host.
# timeout_in_minutes(int): sets a timeout for the step in minutes. if not specified, uses the default timeout.
# parallelism(int): number of parallel jobs to run for this step. enables test sharding using $$BUILDKITE_PARALLEL_JOB
# and $$BUILDKITE_PARALLEL_JOB_COUNT environment variables.
# working_dir(str): specify the place where the command should execute, default to /vllm-workspace/tests
# source_file_dependencies(list): the list of prefixes to opt-in the test for, if empty, the test will always run.
# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests
# source_file_dependencies(list): the list of prefix to opt-in the test for, if empty, the test will always run.
# When adding a test
# - If the test belongs to an existing group, add it there
# - If the test belong to an existing group, add it there
# - If the test is short, add to any existing step
# - If the test takes more than 10min, then it is okay to create a new step.
# Note that all steps execute in parallel.
@ -114,7 +110,7 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Entrypoints Integration Test (API Server) # 100min
timeout_in_minutes: 130
@ -152,6 +148,7 @@ steps:
num_gpus: 4
source_file_dependencies:
- vllm/distributed/
- vllm/core/
- tests/distributed/test_utils
- tests/distributed/test_pynccl
- tests/distributed/test_events
@ -165,18 +162,11 @@ steps:
- tests/v1/test_hybrid_lb_dp.py
- tests/v1/engine/test_engine_core_client.py
commands:
# test with torchrun tp=2 and external_dp=2
# test with tp=2 and external_dp=2
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with torchrun tp=2 and pp=2
# test with tp=2 and pp=2
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with torchrun tp=4 and dp=1
- TP_SIZE=4 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with torchrun tp=2, pp=2 and dp=1
- PP_SIZE=2 TP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with torchrun tp=1 and dp=4 with ep
- DP_SIZE=4 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with torchrun tp=2 and dp=2 with ep
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
@ -324,11 +314,12 @@ steps:
- python3 offline_inference/vision_language.py --seed 0
- python3 offline_inference/vision_language_pooling.py --seed 0
- python3 offline_inference/vision_language_multi_image.py --seed 0
- python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
- python3 offline_inference/basic/classify.py
- python3 offline_inference/basic/embed.py
- python3 offline_inference/basic/score.py
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Platform Tests (CUDA) # 4min
timeout_in_minutes: 15
@ -878,6 +869,8 @@ steps:
- tests/distributed/
- vllm/compilation
- vllm/worker/worker_base.py
- vllm/worker/worker.py
- vllm/worker/model_runner.py
- entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
@ -901,7 +894,7 @@ steps:
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
# TODO: investigate and fix
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s models/multimodal/generation/test_maverick.py

17
.github/CODEOWNERS vendored
View File

@ -4,8 +4,11 @@
# This lists cover the "core" components of vLLM that require careful review
/vllm/attention @LucasWilkinson
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/fused_moe @mgoin
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @NickLucche
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
@ -63,26 +66,18 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/models/test_transformers.py @hmellor
# Docs
/docs/mkdocs @hmellor
/docs/**/*.yml @hmellor
/requirements/docs.txt @hmellor
.readthedocs.yaml @hmellor
/docs @hmellor
mkdocs.yaml @hmellor
# Linting
.markdownlint.yaml @hmellor
.pre-commit-config.yaml @hmellor
/tools/pre_commit @hmellor
# CPU
/vllm/v1/worker/cpu* @bigPYJ1151
/vllm/v1/worker/^cpu @bigPYJ1151
/csrc/cpu @bigPYJ1151
/vllm/platforms/cpu.py @bigPYJ1151
/cmake/cpu_extension.cmake @bigPYJ1151
/docker/Dockerfile.cpu @bigPYJ1151
# Intel GPU
/vllm/v1/worker/xpu* @jikunshang
/vllm/v1/worker/^xpu @jikunshang
/vllm/platforms/xpu.py @jikunshang
/docker/Dockerfile.xpu @jikunshang

View File

@ -43,6 +43,10 @@ body:
Any other things you would like to mention.
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉! The vLLM core team hosts a biweekly RFC review session at 9:30AM Pacific Time, while most RFCs can be discussed online, you can optionally sign up for a slot to discuss your RFC online [here](https://docs.google.com/document/d/1CiLVBZeIVfR7_PNAKVSusxpceywkoOOB78qoWqHvSZc/edit).
- type: checkboxes
id: askllm
attributes:

View File

@ -49,7 +49,7 @@ repos:
rev: 0.6.17
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
@ -60,32 +60,38 @@ repos:
files: ^requirements/test\.(in|txt)$
- id: mypy-local
name: Run mypy for local Python installation
entry: python tools/pre_commit/mypy.py 0 "local"
entry: tools/mypy.sh 0 "local"
language: python
types: [python]
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
stages: [pre-commit] # Don't run in CI
<<: &mypy_common
language: python
types_or: [python, pyi]
require_serial: true
additional_dependencies: [mypy==1.11.1, regex, types-cachetools, types-setuptools, types-PyYAML, types-requests, types-torch, pydantic]
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.9
entry: python tools/pre_commit/mypy.py 1 "3.9"
<<: *mypy_common
entry: tools/mypy.sh 1 "3.9"
language: python
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.10
entry: python tools/pre_commit/mypy.py 1 "3.10"
<<: *mypy_common
entry: tools/mypy.sh 1 "3.10"
language: python
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.11
entry: python tools/pre_commit/mypy.py 1 "3.11"
<<: *mypy_common
entry: tools/mypy.sh 1 "3.11"
language: python
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
name: Run mypy for Python 3.12
entry: python tools/pre_commit/mypy.py 1 "3.12"
<<: *mypy_common
entry: tools/mypy.sh 1 "3.12"
language: python
types: [python]
additional_dependencies: *mypy_deps
stages: [manual] # Only run in CI
- id: shellcheck
name: Lint shell scripts
@ -149,10 +155,11 @@ repos:
additional_dependencies: [regex]
- id: check-pickle-imports
name: Prevent new pickle/cloudpickle imports
entry: python tools/pre_commit/check_pickle_imports.py
entry: python tools/check_pickle_imports.py
language: python
types: [python]
additional_dependencies: [regex]
pass_filenames: false
additional_dependencies: [pathspec, regex]
- id: validate-config
name: Validate configuration has default values and that each field has a docstring
entry: python tools/validate_config.py

View File

@ -11,13 +11,13 @@ from datetime import datetime
from typing import Any
import torch
import triton
from tqdm import tqdm
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul,
)
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import FlexibleArgumentParser
mp.set_start_method("spawn", force=True)

View File

@ -1,38 +0,0 @@
#pragma once
#include <cuda_runtime_api.h>
#include <algorithm>
// maximum blocks per SM cap
#ifndef VLLM_LAUNCH_BLOCKS_CAP
#define VLLM_LAUNCH_BLOCKS_CAP 4
#endif
// compile-time estimate of max threads per SM for launch bounds.
#ifndef VLLM_MAX_THREADS_PER_SM
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 300
#define VLLM_MAX_THREADS_PER_SM 1536
#else
#define VLLM_MAX_THREADS_PER_SM 2048
#endif
#endif
// compute the number of blocks per SM to request in __launch_bounds__
#define VLLM_BLOCKS_DIV(VAL) (VLLM_MAX_THREADS_PER_SM / (VAL))
#define VLLM_CLAMP_BLOCKS_PER_SM(VAL) \
(((VAL) <= 0) \
? 1 \
: (((VAL) < VLLM_LAUNCH_BLOCKS_CAP) ? (VAL) : VLLM_LAUNCH_BLOCKS_CAP))
#define VLLM_BLOCKS_PER_SM(BLOCK_THREADS) \
VLLM_CLAMP_BLOCKS_PER_SM(VLLM_BLOCKS_DIV(BLOCK_THREADS))
// runtime-time helper to compute blocks/SM
static inline int vllm_runtime_blocks_per_sm(int block_threads) {
int device = -1;
cudaGetDevice(&device);
int max_threads_per_sm = VLLM_MAX_THREADS_PER_SM;
cudaDeviceGetAttribute(&max_threads_per_sm,
cudaDevAttrMaxThreadsPerMultiProcessor, device);
int blocks = (block_threads > 0) ? (max_threads_per_sm / block_threads) : 1;
return VLLM_CLAMP_BLOCKS_PER_SM(blocks);
}

View File

@ -26,7 +26,6 @@
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "launch_bounds_utils.h"
#include "nvfp4_utils.cuh"
namespace vllm {
@ -64,7 +63,7 @@ __inline__ __device__ PackedVec<Type> compute_silu_mul(PackedVec<Type>& vec,
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024))
__global__ void __launch_bounds__(1024, 4)
silu_mul_cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out,
uint32_t* SFout) {
@ -132,8 +131,7 @@ void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output, // [..., d]
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
dim3 block(std::min(int(n / ELTS_PER_THREAD), 1024));
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
int const numBlocksPerSM = 2048 / block.x;
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
VLLM_DISPATCH_HALF_TYPES(

View File

@ -26,13 +26,12 @@
#include "dispatch_utils.h"
#include "nvfp4_utils.cuh"
#include "launch_bounds_utils.h"
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
__global__ void __launch_bounds__(512, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
@ -130,7 +129,7 @@ __global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024))
__global__ void __launch_bounds__(1024, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
@ -234,9 +233,8 @@ void quant_impl(void* output, void* output_scale, void* input,
int const workSizePerRow = k / ELTS_PER_THREAD;
int const totalWorkSize = m_topk * workSizePerRow;
dim3 block(std::min(workSizePerRow, 512));
// Get number of blocks per SM
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
// Get number of blocks per SM (assume we can fully utilize the SM).
int const numBlocksPerSM = 2048 / block.x;
dim3 grid(std::min(static_cast<int>((totalWorkSize + block.x - 1) / block.x),
multiProcessorCount * numBlocksPerSM));
while (grid.x <= multiProcessorCount && block.x > 64) {

View File

@ -26,14 +26,13 @@
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "launch_bounds_utils.h"
#include "nvfp4_utils.cuh"
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
__global__ void __launch_bounds__(512, 4)
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout) {
using PackedVec = PackedVec<Type>;
@ -76,9 +75,8 @@ void invokeFP4Quantization(int m, int n, T const* input, float const* SFScale,
// Grid, Block size.
// Each thread converts 8 values.
dim3 block(std::min(int(n / ELTS_PER_THREAD), 512));
// Get number of blocks per SM
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
// Get number of blocks per SM (assume we can fully utilize the SM).
int const numBlocksPerSM = 2048 / block.x;
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
// Launch the cvt kernel.

View File

@ -36,23 +36,22 @@ th:not(:first-child) {
}
</style>
| Feature | [CP][chunked-prefill] | [APC](automatic_prefix_caching.md) | [LoRA](lora.md) | [SD](spec_decode.md) | CUDA graph | [pooling](../models/pooling_models.md) | <abbr title="Encoder-Decoder Models">enc-dec</abbr> | <abbr title="Logprobs">logP</abbr> | <abbr title="Prompt Logprobs">prmpt logP</abbr> | <abbr title="Async Output Processing">async output</abbr> | multi-step | <abbr title="Multimodal Inputs">mm</abbr> | best-of | beam-search | [prompt-embeds](prompt_embeds.md) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| [CP][chunked-prefill] | ✅ | | | | | | | | | | | | | | |
| [APC](automatic_prefix_caching.md) | ✅ | ✅ | | | | | | | | | | | | | |
| [LoRA](lora.md) | ✅ | ✅ | ✅ | | | | | | | | | | | | |
| [SD](spec_decode.md) | ✅ | ✅ | ❌ | ✅ | | | | | | | | | | | |
| CUDA graph | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | | |
| [pooling](../models/pooling_models.md) | 🟠\* | 🟠\* | ✅ | ❌ | ✅ | ✅ | | | | | | | | | |
| <abbr title="Encoder-Decoder Models">enc-dec</abbr> | ❌ | [](gh-issue:7366) | ❌ | [](gh-issue:7366) | ✅ | ✅ | ✅ | | | | | | | | |
| <abbr title="Logprobs">logP</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | | | | | | |
| <abbr title="Prompt Logprobs">prmpt logP</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | | | | | | |
| <abbr title="Async Output Processing">async output</abbr> | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | | | | | |
| multi-step | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | | | | |
| [mm](multimodal_inputs.md) | ✅ | ✅ | [🟠](gh-pr:4194)<sup>^</sup> | ❔ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | | | |
| best-of | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | ✅ | ✅ | | |
| beam-search | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | ❔ | ✅ | ✅ | |
| [prompt-embeds](prompt_embeds.md) | ✅ | [](gh-issue:25096) | ? | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ? | ? | ❌ | ? | ? | ✅ |
| Feature | [CP][chunked-prefill] | [APC](automatic_prefix_caching.md) | [LoRA](lora.md) | [SD](spec_decode.md) | CUDA graph | [pooling](../models/pooling_models.md) | <abbr title="Encoder-Decoder Models">enc-dec</abbr> | <abbr title="Logprobs">logP</abbr> | <abbr title="Prompt Logprobs">prmpt logP</abbr> | <abbr title="Async Output Processing">async output</abbr> | multi-step | <abbr title="Multimodal Inputs">mm</abbr> | best-of | beam-search |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| [CP][chunked-prefill] | ✅ | | | | | | | | | | | | | |
| [APC](automatic_prefix_caching.md) | ✅ | ✅ | | | | | | | | | | | | |
| [LoRA](lora.md) | ✅ | ✅ | ✅ | | | | | | | | | | | |
| [SD](spec_decode.md) | ✅ | ✅ | ❌ | ✅ | | | | | | | | | | |
| CUDA graph | ✅ | ✅ | ✅ | ✅ | ✅ | | | | | | | | | |
| [pooling](../models/pooling_models.md) | 🟠\* | 🟠\* | ✅ | ❌ | ✅ | ✅ | | | | | | | | |
| <abbr title="Encoder-Decoder Models">enc-dec</abbr> | ❌ | [](gh-issue:7366) | ❌ | [](gh-issue:7366) | ✅ | ✅ | ✅ | | | | | | | |
| <abbr title="Logprobs">logP</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | | | | | |
| <abbr title="Prompt Logprobs">prmpt logP</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | | | | | |
| <abbr title="Async Output Processing">async output</abbr> | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | | | | |
| multi-step | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | | | |
| [mm](multimodal_inputs.md) | ✅ | ✅ | [🟠](gh-pr:4194)<sup>^</sup> | ❔ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | | |
| best-of | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | ✅ | ✅ | |
| beam-search | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | ❔ | ✅ | ✅ |
\* Chunked prefill and prefix caching are only applicable to last-token pooling.
<sup>^</sup> LoRA is only applicable to the language backbone of multimodal models.
@ -77,4 +76,3 @@ th:not(:first-child) {
| multi-step | ✅ | ✅ | ✅ | ✅ | ✅ | [](gh-issue:8477) | ✅ | ❌ |
| best-of | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| beam-search | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| [prompt-embeds](prompt_embeds.md) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ? | [](gh-issue:25097) |

View File

@ -31,12 +31,6 @@ Now supports 5 types of connectors:
--kv-transfer-config '{"kv_connector":"MultiConnector","kv_role":"kv_both","kv_connector_extra_config":{"connectors":[{"kv_connector":"NixlConnector","kv_role":"kv_both"},{"kv_connector":"SharedStorageConnector","kv_role":"kv_both","kv_connector_extra_config":{"shared_storage_path":"local_storage"}}]}}'
```
- **OffloadingConnector**: enable offloading of KV data to CPU memory, customizing the CPU block size (in tokens) and number of blocks to allocate (per worker):
```bash
--kv-transfer-config '{"kv_connector":"OffloadingConnector","kv_role":"kv_both","kv_connector_extra_config":{"block_size": 64, "num_cpu_blocks": 1000}}'
```
## Benchmarks
Please refer to <gh-file:benchmarks/disagg_benchmarks> for disaggregated prefilling benchmarks.

View File

@ -6,6 +6,9 @@ This page teaches you how to pass prompt embedding inputs to vLLM.
The traditional flow of text data for a Large Language Model goes from text to token ids (via a tokenizer) then from token ids to prompt embeddings. For a traditional decoder-only model (such as meta-llama/Llama-3.1-8B-Instruct), this step of converting token ids to prompt embeddings happens via a look-up from a learned embedding matrix, but the model is not limited to processing only the embeddings corresponding to its token vocabulary.
!!! note
Prompt embeddings are currently only supported in the v0 engine.
## Offline Inference
To input multi-modal data, follow this schema in [vllm.inputs.EmbedsPrompt][]:

View File

@ -59,7 +59,7 @@ enabling the corresponding APIs:
#### Predefined models
If the [Pooler][vllm.model_executor.layers.pooler.Pooler] defined by the model accepts `pooler_config`,
you can override some of its attributes via the `--pooler-config` option.
you can override some of its attributes via the `--override-pooler-config` option.
#### Converted models
@ -75,7 +75,7 @@ the pooler assigned to each task has the following attributes by default:
When loading [Sentence Transformers](https://huggingface.co/sentence-transformers) models,
its Sentence Transformers configuration file (`modules.json`) takes priority over the model's defaults.
You can further customize this via the `--pooler-config` option,
You can further customize this via the `--override-pooler-config` option,
which takes priority over both the model's and Sentence Transformers's defaults.
## Offline Inference

View File

@ -17,24 +17,9 @@ These models are what we list in [supported-text-models][supported-text-models]
### Transformers
vLLM also supports model implementations that are available in Transformers. You should expect the performance of a Transformers model implementation used in vLLM to be within <1% of the performance of a dedicated vLLM model implementation. We call this feature the "Transformers backend".
vLLM also supports model implementations that are available in Transformers. This does not currently work for all models, but most decoder language models and common vision language models are supported! Vision-language models currently accept only image inputs. Support for video inputs will be added in future releases.
Currently, the Transformers backend works for the following:
- Modalities: embedding models, language models and vision-language models*
- Architectures: encoder-only, decoder-only
- Attention types: full attention and/or sliding attention
_*Vision-language models currently accept only image inputs. Support for video inputs will be added in a future release._
If the Transformers model implementation follows all the steps in [writing a custom model](#writing-custom-models) then, when used with the Transformers backend, it will be compatible with the following features of vLLM:
- All the features listed in the [compatibility matrix](../features/compatibility_matrix.md#feature-x-feature)
- Any combination of the following vLLM parallelisation schemes:
- Pipeline parallel
- Tensor parallel
Checking if the modeling backend is Transformers is as simple as:
To check if the modeling backend is Transformers, you can simply do this:
```python
from vllm import LLM
@ -42,12 +27,16 @@ llm = LLM(model=...) # Name or path of your model
llm.apply_model(lambda model: print(type(model)))
```
If the printed type starts with `Transformers...` then it's using the Transformers model implementation!
If it is `TransformersForCausalLM` or `TransformersForMultimodalLM` then it means it's based on Transformers!
If a model has a vLLM implementation but you would prefer to use the Transformers implementation via the Transformers backend, set `model_impl="transformers"` for [offline inference](../serving/offline_inference.md) or `--model-impl transformers` for the [online serving](../serving/openai_compatible_server.md).
!!! tip
You can force the use of `TransformersForCausalLM` by setting `model_impl="transformers"` for [offline-inference](../serving/offline_inference.md) or `--model-impl transformers` for the [openai-compatible-server](../serving/openai_compatible_server.md).
!!! note
For vision-language models, if you are loading with `dtype="auto"`, vLLM loads the whole model with config's `dtype` if it exists. In contrast the native Transformers will respect the `dtype` attribute of each backbone in the model. That might cause a slight difference in performance.
vLLM may not fully optimise the Transformers implementation so you may see degraded performance if comparing a native model to a Transformers model in vLLM.
!!! note
In case of vision language models if you are loading with `dtype="auto"`, vLLM loads the whole model with config's `dtype` if it exists. In contrast the native Transformers will respect the `dtype` attribute of each backbone in the model. That might cause a slight difference in performance.
#### Custom models
@ -77,11 +66,10 @@ This section details the necessary modifications to make to a Transformers compa
To make your model compatible with the Transformers backend, it needs:
1. `kwargs` passed down through all modules from `MyModel` to `MyAttention`.
1. If your model is encoder-only, you must also add `is_causal = False` to `MyAttention`.
2. `MyAttention` must use `ALL_ATTENTION_FUNCTIONS` to call attention.
3. `MyModel` must contain `_supports_attention_backend = True`.
<details class="code">
<details>
<summary>modeling_my_model.py</summary>
```python
@ -90,7 +78,6 @@ from transformers import PreTrainedModel
from torch import nn
class MyAttention(nn.Module):
is_causal = False # Only do this for encoder-only models
def forward(self, hidden_states, **kwargs):
...
@ -114,13 +101,13 @@ Here is what happens in the background when this model is loaded:
1. The config is loaded.
2. `MyModel` Python class is loaded from the `auto_map` in config, and we check that the model `is_backend_compatible()`.
3. `MyModel` is loaded into one of the Transformers backend classes in <gh-file:vllm/model_executor/models/transformers.py> which sets `self.config._attn_implementation = "vllm"` so that vLLM's attention layer is used.
3. `MyModel` is loaded into `TransformersForCausalLM` or `TransformersForMultimodalLM` (see <gh-file:vllm/model_executor/models/transformers.py>) which sets `self.config._attn_implementation = "vllm"` so that vLLM's attention layer is used.
That's it!
For your model to be compatible with vLLM's tensor parallel and/or pipeline parallel features, you must add `base_model_tp_plan` and/or `base_model_pp_plan` to your model's config class:
<details class="code">
<details>
<summary>configuration_my_model.py</summary>
```python
@ -352,7 +339,6 @@ th {
| `DeepseekV2ForCausalLM` | DeepSeek-V2 | `deepseek-ai/DeepSeek-V2`, `deepseek-ai/DeepSeek-V2-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `DeepseekV3ForCausalLM` | DeepSeek-V3 | `deepseek-ai/DeepSeek-V3`, `deepseek-ai/DeepSeek-R1`, `deepseek-ai/DeepSeek-V3.1`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Dots1ForCausalLM` | dots.llm1 | `rednote-hilab/dots.llm1.base`, `rednote-hilab/dots.llm1.inst`, etc. | | ✅︎ | ✅︎ |
| `DotsOCRForCausalLM` | dots_ocr | `rednote-hilab/dots.ocr` | | ✅︎ | ✅︎ |
| `Ernie4_5ForCausalLM` | Ernie4.5 | `baidu/ERNIE-4.5-0.3B-PT`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Ernie4_5_MoeForCausalLM` | Ernie4.5MoE | `baidu/ERNIE-4.5-21B-A3B-PT`, `baidu/ERNIE-4.5-300B-A47B-PT`, etc. |✅︎| ✅︎ | ✅︎ |
| `ExaoneForCausalLM` | EXAONE-3 | `LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -471,7 +457,7 @@ These models primarily support the [`LLM.embed`](./pooling_models.md#llmembed) A
!!! note
`ssmits/Qwen2-7B-Instruct-embed-base` has an improperly defined Sentence Transformers config.
You need to manually set mean pooling by passing `--pooler-config '{"pooling_type": "MEAN"}'`.
You need to manually set mean pooling by passing `--override-pooler-config '{"pooling_type": "MEAN"}'`.
!!! note
For `Alibaba-NLP/gte-Qwen2-*`, you need to enable `--trust-remote-code` for the correct tokenizer to be loaded.
@ -566,7 +552,7 @@ If your model is not in the above list, we will try to automatically convert the
!!! important
For process-supervised reward models such as `peiyi9979/math-shepherd-mistral-7b-prm`, the pooling config should be set explicitly,
e.g.: `--pooler-config '{"pooling_type": "STEP", "step_tag_id": 123, "returned_token_ids": [456, 789]}'`.
e.g.: `--override-pooler-config '{"pooling_type": "STEP", "step_tag_id": 123, "returned_token_ids": [456, 789]}'`.
#### Token Classification

View File

@ -0,0 +1,510 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import inspect
import json
import os
import sys
from argparse import RawTextHelpFormatter
from collections.abc import Generator
from dataclasses import asdict, dataclass
from typing import Any, Optional, TypeAlias
import torch
import tqdm
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.profiler.layerwise_profile import layerwise_profile
from vllm.utils import FlexibleArgumentParser
BATCH_SIZE_DEFAULT = 1
PROMPT_LEN_DEFAULT = 256
@dataclass
class ProfileContext:
engine_args: EngineArgs
prompt_len: int
batch_size: int
# The profiler can run in 2 modes,
# 1. Run profiler for user specified num_steps
num_steps: Optional[int] = None
# 2. Run profiler until all requests complete
complete_num_requests_per_step: Optional[int] = None
save_chrome_traces_folder: Optional[str] = None
def get_dtype(dtype: str):
if dtype == "torch.float":
return torch.float
else:
return dtype
OutputLen_NumReqs_Map: TypeAlias = dict[int, int]
def compute_request_output_lengths(
batch_size: int, step_requests: list[int]
) -> OutputLen_NumReqs_Map:
"""
Given the number of requests, batch_size, and the number of requests
that each engine-step should process, step_requests, determine the
output lengths of the requests such that step_request is honoured.
Example:
if batch size = 128 and step_request = [128, 128, 96, 64, 32, 1]
then return,
{2 : 32, 3 : 32, 4 : 32, 5 : 31, 6 : 1}, meaning,
32 requests should have output length 2,
32 requests should have output length 3,
32 requests should have output length 4,
31 requests should have output length 5,
1 request should have output length 6.
Args:
batch_size (int): Number of requests submitted for profile. This is
args.batch_size.
step_requests (list[int]): step_requests[i] is the number of requests
that the ith engine step should process.
Returns:
OutputLen_NumReqs_Map : A dictionary with output-length as keys and the
number of requests required to have that output-length as values.
"""
ol_nr: OutputLen_NumReqs_Map = {}
# Number of request that are assigned an output-length
num_reqs_assigned: int = 0
num_steps: int = len(step_requests)
# sanity check. The first step (prefill-step), must process all requests.
assert step_requests[0] == batch_size
# Begin assignments from the last step.
output_length: int = num_steps
for num_requests_at_step in reversed(step_requests):
if num_reqs_assigned == batch_size:
break
assert num_reqs_assigned < batch_size
# Remove the number of requests that have been determined
# to participate in this step and beyond.
num_reqs_unassigned_at_step = num_requests_at_step - num_reqs_assigned
assert num_reqs_unassigned_at_step >= 0
if num_reqs_unassigned_at_step > 0:
ol_nr[output_length] = num_reqs_unassigned_at_step
num_reqs_assigned += num_reqs_unassigned_at_step
output_length -= 1
# sanity checks.
assert sum(ol_nr.values()) == batch_size, (
"Number of requests in output-length assignment does not match "
f"batch-size.\n batch size {batch_size} - "
f"step requests {step_requests} - assignments {ol_nr}"
)
# Check that the output-length is in [1, num-steps]. Output length must be
# at least 1 as all requests must participate in the prefill-step.
assert all(ol >= 1 and ol <= num_steps for ol in ol_nr), (
"Output lengths of requests should be in range "
f"[1, num-engine-steps].\n batch size {batch_size} - "
f"step requests {step_requests} - assignments {ol_nr}"
)
return ol_nr
def determine_requests_per_step(context: ProfileContext) -> list[int]:
"""
Determine number of requests each engine step should process.
If context.num_steps is set, then all engine steps process the
same number of requests and the output list is of length
context.num_steps.
If context.complete_num_requests_per_step is set, then each decode step
processes fewer and fewer requests until there are no requests to process.
In this case, the output list is as big as the number of steps
required to process all requests.
Args:
context: ProfileContext object.
Returns:
list[int]: Number of requests to process for all engine-steps.
output[i], contains the number of requests that the ith step
should process.
"""
if context.num_steps:
# All requests must run until num_engine_steps. This implies
# that their output lengths must be equal to num_engine_steps.
return [context.batch_size] * context.num_steps
assert (
context.complete_num_requests_per_step
and context.complete_num_requests_per_step > 0
), (
f"Expected a positive complete_num_requests_per_step argument."
f"Instead got {context.complete_num_requests_per_step}"
)
# We start dropping after the first decode step.
step_requests = [
context.batch_size, # prefill
context.batch_size, # decode
]
num_running_requests = context.batch_size
num_running_requests -= context.complete_num_requests_per_step
while num_running_requests > 0:
step_requests.append(num_running_requests)
num_running_requests -= context.complete_num_requests_per_step
if step_requests[-1] != 1:
# have 1 request running at the last step. This is often
# useful
step_requests.append(1)
return step_requests
def run_profile(
context: ProfileContext, csv_output: Optional[str], json_output: Optional[str]
):
print("Run profile with:")
for key, value in asdict(context).items():
print(f" {key} = {value}")
requests_per_step: list[int] = determine_requests_per_step(context)
ol_nr: OutputLen_NumReqs_Map = compute_request_output_lengths(
context.batch_size, requests_per_step
)
num_steps_to_profile: int = len(requests_per_step)
max_output_len: int = max(ol_nr.keys())
assert max_output_len >= 1
# Create sampling params
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
# max_tokens is set on a per-request basis.
max_tokens=None,
ignore_eos=True,
)
# Create LLM
llm = LLM(**asdict(context.engine_args))
batch_size = context.batch_size
prompt_len = context.prompt_len
scheduler_config = llm.llm_engine.vllm_config.scheduler_config
max_model_len = llm.llm_engine.model_config.max_model_len
max_num_batched_tokens = scheduler_config.max_num_batched_tokens
max_num_seqs = scheduler_config.max_num_seqs
if batch_size * prompt_len > max_num_batched_tokens:
print(
f"ERROR: chosen batch_size * prompt_len "
f"({batch_size} * {prompt_len} = {batch_size * prompt_len}) is "
f"larger than max_num_batched_tokens ({max_num_batched_tokens}) "
f"and therefore cannot be run in a single profile step, please "
f"choose a smaller batch size or prompt length, or increase "
f"--max-num-batched-tokens"
)
sys.exit(-1)
if batch_size > max_num_seqs:
print(
f"ERROR: chosen batch_size ({batch_size}) is larger than "
f"max_num_seqs ({max_num_seqs}) and therefore cannot be run in a "
f"single profile step, please choose a smaller batch size"
)
sys.exit(-1)
print(
"llm.llm_engine.model_config.max_model_len: ",
llm.llm_engine.model_config.max_model_len,
)
if prompt_len + max_output_len > llm.llm_engine.model_config.max_model_len:
print(
f"ERROR: chosen prompt_len + max_output_len ({prompt_len} + "
f"{max_output_len} = {prompt_len + max_output_len}) is larger "
f"than the model's max_model_len ({max_model_len}), please "
f"choose a smaller prompt_len or max_output_len, or increase "
f"--max-model-len"
)
sys.exit(-1)
def add_requests():
def get_output_len_generator() -> Generator[int, Any, Any]:
for output_len, num_reqs in ol_nr.items():
for _ in range(num_reqs):
yield output_len
output_len_generator = get_output_len_generator()
for i in range(batch_size):
sampling_params.max_tokens = next(output_len_generator)
assert isinstance(sampling_params.max_tokens, int)
prompt_token_ids = torch.randint(
llm.get_tokenizer().vocab_size, size=(prompt_len,)
).tolist()
llm.llm_engine.add_request(
request_id=f"seq{i}",
prompt={"prompt_token_ids": prompt_token_ids},
params=sampling_params,
)
def abort_requests():
for i in range(batch_size):
llm.llm_engine.abort_request(f"seq{i}")
# Warm up run
print("Warm up run ...")
add_requests()
llm.llm_engine.step() # Prefill
llm.llm_engine.step() # Decode
abort_requests()
print("Profile run ...")
add_requests()
with layerwise_profile() as prefill_prof:
llm.llm_engine.step() # First step is prefill
decode_profs = []
for _ in tqdm.tqdm(range(num_steps_to_profile - 1)):
num_running_seqs = llm.llm_engine.scheduler[0].get_num_unfinished_seq_groups()
with layerwise_profile(num_running_seqs=num_running_seqs) as decode_prof:
llm.llm_engine.step()
decode_profs.append(decode_prof)
decode_results_list = [prof.results for prof in decode_profs]
prefill_results = prefill_prof.results
has_decode = len(decode_results_list) > 0
LINE_WIDTH = 80
print("=" * LINE_WIDTH)
print(f"= Prefill Model Table (prompt_len={prompt_len}, batch_size={batch_size})")
print("=" * LINE_WIDTH)
print()
prefill_results.print_model_table()
if has_decode:
print()
print("=" * LINE_WIDTH)
print(
f"= First Decode Step Model Table "
f"(prompt_len={prompt_len}, batch_size={batch_size})"
)
print("=" * LINE_WIDTH)
print()
decode_results_list[0].print_model_table()
print()
print("=" * LINE_WIDTH)
print(f"= Prefill Summary Table (prompt_len={prompt_len}, batch_size={batch_size})")
print("=" * LINE_WIDTH)
print()
prefill_results.print_summary_table()
if has_decode:
print()
print("=" * LINE_WIDTH)
print(
f"= First Decode Step Summary Table "
f"(prompt_len={prompt_len}, batch_size={batch_size})"
)
print("=" * LINE_WIDTH)
print()
decode_results_list[0].print_summary_table()
if csv_output:
csv_filename_base = (
csv_output[:-4] if csv_output.endswith(".csv") else csv_output
)
prefill_results.export_model_stats_table_csv(
csv_filename_base + "_prefill_model_table.csv"
)
prefill_results.export_summary_stats_table_csv(
csv_filename_base + "_prefill_summary_table.csv"
)
if has_decode:
decode_results_list[0].export_model_stats_table_csv(
csv_filename_base + "_decode_model_table.csv"
)
decode_results_list[0].export_summary_stats_table_csv(
csv_filename_base + "_decode_summary_table.csv"
)
if json_output:
cuda_devices = [
torch.cuda.get_device_properties(dev_idx)
for dev_idx in range(torch.cuda.device_count())
]
json_dict = {
"context": {
"python_version": f"{sys.version}",
"torch_version": f"{torch.__version__}",
"torch_cuda_version": f"{torch.version.cuda}",
"cuda_devices": f"{cuda_devices}",
**asdict(context),
},
"prefill": prefill_results.convert_stats_to_dict(),
}
if has_decode:
for idx, dr in enumerate(decode_results_list):
json_dict[f"decode_{idx + 1}"] = dr.convert_stats_to_dict()
# Add .json to json_output filename if it doesn't exist already.
json_output_file = (
json_output if json_output.endswith(".json") else json_output + ".json"
)
with open(json_output_file, "w+") as f:
json.dump(json_dict, f, indent=2)
pass
if context.save_chrome_traces_folder is not None:
os.makedirs(context.save_chrome_traces_folder, exist_ok=True)
prefill_prof.profiler.export_chrome_trace(
context.save_chrome_traces_folder + "/prefill.json"
)
for idx, decode_prof in enumerate(decode_profs):
decode_prof.profiler.export_chrome_trace(
context.save_chrome_traces_folder + f"/decode_{idx + 1}.json"
)
print(
"Traces saved as prefill.json and decode_1.json, etc."
f" in folder {context.save_chrome_traces_folder}"
)
def parse_args():
parser = FlexibleArgumentParser(
description="""
Profile a model
example:
```
python examples/offline_inference/profiling.py \\
--model neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8 --batch-size 4 \\
--prompt-len 512 --max-num-batched-tokens 8196 --json Llama31-8b-FP8 \\
--enforce-eager run_num_steps -n 2
```
then you can use various tools to analyze the json output
terminal ascii tables:
```
python tools/profiler/print_layerwise_table.py \\
--json-trace Llama31-8b-FP8.json --phase prefill --table summary
```
or create matplotlib stacked bar charts:
```
python tools/profiler/visualize_layerwise_profile.py \\
--json-trace Llama31-8b-FP8.json \\
--output-directory profile_breakdown --plot-metric pct_cuda_time
```
""",
formatter_class=RawTextHelpFormatter,
)
parser.add_argument(
"--csv",
type=str,
default=None,
help="Export the results as multiple csv file. This should be the root "
"filename, will create <filename>_prefill_model_table.csv, "
"<filename>_prefill_summary_table.csv, "
"<filename>_decode_model_table.csv, and "
"<filename>_decode_summary_table.csv",
)
parser.add_argument(
"--json",
type=str,
default=None,
help="Export the results as a json file. This should be the filename",
)
parser.add_argument(
"--save-chrome-traces-folder",
type=str,
help="Save chrome traces for the prefill and decode "
"will save traces as prefill.json and decode_1.json, "
"etc. inside this folder",
)
parser.add_argument(
"--prompt-len",
type=int,
default=PROMPT_LEN_DEFAULT,
help=f"Length of the random prompt to use when profiling, all batched "
f"requests use the same prompt_len, default={PROMPT_LEN_DEFAULT}",
)
parser.add_argument(
"--batch-size",
type=int,
default=BATCH_SIZE_DEFAULT,
help=f"Number of requests to run as a single batch, "
f"default={BATCH_SIZE_DEFAULT}",
)
subparsers = parser.add_subparsers(dest="cmd")
run_num_steps_parser = subparsers.add_parser(
"run_num_steps", help="This variation profiles n engine.step() invocations."
)
run_num_steps_parser.add_argument(
"-n",
"--num-steps",
type=int,
help="Number of engine steps to profile.\n"
"Setting it to 1, profiles only the prefill step.\n"
"Setting it to 2, profiles the prefill and first decode step\n"
"Setting it to 3, profiles the prefill, 1st and 2nd decode steps\n"
"and so on ...",
)
run_to_completion_parser = subparsers.add_parser(
"run_to_completion",
help="This variation profiles all the engine.step() invocations"
"until the engine exhausts all submitted requests.",
)
run_to_completion_parser.add_argument(
"-n",
"--complete-num-requests-per-step",
type=int,
help="Complete complete_num_requests_per_step requests every decode step."
"For e.g., with batch_size 128 and complete_num_requests_per_step 32,"
"the profiler is run for 6 engine steps, with the steps processing, "
"128, 128, 96, 64, 32, 1 requests respectively.\n"
"Note that we tack-on a one-request step at the end as it is often "
"useful.",
)
EngineArgs.add_cli_args(parser)
return parser.parse_args()
def main(args):
context = ProfileContext(
engine_args=EngineArgs.from_cli_args(args),
**{
k: v
for k, v in vars(args).items()
if k in inspect.signature(ProfileContext).parameters
},
)
run_profile(context, csv_output=args.csv, json_output=args.json)
if __name__ == "__main__":
args = parse_args()
main(args)

View File

@ -5,6 +5,7 @@ from urllib.request import urlopen
from vllm import LLM, SamplingParams
os.environ["VLLM_ATTENTION_BACKEND"] = "DUAL_CHUNK_FLASH_ATTN"
os.environ["VLLM_ALLOW_LONG_MAX_MODEL_LEN"] = "1"

View File

@ -1,81 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
experimental support for data-parallel inference with torchrun
Note the data load balancing and distribution is done out of the vllm engine,
no internal lb supported in external_launcher mode.
"""
from vllm import LLM, SamplingParams
# Create prompts, the same across all ranks
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
] * 50
# Create sampling parameters, the same across all ranks
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Use `distributed_executor_backend="external_launcher"` so that
# this llm engine/instance only creates one worker.
# it is important to set an explicit seed to make sure that
# all ranks have the same random seed, so that sampling can be
# deterministic across ranks.
llm = LLM(
model="microsoft/Phi-mini-MoE-instruct",
tensor_parallel_size=1,
data_parallel_size=2,
pipeline_parallel_size=1,
enable_expert_parallel=False,
distributed_executor_backend="external_launcher",
max_model_len=4096,
gpu_memory_utilization=0.6,
seed=1,
)
dp_rank = llm.llm_engine.vllm_config.parallel_config.data_parallel_rank
dp_size = llm.llm_engine.vllm_config.parallel_config.data_parallel_size
prompts = [
f"{idx}.{prompt}" for idx, prompt in enumerate(prompts) if idx % dp_size == dp_rank
]
outputs = llm.generate(prompts, sampling_params)
# all ranks will have the same outputs
print("-" * 50)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}\n")
print("-" * 50)
"""
Further tips:
1. to communicate control messages across all ranks, use the cpu group,
a PyTorch ProcessGroup with GLOO backend.
```python
from vllm.distributed.parallel_state import get_world_group
cpu_group = get_world_group().cpu_group
torch_rank = dist.get_rank(group=cpu_group)
if torch_rank == 0:
# do something for rank 0, e.g. saving the results to disk.
```
2. to communicate data across all ranks, use the model's device group,
a PyTorch ProcessGroup with NCCL backend.
```python
from vllm.distributed.parallel_state import get_world_group
device_group = get_world_group().device_group
```
3. to access the model directly in every rank, use the following code:
```python
llm.llm_engine.model_executor.driver_worker.worker.model_runner.model
```
"""

View File

@ -126,23 +126,6 @@ def run_chameleon(questions: list[str], modality: str) -> ModelRequestData:
)
# Dots-OCR
def run_dots_ocr(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
prompts = [f"<|img|><|imgpad|><|endofimg|>{question}" for question in questions]
engine_args = EngineArgs(
model="rednote-hilab/dots.ocr",
limit_mm_per_prompt={modality: 1},
trust_remote_code=True,
)
return ModelRequestData(
engine_args=engine_args,
prompts=prompts,
)
def run_command_a_vision(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
@ -1693,7 +1676,6 @@ model_example_map = {
"aya_vision": run_aya_vision,
"blip-2": run_blip2,
"chameleon": run_chameleon,
"dots_ocr": run_dots_ocr,
"command_a_vision": run_command_a_vision,
"deepseek_vl_v2": run_deepseek_vl2,
"ernie45_vl": run_ernie45_vl,

View File

@ -42,7 +42,7 @@ python client.py
### Server Configuration
The key parameters for chunked processing are in the `--pooler-config`:
The key parameters for chunked processing are in the `--override-pooler-config`:
```json
{

View File

@ -13,7 +13,7 @@ Prerequisites:
# MEAN pooling (processes all chunks, recommended for complete coverage)
vllm serve intfloat/multilingual-e5-large \
--pooler-config \
--override-pooler-config \
'{"pooling_type": "MEAN", "normalize": true, ' \
'"enable_chunked_processing": true, "max_embed_len": 3072000}' \
--served-model-name multilingual-e5-large \
@ -23,7 +23,7 @@ Prerequisites:
# OR CLS pooling (native CLS within chunks, MEAN aggregation across chunks)
vllm serve BAAI/bge-large-en-v1.5 \
--pooler-config \
--override-pooler-config \
'{"pooling_type": "CLS", "normalize": true, ' \
'"enable_chunked_processing": true, "max_embed_len": 1048576}' \
--served-model-name bge-large-en-v1.5 \

View File

@ -103,7 +103,7 @@ POOLER_CONFIG="{\"pooling_type\": \"$POOLING_TYPE\", \"normalize\": true, \"enab
vllm serve "$MODEL_NAME" \
--tensor-parallel-size "$GPU_COUNT" \
--enforce-eager \
--pooler-config "$POOLER_CONFIG" \
--override-pooler-config "$POOLER_CONFIG" \
--served-model-name ${MODEL_CODE} \
--api-key "$API_KEY" \
--trust-remote-code \

View File

@ -1,6 +1,8 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import dataclasses
import json
import logging
import os
@ -325,7 +327,12 @@ def main():
if args.command == "serialize":
engine_args = EngineArgs.from_cli_args(args)
eng_args_dict = {f.name: getattr(args, f.name) for f in
dataclasses.fields(EngineArgs)}
engine_args = EngineArgs.from_cli_args(
argparse.Namespace(**eng_args_dict)
)
input_dir = tensorizer_dir.rstrip('/')
suffix = args.suffix if args.suffix else uuid.uuid4().hex

View File

@ -102,7 +102,6 @@ plugins:
- https://numpy.org/doc/stable/objects.inv
- https://pytorch.org/docs/stable/objects.inv
- https://psutil.readthedocs.io/en/stable/objects.inv
- https://huggingface.co/docs/transformers/main/en/objects.inv
markdown_extensions:
- attr_list

View File

@ -70,6 +70,7 @@ line-length = 80
"vllm/_version.py" = ["ALL"]
# Python 3.8 typing - skip V0 code
"vllm/attention/**/*.py" = ["UP006", "UP035"]
"vllm/core/**/*.py" = ["UP006", "UP035"]
"vllm/engine/**/*.py" = ["UP006", "UP035"]
"vllm/executor/**/*.py" = ["UP006", "UP035"]
"vllm/worker/**/*.py" = ["UP006", "UP035"]
@ -110,6 +111,28 @@ ignore_missing_imports = true
check_untyped_defs = true
follow_imports = "silent"
# After fixing type errors resulting from follow_imports: "skip" -> "silent",
# move the directory here and remove it from tools/mypy.sh
files = [
"vllm/*.py",
"vllm/assets",
"vllm/entrypoints",
"vllm/core",
"vllm/inputs",
"vllm/logging_utils",
"vllm/multimodal",
"vllm/platforms",
"vllm/transformers_utils",
"vllm/triton_utils",
"vllm/usage",
]
# TODO(woosuk): Include the code from Megatron and HuggingFace.
exclude = [
"vllm/model_executor/parallel_utils/|vllm/model_executor/models/",
# Ignore triton kernels in ops.
'vllm/attention/ops/.*\.py$'
]
[tool.isort]
skip_glob = [
".buildkite/*",

View File

@ -24,7 +24,7 @@ outlines_core == 0.2.11
# required for outlines backend disk cache
diskcache == 5.6.3
lark == 1.2.2
xgrammar == 0.1.24; platform_machine == "x86_64" or platform_machine == "aarch64" or platform_machine == "arm64"
xgrammar == 0.1.23; platform_machine == "x86_64" or platform_machine == "aarch64" or platform_machine == "arm64"
typing_extensions >= 4.10
filelock >= 3.16.1 # need to contain https://github.com/tox-dev/filelock/pull/317
partial-json-parser # used for parsing partial JSON outputs

View File

@ -1,5 +1,5 @@
# This file was autogenerated by uv via the following command:
# uv pip compile requirements/test.in -o requirements/test.txt --index-strategy unsafe-best-match --torch-backend cu128 --python-platform x86_64-manylinux_2_28
# uv pip compile requirements/test.in -o requirements/test.txt --index-strategy unsafe-best-match --torch-backend cu128
absl-py==2.1.0
# via rouge-score
accelerate==1.0.1

View File

@ -11,7 +11,7 @@ from unittest.mock import Mock
import pytest
import torch
from vllm import LLM
from vllm import LLM, envs
from vllm.v1.engine.llm_engine import LLMEngine as LLMEngineV1
from ..conftest import HfRunner, VllmRunner
@ -26,6 +26,14 @@ MODELS = [
TARGET_TEST_SUITE = os.environ.get("TARGET_TEST_SUITE", "L4")
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
def test_vllm_gc_ed():
"""Verify vllm instance is GC'ed when it is deleted"""
llm = LLM("distilbert/distilgpt2")
@ -68,6 +76,17 @@ def test_models(
model_executor: str,
enable_prompt_embeds: bool,
) -> None:
if enable_prompt_embeds and envs.is_set(
"VLLM_USE_V1") and envs.VLLM_USE_V1:
pytest.skip("enable_prompt_embeds is not supported in v1.")
if not envs.VLLM_USE_V1:
if async_scheduling:
pytest.skip("async_scheduling only supported in v1.")
if model_executor != "uni":
pytest.skip("only test uniproc executor for v0.")
if backend == "XFORMERS" and model == "google/gemma-2-2b-it":
pytest.skip(
f"{backend} does not support gemma2 with full context length.")
@ -145,6 +164,11 @@ def test_models_distributed(
extra_env: dict[str, str],
enable_prompt_embeds: bool,
) -> None:
if enable_prompt_embeds and envs.is_set(
"VLLM_USE_V1") and envs.VLLM_USE_V1:
pytest.skip("enable_prompt_embeds is not supported in v1.")
if test_suite != TARGET_TEST_SUITE:
pytest.skip(f"Skip test for {test_suite}")

View File

@ -122,12 +122,11 @@ def test_cumem_with_cudagraph():
# sleep mode with safetensors
("meta-llama/Llama-3.2-1B", True),
# sleep mode with pytorch checkpoint
("facebook/opt-125m", True),
("facebook/opt-125m", False),
])
def test_end_to_end(monkeypatch: pytest.MonkeyPatch, model: str, use_v1: bool):
with monkeypatch.context() as m:
assert use_v1
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
free, total = torch.cuda.mem_get_info()
used_bytes_baseline = total - free # in case other process is running
llm = LLM(model, enable_sleep_mode=True)

39
tests/build_cython.py Normal file
View File

@ -0,0 +1,39 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import Cython.Compiler.Options
from Cython.Build import cythonize
from setuptools import setup
Cython.Compiler.Options.annotate = True
infiles = []
infiles += [
"vllm/engine/llm_engine.py",
"vllm/transformers_utils/detokenizer.py",
"vllm/engine/output_processor/single_step.py",
"vllm/outputs.py",
"vllm/engine/output_processor/stop_checker.py",
]
infiles += [
"vllm/core/scheduler.py",
"vllm/sequence.py",
"vllm/core/block_manager.py",
]
infiles += [
"vllm/model_executor/layers/sampler.py",
"vllm/sampling_params.py",
"vllm/utils/__init__.py",
]
setup(ext_modules=cythonize(infiles,
annotate=False,
force=True,
compiler_directives={
'language_level': "3",
'infer_types': True
}))
# example usage: python3 build_cython.py build_ext --inplace

View File

@ -1,7 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
from collections.abc import Sequence
from copy import deepcopy
from typing import Callable, Union
@ -11,26 +10,7 @@ from torch._ops import OpOverload
from vllm.compilation.fx_utils import find_op_nodes
from vllm.compilation.inductor_pass import InductorPass
from vllm.compilation.pass_manager import with_pattern_match_debug
from vllm.compilation.vllm_inductor_pass import VllmInductorPass
from vllm.config import VllmConfig, get_current_vllm_config
class LazyInitPass(InductorPass):
"""
If there's a pass that we want to initialize lazily in a test,
we can wrap it in LazyInitPass, which will initialize the pass when invoked
and then immediately invoke it.
"""
def __init__(self, pass_cls: type[VllmInductorPass],
vllm_config: VllmConfig):
self.pass_cls = pass_cls
self.vllm_config = weakref.proxy(vllm_config) # avoid cycle
def __call__(self, graph: fx.Graph) -> None:
self.pass_ = self.pass_cls(self.vllm_config)
self.pass_(graph)
from vllm.config import get_current_vllm_config
class TestBackend:
@ -60,16 +40,10 @@ class TestBackend:
example_inputs,
config_patches=self.inductor_config)
@with_pattern_match_debug
def post_pass(self, graph: fx.Graph):
self.graph_pre_pass = deepcopy(graph)
VllmInductorPass.dump_prefix = 0
for pass_ in self.custom_passes:
pass_(graph)
VllmInductorPass.dump_prefix += 1
VllmInductorPass.dump_prefix = None
self.graph_post_pass = deepcopy(graph)
# assign by reference, will reflect the final state of the graph

View File

@ -46,10 +46,7 @@ backend_configs = {
# FA3 on Hopper
"FA3":
BackendConfig(name="FA3",
env_vars={
"VLLM_FLASH_ATTN_VERSION": "3",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
env_vars={"VLLM_FLASH_ATTN_VERSION": "3"},
comp_config={
"cudagraph_mode": "FULL",
},
@ -69,7 +66,6 @@ backend_configs = {
BackendConfig(name="FlashAttentionMLA",
env_vars={
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN_MLA",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
comp_config={
"cudagraph_mode": "FULL_DECODE_ONLY",
@ -93,10 +89,7 @@ backend_configs = {
# FA2
"FA2":
BackendConfig(name="FA2",
env_vars={
"VLLM_FLASH_ATTN_VERSION": "2",
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
},
env_vars={"VLLM_FLASH_ATTN_VERSION": "2"},
comp_config={
"cudagraph_mode": "FULL",
}),

View File

@ -15,7 +15,6 @@ from vllm.config import (CompilationConfig, CompilationLevel, CUDAGraphMode,
VllmConfig, set_current_vllm_config)
from vllm.envs import VLLM_USE_V1
from vllm.forward_context import BatchDescriptor, set_forward_context
from vllm.utils import is_torch_equal_or_newer
# This import automatically registers `torch.ops.silly.attention`
from ..silly_attention import get_global_counter, reset_global_counter
@ -51,21 +50,16 @@ class SillyModel(nn.Module):
return x
def _run_simple_model(
splitting_ops,
use_inductor_graph_partition,
use_inductor,
expected_num_piecewise_graphs_seen,
expected_num_piecewise_capturable_graphs_seen,
expected_num_backend_compilations,
expected_num_cudagraph_captured,
):
@pytest.mark.parametrize("use_inductor", [True, False])
@torch.inference_mode()
def test_simple_piecewise_compile(use_inductor):
assert VLLM_USE_V1
vllm_config = VllmConfig(compilation_config=CompilationConfig(
level=CompilationLevel.PIECEWISE,
use_cudagraph=True,
use_inductor=use_inductor,
splitting_ops=splitting_ops,
use_inductor_graph_partition=use_inductor_graph_partition,
splitting_ops=["silly.attention"],
cudagraph_copy_inputs=True,
cudagraph_capture_sizes=[1, 2],
))
@ -76,11 +70,11 @@ def _run_simple_model(
with compilation_counter.expect(
num_graphs_seen=1, # one graph for the model
num_piecewise_graphs_seen=expected_num_piecewise_graphs_seen,
num_piecewise_capturable_graphs_seen=
expected_num_piecewise_capturable_graphs_seen,
num_backend_compilations=expected_num_backend_compilations,
num_cudagraph_captured=expected_num_cudagraph_captured,
num_piecewise_graphs_seen=5, # 2 * num_layers + 1
num_piecewise_capturable_graphs_seen=3, # 1 + num_layers
num_backend_compilations=3, # num_piecewise_capturable_graphs_seen
num_cudagraph_captured=
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
), set_forward_context(None,
vllm_config=vllm_config): # background context
# warm up with background context
@ -110,46 +104,3 @@ def _run_simple_model(
output = model(input)
assert get_global_counter() == 2
assert torch.allclose(output.cpu(), torch.tensor([19.0, 19.0]))
@pytest.mark.parametrize("use_inductor", [True, False])
@torch.inference_mode()
def test_simple_piecewise_compile(use_inductor):
assert VLLM_USE_V1
_run_simple_model(
splitting_ops=["silly.attention"],
use_inductor_graph_partition=False,
use_inductor=use_inductor,
expected_num_piecewise_graphs_seen=5, # 2 * num_layers + 1
expected_num_piecewise_capturable_graphs_seen=3, # 1 + num_layers
expected_num_backend_compilations=
3, # num_piecewise_capturable_graphs_seen
expected_num_cudagraph_captured=
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
)
@torch.inference_mode()
@pytest.mark.parametrize("splitting_ops", [["silly.attention"], []])
def test_simple_inductor_graph_partition(splitting_ops):
assert VLLM_USE_V1
if not is_torch_equal_or_newer("2.9.0.dev"):
pytest.skip("inductor graph partition is only available "
"in PyTorch 2.9+")
_run_simple_model(
# inductor graph partition automatically resets splitting_ops
# to be an empty list
splitting_ops=splitting_ops,
use_inductor_graph_partition=True,
use_inductor=True,
expected_num_piecewise_graphs_seen=
1, # since not splitting at fx graph level
expected_num_piecewise_capturable_graphs_seen=
1, # since not splitting at fx graph level
expected_num_backend_compilations=
1, # since not splitting at fx graph level
expected_num_cudagraph_captured=
6, # inductor graph partition still captures 6
# graph, same as fx graph partition.
)

View File

@ -60,5 +60,4 @@ direct_register_custom_op(
mutates_args=["out"],
fake_impl=silly_attention_fake,
target_lib=silly_lib,
tags=(torch._C.Tag.cudagraph_unsafe, ),
)

View File

@ -294,8 +294,6 @@ def async_tp_pass_on_test_model(local_rank: int, world_size: int,
compiled_model = torch.compile(model, backend=backend)
compiled_model(hidden_states)
assert async_tp_pass.matched_count == 1
# In pre-nodes, all gather or reduce scatter should exist,
# fused_matmul_reduce_scatter or fused_all_gather_matmul should not
backend.check_before_ops(model.ops_in_model_before(), fully_replaced=False)

View File

@ -20,6 +20,7 @@ class TestSetting:
tp_size: int
attn_backend: str
method: str
fullgraph: bool
# we cannot afford testing the full Cartesian product
@ -35,6 +36,7 @@ class TestSetting:
tp_size=2,
attn_backend="FLASH_ATTN",
method="generate",
fullgraph=True,
),
# llama model with quantization
TestSetting(
@ -44,6 +46,7 @@ class TestSetting:
tp_size=1,
attn_backend="FLASH_ATTN",
method="generate",
fullgraph=True,
),
# MoE model
TestSetting(
@ -53,6 +56,7 @@ class TestSetting:
tp_size=2,
attn_backend="FLASH_ATTN",
method="generate",
fullgraph=True,
),
# embedding model
TestSetting(
@ -69,6 +73,7 @@ class TestSetting:
tp_size=1,
attn_backend="FLASH_ATTN",
method="encode",
fullgraph=True,
),
TestSetting(
model="BAAI/bge-base-en-v1.5",
@ -77,6 +82,7 @@ class TestSetting:
tp_size=1,
attn_backend="FLASH_ATTN",
method="encode",
fullgraph=True,
),
# vision language model
TestSetting(
@ -86,6 +92,7 @@ class TestSetting:
tp_size=1,
attn_backend="FLASH_ATTN",
method="generate_with_image",
fullgraph=False,
),
],
)
@ -102,8 +109,9 @@ def test_compile_correctness(
tp_size = test_setting.tp_size
attn_backend = test_setting.attn_backend
method = test_setting.method
if cuda_device_count_stateless() < pp_size * tp_size:
pytest.skip(f"Need at least {pp_size}*{tp_size} CUDA gpus but got "
fullgraph = test_setting.fullgraph
if cuda_device_count_stateless() != pp_size * tp_size:
pytest.skip(f"Need exactly {pp_size}*{tp_size} CUDA gpus but got "
f"{cuda_device_count_stateless()}")
with monkeypatch.context() as m:
@ -141,5 +149,9 @@ def test_compile_correctness(
]:
all_args.append(final_args + [f"-O{level}"])
all_envs.append({})
if level != CompilationLevel.DYNAMO_ONCE and not fullgraph:
# "DYNAMO_ONCE" will always use fullgraph
all_envs[-1][
"VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE"] = "0" # type: ignore
compare_all_settings(model, all_args * 3, all_envs, method=method)

View File

@ -4,7 +4,7 @@ import pytest
import vllm
from vllm.compilation.counter import compilation_counter
from vllm.config import CompilationConfig, VllmConfig
from vllm.config import VllmConfig
from vllm.utils import _is_torch_equal_or_newer
@ -26,14 +26,6 @@ def test_use_cudagraphs_dynamic(monkeypatch):
assert not vllm_config.compilation_config.use_cudagraph
def test_custom_op():
# proper syntax
_ = CompilationConfig(custom_ops=["+quant_fp8", "-silu_and_mul"])
with pytest.raises(ValueError, match="Invalid syntax '"):
_ = CompilationConfig(custom_ops=["quant_fp8"])
# forked needed to workaround https://github.com/vllm-project/vllm/issues/21073
@pytest.mark.forked
# NB: We don't test VLLM_DISABLE_COMPILE_CACHE=0 because that depends

View File

@ -3,7 +3,6 @@
from __future__ import annotations
import logging
import tempfile
from typing import Any, Optional, Union
@ -11,13 +10,9 @@ import pytest
import torch
from tests.quantization.utils import is_quant_method_supported
from tests.v1.attention.utils import _Backend
from vllm import LLM, SamplingParams
from vllm.attention.selector import global_force_attn_backend_context_manager
from vllm.config import (CompilationConfig, CompilationLevel, CUDAGraphMode,
PassConfig)
from vllm.config import CompilationConfig, CompilationLevel, PassConfig
from vllm.platforms import current_platform
from vllm.utils import is_torch_equal_or_newer
from ..utils import create_new_process_for_each_test
@ -84,7 +79,9 @@ def test_full_graph(
):
model, model_kwargs = model_info
with monkeypatch.context():
with monkeypatch.context() as m:
# make sure these models can be captured in full graph mode
m.setenv("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1")
print(f"MODEL={model}")
run_model(optimization_level, model, model_kwargs)
@ -110,18 +107,6 @@ def test_full_graph(
(CompilationConfig(level=CompilationLevel.PIECEWISE,
debug_dump_path=tempfile.gettempdir()),
("facebook/opt-125m", {})),
] + [
# graph inductor partition
(
CompilationConfig(
level=CompilationLevel.PIECEWISE,
# inductor graph partition uses
# torch._C.Tag.cudagraph_unsafe to specify splitting ops
use_inductor_graph_partition=True,
cudagraph_mode=CUDAGraphMode.PIECEWISE,
compile_sizes=[1, 2]),
model) for model in models_list(all=False)
if is_torch_equal_or_newer("2.9.0.dev")
])
# only test some of the models
@create_new_process_for_each_test()
@ -129,51 +114,11 @@ def test_custom_compile_config(
compilation_config: CompilationConfig,
model_info: tuple[str, dict[str, Any]],
):
if (compilation_config.use_inductor_graph_partition
and not is_torch_equal_or_newer("2.9.0.dev")):
pytest.skip("inductor graph partition is only available "
"in PyTorch 2.9+")
model, model_kwargs = model_info
print(f"MODEL={model}")
run_model(compilation_config, model, model_kwargs)
def test_inductor_graph_partition_attn_fusion(caplog_vllm):
if not is_torch_equal_or_newer("2.9.0.dev"):
pytest.skip("inductor graph partition is only available "
"in PyTorch 2.9+")
model = "nvidia/Llama-4-Scout-17B-16E-Instruct-FP8"
compilation_config = CompilationConfig(
level=CompilationLevel.PIECEWISE,
use_inductor_graph_partition=True,
cudagraph_mode=CUDAGraphMode.PIECEWISE,
custom_ops=["+quant_fp8"],
pass_config=PassConfig(enable_attn_fusion=True, enable_noop=True),
)
model_kwargs = {
"kv_cache_dtype": "fp8",
"max_model_len": 1024,
}
with caplog_vllm.at_level(
logging.DEBUG), global_force_attn_backend_context_manager(
_Backend.FLASHINFER):
run_model(compilation_config, model, model_kwargs)
try:
assert ("Fused quantization onto 48 attention nodes"
in caplog_vllm.text), caplog_vllm.text
except AssertionError:
# Note: this message is only triggered when the compilation goes
# through the custom pass. Due to multiple layers of cache on
# PyTorch side, the compilation of a graph may be cached such
# that custom pass directly goes through cache. In this case,
# we go through this branch and assert that the pass is not
# triggered.
assert "Fused quantization" not in caplog_vllm.text
def run_model(compile_config: Union[int, CompilationConfig], model: str,
model_kwargs: dict[str, Any]):
prompts = [

View File

@ -8,10 +8,9 @@ import vllm.envs as envs
from vllm import LLM, SamplingParams
from vllm.compilation.activation_quant_fusion import ActivationQuantFusionPass
from vllm.compilation.fix_functionalization import FixFunctionalizationPass
from vllm.compilation.fusion import FUSED_OPS, RMSNormQuantFusionPass
from vllm.compilation.fusion import FUSED_OPS, FusionPass
from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe, is_func
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.config import CompilationConfig, PassConfig, VllmConfig
from vllm.model_executor.layers.quantization.utils.quant_utils import (
QuantKey, kFp8DynamicTokenSym, kFp8StaticTensorSym)
@ -59,12 +58,11 @@ def test_fix_functionalization(model: str, quant_key: QuantKey,
vllm_config.compilation_config = CompilationConfig(
pass_config=PassConfig(enable_fusion=do_fusion, enable_noop=True))
noop_pass = NoOpEliminationPass(vllm_config)
fusion_pass = RMSNormQuantFusionPass(vllm_config)
cleanup_pass = PostCleanupPass(vllm_config)
fusion_pass = FusionPass.instance(vllm_config)
act_quant_fusion_pass = ActivationQuantFusionPass(vllm_config)
passes = [noop_pass, fusion_pass, act_quant_fusion_pass, cleanup_pass
] if do_fusion else [noop_pass, cleanup_pass]
passes = [noop_pass, fusion_pass, act_quant_fusion_pass
] if do_fusion else [noop_pass]
func_pass = FixFunctionalizationPass(vllm_config)
backend_func = TestBackend(*passes, func_pass)
backend_no_func = TestBackend(*passes)

View File

@ -4,11 +4,11 @@
import pytest
import torch
import vllm.envs as envs
import vllm.plugins
from vllm.compilation.fusion import (FUSED_OPS, QUANT_OPS, FusedRMSQuantKey,
RMSNormQuantFusionPass)
FusionPass)
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.config import (CompilationConfig, CompilationLevel, PassConfig,
VllmConfig)
from vllm.model_executor.layers.layernorm import RMSNorm
@ -79,15 +79,15 @@ class TestModel(torch.nn.Module):
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("hidden_size", [64])
@pytest.mark.parametrize("num_tokens", [257])
@pytest.mark.parametrize("hidden_size", [64, 3392, 4096])
@pytest.mark.parametrize("num_tokens", [7, 256, 533, 2048, 2049])
@pytest.mark.parametrize("eps", [1e-5, 1e-6])
@pytest.mark.parametrize("static", [True, False])
# cuda_force_torch used to test torch code path on platforms that
# cutlass_fp8_supported() == True.
@pytest.mark.parametrize("cuda_force_torch",
[True, False] if cutlass_fp8_supported() else [True])
@pytest.mark.skipif(not current_platform.is_cuda_alike(),
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda", "rocm"],
reason="Only test on CUDA and ROCm")
def test_fusion_rmsnorm_quant(dtype, hidden_size, num_tokens, eps, static,
cuda_force_torch):
@ -104,10 +104,9 @@ def test_fusion_rmsnorm_quant(dtype, hidden_size, num_tokens, eps, static,
with vllm.config.set_current_vllm_config(vllm_config):
# Reshape pass is needed for the fusion pass to work
noop_pass = NoOpEliminationPass(vllm_config)
fusion_pass = RMSNormQuantFusionPass(vllm_config)
cleanup_pass = PostCleanupPass(vllm_config)
fusion_pass = FusionPass.instance(vllm_config)
backend = TestBackend(noop_pass, fusion_pass, cleanup_pass)
backend = TestBackend(noop_pass, fusion_pass)
model = TestModel(hidden_size, eps, static, cuda_force_torch)
# First dimension dynamic
@ -129,8 +128,6 @@ def test_fusion_rmsnorm_quant(dtype, hidden_size, num_tokens, eps, static,
torch.testing.assert_close(result, result2, atol=ATOL, rtol=RTOL)
assert fusion_pass.matched_count == 2
# In pre-nodes, fp8 quant should be there and fused kernels should not
backend.check_before_ops(model.ops_in_model_before())

View File

@ -9,7 +9,6 @@ import vllm.envs as envs
from vllm.compilation.collective_fusion import AllReduceFusionPass
from vllm.compilation.fix_functionalization import FixFunctionalizationPass
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.config import (CompilationConfig, CompilationLevel, DeviceConfig,
ModelConfig, PassConfig, VllmConfig)
from vllm.distributed import tensor_model_parallel_all_reduce
@ -216,10 +215,8 @@ def all_reduce_fusion_pass_on_test_model(local_rank: int, world_size: int,
all_reduce_fusion_pass = AllReduceFusionPass(vllm_config)
noop_pass = NoOpEliminationPass(vllm_config)
func_pass = FixFunctionalizationPass(vllm_config)
cleanup_pass = PostCleanupPass(vllm_config)
backend = TestBackend(all_reduce_fusion_pass, noop_pass, func_pass,
cleanup_pass)
backend = TestBackend(all_reduce_fusion_pass, noop_pass, func_pass)
token_num = batch_size * seq_len
model = test_model_cls(hidden_size, token_num)
@ -230,7 +227,6 @@ def all_reduce_fusion_pass_on_test_model(local_rank: int, world_size: int,
compiled_model = torch.compile(model, backend=backend)
compiled_model(hidden_states, residual)
assert all_reduce_fusion_pass.matched_count == 1
backend.check_before_ops(model.ops_in_model_before(), fully_replaced=False)
backend.check_after_ops(model.ops_in_model_after())
del all_reduce_fusion_pass

View File

@ -6,19 +6,18 @@ from typing import Optional
import pytest
import torch._dynamo
from tests.compile.backend import LazyInitPass, TestBackend
from tests.compile.backend import TestBackend
from tests.models.utils import check_outputs_equal
from tests.v1.attention.utils import (BatchSpec, _Backend,
create_common_attn_metadata)
from vllm import LLM, SamplingParams
from vllm._custom_ops import cutlass_scaled_fp4_mm, scaled_fp4_quant
from vllm.attention import Attention, AttentionMetadata
from vllm.attention import Attention
from vllm.attention.selector import global_force_attn_backend_context_manager
from vllm.compilation.fusion import QUANT_OPS
from vllm.compilation.fusion_attn import ATTN_OP, AttnFusionPass
from vllm.compilation.fx_utils import find_op_nodes
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.config import (CacheConfig, CompilationConfig, CompilationLevel,
ModelConfig, PassConfig, SchedulerConfig, VllmConfig,
set_current_vllm_config)
@ -28,7 +27,6 @@ from vllm.model_executor.layers.quantization.utils.quant_utils import (
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
Fp8LinearOp)
from vllm.platforms import current_platform
from vllm.utils import is_torch_equal_or_newer
from vllm.v1.kv_cache_interface import AttentionSpec
FP8_DTYPE = current_platform.fp8_dtype()
@ -55,7 +53,8 @@ def test_attention_fusion_v0(example_prompts, monkeypatch, model: str,
# Use global backends
global backend, backend_unfused
monkeypatch.setenv("VLLM_USE_V1", "1")
use_v1 = False # can be made a param once V1 support added
monkeypatch.setenv("VLLM_USE_V1", str(int(use_v1)))
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", str(int(use_triton_fa)))
# Prompt 4 seems too open-ended, differs between fused and unfused
@ -105,7 +104,7 @@ def test_attention_fusion_v0(example_prompts, monkeypatch, model: str,
# AttnFusionPass needs attention layers to be registered in config upon init
# so we initialize it during compilation.
attn_pass = LazyInitPass(AttnFusionPass, vllm_config)
attn_pass = lambda *args, **kw: AttnFusionPass(vllm_config)(*args, **kw)
backend = TestBackend(NoOpEliminationPass(vllm_config), attn_pass)
llm2 = LLM(model,
enforce_eager=True,
@ -198,8 +197,7 @@ class AttentionQuantPatternModel(torch.nn.Module):
device=self.device,
)
def build_attn_metadata(self, batch_size: int, use_hnd: bool) \
-> AttentionMetadata:
def build_attn_metadata(self, batch_size: int, use_hnd: bool):
"""Initialize attention metadata."""
# Create common attn metadata
@ -336,16 +334,11 @@ else:
[7, 256, 533] if current_platform.is_cuda() else [8])
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("model_name, model_class", MODELS)
@pytest.mark.parametrize("backend",
[_Backend.FLASHINFER] if current_platform.is_cuda()
else [_Backend.TRITON_ATTN_VLLM_V1])
@pytest.mark.parametrize("backend", [_Backend.FLASHINFER] if
current_platform.is_cuda() else [_Backend.ROCM_FLASH])
@pytest.mark.parametrize(
"split_attention",
[False, True] if current_platform.is_rocm() else [False])
# TODO(boyuan): test inductor graph partition on rocm
@pytest.mark.parametrize(
"use_inductor_graph_partition",
[False] if current_platform.is_rocm() else [False, True])
@pytest.mark.skipif(not current_platform.is_cuda_alike(),
reason="Only test ROCm or CUDA")
@pytest.mark.skipif(not current_platform.supports_fp8(), reason="Need FP8")
@ -359,15 +352,9 @@ def test_attention_quant_pattern(num_qo_heads: int, num_kv_heads: int,
dtype: torch.dtype, model_name: str,
model_class: type[AttentionQuantPatternModel],
backend: _Backend, split_attention: bool,
use_inductor_graph_partition: bool,
monkeypatch, dist_init, caplog_vllm):
monkeypatch, dist_init):
"""Test AttentionStaticQuantPattern fusion pass"""
if use_inductor_graph_partition and not is_torch_equal_or_newer(
"2.9.0.dev"):
pytest.skip("inductor graph partition is only available "
"in PyTorch 2.9+")
monkeypatch.setenv("VLLM_USE_V1", "1")
if split_attention:
monkeypatch.setenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "1")
@ -385,7 +372,6 @@ def test_attention_quant_pattern(num_qo_heads: int, num_kv_heads: int,
compilation_config=CompilationConfig(
level=CompilationLevel.PIECEWISE,
custom_ops=["+quant_fp8"],
use_inductor_graph_partition=use_inductor_graph_partition,
),
cache_config=CacheConfig(cache_dtype="fp8"))
@ -449,17 +435,15 @@ def test_attention_quant_pattern(num_qo_heads: int, num_kv_heads: int,
# Create test backend with fusion passes enabled
noop_pass = NoOpEliminationPass(vllm_config)
attn_pass = LazyInitPass(AttnFusionPass, vllm_config)
cleanup_pass = PostCleanupPass(vllm_config)
test_backend = TestBackend(noop_pass, attn_pass, cleanup_pass)
attn_pass = lambda *args, **kw: AttnFusionPass(vllm_config)(*args, **kw
)
test_backend = TestBackend(noop_pass, attn_pass)
# Compile model with fusion enabled
model_compiled = torch.compile(model_fused,
backend=test_backend,
fullgraph=True)
assert model_compiled.attn._o_scale_float is None
result_fused_1 = model_compiled(q, k, v)
if backend == _Backend.FLASHINFER:
@ -469,7 +453,6 @@ def test_attention_quant_pattern(num_qo_heads: int, num_kv_heads: int,
# _o_scale_float
assert model_compiled.attn._o_scale_float is not None
result_fused_2 = model_compiled(q, k, v)
assert model_compiled.attn._o_scale_float is not None
torch.testing.assert_close(result_unfused,
@ -488,9 +471,6 @@ def test_attention_quant_pattern(num_qo_heads: int, num_kv_heads: int,
test_backend.check_before_ops([QUANT_OPS[quant_key]],
fully_replaced=True)
# access the underlying `AttnFusionPass` on the `LazyInitPass`
assert attn_pass.pass_.matched_count == sum(attn_fusion_supported)
# Check attention ops in the graph before and after fusion
attn_nodes_pre = list(find_op_nodes(ATTN_OP, test_backend.graph_pre_pass))
attn_nodes_post = list(find_op_nodes(ATTN_OP,

View File

@ -6,12 +6,10 @@ import torch
import vllm.envs as envs
from vllm.compilation.fix_functionalization import FixFunctionalizationPass
from vllm.compilation.fusion import RMSNormQuantFusionPass
from vllm.compilation.fusion import FusionPass
from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe, is_func
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.compilation.sequence_parallelism import SequenceParallelismPass
from vllm.compilation.vllm_inductor_pass import VllmInductorPass
from vllm.config import (CompilationConfig, DeviceConfig, ModelConfig,
PassConfig, VllmConfig)
from vllm.distributed import tensor_model_parallel_all_reduce
@ -106,7 +104,7 @@ class TestQuantModel(torch.nn.Module):
# Initialize weights
torch.nn.init.normal_(self.gate_proj, std=0.02)
self.fp8_linear = Fp8LinearOp(act_quant_static=True)
self.fp8_linear = Fp8LinearOp(use_per_token_if_dynamic=False)
self.scale = torch.rand(1, dtype=torch.float32)
# Create a weight that is compatible with torch._scaled_mm,
@ -139,7 +137,8 @@ class TestQuantModel(torch.nn.Module):
# layer normalization
norm_output, residual_output = self.norm(all_reduce, residual)
# scaled_mm with static input quantization
# for static input quantization
# self.fp8_linear is initialized with use_per_token_if_dynamic=False
fp8_linear_result = self.fp8_linear.apply(norm_output,
self.w,
self.wscale,
@ -254,20 +253,16 @@ def sequence_parallelism_pass_on_test_model(
dtype=dtype,
seed=42)
noop_pass = NoOpEliminationPass(vllm_config)
sequence_parallelism_pass = SequenceParallelismPass(vllm_config)
noop_pass = NoOpEliminationPass(vllm_config)
func_pass = FixFunctionalizationPass(vllm_config)
cleanup_pass = PostCleanupPass(vllm_config)
passes_for_backend: list[VllmInductorPass] = \
[noop_pass, sequence_parallelism_pass]
passes_for_backend = [noop_pass, sequence_parallelism_pass]
if enable_fusion:
fusion_pass = RMSNormQuantFusionPass(vllm_config)
fusion_pass = FusionPass.instance(vllm_config)
passes_for_backend.append(fusion_pass)
passes_for_backend.append(cleanup_pass)
backend_no_func = TestBackend(*passes_for_backend)
backend_func = TestBackend(*passes_for_backend, func_pass)
@ -284,8 +279,6 @@ def sequence_parallelism_pass_on_test_model(
compiled_model_func = torch.compile(model, backend=backend_func)
compiled_model_func(hidden_states, residual)
assert sequence_parallelism_pass.matched_count == 1
# In pre-nodes, all reduce should be there,
# reduce scatter and all gather should not
backend_no_func.check_before_ops(model.ops_in_model_before())

View File

@ -15,7 +15,6 @@ from vllm.compilation.activation_quant_fusion import (
# yapf: enable
from vllm.compilation.fusion import QUANT_OPS
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.config import CompilationConfig, PassConfig, VllmConfig
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.quantization.utils.quant_utils import (
@ -70,10 +69,6 @@ class TestSiluMulNvfp4QuantModel(torch.nn.Module):
def __init__(self, hidden_size: int, x: torch.Tensor, **kwargs):
super().__init__()
from vllm.compilation.activation_quant_fusion import (
silu_and_mul_nvfp4_quant_supported)
assert silu_and_mul_nvfp4_quant_supported
self.silu_and_mul = SiluAndMul()
# create nvfp4 weight
@ -132,11 +127,7 @@ def test_fusion_silu_and_mul_quant(num_tokens, hidden_size, dtype, model_class,
pass_config=PassConfig(enable_fusion=True, enable_noop=True))
fusion_pass = ActivationQuantFusionPass(config)
passes = [
NoOpEliminationPass(config), fusion_pass,
PostCleanupPass(config)
]
backend = TestBackend(*passes)
backend = TestBackend(NoOpEliminationPass(config), fusion_pass)
model = model_class(hidden_size=hidden_size,
cuda_force_torch=cuda_force_torch,
x=x)
@ -160,8 +151,6 @@ def test_fusion_silu_and_mul_quant(num_tokens, hidden_size, dtype, model_class,
atol=atol,
rtol=rtol)
assert fusion_pass.matched_count == 1
# In pre-nodes, quant op should be present and fused kernels should not
backend.check_before_ops(model.ops_in_model_before())

View File

@ -19,7 +19,6 @@ import socket
import tempfile
import threading
from collections.abc import Generator
from contextlib import nullcontext
from enum import Enum
from typing import Any, Callable, Optional, TypedDict, TypeVar, Union, cast
@ -40,20 +39,19 @@ from vllm import LLM, SamplingParams
from vllm.assets.audio import AudioAsset
from vllm.assets.image import ImageAsset
from vllm.assets.video import VideoAsset
from vllm.config.model import (ConvertOption, RunnerOption,
_get_and_verify_dtype)
from vllm.config import ConvertOption, RunnerOption, _get_and_verify_dtype
from vllm.connections import global_http_connection
from vllm.distributed import (cleanup_dist_env_and_memory,
init_distributed_environment,
initialize_model_parallel)
from vllm.inputs import TextPrompt
from vllm.inputs import (ExplicitEncoderDecoderPrompt, TextPrompt,
to_enc_dec_tuple_list, zip_enc_dec_prompts)
from vllm.logger import init_logger
from vllm.logprobs import Logprob
from vllm.multimodal.utils import fetch_image
from vllm.outputs import RequestOutput
from vllm.sampling_params import BeamSearchParams
from vllm.sequence import Logprob
from vllm.transformers_utils.utils import maybe_model_redirect
from vllm.utils import set_default_torch_num_threads
logger = init_logger(__name__)
@ -160,6 +158,26 @@ def cleanup_VLLM_USE_V1(monkeypatch):
monkeypatch.delenv("VLLM_USE_V1")
@pytest.fixture(params=[True, False])
def run_with_both_engines(request, monkeypatch):
# Automatically runs tests twice, once with V1 and once without
use_v1 = request.param
# Tests decorated with `@skip_v1` are only run without v1
skip_v0 = request.node.get_closest_marker("skip_v0")
skip_v1 = request.node.get_closest_marker("skip_v1")
if use_v1:
if skip_v1:
pytest.skip("Skipping test on vllm V1")
monkeypatch.setenv('VLLM_USE_V1', '1')
else:
if skip_v0:
pytest.skip("Skipping test on vllm V0")
monkeypatch.setenv('VLLM_USE_V1', '0')
yield
@pytest.fixture(autouse=True)
def init_test_http_connection():
# pytest_asyncio may use a different event loop per test
@ -226,6 +244,39 @@ class DecoderPromptType(Enum):
EMPTY_STR = 3
@pytest.fixture
def example_encoder_decoder_prompts(
) -> dict[DecoderPromptType, list[ExplicitEncoderDecoderPrompt]]:
'''
Returns an encoder prompt list and a decoder prompt list, wherein each pair
of same-index entries in both lists corresponds to an (encoder prompt,
decoder prompt) tuple.
Returns:
* Encoder prompt list
* Decoder prompt list (reverse of encoder prompt list)
'''
encoder_prompts = []
for filename in _TEST_PROMPTS:
encoder_prompts += _read_prompts(filename)
custom_decoder_prompts = encoder_prompts[::-1]
empty_str_decoder_prompts = [""] * len(encoder_prompts)
none_decoder_prompts = [None] * len(encoder_prompts)
# NONE decoder prompt type
return {
DecoderPromptType.NONE:
zip_enc_dec_prompts(encoder_prompts, none_decoder_prompts),
DecoderPromptType.EMPTY_STR:
zip_enc_dec_prompts(encoder_prompts, empty_str_decoder_prompts),
DecoderPromptType.CUSTOM:
zip_enc_dec_prompts(encoder_prompts, custom_decoder_prompts),
}
@pytest.fixture
def example_long_prompts() -> list[str]:
prompts = []
@ -287,35 +338,6 @@ class HfRunner:
is_cross_encoder: bool = False,
skip_tokenizer_init: bool = False,
auto_cls: type[_BaseAutoModelClass] = AutoModelForCausalLM,
# Set this to avoid hanging issue
default_torch_num_threads: Optional[int] = None,
) -> None:
init_ctx = (nullcontext() if default_torch_num_threads is None else
set_default_torch_num_threads(default_torch_num_threads))
with init_ctx:
self._init(
model_name=model_name,
dtype=dtype,
model_kwargs=model_kwargs,
trust_remote_code=trust_remote_code,
is_sentence_transformer=is_sentence_transformer,
is_cross_encoder=is_cross_encoder,
skip_tokenizer_init=skip_tokenizer_init,
auto_cls=auto_cls,
)
def _init(
self,
model_name: str,
dtype: str = "auto",
*,
model_kwargs: Optional[dict[str, Any]] = None,
trust_remote_code: bool = True,
is_sentence_transformer: bool = False,
is_cross_encoder: bool = False,
skip_tokenizer_init: bool = False,
auto_cls: type[_BaseAutoModelClass] = AutoModelForCausalLM,
) -> None:
model_name = maybe_model_redirect(model_name)
self.model_name = model_name
@ -668,6 +690,68 @@ class HfRunner:
return [(output_ids, output_str, output_logprobs)
for output_ids, output_str, output_logprobs in outputs]
def generate_encoder_decoder_greedy_logprobs_limit(
self,
encoder_decoder_prompts: list[ExplicitEncoderDecoderPrompt[str, str]],
max_tokens: int,
num_logprobs: Optional[int],
images: Optional[PromptImageInput] = None,
**kwargs: Any,
) -> list[TokensTextLogprobs]:
'''
Greedy logprobs generation for vLLM encoder/decoder models
'''
all_logprobs: list[list[dict[int, float]]] = []
all_output_ids: list[list[int]] = []
all_output_strs: list[str] = []
for i, (encoder_prompt, decoder_prompt) in enumerate(
to_enc_dec_tuple_list(encoder_decoder_prompts)):
processor_kwargs: dict[str, Any] = {
"text": encoder_prompt,
"return_tensors": "pt",
}
if images is not None and images[i] is not None:
processor_kwargs["images"] = images[i]
encoder_inputs = self.processor(**processor_kwargs)
encoder_inputs = self.wrap_device(encoder_inputs)
if decoder_prompt is None:
decoder_input_ids = None
else:
decoder_inputs = self.tokenizer(decoder_prompt,
return_tensors="pt")
decoder_input_ids = self.wrap_device(decoder_inputs.input_ids)
output = self.model.generate(
decoder_input_ids=decoder_input_ids,
use_cache=True,
do_sample=False,
max_new_tokens=max_tokens,
output_hidden_states=True,
return_dict_in_generate=True,
**encoder_inputs,
**kwargs,
)
(
seq_logprobs_lst,
output_len,
) = self._hidden_states_to_logprobs(output.decoder_hidden_states,
num_logprobs)
all_logprobs.append(seq_logprobs_lst)
seq_ids = output.sequences[0]
output_ids = seq_ids[-output_len:]
all_output_ids.append(output_ids.tolist())
all_output_strs.append(self.tokenizer.decode(output_ids))
outputs = zip(all_output_ids, all_output_strs, all_logprobs)
return [(output_ids, output_str, output_logprobs)
for output_ids, output_str, output_logprobs in outputs]
def encode(self, prompts: list[str], *args,
**kwargs) -> list[list[torch.Tensor]]:
return self.model.encode(prompts, *args, **kwargs)
@ -724,32 +808,26 @@ class VllmRunner:
enable_chunked_prefill: Optional[bool] = False,
swap_space: int = 4,
enforce_eager: Optional[bool] = False,
# Set this to avoid hanging issue
default_torch_num_threads: Optional[int] = None,
**kwargs,
) -> None:
init_ctx = (nullcontext() if default_torch_num_threads is None else
set_default_torch_num_threads(default_torch_num_threads))
with init_ctx:
self.llm = LLM(
model=model_name,
runner=runner,
convert=convert,
tokenizer=tokenizer_name,
tokenizer_mode=tokenizer_mode,
trust_remote_code=trust_remote_code,
dtype=dtype,
seed=seed,
swap_space=swap_space,
enforce_eager=enforce_eager,
disable_log_stats=disable_log_stats,
tensor_parallel_size=tensor_parallel_size,
max_model_len=max_model_len,
block_size=block_size,
enable_chunked_prefill=enable_chunked_prefill,
**kwargs,
)
self.llm = LLM(
model=model_name,
runner=runner,
convert=convert,
tokenizer=tokenizer_name,
tokenizer_mode=tokenizer_mode,
trust_remote_code=trust_remote_code,
dtype=dtype,
seed=seed,
swap_space=swap_space,
enforce_eager=enforce_eager,
disable_log_stats=disable_log_stats,
tensor_parallel_size=tensor_parallel_size,
max_model_len=max_model_len,
block_size=block_size,
enable_chunked_prefill=enable_chunked_prefill,
**kwargs,
)
def get_inputs(
self,
@ -862,6 +940,26 @@ class VllmRunner:
if sampling_params.prompt_logprobs is None else
toks_str_logsprobs_prompt_logprobs)
def generate_encoder_decoder_w_logprobs(
self,
encoder_decoder_prompts: list[ExplicitEncoderDecoderPrompt[str, str]],
sampling_params: SamplingParams,
) -> Union[list[TokensTextLogprobs],
list[TokensTextLogprobsPromptLogprobs]]:
'''
Logprobs generation for vLLM encoder/decoder models
'''
assert sampling_params.logprobs is not None
req_outputs = self.llm.generate(encoder_decoder_prompts,
sampling_params=sampling_params)
toks_str_logsprobs_prompt_logprobs = (
self._final_steps_generate_w_logprobs(req_outputs))
# Omit prompt logprobs if not required by sampling params
return ([x[0:-1] for x in toks_str_logsprobs_prompt_logprobs]
if sampling_params.prompt_logprobs is None else
toks_str_logsprobs_prompt_logprobs)
def generate_greedy(
self,
prompts: Union[list[str], list[torch.Tensor]],
@ -939,6 +1037,29 @@ class VllmRunner:
return perplexities
def generate_encoder_decoder_greedy_logprobs(
self,
encoder_decoder_prompts: list[ExplicitEncoderDecoderPrompt[str, str]],
max_tokens: int,
num_logprobs: Optional[int],
num_prompt_logprobs: Optional[int] = None,
skip_special_tokens: bool = True,
) -> Union[list[TokensTextLogprobs],
list[TokensTextLogprobsPromptLogprobs]]:
greedy_logprobs_params = SamplingParams(
temperature=0.0,
max_tokens=max_tokens,
logprobs=num_logprobs,
prompt_logprobs=(num_prompt_logprobs),
skip_special_tokens=skip_special_tokens,
)
'''
Greedy logprobs generation for vLLM encoder/decoder models
'''
return self.generate_encoder_decoder_w_logprobs(
encoder_decoder_prompts, greedy_logprobs_params)
def generate_beam_search(
self,
prompts: list[str],
@ -1003,7 +1124,17 @@ class VllmRunner:
return [req_output.outputs.score for req_output in req_outputs]
def apply_model(self, func: Callable[[nn.Module], _R]) -> list[_R]:
return self.llm.apply_model(func)
if hasattr(self.llm.llm_engine, "model_executor"):
# This works either in V0 or in V1 with
# VLLM_ENABLE_V1_MULTIPROCESSING=0
executor = self.llm.llm_engine.model_executor
return executor.apply_model(func)
# This works in V1 with VLLM_ALLOW_INSECURE_SERIALIZATION=1
def _apply_model(self):
return func(self.get_model())
return self.llm.llm_engine.collective_rpc(_apply_model)
def get_llm(self) -> LLM:
return self.llm

View File

@ -32,6 +32,10 @@ def _test_stopping(llm: LLM,
assert output.stop_reason == expected_reason
def _set_async_mode(llm, is_async):
llm.llm_engine.scheduler[0].use_async_output_proc = is_async
def _stop_basic(llm):
_test_stopping(llm,
stop=["."],
@ -99,8 +103,40 @@ def test_stop_strings():
# async output processing below.
llm = LLM(MODEL, enforce_eager=envs.VLLM_USE_V1)
_stop_basic(llm)
_stop_multi_tokens(llm)
_stop_partial_token(llm)
# FIXME: this does not respect include_in_output=False
# _stop_token_id(llm)
if envs.VLLM_USE_V1:
_stop_basic(llm)
else:
_set_async_mode(llm, True)
_stop_basic(llm)
_set_async_mode(llm, False)
_stop_basic(llm)
if envs.VLLM_USE_V1:
_stop_multi_tokens(llm)
else:
_set_async_mode(llm, True)
_stop_multi_tokens(llm)
_set_async_mode(llm, False)
_stop_multi_tokens(llm)
if envs.VLLM_USE_V1:
_stop_partial_token(llm)
else:
_set_async_mode(llm, True)
_stop_partial_token(llm)
_set_async_mode(llm, False)
_stop_partial_token(llm)
if envs.VLLM_USE_V1:
# FIXME: this does not respect include_in_output=False
# _stop_token_id(llm)
pass
else:
_set_async_mode(llm, True)
_stop_token_id(llm)
_set_async_mode(llm, False)
_stop_token_id(llm)

View File

@ -14,7 +14,7 @@ from typing import Literal, NamedTuple, Optional
import pytest
from vllm.config.model import _FLOAT16_NOT_SUPPORTED_MODELS, RunnerOption
from vllm.config import _FLOAT16_NOT_SUPPORTED_MODELS, RunnerOption
from vllm.logger import init_logger
from vllm.transformers_utils.config import get_config

View File

@ -1,81 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# unit test for `examples/offline_inference/torchrun_example.py`
import os
import random
import torch.distributed as dist
from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import get_tp_group, get_world_group
dist.init_process_group(backend="gloo")
# Create prompts
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
] * 10
dp_size = int(os.getenv("DP_SIZE", "1"))
dp_rank = int(os.getenv("DP_RANK", "0"))
if dp_size > 1:
# distribute the prompts across the data parallel ranks
prompts = [
prompt for idx, prompt in enumerate(prompts)
if idx % dp_size == dp_rank
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# set different `gpu_memory_utilization` and `swap_space` for different ranks,
# to test if all ranks agree on the same kv cache configuration.
llm = LLM(model="microsoft/Phi-mini-MoE-instruct",
tensor_parallel_size=int(os.getenv("TP_SIZE", "1")),
pipeline_parallel_size=int(os.getenv("PP_SIZE", "1")),
enable_expert_parallel=int(os.getenv("ENABLE_EP", "0")) == 1,
distributed_executor_backend="external_launcher",
gpu_memory_utilization=random.uniform(0.7, 0.9),
swap_space=random.randint(1, 4),
seed=0)
outputs = llm.generate(prompts, sampling_params)
group = get_world_group() if dp_size == 1 else get_tp_group()
cpu_group = group.cpu_group
group_rank = dist.get_rank(group=cpu_group)
def test_consistent_across_ranks(obj):
if group_rank == 0:
dist.broadcast_object_list([obj], src=group.ranks[0], group=cpu_group)
else:
container = [None]
dist.broadcast_object_list(container,
src=group.ranks[0],
group=cpu_group)
assert container[0] == obj
test_consistent_across_ranks(
llm.llm_engine.vllm_config.cache_config.num_cpu_blocks)
test_consistent_across_ranks(
llm.llm_engine.vllm_config.cache_config.num_gpu_blocks)
# make sure we can access the model parameters from the calling process
# of the `LLM` instance.
params = list(llm.llm_engine.model_executor.driver_worker.worker.model_runner.
model.parameters())
test_consistent_across_ranks(len(params))
# all ranks should have the same outputs
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
test_consistent_across_ranks(prompt)
test_consistent_across_ranks(generated_text)
print(f"Rank {group_rank}, Prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")

View File

@ -25,6 +25,12 @@ TOKEN_IDS = [
]
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
"""We can run both engines for this test."""
pass
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to

View File

@ -6,6 +6,14 @@ import pytest
from vllm import LLM
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
def test_empty_prompt():
llm = LLM(model="openai-community/gpt2", enforce_eager=True)
with pytest.raises(ValueError, match='decoder prompt cannot be empty'):

View File

@ -1,7 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import datetime
from typing import Union
import openai # use the official client for correctness check
@ -285,62 +284,3 @@ async def test_tool_id_kimi_k2(k2_client: openai.AsyncOpenAI, model_name: str,
output.extend(chunk.choices[0].delta.tool_calls)
for o in output:
assert o.id is None or o.id == 'functions.get_current_weather:0'
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("arguments", ["{}", ''])
async def test_no_args_tool_call(client: openai.AsyncOpenAI, model_name: str,
arguments: str):
# Step 1: Define a tool that requires no parameters
tools = [{
"type": "function",
"function": {
"name": "get_current_time",
"description":
"Get the current date and time. No parameters needed.",
"parameters": {
"type": "object",
"properties": {}, # No parameters
"required": [] # No required fields
}
}
}]
messages = [{"role": "user", "content": "What time is it now?"}]
# Step 2: Send user message and let model decide whether to call the tool
response = await client.chat.completions.create(
model=model_name,
messages=messages,
tools=tools,
tool_choice="auto" # Let model choose automatically
)
# Step 3: Check if model wants to call a tool
message = response.choices[0].message
if message.tool_calls:
# Get the first tool call
tool_call = message.tool_calls[0]
tool_name = tool_call.function.name
# Step 4: Execute the tool locally (no parameters)
if tool_name == "get_current_time":
# Test both empty string and "{}" for no-arg tool calls
tool_call.function.arguments = arguments
messages.append(message)
current_time = datetime.datetime.now()
result = current_time.isoformat()
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": result,
})
# Step 5: Send tool result back to model to continue conversation
final_response = await client.chat.completions.create(
model=model_name,
messages=messages,
)
# Output final natural language response
assert final_response.choices[0].message.content is not None
else:
# No tool called — just print model's direct reply
assert message.content is not None

View File

@ -14,6 +14,9 @@ from transformers import AutoConfig
from ...utils import RemoteOpenAIServer
pytest.skip("Skipping prompt_embeds test until V1 supports it.",
allow_module_level=True)
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
@ -33,6 +36,7 @@ def default_server_args() -> list[str]:
"--enforce-eager",
# Prompt Embeds server args
"--enable-prompt-embeds",
"--no-enable-chunked-prefill",
]
@ -60,7 +64,6 @@ def create_dummy_embeds(num_tokens: int = 5) -> str:
return base64.b64encode(buffer.getvalue()).decode('utf-8')
@pytest.mark.skip("This test is skipped because it is flaky.")
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_completions_with_prompt_embeds(

View File

@ -5,7 +5,7 @@ from contextlib import suppress
from dataclasses import dataclass, field
from http import HTTPStatus
from typing import Optional
from unittest.mock import AsyncMock, MagicMock
from unittest.mock import MagicMock
import pytest
@ -83,31 +83,20 @@ def register_mock_resolver():
def mock_serving_setup():
"""Provides a mocked engine and serving completion instance."""
mock_engine = MagicMock(spec=AsyncLLM)
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
tokenizer = get_tokenizer(MODEL_NAME)
mock_engine.get_tokenizer = AsyncMock(return_value=tokenizer)
async def mock_add_lora_side_effect(lora_request: LoRARequest):
def mock_add_lora_side_effect(lora_request: LoRARequest):
"""Simulate engine behavior when adding LoRAs."""
if lora_request.lora_name == "test-lora":
# Simulate successful addition
return True
if lora_request.lora_name == "invalid-lora":
return
elif lora_request.lora_name == "invalid-lora":
# Simulate failure during addition (e.g. invalid format)
raise ValueError(f"Simulated failure adding LoRA: "
f"{lora_request.lora_name}")
return True
mock_engine.add_lora = AsyncMock(side_effect=mock_add_lora_side_effect)
async def mock_generate(*args, **kwargs):
for _ in []:
yield _
mock_engine.generate = MagicMock(spec=AsyncLLM.generate,
side_effect=mock_generate)
mock_engine.add_lora.side_effect = mock_add_lora_side_effect
mock_engine.generate.reset_mock()
mock_engine.add_lora.reset_mock()
@ -142,7 +131,7 @@ async def test_serving_completion_with_lora_resolver(mock_serving_setup,
with suppress(Exception):
await serving_completion.create_completion(req_found)
mock_engine.add_lora.assert_awaited_once()
mock_engine.add_lora.assert_called_once()
called_lora_request = mock_engine.add_lora.call_args[0][0]
assert isinstance(called_lora_request, LoRARequest)
assert called_lora_request.lora_name == lora_model_name
@ -168,7 +157,7 @@ async def test_serving_completion_resolver_not_found(mock_serving_setup,
response = await serving_completion.create_completion(req)
mock_engine.add_lora.assert_not_awaited()
mock_engine.add_lora.assert_not_called()
mock_engine.generate.assert_not_called()
assert isinstance(response, ErrorResponse)
@ -192,7 +181,7 @@ async def test_serving_completion_resolver_add_lora_fails(
response = await serving_completion.create_completion(req)
# Assert add_lora was called before the failure
mock_engine.add_lora.assert_awaited_once()
mock_engine.add_lora.assert_called_once()
called_lora_request = mock_engine.add_lora.call_args[0][0]
assert isinstance(called_lora_request, LoRARequest)
assert called_lora_request.lora_name == invalid_model

View File

@ -432,7 +432,7 @@ def test_metrics_exist_run_batch(use_v1: bool):
"--port",
port,
],
env={"VLLM_USE_V1": "1"})
env={"VLLM_USE_V1": "1" if use_v1 else "0"})
def is_server_up(url):
try:

View File

@ -287,57 +287,6 @@ async def test_stateful_multi_turn(client: OpenAI, model_name: str):
assert response3.status == "completed"
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_streaming_types(client: OpenAI, model_name: str):
prompts = [
"tell me a story about a cat in 20 words",
]
# this links the "done" type with the "start" type
# so every "done" type should have a corresponding "start" type
# and every open block should be closed by the end of the stream
pairs_of_event_types = {
"response.completed": "response.created",
"response.output_item.done": "response.output_item.added",
"response.content_part.done": "response.content_part.added",
"response.output_text.done": "response.output_text.delta",
"response.web_search_call.done": "response.web_search_call.added",
"response.reasoning_text.done": "response.reasoning_text.delta",
"response.reasoning_part.done": "response.reasoning_part.added",
}
for prompt in prompts:
response = await client.responses.create(
model=model_name,
input=prompt,
reasoning={"effort": "low"},
tools=[],
stream=True,
background=False,
)
stack_of_event_types = []
async for event in response:
if event.type == 'response.created':
stack_of_event_types.append(event.type)
elif event.type == 'response.completed':
assert stack_of_event_types[-1] == pairs_of_event_types[
event.type]
stack_of_event_types.pop()
if event.type.endswith("added"):
stack_of_event_types.append(event.type)
elif event.type.endswith("delta"):
if stack_of_event_types[-1] == event.type:
continue
stack_of_event_types.append(event.type)
elif event.type.endswith("done"):
assert stack_of_event_types[-1] == pairs_of_event_types[
event.type]
stack_of_event_types.pop()
assert len(stack_of_event_types) == 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("background", [True, False])
@ -394,10 +343,7 @@ async def test_streaming(client: OpenAI, model_name: str, background: bool):
assert event.item_id == current_item_id
# verify content_index_id is correct
if event.type in [
"response.content_part.added",
"response.reasoning_part.added"
]:
if event.type == "response.content_part.added":
assert event.content_index != current_content_index
current_content_index = event.content_index
elif event.type in [
@ -515,7 +461,6 @@ async def test_function_calling(client: OpenAI, model_name: str):
model=model_name,
input="What's the weather like in Paris today?",
tools=tools,
temperature=0.0,
)
assert response is not None
assert response.status == "completed"
@ -744,18 +689,3 @@ async def test_function_calling_full_history(client: OpenAI, model_name: str):
assert response_2 is not None
assert response_2.status == "completed"
assert response_2.output_text is not None
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_output_messages_enabled(client: OpenAI, model_name: str,
server):
response = await client.responses.create(
model=model_name,
input="What is the capital of South Korea?",
extra_body={"enable_response_messages": True})
assert response is not None
assert response.status == "completed"
assert len(response.input_messages) > 0
assert len(response.output_messages) > 0

View File

@ -45,39 +45,8 @@ TOOLS = [{
},
}]
PRODUCT_TOOLS = [{
"type": "function",
"function": {
"name": "get_product_info",
"description": "Get detailed information of a product based on its "
"product ID.",
"parameters": {
"type": "object",
"properties": {
"inserted": {
"type": "boolean",
"description": "inserted.",
},
"product_id": {
"type": "integer",
"description": "The product ID of the product.",
},
},
"required": ["product_id", "inserted"],
},
},
}]
MESSAGES = [{"role": "user", "content": "What's the weather like in Boston?"}]
PRODUCT_MESSAGES = [{
"role":
"user",
"content":
"Hi! Do you have any detailed information about the product id "
"7355608 and inserted true?"
}]
@pytest.mark.asyncio
async def test_non_streaming_tool_call():
@ -158,103 +127,3 @@ async def test_streaming_tool_call():
print("\n[Streaming Test Passed]")
print(f"Reconstructed Tool Call: {reconstructed_tool_call['name']}")
print(f"Reconstructed Arguments: {arguments}")
@pytest.mark.asyncio
async def test_non_streaming_product_tool_call():
"""Test tool call integer and boolean parameters in non-streaming mode."""
with RemoteOpenAIServer(MODEL_NAME, SERVER_ARGS) as server:
client = server.get_async_client()
response = await client.chat.completions.create(
model=LORA_MODEL,
messages=PRODUCT_MESSAGES,
tools=PRODUCT_TOOLS,
tool_choice="auto",
temperature=0.66,
)
assert response.choices
choice = response.choices[0]
message = choice.message
assert choice.finish_reason == "tool_calls"
assert message.tool_calls is not None
tool_call = message.tool_calls[0]
assert tool_call.type == "function"
assert tool_call.function.name == "get_product_info"
arguments = json.loads(tool_call.function.arguments)
assert "product_id" in arguments
assert "inserted" in arguments
product_id = arguments.get("product_id")
inserted = arguments.get("inserted")
assert isinstance(product_id, int)
assert product_id == 7355608
assert isinstance(inserted, bool)
assert inserted is True
print("\n[Non-Streaming Product Test Passed]")
print(f"Tool Call: {tool_call.function.name}")
print(f"Arguments: {arguments}")
@pytest.mark.asyncio
async def test_streaming_product_tool_call():
"""Test tool call integer and boolean parameters in streaming mode."""
with RemoteOpenAIServer(MODEL_NAME, SERVER_ARGS) as server:
client = server.get_async_client()
stream = await client.chat.completions.create(
model=LORA_MODEL,
messages=PRODUCT_MESSAGES,
tools=PRODUCT_TOOLS,
tool_choice="auto",
temperature=0.66,
stream=True,
)
tool_call_chunks = {}
async for chunk in stream:
if not chunk.choices:
continue
delta = chunk.choices[0].delta
if not delta or not delta.tool_calls:
continue
for tool_chunk in delta.tool_calls:
index = tool_chunk.index
if index not in tool_call_chunks:
tool_call_chunks[index] = {"name": "", "arguments": ""}
if tool_chunk.function.name:
tool_call_chunks[index]["name"] += tool_chunk.function.name
if tool_chunk.function.arguments:
tool_call_chunks[index][
"arguments"] += tool_chunk.function.arguments
assert len(tool_call_chunks) == 1
reconstructed_tool_call = tool_call_chunks[0]
assert reconstructed_tool_call["name"] == "get_product_info"
arguments = json.loads(reconstructed_tool_call["arguments"])
assert "product_id" in arguments
assert "inserted" in arguments
# Handle type coercion for streaming test as well
product_id = arguments.get("product_id")
inserted = arguments.get("inserted")
assert isinstance(product_id, int)
assert product_id == 7355608
assert isinstance(inserted, bool)
assert inserted is True
print("\n[Streaming Product Test Passed]")
print(f"Reconstructed Tool Call: {reconstructed_tool_call['name']}")
print(f"Reconstructed Arguments: {arguments}")

View File

@ -216,7 +216,7 @@ def server_with_chunked_processing():
"--enforce-eager",
"--max-model-len",
"512", # Set smaller max_model_len to trigger chunking mechanism
'--pooler-config',
'--override-pooler-config',
('{"pooling_type": "MEAN", "normalize": true, '
'"enable_chunked_processing": true, "max_embed_len": 10000}'),
"--gpu-memory-utilization",

View File

@ -60,7 +60,7 @@ def test_api_server_process_manager_init(api_server_args, with_stats_update):
global WORKER_RUNTIME_SECONDS
WORKER_RUNTIME_SECONDS = 0.5
# Copy the args to avoid mutating them
# Copy the args to avoid mutating the
args = api_server_args.copy()
if not with_stats_update:

View File

@ -19,7 +19,7 @@ pytest -s -v tests/gsm8k/test_gsm8k_correctness.py \
vllm serve Qwen/Qwen2.5-1.5B-Instruct --port 8000
# Run evaluation
python tests/evals/gsm8k/gsm8k_eval.py --port 8000
python tests/gsm8k/gsm8k_eval.py --port 8000
```
## Configuration Format

View File

@ -18,7 +18,7 @@ if not current_platform.is_rocm():
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask
from tests.kernels.utils import make_alibi_bias
from vllm.attention.backends.xformers import _make_alibi_bias
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# This will change depending on the compute capability.
@ -429,8 +429,8 @@ def test_multi_query_kv_attention(
alibi_bias = None
if use_alibi:
alibi_slopes = torch.randn(num_query_heads, dtype=torch.float)
attn_bias = make_alibi_bias(alibi_slopes, num_kv_heads, dtype,
seq_lens)
attn_bias = _make_alibi_bias(alibi_slopes, num_kv_heads, dtype,
seq_lens)
output = torch.empty_like(query)
start = 0
# Dynamic sequence length not supported with custom attn_bias.

View File

@ -67,23 +67,30 @@ def generate_params():
return params
@pytest.mark.skip(reason="Skipped for now. Should be revisited.")
@pytest.mark.parametrize("device, name, use_mla, block_size",
generate_params())
@pytest.mark.parametrize("use_v1", [True, False])
def test_env(
device: str,
name: str,
use_mla: bool,
block_size: int,
use_v1: bool,
monkeypatch: pytest.MonkeyPatch,
):
"""Test attention backend selection with valid device-backend pairs."""
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
m.setenv(STR_BACKEND_ENV_VAR, name)
m.setenv("VLLM_MLA_DISABLE", "1" if use_mla else "0")
if name == "FLASHINFER" and not use_v1:
pytest.skip("FlashInfer backend is only available on V1 engine")
if device == "cpu":
if not use_v1:
pytest.skip("CPU backend only supports V1")
with patch("vllm.attention.selector.current_platform",
CpuPlatform()):
backend = get_attn_backend(16, torch.float16, None, block_size,
@ -130,7 +137,7 @@ def test_env(
block_size,
False,
use_mla=use_mla)
expected = f"{name}_VLLM_V1"
expected = f"{name}_VLLM_V1" if use_v1 else name
assert backend.get_name() == expected
else:
backend = get_attn_backend(16,
@ -139,7 +146,7 @@ def test_env(
block_size,
False,
use_mla=use_mla)
expected = "TRITON_ATTN_VLLM_V1"
expected = "TRITON_ATTN_VLLM_V1" if use_v1 else "ROCM_FLASH"
assert backend.get_name() == expected
elif device == "cuda":
@ -156,7 +163,11 @@ def test_env(
# - TRITON_MLA: fallback for other cases
if name == "CUTLASS_MLA":
if block_size != 128:
if not use_v1:
# CUTLASS_MLA only supported on V1 engine
pytest.skip(
"CUTLASS_MLA only supported on V1 engine")
elif block_size != 128:
# CUTLASS_MLA only supports block_size == 128
pytest.skip(
"CUTLASS_MLA only supports block_size 128")
@ -170,7 +181,11 @@ def test_env(
expected = "CUTLASS_MLA_VLLM_V1"
assert backend.get_name() == expected
elif name == "FLASHINFER_MLA":
if block_size not in [32, 64]:
if not use_v1:
# FlashInfer MLA only supported on V1 engine
pytest.skip(
"FlashInfer MLA only supported on V1 engine")
elif block_size not in [32, 64]:
# FlashInfer MLA only supports block_size 32 or 64
pytest.skip(
"FlashInfer MLA only supports block_size 32 "
@ -202,17 +217,23 @@ def test_env(
block_size,
False,
use_mla=use_mla)
expected = f"{name}_VLLM_V1"
expected = f"{name}_VLLM_V1" if use_v1 else name
assert backend.get_name() == expected
elif name == "FLASH_ATTN_MLA":
backend = get_attn_backend(16,
torch.float16,
None,
block_size,
False,
use_mla=use_mla)
expected = "FLASH_ATTN_MLA"
assert backend.get_name() == expected
if not use_v1:
# FlashAttention MLA only supported on V1 engine
pytest.skip(
"FlashAttention MLA only supported on V1 engine"
)
else:
backend = get_attn_backend(16,
torch.float16,
None,
block_size,
False,
use_mla=use_mla)
expected = "FLASH_ATTN_MLA"
assert backend.get_name() == expected
else:
# TRITON_MLA or other fallback
backend = get_attn_backend(16,
@ -221,7 +242,8 @@ def test_env(
block_size,
False,
use_mla=use_mla)
expected = "TRITON_MLA_VLLM_V1"
expected = ("TRITON_MLA_VLLM_V1"
if use_v1 else "TRITON_MLA")
assert backend.get_name() == expected
elif name == "FLASHINFER":
backend = get_attn_backend(16,
@ -230,7 +252,7 @@ def test_env(
block_size,
False,
use_mla=use_mla)
expected = "FLASHINFER_VLLM_V1"
expected = "FLASHINFER_VLLM_V1" if use_v1 else name
assert backend.get_name() == expected
else:
backend = get_attn_backend(32,
@ -239,30 +261,36 @@ def test_env(
block_size,
False,
use_mla=use_mla)
expected = "FLASH_ATTN_VLLM_V1"
expected = "FLASH_ATTN_VLLM_V1" if use_v1 else name
assert backend.get_name() == expected
backend = get_attn_backend(16,
torch.float16,
None,
block_size,
False,
use_mla=use_mla)
assert backend.get_name() == "FLEX_ATTENTION", (
"Should fallback to FlexAttention if head size is "
"not supported by FlashAttention")
if use_v1:
backend = get_attn_backend(16,
torch.float16,
None,
block_size,
False,
use_mla=use_mla)
assert backend.get_name() == "FLEX_ATTENTION", (
"Should fallback to FlexAttention if head size is "
"not supported by FlashAttention")
@pytest.mark.parametrize("device", ["cpu", "cuda"])
@pytest.mark.parametrize("use_v1", [True, False])
def test_fp32_fallback(
device: str,
use_v1: bool,
monkeypatch: pytest.MonkeyPatch,
):
"""Test attention backend selection with fp32."""
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
if device == "cpu":
if not use_v1:
pytest.skip("CPU backend only supports V1")
with patch("vllm.attention.selector.current_platform",
CpuPlatform()):
backend = get_attn_backend(16, torch.float32, None, 16, False)
@ -272,7 +300,8 @@ def test_fp32_fallback(
with patch("vllm.attention.selector.current_platform",
CudaPlatform()):
backend = get_attn_backend(16, torch.float32, None, 16, False)
assert backend.get_name() == "FLEX_ATTENTION"
assert (backend.get_name() == "FLEX_ATTENTION"
if use_v1 else "XFORMERS")
def test_flash_attn(monkeypatch: pytest.MonkeyPatch):
@ -328,11 +357,12 @@ def test_flash_attn(monkeypatch: pytest.MonkeyPatch):
assert backend.get_name() != STR_FLASH_ATTN_VAL
def test_invalid_env(monkeypatch: pytest.MonkeyPatch):
@pytest.mark.parametrize("use_v1", [True, False])
def test_invalid_env(use_v1: bool, monkeypatch: pytest.MonkeyPatch):
"""Test that invalid attention backend names raise ValueError."""
with monkeypatch.context() as m, patch(
"vllm.attention.selector.current_platform", CudaPlatform()):
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
m.setenv(STR_BACKEND_ENV_VAR, STR_INVALID_VAL)
# Should raise ValueError for invalid backend

View File

@ -11,7 +11,7 @@ import torch
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalFromBottomRightMask
from tests.kernels.utils import make_alibi_bias
from vllm.attention.backends.xformers import _make_alibi_bias
from vllm.attention.ops.chunked_prefill_paged_decode import (
chunked_prefill_paged_decode)
from vllm.attention.ops.prefix_prefill import context_attention_fwd
@ -470,7 +470,7 @@ def test_contexted_kv_attention_alibi(
key = key.unsqueeze(0)
value = value.unsqueeze(0)
attn_bias = make_alibi_bias(alibi_slopes, num_kv_heads, dtype, seq_lens)
attn_bias = _make_alibi_bias(alibi_slopes, num_kv_heads, dtype, seq_lens)
output_ref = torch.empty_like(output)
seq_start = 0
query_start = 0
@ -479,7 +479,7 @@ def test_contexted_kv_attention_alibi(
# FIXME(DefTruth): Because xformers does not support dynamic sequence
# lengths with custom attention bias, we process each prompt one by
# one. This is inefficient, especially when we have many short prompts.
# modified from: vllm/v1/attention/backends/xformers.py#L343
# modified from: vllm/attention/backends/xformers.py#L343
for i, (query_len, seq_len) in enumerate(zip(query_lens, seq_lens)):
seq_end = seq_start + seq_len
query_end = query_start + query_len

View File

@ -16,7 +16,6 @@ def clear_cache():
_cached_get_attn_backend.cache_clear()
@pytest.mark.skip(reason="Skipped for now. Should be revisited.")
def test_selector(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_FLASH")

View File

@ -83,7 +83,7 @@ def ref_paged_attn(
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("sliding_window", [None, 64, 128, 256])
@pytest.mark.parametrize("sliding_window", [None, 256])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("soft_cap", [None, 50.0])
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)

View File

@ -1,12 +1,9 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import NamedTuple
import pytest
import torch
from packaging.version import Version
from transformers import AutoConfig
from transformers import __version__ as TRANSFORMERS_VERSION
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.platforms import current_platform
@ -18,7 +15,6 @@ def generate_test_data(num_tokens: int, num_q_heads: int, num_kv_heads: int,
head_size: int, max_position_embeddings: int,
dtype: torch.dtype, device: torch.device):
"""Generate test data for given configuration."""
current_platform.seed_everything(42)
# Create 2D positions (3, num_tokens) for multimodal case
positions = torch.randint(0,
max_position_embeddings // 4, (3, num_tokens),
@ -37,37 +33,22 @@ def generate_test_data(num_tokens: int, num_q_heads: int, num_kv_heads: int,
return positions, query, key
class MRoPETestInfo(NamedTuple):
model_name: str
# https://github.com/pytorch/pytorch/blob/main/torch/testing/_comparison.py#L1317
atol: float = 1e-2
rtol: float = 1.6e-2
marks: list[pytest.MarkDecorator] = []
def unroll_model_tp_dict(model_tp_dict):
return [(model_name, tp_size)
for model_name, tp_sizes in model_tp_dict.items()
for tp_size in tp_sizes]
TRANSFORMERS_BASE_VERSION = Version(TRANSFORMERS_VERSION).base_version
model_tp_dict = {
"Qwen/Qwen2-VL-7B-Instruct": [1, 2],
"Qwen/Qwen2-VL-72B-Instruct": [1, 2],
"Qwen/Qwen2.5-VL-72B-Instruct": [1, 2],
"zai-org/GLM-4.1V-9B-Thinking": [1, 2],
}
MODELS_TO_TEST = [
MRoPETestInfo(model_name="zai-org/GLM-4.1V-9B-Thinking"),
MRoPETestInfo(model_name="Qwen/Qwen2-VL-7B-Instruct"),
MRoPETestInfo(model_name="Qwen/Qwen2-VL-72B-Instruct"),
MRoPETestInfo(model_name="Qwen/Qwen2.5-VL-72B-Instruct"),
MRoPETestInfo(
model_name="Qwen/Qwen3-VL-4B-Instruct",
marks=[
pytest.mark.skipif(
Version(TRANSFORMERS_BASE_VERSION) < Version("4.57.0"),
reason="Qwen3-VL only available after Transformers v4.57",
)
]),
MRoPETestInfo(
model_name="Qwen/Qwen3-VL-30B-A3B-Instruct",
marks=[
pytest.mark.skipif(
Version(TRANSFORMERS_BASE_VERSION) < Version("4.57.0"),
reason="Qwen3-VL only available after Transformers v4.57",
)
]),
# https://github.com/pytorch/pytorch/blob/main/torch/testing/_comparison.py#L1317
dtype_atol_rtol_list = [
[torch.bfloat16, 1e-2, 1.6e-2],
]
num_tokens_list = [11, 8192]
@ -75,29 +56,20 @@ num_tokens_list = [11, 8192]
@pytest.mark.skipif(not current_platform.is_cuda_alike(),
reason="Skipping CUDA/ROCm only tests.")
@pytest.mark.parametrize("model_info, model_name", [
pytest.param(test_config, test_config.model_name, marks=test_config.marks)
for test_config in MODELS_TO_TEST
])
@pytest.mark.parametrize("tp_size", [1, 2])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("model_name, tp_size",
unroll_model_tp_dict(model_tp_dict))
@pytest.mark.parametrize("dtype, atol, rtol", dtype_atol_rtol_list)
@pytest.mark.parametrize("num_tokens", num_tokens_list)
def test_mrope(model_name: str, model_info: MRoPETestInfo, tp_size: int,
dtype: torch.dtype, num_tokens: int):
atol = model_info.atol
rtol = model_info.rtol
def test_mrope(model_name, tp_size, dtype, atol, rtol, num_tokens):
config = AutoConfig.from_pretrained(model_name)
config = config.get_text_config()
# get the model config
total_num_kv_heads = config.num_key_value_heads
total_num_heads = config.num_attention_heads
num_heads = total_num_heads // tp_size
num_kv_heads = max(1, total_num_kv_heads // tp_size)
head_dim = (config.head_dim if hasattr(config, "head_dim") else
config.hidden_size // total_num_heads)
head_dim = config.hidden_size // total_num_heads
is_neox_style = True
rope_theta = config.rope_theta
@ -139,30 +111,24 @@ def test_mrope(model_name: str, model_info: MRoPETestInfo, tp_size: int,
@pytest.mark.skipif(not current_platform.is_cuda_alike(),
reason="Skipping CUDA/ROCm only tests.")
@pytest.mark.parametrize("model_info, model_name", [
pytest.param(test_config, test_config.model_name, marks=test_config.marks)
for test_config in MODELS_TO_TEST
])
@pytest.mark.parametrize("tp_size", [1, 2])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("num_tokens", num_tokens_list)
def test_mrope_torch_compile_tracing(model_name: str,
model_info: MRoPETestInfo, tp_size: int,
dtype: torch.dtype, num_tokens: int):
atol = model_info.atol
rtol = model_info.rtol
@pytest.mark.parametrize(
"model_name, tp_size",
unroll_model_tp_dict({
"Qwen/Qwen2-VL-7B-Instruct": [1, 2],
"zai-org/GLM-4.1V-9B-Thinking": [1, 2]
}))
@pytest.mark.parametrize("dtype, atol, rtol", dtype_atol_rtol_list)
@pytest.mark.parametrize("num_tokens", [4])
def test_mrope_torch_compile_tracing(model_name, tp_size, dtype, atol, rtol,
num_tokens):
config = AutoConfig.from_pretrained(model_name)
config = config.get_text_config()
# get the model config
total_num_kv_heads = config.num_key_value_heads
total_num_heads = config.num_attention_heads
num_heads = total_num_heads // tp_size
num_kv_heads = max(1, total_num_kv_heads // tp_size)
head_dim = (config.head_dim if hasattr(config, "head_dim") else
config.hidden_size // total_num_heads)
head_dim = config.hidden_size // total_num_heads
is_neox_style = True
rope_theta = config.rope_theta
max_position = config.max_position_embeddings

View File

@ -11,8 +11,7 @@ import pytest
import torch
import vllm.model_executor.layers.fused_moe.modular_kernel as mk
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.platforms import current_platform
from vllm.config import VllmConfig, current_platform, set_current_vllm_config
from vllm.utils import has_deep_ep, has_deep_gemm, has_pplx
from vllm.utils.flashinfer import has_flashinfer_cutlass_fused_moe

View File

@ -1,24 +1,21 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import importlib
import importlib.metadata
from dataclasses import dataclass
from importlib.util import find_spec
from typing import Optional
import pytest
import torch
from packaging import version
from vllm.model_executor.layers.quantization.quark.quark import ( # noqa: E501
QuarkLinearMethod, QuarkW4A4MXFP4)
from vllm.model_executor.layers.quantization.quark.quark_moe import ( # noqa: E501
QuarkW4A4MXFp4MoEMethod)
from vllm.platforms import current_platform
from vllm.utils.flashinfer import has_flashinfer
QUARK_MXFP4_AVAILABLE = find_spec("quark") is not None and version.parse(
importlib.metadata.version("amd-quark")) >= version.parse('0.8.99')
QUARK_MXFP4_AVAILABLE = importlib.util.find_spec(
"quark") is not None and version.parse(
importlib.metadata.version("amd-quark")) >= version.parse('0.8.99')
TRTLLM_GEN_MXFP4_AVAILABLE = current_platform.is_cuda(
) and current_platform.is_device_capability(100)
@ -42,12 +39,6 @@ class ModelCase:
tp: int
@pytest.fixture(scope="function", autouse=True)
def enable_pickle(monkeypatch):
"""`LLM.apply_model` requires pickling a function."""
monkeypatch.setenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "1")
@pytest.mark.parametrize('model_case', [
ModelCase("fxmarty/qwen_1.5-moe-a2.7b-mxfp4", tp=1),
ModelCase("fxmarty/deepseek_r1_3_layers_mxfp4", tp=8),
@ -64,19 +55,21 @@ def test_mxfp4_loading_and_execution_moe(vllm_runner, model_case: ModelCase):
tensor_parallel_size=model_case.tp,
load_format="dummy") as llm:
def check_model(model):
layer = model.model.layers[0]
# TODO: llm.apply_model(check_model) currently relies on V0 internals.
# Re-enable this later.
# def check_model(model):
# layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
# qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method, QuarkLinearMethod)
assert isinstance(qkv_proj.scheme, QuarkW4A4MXFP4)
# assert isinstance(qkv_proj.quant_method, QuarkLinearMethod)
# assert isinstance(qkv_proj.scheme, QuarkW4A4MXFP4)
assert isinstance(layer.mlp.experts.quant_method,
QuarkW4A4MXFp4MoEMethod)
# assert isinstance(layer.mlp.experts.quant_method,
# QuarkW4A4MXFp4MoEMethod)
if model_case.model_id == "fxmarty/qwen_1.5-moe-a2.7b-mxfp4":
llm.apply_model(check_model)
# if model_case.model_id == "fxmarty/qwen_1.5-moe-a2.7b-mxfp4":
# llm.apply_model(check_model)
output = llm.generate_greedy("Today I am in the French Alps and",
max_tokens=20)

View File

@ -513,6 +513,10 @@ def make_backend(backend_name: str) -> AttentionBackend:
Construct the backend instance determined by the backend_name string
argument.
"XFORMERS" -> construct xformers backend
TODO: other backends
Note: at time of writing the Attention wrapper automatically selects
its own backend for Attention.forward(); so the backend instance which
you generate with this function is not meant to be used for *running*
@ -524,68 +528,18 @@ def make_backend(backend_name: str) -> AttentionBackend:
* Backend instance
'''
if backend_name in (STR_XFORMERS_ATTN_VAL, "XFORMERS_VLLM_V1"):
from vllm.v1.attention.backends.xformers import (
XFormersAttentionBackend)
return XFormersAttentionBackend()
if backend_name in (STR_FLASH_ATTN_VAL, "FLASH_ATTN_VLLM_V1"):
from vllm.v1.attention.backends.flash_attn import FlashAttentionBackend
if backend_name == STR_XFORMERS_ATTN_VAL:
# NOTE: xFormers backend cannot be imported for CPU and AMD GPUs.
from vllm.attention.backends.xformers import XFormersBackend
return XFormersBackend()
elif backend_name == STR_FLASH_ATTN_VAL:
from vllm.attention.backends.flash_attn import FlashAttentionBackend
return FlashAttentionBackend()
if backend_name == "TRITON_ATTN_VLLM_V1":
from vllm.v1.attention.backends.triton_attn import (
TritonAttentionBackend)
return TritonAttentionBackend()
if backend_name == "FLEX_ATTENTION":
from vllm.v1.attention.backends.flex_attention import (
FlexAttentionBackend)
return FlexAttentionBackend()
if backend_name in ("TORCH_SDPA", "TORCH_SDPA_VLLM_V1"):
from vllm.v1.attention.backends.cpu_attn import TorchSDPABackend
return TorchSDPABackend()
if backend_name == "FLASHINFER":
from vllm.v1.attention.backends.flashinfer import FlashInferBackend
return FlashInferBackend()
raise AssertionError(
f"Unrecognized backend_name {backend_name} for unit test")
def make_alibi_bias(
alibi_slopes: torch.Tensor,
num_kv_heads: int,
dtype: torch.dtype,
seq_lens: list[int],
) -> list[Any]:
"""Create ALiBi biases compatible with xFormers attention tests."""
from xformers.ops.fmha.attn_bias import LowerTriangularMaskWithTensorBias
if alibi_slopes is None:
return [None for _ in seq_lens]
attn_biases: list[Any] = []
num_heads = alibi_slopes.shape[0]
assert num_heads >= num_kv_heads, (
"ALiBi slopes expect at least as many heads as KV heads")
for seq_len in seq_lens:
bias = torch.arange(seq_len, dtype=dtype, device=alibi_slopes.device)
bias = bias[None, :] - bias[:, None]
padded_len = (seq_len + 7) // 8 * 8
bias_tensor = torch.empty(
1,
num_heads,
seq_len,
padded_len,
device=alibi_slopes.device,
dtype=dtype,
)[:, :, :, :seq_len].copy_(bias)
bias_tensor.mul_(alibi_slopes[:, None, None])
attn_biases.append(LowerTriangularMaskWithTensorBias(bias_tensor))
return attn_biases
def _make_metadata_tensors(
seq_lens: Optional[list[int]],
context_lens: Optional[list[int]],
@ -959,6 +913,7 @@ def make_test_metadata(
return attn_backend_obj.make_metadata(
num_prefills=num_prefills,
slot_mapping=(None if kv_mmap is None else kv_mmap.slot_mapping),
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=True,
num_prefill_tokens=num_prefill_tokens,
num_decode_tokens=num_decode_tokens,
@ -1008,6 +963,7 @@ def make_test_metadata(
return attn_backend_obj.make_metadata(
num_prefills=num_prefills,
slot_mapping=kv_mmap.slot_mapping,
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=True,
num_prefill_tokens=num_prefill_tokens,
num_decode_tokens=num_decode_tokens,

View File

@ -17,6 +17,7 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.models.interfaces import SupportsLoRA
from vllm.platforms import current_platform
@ -96,6 +97,7 @@ def dummy_model() -> nn.Module:
# Special handling for lm_head & sampler
("lm_head", ParallelLMHead(512, 10)),
("logits_processor", LogitsProcessor(512)),
("sampler", Sampler())
]))
model.config = MagicMock()
model.embedding_modules = {"lm_head": "lm_head"}
@ -123,6 +125,7 @@ def dummy_model_gate_up() -> nn.Module:
# Special handling for lm_head & sampler
("lm_head", ParallelLMHead(512, 10)),
("logits_processor", LogitsProcessor(512)),
("sampler", Sampler())
]))
model.config = MagicMock()
model.packed_modules_mapping = {

View File

@ -6,10 +6,10 @@ Script to test add_lora, remove_lora, pin_lora, list_loras functions.
import pytest
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.engine.llm_engine import LLMEngine
from vllm.entrypoints.openai.api_server import (
build_async_engine_client_from_engine_args)
from vllm.lora.request import LoRARequest
from vllm.v1.engine.llm_engine import LLMEngine
MODEL_PATH = "meta-llama/Llama-2-7b-hf"
LORA_MODULE_PATH = "yard1/llama-2-7b-sql-lora-test"

View File

@ -8,12 +8,11 @@ import torch
from safetensors.torch import load_file
from torch import nn
from vllm.config import ModelConfig, VllmConfig
from vllm.config.lora import LoRAConfig
from vllm.lora.layers import (ColumnParallelLinearWithLoRA,
MergedColumnParallelLinearWithLoRA,
RowParallelLinearWithLoRA)
from vllm.lora.lora_weights import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.models import (LoRAMapping, LoRAModel, LoRAModelManager,
LRUCacheLoRAModelManager)
from vllm.lora.peft_helper import PEFTHelper
@ -436,19 +435,10 @@ def test_lru_cache_worker_adapter_manager(dist_init, dummy_model, device,
target_modules=["layer1.dense1", "dense2"],
lora_dtype=DEFAULT_DTYPE,
)
model_config = ModelConfig(max_model_len=16)
vllm_config = VllmConfig(model_config=model_config,
lora_config=lora_config)
vllm_config.scheduler_config.max_num_seqs = 4
vllm_config.scheduler_config.max_num_batched_tokens = 2
worker_adapter_manager = LRUCacheWorkerLoRAManager(
vllm_config, device, EMBEDDING_MODULES, EMBEDDING_PADDING_MODULES)
worker_adapter_manager.max_num_seqs = 4
worker_adapter_manager.max_num_batched_tokens = 2
4, 2,
dummy_model.unpadded_vocab_size - lora_config.lora_extra_vocab_size,
lora_config, device, EMBEDDING_MODULES, EMBEDDING_PADDING_MODULES)
worker_adapter_manager.create_lora_manager(dummy_model)
mapping = LoRAMapping([], [])
@ -527,20 +517,10 @@ def test_worker_adapter_manager(dist_init, dummy_model_gate_up, device,
max_cpu_loras=4,
max_loras=4,
lora_dtype=DEFAULT_DTYPE)
model_config = ModelConfig(max_model_len=16)
vllm_config = VllmConfig(model_config=model_config,
lora_config=lora_config)
vllm_config.scheduler_config.max_num_seqs = 4
vllm_config.scheduler_config.max_num_batched_tokens = 2
worker_adapter_manager = WorkerLoRAManager(vllm_config, device,
EMBEDDING_MODULES,
EMBEDDING_PADDING_MODULES)
worker_adapter_manager.vocab_size = (
dummy_model_gate_up.unpadded_vocab_size -
lora_config.lora_extra_vocab_size)
worker_adapter_manager = WorkerLoRAManager(
4, 2, dummy_model_gate_up.unpadded_vocab_size -
lora_config.lora_extra_vocab_size, lora_config, device,
EMBEDDING_MODULES, EMBEDDING_PADDING_MODULES)
worker_adapter_manager.create_lora_manager(dummy_model_gate_up)
dummy_lora_files = f"{tmp_path}/lora_adapter"

View File

@ -9,7 +9,7 @@ from typing import Optional, Union
import torch
from safetensors.torch import save_file
from vllm.lora.lora_weights import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
class DummyLoRAManager:

View File

@ -15,8 +15,7 @@ from ...utils import check_logprobs_close
# have a clean way to fall back, so we fail with
# a clear msg when it happens.
# https://github.com/vllm-project/vllm/issues/14524
# NOTE(woosuk): Skipping these tests until V1 supports them.
# REQUIRES_V0 = ["microsoft/phi-2", "stabilityai/stablelm-3b-4e1t"]
REQUIRES_V0 = ["microsoft/phi-2", "stabilityai/stablelm-3b-4e1t"]
# This list contains the model that are using AITER kernel.
# Skip model that are not using AITER tests.
@ -114,6 +113,9 @@ def test_models(hf_runner, vllm_runner, example_prompts, model: str,
model_info.check_available_online(on_fail="skip")
model_info.check_transformers_version(on_fail="skip")
if model in REQUIRES_V0:
monkeypatch.setenv("VLLM_USE_V1", "0")
if use_rocm_aiter and (model in AITER_MODEL_LIST):
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
elif use_rocm_aiter and model not in AITER_MODEL_LIST:
@ -123,6 +125,12 @@ def test_models(hf_runner, vllm_runner, example_prompts, model: str,
# in parts of the operators
pytest.skip(f"Skipping '{model}' model test with AITER kernel.")
# Note: can be removed when
# https://github.com/vllm-project/vllm/pull/24278 finished
if current_platform.is_cpu() and use_prompt_embeds:
pytest.skip("Skipping use_prompt_embeds=True with "
"V1-only CPU backend.")
with hf_runner(model) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)

View File

@ -8,7 +8,7 @@ from tests.utils import multi_gpu_test
from vllm.engine.arg_utils import EngineArgs
from vllm.sampling_params import SamplingParams
from ...utils import check_logprobs_close
from ...utils import check_logprobs_close, check_outputs_equal
# Mark all tests as hybrid
pytestmark = pytest.mark.hybrid_model
@ -88,6 +88,15 @@ def test_models(
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "0")
if model not in V0_UNSUPPORTED_MODELS:
with vllm_runner(model, max_num_seqs=MAX_NUM_SEQS) as vllm_model:
vllm_v0_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
else:
vllm_v0_outputs = None
if model in V1_SUPPORTED_MODELS:
with vllm_runner(model, max_num_seqs=MAX_NUM_SEQS) as vllm_model:
vllm_v1_outputs = vllm_model.generate_greedy_logprobs(
@ -95,6 +104,14 @@ def test_models(
else:
vllm_v1_outputs = None
if vllm_v0_outputs is not None:
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_v0_outputs,
name_0="hf",
name_1="vllm-v0",
)
if model in V1_SUPPORTED_MODELS:
check_logprobs_close(
outputs_0_lst=hf_outputs,
@ -140,6 +157,45 @@ def test_batching(
)
@pytest.mark.parametrize("model", [SSM_MODELS[0], HYBRID_MODELS[0]])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
def test_chunked_prefill(
vllm_runner,
example_prompts,
model: str,
max_tokens: int,
num_logprobs: int,
chunked_prefill_token_size: int,
monkeypatch,
) -> None:
max_num_seqs = chunked_prefill_token_size
max_num_batched_tokens = chunked_prefill_token_size
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "0")
with vllm_runner(model,
enable_chunked_prefill=True,
max_num_batched_tokens=max_num_batched_tokens,
max_num_seqs=max_num_seqs) as vllm_model:
chunked = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
with vllm_runner(model,
enable_chunked_prefill=False,
max_num_seqs=max_num_seqs) as vllm_model:
non_chunked = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=chunked,
outputs_1_lst=non_chunked,
name_0="chunked",
name_1="non_chunked",
)
@pytest.mark.parametrize("model", [SSM_MODELS[0], HYBRID_MODELS[0]])
@pytest.mark.parametrize("max_tokens", [10])
def test_chunked_prefill_with_parallel_sampling(
@ -201,6 +257,38 @@ def test_mamba_cache_cg_padding(
"Could be related to mamba cache not padded correctly")
@pytest.mark.parametrize("model", [SSM_MODELS[0], HYBRID_MODELS[0]])
@pytest.mark.parametrize("max_tokens", [20])
def test_models_preemption_recompute(
vllm_runner,
example_prompts,
model: str,
max_tokens: int,
monkeypatch,
) -> None:
"""
Tests that outputs are identical with and w/o preemptions (recompute).
"""
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "0")
with vllm_runner(model, max_num_seqs=MAX_NUM_SEQS) as vllm_model:
scheduler = vllm_model.llm.llm_engine.scheduler[0]
scheduler.ENABLE_ARTIFICIAL_PREEMPT = True
preempt_vllm_outputs = vllm_model.generate_greedy(
example_prompts, max_tokens)
scheduler.ENABLE_ARTIFICIAL_PREEMPT = False
vllm_outputs = vllm_model.generate_greedy(example_prompts,
max_tokens)
check_outputs_equal(
outputs_0_lst=preempt_vllm_outputs,
outputs_1_lst=vllm_outputs,
name_0="vllm_preepmtions",
name_1="vllm",
)
@pytest.mark.parametrize("model", [SSM_MODELS[0], HYBRID_MODELS[0]])
def test_fail_upon_inc_requests_and_finished_requests_lt_available_blocks(
vllm_runner,
@ -298,10 +386,27 @@ def test_full_cuda_graph(
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "0")
if model not in V0_UNSUPPORTED_MODELS:
with vllm_runner(model, max_num_seqs=MAX_NUM_SEQS) as vllm_model:
vllm_v0_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
else:
vllm_v0_outputs = None
with vllm_runner(model, max_num_seqs=MAX_NUM_SEQS) as vllm_model:
vllm_v1_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
if vllm_v0_outputs is not None:
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_v0_outputs,
name_0="hf",
name_1="vllm-v0",
)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_v1_outputs,
@ -337,12 +442,27 @@ def test_fp32_cache_state(
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "0")
with vllm_runner(model,
max_num_seqs=MAX_NUM_SEQS,
**{cache_dtype_param: "float32"}) as vllm_model:
vllm_v0_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
with vllm_runner(model,
max_num_seqs=MAX_NUM_SEQS,
**{cache_dtype_param: "float32"}) as vllm_model:
vllm_v1_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_v0_outputs,
name_0="hf",
name_1="vllm-v0",
)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_v1_outputs,

View File

@ -58,7 +58,7 @@ def test_models(
vllm_extra_kwargs = {}
if model == "ssmits/Qwen2-7B-Instruct-embed-base":
vllm_extra_kwargs["pooler_config"] = \
vllm_extra_kwargs["override_pooler_config"] = \
PoolerConfig(pooling_type="MEAN", normalize=False)
max_model_len: Optional[int] = 512

View File

@ -1,7 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.config.pooler import PoolerConfig
from vllm.platforms import current_platform
@ -100,7 +99,7 @@ def test_gemma_multimodal(
convert="classify",
load_format="auto",
hf_overrides=update_config,
pooler_config=PoolerConfig(pooling_type="LAST"),
override_pooler_config={"pooling_type": "LAST"},
max_model_len=512,
enforce_eager=True,
tensor_parallel_size=1,

View File

@ -24,18 +24,18 @@ def test_classify_models_using_activation(
dtype: str,
) -> None:
with vllm_runner(
model,
max_model_len=512,
dtype=dtype,
pooler_config=PoolerConfig(activation=False)) as vllm_model:
with vllm_runner(model,
max_model_len=512,
dtype=dtype,
override_pooler_config=PoolerConfig(
activation=False)) as vllm_model:
wo_activation_out = vllm_model.classify(example_prompts)
with vllm_runner(
model,
max_model_len=512,
dtype=dtype,
pooler_config=PoolerConfig(activation=True)) as vllm_model:
with vllm_runner(model,
max_model_len=512,
dtype=dtype,
override_pooler_config=PoolerConfig(
activation=True)) as vllm_model:
w_activation_out = vllm_model.classify(example_prompts)
for wo_activation, w_activation in zip(wo_activation_out,
@ -43,8 +43,9 @@ def test_classify_models_using_activation(
wo_activation = torch.tensor(wo_activation)
w_activation = torch.tensor(w_activation)
assert not torch.allclose(wo_activation, w_activation,
atol=1e-2), "pooler_config is not working"
assert not torch.allclose(
wo_activation, w_activation,
atol=1e-2), "override_pooler_config is not working"
assert torch.allclose(softmax(wo_activation), w_activation,
1e-3 if dtype == "float" else 1e-2)
@ -64,22 +65,23 @@ def test_embed_models_using_normalize(
dtype: str,
) -> None:
with vllm_runner(model,
max_model_len=512,
dtype=dtype,
override_pooler_config=PoolerConfig(
normalize=False)) as vllm_model:
wo_normalize = torch.tensor(vllm_model.embed(example_prompts))
with vllm_runner(
model,
max_model_len=512,
dtype=dtype,
pooler_config=PoolerConfig(normalize=False)) as vllm_model:
wo_normalize = torch.tensor(vllm_model.embed(example_prompts))
with vllm_runner(model,
max_model_len=512,
dtype=dtype,
pooler_config=PoolerConfig(normalize=True)) as vllm_model:
override_pooler_config=PoolerConfig(normalize=True)) as vllm_model:
w_normalize = torch.tensor(vllm_model.embed(example_prompts))
assert not torch.allclose(
wo_normalize, w_normalize,
atol=1e-2), "pooler_config normalize is not working"
atol=1e-2), "override_pooler_config normalize is not working"
assert torch.allclose(
F.normalize(wo_normalize, p=2, dim=-1), w_normalize,
atol=1e-2), "w_normal should be close to normal(wo_normal)."
@ -100,16 +102,18 @@ def test_reward_models_using_softmax(
dtype: str,
) -> None:
with vllm_runner(model,
max_model_len=1024,
dtype=dtype,
pooler_config=PoolerConfig(softmax=False)) as vllm_model:
with vllm_runner(
model,
max_model_len=1024,
dtype=dtype,
override_pooler_config=PoolerConfig(softmax=False)) as vllm_model:
wo_softmax = vllm_model.encode(example_prompts)
with vllm_runner(model,
max_model_len=1024,
dtype=dtype,
pooler_config=PoolerConfig(softmax=True)) as vllm_model:
with vllm_runner(
model,
max_model_len=1024,
dtype=dtype,
override_pooler_config=PoolerConfig(softmax=True)) as vllm_model:
w_softmax = vllm_model.encode(example_prompts)
for wo, w in zip(wo_softmax, w_softmax):
@ -117,7 +121,7 @@ def test_reward_models_using_softmax(
w = torch.tensor(w)
assert not torch.allclose(
wo, w, atol=1e-2), "pooler_config softmax is not working"
wo, w, atol=1e-2), "override_pooler_config softmax is not working"
assert torch.allclose(
softmax(wo), w,
atol=1e-2), "w_softmax should be close to softmax(wo_softmax)."

View File

@ -1,5 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import pytest
import torch
@ -81,7 +82,7 @@ def test_prm_models(
check_transformers_version("Qwen/Qwen2.5-Math-PRM-7B",
max_transformers_version="4.53.2")
if current_platform.is_cpu():
if current_platform.is_cpu() and os.environ.get("VLLM_USE_V1", "0") == "0":
pytest.skip("CPU only supports V1")
if current_platform.is_rocm():

View File

@ -32,6 +32,13 @@ from .vlm_utils.types import (CustomTestOptions, ExpandableVLMTestArgs,
if current_platform.is_rocm():
os.environ["VLLM_USE_TRITON_FLASH_ATTN"] = "0"
REQUIRES_V0_MODELS = [
# V1 Test: not enough KV cache space in C1.
"fuyu",
# V1 Test: Deadlock issue when processing mm_inputs
"llava-onevision-transformers",
]
# yapf: disable
COMMON_BROADCAST_SETTINGS = {
"test_type": VLMTestType.IMAGE,
@ -179,11 +186,8 @@ VLM_TEST_SETTINGS = {
image_size_factors=[(0.25, 0.5, 1.0)],
vllm_runner_kwargs={
"model_impl": "transformers",
"default_torch_num_threads": 1,
},
# FIXME: Investigate why the test hangs
# when processing the 3rd prompt in vLLM
marks=[pytest.mark.core_model, pytest.mark.skip(reason="Test hangs")],
marks=[pytest.mark.core_model],
),
"idefics3-transformers": VLMTestInfo(
models=["HuggingFaceTB/SmolVLM-256M-Instruct"],
@ -316,7 +320,6 @@ VLM_TEST_SETTINGS = {
vllm_output_post_proc=model_utils.fuyu_vllm_to_hf_output,
num_logprobs=10,
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
marks=[large_gpu_mark(min_gb=32)],
),
"gemma3": VLMTestInfo(
models=["google/gemma-3-4b-it"],
@ -858,14 +861,13 @@ VLM_TEST_SETTINGS = _mark_splits(VLM_TEST_SETTINGS, num_groups=2)
test_type=VLMTestType.IMAGE,
create_new_process_for_each_test=False,
))
def test_single_image_models(
tmp_path: PosixPath,
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets,
):
def test_single_image_models(tmp_path: PosixPath, model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets, monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_single_image_test(
tmp_path=tmp_path,
@ -884,14 +886,13 @@ def test_single_image_models(
test_type=VLMTestType.MULTI_IMAGE,
create_new_process_for_each_test=False,
))
def test_multi_image_models(
tmp_path: PosixPath,
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets,
):
def test_multi_image_models(tmp_path: PosixPath, model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets, monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_multi_image_test(
tmp_path=tmp_path,
@ -910,13 +911,13 @@ def test_multi_image_models(
test_type=VLMTestType.EMBEDDING,
create_new_process_for_each_test=False,
))
def test_image_embedding_models(
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets,
):
def test_image_embedding_models(model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets, monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_embedding_test(
model_test_info=model_test_info,
@ -934,13 +935,11 @@ def test_image_embedding_models(
test_type=VLMTestType.VIDEO,
create_new_process_for_each_test=False,
))
def test_video_models(
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
video_assets: VideoTestAssets,
):
def test_video_models(model_type: str, test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner], vllm_runner: type[VllmRunner],
video_assets: VideoTestAssets, monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_video_test(
model_test_info=model_test_info,
@ -958,13 +957,11 @@ def test_video_models(
test_type=VLMTestType.AUDIO,
create_new_process_for_each_test=False,
))
def test_audio_models(
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
audio_assets: AudioTestAssets,
):
def test_audio_models(model_type: str, test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner], vllm_runner: type[VllmRunner],
audio_assets: AudioTestAssets, monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_audio_test(
model_test_info=model_test_info,
@ -987,7 +984,10 @@ def test_custom_inputs_models(
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
monkeypatch,
):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_custom_inputs_test(
model_test_info=model_test_info,
@ -1006,14 +1006,13 @@ def test_custom_inputs_models(
create_new_process_for_each_test=True,
))
@create_new_process_for_each_test()
def test_single_image_models_heavy(
tmp_path: PosixPath,
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets,
):
def test_single_image_models_heavy(tmp_path: PosixPath, model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets, monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_single_image_test(
tmp_path=tmp_path,
@ -1033,14 +1032,13 @@ def test_single_image_models_heavy(
create_new_process_for_each_test=True,
))
@create_new_process_for_each_test()
def test_multi_image_models_heavy(
tmp_path: PosixPath,
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets,
):
def test_multi_image_models_heavy(tmp_path: PosixPath, model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets, monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_multi_image_test(
tmp_path=tmp_path,
@ -1060,13 +1058,14 @@ def test_multi_image_models_heavy(
create_new_process_for_each_test=True,
))
@create_new_process_for_each_test()
def test_image_embedding_models_heavy(
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets,
):
def test_image_embedding_models_heavy(model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
image_assets: ImageTestAssets,
monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_embedding_test(
model_test_info=model_test_info,
@ -1084,13 +1083,12 @@ def test_image_embedding_models_heavy(
test_type=VLMTestType.VIDEO,
create_new_process_for_each_test=True,
))
def test_video_models_heavy(
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
video_assets: VideoTestAssets,
):
def test_video_models_heavy(model_type: str, test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
video_assets: VideoTestAssets, monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_video_test(
model_test_info=model_test_info,
@ -1108,13 +1106,12 @@ def test_video_models_heavy(
test_type=VLMTestType.AUDIO,
create_new_process_for_each_test=True,
))
def test_audio_models_heavy(
model_type: str,
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
audio_assets: AudioTestAssets,
):
def test_audio_models_heavy(model_type: str, test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
audio_assets: AudioTestAssets, monkeypatch):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_audio_test(
model_test_info=model_test_info,
@ -1138,7 +1135,10 @@ def test_custom_inputs_models_heavy(
test_case: ExpandableVLMTestArgs,
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
monkeypatch,
):
if model_type in REQUIRES_V0_MODELS:
monkeypatch.setenv("VLLM_USE_V1", "0")
model_test_info = VLM_TEST_SETTINGS[model_type]
runners.run_custom_inputs_test(
model_test_info=model_test_info,

View File

@ -7,8 +7,8 @@ from typing import Optional
import pytest
from transformers import AutoModelForSpeechSeq2Seq
from vllm.logprobs import SampleLogprobs
from vllm.lora.request import LoRARequest
from vllm.sequence import SampleLogprobs
from ....conftest import (AudioTestAssets, HfRunner, PromptAudioInput,
VllmRunner)

View File

@ -12,10 +12,10 @@ from huggingface_hub import snapshot_download
from transformers import AutoTokenizer
from vllm.assets.image import ImageAsset
from vllm.logprobs import SampleLogprobs
from vllm.lora.request import LoRARequest
from vllm.multimodal.image import convert_image_mode, rescale_image_size
from vllm.platforms import current_platform
from vllm.sequence import SampleLogprobs
from ....conftest import (IMAGE_ASSETS, HfRunner, PromptAudioInput,
PromptImageInput, VllmRunner)

View File

@ -12,12 +12,13 @@ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.tokenizers.multimodal import image_from_chunk
from transformers import AutoProcessor
from vllm import SamplingParams, TextPrompt, TokensPrompt
from vllm.logprobs import Logprob, SampleLogprobs
from vllm import RequestOutput, SamplingParams, TextPrompt, TokensPrompt
from vllm.multimodal import MultiModalDataBuiltins
from vllm.multimodal.inputs import PlaceholderRange
from vllm.sequence import Logprob, SampleLogprobs
from ....utils import VLLM_PATH, large_gpu_test
from ...utils import check_logprobs_close
from ...utils import check_logprobs_close, dummy_hf_overrides
if TYPE_CHECKING:
from _typeshed import StrPath
@ -184,3 +185,47 @@ def test_chat(vllm_runner, max_model_len: int, model: str, dtype: str,
outputs_1_lst=logprobs,
name_0="h100_ref",
name_1="output")
@pytest.mark.parametrize(
"image_urls,expected_ranges",
[(IMG_URLS[:1], [PlaceholderRange(offset=11, length=494)]),
(IMG_URLS[1:4], [
PlaceholderRange(offset=11, length=266),
PlaceholderRange(offset=277, length=1056),
PlaceholderRange(offset=1333, length=418)
])])
def test_multi_modal_placeholders(vllm_runner, image_urls: list[str],
expected_ranges: list[PlaceholderRange],
local_asset_server, monkeypatch) -> None:
local_image_urls = [local_asset_server.url_for(u) for u in image_urls]
prompt = _create_engine_inputs_hf(local_image_urls)
# This placeholder checking test only works with V0 engine
# where `multi_modal_placeholders` is returned with `RequestOutput`
monkeypatch.setenv("VLLM_USE_V1", "0")
with vllm_runner(
"mistral-community/pixtral-12b",
max_model_len=8192,
limit_mm_per_prompt=LIMIT_MM_PER_PROMPT,
load_format="dummy",
hf_overrides=dummy_hf_overrides,
) as vllm_model:
outputs = vllm_model.llm.generate(prompt)
assert len(outputs) == 1, f"{len(outputs)=}"
output: RequestOutput = outputs[0]
assert hasattr(output,
"multi_modal_placeholders"), f"{output.__dict__=}"
assert "image" in output.multi_modal_placeholders, \
f"{output.multi_modal_placeholders.keys()=}"
image_placeholder_ranges: list[
PlaceholderRange] = output.multi_modal_placeholders["image"]
assert len(image_placeholder_ranges) == len(
expected_ranges), f"{image_placeholder_ranges=}"
for real_range, expected_range in zip(image_placeholder_ranges,
expected_ranges):
assert real_range.offset == expected_range.offset, \
f"{real_range=} {expected_range=}"
assert real_range.length == expected_range.length, \
f"{real_range=} {expected_range=}"

View File

@ -17,9 +17,11 @@ from ...utils import check_logprobs_close
@pytest.fixture(scope="function", autouse=True)
def enable_pickle(monkeypatch):
"""`LLM.apply_model` requires pickling a function."""
monkeypatch.setenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "1")
def use_v0_only(monkeypatch):
"""
V1 Test: batch_make_xxxxx_embeddings calls a V0 internal
"""
monkeypatch.setenv('VLLM_USE_V1', '0')
models = ["Qwen/Qwen2-VL-2B-Instruct"]
@ -124,8 +126,9 @@ def batch_make_image_embeddings(
image_grid_thw_on_device = image_grid_thw.to(visual.device,
dtype=torch.int64)
return visual(pixel_values_on_device,
grid_thw=image_grid_thw_on_device).cpu()
grid_thw=image_grid_thw_on_device)
# V1 Test: this calls a V0 internal.
image_embeds = torch.concat(llm.apply_model(get_image_embeds))
# split into original batches
@ -207,8 +210,9 @@ def batch_make_video_embeddings(
video_grid_thw_on_device = video_grid_thw.to(visual.device,
dtype=torch.int64)
return visual(pixel_values_on_device,
grid_thw=video_grid_thw_on_device).cpu()
grid_thw=video_grid_thw_on_device)
# V1 Test: this calls a V0 internal.
video_embeds = torch.concat(llm.apply_model(get_image_embeds))
# split into original batches
@ -262,20 +266,19 @@ def run_embedding_input_test(
processor = AutoProcessor.from_pretrained(model)
# max_model_len should be greater than image_feature_size
with vllm_runner(
model,
runner="generate",
max_model_len=4000,
max_num_seqs=3,
dtype=dtype,
limit_mm_per_prompt={
"image": mm_limit,
"video": mm_limit
},
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
default_torch_num_threads=1,
) as vllm_model:
with vllm_runner(model,
runner="generate",
max_model_len=4000,
max_num_seqs=3,
dtype=dtype,
limit_mm_per_prompt={
"image": mm_limit,
"video": mm_limit
},
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend
) as vllm_model:
outputs_per_case_for_original_input = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
@ -326,8 +329,9 @@ def run_embedding_input_test(
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_qwen2_vl_image_embeddings_input(vllm_runner, image_assets, model,
size_factors, dtype, max_tokens,
num_logprobs, monkeypatch) -> None:
size_factors, dtype: str,
max_tokens: int,
num_logprobs: int) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_case: list[tuple[

View File

@ -19,7 +19,7 @@ from transformers import (AutoConfig, AutoTokenizer, BatchFeature,
GenerationConfig, GenerationMixin)
from transformers.video_utils import VideoMetadata
from vllm.logprobs import SampleLogprobs
from vllm.sequence import SampleLogprobs
from vllm.utils import is_list_of
from .....conftest import HfRunner, ImageAsset, ImageTestAssets

View File

@ -12,7 +12,7 @@ from transformers import AutoModelForCausalLM
from transformers.models.auto.auto_factory import _BaseAutoModelClass
from vllm.config import RunnerOption
from vllm.logprobs import SampleLogprobs
from vllm.sequence import SampleLogprobs
from vllm.transformers_utils.tokenizer import AnyTokenizer
from .....conftest import (AUDIO_ASSETS, IMAGE_ASSETS, HfRunner, ImageAsset,

View File

@ -4,6 +4,8 @@
import pytest
import torch
from vllm.utils import set_default_torch_num_threads
from ....conftest import VllmRunner
@ -28,17 +30,19 @@ def _run_test(
} for _ in range(10)
]
with vllm_runner(
model,
runner="pooling",
dtype="half",
enforce_eager=True,
skip_tokenizer_init=True,
# Limit the maximum number of sequences to avoid the
# test going OOM during the warmup run
max_num_seqs=32,
default_torch_num_threads=1,
) as vllm_model:
with (
set_default_torch_num_threads(1),
vllm_runner(
model,
runner="pooling",
dtype=torch.float16,
enforce_eager=True,
skip_tokenizer_init=True,
# Limit the maximum number of sequences to avoid the
# test going OOM during the warmup run
max_num_seqs=32,
) as vllm_model,
):
vllm_model.encode(prompt)

View File

@ -45,15 +45,12 @@ def run_awq_test(
# will hurt multiprocessing backend with fork method (the default method).
# max_model_len should be greater than image_feature_size
with vllm_runner(
source_model,
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True,
default_torch_num_threads=1,
) as vllm_model:
with vllm_runner(source_model,
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
source_outputs_per_image = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
@ -62,16 +59,13 @@ def run_awq_test(
for prompts, images in inputs_per_image
]
with vllm_runner(
quant_model,
quantization="awq",
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True,
default_torch_num_threads=1,
) as vllm_model:
with vllm_runner(quant_model,
quantization="awq",
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
quant_outputs_per_image = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
@ -114,8 +108,12 @@ def run_awq_test(
@pytest.mark.parametrize("num_logprobs", [5])
@torch.inference_mode()
def test_awq_models(vllm_runner, image_assets, source_model, quant_model,
size_factors, dtype, max_tokens, num_logprobs) -> None:
size_factors, dtype, max_tokens, num_logprobs,
monkeypatch) -> None:
# Test V1: this test hangs during setup on single-scale input.
# TODO: fixure out why and re-enable this on V1.
monkeypatch.setenv("VLLM_USE_V1", "0")
run_awq_test(
vllm_runner,
image_assets,

View File

@ -5,7 +5,10 @@
Run `pytest tests/quantization/test_bitsandbytes.py`.
'''
import gc
import pytest
import torch
from transformers import BitsAndBytesConfig
from tests.quantization.utils import is_quant_method_supported
@ -128,15 +131,12 @@ def test_4bit_bnb_moe_model(hf_runner, vllm_runner, example_prompts,
))
with vllm_runner(model_name,
quantization='bitsandbytes',
enforce_eager=False,
default_torch_num_threads=1) as llm:
enforce_eager=False) as llm:
vllm_outputs = llm.generate_greedy_logprobs(example_prompts,
max_tokens=32,
num_logprobs=5)
with hf_runner(model_name,
model_kwargs=hf_model_kwargs,
default_torch_num_threads=1) as llm:
with hf_runner(model_name, model_kwargs=hf_model_kwargs) as llm:
transformers_outputs = llm.generate_greedy_logprobs_limit(
example_prompts, max_tokens=32, num_logprobs=5)
check_logprobs_close(
@ -174,8 +174,7 @@ def test_4bit_bnb_embedding_model(
runner="pooling",
dtype=dtype,
gpu_memory_utilization=0.5,
quantization="bitsandbytes",
default_torch_num_threads=1) as vllm_model:
quantization="bitsandbytes") as vllm_model:
vllm_outputs = vllm_model.embed(example_prompts)
hf_model_kwargs = dict(quantization_config=BitsAndBytesConfig(
@ -185,7 +184,6 @@ def test_4bit_bnb_embedding_model(
dtype=dtype,
model_kwargs=hf_model_kwargs,
is_sentence_transformer=True,
default_torch_num_threads=1,
) as hf_model:
hf_outputs = hf_model.encode(example_prompts)
@ -224,22 +222,26 @@ def validate_generated_texts(hf_runner,
with vllm_runner(model_name,
quantization=None if pre_quant else 'bitsandbytes',
tensor_parallel_size=vllm_tp_size,
enforce_eager=False,
default_torch_num_threads=1) as llm:
enforce_eager=False) as llm:
vllm_outputs = llm.generate_greedy(prompts, max_tokens)
vllm_logs = log_generated_texts(prompts, vllm_outputs, "VllmRunner")
# Clean up the GPU memory for the next test
gc.collect()
torch.cuda.empty_cache()
if hf_model_kwargs is None:
hf_model_kwargs = {}
# Run with HF runner
with hf_runner(model_name,
model_kwargs=hf_model_kwargs,
default_torch_num_threads=1) as llm:
with hf_runner(model_name, model_kwargs=hf_model_kwargs) as llm:
hf_outputs = llm.generate_greedy(prompts, max_tokens)
hf_logs = log_generated_texts(prompts, hf_outputs, "HfRunner")
# Clean up the GPU memory for the next test
gc.collect()
torch.cuda.empty_cache()
# Compare the generated strings
for hf_log, vllm_log in zip(hf_logs, vllm_logs):
hf_str = hf_log["generated_text"]

View File

@ -32,10 +32,13 @@ from ..utils import check_logprobs_close
# Due to low-precision numerical divergence, we only test logprob of 4 tokens
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("enforce_eager", [True])
@pytest.mark.parametrize("backend", ["FLASH_ATTN"])
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "XFORMERS"])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
# Due to low-precision numerical divergence, this test is too sensitive for
# the async postprocessor
@pytest.mark.parametrize("disable_async_output_proc", [True])
def test_models(
vllm_runner,
example_prompts,
@ -46,6 +49,7 @@ def test_models(
enforce_eager: bool,
backend: str,
tensor_parallel_size: int,
disable_async_output_proc: bool,
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""
@ -57,9 +61,6 @@ def test_models(
pytest.skip(
f"{kv_cache_dtype} is currently not supported on ROCm/HIP.")
if not current_platform.is_kv_cache_dtype_supported(kv_cache_dtype, None):
pytest.skip(f"{kv_cache_dtype} is not supported on this platform.")
with monkeypatch.context() as m:
m.setenv("TOKENIZERS_PARALLELISM", 'true')
m.setenv(STR_BACKEND_ENV_VAR, backend)
@ -73,6 +74,7 @@ def test_models(
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
kv_cache_dtype="auto",
disable_async_output_proc=disable_async_output_proc,
) as vllm_model:
baseline_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
@ -83,6 +85,7 @@ def test_models(
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
disable_async_output_proc=disable_async_output_proc,
) as vllm_model:
test_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
@ -107,6 +110,9 @@ def test_models(
])
# Due to low-precision numerical divergence, we only test logprob of 4 tokens
@pytest.mark.parametrize("max_tokens", [4])
# Due to low-precision numerical divergence, this test is too sensitive for
# the async postprocessor
@pytest.mark.parametrize("disable_async_output_proc", [True])
def test_cpu_models(
vllm_runner,
example_prompts,
@ -114,6 +120,7 @@ def test_cpu_models(
base_model: str,
test_model: str,
max_tokens: int,
disable_async_output_proc: bool,
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""
@ -131,6 +138,7 @@ def test_cpu_models(
max_model_len=MAX_MODEL_LEN,
dtype="bfloat16",
kv_cache_dtype="auto",
disable_async_output_proc=disable_async_output_proc,
) as vllm_model:
baseline_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
@ -140,6 +148,7 @@ def test_cpu_models(
max_model_len=MAX_MODEL_LEN,
dtype="bfloat16",
kv_cache_dtype=kv_cache_dtype,
disable_async_output_proc=disable_async_output_proc,
) as vllm_model:
test_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)

View File

@ -448,8 +448,6 @@ _MULTIMODAL_EXAMPLE_MODELS = {
max_transformers_version="4.48", # noqa: E501
transformers_version_reason="HF model is not compatible.", # noqa: E501
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]}), # noqa: E501
"DotsOCRForCausalLM": _HfExamplesInfo("rednote-hilab/dots.ocr",
trust_remote_code=True),
"Emu3ForConditionalGeneration": _HfExamplesInfo("BAAI/Emu3-Chat-hf"),
"Ernie4_5_VLMoeForConditionalGeneration": _HfExamplesInfo("baidu/ERNIE-4.5-VL-28B-A3B-PT", # noqa: E501
trust_remote_code=True),

View File

@ -7,6 +7,8 @@ from unittest.mock import patch
import pytest
from vllm import LLM
from vllm.config import ModelImpl
from vllm.engine.llm_engine import LLMEngine as V0LLMEngine
from vllm.utils import GiB_bytes
from vllm.v1.core.kv_cache_utils import get_kv_cache_configs
from vllm.v1.engine.core import EngineCore as V1EngineCore
@ -60,6 +62,10 @@ def can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch,
False))
# Avoid calling model.forward()
def _initialize_kv_caches_v0(self) -> None:
self.cache_config.num_gpu_blocks = 0
self.cache_config.num_cpu_blocks = 0
def _initialize_kv_caches_v1(self, vllm_config):
kv_cache_specs = self.model_executor.get_kv_cache_specs()
scheduler_kv_cache_config = get_kv_cache_configs(
@ -71,15 +77,16 @@ def can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch,
# gpu_blocks (> 0), cpu_blocks, scheduler_kv_cache_config
return 1, 0, scheduler_kv_cache_config
with (patch.object(V1EngineCore, "_initialize_kv_caches",
with (patch.object(V0LLMEngine, "_initialize_kv_caches",
_initialize_kv_caches_v0),
patch.object(V1EngineCore, "_initialize_kv_caches",
_initialize_kv_caches_v1), monkeypatch.context() as m):
if model_info.v0_only:
# NOTE(woosuk): skip the test for V0-only models
return
m.setenv("VLLM_USE_V1", "0")
if model_arch in ("Phi4FlashForCausalLM", "MotifForCausalLM"):
pytest.skip(
"Differential Flash Attention backend has been removed.")
# Phi4FlashForCausalLM and MotifForCausalLM
# only supports DIFFERENTIAL_FLASH_ATTN backend
m.setenv("VLLM_ATTENTION_BACKEND", "DIFFERENTIAL_FLASH_ATTN")
if model_arch == "GptOssForCausalLM":
# FIXME: A hack to bypass FA3 assertion because our CI's L4 GPU
# has cc==8.9 which hasn't supported FA3 yet. Remove this hack when
@ -104,8 +111,8 @@ def can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch,
# these tests seem to produce leftover memory
gpu_memory_utilization=0.80,
load_format="dummy",
model_impl="transformers"
if model_arch in _TRANSFORMERS_BACKEND_MODELS else "vllm",
model_impl=ModelImpl.TRANSFORMERS
if model_arch in _TRANSFORMERS_BACKEND_MODELS else ModelImpl.VLLM,
hf_overrides=hf_overrides_fn,
max_num_seqs=model_info.max_num_seqs)

View File

@ -42,7 +42,6 @@ def test_oot_registration_text_generation(
assert rest == ""
@pytest.mark.skip(reason="This test is skipped because it failed on V1.")
@create_new_process_for_each_test()
def test_oot_registration_embedding(
monkeypatch: pytest.MonkeyPatch,
@ -63,7 +62,6 @@ def test_oot_registration_embedding(
image = convert_image_mode(ImageAsset("cherry_blossom").pil_image, "RGB")
@pytest.mark.skip(reason="This test is skipped because it failed on V1.")
@create_new_process_for_each_test()
def test_oot_registration_multimodal(
monkeypatch: pytest.MonkeyPatch,

View File

@ -5,6 +5,7 @@ import pytest
import torch
from tests.conftest import VllmRunner
from vllm.utils import set_default_torch_num_threads
@pytest.mark.parametrize(
@ -24,17 +25,19 @@ def test_inference(
prompt = dict(prompt_token_ids=[1],
multi_modal_data=dict(pixel_values=pixel_values,
location_coords=location_coords))
with vllm_runner(
model,
runner="pooling",
dtype="half",
enforce_eager=True,
skip_tokenizer_init=True,
# Limit the maximum number of sequences to avoid the
# test going OOM during the warmup run
max_num_seqs=32,
default_torch_num_threads=1,
) as vllm_model:
with (
set_default_torch_num_threads(1),
vllm_runner(
model,
runner="pooling",
dtype=torch.float16,
enforce_eager=True,
skip_tokenizer_init=True,
# Limit the maximum number of sequences to avoid the
# test going OOM during the warmup run
max_num_seqs=32,
) as vllm_model,
):
vllm_output = vllm_model.llm.encode(prompt)
assert torch.equal(

View File

@ -9,7 +9,7 @@ from vllm.platforms import current_platform
from ..conftest import HfRunner, VllmRunner
from ..utils import multi_gpu_test, prep_prompts
from .utils import check_embeddings_close, check_logprobs_close
from .utils import check_logprobs_close
def check_implementation(
@ -165,40 +165,6 @@ def test_embed_loading(vllm_runner, model):
assert model_config.using_transformers_backend()
@pytest.mark.parametrize(
"model",
[
# Encoder model
"BAAI/bge-base-en-v1.5",
])
def test_embed_correctness(hf_runner, vllm_runner, example_prompts, model):
import transformers
from packaging.version import Version
installed = Version(transformers.__version__)
required = Version("4.57.0.dev0")
if installed < required:
pytest.skip("Encoder models with the Transformers backend require "
f"transformers>={required}, but got {installed}")
with vllm_runner(model, max_model_len=512,
model_impl="transformers") as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
assert model_config.using_transformers_backend()
vllm_outputs = vllm_model.embed(example_prompts)
with hf_runner(model, is_sentence_transformer=True) as hf_model:
hf_outputs = hf_model.encode(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
@pytest.mark.parametrize(
"model",
["jason9693/Qwen2.5-1.5B-apeach"],

View File

@ -12,7 +12,7 @@ from transformers import PretrainedConfig
from vllm.config import ModelConfig, ModelDType, RunnerOption
from vllm.inputs import InputContext
from vllm.logprobs import Logprob, PromptLogprobs, SampleLogprobs
from vllm.sequence import Logprob, PromptLogprobs, SampleLogprobs
from .registry import HF_EXAMPLE_MODELS

View File

@ -1,140 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# test_audio.py
import base64
from pathlib import Path
from unittest.mock import patch
import numpy as np
import pytest
from vllm.multimodal.audio import (AudioMediaIO, AudioResampler,
resample_audio_librosa,
resample_audio_scipy)
@pytest.fixture
def dummy_audio():
return np.array([0.0, 0.1, 0.2, 0.3, 0.4], dtype=float)
def test_resample_audio_librosa(dummy_audio):
with patch("vllm.multimodal.audio.librosa.resample") as mock_resample:
mock_resample.return_value = dummy_audio * 2
out = resample_audio_librosa(dummy_audio,
orig_sr=44100,
target_sr=22050)
mock_resample.assert_called_once_with(dummy_audio,
orig_sr=44100,
target_sr=22050)
assert np.all(out == dummy_audio * 2)
def test_resample_audio_scipy(dummy_audio):
out_down = resample_audio_scipy(dummy_audio, orig_sr=4, target_sr=2)
out_up = resample_audio_scipy(dummy_audio, orig_sr=2, target_sr=4)
out_same = resample_audio_scipy(dummy_audio, orig_sr=4, target_sr=4)
assert len(out_down) == 3
assert len(out_up) == 10
assert np.all(out_same == dummy_audio)
@pytest.mark.xfail(
reason="resample_audio_scipy is buggy for non-integer ratios")
def test_resample_audio_scipy_non_integer_ratio(dummy_audio):
out = resample_audio_scipy(dummy_audio, orig_sr=5, target_sr=3)
expected_len = int(round(len(dummy_audio) * 3 / 5))
assert len(out) == expected_len
assert isinstance(out, np.ndarray)
assert np.isfinite(out).all()
def test_audio_resampler_librosa_calls_resample(dummy_audio):
resampler = AudioResampler(target_sr=22050, method="librosa")
with patch(
"vllm.multimodal.audio.resample_audio_librosa") as mock_resample:
mock_resample.return_value = dummy_audio
out = resampler.resample(dummy_audio, orig_sr=44100)
mock_resample.assert_called_once_with(dummy_audio,
orig_sr=44100,
target_sr=22050)
assert np.all(out == dummy_audio)
def test_audio_resampler_scipy_calls_resample(dummy_audio):
resampler = AudioResampler(target_sr=22050, method="scipy")
with patch("vllm.multimodal.audio.resample_audio_scipy") as mock_resample:
mock_resample.return_value = dummy_audio
out = resampler.resample(dummy_audio, orig_sr=44100)
mock_resample.assert_called_once_with(dummy_audio,
orig_sr=44100,
target_sr=22050)
assert np.all(out == dummy_audio)
def test_audio_resampler_invalid_method(dummy_audio):
resampler = AudioResampler(target_sr=22050, method="invalid")
with pytest.raises(ValueError):
resampler.resample(dummy_audio, orig_sr=44100)
def test_audio_resampler_no_target_sr(dummy_audio):
resampler = AudioResampler(target_sr=None)
with pytest.raises(RuntimeError):
resampler.resample(dummy_audio, orig_sr=44100)
@pytest.fixture
def dummy_audio_bytes():
return b"FAKEAUDIOBYTES"
def test_audio_media_io_load_bytes(dummy_audio_bytes):
audio_io = AudioMediaIO()
with patch("vllm.multimodal.audio.librosa.load") as mock_load:
mock_load.return_value = (np.array([0.1, 0.2]), 16000)
out = audio_io.load_bytes(dummy_audio_bytes)
mock_load.assert_called_once()
assert isinstance(out[0], np.ndarray)
assert out[1] == 16000
def test_audio_media_io_load_base64(dummy_audio_bytes):
audio_io = AudioMediaIO()
encoded = base64.b64encode(dummy_audio_bytes).decode("utf-8")
with patch.object(AudioMediaIO, "load_bytes") as mock_load_bytes:
mock_load_bytes.return_value = (np.array([0.1, 0.2]), 16000)
out = audio_io.load_base64("audio/wav", encoded)
mock_load_bytes.assert_called_once()
assert isinstance(out[0], np.ndarray)
assert out[1] == 16000
def test_audio_media_io_load_file():
audio_io = AudioMediaIO()
path = Path("/fake/path.wav")
with patch("vllm.multimodal.audio.librosa.load") as mock_load:
mock_load.return_value = (np.array([0.1, 0.2]), 16000)
out = audio_io.load_file(path)
mock_load.assert_called_once_with(path, sr=None)
assert isinstance(out[0], np.ndarray)
assert out[1] == 16000
def test_audio_media_io_encode_base64(dummy_audio):
audio_io = AudioMediaIO()
media = (dummy_audio, 16000)
with patch("vllm.multimodal.audio.soundfile.write") as mock_write:
def write_to_buffer(buffer, *_args, **_kwargs):
buffer.write(b"dummy_wav_data")
mock_write.side_effect = write_to_buffer
out = audio_io.encode_base64(media)
decoded = base64.b64decode(out)
assert decoded == b"dummy_wav_data"
mock_write.assert_called_once()

View File

@ -9,6 +9,7 @@ from vllm.model_executor.models.llava import (LlavaDummyInputsBuilder,
LlavaForConditionalGeneration,
LlavaMultiModalProcessor,
LlavaProcessingInfo)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
@ -17,10 +18,11 @@ from vllm.multimodal import MULTIMODAL_REGISTRY
dummy_inputs=LlavaDummyInputsBuilder)
class MyLlava(LlavaForConditionalGeneration):
def compute_logits(self,
hidden_states: torch.Tensor) -> Optional[torch.Tensor]:
def compute_logits(
self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]:
# this dummy model always predicts the first token
logits = super().compute_logits(hidden_states)
logits = super().compute_logits(hidden_states, sampling_metadata)
if logits is not None:
logits.zero_()
logits[:, 0] += 1.0

View File

@ -6,14 +6,16 @@ from typing import Optional
import torch
from vllm.model_executor.models.opt import OPTForCausalLM
from vllm.model_executor.sampling_metadata import SamplingMetadata
class MyOPTForCausalLM(OPTForCausalLM):
def compute_logits(self,
hidden_states: torch.Tensor) -> Optional[torch.Tensor]:
def compute_logits(
self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]:
# this dummy model always predicts the first token
logits = super().compute_logits(hidden_states)
logits = super().compute_logits(hidden_states, sampling_metadata)
if logits is not None:
logits.zero_()
logits[:, 0] += 1.0

Some files were not shown because too many files have changed in this diff Show More