Compare commits
8 Commits
support_gl
...
codex/remo
| Author | SHA1 | Date | |
|---|---|---|---|
| 85013bf094 | |||
| 07665f8679 | |||
| 9fac6aa30b | |||
| a53ad626d6 | |||
| 1c3dad22ff | |||
| d2a30a2d93 | |||
| 75fb112d80 | |||
| 38db529f66 |
@ -280,7 +280,7 @@ steps:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/executor
|
||||
- pytest -v -s v1/offloading
|
||||
- pytest -v -s v1/kv_offload
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/logits_processors
|
||||
- pytest -v -s v1/worker
|
||||
|
||||
@ -1,15 +1,12 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import asyncio
|
||||
import threading
|
||||
from typing import Optional
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.outputs import RequestOutput
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.v1.metrics.loggers import AggregatedStatLogger, LoggingStatLogger
|
||||
|
||||
"""
|
||||
To run this example, run the following commands simultaneously with
|
||||
@ -25,67 +22,37 @@ send a request to the instance with DP rank 1.
|
||||
"""
|
||||
|
||||
|
||||
def _do_background_logging(engine, interval, stop_event):
|
||||
try:
|
||||
while not stop_event.is_set():
|
||||
asyncio.run(engine.do_log_stats())
|
||||
stop_event.wait(interval)
|
||||
except Exception as e:
|
||||
print(f"vLLM background logging shutdown: {e}")
|
||||
pass
|
||||
|
||||
|
||||
async def main():
|
||||
engine_args = AsyncEngineArgs(
|
||||
model="ibm-research/PowerMoE-3b",
|
||||
data_parallel_size=2,
|
||||
tensor_parallel_size=1,
|
||||
dtype="auto",
|
||||
max_model_len=2048,
|
||||
data_parallel_address="127.0.0.1",
|
||||
data_parallel_rpc_port=62300,
|
||||
data_parallel_size_local=1,
|
||||
enforce_eager=True,
|
||||
enable_log_requests=True,
|
||||
disable_custom_all_reduce=True,
|
||||
)
|
||||
|
||||
def per_engine_logger_factory(config: VllmConfig, rank: int) -> LoggingStatLogger:
|
||||
return LoggingStatLogger(config, rank)
|
||||
engine_client = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
|
||||
engine_client = AsyncLLMEngine.from_engine_args(
|
||||
engine_args,
|
||||
# Example: Using both regular loggers and aggregated logger
|
||||
stat_loggers=[per_engine_logger_factory, AggregatedStatLogger],
|
||||
)
|
||||
stop_logging_event = threading.Event()
|
||||
logging_thread = threading.Thread(
|
||||
target=_do_background_logging,
|
||||
args=(engine_client, 5, stop_logging_event),
|
||||
daemon=True,
|
||||
)
|
||||
logging_thread.start()
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.7,
|
||||
top_p=0.9,
|
||||
max_tokens=100,
|
||||
)
|
||||
num_prompts = 10
|
||||
for i in range(num_prompts):
|
||||
prompt = "Who won the 2004 World Series?"
|
||||
final_output: Optional[RequestOutput] = None
|
||||
async for output in engine_client.generate(
|
||||
prompt=prompt,
|
||||
sampling_params=sampling_params,
|
||||
request_id=f"abcdef-{i}",
|
||||
data_parallel_rank=1,
|
||||
):
|
||||
final_output = output
|
||||
if final_output:
|
||||
print(final_output.outputs[0].text)
|
||||
|
||||
stop_logging_event.set()
|
||||
logging_thread.join()
|
||||
prompt = "Who won the 2004 World Series?"
|
||||
final_output: Optional[RequestOutput] = None
|
||||
async for output in engine_client.generate(
|
||||
prompt=prompt,
|
||||
sampling_params=sampling_params,
|
||||
request_id="abcdef",
|
||||
data_parallel_rank=1,
|
||||
):
|
||||
final_output = output
|
||||
if final_output:
|
||||
print(final_output.outputs[0].text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -18,7 +18,7 @@ from vllm.platforms import current_platform
|
||||
from vllm.sampling_params import RequestOutputKind
|
||||
from vllm.utils import set_default_torch_num_threads
|
||||
from vllm.v1.engine.async_llm import AsyncLLM
|
||||
from vllm.v1.metrics.loggers import AggregatedStatLogger, LoggingStatLogger
|
||||
from vllm.v1.metrics.loggers import LoggingStatLogger
|
||||
|
||||
if not current_platform.is_cuda():
|
||||
pytest.skip(reason="V1 currently only supported on CUDA.",
|
||||
@ -389,15 +389,6 @@ class MockLoggingStatLogger(LoggingStatLogger):
|
||||
self.log = MagicMock()
|
||||
|
||||
|
||||
class MockAggregatedStatLogger(AggregatedStatLogger):
|
||||
|
||||
def __init__(self,
|
||||
vllm_config: VllmConfig,
|
||||
engine_indexes: Optional[list[int]] = None):
|
||||
super().__init__(vllm_config, engine_indexes)
|
||||
self.log = MagicMock()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_customize_loggers(monkeypatch):
|
||||
"""Test that we can customize the loggers.
|
||||
@ -424,35 +415,6 @@ async def test_customize_loggers(monkeypatch):
|
||||
stat_loggers[0][0].log.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_customize_aggregated_loggers(monkeypatch):
|
||||
"""Test that we can customize the aggregated loggers.
|
||||
If a customized logger is provided at the init, it should
|
||||
be added to the default loggers.
|
||||
"""
|
||||
|
||||
with monkeypatch.context() as m, ExitStack() as after:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
|
||||
with set_default_torch_num_threads(1):
|
||||
engine = AsyncLLM.from_engine_args(
|
||||
TEXT_ENGINE_ARGS,
|
||||
stat_loggers=[MockLoggingStatLogger, MockAggregatedStatLogger],
|
||||
)
|
||||
after.callback(engine.shutdown)
|
||||
|
||||
await engine.do_log_stats()
|
||||
|
||||
stat_loggers = engine.logger_manager.per_engine_logger_dict
|
||||
assert len(stat_loggers) == 1
|
||||
assert len(
|
||||
stat_loggers[0]) == 2 # LoggingStatLogger + MockLoggingStatLogger
|
||||
aggregated_loggers = engine.logger_manager.aggregated_loggers
|
||||
assert len(aggregated_loggers) == 1
|
||||
aggregated_loggers[0].log.assert_called_once()
|
||||
stat_loggers[0][0].log.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="module")
|
||||
async def test_dp_rank_argument(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m, ExitStack() as after:
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from vllm.v1.offloading.abstract import LoadStoreSpec
|
||||
from vllm.v1.offloading.worker.worker import (OffloadingHandler,
|
||||
from vllm.v1.kv_offload.abstract import LoadStoreSpec
|
||||
from vllm.v1.kv_offload.worker.worker import (OffloadingHandler,
|
||||
OffloadingWorker, TransferResult,
|
||||
TransferSpec)
|
||||
|
||||
@ -50,8 +50,8 @@ ALLOWED_FILES = set([
|
||||
# cloudpickle
|
||||
'vllm/worker/worker_base.py',
|
||||
'vllm/executor/mp_distributed_executor.py',
|
||||
'vllm/executor/ray_distributed_executor.py',
|
||||
'vllm/entrypoints/llm.py',
|
||||
'vllm/v1/executor/ray_distributed_executor.py',
|
||||
'tests/utils.py',
|
||||
# pickle and cloudpickle
|
||||
'vllm/utils/__init__.py',
|
||||
|
||||
@ -563,18 +563,6 @@ class CompilationConfig:
|
||||
self.cudagraph_mode = CUDAGraphMode.FULL
|
||||
self.splitting_ops = []
|
||||
|
||||
if envs.VLLM_ALL2ALL_BACKEND == "deepep_high_throughput":
|
||||
# exclude MoE dispatch/combine from capture by ensuring
|
||||
# piecewise splitting includes them, so communication remains
|
||||
# outside CUDA graphs while compute can still be graphed.
|
||||
moe_ops = [
|
||||
"vllm.moe_forward",
|
||||
"vllm.moe_forward_shared",
|
||||
]
|
||||
for op in moe_ops:
|
||||
if op not in self.splitting_ops:
|
||||
self.splitting_ops.append(op)
|
||||
|
||||
def splitting_ops_contain_attention(self) -> bool:
|
||||
return self.splitting_ops is not None and all(
|
||||
op in self.splitting_ops for op in self._attention_ops)
|
||||
|
||||
@ -1,173 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Workaround for https://github.com/python/cpython/issues/86296
|
||||
#
|
||||
# From https://github.com/aio-libs/async-timeout/blob/master/async_timeout/__init__.py
|
||||
# Licensed under the Apache License (Apache-2.0)
|
||||
|
||||
import asyncio
|
||||
import enum
|
||||
import sys
|
||||
from types import TracebackType
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
if sys.version_info[:2] >= (3, 11):
|
||||
from asyncio import timeout as asyncio_timeout
|
||||
else:
|
||||
|
||||
class _State(enum.Enum):
|
||||
INIT = "INIT"
|
||||
ENTER = "ENTER"
|
||||
TIMEOUT = "TIMEOUT"
|
||||
EXIT = "EXIT"
|
||||
|
||||
class Timeout:
|
||||
# Internal class, please don't instantiate it directly
|
||||
# Use timeout() and timeout_at() public factories instead.
|
||||
#
|
||||
# Implementation note: `async with timeout()` is preferred
|
||||
# over `with timeout()`.
|
||||
# While technically the Timeout class implementation
|
||||
# doesn't need to be async at all,
|
||||
# the `async with` statement explicitly points that
|
||||
# the context manager should be used from async function context.
|
||||
#
|
||||
# This design allows to avoid many silly misusages.
|
||||
#
|
||||
# TimeoutError is raised immediately when scheduled
|
||||
# if the deadline is passed.
|
||||
# The purpose is to time out as soon as possible
|
||||
# without waiting for the next await expression.
|
||||
|
||||
__slots__ = ("_deadline", "_loop", "_state", "_timeout_handler")
|
||||
|
||||
def __init__(self, deadline: Optional[float],
|
||||
loop: asyncio.AbstractEventLoop) -> None:
|
||||
self._loop = loop
|
||||
self._state = _State.INIT
|
||||
|
||||
self._timeout_handler = None # type: Optional[asyncio.Handle]
|
||||
if deadline is None:
|
||||
self._deadline = None # type: Optional[float]
|
||||
else:
|
||||
self.update(deadline)
|
||||
|
||||
async def __aenter__(self) -> "Timeout":
|
||||
self._do_enter()
|
||||
return self
|
||||
|
||||
async def __aexit__(
|
||||
self,
|
||||
exc_type: Optional[Type[BaseException]],
|
||||
exc_val: Optional[BaseException],
|
||||
exc_tb: Optional[TracebackType],
|
||||
) -> Optional[bool]:
|
||||
self._do_exit(exc_type)
|
||||
return None
|
||||
|
||||
@property
|
||||
def expired(self) -> bool:
|
||||
"""Is timeout expired during execution?"""
|
||||
return self._state == _State.TIMEOUT
|
||||
|
||||
@property
|
||||
def deadline(self) -> Optional[float]:
|
||||
return self._deadline
|
||||
|
||||
def reject(self) -> None:
|
||||
"""Reject scheduled timeout if any."""
|
||||
# cancel is maybe better name but
|
||||
# task.cancel() raises CancelledError in asyncio world.
|
||||
if self._state not in (_State.INIT, _State.ENTER):
|
||||
raise RuntimeError(f"invalid state {self._state.value}")
|
||||
self._reject()
|
||||
|
||||
def _reject(self) -> None:
|
||||
if self._timeout_handler is not None:
|
||||
self._timeout_handler.cancel()
|
||||
self._timeout_handler = None
|
||||
|
||||
def shift(self, delay: float) -> None:
|
||||
"""Advance timeout on delay seconds.
|
||||
The delay can be negative.
|
||||
Raise RuntimeError if shift is called when deadline is not scheduled
|
||||
"""
|
||||
deadline = self._deadline
|
||||
if deadline is None:
|
||||
raise RuntimeError(
|
||||
"cannot shift timeout if deadline is not scheduled")
|
||||
self.update(deadline + delay)
|
||||
|
||||
def update(self, deadline: float) -> None:
|
||||
"""Set deadline to absolute value.
|
||||
deadline argument points on the time in the same clock system
|
||||
as loop.time().
|
||||
If new deadline is in the past the timeout is raised immediately.
|
||||
Please note: it is not POSIX time but a time with
|
||||
undefined starting base, e.g. the time of the system power on.
|
||||
"""
|
||||
if self._state == _State.EXIT:
|
||||
raise RuntimeError(
|
||||
"cannot reschedule after exit from context manager")
|
||||
if self._state == _State.TIMEOUT:
|
||||
raise RuntimeError("cannot reschedule expired timeout")
|
||||
if self._timeout_handler is not None:
|
||||
self._timeout_handler.cancel()
|
||||
self._deadline = deadline
|
||||
if self._state != _State.INIT:
|
||||
self._reschedule()
|
||||
|
||||
def _reschedule(self) -> None:
|
||||
assert self._state == _State.ENTER
|
||||
deadline = self._deadline
|
||||
if deadline is None:
|
||||
return
|
||||
|
||||
now = self._loop.time()
|
||||
if self._timeout_handler is not None:
|
||||
self._timeout_handler.cancel()
|
||||
|
||||
task = asyncio.current_task()
|
||||
if deadline <= now:
|
||||
self._timeout_handler = self._loop.call_soon(
|
||||
self._on_timeout, task)
|
||||
else:
|
||||
self._timeout_handler = self._loop.call_at(
|
||||
deadline, self._on_timeout, task)
|
||||
|
||||
def _do_enter(self) -> None:
|
||||
if self._state != _State.INIT:
|
||||
raise RuntimeError(f"invalid state {self._state.value}")
|
||||
self._state = _State.ENTER
|
||||
self._reschedule()
|
||||
|
||||
def _do_exit(self, exc_type: Optional[Type[BaseException]]) -> None:
|
||||
if exc_type is asyncio.CancelledError and \
|
||||
self._state == _State.TIMEOUT:
|
||||
self._timeout_handler = None
|
||||
raise asyncio.TimeoutError
|
||||
# timeout has not expired
|
||||
self._state = _State.EXIT
|
||||
self._reject()
|
||||
return None
|
||||
|
||||
def _on_timeout(self, task: "Optional[asyncio.Task[Any]]") -> None:
|
||||
if task:
|
||||
task.cancel()
|
||||
self._state = _State.TIMEOUT
|
||||
# drop the reference early
|
||||
self._timeout_handler = None
|
||||
|
||||
def asyncio_timeout(delay: Optional[float]) -> Timeout:
|
||||
"""timeout context manager.
|
||||
Useful in cases when you want to apply timeout logic around block
|
||||
of code or in cases when asyncio.wait_for is not suitable. For example:
|
||||
>>> async with timeout(0.001):
|
||||
... async with aiohttp.get('https://github.com') as r:
|
||||
... await r.text()
|
||||
delay - value in seconds or None to disable timeout logic
|
||||
"""
|
||||
loop = asyncio.get_running_loop()
|
||||
deadline = loop.time() + delay if delay is not None else None
|
||||
return Timeout(deadline, loop)
|
||||
@ -433,9 +433,9 @@ class LLMEngine:
|
||||
f"ExecutorBase. Got {distributed_executor_backend}.")
|
||||
executor_class = distributed_executor_backend
|
||||
elif distributed_executor_backend == "ray":
|
||||
from vllm.executor.ray_distributed_executor import (
|
||||
RayDistributedExecutor)
|
||||
executor_class = RayDistributedExecutor
|
||||
raise RuntimeError(
|
||||
"The Ray distributed executor is only available in the v1 "
|
||||
"engine. Enable it by setting 'VLLM_USE_V1=1'.")
|
||||
elif distributed_executor_backend == "mp":
|
||||
from vllm.executor.mp_distributed_executor import (
|
||||
MultiprocessingDistributedExecutor)
|
||||
|
||||
@ -1,699 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import cloudpickle
|
||||
import msgspec
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.executor.executor_base import (
|
||||
DistributedExecutorBase) # yapf: disable
|
||||
from vllm.executor.msgspec_utils import encode_hook
|
||||
from vllm.executor.ray_utils import (RayWorkerWrapper, initialize_ray_cluster,
|
||||
ray)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.ray.ray_env import get_env_vars_to_copy
|
||||
from vllm.sequence import ExecuteModelRequest
|
||||
from vllm.utils import (_run_task_with_lock, get_distributed_init_method,
|
||||
get_ip, get_open_port, make_async)
|
||||
|
||||
if ray is not None:
|
||||
from ray.actor import ActorHandle
|
||||
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
||||
else:
|
||||
ActorHandle = None
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ray.util.placement_group import PlacementGroup
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class RayWorkerMetaData:
|
||||
"""
|
||||
Metadata for a Ray worker.
|
||||
The order of ray worker creation can be random,
|
||||
and we need to reset the rank after creating all workers.
|
||||
"""
|
||||
worker: ActorHandle
|
||||
created_rank: int
|
||||
adjusted_rank: int = -1
|
||||
ip: str = ""
|
||||
|
||||
|
||||
class RayDistributedExecutor(DistributedExecutorBase):
|
||||
"""Ray-based distributed executor"""
|
||||
|
||||
# These env vars are worker-specific, therefore are NOT copied
|
||||
# from the driver to the workers
|
||||
WORKER_SPECIFIC_ENV_VARS = {
|
||||
"VLLM_HOST_IP", "VLLM_HOST_PORT", "LOCAL_RANK", "CUDA_VISIBLE_DEVICES"
|
||||
}
|
||||
|
||||
# These non-vLLM env vars are copied from the driver to workers
|
||||
ADDITIONAL_ENV_VARS = {"HF_TOKEN", "HUGGING_FACE_HUB_TOKEN"}
|
||||
|
||||
uses_ray: bool = True
|
||||
|
||||
def _init_executor(self) -> None:
|
||||
self.forward_dag: Optional[ray.dag.CompiledDAG] = None
|
||||
if envs.VLLM_USE_V1:
|
||||
# V1 uses SPMD worker and compiled DAG
|
||||
os.environ["VLLM_USE_RAY_SPMD_WORKER"] = "1"
|
||||
os.environ["VLLM_USE_RAY_COMPILED_DAG"] = "1"
|
||||
|
||||
# For TPU or XPU, avoid compiling NVIDIA's NCCL
|
||||
if current_platform.is_tpu() or current_platform.is_xpu():
|
||||
os.environ["VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE"] = "shm"
|
||||
|
||||
# If the env var is set, it uses the Ray's compiled DAG API
|
||||
# which optimizes the control plane overhead.
|
||||
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
|
||||
# Currently, this requires USE_RAY_SPMD_WORKER=True.
|
||||
self.use_ray_compiled_dag = envs.VLLM_USE_RAY_COMPILED_DAG
|
||||
# If the env var is set, then we do not distinguish between the
|
||||
# "driver worker" vs other workers. Also, the rank 0 worker will
|
||||
# be executed in a remote Ray worker. Currently this requires
|
||||
# USE_RAY_COMPILED_DAG=True.
|
||||
self.use_ray_spmd_worker = envs.VLLM_USE_RAY_SPMD_WORKER
|
||||
if self.use_ray_compiled_dag:
|
||||
assert self.use_ray_spmd_worker, (
|
||||
"VLLM_USE_RAY_COMPILED_DAG=1 requires "
|
||||
"VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
if self.use_ray_spmd_worker:
|
||||
# TODO: Support SPMD worker for non-DAG Ray executor.
|
||||
assert self.use_ray_compiled_dag, (
|
||||
"VLLM_USE_RAY_SPMD_WORKER=1 requires "
|
||||
"VLLM_USE_RAY_COMPILED_DAG=1")
|
||||
|
||||
assert self.uses_ray
|
||||
initialize_ray_cluster(self.parallel_config)
|
||||
placement_group = self.parallel_config.placement_group
|
||||
|
||||
# Disable Ray usage stats collection.
|
||||
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0")
|
||||
if ray_usage != "1":
|
||||
os.environ["RAY_USAGE_STATS_ENABLED"] = "0"
|
||||
|
||||
# Create the parallel GPU workers.
|
||||
self._init_workers_ray(placement_group)
|
||||
|
||||
self.input_encoder = msgspec.msgpack.Encoder(enc_hook=encode_hook)
|
||||
self.output_decoder = msgspec.msgpack.Decoder(
|
||||
Optional[List[SamplerOutput]])
|
||||
self.use_v1 = envs.VLLM_USE_V1
|
||||
|
||||
self.pp_locks: Optional[List[asyncio.Lock]] = None
|
||||
if not self.use_ray_compiled_dag:
|
||||
self.driver_exec_method = make_async(
|
||||
self.driver_worker.execute_method)
|
||||
|
||||
def shutdown(self) -> None:
|
||||
if logger:
|
||||
# Somehow logger can be None here.
|
||||
logger.info(
|
||||
"Shutting down Ray distributed executor. If you see error log "
|
||||
"from logging.cc regarding SIGTERM received, please ignore "
|
||||
"because this is the expected termination process in Ray.")
|
||||
if hasattr(self, "forward_dag") and self.forward_dag is not None:
|
||||
self.forward_dag.teardown()
|
||||
import ray
|
||||
for worker in self.workers:
|
||||
ray.kill(worker)
|
||||
self.forward_dag = None
|
||||
|
||||
def _configure_ray_workers_use_nsight(self,
|
||||
ray_remote_kwargs) -> Dict[str, Any]:
|
||||
# If nsight profiling is enabled, we need to set the profiling
|
||||
# configuration for the ray workers as runtime env.
|
||||
runtime_env = ray_remote_kwargs.setdefault("runtime_env", {})
|
||||
runtime_env.update({
|
||||
"nsight": {
|
||||
"t": "cuda,cudnn,cublas",
|
||||
"o": "'worker_process_%p'",
|
||||
"cuda-graph-trace": "node",
|
||||
}
|
||||
})
|
||||
|
||||
return ray_remote_kwargs
|
||||
|
||||
# child class could overwrite this to return actual env vars.
|
||||
def _get_env_vars_to_be_updated(self):
|
||||
return self._env_vars_for_all_workers
|
||||
|
||||
def _init_workers_ray(self, placement_group: "PlacementGroup",
|
||||
**ray_remote_kwargs):
|
||||
num_gpus = envs.VLLM_RAY_PER_WORKER_GPUS
|
||||
|
||||
# The driver dummy worker does not actually use any resources.
|
||||
# It holds the resource for the driver worker.
|
||||
self.driver_dummy_worker: Optional[RayWorkerWrapper] = None
|
||||
# The remaining workers are the actual ray actors.
|
||||
self.workers: List[RayWorkerWrapper] = []
|
||||
|
||||
# Used in ray compiled DAG: indexed first by PP rank,
|
||||
# and then TP rank. In other words, the inner list is
|
||||
# the TP group of workers for a PP rank.
|
||||
self.pp_tp_workers: List[List[RayWorkerWrapper]] = []
|
||||
|
||||
if self.parallel_config.ray_workers_use_nsight:
|
||||
ray_remote_kwargs = self._configure_ray_workers_use_nsight(
|
||||
ray_remote_kwargs)
|
||||
|
||||
logger.info("use_ray_spmd_worker: %s", self.use_ray_spmd_worker)
|
||||
|
||||
# Create the workers.
|
||||
bundle_indices: List[int]
|
||||
if envs.VLLM_RAY_BUNDLE_INDICES:
|
||||
# Use the bundle indices specified by the user.
|
||||
bundle_indices = list(
|
||||
map(int, envs.VLLM_RAY_BUNDLE_INDICES.split(",")))
|
||||
assert len(bundle_indices) == self.parallel_config.world_size, \
|
||||
("VLLM_RAY_BUNDLE_INDICES must have the same size"
|
||||
f" as the world size, but got {bundle_indices=} "
|
||||
f"and {self.parallel_config.world_size=}")
|
||||
assert len(set(bundle_indices)) == len(bundle_indices), \
|
||||
("VLLM_RAY_BUNDLE_INDICES cannot have duplicate values,"
|
||||
f" but got {bundle_indices=}")
|
||||
else:
|
||||
# use the first N bundles that have GPU resources.
|
||||
bundle_indices = []
|
||||
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
|
||||
if bundle.get(current_platform.ray_device_key, 0):
|
||||
bundle_indices.append(bundle_id)
|
||||
bundle_indices = bundle_indices[:self.parallel_config.world_size]
|
||||
|
||||
worker_metadata: List[RayWorkerMetaData] = []
|
||||
driver_ip = get_ip()
|
||||
for rank, bundle_id in enumerate(bundle_indices):
|
||||
scheduling_strategy = PlacementGroupSchedulingStrategy(
|
||||
placement_group=placement_group,
|
||||
placement_group_capture_child_tasks=True,
|
||||
placement_group_bundle_index=bundle_id,
|
||||
)
|
||||
|
||||
if current_platform.ray_device_key == "GPU":
|
||||
# NV+AMD GPUs, and Intel XPUs
|
||||
worker = ray.remote(
|
||||
num_cpus=0,
|
||||
num_gpus=num_gpus,
|
||||
scheduling_strategy=scheduling_strategy,
|
||||
**ray_remote_kwargs,
|
||||
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
|
||||
rpc_rank=rank)
|
||||
else:
|
||||
worker = ray.remote(
|
||||
num_cpus=0,
|
||||
num_gpus=0,
|
||||
resources={current_platform.ray_device_key: num_gpus},
|
||||
scheduling_strategy=scheduling_strategy,
|
||||
**ray_remote_kwargs,
|
||||
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
|
||||
rpc_rank=rank)
|
||||
worker_metadata.append(
|
||||
RayWorkerMetaData(worker=worker, created_rank=rank))
|
||||
|
||||
worker_ips = ray.get([
|
||||
each.worker.get_node_ip.remote() # type: ignore[attr-defined]
|
||||
for each in worker_metadata
|
||||
])
|
||||
|
||||
for each, ip in zip(worker_metadata, worker_ips):
|
||||
each.ip = ip
|
||||
|
||||
if not self.use_ray_spmd_worker:
|
||||
for i, each in enumerate(worker_metadata):
|
||||
# find and remove the dummy worker from the list
|
||||
worker = each.worker
|
||||
worker_ip = each.ip
|
||||
if self.driver_dummy_worker is None and worker_ip == driver_ip:
|
||||
# If the worker is on the same node as the driver, we use it
|
||||
# as the resource holder for the driver process.
|
||||
self.driver_dummy_worker = worker
|
||||
self.driver_worker = RayWorkerWrapper(
|
||||
vllm_config=self.vllm_config, rpc_rank=0)
|
||||
worker_metadata.pop(i)
|
||||
break
|
||||
|
||||
logger.debug("workers: %s", worker_metadata)
|
||||
logger.debug("driver_dummy_worker: %s", self.driver_dummy_worker)
|
||||
if not self.use_ray_spmd_worker and self.driver_dummy_worker is None:
|
||||
raise ValueError(
|
||||
"Ray does not allocate any GPUs on the driver node."
|
||||
f"Driver IP: {driver_ip}, worker IPs: {worker_ips}."
|
||||
"Consider adjusting the Ray placement group or running "
|
||||
"the driver on a GPU node.")
|
||||
|
||||
ip_counts: Dict[str, int] = {}
|
||||
for ip in worker_ips:
|
||||
ip_counts[ip] = ip_counts.get(ip, 0) + 1
|
||||
|
||||
def sort_by_driver_then_worker_ip(item: RayWorkerMetaData):
|
||||
"""
|
||||
Sort the workers based on 3 properties:
|
||||
1. If the worker is on the same node as the driver (vllm engine),
|
||||
it should be placed first.
|
||||
2. Then, if the worker is on a node with fewer workers, it should
|
||||
be placed first.
|
||||
3. Finally, if the work is on a node with smaller IP address, it
|
||||
should be placed first.
|
||||
"""
|
||||
ip = item.ip
|
||||
return (0 if ip == driver_ip else 1, ip_counts[ip], ip)
|
||||
|
||||
# After sorting, the workers on the same node will be
|
||||
# close to each other, and the workers on the driver
|
||||
# node will be placed first.
|
||||
sorted_worker_metadata = sorted(worker_metadata,
|
||||
key=sort_by_driver_then_worker_ip)
|
||||
start_rank = 0 if self.use_ray_spmd_worker else 1
|
||||
for i, item in enumerate(sorted_worker_metadata):
|
||||
item.adjusted_rank = i + start_rank
|
||||
self.workers = [item.worker for item in sorted_worker_metadata]
|
||||
rerank_mapping = {
|
||||
item.created_rank: item.adjusted_rank
|
||||
for item in sorted_worker_metadata
|
||||
}
|
||||
self._run_workers("adjust_rank", rerank_mapping)
|
||||
|
||||
# Get the set of GPU IDs used on each node.
|
||||
worker_node_and_gpu_ids = []
|
||||
for worker in [self.driver_dummy_worker] + self.workers:
|
||||
if worker is None:
|
||||
# driver_dummy_worker can be None when using ray spmd worker.
|
||||
continue
|
||||
worker_node_and_gpu_ids.append(
|
||||
ray.get(worker.get_node_and_gpu_ids.remote()) \
|
||||
) # type: ignore
|
||||
|
||||
node_workers = defaultdict(list) # node id -> list of worker ranks
|
||||
node_gpus = defaultdict(list) # node id -> list of gpu ids
|
||||
|
||||
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids):
|
||||
node_workers[node_id].append(i)
|
||||
# `gpu_ids` can be a list of strings or integers.
|
||||
# convert them to integers for consistency.
|
||||
# NOTE: gpu_ids can be larger than 9 (e.g. 16 GPUs),
|
||||
# string sorting is not sufficient.
|
||||
# see https://github.com/vllm-project/vllm/issues/5590
|
||||
gpu_ids = [int(x) for x in gpu_ids]
|
||||
node_gpus[node_id].extend(gpu_ids)
|
||||
for node_id, gpu_ids in node_gpus.items():
|
||||
node_gpus[node_id] = sorted(gpu_ids)
|
||||
|
||||
all_ips = set(worker_ips + [driver_ip])
|
||||
n_ips = len(all_ips)
|
||||
n_nodes = len(node_workers)
|
||||
|
||||
if n_nodes != n_ips:
|
||||
raise RuntimeError(
|
||||
f"Every node should have a unique IP address. Got {n_nodes}"
|
||||
f" nodes with node ids {list(node_workers.keys())} and "
|
||||
f"{n_ips} unique IP addresses {all_ips}. Please check your"
|
||||
" network configuration. If you set `VLLM_HOST_IP`"
|
||||
" environment variable, make sure it is unique for"
|
||||
" each node.")
|
||||
|
||||
# Set environment variables for the driver and workers.
|
||||
all_args_to_update_environment_variables = [{
|
||||
current_platform.device_control_env_var:
|
||||
",".join(map(str, node_gpus[node_id])),
|
||||
} for (node_id, _) in worker_node_and_gpu_ids]
|
||||
|
||||
# Environment variables to copy from driver to workers
|
||||
env_vars_to_copy = get_env_vars_to_copy(
|
||||
exclude_vars=self.WORKER_SPECIFIC_ENV_VARS,
|
||||
additional_vars=set(current_platform.additional_env_vars).union(
|
||||
self.ADDITIONAL_ENV_VARS),
|
||||
destination="workers")
|
||||
|
||||
# Copy existing env vars to each worker's args
|
||||
for args in all_args_to_update_environment_variables:
|
||||
# TODO: refactor platform-specific env vars
|
||||
for name in env_vars_to_copy:
|
||||
if name in os.environ:
|
||||
args[name] = os.environ[name]
|
||||
|
||||
self._env_vars_for_all_workers = (
|
||||
all_args_to_update_environment_variables)
|
||||
|
||||
self._run_workers("update_environment_variables",
|
||||
self._get_env_vars_to_be_updated())
|
||||
|
||||
if len(node_gpus) == 1:
|
||||
# in single node case, we don't need to get the IP address.
|
||||
# the loopback address is sufficient
|
||||
# NOTE: a node may have several IP addresses, one for each
|
||||
# network interface. `get_ip()` might return any of them,
|
||||
# while they might not work for communication inside the node
|
||||
# if the network setup is complicated. Using the loopback address
|
||||
# solves this issue, as it always works for communication inside
|
||||
# the node.
|
||||
driver_ip = "127.0.0.1"
|
||||
distributed_init_method = get_distributed_init_method(
|
||||
driver_ip, get_open_port())
|
||||
|
||||
# Initialize the actual workers inside worker wrapper.
|
||||
all_kwargs = []
|
||||
for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids):
|
||||
local_rank = node_workers[node_id].index(rank)
|
||||
kwargs = dict(
|
||||
vllm_config=self.vllm_config,
|
||||
local_rank=local_rank,
|
||||
rank=rank,
|
||||
distributed_init_method=distributed_init_method,
|
||||
is_driver_worker=(not self.parallel_config)
|
||||
or (rank % self.parallel_config.tensor_parallel_size == 0),
|
||||
)
|
||||
all_kwargs.append(kwargs)
|
||||
self._run_workers("init_worker", all_kwargs)
|
||||
|
||||
self._run_workers("init_device")
|
||||
self._run_workers("load_model",
|
||||
max_concurrent_workers=self.parallel_config.
|
||||
max_parallel_loading_workers)
|
||||
|
||||
if self.use_ray_spmd_worker:
|
||||
for pp_rank in range(self.parallel_config.pipeline_parallel_size):
|
||||
self.pp_tp_workers.append([])
|
||||
for tp_rank in range(
|
||||
self.parallel_config.tensor_parallel_size):
|
||||
# PP=2, TP=4
|
||||
# pp_tp_workers = [[0, 1, 2, 3], [4, 5, 6, 7]]
|
||||
rank = (pp_rank * self.parallel_config.tensor_parallel_size
|
||||
) + tp_rank
|
||||
assert len(self.pp_tp_workers[pp_rank]) == tp_rank
|
||||
assert pp_rank < len(self.pp_tp_workers)
|
||||
self.pp_tp_workers[pp_rank].append(self.workers[rank])
|
||||
|
||||
# This is the list of workers that are rank 0 of each TP group EXCEPT
|
||||
# global rank 0. These are the workers that will broadcast to the
|
||||
# rest of the workers.
|
||||
self.tp_driver_workers: List[RayWorkerWrapper] = []
|
||||
# This is the list of workers that are not drivers and not the first
|
||||
# worker in a TP group. These are the workers that will be
|
||||
# broadcasted to.
|
||||
self.non_driver_workers: List[RayWorkerWrapper] = []
|
||||
|
||||
# Enforce rank order for correct rank to return final output.
|
||||
for index, worker in enumerate(self.workers):
|
||||
# The driver worker is rank 0 and not in self.workers.
|
||||
rank = index + 1
|
||||
if rank % self.parallel_config.tensor_parallel_size == 0:
|
||||
self.tp_driver_workers.append(worker)
|
||||
else:
|
||||
self.non_driver_workers.append(worker)
|
||||
|
||||
def _driver_execute_model(
|
||||
self, execute_model_req: Optional[ExecuteModelRequest]
|
||||
) -> Optional[List[SamplerOutput]]:
|
||||
"""Run execute_model in the driver worker.
|
||||
|
||||
Passing None will cause the driver to stop the model execution
|
||||
loop running in each of the remote workers.
|
||||
"""
|
||||
assert not self.use_ray_spmd_worker, (
|
||||
"driver_worker does not exist for VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
return self.driver_worker.execute_method("execute_model",
|
||||
execute_model_req)
|
||||
|
||||
def execute_model(
|
||||
self,
|
||||
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
|
||||
if not self.use_ray_spmd_worker:
|
||||
return super().execute_model(execute_model_req)
|
||||
|
||||
if self.forward_dag is None:
|
||||
self.forward_dag = self._compiled_ray_dag(enable_asyncio=False)
|
||||
|
||||
if self.use_v1:
|
||||
serialized_data = execute_model_req
|
||||
else:
|
||||
serialized_data = self.input_encoder.encode(execute_model_req)
|
||||
outputs = ray.get(self.forward_dag.execute(serialized_data))
|
||||
if self.use_v1:
|
||||
output = outputs[0]
|
||||
else:
|
||||
output = self.output_decoder.decode(outputs[0])
|
||||
return output
|
||||
|
||||
def _run_workers(
|
||||
self,
|
||||
method: Union[str, Callable],
|
||||
*args,
|
||||
async_run_tensor_parallel_workers_only: bool = False,
|
||||
max_concurrent_workers: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> Any:
|
||||
"""Runs the given method on all workers. Can be used in the following
|
||||
ways:
|
||||
|
||||
Args:
|
||||
- async_run_tensor_parallel_workers_only: If True the method will be
|
||||
run only in the remote TP workers, not the driver worker.
|
||||
It will also be run asynchronously and return a list of futures
|
||||
rather than blocking on the results.
|
||||
- args/kwargs: All workers share the same args/kwargs
|
||||
"""
|
||||
if isinstance(method, str):
|
||||
sent_method = method
|
||||
else:
|
||||
sent_method = cloudpickle.dumps(method)
|
||||
del method
|
||||
if self.use_ray_spmd_worker:
|
||||
assert not async_run_tensor_parallel_workers_only, (
|
||||
"async_run_tensor_parallel_workers_only is not supported for "
|
||||
"spmd mode.")
|
||||
|
||||
if max_concurrent_workers:
|
||||
raise NotImplementedError(
|
||||
"max_concurrent_workers is not supported yet.")
|
||||
|
||||
# Start the ray workers first.
|
||||
ray_workers = self.workers
|
||||
if async_run_tensor_parallel_workers_only:
|
||||
ray_workers = self.non_driver_workers
|
||||
ray_worker_outputs = [
|
||||
worker.execute_method.remote(sent_method, *args, **kwargs)
|
||||
for worker in ray_workers
|
||||
]
|
||||
|
||||
if async_run_tensor_parallel_workers_only:
|
||||
# Just return futures
|
||||
return ray_worker_outputs
|
||||
|
||||
driver_worker_output = []
|
||||
# In SPMD mode, the driver worker is the same as any other worker,
|
||||
# so we only explicitly execute on the driver worker if using a
|
||||
# non-SPMD worker class.
|
||||
if not self.use_ray_spmd_worker:
|
||||
# Start the driver worker after all the ray workers.
|
||||
driver_worker_output = [
|
||||
self.driver_worker.execute_method(sent_method, *args, **kwargs)
|
||||
]
|
||||
|
||||
# Get the results of the ray workers.
|
||||
if self.workers:
|
||||
ray_worker_outputs = ray.get(ray_worker_outputs)
|
||||
|
||||
return driver_worker_output + ray_worker_outputs
|
||||
|
||||
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
|
||||
"""Wait for futures returned from _run_workers() with
|
||||
async_run_remote_workers_only to complete."""
|
||||
ray.get(parallel_worker_tasks)
|
||||
|
||||
def _check_ray_cgraph_installation(self):
|
||||
import importlib.metadata
|
||||
|
||||
from packaging import version
|
||||
|
||||
required_version = version.parse("2.43.0")
|
||||
current_version = version.parse(importlib.metadata.version("ray"))
|
||||
if current_version < required_version:
|
||||
raise ValueError(f"Ray version {required_version} is "
|
||||
f"required, but found {current_version}")
|
||||
|
||||
import importlib.util
|
||||
cgraph_spec = importlib.util.find_spec(
|
||||
"ray.experimental.compiled_dag_ref")
|
||||
if cgraph_spec is None:
|
||||
raise ValueError("Ray Compiled Graph is not installed. "
|
||||
"Run `pip install ray[cgraph]` to install it.")
|
||||
|
||||
cupy_spec = importlib.util.find_spec("cupy")
|
||||
if (cupy_spec is None
|
||||
and envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE == "nccl"):
|
||||
raise ValueError(
|
||||
"cupy is not installed but required since "
|
||||
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE is set to 'nccl'. "
|
||||
"Run `pip install ray[cgraph]` and check cupy installation.")
|
||||
|
||||
def _compiled_ray_dag(self, enable_asyncio: bool):
|
||||
assert self.parallel_config.use_ray
|
||||
self._check_ray_cgraph_installation()
|
||||
# Enlarge the default value of "RAY_CGRAPH_get_timeout" to 300 seconds
|
||||
# (it is 10 seconds by default). This is a Ray environment variable to
|
||||
# control the timeout of getting result from a compiled graph execution,
|
||||
# i.e., the distributed execution that includes model forward runs and
|
||||
# intermediate tensor communications, in the case of vllm.
|
||||
# Note: we should set this env var before importing
|
||||
# ray.dag, otherwise it will not take effect.
|
||||
os.environ.setdefault("RAY_CGRAPH_get_timeout", "300") # noqa: SIM112
|
||||
from ray.dag import InputNode, MultiOutputNode
|
||||
logger.info("RAY_CGRAPH_get_timeout is set to %s",
|
||||
os.environ["RAY_CGRAPH_get_timeout"]) # noqa: SIM112
|
||||
logger.info("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE = %s",
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE)
|
||||
logger.info("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM = %s",
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
|
||||
|
||||
channel_type = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
|
||||
if channel_type not in ("auto", "nccl", "shm"):
|
||||
raise ValueError(
|
||||
"Invalid value for VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: "
|
||||
f"{channel_type}. Valid values are: 'auto', 'nccl', or 'shm'.")
|
||||
|
||||
with InputNode() as input_data:
|
||||
# Example DAG: PP=2, TP=4
|
||||
#
|
||||
# For V0:
|
||||
# ExecuteModelRequest -> 0 -> (ExecuteModelReq, IntermediateTensors) -> 4 -> SamplerOutput # noqa: E501
|
||||
# ExecuteModelRequest -> 1 -> (ExecuteModelReq, IntermediateTensors) -> 5 -> SamplerOutput # noqa: E501
|
||||
# ExecuteModelRequest -> 2 -> (ExecuteModelReq, IntermediateTensors) -> 6 -> SamplerOutput # noqa: E501
|
||||
# ExecuteModelRequest -> 3 -> (ExecuteModelReq, IntermediateTensors) -> 7 -> SamplerOutput # noqa: E501
|
||||
#
|
||||
# For V1:
|
||||
# SchedulerOutput -> 0 -> (SchedulerOutput, IntermediateTensors) -> 4 -> ModelRunnerOutput # noqa: E501
|
||||
# SchedulerOutput -> 1 -> (SchedulerOutput, IntermediateTensors) -> 5 -> ModelRunnerOutput # noqa: E501
|
||||
# SchedulerOutput -> 2 -> (SchedulerOutput, IntermediateTensors) -> 6 -> ModelRunnerOutput # noqa: E501
|
||||
# SchedulerOutput -> 3 -> (SchedulerOutput, IntermediateTensors) -> 7 -> ModelRunnerOutput # noqa: E501
|
||||
|
||||
# All workers in the first TP group will take in the
|
||||
# ExecuteModelRequest as input.
|
||||
outputs = [input_data for _ in self.pp_tp_workers[0]]
|
||||
for pp_rank, tp_group in enumerate(self.pp_tp_workers):
|
||||
# Each PP worker takes in the output of the previous PP worker,
|
||||
# and the TP group executes in SPMD fashion.
|
||||
if self.use_v1:
|
||||
outputs = [
|
||||
worker.execute_model_ray.
|
||||
bind( # type: ignore[attr-defined]
|
||||
outputs[i]) for i, worker in enumerate(tp_group)
|
||||
]
|
||||
else:
|
||||
outputs = [
|
||||
worker.execute_model_spmd.
|
||||
bind( # type: ignore[attr-defined]
|
||||
outputs[i]) for i, worker in enumerate(tp_group)
|
||||
]
|
||||
|
||||
last_pp_rank = len(self.pp_tp_workers) - 1
|
||||
if (pp_rank < last_pp_rank and
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE != "shm"):
|
||||
# Specify how intermediate tensors should be passed
|
||||
# between pp stages, no need to specify for the last
|
||||
# pp stage or when using shared memory (the default).
|
||||
transport = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
|
||||
outputs = [
|
||||
output.with_tensor_transport(transport=transport)
|
||||
for output in outputs
|
||||
]
|
||||
|
||||
forward_dag = MultiOutputNode(outputs)
|
||||
|
||||
if envs.VLLM_USE_RAY_WRAPPED_PP_COMM:
|
||||
from ray.experimental.channel.accelerator_context import (
|
||||
register_accelerator_context)
|
||||
|
||||
from vllm.distributed.device_communicators.ray_communicator import (
|
||||
RayPPCommunicator)
|
||||
register_accelerator_context(torch_module_name="cuda",
|
||||
communicator_cls=RayPPCommunicator)
|
||||
logger.info("Using RayPPCommunicator "
|
||||
"(which wraps vLLM _PP GroupCoordinator) "
|
||||
"for Ray Compiled Graph communication.")
|
||||
else:
|
||||
logger.info("Using Ray's NCCL communicator for "
|
||||
"Ray Compiled Graph communication.")
|
||||
|
||||
return forward_dag.experimental_compile(
|
||||
enable_asyncio=enable_asyncio,
|
||||
_overlap_gpu_communication=envs.
|
||||
VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
|
||||
|
||||
def __del__(self):
|
||||
self.shutdown()
|
||||
|
||||
async def execute_model_async(
|
||||
self,
|
||||
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
|
||||
if not self.use_ray_spmd_worker:
|
||||
return await super().execute_model_async(execute_model_req)
|
||||
|
||||
if self.forward_dag is None:
|
||||
self.forward_dag = self._compiled_ray_dag(enable_asyncio=True)
|
||||
|
||||
serialized_data = self.input_encoder.encode(execute_model_req)
|
||||
dag_future = await self.forward_dag.execute_async(serialized_data)
|
||||
output = await dag_future[0]
|
||||
return self.output_decoder.decode(output)
|
||||
|
||||
async def _driver_execute_model_async(
|
||||
self,
|
||||
execute_model_req: Optional[ExecuteModelRequest] = None
|
||||
) -> List[SamplerOutput]:
|
||||
assert not self.use_ray_spmd_worker, (
|
||||
"driver_worker does not exist for VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
if not self.tp_driver_workers:
|
||||
return await self.driver_exec_method("execute_model",
|
||||
execute_model_req)
|
||||
if self.pp_locks is None:
|
||||
# This locks each pipeline parallel stage so multiple virtual
|
||||
# engines can't execute on the same stage at the same time
|
||||
# We create the locks here to avoid creating them in the constructor
|
||||
# which uses a different asyncio loop.
|
||||
self.pp_locks = [
|
||||
asyncio.Lock()
|
||||
for _ in range(self.parallel_config.pipeline_parallel_size)
|
||||
]
|
||||
|
||||
tasks = [
|
||||
asyncio.create_task(
|
||||
_run_task_with_lock(self.driver_exec_method, self.pp_locks[0],
|
||||
"execute_model", execute_model_req))
|
||||
]
|
||||
for pp_rank, driver_worker in enumerate(self.tp_driver_workers,
|
||||
start=1):
|
||||
tasks.append(
|
||||
asyncio.create_task(
|
||||
_run_task_with_lock(driver_worker.execute_method.remote,
|
||||
self.pp_locks[pp_rank],
|
||||
"execute_model", execute_model_req)))
|
||||
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
# Only the last PP stage has the final results.
|
||||
return results[-1]
|
||||
|
||||
async def _start_worker_execution_loop(self):
|
||||
assert not self.use_ray_spmd_worker, (
|
||||
"worker loop is disabled for VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
coros = [
|
||||
worker.execute_method.remote("start_worker_execution_loop")
|
||||
for worker in self.non_driver_workers
|
||||
]
|
||||
return await asyncio.gather(*coros)
|
||||
|
||||
def check_health(self) -> None:
|
||||
# Assume that the Ray workers are healthy.
|
||||
# TODO: check the health of the Ray workers
|
||||
return
|
||||
@ -1,10 +1,11 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from .interfaces import (HasInnerState, SupportsLoRA, SupportsMultiModal,
|
||||
SupportsPP, SupportsTranscription, SupportsV0Only,
|
||||
has_inner_state, supports_lora, supports_multimodal,
|
||||
supports_pp, supports_transcription, supports_v0_only)
|
||||
from .interfaces import (HasInnerState, SupportsLoRA, SupportsMRoPE,
|
||||
SupportsMultiModal, SupportsPP, SupportsTranscription,
|
||||
SupportsV0Only, has_inner_state, supports_lora,
|
||||
supports_mrope, supports_multimodal, supports_pp,
|
||||
supports_transcription, supports_v0_only)
|
||||
from .interfaces_base import (VllmModelForPooling, VllmModelForTextGeneration,
|
||||
is_pooling_model, is_text_generation_model)
|
||||
from .registry import ModelRegistry
|
||||
@ -21,6 +22,8 @@ __all__ = [
|
||||
"supports_lora",
|
||||
"SupportsMultiModal",
|
||||
"supports_multimodal",
|
||||
"SupportsMRoPE",
|
||||
"supports_mrope",
|
||||
"SupportsPP",
|
||||
"supports_pp",
|
||||
"SupportsTranscription",
|
||||
|
||||
@ -8,6 +8,7 @@ from typing import (TYPE_CHECKING, ClassVar, Literal, Optional, Protocol,
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from transformers import PretrainedConfig
|
||||
from transformers.models.whisper.tokenization_whisper import LANGUAGES
|
||||
from typing_extensions import Self, TypeIs
|
||||
|
||||
@ -852,3 +853,70 @@ def supports_eagle3(
|
||||
model: Union[type[object], object],
|
||||
) -> Union[TypeIs[type[SupportsEagle3]], TypeIs[SupportsEagle3]]:
|
||||
return isinstance(model, SupportsEagle3)
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class SupportsMRoPE(Protocol):
|
||||
"""The interface required for all models that support M-RoPE."""
|
||||
|
||||
supports_mrope: ClassVar[Literal[True]] = True
|
||||
"""
|
||||
A flag that indicates this model supports M-RoPE.
|
||||
|
||||
Note:
|
||||
There is no need to redefine this flag if this class is in the
|
||||
MRO of your model class.
|
||||
"""
|
||||
|
||||
def get_mrope_input_positions(
|
||||
self,
|
||||
input_tokens: list[int],
|
||||
hf_config: PretrainedConfig,
|
||||
image_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
|
||||
video_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
|
||||
second_per_grid_ts: Optional[list[float]] = None,
|
||||
context_len: int = 0,
|
||||
seq_len: Optional[int] = None,
|
||||
audio_feature_lengths: Optional[torch.Tensor] = None,
|
||||
use_audio_in_video: bool = False,
|
||||
) -> tuple[torch.Tensor, int]:
|
||||
"""
|
||||
Get M-RoPE input positions and delta value for this specific model.
|
||||
|
||||
This method should be implemented by each model that supports M-RoPE
|
||||
to provide model-specific logic for computing input positions.
|
||||
|
||||
Args:
|
||||
input_tokens: List of input token IDs
|
||||
hf_config: HuggingFace model configuration
|
||||
image_grid_thw: Image grid dimensions (t, h, w)
|
||||
video_grid_thw: Video grid dimensions (t, h, w)
|
||||
second_per_grid_ts: Seconds per grid timestep for videos
|
||||
context_len: Context length
|
||||
seq_len: Sequence length
|
||||
audio_feature_lengths: Audio feature lengths for multimodal models
|
||||
use_audio_in_video: Whether to use audio in video for interleaving
|
||||
|
||||
Returns:
|
||||
Tuple of (llm_positions, mrope_position_delta)
|
||||
- llm_positions: Tensor of shape [3, num_tokens]
|
||||
with T/H/W positions
|
||||
- mrope_position_delta: Delta for position calculations
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def supports_mrope(model: type[object]) -> TypeIs[type[SupportsMRoPE]]:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def supports_mrope(model: object) -> TypeIs[SupportsMRoPE]:
|
||||
...
|
||||
|
||||
|
||||
def supports_mrope(
|
||||
model: Union[type[object], object],
|
||||
) -> Union[TypeIs[type[SupportsMRoPE]], TypeIs[SupportsMRoPE]]:
|
||||
return isinstance(model, SupportsMRoPE)
|
||||
|
||||
@ -32,7 +32,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from transformers import AutoConfig, BatchFeature
|
||||
from transformers import AutoConfig, BatchFeature, PretrainedConfig
|
||||
from transformers.models.qwen2_vl import (Qwen2VLImageProcessor,
|
||||
Qwen2VLProcessor)
|
||||
from transformers.models.qwen2_vl.configuration_qwen2_vl import (
|
||||
@ -73,7 +73,7 @@ from vllm.transformers_utils.config import uses_mrope
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
||||
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
||||
|
||||
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
|
||||
from .interfaces import (MultiModalEmbeddings, SupportsLoRA, SupportsMRoPE,
|
||||
SupportsMultiModal, SupportsPP)
|
||||
from .utils import (AutoWeightsLoader, WeightsMapper,
|
||||
init_vllm_registered_model, maybe_prefix,
|
||||
@ -1096,7 +1096,7 @@ class Qwen2VLMultiModalProcessor(BaseMultiModalProcessor[Qwen2VLProcessingInfo]
|
||||
info=Qwen2VLProcessingInfo,
|
||||
dummy_inputs=Qwen2VLDummyInputsBuilder)
|
||||
class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
SupportsLoRA, SupportsPP):
|
||||
SupportsLoRA, SupportsPP, SupportsMRoPE):
|
||||
|
||||
# To ensure correct weight loading and mapping.
|
||||
hf_to_vllm_mapper = WeightsMapper(
|
||||
@ -1109,6 +1109,118 @@ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
"model.": "language_model.model.",
|
||||
})
|
||||
|
||||
def get_mrope_input_positions(
|
||||
self,
|
||||
input_tokens: list[int],
|
||||
hf_config: PretrainedConfig,
|
||||
image_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
|
||||
video_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
|
||||
second_per_grid_ts: Optional[list[float]] = None,
|
||||
context_len: int = 0,
|
||||
seq_len: Optional[int] = None,
|
||||
audio_feature_lengths: Optional[torch.Tensor] = None,
|
||||
use_audio_in_video: bool = False,
|
||||
) -> tuple[torch.Tensor, int]:
|
||||
"""Get M-RoPE input positions for Qwen2-VL model."""
|
||||
if image_grid_thw is None:
|
||||
image_grid_thw = []
|
||||
if video_grid_thw is None:
|
||||
video_grid_thw = []
|
||||
if second_per_grid_ts is None:
|
||||
second_per_grid_ts = []
|
||||
|
||||
image_token_id = hf_config.image_token_id
|
||||
video_token_id = hf_config.video_token_id
|
||||
vision_start_token_id = hf_config.vision_start_token_id
|
||||
spatial_merge_size = hf_config.vision_config.spatial_merge_size
|
||||
tokens_per_second = getattr(hf_config.vision_config,
|
||||
"tokens_per_second", 1.0)
|
||||
|
||||
input_tokens_tensor = torch.tensor(input_tokens)
|
||||
vision_start_indices = torch.argwhere(
|
||||
input_tokens_tensor == vision_start_token_id).squeeze(1)
|
||||
vision_tokens = input_tokens_tensor[vision_start_indices + 1]
|
||||
image_nums = (vision_tokens == image_token_id).sum()
|
||||
video_nums = (vision_tokens == video_token_id).sum()
|
||||
llm_pos_ids_list: list = []
|
||||
|
||||
st = 0
|
||||
remain_images, remain_videos = image_nums, video_nums
|
||||
|
||||
image_index, video_index = 0, 0
|
||||
for _ in range(image_nums + video_nums):
|
||||
video_second_per_grid_t = 0.0
|
||||
if remain_images > 0:
|
||||
try:
|
||||
ed_image = input_tokens.index(image_token_id, st)
|
||||
except ValueError:
|
||||
ed_image = len(input_tokens) + 1
|
||||
else:
|
||||
ed_image = len(input_tokens) + 1
|
||||
if remain_videos > 0:
|
||||
try:
|
||||
ed_video = input_tokens.index(video_token_id, st)
|
||||
except ValueError:
|
||||
ed_video = len(input_tokens) + 1
|
||||
else:
|
||||
ed_video = len(input_tokens) + 1
|
||||
if ed_image < ed_video:
|
||||
t, h, w = (
|
||||
image_grid_thw[image_index][0],
|
||||
image_grid_thw[image_index][1],
|
||||
image_grid_thw[image_index][2],
|
||||
)
|
||||
image_index += 1
|
||||
remain_images -= 1
|
||||
ed = ed_image
|
||||
else:
|
||||
t, h, w = (
|
||||
video_grid_thw[video_index][0],
|
||||
video_grid_thw[video_index][1],
|
||||
video_grid_thw[video_index][2],
|
||||
)
|
||||
video_second_per_grid_t = 1.0
|
||||
if second_per_grid_ts:
|
||||
video_second_per_grid_t = second_per_grid_ts[video_index]
|
||||
video_index += 1
|
||||
remain_videos -= 1
|
||||
ed = ed_video
|
||||
|
||||
llm_grid_t, llm_grid_h, llm_grid_w = \
|
||||
t, h // spatial_merge_size, w // spatial_merge_size
|
||||
text_len = ed - st
|
||||
|
||||
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
|
||||
llm_pos_ids_list) > 0 else 0
|
||||
llm_pos_ids_list.append(
|
||||
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
||||
|
||||
t_index = (torch.arange(llm_grid_t).view(-1, 1).expand(
|
||||
-1, llm_grid_h * llm_grid_w) * video_second_per_grid_t *
|
||||
tokens_per_second).long().flatten()
|
||||
|
||||
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
|
||||
llm_grid_t, -1, llm_grid_w).flatten()
|
||||
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
|
||||
llm_grid_t, llm_grid_h, -1).flatten()
|
||||
llm_pos_ids_list.append(
|
||||
torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
||||
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
||||
|
||||
if st < len(input_tokens):
|
||||
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
|
||||
llm_pos_ids_list) > 0 else 0
|
||||
text_len = len(input_tokens) - st
|
||||
llm_pos_ids_list.append(
|
||||
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
||||
|
||||
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
||||
mrope_position_delta = (llm_positions.max() + 1 -
|
||||
len(input_tokens)).item()
|
||||
llm_positions = llm_positions[:, context_len:seq_len]
|
||||
|
||||
return llm_positions, mrope_position_delta
|
||||
|
||||
@classmethod
|
||||
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
|
||||
if modality.startswith("image"):
|
||||
|
||||
@ -36,7 +36,7 @@ def _extract_data_from_linear_base_module(
|
||||
assert m.quant_method.quant_config is not None
|
||||
|
||||
w = m.weight
|
||||
ws = m.weight_scale_inv
|
||||
ws = m.weight_scale
|
||||
quant_block_size = m.quant_method.quant_config.weight_block_size
|
||||
|
||||
assert isinstance(w, torch.Tensor)
|
||||
|
||||
@ -191,14 +191,17 @@ class CudaPlatformBase(Platform):
|
||||
compilation_config = vllm_config.compilation_config
|
||||
if (envs.VLLM_ALL2ALL_BACKEND == "deepep_high_throughput"
|
||||
and parallel_config.data_parallel_size > 1
|
||||
and compilation_config.cudagraph_mode
|
||||
not in [CUDAGraphMode.NONE, CUDAGraphMode.PIECEWISE]):
|
||||
and compilation_config.cudagraph_mode != CUDAGraphMode.NONE):
|
||||
# TODO: Piecewise Cuda graph might be enabled
|
||||
# if torch compile cache key issue fixed
|
||||
# See https://github.com/vllm-project/vllm/pull/25093
|
||||
logger.info(
|
||||
"Data Parallel with DeepEP high-throughput: using PIECEWISE "
|
||||
"CUDA graphs and excluding MoE ops from capture. Set "
|
||||
"VLLM_ALL2ALL_BACKEND=deepep_low_latency if you need MoE "
|
||||
"graphs captured as well.")
|
||||
compilation_config.cudagraph_mode = CUDAGraphMode.PIECEWISE
|
||||
"Data Parallel: disabling cudagraphs since DP "
|
||||
"with DeepEP high-throughput kernels are not CUDA Graph "
|
||||
"compatible. The DeepEP low-latency kernels are CUDA Graph "
|
||||
"compatible. Set the all_to_all backend to deepep_low_latency "
|
||||
"to use those kernels instead.")
|
||||
compilation_config.cudagraph_mode = CUDAGraphMode.NONE
|
||||
|
||||
@classmethod
|
||||
def get_current_memory_usage(cls,
|
||||
|
||||
@ -206,12 +206,11 @@ class CutlassMLAImpl(MLACommonImpl[MLACommonMetadata]):
|
||||
)
|
||||
|
||||
if H < MAX_HEADS:
|
||||
# Extract the subsets of the outputs
|
||||
returned_lse = lse[:, :H].contiguous(
|
||||
) if self.need_to_return_lse_for_decode else lse
|
||||
out = out[:, :H]
|
||||
if self.need_to_return_lse_for_decode:
|
||||
lse = lse[:, :H].contiguous()
|
||||
|
||||
return out, returned_lse
|
||||
return out, lse
|
||||
|
||||
def _forward_decode(
|
||||
self,
|
||||
|
||||
@ -1,62 +1,165 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
import threading
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import Future
|
||||
from typing import Optional, Union
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import cloudpickle
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.distributed.kv_transfer.kv_connector.utils import KVOutputAggregator
|
||||
from vllm.executor.ray_distributed_executor import ( # noqa
|
||||
RayDistributedExecutor as RayDistributedExecutorV0)
|
||||
from vllm.executor.executor_base import DistributedExecutorBase
|
||||
from vllm.executor.msgspec_utils import encode_hook
|
||||
from vllm.executor.ray_utils import (RayWorkerWrapper, initialize_ray_cluster,
|
||||
ray)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.ray.ray_env import get_env_vars_to_copy
|
||||
from vllm.sequence import ExecuteModelRequest
|
||||
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
|
||||
make_async)
|
||||
from vllm.v1.core.sched.output import SchedulerOutput
|
||||
from vllm.v1.engine import ReconfigureDistributedRequest, ReconfigureRankType
|
||||
from vllm.v1.executor.abstract import Executor
|
||||
from vllm.v1.outputs import ModelRunnerOutput
|
||||
|
||||
try: # msgspec is optional at runtime but required for serialization.
|
||||
import msgspec
|
||||
except ImportError: # pragma: no cover - msgspec is an optional dependency.
|
||||
msgspec = None # type: ignore
|
||||
|
||||
if ray is not None:
|
||||
from ray.actor import ActorHandle
|
||||
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
||||
else:
|
||||
ActorHandle = None
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ray.util.placement_group import PlacementGroup
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
class FutureWrapper(Future):
|
||||
"""A wrapper around Ray output reference to meet the interface
|
||||
of .execute_model(): The top level (core busy loop) expects .result() api
|
||||
to block and return a single output.
|
||||
|
||||
If aggregator is provided, the outputs from all workers are aggregated upon
|
||||
the result() call. If not only the first worker's output is returned.
|
||||
@dataclass
|
||||
class RayWorkerMetaData:
|
||||
"""
|
||||
Metadata for a Ray worker.
|
||||
The order of ray worker creation can be random,
|
||||
and we need to reset the rank after creating all workers.
|
||||
"""
|
||||
|
||||
def __init__(self, refs, aggregator: Optional[KVOutputAggregator] = None):
|
||||
worker: ActorHandle
|
||||
created_rank: int
|
||||
adjusted_rank: int = -1
|
||||
ip: str = ""
|
||||
|
||||
|
||||
class FutureWrapper(Future):
|
||||
"""Future compatible wrapper around Ray object references."""
|
||||
|
||||
def __init__(self,
|
||||
refs,
|
||||
aggregator: Optional[KVOutputAggregator] = None) -> None:
|
||||
super().__init__()
|
||||
self.refs = refs
|
||||
self.aggregator = aggregator
|
||||
self._refs = refs
|
||||
self._aggregator = aggregator
|
||||
# Resolve the Ray object references off-thread so that the driver event
|
||||
# loop is not blocked and Future callbacks fire when the result is
|
||||
# ready.
|
||||
threading.Thread(target=self._resolve, daemon=True).start()
|
||||
|
||||
def result(self, timeout=None):
|
||||
if timeout is not None:
|
||||
raise NotImplementedError("timeout is not supported")
|
||||
def cancel(self) -> bool: # pragma: no cover - cancellation unsupported.
|
||||
return False
|
||||
|
||||
if self.aggregator is None:
|
||||
return self.refs[0].get()
|
||||
|
||||
outputs = [ref.get() for ref in self.refs]
|
||||
return self.aggregator.aggregate(outputs, output_rank=0)
|
||||
def _resolve(self) -> None:
|
||||
try:
|
||||
if ray is None:
|
||||
raise RuntimeError("Ray is required to resolve distributed "
|
||||
"results.")
|
||||
outputs = ray.get(self._refs)
|
||||
if self._aggregator is None:
|
||||
result = outputs[0]
|
||||
else:
|
||||
result = self._aggregator.aggregate(outputs, output_rank=0)
|
||||
self.set_result(result)
|
||||
except BaseException as exc: # pragma: no cover - Ray errors propagated.
|
||||
self.set_exception(exc)
|
||||
finally:
|
||||
self._refs = None
|
||||
self._aggregator = None
|
||||
|
||||
|
||||
class RayDistributedExecutor(RayDistributedExecutorV0, Executor):
|
||||
"""Ray distributed executor using Ray Compiled Graphs."""
|
||||
class RayDistributedExecutor(DistributedExecutorBase, Executor):
|
||||
"""Ray-based distributed executor for the v1 engine."""
|
||||
|
||||
# These env vars are worker-specific, therefore are NOT copied
|
||||
# from the driver to the workers
|
||||
WORKER_SPECIFIC_ENV_VARS = {
|
||||
"VLLM_HOST_IP", "VLLM_HOST_PORT", "LOCAL_RANK", "CUDA_VISIBLE_DEVICES"
|
||||
}
|
||||
|
||||
# These non-vLLM env vars are copied from the driver to workers
|
||||
ADDITIONAL_ENV_VARS = {"HF_TOKEN", "HUGGING_FACE_HUB_TOKEN"}
|
||||
|
||||
uses_ray: bool = True
|
||||
supports_pp: bool = True
|
||||
|
||||
def _init_executor(self) -> None:
|
||||
super()._init_executor()
|
||||
self.forward_dag: Optional[ray.dag.CompiledDAG] = None # type: ignore
|
||||
# V1 executor always relies on the SPMD worker implementation which in
|
||||
# turn requires the compiled DAG API.
|
||||
os.environ["VLLM_USE_RAY_SPMD_WORKER"] = "1"
|
||||
os.environ["VLLM_USE_RAY_COMPILED_DAG"] = "1"
|
||||
|
||||
# For TPU or XPU, avoid compiling NVIDIA's NCCL
|
||||
if current_platform.is_tpu() or current_platform.is_xpu():
|
||||
os.environ["VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE"] = "shm"
|
||||
|
||||
# These flags configure the worker setup.
|
||||
self.use_ray_compiled_dag = envs.VLLM_USE_RAY_COMPILED_DAG
|
||||
self.use_ray_spmd_worker = envs.VLLM_USE_RAY_SPMD_WORKER
|
||||
if self.use_ray_compiled_dag:
|
||||
assert self.use_ray_spmd_worker, (
|
||||
"VLLM_USE_RAY_COMPILED_DAG=1 requires "
|
||||
"VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
if self.use_ray_spmd_worker:
|
||||
assert self.use_ray_compiled_dag, (
|
||||
"VLLM_USE_RAY_SPMD_WORKER=1 requires "
|
||||
"VLLM_USE_RAY_COMPILED_DAG=1")
|
||||
|
||||
assert self.uses_ray
|
||||
initialize_ray_cluster(self.parallel_config)
|
||||
placement_group = self.parallel_config.placement_group
|
||||
|
||||
# Disable Ray usage stats collection.
|
||||
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0")
|
||||
if ray_usage != "1":
|
||||
os.environ["RAY_USAGE_STATS_ENABLED"] = "0"
|
||||
|
||||
# Create the parallel GPU workers.
|
||||
self._init_workers_ray(placement_group)
|
||||
|
||||
# msgspec is only required when compiled DAG is disabled which is not
|
||||
# expected for V1, but initialize the codec for completeness.
|
||||
if msgspec is not None:
|
||||
self.input_encoder = msgspec.msgpack.Encoder(enc_hook=encode_hook)
|
||||
self.output_decoder = msgspec.msgpack.Decoder(
|
||||
Optional[List[SamplerOutput]])
|
||||
else: # pragma: no cover - msgspec should normally be available.
|
||||
self.input_encoder = None
|
||||
self.output_decoder = None
|
||||
|
||||
# KV connector setup
|
||||
self.has_connector = self.vllm_config.kv_transfer_config is not None
|
||||
|
||||
@property
|
||||
def max_concurrent_batches(self) -> int:
|
||||
"""Ray distributed executor supports pipeline parallelism,
|
||||
meaning that it allows PP size batches to be executed concurrently.
|
||||
"""
|
||||
"""Ray distributed executor supports pipeline parallelism."""
|
||||
if self.scheduler_config.async_scheduling:
|
||||
return 2
|
||||
return self.parallel_config.pipeline_parallel_size
|
||||
@ -66,43 +169,443 @@ class RayDistributedExecutor(RayDistributedExecutorV0, Executor):
|
||||
scheduler_output: SchedulerOutput,
|
||||
non_block: bool = False,
|
||||
) -> Union[ModelRunnerOutput, Future[ModelRunnerOutput]]:
|
||||
"""Execute the model on the Ray workers.
|
||||
"""Execute the model on the Ray workers."""
|
||||
|
||||
Args:
|
||||
scheduler_output: The scheduler output to execute.
|
||||
non_block: If True, the method will return a Future.
|
||||
|
||||
Returns:
|
||||
The model runner output.
|
||||
"""
|
||||
# Build the compiled DAG for the first time.
|
||||
if self.forward_dag is None: # type: ignore
|
||||
if self.forward_dag is None:
|
||||
self.forward_dag = self._compiled_ray_dag(enable_asyncio=False)
|
||||
|
||||
refs = self.forward_dag.execute(scheduler_output) # type: ignore
|
||||
refs = self.forward_dag.execute(scheduler_output)
|
||||
|
||||
if not self.has_connector:
|
||||
# Get output only from a single worker (output_rank)
|
||||
# When PP is not used, we block here until the result is available.
|
||||
if not non_block:
|
||||
return refs[0].get()
|
||||
|
||||
# When PP is used, we return a FutureWrapper immediately so that
|
||||
# the scheduler can yield to the next batch.
|
||||
return FutureWrapper(refs)
|
||||
|
||||
# Get output from all workers when connector is present
|
||||
assert self.kv_output_aggregator is not None, (
|
||||
"KVOutputAggregator must be initialized when kv transfer is "
|
||||
"configured")
|
||||
|
||||
if not non_block:
|
||||
# Block and get results from all workers
|
||||
outputs = [ref.get() for ref in refs]
|
||||
return self.kv_output_aggregator.aggregate(outputs)
|
||||
|
||||
# Return a future that will aggregate outputs from all workers
|
||||
return FutureWrapper(refs, self.kv_output_aggregator)
|
||||
|
||||
def reinitialize_distributed(
|
||||
self, reconfig_request: ReconfigureDistributedRequest) -> None:
|
||||
self._run_workers("reinitialize_distributed", reconfig_request)
|
||||
if reconfig_request.new_data_parallel_rank == \
|
||||
ReconfigureRankType.SHUTDOWN_CURRENT_RANK:
|
||||
ReconfigureRankType.SHUTDOWN_CURRENT_RANK:
|
||||
self.shutdown()
|
||||
|
||||
def shutdown(self) -> None:
|
||||
if logger:
|
||||
# Somehow logger can be None here.
|
||||
logger.info(
|
||||
"Shutting down Ray distributed executor. If you see error log "
|
||||
"from logging.cc regarding SIGTERM received, please ignore "
|
||||
"because this is the expected termination process in Ray.")
|
||||
if hasattr(self, "forward_dag") and self.forward_dag is not None:
|
||||
self.forward_dag.teardown()
|
||||
import ray as _ray
|
||||
for worker in self.workers:
|
||||
_ray.kill(worker)
|
||||
self.forward_dag = None
|
||||
|
||||
def _configure_ray_workers_use_nsight(self,
|
||||
ray_remote_kwargs) -> Dict[str, Any]:
|
||||
# If nsight profiling is enabled, we need to set the profiling
|
||||
# configuration for the ray workers as runtime env.
|
||||
runtime_env = ray_remote_kwargs.setdefault("runtime_env", {})
|
||||
runtime_env.update({
|
||||
"nsight": {
|
||||
"t": "cuda,cudnn,cublas",
|
||||
"o": "'worker_process_%p'",
|
||||
"cuda-graph-trace": "node",
|
||||
}
|
||||
})
|
||||
|
||||
return ray_remote_kwargs
|
||||
|
||||
# child class could overwrite this to return actual env vars.
|
||||
def _get_env_vars_to_be_updated(self):
|
||||
return self._env_vars_for_all_workers
|
||||
|
||||
def _init_workers_ray(self, placement_group: "PlacementGroup",
|
||||
**ray_remote_kwargs):
|
||||
num_gpus = envs.VLLM_RAY_PER_WORKER_GPUS
|
||||
|
||||
# Ray actors that perform all model execution.
|
||||
self.workers: List[RayWorkerWrapper] = []
|
||||
|
||||
# Used in ray compiled DAG: indexed first by PP rank,
|
||||
# and then TP rank. In other words, the inner list is
|
||||
# the TP group of workers for a PP rank.
|
||||
self.pp_tp_workers: List[List[RayWorkerWrapper]] = []
|
||||
|
||||
if self.parallel_config.ray_workers_use_nsight:
|
||||
ray_remote_kwargs = self._configure_ray_workers_use_nsight(
|
||||
ray_remote_kwargs)
|
||||
|
||||
logger.info("use_ray_spmd_worker: %s", self.use_ray_spmd_worker)
|
||||
|
||||
# Create the workers.
|
||||
bundle_indices: List[int]
|
||||
if envs.VLLM_RAY_BUNDLE_INDICES:
|
||||
# Use the bundle indices specified by the user.
|
||||
bundle_indices = list(
|
||||
map(int, envs.VLLM_RAY_BUNDLE_INDICES.split(",")))
|
||||
assert len(bundle_indices) == self.parallel_config.world_size, \
|
||||
("VLLM_RAY_BUNDLE_INDICES must have the same size"
|
||||
f" as the world size, but got {bundle_indices=} "
|
||||
f"and {self.parallel_config.world_size=}")
|
||||
assert len(set(bundle_indices)) == len(bundle_indices), \
|
||||
("VLLM_RAY_BUNDLE_INDICES cannot have duplicate values,"
|
||||
f" but got {bundle_indices=}")
|
||||
else:
|
||||
# use the first N bundles that have GPU resources.
|
||||
bundle_indices = []
|
||||
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
|
||||
if bundle.get(current_platform.ray_device_key, 0):
|
||||
bundle_indices.append(bundle_id)
|
||||
bundle_indices = bundle_indices[:self.parallel_config.world_size]
|
||||
|
||||
worker_metadata: List[RayWorkerMetaData] = []
|
||||
driver_ip = get_ip()
|
||||
for rank, bundle_id in enumerate(bundle_indices):
|
||||
scheduling_strategy = PlacementGroupSchedulingStrategy(
|
||||
placement_group=placement_group,
|
||||
placement_group_capture_child_tasks=True,
|
||||
placement_group_bundle_index=bundle_id,
|
||||
)
|
||||
|
||||
if current_platform.ray_device_key == "GPU":
|
||||
# NV+AMD GPUs, and Intel XPUs
|
||||
worker = ray.remote(
|
||||
num_cpus=0,
|
||||
num_gpus=num_gpus,
|
||||
scheduling_strategy=scheduling_strategy,
|
||||
**ray_remote_kwargs,
|
||||
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
|
||||
rpc_rank=rank)
|
||||
else:
|
||||
worker = ray.remote(
|
||||
num_cpus=0,
|
||||
num_gpus=0,
|
||||
resources={current_platform.ray_device_key: num_gpus},
|
||||
scheduling_strategy=scheduling_strategy,
|
||||
**ray_remote_kwargs,
|
||||
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
|
||||
rpc_rank=rank)
|
||||
worker_metadata.append(
|
||||
RayWorkerMetaData(worker=worker, created_rank=rank))
|
||||
|
||||
worker_ips = ray.get([
|
||||
each.worker.get_node_ip.remote() # type: ignore[attr-defined]
|
||||
for each in worker_metadata
|
||||
])
|
||||
|
||||
for each, ip in zip(worker_metadata, worker_ips):
|
||||
each.ip = ip
|
||||
|
||||
logger.debug("workers: %s", worker_metadata)
|
||||
|
||||
ip_counts: Dict[str, int] = {}
|
||||
for ip in worker_ips:
|
||||
ip_counts[ip] = ip_counts.get(ip, 0) + 1
|
||||
|
||||
def sort_by_driver_then_worker_ip(item: RayWorkerMetaData):
|
||||
"""
|
||||
Sort the workers based on 3 properties:
|
||||
1. If the worker is on the same node as the driver (vllm engine),
|
||||
it should be placed first.
|
||||
2. Then, if the worker is on a node with fewer workers, it should
|
||||
be placed first.
|
||||
3. Finally, if the work is on a node with smaller IP address, it
|
||||
should be placed first.
|
||||
"""
|
||||
|
||||
ip = item.ip
|
||||
return (0 if ip == driver_ip else 1, ip_counts[ip], ip)
|
||||
|
||||
# After sorting, the workers on the same node will be
|
||||
# close to each other, and the workers on the driver
|
||||
# node will be placed first.
|
||||
sorted_worker_metadata = sorted(worker_metadata,
|
||||
key=sort_by_driver_then_worker_ip)
|
||||
start_rank = 0
|
||||
for i, item in enumerate(sorted_worker_metadata):
|
||||
item.adjusted_rank = i + start_rank
|
||||
self.workers = [item.worker for item in sorted_worker_metadata]
|
||||
rerank_mapping = {
|
||||
item.created_rank: item.adjusted_rank
|
||||
for item in sorted_worker_metadata
|
||||
}
|
||||
self._run_workers("adjust_rank", rerank_mapping)
|
||||
|
||||
# Get the set of GPU IDs used on each node.
|
||||
worker_node_and_gpu_ids = []
|
||||
for worker in self.workers:
|
||||
worker_node_and_gpu_ids.append(
|
||||
ray.get(worker.get_node_and_gpu_ids.remote())
|
||||
) # type: ignore
|
||||
|
||||
node_workers = defaultdict(list) # node id -> list of worker ranks
|
||||
node_gpus = defaultdict(list) # node id -> list of gpu ids
|
||||
|
||||
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids):
|
||||
node_workers[node_id].append(i)
|
||||
# `gpu_ids` can be a list of strings or integers.
|
||||
# convert them to integers for consistency.
|
||||
# NOTE: gpu_ids can be larger than 9 (e.g. 16 GPUs),
|
||||
# string sorting is not sufficient.
|
||||
# see https://github.com/vllm-project/vllm/issues/5590
|
||||
gpu_ids = [int(x) for x in gpu_ids]
|
||||
node_gpus[node_id].extend(gpu_ids)
|
||||
for node_id, gpu_ids in node_gpus.items():
|
||||
node_gpus[node_id] = sorted(gpu_ids)
|
||||
|
||||
all_ips = set(worker_ips + [driver_ip])
|
||||
n_ips = len(all_ips)
|
||||
n_nodes = len(node_workers)
|
||||
|
||||
if n_nodes != n_ips:
|
||||
raise RuntimeError(
|
||||
f"Every node should have a unique IP address. Got {n_nodes}"
|
||||
f" nodes with node ids {list(node_workers.keys())} and "
|
||||
f"{n_ips} unique IP addresses {all_ips}. Please check your"
|
||||
" network configuration. If you set `VLLM_HOST_IP`"
|
||||
" environment variable, make sure it is unique for"
|
||||
" each node.")
|
||||
|
||||
# Set environment variables for the driver and workers.
|
||||
all_args_to_update_environment_variables = [{
|
||||
current_platform.device_control_env_var:
|
||||
",".join(map(str, node_gpus[node_id])),
|
||||
} for (node_id, _) in worker_node_and_gpu_ids]
|
||||
|
||||
# Environment variables to copy from driver to workers
|
||||
env_vars_to_copy = get_env_vars_to_copy(
|
||||
exclude_vars=self.WORKER_SPECIFIC_ENV_VARS,
|
||||
additional_vars=set(current_platform.additional_env_vars).union(
|
||||
self.ADDITIONAL_ENV_VARS),
|
||||
destination="workers")
|
||||
|
||||
# Copy existing env vars to each worker's args
|
||||
for args in all_args_to_update_environment_variables:
|
||||
# TODO: refactor platform-specific env vars
|
||||
for name in env_vars_to_copy:
|
||||
if name in os.environ:
|
||||
args[name] = os.environ[name]
|
||||
|
||||
self._env_vars_for_all_workers = (
|
||||
all_args_to_update_environment_variables)
|
||||
|
||||
self._run_workers("update_environment_variables",
|
||||
self._get_env_vars_to_be_updated())
|
||||
|
||||
if len(node_gpus) == 1:
|
||||
# in single node case, we don't need to get the IP address.
|
||||
# the loopback address is sufficient
|
||||
# NOTE: a node may have several IP addresses, one for each
|
||||
# network interface. `get_ip()` might return any of them,
|
||||
# while they might not work for communication inside the node
|
||||
# if the network setup is complicated. Using the loopback address
|
||||
# solves this issue, as it always works for communication inside
|
||||
# the node.
|
||||
driver_ip = "127.0.0.1"
|
||||
distributed_init_method = get_distributed_init_method(
|
||||
driver_ip, get_open_port())
|
||||
|
||||
# Initialize the actual workers inside worker wrapper.
|
||||
all_kwargs = []
|
||||
for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids):
|
||||
local_rank = node_workers[node_id].index(rank)
|
||||
kwargs = dict(
|
||||
vllm_config=self.vllm_config,
|
||||
local_rank=local_rank,
|
||||
rank=rank,
|
||||
distributed_init_method=distributed_init_method,
|
||||
is_driver_worker=(not self.parallel_config)
|
||||
or (rank % self.parallel_config.tensor_parallel_size == 0),
|
||||
)
|
||||
all_kwargs.append(kwargs)
|
||||
self._run_workers("init_worker", all_kwargs)
|
||||
|
||||
self._run_workers("init_device")
|
||||
self._run_workers("load_model",
|
||||
max_concurrent_workers=self.parallel_config.
|
||||
max_parallel_loading_workers)
|
||||
|
||||
for pp_rank in range(self.parallel_config.pipeline_parallel_size):
|
||||
self.pp_tp_workers.append([])
|
||||
for tp_rank in range(self.parallel_config.tensor_parallel_size):
|
||||
# PP=2, TP=4
|
||||
# pp_tp_workers = [[0, 1, 2, 3], [4, 5, 6, 7]]
|
||||
rank = (pp_rank * self.parallel_config.tensor_parallel_size
|
||||
) + tp_rank
|
||||
assert len(self.pp_tp_workers[pp_rank]) == tp_rank
|
||||
assert pp_rank < len(self.pp_tp_workers)
|
||||
self.pp_tp_workers[pp_rank].append(self.workers[rank])
|
||||
|
||||
def _driver_execute_model(
|
||||
self, execute_model_req: Optional[ExecuteModelRequest]
|
||||
) -> Optional[List[SamplerOutput]]:
|
||||
raise RuntimeError(
|
||||
"RayDistributedExecutor only supports compiled DAG execution "
|
||||
"and does not expose a separate driver worker loop.")
|
||||
|
||||
def _run_workers(
|
||||
self,
|
||||
method: Union[str, Callable],
|
||||
*args,
|
||||
async_run_tensor_parallel_workers_only: bool = False,
|
||||
max_concurrent_workers: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> Any:
|
||||
"""Runs the given method on all workers."""
|
||||
|
||||
if isinstance(method, str):
|
||||
sent_method = method
|
||||
else:
|
||||
sent_method = cloudpickle.dumps(method)
|
||||
del method
|
||||
if self.use_ray_spmd_worker:
|
||||
assert not async_run_tensor_parallel_workers_only, (
|
||||
"async_run_tensor_parallel_workers_only is not supported for "
|
||||
"spmd mode.")
|
||||
|
||||
if max_concurrent_workers:
|
||||
raise NotImplementedError(
|
||||
"max_concurrent_workers is not supported yet.")
|
||||
|
||||
# Start the ray workers first.
|
||||
ray_worker_outputs = [
|
||||
worker.execute_method.remote(sent_method, *args, **kwargs)
|
||||
for worker in self.workers
|
||||
]
|
||||
|
||||
if not self.workers:
|
||||
return []
|
||||
|
||||
# Get the results of the ray workers.
|
||||
return ray.get(ray_worker_outputs)
|
||||
|
||||
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
|
||||
"""Wait for futures returned from _run_workers()."""
|
||||
ray.get(parallel_worker_tasks)
|
||||
|
||||
def _check_ray_cgraph_installation(self):
|
||||
import importlib.metadata
|
||||
|
||||
from packaging import version
|
||||
|
||||
required_version = version.parse("2.43.0")
|
||||
current_version = version.parse(importlib.metadata.version("ray"))
|
||||
if current_version < required_version:
|
||||
raise ValueError(f"Ray version {required_version} is "
|
||||
f"required, but found {current_version}")
|
||||
|
||||
import importlib.util
|
||||
cgraph_spec = importlib.util.find_spec(
|
||||
"ray.experimental.compiled_dag_ref")
|
||||
if cgraph_spec is None:
|
||||
raise ValueError("Ray Compiled Graph is not installed. "
|
||||
"Run `pip install ray[cgraph]` to install it.")
|
||||
|
||||
cupy_spec = importlib.util.find_spec("cupy")
|
||||
if (cupy_spec is None
|
||||
and envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE == "nccl"):
|
||||
raise ValueError(
|
||||
"cupy is not installed but required since "
|
||||
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE is set to 'nccl'. "
|
||||
"Run `pip install ray[cgraph]` and check cupy installation.")
|
||||
|
||||
def _compiled_ray_dag(self, enable_asyncio: bool):
|
||||
assert self.parallel_config.use_ray
|
||||
self._check_ray_cgraph_installation()
|
||||
# Enlarge the default value of "RAY_CGRAPH_get_timeout" to 300 seconds
|
||||
os.environ.setdefault("RAY_CGRAPH_get_timeout", "300") # noqa: SIM112
|
||||
from ray.dag import InputNode, MultiOutputNode
|
||||
logger.info("RAY_CGRAPH_get_timeout is set to %s",
|
||||
os.environ["RAY_CGRAPH_get_timeout"]) # noqa: SIM112
|
||||
logger.info("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE = %s",
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE)
|
||||
logger.info("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM = %s",
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
|
||||
|
||||
channel_type = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
|
||||
if channel_type not in ("auto", "nccl", "shm"):
|
||||
raise ValueError(
|
||||
"Invalid value for VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: "
|
||||
f"{channel_type}. Valid values are: 'auto', 'nccl', or 'shm'.")
|
||||
|
||||
with InputNode() as input_data:
|
||||
# Example DAG: PP=2, TP=4
|
||||
# SchedulerOutput -> 0 -> (SchedulerOutput, IntermediateTensors) ->
|
||||
# 4 -> ModelRunnerOutput, etc.
|
||||
outputs = [input_data for _ in self.pp_tp_workers[0]]
|
||||
for pp_rank, tp_group in enumerate(self.pp_tp_workers):
|
||||
outputs = [
|
||||
worker.execute_model_ray.
|
||||
bind( # type: ignore[attr-defined]
|
||||
outputs[i]) for i, worker in enumerate(tp_group)
|
||||
]
|
||||
|
||||
last_pp_rank = len(self.pp_tp_workers) - 1
|
||||
if (pp_rank < last_pp_rank and
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE != "shm"):
|
||||
transport = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
|
||||
outputs = [
|
||||
output.with_tensor_transport(transport=transport)
|
||||
for output in outputs
|
||||
]
|
||||
|
||||
forward_dag = MultiOutputNode(outputs)
|
||||
|
||||
if envs.VLLM_USE_RAY_WRAPPED_PP_COMM:
|
||||
from ray.experimental.channel.accelerator_context import (
|
||||
register_accelerator_context)
|
||||
|
||||
from vllm.distributed.device_communicators.ray_communicator import (
|
||||
RayPPCommunicator)
|
||||
register_accelerator_context(torch_module_name="cuda",
|
||||
communicator_cls=RayPPCommunicator)
|
||||
logger.info("Using RayPPCommunicator "
|
||||
"(which wraps vLLM _PP GroupCoordinator) "
|
||||
"for Ray Compiled Graph communication.")
|
||||
else:
|
||||
logger.info("Using Ray's NCCL communicator for "
|
||||
"Ray Compiled Graph communication.")
|
||||
|
||||
return forward_dag.experimental_compile(
|
||||
enable_asyncio=enable_asyncio,
|
||||
_overlap_gpu_communication=envs.
|
||||
VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
|
||||
|
||||
def __del__(self):
|
||||
self.shutdown()
|
||||
|
||||
async def execute_model_async(
|
||||
self,
|
||||
scheduler_output: SchedulerOutput) -> ModelRunnerOutput:
|
||||
return await make_async(self.execute_model)(scheduler_output)
|
||||
|
||||
async def _driver_execute_model_async(
|
||||
self,
|
||||
execute_model_req: Optional[ExecuteModelRequest] = None
|
||||
) -> List[SamplerOutput]:
|
||||
raise RuntimeError(
|
||||
"RayDistributedExecutor only supports compiled DAG execution "
|
||||
"and does not expose a separate driver worker loop.")
|
||||
|
||||
async def _start_worker_execution_loop(self):
|
||||
raise RuntimeError(
|
||||
"RayDistributedExecutor only supports compiled DAG execution "
|
||||
"and does not expose a separate driver worker loop.")
|
||||
|
||||
def check_health(self) -> None:
|
||||
# Assume that the Ray workers are healthy.
|
||||
# TODO: check the health of the Ray workers
|
||||
return
|
||||
|
||||
@ -4,7 +4,7 @@ from abc import ABC
|
||||
|
||||
import numpy as np
|
||||
|
||||
from vllm.v1.offloading.abstract import LoadStoreSpec
|
||||
from vllm.v1.kv_offload.abstract import LoadStoreSpec
|
||||
|
||||
|
||||
class BlockIDsLoadStoreSpec(LoadStoreSpec, ABC):
|
||||
@ -3,7 +3,7 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from vllm.logger import init_logger
|
||||
from vllm.v1.offloading.abstract import LoadStoreSpec
|
||||
from vllm.v1.kv_offload.abstract import LoadStoreSpec
|
||||
|
||||
# a single transfer spec (src_blocks_spec, dst_blocks_spec)
|
||||
TransferSpec = tuple[LoadStoreSpec, LoadStoreSpec]
|
||||
@ -18,9 +18,7 @@ from vllm.v1.spec_decode.metrics import SpecDecodingLogging, SpecDecodingProm
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
PerEngineStatLoggerFactory = Callable[[VllmConfig, int], "StatLoggerBase"]
|
||||
StatLoggerFactory = Union[PerEngineStatLoggerFactory,
|
||||
type["AggregatedStatLoggerBase"]]
|
||||
StatLoggerFactory = Callable[[VllmConfig, int], "StatLoggerBase"]
|
||||
|
||||
|
||||
class StatLoggerBase(ABC):
|
||||
@ -50,16 +48,6 @@ class StatLoggerBase(ABC):
|
||||
pass
|
||||
|
||||
|
||||
class AggregatedStatLoggerBase(StatLoggerBase):
|
||||
"""Abstract base class for loggers that
|
||||
aggregates statistics across multiple engines."""
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self, vllm_config: VllmConfig,
|
||||
engine_indexes: Optional[list[int]]):
|
||||
...
|
||||
|
||||
|
||||
class LoggingStatLogger(StatLoggerBase):
|
||||
|
||||
def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):
|
||||
@ -73,7 +61,6 @@ class LoggingStatLogger(StatLoggerBase):
|
||||
self.spec_decoding_logging = SpecDecodingLogging()
|
||||
self.last_prompt_throughput: float = 0.0
|
||||
self.last_generation_throughput: float = 0.0
|
||||
self.engine_is_idle = False
|
||||
|
||||
def _reset(self, now):
|
||||
self.last_log_time = now
|
||||
@ -113,25 +100,25 @@ class LoggingStatLogger(StatLoggerBase):
|
||||
|
||||
self.last_scheduler_stats = scheduler_stats
|
||||
|
||||
def get_log_stats(self):
|
||||
def log(self):
|
||||
now = time.monotonic()
|
||||
prompt_throughput = self._get_throughput(self.num_prompt_tokens, now)
|
||||
generation_throughput = self._get_throughput(
|
||||
self.num_generation_tokens, now)
|
||||
|
||||
self._reset(now)
|
||||
self.last_generation_throughput = generation_throughput
|
||||
self.last_prompt_throughput = prompt_throughput
|
||||
self.engine_is_idle = not any(
|
||||
(prompt_throughput, generation_throughput,
|
||||
self.last_prompt_throughput, self.last_generation_throughput))
|
||||
|
||||
def log(self):
|
||||
self.get_log_stats()
|
||||
scheduler_stats = self.last_scheduler_stats
|
||||
|
||||
log_fn = logger.info
|
||||
if self.engine_is_idle:
|
||||
if not any(
|
||||
(prompt_throughput, generation_throughput,
|
||||
self.last_prompt_throughput, self.last_generation_throughput)):
|
||||
# Avoid log noise on an idle production system
|
||||
log_fn = logger.debug
|
||||
self.last_generation_throughput = generation_throughput
|
||||
self.last_prompt_throughput = prompt_throughput
|
||||
|
||||
# Format and print output.
|
||||
log_fn(
|
||||
"Engine %03d: "
|
||||
@ -141,11 +128,11 @@ class LoggingStatLogger(StatLoggerBase):
|
||||
"GPU KV cache usage: %.1f%%, "
|
||||
"Prefix cache hit rate: %.1f%%",
|
||||
self.engine_index,
|
||||
self.last_prompt_throughput,
|
||||
self.last_generation_throughput,
|
||||
self.last_scheduler_stats.num_running_reqs,
|
||||
self.last_scheduler_stats.num_waiting_reqs,
|
||||
self.last_scheduler_stats.kv_cache_usage * 100,
|
||||
prompt_throughput,
|
||||
generation_throughput,
|
||||
scheduler_stats.num_running_reqs,
|
||||
scheduler_stats.num_waiting_reqs,
|
||||
scheduler_stats.kv_cache_usage * 100,
|
||||
self.prefix_caching_metrics.hit_rate * 100,
|
||||
)
|
||||
self.spec_decoding_logging.log(log_fn=log_fn)
|
||||
@ -158,61 +145,7 @@ class LoggingStatLogger(StatLoggerBase):
|
||||
self.vllm_config.cache_config.num_gpu_blocks)
|
||||
|
||||
|
||||
class AggregatedStatLogger(LoggingStatLogger, AggregatedStatLoggerBase):
|
||||
|
||||
def __init__(self,
|
||||
vllm_config: VllmConfig,
|
||||
engine_idxs: Optional[list[int]] = None):
|
||||
if engine_idxs is None:
|
||||
engine_idxs = [0]
|
||||
self.engine_idxs = engine_idxs
|
||||
LoggingStatLogger.__init__(self, vllm_config, engine_index=-1)
|
||||
|
||||
def record(
|
||||
self,
|
||||
scheduler_stats: Optional[SchedulerStats],
|
||||
iteration_stats: Optional[IterationStats],
|
||||
engine_idx: int = 0,
|
||||
):
|
||||
if engine_idx not in self.engine_idxs:
|
||||
logger.warning("Unexpected engine_idx: %d", engine_idx)
|
||||
return
|
||||
LoggingStatLogger.record(self, scheduler_stats, iteration_stats,
|
||||
engine_idx)
|
||||
|
||||
def log(self):
|
||||
self.get_log_stats()
|
||||
log_fn = logger.info
|
||||
if self.engine_is_idle:
|
||||
# Avoid log noise on an idle production system
|
||||
log_fn = logger.debug
|
||||
# Format and print output.
|
||||
log_fn(
|
||||
"%s Engines Aggregated: "
|
||||
"Avg prompt throughput: %.1f tokens/s, "
|
||||
"Avg generation throughput: %.1f tokens/s, "
|
||||
"Running: %d reqs, Waiting: %d reqs, "
|
||||
"GPU KV cache usage: %.1f%%, "
|
||||
"Prefix cache hit rate: %.1f%%",
|
||||
len(self.engine_idxs),
|
||||
self.last_prompt_throughput,
|
||||
self.last_generation_throughput,
|
||||
self.last_scheduler_stats.num_running_reqs,
|
||||
self.last_scheduler_stats.num_waiting_reqs,
|
||||
self.last_scheduler_stats.kv_cache_usage * 100,
|
||||
self.prefix_caching_metrics.hit_rate * 100,
|
||||
)
|
||||
self.spec_decoding_logging.log(log_fn=log_fn)
|
||||
|
||||
def log_engine_initialized(self):
|
||||
if self.vllm_config.cache_config.num_gpu_blocks:
|
||||
logger.info(
|
||||
"%d Engines: vllm cache_config_info with initialization "
|
||||
"after num_gpu_blocks is: %d", len(self.engine_idxs),
|
||||
self.vllm_config.cache_config.num_gpu_blocks)
|
||||
|
||||
|
||||
class PrometheusStatLogger(AggregatedStatLoggerBase):
|
||||
class PrometheusStatLogger(StatLoggerBase):
|
||||
_gauge_cls = prometheus_client.Gauge
|
||||
_counter_cls = prometheus_client.Counter
|
||||
_histogram_cls = prometheus_client.Histogram
|
||||
@ -741,32 +674,23 @@ class StatLoggerManager:
|
||||
|
||||
# engine_idx: StatLogger
|
||||
self.per_engine_logger_dict: dict[int, list[StatLoggerBase]] = {}
|
||||
self.aggregated_loggers: list[AggregatedStatLoggerBase] = []
|
||||
|
||||
aggregated_loggers_factories = set()
|
||||
prometheus_factory = PrometheusStatLogger
|
||||
for engine_idx in self.engine_idxs:
|
||||
loggers: list[StatLoggerBase] = []
|
||||
for logger_factory in factories:
|
||||
# If we get a custom prometheus logger or aggregated logger,
|
||||
# We initialize it separately with all engine idxs.
|
||||
# A custom prometheus logger is typically used for the ray.
|
||||
if (isinstance(logger_factory, type) and issubclass(
|
||||
logger_factory, AggregatedStatLoggerBase)):
|
||||
aggregated_loggers_factories.add(logger_factory)
|
||||
else:
|
||||
loggers.append(logger_factory(vllm_config,
|
||||
engine_idx)) # type: ignore
|
||||
# If we get a custom prometheus logger, use that
|
||||
# instead. This is typically used for the ray case.
|
||||
if (isinstance(logger_factory, type)
|
||||
and issubclass(logger_factory, PrometheusStatLogger)):
|
||||
prometheus_factory = logger_factory
|
||||
continue
|
||||
loggers.append(logger_factory(vllm_config,
|
||||
engine_idx)) # type: ignore
|
||||
self.per_engine_logger_dict[engine_idx] = loggers
|
||||
# If no custom aggregated logger is provide,
|
||||
# we by default use PrometheusStatLogger
|
||||
if not aggregated_loggers_factories:
|
||||
aggregated_loggers_factories.add(PrometheusStatLogger)
|
||||
# For custom aggregated logger(or default Prometheus Logger)
|
||||
# need to share the metrics between EngineCores.
|
||||
|
||||
# For Prometheus, need to share the metrics between EngineCores.
|
||||
# Each EngineCore's metrics are expressed as a unique label.
|
||||
for aggregated_loggers_factory in aggregated_loggers_factories:
|
||||
self.aggregated_loggers.append(
|
||||
aggregated_loggers_factory(vllm_config, engine_idxs))
|
||||
self.prometheus_logger = prometheus_factory(vllm_config, engine_idxs)
|
||||
|
||||
def record(
|
||||
self,
|
||||
@ -780,19 +704,18 @@ class StatLoggerManager:
|
||||
per_engine_loggers = self.per_engine_logger_dict[engine_idx]
|
||||
for logger in per_engine_loggers:
|
||||
logger.record(scheduler_stats, iteration_stats, engine_idx)
|
||||
for logger in self.aggregated_loggers:
|
||||
logger.record(scheduler_stats, iteration_stats, engine_idx)
|
||||
|
||||
self.prometheus_logger.record(scheduler_stats, iteration_stats,
|
||||
engine_idx)
|
||||
|
||||
def log(self):
|
||||
for per_engine_loggers in self.per_engine_logger_dict.values():
|
||||
for logger in per_engine_loggers:
|
||||
logger.log()
|
||||
for logger in self.aggregated_loggers:
|
||||
logger.log()
|
||||
|
||||
def log_engine_initialized(self):
|
||||
for agg_logger in self.aggregated_loggers:
|
||||
agg_logger.log_engine_initialized()
|
||||
self.prometheus_logger.log_engine_initialized()
|
||||
|
||||
for per_engine_loggers in self.per_engine_logger_dict.values():
|
||||
for logger in per_engine_loggers:
|
||||
logger.log_engine_initialized()
|
||||
|
||||
@ -42,6 +42,7 @@ from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
|
||||
from vllm.model_executor.model_loader import TensorizerLoader, get_model_loader
|
||||
from vllm.model_executor.models.interfaces import (is_mixture_of_experts,
|
||||
supports_eagle3,
|
||||
supports_mrope,
|
||||
supports_transcription)
|
||||
from vllm.model_executor.models.interfaces_base import (
|
||||
VllmModelForPooling, is_pooling_model, is_text_generation_model)
|
||||
@ -730,16 +731,28 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
if mm_input.get("use_audio_in_video") is True:
|
||||
use_audio_in_video = True
|
||||
|
||||
req_state.mrope_positions, req_state.mrope_position_delta = \
|
||||
MRotaryEmbedding.get_input_positions_tensor(
|
||||
req_state.prompt_token_ids,
|
||||
hf_config=self.model_config.hf_config,
|
||||
image_grid_thw=image_grid_thw,
|
||||
video_grid_thw=video_grid_thw,
|
||||
second_per_grid_ts=second_per_grid_ts,
|
||||
audio_feature_lengths=audio_feature_lengths,
|
||||
use_audio_in_video=use_audio_in_video,
|
||||
)
|
||||
if supports_mrope(self.model):
|
||||
req_state.mrope_positions, req_state.mrope_position_delta = \
|
||||
self.model.get_mrope_input_positions(
|
||||
req_state.prompt_token_ids,
|
||||
hf_config=self.model_config.hf_config,
|
||||
image_grid_thw=image_grid_thw,
|
||||
video_grid_thw=video_grid_thw,
|
||||
second_per_grid_ts=second_per_grid_ts,
|
||||
audio_feature_lengths=audio_feature_lengths,
|
||||
use_audio_in_video=use_audio_in_video,
|
||||
)
|
||||
else:
|
||||
req_state.mrope_positions, req_state.mrope_position_delta = \
|
||||
MRotaryEmbedding.get_input_positions_tensor(
|
||||
req_state.prompt_token_ids,
|
||||
hf_config=self.model_config.hf_config,
|
||||
image_grid_thw=image_grid_thw,
|
||||
video_grid_thw=video_grid_thw,
|
||||
second_per_grid_ts=second_per_grid_ts,
|
||||
audio_feature_lengths=audio_feature_lengths,
|
||||
use_audio_in_video=use_audio_in_video,
|
||||
)
|
||||
|
||||
def _extract_mm_kwargs(
|
||||
self,
|
||||
|
||||
@ -41,7 +41,8 @@ from vllm.model_executor.layers.sampler import (Sampler, SamplerOutput,
|
||||
get_sampler)
|
||||
from vllm.model_executor.model_loader import get_model
|
||||
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
|
||||
from vllm.model_executor.models import supports_lora, supports_multimodal
|
||||
from vllm.model_executor.models import (supports_lora, supports_mrope,
|
||||
supports_multimodal)
|
||||
from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
|
||||
from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
|
||||
MultiModalKwargs, MultiModalPlaceholderMap,
|
||||
@ -670,18 +671,33 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
|
||||
inter_data.seq_ids[seq_idx]]
|
||||
token_ids = seq_data.get_token_ids()
|
||||
|
||||
mrope_input_positions, mrope_position_delta = \
|
||||
MRotaryEmbedding.get_input_positions(
|
||||
token_ids,
|
||||
hf_config=hf_config,
|
||||
image_grid_thw=image_grid_thw,
|
||||
video_grid_thw=video_grid_thw,
|
||||
second_per_grid_ts=second_per_grid_ts,
|
||||
context_len=inter_data.context_lens[seq_idx],
|
||||
seq_len=inter_data.seq_lens[seq_idx],
|
||||
audio_feature_lengths=audio_feature_lengths,
|
||||
use_audio_in_video=use_audio_in_video,
|
||||
)
|
||||
if supports_mrope(self.runner.model):
|
||||
mrope_input_positions, mrope_position_delta = \
|
||||
self.runner.model.get_mrope_input_positions(
|
||||
token_ids,
|
||||
hf_config=hf_config,
|
||||
image_grid_thw=image_grid_thw,
|
||||
video_grid_thw=video_grid_thw,
|
||||
second_per_grid_ts=second_per_grid_ts,
|
||||
context_len=inter_data.context_lens[seq_idx],
|
||||
seq_len=inter_data.seq_lens[seq_idx],
|
||||
audio_feature_lengths=audio_feature_lengths,
|
||||
use_audio_in_video=use_audio_in_video,
|
||||
)
|
||||
mrope_input_positions = mrope_input_positions.tolist()
|
||||
else:
|
||||
mrope_input_positions, mrope_position_delta = \
|
||||
MRotaryEmbedding.get_input_positions(
|
||||
token_ids,
|
||||
hf_config=hf_config,
|
||||
image_grid_thw=image_grid_thw,
|
||||
video_grid_thw=video_grid_thw,
|
||||
second_per_grid_ts=second_per_grid_ts,
|
||||
context_len=inter_data.context_lens[seq_idx],
|
||||
seq_len=inter_data.seq_lens[seq_idx],
|
||||
audio_feature_lengths=audio_feature_lengths,
|
||||
use_audio_in_video=use_audio_in_video,
|
||||
)
|
||||
|
||||
seq_data.mrope_position_delta = mrope_position_delta
|
||||
inter_data.mrope_input_positions[
|
||||
|
||||
Reference in New Issue
Block a user