Compare commits
94 Commits
pd_schedul
...
benchmark-
| Author | SHA1 | Date | |
|---|---|---|---|
| a7b809e0f0 | |||
| 7efc568418 | |||
| 8e630d680e | |||
| af869f6dff | |||
| 53c0fa1e25 | |||
| f7912cba3d | |||
| 6317a5174a | |||
| aa72d9a4ea | |||
| ce17db8085 | |||
| 8c87a9ad46 | |||
| ec69124eb4 | |||
| d0da99fb70 | |||
| b2f195c429 | |||
| 047797ef90 | |||
| eb8ef4224d | |||
| 56a735261c | |||
| e1cf90e099 | |||
| 6bc1e30ef9 | |||
| 7e081ba7ca | |||
| 1e013fa388 | |||
| bc7c4d206b | |||
| f67e9e9f22 | |||
| 36fe78769f | |||
| 83d933718c | |||
| 5175b884f7 | |||
| 5536b30a4c | |||
| 7f58fb9718 | |||
| 30bc3e0f66 | |||
| f34410715f | |||
| 68d4c33202 | |||
| f961d7f6ef | |||
| d059110498 | |||
| 571e8dd65e | |||
| 4b91c927f6 | |||
| 0e237f0035 | |||
| 8f7bace7c3 | |||
| e4d6144232 | |||
| 8d32dc603d | |||
| c4ab9f3e71 | |||
| 2689d5c027 | |||
| acba33a0f1 | |||
| a114bf20a3 | |||
| 3097ce3a32 | |||
| d6da9322c8 | |||
| 71ce44047f | |||
| 188b7f9b8c | |||
| b9b4746950 | |||
| 7b8a2ab76f | |||
| c9acbf1141 | |||
| 5b794cae8d | |||
| 0e4254492f | |||
| 1311913f55 | |||
| 29f395c97c | |||
| fa3bba2a53 | |||
| 986537f1c3 | |||
| 210207525e | |||
| 71eda0bb76 | |||
| 471fe65630 | |||
| 3a0fba5cf4 | |||
| 299ebb62b2 | |||
| f728ab8e35 | |||
| 63e26fff78 | |||
| fe3462c774 | |||
| 3b34fd5273 | |||
| 55d6d3fdb8 | |||
| 7272bfae77 | |||
| d9ac9e3dc5 | |||
| d41faaf9df | |||
| b34f33438a | |||
| 26c0406555 | |||
| 4c41278b77 | |||
| bb3605db85 | |||
| fe742aef5a | |||
| 4b07d36891 | |||
| 87aaadef73 | |||
| 682e0b6d2f | |||
| d6195a748b | |||
| 205d84aaa9 | |||
| 5124f5bf51 | |||
| 83f3c3bd91 | |||
| d9737ca1c6 | |||
| 9d4ca19d50 | |||
| 2ef0dc53b8 | |||
| 1d4680fad2 | |||
| 2c1bd848a6 | |||
| 5c9121203c | |||
| 490b1698a5 | |||
| 5a5e29de88 | |||
| 9ec11b459c | |||
| 244d5cc749 | |||
| 816693fd00 | |||
| 7c16128106 | |||
| 7bb88b2edc | |||
| ae4f3e2aeb |
@ -4,8 +4,8 @@ tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.31
|
||||
value: 0.30
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.47
|
||||
value: 0.465
|
||||
limit: 1319
|
||||
num_fewshot: 5
|
||||
|
||||
@ -16,7 +16,7 @@ import numpy
|
||||
import pytest
|
||||
import yaml
|
||||
|
||||
RTOL = 0.05
|
||||
RTOL = 0.08
|
||||
TEST_DATA_FILE = os.environ.get(
|
||||
"LM_EVAL_TEST_DATA_FILE",
|
||||
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
|
||||
|
||||
@ -86,3 +86,18 @@ steps:
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build Neuron release image"
|
||||
key: block-neuron-release-image-build
|
||||
depends_on: ~
|
||||
|
||||
- label: "Build and publish Neuron release image"
|
||||
depends_on: block-neuron-release-image-build
|
||||
agents:
|
||||
queue: neuron-postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -98,6 +98,13 @@ if [[ $commands == *" kernels "* ]]; then
|
||||
--ignore=kernels/test_machete_mm.py \
|
||||
--ignore=kernels/test_mha_attn.py \
|
||||
--ignore=kernels/test_block_fp8.py \
|
||||
--ignore=kernels/test_cutlass_moe.py \
|
||||
--ignore=kernels/test_mamba_ssm_ssd.py \
|
||||
--ignore=kernels/test_attention.py \
|
||||
--ignore=kernels/test_block_int8.py \
|
||||
--ignore=kernels/test_fused_quant_layernorm.py \
|
||||
--ignore=kernels/test_int8_kernel.py \
|
||||
--ignore=kernels/test_triton_moe_ptpc_fp8.py \
|
||||
--ignore=kernels/test_permute_cols.py"
|
||||
fi
|
||||
|
||||
|
||||
@ -17,7 +17,7 @@ source /etc/environment
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest tpu-info \
|
||||
&& python3 -m pip install pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& export VLLM_USE_V1=1 \
|
||||
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
|
||||
@ -42,7 +42,11 @@ docker run --privileged --net host --shm-size=16G -it \
|
||||
&& echo TEST_8 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py \
|
||||
&& echo TEST_9 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py" \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py \
|
||||
&& echo TEST_10 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py \
|
||||
&& echo TEST_11 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py" \
|
||||
|
||||
|
||||
# TODO: This test fails because it uses RANDOM_SEED sampling
|
||||
|
||||
@ -8,6 +8,7 @@
|
||||
# Documentation
|
||||
# label(str): the name of the test. emoji allowed.
|
||||
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
|
||||
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
|
||||
# fast_check_only(bool): run this test on fastcheck pipeline only
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
|
||||
# command(str): the single command to run for tests. incompatible with commands.
|
||||
@ -70,6 +71,7 @@ steps:
|
||||
- label: Basic Correctness Test # 30min
|
||||
#mirror_hardwares: [amd]
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_basic_correctness
|
||||
@ -104,6 +106,7 @@ steps:
|
||||
- label: Entrypoints Test # 40min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -205,6 +208,8 @@ steps:
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/worker
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_stats.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
@ -312,15 +317,46 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s compile/test_full_graph.py
|
||||
|
||||
- label: Kernels Test %N # 1h each
|
||||
# mirror_hardwares: [amd]
|
||||
- label: Kernels Core Operation Test
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/attention
|
||||
- tests/kernels
|
||||
- tests/kernels/core
|
||||
commands:
|
||||
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 4
|
||||
- pytest -v -s kernels/core
|
||||
|
||||
- label: Kernels Attention Test %N
|
||||
source_file_dependencies:
|
||||
- csrc/attention/
|
||||
- vllm/attention
|
||||
- vllm/v1/attention
|
||||
- tests/kernels/attention
|
||||
commands:
|
||||
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels Quantization Test %N
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/kernels/quantization
|
||||
commands:
|
||||
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels MoE Test
|
||||
source_file_dependencies:
|
||||
- csrc/moe/
|
||||
- tests/kernels/moe
|
||||
- vllm/model_executor/layers/fused_moe/
|
||||
commands:
|
||||
- pytest -v -s kernels/moe
|
||||
|
||||
- label: Kernels Mamba Test
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
- tests/kernels/mamba
|
||||
commands:
|
||||
- pytest -v -s kernels/mamba
|
||||
|
||||
- label: Tensorizer Test # 11min
|
||||
# mirror_hardwares: [amd]
|
||||
|
||||
12
.github/mergify.yml
vendored
12
.github/mergify.yml
vendored
@ -55,11 +55,19 @@ pull_request_rules:
|
||||
description: Automatically apply structured-output label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^benchmarks/structured_schemas/
|
||||
- files=benchmarks/benchmark_serving_structured_output.py
|
||||
- files=benchmarks/run_structured_output_benchmark.sh
|
||||
- files=docs/source/features/structured_outputs.md
|
||||
- files=examples/offline_inference/structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
|
||||
- files~=^vllm/model_executor/guided_decoding/
|
||||
- files=tests/model_executor/test_guided_processors.py
|
||||
- files=tests/entrypoints/llm/test_guided_generate.py
|
||||
- files=benchmarks/benchmark_serving_guided.py
|
||||
- files=benchmarks/benchmark_guided.py
|
||||
- files~=^tests/v1/structured_output/
|
||||
- files=tests/v1/entrypoints/llm/test_guided_generate.py
|
||||
- files~=^vllm/v1/structured_output/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
|
||||
@ -678,6 +678,7 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
#
|
||||
set(VLLM_ROCM_EXT_SRC
|
||||
"csrc/rocm/torch_bindings.cpp"
|
||||
"csrc/rocm/skinny_gemms.cu"
|
||||
"csrc/rocm/attention.cu")
|
||||
|
||||
define_gpu_extension_target(
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
@ -32,6 +33,7 @@ class RequestFuncInput:
|
||||
extra_body: Optional[dict] = None
|
||||
multi_modal_content: Optional[dict] = None
|
||||
ignore_eos: bool = False
|
||||
language: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -436,6 +438,110 @@ async def async_request_openai_chat_completions(
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_openai_audio(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
# Lazy import without PlaceholderModule to avoid vllm dep.
|
||||
import soundfile
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("transcriptions", "translations"
|
||||
)), "OpenAI Chat Completions API URL must end with 'transcriptions' "
|
||||
"or `translations`."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
payload = {
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"temperature": 0.0,
|
||||
"max_completion_tokens": request_func_input.output_len,
|
||||
"stream": True,
|
||||
"language": "en",
|
||||
# Flattened due to multipart/form-data
|
||||
"stream_include_usage": True,
|
||||
"stream_continuous_usage_stats": True
|
||||
}
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
}
|
||||
|
||||
# Send audio file
|
||||
def to_bytes(y, sr):
|
||||
buffer = io.BytesIO()
|
||||
soundfile.write(buffer, y, sr, format="WAV")
|
||||
buffer.seek(0)
|
||||
return buffer
|
||||
|
||||
with to_bytes(*request_func_input.multi_modal_content['audio']) as f:
|
||||
form = aiohttp.FormData()
|
||||
form.add_field('file', f, content_type='audio/wav')
|
||||
for key, value in payload.items():
|
||||
form.add_field(key, str(value))
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
generated_text = ""
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url,
|
||||
data=form,
|
||||
headers=headers) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
if choices := data.get("choices"):
|
||||
content = choices[0]["delta"].get(
|
||||
"content")
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(
|
||||
timestamp - most_recent_timestamp)
|
||||
|
||||
generated_text += content or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.generated_text = generated_text
|
||||
output.success = True
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
|
||||
from modelscope import snapshot_download
|
||||
@ -493,6 +599,7 @@ ASYNC_REQUEST_FUNCS = {
|
||||
"deepspeed-mii": async_request_deepspeed_mii,
|
||||
"openai": async_request_openai_completions,
|
||||
"openai-chat": async_request_openai_chat_completions,
|
||||
"openai-audio": async_request_openai_audio,
|
||||
"tensorrt-llm": async_request_trt_llm,
|
||||
"scalellm": async_request_openai_completions,
|
||||
"sglang": async_request_openai_completions,
|
||||
|
||||
@ -64,6 +64,7 @@ class SampleRequest:
|
||||
|
||||
class BenchmarkDataset(ABC):
|
||||
DEFAULT_SEED = 0
|
||||
IS_MULTIMODAL = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -621,6 +622,7 @@ class ConversationDataset(HuggingFaceDataset):
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
@ -685,6 +687,7 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
"lmarena-ai/vision-arena-bench-v0.1":
|
||||
lambda x: x["turns"][0][0]["content"]
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
def sample(
|
||||
self,
|
||||
@ -815,3 +818,80 @@ class AIMODataset(HuggingFaceDataset):
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# ASR Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class ASRDataset(HuggingFaceDataset):
|
||||
"""
|
||||
Dataset class for processing a ASR dataset for transcription.
|
||||
Tested on the following set:
|
||||
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
| Dataset | Domain | Speaking Style | hf-subset |
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
| TED-LIUM | TED talks | Oratory | release1, release2, release3|
|
||||
| | | | release3-speaker-adaptation |
|
||||
| VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... |
|
||||
| LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" |
|
||||
| GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test |
|
||||
| SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test |
|
||||
| AMI | Meetings | Spontaneous | ihm, sdm |
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
|
||||
""" # noqa: E501
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"openslr/librispeech_asr", "facebook/voxpopuli", "LIUM/tedlium",
|
||||
"edinburghcstr/ami", "speechcolab/gigaspeech", "kensho/spgispeech"
|
||||
}
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
# TODO Whisper-specific. Abstract interface when more models are supported.
|
||||
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|>"\
|
||||
"<|notimestamps|>"
|
||||
skip_long_audios: bool = True
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
import librosa
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests = []
|
||||
skipped = 0
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
audio = item["audio"]
|
||||
y, sr = audio["array"], audio["sampling_rate"]
|
||||
duration_s = librosa.get_duration(y=y, sr=sr)
|
||||
# Whisper max supported duration
|
||||
if self.skip_long_audios and duration_s > 30:
|
||||
skipped += 1
|
||||
continue
|
||||
|
||||
mm_content = {"audio": (y, sr)}
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
if skipped:
|
||||
logger.warning("%d samples discarded from dataset due to" \
|
||||
" their length being greater than" \
|
||||
" what Whisper supports.", skipped)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
@ -50,7 +50,7 @@ try:
|
||||
except ImportError:
|
||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||
|
||||
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
|
||||
from benchmark_dataset import (AIMODataset, ASRDataset, BurstGPTDataset,
|
||||
ConversationDataset, HuggingFaceDataset,
|
||||
InstructCoderDataset, RandomDataset,
|
||||
SampleRequest, ShareGPTDataset, SonnetDataset,
|
||||
@ -274,10 +274,6 @@ async def benchmark(
|
||||
input_requests[0].expected_output_len, \
|
||||
input_requests[0].multi_modal_data
|
||||
|
||||
if backend != "openai-chat" and test_mm_content is not None:
|
||||
# multi-modal benchmark is only available on OpenAI Chat backend.
|
||||
raise ValueError(
|
||||
"Multi-modal content is only supported on 'openai-chat' backend.")
|
||||
assert test_mm_content is None or isinstance(test_mm_content, dict)
|
||||
test_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
@ -604,6 +600,9 @@ def main(args: argparse.Namespace):
|
||||
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_class = AIMODataset
|
||||
args.hf_split = "train"
|
||||
elif args.dataset_path in ASRDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_class = ASRDataset
|
||||
args.hf_split = "train"
|
||||
else:
|
||||
supported_datasets = set([
|
||||
dataset_name for cls in HuggingFaceDataset.__subclasses__()
|
||||
@ -615,6 +614,13 @@ def main(args: argparse.Namespace):
|
||||
f" from one of following: {supported_datasets}. "
|
||||
"Please consider contributing if you would "
|
||||
"like to add support for additional dataset formats.")
|
||||
|
||||
if (dataset_class.IS_MULTIMODAL and backend not in \
|
||||
["openai-chat", "openai-audio"]):
|
||||
# multi-modal benchmark is only available on OpenAI Chat backend.
|
||||
raise ValueError(
|
||||
"Multi-modal content is only supported on 'openai-chat' and " \
|
||||
"'openai-audio' backend.")
|
||||
input_requests = dataset_class(
|
||||
dataset_path=args.dataset_path,
|
||||
dataset_subset=args.hf_subset,
|
||||
@ -737,6 +743,8 @@ def main(args: argparse.Namespace):
|
||||
]:
|
||||
if field in result_json:
|
||||
del result_json[field]
|
||||
if field in benchmark_result:
|
||||
del benchmark_result[field]
|
||||
|
||||
# Traffic
|
||||
result_json["request_rate"] = (args.request_rate if args.request_rate
|
||||
@ -756,7 +764,10 @@ def main(args: argparse.Namespace):
|
||||
file_name = args.result_filename
|
||||
if args.result_dir:
|
||||
file_name = os.path.join(args.result_dir, file_name)
|
||||
with open(file_name, "w", encoding='utf-8') as outfile:
|
||||
with open(file_name, mode="a+", encoding='utf-8') as outfile:
|
||||
# Append a newline.
|
||||
if outfile.tell() != 0:
|
||||
outfile.write("\n")
|
||||
json.dump(result_json, outfile)
|
||||
save_to_pytorch_benchmark_format(args, result_json, file_name)
|
||||
|
||||
|
||||
@ -51,7 +51,7 @@ try:
|
||||
except ImportError:
|
||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||
|
||||
from vllm.v1.structured_output.utils import (
|
||||
from vllm.v1.structured_output.backend_xgrammar import (
|
||||
has_xgrammar_unsupported_json_features)
|
||||
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||
|
||||
@ -523,6 +523,13 @@ def validate_args(args):
|
||||
raise ValueError(
|
||||
"Tokenizer must be the same as the model for MII backend.")
|
||||
|
||||
# --data-parallel is not supported currently.
|
||||
# https://github.com/vllm-project/vllm/issues/16222
|
||||
if args.data_parallel_size > 1:
|
||||
raise ValueError(
|
||||
"Data parallel is not supported in offline benchmark, \
|
||||
please use benchmark serving instead")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
|
||||
|
||||
13
benchmarks/convert_to_csv.py
Normal file
13
benchmarks/convert_to_csv.py
Normal file
@ -0,0 +1,13 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import pandas as pd
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--input-path", type=str, required=True)
|
||||
parser.add_argument("--output-path", type=str, required=True)
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
df = pd.read_json(args.input_path, lines=True)
|
||||
df.to_csv(args.output_path)
|
||||
236
benchmarks/kernels/benchmark_bitblas.py
Normal file
236
benchmarks/kernels/benchmark_bitblas.py
Normal file
@ -0,0 +1,236 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
|
||||
MINIMUM_BITBLAS_VERSION)
|
||||
|
||||
try:
|
||||
import bitblas
|
||||
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
|
||||
raise ImportError("bitblas version is wrong. Please "
|
||||
f"install bitblas>={MINIMUM_BITBLAS_VERSION}")
|
||||
except ImportError as e:
|
||||
bitblas_import_exception = e
|
||||
raise ValueError("Trying to use the bitblas backend, but could not import"
|
||||
f"with the following error: {bitblas_import_exception}. "
|
||||
"Please install bitblas through the following command: "
|
||||
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
|
||||
) from bitblas_import_exception
|
||||
|
||||
from bitblas import Matmul, MatmulConfig, auto_detect_nvidia_target
|
||||
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark BitBLAS int4 on a specific target.")
|
||||
|
||||
# Add arguments to the parser
|
||||
parser.add_argument(
|
||||
"--target",
|
||||
type=str,
|
||||
default=auto_detect_nvidia_target(),
|
||||
help="Specify the target device for benchmarking.",
|
||||
)
|
||||
parser.add_argument("--group_size",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Group size for grouped quantization.")
|
||||
parser.add_argument(
|
||||
"--A_dtype",
|
||||
type=str,
|
||||
default="float16",
|
||||
choices=["float16", "float32", "float64", "int32", "int8"],
|
||||
help="Data type of activation A.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--W_dtype",
|
||||
type=str,
|
||||
default="int4",
|
||||
choices=[
|
||||
"float16",
|
||||
"float32",
|
||||
"float64",
|
||||
"int32",
|
||||
"int8",
|
||||
"int4",
|
||||
"int2",
|
||||
"int1",
|
||||
"nf4",
|
||||
"fp4_e2m1",
|
||||
],
|
||||
help="Data type of weight W.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--accum_dtype",
|
||||
type=str,
|
||||
default="float16",
|
||||
choices=["float16", "int32"],
|
||||
help="Data type for accumulation.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--out_dtype",
|
||||
type=str,
|
||||
default="float16",
|
||||
choices=["float16", "float32", "int32", "int8"],
|
||||
help="Data type for output.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--layout",
|
||||
type=str,
|
||||
default="nt",
|
||||
choices=["nt", "nn"],
|
||||
help="Matrix layout, 'nt' for non-transpose A and transpose W.",
|
||||
)
|
||||
parser.add_argument("--with_bias",
|
||||
action="store_true",
|
||||
help="Include bias in the benchmark.")
|
||||
parser.add_argument(
|
||||
"--with_scaling",
|
||||
action="store_true",
|
||||
help="Include scaling factor in the quantization.",
|
||||
)
|
||||
parser.add_argument("--with_zeros",
|
||||
action="store_true",
|
||||
help="Include zeros in the quantization.")
|
||||
parser.add_argument(
|
||||
"--zeros_mode",
|
||||
type=str,
|
||||
default=None,
|
||||
choices=["original", "rescale", "quantized"],
|
||||
help="Specify the mode for calculating zeros.",
|
||||
)
|
||||
|
||||
# Parse the arguments
|
||||
args = parser.parse_args()
|
||||
|
||||
# Assign arguments to variables
|
||||
target = args.target
|
||||
A_dtype = args.A_dtype
|
||||
W_dtype = args.W_dtype
|
||||
accum_dtype = args.accum_dtype
|
||||
out_dtype = args.out_dtype
|
||||
layout = args.layout
|
||||
with_bias = args.with_bias
|
||||
group_size = args.group_size
|
||||
with_scaling = args.with_scaling
|
||||
with_zeros = args.with_zeros
|
||||
zeros_mode = args.zeros_mode
|
||||
|
||||
# Define a list of shared arguments that repeat in every config
|
||||
shared_args = [
|
||||
A_dtype,
|
||||
W_dtype,
|
||||
out_dtype,
|
||||
accum_dtype,
|
||||
layout,
|
||||
with_bias,
|
||||
group_size,
|
||||
with_scaling,
|
||||
with_zeros,
|
||||
zeros_mode,
|
||||
]
|
||||
|
||||
# Define just the (M, K, N) shapes in a more compact list
|
||||
shapes = [
|
||||
# square test
|
||||
(1, 16384, 16384),
|
||||
# BLOOM-176B
|
||||
(1, 43008, 14336),
|
||||
(1, 14336, 14336),
|
||||
(1, 57344, 14336),
|
||||
(1, 14336, 57344),
|
||||
# OPT-65B
|
||||
(1, 9216, 9216),
|
||||
(1, 36864, 9216),
|
||||
(1, 9216, 36864),
|
||||
(1, 22016, 8192),
|
||||
# LLAMA-70B/65B
|
||||
(1, 8192, 22016),
|
||||
(1, 8192, 8192),
|
||||
(1, 28672, 8192),
|
||||
(1, 8192, 28672),
|
||||
# square test
|
||||
(16384, 16384, 16384),
|
||||
# BLOOM-176B
|
||||
(8192, 43008, 14336),
|
||||
(8192, 14336, 14336),
|
||||
(8192, 57344, 14336),
|
||||
(8192, 14336, 57344),
|
||||
# OPT-65B
|
||||
(8192, 9216, 9216),
|
||||
(8192, 36864, 9216),
|
||||
(8192, 9216, 36864),
|
||||
(8192, 22016, 8192),
|
||||
# LLAMA-70B/65B
|
||||
(8192, 8192, 22016),
|
||||
(8192, 8192, 8192),
|
||||
(8192, 28672, 8192),
|
||||
(8192, 8192, 28672),
|
||||
]
|
||||
|
||||
# Build test shapes with all the shared arguments
|
||||
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args))
|
||||
for shape in shapes]
|
||||
|
||||
benchmark_sets = []
|
||||
benchmark_sets.extend(test_shapes)
|
||||
|
||||
benchmark_results = {}
|
||||
for config_class, operator, input_args in benchmark_sets:
|
||||
config = config_class(*input_args)
|
||||
matmul = operator(config, target=target, enable_tuning=True)
|
||||
kernel_latency = matmul.profile_latency()
|
||||
|
||||
print("Time cost is: {:.3f} ms".format(kernel_latency))
|
||||
|
||||
profile_config = {
|
||||
f"{operator.__name__}-{'-'.join([str(i) for i in input_args])}": {
|
||||
"BitBLAS_top20_latency": kernel_latency,
|
||||
}
|
||||
}
|
||||
|
||||
benchmark_results.update(profile_config)
|
||||
|
||||
# Define headers for the table
|
||||
headers = [
|
||||
"PrimFunc",
|
||||
"Input Arguments",
|
||||
"BitBLAS Top20 Latency",
|
||||
]
|
||||
|
||||
# Calculate column widths for pretty printing
|
||||
col_widths = [0, 0, 0]
|
||||
for config_key, values in benchmark_results.items():
|
||||
args_split = config_key.split("-")
|
||||
func_name = args_split[0]
|
||||
input_args_str = "-".join(args_split[1:])
|
||||
col_widths[0] = max(col_widths[0], len(func_name) + 2, len(headers[0]) + 2)
|
||||
col_widths[1] = max(col_widths[1],
|
||||
len(input_args_str) + 2,
|
||||
len(headers[1]) + 2)
|
||||
col_widths[2] = max(col_widths[2],
|
||||
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
|
||||
len(headers[2]) + 2)
|
||||
# break only if you want to measure widths from a single example;
|
||||
# otherwise, let it loop over all items.
|
||||
|
||||
# Print header
|
||||
for i, header in enumerate(headers):
|
||||
headers[i] = header.ljust(col_widths[i])
|
||||
print("".join(headers))
|
||||
print("-" * sum(col_widths))
|
||||
|
||||
# Print rows
|
||||
for config_key, values in benchmark_results.items():
|
||||
args_split = config_key.split("-")
|
||||
func_name = args_split[0]
|
||||
input_args_str = "-".join(args_split[1:])
|
||||
row = [
|
||||
func_name,
|
||||
input_args_str,
|
||||
f"{values['BitBLAS_top20_latency']:.3f} ms",
|
||||
]
|
||||
row_str = "".join(
|
||||
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)])
|
||||
print(row_str)
|
||||
27
benchmarks/sweep.sh
Normal file
27
benchmarks/sweep.sh
Normal file
@ -0,0 +1,27 @@
|
||||
MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
REQUEST_RATES=(1 10 15 20)
|
||||
INPUT_LEN=1000
|
||||
OUTPUT_LEN=100
|
||||
TOTAL_SECONDS=120
|
||||
|
||||
for REQUEST_RATE in "${REQUEST_RATES[@]}";
|
||||
do
|
||||
NUM_PROMPTS=$(($TOTAL_SECONDS * $REQUEST_RATE))
|
||||
|
||||
echo ""
|
||||
echo "===== RUNNING $MODEL FOR $NUM_PROMPTS PROMPTS WITH $REQUEST_RATE QPS ====="
|
||||
echo ""
|
||||
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--model $MODEL \
|
||||
--dataset-name random \
|
||||
--random-input-len $INPUT_LEN \
|
||||
--random-output-len $OUTPUT_LEN \
|
||||
--request-rate $REQUEST_RATE \
|
||||
--num-prompts $NUM_PROMPTS \
|
||||
--seed $REQUEST_RATE \
|
||||
--ignore-eos \
|
||||
--result-filename "results.json" \
|
||||
--save-result
|
||||
|
||||
done
|
||||
@ -46,14 +46,26 @@ __global__ void compute_expert_offsets(
|
||||
}
|
||||
|
||||
__global__ void compute_arg_sorts(const int* __restrict__ topk_ids,
|
||||
const int32_t* __restrict__ expert_offsets,
|
||||
int32_t* input_permutation,
|
||||
int32_t* output_permutation,
|
||||
int32_t* atomic_buffer, const int topk_length,
|
||||
const int topk) {
|
||||
int expert_id = blockIdx.x;
|
||||
int const blk_expert_id = blockIdx.x;
|
||||
int const num_experts = gridDim.x;
|
||||
int32_t const num_tokens = expert_offsets[num_experts];
|
||||
|
||||
for (int i = threadIdx.x; i < topk_length; i += THREADS_PER_EXPERT) {
|
||||
if (topk_ids[i] == expert_id) {
|
||||
int const expert_id = topk_ids[i];
|
||||
if (expert_id == -1 && blockIdx.x == 0) {
|
||||
// output_permutation is used to re-order the moe outputs. It is
|
||||
// used as c2 = c2[c_map], where c2 is a torch.tensor that is the
|
||||
// output of the cutlass kernels and c_map is the output_permutation.
|
||||
// c2 is initialized to zeros, therefore by setting the output_permutation
|
||||
// to num_tokens, we are guaranteed to fill the moe outputs to zero
|
||||
// for "invalid" topk_ids.
|
||||
output_permutation[i] = num_tokens;
|
||||
} else if (expert_id == blk_expert_id) {
|
||||
int start = atomicAdd(&atomic_buffer[expert_id], 1);
|
||||
input_permutation[start] = i / topk;
|
||||
output_permutation[i] = start;
|
||||
@ -83,6 +95,7 @@ void get_cutlass_moe_mm_data_caller(
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
|
||||
compute_arg_sorts<<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<const int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(input_permutation.data_ptr()),
|
||||
static_cast<int32_t*>(output_permutation.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(),
|
||||
|
||||
@ -2,6 +2,15 @@
|
||||
|
||||
#include <torch/all.h>
|
||||
|
||||
torch::Tensor LLMM1(at::Tensor& in_a, at::Tensor& in_b,
|
||||
const int64_t rows_per_block);
|
||||
|
||||
torch::Tensor wvSplitK(at::Tensor& in_a, at::Tensor& in_b,
|
||||
const int64_t CuCount);
|
||||
|
||||
void wvSplitKQ(at::Tensor& in_a, at::Tensor& in_b, at::Tensor& out_c,
|
||||
at::Tensor& scale_a, at::Tensor& scale_b, const int64_t CuCount);
|
||||
|
||||
void paged_attention(torch::Tensor& out, torch::Tensor& exp_sums,
|
||||
torch::Tensor& max_logits, torch::Tensor& tmp_out,
|
||||
torch::Tensor& query, torch::Tensor& key_cache,
|
||||
|
||||
1600
csrc/rocm/skinny_gemms.cu
Normal file
1600
csrc/rocm/skinny_gemms.cu
Normal file
File diff suppressed because it is too large
Load Diff
@ -14,6 +14,24 @@
|
||||
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, rocm_ops) {
|
||||
// vLLM custom ops for rocm
|
||||
|
||||
// Custom gemm op for matrix-vector multiplication
|
||||
rocm_ops.def(
|
||||
"LLMM1(Tensor in_a, Tensor in_b, int rows_per_block) -> "
|
||||
"Tensor");
|
||||
rocm_ops.impl("LLMM1", torch::kCUDA, &LLMM1);
|
||||
|
||||
// Custom gemm op for skinny matrix-matrix multiplication
|
||||
rocm_ops.def(
|
||||
"wvSplitK(Tensor in_a, Tensor in_b, int CuCount) -> "
|
||||
"Tensor");
|
||||
rocm_ops.impl("wvSplitK", torch::kCUDA, &wvSplitK);
|
||||
|
||||
// wvSplitK for fp8
|
||||
rocm_ops.def(
|
||||
"wvSplitKQ(Tensor in_a, Tensor in_b, Tensor! out_c, Tensor scale_a, "
|
||||
" Tensor scale_b, int CuCount) -> ()");
|
||||
rocm_ops.impl("wvSplitKQ", torch::kCUDA, &wvSplitKQ);
|
||||
|
||||
// Custom attention op
|
||||
// Compute the attention between an input query and the cached
|
||||
// keys/values using PagedAttention.
|
||||
|
||||
307
docker/Dockerfile.nightly_torch
Normal file
307
docker/Dockerfile.nightly_torch
Normal file
@ -0,0 +1,307 @@
|
||||
# The vLLM Dockerfile is used to construct vLLM image against torch nightly that can be directly used for testing
|
||||
|
||||
# for torch nightly, cuda >=12.6 is required,
|
||||
# use 12.8 due to FlashAttention issue with cuda 12.6 (https://github.com/vllm-project/vllm/issues/15435#issuecomment-2775924628)
|
||||
ARG CUDA_VERSION=12.8.0
|
||||
#
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
# prepare basic build environment
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
|
||||
ARG CUDA_VERSION=12.8.0
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ARG TARGETPLATFORM
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
# Install Python and other dependencies
|
||||
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version \
|
||||
&& python3 -m pip --version
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
|
||||
# as it was causing spam when compiling the CUTLASS kernels
|
||||
RUN apt-get install -y gcc-10 g++-10
|
||||
RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 110 --slave /usr/bin/g++ g++ /usr/bin/g++-10
|
||||
RUN <<EOF
|
||||
gcc --version
|
||||
EOF
|
||||
|
||||
# Workaround for https://github.com/openai/triton/issues/2507 and
|
||||
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
||||
# this won't be needed for future versions of this docker image
|
||||
# or future versions of triton.
|
||||
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
# install build and runtime dependencies
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY use_existing_torch.py use_existing_torch.py
|
||||
COPY pyproject.toml pyproject.toml
|
||||
|
||||
# install build and runtime dependencies without stable torch version
|
||||
RUN python3 use_existing_torch.py
|
||||
|
||||
# install torch nightly
|
||||
ARG PINNED_TORCH_VERSION
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
if [ -n "$PINNED_TORCH_VERSION" ]; then \
|
||||
pkgs="$PINNED_TORCH_VERSION"; \
|
||||
else \
|
||||
pkgs="torch torchaudio torchvision"; \
|
||||
fi && \
|
||||
uv pip install --system $pkgs --index-url https://download.pytorch.org/whl/nightly/cu128
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system numba==0.61.2
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/common.txt
|
||||
|
||||
# must put before installing xformers, so it can install the correct version of xfomrers.
|
||||
ARG torch_cuda_arch_list='8.0;8.6;8.9;9.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
# Build xformers with cuda and torch nightly
|
||||
# following official xformers guidance: https://github.com/facebookresearch/xformers#build
|
||||
# todo(elainewy): cache xformers build result for faster build
|
||||
ARG max_jobs=16
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
ARG XFORMERS_COMMIT=f2de641ef670510cadab099ce6954031f52f191c
|
||||
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
echo 'git clone xformers...' \
|
||||
&& git clone https://github.com/facebookresearch/xformers.git --recursive \
|
||||
&& cd xformers \
|
||||
&& git checkout ${XFORMERS_COMMIT} \
|
||||
&& git submodule update --init --recursive \
|
||||
&& echo 'finish git clone xformers...' \
|
||||
&& rm -rf build \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=../xformers-dist --verbose \
|
||||
&& cd .. \
|
||||
&& rm -rf xformers
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system xformers-dist/*.whl --verbose
|
||||
|
||||
# build can take a long time, and the torch nightly version fetched from url can be different in next docker stage.
|
||||
# track the nightly torch version used in the build, when we set up runtime environment we can make sure the version is the same
|
||||
RUN uv pip freeze | grep -i '^torch\|^torchvision\|^torchaudio' > torch_build_versions.txt
|
||||
RUN cat torch_build_versions.txt
|
||||
|
||||
# cuda arch list used by torch
|
||||
# can be useful for `test`
|
||||
# explicitly set the list to avoid issues with torch 2.2
|
||||
# see https://github.com/pytorch/pytorch/pull/123243
|
||||
|
||||
# Override the arch list for flash-attn to reduce the binary size
|
||||
ARG vllm_fa_cmake_gpu_arches='80-real;90-real'
|
||||
ENV VLLM_FA_CMAKE_GPU_ARCHES=${vllm_fa_cmake_gpu_arches}
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
|
||||
#################### WHEEL BUILD IMAGE ####################
|
||||
FROM base AS build
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN python3 use_existing_torch.py
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt
|
||||
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != "0" ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
# Max jobs used by Ninja to build extensions
|
||||
ARG max_jobs=16
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
ARG nvcc_threads=2
|
||||
ENV NVCC_THREADS=$nvcc_threads
|
||||
|
||||
ARG USE_SCCACHE
|
||||
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
|
||||
ARG SCCACHE_REGION_NAME=us-west-2
|
||||
ARG SCCACHE_S3_NO_CREDENTIALS=0
|
||||
|
||||
# if USE_SCCACHE is set, use sccache to speed up compilation
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" = "1" ]; then \
|
||||
echo "Installing sccache..." \
|
||||
&& curl -L -o sccache.tar.gz https://github.com/mozilla/sccache/releases/download/v0.8.1/sccache-v0.8.1-x86_64-unknown-linux-musl.tar.gz \
|
||||
&& tar -xzf sccache.tar.gz \
|
||||
&& sudo mv sccache-v0.8.1-x86_64-unknown-linux-musl/sccache /usr/bin/sccache \
|
||||
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
|
||||
&& export SCCACHE_BUCKET=${SCCACHE_BUCKET_NAME} \
|
||||
&& export SCCACHE_REGION=${SCCACHE_REGION_NAME} \
|
||||
&& export SCCACHE_S3_NO_CREDENTIALS=${SCCACHE_S3_NO_CREDENTIALS} \
|
||||
&& export SCCACHE_IDLE_TIMEOUT=0 \
|
||||
&& export CMAKE_BUILD_TYPE=Release \
|
||||
&& sccache --show-stats \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38 \
|
||||
&& sccache --show-stats; \
|
||||
fi
|
||||
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" != "1" ]; then \
|
||||
# Clean any existing CMake artifacts
|
||||
rm -rf .deps && \
|
||||
mkdir -p .deps && \
|
||||
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
|
||||
fi
|
||||
|
||||
#################### WHEEL BUILD IMAGE ####################
|
||||
|
||||
################### VLLM INSTALLED IMAGE ####################
|
||||
# Setup clean environment for vLLM and its dependencies for test and api server using ubuntu22.04 with AOT flashinfer
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS vllm-base
|
||||
# prepare for environment starts
|
||||
ARG CUDA_VERSION=12.8.0
|
||||
ARG PYTHON_VERSION=3.12
|
||||
WORKDIR /vllm-workspace
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
|
||||
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
|
||||
|
||||
# Install Python and other dependencies
|
||||
RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim python3-pip \
|
||||
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
# Workaround for https://github.com/openai/triton/issues/2507 and
|
||||
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
||||
# this won't be needed for future versions of this docker image
|
||||
# or future versions of triton.
|
||||
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
||||
|
||||
# get the nightly torch version used in the build to make sure the version is the same
|
||||
COPY --from=base /workspace/torch_build_versions.txt ./torch_build_versions.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu128
|
||||
|
||||
# install the vllm wheel
|
||||
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/vllm-dist \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system vllm-dist/*.whl --verbose
|
||||
|
||||
# install xformers again for the new environment
|
||||
RUN --mount=type=bind,from=base,src=/workspace/xformers-dist,target=/vllm-workspace/xformers-dist \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system /vllm-workspace/xformers-dist/*.whl --verbose
|
||||
|
||||
ARG torch_cuda_arch_list='8.0;8.6;8.9;9.0'
|
||||
|
||||
# install package for build flashinfer
|
||||
# see issue: https://github.com/flashinfer-ai/flashinfer/issues/738
|
||||
RUN pip install setuptools==75.6.0 packaging==23.2 ninja==1.11.1.3 build==1.2.2.post1
|
||||
|
||||
|
||||
# build flashinfer for torch nightly from source around 10 mins
|
||||
# release version: v0.2.2.post1
|
||||
# todo(elainewy): cache flashinfer build result for faster build
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
echo "git clone flashinfer..." \
|
||||
&& git clone --recursive https://github.com/flashinfer-ai/flashinfer.git \
|
||||
&& cd flashinfer \
|
||||
&& git checkout v0.2.2.post1 \
|
||||
&& git submodule update --init --recursive \
|
||||
&& echo "finish git clone flashinfer..." \
|
||||
&& rm -rf build \
|
||||
&& export TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list} \
|
||||
&& FLASHINFER_ENABLE_AOT=1 python3 setup.py bdist_wheel --dist-dir=../flashinfer-dist --verbose \
|
||||
&& cd .. \
|
||||
&& rm -rf flashinfer
|
||||
|
||||
# install flashinfer
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system flashinfer-dist/*.whl --verbose
|
||||
|
||||
# install common packages
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY use_existing_torch.py use_existing_torch.py
|
||||
COPY pyproject.toml pyproject.toml
|
||||
|
||||
COPY examples examples
|
||||
COPY benchmarks benchmarks
|
||||
COPY ./vllm/collect_env.py .
|
||||
|
||||
RUN python3 use_existing_torch.py
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/common.txt
|
||||
|
||||
################### VLLM INSTALLED IMAGE ####################
|
||||
|
||||
|
||||
#################### UNITTEST IMAGE #############################
|
||||
FROM vllm-base as test
|
||||
COPY tests/ tests/
|
||||
|
||||
# install build and runtime dependencies without stable torch version
|
||||
COPY requirements/nightly_torch_test.txt requirements/nightly_torch_test.txt
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -e tests/vllm_test_utils
|
||||
|
||||
# enable fast downloads from hf (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system hf_transfer
|
||||
ENV HF_HUB_ENABLE_HF_TRANSFER 1
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/nightly_torch_test.txt
|
||||
|
||||
#################### UNITTEST IMAGE #############################
|
||||
|
||||
@ -12,7 +12,7 @@ ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git"
|
||||
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
|
||||
ARG FA_BRANCH="1a7f4dfa"
|
||||
ARG FA_REPO="https://github.com/Dao-AILab/flash-attention.git"
|
||||
ARG AITER_BRANCH="8970b25b"
|
||||
ARG AITER_BRANCH="7e1ed08"
|
||||
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
|
||||
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
|
||||
@ -128,11 +128,9 @@ HF processing as well as memory profiling.
|
||||
|
||||
### For memory profiling
|
||||
|
||||
Override the abstract method {meth}`~vllm.multimodal.profiling.BaseDummyInputsBuilder.get_dummy_processor_inputs`
|
||||
to construct dummy inputs for memory profiling. This dummy input should result in the worst-case memory usage of
|
||||
the model so that vLLM can reserve the correct amount of memory for it.
|
||||
Override the abstract methods {meth}`~vllm.multimodal.profiling.BaseDummyInputsBuilder.get_dummy_text` and {meth}`~vllm.multimodal.profiling.BaseDummyInputsBuilder.get_dummy_mm_data` to construct dummy inputs for memory profiling. These dummy inputs should result in the worst-case memory usage of the model so that vLLM can reserve the correct amount of memory for it.
|
||||
|
||||
Assuming that the memory usage increases with the number of tokens, the dummy input can be constructed to maximize the number of output embeddings, which is the same number as placeholder feature tokens.
|
||||
Assuming that the memory usage increases with the number of tokens, the dummy inputs can be constructed to maximize the number of output embeddings, which is the same number as placeholder feature tokens.
|
||||
|
||||
::::{tab-set}
|
||||
:::{tab-item} Basic example: LLaVA
|
||||
@ -244,38 +242,45 @@ def get_num_image_tokens(
|
||||
```
|
||||
|
||||
Notice that the number of image tokens doesn't depend on the image width and height.
|
||||
We can simply use a dummy `image_size`:
|
||||
We can simply use a dummy `image_size` to calculate the multimodal profiling data:
|
||||
|
||||
```python
|
||||
# NOTE: In actuality, this is usually implemented as part of the
|
||||
# model's subclass of `BaseProcessingInfo`, but we show it as is
|
||||
# here for simplicity.
|
||||
def get_image_size_with_most_features(self) -> ImageSize:
|
||||
hf_config = self.get_hf_config()
|
||||
width = height = hf_config.image_size
|
||||
return ImageSize(width=width, height=height)
|
||||
|
||||
def get_dummy_processor_inputs(
|
||||
def get_dummy_mm_data(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> ProcessorInputs:
|
||||
) -> MultiModalDataDict:
|
||||
num_images = mm_counts.get("image", 0)
|
||||
|
||||
processor = self.info.get_hf_processor()
|
||||
image_token = processor.image_token
|
||||
|
||||
hf_config = self.get_hf_config()
|
||||
target_width, target_height = self.info.get_image_size_with_most_features()
|
||||
target_width, target_height = \
|
||||
self.info.get_image_size_with_most_features()
|
||||
|
||||
mm_data = {
|
||||
return {
|
||||
"image":
|
||||
self._get_dummy_images(width=target_width,
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
}
|
||||
```
|
||||
|
||||
return ProcessorInputs(
|
||||
prompt_text=image_token * num_images,
|
||||
mm_data=mm_data,
|
||||
)
|
||||
For the text, we simply expand the multimodal image token from the model config to match the desired number of images.
|
||||
|
||||
```python
|
||||
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
||||
num_images = mm_counts.get("image", 0)
|
||||
|
||||
processor = self.info.get_hf_processor()
|
||||
image_token = processor.image_token
|
||||
|
||||
return image_token * num_images
|
||||
```
|
||||
|
||||
:::
|
||||
@ -412,29 +417,30 @@ def get_image_size_with_most_features(self) -> ImageSize:
|
||||
|
||||
Fuyu does not expect image placeholders in the inputs to HF processor, so
|
||||
the dummy prompt text is empty regardless of the number of images.
|
||||
Otherwise, the logic of this method is very similar to LLaVA:
|
||||
|
||||
```python
|
||||
def get_dummy_processor_inputs(
|
||||
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
||||
return ""
|
||||
```
|
||||
|
||||
For the multimodal image profiling data, the logic is very similar to LLaVA:
|
||||
|
||||
```python
|
||||
def get_dummy_mm_data(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> ProcessorInputs:
|
||||
) -> MultiModalDataDict:
|
||||
target_width, target_height = \
|
||||
self.info.get_image_size_with_most_features()
|
||||
num_images = mm_counts.get("image", 0)
|
||||
|
||||
mm_data = {
|
||||
return {
|
||||
"image":
|
||||
self._get_dummy_images(width=target_width,
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
}
|
||||
|
||||
return ProcessorInputs(
|
||||
prompt_text="",
|
||||
mm_data=mm_data,
|
||||
)
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
@ -47,7 +47,7 @@ Moreover, since the tokenized text has not passed through the HF processor, we h
|
||||
|
||||
### Dummy text
|
||||
|
||||
We work around the first issue by requiring each model to define how to generate dummy text based on the number of multi-modal inputs, via {meth}`~vllm.multimodal.profiling.BaseDummyInputsBuilder.get_dummy_processor_inputs`. This lets us generate dummy text corresponding to the multi-modal inputs and input them together to obtain the processed multi-modal data.
|
||||
We work around the first issue by requiring each model to define how to generate dummy text based on the number of multi-modal inputs, via {meth}`~vllm.multimodal.profiling.BaseDummyInputsBuilder.get_dummy_text`. This lets us generate dummy text corresponding to the multi-modal inputs and input them together to obtain the processed multi-modal data.
|
||||
|
||||
(mm-automatic-prompt-updating)=
|
||||
|
||||
|
||||
@ -99,7 +99,7 @@ This time, Inductor compilation is completely bypassed, and we will load from di
|
||||
|
||||
The above example just uses Inductor to compile for a general shape (i.e. symbolic shape). We can also use Inductor to compile for some of the specific shapes, for example:
|
||||
|
||||
`VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.2-1B --compilation_config "{'compile_sizes': [1, 2, 4, 8]}"`
|
||||
`vllm serve meta-llama/Llama-3.2-1B --compilation_config "{'compile_sizes': [1, 2, 4, 8]}"`
|
||||
|
||||
Then it will also compile a specific kernel just for batch size `1, 2, 4, 8`. At this time, all of the shapes in the computation graph are static and known, and we will turn on auto-tuning to tune for max performance. This can be slow when you run it for the first time, but the next time you run it, we can directly bypass the tuning and run the tuned kernel.
|
||||
|
||||
@ -134,6 +134,6 @@ The cudagraphs are captured and managed by the compiler backend, and replayed wh
|
||||
|
||||
By default, vLLM will try to determine a set of sizes to capture cudagraph. You can also override it using the config `cudagraph_capture_sizes`:
|
||||
|
||||
`VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.2-1B --compilation-config "{'cudagraph_capture_sizes': [1, 2, 4, 8]}"`
|
||||
`vllm serve meta-llama/Llama-3.2-1B --compilation-config "{'cudagraph_capture_sizes': [1, 2, 4, 8]}"`
|
||||
|
||||
Then it will only capture cudagraph for the specified sizes. It can be useful to have fine-grained control over the cudagraph capture.
|
||||
|
||||
48
docs/source/features/quantization/bitblas.md
Normal file
48
docs/source/features/quantization/bitblas.md
Normal file
@ -0,0 +1,48 @@
|
||||
(bitblas)=
|
||||
|
||||
# BitBLAS
|
||||
|
||||
vLLM now supports [BitBLAS](https://github.com/microsoft/BitBLAS) for more efficient and flexible model inference. Compared to other quantization frameworks, BitBLAS provides more precision combinations.
|
||||
|
||||
:::{note}
|
||||
Ensure your hardware supports the selected `dtype` (`torch.bfloat16` or `torch.float16`).
|
||||
Most recent NVIDIA GPUs support `float16`, while `bfloat16` is more common on newer architectures like Ampere or Hopper.
|
||||
For details see [supported hardware](https://docs.vllm.ai/en/latest/features/quantization/supported_hardware.html).
|
||||
:::
|
||||
|
||||
Below are the steps to utilize BitBLAS with vLLM.
|
||||
|
||||
```console
|
||||
pip install bitblas>=0.1.0
|
||||
```
|
||||
|
||||
vLLM reads the model's config file and supports pre-quantized checkpoints.
|
||||
|
||||
You can find pre-quantized models on:
|
||||
|
||||
- [Hugging Face (BitBLAS)](https://huggingface.co/models?other=bitblas)
|
||||
- [Hugging Face (GPTQ)](https://huggingface.co/models?other=gptq)
|
||||
|
||||
Usually, these repositories have a `quantize_config.json` file that includes a `quantization_config` section.
|
||||
|
||||
## Read bitblas format checkpoint
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
import torch
|
||||
|
||||
# "hxbgsyxh/llama-13b-4bit-g-1-bitblas" is a pre-quantized checkpoint.
|
||||
model_id = "hxbgsyxh/llama-13b-4bit-g-1-bitblas"
|
||||
llm = LLM(model=model_id, dtype=torch.bfloat16, trust_remote_code=True, quantization="bitblas")
|
||||
```
|
||||
|
||||
## Read gptq format checkpoint
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
import torch
|
||||
|
||||
# "hxbgsyxh/llama-13b-4bit-g-1" is a pre-quantized checkpoint.
|
||||
model_id = "hxbgsyxh/llama-13b-4bit-g-1"
|
||||
llm = LLM(model=model_id, dtype=torch.float16, trust_remote_code=True, quantization="bitblas", max_model_len=1024)
|
||||
```
|
||||
@ -11,6 +11,7 @@ Quantization trades off model precision for smaller memory footprint, allowing l
|
||||
supported_hardware
|
||||
auto_awq
|
||||
bnb
|
||||
bitblas
|
||||
gguf
|
||||
gptqmodel
|
||||
int4
|
||||
|
||||
@ -74,6 +74,17 @@ The table below shows the compatibility of various quantization implementations
|
||||
* ❌
|
||||
* ❌
|
||||
* ❌
|
||||
- * BitBLAS (GPTQ)
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ❌
|
||||
* ❌
|
||||
* ❌
|
||||
* ❌
|
||||
- * AQLM
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
|
||||
@ -152,12 +152,13 @@ Recommended flags: `--tool-call-parser mistral --chat-template examples/tool_cha
|
||||
|
||||
Supported models:
|
||||
|
||||
* `meta-llama/Meta-Llama-3.1-8B-Instruct`
|
||||
* `meta-llama/Meta-Llama-3.1-70B-Instruct`
|
||||
* `meta-llama/Meta-Llama-3.1-405B-Instruct`
|
||||
* `meta-llama/Meta-Llama-3.1-405B-Instruct-FP8`
|
||||
All Llama 3.1 and 3.2 models should be supported.
|
||||
|
||||
* `meta-llama/Llama-3.1-*`
|
||||
* `meta-llama/Llama-3.2-*`
|
||||
|
||||
The tool calling that is supported is the [JSON based tool calling](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#json-based-tool-calling). For [pythonic tool calling](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/text_prompt_format.md#zero-shot-function-calling) introduced by the Llama-3.2 models, see the `pythonic` tool parser below.
|
||||
|
||||
The tool calling that is supported is the [JSON based tool calling](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#json-based-tool-calling). For [pythonic tool calling](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/text_prompt_format.md#zero-shot-function-calling) in Llama-3.2 models, see the `pythonic` tool parser below.
|
||||
Other tool calling formats like the built in python tool calling or custom tool calling are not supported.
|
||||
|
||||
Known issues:
|
||||
@ -166,10 +167,14 @@ Known issues:
|
||||
2. The model can generate parameters with a wrong format, such as generating
|
||||
an array serialized as string instead of an array.
|
||||
|
||||
The `tool_chat_template_llama3_json.jinja` file contains the "official" Llama chat template, but tweaked so that
|
||||
it works better with vLLM.
|
||||
VLLM provides two JSON based chat templates for Llama 3.1 and 3.2:
|
||||
|
||||
Recommended flags: `--tool-call-parser llama3_json --chat-template examples/tool_chat_template_llama3_json.jinja`
|
||||
* `examples/tool_chat_template_llama3.1_json.jinja` - this is the "official" chat template for the Llama 3.1
|
||||
models, but tweaked so that it works better with vLLM.
|
||||
* `examples/tool_chat_template_llama3.2_json.jinja` - this extends upon the Llama 3.1 chat template by adding support for
|
||||
images.
|
||||
|
||||
Recommended flags: `--tool-call-parser llama3_json --chat-template {see_above}`
|
||||
|
||||
#### IBM Granite
|
||||
|
||||
|
||||
@ -13,11 +13,11 @@ There are no pre-built wheels or images for this device, so you must build vLLM
|
||||
- Intel Gaudi accelerator
|
||||
- Intel Gaudi software version 1.18.0
|
||||
|
||||
Please follow the instructions provided in the [Gaudi Installation
|
||||
Guide](https://docs.habana.ai/en/latest/Installation_Guide/index.html)
|
||||
Please follow the instructions provided in the
|
||||
[Gaudi Installation Guide](https://docs.habana.ai/en/latest/Installation_Guide/index.html)
|
||||
to set up the execution environment. To achieve the best performance,
|
||||
please follow the methods outlined in the [Optimizing Training Platform
|
||||
Guide](https://docs.habana.ai/en/latest/PyTorch/Model_Optimization_PyTorch/Optimization_in_Training_Platform.html).
|
||||
please follow the methods outlined in the
|
||||
[Optimizing Training Platform Guide](https://docs.habana.ai/en/latest/PyTorch/Model_Optimization_PyTorch/Optimization_in_Training_Platform.html).
|
||||
|
||||
## Configure a new environment
|
||||
|
||||
@ -32,15 +32,13 @@ pip list | grep habana # verify that habana-torch-plugin, habana-torch-dataloade
|
||||
pip list | grep neural # verify that neural_compressor is installed
|
||||
```
|
||||
|
||||
Refer to [Intel Gaudi Software Stack
|
||||
Verification](https://docs.habana.ai/en/latest/Installation_Guide/SW_Verification.html#platform-upgrade)
|
||||
Refer to [Intel Gaudi Software Stack Verification](https://docs.habana.ai/en/latest/Installation_Guide/SW_Verification.html#platform-upgrade)
|
||||
for more details.
|
||||
|
||||
### Run Docker Image
|
||||
|
||||
It is highly recommended to use the latest Docker image from Intel Gaudi
|
||||
vault. Refer to the [Intel Gaudi
|
||||
documentation](https://docs.habana.ai/en/latest/Installation_Guide/Bare_Metal_Fresh_OS.html#pull-prebuilt-containers)
|
||||
vault. Refer to the [Intel Gaudi documentation](https://docs.habana.ai/en/latest/Installation_Guide/Bare_Metal_Fresh_OS.html#pull-prebuilt-containers)
|
||||
for more details.
|
||||
|
||||
Use the following commands to run a Docker image:
|
||||
@ -278,8 +276,9 @@ Lower value corresponds to less usable graph memory reserved for prefill stage,
|
||||
:::
|
||||
|
||||
User can also configure the strategy for capturing HPU Graphs for prompt and decode stages separately. Strategy affects the order of capturing graphs. There are two strategies implemented:
|
||||
\- `max_bs` - graph capture queue will sorted in descending order by their batch sizes. Buckets with equal batch sizes are sorted by sequence length in ascending order (e.g. `(64, 128)`, `(64, 256)`, `(32, 128)`, `(32, 256)`, `(1, 128)`, `(1,256)`), default strategy for decode
|
||||
\- `min_tokens` - graph capture queue will be sorted in ascending order by the number of tokens each graph processes (`batch_size*sequence_length`), default strategy for prompt
|
||||
|
||||
- `max_bs` - graph capture queue will sorted in descending order by their batch sizes. Buckets with equal batch sizes are sorted by sequence length in ascending order (e.g. `(64, 128)`, `(64, 256)`, `(32, 128)`, `(32, 256)`, `(1, 128)`, `(1,256)`), default strategy for decode
|
||||
- `min_tokens` - graph capture queue will be sorted in ascending order by the number of tokens each graph processes (`batch_size*sequence_length`), default strategy for prompt
|
||||
|
||||
When there's large amount of requests pending, vLLM scheduler will attempt to fill the maximum batch size for decode as soon as possible. When a request is finished, decode batch size decreases. When that happens, vLLM will attempt to schedule a prefill iteration for requests in the waiting queue, to fill the decode batch size to its previous state. This means that in a full load scenario, decode batch size is often at its maximum, which makes large batch size HPU Graphs crucial to capture, as reflected by `max_bs` strategy. On the other hand, prefills will be executed most frequently with very low batch sizes (1-4), which is reflected in `min_tokens` strategy.
|
||||
|
||||
@ -326,8 +325,7 @@ INFO 08-02 17:38:43 hpu_executor.py:91] init_cache_engine took 37.92 GiB of devi
|
||||
- We recommend running inference on Gaudi 2 with `block_size` of 128
|
||||
for BF16 data type. Using default values (16, 32) might lead to
|
||||
sub-optimal performance due to Matrix Multiplication Engine
|
||||
under-utilization (see [Gaudi
|
||||
Architecture](https://docs.habana.ai/en/latest/Gaudi_Overview/Gaudi_Architecture.html)).
|
||||
under-utilization (see [Gaudi Architecture](https://docs.habana.ai/en/latest/Gaudi_Overview/Gaudi_Architecture.html)).
|
||||
- For max throughput on Llama 7B, we recommend running with batch size
|
||||
of 128 or 256 and max context length of 2048 with HPU Graphs enabled.
|
||||
If you encounter out-of-memory issues, see troubleshooting section.
|
||||
@ -336,11 +334,11 @@ INFO 08-02 17:38:43 hpu_executor.py:91] init_cache_engine took 37.92 GiB of devi
|
||||
|
||||
**Diagnostic and profiling knobs:**
|
||||
|
||||
- `VLLM_PROFILER_ENABLED`: if `true`, high level profiler will be enabled. Resulting JSON traces can be viewed in [perfetto.habana.ai](https://perfetto.habana.ai/#!/viewer). Disabled by default.
|
||||
- `VLLM_HPU_LOG_STEP_GRAPH_COMPILATION`: if `true`, will log graph compilations per each vLLM engine step, only when there was any - highly recommended to use alongside `PT_HPU_METRICS_GC_DETAILS=1`. Disabled by default.
|
||||
- `VLLM_HPU_LOG_STEP_GRAPH_COMPILATION_ALL`: if `true`, will log graph compilations per each vLLM engine step, always, even if there were none. Disabled by default.
|
||||
- `VLLM_HPU_LOG_STEP_CPU_FALLBACKS`: if `true`, will log cpu fallbacks per each vLLM engine step, only when there was any. Disabled by default.
|
||||
- `VLLM_HPU_LOG_STEP_CPU_FALLBACKS_ALL`: if `true`, will log cpu fallbacks per each vLLM engine step, always, even if there were none. Disabled by default.
|
||||
- `VLLM_PROFILER_ENABLED`: If `true`, enable the high level profiler. Resulting JSON traces can be viewed in [perfetto.habana.ai](https://perfetto.habana.ai/#!/viewer). `false` by default.
|
||||
- `VLLM_HPU_LOG_STEP_GRAPH_COMPILATION`: If `true`, log graph compilations for each vLLM engine step when any occurs. Highly recommended to use with `PT_HPU_METRICS_GC_DETAILS=1`. `false` by default.
|
||||
- `VLLM_HPU_LOG_STEP_GRAPH_COMPILATION_ALL`: If `true`, always log graph compilations for each vLLM engine step even if none occurred. `false` by default.
|
||||
- `VLLM_HPU_LOG_STEP_CPU_FALLBACKS`: If `true`, log CPU fallbacks for each vLLM engine step when any occurs. `false` by default.
|
||||
- `VLLM_HPU_LOG_STEP_CPU_FALLBACKS_ALL`: if `true`, always log CPU fallbacks for each vLLM engine step even if none occurred. `false` by default.
|
||||
|
||||
**Performance tuning knobs:**
|
||||
|
||||
@ -381,7 +379,7 @@ INFO 08-02 17:38:43 hpu_executor.py:91] init_cache_engine took 37.92 GiB of devi
|
||||
|
||||
Additionally, there are HPU PyTorch Bridge environment variables impacting vLLM execution:
|
||||
|
||||
- `PT_HPU_LAZY_MODE`: if `0`, PyTorch Eager backend for Gaudi will be used, if `1` PyTorch Lazy backend for Gaudi will be used, `1` is default
|
||||
- `PT_HPU_LAZY_MODE`: if `0`, PyTorch Eager backend for Gaudi will be used; if `1`, PyTorch Lazy backend for Gaudi will be used. `1` is default.
|
||||
- `PT_HPU_ENABLE_LAZY_COLLECTIVES`: required to be `true` for tensor parallel inference with HPU Graphs
|
||||
|
||||
## Troubleshooting: tweaking HPU graphs
|
||||
|
||||
@ -2,7 +2,7 @@ First, install recommended compiler. We recommend to use `gcc/g++ >= 12.3.0` as
|
||||
|
||||
```console
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y gcc-12 g++-12 libnuma-dev
|
||||
sudo apt-get install -y gcc-12 g++-12 libnuma-dev python3-dev
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
```
|
||||
|
||||
@ -26,3 +26,9 @@ Finally, build and install vLLM CPU backend:
|
||||
```console
|
||||
VLLM_TARGET_DEVICE=cpu python setup.py install
|
||||
```
|
||||
|
||||
If you want to develop vllm, install it in editable mode instead.
|
||||
|
||||
```console
|
||||
VLLM_TARGET_DEVICE=cpu python setup.py develop
|
||||
```
|
||||
|
||||
@ -23,6 +23,8 @@ Currently, there are no pre-built XPU wheels.
|
||||
- Second, install Python packages for vLLM XPU backend building:
|
||||
|
||||
```console
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
cd vllm
|
||||
pip install --upgrade pip
|
||||
pip install -v -r requirements/xpu.txt
|
||||
```
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
Loading Model weights with fastsafetensors
|
||||
===================================================================
|
||||
|
||||
Using fastsafetensor library enables loading model weights to GPU memory by leveraging GPU direct storage. See https://github.com/foundation-model-stack/fastsafetensors for more details.
|
||||
Using fastsafetensors library enables loading model weights to GPU memory by leveraging GPU direct storage. See [their GitHub repository](https://github.com/foundation-model-stack/fastsafetensors) for more details.
|
||||
For enabling this feature, set the environment variable ``USE_FASTSAFETENSOR`` to ``true``
|
||||
|
||||
@ -133,7 +133,7 @@ class MyConfig(PretrainedConfig):
|
||||
|
||||
### Hugging Face Hub
|
||||
|
||||
By default, vLLM loads models from [Hugging Face (HF) Hub](https://huggingface.co/models).
|
||||
By default, vLLM loads models from [Hugging Face (HF) Hub](https://huggingface.co/models). To change the download path for models, you can set the `HF_HOME` environment variable; for more details, refer to [their official documentation](https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hfhome).
|
||||
|
||||
To determine whether a given model is natively supported, you can check the `config.json` file inside the HF repository.
|
||||
If the `"architectures"` field contains a model architecture listed below, then it should be natively supported.
|
||||
@ -1004,7 +1004,7 @@ See [this page](#generative-models) for more information on how to use generativ
|
||||
* `microsoft/Phi-4-multimodal-instruct`, etc.
|
||||
* ✅︎
|
||||
*
|
||||
*
|
||||
* ✅︎
|
||||
- * `PixtralForConditionalGeneration`
|
||||
* Pixtral
|
||||
* T + I<sup>+</sup>
|
||||
@ -1040,6 +1040,13 @@ See [this page](#generative-models) for more information on how to use generativ
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
- * `Qwen2_5OmniThinkerForConditionalGeneration`
|
||||
* Qwen2.5-Omni
|
||||
* T + I<sup>E+</sup> + V<sup>E+</sup> + A<sup>+</sup>
|
||||
* `Qwen/Qwen2.5-Omni-7B`
|
||||
*
|
||||
* ✅︎
|
||||
* ✅︎\*
|
||||
- * `SkyworkR1VChatModel`
|
||||
* Skywork-R1V-38B
|
||||
* T + I
|
||||
@ -1109,6 +1116,14 @@ For more details, please see: <gh-pr:4087#issuecomment-2250397630>
|
||||
Our PaliGemma implementations have the same problem as Gemma 3 (see above) for both V0 and V1.
|
||||
:::
|
||||
|
||||
:::{note}
|
||||
To use Qwen2.5-Omni, you have to install Hugging Face Transformers library from source via
|
||||
`pip install git+https://github.com/huggingface/transformers.git`.
|
||||
|
||||
Read audio from video pre-processing is currently supported on V0 (but not V1), because overlapping modalities is not yet supported in V1.
|
||||
`--mm-processor-kwargs '{"use_audio_in_video": True}'`.
|
||||
:::
|
||||
|
||||
### Pooling Models
|
||||
|
||||
See [this page](pooling-models) for more information on how to use pooling models.
|
||||
|
||||
@ -402,9 +402,26 @@ you can use the [official OpenAI Python client](https://github.com/openai/openai
|
||||
To use the Transcriptions API, please install with extra audio dependencies using `pip install vllm[audio]`.
|
||||
:::
|
||||
|
||||
Code example: <gh-file:examples/online_serving/openai_transcription_client.py>
|
||||
<!-- TODO: api enforced limits + uploading audios -->
|
||||
|
||||
Code example: <gh-file:examples/online_serving/openai_transcription_client.py>
|
||||
#### Extra Parameters
|
||||
|
||||
The following [sampling parameters](#sampling-params) are supported.
|
||||
|
||||
:::{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
:start-after: begin-transcription-sampling-params
|
||||
:end-before: end-transcription-sampling-params
|
||||
:::
|
||||
|
||||
The following extra parameters are supported:
|
||||
|
||||
:::{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
:start-after: begin-transcription-extra-params
|
||||
:end-before: end-transcription-extra-params
|
||||
:::
|
||||
|
||||
(tokenizer-api)=
|
||||
|
||||
|
||||
@ -89,7 +89,7 @@ def run_phi4mm(question: str, audio_count: int) -> ModelRequestData:
|
||||
engine_args = EngineArgs(
|
||||
model=model_path,
|
||||
trust_remote_code=True,
|
||||
max_model_len=4096,
|
||||
max_model_len=12800,
|
||||
max_num_seqs=2,
|
||||
enable_lora=True,
|
||||
max_lora_rank=320,
|
||||
@ -130,6 +130,36 @@ def run_qwen2_audio(question: str, audio_count: int) -> ModelRequestData:
|
||||
)
|
||||
|
||||
|
||||
# Qwen2.5-Omni
|
||||
def run_qwen2_5_omni(question: str, audio_count: int):
|
||||
model_name = "Qwen/Qwen2.5-Omni-7B"
|
||||
|
||||
engine_args = EngineArgs(
|
||||
model=model_name,
|
||||
max_model_len=4096,
|
||||
max_num_seqs=5,
|
||||
limit_mm_per_prompt={"audio": audio_count},
|
||||
)
|
||||
|
||||
audio_in_prompt = "".join([
|
||||
"<|audio_bos|><|AUDIO|><|audio_eos|>\n" for idx in range(audio_count)
|
||||
])
|
||||
|
||||
default_system = (
|
||||
"You are Qwen, a virtual human developed by the Qwen Team, Alibaba "
|
||||
"Group, capable of perceiving auditory and visual inputs, as well as "
|
||||
"generating text and speech.")
|
||||
|
||||
prompt = (f"<|im_start|>system\n{default_system}<|im_end|>\n"
|
||||
"<|im_start|>user\n"
|
||||
f"{audio_in_prompt}{question}<|im_end|>\n"
|
||||
"<|im_start|>assistant\n")
|
||||
return ModelRequestData(
|
||||
engine_args=engine_args,
|
||||
prompt=prompt,
|
||||
)
|
||||
|
||||
|
||||
# Ultravox 0.5-1B
|
||||
def run_ultravox(question: str, audio_count: int) -> ModelRequestData:
|
||||
model_name = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
|
||||
@ -182,6 +212,7 @@ model_example_map = {
|
||||
"minicpmo": run_minicpmo,
|
||||
"phi4_mm": run_phi4mm,
|
||||
"qwen2_audio": run_qwen2_audio,
|
||||
"qwen2_5_omni": run_qwen2_5_omni,
|
||||
"ultravox": run_ultravox,
|
||||
"whisper": run_whisper,
|
||||
}
|
||||
|
||||
@ -62,6 +62,7 @@ def run_simple_demo(args: argparse.Namespace):
|
||||
tokenizer_mode="mistral" if args.format == "mistral" else "auto",
|
||||
config_format="mistral" if args.format == "mistral" else "auto",
|
||||
load_format="mistral" if args.format == "mistral" else "auto",
|
||||
limit_mm_per_prompt={"image": 1},
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
tensor_parallel_size=2,
|
||||
|
||||
32
examples/offline_inference/qwen2_5_omni/README.md
Normal file
32
examples/offline_inference/qwen2_5_omni/README.md
Normal file
@ -0,0 +1,32 @@
|
||||
# Qwen2.5-Omni Offline Inference Examples
|
||||
|
||||
This folder provides several example scripts on how to inference Qwen2.5-Omni offline.
|
||||
|
||||
## Thinker Only
|
||||
|
||||
```bash
|
||||
# Audio + image + video
|
||||
python examples/offline_inference/qwen2_5_omni/only_thinker.py -q mixed_modalities
|
||||
|
||||
# Read vision and audio inputs from a single video file
|
||||
# NOTE: V1 engine does not support interleaved modalities yet.
|
||||
VLLM_USE_V1=0 python examples/offline_inference/qwen2_5_omni/only_thinker.py -q use_audio_in_video
|
||||
|
||||
# Multiple audios
|
||||
VLLM_USE_V1=0 python examples/offline_inference/qwen2_5_omni/only_thinker.py -q multi_audios
|
||||
```
|
||||
|
||||
This script will run the thinker part of Qwen2.5-Omni, and generate text response.
|
||||
|
||||
You can also test Qwen2.5-Omni on a single modality:
|
||||
|
||||
```bash
|
||||
# Process audio inputs
|
||||
python examples/offline_inference/audio_language.py --model-type qwen2_5_omni
|
||||
|
||||
# Process image inputs
|
||||
python examples/offline_inference/vision_language.py --modality image --model-type qwen2_5_omni
|
||||
|
||||
# Process video inputs
|
||||
python examples/offline_inference/vision_language.py --modality video --model-type qwen2_5_omni
|
||||
```
|
||||
160
examples/offline_inference/qwen2_5_omni/only_thinker.py
Normal file
160
examples/offline_inference/qwen2_5_omni/only_thinker.py
Normal file
@ -0,0 +1,160 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
This example shows how to use vLLM for running offline inference
|
||||
with the correct prompt format on Qwen2.5-Omni (thinker only).
|
||||
"""
|
||||
|
||||
from typing import NamedTuple
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.assets.audio import AudioAsset
|
||||
from vllm.assets.image import ImageAsset
|
||||
from vllm.assets.video import VideoAsset
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
class QueryResult(NamedTuple):
|
||||
inputs: dict
|
||||
limit_mm_per_prompt: dict[str, int]
|
||||
|
||||
|
||||
# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
|
||||
# lower-end GPUs.
|
||||
# Unless specified, these settings have been tested to work on a single L4.
|
||||
|
||||
default_system = (
|
||||
"You are Qwen, a virtual human developed by the Qwen Team, Alibaba "
|
||||
"Group, capable of perceiving auditory and visual inputs, as well as "
|
||||
"generating text and speech.")
|
||||
|
||||
|
||||
def get_mixed_modalities_query() -> QueryResult:
|
||||
question = ("What is recited in the audio? "
|
||||
"What is the content of this image? Why is this video funny?")
|
||||
prompt = (f"<|im_start|>system\n{default_system}<|im_end|>\n"
|
||||
"<|im_start|>user\n<|audio_bos|><|AUDIO|><|audio_eos|>"
|
||||
"<|vision_bos|><|IMAGE|><|vision_eos|>"
|
||||
"<|vision_bos|><|VIDEO|><|vision_eos|>"
|
||||
f"{question}<|im_end|>\n"
|
||||
f"<|im_start|>assistant\n")
|
||||
return QueryResult(
|
||||
inputs={
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"audio":
|
||||
AudioAsset("mary_had_lamb").audio_and_sample_rate,
|
||||
"image":
|
||||
ImageAsset("cherry_blossom").pil_image.convert("RGB"),
|
||||
"video":
|
||||
VideoAsset(name="sample_demo_1.mp4",
|
||||
num_frames=16).np_ndarrays,
|
||||
},
|
||||
},
|
||||
limit_mm_per_prompt={
|
||||
"audio": 1,
|
||||
"image": 1,
|
||||
"video": 1
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def get_use_audio_in_video_query() -> QueryResult:
|
||||
question = ("Describe the content of the video, "
|
||||
"then convert what the baby say into text.")
|
||||
prompt = (f"<|im_start|>system\n{default_system}<|im_end|>\n"
|
||||
"<|im_start|>user\n<|vision_bos|><|VIDEO|><|vision_eos|>"
|
||||
f"{question}<|im_end|>\n"
|
||||
f"<|im_start|>assistant\n")
|
||||
asset = VideoAsset(name="sample_demo_1.mp4", num_frames=16)
|
||||
audio = asset.get_audio(sampling_rate=16000)
|
||||
assert not envs.VLLM_USE_V1, ("V1 does not support use_audio_in_video. "
|
||||
"Please launch this example with "
|
||||
"`VLLM_USE_V1=0`.")
|
||||
return QueryResult(
|
||||
inputs={
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"video": asset.np_ndarrays,
|
||||
"audio": audio,
|
||||
},
|
||||
"mm_processor_kwargs": {
|
||||
"use_audio_in_video": True,
|
||||
},
|
||||
},
|
||||
limit_mm_per_prompt={
|
||||
"audio": 1,
|
||||
"video": 1
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def get_multi_audios_query() -> QueryResult:
|
||||
question = "Are these two audio clips the same?"
|
||||
prompt = (f"<|im_start|>system\n{default_system}<|im_end|>\n"
|
||||
"<|im_start|>user\n<|audio_bos|><|AUDIO|><|audio_eos|>"
|
||||
"<|audio_bos|><|AUDIO|><|audio_eos|>"
|
||||
f"{question}<|im_end|>\n"
|
||||
f"<|im_start|>assistant\n")
|
||||
return QueryResult(
|
||||
inputs={
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"audio": [
|
||||
AudioAsset("winning_call").audio_and_sample_rate,
|
||||
AudioAsset("mary_had_lamb").audio_and_sample_rate,
|
||||
],
|
||||
},
|
||||
},
|
||||
limit_mm_per_prompt={
|
||||
"audio": 2,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
query_map = {
|
||||
"mixed_modalities": get_mixed_modalities_query,
|
||||
"use_audio_in_video": get_use_audio_in_video_query,
|
||||
"multi_audios": get_multi_audios_query,
|
||||
}
|
||||
|
||||
|
||||
def main(args):
|
||||
model_name = "Qwen/Qwen2.5-Omni-7B"
|
||||
query_result = query_map[args.query_type]()
|
||||
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=5632,
|
||||
max_num_seqs=5,
|
||||
limit_mm_per_prompt=query_result.limit_mm_per_prompt,
|
||||
seed=args.seed)
|
||||
|
||||
# We set temperature to 0.2 so that outputs can be different
|
||||
# even when all prompts are identical when running batch inference.
|
||||
sampling_params = SamplingParams(temperature=0.2, max_tokens=64)
|
||||
|
||||
outputs = llm.generate(query_result.inputs,
|
||||
sampling_params=sampling_params)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description='Demo on using vLLM for offline inference with '
|
||||
'audio language models')
|
||||
parser.add_argument('--query-type',
|
||||
'-q',
|
||||
type=str,
|
||||
default="mixed_modalities",
|
||||
choices=query_map.keys(),
|
||||
help='Query type.')
|
||||
parser.add_argument("--seed",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the seed when initializing `vllm.LLM`.")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
@ -814,10 +814,13 @@ def run_phi4mm(questions: list[str], modality: str) -> ModelRequestData:
|
||||
engine_args = EngineArgs(
|
||||
model=model_path,
|
||||
trust_remote_code=True,
|
||||
max_model_len=4096,
|
||||
max_model_len=5120,
|
||||
max_num_seqs=2,
|
||||
max_num_batched_tokens=12800,
|
||||
enable_lora=True,
|
||||
max_lora_rank=320,
|
||||
# Note - mm_processor_kwargs can also be passed to generate/chat calls
|
||||
mm_processor_kwargs={"dynamic_hd": 16},
|
||||
limit_mm_per_prompt={"image": 1},
|
||||
)
|
||||
|
||||
@ -941,6 +944,42 @@ def run_qwen2_5_vl(questions: list[str], modality: str) -> ModelRequestData:
|
||||
)
|
||||
|
||||
|
||||
# Qwen2.5-Omni
|
||||
def run_qwen2_5_omni(questions: list[str], modality: str):
|
||||
model_name = "Qwen/Qwen2.5-Omni-7B"
|
||||
|
||||
engine_args = EngineArgs(
|
||||
model=model_name,
|
||||
max_model_len=4096,
|
||||
max_num_seqs=5,
|
||||
mm_processor_kwargs={
|
||||
"min_pixels": 28 * 28,
|
||||
"max_pixels": 1280 * 28 * 28,
|
||||
"fps": [1],
|
||||
},
|
||||
limit_mm_per_prompt={"image": 1},
|
||||
)
|
||||
|
||||
if modality == "image":
|
||||
placeholder = "<|IMAGE|>"
|
||||
elif modality == "video":
|
||||
placeholder = "<|VIDEO|>"
|
||||
|
||||
default_system = (
|
||||
"You are Qwen, a virtual human developed by the Qwen Team, Alibaba "
|
||||
"Group, capable of perceiving auditory and visual inputs, as well as "
|
||||
"generating text and speech.")
|
||||
|
||||
prompts = [(f"<|im_start|>system\n{default_system}<|im_end|>\n"
|
||||
f"<|im_start|>user\n<|vision_bos|>{placeholder}<|vision_eos|>"
|
||||
f"{question}<|im_end|>\n"
|
||||
"<|im_start|>assistant\n") for question in questions]
|
||||
return ModelRequestData(
|
||||
engine_args=engine_args,
|
||||
prompts=prompts,
|
||||
)
|
||||
|
||||
|
||||
# SkyworkR1V
|
||||
def run_skyworkr1v(questions: list[str], modality: str) -> ModelRequestData:
|
||||
assert modality == "image"
|
||||
@ -1010,6 +1049,7 @@ model_example_map = {
|
||||
"qwen_vl": run_qwen_vl,
|
||||
"qwen2_vl": run_qwen2_vl,
|
||||
"qwen2_5_vl": run_qwen2_5_vl,
|
||||
"qwen2_5_omni": run_qwen2_5_omni,
|
||||
"skywork_chat": run_skyworkr1v,
|
||||
"smolvlm": run_smolvlm,
|
||||
}
|
||||
|
||||
@ -503,11 +503,13 @@ def load_phi4mm(question: str, image_urls: list[str]) -> ModelRequestData:
|
||||
engine_args = EngineArgs(
|
||||
model=model_path,
|
||||
trust_remote_code=True,
|
||||
max_model_len=10000,
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
limit_mm_per_prompt={"image": len(image_urls)},
|
||||
enable_lora=True,
|
||||
max_lora_rank=320,
|
||||
# Note - mm_processor_kwargs can also be passed to generate/chat calls
|
||||
mm_processor_kwargs={"dynamic_hd": 4},
|
||||
)
|
||||
|
||||
placeholders = "".join(f"<|image_{i}|>"
|
||||
|
||||
@ -17,6 +17,7 @@ vllm serve --model NousResearch/Hermes-2-Pro-Llama-3-8B \
|
||||
--enable-auto-tool-choice --tool-call-parser hermes
|
||||
"""
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
@ -24,15 +25,6 @@ from openai import OpenAI
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
|
||||
client = OpenAI(
|
||||
# defaults to os.environ.get("OPENAI_API_KEY")
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
|
||||
tools = [{
|
||||
"type": "function",
|
||||
"function": {
|
||||
@ -78,86 +70,123 @@ messages = [{
|
||||
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
|
||||
}]
|
||||
|
||||
chat_completion = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools)
|
||||
|
||||
print("Chat completion results:")
|
||||
print(chat_completion)
|
||||
print("\n\n")
|
||||
|
||||
tool_calls_stream = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
stream=True)
|
||||
|
||||
chunks = []
|
||||
for chunk in tool_calls_stream:
|
||||
chunks.append(chunk)
|
||||
if chunk.choices[0].delta.tool_calls:
|
||||
print(chunk.choices[0].delta.tool_calls[0])
|
||||
else:
|
||||
print(chunk.choices[0].delta)
|
||||
|
||||
arguments = []
|
||||
tool_call_idx = -1
|
||||
for chunk in chunks:
|
||||
|
||||
if chunk.choices[0].delta.tool_calls:
|
||||
tool_call = chunk.choices[0].delta.tool_calls[0]
|
||||
|
||||
if tool_call.index != tool_call_idx:
|
||||
if tool_call_idx >= 0:
|
||||
print(
|
||||
f"streamed tool call arguments: {arguments[tool_call_idx]}"
|
||||
)
|
||||
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
|
||||
arguments.append("")
|
||||
if tool_call.id:
|
||||
print(f"streamed tool call id: {tool_call.id} ")
|
||||
|
||||
if tool_call.function:
|
||||
if tool_call.function.name:
|
||||
print(f"streamed tool call name: {tool_call.function.name}")
|
||||
|
||||
if tool_call.function.arguments:
|
||||
arguments[tool_call_idx] += tool_call.function.arguments
|
||||
|
||||
if len(arguments):
|
||||
print(f"streamed tool call arguments: {arguments[-1]}")
|
||||
|
||||
print("\n\n")
|
||||
|
||||
messages.append({
|
||||
"role": "assistant",
|
||||
"tool_calls": chat_completion.choices[0].message.tool_calls
|
||||
})
|
||||
|
||||
|
||||
# Now, simulate a tool call
|
||||
def get_current_weather(city: str, state: str, unit: 'str'):
|
||||
return ("The weather in Dallas, Texas is 85 degrees fahrenheit. It is "
|
||||
"partly cloudly, with highs in the 90's.")
|
||||
|
||||
|
||||
available_tools = {"get_current_weather": get_current_weather}
|
||||
def handle_tool_calls_stream(
|
||||
client: OpenAI,
|
||||
messages: list[dict[str, str]],
|
||||
model: str,
|
||||
tools: list[dict[str, Any]],
|
||||
) -> list[Any]:
|
||||
tool_calls_stream = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
stream=True)
|
||||
chunks = []
|
||||
print("chunks: ")
|
||||
for chunk in tool_calls_stream:
|
||||
chunks.append(chunk)
|
||||
if chunk.choices[0].delta.tool_calls:
|
||||
print(chunk.choices[0].delta.tool_calls[0])
|
||||
else:
|
||||
print(chunk.choices[0].delta)
|
||||
return chunks
|
||||
|
||||
completion_tool_calls = chat_completion.choices[0].message.tool_calls
|
||||
for call in completion_tool_calls:
|
||||
tool_to_call = available_tools[call.function.name]
|
||||
args = json.loads(call.function.arguments)
|
||||
result = tool_to_call(**args)
|
||||
print(result)
|
||||
|
||||
def handle_tool_calls_arguments(chunks: list[Any]) -> list[str]:
|
||||
arguments = []
|
||||
tool_call_idx = -1
|
||||
print("arguments: ")
|
||||
for chunk in chunks:
|
||||
if chunk.choices[0].delta.tool_calls:
|
||||
tool_call = chunk.choices[0].delta.tool_calls[0]
|
||||
if tool_call.index != tool_call_idx:
|
||||
if tool_call_idx >= 0:
|
||||
print(f"streamed tool call arguments: "
|
||||
f"{arguments[tool_call_idx]}")
|
||||
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
|
||||
arguments.append("")
|
||||
if tool_call.id:
|
||||
print(f"streamed tool call id: {tool_call.id} ")
|
||||
|
||||
if tool_call.function:
|
||||
if tool_call.function.name:
|
||||
print(
|
||||
f"streamed tool call name: {tool_call.function.name}")
|
||||
|
||||
if tool_call.function.arguments:
|
||||
arguments[tool_call_idx] += tool_call.function.arguments
|
||||
|
||||
return arguments
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize OpenAI client
|
||||
client = OpenAI(
|
||||
# defaults to os.environ.get("OPENAI_API_KEY")
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
# Get available models and select one
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
|
||||
chat_completion = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools)
|
||||
|
||||
print("-" * 70)
|
||||
print("Chat completion results:")
|
||||
print(chat_completion)
|
||||
print("-" * 70)
|
||||
|
||||
# Stream tool calls
|
||||
chunks = handle_tool_calls_stream(client, messages, model, tools)
|
||||
print("-" * 70)
|
||||
|
||||
# Handle arguments from streamed tool calls
|
||||
arguments = handle_tool_calls_arguments(chunks)
|
||||
|
||||
if len(arguments):
|
||||
print(f"streamed tool call arguments: {arguments[-1]}\n")
|
||||
|
||||
print("-" * 70)
|
||||
|
||||
# Add tool call results to the conversation
|
||||
messages.append({
|
||||
"role": "tool",
|
||||
"content": result,
|
||||
"tool_call_id": call.id,
|
||||
"name": call.function.name
|
||||
"role": "assistant",
|
||||
"tool_calls": chat_completion.choices[0].message.tool_calls
|
||||
})
|
||||
|
||||
chat_completion_2 = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
stream=False)
|
||||
print("\n\n")
|
||||
print(chat_completion_2)
|
||||
# Now, simulate a tool call
|
||||
available_tools = {"get_current_weather": get_current_weather}
|
||||
|
||||
completion_tool_calls = chat_completion.choices[0].message.tool_calls
|
||||
for call in completion_tool_calls:
|
||||
tool_to_call = available_tools[call.function.name]
|
||||
args = json.loads(call.function.arguments)
|
||||
result = tool_to_call(**args)
|
||||
print("tool_to_call result: ", result)
|
||||
messages.append({
|
||||
"role": "tool",
|
||||
"content": result,
|
||||
"tool_call_id": call.id,
|
||||
"name": call.function.name
|
||||
})
|
||||
|
||||
chat_completion_2 = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
stream=False)
|
||||
print("Chat completion2 results:")
|
||||
print(chat_completion_2)
|
||||
print("-" * 70)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@ -31,14 +31,6 @@ available_tools = {"get_current_weather": get_current_weather}
|
||||
openai_api_key = "EMPTY"
|
||||
openai_api_base = "http://localhost:8000/v1"
|
||||
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
|
||||
tools = [{
|
||||
"type": "function",
|
||||
"function": {
|
||||
@ -109,69 +101,87 @@ def extract_reasoning_and_calls(chunks: list):
|
||||
return reasoning_content, arguments, function_names
|
||||
|
||||
|
||||
print("---------Full Generate With Automatic Function Calling-------------")
|
||||
tool_calls = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools)
|
||||
print(f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}")
|
||||
print(f"function name: "
|
||||
f"{tool_calls.choices[0].message.tool_calls[0].function.name}")
|
||||
print(f"function arguments: "
|
||||
f"{tool_calls.choices[0].message.tool_calls[0].function.arguments}")
|
||||
def main():
|
||||
client = OpenAI(
|
||||
api_key=openai_api_key,
|
||||
base_url=openai_api_base,
|
||||
)
|
||||
|
||||
print("----------Stream Generate With Automatic Function Calling-----------")
|
||||
tool_calls_stream = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
stream=True)
|
||||
chunks = []
|
||||
for chunk in tool_calls_stream:
|
||||
chunks.append(chunk)
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
|
||||
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
|
||||
chunks)
|
||||
print(
|
||||
"---------Full Generate With Automatic Function Calling-------------")
|
||||
tool_calls = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools)
|
||||
print(
|
||||
f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}"
|
||||
)
|
||||
print(f"function name: "
|
||||
f"{tool_calls.choices[0].message.tool_calls[0].function.name}")
|
||||
print(f"function arguments: "
|
||||
f"{tool_calls.choices[0].message.tool_calls[0].function.arguments}")
|
||||
|
||||
print(f"reasoning_content: {reasoning_content}")
|
||||
print(f"function name: {function_names[0]}")
|
||||
print(f"function arguments: {arguments[0]}")
|
||||
print(
|
||||
"----------Stream Generate With Automatic Function Calling-----------")
|
||||
tool_calls_stream = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
stream=True)
|
||||
|
||||
print("----------Full Generate With Named Function Calling-----------------")
|
||||
tool_calls = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
tool_choice={
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name":
|
||||
"get_current_weather"
|
||||
}
|
||||
})
|
||||
chunks = list(tool_calls_stream)
|
||||
|
||||
tool_call = tool_calls.choices[0].message.tool_calls[0].function
|
||||
print(f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}")
|
||||
print(f"function name: {tool_call.name}")
|
||||
print(f"function arguments: {tool_call.arguments}")
|
||||
print("----------Stream Generate With Named Function Calling--------------")
|
||||
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
|
||||
chunks)
|
||||
|
||||
tool_calls_stream = client.chat.completions.create(
|
||||
messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
tool_choice={
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather"
|
||||
}
|
||||
},
|
||||
stream=True)
|
||||
print(f"reasoning_content: {reasoning_content}")
|
||||
print(f"function name: {function_names[0]}")
|
||||
print(f"function arguments: {arguments[0]}")
|
||||
|
||||
chunks = []
|
||||
for chunk in tool_calls_stream:
|
||||
chunks.append(chunk)
|
||||
print(
|
||||
"----------Full Generate With Named Function Calling-----------------")
|
||||
tool_calls = client.chat.completions.create(messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
tool_choice={
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name":
|
||||
"get_current_weather"
|
||||
}
|
||||
})
|
||||
|
||||
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
|
||||
chunks)
|
||||
print(f"reasoning_content: {reasoning_content}")
|
||||
print(f"function name: {function_names[0]}")
|
||||
print(f"function arguments: {arguments[0]}")
|
||||
print("\n\n")
|
||||
tool_call = tool_calls.choices[0].message.tool_calls[0].function
|
||||
print(
|
||||
f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}"
|
||||
)
|
||||
print(f"function name: {tool_call.name}")
|
||||
print(f"function arguments: {tool_call.arguments}")
|
||||
print(
|
||||
"----------Stream Generate With Named Function Calling--------------")
|
||||
|
||||
tool_calls_stream = client.chat.completions.create(
|
||||
messages=messages,
|
||||
model=model,
|
||||
tools=tools,
|
||||
tool_choice={
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather"
|
||||
}
|
||||
},
|
||||
stream=True)
|
||||
|
||||
chunks = list(tool_calls_stream)
|
||||
|
||||
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
|
||||
chunks)
|
||||
print(f"reasoning_content: {reasoning_content}")
|
||||
print(f"function name: {function_names[0]}")
|
||||
print(f"function arguments: {arguments[0]}")
|
||||
print("\n\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@ -26,7 +26,12 @@ def sync_openai():
|
||||
model="openai/whisper-large-v3",
|
||||
language="en",
|
||||
response_format="json",
|
||||
temperature=0.0)
|
||||
temperature=0.0,
|
||||
# Additional sampling params not provided by OpenAI API.
|
||||
extra_body=dict(
|
||||
seed=4419,
|
||||
repetition_penalty=1.3,
|
||||
))
|
||||
print("transcription result:", transcription.text)
|
||||
|
||||
|
||||
|
||||
@ -18,6 +18,7 @@ transformers
|
||||
mistral_common >= 1.5.4
|
||||
aiohttp
|
||||
starlette
|
||||
scipy
|
||||
openai # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args
|
||||
fastapi # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args
|
||||
partial-json-parser # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args
|
||||
|
||||
28
requirements/nightly_torch_test.txt
Normal file
28
requirements/nightly_torch_test.txt
Normal file
@ -0,0 +1,28 @@
|
||||
# Dependency that able to run entrypoints test
|
||||
# pytest and its extensions
|
||||
pytest
|
||||
pytest-asyncio
|
||||
pytest-forked
|
||||
pytest-mock
|
||||
pytest-rerunfailures
|
||||
pytest-shard
|
||||
pytest-timeout
|
||||
|
||||
|
||||
librosa # required by audio tests in entrypoints/openai
|
||||
sentence-transformers
|
||||
numba == 0.61.2; python_version > '3.9'
|
||||
# testing utils
|
||||
awscli
|
||||
boto3
|
||||
botocore
|
||||
datasets
|
||||
ray >= 2.10.0
|
||||
peft
|
||||
runai-model-streamer==0.11.0
|
||||
runai-model-streamer-s3==0.11.0
|
||||
tensorizer>=2.9.0
|
||||
lm-eval==0.4.8
|
||||
buildkite-test-collector==0.1.9
|
||||
|
||||
lm-eval[api]==0.4.8 # required for model evaluation test
|
||||
@ -195,15 +195,15 @@ def test_lookahead_greedy_equality_with_preemption(baseline_llm_generator,
|
||||
])
|
||||
@pytest.mark.parametrize("per_test_common_llm_kwargs",
|
||||
[{
|
||||
"block_size": 8,
|
||||
"block_size": 16,
|
||||
"max_num_batched_tokens": 2,
|
||||
"max_num_seqs": 2,
|
||||
}, {
|
||||
"block_size": 8,
|
||||
"block_size": 16,
|
||||
"max_num_batched_tokens": 3,
|
||||
"max_num_seqs": 2,
|
||||
}, {
|
||||
"block_size": 8,
|
||||
"block_size": 16,
|
||||
"max_num_batched_tokens": 256,
|
||||
"max_num_seqs": 10,
|
||||
}])
|
||||
|
||||
@ -150,6 +150,7 @@ def test_wer_correctness(model_name,
|
||||
expected_wer,
|
||||
n_examples=-1,
|
||||
max_concurrent_request=None):
|
||||
# TODO refactor to use `ASRDataset`
|
||||
with RemoteOpenAIServer(model_name, ['--enforce-eager']) as remote_server:
|
||||
dataset = load_hf_dataset(dataset_repo)
|
||||
|
||||
|
||||
@ -104,6 +104,35 @@ async def test_single_chat_session_audio(client: openai.AsyncOpenAI,
|
||||
assert message.content is not None and len(message.content) >= 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("audio_url", [TEST_AUDIO_URLS[0]])
|
||||
async def test_error_on_invalid_audio_url_type(client: openai.AsyncOpenAI,
|
||||
model_name: str,
|
||||
audio_url: str):
|
||||
messages = [{
|
||||
"role":
|
||||
"user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio_url",
|
||||
"audio_url": audio_url
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's happening in this audio?"
|
||||
},
|
||||
],
|
||||
}]
|
||||
|
||||
# audio_url should be a dict {"url": "some url"}, not directly a string
|
||||
with pytest.raises(openai.BadRequestError):
|
||||
_ = await client.chat.completions.create(model=model_name,
|
||||
messages=messages,
|
||||
max_completion_tokens=10,
|
||||
temperature=0.0)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("audio_url", [TEST_AUDIO_URLS[0]])
|
||||
|
||||
@ -192,3 +192,36 @@ async def test_stream_options(winning_call):
|
||||
else:
|
||||
continuous = continuous and hasattr(chunk, 'usage')
|
||||
assert final and continuous
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_sampling_params(mary_had_lamb):
|
||||
"""
|
||||
Compare sampling with params and greedy sampling to assert results
|
||||
are different when extreme sampling parameters values are picked.
|
||||
"""
|
||||
model_name = "openai/whisper-small"
|
||||
server_args = ["--enforce-eager"]
|
||||
with RemoteOpenAIServer(model_name, server_args) as remote_server:
|
||||
client = remote_server.get_async_client()
|
||||
transcription = await client.audio.transcriptions.create(
|
||||
model=model_name,
|
||||
file=mary_had_lamb,
|
||||
language="en",
|
||||
temperature=0.8,
|
||||
extra_body=dict(seed=42,
|
||||
repetition_penalty=1.9,
|
||||
top_k=12,
|
||||
top_p=0.4,
|
||||
min_p=0.5,
|
||||
frequency_penalty=1.8,
|
||||
presence_penalty=2.0))
|
||||
|
||||
greedy_transcription = await client.audio.transcriptions.create(
|
||||
model=model_name,
|
||||
file=mary_had_lamb,
|
||||
language="en",
|
||||
temperature=0.0,
|
||||
extra_body=dict(seed=42))
|
||||
|
||||
assert greedy_transcription.text != transcription.text
|
||||
|
||||
@ -108,6 +108,35 @@ async def test_single_chat_session_video(client: openai.AsyncOpenAI,
|
||||
assert message.content is not None and len(message.content) >= 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
|
||||
async def test_error_on_invalid_video_url_type(client: openai.AsyncOpenAI,
|
||||
model_name: str,
|
||||
video_url: str):
|
||||
messages = [{
|
||||
"role":
|
||||
"user",
|
||||
"content": [
|
||||
{
|
||||
"type": "video_url",
|
||||
"video_url": video_url
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What's in this video?"
|
||||
},
|
||||
],
|
||||
}]
|
||||
|
||||
# video_url should be a dict {"url": "some url"}, not directly a string
|
||||
with pytest.raises(openai.BadRequestError):
|
||||
_ = await client.chat.completions.create(model=model_name,
|
||||
messages=messages,
|
||||
max_completion_tokens=10,
|
||||
temperature=0.0)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
|
||||
|
||||
@ -137,6 +137,36 @@ async def test_single_chat_session_image(client: openai.AsyncOpenAI,
|
||||
assert message.content is not None and len(message.content) >= 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
||||
async def test_error_on_invalid_image_url_type(client: openai.AsyncOpenAI,
|
||||
model_name: str,
|
||||
image_url: str):
|
||||
content_text = "What's in this image?"
|
||||
messages = [{
|
||||
"role":
|
||||
"user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": image_url
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": content_text
|
||||
},
|
||||
],
|
||||
}]
|
||||
|
||||
# image_url should be a dict {"url": "some url"}, not directly a string
|
||||
with pytest.raises(openai.BadRequestError):
|
||||
_ = await client.chat.completions.create(model=model_name,
|
||||
messages=messages,
|
||||
max_completion_tokens=10,
|
||||
temperature=0.0)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
||||
|
||||
@ -6,13 +6,12 @@ from typing import Optional
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.allclose_default import get_default_atol, get_default_rtol
|
||||
from tests.kernels.utils import opcheck
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import get_max_shared_memory_bytes
|
||||
|
||||
from .allclose_default import get_default_atol, get_default_rtol
|
||||
|
||||
if not current_platform.is_rocm():
|
||||
from xformers import ops as xops
|
||||
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask
|
||||
252
tests/kernels/attention/test_attention_selector.py
Normal file
252
tests/kernels/attention/test_attention_selector.py
Normal file
@ -0,0 +1,252 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from vllm.attention.selector import _cached_get_attn_backend, get_attn_backend
|
||||
from vllm.platforms.cpu import CpuPlatform
|
||||
from vllm.platforms.cuda import CudaPlatform
|
||||
from vllm.platforms.rocm import RocmPlatform
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR, STR_FLASH_ATTN_VAL, STR_INVALID_VAL
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def clear_cache():
|
||||
"""Clear lru cache to ensure each test case runs without caching.
|
||||
"""
|
||||
_cached_get_attn_backend.cache_clear()
|
||||
|
||||
|
||||
# Define MLA and non-MLA backends separately
|
||||
DEVICE_MLA_BACKENDS = {
|
||||
"cuda": ["TRITON_MLA", "FLASHMLA"],
|
||||
"hip": ["TRITON_MLA", "ROCM_AITER_MLA"],
|
||||
"cpu": [],
|
||||
}
|
||||
|
||||
DEVICE_REGULAR_ATTN_BACKENDS = {
|
||||
"cuda": ["XFORMERS", "FLASHINFER"],
|
||||
"hip": ["ROCM_FLASH"],
|
||||
"cpu": ["TORCH_SDPA"],
|
||||
}
|
||||
|
||||
DEVICE_MLA_BLOCK_SIZES = {
|
||||
"cuda": [16, 64], # CUDA supports both standard and extended block sizes
|
||||
"hip": [16, 1], # HIP requires special handling for block_size=1
|
||||
"cpu": [16] # CPU uses fixed block size from test cases
|
||||
}
|
||||
|
||||
|
||||
def generate_params():
|
||||
params = []
|
||||
for use_mla in [True, False]:
|
||||
for device in ["cuda", "hip", "cpu"]:
|
||||
backends = DEVICE_MLA_BACKENDS[
|
||||
device] if use_mla else DEVICE_REGULAR_ATTN_BACKENDS[device]
|
||||
for name in backends:
|
||||
block_sizes = DEVICE_MLA_BLOCK_SIZES[device] if use_mla else [
|
||||
16
|
||||
]
|
||||
for block_size in block_sizes:
|
||||
params.append(
|
||||
pytest.param(
|
||||
device,
|
||||
name,
|
||||
use_mla,
|
||||
block_size,
|
||||
id=
|
||||
f"{device}_{name}_mla_{str(use_mla)[0]}_blks{block_size}"
|
||||
))
|
||||
return params
|
||||
|
||||
|
||||
@pytest.mark.parametrize("device, name, use_mla, block_size",
|
||||
generate_params())
|
||||
@pytest.mark.parametrize("use_v1", [True, False])
|
||||
def test_env(
|
||||
device: str,
|
||||
name: str,
|
||||
use_mla: bool,
|
||||
block_size: int,
|
||||
use_v1: bool,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
):
|
||||
"""Test attention backend selection with valid device-backend pairs."""
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
|
||||
m.setenv(STR_BACKEND_ENV_VAR, name)
|
||||
m.setenv("VLLM_MLA_DISABLE", "1" if use_mla else "0")
|
||||
|
||||
if device == "cpu":
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
CpuPlatform()):
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16,
|
||||
block_size, False)
|
||||
assert backend.get_name() == "TORCH_SDPA"
|
||||
|
||||
elif device == "hip":
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
RocmPlatform()):
|
||||
if use_mla:
|
||||
# Validate HIP MLA backend-block_size combinations
|
||||
valid_combination = (
|
||||
(name == "TRITON_MLA" and block_size != 1)
|
||||
or (name == "ROCM_AITER_MLA" and block_size == 1))
|
||||
|
||||
if valid_combination:
|
||||
backend = get_attn_backend(16,
|
||||
torch.float16,
|
||||
torch.float16,
|
||||
block_size,
|
||||
False,
|
||||
use_mla=use_mla)
|
||||
assert backend.get_name() == name
|
||||
else:
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
get_attn_backend(16,
|
||||
torch.float16,
|
||||
torch.float16,
|
||||
block_size,
|
||||
False,
|
||||
use_mla=use_mla)
|
||||
assert f"The selected backend, {name}" in str(
|
||||
exc_info.value)
|
||||
else:
|
||||
backend = get_attn_backend(16,
|
||||
torch.float16,
|
||||
torch.float16,
|
||||
block_size,
|
||||
False,
|
||||
use_mla=use_mla)
|
||||
expected = "TRITON_ATTN_VLLM_V1" if use_v1 else "ROCM_FLASH"
|
||||
assert backend.get_name() == expected
|
||||
|
||||
elif device == "cuda":
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
CudaPlatform()):
|
||||
if use_mla:
|
||||
if name == "FLASHMLA" and block_size == 64:
|
||||
from vllm.attention.backends.flashmla import (
|
||||
is_flashmla_supported)
|
||||
|
||||
# only on cuda platforms with specific capability.
|
||||
is_supported, _ = is_flashmla_supported()
|
||||
|
||||
if not is_supported:
|
||||
# if platform is not supported then skip this case.
|
||||
pytest.skip()
|
||||
else:
|
||||
backend = get_attn_backend(16,
|
||||
torch.float16,
|
||||
torch.float16,
|
||||
block_size,
|
||||
False,
|
||||
use_mla=use_mla)
|
||||
expected = f"{name}_VLLM_V1" if use_v1 else name
|
||||
assert backend.get_name() == expected
|
||||
else:
|
||||
backend = get_attn_backend(16,
|
||||
torch.float16,
|
||||
torch.float16,
|
||||
block_size,
|
||||
False,
|
||||
use_mla=use_mla)
|
||||
expected = ("TRITON_MLA_VLLM_V1"
|
||||
if use_v1 else "TRITON_MLA")
|
||||
assert backend.get_name() == expected
|
||||
elif name == "FLASHINFER":
|
||||
backend = get_attn_backend(16,
|
||||
torch.float16,
|
||||
torch.float16,
|
||||
block_size,
|
||||
False,
|
||||
use_mla=use_mla)
|
||||
expected = "FLASHINFER_VLLM_V1" if use_v1 else name
|
||||
assert backend.get_name() == expected
|
||||
else:
|
||||
backend = get_attn_backend(16,
|
||||
torch.float16,
|
||||
torch.float16,
|
||||
block_size,
|
||||
False,
|
||||
use_mla=use_mla)
|
||||
expected = "FLASH_ATTN_VLLM_V1" if use_v1 else name
|
||||
assert backend.get_name() == expected
|
||||
|
||||
|
||||
def test_flash_attn(monkeypatch: pytest.MonkeyPatch):
|
||||
"""Test FlashAttn validation."""
|
||||
# TODO: When testing for v1, pipe in `use_v1` as an argument to
|
||||
# get_attn_backend
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, STR_FLASH_ATTN_VAL)
|
||||
|
||||
# Unsupported CUDA arch
|
||||
monkeypatch.setattr(torch.cuda, "get_device_capability", lambda:
|
||||
(7, 5))
|
||||
backend = get_attn_backend(16, torch.float16, None, 16, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
# Reset the monkeypatch for subsequent tests
|
||||
monkeypatch.undo()
|
||||
|
||||
# Unsupported data type
|
||||
backend = get_attn_backend(16, torch.float8_e4m3fn, None, 16, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
# Unsupported kv cache data type
|
||||
backend = get_attn_backend(16, torch.float16, "fp8", 16, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
# Unsupported block size
|
||||
backend = get_attn_backend(16, torch.float16, None, 8, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
# flash-attn is not installed
|
||||
import sys
|
||||
original_module = sys.modules.get('vllm_flash_attn')
|
||||
monkeypatch.setitem(sys.modules, 'vllm_flash_attn', None)
|
||||
backend = get_attn_backend(16, torch.float16, None, 16, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
# Restore the original module if it existed
|
||||
if original_module is not None:
|
||||
monkeypatch.setitem(sys.modules, 'vllm_flash_attn',
|
||||
original_module)
|
||||
else:
|
||||
monkeypatch.delitem(sys.modules, 'vllm_flash_attn', raising=False)
|
||||
|
||||
# Unsupported head size
|
||||
backend = get_attn_backend(17, torch.float16, None, 16, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
# Attention-free models should bypass env and use PlaceholderAttention
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16, 16, True)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
|
||||
@pytest.mark.parametrize("use_v1", [True, False])
|
||||
def test_invalid_env(use_v1: bool, monkeypatch: pytest.MonkeyPatch):
|
||||
|
||||
with monkeypatch.context() as m, patch(
|
||||
"vllm.attention.selector.current_platform", CudaPlatform()):
|
||||
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
|
||||
m.setenv(STR_BACKEND_ENV_VAR, STR_INVALID_VAL)
|
||||
|
||||
# Test with head size 32
|
||||
backend = get_attn_backend(32, torch.float16, None, 16, False)
|
||||
EXPECTED = "FLASH_ATTN_VLLM_V1" if use_v1 else "FLASH_ATTN"
|
||||
assert backend.get_name() == EXPECTED
|
||||
|
||||
# when block size == 16, backend will fall back to XFORMERS
|
||||
# this behavior is not yet supported on V1.
|
||||
if use_v1:
|
||||
# TODO: support fallback on V1!
|
||||
# https://github.com/vllm-project/vllm/issues/14524
|
||||
pass
|
||||
else:
|
||||
backend = get_attn_backend(16, torch.float16, None, 16, False)
|
||||
assert backend.get_name() == "XFORMERS"
|
||||
@ -6,14 +6,13 @@ from typing import Optional
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.allclose_default import get_default_atol, get_default_rtol
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.attention.ops.blocksparse_attention.interface import (
|
||||
LocalStridedBlockSparseAttn)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import get_max_shared_memory_bytes
|
||||
|
||||
from .allclose_default import get_default_atol, get_default_rtol
|
||||
|
||||
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
|
||||
# This will change depending on the compute capability.
|
||||
# - 512 as a buffer
|
||||
61
tests/kernels/attention/test_rocm_attention_selector.py
Normal file
61
tests/kernels/attention/test_rocm_attention_selector.py
Normal file
@ -0,0 +1,61 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from vllm.attention.selector import _cached_get_attn_backend, get_attn_backend
|
||||
from vllm.platforms.rocm import RocmPlatform
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def clear_cache():
|
||||
"""Clear lru cache to ensure each test case runs without caching.
|
||||
"""
|
||||
_cached_get_attn_backend.cache_clear()
|
||||
|
||||
|
||||
def test_selector(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_FLASH")
|
||||
|
||||
# Set the current platform to ROCm using monkeypatch
|
||||
monkeypatch.setattr("vllm.attention.selector.current_platform",
|
||||
RocmPlatform())
|
||||
|
||||
# Test standard ROCm attention
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16, 16, False)
|
||||
assert (backend.get_name() == "ROCM_FLASH"
|
||||
or backend.get_name() == "TRITON_ATTN_VLLM_V1")
|
||||
|
||||
# MLA test for deepseek related
|
||||
|
||||
# change the attention backend to triton MLA
|
||||
m.setenv(STR_BACKEND_ENV_VAR, "TRITON_MLA")
|
||||
backend = get_attn_backend(576, torch.bfloat16, "auto", 16, False,
|
||||
False, True)
|
||||
assert backend.get_name() == "TRITON_MLA"
|
||||
|
||||
# If attention backend is None
|
||||
# If use_mla is true
|
||||
# The selected backend is triton MLA
|
||||
m.setenv(STR_BACKEND_ENV_VAR, None)
|
||||
backend = get_attn_backend(576, torch.bfloat16, "auto", 16, False,
|
||||
False, True)
|
||||
assert backend.get_name() == "TRITON_MLA"
|
||||
|
||||
# change the attention backend to AITER MLA
|
||||
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_AITER_MLA")
|
||||
backend = get_attn_backend(576, torch.bfloat16, "auto", 1, False,
|
||||
False, True)
|
||||
assert backend.get_name() == "ROCM_AITER_MLA"
|
||||
|
||||
# If attention backend is None
|
||||
# If use_mla is true
|
||||
# If VLLM_ROCM_USE_AITER is enabled
|
||||
# The selected backend is ROCM_AITER_MLA
|
||||
m.setenv(STR_BACKEND_ENV_VAR, None)
|
||||
m.setenv("VLLM_ROCM_USE_AITER", "1")
|
||||
backend = get_attn_backend(576, torch.bfloat16, "auto", 1, False,
|
||||
False, True)
|
||||
assert backend.get_name() == "ROCM_AITER_MLA"
|
||||
@ -5,6 +5,7 @@ import random
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.allclose_default import get_default_atol, get_default_rtol
|
||||
from tests.kernels.utils import opcheck
|
||||
from vllm.model_executor.layers.activation import (FastGELU, FatreluAndMul,
|
||||
GeluAndMul, MulAndSilu,
|
||||
@ -12,8 +13,6 @@ from vllm.model_executor.layers.activation import (FastGELU, FatreluAndMul,
|
||||
SiluAndMul)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from .allclose_default import get_default_atol, get_default_rtol
|
||||
|
||||
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
||||
NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing
|
||||
D = [512, 13824] # Arbitrary values for testing
|
||||
25
tests/kernels/core/test_opcheck.py
Normal file
25
tests/kernels/core/test_opcheck.py
Normal file
@ -0,0 +1,25 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
Tests for miscellaneous utilities
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils import opcheck
|
||||
|
||||
|
||||
def test_convert_fp8_opcheck():
|
||||
data = torch.randn((256, 256), dtype=torch.float32, device="cuda")
|
||||
result = torch.empty_like(data, dtype=torch.float8_e4m3fn)
|
||||
opcheck(torch.ops._C_cache_ops.convert_fp8, (result, data, 1.0, "fp8"))
|
||||
|
||||
|
||||
# TODO: Add this back, currently fails with
|
||||
# csrc/cuda_utils_kernels.cu:15 'invalid argument'
|
||||
# @pytest.mark.skipif(not current_platform.is_cuda(),
|
||||
# reason="Only supported for CUDA")
|
||||
# def test_cuda_utils_opcheck():
|
||||
# opcheck(torch.ops._C_cuda_utils.get_device_attribute, (0, 0))
|
||||
# opcheck(
|
||||
# torch.ops._C_cuda_utils.
|
||||
# get_max_shared_memory_per_block_device_attribute, (0, ))
|
||||
@ -6,11 +6,10 @@ from typing import Callable, Optional
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.allclose_default import get_default_atol, get_default_rtol
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from .allclose_default import get_default_atol, get_default_rtol
|
||||
|
||||
IS_NEOX_STYLE = [True, False]
|
||||
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
||||
HEAD_SIZES = [64, 80, 112, 120, 256]
|
||||
364
tests/kernels/moe/test_cutlass_moe.py
Normal file
364
tests/kernels/moe/test_cutlass_moe.py
Normal file
@ -0,0 +1,364 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import dataclasses
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (fused_experts,
|
||||
fused_topk)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
NUM_EXPERTS = [40, 64]
|
||||
TOP_KS = [6, 8]
|
||||
|
||||
MNK_FACTORS = [
|
||||
(2, 1024, 1024),
|
||||
(2, 1024, 1536),
|
||||
(2, 3072, 1024),
|
||||
(2, 3072, 1536),
|
||||
(64, 1024, 1024),
|
||||
(64, 1024, 1536),
|
||||
(64, 3072, 1024),
|
||||
(64, 3072, 1536),
|
||||
(224, 1024, 1024),
|
||||
(224, 1024, 1536),
|
||||
(224, 3072, 1024),
|
||||
(224, 3072, 1536),
|
||||
]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class MOETensors:
|
||||
a: torch.Tensor
|
||||
w1: torch.Tensor
|
||||
w2: torch.Tensor
|
||||
ab_strides1: torch.Tensor
|
||||
c_strides1: torch.Tensor
|
||||
ab_strides2: torch.Tensor
|
||||
c_strides2: torch.Tensor
|
||||
|
||||
@staticmethod
|
||||
def make_moe_tensors(m: int, k: int, n: int, e: int,
|
||||
dtype: torch.dtype) -> "MOETensors":
|
||||
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
|
||||
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
|
||||
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
|
||||
ab_strides1 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
|
||||
c_strides1 = torch.full((e, ), 2 * n, device="cuda", dtype=torch.int64)
|
||||
ab_strides2 = torch.full((e, ), n, device="cuda", dtype=torch.int64)
|
||||
c_strides2 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
|
||||
return MOETensors(a=a,
|
||||
w1=w1,
|
||||
w2=w2,
|
||||
ab_strides1=ab_strides1,
|
||||
c_strides1=c_strides1,
|
||||
ab_strides2=ab_strides2,
|
||||
c_strides2=c_strides2)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class MOETensors8Bit(MOETensors):
|
||||
# quantized
|
||||
a_q: Optional[torch.Tensor] = None # a -> a_q
|
||||
w1_q: Optional[torch.Tensor] = None # w1 -> w1_q
|
||||
w2_q: Optional[torch.Tensor] = None # w2 -> w2_q
|
||||
a_scale: Optional[torch.Tensor] = None
|
||||
w1_scale: Optional[torch.Tensor] = None
|
||||
w2_scale: Optional[torch.Tensor] = None
|
||||
# dequantized
|
||||
a_d: Optional[torch.Tensor] = None # a -> a_q -> a_d
|
||||
w1_d: Optional[torch.Tensor] = None # w1 -> w1_q -> w1_d
|
||||
w2_d: Optional[torch.Tensor] = None # w2 -> w2_q -> w2_d
|
||||
|
||||
@staticmethod
|
||||
def make_moe_tensors_8bit(m: int, k: int, n: int, e: int,
|
||||
per_act_token: bool,
|
||||
per_out_channel: bool) -> "MOETensors8Bit":
|
||||
dtype = torch.half
|
||||
q_dtype = torch.float8_e4m3fn
|
||||
|
||||
moe_tensors_fp16 = MOETensors.make_moe_tensors(m, k, n, e, dtype)
|
||||
|
||||
# a -> a_q, w1 -> w1_q, w2 -> w2_q
|
||||
n_b_scales = 2 * n if per_out_channel else 1
|
||||
k_b_scales = k if per_out_channel else 1
|
||||
# Get the right scale for tests.
|
||||
_, a_scale = ops.scaled_fp8_quant(
|
||||
moe_tensors_fp16.a, use_per_token_if_dynamic=per_act_token)
|
||||
a_q, _ = ops.scaled_fp8_quant(moe_tensors_fp16.a,
|
||||
a_scale,
|
||||
use_per_token_if_dynamic=per_act_token)
|
||||
w1_q = torch.empty((e, 2 * n, k), device="cuda", dtype=q_dtype)
|
||||
w2_q = torch.empty((e, k, n), device="cuda", dtype=q_dtype)
|
||||
|
||||
w1_scale = torch.empty((e, n_b_scales, 1),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
w2_scale = torch.empty((e, k_b_scales, 1),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
for expert in range(e):
|
||||
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(
|
||||
moe_tensors_fp16.w1[expert],
|
||||
use_per_token_if_dynamic=per_out_channel)
|
||||
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(
|
||||
moe_tensors_fp16.w2[expert],
|
||||
use_per_token_if_dynamic=per_out_channel)
|
||||
|
||||
# a_q -> a_d, w1_q -> w1_d, w2_q -> w2_d
|
||||
a_d = a_q.float().mul(a_scale).to(dtype)
|
||||
w1_d = torch.empty_like(moe_tensors_fp16.w1)
|
||||
w2_d = torch.empty_like(moe_tensors_fp16.w2)
|
||||
for expert in range(e):
|
||||
w1_d[expert] = (w1_q[expert].float() * w1_scale[expert]).half()
|
||||
w2_d[expert] = (w2_q[expert].float() * w2_scale[expert]).half()
|
||||
|
||||
return MOETensors8Bit(a=moe_tensors_fp16.a,
|
||||
w1=moe_tensors_fp16.w1,
|
||||
w2=moe_tensors_fp16.w2,
|
||||
ab_strides1=moe_tensors_fp16.ab_strides1,
|
||||
c_strides1=moe_tensors_fp16.c_strides1,
|
||||
ab_strides2=moe_tensors_fp16.ab_strides2,
|
||||
c_strides2=moe_tensors_fp16.c_strides2,
|
||||
a_q=a_q,
|
||||
w1_q=w1_q,
|
||||
w2_q=w2_q,
|
||||
a_scale=a_scale,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a_d=a_d,
|
||||
w1_d=w1_d,
|
||||
w2_d=w2_d)
|
||||
|
||||
|
||||
def run_with_expert_maps(num_experts: int, num_local_experts: int,
|
||||
**cutlass_moe_kwargs):
|
||||
|
||||
def slice_experts():
|
||||
slice_params = [
|
||||
"w1_q", "w2_q", "ab_strides1", "ab_strides2", "c_strides1",
|
||||
"c_strides2", "w1_scale", "w2_scale"
|
||||
]
|
||||
full_tensors = {
|
||||
k: v
|
||||
for k, v in cutlass_moe_kwargs.items()
|
||||
if k in slice_params and k in cutlass_moe_kwargs
|
||||
}
|
||||
|
||||
for i in range(0, num_experts, num_local_experts):
|
||||
s, e = i, i + num_local_experts
|
||||
|
||||
# make expert map
|
||||
expert_map = [-1] * num_experts
|
||||
expert_map[s:e] = list(range(num_local_experts))
|
||||
expert_map = torch.tensor(expert_map,
|
||||
dtype=torch.int32,
|
||||
device="cuda")
|
||||
|
||||
# update cutlass moe arg with expert_map
|
||||
cutlass_moe_kwargs["expert_map"] = expert_map
|
||||
# update cutlass moe arg tensors
|
||||
for k, t in full_tensors.items():
|
||||
cutlass_moe_kwargs[k] = t[s:e]
|
||||
|
||||
yield cutlass_moe_kwargs
|
||||
|
||||
out_tensor = torch.zeros_like(cutlass_moe_kwargs["a"])
|
||||
for kwargs in slice_experts():
|
||||
out_tensor = out_tensor + cutlass_moe_fp8(**kwargs)
|
||||
|
||||
return out_tensor
|
||||
|
||||
|
||||
def run_8_bit(moe_tensors: MOETensors8Bit,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
num_local_experts: Optional[int] = None) -> torch.Tensor:
|
||||
assert not any([
|
||||
t is None for t in [
|
||||
moe_tensors.w1_q, moe_tensors.w2_q, moe_tensors.w1_scale,
|
||||
moe_tensors.w2_scale, moe_tensors.a_scale
|
||||
]
|
||||
])
|
||||
|
||||
kwargs = {
|
||||
'a': moe_tensors.a,
|
||||
'w1_q': moe_tensors.w1_q.transpose(1, 2), # type: ignore[union-attr]
|
||||
'w2_q': moe_tensors.w2_q.transpose(1, 2), # type: ignore[union-attr]
|
||||
'topk_weights': topk_weights,
|
||||
'topk_ids_': topk_ids,
|
||||
'ab_strides1': moe_tensors.ab_strides1,
|
||||
'c_strides1': moe_tensors.c_strides1,
|
||||
'ab_strides2': moe_tensors.ab_strides2,
|
||||
'c_strides2': moe_tensors.c_strides2,
|
||||
'w1_scale': moe_tensors.w1_scale,
|
||||
'w2_scale': moe_tensors.w2_scale,
|
||||
'a1_scale': moe_tensors.a_scale
|
||||
}
|
||||
|
||||
num_experts = moe_tensors.w1.size(0)
|
||||
with_ep = num_local_experts is not None or num_local_experts == num_experts
|
||||
if not with_ep:
|
||||
return cutlass_moe_fp8(**kwargs)
|
||||
|
||||
assert num_local_experts is not None
|
||||
return run_with_expert_maps(
|
||||
num_experts,
|
||||
num_local_experts, # type: ignore[arg-type]
|
||||
**kwargs)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
|
||||
@pytest.mark.parametrize("e", NUM_EXPERTS)
|
||||
@pytest.mark.parametrize("topk", TOP_KS)
|
||||
@pytest.mark.parametrize("per_act_token", [True, False])
|
||||
@pytest.mark.parametrize("per_out_ch", [True, False])
|
||||
@pytest.mark.skipif(
|
||||
(lambda x: x is None or not ops.cutlass_group_gemm_supported(x.to_int()))(
|
||||
current_platform.get_device_capability()),
|
||||
reason="Grouped gemm is not supported on this GPU type.")
|
||||
def test_cutlass_moe_8_bit_no_graph(
|
||||
m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
e: int,
|
||||
topk: int,
|
||||
per_act_token: bool,
|
||||
per_out_ch: bool,
|
||||
):
|
||||
current_platform.seed_everything(7)
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(
|
||||
pipeline_parallel_size=1))):
|
||||
|
||||
mt = MOETensors8Bit.make_moe_tensors_8bit(m, k, n, e, per_act_token,
|
||||
per_out_ch)
|
||||
|
||||
score = torch.randn((m, e), device="cuda", dtype=torch.half)
|
||||
topk_weights, topk_ids = fused_topk(mt.a,
|
||||
score,
|
||||
topk,
|
||||
renormalize=False)
|
||||
|
||||
# Note that we are using the dequantized versions of the tensors.
|
||||
# Using a, w1 and w2 directly results in minor output differences.
|
||||
triton_output = fused_experts(mt.a_d, mt.w1_d, mt.w2_d, topk_weights,
|
||||
topk_ids)
|
||||
|
||||
cutlass_output = run_8_bit(mt, topk_weights, topk_ids)
|
||||
|
||||
torch.testing.assert_close(triton_output,
|
||||
cutlass_output,
|
||||
atol=5e-2,
|
||||
rtol=1e-2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
|
||||
@pytest.mark.parametrize("e", NUM_EXPERTS)
|
||||
@pytest.mark.parametrize("topk", TOP_KS)
|
||||
@pytest.mark.parametrize("per_act_token", [True, False])
|
||||
@pytest.mark.parametrize("per_out_ch", [True, False])
|
||||
@pytest.mark.skipif(
|
||||
(lambda x: x is None or not ops.cutlass_group_gemm_supported(x.to_int()))(
|
||||
current_platform.get_device_capability()),
|
||||
reason="Grouped gemm is not supported on this GPU type.")
|
||||
def test_cutlass_moe_8_bit_cuda_graph(
|
||||
m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
e: int,
|
||||
topk: int,
|
||||
per_act_token: bool,
|
||||
per_out_ch: bool,
|
||||
):
|
||||
current_platform.seed_everything(7)
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(
|
||||
pipeline_parallel_size=1))):
|
||||
|
||||
dtype = torch.half
|
||||
|
||||
mt = MOETensors8Bit.make_moe_tensors_8bit(m, k, n, e, per_act_token,
|
||||
per_out_ch)
|
||||
|
||||
score = torch.randn((m, e), device="cuda", dtype=dtype)
|
||||
topk_weights, topk_ids = fused_topk(mt.a,
|
||||
score,
|
||||
topk,
|
||||
renormalize=False)
|
||||
|
||||
# Note that we are using the dequantized versions of the tensors.
|
||||
# Using a, w1 and w2 directly results in minor output differences.
|
||||
triton_output = fused_experts(mt.a_d, mt.w1_d, mt.w2_d, topk_weights,
|
||||
topk_ids)
|
||||
|
||||
stream = torch.cuda.Stream()
|
||||
graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(graph, stream=stream):
|
||||
cutlass_output = run_8_bit(mt, topk_weights, topk_ids)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
graph.replay()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
torch.testing.assert_close(triton_output,
|
||||
cutlass_output,
|
||||
atol=9e-2,
|
||||
rtol=1e-2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("m", [64])
|
||||
@pytest.mark.parametrize("n", [1024])
|
||||
@pytest.mark.parametrize("k", [4096])
|
||||
@pytest.mark.parametrize("e", [16])
|
||||
@pytest.mark.parametrize("topk", [1, 8])
|
||||
@pytest.mark.parametrize("per_act_token", [True])
|
||||
@pytest.mark.parametrize("per_out_channel", [True])
|
||||
@pytest.mark.parametrize("ep_size", [1, 2, 4, 8, 16])
|
||||
@pytest.mark.skipif(
|
||||
(lambda x: x is None or not ops.cutlass_group_gemm_supported(x.to_int()))(
|
||||
current_platform.get_device_capability()),
|
||||
reason="Grouped gemm is not supported on this GPU type.")
|
||||
def test_cutlass_moe_8_bit_EP(
|
||||
m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
e: int,
|
||||
topk: int,
|
||||
per_act_token: bool,
|
||||
per_out_channel: bool,
|
||||
ep_size: int,
|
||||
):
|
||||
current_platform.seed_everything(7)
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(
|
||||
pipeline_parallel_size=1))):
|
||||
|
||||
mt = MOETensors8Bit.make_moe_tensors_8bit(m, k, n, e, per_act_token,
|
||||
per_out_channel)
|
||||
|
||||
score = torch.randn((m, e), device="cuda", dtype=torch.half)
|
||||
topk_weights, topk_ids = fused_topk(mt.a,
|
||||
score,
|
||||
topk,
|
||||
renormalize=False)
|
||||
|
||||
# Note that we are using the dequantized versions of the tensors.
|
||||
# Using a, w1 and w2 directly results in minor output differences.
|
||||
triton_output = fused_experts(mt.a_d, mt.w1_d, mt.w2_d, topk_weights,
|
||||
topk_ids)
|
||||
|
||||
assert e % ep_size == 0, "Cannot distribute experts evenly"
|
||||
cutlass_output = run_8_bit(mt,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
num_local_experts=e // ep_size)
|
||||
|
||||
torch.testing.assert_close(triton_output,
|
||||
cutlass_output,
|
||||
atol=5e-2,
|
||||
rtol=1e-2)
|
||||
@ -6,6 +6,7 @@ import itertools
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils_block import native_w8a8_block_matmul
|
||||
from vllm.config import VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import fused_moe
|
||||
@ -18,8 +19,6 @@ from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from .utils_block import native_w8a8_block_matmul
|
||||
|
||||
dg_available = False
|
||||
try:
|
||||
import deep_gemm
|
||||
@ -6,6 +6,7 @@ import itertools
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils_block import native_w8a8_block_matmul
|
||||
from vllm.config import VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import fused_moe
|
||||
@ -13,8 +14,6 @@ from vllm.model_executor.layers.quantization.utils.int8_utils import (
|
||||
w8a8_block_int8_matmul)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from .utils_block import native_w8a8_block_matmul
|
||||
|
||||
if current_platform.get_device_capability() < (7, 0):
|
||||
pytest.skip("INT8 Triton requires CUDA 7.0 or higher",
|
||||
allow_module_level=True)
|
||||
@ -7,13 +7,12 @@ Run `pytest tests/kernels/test_semi_structured.py`.
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils import baseline_scaled_mm, to_fp8, to_int8
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
||||
sparse_cutlass_supported)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from .utils import baseline_scaled_mm, to_fp8, to_int8
|
||||
|
||||
CUDA_DEVICES = [
|
||||
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
|
||||
]
|
||||
@ -8,13 +8,11 @@ import random
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils import opcheck
|
||||
from tests.kernels.utils import baseline_scaled_mm, opcheck, to_fp8, to_int8
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import cdiv
|
||||
|
||||
from .utils import baseline_scaled_mm, to_fp8, to_int8
|
||||
|
||||
MNK_FACTORS = [
|
||||
(1, 256, 128),
|
||||
(1, 16384, 1024),
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user