Compare commits
419 Commits
remove-asy
...
compile-ep
| Author | SHA1 | Date | |
|---|---|---|---|
| 787384dd4a | |||
| 0585a9e73c | |||
| 3c0ef769ba | |||
| 4e4d017b6f | |||
| dd58932280 | |||
| 52883ed084 | |||
| 4f35be10a9 | |||
| 2b61d2e22f | |||
| 3ce8285d6d | |||
| 83f555f637 | |||
| 841490434a | |||
| 3af47c3cc6 | |||
| 513c1fe255 | |||
| fe8d7b6f03 | |||
| 16dc4052b0 | |||
| 8dd2baa597 | |||
| 5eeef1b908 | |||
| 704432af3c | |||
| a403d0fa41 | |||
| 8c13820f0b | |||
| 9d30de4469 | |||
| 1f7a9c95e4 | |||
| 8f0d7eaea8 | |||
| e03940762b | |||
| 11eddf02f0 | |||
| 04ff1e43fb | |||
| 6578e87365 | |||
| 5bd9f84158 | |||
| 91e382c935 | |||
| 6446677839 | |||
| 69244e67e6 | |||
| 8dbf6ed7be | |||
| 9de25c294b | |||
| fce10dbed5 | |||
| d272415e57 | |||
| 142ac08030 | |||
| 3210264421 | |||
| 644d57d531 | |||
| c905684cfe | |||
| 786835807b | |||
| fecbb7c782 | |||
| 6dab89b8ec | |||
| de02b07db4 | |||
| eb1995167e | |||
| 2c2b140ae8 | |||
| c7c80af084 | |||
| 6891205b16 | |||
| b1625dbe9c | |||
| 585e0bde36 | |||
| 714872f1a9 | |||
| 5f1af97f86 | |||
| c3b0fd1ee6 | |||
| 6421b66bf4 | |||
| 2f13319f47 | |||
| d696f86e7b | |||
| 9816b81f5f | |||
| c37c0af990 | |||
| 9715f7bb0f | |||
| 98aa16ff41 | |||
| 227e231b55 | |||
| 730d0ac8b9 | |||
| 9b0187003e | |||
| 44ac25eae2 | |||
| 7ea22e42d5 | |||
| 9d4183dd2e | |||
| 513298f1b4 | |||
| 379f828fba | |||
| 1fdc732419 | |||
| f58675bfb3 | |||
| 7c04779afa | |||
| f66673a39d | |||
| b78bed1bc5 | |||
| 164b2273c8 | |||
| 2b4fc9bd9b | |||
| ebd5a77bb5 | |||
| 384dd1b0a8 | |||
| fdeb3dac13 | |||
| d52358c1e0 | |||
| 6ace2f72b0 | |||
| b00e69f8ca | |||
| 50fede6634 | |||
| b5d34af328 | |||
| 9b5f64238f | |||
| ff77764f86 | |||
| bfc1edc9f5 | |||
| 3ecbb14b81 | |||
| 7d67a9d9f9 | |||
| 959783fb99 | |||
| ce0e9dbd43 | |||
| b395b3b0a3 | |||
| 6fad29b11b | |||
| 6fd45e7b8a | |||
| 56dcf4e7e9 | |||
| ae067888d6 | |||
| 906e461ed6 | |||
| 2a97ffc33d | |||
| efc88cf64a | |||
| 7b6a837275 | |||
| c34c82b7fe | |||
| 8a044754bd | |||
| 9188ae7cb5 | |||
| 8a3cd90af5 | |||
| 2a167b2eeb | |||
| 0ff902f3b4 | |||
| a9082a4d14 | |||
| e0329ed4b4 | |||
| 6879cd80ae | |||
| e269be2ba2 | |||
| 5c4b6e66fe | |||
| d0a4a3f645 | |||
| ebafb0936d | |||
| 0cb7b065c3 | |||
| 2da02dd0d8 | |||
| d765cf01fe | |||
| 712d0f88d8 | |||
| 49ab23b3cc | |||
| c9abb10489 | |||
| 787cdb3829 | |||
| a5203d04df | |||
| 99f8094400 | |||
| 170e8ea9ea | |||
| a71e4765cc | |||
| 39971db3aa | |||
| 504d914314 | |||
| 47455c424f | |||
| c7fc6b1354 | |||
| ad78868450 | |||
| e2db1164a1 | |||
| 416f05929a | |||
| 5e021b4981 | |||
| 1b9b16649c | |||
| e76e233540 | |||
| a75277285b | |||
| 9dc30b7068 | |||
| 053278a5dc | |||
| c55c028998 | |||
| 65197a5fb3 | |||
| b8f17f5d98 | |||
| d9a55204ba | |||
| b4e9fd811f | |||
| 308fa287a8 | |||
| fa78de9dc3 | |||
| f6818a92cb | |||
| 23c939fd30 | |||
| add1adfec7 | |||
| c80c53a30f | |||
| 24d0c9e6ed | |||
| cc7ae5e7ca | |||
| 0313cf854d | |||
| 0483fabc74 | |||
| da65bec309 | |||
| 4645024d3a | |||
| cd7a3df26f | |||
| 32d2b4064f | |||
| 22cf679aad | |||
| b6d7d34fc6 | |||
| 341923b982 | |||
| 424fb7a5d2 | |||
| 88491c1b6b | |||
| 613a23b57f | |||
| 51a215300b | |||
| ebe14621e3 | |||
| 325aa3dee9 | |||
| a073be6d87 | |||
| 695e7adcd2 | |||
| 281710ef9a | |||
| 808d2e9aa0 | |||
| 285178b3b8 | |||
| 88016c372a | |||
| 998720859c | |||
| 0ba1b54ac6 | |||
| 53415653ff | |||
| 17373dcd93 | |||
| 5964069367 | |||
| de9c085e17 | |||
| 111692bb8c | |||
| 394591e343 | |||
| 3ac849665d | |||
| 0b9cc56fac | |||
| 8896eb72eb | |||
| 19fe1a0510 | |||
| 480bdf5a7b | |||
| 5368f76855 | |||
| 8ef6b8a38c | |||
| 3bbe11cc13 | |||
| c5041f899f | |||
| 8b5fe6eb51 | |||
| 800349c2a5 | |||
| 044931f97b | |||
| 1d353b6352 | |||
| 3496274663 | |||
| 8a19303173 | |||
| 603fbbbce0 | |||
| 10f535c086 | |||
| 48bfb0c9b7 | |||
| f8ce022948 | |||
| 0278f1ac3a | |||
| a482e4e769 | |||
| e0b056e443 | |||
| 79f05e4436 | |||
| f8daddcc4c | |||
| c8e33c72c6 | |||
| d70a16625d | |||
| 5cc54f7c5b | |||
| 0c6e40bbaa | |||
| 2e2000f352 | |||
| 31282401b6 | |||
| 0c31e28e95 | |||
| f571ff8eb6 | |||
| f64ee61d9e | |||
| 8993073dc1 | |||
| 655a09f653 | |||
| f94bf9b924 | |||
| 3663870c72 | |||
| 2461d9e562 | |||
| 7be5d113d8 | |||
| b029de9902 | |||
| bbea1cefdd | |||
| f5aa307d77 | |||
| 4b795020ed | |||
| c86af22f31 | |||
| 10cc12ba66 | |||
| a4fbb32fab | |||
| 1b125004be | |||
| 4fbda0b20c | |||
| 4e51fa8cba | |||
| bf7c99dfc4 | |||
| b95697d731 | |||
| 582bbe6bd7 | |||
| 0cdbf5e61c | |||
| ebe56a0064 | |||
| f77a0802b7 | |||
| c4477f55e5 | |||
| dfd2382039 | |||
| 3b11b26b50 | |||
| d6d13bd49e | |||
| 5efd6905bc | |||
| b17109beea | |||
| 4449235843 | |||
| 38217877aa | |||
| c6d80a7a96 | |||
| 7cd17e22d7 | |||
| 50df09fe13 | |||
| 68fcd3fa73 | |||
| 83e69a09d6 | |||
| 3aa8c10038 | |||
| 103f1ec8d3 | |||
| d983769c41 | |||
| 8fd920924c | |||
| de7b67a023 | |||
| f729023272 | |||
| 1a3079a15e | |||
| 941f56858a | |||
| a634733f67 | |||
| 64ab3c7253 | |||
| e58c5a9768 | |||
| d46d417b58 | |||
| 0167efe20d | |||
| c32e6ad1f6 | |||
| 1630cc8d0f | |||
| 14e2b0730b | |||
| 0f4f0191d8 | |||
| a38b8af4c3 | |||
| 21dce80ea9 | |||
| e61bac87ee | |||
| 80141bbf2f | |||
| b94faf9d50 | |||
| 5b5f350d67 | |||
| f7cf5b512e | |||
| 03d4235fd2 | |||
| d6a1a20973 | |||
| a70d0bd0a3 | |||
| 24f4d1a224 | |||
| 4f510bc2a1 | |||
| 1298c67795 | |||
| 4d9c61993a | |||
| b87cb97a53 | |||
| f856c33ce9 | |||
| 03752dba8f | |||
| 40f26734b9 | |||
| 2c3f557f08 | |||
| 21bcc8263f | |||
| 5bfe0dea7a | |||
| 31fd3265c8 | |||
| 31436e8b4f | |||
| 4efd43e9b4 | |||
| 3c8a787247 | |||
| 01a08739e0 | |||
| fda9537c5e | |||
| 90bbe0a5ad | |||
| e75f342261 | |||
| 78dba404ad | |||
| e9d6a3db69 | |||
| a4454e9401 | |||
| 14006840ea | |||
| 6603288736 | |||
| 95e3095136 | |||
| c9b38be8aa | |||
| 0dd3f4f5ab | |||
| 498259ccce | |||
| 6d25e3fd6e | |||
| ac6eb49de3 | |||
| bf756321c7 | |||
| 0e3bb543f0 | |||
| 569aefd134 | |||
| d3f71f1224 | |||
| 5a30bd10d8 | |||
| 27e8d1ea3e | |||
| 5c79b0d648 | |||
| 5f5664b3e4 | |||
| 89657a557c | |||
| 08d5f7113a | |||
| b2fd0b81e0 | |||
| 9f1c642254 | |||
| 7be3a59d8e | |||
| 8ea0c2753a | |||
| 0fc8fa751a | |||
| 21e39436c8 | |||
| 6d243efeda | |||
| c55bc1db26 | |||
| 292084e72a | |||
| 16bff144be | |||
| fe0411fc6f | |||
| 4d4061b6e7 | |||
| 87f48623a5 | |||
| 5c32143b9d | |||
| 94096a47c9 | |||
| a258ad8bcc | |||
| bf7f470b22 | |||
| 4fc722eca4 | |||
| 3253ae765e | |||
| 000cceca8c | |||
| 68373d3126 | |||
| 52ce1420e9 | |||
| 829bbd7882 | |||
| 4dff91c93d | |||
| de9cb61763 | |||
| 2dbccce8a6 | |||
| 933f45334a | |||
| cc826a202b | |||
| 6d3da472bc | |||
| 78863f8c5c | |||
| 5157827cfc | |||
| 7caec10e7b | |||
| 1f83e7d849 | |||
| e4e37ded56 | |||
| f6b5040590 | |||
| fbd88728b3 | |||
| 070da660c1 | |||
| ad0297d113 | |||
| 236b864e4f | |||
| 3e2f7985a2 | |||
| c280066f9d | |||
| b9dc9d2607 | |||
| 1fc375dc05 | |||
| 76144adf76 | |||
| f5d412bafb | |||
| 177e55e3bd | |||
| 1723ef1aae | |||
| 00d6cba0cf | |||
| 7f89ed248f | |||
| 8a87cd27d9 | |||
| a344a1a7da | |||
| 79899b63f6 | |||
| 6e670778cd | |||
| df5afa82e5 | |||
| 6cd69f51bf | |||
| 8ad7285ea2 | |||
| 48b01fd4d4 | |||
| 993d3d122b | |||
| 68af77e51c | |||
| 6b04039a72 | |||
| 1c859a1387 | |||
| 74f441f4b5 | |||
| a0632a3e03 | |||
| e8b40c7fa2 | |||
| 48f4636927 | |||
| 75531a6c13 | |||
| 22341b996e | |||
| 49252cf59e | |||
| 3e6dd40016 | |||
| aa300c438d | |||
| fe91ce9591 | |||
| 5406ebf5c9 | |||
| b2c06509e5 | |||
| b2f6c247a9 | |||
| 3d232dbd19 | |||
| 5c3fbfe46b | |||
| b4cef5e6c7 | |||
| 0fe85087a9 | |||
| d2b0e97ea6 | |||
| 590bddbfc5 | |||
| ae05a6d83d | |||
| 0933f9d518 | |||
| f1f0d2fab8 | |||
| 81f4b96481 | |||
| 39cd09dc86 | |||
| 919234fe17 | |||
| ebcce2cd36 | |||
| 4121de512e | |||
| 279a5f31b3 | |||
| b8ff05361a | |||
| 637093ae26 | |||
| 33c63e9547 | |||
| ab9f2cfd19 | |||
| dbe298046c | |||
| 625ccd1c4d | |||
| 92ff41abea | |||
| 829b9a62d0 | |||
| 540d54ca8d | |||
| 0783f13960 | |||
| 7655dc3e45 | |||
| f4efda821d | |||
| eb08487b18 | |||
| 7c3a0741c6 | |||
| 00e3f9da46 | |||
| a353bd083d | |||
| 1d20c34717 | |||
| b6af24fba7 |
@ -8,7 +8,8 @@ template = """<!DOCTYPE html>
|
||||
<html>
|
||||
<body>
|
||||
<h1>Links for vLLM</h1/>
|
||||
<a href="../{wheel_html_escaped}">{wheel}</a><br/>
|
||||
<a href="../{x86_wheel_html_escaped}">{x86_wheel}</a><br/>
|
||||
<a href="../{arm_wheel_html_escaped}">{arm_wheel}</a><br/>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
@ -21,7 +22,25 @@ filename = os.path.basename(args.wheel)
|
||||
|
||||
with open("index.html", "w") as f:
|
||||
print(f"Generated index.html for {args.wheel}")
|
||||
# sync the abi tag with .buildkite/scripts/upload-wheels.sh
|
||||
if "x86_64" in filename:
|
||||
x86_wheel = filename
|
||||
arm_wheel = filename.replace("x86_64", "aarch64").replace(
|
||||
"manylinux1", "manylinux2014"
|
||||
)
|
||||
elif "aarch64" in filename:
|
||||
x86_wheel = filename.replace("aarch64", "x86_64").replace(
|
||||
"manylinux2014", "manylinux1"
|
||||
)
|
||||
arm_wheel = filename
|
||||
else:
|
||||
raise ValueError(f"Unsupported wheel: {filename}")
|
||||
# cloudfront requires escaping the '+' character
|
||||
f.write(
|
||||
template.format(wheel=filename, wheel_html_escaped=filename.replace("+", "%2B"))
|
||||
template.format(
|
||||
x86_wheel=x86_wheel,
|
||||
x86_wheel_html_escaped=x86_wheel.replace("+", "%2B"),
|
||||
arm_wheel=arm_wheel,
|
||||
arm_wheel_html_escaped=arm_wheel.replace("+", "%2B"),
|
||||
)
|
||||
)
|
||||
|
||||
@ -1,12 +0,0 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
|
||||
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.419
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.416
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
||||
@ -3,4 +3,3 @@ Meta-Llama-3-70B-Instruct.yaml
|
||||
Mixtral-8x7B-Instruct-v0.1.yaml
|
||||
Qwen2-57B-A14-Instruct.yaml
|
||||
DeepSeek-V2-Lite-Chat.yaml
|
||||
Meta-Llama-3-8B-QQQ.yaml
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
# We can use this script to compute baseline accuracy on GSM for transformers.
|
||||
#
|
||||
# Make sure you have lm-eval-harness installed:
|
||||
# pip install lm-eval==0.4.4
|
||||
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
|
||||
|
||||
usage() {
|
||||
echo``
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
# We use this for fp8, which HF does not support.
|
||||
#
|
||||
# Make sure you have lm-eval-harness installed:
|
||||
# pip install lm-eval==0.4.4
|
||||
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
|
||||
|
||||
usage() {
|
||||
echo``
|
||||
|
||||
@ -7,7 +7,7 @@ This directory contains two sets of benchmark for vllm.
|
||||
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
|
||||
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
|
||||
|
||||
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
|
||||
See [vLLM performance dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
|
||||
|
||||
## Performance benchmark quick overview
|
||||
|
||||
@ -138,28 +138,20 @@ The raw benchmarking results (in the format of json files) are in the `Artifacts
|
||||
|
||||
The `compare-json-results.py` helps to compare benchmark results JSON files converted using `convert-results-json-to-markdown.py`.
|
||||
When run, benchmark script generates results under `benchmark/results` folder, along with the `benchmark_results.md` and `benchmark_results.json`.
|
||||
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
|
||||
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
|
||||
If only one benchmark_results.json is passed, `compare-json-results.py` compares different TP and PP configurations in the benchmark_results.json instead.
|
||||
|
||||
Here is an example using the script to compare result_a and result_b without detail test name.
|
||||
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json --ignore_test_name`
|
||||
|
||||
| | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|
||||
|----|----------------------------------------|----------------------------------------|----------|
|
||||
| 0 | 142.633982 | 156.526018 | 1.097396 |
|
||||
| 1 | 241.620334 | 294.018783 | 1.216863 |
|
||||
| 2 | 218.298905 | 262.664916 | 1.203235 |
|
||||
| 3 | 242.743860 | 299.816190 | 1.235113 |
|
||||
|
||||
Here is an example using the script to compare result_a and result_b with detail test name.
|
||||
Here is an example using the script to compare result_a and result_b with Model, Dataset name, input/output length, max concurrency and qps.
|
||||
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json`
|
||||
|
||||
| | results_a/benchmark_results.json_name | results_a/benchmark_results.json | results_b/benchmark_results.json_name | results_b/benchmark_results.json | perf_ratio |
|
||||
|---|---------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|----------|
|
||||
| 0 | serving_llama8B_tp1_sharegpt_qps_1 | 142.633982 | serving_llama8B_tp1_sharegpt_qps_1 | 156.526018 | 1.097396 |
|
||||
| 1 | serving_llama8B_tp1_sharegpt_qps_16 | 241.620334 | serving_llama8B_tp1_sharegpt_qps_16 | 294.018783 | 1.216863 |
|
||||
| 2 | serving_llama8B_tp1_sharegpt_qps_4 | 218.298905 | serving_llama8B_tp1_sharegpt_qps_4 | 262.664916 | 1.203235 |
|
||||
| 3 | serving_llama8B_tp1_sharegpt_qps_inf | 242.743860 | serving_llama8B_tp1_sharegpt_qps_inf | 299.816190 | 1.235113 |
|
||||
| 4 | serving_llama8B_tp2_random_1024_128_qps_1 | 96.613390 | serving_llama8B_tp4_random_1024_128_qps_1 | 108.404853 | 1.122048 |
|
||||
| | Model | Dataset Name | Input Len | Output Len | # of max concurrency | qps | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|
||||
|----|---------------------------------------|--------|-----|-----|------|-----|-----------|----------|----------|
|
||||
| 0 | meta-llama/Meta-Llama-3.1-8B-Instruct | random | 128 | 128 | 1000 | 1 | 142.633982 | 156.526018 | 1.097396 |
|
||||
| 1 | meta-llama/Meta-Llama-3.1-8B-Instruct | random | 128 | 128 | 1000 | inf| 241.620334 | 294.018783 | 1.216863 |
|
||||
|
||||
A comparison diagram will be generated below the table.
|
||||
Here is an example to compare between 96c/results_gnr_96c_091_tp2pp3 and 128c/results_gnr_128c_091_tp2pp3
|
||||
<img width="1886" height="828" alt="image" src="https://github.com/user-attachments/assets/c02a43ef-25d0-4fd6-90e5-2169a28682dd" />
|
||||
|
||||
## Nightly test details
|
||||
|
||||
|
||||
@ -17,7 +17,7 @@ Latest reproduction guilde: [github issue link](https://github.com/vllm-project/
|
||||
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
|
||||
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
|
||||
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
|
||||
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
|
||||
- *NOTE: we use r24.07 as the current implementation only works for this version. We are going to bump this up.*
|
||||
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
|
||||
- Hardware
|
||||
- 8x Nvidia A100 GPUs
|
||||
|
||||
@ -1,33 +1,202 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
from importlib import util
|
||||
|
||||
import pandas as pd
|
||||
|
||||
plotly_found = util.find_spec("plotly.express") is not None
|
||||
|
||||
|
||||
def compare_data_columns(
|
||||
files, name_column, data_column, drop_column, ignore_test_name=False
|
||||
files, name_column, data_column, info_cols, drop_column, debug=False
|
||||
):
|
||||
print("\ncompare_data_column: " + data_column)
|
||||
frames = []
|
||||
compare_frames = []
|
||||
for file in files:
|
||||
data_df = pd.read_json(file)
|
||||
serving_df = data_df.dropna(subset=[drop_column], ignore_index=True)
|
||||
if ignore_test_name is False:
|
||||
serving_df = serving_df.rename(columns={name_column: file + "_name"})
|
||||
frames.append(serving_df[file + "_name"])
|
||||
serving_df = serving_df.rename(columns={data_column: file})
|
||||
frames.append(serving_df[file])
|
||||
compare_frames.append(serving_df[file])
|
||||
if len(compare_frames) >= 2:
|
||||
# Compare numbers among two files
|
||||
ratio_df = compare_frames[1] / compare_frames[0]
|
||||
frames.append(ratio_df)
|
||||
compare_frames.pop(1)
|
||||
"""
|
||||
Align concatenation by keys derived from info_cols instead of row order.
|
||||
- Pick one canonical key list: subset of info_cols present in ALL files.
|
||||
- For each file: set index to those keys, aggregate duplicates
|
||||
- (mean for metric, first for names).
|
||||
- Concat along axis=1 (indexes align), then reset_index so callers can
|
||||
- group by columns.
|
||||
- If --debug, add a <file_label>_name column per file.
|
||||
"""
|
||||
print("\ncompare_data_column:", data_column)
|
||||
|
||||
frames = []
|
||||
raw_data_cols = []
|
||||
compare_frames = []
|
||||
|
||||
# 1) choose a canonical key list from info_cols that exists in ALL files
|
||||
cols_per_file = []
|
||||
for f in files:
|
||||
try:
|
||||
df_tmp = pd.read_json(f, orient="records")
|
||||
except Exception as err:
|
||||
raise ValueError(f"Failed to read {f}") from err
|
||||
cols_per_file.append(set(df_tmp.columns))
|
||||
|
||||
key_cols = [c for c in info_cols if all(c in cset for cset in cols_per_file)]
|
||||
if not key_cols:
|
||||
# soft fallback: use any info_cols present in the first file
|
||||
key_cols = [c for c in info_cols if c in list(cols_per_file[0])]
|
||||
if not key_cols:
|
||||
raise ValueError(
|
||||
"No common key columns found from info_cols across the input files."
|
||||
)
|
||||
|
||||
# 2) build a single "meta" block (keys as columns) once, aligned by the key index
|
||||
meta_added = False
|
||||
|
||||
for file in files:
|
||||
df = pd.read_json(file, orient="records")
|
||||
|
||||
# Keep rows that actually have the compared metric (same as original behavior)
|
||||
if drop_column in df.columns:
|
||||
df = df.dropna(subset=[drop_column], ignore_index=True)
|
||||
|
||||
# Stabilize numeric key columns (harmless if missing)
|
||||
for c in (
|
||||
"Input Len",
|
||||
"Output Len",
|
||||
"TP Size",
|
||||
"PP Size",
|
||||
"# of max concurrency.",
|
||||
"qps",
|
||||
):
|
||||
if c in df.columns:
|
||||
df[c] = pd.to_numeric(df[c], errors="coerce")
|
||||
|
||||
# Ensure all key columns exist
|
||||
for c in key_cols:
|
||||
if c not in df.columns:
|
||||
df[c] = pd.NA
|
||||
|
||||
# Set index = key_cols and aggregate duplicates → unique MultiIndex
|
||||
df_idx = df.set_index(key_cols, drop=False)
|
||||
|
||||
# meta (key columns), unique per key
|
||||
meta = df_idx[key_cols]
|
||||
if not meta.index.is_unique:
|
||||
meta = meta.groupby(level=key_cols, dropna=False).first()
|
||||
|
||||
# metric series for this file, aggregated to one row per key
|
||||
file_label = "/".join(file.split("/")[:-1]) or os.path.basename(file)
|
||||
s = df_idx[data_column]
|
||||
if not s.index.is_unique:
|
||||
s = s.groupby(level=key_cols, dropna=False).mean()
|
||||
s.name = file_label # column label like original
|
||||
|
||||
# add meta once (from first file) so keys are the leftmost columns
|
||||
if not meta_added:
|
||||
frames.append(meta)
|
||||
meta_added = True
|
||||
|
||||
# (NEW) debug: aligned test-name column per file
|
||||
if debug and name_column in df_idx.columns:
|
||||
name_s = df_idx[name_column]
|
||||
if not name_s.index.is_unique:
|
||||
name_s = name_s.groupby(level=key_cols, dropna=False).first()
|
||||
name_s.name = f"{file_label}_name"
|
||||
frames.append(name_s)
|
||||
|
||||
frames.append(s)
|
||||
raw_data_cols.append(file_label)
|
||||
compare_frames.append(s)
|
||||
|
||||
# Generalize ratio: for any file N>=2, add ratio (fileN / file1)
|
||||
if len(compare_frames) >= 2:
|
||||
base = compare_frames[0]
|
||||
current = compare_frames[-1]
|
||||
ratio = current / base
|
||||
ratio = ratio.mask(base == 0) # avoid inf when baseline is 0
|
||||
ratio.name = f"Ratio 1 vs {len(compare_frames)}"
|
||||
frames.append(ratio)
|
||||
|
||||
# 4) concat on columns with aligned MultiIndex;
|
||||
# then reset_index to return keys as columns
|
||||
concat_df = pd.concat(frames, axis=1)
|
||||
return concat_df
|
||||
concat_df = concat_df.reset_index(drop=True).reset_index()
|
||||
if "index" in concat_df.columns:
|
||||
concat_df = concat_df.drop(columns=["index"])
|
||||
|
||||
# Ensure key/info columns appear first (in your info_cols order)
|
||||
front = [c for c in info_cols if c in concat_df.columns]
|
||||
rest = [c for c in concat_df.columns if c not in front]
|
||||
concat_df = concat_df[front + rest]
|
||||
|
||||
print(raw_data_cols)
|
||||
return concat_df, raw_data_cols
|
||||
|
||||
|
||||
def split_json_by_tp_pp(
|
||||
input_file: str = "benchmark_results.json", output_root: str = "."
|
||||
) -> list[str]:
|
||||
"""
|
||||
Split a benchmark JSON into separate folders by (TP Size, PP Size).
|
||||
|
||||
Creates: <output_root>/tp{TP}_pp{PP}/benchmark_results.json
|
||||
Returns: list of file paths written.
|
||||
"""
|
||||
# Load JSON data into DataFrame
|
||||
with open(input_file, encoding="utf-8") as f:
|
||||
data = json.load(f)
|
||||
|
||||
# If the JSON is a dict with a list under common keys, use that list
|
||||
if isinstance(data, dict):
|
||||
for key in ("results", "serving_results", "benchmarks", "data"):
|
||||
if isinstance(data.get(key), list):
|
||||
data = data[key]
|
||||
break
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# Keep only "serving" tests
|
||||
name_col = next(
|
||||
(c for c in ["Test name", "test_name", "Test Name"] if c in df.columns), None
|
||||
)
|
||||
if name_col:
|
||||
df = df[
|
||||
df[name_col].astype(str).str.contains(r"serving", case=False, na=False)
|
||||
].copy()
|
||||
|
||||
# Handle alias column names
|
||||
rename_map = {
|
||||
"tp_size": "TP Size",
|
||||
"tensor_parallel_size": "TP Size",
|
||||
"pp_size": "PP Size",
|
||||
"pipeline_parallel_size": "PP Size",
|
||||
}
|
||||
df.rename(
|
||||
columns={k: v for k, v in rename_map.items() if k in df.columns}, inplace=True
|
||||
)
|
||||
|
||||
# Ensure TP/PP columns exist (default to 1 if missing)
|
||||
if "TP Size" not in df.columns:
|
||||
df["TP Size"] = 1
|
||||
if "PP Size" not in df.columns:
|
||||
df["PP Size"] = 1
|
||||
|
||||
# make sure TP/PP are numeric ints with no NaN
|
||||
df["TP Size"] = (
|
||||
pd.to_numeric(df.get("TP Size", 1), errors="coerce").fillna(1).astype(int)
|
||||
)
|
||||
df["PP Size"] = (
|
||||
pd.to_numeric(df.get("PP Size", 1), errors="coerce").fillna(1).astype(int)
|
||||
)
|
||||
|
||||
# Split into separate folders
|
||||
saved_paths: list[str] = []
|
||||
for (tp, pp), group_df in df.groupby(["TP Size", "PP Size"], dropna=False):
|
||||
folder_name = os.path.join(output_root, f"tp{int(tp)}_pp{int(pp)}")
|
||||
os.makedirs(folder_name, exist_ok=True)
|
||||
filepath = os.path.join(folder_name, "benchmark_results.json")
|
||||
group_df.to_json(filepath, orient="records", indent=2, force_ascii=False)
|
||||
print(f"Saved: {filepath}")
|
||||
saved_paths.append(filepath)
|
||||
|
||||
return saved_paths
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -36,31 +205,103 @@ if __name__ == "__main__":
|
||||
"-f", "--file", action="append", type=str, help="input file name"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ignore_test_name", action="store_true", help="ignore_test_name or not"
|
||||
"--debug", action="store_true", help="show all information for debugging"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--plot",
|
||||
action=argparse.BooleanOptionalAction,
|
||||
default=True,
|
||||
help="plot perf diagrams or not --no-plot --plot",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-x",
|
||||
"--xaxis",
|
||||
type=str,
|
||||
default="# of max concurrency.",
|
||||
help="column name to use as X Axis in comparision graph",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
files = args.file
|
||||
print("comparing : " + ", ".join(files))
|
||||
|
||||
drop_column = "P99"
|
||||
name_column = "Test name"
|
||||
info_cols = [
|
||||
"Model",
|
||||
"Dataset Name",
|
||||
"Input Len",
|
||||
"Output Len",
|
||||
"TP Size",
|
||||
"PP Size",
|
||||
"# of max concurrency.",
|
||||
"qps",
|
||||
]
|
||||
data_cols_to_compare = ["Output Tput (tok/s)", "Median TTFT (ms)", "Median"]
|
||||
html_msgs_for_data_cols = [
|
||||
"Compare Output Tokens /n",
|
||||
"Median TTFT /n",
|
||||
"Median TPOT /n",
|
||||
]
|
||||
ignore_test_name = args.ignore_test_name
|
||||
|
||||
if len(args.file) == 1:
|
||||
files = split_json_by_tp_pp(args.file[0], output_root="splits")
|
||||
info_cols = [c for c in info_cols if c not in ("TP Size", "PP Size")]
|
||||
else:
|
||||
files = args.file
|
||||
print("comparing : " + ", ".join(files))
|
||||
debug = args.debug
|
||||
plot = args.plot
|
||||
# For Plot feature, assign y axis from one of info_cols
|
||||
y_axis_index = info_cols.index(args.xaxis) if args.xaxis in info_cols else 6
|
||||
with open("perf_comparison.html", "w") as text_file:
|
||||
for i in range(len(data_cols_to_compare)):
|
||||
output_df = compare_data_columns(
|
||||
output_df, raw_data_cols = compare_data_columns(
|
||||
files,
|
||||
name_column,
|
||||
data_cols_to_compare[i],
|
||||
info_cols,
|
||||
drop_column,
|
||||
ignore_test_name=ignore_test_name,
|
||||
debug=debug,
|
||||
)
|
||||
print(output_df)
|
||||
html = output_df.to_html()
|
||||
text_file.write(html_msgs_for_data_cols[i])
|
||||
text_file.write(html)
|
||||
|
||||
# For Plot feature, insert y axis from one of info_cols
|
||||
raw_data_cols.insert(0, info_cols[y_axis_index])
|
||||
|
||||
filtered_info_cols = info_cols[:-2]
|
||||
existing_group_cols = [
|
||||
c for c in filtered_info_cols if c in output_df.columns
|
||||
]
|
||||
if not existing_group_cols:
|
||||
raise ValueError(
|
||||
f"No valid group-by columns "
|
||||
f"Expected subset: {filtered_info_cols}, "
|
||||
f"but DataFrame has: {list(output_df.columns)}"
|
||||
)
|
||||
output_df_sorted = output_df.sort_values(by=existing_group_cols)
|
||||
output_groups = output_df_sorted.groupby(existing_group_cols, dropna=False)
|
||||
for name, group in output_groups:
|
||||
html = group.to_html()
|
||||
text_file.write(html_msgs_for_data_cols[i])
|
||||
text_file.write(html)
|
||||
|
||||
if plot and plotly_found:
|
||||
import plotly.express as px
|
||||
|
||||
df = group[raw_data_cols]
|
||||
df_sorted = df.sort_values(by=info_cols[y_axis_index])
|
||||
# Melt DataFrame for plotting
|
||||
df_melted = df_sorted.melt(
|
||||
id_vars=info_cols[y_axis_index],
|
||||
var_name="Configuration",
|
||||
value_name=data_cols_to_compare[i],
|
||||
)
|
||||
title = data_cols_to_compare[i] + " vs " + info_cols[y_axis_index]
|
||||
# Create Plotly line chart
|
||||
fig = px.line(
|
||||
df_melted,
|
||||
x=info_cols[y_axis_index],
|
||||
y=data_cols_to_compare[i],
|
||||
color="Configuration",
|
||||
title=title,
|
||||
markers=True,
|
||||
)
|
||||
# Export to HTML
|
||||
text_file.write(fig.to_html(full_html=True, include_plotlyjs="cdn"))
|
||||
|
||||
@ -1,17 +1,19 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import shlex
|
||||
from importlib import util
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import pandas as pd
|
||||
import psutil
|
||||
import regex as re
|
||||
from tabulate import tabulate
|
||||
|
||||
results_folder = Path("results/")
|
||||
|
||||
# latency results and the keys that will be printed into markdown
|
||||
latency_results = []
|
||||
latency_column_mapping = {
|
||||
@ -42,14 +44,22 @@ throughput_results_column_mapping = {
|
||||
serving_results = []
|
||||
serving_column_mapping = {
|
||||
"test_name": "Test name",
|
||||
"model_id": "Model",
|
||||
"dataset_name": "Dataset Name",
|
||||
"input_len": "Input Len",
|
||||
"output_len": "Output Len",
|
||||
"tp_size": "TP Size",
|
||||
"pp_size": "PP Size",
|
||||
"dtype": "dtype",
|
||||
"gpu_type": "GPU",
|
||||
"completed": "# of req.",
|
||||
"qps": "qps",
|
||||
"max_concurrency": "# of max concurrency.",
|
||||
"request_throughput": "Tput (req/s)",
|
||||
"total_token_throughput": "Total Token Tput (tok/s)",
|
||||
"output_throughput": "Output Tput (tok/s)",
|
||||
"total_input_tokens": "Total input tokens",
|
||||
"total_output_tokens": "Total output tokens",
|
||||
# "total_input_tokens": "Total input tokens",
|
||||
# "total_output_tokens": "Total output tokens",
|
||||
"mean_ttft_ms": "Mean TTFT (ms)",
|
||||
"median_ttft_ms": "Median TTFT (ms)",
|
||||
"p99_ttft_ms": "P99 TTFT (ms)",
|
||||
@ -94,7 +104,104 @@ def get_size_with_unit(bytes, suffix="B"):
|
||||
bytes /= factor
|
||||
|
||||
|
||||
def _coerce(val: str) -> Any:
|
||||
"""Best-effort type coercion from string to Python types."""
|
||||
low = val.lower()
|
||||
if low == "null":
|
||||
return None
|
||||
if low == "true":
|
||||
return True
|
||||
if low == "false":
|
||||
return False
|
||||
# integers
|
||||
if re.fullmatch(r"[+-]?\d+", val):
|
||||
try:
|
||||
return int(val)
|
||||
except ValueError:
|
||||
pass
|
||||
# floats (keep 'inf'/'-inf'/'nan' as strings)
|
||||
if re.fullmatch(r"[+-]?\d*\.\d+", val):
|
||||
try:
|
||||
return float(val)
|
||||
except ValueError:
|
||||
pass
|
||||
return val
|
||||
|
||||
|
||||
def parse_client_command(cmd: str) -> dict[str, Any]:
|
||||
"""Parse the client_command shell string into {executable, script, args}."""
|
||||
toks = shlex.split(cmd)
|
||||
if len(toks) < 2:
|
||||
raise ValueError("client_command must include an executable and a script")
|
||||
executable, script = toks[0], toks[1]
|
||||
args: dict[str, Any] = {}
|
||||
|
||||
i = 2
|
||||
while i < len(toks):
|
||||
t = toks[i]
|
||||
if t.startswith("--"):
|
||||
# --key=value or --key (value) or boolean flag
|
||||
if "=" in t:
|
||||
key, val = t.split("=", 1)
|
||||
if key == "--metadata":
|
||||
md = {}
|
||||
if val:
|
||||
if "=" in val:
|
||||
k, v = val.split("=", 1)
|
||||
md[k] = _coerce(v)
|
||||
else:
|
||||
md[val] = True
|
||||
args[key] = md
|
||||
else:
|
||||
args[key] = _coerce(val)
|
||||
i += 1
|
||||
continue
|
||||
|
||||
key = t
|
||||
|
||||
# Special: consume metadata k=v pairs until next --flag
|
||||
if key == "--metadata":
|
||||
i += 1
|
||||
md = {}
|
||||
while i < len(toks) and not toks[i].startswith("--"):
|
||||
pair = toks[i]
|
||||
if "=" in pair:
|
||||
k, v = pair.split("=", 1)
|
||||
md[k] = _coerce(v)
|
||||
else:
|
||||
md[pair] = True
|
||||
i += 1
|
||||
args[key] = md
|
||||
continue
|
||||
|
||||
# Standard: check if next token is a value (not a flag)
|
||||
if i + 1 < len(toks) and not toks[i + 1].startswith("--"):
|
||||
args[key] = _coerce(toks[i + 1])
|
||||
i += 2
|
||||
else:
|
||||
# lone flag -> True
|
||||
args[key] = True
|
||||
i += 1
|
||||
else:
|
||||
# unexpected positional; skip
|
||||
i += 1
|
||||
|
||||
return {"executable": executable, "script": script, "args": args}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-r",
|
||||
"--result",
|
||||
type=str,
|
||||
default="results",
|
||||
help="Folder name for benchmark output results.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
results_folder = Path(args.result)
|
||||
if not results_folder.exists():
|
||||
raise FileNotFoundError(f"results folder does not exist: {results_folder}")
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*.json"):
|
||||
with open(test_file) as f:
|
||||
@ -102,7 +209,6 @@ if __name__ == "__main__":
|
||||
|
||||
if "serving" in str(test_file):
|
||||
# this result is generated via `vllm bench serve` command
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
try:
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
@ -110,12 +216,44 @@ if __name__ == "__main__":
|
||||
except OSError as e:
|
||||
print(e)
|
||||
continue
|
||||
# Parse Server Command Arg
|
||||
out: dict[str, Any] = {
|
||||
"server_command": parse_client_command(command["server_command"])
|
||||
}
|
||||
parse_args = [
|
||||
"--tensor-parallel-size",
|
||||
"--pipeline-parallel-size",
|
||||
"--dtype",
|
||||
]
|
||||
col_mapping = ["tp_size", "pp_size", "dtype"]
|
||||
for index, arg in enumerate(parse_args):
|
||||
if arg in out["server_command"]["args"]:
|
||||
raw_result.update(
|
||||
{col_mapping[index]: out["server_command"]["args"][arg]}
|
||||
)
|
||||
|
||||
# Parse Client Command Arg
|
||||
out: dict[str, Any] = {
|
||||
"client_command": parse_client_command(command["client_command"])
|
||||
}
|
||||
parse_args = [
|
||||
"--dataset-name",
|
||||
"--random-input-len",
|
||||
"--random-output-len",
|
||||
"--request-rate",
|
||||
]
|
||||
col_mapping = ["dataset_name", "input_len", "output_len", "qps"]
|
||||
|
||||
for index, arg in enumerate(parse_args):
|
||||
if arg in out["client_command"]["args"]:
|
||||
raw_result.update(
|
||||
{col_mapping[index]: out["client_command"]["args"][arg]}
|
||||
)
|
||||
# Add Server, Client command
|
||||
raw_result.update(command)
|
||||
|
||||
# update the test name of this result
|
||||
raw_result.update({"test_name": test_file.stem})
|
||||
|
||||
# add the result to raw_result
|
||||
serving_results.append(raw_result)
|
||||
continue
|
||||
@ -205,7 +343,10 @@ if __name__ == "__main__":
|
||||
columns=latency_column_mapping
|
||||
)
|
||||
if not serving_results.empty:
|
||||
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
|
||||
valid_columns = [
|
||||
col for col in serving_column_mapping if col in serving_results.columns
|
||||
]
|
||||
serving_results = serving_results[valid_columns].rename(
|
||||
columns=serving_column_mapping
|
||||
)
|
||||
if not throughput_results.empty:
|
||||
@ -245,7 +386,9 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
# document the result
|
||||
with open(results_folder / "benchmark_results.md", "w") as f:
|
||||
md_file = "benchmark_results.md"
|
||||
json_file = "benchmark_results.json"
|
||||
with open(results_folder / md_file, "w") as f:
|
||||
results = read_markdown(
|
||||
"../.buildkite/nightly-benchmarks/"
|
||||
+ "performance-benchmarks-descriptions.md"
|
||||
@ -260,7 +403,7 @@ if __name__ == "__main__":
|
||||
f.write(results)
|
||||
|
||||
# document benchmarking results in json
|
||||
with open(results_folder / "benchmark_results.json", "w") as f:
|
||||
with open(results_folder / json_file, "w") as f:
|
||||
results = (
|
||||
latency_results.to_dict(orient="records")
|
||||
+ throughput_results.to_dict(orient="records")
|
||||
|
||||
@ -382,7 +382,7 @@ run_genai_perf_tests() {
|
||||
client_command="genai-perf profile \
|
||||
-m $model \
|
||||
--service-kind openai \
|
||||
--backend vllm \
|
||||
--backend "$backend" \
|
||||
--endpoint-type chat \
|
||||
--streaming \
|
||||
--url localhost:$port \
|
||||
|
||||
@ -194,9 +194,11 @@ run_latency_tests() {
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
tp=$(echo "$latency_params" | jq -r '.tensor_parallel_size')
|
||||
if [ "$ON_CPU" == "1" ];then
|
||||
if [[ $numa_count -lt $tp ]]; then
|
||||
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
|
||||
if [ "$ON_CPU" == "1" ]; then
|
||||
pp=$(echo "$latency_params" | jq -r '.pipeline_parallel_size')
|
||||
world_size=$(($tp*$pp))
|
||||
if [[ $numa_count -lt $world_size && -z "${REMOTE_HOST}" ]]; then
|
||||
echo "Required world-size $world_size but only $numa_count NUMA nodes found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
else
|
||||
@ -261,9 +263,11 @@ run_throughput_tests() {
|
||||
|
||||
# check if there is enough GPU to run the test
|
||||
tp=$(echo "$throughput_params" | jq -r '.tensor_parallel_size')
|
||||
if [ "$ON_CPU" == "1" ];then
|
||||
if [[ $numa_count -lt $tp ]]; then
|
||||
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
|
||||
if [ "$ON_CPU" == "1" ]; then
|
||||
pp=$(echo "$throughput_params" | jq -r '.pipeline_parallel_size')
|
||||
world_size=$(($tp*$pp))
|
||||
if [[ $numa_count -lt $world_size && -z "${REMOTE_HOST}" ]]; then
|
||||
echo "Required world-size $world_size but only $numa_count NUMA nodes found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
else
|
||||
@ -329,12 +333,21 @@ run_serving_tests() {
|
||||
qps_list=$(echo "$params" | jq -r '.qps_list')
|
||||
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
||||
echo "Running over qps list $qps_list"
|
||||
max_concurrency_list=$(echo "$params" | jq -r '.max_concurrency_list')
|
||||
if [[ -z "$max_concurrency_list" || "$max_concurrency_list" == "null" ]]; then
|
||||
num_prompts=$(echo "$client_params" | jq -r '.num_prompts')
|
||||
max_concurrency_list="[$num_prompts]"
|
||||
fi
|
||||
max_concurrency_list=$(echo "$max_concurrency_list" | jq -r '.[] | @sh')
|
||||
echo "Running over max concurrency list $max_concurrency_list"
|
||||
|
||||
# check if there is enough resources to run the test
|
||||
tp=$(echo "$server_params" | jq -r '.tensor_parallel_size')
|
||||
if [ "$ON_CPU" == "1" ];then
|
||||
if [[ $numa_count -lt $tp ]]; then
|
||||
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
|
||||
if [ "$ON_CPU" == "1" ]; then
|
||||
pp=$(echo "$server_params" | jq -r '.pipeline_parallel_size')
|
||||
world_size=$(($tp*$pp))
|
||||
if [[ $numa_count -lt $world_size && -z "${REMOTE_HOST}" ]]; then
|
||||
echo "Required world-size $world_size but only $numa_count NUMA nodes found. Skip testcase $test_name."
|
||||
continue
|
||||
fi
|
||||
else
|
||||
@ -390,35 +403,39 @@ run_serving_tests() {
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
# iterate over different max_concurrency
|
||||
for max_concurrency in $max_concurrency_list; do
|
||||
new_test_name=$test_name"_qps_"$qps"_concurrency_"$max_concurrency
|
||||
echo " new test name $new_test_name"
|
||||
# pass the tensor parallel size to the client so that it can be displayed
|
||||
# on the benchmark dashboard
|
||||
client_command="vllm bench serve \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
--max-concurrency $max_concurrency \
|
||||
--metadata "tensor_parallel_size=$tp" \
|
||||
$client_args $client_remote_args "
|
||||
|
||||
# pass the tensor parallel size to the client so that it can be displayed
|
||||
# on the benchmark dashboard
|
||||
client_command="vllm bench serve \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
--metadata "tensor_parallel_size=$tp" \
|
||||
$client_args $client_remote_args "
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
echo "Client command: $client_command"
|
||||
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
echo "Client command: $client_command"
|
||||
bash -c "$client_command"
|
||||
|
||||
bash -c "$client_command"
|
||||
|
||||
# record the benchmarking commands
|
||||
jq_output=$(jq -n \
|
||||
--arg server "$server_command" \
|
||||
--arg client "$client_command" \
|
||||
--arg gpu "$gpu_type" \
|
||||
'{
|
||||
server_command: $server,
|
||||
client_command: $client,
|
||||
gpu_type: $gpu
|
||||
}')
|
||||
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
|
||||
# record the benchmarking commands
|
||||
jq_output=$(jq -n \
|
||||
--arg server "$server_command" \
|
||||
--arg client "$client_command" \
|
||||
--arg gpu "$gpu_type" \
|
||||
'{
|
||||
server_command: $server,
|
||||
client_command: $client,
|
||||
gpu_type: $gpu
|
||||
}')
|
||||
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
|
||||
|
||||
done
|
||||
done
|
||||
|
||||
# clean up
|
||||
|
||||
@ -6,7 +6,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 1,
|
||||
"load_format": "dummy",
|
||||
"num_iters_warmup": 5,
|
||||
@ -20,7 +20,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 4,
|
||||
"load_format": "dummy",
|
||||
"num_iters_warmup": 5,
|
||||
|
||||
@ -1,7 +1,8 @@
|
||||
[
|
||||
{
|
||||
"test_name": "serving_llama8B_tp1_sharegpt",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -10,7 +11,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -23,17 +24,17 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"max_concurrency": 60,
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp2_sharegpt",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -42,7 +43,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -55,17 +56,17 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"max_concurrency": 60,
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp4_sharegpt",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -74,7 +75,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 4,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -87,17 +88,17 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"max_concurrency": 60,
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp1_random_128_128",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -106,7 +107,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -120,19 +121,19 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"max_concurrency": 1000,
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp2_random_128_128",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -141,7 +142,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -155,19 +156,19 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"max_concurrency": 1000,
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp4_random_128_128",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -176,7 +177,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 4,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -190,13 +191,11 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"max_concurrency": 1000,
|
||||
"num_prompts": 1000
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,7 +1,8 @@
|
||||
[
|
||||
{
|
||||
"test_name": "serving_llama8B_pp1_sharegpt",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -10,7 +11,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"pipeline_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -23,17 +24,17 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"max_concurrency": 60,
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_pp3_sharegpt",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -42,7 +43,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -55,17 +56,17 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"max_concurrency": 60,
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp2pp6_sharegpt",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"test_name": "serving_llama8B_tp2pp3_sharegpt",
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -74,7 +75,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 2,
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
@ -88,17 +89,17 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"max_concurrency": 60,
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_pp1_random_128_128",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -107,7 +108,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"pipeline_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -121,28 +122,28 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"max_concurrency": 1000,
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_pp3_random_128_128",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
|
||||
"VLLM_CPU_SGL_KERNEL:": 1,
|
||||
"VLLM_CPU_SGL_KERNEL": 1,
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -156,19 +157,19 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"max_concurrency": 1000,
|
||||
"num_prompts": 1000
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp2pp3_random_128_128",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"qps_list": ["inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -177,7 +178,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 2,
|
||||
"pipeline_parallel_size": 3,
|
||||
"dtype": "bfloat16",
|
||||
@ -192,13 +193,12 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 128,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"max_concurrency": 1000,
|
||||
"num_prompts": 1000
|
||||
}
|
||||
}
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
{
|
||||
"test_name": "serving_llama8B_tp1_sharegpt",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -10,7 +11,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 1,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -23,17 +24,17 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"max_concurrency": 60,
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp2_sharegpt",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -42,7 +43,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 2,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -55,17 +56,17 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"max_concurrency": 60,
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp4_sharegpt",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -74,7 +75,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 4,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -87,17 +88,17 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"max_concurrency": 60,
|
||||
"num_prompts": 200
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_tp4_random_1024_128",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -106,7 +107,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 4,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -120,19 +121,19 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 1024,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"max_concurrency": 100,
|
||||
"num_prompts": 100
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "serving_llama8B_pp6_random_1024_128",
|
||||
"qps_list": [1, 4, 16, "inf"],
|
||||
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
|
||||
"server_environment_variables": {
|
||||
"VLLM_RPC_TIMEOUT": 100000,
|
||||
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
|
||||
@ -141,7 +142,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"server_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"pipeline_parallel_size": 6,
|
||||
"dtype": "bfloat16",
|
||||
"distributed_executor_backend": "mp",
|
||||
@ -155,13 +156,12 @@
|
||||
"load_format": "dummy"
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "random",
|
||||
"random-input-len": 1024,
|
||||
"random-output-len": 128,
|
||||
"ignore-eos": "",
|
||||
"max_concurrency": 100,
|
||||
"num_prompts": 100
|
||||
}
|
||||
}
|
||||
|
||||
@ -6,7 +6,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 1,
|
||||
"load_format": "dummy",
|
||||
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
@ -21,7 +21,7 @@
|
||||
"VLLM_CPU_KVCACHE_SPACE": 40
|
||||
},
|
||||
"parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"tensor_parallel_size": 4,
|
||||
"load_format": "dummy",
|
||||
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
|
||||
@ -1,4 +1,20 @@
|
||||
steps:
|
||||
# aarch64 + CUDA builds
|
||||
- label: "Build arm64 wheel - CUDA 12.8"
|
||||
id: build-wheel-arm64-cuda-12-8
|
||||
agents:
|
||||
queue: arm64_cpu_queue_postmerge
|
||||
commands:
|
||||
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
|
||||
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
# x86 + CUDA builds
|
||||
- label: "Build wheel - CUDA 12.8"
|
||||
id: build-wheel-cuda-12-8
|
||||
agents:
|
||||
@ -11,7 +27,12 @@ steps:
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build CUDA 12.6 wheel"
|
||||
key: block-build-cu126-wheel
|
||||
depends_on: ~
|
||||
|
||||
- label: "Build wheel - CUDA 12.6"
|
||||
depends_on: block-build-cu126-wheel
|
||||
id: build-wheel-cuda-12-6
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
@ -41,23 +62,49 @@ steps:
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build release image"
|
||||
- block: "Build release image (x86)"
|
||||
depends_on: ~
|
||||
key: block-release-image-build
|
||||
|
||||
- label: "Build release image"
|
||||
- label: "Build release image (x86)"
|
||||
depends_on: block-release-image-build
|
||||
id: build-release-image
|
||||
id: build-release-image-x86
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||
# re-tag to default image tag and push, just in case arm64 build fails
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Build release image (arm64)"
|
||||
depends_on: block-release-image-build
|
||||
id: build-release-image-arm64
|
||||
agents:
|
||||
queue: arm64_cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||
|
||||
# Add job to create multi-arch manifest
|
||||
- label: "Create multi-arch manifest"
|
||||
depends_on:
|
||||
- build-release-image-x86
|
||||
- build-release-image-arm64
|
||||
id: create-multi-arch-manifest
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "docker manifest create public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64 public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64 --amend"
|
||||
- "docker manifest push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Annotate release workflow"
|
||||
depends_on:
|
||||
- build-release-image
|
||||
- create-multi-arch-manifest
|
||||
- build-wheel-cuda-12-8
|
||||
- build-wheel-cuda-12-6
|
||||
- build-wheel-cuda-11-8
|
||||
|
||||
@ -121,7 +121,6 @@ fi
|
||||
if [[ $commands == *" kernels/quantization"* ]]; then
|
||||
commands="${commands} \
|
||||
--ignore=kernels/quantization/test_int8_quant.py \
|
||||
--ignore=kernels/quantization/test_aqlm.py \
|
||||
--ignore=kernels/quantization/test_machete_mm.py \
|
||||
--ignore=kernels/quantization/test_block_fp8.py \
|
||||
--ignore=kernels/quantization/test_block_int8.py \
|
||||
|
||||
@ -46,6 +46,11 @@ function cpu_tests() {
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
|
||||
# Run kernel tests
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -v -s tests/kernels/test_onednn.py"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
@ -99,4 +104,4 @@ function cpu_tests() {
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
export -f cpu_tests
|
||||
timeout 1.5h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
|
||||
timeout 2h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
|
||||
|
||||
@ -61,7 +61,7 @@ echo "Results will be stored in: $RESULTS_DIR"
|
||||
echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
|
||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
|
||||
@ -61,7 +61,7 @@ echo "Results will be stored in: $RESULTS_DIR"
|
||||
echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
|
||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
|
||||
@ -23,10 +23,15 @@ docker run \
|
||||
--device /dev/dri \
|
||||
-v /dev/dri/by-path:/dev/dri/by-path \
|
||||
--entrypoint="" \
|
||||
-e "HF_TOKEN=${HF_TOKEN}" \
|
||||
-e "ZE_AFFINITY_MASK=${ZE_AFFINITY_MASK}" \
|
||||
--name "${container_name}" \
|
||||
"${image_name}" \
|
||||
sh -c '
|
||||
bash -c '
|
||||
set -e
|
||||
echo $ZE_AFFINITY_MASK
|
||||
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
|
||||
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
|
||||
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
||||
cd tests
|
||||
@ -35,8 +40,8 @@ docker run \
|
||||
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
|
||||
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
|
||||
pytest -v -s v1/structured_output
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py
|
||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
||||
pytest -v -s v1/test_serial_utils.py
|
||||
pytest -v -s v1/test_utils.py
|
||||
pytest -v -s v1/test_metrics_reader.py
|
||||
|
||||
@ -17,7 +17,7 @@ if [ "$disk_usage" -gt "$threshold" ]; then
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune --force --filter "until=72h" --all
|
||||
docker volume prune -f && docker system prune --force --filter "until=24h" --all
|
||||
echo "Docker images and volumes cleanup completed."
|
||||
else
|
||||
echo "Disk usage is below $threshold%. No cleanup needed."
|
||||
|
||||
@ -14,8 +14,19 @@ fi
|
||||
# Get the single wheel file
|
||||
wheel="${wheel_files[0]}"
|
||||
|
||||
# Rename 'linux' to 'manylinux1' in the wheel filename
|
||||
new_wheel="${wheel/linux/manylinux1}"
|
||||
# Detect architecture and rename 'linux' to appropriate manylinux version
|
||||
arch=$(uname -m)
|
||||
if [[ $arch == "x86_64" ]]; then
|
||||
manylinux_version="manylinux1"
|
||||
elif [[ $arch == "aarch64" ]]; then
|
||||
manylinux_version="manylinux2014"
|
||||
else
|
||||
echo "Warning: Unknown architecture $arch, using manylinux1 as default"
|
||||
manylinux_version="manylinux1"
|
||||
fi
|
||||
|
||||
# Rename 'linux' to the appropriate manylinux version in the wheel filename
|
||||
new_wheel="${wheel/linux/$manylinux_version}"
|
||||
mv -- "$wheel" "$new_wheel"
|
||||
wheel="$new_wheel"
|
||||
|
||||
|
||||
@ -31,16 +31,6 @@
|
||||
steps:
|
||||
##### fast check tests #####
|
||||
|
||||
- label: Documentation Build # 2min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/test_docs"
|
||||
fast_check: true
|
||||
no_gpu: True
|
||||
commands:
|
||||
- pip install -r ../requirements/docs.txt
|
||||
# TODO: add `--strict` once warnings in docstrings are fixed
|
||||
- mkdocs build
|
||||
|
||||
- label: Pytorch Nightly Dependency Override Check # 2min
|
||||
# if this test fails, it means the nightly torch version is not compatible with some
|
||||
# of the dependencies. Please check the error message and add the package to whitelist
|
||||
@ -98,15 +88,6 @@ steps:
|
||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
- label: Chunked Prefill Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_chunked_prefill
|
||||
commands:
|
||||
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
|
||||
- label: Core Test # 10min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
fast_check: true
|
||||
@ -145,7 +126,8 @@ steps:
|
||||
- tests/entrypoints/test_chat_utils
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/
|
||||
- PYTHONPATH=/vllm-workspace pytest -v -s entrypoints/openai/test_collective_rpc.py # PYTHONPATH is needed to import custom Worker extension
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/test_chat_utils.py
|
||||
|
||||
- label: Distributed Tests (4 GPUs) # 10min
|
||||
@ -262,7 +244,9 @@ steps:
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/engine
|
||||
- pytest -v -s v1/entrypoints
|
||||
- pytest -v -s v1/executor
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/logits_processors
|
||||
- pytest -v -s v1/worker
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
@ -304,15 +288,6 @@ steps:
|
||||
- python3 offline_inference/basic/score.py
|
||||
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
|
||||
- label: Prefix Caching Test # 9min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/prefix_caching
|
||||
commands:
|
||||
- pytest -v -s prefix_caching
|
||||
|
||||
|
||||
- label: Platform Tests (CUDA)
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
@ -354,6 +329,7 @@ steps:
|
||||
- pytest -v -s compile/test_sequence_parallelism.py
|
||||
- pytest -v -s compile/test_async_tp.py
|
||||
- pytest -v -s compile/test_fusion_all_reduce.py
|
||||
- pytest -v -s compile/test_decorator.py
|
||||
|
||||
- label: PyTorch Fullgraph Smoke Test # 9min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -367,6 +343,7 @@ steps:
|
||||
- pytest -v -s compile/piecewise/test_simple.py
|
||||
- pytest -v -s compile/piecewise/test_toy_llama.py
|
||||
- pytest -v -s compile/piecewise/test_full_cudagraph.py
|
||||
- pytest -v -s compile/piecewise/test_multiple_graphs.py
|
||||
|
||||
- label: PyTorch Fullgraph Test # 18min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -409,9 +386,11 @@ steps:
|
||||
- label: Kernels MoE Test %N
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/cutlass_w8a8/moe/
|
||||
- csrc/moe/
|
||||
- tests/kernels/moe
|
||||
- vllm/model_executor/layers/fused_moe/
|
||||
- vllm/distributed/device_communicators/
|
||||
commands:
|
||||
- pytest -v -s kernels/moe --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
@ -476,13 +455,11 @@ steps:
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/model_executor/layers/quantization
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
|
||||
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
|
||||
|
||||
- label: OpenAI API correctness
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -570,6 +547,15 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s models/language/pooling -m 'not core_model'
|
||||
|
||||
- label: Multi-Modal Processor Test
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/multimodal
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal/processing --ignore models/multimodal/processing/test_tensor_schema.py
|
||||
- pytest -v -s models/multimodal/processing/test_tensor_schema.py
|
||||
|
||||
- label: Multi-Modal Models Test (Standard)
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
@ -579,9 +565,7 @@ steps:
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pip freeze | grep -E 'torch'
|
||||
- pytest -v -s models/multimodal/processing
|
||||
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/test_tensor_schema.py models/multimodal -m core_model
|
||||
- pytest -v -s models/multimodal/test_tensor_schema.py -m core_model # Needs mp_method="spawn"
|
||||
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
|
||||
- cd .. && pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 1
|
||||
@ -592,7 +576,7 @@ steps:
|
||||
- tests/models/multimodal
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s --ignore models/multimodal/generation/test_common.py --ignore models/multimodal/processing models/multimodal -m 'not core_model'
|
||||
- pytest -v -s models/multimodal -m 'not core_model' --ignore models/multimodal/generation/test_common.py --ignore models/multimodal/processing
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 2
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -655,8 +639,10 @@ steps:
|
||||
- vllm/model_executor/layers/fused_moe/cutlass_moe.py
|
||||
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py
|
||||
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
|
||||
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
- vllm/compilation/fusion.py
|
||||
- vllm/compilation/fusion_attn.py
|
||||
commands:
|
||||
- nvidia-smi
|
||||
- python3 examples/offline_inference/basic/chat.py
|
||||
@ -669,9 +655,14 @@ steps:
|
||||
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'
|
||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_quant.py
|
||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
|
||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
|
||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
|
||||
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
|
||||
- pytest -v -s tests/kernels/moe/test_mxfp4_moe.py
|
||||
# Fusion
|
||||
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
||||
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
|
||||
- pytest -v -s tests/kernels/moe/test_flashinfer.py
|
||||
|
||||
##### 1 GPU test #####
|
||||
##### multi gpus test #####
|
||||
@ -854,3 +845,10 @@ steps:
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
|
||||
|
||||
- label: Qwen MoE EP Test # optional
|
||||
gpu: h200
|
||||
optional: true
|
||||
num_gpus: 2
|
||||
commands:
|
||||
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 /vllm-workspace/examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
|
||||
|
||||
16
.github/CODEOWNERS
vendored
16
.github/CODEOWNERS
vendored
@ -10,6 +10,7 @@
|
||||
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
|
||||
/vllm/model_executor/layers/mamba @tdoublep
|
||||
/vllm/multimodal @DarkLight1337 @ywang96
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
@ -25,11 +26,11 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm
|
||||
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
||||
|
||||
# Test ownership
|
||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
|
||||
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac
|
||||
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
||||
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
||||
/tests/distributed/test_same_node.py @youkaichao
|
||||
@ -44,6 +45,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
/tests/v1/structured_output @mgoin @russellb @aarnphm
|
||||
/tests/weight_loading @mgoin @youkaichao @yewentao256
|
||||
/tests/lora @jeejeelee
|
||||
/tests/models/language/generation/test_hybrid.py @tdoublep
|
||||
|
||||
# Docs
|
||||
/docs @hmellor
|
||||
@ -72,3 +74,15 @@ mkdocs.yaml @hmellor
|
||||
/vllm/model_executor/models/pixtral*.py @patrickvonplaten
|
||||
/vllm/transformers_utils/configs/mistral.py @patrickvonplaten
|
||||
/vllm/transformers_utils/tokenizers/mistral.py @patrickvonplaten
|
||||
|
||||
# Kernels
|
||||
/vllm/attention/ops/chunked_prefill_paged_decode.py @tdoublep
|
||||
/vllm/attention/ops/triton_unified_attention.py @tdoublep
|
||||
|
||||
# ROCm related: specify owner with write access to notify AMD folks for careful code review
|
||||
/docker/Dockerfile.rocm* @gshtras
|
||||
/vllm/v1/attention/backends/rocm*.py @gshtras
|
||||
/vllm/v1/attention/backends/mla/rocm*.py @gshtras
|
||||
/vllm/attention/ops/rocm*.py @gshtras
|
||||
/vllm/model_executor/layers/fused_moe/rocm*.py @gshtras
|
||||
|
||||
|
||||
3
.github/PULL_REQUEST_TEMPLATE.md
vendored
3
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -7,8 +7,6 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTT
|
||||
|
||||
## Test Result
|
||||
|
||||
## (Optional) Documentation Update
|
||||
|
||||
---
|
||||
<details>
|
||||
<summary> Essential Elements of an Effective PR Description Checklist </summary>
|
||||
@ -17,6 +15,7 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS (AT THE BOTT
|
||||
- [ ] The test plan, such as providing test command.
|
||||
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
|
||||
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
|
||||
- [ ] (Optional) Release notes update. If your change is user facing, please update the release notes draft in the [Google Doc](https://docs.google.com/document/d/1YyVqrgX4gHTtrstbq8oWUImOyPCKSGnJ7xtTpmXzlRs/edit?tab=t.0).
|
||||
</details>
|
||||
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)
|
||||
|
||||
305
.github/workflows/issue_autolabel.yml
vendored
Normal file
305
.github/workflows/issue_autolabel.yml
vendored
Normal file
@ -0,0 +1,305 @@
|
||||
name: Label issues based on keywords
|
||||
on:
|
||||
issues:
|
||||
types: [opened, edited, reopened]
|
||||
permissions:
|
||||
issues: write # needed so the workflow can add labels
|
||||
contents: read
|
||||
concurrency:
|
||||
group: issue-labeler-${{ github.event.issue.number }}
|
||||
cancel-in-progress: true
|
||||
jobs:
|
||||
add-labels:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Label issues based on keywords
|
||||
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
|
||||
with:
|
||||
script: |
|
||||
// Configuration: Add new labels and keywords here
|
||||
const labelConfig = {
|
||||
rocm: {
|
||||
// Keyword search - matches whole words only (with word boundaries)
|
||||
keywords: [
|
||||
{
|
||||
term: "composable kernel",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "rccl",
|
||||
searchIn: "body" // only search in body
|
||||
},
|
||||
{
|
||||
term: "migraphx",
|
||||
searchIn: "title" // only search in title
|
||||
},
|
||||
{
|
||||
term: "hipgraph",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "ROCm System Management Interface",
|
||||
searchIn: "body"
|
||||
},
|
||||
],
|
||||
|
||||
// Substring search - matches anywhere in text (partial matches)
|
||||
substrings: [
|
||||
{
|
||||
term: "VLLM_ROCM_",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "rocm",
|
||||
searchIn: "title"
|
||||
},
|
||||
{
|
||||
term: "amd",
|
||||
searchIn: "title"
|
||||
},
|
||||
{
|
||||
term: "hip-",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "gfx",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "cdna",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "rdna",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "torch_hip",
|
||||
searchIn: "body" // only in body
|
||||
},
|
||||
{
|
||||
term: "_hip",
|
||||
searchIn: "both"
|
||||
},
|
||||
{
|
||||
term: "hip_",
|
||||
searchIn: "both"
|
||||
},
|
||||
|
||||
// ROCm tools and libraries
|
||||
{
|
||||
term: "hipify",
|
||||
searchIn: "both"
|
||||
},
|
||||
],
|
||||
|
||||
// Regex patterns - for complex pattern matching
|
||||
regexPatterns: [
|
||||
{
|
||||
pattern: "\\bmi\\d{3}[a-z]*\\b",
|
||||
description: "AMD GPU names (mi + 3 digits + optional letters)",
|
||||
flags: "gi",
|
||||
searchIn: "both" // "title", "body", or "both"
|
||||
}
|
||||
],
|
||||
},
|
||||
};
|
||||
|
||||
// Helper function to create regex based on search type
|
||||
function createSearchRegex(term, type) {
|
||||
// Escape special regex characters in the term
|
||||
const escapedTerm = term.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
|
||||
|
||||
switch (type) {
|
||||
case 'keyword':
|
||||
// Word boundary search - matches whole words only
|
||||
return new RegExp(`\\b${escapedTerm}\\b`, "gi");
|
||||
case 'substring':
|
||||
// Substring search - matches anywhere in the text
|
||||
return new RegExp(escapedTerm, "gi");
|
||||
default:
|
||||
throw new Error(`Unknown search type: ${type}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to find matching terms in text with line information
|
||||
function findMatchingTermsWithLines(text, searchTerms = [], searchType = 'keyword', searchLocation = '') {
|
||||
const matches = [];
|
||||
const lines = text.split('\n');
|
||||
|
||||
for (const termConfig of searchTerms) {
|
||||
let regex;
|
||||
let term, searchIn, pattern, description, flags;
|
||||
|
||||
// Handle different input formats (string or object)
|
||||
if (typeof termConfig === 'string') {
|
||||
term = termConfig;
|
||||
searchIn = 'both'; // default
|
||||
} else {
|
||||
term = termConfig.term;
|
||||
searchIn = termConfig.searchIn || 'both';
|
||||
pattern = termConfig.pattern;
|
||||
description = termConfig.description;
|
||||
flags = termConfig.flags;
|
||||
}
|
||||
|
||||
// Skip if this term shouldn't be searched in the current location
|
||||
if (searchIn !== 'both' && searchIn !== searchLocation) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create appropriate regex
|
||||
if (searchType === 'regex') {
|
||||
regex = new RegExp(pattern, flags || "gi");
|
||||
} else {
|
||||
regex = createSearchRegex(term, searchType);
|
||||
}
|
||||
|
||||
const termMatches = [];
|
||||
|
||||
// Check each line for matches
|
||||
lines.forEach((line, lineIndex) => {
|
||||
const lineMatches = line.match(regex);
|
||||
if (lineMatches) {
|
||||
lineMatches.forEach(match => {
|
||||
termMatches.push({
|
||||
match: match,
|
||||
lineNumber: lineIndex + 1,
|
||||
lineContent: line.trim(),
|
||||
searchType: searchType,
|
||||
searchLocation: searchLocation,
|
||||
originalTerm: term || pattern,
|
||||
description: description,
|
||||
// Show context around the match in the line
|
||||
context: line.length > 100 ?
|
||||
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
|
||||
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
|
||||
: line.trim()
|
||||
});
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
if (termMatches.length > 0) {
|
||||
matches.push({
|
||||
term: term || (description || pattern),
|
||||
searchType: searchType,
|
||||
searchLocation: searchLocation,
|
||||
searchIn: searchIn,
|
||||
pattern: pattern,
|
||||
matches: termMatches,
|
||||
count: termMatches.length
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return matches;
|
||||
}
|
||||
|
||||
// Helper function to check if label should be added
|
||||
async function processLabel(labelName, config) {
|
||||
const body = context.payload.issue.body || "";
|
||||
const title = context.payload.issue.title || "";
|
||||
|
||||
core.notice(`Processing label: ${labelName}`);
|
||||
core.notice(`Issue Title: "${title}"`);
|
||||
core.notice(`Issue Body length: ${body.length} characters`);
|
||||
|
||||
let shouldAddLabel = false;
|
||||
let allMatches = [];
|
||||
let reason = '';
|
||||
|
||||
const keywords = config.keywords || [];
|
||||
const substrings = config.substrings || [];
|
||||
const regexPatterns = config.regexPatterns || [];
|
||||
|
||||
core.notice(`Searching with ${keywords.length} keywords, ${substrings.length} substrings, and ${regexPatterns.length} regex patterns`);
|
||||
|
||||
// Search in title
|
||||
if (title.trim()) {
|
||||
core.notice(`Searching in title: "${title}"`);
|
||||
|
||||
const titleKeywordMatches = findMatchingTermsWithLines(title, keywords, 'keyword', 'title');
|
||||
const titleSubstringMatches = findMatchingTermsWithLines(title, substrings, 'substring', 'title');
|
||||
const titleRegexMatches = findMatchingTermsWithLines(title, regexPatterns, 'regex', 'title');
|
||||
|
||||
allMatches.push(...titleKeywordMatches, ...titleSubstringMatches, ...titleRegexMatches);
|
||||
}
|
||||
|
||||
// Search in body
|
||||
if (body.trim()) {
|
||||
core.notice(`Searching in body (${body.length} characters)`);
|
||||
|
||||
const bodyKeywordMatches = findMatchingTermsWithLines(body, keywords, 'keyword', 'body');
|
||||
const bodySubstringMatches = findMatchingTermsWithLines(body, substrings, 'substring', 'body');
|
||||
const bodyRegexMatches = findMatchingTermsWithLines(body, regexPatterns, 'regex', 'body');
|
||||
|
||||
allMatches.push(...bodyKeywordMatches, ...bodySubstringMatches, ...bodyRegexMatches);
|
||||
}
|
||||
|
||||
if (allMatches.length > 0) {
|
||||
core.notice(`Found ${allMatches.length} matching term(s):`);
|
||||
|
||||
for (const termMatch of allMatches) {
|
||||
const locationText = termMatch.searchLocation === 'title' ? 'title' : 'body';
|
||||
const searchInText = termMatch.searchIn === 'both' ? 'both' : termMatch.searchIn;
|
||||
|
||||
if (termMatch.searchType === 'regex') {
|
||||
core.notice(` 📍 Regex: "${termMatch.term}" (pattern: ${termMatch.pattern}) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||
} else {
|
||||
core.notice(` 📍 Term: "${termMatch.term}" (${termMatch.searchType} search) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||
}
|
||||
|
||||
// Show details for each match
|
||||
termMatch.matches.forEach((match, index) => {
|
||||
core.notice(` ${index + 1}. Line ${match.lineNumber} in ${match.searchLocation}: "${match.match}" [${match.searchType}]`);
|
||||
if (match.description) {
|
||||
core.notice(` Description: ${match.description}`);
|
||||
}
|
||||
core.notice(` Context: ${match.context}`);
|
||||
if (match.lineContent !== match.context) {
|
||||
core.notice(` Full line: ${match.lineContent}`);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
shouldAddLabel = true;
|
||||
const totalMatches = allMatches.reduce((sum, t) => sum + t.count, 0);
|
||||
const titleMatches = allMatches.filter(t => t.searchLocation === 'title').reduce((sum, t) => sum + t.count, 0);
|
||||
const bodyMatches = allMatches.filter(t => t.searchLocation === 'body').reduce((sum, t) => sum + t.count, 0);
|
||||
const keywordMatches = allMatches.filter(t => t.searchType === 'keyword').reduce((sum, t) => sum + t.count, 0);
|
||||
const substringMatches = allMatches.filter(t => t.searchType === 'substring').reduce((sum, t) => sum + t.count, 0);
|
||||
const regexMatches = allMatches.filter(t => t.searchType === 'regex').reduce((sum, t) => sum + t.count, 0);
|
||||
|
||||
reason = `Found ${totalMatches} total matches (${titleMatches} in title, ${bodyMatches} in body) - ${keywordMatches} keyword matches, ${substringMatches} substring matches, ${regexMatches} regex matches`;
|
||||
}
|
||||
|
||||
core.notice(`Final decision: ${shouldAddLabel ? 'ADD LABEL' : 'DO NOT ADD LABEL'}`);
|
||||
core.notice(`Reason: ${reason || 'No matching terms found'}`);
|
||||
|
||||
if (shouldAddLabel) {
|
||||
const existingLabels = context.payload.issue.labels.map(l => l.name);
|
||||
if (!existingLabels.includes(labelName)) {
|
||||
await github.rest.issues.addLabels({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
labels: [labelName],
|
||||
});
|
||||
core.notice(`Label "${labelName}" added. ${reason}`);
|
||||
return true;
|
||||
}
|
||||
core.notice(`Label "${labelName}" already present.`);
|
||||
return false;
|
||||
}
|
||||
|
||||
core.notice(`No matching terms found for label "${labelName}".`);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Process all configured labels
|
||||
const processLabels = Object.entries(labelConfig)
|
||||
.map(([labelName, config]) => processLabel(labelName, config));
|
||||
const labelsAdded = await Promise.all(processLabels);
|
||||
const numLabelsAdded = labelsAdded.reduce((x, y) => x + y, 0);
|
||||
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);
|
||||
89
.github/workflows/lint-and-deploy.yaml
vendored
89
.github/workflows/lint-and-deploy.yaml
vendored
@ -1,89 +0,0 @@
|
||||
name: Lint and Deploy Charts
|
||||
|
||||
on: pull_request
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
lint-and-deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Helm
|
||||
uses: azure/setup-helm@b9e51907a09c216f16ebe8536097933489208112 # v4.3.0
|
||||
with:
|
||||
version: v3.14.4
|
||||
|
||||
#Python is required because ct lint runs Yamale and yamllint which require Python.
|
||||
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
|
||||
with:
|
||||
python-version: '3.13'
|
||||
|
||||
- name: Set up chart-testing
|
||||
uses: helm/chart-testing-action@0d28d3144d3a25ea2cc349d6e59901c4ff469b3b # v2.7.0
|
||||
with:
|
||||
version: v3.10.1
|
||||
|
||||
- name: Run chart-testing (lint)
|
||||
run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/online_serving/chart-helm --charts examples/online_serving/chart-helm
|
||||
|
||||
- name: Setup minio
|
||||
run: |
|
||||
docker network create vllm-net
|
||||
docker run -d -p 9000:9000 --name minio --net vllm-net \
|
||||
-e "MINIO_ACCESS_KEY=minioadmin" \
|
||||
-e "MINIO_SECRET_KEY=minioadmin" \
|
||||
-v /tmp/data:/data \
|
||||
-v /tmp/config:/root/.minio \
|
||||
minio/minio server /data
|
||||
export AWS_ACCESS_KEY_ID=minioadmin
|
||||
export AWS_SECRET_ACCESS_KEY=minioadmin
|
||||
export AWS_EC2_METADATA_DISABLED=true
|
||||
mkdir opt-125m
|
||||
cd opt-125m && curl -O -Ls "https://huggingface.co/facebook/opt-125m/resolve/main/{pytorch_model.bin,config.json,generation_config.json,merges.txt,special_tokens_map.json,tokenizer_config.json,vocab.json}" && cd ..
|
||||
aws --endpoint-url http://127.0.0.1:9000/ s3 mb s3://testbucket
|
||||
aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive
|
||||
|
||||
- name: Create kind cluster
|
||||
uses: helm/kind-action@a1b0e391336a6ee6713a0583f8c6240d70863de3 # v1.12.0
|
||||
|
||||
- name: Build the Docker image vllm cpu
|
||||
run: docker buildx build -f docker/Dockerfile.cpu -t vllm-cpu-env .
|
||||
|
||||
- name: Configuration of docker images, network and namespace for the kind cluster
|
||||
run: |
|
||||
docker pull amazon/aws-cli:2.6.4
|
||||
kind load docker-image amazon/aws-cli:2.6.4 --name chart-testing
|
||||
kind load docker-image vllm-cpu-env:latest --name chart-testing
|
||||
docker network connect vllm-net "$(docker ps -aqf "name=chart-testing-control-plane")"
|
||||
kubectl create ns ns-vllm
|
||||
|
||||
- name: Run chart-testing (install)
|
||||
run: |
|
||||
export AWS_ACCESS_KEY_ID=minioadmin
|
||||
export AWS_SECRET_ACCESS_KEY=minioadmin
|
||||
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
|
||||
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set image.env[2].name=VLLM_CPU_CI_ENV --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string image.env[2].value="1" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
|
||||
|
||||
- name: curl test
|
||||
run: |
|
||||
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
|
||||
sleep 10
|
||||
CODE="$(curl -v -f --location http://localhost:8001/v1/completions \
|
||||
--header "Content-Type: application/json" \
|
||||
--data '{
|
||||
"model": "opt-125m",
|
||||
"prompt": "San Francisco is a",
|
||||
"max_tokens": 7,
|
||||
"temperature": 0
|
||||
}'):$CODE"
|
||||
echo "$CODE"
|
||||
111
.github/workflows/publish.yml
vendored
111
.github/workflows/publish.yml
vendored
@ -1,111 +0,0 @@
|
||||
# This workflow will upload a Python Package to Release asset
|
||||
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: Create Release
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- v*
|
||||
|
||||
# Needed to create release and upload assets
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
release:
|
||||
# Retrieve tag and create release
|
||||
name: Create Release
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
upload_url: ${{ steps.create_release.outputs.upload_url }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Extract branch info
|
||||
shell: bash
|
||||
run: |
|
||||
echo "release_tag=${GITHUB_REF#refs/*/}" >> "$GITHUB_ENV"
|
||||
|
||||
- name: Create Release
|
||||
id: create_release
|
||||
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
|
||||
env:
|
||||
RELEASE_TAG: ${{ env.release_tag }}
|
||||
with:
|
||||
github-token: "${{ secrets.GITHUB_TOKEN }}"
|
||||
script: |
|
||||
const script = require('.github/workflows/scripts/create_release.js')
|
||||
await script(github, context, core)
|
||||
|
||||
# NOTE(simon): No longer build wheel using GitHub Actions. See buildkite's release workflow.
|
||||
# wheel:
|
||||
# name: Build Wheel
|
||||
# runs-on: ${{ matrix.os }}
|
||||
# needs: release
|
||||
|
||||
# strategy:
|
||||
# fail-fast: false
|
||||
# matrix:
|
||||
# os: ['ubuntu-20.04']
|
||||
# python-version: ['3.9', '3.10', '3.11', '3.12']
|
||||
# pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements/cuda.txt.
|
||||
# cuda-version: ['11.8', '12.1']
|
||||
|
||||
# steps:
|
||||
# - name: Checkout
|
||||
# uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
# - name: Setup ccache
|
||||
# uses: hendrikmuhs/ccache-action@ed74d11c0b343532753ecead8a951bb09bb34bc9 # v1.2.14
|
||||
# with:
|
||||
# create-symlink: true
|
||||
# key: ${{ github.job }}-${{ matrix.python-version }}-${{ matrix.cuda-version }}
|
||||
|
||||
# - name: Set up Linux Env
|
||||
# if: ${{ runner.os == 'Linux' }}
|
||||
# run: |
|
||||
# bash -x .github/workflows/scripts/env.sh
|
||||
|
||||
# - name: Set up Python
|
||||
# uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
# with:
|
||||
# python-version: ${{ matrix.python-version }}
|
||||
|
||||
# - name: Install CUDA ${{ matrix.cuda-version }}
|
||||
# run: |
|
||||
# bash -x .github/workflows/scripts/cuda-install.sh ${{ matrix.cuda-version }} ${{ matrix.os }}
|
||||
|
||||
# - name: Install PyTorch ${{ matrix.pytorch-version }} with CUDA ${{ matrix.cuda-version }}
|
||||
# run: |
|
||||
# bash -x .github/workflows/scripts/pytorch-install.sh ${{ matrix.python-version }} ${{ matrix.pytorch-version }} ${{ matrix.cuda-version }}
|
||||
|
||||
# - name: Build wheel
|
||||
# shell: bash
|
||||
# env:
|
||||
# CMAKE_BUILD_TYPE: Release # do not compile with debug symbol to reduce wheel size
|
||||
# run: |
|
||||
# bash -x .github/workflows/scripts/build.sh ${{ matrix.python-version }} ${{ matrix.cuda-version }}
|
||||
# wheel_name=$(find dist -name "*whl" -print0 | xargs -0 -n 1 basename)
|
||||
# asset_name=${wheel_name//"linux"/"manylinux1"}
|
||||
# echo "wheel_name=${wheel_name}" >> "$GITHUB_ENV"
|
||||
# echo "asset_name=${asset_name}" >> "$GITHUB_ENV"
|
||||
|
||||
# - name: Upload Release Asset
|
||||
# uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 # v1.0.2
|
||||
# env:
|
||||
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
# with:
|
||||
# upload_url: ${{ needs.release.outputs.upload_url }}
|
||||
# asset_path: ./dist/${{ env.wheel_name }}
|
||||
# asset_name: ${{ env.asset_name }}
|
||||
# asset_content_type: application/*
|
||||
|
||||
# (Danielkinz): This last step will publish the .whl to pypi. Warning: untested
|
||||
# - name: Publish package
|
||||
# uses: pypa/gh-action-pypi-publish@release/v1.8
|
||||
# with:
|
||||
# repository-url: https://test.pypi.org/legacy/
|
||||
# password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
# skip-existing: true
|
||||
49
.github/workflows/reminder_comment.yml
vendored
49
.github/workflows/reminder_comment.yml
vendored
@ -12,16 +12,43 @@ jobs:
|
||||
uses: actions/github-script@60a0d83039c74a4aee543508d2ffcb1c3799cdea # v7.0.1
|
||||
with:
|
||||
script: |
|
||||
github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
body: '👋 Hi! Thank you for contributing to the vLLM project.\n\n' +
|
||||
'💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.\n\n' +
|
||||
'Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org.\n\n' +
|
||||
'Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n' +
|
||||
'To run CI, PR reviewers can either: Add `ready` label to the PR or enable auto-merge.\n\n' +
|
||||
'🚀'
|
||||
})
|
||||
try {
|
||||
// Get the PR author
|
||||
const prAuthor = context.payload.pull_request.user.login;
|
||||
|
||||
// Check if this is the author's first PR in this repository
|
||||
// Use GitHub's search API to find all PRs by this author
|
||||
const { data: searchResults } = await github.rest.search.issuesAndPullRequests({
|
||||
q: `repo:${context.repo.owner}/${context.repo.repo} type:pr author:${prAuthor}`,
|
||||
per_page: 100
|
||||
});
|
||||
|
||||
const authorPRCount = searchResults.total_count;
|
||||
|
||||
console.log(`Found ${authorPRCount} PRs by ${prAuthor}`);
|
||||
|
||||
// Only post comment if this is the first PR (only one PR by this author)
|
||||
if (authorPRCount === 1) {
|
||||
console.log(`Posting welcome comment for first-time contributor: ${prAuthor}`);
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
body: '👋 Hi! Thank you for contributing to the vLLM project.\n\n' +
|
||||
'💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.\n\n' +
|
||||
'Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. \n\n' +
|
||||
'You ask your reviewers to trigger select CI tests on top of `fastcheck` CI. \n\n' +
|
||||
'Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n' +
|
||||
'To run CI, PR reviewers can either: Add `ready` label to the PR or enable auto-merge.\n\n' +
|
||||
'If you have any questions, please reach out to us on Slack at https://slack.vllm.ai.\n\n' +
|
||||
'🚀'
|
||||
});
|
||||
} else {
|
||||
console.log(`Skipping comment for ${prAuthor} - not their first PR (${authorPRCount} PRs found)`);
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Error checking PR history or posting comment:', error);
|
||||
// Don't fail the workflow, just log the error
|
||||
}
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@ -207,3 +207,6 @@ shellcheck*/
|
||||
|
||||
# Ignore moe/marlin_moe gen code
|
||||
csrc/moe/marlin_moe_wna16/kernel_*
|
||||
|
||||
# Ignore ep_kernels_workspace folder
|
||||
ep_kernels_workspace/
|
||||
@ -21,7 +21,7 @@ repos:
|
||||
- id: ruff-format
|
||||
files: ^(.buildkite|benchmarks|examples)/.*
|
||||
- repo: https://github.com/crate-ci/typos
|
||||
rev: v1.34.0
|
||||
rev: v1.35.5
|
||||
hooks:
|
||||
- id: typos
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
|
||||
@ -30,7 +30,7 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
# Supported python versions. These versions will be searched in order, the
|
||||
# first match will be selected. These should be kept in sync with setup.py.
|
||||
#
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||
@ -249,7 +249,6 @@ set(VLLM_EXT_SRC
|
||||
"csrc/quantization/gguf/gguf_kernel.cu"
|
||||
"csrc/quantization/activation_kernels.cu"
|
||||
"csrc/cuda_utils_kernels.cu"
|
||||
"csrc/prepare_inputs/advance_step.cu"
|
||||
"csrc/custom_all_reduce.cu"
|
||||
"csrc/torch_bindings.cpp")
|
||||
|
||||
@ -287,7 +286,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
FetchContent_MakeAvailable(cutlass)
|
||||
|
||||
list(APPEND VLLM_EXT_SRC
|
||||
"csrc/quantization/aqlm/gemm_kernels.cu"
|
||||
"csrc/quantization/awq/gemm_kernels.cu"
|
||||
"csrc/permute_cols.cu"
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
@ -351,20 +349,27 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${MARLIN_TEMPLATE_KERNEL_SRC}"
|
||||
CUDA_ARCHS "${MARLIN_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
|
||||
set_source_files_properties(${MARLIN_TEMPLATE_KERNEL_SRC}
|
||||
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
|
||||
endif()
|
||||
|
||||
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
|
||||
|
||||
set(MARLIN_SRCS
|
||||
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
|
||||
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
|
||||
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
|
||||
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
|
||||
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
|
||||
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${MARLIN_SRCS}"
|
||||
CUDA_ARCHS "${MARLIN_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
|
||||
set_source_files_properties("csrc/quantization/gptq_marlin/gptq_marlin.cu"
|
||||
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
|
||||
endif()
|
||||
list(APPEND VLLM_EXT_SRC "${MARLIN_SRCS}")
|
||||
|
||||
message(STATUS "Building Marlin kernels for archs: ${MARLIN_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building Marlin kernels as no compatible archs found"
|
||||
@ -745,6 +750,33 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"found in CUDA target architectures")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Only build W4A8 kernels if we are building for something compatible with sm90a
|
||||
cuda_archs_loose_intersection(W4A8_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND W4A8_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w4a8/w4a8_mm_entry.cu")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${W4A8_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
|
||||
message(STATUS "Building W4A8 kernels for archs: ${W4A8_ARCHS}")
|
||||
else()
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0
|
||||
AND W4A8_ARCHS)
|
||||
message(STATUS "Not building W4A8 kernels as CUDA Compiler version is "
|
||||
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
|
||||
"later if you intend on running w4a16 quantized models on "
|
||||
"Hopper.")
|
||||
else()
|
||||
message(STATUS "Not building W4A8 kernels as no compatible archs "
|
||||
"found in CUDA target architectures")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# if CUDA endif
|
||||
endif()
|
||||
|
||||
@ -785,7 +817,9 @@ set(VLLM_MOE_EXT_SRC
|
||||
"csrc/moe/topk_softmax_kernels.cu")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
|
||||
list(APPEND VLLM_MOE_EXT_SRC
|
||||
"csrc/moe/moe_wna16.cu"
|
||||
"csrc/moe/grouped_topk_kernels.cu")
|
||||
endif()
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
@ -854,6 +888,10 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${MOE_WNAA16_MARLIN_SRC}"
|
||||
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
|
||||
set_source_files_properties(${MOE_WNAA16_MARLIN_SRC}
|
||||
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
|
||||
endif()
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC ${MOE_WNAA16_MARLIN_SRC})
|
||||
|
||||
|
||||
@ -18,14 +18,16 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
|
||||
*Latest News* 🔥
|
||||
|
||||
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
|
||||
- [2025/08] We hosted [vLLM Korea Meetup](https://luma.com/cgcgprmh) with Red Hat and Rebellions! We shared the latest advancements in vLLM along with project spotlights from the vLLM Korea community. Please find the meetup slides [here](https://drive.google.com/file/d/1bcrrAE1rxUgx0mjIeOWT6hNe2RefC5Hm/view).
|
||||
- [2025/08] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/dgkWg1WFpWGO2jCdTqQHxA) focusing on large-scale LLM deployment! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Pid6NSFLU43DZRi0EaTcPgXsAzDvbBqF) and the recording [here](https://www.chaspark.com/#/live/1166916873711665152).
|
||||
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
|
||||
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
|
||||
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
|
||||
|
||||
<details>
|
||||
<summary>Previous News</summary>
|
||||
|
||||
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
|
||||
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
|
||||
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
|
||||
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
|
||||
|
||||
@ -42,4 +42,9 @@ For certain security issues of CRITICAL, HIGH, or MODERATE severity level, we ma
|
||||
|
||||
* If you wish to be added to the prenotification group, please send an email copying all the members of the [vulnerability management team](https://docs.vllm.ai/en/latest/contributing/vulnerability_management.html). Each vendor contact will be analyzed on a case-by-case basis.
|
||||
|
||||
* Organizations and vendors who either ship or use vLLM, are eligible to join the prenotification group if they meet at least one of the following qualifications
|
||||
* Substantial internal deployment leveraging the upstream vLLM project.
|
||||
* Established internal security teams and comprehensive compliance measures.
|
||||
* Active and consistent contributions to the upstream vLLM project.
|
||||
|
||||
* We may withdraw organizations from receiving future prenotifications if they release fixes or any other information about issues before they are public. Group membership may also change based on policy refinements for who may be included.
|
||||
|
||||
@ -22,6 +22,25 @@ become available.
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>ShareGPT4V (Image)</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>
|
||||
<code>wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json</code>
|
||||
<br>
|
||||
<div>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:</div>
|
||||
<code>wget http://images.cocodataset.org/zips/train2017.zip</code>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>ShareGPT4Video (Video)</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>
|
||||
<code>git clone https://huggingface.co/datasets/ShareGPT4Video/ShareGPT4Video</code>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>BurstGPT</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
@ -29,7 +48,7 @@ become available.
|
||||
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Sonnet</strong></td>
|
||||
<td><strong>Sonnet (deprecated)</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
|
||||
@ -40,6 +59,18 @@ become available.
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>synthetic</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>RandomMultiModal (Image/Video)</strong></td>
|
||||
<td style="text-align: center;">🟡</td>
|
||||
<td style="text-align: center;">🚧</td>
|
||||
<td><code>synthetic</code> </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Prefix Repetition</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>synthetic</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-VisionArena</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
@ -177,6 +208,7 @@ vllm serve Qwen/Qwen2-VL-7B-Instruct
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--endpoint-type openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
@ -213,6 +245,7 @@ vllm serve Qwen/Qwen2-VL-7B-Instruct
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--endpoint-type openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
@ -227,6 +260,7 @@ vllm bench serve \
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--endpoint-type openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
@ -581,6 +615,20 @@ python3 benchmarks/benchmark_prefix_caching.py \
|
||||
--input-length-range 128:256
|
||||
```
|
||||
|
||||
### Prefix Repetition Dataset
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--dataset-name prefix_repetition \
|
||||
--num-prompts 100 \
|
||||
--prefix-repetition-prefix-len 512 \
|
||||
--prefix-repetition-suffix-len 128 \
|
||||
--prefix-repetition-num-prefixes 5 \
|
||||
--prefix-repetition-output-len 128
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## ⚡ Example - Request Prioritization Benchmark
|
||||
@ -616,3 +664,139 @@ python3 benchmarks/benchmark_prioritization.py \
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 👁️ Example - Multi-Modal Benchmark
|
||||
|
||||
<details>
|
||||
<summary>Show more</summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the performance of multi-modal requests in vLLM.
|
||||
|
||||
### Images (ShareGPT4V)
|
||||
|
||||
Start vLLM:
|
||||
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dtype bfloat16 \
|
||||
--limit-mm-per-prompt '{"image": 1}' \
|
||||
--allowed-local-media-path /path/to/sharegpt4v/images
|
||||
```
|
||||
|
||||
Send requests with images:
|
||||
|
||||
```bash
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path /path/to/ShareGPT4V/sharegpt4v_instruct_gpt4-vision_cap100k.json \
|
||||
--num-prompts 100 \
|
||||
--save-result \
|
||||
--result-dir ~/vllm_benchmark_results \
|
||||
--save-detailed \
|
||||
--endpoint /v1/chat/completion
|
||||
```
|
||||
|
||||
### Videos (ShareGPT4Video)
|
||||
|
||||
Start vLLM:
|
||||
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dtype bfloat16 \
|
||||
--limit-mm-per-prompt '{"video": 1}' \
|
||||
--allowed-local-media-path /path/to/sharegpt4video/videos
|
||||
```
|
||||
|
||||
Send requests with videos:
|
||||
|
||||
```bash
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path /path/to/ShareGPT4Video/llava_v1_5_mix665k_with_video_chatgpt72k_share4video28k.json \
|
||||
--num-prompts 100 \
|
||||
--save-result \
|
||||
--result-dir ~/vllm_benchmark_results \
|
||||
--save-detailed \
|
||||
--endpoint /v1/chat/completion
|
||||
```
|
||||
|
||||
### Synthetic Random Images (random-mm)
|
||||
|
||||
Generate synthetic image inputs alongside random text prompts to stress-test vision models without external datasets.
|
||||
|
||||
Notes:
|
||||
|
||||
- Works only with online benchmark via the OpenAI backend (`--backend openai-chat`) and endpoint `/v1/chat/completions`.
|
||||
- Video sampling is not yet implemented.
|
||||
|
||||
Start the server (example):
|
||||
|
||||
```bash
|
||||
vllm serve Qwen/Qwen2.5-VL-3B-Instruct \
|
||||
--dtype bfloat16 \
|
||||
--max-model-len 16384 \
|
||||
--limit-mm-per-prompt '{"image": 3, "video": 0}' \
|
||||
--mm-processor-kwargs max_pixels=1003520
|
||||
```
|
||||
|
||||
Benchmark. It is recommended to use the flag `--ignore-eos` to simulate real responses. You can set the size of the output via the arg `random-output-len`.
|
||||
|
||||
Ex.1: Fixed number of items and a single image resolution, enforcing generation of approx 40 tokens:
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2.5-VL-3B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name random-mm \
|
||||
--num-prompts 100 \
|
||||
--max-concurrency 10 \
|
||||
--random-prefix-len 25 \
|
||||
--random-input-len 300 \
|
||||
--random-output-len 40 \
|
||||
--random-range-ratio 0.2 \
|
||||
--random-mm-base-items-per-request 2 \
|
||||
--random-mm-limit-mm-per-prompt '{"image": 3, "video": 0}' \
|
||||
--random-mm-bucket-config '{(224, 224, 1): 1.0}' \
|
||||
--request-rate inf \
|
||||
--ignore-eos \
|
||||
--seed 42
|
||||
```
|
||||
|
||||
The number of items per request can be controlled by passing multiple image buckets:
|
||||
|
||||
```bash
|
||||
--random-mm-base-items-per-request 2 \
|
||||
--random-mm-num-mm-items-range-ratio 0.5 \
|
||||
--random-mm-limit-mm-per-prompt '{"image": 4, "video": 0}' \
|
||||
--random-mm-bucket-config '{(256, 256, 1): 0.7, (720, 1280, 1): 0.3}' \
|
||||
```
|
||||
|
||||
Flags specific to `random-mm`:
|
||||
|
||||
- `--random-mm-base-items-per-request`: base number of multimodal items per request.
|
||||
- `--random-mm-num-mm-items-range-ratio`: vary item count uniformly in the closed integer range [floor(n·(1−r)), ceil(n·(1+r))]. Set r=0 to keep it fixed; r=1 allows 0 items.
|
||||
- `--random-mm-limit-mm-per-prompt`: per-modality hard caps, e.g. '{"image": 3, "video": 0}'.
|
||||
- `--random-mm-bucket-config`: dict mapping (H, W, T) → probability. Entries with probability 0 are removed; remaining probabilities are renormalized to sum to 1. Use T=1 for images. Set any T>1 for videos (video sampling not yet supported).
|
||||
|
||||
Behavioral notes:
|
||||
|
||||
- If the requested base item count cannot be satisfied under the provided per-prompt limits, the tool raises an error rather than silently clamping.
|
||||
|
||||
How sampling works:
|
||||
|
||||
- Determine per-request item count k by sampling uniformly from the integer range defined by `--random-mm-base-items-per-request` and `--random-mm-num-mm-items-range-ratio`, then clamp k to at most the sum of per-modality limits.
|
||||
- For each of the k items, sample a bucket (H, W, T) according to the normalized probabilities in `--random-mm-bucket-config`, while tracking how many items of each modality have been added.
|
||||
- If a modality (e.g., image) reaches its limit from `--random-mm-limit-mm-per-prompt`, all buckets of that modality are excluded and the remaining bucket probabilities are renormalized before continuing.
|
||||
This should be seen as an edge case, and if this behavior can be avoided by setting `--random-mm-limit-mm-per-prompt` to a large number. Note that this might result in errors due to engine config `--limit-mm-per-prompt`.
|
||||
- The resulting request contains synthetic image data in `multi_modal_data` (OpenAI Chat format). When `random-mm` is used with the OpenAI Chat backend, prompts remain text and MM content is attached via `multi_modal_data`.
|
||||
|
||||
</details>
|
||||
|
||||
@ -34,6 +34,7 @@ class RequestFuncInput:
|
||||
multi_modal_content: Optional[dict | list[dict]] = None
|
||||
ignore_eos: bool = False
|
||||
language: Optional[str] = None
|
||||
request_id: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -71,6 +72,9 @@ async def async_request_tgi(
|
||||
"inputs": request_func_input.prompt,
|
||||
"parameters": params,
|
||||
}
|
||||
headers = None
|
||||
if request_func_input.request_id:
|
||||
headers = {"x-request-id": request_func_input.request_id}
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
if request_func_input.ignore_eos:
|
||||
@ -82,7 +86,9 @@ async def async_request_tgi(
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload) as response:
|
||||
async with session.post(
|
||||
url=api_url, json=payload, headers=headers
|
||||
) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
@ -145,6 +151,9 @@ async def async_request_trt_llm(
|
||||
}
|
||||
if request_func_input.ignore_eos:
|
||||
payload["min_length"] = request_func_input.output_len
|
||||
headers = None
|
||||
if request_func_input.request_id:
|
||||
headers = {"x-request-id": request_func_input.request_id}
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
@ -152,7 +161,9 @@ async def async_request_trt_llm(
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url, json=payload) as response:
|
||||
async with session.post(
|
||||
url=api_url, json=payload, headers=headers
|
||||
) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
@ -211,6 +222,8 @@ async def async_request_deepspeed_mii(
|
||||
"top_p": 1.0,
|
||||
}
|
||||
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
||||
if request_func_input.request_id:
|
||||
headers["x-request-id"] = request_func_input.request_id
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
@ -283,6 +296,8 @@ async def async_request_openai_completions(
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
||||
if request_func_input.request_id:
|
||||
headers["x-request-id"] = request_func_input.request_id
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
@ -395,6 +410,8 @@ async def async_request_openai_chat_completions(
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
}
|
||||
if request_func_input.request_id:
|
||||
headers["x-request-id"] = request_func_input.request_id
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
@ -491,6 +508,8 @@ async def async_request_openai_audio(
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
}
|
||||
if request_func_input.request_id:
|
||||
headers["x-request-id"] = request_func_input.request_id
|
||||
|
||||
# Send audio file
|
||||
def to_bytes(y, sr):
|
||||
|
||||
@ -19,6 +19,7 @@ import logging
|
||||
import random
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Mapping
|
||||
from copy import deepcopy
|
||||
from dataclasses import dataclass
|
||||
from functools import cache
|
||||
from io import BytesIO
|
||||
@ -54,6 +55,7 @@ class SampleRequest:
|
||||
expected_output_len: int
|
||||
multi_modal_data: Optional[Union[MultiModalDataDict, dict, list[dict]]] = None
|
||||
lora_request: Optional[LoRARequest] = None
|
||||
request_id: Optional[str] = None
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -155,7 +157,10 @@ class BenchmarkDataset(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def sample(
|
||||
self, tokenizer: PreTrainedTokenizerBase, num_requests: int
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
request_id_prefix: str = "",
|
||||
) -> list[SampleRequest]:
|
||||
"""
|
||||
Abstract method to generate sample requests from the dataset.
|
||||
@ -167,6 +172,7 @@ class BenchmarkDataset(ABC):
|
||||
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
|
||||
for processing the dataset's text.
|
||||
num_requests (int): The number of sample requests to generate.
|
||||
request_id_prefix (str) The prefix of request_id.
|
||||
|
||||
Returns:
|
||||
list[SampleRequest]: A list of sample requests generated from the
|
||||
@ -175,7 +181,10 @@ class BenchmarkDataset(ABC):
|
||||
raise NotImplementedError("sample must be implemented in subclasses.")
|
||||
|
||||
def maybe_oversample_requests(
|
||||
self, requests: list[SampleRequest], num_requests: int
|
||||
self,
|
||||
requests: list[SampleRequest],
|
||||
num_requests: int,
|
||||
request_id_prefix: str = "",
|
||||
) -> None:
|
||||
"""
|
||||
Oversamples the list of requests if its size is less than the desired
|
||||
@ -183,11 +192,18 @@ class BenchmarkDataset(ABC):
|
||||
|
||||
Args:
|
||||
requests (List[SampleRequest]): The current list of sampled
|
||||
requests. num_requests (int): The target number of requests.
|
||||
requests.
|
||||
num_requests (int): The target number of requests.
|
||||
request_id_prefix (str) The prefix of the request ids.
|
||||
"""
|
||||
if len(requests) < num_requests:
|
||||
random.seed(self.random_seed)
|
||||
additional = random.choices(requests, k=num_requests - len(requests))
|
||||
additional = deepcopy(
|
||||
random.choices(requests, k=num_requests - len(requests))
|
||||
)
|
||||
for i in range(len(additional)):
|
||||
req = additional[i]
|
||||
req.request_id = request_id_prefix + str(len(requests) + i)
|
||||
requests.extend(additional)
|
||||
logger.info("Oversampled requests to reach %d total samples.", num_requests)
|
||||
|
||||
@ -277,6 +293,41 @@ def process_image(image: Any) -> Mapping[str, Any]:
|
||||
)
|
||||
|
||||
|
||||
def process_video(video: Any) -> Mapping[str, Any]:
|
||||
"""
|
||||
Process a single video input and return a multimedia content dictionary.
|
||||
|
||||
Supports the following input types:
|
||||
|
||||
1. Dictionary with raw video bytes: - Expects a dict with a 'bytes' key
|
||||
containing raw video data.
|
||||
|
||||
2. String input: - Treats the string as a URL or local file path. -
|
||||
Prepends "file://" if the string doesn't start with "http://" or
|
||||
"file://". - Returns a dictionary with the image URL.
|
||||
|
||||
Raises:
|
||||
ValueError: If the input is not a supported type.
|
||||
"""
|
||||
if isinstance(video, dict) and "bytes" in video:
|
||||
video_bytes = video["bytes"]
|
||||
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
|
||||
return {
|
||||
"type": "video_url",
|
||||
"video_url": {"url": f"data:video/mp4;base64,{video_base64}"},
|
||||
}
|
||||
|
||||
if isinstance(video, str):
|
||||
video_url = (
|
||||
video if video.startswith(("http://", "file://")) else f"file://{video}"
|
||||
)
|
||||
return {"type": "video_url", "video_url": {"url": video_url}}
|
||||
|
||||
raise ValueError(
|
||||
f"Invalid video input {video}. Must be a string of local path/remote url, or a dictionary with raw video bytes in the form of `{{'bytes': raw_video_bytes}}`." # noqa: E501
|
||||
)
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Random Dataset Implementation (Synthetic Data)
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -303,6 +354,7 @@ class RandomDataset(BenchmarkDataset):
|
||||
range_ratio: float = DEFAULT_RANGE_RATIO,
|
||||
input_len: int = DEFAULT_INPUT_LEN,
|
||||
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list[SampleRequest]:
|
||||
# Enforce range_ratio < 1
|
||||
@ -363,8 +415,10 @@ class RandomDataset(BenchmarkDataset):
|
||||
prompt=prompt,
|
||||
prompt_len=total_input_len,
|
||||
expected_output_len=int(output_lens[i]),
|
||||
request_id=request_id_prefix + str(i),
|
||||
)
|
||||
)
|
||||
|
||||
return requests
|
||||
|
||||
|
||||
@ -406,9 +460,11 @@ class ShareGPTDataset(BenchmarkDataset):
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list:
|
||||
samples: list = []
|
||||
ind = 0
|
||||
for entry in self.data:
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
@ -430,17 +486,26 @@ class ShareGPTDataset(BenchmarkDataset):
|
||||
skip_min_output_len_check=output_len is not None,
|
||||
):
|
||||
continue
|
||||
if image_path := entry.get("image"):
|
||||
mm_content = process_image(image_path)
|
||||
elif video_path := entry.get("video"):
|
||||
mm_content = process_video(video_path)
|
||||
else:
|
||||
mm_content = None
|
||||
if enable_multimodal_chat:
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, None)
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=new_output_len,
|
||||
lora_request=lora_request,
|
||||
multi_modal_data=mm_content,
|
||||
request_id=request_id_prefix + str(ind),
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
ind += 1
|
||||
self.maybe_oversample_requests(samples, num_requests, request_id_prefix)
|
||||
return samples
|
||||
|
||||
|
||||
@ -506,10 +571,11 @@ class CustomDataset(BenchmarkDataset):
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
skip_chat_template: bool = False,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list:
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
for i, item in enumerate(self.data):
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = item["prompt"]
|
||||
@ -528,9 +594,12 @@ class CustomDataset(BenchmarkDataset):
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
request_id=request_id_prefix + str(i),
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
self.maybe_oversample_requests(
|
||||
sampled_requests, num_requests, request_id_prefix
|
||||
)
|
||||
|
||||
return sampled_requests
|
||||
|
||||
@ -572,6 +641,7 @@ class SonnetDataset(BenchmarkDataset):
|
||||
input_len: int = DEFAULT_INPUT_LEN,
|
||||
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||
return_prompt_formatted: bool = False,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list:
|
||||
# Calculate average token length for a poem line.
|
||||
@ -597,6 +667,7 @@ class SonnetDataset(BenchmarkDataset):
|
||||
prefix_lines = self.data[:num_prefix_lines]
|
||||
|
||||
samples = []
|
||||
ind = 0
|
||||
while len(samples) < num_requests:
|
||||
extra_lines = random.choices(
|
||||
self.data, k=num_input_lines - num_prefix_lines
|
||||
@ -607,14 +678,17 @@ class SonnetDataset(BenchmarkDataset):
|
||||
msg, add_generation_prompt=True, tokenize=False
|
||||
)
|
||||
prompt_len = len(tokenizer(prompt_formatted).input_ids)
|
||||
|
||||
if prompt_len <= input_len:
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt_formatted if return_prompt_formatted else prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
request_id=request_id_prefix + str(ind),
|
||||
)
|
||||
)
|
||||
ind += 1
|
||||
return samples
|
||||
|
||||
|
||||
@ -666,6 +740,7 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
num_requests: int,
|
||||
max_loras: Optional[int] = None,
|
||||
lora_path: Optional[str] = None,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list[SampleRequest]:
|
||||
samples = []
|
||||
@ -687,6 +762,7 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
prompt_len=input_len,
|
||||
expected_output_len=output_len,
|
||||
lora_request=lora_req,
|
||||
request_id=request_id_prefix + str(i),
|
||||
)
|
||||
)
|
||||
return samples
|
||||
@ -746,12 +822,14 @@ class ConversationDataset(HuggingFaceDataset):
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list:
|
||||
# Filter examples with at least 2 conversations
|
||||
filtered_data = self.data.filter(lambda x: len(x["conversations"]) >= 2)
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
ind = 0
|
||||
|
||||
for item in filtered_data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
@ -779,9 +857,13 @@ class ConversationDataset(HuggingFaceDataset):
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
request_id=request_id_prefix + str(ind),
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
ind += 1
|
||||
self.maybe_oversample_requests(
|
||||
sampled_requests, num_requests, request_id_prefix
|
||||
)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
@ -808,11 +890,12 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
for i, item in enumerate(self.data):
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
|
||||
@ -832,9 +915,12 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
request_id=request_id_prefix + str(i),
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
self.maybe_oversample_requests(
|
||||
sampled_requests, num_requests, request_id_prefix
|
||||
)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
@ -864,15 +950,18 @@ class InstructCoderDataset(HuggingFaceDataset):
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
for i, item in enumerate(self.data):
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = f"{item['input']}\n\n{item['instruction']} Just output \
|
||||
the code, do not include any explanation."
|
||||
prompt = (
|
||||
f"{item['input']}\n\n{item['instruction']} Just output "
|
||||
"the code, do not include any explanation."
|
||||
)
|
||||
|
||||
# apply template
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
@ -886,9 +975,12 @@ class InstructCoderDataset(HuggingFaceDataset):
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
request_id=request_id_prefix + str(i),
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
self.maybe_oversample_requests(
|
||||
sampled_requests, num_requests, request_id_prefix
|
||||
)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
@ -918,12 +1010,13 @@ class MTBenchDataset(HuggingFaceDataset):
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
sampled_requests = []
|
||||
|
||||
for item in self.data:
|
||||
for i, item in enumerate(self.data):
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = item["turns"][0]
|
||||
@ -941,9 +1034,12 @@ class MTBenchDataset(HuggingFaceDataset):
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
request_id=request_id_prefix + str(i),
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
self.maybe_oversample_requests(
|
||||
sampled_requests, num_requests, request_id_prefix
|
||||
)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
@ -968,10 +1064,12 @@ class AIMODataset(HuggingFaceDataset):
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list:
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
ind = 0
|
||||
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
@ -994,9 +1092,13 @@ class AIMODataset(HuggingFaceDataset):
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=None,
|
||||
request_id=request_id_prefix + str(ind),
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
ind += 1
|
||||
self.maybe_oversample_requests(
|
||||
sampled_requests, num_requests, request_id_prefix
|
||||
)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
@ -1066,12 +1168,18 @@ class NextEditPredictionDataset(HuggingFaceDataset):
|
||||
"zed-industries/zeta": _format_zeta_prompt,
|
||||
}
|
||||
|
||||
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int, **kwargs):
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
):
|
||||
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(self.dataset_path)
|
||||
if formatting_prompt_func is None:
|
||||
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
|
||||
samples = []
|
||||
for sample in self.data:
|
||||
for i, sample in enumerate(self.data):
|
||||
sample = formatting_prompt_func(sample)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
@ -1080,11 +1188,12 @@ class NextEditPredictionDataset(HuggingFaceDataset):
|
||||
expected_output_len=len(
|
||||
tokenizer(sample["expected_output"]).input_ids
|
||||
),
|
||||
request_id=request_id_prefix + str(i),
|
||||
)
|
||||
)
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
self.maybe_oversample_requests(samples, num_requests, request_id_prefix)
|
||||
return samples
|
||||
|
||||
|
||||
@ -1133,6 +1242,7 @@ class ASRDataset(HuggingFaceDataset):
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
request_id_prefix: str = "",
|
||||
**kwargs,
|
||||
) -> list:
|
||||
import librosa
|
||||
@ -1142,6 +1252,7 @@ class ASRDataset(HuggingFaceDataset):
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests = []
|
||||
skipped = 0
|
||||
ind = 0
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
@ -1160,8 +1271,10 @@ class ASRDataset(HuggingFaceDataset):
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
request_id=request_id_prefix + str(ind),
|
||||
)
|
||||
)
|
||||
ind += 1
|
||||
if skipped:
|
||||
logger.warning(
|
||||
"%d samples discarded from dataset due to"
|
||||
@ -1169,5 +1282,7 @@ class ASRDataset(HuggingFaceDataset):
|
||||
" what Whisper supports.",
|
||||
skipped,
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
self.maybe_oversample_requests(
|
||||
sampled_requests, num_requests, request_id_prefix
|
||||
)
|
||||
return sampled_requests
|
||||
|
||||
@ -375,11 +375,12 @@ async def benchmark(
|
||||
rps_change_events.append({"rps": rps_val, "timestamp": timestamp})
|
||||
last_int_rps = current_int_rps
|
||||
|
||||
prompt, prompt_len, output_len, mm_content = (
|
||||
prompt, prompt_len, output_len, mm_content, request_id = (
|
||||
request.prompt,
|
||||
request.prompt_len,
|
||||
request.expected_output_len,
|
||||
request.multi_modal_data,
|
||||
request.request_id,
|
||||
)
|
||||
req_model_id, req_model_name = model_id, model_name
|
||||
if lora_modules:
|
||||
@ -397,6 +398,7 @@ async def benchmark(
|
||||
multi_modal_content=mm_content,
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=extra_body,
|
||||
request_id=request_id,
|
||||
)
|
||||
task = limited_request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
tasks.append(asyncio.create_task(task))
|
||||
@ -665,6 +667,7 @@ def main(args: argparse.Namespace):
|
||||
tokenizer=tokenizer,
|
||||
output_len=args.custom_output_len,
|
||||
skip_chat_template=args.custom_skip_chat_template,
|
||||
request_id_prefix=args.request_id_prefix,
|
||||
)
|
||||
|
||||
elif args.dataset_name == "sonnet":
|
||||
@ -678,6 +681,7 @@ def main(args: argparse.Namespace):
|
||||
prefix_len=args.sonnet_prefix_len,
|
||||
tokenizer=tokenizer,
|
||||
return_prompt_formatted=False,
|
||||
request_id_prefix=args.request_id_prefix,
|
||||
)
|
||||
else:
|
||||
assert tokenizer.chat_template or tokenizer.default_chat_template, (
|
||||
@ -690,6 +694,7 @@ def main(args: argparse.Namespace):
|
||||
prefix_len=args.sonnet_prefix_len,
|
||||
tokenizer=tokenizer,
|
||||
return_prompt_formatted=True,
|
||||
request_id_prefix=args.request_id_prefix,
|
||||
)
|
||||
|
||||
elif args.dataset_name == "hf":
|
||||
@ -751,6 +756,7 @@ def main(args: argparse.Namespace):
|
||||
num_requests=args.num_prompts,
|
||||
tokenizer=tokenizer,
|
||||
output_len=args.hf_output_len,
|
||||
request_id_prefix=args.request_id_prefix,
|
||||
)
|
||||
|
||||
else:
|
||||
@ -762,10 +768,15 @@ def main(args: argparse.Namespace):
|
||||
tokenizer=tokenizer,
|
||||
num_requests=args.num_prompts,
|
||||
output_len=args.sharegpt_output_len,
|
||||
request_id_prefix=args.request_id_prefix,
|
||||
),
|
||||
"burstgpt": lambda: BurstGPTDataset(
|
||||
random_seed=args.seed, dataset_path=args.dataset_path
|
||||
).sample(tokenizer=tokenizer, num_requests=args.num_prompts),
|
||||
).sample(
|
||||
tokenizer=tokenizer,
|
||||
num_requests=args.num_prompts,
|
||||
request_id_prefix=args.request_id_prefix,
|
||||
),
|
||||
"random": lambda: RandomDataset(dataset_path=args.dataset_path).sample(
|
||||
tokenizer=tokenizer,
|
||||
num_requests=args.num_prompts,
|
||||
@ -773,6 +784,7 @@ def main(args: argparse.Namespace):
|
||||
input_len=args.random_input_len,
|
||||
output_len=args.random_output_len,
|
||||
range_ratio=args.random_range_ratio,
|
||||
request_id_prefix=args.request_id_prefix,
|
||||
),
|
||||
}
|
||||
|
||||
@ -1118,6 +1130,13 @@ def create_argument_parser():
|
||||
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
|
||||
"and the blog: https://hao-ai-lab.github.io/blogs/distserve",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--request-id-prefix",
|
||||
type=str,
|
||||
required=False,
|
||||
default="benchmark-serving",
|
||||
help="Specify the prefix of request id.",
|
||||
)
|
||||
|
||||
# group for dataset specific arguments
|
||||
custom_group = parser.add_argument_group("custom dataset options")
|
||||
|
||||
@ -96,7 +96,6 @@ def run_vllm(
|
||||
end = time.perf_counter()
|
||||
else:
|
||||
assert lora_requests is None, "BeamSearch API does not support LoRA"
|
||||
prompts = [request.prompt for request in requests]
|
||||
# output_len should be the same for all requests.
|
||||
output_len = requests[0].expected_output_len
|
||||
for request in requests:
|
||||
@ -597,8 +596,8 @@ def validate_args(args):
|
||||
# https://github.com/vllm-project/vllm/issues/16222
|
||||
if args.data_parallel_size > 1:
|
||||
raise ValueError(
|
||||
"Data parallel is not supported in offline benchmark, \
|
||||
please use benchmark serving instead"
|
||||
"Data parallel is not supported in offline benchmark, "
|
||||
"please use benchmark serving instead"
|
||||
)
|
||||
|
||||
|
||||
|
||||
@ -1,63 +1,199 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
|
||||
import aiohttp
|
||||
from quart import Quart, make_response, request
|
||||
from quart import Quart, Response, make_response, request
|
||||
from rate_limiter import RateLimiter
|
||||
from request_queue import RequestQueue
|
||||
|
||||
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
|
||||
|
||||
app = Quart(__name__)
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def forward_request(url, data):
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
def parse_args():
|
||||
"""parse command line arguments"""
|
||||
parser = argparse.ArgumentParser(description="vLLM P/D disaggregation proxy server")
|
||||
|
||||
# Add args
|
||||
parser.add_argument(
|
||||
"--timeout",
|
||||
type=float,
|
||||
default=300,
|
||||
help="Timeout for backend service requests in seconds (default: 300)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-concurrent",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Maximum concurrent requests to backend services (default: 100)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--queue-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Maximum number of requests in the queue (default: 500)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rate-limit",
|
||||
type=int,
|
||||
default=40,
|
||||
help="Maximum requests per second (default: 40)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port",
|
||||
type=int,
|
||||
default=8000,
|
||||
help="Port to run the server on (default: 8000)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prefill-url",
|
||||
type=str,
|
||||
default="http://localhost:8100/v1/completions",
|
||||
help="Prefill service endpoint URL",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--decode-url",
|
||||
type=str,
|
||||
default="http://localhost:8200/v1/completions",
|
||||
help="Decode service endpoint URL",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
"""parse command line arguments"""
|
||||
args = parse_args()
|
||||
|
||||
# Initialize configuration using command line parameters
|
||||
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=args.timeout)
|
||||
MAX_CONCURRENT_REQUESTS = args.max_concurrent
|
||||
REQUEST_QUEUE_SIZE = args.queue_size
|
||||
RATE_LIMIT = args.rate_limit
|
||||
PREFILL_SERVICE_URL = args.prefill_url
|
||||
DECODE_SERVICE_URL = args.decode_url
|
||||
PORT = args.port
|
||||
|
||||
app = Quart(__name__)
|
||||
|
||||
# Initialize the rate limiter and request queue
|
||||
rate_limiter = RateLimiter(RATE_LIMIT)
|
||||
request_queue = RequestQueue(MAX_CONCURRENT_REQUESTS, REQUEST_QUEUE_SIZE)
|
||||
|
||||
# Attach the configuration object to the application instance
|
||||
app.config.update(
|
||||
{
|
||||
"AIOHTTP_TIMEOUT": AIOHTTP_TIMEOUT,
|
||||
"rate_limiter": rate_limiter,
|
||||
"request_queue": request_queue,
|
||||
"PREFILL_SERVICE_URL": PREFILL_SERVICE_URL,
|
||||
"DECODE_SERVICE_URL": DECODE_SERVICE_URL,
|
||||
}
|
||||
)
|
||||
|
||||
# Start queue processing on app startup
|
||||
@app.before_serving
|
||||
async def startup():
|
||||
"""Start request processing task when app starts serving"""
|
||||
asyncio.create_task(request_queue.process())
|
||||
|
||||
async def forward_request(url, data):
|
||||
"""Forward request to backend service with rate limiting and error handling"""
|
||||
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
||||
async with session.post(url=url, json=data, headers=headers) as response:
|
||||
if response.status == 200:
|
||||
# if response.headers.get('Transfer-Encoding') == 'chunked':
|
||||
if True:
|
||||
async for chunk_bytes in response.content.iter_chunked(1024):
|
||||
yield chunk_bytes
|
||||
else:
|
||||
content = await response.read()
|
||||
yield content
|
||||
|
||||
|
||||
@app.route("/v1/completions", methods=["POST"])
|
||||
async def handle_request():
|
||||
try:
|
||||
original_request_data = await request.get_json()
|
||||
|
||||
prefill_request = original_request_data.copy()
|
||||
# change max_tokens = 1 to let it only do prefill
|
||||
prefill_request["max_tokens"] = 1
|
||||
|
||||
# finish prefill
|
||||
async for _ in forward_request(
|
||||
"http://localhost:8100/v1/completions", prefill_request
|
||||
# Use rate limiter as context manager
|
||||
async with (
|
||||
rate_limiter,
|
||||
aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session,
|
||||
):
|
||||
continue
|
||||
try:
|
||||
async with session.post(
|
||||
url=url, json=data, headers=headers
|
||||
) as response:
|
||||
if response.status == 200:
|
||||
# Stream response chunks
|
||||
async for chunk_bytes in response.content.iter_chunked(1024):
|
||||
yield chunk_bytes
|
||||
else:
|
||||
# Handle backend service errors
|
||||
error_text = await response.text()
|
||||
logger.error(
|
||||
"Backend service error: %s - %s",
|
||||
response.status,
|
||||
error_text,
|
||||
)
|
||||
yield b'{"error": "Backend service error"}'
|
||||
except aiohttp.ClientError as e:
|
||||
# Handle connection errors
|
||||
logger.error("Connection error to %s: %s", url, str(e))
|
||||
yield b'{"error": "Service unavailable"}'
|
||||
except asyncio.TimeoutError:
|
||||
# Handle timeout errors
|
||||
logger.error("Timeout connecting to %s", url)
|
||||
yield b'{"error": "Service timeout"}'
|
||||
|
||||
# return decode
|
||||
generator = forward_request(
|
||||
"http://localhost:8200/v1/completions", original_request_data
|
||||
)
|
||||
response = await make_response(generator)
|
||||
response.timeout = None
|
||||
async def process_request():
|
||||
"""Process a single request through prefill and decode stages"""
|
||||
try:
|
||||
original_request_data = await request.get_json()
|
||||
|
||||
return response
|
||||
# Create prefill request (max_tokens=1)
|
||||
prefill_request = original_request_data.copy()
|
||||
prefill_request["max_tokens"] = 1
|
||||
|
||||
except Exception as e:
|
||||
import sys
|
||||
import traceback
|
||||
# Execute prefill stage
|
||||
async for _ in forward_request(PREFILL_SERVICE_URL, prefill_request):
|
||||
continue
|
||||
|
||||
exc_info = sys.exc_info()
|
||||
print("Error occurred in disagg prefill proxy server")
|
||||
print(e)
|
||||
print("".join(traceback.format_exception(*exc_info)))
|
||||
# Execute decode stage and stream response
|
||||
generator = forward_request(DECODE_SERVICE_URL, original_request_data)
|
||||
response = await make_response(generator)
|
||||
response.timeout = None # Disable timeout for streaming response
|
||||
return response
|
||||
|
||||
except Exception:
|
||||
logger.exception("Error processing request")
|
||||
return Response(
|
||||
response=b'{"error": "Internal server error"}',
|
||||
status=500,
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
@app.route("/v1/completions", methods=["POST"])
|
||||
async def handle_request():
|
||||
"""Handle incoming API requests with concurrency and rate limiting"""
|
||||
# Create task for request processing
|
||||
task = asyncio.create_task(process_request())
|
||||
|
||||
# Enqueue request or reject if queue is full
|
||||
if not await request_queue.enqueue(task):
|
||||
return Response(
|
||||
response=b'{"error": "Server busy, try again later"}',
|
||||
status=503,
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
try:
|
||||
# Return the response from the processing task
|
||||
return await task
|
||||
except asyncio.CancelledError:
|
||||
# Handle task cancellation (timeout or queue full)
|
||||
logger.warning("Request cancelled due to timeout or queue full")
|
||||
return Response(
|
||||
response=b'{"error": "Request cancelled"}',
|
||||
status=503,
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
# Start the Quart server with host can be set to 0.0.0.0
|
||||
app.run(port=PORT)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app.run(port=8000)
|
||||
main()
|
||||
|
||||
45
benchmarks/disagg_benchmarks/rate_limiter.py
Normal file
45
benchmarks/disagg_benchmarks/rate_limiter.py
Normal file
@ -0,0 +1,45 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import asyncio
|
||||
import time
|
||||
|
||||
|
||||
class RateLimiter:
|
||||
"""Token bucket rate limiter implementation"""
|
||||
|
||||
def __init__(self, rate_limit):
|
||||
self.rate_limit = rate_limit # Requests per second
|
||||
self.num_available_tokens = rate_limit # Available tokens
|
||||
self.last_refill = time.monotonic() # Last token refill time
|
||||
self.lock = asyncio.Lock() # Synchronization lock
|
||||
|
||||
async def acquire(self):
|
||||
"""Acquire a token from the rate limiter"""
|
||||
while True:
|
||||
async with self.lock:
|
||||
current_time = time.monotonic()
|
||||
elapsed = current_time - self.last_refill
|
||||
|
||||
# Refill num_available_tokens if more than 1 second has passed
|
||||
if elapsed > 1.0:
|
||||
self.num_available_tokens = self.rate_limit
|
||||
self.last_refill = current_time
|
||||
|
||||
# Check if num_available_tokens are available
|
||||
if self.num_available_tokens > 0:
|
||||
self.num_available_tokens -= 1
|
||||
return True
|
||||
|
||||
# Calculate wait time if no num_available_tokens available
|
||||
wait_time = 1.0 - elapsed
|
||||
await asyncio.sleep(wait_time)
|
||||
|
||||
async def __aenter__(self):
|
||||
"""Enter async context manager - acquire token"""
|
||||
await self.acquire()
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_value, traceback):
|
||||
"""Exit async context manager - no cleanup needed"""
|
||||
pass
|
||||
39
benchmarks/disagg_benchmarks/request_queue.py
Normal file
39
benchmarks/disagg_benchmarks/request_queue.py
Normal file
@ -0,0 +1,39 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import asyncio
|
||||
from collections import deque
|
||||
|
||||
|
||||
class RequestQueue:
|
||||
"""Request queue manager with concurrency control"""
|
||||
|
||||
def __init__(self, max_concurrent, max_queue_size):
|
||||
# Maximum concurrent requests
|
||||
self.max_concurrent = max_concurrent
|
||||
self.max_queue_size = max_queue_size # Maximum queue size
|
||||
# Concurrency control
|
||||
self.semaphore = asyncio.Semaphore(max_concurrent)
|
||||
self.queue = deque() # Request queue
|
||||
self.queue_size = 0 # Current queue size
|
||||
self.lock = asyncio.Lock() # Sync queue Lock
|
||||
|
||||
async def enqueue(self, task):
|
||||
"""Add a request task to the queue"""
|
||||
async with self.lock:
|
||||
if self.queue_size >= self.max_queue_size:
|
||||
return False
|
||||
|
||||
self.queue.append(task)
|
||||
self.queue_size += 1
|
||||
return True
|
||||
|
||||
async def process(self):
|
||||
"""Process queued requests using semaphore for concurrency control"""
|
||||
while True:
|
||||
if self.queue:
|
||||
async with self.semaphore, self.lock:
|
||||
task = self.queue.popleft()
|
||||
self.queue_size -= 1
|
||||
await task
|
||||
await asyncio.sleep(0.01) # Yield control to event loop
|
||||
@ -1,345 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.aqlm import (
|
||||
dequantize_weight,
|
||||
generic_dequantize_gemm,
|
||||
get_int_dtype,
|
||||
optimized_dequantize_gemm,
|
||||
)
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
|
||||
|
||||
def torch_mult(
|
||||
# [..., in_features]
|
||||
input: torch.Tensor,
|
||||
weights: torch.Tensor,
|
||||
# [num_out_groups, 1, 1, 1]
|
||||
scales: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
output = F.linear(input, weights)
|
||||
return output
|
||||
|
||||
|
||||
def dequant_out_scale(
|
||||
# [..., in_features]
|
||||
input: torch.Tensor,
|
||||
# [num_out_groups, num_in_groups, num_codebooks]
|
||||
codes: torch.IntTensor,
|
||||
# [num_codebooks, codebook_size, out_group_size, in_group_size]
|
||||
codebooks: torch.Tensor,
|
||||
# [num_out_groups, 1, 1, 1]
|
||||
scales: torch.Tensor,
|
||||
output_partition_sizes: torch.IntTensor,
|
||||
bias: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
|
||||
|
||||
if bias is None:
|
||||
output = F.linear(input, weights, bias)
|
||||
orig_shape = output.shape
|
||||
flattened_output = output.view(-1, output.size(-1))
|
||||
f_scales = scales.view(-1, scales.shape[0])
|
||||
b_scales = f_scales.expand(flattened_output.shape[0], -1)
|
||||
flattened_output *= b_scales
|
||||
return flattened_output.view(orig_shape)
|
||||
else:
|
||||
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
|
||||
weights *= b_scales
|
||||
return F.linear(input, weights, bias)
|
||||
|
||||
|
||||
def dequant_weight_scale(
|
||||
# [..., in_features]
|
||||
input: torch.Tensor,
|
||||
# [num_out_groups, num_in_groups, num_codebooks]
|
||||
codes: torch.IntTensor,
|
||||
# [num_codebooks, codebook_size, out_group_size, in_group_size]
|
||||
codebooks: torch.Tensor,
|
||||
# [num_out_groups, 1, 1, 1]
|
||||
scales: torch.Tensor,
|
||||
output_partition_sizes: torch.IntTensor,
|
||||
bias: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
|
||||
|
||||
b_scales = scales.view(scales.shape[:-3] + (-1,)).expand(-1, weights.shape[1])
|
||||
weights *= b_scales
|
||||
return F.linear(input, weights, bias)
|
||||
|
||||
|
||||
def dequant_no_scale(
|
||||
# [..., in_features]
|
||||
input: torch.Tensor,
|
||||
# [num_out_groups, num_in_groups, num_codebooks]
|
||||
codes: torch.IntTensor,
|
||||
# [num_codebooks, codebook_size, out_group_size, in_group_size]
|
||||
codebooks: torch.Tensor,
|
||||
# [num_out_groups, 1, 1, 1]
|
||||
scales: torch.Tensor,
|
||||
output_partition_sizes: torch.IntTensor,
|
||||
bias: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes)
|
||||
|
||||
return F.linear(input, weights, bias)
|
||||
|
||||
|
||||
# Compare the optimized 1x16 and 2x8 cuda decompression/dequant kernels against
|
||||
# the generic pytorch version.
|
||||
# Just visual comparison.
|
||||
def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None:
|
||||
n = int(parts.sum().item())
|
||||
|
||||
device = torch.device("cuda:0")
|
||||
|
||||
code_range = (1 << bits) // 2
|
||||
ingroups = 8
|
||||
|
||||
codes = torch.randint(
|
||||
-code_range,
|
||||
code_range,
|
||||
size=(n, k // ingroups, nbooks),
|
||||
dtype=get_int_dtype(bits),
|
||||
device=device,
|
||||
)
|
||||
|
||||
codebooks = torch.randn(
|
||||
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
|
||||
dtype=torch.float16,
|
||||
device=device,
|
||||
)
|
||||
|
||||
count = 0
|
||||
for index in range(16):
|
||||
for i in range(8):
|
||||
for book in range(nbooks):
|
||||
codebooks[book, index, 0, i] = count * (10**book)
|
||||
count += 1
|
||||
|
||||
print("codes shape", codes.shape)
|
||||
|
||||
for i in range(16):
|
||||
for book in range(nbooks):
|
||||
codes[0, i, book] = i
|
||||
codes[0, -i, book] = i
|
||||
|
||||
weights = dequantize_weight(codes, codebooks, None)
|
||||
weights2 = ops.aqlm_dequant(codes, codebooks, parts)
|
||||
|
||||
print("weights shape:", weights.shape)
|
||||
print("weights2 shape:", weights2.shape)
|
||||
|
||||
print("weights are:", weights)
|
||||
print("weights2 are:", weights2)
|
||||
|
||||
print("first 128 weights are", weights[0, 0:128].to(torch.int32))
|
||||
print("first 128 weights2 are:", weights2[0, 0:128].to(torch.int32))
|
||||
|
||||
print("last 128 weights are", weights[0, -128:])
|
||||
print("last 128 weights2 are:", weights2[0, -128:])
|
||||
|
||||
|
||||
def main():
|
||||
parser = FlexibleArgumentParser(description="Benchmark aqlm performance.")
|
||||
|
||||
# Add arguments
|
||||
parser.add_argument(
|
||||
"--nbooks", type=int, default=1, help="Number of codebooks (default: 1)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bits",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of bits per code element (default: 16)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Run the decompression/dequant tester rather than benchmarking "
|
||||
"(default: False)",
|
||||
)
|
||||
|
||||
# Parse the arguments
|
||||
args = parser.parse_args()
|
||||
|
||||
# Extract values
|
||||
nbooks = args.nbooks
|
||||
bits = args.bits
|
||||
|
||||
if args.test:
|
||||
dequant_test(4096, torch.tensor((4096,)), nbooks, bits)
|
||||
return
|
||||
|
||||
# Otherwise, benchmark.
|
||||
methods = [
|
||||
ops.aqlm_gemm,
|
||||
dequant_out_scale,
|
||||
generic_dequantize_gemm,
|
||||
optimized_dequantize_gemm,
|
||||
dequant_weight_scale,
|
||||
torch_mult,
|
||||
dequant_no_scale,
|
||||
]
|
||||
|
||||
filename = f"./aqlm_benchmark_{nbooks}x{bits}.csv"
|
||||
print(f"writing benchmarks to file {filename}")
|
||||
with open(filename, "w") as f:
|
||||
sys.stdout = f
|
||||
|
||||
print("m | k | n | n parts", end="")
|
||||
for method in methods:
|
||||
print(f" | {method.__name__.replace('_', ' ')} (µs)", end="")
|
||||
print("")
|
||||
|
||||
# These are reasonable prefill sizes.
|
||||
ksandpartions = (
|
||||
(4096, (4096, 4096, 4096)),
|
||||
(4096, (4096,)),
|
||||
(4096, (11008, 11008)),
|
||||
(11008, (4096,)),
|
||||
)
|
||||
|
||||
# reasonable ranges for m.
|
||||
for m in [
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
8,
|
||||
10,
|
||||
12,
|
||||
14,
|
||||
16,
|
||||
24,
|
||||
32,
|
||||
48,
|
||||
52,
|
||||
56,
|
||||
64,
|
||||
96,
|
||||
112,
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
1024,
|
||||
1536,
|
||||
2048,
|
||||
3072,
|
||||
4096,
|
||||
]:
|
||||
print(f"{m}", file=sys.__stdout__)
|
||||
for ksp in ksandpartions:
|
||||
run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits, methods)
|
||||
|
||||
sys.stdout = sys.__stdout__
|
||||
|
||||
|
||||
def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, methods):
|
||||
# I didn't see visible improvements from increasing these, but feel free :)
|
||||
num_warmup_trials = 1
|
||||
num_trials = 1
|
||||
|
||||
num_calls = 100
|
||||
|
||||
# warmup.
|
||||
for method in methods:
|
||||
for _ in range(num_warmup_trials):
|
||||
run_timing(
|
||||
num_calls=num_calls,
|
||||
m=m,
|
||||
k=k,
|
||||
parts=parts,
|
||||
nbooks=nbooks,
|
||||
bits=bits,
|
||||
method=method,
|
||||
)
|
||||
|
||||
n = parts.sum().item()
|
||||
print(f"{m} | {k} | {n} | {parts.tolist()}", end="")
|
||||
|
||||
for method in methods:
|
||||
best_time_us = 1e20
|
||||
for _ in range(num_trials):
|
||||
kernel_dur_ms = run_timing(
|
||||
num_calls=num_calls,
|
||||
m=m,
|
||||
k=k,
|
||||
parts=parts,
|
||||
nbooks=nbooks,
|
||||
bits=bits,
|
||||
method=method,
|
||||
)
|
||||
|
||||
kernel_dur_us = 1000 * kernel_dur_ms
|
||||
|
||||
if kernel_dur_us < best_time_us:
|
||||
best_time_us = kernel_dur_us
|
||||
|
||||
print(f" | {kernel_dur_us:.0f}", end="")
|
||||
|
||||
print("")
|
||||
|
||||
|
||||
def run_timing(
|
||||
num_calls: int, m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, method
|
||||
) -> float:
|
||||
n = int(parts.sum().item())
|
||||
|
||||
device = torch.device("cuda:0")
|
||||
|
||||
input = torch.randn((1, m, k), dtype=torch.float16, device=device)
|
||||
|
||||
code_range = (1 << bits) // 2
|
||||
ingroups = 8
|
||||
|
||||
codes = torch.randint(
|
||||
-code_range,
|
||||
code_range,
|
||||
size=(n, k // ingroups, nbooks),
|
||||
dtype=get_int_dtype(bits),
|
||||
device=device,
|
||||
)
|
||||
|
||||
codebooks = torch.randn(
|
||||
size=(parts.shape[0] * nbooks, 1 << bits, 1, 8),
|
||||
dtype=torch.float16,
|
||||
device=device,
|
||||
)
|
||||
|
||||
scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device)
|
||||
|
||||
# for comparison to just a pytorch mult.
|
||||
weights = torch.randn((n, k), dtype=torch.float16, device=device)
|
||||
|
||||
start_event = torch.cuda.Event(enable_timing=True)
|
||||
end_event = torch.cuda.Event(enable_timing=True)
|
||||
|
||||
start_event.record()
|
||||
|
||||
if method is torch_mult:
|
||||
for i in range(num_calls):
|
||||
torch_mult(input, weights, scales)
|
||||
else:
|
||||
for i in range(num_calls):
|
||||
method(input, codes, codebooks, scales, parts, None)
|
||||
|
||||
end_event.record()
|
||||
end_event.synchronize()
|
||||
|
||||
dur_ms = start_event.elapsed_time(end_event) / num_calls
|
||||
return dur_ms
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main())
|
||||
@ -80,6 +80,11 @@ def bench_run(
|
||||
a, score, topk, renormalize=False
|
||||
)
|
||||
|
||||
ab_strides1 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
|
||||
ab_strides2 = torch.full((num_experts,), n, device="cuda", dtype=torch.int64)
|
||||
c_strides1 = torch.full((num_experts,), 2 * n, device="cuda", dtype=torch.int64)
|
||||
c_strides2 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
|
||||
|
||||
def run_triton_moe(
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
@ -111,6 +116,10 @@ def bench_run(
|
||||
w2: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
ab_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor,
|
||||
c_strides1: torch.Tensor,
|
||||
c_strides2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
per_act_token: bool,
|
||||
@ -125,6 +134,10 @@ def bench_run(
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
ab_strides1,
|
||||
ab_strides2,
|
||||
c_strides1,
|
||||
c_strides2,
|
||||
per_act_token,
|
||||
a1_scale=None,
|
||||
)
|
||||
@ -136,6 +149,10 @@ def bench_run(
|
||||
w2_q: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
ab_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor,
|
||||
c_strides1: torch.Tensor,
|
||||
c_strides2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
):
|
||||
@ -150,6 +167,10 @@ def bench_run(
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
ab_strides1,
|
||||
ab_strides2,
|
||||
c_strides1,
|
||||
c_strides2,
|
||||
per_act_token,
|
||||
a1_scale=None,
|
||||
)
|
||||
@ -194,6 +215,10 @@ def bench_run(
|
||||
w2_q,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
ab_strides1,
|
||||
ab_strides2,
|
||||
c_strides1,
|
||||
c_strides2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
)
|
||||
@ -231,6 +256,10 @@ def bench_run(
|
||||
"w1_scale": w1_scale,
|
||||
"w2_scale": w2_scale,
|
||||
"per_act_token": per_act_token,
|
||||
"ab_strides1": ab_strides1,
|
||||
"ab_strides2": ab_strides2,
|
||||
"c_strides1": c_strides1,
|
||||
"c_strides2": c_strides2,
|
||||
# cuda graph params
|
||||
"cutlass_graph": cutlass_graph,
|
||||
"triton_graph": triton_graph,
|
||||
@ -289,6 +318,10 @@ def bench_run(
|
||||
w2_q,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
ab_strides1,
|
||||
ab_strides2,
|
||||
c_strides1,
|
||||
c_strides2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
per_act_token,
|
||||
@ -297,7 +330,7 @@ def bench_run(
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, per_act_token, num_runs)", # noqa: E501
|
||||
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, ab_strides1, ab_strides2, c_strides1, c_strides2, topk_weights, topk_ids, per_act_token, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
|
||||
@ -236,6 +236,7 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
|
||||
a=bt.a,
|
||||
c=None,
|
||||
b_q_weight=w_q,
|
||||
b_bias=None,
|
||||
b_scales=w_s,
|
||||
global_scale=None,
|
||||
b_zeros=w_zp,
|
||||
@ -252,28 +253,7 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
|
||||
else:
|
||||
assert bt.a.dtype == torch.int8
|
||||
assert bt.wtype == scalar_types.uint4b8
|
||||
|
||||
if bt.w_ch_s is not None:
|
||||
s_ch = bt.w_ch_s.to(torch.float32)
|
||||
else:
|
||||
s_ch = torch.ones(bt.w_ref.shape[1], dtype=torch.float32, device=device)
|
||||
|
||||
if bt.w_tok_s is not None:
|
||||
s_tok = bt.w_tok_s.to(torch.float32)
|
||||
else:
|
||||
s_tok = torch.ones(bt.a.shape[0], dtype=torch.float32, device=device)
|
||||
|
||||
fn = lambda: ops.marlin_qqq_gemm(
|
||||
a=bt.a,
|
||||
b_q_weight=w_q,
|
||||
s_group=w_s,
|
||||
s_tok=s_tok,
|
||||
s_ch=s_ch,
|
||||
workspace=workspace.scratch,
|
||||
size_m=bt.a.shape[0],
|
||||
size_n=bt.w_ref.shape[1],
|
||||
size_k=bt.w_ref.shape[0],
|
||||
)
|
||||
raise NotImplementedError("QQQ is not supported anymore")
|
||||
|
||||
return fn
|
||||
|
||||
@ -304,6 +284,25 @@ def machete_create_bench_fn(
|
||||
)
|
||||
|
||||
|
||||
def cutlass_w4a8_create_bench_fn(
|
||||
bt: BenchmarkTensors, out_type=torch.dtype, schedule=None
|
||||
) -> Callable:
|
||||
w_q = bt.w_q.t().contiguous().t() # make col major
|
||||
w_q = ops.cutlass_encode_and_reorder_int4b(w_q)
|
||||
# expects fp8 scales
|
||||
w_s = ops.cutlass_pack_scale_fp8(bt.w_g_s.to(torch.float8_e4m3fn))
|
||||
|
||||
return lambda: ops.cutlass_w4a8_mm(
|
||||
a=bt.a,
|
||||
b_q=w_q,
|
||||
b_group_scales=w_s,
|
||||
b_group_size=bt.group_size,
|
||||
b_channel_scales=bt.w_ch_s,
|
||||
a_token_scales=bt.w_tok_s,
|
||||
maybe_schedule=schedule,
|
||||
)
|
||||
|
||||
|
||||
# impl
|
||||
|
||||
# bench
|
||||
@ -405,6 +404,20 @@ def bench(
|
||||
)
|
||||
)
|
||||
|
||||
# cutlass w4a8
|
||||
if types.act_type == torch.float8_e4m3fn and group_size == 128:
|
||||
timers.append(
|
||||
bench_fns(
|
||||
label,
|
||||
sub_label,
|
||||
f"cutlass w4a8 ({name_type_string})",
|
||||
[
|
||||
cutlass_w4a8_create_bench_fn(bt, out_type=types.output_type)
|
||||
for bt in benchmark_tensors
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
if sweep_schedules:
|
||||
global _SWEEP_SCHEDULES_RESULTS
|
||||
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from contextlib import nullcontext
|
||||
from datetime import datetime
|
||||
@ -429,7 +430,6 @@ class BenchmarkWorker:
|
||||
hidden_size,
|
||||
topk,
|
||||
dtype_str,
|
||||
is_marlin=False,
|
||||
)
|
||||
else:
|
||||
config = op_config[min(op_config.keys(), key=lambda x: abs(x - num_tokens))]
|
||||
@ -542,6 +542,7 @@ def save_configs(
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
block_quant_shape: list[int],
|
||||
save_dir: str,
|
||||
) -> None:
|
||||
dtype_str = get_config_dtype_str(
|
||||
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
|
||||
@ -552,7 +553,8 @@ def save_configs(
|
||||
filename = get_config_file_name(
|
||||
num_experts, shard_intermediate_size // 2, dtype_str, block_quant_shape
|
||||
)
|
||||
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
filename = os.path.join(save_dir, filename)
|
||||
print(f"Writing best config to {filename}...")
|
||||
with open(filename, "w") as f:
|
||||
json.dump(configs, f, indent=4)
|
||||
@ -707,6 +709,7 @@ def main(args: argparse.Namespace):
|
||||
use_fp8_w8a8,
|
||||
use_int8_w8a16,
|
||||
block_quant_shape,
|
||||
args.save_dir,
|
||||
)
|
||||
end = time.time()
|
||||
print(f"Tuning took {end - start:.2f} seconds")
|
||||
@ -748,6 +751,9 @@ if __name__ == "__main__":
|
||||
"--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
|
||||
)
|
||||
parser.add_argument("--use-deep-gemm", action="store_true")
|
||||
parser.add_argument(
|
||||
"--save-dir", type=str, default="./", help="Directory to save tuned results"
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0)
|
||||
parser.add_argument("--batch-size", type=int, nargs="+", required=False)
|
||||
parser.add_argument("--tune", action="store_true")
|
||||
|
||||
77
benchmarks/kernels/benchmark_silu_mul_fp8_quant.py
Normal file
77
benchmarks/kernels/benchmark_silu_mul_fp8_quant.py
Normal file
@ -0,0 +1,77 @@
|
||||
#!/usr/bin/env python3
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import time
|
||||
|
||||
import torch
|
||||
|
||||
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
|
||||
silu_mul_fp8_quant_deep_gemm,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
|
||||
def benchmark(E, T, H, G=128, runs=50):
|
||||
current_platform.seed_everything(42)
|
||||
y = torch.randn((E, T, 2 * H), dtype=torch.bfloat16, device="cuda")
|
||||
tokens_per_expert = torch.randint(
|
||||
T // 2, T, size=(E,), dtype=torch.int32, device="cuda"
|
||||
)
|
||||
|
||||
# Warmup
|
||||
for _ in range(10):
|
||||
silu_mul_fp8_quant_deep_gemm(y, tokens_per_expert, group_size=G)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
# Benchmark
|
||||
torch.cuda.synchronize()
|
||||
start = time.perf_counter()
|
||||
for _ in range(runs):
|
||||
silu_mul_fp8_quant_deep_gemm(y, tokens_per_expert, group_size=G)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
avg_time = (time.perf_counter() - start) / runs * 1000
|
||||
|
||||
# Calculate actual work done (only count valid tokens)
|
||||
actual_tokens = tokens_per_expert.sum().item()
|
||||
actual_elements = actual_tokens * H
|
||||
|
||||
# GFLOPS: operations per element = exp + 3 muls + 1 div + quantization ops ≈ 8 ops
|
||||
ops_per_element = 8
|
||||
total_ops = actual_elements * ops_per_element
|
||||
gflops = total_ops / (avg_time / 1000) / 1e9
|
||||
|
||||
# Memory bandwidth: bfloat16 inputs (2 bytes), fp8 output (1 byte), scales (4 bytes)
|
||||
input_bytes = actual_tokens * 2 * H * 2 # 2*H bfloat16 inputs
|
||||
output_bytes = actual_tokens * H * 1 # H fp8 outputs
|
||||
scale_bytes = actual_tokens * (H // G) * 4 # scales in float32
|
||||
total_bytes = input_bytes + output_bytes + scale_bytes
|
||||
memory_bw = total_bytes / (avg_time / 1000) / 1e9
|
||||
|
||||
return avg_time, gflops, memory_bw
|
||||
|
||||
|
||||
configs = [
|
||||
(8, 32, 1024),
|
||||
(16, 64, 2048),
|
||||
(32, 128, 4096),
|
||||
# DeepSeekV3 Configs
|
||||
(256, 16, 7168),
|
||||
(256, 32, 7168),
|
||||
(256, 64, 7168),
|
||||
(256, 128, 7168),
|
||||
(256, 256, 7168),
|
||||
(256, 512, 7168),
|
||||
(256, 1024, 7168),
|
||||
]
|
||||
|
||||
print(f"GPU: {torch.cuda.get_device_name()}")
|
||||
print(f"{'Config':<20} {'Time(ms)':<10} {'GFLOPS':<10} {'GB/s':<10}")
|
||||
print("-" * 50)
|
||||
|
||||
for E, T, H in configs:
|
||||
try:
|
||||
time_ms, gflops, gbps = benchmark(E, T, H)
|
||||
print(f"E={E:3d},T={T:4d},H={H:4d} {time_ms:8.3f} {gflops:8.1f} {gbps:8.1f}")
|
||||
except Exception:
|
||||
print(f"E={E:3d},T={T:4d},H={H:4d} FAILED")
|
||||
@ -3,16 +3,17 @@
|
||||
|
||||
import csv
|
||||
import os
|
||||
import random
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import flashinfer
|
||||
import torch
|
||||
|
||||
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
|
||||
from vllm.utils import round_up
|
||||
|
||||
# KV Cache Layout for TRT-LLM
|
||||
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
|
||||
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
|
||||
FP8_DTYPE = torch.float8_e4m3fn
|
||||
FP4_DTYPE = torch.uint8
|
||||
|
||||
|
||||
def to_float8(x, dtype=torch.float8_e4m3fn):
|
||||
@ -26,65 +27,106 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
|
||||
|
||||
@torch.no_grad()
|
||||
def benchmark_decode(
|
||||
num_seqs,
|
||||
max_seq_len,
|
||||
page_size=16,
|
||||
dtype=torch.bfloat16,
|
||||
kv_layout="HND",
|
||||
num_kv_heads=8,
|
||||
kv_cache_dtype="auto",
|
||||
head_dim=128,
|
||||
warmup=10,
|
||||
trials=20,
|
||||
dtype: torch.dtype,
|
||||
quant_dtypes: tuple[
|
||||
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
|
||||
],
|
||||
batch_size: int,
|
||||
max_seq_len: int,
|
||||
num_heads: tuple[int, int] = (64, 8),
|
||||
head_size: int = 128,
|
||||
kv_layout: str = "HND",
|
||||
block_size: int = 16,
|
||||
warmup: int = 10,
|
||||
trials: int = 20,
|
||||
):
|
||||
torch.set_default_device("cuda")
|
||||
device = "cuda"
|
||||
torch.manual_seed(0)
|
||||
|
||||
HEAD_GRP_SIZE = 8
|
||||
MAX_SEQ_LEN = max_seq_len
|
||||
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtypes
|
||||
q_quant_dtype = q_quant_dtype or dtype
|
||||
kv_quant_dtype = kv_quant_dtype or dtype
|
||||
o_quant_dtype = o_quant_dtype or dtype
|
||||
|
||||
num_qo_heads, num_kv_heads = num_heads
|
||||
assert num_qo_heads % num_kv_heads == 0
|
||||
|
||||
sm_scale = float(1.0 / (head_size**0.5))
|
||||
|
||||
# large number to reduce kv_cache reuse
|
||||
NUM_BLOCKS = int(256000 / page_size)
|
||||
NUM_BLOCKS = int(256000 / block_size)
|
||||
|
||||
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8, device=device)
|
||||
kv_cache_shape = None
|
||||
if kv_layout == "NHD":
|
||||
kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size)
|
||||
elif kv_layout == "HND":
|
||||
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size)
|
||||
else:
|
||||
raise ValueError(f"Invalid kv_layout: {kv_layout}")
|
||||
|
||||
# For decode, batch_size is num_decode_token
|
||||
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
|
||||
sm_scale = float(1.0 / (head_dim**0.5))
|
||||
q = torch.randn(num_seqs, num_qo_heads, head_dim, device=device, dtype=dtype)
|
||||
kv_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
|
||||
# Always using 1.0 scale to reflect the real perf in benchmarking
|
||||
q_scale = 1.0
|
||||
ref_query = torch.randn(batch_size, num_qo_heads, head_size, dtype=dtype)
|
||||
if q_quant_dtype == FP8_DTYPE:
|
||||
query, _ = to_float8(ref_query)
|
||||
else:
|
||||
query = ref_query
|
||||
|
||||
max_kv_len = max(kv_lens)
|
||||
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int, device=device)
|
||||
max_num_blocks_per_seq = (max_kv_len + page_size - 1) // page_size
|
||||
kv_lens = torch.randint(1, max_seq_len, (batch_size,), dtype=torch.int32)
|
||||
kv_lens[-1] = max_seq_len
|
||||
|
||||
block_tables = torch.randint(
|
||||
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
|
||||
)
|
||||
seq_lens = kv_lens
|
||||
max_seq_len = torch.max(seq_lens).item()
|
||||
|
||||
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
|
||||
kv_cache = torch.randn(size=kv_cache_shape, device=device, dtype=dtype)
|
||||
# Always using 1.0 scale to reflect the real perf in benchmarking
|
||||
k_scale = v_scale = 1.0
|
||||
ref_kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
|
||||
if kv_quant_dtype == FP8_DTYPE:
|
||||
kv_cache, _ = to_float8(ref_kv_cache)
|
||||
else:
|
||||
kv_cache = ref_kv_cache
|
||||
|
||||
if kv_cache_dtype.startswith("fp8"):
|
||||
kv_cache, _ = to_float8(kv_cache)
|
||||
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
|
||||
block_tables = torch.randint(
|
||||
0, NUM_BLOCKS, (batch_size, max_num_blocks_per_seq), dtype=torch.int32
|
||||
)
|
||||
kv_indptr = [0]
|
||||
kv_indices = []
|
||||
kv_last_page_lens = []
|
||||
for i in range(batch_size):
|
||||
seq_len = seq_lens[i]
|
||||
assert seq_len > 0
|
||||
num_blocks = (seq_len + block_size - 1) // block_size
|
||||
kv_indices.extend(block_tables[i, :num_blocks])
|
||||
kv_indptr.append(kv_indptr[-1] + num_blocks)
|
||||
kv_last_page_len = seq_len % block_size
|
||||
if kv_last_page_len == 0:
|
||||
kv_last_page_len = block_size
|
||||
kv_last_page_lens.append(kv_last_page_len)
|
||||
|
||||
output_trtllm = torch.empty(q.shape, dtype=dtype)
|
||||
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
|
||||
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
|
||||
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
|
||||
workspace_buffer = torch.zeros(1024 * 1024 * 1024, dtype=torch.int8)
|
||||
|
||||
# Benchmark TRT decode
|
||||
def trt_decode():
|
||||
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
|
||||
q,
|
||||
kv_cache,
|
||||
workspace_buffer,
|
||||
block_tables,
|
||||
kv_lens_tensor,
|
||||
max_kv_len,
|
||||
bmm1_scale=k_scale * sm_scale,
|
||||
bmm2_scale=v_scale,
|
||||
out=output_trtllm,
|
||||
)
|
||||
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
|
||||
workspace_buffer,
|
||||
kv_layout,
|
||||
use_tensor_cores=True,
|
||||
)
|
||||
wrapper.plan(
|
||||
kv_indptr,
|
||||
kv_indices,
|
||||
kv_last_page_lens,
|
||||
num_qo_heads,
|
||||
num_kv_heads,
|
||||
head_size,
|
||||
block_size,
|
||||
"NONE",
|
||||
sm_scale=sm_scale,
|
||||
q_data_type=dtype,
|
||||
kv_data_type=dtype,
|
||||
)
|
||||
|
||||
def time_fn(fn, warmup=10, trials=20):
|
||||
torch.cuda.synchronize()
|
||||
@ -101,74 +143,72 @@ def benchmark_decode(
|
||||
times.append(start.elapsed_time(end)) # ms
|
||||
return sum(times) / len(times), torch.std(torch.tensor(times))
|
||||
|
||||
# TRT Decode
|
||||
trt_mean, trt_std = time_fn(trt_decode)
|
||||
|
||||
kv_indptr = [0]
|
||||
kv_indices = []
|
||||
kv_last_page_lens = []
|
||||
for i in range(num_seqs):
|
||||
seq_len = kv_lens[i]
|
||||
assert seq_len > 0
|
||||
num_blocks = (seq_len + page_size - 1) // page_size
|
||||
kv_indices.extend(block_tables[i, :num_blocks])
|
||||
kv_indptr.append(kv_indptr[-1] + num_blocks)
|
||||
kv_last_page_len = seq_len % page_size
|
||||
if kv_last_page_len == 0:
|
||||
kv_last_page_len = page_size
|
||||
kv_last_page_lens.append(kv_last_page_len)
|
||||
|
||||
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
|
||||
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
|
||||
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
|
||||
|
||||
output_baseline = torch.empty(q.shape, dtype=dtype)
|
||||
|
||||
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
|
||||
workspace_buffer,
|
||||
kv_layout,
|
||||
use_tensor_cores=((num_qo_heads // num_kv_heads) > 4),
|
||||
)
|
||||
|
||||
wrapper.plan(
|
||||
kv_indptr,
|
||||
kv_indices,
|
||||
kv_last_page_lens,
|
||||
num_qo_heads,
|
||||
num_kv_heads,
|
||||
head_dim,
|
||||
page_size,
|
||||
"NONE",
|
||||
q_data_type=dtype,
|
||||
kv_data_type=torch.float8_e4m3fn if kv_cache_dtype.startswith("fp8") else dtype,
|
||||
)
|
||||
o_scale = 1.0
|
||||
o_sf_scale = None
|
||||
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
|
||||
if o_quant_dtype == FP4_DTYPE:
|
||||
o_sf_scale = 500.0
|
||||
output_trtllm = flashinfer.utils.FP4Tensor(
|
||||
torch.empty(query.shape[:-1] + (query.shape[-1] // 2,), dtype=torch.uint8),
|
||||
torch.empty(
|
||||
(
|
||||
round_up(query.shape[0], 128),
|
||||
round_up(query.shape[1] * query.shape[2] // 16, 4),
|
||||
),
|
||||
dtype=torch.float8_e4m3fn,
|
||||
),
|
||||
)
|
||||
else:
|
||||
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
|
||||
|
||||
def baseline_decode():
|
||||
return wrapper.run(q, kv_cache, sm_scale, k_scale, v_scale, output_baseline)
|
||||
return wrapper.run(
|
||||
ref_query,
|
||||
ref_kv_cache,
|
||||
k_scale=k_scale,
|
||||
v_scale=v_scale,
|
||||
out=output_baseline,
|
||||
)
|
||||
|
||||
def trtllm_decode():
|
||||
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
|
||||
query=query,
|
||||
kv_cache=kv_cache,
|
||||
workspace_buffer=workspace_buffer,
|
||||
block_tables=block_tables,
|
||||
seq_lens=seq_lens,
|
||||
max_seq_len=max_seq_len,
|
||||
bmm1_scale=q_scale * k_scale * sm_scale,
|
||||
bmm2_scale=v_scale / o_scale,
|
||||
o_sf_scale=o_sf_scale,
|
||||
out=output_trtllm,
|
||||
)
|
||||
|
||||
baseline_mean, baseline_std = time_fn(baseline_decode)
|
||||
trtllm_mean, trtllm_std = time_fn(trtllm_decode)
|
||||
|
||||
# Calculate percentage speedup (positive means TRT is faster)
|
||||
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
|
||||
speedup_percent = (baseline_mean - trtllm_mean) / baseline_mean
|
||||
|
||||
print(
|
||||
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.3f}\t{trt_std.item():.3f}"
|
||||
f"\t{batch_size}\t{max_seq_len}\t{trtllm_mean:.3f}\t{trtllm_std.item():.3f}"
|
||||
f"\t{baseline_mean:.3f}\t{baseline_std.item():.3f}\t{speedup_percent:.3f}"
|
||||
)
|
||||
|
||||
# Return results for CSV writing
|
||||
return {
|
||||
"num_seqs": num_seqs,
|
||||
"trt_mean": trt_mean,
|
||||
"trt_std": trt_std.item(),
|
||||
"batch_size": batch_size,
|
||||
"trtllm_mean": trtllm_mean,
|
||||
"trtllm_std": trtllm_std.item(),
|
||||
"baseline_mean": baseline_mean,
|
||||
"baseline_std": baseline_std.item(),
|
||||
"speedup_percent": speedup_percent,
|
||||
"q_dtype": str(dtype),
|
||||
"kv_cache_dtype": kv_cache_dtype,
|
||||
"page_size": page_size,
|
||||
"q_dtype": str(q_quant_dtype),
|
||||
"kv_cache_dtype": str(kv_quant_dtype),
|
||||
"output_dtype": str(o_quant_dtype),
|
||||
"block_size": block_size,
|
||||
"num_kv_heads": num_kv_heads,
|
||||
"head_dim": head_dim,
|
||||
"head_size": head_size,
|
||||
"max_seq_len": max_seq_len,
|
||||
}
|
||||
|
||||
@ -180,17 +220,18 @@ def write_results_to_csv(results, filename=None):
|
||||
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
|
||||
|
||||
fieldnames = [
|
||||
"num_seqs",
|
||||
"trt_mean",
|
||||
"trt_std",
|
||||
"batch_size",
|
||||
"trtllm_mean",
|
||||
"trtllm_std",
|
||||
"baseline_mean",
|
||||
"baseline_std",
|
||||
"speedup_percent",
|
||||
"q_dtype",
|
||||
"kv_cache_dtype",
|
||||
"page_size",
|
||||
"output_dtype",
|
||||
"block_size",
|
||||
"num_kv_heads",
|
||||
"head_dim",
|
||||
"head_size",
|
||||
"max_seq_len",
|
||||
]
|
||||
|
||||
@ -209,45 +250,43 @@ def write_results_to_csv(results, filename=None):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
|
||||
batch_sizes = [1, 4, 8, 16, 32, 64, 128, 256]
|
||||
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
|
||||
all_results = []
|
||||
|
||||
print(
|
||||
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, "
|
||||
"output_dtype: bfloat16"
|
||||
)
|
||||
print(
|
||||
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
|
||||
"baseline_std\tspeedup_percent"
|
||||
)
|
||||
for max_seq_len in max_seq_lens:
|
||||
for bs in num_seqs:
|
||||
result = benchmark_decode(
|
||||
bs,
|
||||
max_seq_len,
|
||||
dtype=torch.bfloat16,
|
||||
kv_cache_dtype="auto",
|
||||
)
|
||||
all_results.append(result)
|
||||
dtype = torch.bfloat16
|
||||
quant_dtypes = [
|
||||
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
|
||||
(None, None, None),
|
||||
(None, FP8_DTYPE, None),
|
||||
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
|
||||
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
|
||||
]
|
||||
|
||||
print(
|
||||
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: fp8, "
|
||||
"output_dtype: bfloat16"
|
||||
)
|
||||
print(
|
||||
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
|
||||
"baseline_std\tspeedup_percent"
|
||||
)
|
||||
for max_seq_len in max_seq_lens:
|
||||
for bs in num_seqs:
|
||||
result = benchmark_decode(
|
||||
bs,
|
||||
max_seq_len,
|
||||
dtype=torch.bfloat16,
|
||||
kv_cache_dtype="fp8",
|
||||
)
|
||||
all_results.append(result)
|
||||
for quant_dtype in quant_dtypes:
|
||||
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtype
|
||||
q_quant_dtype = q_quant_dtype or dtype
|
||||
kv_quant_dtype = kv_quant_dtype or dtype
|
||||
o_quant_dtype = o_quant_dtype or dtype
|
||||
|
||||
print(
|
||||
f"Running benchmark for q_dtype = {q_quant_dtype}, "
|
||||
f"kv_cache_dtype: {kv_quant_dtype}, "
|
||||
f"output_dtype: {o_quant_dtype}"
|
||||
)
|
||||
print(
|
||||
"\tbatch_size\tmax_seq_len\ttrtllm_mean\ttrtllm_std\tbaseline_mean\t"
|
||||
"baseline_std\tspeedup_percent"
|
||||
)
|
||||
for max_seq_len in max_seq_lens:
|
||||
for bs in batch_sizes:
|
||||
result = benchmark_decode(
|
||||
dtype=dtype,
|
||||
quant_dtypes=quant_dtype,
|
||||
batch_size=bs,
|
||||
max_seq_len=max_seq_len,
|
||||
)
|
||||
all_results.append(result)
|
||||
|
||||
# Write all results to CSV
|
||||
write_results_to_csv(all_results)
|
||||
|
||||
@ -3,16 +3,17 @@
|
||||
|
||||
import csv
|
||||
import os
|
||||
import random
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import flashinfer
|
||||
import torch
|
||||
|
||||
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
|
||||
from vllm.utils import round_up
|
||||
|
||||
# KV Cache Layout for TRT-LLM
|
||||
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
|
||||
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
|
||||
FP8_DTYPE = torch.float8_e4m3fn
|
||||
FP4_DTYPE = torch.uint8
|
||||
|
||||
|
||||
def to_float8(x, dtype=torch.float8_e4m3fn):
|
||||
@ -26,84 +27,100 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
|
||||
|
||||
@torch.no_grad()
|
||||
def benchmark_prefill(
|
||||
num_seqs,
|
||||
max_seq_len,
|
||||
page_size=16,
|
||||
dtype=torch.bfloat16,
|
||||
kv_layout="HND",
|
||||
num_kv_heads=8,
|
||||
kv_cache_dtype="auto",
|
||||
head_dim=128,
|
||||
warmup=10,
|
||||
trials=20,
|
||||
dtype: torch.dtype,
|
||||
quant_dtypes: tuple[
|
||||
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
|
||||
],
|
||||
batch_size: int,
|
||||
max_seq_len: int,
|
||||
num_heads: tuple[int, int] = (64, 8),
|
||||
head_size: int = 128,
|
||||
kv_layout: str = "HND",
|
||||
block_size: int = 16,
|
||||
warmup: int = 10,
|
||||
trials: int = 20,
|
||||
):
|
||||
torch.set_default_device("cuda")
|
||||
torch.manual_seed(0)
|
||||
|
||||
HEAD_GRP_SIZE = 8
|
||||
MAX_SEQ_LEN = max_seq_len
|
||||
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtypes
|
||||
q_quant_dtype = q_quant_dtype or dtype
|
||||
kv_quant_dtype = kv_quant_dtype or dtype
|
||||
o_quant_dtype = o_quant_dtype or dtype
|
||||
|
||||
max_q_len = max_kv_len = max_seq_len
|
||||
|
||||
num_qo_heads, num_kv_heads = num_heads
|
||||
assert num_qo_heads % num_kv_heads == 0
|
||||
|
||||
sm_scale = float(1.0 / (head_size**0.5))
|
||||
|
||||
# large number to reduce kv_cache reuse
|
||||
NUM_BLOCKS = int(256000 / page_size)
|
||||
NUM_BLOCKS = int(256000 / block_size)
|
||||
|
||||
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8)
|
||||
kv_cache_shape = None
|
||||
if kv_layout == "NHD":
|
||||
kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size)
|
||||
elif kv_layout == "HND":
|
||||
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size)
|
||||
else:
|
||||
raise ValueError(f"Invalid kv_layout: {kv_layout}")
|
||||
|
||||
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
|
||||
sm_scale = float(1.0 / (head_dim**0.5))
|
||||
|
||||
q_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
|
||||
q_lens[-1] = MAX_SEQ_LEN
|
||||
max_q_len = max(q_lens)
|
||||
q_lens = torch.randint(1, max_q_len, (batch_size,), dtype=torch.int32)
|
||||
q_lens[-1] = max_q_len
|
||||
q_indptr = torch.cat(
|
||||
[
|
||||
torch.tensor([0], dtype=torch.int32),
|
||||
torch.cumsum(
|
||||
torch.tensor(q_lens, dtype=torch.int32), dim=0, dtype=torch.int32
|
||||
),
|
||||
torch.cumsum(q_lens, dim=0, dtype=torch.int32),
|
||||
]
|
||||
)
|
||||
q = torch.randn(sum(q_lens), num_qo_heads, head_dim, dtype=dtype)
|
||||
|
||||
kv_lens = [random.randint(0, MAX_SEQ_LEN) for _ in range(num_seqs)]
|
||||
kv_lens[-1] = MAX_SEQ_LEN
|
||||
|
||||
seq_lens = [q_len + kv_len for q_len, kv_len in zip(q_lens, kv_lens)]
|
||||
max_seq_len = max(seq_lens)
|
||||
seq_lens_tensor = torch.tensor(seq_lens, dtype=torch.int32)
|
||||
|
||||
max_num_blocks_per_seq = (max_seq_len + page_size - 1) // page_size
|
||||
block_tables = torch.randint(
|
||||
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
|
||||
# Always using 1.0 scale to reflect the real perf in benchmarking
|
||||
q_scale = 1.0
|
||||
ref_query = torch.randn(
|
||||
torch.sum(q_lens).item(), num_qo_heads, head_size, dtype=dtype
|
||||
)
|
||||
if q_quant_dtype == FP8_DTYPE:
|
||||
query, _ = to_float8(ref_query)
|
||||
else:
|
||||
query = ref_query
|
||||
|
||||
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
|
||||
kv_cache = torch.randn(size=kv_cache_shape, dtype=dtype)
|
||||
kv_lens = torch.randint(0, max_kv_len, (batch_size,), dtype=torch.int32)
|
||||
kv_lens[-1] = max_kv_len
|
||||
|
||||
seq_lens = kv_lens + q_lens
|
||||
max_seq_len = torch.max(seq_lens).item()
|
||||
|
||||
# Always using 1.0 scale to reflect the real perf in benchmarking
|
||||
k_scale = v_scale = 1.0
|
||||
ref_kv_cache = torch.randn(kv_cache_shape, dtype=dtype)
|
||||
if kv_quant_dtype == FP8_DTYPE:
|
||||
kv_cache, _ = to_float8(ref_kv_cache)
|
||||
else:
|
||||
kv_cache = ref_kv_cache
|
||||
|
||||
if kv_cache_dtype.startswith("fp8"):
|
||||
kv_cache, _ = to_float8(kv_cache)
|
||||
|
||||
output_trtllm = torch.empty(q.shape, dtype=dtype)
|
||||
|
||||
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
|
||||
block_tables = torch.randint(
|
||||
0, NUM_BLOCKS, (batch_size, max_num_blocks_per_seq), dtype=torch.int32
|
||||
)
|
||||
kv_indptr = [0]
|
||||
kv_indices = []
|
||||
kv_last_page_lens = []
|
||||
for i in range(num_seqs):
|
||||
for i in range(batch_size):
|
||||
seq_len = seq_lens[i]
|
||||
assert seq_len > 0
|
||||
num_blocks = (seq_len + page_size - 1) // page_size
|
||||
num_blocks = (seq_len + block_size - 1) // block_size
|
||||
kv_indices.extend(block_tables[i, :num_blocks])
|
||||
kv_indptr.append(kv_indptr[-1] + num_blocks)
|
||||
kv_last_page_len = seq_len % page_size
|
||||
kv_last_page_len = seq_len % block_size
|
||||
if kv_last_page_len == 0:
|
||||
kv_last_page_len = page_size
|
||||
kv_last_page_len = block_size
|
||||
kv_last_page_lens.append(kv_last_page_len)
|
||||
|
||||
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
|
||||
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
|
||||
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
|
||||
|
||||
output_baseline = torch.empty(q.shape, dtype=dtype)
|
||||
workspace_buffer = torch.zeros(1024 * 1024 * 1024, dtype=torch.int8)
|
||||
|
||||
wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(
|
||||
workspace_buffer, kv_layout
|
||||
@ -115,12 +132,12 @@ def benchmark_prefill(
|
||||
kv_last_page_lens,
|
||||
num_qo_heads,
|
||||
num_kv_heads,
|
||||
head_dim,
|
||||
page_size,
|
||||
head_size,
|
||||
block_size,
|
||||
causal=True,
|
||||
sm_scale=sm_scale,
|
||||
q_data_type=dtype,
|
||||
kv_data_type=kv_cache.dtype,
|
||||
kv_data_type=dtype,
|
||||
)
|
||||
|
||||
def time_fn(fn, warmup=10, trials=20):
|
||||
@ -138,52 +155,76 @@ def benchmark_prefill(
|
||||
times.append(start.elapsed_time(end)) # ms
|
||||
return sum(times) / len(times), torch.std(torch.tensor(times))
|
||||
|
||||
o_scale = 1.0
|
||||
o_sf_scale = None
|
||||
output_baseline = torch.empty(ref_query.shape, dtype=dtype)
|
||||
if o_quant_dtype == FP4_DTYPE:
|
||||
o_sf_scale = 500.0
|
||||
output_trtllm = flashinfer.utils.FP4Tensor(
|
||||
torch.empty(query.shape[:-1] + (query.shape[-1] // 2,), dtype=torch.uint8),
|
||||
torch.empty(
|
||||
(
|
||||
round_up(query.shape[0], 128),
|
||||
round_up(query.shape[1] * query.shape[2] // 16, 4),
|
||||
),
|
||||
dtype=torch.float8_e4m3fn,
|
||||
),
|
||||
)
|
||||
else:
|
||||
output_trtllm = torch.empty(query.shape, dtype=o_quant_dtype)
|
||||
|
||||
def baseline_prefill():
|
||||
return wrapper.run(
|
||||
q, kv_cache, k_scale=k_scale, v_scale=v_scale, out=output_baseline
|
||||
ref_query,
|
||||
ref_kv_cache,
|
||||
k_scale=k_scale,
|
||||
v_scale=v_scale,
|
||||
out=output_baseline,
|
||||
)
|
||||
|
||||
def trt_prefill():
|
||||
def trtllm_prefill():
|
||||
return flashinfer.prefill.trtllm_batch_context_with_kv_cache(
|
||||
query=q,
|
||||
query=query,
|
||||
kv_cache=kv_cache,
|
||||
workspace_buffer=workspace_buffer,
|
||||
block_tables=block_tables,
|
||||
seq_lens=seq_lens_tensor,
|
||||
seq_lens=seq_lens,
|
||||
max_q_len=max_q_len,
|
||||
max_kv_len=max_seq_len,
|
||||
bmm1_scale=k_scale * sm_scale,
|
||||
bmm2_scale=v_scale,
|
||||
batch_size=num_seqs,
|
||||
bmm1_scale=q_scale * k_scale * sm_scale,
|
||||
bmm2_scale=v_scale / o_scale,
|
||||
batch_size=batch_size,
|
||||
cum_seq_lens_q=q_indptr,
|
||||
cum_seq_lens_kv=kv_indptr,
|
||||
o_sf_scale=o_sf_scale,
|
||||
out=output_trtllm,
|
||||
)
|
||||
|
||||
trt_mean, trt_std = time_fn(trt_prefill)
|
||||
baseline_mean, baseline_std = time_fn(baseline_prefill)
|
||||
trtllm_mean, trtllm_std = time_fn(trtllm_prefill)
|
||||
|
||||
# Calculate percentage speedup (positive means TRT is faster)
|
||||
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
|
||||
speedup_percent = (baseline_mean - trtllm_mean) / baseline_mean
|
||||
|
||||
print(
|
||||
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.5f}\t{trt_std.item():.5f}"
|
||||
f"\t{baseline_mean:.5f}\t{baseline_std.item():.5f}\t{speedup_percent:.5f}"
|
||||
f"\t{batch_size}\t{max_seq_len}\t{trtllm_mean:8.3f}\t{trtllm_std.item():8.3f}"
|
||||
f"\t{baseline_mean:8.3f}\t{baseline_std.item():8.3f}\t{speedup_percent:8.3f}"
|
||||
)
|
||||
|
||||
# Return results for CSV writing
|
||||
return {
|
||||
"num_seqs": num_seqs,
|
||||
"trt_mean": trt_mean,
|
||||
"trt_std": trt_std.item(),
|
||||
"batch_size": batch_size,
|
||||
"trtllm_mean": trtllm_mean,
|
||||
"trtllm_std": trtllm_std.item(),
|
||||
"baseline_mean": baseline_mean,
|
||||
"baseline_std": baseline_std.item(),
|
||||
"speedup_percent": speedup_percent,
|
||||
"q_dtype": str(dtype),
|
||||
"kv_cache_dtype": kv_cache_dtype,
|
||||
"page_size": page_size,
|
||||
"q_dtype": str(q_quant_dtype),
|
||||
"kv_cache_dtype": str(kv_quant_dtype),
|
||||
"output_dtype": str(o_quant_dtype),
|
||||
"block_size": block_size,
|
||||
"num_kv_heads": num_kv_heads,
|
||||
"head_dim": head_dim,
|
||||
"head_size": head_size,
|
||||
"max_seq_len": max_seq_len,
|
||||
}
|
||||
|
||||
@ -195,17 +236,18 @@ def write_results_to_csv(results, filename=None):
|
||||
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
|
||||
|
||||
fieldnames = [
|
||||
"num_seqs",
|
||||
"trt_mean",
|
||||
"trt_std",
|
||||
"batch_size",
|
||||
"trtllm_mean",
|
||||
"trtllm_std",
|
||||
"baseline_mean",
|
||||
"baseline_std",
|
||||
"speedup_percent",
|
||||
"q_dtype",
|
||||
"kv_cache_dtype",
|
||||
"page_size",
|
||||
"output_dtype",
|
||||
"block_size",
|
||||
"num_kv_heads",
|
||||
"head_dim",
|
||||
"head_size",
|
||||
"max_seq_len",
|
||||
]
|
||||
|
||||
@ -224,27 +266,42 @@ def write_results_to_csv(results, filename=None):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
|
||||
batch_sizes = [1, 4, 8, 16, 32, 64, 128, 256]
|
||||
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
|
||||
all_results = []
|
||||
|
||||
print(
|
||||
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, "
|
||||
"output_dtype: bfloat16"
|
||||
)
|
||||
print(
|
||||
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
|
||||
"baseline_std\tspeedup_percent"
|
||||
)
|
||||
for max_seq_len in max_seq_lens:
|
||||
for bs in num_seqs:
|
||||
result = benchmark_prefill(
|
||||
bs,
|
||||
max_seq_len,
|
||||
dtype=torch.bfloat16,
|
||||
kv_cache_dtype="auto",
|
||||
)
|
||||
all_results.append(result)
|
||||
dtype = torch.bfloat16
|
||||
quant_dtypes = [
|
||||
# (q_quant_dtype, kv_quant_dtype, o_quant_dtype)
|
||||
(None, None, None),
|
||||
(FP8_DTYPE, FP8_DTYPE, FP8_DTYPE),
|
||||
(FP8_DTYPE, FP8_DTYPE, FP4_DTYPE),
|
||||
]
|
||||
|
||||
for quant_dtype in quant_dtypes:
|
||||
q_quant_dtype, kv_quant_dtype, o_quant_dtype = quant_dtype
|
||||
q_quant_dtype = q_quant_dtype or dtype
|
||||
kv_quant_dtype = kv_quant_dtype or dtype
|
||||
o_quant_dtype = o_quant_dtype or dtype
|
||||
|
||||
print(
|
||||
f"Running benchmark for q_dtype = {q_quant_dtype}, "
|
||||
f"kv_cache_dtype: {kv_quant_dtype}, "
|
||||
f"output_dtype: {o_quant_dtype}"
|
||||
)
|
||||
print(
|
||||
"\tbatch_size\tmax_seq_len\ttrtllm_mean\ttrtllm_std\tbaseline_mean\t"
|
||||
"baseline_std\tspeedup_percent"
|
||||
)
|
||||
for max_seq_len in max_seq_lens:
|
||||
for bs in batch_sizes:
|
||||
result = benchmark_prefill(
|
||||
dtype=dtype,
|
||||
quant_dtypes=quant_dtype,
|
||||
batch_size=bs,
|
||||
max_seq_len=max_seq_len,
|
||||
)
|
||||
all_results.append(result)
|
||||
|
||||
# Write all results to CSV
|
||||
write_results_to_csv(all_results)
|
||||
|
||||
@ -11,8 +11,8 @@ from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import tqdm
|
||||
import triton
|
||||
from tqdm import tqdm
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
_w8a8_block_fp8_matmul,
|
||||
|
||||
@ -95,4 +95,10 @@ WEIGHT_SHAPES = {
|
||||
([2048, 2816], 1),
|
||||
([1408, 2048], 0),
|
||||
],
|
||||
"CohereLabs/c4ai-command-a-03-2025": [
|
||||
([12288, 14336], 1),
|
||||
([12288, 12288], 0),
|
||||
([12288, 73728], 1),
|
||||
([36864, 12288], 0),
|
||||
],
|
||||
}
|
||||
|
||||
@ -5,11 +5,13 @@ The requirements (pip) for `benchmark_serving_multi_turn.py` can be found in `re
|
||||
First start serving your model
|
||||
|
||||
```bash
|
||||
export MODEL_NAME=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
|
||||
export MODEL_PATH=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
|
||||
|
||||
vllm serve $MODEL_NAME --disable-log-requests
|
||||
vllm serve $MODEL_PATH --served-model-name Llama --disable-log-requests
|
||||
```
|
||||
|
||||
The variable `MODEL_PATH` should be a path to the model files (e.g. downloaded from huggingface).
|
||||
|
||||
## Synthetic Multi-Turn Conversations
|
||||
|
||||
Download the following text file (used for generation of synthetic conversations)
|
||||
@ -26,10 +28,10 @@ But you may use other text files if you prefer (using this specific file is not
|
||||
Then run the benchmarking script
|
||||
|
||||
```bash
|
||||
export MODEL_NAME=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
|
||||
export MODEL_PATH=/models/meta-llama/Meta-Llama-3.1-8B-Instruct/
|
||||
|
||||
python benchmark_serving_multi_turn.py --model $MODEL_NAME --input-file generate_multi_turn.json \
|
||||
--num-clients 2 --max-active-conversations 6
|
||||
python benchmark_serving_multi_turn.py --model $MODEL_PATH --served-model-name Llama \
|
||||
--input-file generate_multi_turn.json --num-clients 2 --max-active-conversations 6
|
||||
```
|
||||
|
||||
You can edit the file `generate_multi_turn.json` to change the conversation parameters (number of turns, etc.).
|
||||
|
||||
@ -825,9 +825,11 @@ def get_client_config(
|
||||
|
||||
# Arguments for API requests
|
||||
chat_url = f"{args.url}/v1/chat/completions"
|
||||
model_name = args.served_model_name if args.served_model_name else args.model
|
||||
|
||||
req_args = RequestArgs(
|
||||
chat_url=chat_url,
|
||||
model=args.model,
|
||||
model=model_name,
|
||||
stream=not args.no_stream,
|
||||
limit_min_tokens=args.limit_min_tokens,
|
||||
limit_max_tokens=args.limit_max_tokens,
|
||||
@ -1247,9 +1249,19 @@ async def main() -> None:
|
||||
default=0,
|
||||
help="Seed for random number generators (default: 0)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-m", "--model", type=str, required=True, help="Path of the LLM model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--served-model-name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The model name used in the API. "
|
||||
"If not specified, the model name will be the "
|
||||
"same as the ``--model`` argument. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-u",
|
||||
"--url",
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
include(FetchContent)
|
||||
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_EXTENSIONS ON)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
@ -182,17 +183,17 @@ endif()
|
||||
#
|
||||
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
|
||||
# Flag to enable ACL kernels for AARCH64 platforms
|
||||
if ( VLLM_BUILD_ACL STREQUAL "ON")
|
||||
if (VLLM_BUILD_ACL STREQUAL "ON")
|
||||
set(USE_ACL ON)
|
||||
else()
|
||||
set(USE_ACL OFF)
|
||||
endif()
|
||||
|
||||
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
|
||||
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
||||
FetchContent_Declare(
|
||||
oneDNN
|
||||
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
|
||||
GIT_TAG v3.8.1
|
||||
GIT_TAG v3.9
|
||||
GIT_PROGRESS TRUE
|
||||
GIT_SHALLOW TRUE
|
||||
)
|
||||
@ -204,7 +205,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
|
||||
endif()
|
||||
set(ONEDNN_AARCH64_USE_ACL "ON")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set(ONEDNN_LIBRARY_TYPE "STATIC")
|
||||
set(ONEDNN_BUILD_DOC "OFF")
|
||||
@ -217,38 +218,23 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
|
||||
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
|
||||
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
|
||||
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
|
||||
set(ONEDNN_VERBOSE "OFF")
|
||||
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
|
||||
|
||||
FetchContent_MakeAvailable(oneDNN)
|
||||
|
||||
list(APPEND LIBS dnnl)
|
||||
elseif(POWER10_FOUND)
|
||||
FetchContent_Declare(
|
||||
oneDNN
|
||||
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
|
||||
GIT_TAG v3.7.2
|
||||
GIT_PROGRESS TRUE
|
||||
GIT_SHALLOW TRUE
|
||||
add_library(dnnl_ext OBJECT "csrc/cpu/dnnl_helper.cpp")
|
||||
target_include_directories(
|
||||
dnnl_ext
|
||||
PUBLIC ${oneDNN_SOURCE_DIR}/include
|
||||
PUBLIC ${oneDNN_BINARY_DIR}/include
|
||||
PRIVATE ${oneDNN_SOURCE_DIR}/src
|
||||
)
|
||||
|
||||
set(ONEDNN_LIBRARY_TYPE "STATIC")
|
||||
set(ONEDNN_BUILD_DOC "OFF")
|
||||
set(ONEDNN_BUILD_EXAMPLES "OFF")
|
||||
set(ONEDNN_BUILD_TESTS "OFF")
|
||||
set(ONEDNN_ENABLE_WORKLOAD "INFERENCE")
|
||||
set(ONEDNN_ENABLE_PRIMITIVE "MATMUL;REORDER")
|
||||
set(ONEDNN_BUILD_GRAPH "OFF")
|
||||
set(ONEDNN_ENABLE_JIT_PROFILING "OFF")
|
||||
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
|
||||
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
|
||||
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
|
||||
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
|
||||
|
||||
set(DNNL_CPU_RUNTIME "OMP")
|
||||
|
||||
FetchContent_MakeAvailable(oneDNN)
|
||||
|
||||
list(APPEND LIBS dnnl)
|
||||
target_link_libraries(dnnl_ext dnnl)
|
||||
target_compile_options(dnnl_ext PRIVATE ${CXX_COMPILE_FLAGS} -fPIC)
|
||||
list(APPEND LIBS dnnl_ext)
|
||||
set(USE_ONEDNN ON)
|
||||
else()
|
||||
set(USE_ONEDNN OFF)
|
||||
endif()
|
||||
|
||||
message(STATUS "CPU extension compile flags: ${CXX_COMPILE_FLAGS}")
|
||||
@ -275,7 +261,6 @@ set(VLLM_EXT_SRC
|
||||
|
||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
set(VLLM_EXT_SRC
|
||||
"csrc/cpu/quant.cpp"
|
||||
"csrc/cpu/shm.cpp"
|
||||
${VLLM_EXT_SRC})
|
||||
if (ENABLE_AVX512BF16 AND ENABLE_AVX512VNNI)
|
||||
@ -289,14 +274,11 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
${VLLM_EXT_SRC})
|
||||
add_compile_definitions(-DCPU_CAPABILITY_AVX512)
|
||||
endif()
|
||||
elseif(POWER10_FOUND)
|
||||
set(VLLM_EXT_SRC
|
||||
"csrc/cpu/quant.cpp"
|
||||
${VLLM_EXT_SRC})
|
||||
endif()
|
||||
if (ASIMD_FOUND)
|
||||
|
||||
if(USE_ONEDNN)
|
||||
set(VLLM_EXT_SRC
|
||||
"csrc/cpu/quant.cpp"
|
||||
"csrc/cpu/dnnl_kernels.cpp"
|
||||
${VLLM_EXT_SRC})
|
||||
endif()
|
||||
|
||||
|
||||
@ -19,7 +19,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
flashmla
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
|
||||
GIT_TAG 0e43e774597682284358ff2c54530757b654b8d1
|
||||
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
|
||||
GIT_PROGRESS TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND ""
|
||||
@ -37,13 +37,14 @@ cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
set(FlashMLA_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu)
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
|
||||
|
||||
set(FlashMLA_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc/include)
|
||||
${flashmla_SOURCE_DIR}/csrc)
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_SOURCES}"
|
||||
|
||||
@ -38,7 +38,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG 93cf5a08f421a3efd0c4a7e005ef8f742b578ce0
|
||||
GIT_TAG 57b4e68b9f9d94750b46de8f8dbd2bfcc86edd4f
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
|
||||
@ -128,6 +128,45 @@ __global__ void act_and_mul_kernel_with_param(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T swigluoai_and_mul(const T& gate, const T& up,
|
||||
float alpha, float limit) {
|
||||
// clamp gate: min=None, max=limit
|
||||
const float gate_f = (float)gate;
|
||||
const float clamped_gate = gate_f > limit ? limit : gate_f;
|
||||
|
||||
// clamp up: min=-limit, max=limit
|
||||
const float up_f = (float)up;
|
||||
const float clamped_up =
|
||||
up_f > limit ? limit : (up_f < -limit ? -limit : up_f);
|
||||
|
||||
// glu = gate * sigmoid(gate * alpha)
|
||||
const float sigmoid_val = 1.0f / (1.0f + expf(-clamped_gate * alpha));
|
||||
const float glu = clamped_gate * sigmoid_val;
|
||||
|
||||
// (up + 1) * glu
|
||||
return (T)((clamped_up + 1.0f) * glu);
|
||||
}
|
||||
|
||||
template <typename scalar_t,
|
||||
scalar_t (*ACT_FN)(const scalar_t&, const scalar_t&, const float,
|
||||
const float)>
|
||||
__global__ void swigluoai_and_mul_kernel(
|
||||
scalar_t* __restrict__ out, // [..., d]
|
||||
const scalar_t* __restrict__ input, // [..., 2, d]
|
||||
const int d, const float alpha, const float limit) {
|
||||
const int64_t token_idx = blockIdx.x;
|
||||
// TODO: Vectorize loads and stores.
|
||||
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
||||
// gate = x[..., ::2] (even indices)
|
||||
const scalar_t gate = VLLM_LDG(&input[token_idx * 2 * d + 2 * idx]);
|
||||
// up = x[..., 1::2] (odd indices)
|
||||
const scalar_t up = VLLM_LDG(&input[token_idx * 2 * d + 2 * idx + 1]);
|
||||
|
||||
out[token_idx * d + idx] = ACT_FN(gate, up, alpha, limit);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
#define LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(KERNEL, PARAM) \
|
||||
@ -145,11 +184,31 @@ __global__ void act_and_mul_kernel_with_param(
|
||||
PARAM); \
|
||||
});
|
||||
|
||||
#define LAUNCH_SIGLUOAI_AND_MUL(KERNEL, ALPHA, LIMIT) \
|
||||
int d = input.size(-1) / 2; \
|
||||
int64_t num_tokens = input.numel() / input.size(-1); \
|
||||
dim3 grid(num_tokens); \
|
||||
dim3 block(std::min(d, 1024)); \
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
||||
VLLM_DISPATCH_FLOATING_TYPES( \
|
||||
input.scalar_type(), "clamp_swiglu_kernel_with_params", [&] { \
|
||||
vllm::swigluoai_and_mul_kernel<scalar_t, KERNEL<scalar_t>> \
|
||||
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
|
||||
input.data_ptr<scalar_t>(), d, ALPHA, \
|
||||
LIMIT); \
|
||||
});
|
||||
|
||||
void fatrelu_and_mul(torch::Tensor& out, // [..., d],
|
||||
torch::Tensor& input, // [..., 2 * d]
|
||||
double threshold) {
|
||||
LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(vllm::fatrelu_kernel, threshold);
|
||||
}
|
||||
void swigluoai_and_mul(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor& input, // [..., 2 * d]
|
||||
double alpha, double limit) {
|
||||
LAUNCH_SIGLUOAI_AND_MUL(vllm::swigluoai_and_mul, alpha, limit);
|
||||
}
|
||||
namespace vllm {
|
||||
|
||||
// Element-wise activation kernel template.
|
||||
|
||||
@ -167,7 +167,7 @@ typename T::Fmha::Arguments args_from_options(
|
||||
// TODO(trevor-m): Change split_kv back to -1 when
|
||||
// https://github.com/NVIDIA/cutlass/issues/2274 is fixed. Split_kv=1 will
|
||||
// perform worse with larger context length and smaller batch sizes.
|
||||
num_kv_splits, // split_kv
|
||||
static_cast<int>(num_kv_splits), // split_kv
|
||||
nullptr, // is_var_split_kv
|
||||
};
|
||||
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute
|
||||
@ -264,7 +264,7 @@ int64_t sm100_cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_ba
|
||||
// Assumes device 0 when getting sm_count.
|
||||
arguments.hw_info.sm_count =
|
||||
sm_count <= 0 ? cutlass::KernelHardwareInfo::query_device_multiprocessor_count(/*device_id=*/0) : sm_count;
|
||||
arguments.split_kv = num_kv_splits;
|
||||
arguments.split_kv = static_cast<int>(num_kv_splits);
|
||||
MlaSm100Type::Fmha::set_split_kv(arguments);
|
||||
|
||||
return MlaSm100Type::Fmha::get_workspace_size(arguments);
|
||||
|
||||
@ -40,9 +40,11 @@ void concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe,
|
||||
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
|
||||
const double scale, const std::string& kv_cache_dtype);
|
||||
|
||||
void gather_cache(
|
||||
void gather_and_maybe_dequant_cache(
|
||||
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
|
||||
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
|
||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
||||
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
|
||||
int64_t batch_size, const std::string& kv_cache_dtype,
|
||||
torch::Tensor const& scale,
|
||||
std::optional<torch::Tensor> seq_starts = std::nullopt);
|
||||
@ -624,9 +624,9 @@ void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
|
||||
namespace vllm {
|
||||
|
||||
// grid is launched with dimensions (batch, num_splits)
|
||||
template <typename scalar_t>
|
||||
__global__ void gather_cache(
|
||||
const scalar_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
|
||||
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
|
||||
__global__ void gather_and_maybe_dequant_cache(
|
||||
const cache_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
|
||||
// ENTRIES...]
|
||||
scalar_t* __restrict__ dst, // [TOT_TOKENS, ENTRIES...]
|
||||
const int32_t* __restrict__ block_table, // [BATCH, BLOCK_INDICES]
|
||||
@ -634,6 +634,7 @@ __global__ void gather_cache(
|
||||
const int32_t block_size, const int32_t entry_size,
|
||||
const int64_t block_table_stride, const int64_t cache_block_stride,
|
||||
const int64_t cache_entry_stride, const int64_t dst_entry_stride,
|
||||
const float* __restrict__ scale,
|
||||
const int32_t* __restrict__ seq_starts) { // Optional: starting offsets per
|
||||
// batch
|
||||
|
||||
@ -675,10 +676,16 @@ __global__ void gather_cache(
|
||||
if (partial_block_size) full_blocks_end -= 1;
|
||||
}
|
||||
|
||||
auto copy_entry = [&](const scalar_t* __restrict__ _src,
|
||||
auto copy_entry = [&](const cache_t* __restrict__ _src,
|
||||
scalar_t* __restrict__ _dst) {
|
||||
for (int i = threadIdx.x; i < entry_size; i += blockDim.x)
|
||||
_dst[i] = _src[i];
|
||||
for (int i = threadIdx.x; i < entry_size; i += blockDim.x) {
|
||||
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
|
||||
_dst[i] = static_cast<scalar_t>(_src[i]);
|
||||
} else {
|
||||
_dst[i] =
|
||||
fp8::scaled_convert<scalar_t, cache_t, kv_dt>(_src[i], *scale);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
for (int pid = split_start; pid < full_blocks_end; ++pid) {
|
||||
@ -705,25 +712,31 @@ __global__ void gather_cache(
|
||||
} // namespace vllm
|
||||
|
||||
// Macro to dispatch the kernel based on the data type.
|
||||
#define CALL_GATHER_CACHE(CPY_DTYPE) \
|
||||
vllm::gather_cache<CPY_DTYPE><<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<CPY_DTYPE*>(src_cache.data_ptr()), \
|
||||
reinterpret_cast<CPY_DTYPE*>(dst.data_ptr()), \
|
||||
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
|
||||
block_size, entry_size, block_table_stride, cache_block_stride, \
|
||||
cache_entry_stride, dst_entry_stride, seq_starts_ptr);
|
||||
// SCALAR_T is the data type of the destination tensor.
|
||||
// CACHE_T is the stored data type of kv-cache.
|
||||
// KV_DTYPE is the real data type of kv-cache.
|
||||
#define CALL_GATHER_CACHE(SCALAR_T, CACHE_T, KV_DTYPE) \
|
||||
vllm::gather_and_maybe_dequant_cache<SCALAR_T, CACHE_T, KV_DTYPE> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
reinterpret_cast<CACHE_T*>(src_cache.data_ptr()), \
|
||||
reinterpret_cast<SCALAR_T*>(dst.data_ptr()), \
|
||||
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
|
||||
block_size, entry_size, block_table_stride, cache_block_stride, \
|
||||
cache_entry_stride, dst_entry_stride, \
|
||||
reinterpret_cast<const float*>(scale.data_ptr()), seq_starts_ptr);
|
||||
|
||||
// Gather sequences from the cache into the destination tensor.
|
||||
// - cu_seq_lens contains the cumulative sequence lengths for each batch
|
||||
// - block_table contains the cache block indices for each sequence
|
||||
// - Optionally, seq_starts (if provided) offsets the starting block index by
|
||||
// (seq_starts[bid] / page_size)
|
||||
void gather_cache(
|
||||
void gather_and_maybe_dequant_cache(
|
||||
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
|
||||
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
|
||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
||||
int64_t batch_size,
|
||||
int64_t batch_size, const std::string& kv_cache_dtype,
|
||||
torch::Tensor const& scale,
|
||||
std::optional<torch::Tensor> seq_starts = std::nullopt) {
|
||||
at::cuda::OptionalCUDAGuard device_guard(src_cache.device());
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
@ -761,20 +774,8 @@ void gather_cache(
|
||||
dim3 grid(batch_size, num_splits);
|
||||
dim3 block(1024);
|
||||
|
||||
TORCH_CHECK(src_cache.dtype() == dst.dtype(),
|
||||
"src_cache and dst must have the same dtype");
|
||||
|
||||
const int dtype_bits = src_cache.element_size() * 8;
|
||||
const int32_t* seq_starts_ptr =
|
||||
seq_starts.has_value() ? seq_starts.value().data_ptr<int32_t>() : nullptr;
|
||||
|
||||
if (dtype_bits == 32) {
|
||||
CALL_GATHER_CACHE(uint32_t);
|
||||
} else if (dtype_bits == 16) {
|
||||
CALL_GATHER_CACHE(uint16_t);
|
||||
} else if (dtype_bits == 8) {
|
||||
CALL_GATHER_CACHE(uint8_t);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported data type width: ", dtype_bits);
|
||||
}
|
||||
DISPATCH_BY_KV_CACHE_DTYPE(dst.dtype(), kv_cache_dtype, CALL_GATHER_CACHE);
|
||||
}
|
||||
|
||||
@ -321,6 +321,8 @@ static inline constexpr auto kFE3M2f =
|
||||
ScalarType::float_(3, 2, true, ScalarType::NAN_NONE);
|
||||
static inline constexpr auto kFE4M3fn =
|
||||
ScalarType::float_(4, 3, true, ScalarType::NAN_EXTD_RANGE_MAX_MIN);
|
||||
static inline constexpr auto kFE8M0fnu =
|
||||
ScalarType(8, 0, false, 0, true, ScalarType::NAN_EXTD_RANGE_MAX_MIN);
|
||||
static inline constexpr auto kFE5M2 = ScalarType::float_IEEE754(5, 2);
|
||||
static inline constexpr auto kFE8M7 = ScalarType::float_IEEE754(8, 7);
|
||||
static inline constexpr auto kFE5M10 = ScalarType::float_IEEE754(5, 10);
|
||||
|
||||
@ -89,7 +89,7 @@ struct FP16Vec16 : public Vec<FP16Vec16> {
|
||||
|
||||
explicit FP16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
|
||||
void save(void* ptr) const { _mm256_storeu_si256((__m256i*)ptr, reg); }
|
||||
|
||||
void save(void* ptr, const int elem_num) const {
|
||||
constexpr uint32_t M = 0xFFFFFFFF;
|
||||
@ -126,7 +126,7 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
|
||||
|
||||
explicit BF16Vec16(const FP32Vec16&);
|
||||
|
||||
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
|
||||
void save(void* ptr) const { _mm256_storeu_si256((__m256i*)ptr, reg); }
|
||||
|
||||
void save(void* ptr, const int elem_num) const {
|
||||
constexpr uint32_t M = 0xFFFFFFFF;
|
||||
@ -180,8 +180,8 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
|
||||
(__m128i)vec8_data.reg, 1)) {}
|
||||
|
||||
void save(void* ptr) const {
|
||||
*reinterpret_cast<__m256i*>(ptr) = reg_low;
|
||||
*reinterpret_cast<__m256i*>((__m256i*)ptr + 1) = reg_high;
|
||||
_mm256_storeu_si256((__m256i*)ptr, reg_low);
|
||||
_mm256_storeu_si256((__m256i*)ptr + 1, reg_high);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
346
csrc/cpu/dnnl_helper.cpp
Normal file
346
csrc/cpu/dnnl_helper.cpp
Normal file
@ -0,0 +1,346 @@
|
||||
#include <list>
|
||||
#include <optional>
|
||||
|
||||
#include "common/memory_desc.hpp"
|
||||
#include "common/memory.hpp"
|
||||
|
||||
#include "dnnl_helper.h"
|
||||
|
||||
static dnnl::engine& default_engine() {
|
||||
static dnnl::engine engine(dnnl::engine::kind::cpu, 0);
|
||||
return engine;
|
||||
}
|
||||
|
||||
static dnnl::stream& default_stream() {
|
||||
static dnnl::stream stream(default_engine());
|
||||
return stream;
|
||||
}
|
||||
|
||||
void release_dnnl_matmul_handler(int64_t handler) {
|
||||
DNNLMatMulPrimitiveHandler* ptr =
|
||||
reinterpret_cast<DNNLMatMulPrimitiveHandler*>(handler);
|
||||
delete ptr;
|
||||
}
|
||||
|
||||
template <typename KT, typename VT>
|
||||
class DNNLPrimitiveCache {
|
||||
public:
|
||||
using cache_value_t = std::pair<KT, VT>;
|
||||
using result_value_t = VT;
|
||||
using container_t = std::list<cache_value_t>;
|
||||
using value_iterator_t = typename container_t::iterator;
|
||||
using map_t = std::unordered_map<KT, value_iterator_t>;
|
||||
using creator_t = VT (*)();
|
||||
|
||||
public:
|
||||
DNNLPrimitiveCache(size_t capacity)
|
||||
: capacity_(capacity),
|
||||
values_(),
|
||||
key_to_value_(std::min(256lu, capacity)) {
|
||||
assert(capacity > 0);
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
result_value_t get_or_create(const KT& key, F&& creator) {
|
||||
std::optional<value_iterator_t> value = get_value(key);
|
||||
if (value.has_value()) {
|
||||
return value.value()->second;
|
||||
} else {
|
||||
return add_value({key, creator()})->second;
|
||||
}
|
||||
}
|
||||
|
||||
size_t size() const { return values_.size(); }
|
||||
|
||||
private:
|
||||
void dump_data() {
|
||||
std::stringstream ss;
|
||||
ss << "table_id: " << std::hex << reinterpret_cast<size_t>(this) << std::dec
|
||||
<< "\n";
|
||||
ss << "container: [";
|
||||
for (auto&& iter : values_) {
|
||||
ss << "(" << iter.first << ", " << std::hex
|
||||
<< reinterpret_cast<size_t>(iter.second.get()) << "), " << std::dec;
|
||||
}
|
||||
ss << "]\n";
|
||||
|
||||
ss << "map: [";
|
||||
for (auto&& iter : key_to_value_) {
|
||||
ss << "(" << iter.first << ", " << iter.second->first << ", " << std::hex
|
||||
<< reinterpret_cast<size_t>(iter.second->second.get()) << std::dec
|
||||
<< "), ";
|
||||
}
|
||||
ss << "]\n";
|
||||
std::printf("%s\n", ss.str().c_str());
|
||||
}
|
||||
|
||||
value_iterator_t add_value(cache_value_t&& new_value) {
|
||||
if (size() == capacity_) {
|
||||
cache_value_t& last_item = values_.back();
|
||||
key_to_value_.erase(last_item.first);
|
||||
values_.pop_back();
|
||||
}
|
||||
|
||||
auto& added_value_ = values_.emplace_front(std::move(new_value));
|
||||
key_to_value_.emplace(added_value_.first, values_.begin());
|
||||
return values_.begin();
|
||||
}
|
||||
|
||||
std::optional<value_iterator_t> get_value(const KT& key) {
|
||||
if (key_to_value_.size() > 0 && key == values_.begin()->first) {
|
||||
return values_.begin();
|
||||
}
|
||||
|
||||
auto value_map_iterator = key_to_value_.find(key);
|
||||
if (value_map_iterator != key_to_value_.end()) {
|
||||
values_.splice(values_.begin(), values_, value_map_iterator->second);
|
||||
return value_map_iterator->second;
|
||||
} else {
|
||||
return {};
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
const size_t capacity_;
|
||||
container_t values_;
|
||||
map_t key_to_value_;
|
||||
};
|
||||
|
||||
DNNLMatMulPrimitiveHandler::DNNLMatMulPrimitiveHandler(
|
||||
const Args& args, dnnl::memory::data_type b_type)
|
||||
: b_n_size_(args.b_n_size),
|
||||
b_n_stride_(args.b_n_stride),
|
||||
b_k_size_(args.b_k_size),
|
||||
b_k_stride_(args.b_k_stride),
|
||||
b_type_(b_type),
|
||||
c_type_(args.c_type),
|
||||
runtime_memory_ptrs_(8),
|
||||
primitive_cache_size_(args.primitive_cache_size) {
|
||||
assert(primitive_cache_size_ > 0);
|
||||
}
|
||||
|
||||
void DNNLMatMulPrimitiveHandler::prepack_weight(
|
||||
void* original_b_ptr, dnnl::memory::desc b_target_mem_desc) {
|
||||
dnnl::memory::desc original_b_md({b_k_size_, b_n_size_}, b_type_,
|
||||
{b_k_stride_, b_n_stride_});
|
||||
dnnl::memory original_weight(original_b_md, default_engine(), original_b_ptr);
|
||||
dnnl::memory packed_weight(b_target_mem_desc, default_engine());
|
||||
{
|
||||
dnnl::reorder(original_weight, packed_weight)
|
||||
.execute(default_stream(), original_weight, packed_weight);
|
||||
default_stream().wait();
|
||||
}
|
||||
memory_cache_[DNNL_ARG_WEIGHTS] = packed_weight;
|
||||
b_target_mem_desc_ = b_target_mem_desc;
|
||||
}
|
||||
|
||||
void DNNLMatMulPrimitiveHandler::set_runtime_memory_ptr(
|
||||
size_t index, dnnl_memory* memory_ptr) {
|
||||
dnnl::impl::memory_storage_t* mem_storage_ptr = memory_ptr->memory_storage();
|
||||
dnnl_memory_desc* mem_desc = const_cast<dnnl_memory_desc*>(memory_ptr->md());
|
||||
runtime_memory_ptrs_[index] = {mem_storage_ptr, mem_desc};
|
||||
}
|
||||
|
||||
std::pair<dnnl::impl::memory_storage_t*, dnnl_memory_desc*>
|
||||
DNNLMatMulPrimitiveHandler::get_runtime_memory_ptr(size_t index) {
|
||||
return runtime_memory_ptrs_[index];
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template <>
|
||||
struct hash<W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey> {
|
||||
size_t operator()(
|
||||
const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& val) const {
|
||||
return hash<dnnl_dim_t>()(val.b_n_size) ^ hash<dnnl_dim_t>()(val.b_k_size) ^
|
||||
hash<int>()(static_cast<int>(val.a_qs)) ^
|
||||
hash<int>()(static_cast<int>(val.b_qs)) ^ hash<bool>()(val.use_azp) ^
|
||||
hash<int>()(static_cast<int>(val.c_type));
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct hash<W8A8MatMulPrimitiveHandler::MSizeCacheKey> {
|
||||
size_t operator()(
|
||||
const W8A8MatMulPrimitiveHandler::MSizeCacheKey& val) const {
|
||||
return hash<dnnl_dim_t>()(val.a_m_size) ^ hash<bool>()(val.use_bias) ^
|
||||
hash<int>()(static_cast<int>(val.bias_type));
|
||||
}
|
||||
};
|
||||
} // namespace std
|
||||
|
||||
bool operator==(const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& l,
|
||||
const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& r) {
|
||||
return l.b_n_size == r.b_n_size && l.b_k_size == r.b_k_size &&
|
||||
l.a_qs == r.a_qs && l.b_qs == r.b_qs && l.use_azp == r.use_azp &&
|
||||
l.c_type == r.c_type;
|
||||
}
|
||||
|
||||
bool operator==(const W8A8MatMulPrimitiveHandler::MSizeCacheKey& l,
|
||||
const W8A8MatMulPrimitiveHandler::MSizeCacheKey& r) {
|
||||
return l.use_bias == r.use_bias && l.a_m_size == r.a_m_size &&
|
||||
l.bias_type == r.bias_type;
|
||||
}
|
||||
|
||||
static std::shared_ptr<W8A8MatMulPrimitiveHandler::MSizeCache>
|
||||
get_w8a8_class_primitive_cache(
|
||||
const W8A8MatMulPrimitiveHandler::ClassMatmulCacheKey& key,
|
||||
int64_t cache_size) {
|
||||
static W8A8MatMulPrimitiveHandler::ClassMatmulCache cache(128);
|
||||
assert(cache_size > 0);
|
||||
return cache.get_or_create(key, [&]() {
|
||||
return std::make_shared<W8A8MatMulPrimitiveHandler::MSizeCache>(cache_size);
|
||||
});
|
||||
}
|
||||
|
||||
W8A8MatMulPrimitiveHandler::W8A8MatMulPrimitiveHandler(const Args& args)
|
||||
: DNNLMatMulPrimitiveHandler(
|
||||
static_cast<const DNNLMatMulPrimitiveHandler::Args&>(args),
|
||||
dnnl::memory::data_type::s8),
|
||||
use_azp_(args.use_a_zero_point),
|
||||
a_qs_(args.a_quantization_strategy),
|
||||
b_qs_(args.b_quantization_strategy),
|
||||
m_size_cache_(nullptr) {
|
||||
assert(a_qs_ != QuantizationStrategy::PER_OUTPUT_CHANNEL);
|
||||
assert(b_qs_ != QuantizationStrategy::PER_TOKEN);
|
||||
if (a_qs_ == QuantizationStrategy::PER_TOKEN) {
|
||||
assert(!use_azp_);
|
||||
};
|
||||
prepack_weight(args.b_ptr,
|
||||
create_primitive_desc(
|
||||
MSizeCacheKey{.a_m_size = DNNL_RUNTIME_DIM_VAL,
|
||||
.use_bias = false,
|
||||
.bias_type = dnnl::memory::data_type::undef},
|
||||
true)
|
||||
.weights_desc());
|
||||
init_runtime_memory_cache(args);
|
||||
}
|
||||
|
||||
void W8A8MatMulPrimitiveHandler::execute(ExecArgs& args) {
|
||||
auto&& [a_storage, a_mem_desc] = get_runtime_memory_ptr(0);
|
||||
auto&& [c_storage, c_mem_desc] = get_runtime_memory_ptr(1);
|
||||
a_storage->set_data_handle((void*)args.a_ptr);
|
||||
a_mem_desc->dims[0] = args.a_m_size;
|
||||
c_storage->set_data_handle((void*)args.c_ptr);
|
||||
c_mem_desc->dims[0] = args.a_m_size;
|
||||
|
||||
if (a_qs_ == QuantizationStrategy::PER_TENSOR) {
|
||||
auto&& [a_scale_storage, a_scale_mem_desc] = get_runtime_memory_ptr(2);
|
||||
a_scale_storage->set_data_handle((void*)args.a_scales_ptr);
|
||||
}
|
||||
if (use_azp_) {
|
||||
auto&& [a_zero_point_storage, a_zero_point_mem_desc] =
|
||||
get_runtime_memory_ptr(3);
|
||||
a_zero_point_storage->set_data_handle((void*)args.a_zero_points_ptr);
|
||||
}
|
||||
|
||||
if (args.use_bias) {
|
||||
auto&& [bias_storage, bias_mem_desc] = get_runtime_memory_ptr(4);
|
||||
bias_storage->set_data_handle((void*)args.bias_ptr);
|
||||
}
|
||||
|
||||
dnnl::matmul matmul = get_matmul_cache(args);
|
||||
matmul.execute(default_stream(), memory_cache_);
|
||||
default_stream().wait();
|
||||
}
|
||||
|
||||
dnnl::matmul W8A8MatMulPrimitiveHandler::get_matmul_cache(
|
||||
const MSizeCacheKey& key) {
|
||||
if (m_size_cache_.get() == nullptr) {
|
||||
ClassMatmulCacheKey key = {.b_n_size = b_n_size_,
|
||||
.b_k_size = b_k_size_,
|
||||
.a_qs = a_qs_,
|
||||
.b_qs = b_qs_,
|
||||
.use_azp = use_azp_,
|
||||
.c_type = c_type_};
|
||||
m_size_cache_ = get_w8a8_class_primitive_cache(key, primitive_cache_size_);
|
||||
}
|
||||
|
||||
return m_size_cache_->get_or_create(key, [&]() {
|
||||
dnnl::matmul::primitive_desc desc = this->create_primitive_desc(key, false);
|
||||
return dnnl::matmul(desc);
|
||||
});
|
||||
}
|
||||
|
||||
void W8A8MatMulPrimitiveHandler::init_runtime_memory_cache(const Args& args) {
|
||||
memory_cache_[DNNL_ARG_SRC] = dnnl::memory({{1, b_k_size_},
|
||||
dnnl::memory::data_type::s8,
|
||||
dnnl::memory::format_tag::ab},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(0, memory_cache_[DNNL_ARG_SRC].get());
|
||||
memory_cache_[DNNL_ARG_DST] =
|
||||
dnnl::memory({{1, b_n_size_}, c_type_, dnnl::memory::format_tag::ab},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(1, memory_cache_[DNNL_ARG_DST].get());
|
||||
|
||||
// For PER_TOKEN, scales will be applied in outside epilogue
|
||||
if (a_qs_ == QuantizationStrategy::PER_TENSOR) {
|
||||
memory_cache_[DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC] = dnnl::memory(
|
||||
{{1}, dnnl::memory::data_type::f32, {1}}, default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(
|
||||
2, memory_cache_[DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC].get());
|
||||
if (use_azp_) {
|
||||
memory_cache_[DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_SRC] = dnnl::memory(
|
||||
{{1}, dnnl::memory::data_type::s32, {1}}, default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(
|
||||
3, memory_cache_[DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_SRC].get());
|
||||
}
|
||||
}
|
||||
|
||||
if (b_qs_ == QuantizationStrategy::PER_TENSOR) {
|
||||
memory_cache_[DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS] =
|
||||
dnnl::memory({{1}, dnnl::memory::data_type::f32, {1}}, default_engine(),
|
||||
(void*)args.b_scales_ptr);
|
||||
} else if (b_qs_ == QuantizationStrategy::PER_OUTPUT_CHANNEL) {
|
||||
memory_cache_[DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS] =
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), (void*)args.b_scales_ptr);
|
||||
}
|
||||
|
||||
memory_cache_[DNNL_ARG_BIAS] =
|
||||
dnnl::memory({{b_n_size_}, dnnl::memory::data_type::f32, {1}},
|
||||
default_engine(), nullptr);
|
||||
set_runtime_memory_ptr(4, memory_cache_[DNNL_ARG_BIAS].get());
|
||||
}
|
||||
|
||||
dnnl::matmul::primitive_desc W8A8MatMulPrimitiveHandler::create_primitive_desc(
|
||||
const MSizeCacheKey& key, bool first_time) {
|
||||
dnnl::memory::desc a_md({key.a_m_size, b_k_size_},
|
||||
dnnl::memory::data_type::s8,
|
||||
dnnl::memory::format_tag::ab);
|
||||
dnnl::memory::desc b_md;
|
||||
if (first_time) {
|
||||
b_md =
|
||||
dnnl::memory::desc({b_k_size_, b_n_size_}, dnnl::memory::data_type::s8,
|
||||
dnnl::memory::format_tag::any);
|
||||
} else {
|
||||
b_md = b_target_mem_desc_;
|
||||
}
|
||||
dnnl::memory::desc c_md({key.a_m_size, b_n_size_}, c_type_,
|
||||
dnnl::memory::format_tag::ab);
|
||||
|
||||
dnnl::primitive_attr attr;
|
||||
// For PER_TOKEN, scales will be applied in outside epilogue
|
||||
if (a_qs_ == QuantizationStrategy::PER_TENSOR) {
|
||||
attr.set_scales_mask(DNNL_ARG_SRC, 0);
|
||||
if (use_azp_) {
|
||||
attr.set_zero_points_mask(DNNL_ARG_SRC, 0);
|
||||
}
|
||||
}
|
||||
|
||||
if (b_qs_ == QuantizationStrategy::PER_TENSOR) {
|
||||
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 0);
|
||||
} else if (b_qs_ == QuantizationStrategy::PER_OUTPUT_CHANNEL) {
|
||||
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 2);
|
||||
}
|
||||
|
||||
if (key.use_bias) {
|
||||
// For PER_TOKEN, bias will be applied in epilogue
|
||||
assert(a_qs_ == QuantizationStrategy::PER_TENSOR);
|
||||
dnnl::memory::desc bias_md({1, b_n_size_}, key.bias_type, {b_n_size_, 1});
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, bias_md,
|
||||
c_md, attr);
|
||||
} else {
|
||||
return dnnl::matmul::primitive_desc(default_engine(), a_md, b_md, c_md,
|
||||
attr);
|
||||
}
|
||||
}
|
||||
169
csrc/cpu/dnnl_helper.h
Normal file
169
csrc/cpu/dnnl_helper.h
Normal file
@ -0,0 +1,169 @@
|
||||
#ifndef DNNL_HELPER_H
|
||||
#define DNNL_HELPER_H
|
||||
|
||||
#include <optional>
|
||||
#include <cassert>
|
||||
|
||||
#include "oneapi/dnnl/dnnl.hpp"
|
||||
|
||||
namespace c10 {
|
||||
struct BFloat16;
|
||||
struct Half;
|
||||
} // namespace c10
|
||||
|
||||
namespace dnnl {
|
||||
namespace impl {
|
||||
struct memory_storage_t;
|
||||
struct matmul_pd_t;
|
||||
struct matmul_desc_t;
|
||||
} // namespace impl
|
||||
} // namespace dnnl
|
||||
struct dnnl_memory_desc;
|
||||
|
||||
template <typename KT, typename VT>
|
||||
class DNNLPrimitiveCache;
|
||||
|
||||
template <typename T>
|
||||
struct DNNLType {
|
||||
static constexpr dnnl::memory::data_type type =
|
||||
dnnl::memory::data_type::undef;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<int8_t> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s8;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<int32_t> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s32;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<float> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f32;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<c10::BFloat16> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::bf16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<c10::Half> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f16;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
constexpr inline dnnl::memory::data_type get_dnnl_type() {
|
||||
return DNNLType<std::decay_t<T>>::type;
|
||||
}
|
||||
|
||||
class DNNLMatMulPrimitiveHandler {
|
||||
public:
|
||||
virtual ~DNNLMatMulPrimitiveHandler() = default;
|
||||
|
||||
protected:
|
||||
struct Args {
|
||||
dnnl_dim_t b_n_size;
|
||||
dnnl_dim_t b_n_stride;
|
||||
dnnl_dim_t b_k_size;
|
||||
dnnl_dim_t b_k_stride;
|
||||
void* b_ptr;
|
||||
dnnl::memory::data_type c_type;
|
||||
size_t primitive_cache_size;
|
||||
};
|
||||
|
||||
protected:
|
||||
DNNLMatMulPrimitiveHandler(const Args& args, dnnl::memory::data_type b_type);
|
||||
|
||||
void prepack_weight(void* original_b_ptr,
|
||||
dnnl::memory::desc b_target_mem_desc);
|
||||
|
||||
void set_runtime_memory_ptr(size_t index, dnnl_memory* memory_ptr);
|
||||
|
||||
std::pair<dnnl::impl::memory_storage_t*, dnnl_memory_desc*>
|
||||
get_runtime_memory_ptr(size_t index);
|
||||
|
||||
protected:
|
||||
const dnnl_dim_t b_n_size_;
|
||||
const dnnl_dim_t b_n_stride_;
|
||||
const dnnl_dim_t b_k_size_;
|
||||
const dnnl_dim_t b_k_stride_;
|
||||
dnnl::memory::data_type b_type_;
|
||||
dnnl::memory::data_type c_type_;
|
||||
std::unordered_map<int, dnnl::memory> memory_cache_;
|
||||
std::vector<std::pair<dnnl::impl::memory_storage_t*, dnnl_memory_desc*>>
|
||||
runtime_memory_ptrs_;
|
||||
dnnl::memory::desc b_target_mem_desc_;
|
||||
int64_t primitive_cache_size_;
|
||||
};
|
||||
|
||||
class W8A8MatMulPrimitiveHandler : public DNNLMatMulPrimitiveHandler {
|
||||
public:
|
||||
enum class QuantizationStrategy { PER_TOKEN, PER_TENSOR, PER_OUTPUT_CHANNEL };
|
||||
|
||||
struct Args : public DNNLMatMulPrimitiveHandler::Args {
|
||||
bool use_a_zero_point;
|
||||
QuantizationStrategy a_quantization_strategy;
|
||||
QuantizationStrategy b_quantization_strategy;
|
||||
float* b_scales_ptr;
|
||||
};
|
||||
|
||||
struct ClassMatmulCacheKey {
|
||||
dnnl_dim_t b_n_size;
|
||||
dnnl_dim_t b_k_size;
|
||||
QuantizationStrategy a_qs;
|
||||
QuantizationStrategy b_qs;
|
||||
bool use_azp;
|
||||
dnnl::memory::data_type c_type;
|
||||
|
||||
friend bool operator==(const ClassMatmulCacheKey& l,
|
||||
const ClassMatmulCacheKey& r);
|
||||
};
|
||||
|
||||
struct MSizeCacheKey {
|
||||
dnnl_dim_t a_m_size;
|
||||
bool use_bias;
|
||||
dnnl::memory::data_type bias_type;
|
||||
|
||||
friend bool operator==(const MSizeCacheKey& l, const MSizeCacheKey& r);
|
||||
};
|
||||
|
||||
using MSizeCache = DNNLPrimitiveCache<MSizeCacheKey, dnnl::matmul>;
|
||||
using ClassMatmulCache =
|
||||
DNNLPrimitiveCache<ClassMatmulCacheKey, std::shared_ptr<MSizeCache>>;
|
||||
|
||||
struct ExecArgs : public MSizeCacheKey {
|
||||
const int8_t* a_ptr;
|
||||
const float* a_scales_ptr;
|
||||
const int32_t* a_zero_points_ptr;
|
||||
const void* bias_ptr;
|
||||
void* c_ptr;
|
||||
};
|
||||
|
||||
public:
|
||||
W8A8MatMulPrimitiveHandler(const Args& args);
|
||||
|
||||
QuantizationStrategy get_input_scale_strategy() const { return a_qs_; }
|
||||
|
||||
bool get_input_use_zero_point() const { return use_azp_; }
|
||||
|
||||
void execute(ExecArgs& args);
|
||||
|
||||
private:
|
||||
dnnl::matmul::primitive_desc create_primitive_desc(const MSizeCacheKey& key,
|
||||
bool first_time);
|
||||
|
||||
void init_runtime_memory_cache(const Args& args);
|
||||
|
||||
dnnl::matmul get_matmul_cache(const MSizeCacheKey& key);
|
||||
|
||||
private:
|
||||
const bool use_azp_;
|
||||
const QuantizationStrategy a_qs_;
|
||||
const QuantizationStrategy b_qs_;
|
||||
std::shared_ptr<MSizeCache> m_size_cache_;
|
||||
};
|
||||
|
||||
#endif
|
||||
@ -1,206 +0,0 @@
|
||||
#ifndef DNNL_HELPER_HPP
|
||||
#define DNNL_HELPER_HPP
|
||||
|
||||
#include <c10/util/BFloat16.h>
|
||||
#include <c10/util/Half.h>
|
||||
|
||||
#include "oneapi/dnnl/dnnl.hpp"
|
||||
|
||||
namespace {
|
||||
template <typename T>
|
||||
struct DNNLType {
|
||||
static constexpr dnnl::memory::data_type type =
|
||||
dnnl::memory::data_type::undef;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<int8_t> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s8;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<int32_t> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::s32;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<float> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f32;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<c10::BFloat16> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::bf16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DNNLType<c10::Half> {
|
||||
static constexpr dnnl::memory::data_type type = dnnl::memory::data_type::f16;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
constexpr inline dnnl::memory::data_type get_dnnl_type() {
|
||||
return DNNLType<std::decay_t<T>>::type;
|
||||
}
|
||||
}; // namespace
|
||||
|
||||
template <bool InputNoScale>
|
||||
class DNNLPrimitiveHelper {
|
||||
public:
|
||||
// I8 input GEMM kernel (C = a_scales * A @ (b_scales * B^T) + bias)
|
||||
// A: [M, K], row-major
|
||||
// B: [K, N], column-major
|
||||
// C: [M, N], row-major
|
||||
// bias: [N], row-major, optional
|
||||
// a_scales: [MS]
|
||||
// b_scales: [NS]
|
||||
// Note: Due to the limitation of oneDNN
|
||||
// (https://github.com/oneapi-src/oneDNN/issues/1636), the quantized bias is
|
||||
// not supported.
|
||||
|
||||
template <typename OutputT, typename BiasT>
|
||||
static void gemm_s8s8_jit(const int8_t* a, const int8_t* b, OutputT* c,
|
||||
const BiasT* bias, dnnl_dim_t M, dnnl_dim_t N,
|
||||
dnnl_dim_t K, const float* a_scales,
|
||||
const float* b_scales, dnnl_dim_t MS,
|
||||
dnnl_dim_t NS) {
|
||||
auto&& OutputType = get_dnnl_type<OutputT>();
|
||||
auto&& BiasType = get_dnnl_type<BiasT>();
|
||||
|
||||
dnnl::memory::desc a_md({M, K}, dnnl::memory::data_type::s8, {K, 1});
|
||||
dnnl::memory::desc b_md({K, N}, dnnl::memory::data_type::s8, {1, K});
|
||||
dnnl::memory::desc c_md({M, N}, OutputType, {N, 1});
|
||||
|
||||
dnnl::primitive_attr attr;
|
||||
if constexpr (!InputNoScale) {
|
||||
if (MS == 1) {
|
||||
// per-tensor
|
||||
attr.set_scales_mask(DNNL_ARG_SRC, 0);
|
||||
} else {
|
||||
// per-token
|
||||
TORCH_CHECK(false, "per-token quantization is unsupported.");
|
||||
}
|
||||
}
|
||||
|
||||
if (NS == 1) {
|
||||
// per-tensor
|
||||
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 0);
|
||||
} else {
|
||||
// per-channel
|
||||
attr.set_scales_mask(DNNL_ARG_WEIGHTS, 2);
|
||||
}
|
||||
|
||||
dnnl::matmul::primitive_desc matmul_pd;
|
||||
// Create memory descriptors with format_tag::any for the primitive. This
|
||||
// enables the matmul primitive to choose memory layouts for an
|
||||
// optimized primitive implementation, and these layouts may differ from the
|
||||
// ones provided by the user.
|
||||
#ifdef __aarch64__
|
||||
auto mat_src_md = dnnl::memory::desc({M, K}, dnnl::memory::data_type::s8,
|
||||
dnnl::memory::format_tag::any);
|
||||
auto mat_weights_md = dnnl::memory::desc(
|
||||
{K, N}, dnnl::memory::data_type::s8, dnnl::memory::format_tag::any);
|
||||
auto mat_dst_md =
|
||||
dnnl::memory::desc({M, N}, OutputType, dnnl::memory::format_tag::any);
|
||||
if (bias) {
|
||||
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
|
||||
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), mat_src_md,
|
||||
mat_weights_md, bias_md,
|
||||
mat_dst_md, attr);
|
||||
} else {
|
||||
matmul_pd = dnnl::matmul::primitive_desc(
|
||||
default_engine(), mat_src_md, mat_weights_md, mat_dst_md, attr);
|
||||
}
|
||||
#else
|
||||
if (bias) {
|
||||
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
|
||||
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
|
||||
bias_md, c_md, attr);
|
||||
} else {
|
||||
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
|
||||
c_md, attr);
|
||||
}
|
||||
#endif
|
||||
dnnl::matmul matmul(matmul_pd);
|
||||
|
||||
auto& engine = default_engine();
|
||||
|
||||
dnnl::memory a_m(a_md, engine, (void*)a);
|
||||
dnnl::memory b_m(b_md, engine, (void*)b);
|
||||
dnnl::memory c_m(c_md, engine, (void*)c);
|
||||
dnnl::memory a_scales_m({{MS}, dnnl::memory::data_type::f32, {1}}, engine,
|
||||
(void*)a_scales);
|
||||
dnnl::memory b_scales_m({{NS}, dnnl::memory::data_type::f32, {1}}, engine,
|
||||
(void*)b_scales);
|
||||
|
||||
auto& stream = default_stream();
|
||||
|
||||
auto mat_src_mem = a_m;
|
||||
auto mat_weights_mem = b_m;
|
||||
auto mat_dst_mem = c_m;
|
||||
#ifdef __aarch64__
|
||||
if (matmul_pd.weights_desc() != b_m.get_desc()) {
|
||||
mat_weights_mem = dnnl::memory(matmul_pd.weights_desc(), engine);
|
||||
dnnl::reorder(b_m, mat_weights_mem).execute(stream, b_m, mat_weights_mem);
|
||||
}
|
||||
#endif
|
||||
if constexpr (InputNoScale) {
|
||||
if (bias) {
|
||||
dnnl::memory::desc bias_md({N}, BiasType, {1});
|
||||
dnnl::memory bias_m(bias_md, engine, (void*)bias);
|
||||
matmul.execute(
|
||||
stream, {
|
||||
{DNNL_ARG_SRC, mat_src_mem},
|
||||
{DNNL_ARG_WEIGHTS, mat_weights_mem},
|
||||
{DNNL_ARG_BIAS, bias_m},
|
||||
{DNNL_ARG_DST, mat_dst_mem},
|
||||
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
|
||||
});
|
||||
} else {
|
||||
matmul.execute(
|
||||
stream, {
|
||||
{DNNL_ARG_SRC, mat_src_mem},
|
||||
{DNNL_ARG_WEIGHTS, mat_weights_mem},
|
||||
{DNNL_ARG_DST, mat_dst_mem},
|
||||
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
|
||||
});
|
||||
}
|
||||
} else {
|
||||
if (bias) {
|
||||
dnnl::memory::desc bias_md({N}, BiasType, {1});
|
||||
dnnl::memory bias_m(bias_md, engine, (void*)bias);
|
||||
matmul.execute(
|
||||
stream, {
|
||||
{DNNL_ARG_SRC, mat_src_mem},
|
||||
{DNNL_ARG_WEIGHTS, mat_weights_mem},
|
||||
{DNNL_ARG_BIAS, bias_m},
|
||||
{DNNL_ARG_DST, mat_dst_mem},
|
||||
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
|
||||
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
|
||||
});
|
||||
} else {
|
||||
matmul.execute(
|
||||
stream, {
|
||||
{DNNL_ARG_SRC, mat_src_mem},
|
||||
{DNNL_ARG_WEIGHTS, mat_weights_mem},
|
||||
{DNNL_ARG_DST, mat_dst_mem},
|
||||
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
|
||||
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
|
||||
});
|
||||
}
|
||||
}
|
||||
stream.wait();
|
||||
}
|
||||
|
||||
private:
|
||||
static dnnl::engine& default_engine() {
|
||||
static dnnl::engine engine(dnnl::engine::kind::cpu, 0);
|
||||
return engine;
|
||||
}
|
||||
|
||||
static dnnl::stream& default_stream() {
|
||||
static dnnl::stream stream(default_engine());
|
||||
return stream;
|
||||
}
|
||||
};
|
||||
#endif
|
||||
494
csrc/cpu/dnnl_kernels.cpp
Normal file
494
csrc/cpu/dnnl_kernels.cpp
Normal file
@ -0,0 +1,494 @@
|
||||
#include "cpu_types.hpp"
|
||||
#include "dnnl_helper.h"
|
||||
|
||||
namespace {
|
||||
template <typename scalar_t>
|
||||
struct KernelVecType {
|
||||
using load_vec_type = void;
|
||||
using cvt_vec_type = void;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct KernelVecType<float> {
|
||||
using load_vec_type = vec_op::FP32Vec16;
|
||||
using cvt_vec_type = vec_op::FP32Vec16;
|
||||
};
|
||||
|
||||
#if !defined(__aarch64__) || defined(ARM_BF16_SUPPORT)
|
||||
template <>
|
||||
struct KernelVecType<c10::BFloat16> {
|
||||
using load_vec_type = vec_op::BF16Vec16;
|
||||
using cvt_vec_type = vec_op::FP32Vec16;
|
||||
};
|
||||
#endif
|
||||
|
||||
template <>
|
||||
struct KernelVecType<c10::Half> {
|
||||
#if defined(__powerpc64__) || defined(__s390x__)
|
||||
// Power architecture-specific vector type
|
||||
using load_vec_type = vec_op::FP32Vec16;
|
||||
#else
|
||||
// Fallback for other architectures
|
||||
using load_vec_type = vec_op::FP16Vec16;
|
||||
#endif
|
||||
using cvt_vec_type = vec_op::FP32Vec16;
|
||||
};
|
||||
|
||||
template <bool AZP, typename scalar_t>
|
||||
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
|
||||
const float* scale, const int32_t* azp,
|
||||
const int64_t num_tokens,
|
||||
const int64_t input_stride,
|
||||
const int64_t hidden_size) {
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int64_t vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
constexpr float i8_min =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::min());
|
||||
constexpr float i8_max =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::max());
|
||||
const cvt_vec_t inv_scale(1.0 / *scale);
|
||||
const cvt_vec_t i8_min_vec(i8_min);
|
||||
const cvt_vec_t i8_max_vec(i8_max);
|
||||
|
||||
cvt_vec_t zp_vec;
|
||||
if constexpr (AZP) {
|
||||
zp_vec = cvt_vec_t(static_cast<float>(*azp));
|
||||
}
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int64_t i = 0; i < num_tokens; ++i) {
|
||||
int64_t j = 0;
|
||||
const scalar_t* input_ptr = input + i * input_stride;
|
||||
int8_t* output_ptr = output + i * hidden_size;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
load_vec_t elems(input_ptr + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = elems_fp32 * inv_scale;
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + zp_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output_ptr + j);
|
||||
}
|
||||
|
||||
load_vec_t elems(input_ptr + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = elems_fp32 * inv_scale;
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + zp_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output_ptr + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
|
||||
template <bool AZP, typename scalar_t>
|
||||
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
|
||||
float* scale, int32_t* azp,
|
||||
const int64_t num_tokens,
|
||||
const int64_t input_stride,
|
||||
const int64_t hidden_size) {
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
constexpr float i8_min =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::min());
|
||||
constexpr float i8_max =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::max());
|
||||
const cvt_vec_t i8_min_vec(i8_min);
|
||||
const cvt_vec_t i8_max_vec(i8_max);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int64_t i = 0; i < num_tokens; ++i) {
|
||||
cvt_vec_t max_value(std::numeric_limits<float>::lowest());
|
||||
cvt_vec_t min_value(std::numeric_limits<float>::max());
|
||||
{
|
||||
int64_t j = 0;
|
||||
const scalar_t* input_ptr = input + i * input_stride;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
load_vec_t elems(input_ptr + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
if constexpr (AZP) {
|
||||
max_value = max_value.max(elems_fp32);
|
||||
min_value = min_value.min(elems_fp32);
|
||||
} else {
|
||||
max_value = max_value.max(elems_fp32.abs());
|
||||
}
|
||||
}
|
||||
|
||||
load_vec_t elems(input_ptr + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
|
||||
if (j + vec_elem_num == hidden_size) {
|
||||
if constexpr (AZP) {
|
||||
max_value = max_value.max(elems_fp32);
|
||||
min_value = min_value.min(elems_fp32);
|
||||
} else {
|
||||
max_value = max_value.max(elems_fp32.abs());
|
||||
}
|
||||
} else {
|
||||
if constexpr (AZP) {
|
||||
max_value = max_value.max(elems_fp32, hidden_size - j);
|
||||
min_value = min_value.min(elems_fp32, hidden_size - j);
|
||||
} else {
|
||||
max_value = max_value.max(elems_fp32.abs(), hidden_size - j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float scale_val, azp_val;
|
||||
if constexpr (AZP) {
|
||||
float max_scalar = max_value.reduce_max();
|
||||
float min_scalar = min_value.reduce_min();
|
||||
scale_val = (max_scalar - min_scalar) / 255.0f;
|
||||
azp_val = std::nearbyint(-128.0f - min_scalar / scale_val);
|
||||
azp[i] = azp_val;
|
||||
scale[i] = scale_val;
|
||||
} else {
|
||||
scale_val = max_value.reduce_max() / 127.0f;
|
||||
scale[i] = scale_val;
|
||||
}
|
||||
|
||||
const cvt_vec_t inv_scale(1.0 / scale_val);
|
||||
const cvt_vec_t azp_vec(azp_val);
|
||||
|
||||
{
|
||||
int64_t j = 0;
|
||||
const scalar_t* input_ptr = input + i * input_stride;
|
||||
int8_t* output_ptr = output + i * hidden_size;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
load_vec_t elems(input_ptr + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = (elems_fp32 * inv_scale);
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + azp_vec;
|
||||
}
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output_ptr + j);
|
||||
}
|
||||
|
||||
load_vec_t elems(input_ptr + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = (elems_fp32 * inv_scale);
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + azp_vec;
|
||||
}
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output_ptr + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <bool AZP, bool Bias, typename scalar_t>
|
||||
void dynamic_quant_epilogue(const float* input, scalar_t* output,
|
||||
const float* a_scale, const int32_t* azp,
|
||||
const float* azp_adj, const scalar_t* bias,
|
||||
const int64_t num_tokens,
|
||||
const int64_t hidden_size) {
|
||||
CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue)
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
const int64_t thread_num = omp_get_max_threads();
|
||||
if (num_tokens > thread_num) {
|
||||
#pragma omp parallel for
|
||||
for (int64_t i = 0; i < num_tokens; ++i) {
|
||||
const float* input_ptr = input + i * hidden_size;
|
||||
scalar_t* output_ptr = output + i * hidden_size;
|
||||
int64_t j = 0;
|
||||
cvt_vec_t token_scale_vec(a_scale[i]);
|
||||
cvt_vec_t token_zp_scale_vec;
|
||||
if constexpr (AZP) {
|
||||
float zp_scale_val = a_scale[i] * static_cast<float>(azp[i]);
|
||||
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
|
||||
}
|
||||
for (; j < hidden_size - vec_elem_num; ++j) {
|
||||
cvt_vec_t elems_fp32(input_ptr + j);
|
||||
elems_fp32 = elems_fp32 * token_scale_vec;
|
||||
if constexpr (AZP) {
|
||||
cvt_vec_t azp_adj_fp32(azp_adj + j);
|
||||
elems_fp32 = elems_fp32 - azp_adj_fp32 * token_zp_scale_vec;
|
||||
}
|
||||
if constexpr (Bias) {
|
||||
load_vec_t bias_vec(bias + j);
|
||||
cvt_vec_t bias_vec_fp32(bias_vec);
|
||||
elems_fp32 = elems_fp32 + bias_vec_fp32;
|
||||
}
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output_ptr + j);
|
||||
}
|
||||
cvt_vec_t elems_fp32(input_ptr + j);
|
||||
elems_fp32 = elems_fp32 * token_scale_vec;
|
||||
if constexpr (AZP) {
|
||||
cvt_vec_t azp_adj_fp32(azp_adj + j);
|
||||
elems_fp32 = elems_fp32 - azp_adj_fp32 * token_zp_scale_vec;
|
||||
}
|
||||
if constexpr (Bias) {
|
||||
load_vec_t bias_vec(bias + j);
|
||||
cvt_vec_t bias_vec_fp32(bias_vec);
|
||||
elems_fp32 = elems_fp32 + bias_vec_fp32;
|
||||
}
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output_ptr + j, hidden_size - j);
|
||||
}
|
||||
} else {
|
||||
const int64_t vec_iteration =
|
||||
(hidden_size + vec_elem_num - 1) / vec_elem_num;
|
||||
const int64_t vec_iteration_per_thread =
|
||||
(vec_iteration + thread_num - 1) / thread_num;
|
||||
const int64_t elem_num_per_thread = vec_iteration_per_thread * vec_elem_num;
|
||||
#pragma omp parallel for schedule(static, 1)
|
||||
for (int64_t i = 0; i < thread_num; ++i) {
|
||||
const int64_t start = elem_num_per_thread * i;
|
||||
const int64_t end = std::min(hidden_size, elem_num_per_thread + start);
|
||||
for (int64_t j = 0; j < num_tokens; ++j) {
|
||||
cvt_vec_t token_scale_vec(a_scale[j]);
|
||||
cvt_vec_t token_zp_scale_vec;
|
||||
if constexpr (AZP) {
|
||||
float zp_scale_val = a_scale[j] * static_cast<float>(azp[j]);
|
||||
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
|
||||
}
|
||||
int64_t k = start;
|
||||
const float* input_ptr = input + j * hidden_size;
|
||||
scalar_t* output_ptr = output + j * hidden_size;
|
||||
for (; k < end - vec_elem_num; k += vec_elem_num) {
|
||||
cvt_vec_t elems_fp32(input_ptr + k);
|
||||
elems_fp32 = elems_fp32 * token_scale_vec;
|
||||
if constexpr (AZP) {
|
||||
cvt_vec_t azp_adj_fp32(azp_adj + k);
|
||||
elems_fp32 = elems_fp32 - azp_adj_fp32 * token_zp_scale_vec;
|
||||
}
|
||||
if constexpr (Bias) {
|
||||
load_vec_t bias_vec(bias + k);
|
||||
cvt_vec_t bias_vec_fp32(bias_vec);
|
||||
elems_fp32 = elems_fp32 + bias_vec_fp32;
|
||||
}
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output_ptr + k);
|
||||
}
|
||||
if (k < end) {
|
||||
cvt_vec_t elems_fp32(input_ptr + k);
|
||||
elems_fp32 = elems_fp32 * token_scale_vec;
|
||||
if constexpr (AZP) {
|
||||
cvt_vec_t azp_adj_fp32(azp_adj + k);
|
||||
elems_fp32 = elems_fp32 - azp_adj_fp32 * token_zp_scale_vec;
|
||||
}
|
||||
if constexpr (Bias) {
|
||||
load_vec_t bias_vec(bias + k);
|
||||
cvt_vec_t bias_vec_fp32(bias_vec);
|
||||
elems_fp32 = elems_fp32 + bias_vec_fp32;
|
||||
}
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output_ptr + k, end - k);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
int64_t create_onednn_scaled_mm_handler(
|
||||
const torch::Tensor& b, // [IC, OC], column-major
|
||||
const torch::Tensor& b_scales, // [1] or [OC]
|
||||
at::ScalarType output_type, bool dynamic_act_quant, bool use_azp,
|
||||
int64_t primitive_cache_size) {
|
||||
TORCH_CHECK(b.dim() == 2);
|
||||
TORCH_CHECK(b.stride(0) == 1); // Column-major
|
||||
TORCH_CHECK(b_scales.is_contiguous());
|
||||
|
||||
W8A8MatMulPrimitiveHandler::Args args;
|
||||
args.primitive_cache_size = primitive_cache_size;
|
||||
|
||||
if (b_scales.numel() == 1) {
|
||||
args.b_quantization_strategy =
|
||||
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TENSOR;
|
||||
} else {
|
||||
TORCH_CHECK_EQ(b_scales.numel(), b.size(1));
|
||||
args.b_quantization_strategy =
|
||||
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_OUTPUT_CHANNEL;
|
||||
}
|
||||
args.b_scales_ptr = b_scales.data_ptr<float>();
|
||||
args.b_k_size = b.size(0);
|
||||
args.b_k_stride = b.stride(0);
|
||||
args.b_n_size = b.size(1);
|
||||
args.b_n_stride = b.stride(1);
|
||||
args.b_ptr = b.data_ptr<int8_t>();
|
||||
|
||||
if (dynamic_act_quant) {
|
||||
// dynamic per-token, bias, A scales and A zps will be applied in outside.
|
||||
args.a_quantization_strategy =
|
||||
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TOKEN;
|
||||
args.use_a_zero_point = false;
|
||||
} else {
|
||||
// static per-tensor
|
||||
args.a_quantization_strategy =
|
||||
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TENSOR;
|
||||
args.use_a_zero_point = use_azp;
|
||||
}
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(output_type, "create_onednn_scaled_mm_handler",
|
||||
[&] {
|
||||
if (dynamic_act_quant) {
|
||||
args.c_type = get_dnnl_type<float>();
|
||||
} else {
|
||||
args.c_type = get_dnnl_type<scalar_t>();
|
||||
}
|
||||
});
|
||||
|
||||
return reinterpret_cast<int64_t>(new W8A8MatMulPrimitiveHandler(args));
|
||||
}
|
||||
|
||||
void onednn_scaled_mm(
|
||||
torch::Tensor& c, // [M, OC], row-major
|
||||
const torch::Tensor& a, // [M, IC], row-major
|
||||
const torch::Tensor& a_scales, // [M] or [1]
|
||||
const std::optional<torch::Tensor>& azp, // [M] or [1]
|
||||
const std::optional<torch::Tensor>& azp_adj, // [M] or [1]
|
||||
const std::optional<torch::Tensor>& bias, // [N]
|
||||
int64_t handler) {
|
||||
CPU_KERNEL_GUARD_IN(onednn_scaled_mm)
|
||||
TORCH_CHECK(a.dim() == 2);
|
||||
TORCH_CHECK(a.is_contiguous());
|
||||
TORCH_CHECK(c.is_contiguous());
|
||||
W8A8MatMulPrimitiveHandler* ptr =
|
||||
reinterpret_cast<W8A8MatMulPrimitiveHandler*>(handler);
|
||||
const int32_t* azp_ptr = nullptr;
|
||||
if (azp.has_value()) {
|
||||
azp_ptr = azp->data_ptr<int32_t>();
|
||||
}
|
||||
if (ptr->get_input_scale_strategy() ==
|
||||
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TENSOR) {
|
||||
TORCH_CHECK_EQ(a_scales.numel(), 1);
|
||||
}
|
||||
|
||||
W8A8MatMulPrimitiveHandler::ExecArgs exec_args;
|
||||
exec_args.a_ptr = a.data_ptr<int8_t>();
|
||||
exec_args.a_m_size = a.size(0);
|
||||
exec_args.bias_ptr = nullptr;
|
||||
exec_args.use_bias = false;
|
||||
exec_args.a_scales_ptr = nullptr;
|
||||
exec_args.a_zero_points_ptr = nullptr;
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "onednn_scaled_mm", [&] {
|
||||
if (ptr->get_input_scale_strategy() ==
|
||||
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TENSOR) {
|
||||
if (bias.has_value()) {
|
||||
exec_args.bias_ptr = bias->data_ptr<scalar_t>();
|
||||
exec_args.bias_type = get_dnnl_type<scalar_t>();
|
||||
exec_args.use_bias = true;
|
||||
}
|
||||
exec_args.a_scales_ptr = a_scales.data_ptr<float>();
|
||||
exec_args.a_zero_points_ptr = azp_ptr;
|
||||
exec_args.c_ptr = c.data_ptr<scalar_t>();
|
||||
ptr->execute(exec_args);
|
||||
} else if (ptr->get_input_scale_strategy() ==
|
||||
W8A8MatMulPrimitiveHandler::QuantizationStrategy::PER_TOKEN) {
|
||||
torch::Tensor tmp_fp32_out =
|
||||
torch::empty_like(c, ::at::ScalarType::Float);
|
||||
exec_args.c_ptr = tmp_fp32_out.data_ptr<float>();
|
||||
ptr->execute(exec_args);
|
||||
if (bias.has_value()) {
|
||||
if (azp.has_value()) {
|
||||
dynamic_quant_epilogue<true, true>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), azp_ptr, azp_adj->data_ptr<float>(),
|
||||
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
|
||||
} else {
|
||||
dynamic_quant_epilogue<false, true>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), azp_ptr, nullptr,
|
||||
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
|
||||
}
|
||||
} else {
|
||||
if (azp.has_value()) {
|
||||
dynamic_quant_epilogue<true, false>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), azp_ptr, azp_adj->data_ptr<float>(),
|
||||
(scalar_t*)nullptr, c.size(0), c.size(1));
|
||||
} else {
|
||||
dynamic_quant_epilogue<false, false>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), azp_ptr, nullptr, (scalar_t*)nullptr,
|
||||
c.size(0), c.size(1));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
TORCH_CHECK(false, "invalid act quant type.");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// static-per-tensor quantization.
|
||||
void static_scaled_int8_quant(
|
||||
torch::Tensor& out, // [batch, hidden_size]
|
||||
const torch::Tensor& input, // [batch, hidden_size]
|
||||
const torch::Tensor& scale, std::optional<torch::Tensor> const& azp) {
|
||||
CPU_KERNEL_GUARD_IN(static_scaled_int8_quant)
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
TORCH_CHECK_EQ(input.dim(), 2);
|
||||
TORCH_CHECK_EQ(input.stride(1), 1);
|
||||
TORCH_CHECK(scale.numel() == 1);
|
||||
TORCH_CHECK(!azp.has_value() || azp->numel() == 1);
|
||||
|
||||
const int64_t stride = input.stride(0);
|
||||
const int64_t hidden_size = input.size(1);
|
||||
const int64_t num_tokens = input.size(0);
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "static_scaled_int8_quant_impl", [&] {
|
||||
if (azp.has_value()) {
|
||||
static_scaled_int8_quant_impl<true>(
|
||||
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
||||
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
|
||||
stride, hidden_size);
|
||||
} else {
|
||||
static_scaled_int8_quant_impl<false>(input.data_ptr<scalar_t>(),
|
||||
out.data_ptr<int8_t>(),
|
||||
scale.data_ptr<float>(), nullptr,
|
||||
num_tokens, stride, hidden_size);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// dynamic-per-token quantization.
|
||||
void dynamic_scaled_int8_quant(
|
||||
torch::Tensor& out, // [batch, hidden_size]
|
||||
const torch::Tensor& input, // [batch, hidden_size]
|
||||
torch::Tensor& scale, // [batch, 1]
|
||||
std::optional<torch::Tensor> const& azp) {
|
||||
CPU_KERNEL_GUARD_IN(dynamic_scaled_int8_quant)
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
TORCH_CHECK_EQ(input.dim(), 2);
|
||||
TORCH_CHECK_EQ(input.stride(1), 1);
|
||||
|
||||
const int64_t hidden_size = input.size(1);
|
||||
const int64_t num_tokens = input.size(0);
|
||||
const int64_t stride = input.stride(0);
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "dynamic_scaled_int8_quant_impl", [&] {
|
||||
if (azp.has_value()) {
|
||||
dynamic_scaled_int8_quant_impl<true>(
|
||||
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
||||
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
|
||||
stride, hidden_size);
|
||||
} else {
|
||||
dynamic_scaled_int8_quant_impl<false>(
|
||||
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
||||
scale.data_ptr<float>(), nullptr, num_tokens, stride,
|
||||
hidden_size);
|
||||
}
|
||||
});
|
||||
}
|
||||
@ -1,951 +0,0 @@
|
||||
#include "cpu_types.hpp"
|
||||
#include "dnnl_helper.hpp"
|
||||
|
||||
namespace {
|
||||
template <typename scalar_t>
|
||||
struct KernelVecType {
|
||||
using load_vec_type = void;
|
||||
using azp_adj_load_vec_type = void;
|
||||
using cvt_vec_type = void;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct KernelVecType<float> {
|
||||
using load_vec_type = vec_op::FP32Vec16;
|
||||
using azp_adj_load_vec_type = vec_op::INT32Vec16;
|
||||
using cvt_vec_type = vec_op::FP32Vec16;
|
||||
};
|
||||
|
||||
#if !defined(__aarch64__) || defined(ARM_BF16_SUPPORT)
|
||||
template <>
|
||||
struct KernelVecType<c10::BFloat16> {
|
||||
using load_vec_type = vec_op::BF16Vec16;
|
||||
using azp_adj_load_vec_type = vec_op::INT32Vec16;
|
||||
using cvt_vec_type = vec_op::FP32Vec16;
|
||||
};
|
||||
#endif
|
||||
|
||||
template <>
|
||||
struct KernelVecType<c10::Half> {
|
||||
#if defined(__powerpc64__) || defined(__s390x__)
|
||||
// Power architecture-specific vector type
|
||||
using load_vec_type = vec_op::FP32Vec16;
|
||||
#else
|
||||
// Fallback for other architectures
|
||||
using load_vec_type = vec_op::FP16Vec16;
|
||||
#endif
|
||||
using azp_adj_load_vec_type = vec_op::INT32Vec16;
|
||||
using cvt_vec_type = vec_op::FP32Vec16;
|
||||
};
|
||||
|
||||
#if defined(__AVX512F__) || defined(__aarch64__)
|
||||
template <bool AZP, typename scalar_t>
|
||||
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
|
||||
const float* scale, const int32_t* azp,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
constexpr float i8_min =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::min());
|
||||
constexpr float i8_max =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::max());
|
||||
const cvt_vec_t inv_scale(1.0 / *scale);
|
||||
const cvt_vec_t i8_min_vec(i8_min);
|
||||
const cvt_vec_t i8_max_vec(i8_max);
|
||||
|
||||
cvt_vec_t zp_vec;
|
||||
if constexpr (AZP) {
|
||||
zp_vec = cvt_vec_t(static_cast<float>(*azp));
|
||||
}
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
int j = 0;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = elems_fp32 * inv_scale;
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + zp_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output + i * hidden_size + j);
|
||||
}
|
||||
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = elems_fp32 * inv_scale;
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + zp_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
|
||||
template <bool AZP, typename scalar_t>
|
||||
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
|
||||
float* scale, int32_t* azp,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
constexpr float i8_min =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::min());
|
||||
constexpr float i8_max =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::max());
|
||||
const cvt_vec_t i8_min_vec(i8_min);
|
||||
const cvt_vec_t i8_max_vec(i8_max);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
cvt_vec_t max_value(std::numeric_limits<float>::lowest());
|
||||
cvt_vec_t min_value(std::numeric_limits<float>::max());
|
||||
{
|
||||
int j = 0;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
if constexpr (AZP) {
|
||||
max_value = max_value.max(elems_fp32);
|
||||
min_value = min_value.min(elems_fp32);
|
||||
} else {
|
||||
max_value = max_value.max(elems_fp32.abs());
|
||||
}
|
||||
}
|
||||
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
|
||||
if (j + vec_elem_num == hidden_size) {
|
||||
if constexpr (AZP) {
|
||||
max_value = max_value.max(elems_fp32);
|
||||
min_value = min_value.min(elems_fp32);
|
||||
} else {
|
||||
max_value = max_value.max(elems_fp32.abs());
|
||||
}
|
||||
} else {
|
||||
if constexpr (AZP) {
|
||||
max_value = max_value.max(elems_fp32, hidden_size - j);
|
||||
min_value = min_value.min(elems_fp32, hidden_size - j);
|
||||
} else {
|
||||
max_value = max_value.max(elems_fp32.abs(), hidden_size - j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float scale_val, azp_val;
|
||||
if constexpr (AZP) {
|
||||
float max_scalar = max_value.reduce_max();
|
||||
float min_scalar = min_value.reduce_min();
|
||||
scale_val = (max_scalar - min_scalar) / 255.0f;
|
||||
azp_val = std::nearbyint(-128.0f - min_scalar / scale_val);
|
||||
azp[i] = static_cast<int32_t>(azp_val);
|
||||
scale[i] = scale_val;
|
||||
} else {
|
||||
scale_val = max_value.reduce_max() / 127.0f;
|
||||
scale[i] = scale_val;
|
||||
}
|
||||
|
||||
const cvt_vec_t inv_scale(1.0 / scale_val);
|
||||
const cvt_vec_t azp_vec(azp_val);
|
||||
|
||||
{
|
||||
int j = 0;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = (elems_fp32 * inv_scale);
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + azp_vec;
|
||||
}
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output + i * hidden_size + j);
|
||||
}
|
||||
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = (elems_fp32 * inv_scale);
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + azp_vec;
|
||||
}
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <bool PerChannel, typename scalar_t>
|
||||
void static_quant_epilogue(const float* input, scalar_t* output,
|
||||
const float a_scale, const float* b_scale,
|
||||
const int32_t* azp_with_adj, const int num_tokens,
|
||||
const int hidden_size) {
|
||||
CPU_KERNEL_GUARD_IN(dynamic_output_scale_impl)
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using azp_adj_load_vec_t =
|
||||
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
cvt_vec_t a_scale_vec(a_scale);
|
||||
cvt_vec_t b_scale_vec(*b_scale);
|
||||
cvt_vec_t scale_vec = a_scale_vec * b_scale_vec;
|
||||
|
||||
int j = 0;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
cvt_vec_t elems_fp32(input + i * hidden_size + j);
|
||||
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
|
||||
cvt_vec_t azp_adj_fp32(azp_adj_vec);
|
||||
|
||||
if constexpr (PerChannel) {
|
||||
b_scale_vec = cvt_vec_t(b_scale + j);
|
||||
scale_vec = b_scale_vec * a_scale_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
|
||||
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output + i * hidden_size + j);
|
||||
}
|
||||
|
||||
cvt_vec_t elems_fp32(input + i * hidden_size + j);
|
||||
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
|
||||
cvt_vec_t azp_adj_fp32(azp_adj_vec);
|
||||
|
||||
if constexpr (PerChannel) {
|
||||
b_scale_vec = cvt_vec_t(b_scale + j);
|
||||
scale_vec = b_scale_vec * a_scale_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
|
||||
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output + i * hidden_size + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
|
||||
template <bool AZP, bool PerChannel, bool Bias, typename scalar_t>
|
||||
void dynamic_quant_epilogue(const float* input, scalar_t* output,
|
||||
const float* a_scale, const float* b_scale,
|
||||
const int32_t* azp, const int32_t* azp_adj,
|
||||
const scalar_t* bias, const int num_tokens,
|
||||
const int hidden_size) {
|
||||
CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue)
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using azp_adj_load_vec_t =
|
||||
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
int j = 0;
|
||||
cvt_vec_t token_scale_vec(a_scale[i]);
|
||||
cvt_vec_t token_zp_scale_vec;
|
||||
if constexpr (AZP) {
|
||||
float zp_scale_val = a_scale[i] * static_cast<float>(azp[i]);
|
||||
if constexpr (!PerChannel) {
|
||||
zp_scale_val *= *b_scale;
|
||||
}
|
||||
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
|
||||
}
|
||||
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
cvt_vec_t elems_fp32(input + i * hidden_size + j);
|
||||
elems_fp32 = elems_fp32 * token_scale_vec;
|
||||
|
||||
if constexpr (AZP) {
|
||||
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
|
||||
cvt_vec_t azp_adj_fp32(azp_adj_vec);
|
||||
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
|
||||
|
||||
if constexpr (PerChannel) {
|
||||
cvt_vec_t b_scale_vec(b_scale + j);
|
||||
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32 - azp_adj_fp32;
|
||||
}
|
||||
|
||||
if constexpr (Bias) {
|
||||
load_vec_t bias_vec(bias + j);
|
||||
cvt_vec_t bias_vec_fp32(bias_vec);
|
||||
elems_fp32 = elems_fp32 + bias_vec_fp32;
|
||||
}
|
||||
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output + i * hidden_size + j);
|
||||
}
|
||||
|
||||
cvt_vec_t elems_fp32(input + i * hidden_size + j);
|
||||
elems_fp32 = elems_fp32 * token_scale_vec;
|
||||
|
||||
if constexpr (AZP) {
|
||||
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
|
||||
cvt_vec_t azp_adj_fp32(azp_adj_vec);
|
||||
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
|
||||
|
||||
if constexpr (PerChannel) {
|
||||
cvt_vec_t b_scale_vec(b_scale + j);
|
||||
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32 - azp_adj_fp32;
|
||||
}
|
||||
|
||||
if constexpr (Bias) {
|
||||
load_vec_t bias_vec(bias + j);
|
||||
cvt_vec_t bias_vec_fp32(bias_vec);
|
||||
elems_fp32 = elems_fp32 + bias_vec_fp32;
|
||||
}
|
||||
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output + i * hidden_size + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
#elif defined(__powerpc64__)
|
||||
template <bool AZP, typename scalar_t>
|
||||
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
|
||||
const float* scale, const int32_t* azp,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
constexpr float i8_min =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::min());
|
||||
constexpr float i8_max =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::max());
|
||||
|
||||
const cvt_vec_t inv_scale(1.0 / *scale);
|
||||
const cvt_vec_t i8_min_vec(i8_min);
|
||||
const cvt_vec_t i8_max_vec(i8_max);
|
||||
|
||||
cvt_vec_t zp_vec;
|
||||
if constexpr (AZP) {
|
||||
zp_vec = cvt_vec_t(static_cast<float>(*azp));
|
||||
}
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
int j = 0;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = elems_fp32 * inv_scale;
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + zp_vec;
|
||||
}
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output + i * hidden_size + j);
|
||||
}
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = elems_fp32 * inv_scale;
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + zp_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
template <bool AZP, typename scalar_t>
|
||||
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
|
||||
float* scale, int32_t* azp,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
constexpr float i8_min =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::min());
|
||||
constexpr float i8_max =
|
||||
static_cast<float>(std::numeric_limits<int8_t>::max());
|
||||
const cvt_vec_t i8_min_vec(i8_min);
|
||||
const cvt_vec_t i8_max_vec(i8_max);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
cvt_vec_t max_value(std::numeric_limits<float>::lowest());
|
||||
cvt_vec_t min_value(std::numeric_limits<float>::max());
|
||||
{
|
||||
int j = 0;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
if constexpr (AZP) {
|
||||
max_value = max_value.max(elems_fp32);
|
||||
min_value = min_value.min(elems_fp32);
|
||||
} else {
|
||||
max_value = max_value.max(elems_fp32.abs());
|
||||
}
|
||||
}
|
||||
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
|
||||
if (j + vec_elem_num == hidden_size) {
|
||||
if constexpr (AZP) {
|
||||
max_value = max_value.max(elems_fp32);
|
||||
min_value = min_value.min(elems_fp32);
|
||||
} else {
|
||||
max_value = max_value.max(elems_fp32.abs());
|
||||
}
|
||||
} else {
|
||||
if constexpr (AZP) {
|
||||
max_value = max_value.max(elems_fp32, hidden_size - j);
|
||||
min_value = min_value.min(elems_fp32, hidden_size - j);
|
||||
} else {
|
||||
max_value = max_value.max(elems_fp32.abs(), hidden_size - j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float scale_val, azp_val;
|
||||
if constexpr (AZP) {
|
||||
float max_scalar = max_value.reduce_max();
|
||||
float min_scalar = min_value.reduce_min();
|
||||
scale_val = (max_scalar - min_scalar) / 255.0f;
|
||||
azp_val = std::nearbyint(-128.0f - min_scalar / scale_val);
|
||||
azp[i] = static_cast<int32_t>(azp_val);
|
||||
scale[i] = scale_val;
|
||||
} else {
|
||||
scale_val = max_value.reduce_max() / 127.0f;
|
||||
scale[i] = scale_val;
|
||||
}
|
||||
|
||||
const cvt_vec_t inv_scale(1.0 / scale_val);
|
||||
const cvt_vec_t azp_vec(azp_val);
|
||||
|
||||
{
|
||||
int j = 0;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = (elems_fp32 * inv_scale);
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + azp_vec;
|
||||
}
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output + i * hidden_size + j);
|
||||
}
|
||||
|
||||
load_vec_t elems(input + i * hidden_size + j);
|
||||
cvt_vec_t elems_fp32(elems);
|
||||
elems_fp32 = (elems_fp32 * inv_scale);
|
||||
|
||||
if constexpr (AZP) {
|
||||
elems_fp32 = elems_fp32 + azp_vec;
|
||||
}
|
||||
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
|
||||
vec_op::INT8Vec16 elems_int8(elems_fp32);
|
||||
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
}
|
||||
template <bool PerChannel, typename scalar_t>
|
||||
void static_quant_epilogue(const float* input, scalar_t* output,
|
||||
const float a_scale, const float* b_scale,
|
||||
const int32_t* azp_with_adj, const int num_tokens,
|
||||
const int hidden_size) {
|
||||
CPU_KERNEL_GUARD_IN(dynamic_output_scale_impl)
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using azp_adj_load_vec_t =
|
||||
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
cvt_vec_t a_scale_vec(a_scale);
|
||||
cvt_vec_t b_scale_vec(*b_scale);
|
||||
cvt_vec_t scale_vec = a_scale_vec * b_scale_vec;
|
||||
|
||||
int j = 0;
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
cvt_vec_t elems_fp32(input + i * hidden_size + j);
|
||||
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
|
||||
cvt_vec_t azp_adj_fp32(azp_adj_vec);
|
||||
|
||||
if constexpr (PerChannel) {
|
||||
b_scale_vec = cvt_vec_t(b_scale + j);
|
||||
scale_vec = b_scale_vec * a_scale_vec;
|
||||
}
|
||||
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output + i * hidden_size + j);
|
||||
}
|
||||
|
||||
cvt_vec_t elems_fp32(input + i * hidden_size + j);
|
||||
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
|
||||
cvt_vec_t azp_adj_fp32(azp_adj_vec);
|
||||
|
||||
if constexpr (PerChannel) {
|
||||
b_scale_vec = cvt_vec_t(b_scale + j);
|
||||
scale_vec = b_scale_vec * a_scale_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
|
||||
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output + i * hidden_size + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
template <bool AZP, bool PerChannel, bool Bias, typename scalar_t>
|
||||
void dynamic_quant_epilogue(const float* input, scalar_t* output,
|
||||
const float* a_scale, const float* b_scale,
|
||||
const int32_t* azp, const int32_t* azp_adj,
|
||||
const scalar_t* bias, const int num_tokens,
|
||||
const int hidden_size) {
|
||||
CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue)
|
||||
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
|
||||
using azp_adj_load_vec_t =
|
||||
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
|
||||
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
|
||||
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < num_tokens; ++i) {
|
||||
int j = 0;
|
||||
cvt_vec_t token_scale_vec(a_scale[i]);
|
||||
cvt_vec_t token_zp_scale_vec;
|
||||
if constexpr (AZP) {
|
||||
float zp_scale_val = a_scale[i] * static_cast<float>(azp[i]);
|
||||
if constexpr (!PerChannel) {
|
||||
zp_scale_val *= *b_scale;
|
||||
}
|
||||
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
|
||||
}
|
||||
|
||||
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
|
||||
cvt_vec_t elems_fp32(input + i * hidden_size + j);
|
||||
elems_fp32 = elems_fp32 * token_scale_vec;
|
||||
|
||||
if constexpr (AZP) {
|
||||
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
|
||||
cvt_vec_t azp_adj_fp32(azp_adj_vec);
|
||||
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
|
||||
|
||||
if constexpr (PerChannel) {
|
||||
cvt_vec_t b_scale_vec(b_scale + j);
|
||||
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32 - azp_adj_fp32;
|
||||
}
|
||||
|
||||
if constexpr (Bias) {
|
||||
load_vec_t bias_vec(bias + j);
|
||||
cvt_vec_t bias_vec_fp32(bias_vec);
|
||||
elems_fp32 = elems_fp32 + bias_vec_fp32;
|
||||
}
|
||||
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output + i * hidden_size + j);
|
||||
}
|
||||
|
||||
cvt_vec_t elems_fp32(input + i * hidden_size + j);
|
||||
elems_fp32 = elems_fp32 * token_scale_vec;
|
||||
|
||||
if constexpr (AZP) {
|
||||
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
|
||||
cvt_vec_t azp_adj_fp32(azp_adj_vec);
|
||||
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
|
||||
|
||||
if constexpr (PerChannel) {
|
||||
cvt_vec_t b_scale_vec(b_scale + j);
|
||||
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
|
||||
}
|
||||
|
||||
elems_fp32 = elems_fp32 - azp_adj_fp32;
|
||||
}
|
||||
|
||||
if constexpr (Bias) {
|
||||
load_vec_t bias_vec(bias + j);
|
||||
cvt_vec_t bias_vec_fp32(bias_vec);
|
||||
elems_fp32 = elems_fp32 + bias_vec_fp32;
|
||||
}
|
||||
|
||||
load_vec_t elems_out(elems_fp32);
|
||||
elems_out.save(output + i * hidden_size + j, hidden_size - j);
|
||||
}
|
||||
}
|
||||
#else
|
||||
template <typename scalar_t>
|
||||
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
|
||||
const float* scale, const int32_t* azp,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
TORCH_CHECK(false,
|
||||
"static_scaled_int8_quant_impl requires AVX512/powerpc64/AArch64 "
|
||||
"support.")
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
|
||||
float* scale, int32_t* azp,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
TORCH_CHECK(false,
|
||||
"dynamic_scaled_int8_quant_impl requires "
|
||||
"AVX512/powerpc64/AArch64 support.")
|
||||
}
|
||||
|
||||
template <bool PerChannel, typename scalar_t>
|
||||
void static_quant_epilogue(const float* input, scalar_t* output,
|
||||
const float a_scale, const float* b_scale,
|
||||
const int32_t* azp_with_adj, const int num_tokens,
|
||||
const int hidden_size) {
|
||||
TORCH_CHECK(
|
||||
false, "static_quant_epilogue requires AVX512/powerpc64/AArch64 support.")
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void dynamic_quant_epilogue(const float* input, scalar_t* output,
|
||||
const float* a_scale, const float* b_scale,
|
||||
const int32_t* azp, const int32_t* azp_with_adj,
|
||||
const scalar_t* bias, const int num_tokens,
|
||||
const int hidden_size) {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"dynamic_quant_epilogue requires AVX512/powerpc64/AArch64 support.")
|
||||
}
|
||||
#endif
|
||||
} // namespace
|
||||
|
||||
void int8_scaled_mm(torch::Tensor& c, // [M, OC], row-major
|
||||
const torch::Tensor& a, // [M, IC], row-major
|
||||
const torch::Tensor& b, // [IC, OC], column-major
|
||||
const torch::Tensor& a_scales, // [1] or [M]
|
||||
const torch::Tensor& b_scales, // [1] or [OC]
|
||||
const std::optional<torch::Tensor>& bias // [OC]
|
||||
) {
|
||||
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm)
|
||||
// Checks for conformality
|
||||
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
|
||||
"int8_scaled_mm only supports INT8 inputs.")
|
||||
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
|
||||
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
|
||||
b.size(1) == c.size(1));
|
||||
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
|
||||
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
|
||||
|
||||
// Check for strides and alignment
|
||||
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
|
||||
TORCH_CHECK(b.stride(0) == 1); // Column-major
|
||||
TORCH_CHECK(c.stride(0) % 16 == 0 &&
|
||||
b.stride(1) % 16 == 0); // 16 Byte Alignment
|
||||
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
|
||||
|
||||
if (bias) {
|
||||
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous() &&
|
||||
bias->dim() == 1);
|
||||
}
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm", [&] {
|
||||
if (a_scales.numel() != 1) {
|
||||
// per-token
|
||||
// Note: oneDNN doesn't support per-token activation quantization
|
||||
// Ideally we want to fuse the GEMM and the scale procedure with oneDNN
|
||||
// JIT, the intermediate data is cached in registers or L1. But for now
|
||||
// the oneDNN GEMM code generation only supports two quantization
|
||||
// patterns: per-tensor or per-output-channel of weight.
|
||||
// So we have to apply the per-token scale with a 'epilogue'. In C=s_a *
|
||||
// s_b * (A@B) + bias, the C_inter = s_b * (A@B) is computed by oneDNN
|
||||
// GEMM, then the per-token scale (and bias) is applied with the epilogue
|
||||
// C=s_a * C_inter + bias.
|
||||
torch::Tensor tmp_fp32_out =
|
||||
torch::empty_like(c, ::at::ScalarType::Float);
|
||||
// Compute C_inter=s_b * (A@B)
|
||||
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
|
||||
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
|
||||
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
|
||||
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
|
||||
if (bias.has_value()) {
|
||||
// Compute C=s_a * C_inter + bias
|
||||
dynamic_quant_epilogue<false, true, true>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr,
|
||||
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
|
||||
} else {
|
||||
// Compute C=s_a * C_inter
|
||||
dynamic_quant_epilogue<false, true, false, scalar_t>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr, nullptr,
|
||||
c.size(0), c.size(1));
|
||||
}
|
||||
} else {
|
||||
// per-tensor
|
||||
if (bias.has_value()) {
|
||||
// Compute C=s_a * s_b * (A@B) + bias
|
||||
DNNLPrimitiveHelper<false>::gemm_s8s8_jit(
|
||||
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(), c.data_ptr<scalar_t>(),
|
||||
bias->data_ptr<scalar_t>(), a.size(0), b.size(1), a.size(1),
|
||||
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
|
||||
a_scales.numel(), b_scales.numel());
|
||||
} else {
|
||||
// Compute C=s_a * s_b * (A@B)
|
||||
DNNLPrimitiveHelper<false>::gemm_s8s8_jit<scalar_t, void>(
|
||||
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(), c.data_ptr<scalar_t>(),
|
||||
nullptr, a.size(0), b.size(1), a.size(1),
|
||||
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
|
||||
a_scales.numel(), b_scales.numel());
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void int8_scaled_mm_azp(torch::Tensor& c, // [M, OC], row-major
|
||||
const torch::Tensor& a, // [M, IC], row-major
|
||||
const torch::Tensor& b, // [IC, OC], column-major
|
||||
const torch::Tensor& a_scales, // [1] or [M]
|
||||
const torch::Tensor& b_scales, // [1] or [OC]
|
||||
const torch::Tensor& azp_adj, // [OC]
|
||||
const std::optional<torch::Tensor>& azp, // [1] or [M]
|
||||
const std::optional<torch::Tensor>& bias // [OC]
|
||||
) {
|
||||
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm_azp)
|
||||
// Checks for conformality
|
||||
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
|
||||
"int8_scaled_mm_azp only supports INT8 inputs.")
|
||||
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
|
||||
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
|
||||
b.size(1) == c.size(1));
|
||||
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
|
||||
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
|
||||
|
||||
// Check for strides and alignment
|
||||
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
|
||||
TORCH_CHECK(b.stride(0) == 1); // Column-major
|
||||
TORCH_CHECK(c.stride(0) % 16 == 0 &&
|
||||
b.stride(1) % 16 == 0); // 16 Byte Alignment
|
||||
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
|
||||
|
||||
if (bias) {
|
||||
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous());
|
||||
}
|
||||
if (azp) {
|
||||
TORCH_CHECK(azp->numel() == a.size(0) && azp->is_contiguous());
|
||||
}
|
||||
TORCH_CHECK(azp_adj.numel() == b.size(1) && azp_adj.is_contiguous());
|
||||
|
||||
// azp & bias types
|
||||
TORCH_CHECK(azp_adj.dtype() == torch::kInt32);
|
||||
TORCH_CHECK(!azp || azp->dtype() == torch::kInt32);
|
||||
TORCH_CHECK(!bias || bias->dtype() == c.dtype(),
|
||||
"currently bias dtype must match output dtype ", c.dtype());
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm_azp", [&] {
|
||||
torch::Tensor tmp_fp32_out = torch::empty_like(c, ::at::ScalarType::Float);
|
||||
if (a_scales.numel() != 1) {
|
||||
// per-token
|
||||
// Note: oneDNN doesn't support per-token activation quantization
|
||||
// Compute C_inter=s_b * (A@B)
|
||||
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
|
||||
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
|
||||
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
|
||||
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
|
||||
if (bias.has_value()) {
|
||||
// Compute C=s_a * C_inter - s_a * s_b * azp * azp_adj + bias
|
||||
if (b_scales.numel() != 1) {
|
||||
// Per-Channel
|
||||
dynamic_quant_epilogue<true, true, true>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
|
||||
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(),
|
||||
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
|
||||
} else {
|
||||
// Per-Tensor
|
||||
dynamic_quant_epilogue<true, false, true>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
|
||||
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(),
|
||||
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
|
||||
}
|
||||
} else {
|
||||
// Compute C=s_a * C_inter - s_a * s_b * azp * azp_adj
|
||||
if (b_scales.numel() != 1) {
|
||||
// Per-Channel
|
||||
dynamic_quant_epilogue<true, true, false, scalar_t>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
|
||||
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(), nullptr,
|
||||
c.size(0), c.size(1));
|
||||
} else {
|
||||
// Per-Tensor
|
||||
dynamic_quant_epilogue<true, false, false, scalar_t>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
|
||||
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(), nullptr,
|
||||
c.size(0), c.size(1));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// per-tensor
|
||||
if (bias.has_value()) {
|
||||
// Compute C_inter=s_a * s_b * (A@B) + bias
|
||||
DNNLPrimitiveHelper<false>::gemm_s8s8_jit(
|
||||
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
|
||||
tmp_fp32_out.data_ptr<float>(), bias->data_ptr<scalar_t>(),
|
||||
a.size(0), b.size(1), a.size(1), a_scales.data_ptr<float>(),
|
||||
b_scales.data_ptr<float>(), a_scales.numel(), b_scales.numel());
|
||||
} else {
|
||||
// Compute C_inter=s_a * s_b * (A@B)
|
||||
DNNLPrimitiveHelper<false>::gemm_s8s8_jit<float, void>(
|
||||
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
|
||||
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
|
||||
a.size(1), a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
|
||||
a_scales.numel(), b_scales.numel());
|
||||
}
|
||||
|
||||
// Compute C=C_inter - s_a * s_b * azp_adj
|
||||
if (b_scales.numel() != 1) {
|
||||
// Per-Channel
|
||||
static_quant_epilogue<true>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
*a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
|
||||
azp_adj.data_ptr<int32_t>(), a.size(0), b.size(1));
|
||||
} else {
|
||||
// Per-Tensor
|
||||
static_quant_epilogue<false>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
*a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
|
||||
azp_adj.data_ptr<int32_t>(), a.size(0), b.size(1));
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// static-per-tensor quantization.
|
||||
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
|
||||
const torch::Tensor& input, // [..., hidden_size]
|
||||
const torch::Tensor& scale,
|
||||
std::optional<torch::Tensor> const& azp) {
|
||||
CPU_KERNEL_GUARD_IN(static_scaled_int8_quant)
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
TORCH_CHECK(scale.numel() == 1);
|
||||
TORCH_CHECK(!azp.has_value() || azp->numel() == 1);
|
||||
|
||||
const int hidden_size = input.size(-1);
|
||||
const int num_tokens = input.numel() / hidden_size;
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "static_scaled_int8_quant_impl", [&] {
|
||||
if (azp.has_value()) {
|
||||
static_scaled_int8_quant_impl<true>(
|
||||
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
||||
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
|
||||
hidden_size);
|
||||
} else {
|
||||
static_scaled_int8_quant_impl<false>(
|
||||
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
||||
scale.data_ptr<float>(), nullptr, num_tokens, hidden_size);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// dynamic-per-token quantization.
|
||||
void dynamic_scaled_int8_quant(
|
||||
torch::Tensor& out, // [..., hidden_size]
|
||||
const torch::Tensor& input, // [..., hidden_size]
|
||||
torch::Tensor& scale, // [..., 1]
|
||||
std::optional<torch::Tensor> const& azp) {
|
||||
CPU_KERNEL_GUARD_IN(dynamic_scaled_int8_quant)
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
|
||||
int const hidden_size = input.size(-1);
|
||||
int const num_tokens = input.numel() / hidden_size;
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "dynamic_scaled_int8_quant_impl", [&] {
|
||||
if (azp.has_value()) {
|
||||
dynamic_scaled_int8_quant_impl<true>(
|
||||
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
||||
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
|
||||
hidden_size);
|
||||
} else {
|
||||
dynamic_scaled_int8_quant_impl<false>(
|
||||
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
||||
scale.data_ptr<float>(), nullptr, num_tokens, hidden_size);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#if defined(__powerpc64__)
|
||||
void int8_scaled_mm_ppc64le(torch::Tensor& c, // [M, OC], row-major
|
||||
const torch::Tensor& a, // [M, IC], row-major
|
||||
const torch::Tensor& b, // [IC, OC], column-major
|
||||
const torch::Tensor& a_scales,
|
||||
const torch::Tensor& b_scales,
|
||||
const std::optional<torch::Tensor>& bias // [OC]
|
||||
) {
|
||||
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm)
|
||||
// Checks for conformality
|
||||
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
|
||||
"int8_scaled_mm_ppc64le only supports INT8 inputs.");
|
||||
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
|
||||
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
|
||||
b.size(1) == c.size(1));
|
||||
// We dont need this
|
||||
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
|
||||
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
|
||||
|
||||
// Check for strides and alignment
|
||||
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
|
||||
TORCH_CHECK(b.stride(0) == 1); // Column-major
|
||||
TORCH_CHECK(c.stride(0) % 16 == 0 &&
|
||||
b.stride(1) % 16 == 0); // 16 Byte Alignment
|
||||
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
|
||||
|
||||
if (bias) {
|
||||
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous() &&
|
||||
bias->dim() == 1);
|
||||
}
|
||||
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm_ppc64le", [&] {
|
||||
torch::Tensor tmp_fp32_out = torch::empty_like(c, ::at::ScalarType::Float);
|
||||
// Compute C_inter=s_b * (A@B)
|
||||
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
|
||||
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
|
||||
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
|
||||
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
|
||||
if (bias.has_value()) {
|
||||
// Compute C=s_a * C_inter + bias
|
||||
dynamic_quant_epilogue<false, true, true>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr,
|
||||
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
|
||||
} else {
|
||||
// Compute C=s_a * C_inter
|
||||
dynamic_quant_epilogue<false, true, false, scalar_t>(
|
||||
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
|
||||
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr, nullptr,
|
||||
c.size(0), c.size(1));
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -6,25 +6,20 @@
|
||||
|
||||
std::string init_cpu_threads_env(const std::string& cpu_ids);
|
||||
|
||||
void int8_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
|
||||
const torch::Tensor& b, const torch::Tensor& a_scales,
|
||||
const torch::Tensor& b_scales,
|
||||
const std::optional<torch::Tensor>& bias);
|
||||
void release_dnnl_matmul_handler(int64_t handler);
|
||||
|
||||
void int8_scaled_mm_azp(torch::Tensor& c, const torch::Tensor& a,
|
||||
const torch::Tensor& b, const torch::Tensor& a_scales,
|
||||
const torch::Tensor& b_scales,
|
||||
const torch::Tensor& azp_adj,
|
||||
const std::optional<torch::Tensor>& azp,
|
||||
const std::optional<torch::Tensor>& bias);
|
||||
int64_t create_onednn_scaled_mm_handler(const torch::Tensor& b,
|
||||
const torch::Tensor& b_scales,
|
||||
at::ScalarType output_type,
|
||||
bool dynamic_act_quant, bool use_azp,
|
||||
int64_t primitive_cache_size);
|
||||
|
||||
#if defined(__powerpc64__)
|
||||
void int8_scaled_mm_ppc64le(torch::Tensor& c, const torch::Tensor& a,
|
||||
const torch::Tensor& b,
|
||||
const torch::Tensor& a_scales,
|
||||
const torch::Tensor& b_scales,
|
||||
const std::optional<torch::Tensor>& bias);
|
||||
#endif
|
||||
void onednn_scaled_mm(torch::Tensor& c, const torch::Tensor& a,
|
||||
const torch::Tensor& a_scales,
|
||||
const std::optional<torch::Tensor>& azp,
|
||||
const std::optional<torch::Tensor>& azp_adj,
|
||||
const std::optional<torch::Tensor>& bias,
|
||||
int64_t handler);
|
||||
|
||||
void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
|
||||
torch::Tensor& kv_cache, double scale,
|
||||
@ -151,8 +146,25 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
|
||||
|
||||
// Quantization
|
||||
#if defined(__AVX512F__) || (defined(__aarch64__) && !defined(__APPLE__))
|
||||
#if defined(__AVX512F__) || (defined(__aarch64__) && !defined(__APPLE__)) || \
|
||||
defined(__powerpc64__)
|
||||
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
|
||||
// Helper function to release oneDNN handlers
|
||||
ops.def("release_dnnl_matmul_handler(int handler) -> ()",
|
||||
&release_dnnl_matmul_handler);
|
||||
|
||||
// Create oneDNN W8A8 handler
|
||||
ops.def(
|
||||
"create_onednn_scaled_mm_handler(Tensor b, Tensor b_scales, ScalarType "
|
||||
"output_type, bool dynamic_act_quant, bool use_azp, int "
|
||||
"primitive_cache_size) -> int",
|
||||
&create_onednn_scaled_mm_handler);
|
||||
|
||||
// oneDNN scaled_mm for W8A8 with static per-tensor activation quantization
|
||||
ops.def(
|
||||
"onednn_scaled_mm(Tensor! c, Tensor a, Tensor a_scales, Tensor? azp, "
|
||||
"Tensor? azp_adj, Tensor? bias, int handler) -> ()");
|
||||
ops.impl("onednn_scaled_mm", torch::kCPU, &onednn_scaled_mm);
|
||||
|
||||
// Compute int8 quantized tensor for given scaling factor.
|
||||
ops.def(
|
||||
@ -168,50 +180,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
{stride_tag});
|
||||
ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
|
||||
&dynamic_scaled_int8_quant);
|
||||
// W8A8 GEMM, supporting symmetric per-tensor or per-row/column
|
||||
// quantization.
|
||||
ops.def(
|
||||
"cutlass_scaled_mm(Tensor! out, Tensor a,"
|
||||
" Tensor b, Tensor a_scales,"
|
||||
" Tensor b_scales, Tensor? bias) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm);
|
||||
// w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
|
||||
// quantization.
|
||||
ops.def(
|
||||
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
|
||||
" Tensor b, Tensor a_scales,"
|
||||
" Tensor b_scales, Tensor azp_adj,"
|
||||
" Tensor? azp, Tensor? bias) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
|
||||
#elif defined(__powerpc64__)
|
||||
// Compute int8 quantized tensor for given scaling factor.
|
||||
ops.def(
|
||||
"static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale,"
|
||||
"Tensor? azp) -> ()");
|
||||
ops.impl("static_scaled_int8_quant", torch::kCPU, &static_scaled_int8_quant);
|
||||
|
||||
// Compute int8 quantized tensor and scaling factor
|
||||
ops.def(
|
||||
"dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale, "
|
||||
"Tensor!? azp) -> ()");
|
||||
ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
|
||||
&dynamic_scaled_int8_quant);
|
||||
// W8A8 GEMM, supporting symmetric quantization.
|
||||
ops.def(
|
||||
"cutlass_scaled_mm(Tensor! out, Tensor a,"
|
||||
" Tensor b, Tensor a_scales,"
|
||||
" Tensor b_scales, Tensor? bias) -> ()");
|
||||
ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm_ppc64le);
|
||||
// w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
|
||||
// quantization.
|
||||
ops.def(
|
||||
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
|
||||
" Tensor b, Tensor a_scales,"
|
||||
" Tensor b_scales, Tensor azp_adj,"
|
||||
" Tensor? azp, Tensor? bias) -> ()");
|
||||
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
|
||||
#endif
|
||||
|
||||
// SHM CCL
|
||||
|
||||
757
csrc/moe/grouped_topk_kernels.cu
Normal file
757
csrc/moe/grouped_topk_kernels.cu
Normal file
@ -0,0 +1,757 @@
|
||||
/*
|
||||
* Adapted from
|
||||
* https://github.com/NVIDIA/TensorRT-LLM/blob/v0.21.0/cpp/tensorrt_llm/kernels/noAuxTcKernels.cu
|
||||
* Copyright (c) 2025, The vLLM team.
|
||||
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
|
||||
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <c10/cuda/CUDAStream.h>
|
||||
#include <torch/all.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_bf16.h>
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
namespace vllm {
|
||||
namespace moe {
|
||||
|
||||
constexpr unsigned FULL_WARP_MASK = 0xffffffff;
|
||||
constexpr int32_t WARP_SIZE = 32;
|
||||
constexpr int32_t BLOCK_SIZE = 512;
|
||||
constexpr int32_t NUM_WARPS_PER_BLOCK = BLOCK_SIZE / WARP_SIZE;
|
||||
|
||||
namespace warp_topk {
|
||||
|
||||
template <int size, typename T>
|
||||
__host__ __device__ constexpr T round_up_to_multiple_of(T len) {
|
||||
if (len == 0) {
|
||||
return 0;
|
||||
}
|
||||
return ((len - 1) / size + 1) * size;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr __host__ __device__ bool isPowerOf2(T v) {
|
||||
return (v && !(v & (v - 1)));
|
||||
}
|
||||
|
||||
template <bool greater, typename T>
|
||||
__forceinline__ __device__ bool is_better_than(T val, T baseline) {
|
||||
return (val > baseline && greater) || (val < baseline && !greater);
|
||||
}
|
||||
|
||||
template <bool greater, typename T, typename idxT>
|
||||
__forceinline__ __device__ bool is_better_than(T val, T baseline, idxT index,
|
||||
idxT baseline_index) {
|
||||
bool res = (val > baseline && greater) || (val < baseline && !greater);
|
||||
if (val == baseline) {
|
||||
res = (index < baseline_index && greater) ||
|
||||
(index < baseline_index && !greater);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename T, typename idxT>
|
||||
int calc_smem_size_for_block_wide(int num_of_warp, int64_t k) {
|
||||
int64_t cache_topk = (sizeof(T) + sizeof(idxT)) * num_of_warp * k;
|
||||
int64_t n = std::max<int>(num_of_warp / 2 * k, num_of_warp * WARP_SIZE);
|
||||
return max(cache_topk,
|
||||
round_up_to_multiple_of<256>(n * sizeof(T)) + n * sizeof(idxT));
|
||||
}
|
||||
|
||||
template <int size, bool ascending, bool reverse, typename T, typename idxT,
|
||||
bool is_stable>
|
||||
struct BitonicMerge {
|
||||
// input should be a bitonic sequence, and sort it to be a monotonic sequence
|
||||
__device__ static void merge(T* __restrict__ val_arr,
|
||||
idxT* __restrict__ idx_arr) {
|
||||
static_assert(isPowerOf2(size));
|
||||
static_assert(size >= 2 * WARP_SIZE);
|
||||
constexpr int arr_len = size / WARP_SIZE;
|
||||
|
||||
constexpr int stride = arr_len / 2;
|
||||
for (int i = 0; i < stride; ++i) {
|
||||
int const other_i = i + stride;
|
||||
T& val = val_arr[i];
|
||||
T& other_val = val_arr[other_i];
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
is_better = is_better_than<ascending>(val, other_val, idx_arr[i],
|
||||
idx_arr[other_i]);
|
||||
} else {
|
||||
is_better = is_better_than<ascending>(val, other_val);
|
||||
}
|
||||
|
||||
if (is_better) {
|
||||
T tmp = val;
|
||||
val = other_val;
|
||||
other_val = tmp;
|
||||
|
||||
idxT tmp2 = idx_arr[i];
|
||||
idx_arr[i] = idx_arr[other_i];
|
||||
idx_arr[other_i] = tmp2;
|
||||
}
|
||||
}
|
||||
|
||||
BitonicMerge<size / 2, ascending, reverse, T, idxT, is_stable>::merge(
|
||||
val_arr, idx_arr);
|
||||
BitonicMerge<size / 2, ascending, reverse, T, idxT, is_stable>::merge(
|
||||
val_arr + arr_len / 2, idx_arr + arr_len / 2);
|
||||
}
|
||||
};
|
||||
|
||||
template <int size, bool ascending, typename T, typename idxT, bool is_stable>
|
||||
struct BitonicSort {
|
||||
__device__ static void sort(T* __restrict__ val_arr,
|
||||
idxT* __restrict__ idx_arr) {
|
||||
static_assert(isPowerOf2(size));
|
||||
static_assert(size >= 2 * WARP_SIZE);
|
||||
constexpr int arr_len = size / WARP_SIZE;
|
||||
|
||||
BitonicSort<size / 2, true, T, idxT, is_stable>::sort(val_arr, idx_arr);
|
||||
BitonicSort<size / 2, false, T, idxT, is_stable>::sort(
|
||||
val_arr + arr_len / 2, idx_arr + arr_len / 2);
|
||||
BitonicMerge<size, ascending, ascending, T, idxT, is_stable>::merge(
|
||||
val_arr, idx_arr);
|
||||
}
|
||||
};
|
||||
|
||||
template <bool ascending, typename T, typename idxT, bool is_stable>
|
||||
struct BitonicSort<32, ascending, T, idxT, is_stable> {
|
||||
__device__ static void sort(T* __restrict__ val_arr,
|
||||
idxT* __restrict__ idx_arr) {
|
||||
int const lane = threadIdx.x % WARP_SIZE;
|
||||
|
||||
// ascending doesn't matter before merging since all we need is a bitonic
|
||||
// sequence
|
||||
for (int stage = 0; stage < 4; ++stage) {
|
||||
for (int stride = (1 << stage); stride > 0; stride /= 2) {
|
||||
bool reverse = (lane >> stage) & 2;
|
||||
bool is_second = lane & stride;
|
||||
|
||||
T other = __shfl_xor_sync(FULL_WARP_MASK, *val_arr, stride);
|
||||
idxT other_idx = __shfl_xor_sync(FULL_WARP_MASK, *idx_arr, stride);
|
||||
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
if constexpr (ascending) {
|
||||
is_better = ((*val_arr > other) ||
|
||||
((*val_arr == other) && (*idx_arr < other_idx))) !=
|
||||
(reverse != is_second);
|
||||
} else {
|
||||
is_better = ((*val_arr > other) ||
|
||||
((*val_arr == other) && (*idx_arr > other_idx))) !=
|
||||
(reverse != is_second);
|
||||
}
|
||||
} else {
|
||||
is_better = (*val_arr != other &&
|
||||
(*val_arr > other) != (reverse != is_second));
|
||||
}
|
||||
if (is_better) {
|
||||
*val_arr = other;
|
||||
*idx_arr = other_idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BitonicMerge<32, ascending, ascending, T, idxT, is_stable>::merge(val_arr,
|
||||
idx_arr);
|
||||
}
|
||||
};
|
||||
|
||||
template <bool ascending, bool reverse, typename T, typename idxT,
|
||||
bool is_stable>
|
||||
struct BitonicMerge<32, ascending, reverse, T, idxT, is_stable> {
|
||||
__device__ static void merge(T* __restrict__ val_arr,
|
||||
idxT* __restrict__ idx_arr) {
|
||||
int const lane = threadIdx.x % WARP_SIZE;
|
||||
for (int stride = WARP_SIZE / 2; stride > 0; stride /= 2) {
|
||||
bool is_second = lane & stride;
|
||||
T& val = *val_arr;
|
||||
T other = __shfl_xor_sync(FULL_WARP_MASK, val, stride);
|
||||
idxT& idx = *idx_arr;
|
||||
idxT other_idx = __shfl_xor_sync(FULL_WARP_MASK, idx, stride);
|
||||
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
if constexpr (ascending) {
|
||||
is_better = ((*val_arr > other) ||
|
||||
((*val_arr == other) && (*idx_arr < other_idx))) ==
|
||||
(reverse != is_second); // for min
|
||||
} else {
|
||||
is_better = ((*val_arr > other) ||
|
||||
((*val_arr == other) && (*idx_arr > other_idx))) ==
|
||||
(reverse != is_second); // for max
|
||||
}
|
||||
} else {
|
||||
is_better =
|
||||
(val != other && ((val > other) == (ascending != is_second)));
|
||||
}
|
||||
|
||||
if (is_better) {
|
||||
val = other;
|
||||
idx = other_idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <int capacity, bool greater, typename T, typename idxT, bool is_stable>
|
||||
class WarpSort {
|
||||
public:
|
||||
__device__ WarpSort(idxT k, T dummy)
|
||||
: lane_(threadIdx.x % WARP_SIZE), k_(k), dummy_(dummy) {
|
||||
static_assert(capacity >= WARP_SIZE && isPowerOf2(capacity));
|
||||
|
||||
for (int i = 0; i < max_arr_len_; ++i) {
|
||||
val_arr_[i] = dummy_;
|
||||
idx_arr_[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// load and merge k sorted values
|
||||
__device__ void load_sorted(T const* __restrict__ in,
|
||||
idxT const* __restrict__ in_idx, idxT start) {
|
||||
idxT idx = start + WARP_SIZE - 1 - lane_;
|
||||
for (int i = max_arr_len_ - 1; i >= 0; --i, idx += WARP_SIZE) {
|
||||
if (idx < start + k_) {
|
||||
T t = in[idx];
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
is_better =
|
||||
is_better_than<greater>(t, val_arr_[i], in_idx[idx], idx_arr_[i]);
|
||||
} else {
|
||||
is_better = is_better_than<greater>(t, val_arr_[i]);
|
||||
}
|
||||
if (is_better) {
|
||||
val_arr_[i] = t;
|
||||
idx_arr_[i] = in_idx[idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BitonicMerge<capacity, greater, !greater, T, idxT, is_stable>::merge(
|
||||
val_arr_, idx_arr_);
|
||||
}
|
||||
|
||||
__device__ void dump(T* __restrict__ out, idxT* __restrict__ out_idx) const {
|
||||
for (int i = 0; i < max_arr_len_; ++i) {
|
||||
idxT out_i = i * WARP_SIZE + lane_;
|
||||
if (out_i < k_) {
|
||||
out[out_i] = val_arr_[i];
|
||||
out_idx[out_i] = idx_arr_[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__device__ void dumpIdx(idxT* __restrict__ out_idx) const {
|
||||
for (int i = 0; i < max_arr_len_; ++i) {
|
||||
idxT out_i = i * WARP_SIZE + lane_;
|
||||
if (out_i < k_) {
|
||||
out_idx[out_i] = idx_arr_[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
static constexpr int max_arr_len_ = capacity / WARP_SIZE;
|
||||
|
||||
T val_arr_[max_arr_len_];
|
||||
idxT idx_arr_[max_arr_len_];
|
||||
|
||||
int const lane_;
|
||||
idxT const k_;
|
||||
T const dummy_;
|
||||
|
||||
}; // end class WarpSort
|
||||
|
||||
template <int capacity, bool greater, typename T, typename idxT, bool is_stable>
|
||||
class WarpSelect : public WarpSort<capacity, greater, T, idxT, is_stable> {
|
||||
public:
|
||||
__device__ WarpSelect(idxT k, T dummy)
|
||||
: WarpSort<capacity, greater, T, idxT, is_stable>(k, dummy),
|
||||
k_th_(dummy),
|
||||
k_th_lane_((k - 1) % WARP_SIZE) {
|
||||
extern __shared__ char smem_buf[]; // extern __shared__ T smem_buf[];
|
||||
|
||||
int const num_of_warp = blockDim.x / WARP_SIZE;
|
||||
int const warp_id = threadIdx.x / WARP_SIZE;
|
||||
val_smem_ = reinterpret_cast<T*>(smem_buf);
|
||||
val_smem_ += warp_id * WARP_SIZE;
|
||||
idx_smem_ = reinterpret_cast<idxT*>(
|
||||
smem_buf +
|
||||
round_up_to_multiple_of<256>(num_of_warp * sizeof(T) * WARP_SIZE));
|
||||
idx_smem_ += warp_id * WARP_SIZE;
|
||||
}
|
||||
|
||||
__device__ void add(T const* in, idxT start, idxT end) {
|
||||
idxT const end_for_fullwarp =
|
||||
round_up_to_multiple_of<WARP_SIZE>(end - start) + start;
|
||||
for (idxT i = start + lane_; i < end_for_fullwarp; i += WARP_SIZE) {
|
||||
T val = (i < end) ? in[i] : dummy_;
|
||||
add(val, i);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ void add(T val, idxT idx) {
|
||||
bool do_add;
|
||||
if constexpr (is_stable) {
|
||||
do_add = is_better_than<greater>(val, k_th_, idx, k_th_idx_);
|
||||
} else {
|
||||
do_add = is_better_than<greater>(val, k_th_);
|
||||
}
|
||||
|
||||
uint32_t mask = __ballot_sync(FULL_WARP_MASK, do_add);
|
||||
if (mask == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
int pos = smem_buf_len_ + __popc(mask & ((0x1u << lane_) - 1));
|
||||
if (do_add && pos < WARP_SIZE) {
|
||||
val_smem_[pos] = val;
|
||||
idx_smem_[pos] = idx;
|
||||
do_add = false;
|
||||
}
|
||||
smem_buf_len_ += __popc(mask);
|
||||
if (smem_buf_len_ >= WARP_SIZE) {
|
||||
__syncwarp();
|
||||
merge_buf_(val_smem_[lane_], idx_smem_[lane_]);
|
||||
smem_buf_len_ -= WARP_SIZE;
|
||||
}
|
||||
if (do_add) {
|
||||
pos -= WARP_SIZE;
|
||||
val_smem_[pos] = val;
|
||||
idx_smem_[pos] = idx;
|
||||
}
|
||||
__syncwarp();
|
||||
}
|
||||
|
||||
__device__ void done() {
|
||||
if (smem_buf_len_) {
|
||||
T val = (lane_ < smem_buf_len_) ? val_smem_[lane_] : dummy_;
|
||||
idxT idx = (lane_ < smem_buf_len_) ? idx_smem_[lane_] : 0;
|
||||
merge_buf_(val, idx);
|
||||
}
|
||||
|
||||
// after done(), smem is used for merging results among warps
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
private:
|
||||
__device__ void set_k_th_() {
|
||||
k_th_ = __shfl_sync(FULL_WARP_MASK, val_arr_[max_arr_len_ - 1], k_th_lane_);
|
||||
if constexpr (is_stable) {
|
||||
k_th_idx_ =
|
||||
__shfl_sync(FULL_WARP_MASK, idx_arr_[max_arr_len_ - 1], k_th_lane_);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ void merge_buf_(T val, idxT idx) {
|
||||
BitonicSort<WARP_SIZE, greater, T, idxT, is_stable>::sort(&val, &idx);
|
||||
|
||||
T& old = val_arr_[max_arr_len_ - 1];
|
||||
|
||||
bool is_better;
|
||||
if constexpr (is_stable) {
|
||||
is_better =
|
||||
is_better_than<greater>(val, old, idx, idx_arr_[max_arr_len_ - 1]);
|
||||
} else {
|
||||
is_better = is_better_than<greater>(val, old);
|
||||
}
|
||||
|
||||
if (is_better) {
|
||||
old = val;
|
||||
idx_arr_[max_arr_len_ - 1] = idx;
|
||||
}
|
||||
|
||||
BitonicMerge<capacity, greater, !greater, T, idxT, is_stable>::merge(
|
||||
val_arr_, idx_arr_);
|
||||
|
||||
set_k_th_();
|
||||
}
|
||||
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::max_arr_len_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::val_arr_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::idx_arr_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::lane_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::k_;
|
||||
using WarpSort<capacity, greater, T, idxT, is_stable>::dummy_;
|
||||
|
||||
T* val_smem_;
|
||||
idxT* idx_smem_;
|
||||
int smem_buf_len_ = 0;
|
||||
|
||||
T k_th_;
|
||||
idxT k_th_idx_;
|
||||
int const k_th_lane_;
|
||||
}; // end class WarpSelect
|
||||
} // namespace warp_topk
|
||||
|
||||
template <typename T_OUT, typename T_IN>
|
||||
__device__ inline T_OUT cuda_cast(T_IN val) {
|
||||
return val;
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ inline float cuda_cast<float, __nv_bfloat16>(__nv_bfloat16 val) {
|
||||
return __bfloat162float(val);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ void topk_with_k2(T* output, T const* input,
|
||||
cg::thread_block_tile<32> const& tile,
|
||||
int32_t const lane_id,
|
||||
int const num_experts_per_group) {
|
||||
// Get the top2 per thread
|
||||
T largest = -INFINITY;
|
||||
T second_largest = -INFINITY;
|
||||
|
||||
if (num_experts_per_group > WARP_SIZE) {
|
||||
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
|
||||
T value = input[i];
|
||||
if (value > largest) {
|
||||
second_largest = largest;
|
||||
largest = value;
|
||||
} else if (value > second_largest) {
|
||||
second_largest = value;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
|
||||
largest = input[i];
|
||||
}
|
||||
}
|
||||
|
||||
__syncwarp(); // Ensure all threads have valid data before reduction
|
||||
// Get the top2 warpwise
|
||||
T max1 = cg::reduce(tile, largest, cg::greater<T>());
|
||||
|
||||
T max2 = max1;
|
||||
bool equal_to_max1 = (max1 == largest);
|
||||
|
||||
int count_max1 = __popc(__ballot_sync(FULL_WARP_MASK, equal_to_max1));
|
||||
|
||||
if (count_max1 == 1) {
|
||||
largest = (largest == max1) ? second_largest : largest;
|
||||
max2 = cg::reduce(tile, largest, cg::greater<T>());
|
||||
}
|
||||
|
||||
if (lane_id == 0) {
|
||||
*output = max1 + max2;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void topk_with_k2_kernel(T* output, T* input,
|
||||
int64_t const num_tokens,
|
||||
int64_t const num_cases,
|
||||
int64_t const n_group,
|
||||
int64_t const num_experts_per_group) {
|
||||
int32_t warp_id = threadIdx.x / WARP_SIZE;
|
||||
int32_t lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
int32_t case_id = blockIdx.x * NUM_WARPS_PER_BLOCK + warp_id;
|
||||
if (case_id < num_cases) {
|
||||
input += case_id * num_experts_per_group;
|
||||
output += case_id;
|
||||
|
||||
cg::thread_block block = cg::this_thread_block();
|
||||
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(block);
|
||||
|
||||
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
||||
asm volatile("griddepcontrol.wait;");
|
||||
#endif
|
||||
topk_with_k2(output, input, tile, lane_id, num_experts_per_group);
|
||||
}
|
||||
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
||||
asm volatile("griddepcontrol.launch_dependents;");
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T, typename IdxT>
|
||||
__global__ void group_idx_and_topk_idx_kernel(
|
||||
T* scores, T const* group_scores, T* topk_values, IdxT* topk_indices,
|
||||
T* scores_with_bias, int64_t const num_tokens, int64_t const n_group,
|
||||
int64_t const topk_group, int64_t const topk, int64_t const num_experts,
|
||||
int64_t const num_experts_per_group, bool renormalize,
|
||||
double routed_scaling_factor) {
|
||||
int32_t warp_id = threadIdx.x / WARP_SIZE;
|
||||
int32_t lane_id = threadIdx.x % WARP_SIZE;
|
||||
int32_t case_id =
|
||||
blockIdx.x * NUM_WARPS_PER_BLOCK + warp_id; // one per token
|
||||
scores_with_bias += case_id * num_experts;
|
||||
scores += case_id * num_experts;
|
||||
group_scores += case_id * n_group;
|
||||
topk_values += case_id * topk;
|
||||
topk_indices += case_id * topk;
|
||||
|
||||
int32_t align_num_experts_per_group =
|
||||
warp_topk::round_up_to_multiple_of<WARP_SIZE>(num_experts_per_group);
|
||||
|
||||
cg::thread_block block = cg::this_thread_block();
|
||||
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(block);
|
||||
|
||||
extern __shared__ char smem_buf[]; // NOTE: reuse the shared memory here to
|
||||
// store the target topk idx
|
||||
int32_t* s_topk_idx = reinterpret_cast<int32_t*>(smem_buf);
|
||||
T* s_topk_value =
|
||||
reinterpret_cast<T*>(s_topk_idx + NUM_WARPS_PER_BLOCK * topk) +
|
||||
warp_id * topk;
|
||||
s_topk_idx += warp_id * topk;
|
||||
|
||||
T value = cuda::std::numeric_limits<T>::min();
|
||||
T topk_group_value = cuda::std::numeric_limits<T>::min();
|
||||
int32_t num_equalto_topkth_group;
|
||||
|
||||
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
||||
asm volatile("griddepcontrol.wait;"); // I think all prolog can be put before
|
||||
// acqbulk because it's ptr arithmetic
|
||||
#endif
|
||||
|
||||
if (case_id < num_tokens) {
|
||||
// calculate group_idx
|
||||
int32_t target_num_min = WARP_SIZE - n_group + topk_group;
|
||||
if (lane_id < n_group &&
|
||||
(isfinite(cuda_cast<float, T>(
|
||||
group_scores[lane_id])))) // The check is necessary to avoid
|
||||
// abnormal input
|
||||
{
|
||||
value = group_scores[lane_id];
|
||||
}
|
||||
|
||||
int count_equal_to_top_value = WARP_SIZE - n_group;
|
||||
int pre_count_equal_to_top_value = 0;
|
||||
// Use loop to find the largset top_group
|
||||
while (count_equal_to_top_value < target_num_min) {
|
||||
__syncwarp(); // Ensure all threads have valid data before reduction
|
||||
topk_group_value = cg::reduce(tile, value, cg::greater<T>());
|
||||
if (value == topk_group_value) {
|
||||
value = cuda::std::numeric_limits<T>::min();
|
||||
}
|
||||
pre_count_equal_to_top_value = count_equal_to_top_value;
|
||||
count_equal_to_top_value = __popc(__ballot_sync(
|
||||
FULL_WARP_MASK, (value == cuda::std::numeric_limits<T>::min())));
|
||||
}
|
||||
num_equalto_topkth_group = target_num_min - pre_count_equal_to_top_value;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
warp_topk::WarpSelect</*capability*/ WARP_SIZE, /*greater*/ true, T, int32_t,
|
||||
/* is_stable */ true>
|
||||
queue((int32_t)topk, -INFINITY);
|
||||
|
||||
int count_equalto_topkth_group = 0;
|
||||
bool if_proceed_next_topk =
|
||||
(topk_group_value != cuda::std::numeric_limits<T>::min());
|
||||
if (case_id < num_tokens && if_proceed_next_topk) {
|
||||
for (int i_group = 0; i_group < n_group; i_group++) {
|
||||
if ((group_scores[i_group] > topk_group_value) ||
|
||||
((group_scores[i_group] == topk_group_value) &&
|
||||
(count_equalto_topkth_group < num_equalto_topkth_group))) {
|
||||
int32_t offset = i_group * num_experts_per_group;
|
||||
for (int32_t i = lane_id; i < align_num_experts_per_group;
|
||||
i += WARP_SIZE) {
|
||||
T candidates =
|
||||
(i < num_experts_per_group) && isfinite(cuda_cast<float, T>(
|
||||
scores_with_bias[offset + i]))
|
||||
? scores_with_bias[offset + i]
|
||||
: cuda::std::numeric_limits<T>::min();
|
||||
queue.add(candidates, offset + i);
|
||||
}
|
||||
if (group_scores[i_group] == topk_group_value) {
|
||||
count_equalto_topkth_group++;
|
||||
}
|
||||
}
|
||||
}
|
||||
queue.done();
|
||||
__syncwarp();
|
||||
// Get the topk_idx
|
||||
queue.dumpIdx(s_topk_idx);
|
||||
__syncwarp();
|
||||
}
|
||||
|
||||
// Load the valid score value
|
||||
// Calculate the summation
|
||||
float topk_sum = 1e-20;
|
||||
if (case_id < num_tokens && if_proceed_next_topk) {
|
||||
for (int i = lane_id;
|
||||
i < warp_topk::round_up_to_multiple_of<WARP_SIZE>(topk);
|
||||
i += WARP_SIZE) {
|
||||
T value =
|
||||
i < topk
|
||||
? scores[s_topk_idx[i]]
|
||||
: cuda_cast<T, float>(0.0f); // Load the valid value of expert
|
||||
if (i < topk) {
|
||||
s_topk_value[i] = value;
|
||||
}
|
||||
topk_sum += reduce(tile, cuda_cast<float, T>(value), cg::plus<float>());
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (case_id < num_tokens) {
|
||||
if (if_proceed_next_topk) {
|
||||
for (int i = lane_id; i < topk; i += WARP_SIZE) {
|
||||
float value;
|
||||
if (renormalize) {
|
||||
value = cuda_cast<float, T>(s_topk_value[i]) / topk_sum *
|
||||
routed_scaling_factor;
|
||||
} else {
|
||||
value = cuda_cast<float, T>(s_topk_value[i]) * routed_scaling_factor;
|
||||
}
|
||||
topk_indices[i] = s_topk_idx[i];
|
||||
topk_values[i] = cuda_cast<T, float>(value);
|
||||
}
|
||||
} else {
|
||||
for (int i = lane_id; i < topk; i += WARP_SIZE) {
|
||||
topk_indices[i] = i;
|
||||
topk_values[i] = cuda_cast<T, float>(1.0f / topk);
|
||||
}
|
||||
}
|
||||
// Note: when if_proceed_next_topk==false, choose the first 8 experts as the
|
||||
// default result.
|
||||
}
|
||||
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
||||
asm volatile("griddepcontrol.launch_dependents;");
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T, typename IdxT>
|
||||
void invokeNoAuxTc(T* scores, T* group_scores, T* topk_values,
|
||||
IdxT* topk_indices, T* scores_with_bias,
|
||||
int64_t const num_tokens, int64_t const num_experts,
|
||||
int64_t const n_group, int64_t const topk_group,
|
||||
int64_t const topk, bool const renormalize,
|
||||
double const routed_scaling_factor, bool enable_pdl = false,
|
||||
cudaStream_t const stream = 0) {
|
||||
int64_t num_cases = num_tokens * n_group;
|
||||
int64_t topk_with_k2_num_blocks = (num_cases - 1) / NUM_WARPS_PER_BLOCK + 1;
|
||||
auto* kernel_instance1 = &topk_with_k2_kernel<T>;
|
||||
cudaLaunchConfig_t config;
|
||||
config.gridDim = topk_with_k2_num_blocks;
|
||||
config.blockDim = BLOCK_SIZE;
|
||||
config.dynamicSmemBytes = 0;
|
||||
config.stream = stream;
|
||||
cudaLaunchAttribute attrs[1];
|
||||
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
|
||||
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
|
||||
config.numAttrs = 1;
|
||||
config.attrs = attrs;
|
||||
cudaLaunchKernelEx(&config, kernel_instance1, group_scores, scores_with_bias,
|
||||
num_tokens, num_cases, n_group, num_experts / n_group);
|
||||
|
||||
int64_t topk_with_k_group_num_blocks =
|
||||
(num_tokens - 1) / NUM_WARPS_PER_BLOCK + 1;
|
||||
size_t dynamic_smem_in_bytes =
|
||||
warp_topk::calc_smem_size_for_block_wide<T, int32_t>(NUM_WARPS_PER_BLOCK,
|
||||
topk);
|
||||
auto* kernel_instance2 = &group_idx_and_topk_idx_kernel<T, IdxT>;
|
||||
config.gridDim = topk_with_k_group_num_blocks;
|
||||
config.blockDim = BLOCK_SIZE;
|
||||
config.dynamicSmemBytes = dynamic_smem_in_bytes;
|
||||
config.stream = stream;
|
||||
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
|
||||
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
|
||||
config.numAttrs = 1;
|
||||
config.attrs = attrs;
|
||||
cudaLaunchKernelEx(&config, kernel_instance2, scores, group_scores,
|
||||
topk_values, topk_indices, scores_with_bias, num_tokens,
|
||||
n_group, topk_group, topk, num_experts,
|
||||
num_experts / n_group, renormalize, routed_scaling_factor);
|
||||
}
|
||||
|
||||
#define INSTANTIATE_NOAUX_TC(T, IdxT) \
|
||||
template void invokeNoAuxTc<T, IdxT>( \
|
||||
T * scores, T * group_scores, T * topk_values, IdxT * topk_indices, \
|
||||
T * scores_with_bias, int64_t const num_tokens, \
|
||||
int64_t const num_experts, int64_t const n_group, \
|
||||
int64_t const topk_group, int64_t const topk, bool const renormalize, \
|
||||
double const routed_scaling_factor, bool enable_pdl, \
|
||||
cudaStream_t const stream);
|
||||
|
||||
INSTANTIATE_NOAUX_TC(float, int32_t);
|
||||
INSTANTIATE_NOAUX_TC(half, int32_t);
|
||||
INSTANTIATE_NOAUX_TC(__nv_bfloat16, int32_t);
|
||||
} // end namespace moe
|
||||
} // namespace vllm
|
||||
|
||||
std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
|
||||
torch::Tensor const& scores, torch::Tensor const& scores_with_bias,
|
||||
int64_t n_group, int64_t topk_group, int64_t topk, bool renormalize,
|
||||
double routed_scaling_factor) {
|
||||
auto data_type = scores_with_bias.scalar_type();
|
||||
auto input_size = scores_with_bias.sizes();
|
||||
int64_t num_tokens = input_size[0];
|
||||
int64_t num_experts = input_size[1];
|
||||
TORCH_CHECK(input_size.size() == 2, "scores_with_bias must be a 2D Tensor");
|
||||
TORCH_CHECK(num_experts % n_group == 0,
|
||||
"num_experts should be divisible by n_group");
|
||||
TORCH_CHECK(n_group <= 32,
|
||||
"n_group should be smaller than or equal to 32 for now");
|
||||
TORCH_CHECK(topk <= 32, "topk should be smaller than or equal to 32 for now");
|
||||
|
||||
torch::Tensor group_scores = torch::empty(
|
||||
{num_tokens, n_group}, torch::dtype(data_type).device(torch::kCUDA));
|
||||
torch::Tensor topk_values = torch::empty(
|
||||
{num_tokens, topk}, torch::dtype(data_type).device(torch::kCUDA));
|
||||
torch::Tensor topk_indices = torch::empty(
|
||||
{num_tokens, topk}, torch::dtype(torch::kInt32).device(torch::kCUDA));
|
||||
|
||||
auto stream = c10::cuda::getCurrentCUDAStream(scores_with_bias.get_device());
|
||||
|
||||
switch (data_type) {
|
||||
case torch::kFloat16:
|
||||
// Handle Float16
|
||||
vllm::moe::invokeNoAuxTc<half, int32_t>(
|
||||
reinterpret_cast<half*>(scores.mutable_data_ptr()),
|
||||
reinterpret_cast<half*>(group_scores.mutable_data_ptr()),
|
||||
reinterpret_cast<half*>(topk_values.mutable_data_ptr()),
|
||||
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
|
||||
reinterpret_cast<half*>(scores_with_bias.data_ptr()), num_tokens,
|
||||
num_experts, n_group, topk_group, topk, renormalize,
|
||||
routed_scaling_factor, false, stream);
|
||||
break;
|
||||
case torch::kFloat32:
|
||||
// Handle Float32
|
||||
vllm::moe::invokeNoAuxTc<float, int32_t>(
|
||||
reinterpret_cast<float*>(scores.mutable_data_ptr()),
|
||||
reinterpret_cast<float*>(group_scores.mutable_data_ptr()),
|
||||
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
|
||||
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
|
||||
reinterpret_cast<float*>(scores_with_bias.data_ptr()), num_tokens,
|
||||
num_experts, n_group, topk_group, topk, renormalize,
|
||||
routed_scaling_factor, false, stream);
|
||||
break;
|
||||
case torch::kBFloat16:
|
||||
// Handle BFloat16
|
||||
vllm::moe::invokeNoAuxTc<__nv_bfloat16, int32_t>(
|
||||
reinterpret_cast<__nv_bfloat16*>(scores.mutable_data_ptr()),
|
||||
reinterpret_cast<__nv_bfloat16*>(group_scores.mutable_data_ptr()),
|
||||
reinterpret_cast<__nv_bfloat16*>(topk_values.mutable_data_ptr()),
|
||||
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
|
||||
reinterpret_cast<__nv_bfloat16*>(scores_with_bias.data_ptr()),
|
||||
num_tokens, num_experts, n_group, topk_group, topk, renormalize,
|
||||
routed_scaling_factor, false, stream);
|
||||
break;
|
||||
default:
|
||||
// Handle other data types
|
||||
throw std::invalid_argument(
|
||||
"Invalid dtype, only supports float16, float32, and bfloat16");
|
||||
break;
|
||||
}
|
||||
return {topk_values, topk_indices};
|
||||
}
|
||||
@ -20,6 +20,7 @@ namespace MARLIN_NAMESPACE_NAME {
|
||||
TEMPLATE = ("template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
@ -77,6 +78,7 @@ def generate_new_kernels():
|
||||
if scalar_type == "vllm::kFE4M3fn" and group_blocks not in [-1, 8]:
|
||||
continue
|
||||
# nvfp4 only supports group_size == 16
|
||||
# mxfp4 only supports group_size == 32
|
||||
if scalar_type == "vllm::kFE2M1f" and group_blocks not in [1, 2]:
|
||||
continue
|
||||
# other quantization methods don't support group_size = 16
|
||||
@ -89,9 +91,22 @@ def generate_new_kernels():
|
||||
|
||||
c_dtype = "half" if dtype == "fp16" else "nv_bfloat16"
|
||||
|
||||
if scalar_type == "vllm::kFE2M1f" and group_blocks == 1:
|
||||
s_type = "vllm::kFE4M3fn"
|
||||
elif scalar_type == "vllm::kFE2M1f" and group_blocks == 2:
|
||||
s_type = "vllm::kFE8M0fnu"
|
||||
if dtype == "fp16":
|
||||
# we cannot safely dequantize e8m0 to fp16, so skip this
|
||||
continue
|
||||
elif dtype == "fp16":
|
||||
s_type = "vllm::kFloat16"
|
||||
elif dtype == "bf16":
|
||||
s_type = "vllm::kBFloat16"
|
||||
|
||||
template_str = jinja2.Template(TEMPLATE).render(
|
||||
scalar_t=c_dtype,
|
||||
w_type_id=scalar_type + ".id()",
|
||||
s_type_id=s_type + ".id()",
|
||||
threads=threads,
|
||||
thread_m_blocks=max(m_blocks, 1),
|
||||
thread_n_blocks=n_blocks,
|
||||
|
||||
@ -7,23 +7,25 @@
|
||||
#include "quantization/gptq_marlin/marlin_dtypes.cuh"
|
||||
#include "core/scalar_type.hpp"
|
||||
|
||||
#define MARLIN_KERNEL_PARAMS \
|
||||
const int4 *__restrict__ A, const int4 *__restrict__ B, \
|
||||
int4 *__restrict__ C, int4 *__restrict__ C_tmp, \
|
||||
const int4 *__restrict__ scales_ptr, \
|
||||
const uint16_t *__restrict__ scale2_ptr, \
|
||||
const int4 *__restrict__ zp_ptr, const int *__restrict__ g_idx, \
|
||||
const int32_t *__restrict__ sorted_token_ids_ptr, \
|
||||
const int32_t *__restrict__ expert_ids_ptr, \
|
||||
const int32_t *__restrict__ num_tokens_past_padded_ptr, \
|
||||
const float *__restrict__ topk_weights_ptr, int top_k, \
|
||||
bool mul_topk_weights, bool is_ep, int num_groups, int prob_m, \
|
||||
int prob_n, int prob_k, int *locks, bool use_atomic_add, \
|
||||
#define MARLIN_KERNEL_PARAMS \
|
||||
const int4 *__restrict__ A, const int4 *__restrict__ B, \
|
||||
int4 *__restrict__ C, int4 *__restrict__ C_tmp, \
|
||||
const int4 *__restrict__ b_bias_ptr, \
|
||||
const int4 *__restrict__ scales_ptr, \
|
||||
const uint16_t *__restrict__ scale2_ptr, \
|
||||
const int4 *__restrict__ zp_ptr, const int *__restrict__ g_idx, \
|
||||
const int32_t *__restrict__ sorted_token_ids_ptr, \
|
||||
const int32_t *__restrict__ expert_ids_ptr, \
|
||||
const int32_t *__restrict__ num_tokens_past_padded_ptr, \
|
||||
const float *__restrict__ topk_weights_ptr, int top_k, \
|
||||
bool mul_topk_weights, bool is_ep, int num_groups, int prob_m, \
|
||||
int prob_n, int prob_k, int *locks, bool has_bias, bool use_atomic_add, \
|
||||
bool use_fp32_reduce, int max_shared_mem
|
||||
|
||||
namespace MARLIN_NAMESPACE_NAME {
|
||||
template <typename scalar_t, // compute dtype, half or nv_float16
|
||||
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
|
||||
const vllm::ScalarTypeId s_type_id, // weight scale ScalarType id
|
||||
const int threads, // number of threads in a threadblock
|
||||
const int thread_m_blocks, // number of 16x16 blocks in the m
|
||||
// dimension (batchsize) of the
|
||||
|
||||
@ -280,6 +280,7 @@ __device__ inline void wait_negative_and_add(int* lock) {
|
||||
|
||||
template <typename scalar_t, // compute dtype, half or nv_float16
|
||||
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
|
||||
const vllm::ScalarTypeId s_type_id, // weight scale ScalarType id
|
||||
const int threads, // number of threads in a threadblock
|
||||
const int thread_m_blocks, // number of 16x16 blocks in the m
|
||||
// dimension (batchsize) of the
|
||||
@ -299,6 +300,7 @@ __global__ void Marlin(
|
||||
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
|
||||
int4* __restrict__ C, // fp16 output buffer of shape mxn
|
||||
int4* __restrict__ C_tmp, // fp32 tmp output buffer (for reduce)
|
||||
const int4* __restrict__ b_bias_ptr,
|
||||
const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
|
||||
// (k/groupsize)xn
|
||||
const uint16_t* __restrict__ scale2_ptr, // fp16 global scale (for nvfp4
|
||||
@ -318,8 +320,9 @@ __global__ void Marlin(
|
||||
int prob_n, // output dimension n
|
||||
int prob_k, // reduction dimension k
|
||||
int* locks, // extra global storage for barrier synchronization
|
||||
bool use_atomic_add, // whether to use atomic add to reduce
|
||||
bool use_fp32_reduce, // whether to use fp32 global reduce
|
||||
bool has_bias,
|
||||
bool use_atomic_add, // whether to use atomic add to reduce
|
||||
bool use_fp32_reduce, // whether to use fp32 global reduce
|
||||
int max_shared_mem) {
|
||||
// Each threadblock processes one "stripe" of the B matrix with (roughly) the
|
||||
// same size, which might involve multiple column "slices" (of width 16 *
|
||||
@ -342,12 +345,23 @@ __global__ void Marlin(
|
||||
|
||||
extern __shared__ int4 sh[];
|
||||
static constexpr auto w_type = vllm::ScalarType::from_id(w_type_id);
|
||||
static constexpr auto s_type = vllm::ScalarType::from_id(s_type_id);
|
||||
if constexpr (w_type == vllm::kFE2M1f) {
|
||||
static_assert(s_type == vllm::kFE4M3fn && group_blocks == 1 ||
|
||||
s_type == vllm::kFE8M0fnu && group_blocks == 2);
|
||||
} else if constexpr (std::is_same<scalar_t, nv_bfloat16>::value) {
|
||||
static_assert(s_type == vllm::kBFloat16);
|
||||
} else if constexpr (std::is_same<scalar_t, half>::value) {
|
||||
static_assert(s_type == vllm::kFloat16);
|
||||
}
|
||||
|
||||
constexpr bool has_zp = w_type == vllm::kU4 || w_type == vllm::kU8;
|
||||
constexpr bool is_int_type = w_type == vllm::kU4 || w_type == vllm::kU8 ||
|
||||
w_type == vllm::kU4B8 || w_type == vllm::kU8B128;
|
||||
// see comments of dequant.h for more details
|
||||
constexpr bool dequant_skip_flop =
|
||||
!is_int_type ||
|
||||
w_type == vllm::kFE4M3fn ||
|
||||
w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn ||
|
||||
has_zp && !is_zp_float && !std::is_same<scalar_t, nv_bfloat16>::value ||
|
||||
has_zp && !is_zp_float && !(w_type == vllm::kU8);
|
||||
|
||||
@ -365,6 +379,7 @@ __global__ void Marlin(
|
||||
const int zp_expert_stride =
|
||||
is_zp_float ? prob_n * prob_k / group_size / 8
|
||||
: prob_n * prob_k / group_size / (pack_factor * 4);
|
||||
const int b_bias_expert_stride = prob_n / 8;
|
||||
|
||||
// parallel: num valid moe blocks
|
||||
int num_tokens_past_padded = num_tokens_past_padded_ptr[0];
|
||||
@ -475,7 +490,7 @@ __global__ void Marlin(
|
||||
for (int i = 0; i < 4; i++) {
|
||||
int idx = tid4 * 4 + i;
|
||||
idx = idx < block_num_valid_tokens ? idx : 0;
|
||||
if constexpr (w_type == vllm::kFE2M1f) {
|
||||
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
|
||||
sh_block_topk_weights[idx] = __hmul2(
|
||||
global_scale, Dtype::num2num2(Dtype::float2num(
|
||||
topk_weights_ptr[sh_block_sorted_ids[idx]])));
|
||||
@ -513,7 +528,7 @@ __global__ void Marlin(
|
||||
expert_id = expert_ids_ptr[block_id];
|
||||
}
|
||||
|
||||
if constexpr (w_type == vllm::kFE2M1f) {
|
||||
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
|
||||
uint16_t val = scale2_ptr[expert_id];
|
||||
global_scale = Dtype::num2num2(*reinterpret_cast<scalar_t*>(&val));
|
||||
}
|
||||
@ -526,6 +541,9 @@ __global__ void Marlin(
|
||||
if constexpr (has_act_order) {
|
||||
g_idx += (expert_id - old_expert_id) * prob_k;
|
||||
}
|
||||
if (has_bias) {
|
||||
b_bias_ptr += (expert_id - old_expert_id) * b_bias_expert_stride;
|
||||
}
|
||||
|
||||
read_moe_block_data(block_id);
|
||||
};
|
||||
@ -721,7 +739,7 @@ __global__ void Marlin(
|
||||
|
||||
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
(threadIdx.x % 32) / 4;
|
||||
s_sh_rd = s_sh_rd * 2 + warp_row % 2;
|
||||
s_sh_rd = s_sh_rd * 2 + (warp_row / group_blocks) % 2;
|
||||
|
||||
} else if constexpr (group_blocks != -1)
|
||||
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
@ -734,6 +752,18 @@ __global__ void Marlin(
|
||||
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
(threadIdx.x % 32) % 4;
|
||||
|
||||
int bias_sh_rd;
|
||||
if constexpr (m_block_size_8) {
|
||||
bias_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
(threadIdx.x % 32) / 8;
|
||||
} else {
|
||||
bias_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
(threadIdx.x % 32) % 4;
|
||||
}
|
||||
|
||||
int bias_sh_wr = threadIdx.x;
|
||||
int bias_gl_rd = (thread_n_blocks * 16 / 8) * slice_col + threadIdx.x;
|
||||
|
||||
// Zero-points have the same read layout as the scales
|
||||
// (without column-wise case)
|
||||
constexpr int num_col_threads = 8;
|
||||
@ -793,7 +823,19 @@ __global__ void Marlin(
|
||||
constexpr int sh_b_size = stages * b_sh_stage;
|
||||
int4* sh_b = sh_new;
|
||||
int4* sh_red = sh_new;
|
||||
int4* sh_g_idx = sh_b + (sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
|
||||
|
||||
constexpr int sh_size_b_red_min =
|
||||
(sh_red_size < sh_b_size ? sh_red_size : sh_b_size);
|
||||
constexpr int sh_size_b_red_max =
|
||||
(sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
|
||||
constexpr int sh_bias_size = (thread_n_blocks * 16 / 8);
|
||||
constexpr int sh_b_red_bias_size =
|
||||
sh_size_b_red_max > (sh_size_b_red_min + sh_bias_size)
|
||||
? sh_size_b_red_max
|
||||
: (sh_size_b_red_min + sh_bias_size);
|
||||
|
||||
int4* sh_bias = sh_new + sh_size_b_red_min;
|
||||
int4* sh_g_idx = sh_new + sh_b_red_bias_size;
|
||||
int4* sh_zp = sh_g_idx + (stages * g_idx_stage);
|
||||
constexpr int sh_s_size = has_act_order ? (act_s_max_num_groups * s_sh_stride)
|
||||
: (stages * s_sh_stage);
|
||||
@ -803,9 +845,9 @@ __global__ void Marlin(
|
||||
static_assert(thread_m_blocks * 16 * thread_n_blocks * 16 / 8 <=
|
||||
stages * b_sh_stage);
|
||||
int4* sh_a = sh_s + sh_s_size;
|
||||
constexpr int shm_size_used =
|
||||
moe_block_size + stages * (g_idx_stage + zp_sh_stage) + sh_s_size +
|
||||
(sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
|
||||
constexpr int shm_size_used = moe_block_size +
|
||||
stages * (g_idx_stage + zp_sh_stage) +
|
||||
sh_s_size + sh_b_red_bias_size;
|
||||
|
||||
// all remaining shared memory is used to cache A (input)
|
||||
// sh_a_max_row is at least ` stages * 16 * thread_m_blocks `
|
||||
@ -816,7 +858,8 @@ __global__ void Marlin(
|
||||
FragA frag_a[2][thread_m_blocks];
|
||||
I4 frag_b_quant[2][b_thread_vecs];
|
||||
FragC frag_c[thread_m_blocks][4][2];
|
||||
FragS frag_s[2][4]; // No act-order
|
||||
FragS frag_s[2][4]; // No act-order
|
||||
FragS frag_bias[2][4];
|
||||
FragS act_frag_s[2][4][4]; // For act-order
|
||||
int frag_qzp[2][num_ints_per_thread]; // Zero-points
|
||||
FragZP frag_zp; // Zero-points in fp16
|
||||
@ -1065,10 +1108,15 @@ __global__ void Marlin(
|
||||
if constexpr (w_type_id != vllm::kFE2M1f.id()) {
|
||||
reinterpret_cast<int4*>(&frag_s[k % 2])[0] =
|
||||
sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride];
|
||||
} else {
|
||||
} else if constexpr (group_blocks == 1 || thread_k_blocks > 4) {
|
||||
reinterpret_cast<int2*>(&frag_s[k % 2])[0] =
|
||||
reinterpret_cast<int2*>(
|
||||
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride)];
|
||||
} else {
|
||||
reinterpret_cast<int2*>(&frag_s[k % 2])[0] =
|
||||
reinterpret_cast<int2*>(
|
||||
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride) +
|
||||
k % 2];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1281,9 +1329,9 @@ __global__ void Marlin(
|
||||
int s_quant_0 = reinterpret_cast<int*>(frag_s[k2])[0];
|
||||
int s_quant_1 = reinterpret_cast<int*>(frag_s[k2])[1];
|
||||
|
||||
dequant_fp8_scales<scalar_t2>(s_quant_0,
|
||||
reinterpret_cast<scalar_t2*>(&frag_s[k2]));
|
||||
dequant_fp8_scales<scalar_t2>(
|
||||
dequant_fp8_scales<scalar_t2, s_type_id>(
|
||||
s_quant_0, reinterpret_cast<scalar_t2*>(&frag_s[k2]));
|
||||
dequant_fp8_scales<scalar_t2, s_type_id>(
|
||||
s_quant_1, reinterpret_cast<scalar_t2*>(&frag_s[k2]) + 2);
|
||||
}
|
||||
|
||||
@ -1566,7 +1614,7 @@ __global__ void Marlin(
|
||||
// Write out the reduce final result in the correct layout. We only actually
|
||||
// reshuffle matrix fragments in this step, the reduction above is performed
|
||||
// in fragment layout.
|
||||
auto write_result = [&]() {
|
||||
auto write_result = [&](bool last) {
|
||||
int c_gl_stride = prob_n / 8;
|
||||
constexpr int c_sh_stride = 2 * thread_n_blocks + 1;
|
||||
int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
|
||||
@ -1592,7 +1640,7 @@ __global__ void Marlin(
|
||||
|
||||
// We first reorder in shared memory to guarantee the most efficient final
|
||||
// global write patterns
|
||||
auto write = [&](int idx, float c0, float c1, FragS& s) {
|
||||
auto write = [&](int idx, float c0, float c1, FragS& s, FragS& b_bias) {
|
||||
scalar_t2 res =
|
||||
Dtype::nums2num2(Dtype::float2num(c0), Dtype::float2num(c1));
|
||||
|
||||
@ -1601,14 +1649,27 @@ __global__ void Marlin(
|
||||
if constexpr (!has_act_order && group_blocks == -1 &&
|
||||
w_type.size_bits() == 4 &&
|
||||
(has_zp && dequant_skip_flop || !has_zp)) {
|
||||
res = __hmul2(res, s[0]);
|
||||
scalar_t2 tmp_scale = s[0];
|
||||
if constexpr (m_block_size_8) {
|
||||
tmp_scale = Dtype::num2num2(
|
||||
reinterpret_cast<scalar_t*>(&s[0])[(threadIdx.x % 8) / 4]);
|
||||
}
|
||||
res = __hmul2(res, tmp_scale);
|
||||
}
|
||||
|
||||
if constexpr (w_type == vllm::kFE2M1f) {
|
||||
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
|
||||
if (!mul_topk_weights) {
|
||||
res = __hmul2(res, global_scale);
|
||||
}
|
||||
}
|
||||
if (has_bias && last) {
|
||||
scalar_t2 tmp_bias = b_bias[0];
|
||||
if constexpr (m_block_size_8) {
|
||||
tmp_bias = Dtype::num2num2(
|
||||
reinterpret_cast<scalar_t*>(&b_bias[0])[(threadIdx.x % 8) / 4]);
|
||||
}
|
||||
res = __hadd2(res, tmp_bias);
|
||||
}
|
||||
|
||||
if constexpr (m_block_size_8) {
|
||||
((scalar_t*)sh_red)[idx] = res.x;
|
||||
@ -1626,19 +1687,25 @@ __global__ void Marlin(
|
||||
if constexpr (m_block_size_8) {
|
||||
int wr = c_sh_wr + 16 * j;
|
||||
write(wr, frag_c[i][j][0][0], frag_c[i][j][0][1],
|
||||
frag_s[j / 2][2 * (j % 2) + 0]);
|
||||
frag_s[j / 2][2 * (j % 2) + 0],
|
||||
frag_bias[j / 2][2 * (j % 2) + 0]);
|
||||
write(wr + 8, frag_c[i][j][0][2], frag_c[i][j][0][3],
|
||||
frag_s[j / 2][2 * (j % 2) + 1]);
|
||||
frag_s[j / 2][2 * (j % 2) + 1],
|
||||
frag_bias[j / 2][2 * (j % 2) + 1]);
|
||||
} else {
|
||||
int wr = c_sh_wr + 8 * j;
|
||||
write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0],
|
||||
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]);
|
||||
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0],
|
||||
frag_bias[j / 2][2 * (j % 2) + 0]);
|
||||
write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2],
|
||||
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]);
|
||||
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0],
|
||||
frag_bias[j / 2][2 * (j % 2) + 0]);
|
||||
write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0],
|
||||
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]);
|
||||
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1],
|
||||
frag_bias[j / 2][2 * (j % 2) + 1]);
|
||||
write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2],
|
||||
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]);
|
||||
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1],
|
||||
frag_bias[j / 2][2 * (j % 2) + 1]);
|
||||
}
|
||||
}
|
||||
c_sh_wr += 16 * (4 * c_sh_stride);
|
||||
@ -1805,6 +1872,14 @@ __global__ void Marlin(
|
||||
}
|
||||
|
||||
thread_block_reduce();
|
||||
|
||||
if (has_bias && last) {
|
||||
__syncthreads();
|
||||
cp_async4_pred(&sh_bias[bias_sh_wr], &b_bias_ptr[bias_gl_rd],
|
||||
threadIdx.x < 16 * thread_n_blocks / 8);
|
||||
cp_async_fence();
|
||||
}
|
||||
|
||||
if constexpr (!has_act_order && group_blocks == -1 &&
|
||||
(has_zp && dequant_skip_flop || !has_zp)) {
|
||||
if (w_type.size_bits() == 8 || (last || use_atomic_add)) {
|
||||
@ -1867,11 +1942,20 @@ __global__ void Marlin(
|
||||
}
|
||||
barrier_release(&locks[locks_off], last);
|
||||
}
|
||||
|
||||
if (has_bias && last) {
|
||||
cp_async_wait<0>();
|
||||
__syncthreads();
|
||||
reinterpret_cast<int4*>(&frag_bias)[0] = sh_bias[bias_sh_rd];
|
||||
reinterpret_cast<int4*>(&frag_bias)[1] = sh_bias[bias_sh_rd + 4];
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (use_atomic_add && slice_count > 1 && slice_idx != 0)
|
||||
wait_negative_and_add(&locks[locks_off]);
|
||||
if (last || use_atomic_add)
|
||||
// only the last block in a slice actually writes the result
|
||||
write_result();
|
||||
write_result(last);
|
||||
int old_slice_row = slice_row;
|
||||
slice_row = 0;
|
||||
slice_col_par++;
|
||||
@ -1904,6 +1988,7 @@ __global__ void Marlin(
|
||||
for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
|
||||
}
|
||||
|
||||
bias_gl_rd = (thread_n_blocks * 16 / 8) * slice_col + threadIdx.x;
|
||||
// Update slice k/n for scales loading
|
||||
if constexpr (has_act_order) {
|
||||
slice_k_start = tb_k * slice_row;
|
||||
|
||||
@ -51,8 +51,9 @@ __global__ void permute_cols_kernel(
|
||||
} // namespace marlin
|
||||
|
||||
torch::Tensor moe_wna16_marlin_gemm(
|
||||
torch::Tensor& a, std::optional<torch::Tensor> const& c_or_none,
|
||||
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
|
||||
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
|
||||
torch::Tensor& b_q_weight,
|
||||
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
|
||||
std::optional<torch::Tensor> const& b_zeros_or_none,
|
||||
std::optional<torch::Tensor> const& g_idx_or_none,
|
||||
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
|
||||
@ -212,7 +213,7 @@ int get_kernel_cache_size(thread_config_t const& th_config, bool m_block_size_8,
|
||||
// Get B size
|
||||
int tb_k = th_config.thread_k;
|
||||
int tb_n = th_config.thread_n;
|
||||
int tb_m = thread_m_blocks * (m_block_size_8 ? 8 : 16);
|
||||
int tb_m = thread_m_blocks * 16;
|
||||
|
||||
// shm size for block_sorted_ids/rd_block_sorted_ids/block_topk_weights
|
||||
// both of them requires tb_m * 4 bytes (tb_m * int32 or tb_m * float32)
|
||||
@ -220,6 +221,11 @@ int get_kernel_cache_size(thread_config_t const& th_config, bool m_block_size_8,
|
||||
int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
|
||||
int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
|
||||
int sh_red_size = tb_m * (tb_n + 8) * 2;
|
||||
int sh_bias_size = tb_n * 2;
|
||||
int tmp_size =
|
||||
(sh_b_size > sh_red_size ? sh_red_size : sh_b_size) + sh_bias_size;
|
||||
tmp_size = max(max(sh_b_size, sh_red_size), tmp_size);
|
||||
|
||||
int sh_s_size =
|
||||
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
|
||||
group_size, has_act_order, is_k_full);
|
||||
@ -234,8 +240,8 @@ int get_kernel_cache_size(thread_config_t const& th_config, bool m_block_size_8,
|
||||
sh_zp_size = sh_s_size / 2;
|
||||
}
|
||||
|
||||
int total_size = max(sh_b_size, sh_red_size) + sh_a_size + sh_s_size +
|
||||
sh_zp_size + sh_g_idx_size + sh_block_meta_size;
|
||||
int total_size = tmp_size + sh_a_size + sh_s_size + sh_zp_size +
|
||||
sh_g_idx_size + sh_block_meta_size;
|
||||
|
||||
return total_size;
|
||||
}
|
||||
@ -270,20 +276,25 @@ bool is_valid_config(thread_config_t const& th_config, bool m_block_size_8,
|
||||
int cache_size = get_kernel_cache_size(
|
||||
th_config, m_block_size_8, thread_m_blocks, prob_m, prob_n, prob_k,
|
||||
num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float);
|
||||
return cache_size <= max_shared_mem;
|
||||
return cache_size + 512 <= max_shared_mem;
|
||||
}
|
||||
|
||||
#define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
|
||||
M_BLOCK_SIZE_8, GROUP_BLOCKS, NUM_THREADS, IS_ZP_FLOAT) \
|
||||
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
|
||||
thread_n_blocks == THREAD_N_BLOCKS && \
|
||||
thread_k_blocks == THREAD_K_BLOCKS && \
|
||||
m_block_size_8 == M_BLOCK_SIZE_8 && \
|
||||
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
|
||||
is_zp_float == IS_ZP_FLOAT) { \
|
||||
kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, \
|
||||
THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8, \
|
||||
pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
|
||||
#define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
|
||||
M_BLOCK_SIZE_8, GROUP_BLOCKS, NUM_THREADS, IS_ZP_FLOAT) \
|
||||
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
|
||||
thread_n_blocks == THREAD_N_BLOCKS && \
|
||||
thread_k_blocks == THREAD_K_BLOCKS && \
|
||||
m_block_size_8 == M_BLOCK_SIZE_8 && \
|
||||
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
|
||||
is_zp_float == IS_ZP_FLOAT) { \
|
||||
constexpr auto S_TYPE = \
|
||||
W_TYPE == vllm::kFE2M1f \
|
||||
? (GROUP_BLOCKS == 1 ? vllm::kFE4M3fn : vllm::kFE8M0fnu) \
|
||||
: (std::is_same<scalar_t, half>::value ? vllm::kFloat16 \
|
||||
: vllm::kBFloat16); \
|
||||
kernel = Marlin<scalar_t, W_TYPE.id(), S_TYPE.id(), NUM_THREADS, \
|
||||
THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
|
||||
M_BLOCK_SIZE_8, pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
|
||||
}
|
||||
|
||||
// COMMON: cases for (group_blocks in [-1, 2, 4, 8] and is_zp_float == false)
|
||||
@ -335,31 +346,45 @@ bool is_valid_config(thread_config_t const& th_config, bool m_block_size_8,
|
||||
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false) \
|
||||
\
|
||||
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)
|
||||
|
||||
#define FP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
|
||||
|
||||
#define FP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
|
||||
|
||||
#define FP4_GET_IF(W_TYPE) \
|
||||
FP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
||||
FP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
||||
FP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
||||
FP4_GET_IF_M234(W_TYPE, 8, 4, 128)
|
||||
|
||||
#define BIGGROUP_GET_IF(W_TYPE) \
|
||||
BIGGROUP_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
||||
BIGGROUP_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
||||
BIGGROUP_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
||||
BIGGROUP_GET_IF_M234(W_TYPE, 8, 4, 128)
|
||||
|
||||
#define NVFP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
|
||||
|
||||
#define NVFP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
|
||||
|
||||
#define NVFP4_GET_IF(W_TYPE) \
|
||||
NVFP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
||||
NVFP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
||||
NVFP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
||||
NVFP4_GET_IF_M234(W_TYPE, 8, 4, 128)
|
||||
|
||||
#define MXFP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 2, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)
|
||||
|
||||
#define MXFP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)
|
||||
|
||||
#define MXFP4_GET_IF(W_TYPE) \
|
||||
MXFP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
||||
MXFP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
||||
MXFP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
||||
MXFP4_GET_IF_M234(W_TYPE, 8, 4, 128)
|
||||
|
||||
// We currently have 4-bit models only with group_blocks == 4
|
||||
#define FZP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, true) \
|
||||
@ -408,12 +433,17 @@ MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
|
||||
COMMON_GET_IF(vllm::kU4B8)
|
||||
COMMON_GET_IF(vllm::kU8B128)
|
||||
|
||||
BIGGROUP_GET_IF(vllm::kFE4M3fn)
|
||||
NVFP4_GET_IF(vllm::kFE2M1f)
|
||||
|
||||
FP4_GET_IF(vllm::kFE2M1f)
|
||||
BIGGROUP_GET_IF(vllm::kFE4M3fn)
|
||||
|
||||
ACT_GET_IF(vllm::kU4B8)
|
||||
ACT_GET_IF(vllm::kU8B128)
|
||||
if (std::is_same<scalar_t, nv_bfloat16>::value) {
|
||||
if (false) {
|
||||
}
|
||||
MXFP4_GET_IF(vllm::kFE2M1f)
|
||||
}
|
||||
|
||||
return kernel;
|
||||
}
|
||||
@ -482,16 +512,16 @@ exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
|
||||
void* s2, void* zp, void* g_idx, void* perm, void* a_tmp,
|
||||
void* sorted_token_ids, void* expert_ids,
|
||||
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
|
||||
void* s, void* s2, void* zp, void* g_idx, void* perm,
|
||||
void* a_tmp, void* sorted_token_ids, void* expert_ids,
|
||||
void* num_tokens_past_padded, void* topk_weights,
|
||||
int moe_block_size, int top_k, bool mul_topk_weights, bool is_ep,
|
||||
int prob_m, int prob_n, int prob_k, void* workspace,
|
||||
vllm::ScalarType const& q_type, bool has_act_order,
|
||||
bool is_k_full, bool has_zp, int num_groups, int group_size,
|
||||
int dev, cudaStream_t stream, int thread_k, int thread_n,
|
||||
int sms, bool use_atomic_add, bool use_fp32_reduce,
|
||||
vllm::ScalarType const& q_type, bool has_bias,
|
||||
bool has_act_order, bool is_k_full, bool has_zp, int num_groups,
|
||||
int group_size, int dev, cudaStream_t stream, int thread_k,
|
||||
int thread_n, int sms, bool use_atomic_add, bool use_fp32_reduce,
|
||||
bool is_zp_float) {
|
||||
int thread_m_blocks = div_ceil(moe_block_size, 16);
|
||||
bool m_block_size_8 = moe_block_size == 8;
|
||||
@ -538,6 +568,7 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
|
||||
const int4* B_ptr = (const int4*)B;
|
||||
int4* C_ptr = (int4*)C;
|
||||
int4* C_tmp_ptr = (int4*)C_tmp;
|
||||
const int4* bias_ptr = (const int4*)b_bias;
|
||||
const int4* s_ptr = (const int4*)s;
|
||||
const uint16_t* s2_ptr = (const uint16_t*)s2;
|
||||
const int4* zp_ptr = (const int4*)zp;
|
||||
@ -648,10 +679,10 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
|
||||
// avoid ">>>" being formatted to "> > >"
|
||||
// clang-format off
|
||||
kernel<<<blocks, num_threads, max_shared_mem, stream>>>(
|
||||
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, s2_ptr, zp_ptr, g_idx_ptr,
|
||||
A_ptr, B_ptr, C_ptr, C_tmp_ptr, bias_ptr, s_ptr, s2_ptr, zp_ptr, g_idx_ptr,
|
||||
sorted_token_ids_ptr, expert_ids_ptr, num_tokens_past_padded_ptr,
|
||||
topk_weights_ptr, top_k, mul_topk_weights, is_ep, num_groups, prob_m,
|
||||
prob_n, prob_k, locks, use_atomic_add, use_fp32_reduce, max_shared_mem);
|
||||
prob_n, prob_k, locks, has_bias, use_atomic_add, use_fp32_reduce, max_shared_mem);
|
||||
// clang-format on
|
||||
}
|
||||
|
||||
@ -659,7 +690,8 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
|
||||
|
||||
torch::Tensor moe_wna16_marlin_gemm(
|
||||
torch::Tensor& a, std::optional<torch::Tensor> const& c_or_none,
|
||||
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
|
||||
torch::Tensor& b_q_weight,
|
||||
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
|
||||
std::optional<torch::Tensor> const& global_scale_or_none,
|
||||
std::optional<torch::Tensor> const& b_zeros_or_none,
|
||||
std::optional<torch::Tensor> const& g_idx_or_none,
|
||||
@ -766,7 +798,6 @@ torch::Tensor moe_wna16_marlin_gemm(
|
||||
num_groups = b_scales.size(1);
|
||||
|
||||
torch::Tensor g_idx, perm, a_tmp;
|
||||
;
|
||||
if (g_idx_or_none.has_value() && perm_or_none.has_value()) {
|
||||
g_idx = g_idx_or_none.value();
|
||||
perm = perm_or_none.value();
|
||||
@ -815,12 +846,24 @@ torch::Tensor moe_wna16_marlin_gemm(
|
||||
torch::Tensor global_scale;
|
||||
if (global_scale_or_none.has_value()) {
|
||||
global_scale = global_scale_or_none.value();
|
||||
TORCH_CHECK(b_q_type == vllm::kFE2M1f,
|
||||
"global_scale can only be used for float4_e2m1f.");
|
||||
TORCH_CHECK(b_q_type == vllm::kFE2M1f && group_size == 16,
|
||||
"global_scale can only be used for nvfp4 format.");
|
||||
} else {
|
||||
global_scale = torch::empty({0}, options);
|
||||
TORCH_CHECK(!(b_q_type == vllm::kFE2M1f),
|
||||
"the global_scale parameter must be passed for float4_e2m1f.");
|
||||
TORCH_CHECK(!(b_q_type == vllm::kFE2M1f && group_size == 16),
|
||||
"the global_scale parameter must be passed for nvfp4 format.");
|
||||
}
|
||||
|
||||
bool has_bias = b_bias_or_none.has_value();
|
||||
torch::Tensor b_bias;
|
||||
if (has_bias) {
|
||||
b_bias = b_bias_or_none.value();
|
||||
TORCH_CHECK(b_bias.device().is_cuda(), "b_bias is not on GPU");
|
||||
TORCH_CHECK(b_bias.is_contiguous(), "b_bias is not contiguous");
|
||||
TORCH_CHECK(b_bias.size(1) == size_n, "b_bias.size(0) != size_n");
|
||||
TORCH_CHECK(b_bias.stride(1) == 1, "b_bias.stride(1) != 1");
|
||||
} else {
|
||||
b_bias = torch::empty({0}, options);
|
||||
}
|
||||
|
||||
torch::Tensor b_zeros;
|
||||
@ -832,7 +875,6 @@ torch::Tensor moe_wna16_marlin_gemm(
|
||||
b_zeros = torch::empty({0}, options);
|
||||
}
|
||||
bool has_zp = b_zeros.size(-1) > 0;
|
||||
|
||||
if (has_zp) {
|
||||
TORCH_CHECK(
|
||||
b_q_type == vllm::kU4 || b_q_type == vllm::kU8,
|
||||
@ -890,41 +932,58 @@ torch::Tensor moe_wna16_marlin_gemm(
|
||||
if (a.scalar_type() == at::ScalarType::Half) {
|
||||
void* scales_ptr;
|
||||
if (b_q_type == vllm::kFE2M1f) {
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
|
||||
if (group_size == 16)
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
|
||||
else if (group_size == 32)
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e8m0fnu>();
|
||||
else
|
||||
TORCH_CHECK(false,
|
||||
"float4_e2m1f only supports group_size == 16 (NVFP4) ",
|
||||
"and group_size == 32 (MXFP4)");
|
||||
} else {
|
||||
scales_ptr = b_scales.data_ptr<at::Half>();
|
||||
}
|
||||
|
||||
MARLIN_NAMESPACE_NAME::marlin_mm<half>(
|
||||
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
|
||||
c_tmp.data_ptr<float>(), scales_ptr, global_scale.data_ptr<at::Half>(),
|
||||
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
|
||||
a_tmp.data_ptr<at::Half>(), sorted_token_ids.data_ptr(),
|
||||
expert_ids.data_ptr(), num_tokens_past_padded.data_ptr(),
|
||||
topk_weights.data_ptr(), moe_block_size, top_k, mul_topk_weights, is_ep,
|
||||
size_m, size_n, size_k, workspace.data_ptr(), b_q_type, has_act_order,
|
||||
is_k_full, has_zp, num_groups, group_size, dev,
|
||||
c_tmp.data_ptr<float>(), b_bias.data_ptr<at::Half>(), scales_ptr,
|
||||
global_scale.data_ptr<at::Half>(), b_zeros.data_ptr(), g_idx.data_ptr(),
|
||||
perm.data_ptr(), a_tmp.data_ptr<at::Half>(),
|
||||
sorted_token_ids.data_ptr(), expert_ids.data_ptr(),
|
||||
num_tokens_past_padded.data_ptr(), topk_weights.data_ptr(),
|
||||
moe_block_size, top_k, mul_topk_weights, is_ep, size_m, size_n, size_k,
|
||||
workspace.data_ptr(), b_q_type, has_bias, has_act_order, is_k_full,
|
||||
has_zp, num_groups, group_size, dev,
|
||||
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
|
||||
use_atomic_add, use_fp32_reduce, is_zp_float);
|
||||
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
|
||||
void* scales_ptr;
|
||||
if (b_q_type == vllm::kFE2M1f) {
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
|
||||
if (group_size == 16)
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
|
||||
else if (group_size == 32)
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e8m0fnu>();
|
||||
else
|
||||
TORCH_CHECK(false,
|
||||
"float4_e2m1f only supports group_size == 16 (NVFP4) ",
|
||||
"and group_size == 32 (MXFP4)");
|
||||
} else {
|
||||
scales_ptr = b_scales.data_ptr<at::BFloat16>();
|
||||
}
|
||||
|
||||
MARLIN_NAMESPACE_NAME::marlin_mm<nv_bfloat16>(
|
||||
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
|
||||
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(), scales_ptr,
|
||||
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(),
|
||||
b_bias.data_ptr<at::BFloat16>(), scales_ptr,
|
||||
global_scale.data_ptr<at::BFloat16>(), b_zeros.data_ptr(),
|
||||
g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
|
||||
sorted_token_ids.data_ptr(), expert_ids.data_ptr(),
|
||||
num_tokens_past_padded.data_ptr(), topk_weights.data_ptr(),
|
||||
moe_block_size, top_k, mul_topk_weights, is_ep, size_m, size_n, size_k,
|
||||
workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
|
||||
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
|
||||
thread_k, thread_n, sms, use_atomic_add, use_fp32_reduce, is_zp_float);
|
||||
workspace.data_ptr(), b_q_type, has_bias, has_act_order, is_k_full,
|
||||
has_zp, num_groups, group_size, dev,
|
||||
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
|
||||
use_atomic_add, use_fp32_reduce, is_zp_float);
|
||||
} else {
|
||||
TORCH_CHECK(false,
|
||||
"moe_wna16_marlin_gemm only supports bfloat16 and float16");
|
||||
|
||||
@ -22,6 +22,11 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
|
||||
torch::Tensor num_tokens_post_pad, int64_t top_k,
|
||||
int64_t BLOCK_SIZE_M, int64_t BLOCK_SIZE_N,
|
||||
int64_t BLOCK_SIZE_K, int64_t bit);
|
||||
|
||||
std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
|
||||
torch::Tensor const& scores, torch::Tensor const& scores_with_bias,
|
||||
int64_t n_group, int64_t topk_group, int64_t topk, bool renormalize,
|
||||
double routed_scaling_factor);
|
||||
#endif
|
||||
|
||||
bool moe_permute_unpermute_supported();
|
||||
|
||||
@ -45,8 +45,6 @@ void moe_permute(
|
||||
auto copy_topk_ids = topk_ids.clone(); // copy topk_ids for preprocess
|
||||
auto permuted_experts_id = torch::empty_like(topk_ids);
|
||||
auto sorted_row_idx = torch::empty_like(inv_permuted_idx);
|
||||
auto align_expert_first_token_offset =
|
||||
torch::zeros_like(expert_first_token_offset);
|
||||
|
||||
CubKeyValueSorter sorter{};
|
||||
int64_t* valid_num_ptr = nullptr;
|
||||
@ -85,12 +83,14 @@ void moe_permute(
|
||||
});
|
||||
|
||||
// get m_indices and update expert_first_token_offset with align block
|
||||
getMIndices(get_ptr<int64_t>(expert_first_token_offset),
|
||||
get_ptr<int64_t>(align_expert_first_token_offset),
|
||||
get_ptr<int>(m_indices), n_local_expert, align_block_size_value,
|
||||
stream);
|
||||
// this is only required for DeepGemm and not required for CUTLASS group gemm
|
||||
if (align_block_size.has_value()) {
|
||||
// update align_expert_first_token_offset
|
||||
auto align_expert_first_token_offset =
|
||||
torch::zeros_like(expert_first_token_offset);
|
||||
getMIndices(get_ptr<int64_t>(expert_first_token_offset),
|
||||
get_ptr<int64_t>(align_expert_first_token_offset),
|
||||
get_ptr<int>(m_indices), n_local_expert, align_block_size_value,
|
||||
stream);
|
||||
expert_first_token_offset.copy_(align_expert_first_token_offset);
|
||||
}
|
||||
}
|
||||
@ -195,19 +195,14 @@ void moe_permute(const torch::Tensor& input, const torch::Tensor& topk_weights,
|
||||
torch::Tensor& expert_first_token_offset,
|
||||
torch::Tensor& src_row_id2dst_row_id_map,
|
||||
torch::Tensor& m_indices) {
|
||||
TORCH_CHECK(false, "moe_unpermute is not supported on CUDA < 12.0");
|
||||
TORCH_CHECK(false, "moe_permute is not supported on CUDA < 12.0");
|
||||
}
|
||||
|
||||
void moe_unpermute(const torch::Tensor& input,
|
||||
const torch::Tensor& topk_weights, torch::Tensor& topk_ids,
|
||||
const torch::Tensor& token_expert_indices,
|
||||
const std::optional<torch::Tensor>& expert_map,
|
||||
int64_t n_expert, int64_t n_local_expert, int64_t topk,
|
||||
const std::optional<int64_t>& align_block_size,
|
||||
torch::Tensor& permuted_input,
|
||||
torch::Tensor& expert_first_token_offset,
|
||||
torch::Tensor& src_row_id2dst_row_id_map,
|
||||
torch::Tensor& m_indices) {
|
||||
void moe_unpermute(
|
||||
const torch::Tensor& permuted_hidden_states,
|
||||
const torch::Tensor& topk_weights, const torch::Tensor& inv_permuted_idx,
|
||||
const std::optional<torch::Tensor>& expert_first_token_offset, int64_t topk,
|
||||
torch::Tensor& hidden_states) {
|
||||
TORCH_CHECK(false, "moe_unpermute is not supported on CUDA < 12.0");
|
||||
}
|
||||
|
||||
@ -224,4 +219,4 @@ bool moe_permute_unpermute_supported() {
|
||||
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
|
||||
m.impl("moe_permute", &moe_permute);
|
||||
m.impl("moe_unpermute", &moe_unpermute);
|
||||
}
|
||||
}
|
||||
@ -573,7 +573,7 @@ void topk_softmax(
|
||||
stream);
|
||||
}
|
||||
else {
|
||||
assert(topk_indices.scalar_type() == at::ScalarType::Int64);
|
||||
TORCH_CHECK(topk_indices.scalar_type() == at::ScalarType::Long);
|
||||
vllm::moe::topkGatingSoftmaxKernelLauncher(
|
||||
gating_output.data_ptr<float>(),
|
||||
topk_weights.data_ptr<float>(),
|
||||
|
||||
@ -35,7 +35,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
|
||||
|
||||
m.def(
|
||||
"moe_wna16_marlin_gemm(Tensor! a, Tensor? c_or_none,"
|
||||
"Tensor! b_q_weight, Tensor! b_scales, Tensor? global_scale, Tensor? "
|
||||
"Tensor! b_q_weight, Tensor? b_bias_or_none,"
|
||||
"Tensor! b_scales, Tensor? global_scale, Tensor? "
|
||||
"b_zeros_or_none,"
|
||||
"Tensor? g_idx_or_none, Tensor? perm_or_none, Tensor! workspace,"
|
||||
"Tensor sorted_token_ids,"
|
||||
@ -77,6 +78,12 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
|
||||
"output_tensor) -> ()");
|
||||
m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
|
||||
|
||||
// Apply grouped topk routing to select experts.
|
||||
m.def(
|
||||
"grouped_topk(Tensor scores, Tensor scores_with_bias, int n_group, int "
|
||||
"topk_group, int topk, bool renormalize, float "
|
||||
"routed_scaling_factor) -> (Tensor, Tensor)");
|
||||
m.impl("grouped_topk", torch::kCUDA, &grouped_topk);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
32
csrc/ops.h
32
csrc/ops.h
@ -138,6 +138,8 @@ void gelu_tanh_and_mul(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
void fatrelu_and_mul(torch::Tensor& out, torch::Tensor& input,
|
||||
double threshold);
|
||||
void swigluoai_and_mul(torch::Tensor& out, torch::Tensor& input,
|
||||
double alpha = 1.702, double limit = 7.0);
|
||||
|
||||
void gelu_new(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
@ -145,22 +147,6 @@ void gelu_fast(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
void gelu_quick(torch::Tensor& out, torch::Tensor& input);
|
||||
|
||||
void advance_step_flashattn(int64_t num_seqs, int64_t num_queries,
|
||||
int64_t block_size, torch::Tensor& input_tokens,
|
||||
torch::Tensor& sampled_token_ids,
|
||||
torch::Tensor& input_positions,
|
||||
torch::Tensor& seq_lens,
|
||||
torch::Tensor& slot_mapping,
|
||||
torch::Tensor& block_tables);
|
||||
|
||||
void advance_step_flashinfer(
|
||||
int64_t num_seqs, int64_t num_queries, int64_t block_size,
|
||||
torch::Tensor& input_tokens, torch::Tensor& sampled_token_ids,
|
||||
torch::Tensor& input_positions, torch::Tensor& seq_lens,
|
||||
torch::Tensor& slot_mapping, torch::Tensor& block_tables,
|
||||
torch::Tensor& paged_kv_indices, torch::Tensor& paged_kv_indptr,
|
||||
torch::Tensor& paged_kv_last_page_len, torch::Tensor& block_table_bounds);
|
||||
|
||||
void cutlass_mla_decode(torch::Tensor const& out, torch::Tensor const& q_nope,
|
||||
torch::Tensor const& q_pe,
|
||||
torch::Tensor const& kv_c_and_k_pe_cache,
|
||||
@ -170,15 +156,6 @@ void cutlass_mla_decode(torch::Tensor const& out, torch::Tensor const& q_nope,
|
||||
torch::Tensor get_cuda_view_from_cpu_tensor(torch::Tensor& cpu_tensor);
|
||||
|
||||
#ifndef USE_ROCM
|
||||
torch::Tensor aqlm_gemm(const torch::Tensor& input, const torch::Tensor& codes,
|
||||
const torch::Tensor& codebooks,
|
||||
const torch::Tensor& scales,
|
||||
const std::vector<int64_t>& codebook_partition_sizes,
|
||||
const std::optional<torch::Tensor>& bias);
|
||||
|
||||
torch::Tensor aqlm_dequant(
|
||||
const torch::Tensor& codes, const torch::Tensor& codebooks,
|
||||
const std::vector<int64_t>& codebook_partition_sizes);
|
||||
|
||||
torch::Tensor awq_gemm(torch::Tensor _in_feats, torch::Tensor _kernel,
|
||||
torch::Tensor _scaling_factors, torch::Tensor _zeros,
|
||||
@ -252,6 +229,11 @@ void get_cutlass_moe_mm_data(
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets);
|
||||
|
||||
void get_cutlass_moe_mm_problem_sizes(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2, const int64_t num_experts, const int64_t n,
|
||||
const int64_t k, const std::optional<torch::Tensor>& blockscale_offsets);
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
|
||||
@ -1,336 +0,0 @@
|
||||
/*
|
||||
* The goal of this GPU kernel is to advance input tensors on the GPU directly
|
||||
* PR: https://github.com/vllm-project/vllm/pull/6338
|
||||
* Current restrictions:
|
||||
* 1. Specialized for DraftModelRunner
|
||||
* 2. Supports flash_attn only
|
||||
*/
|
||||
|
||||
#include "advance_step.cuh"
|
||||
|
||||
namespace prepare_inputs {
|
||||
|
||||
//
|
||||
template <int const num_threads>
|
||||
__global__ void advance_step_flashattn_kernel(
|
||||
int num_seqs, int num_queries, int block_size, long* input_tokens_ptr,
|
||||
long const* sampled_token_ids_ptr, long* input_positions_ptr,
|
||||
int* seq_lens_ptr, long* slot_mapping_ptr, int const* block_tables_ptr,
|
||||
int64_t const block_tables_stride) {
|
||||
int const n_pad = num_seqs - num_queries;
|
||||
if (n_pad && blockIdx.x == 0) {
|
||||
// Handle cuda graph padding
|
||||
int const offset = num_queries;
|
||||
for (int i = threadIdx.x; i < n_pad; i += blockDim.x) {
|
||||
input_tokens_ptr[offset + i] = 0;
|
||||
input_positions_ptr[offset + i] = 0;
|
||||
slot_mapping_ptr[offset + i] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
int num_query_blocks = div_ceil(num_queries, num_threads);
|
||||
|
||||
if (blockIdx.x >= num_query_blocks) {
|
||||
return;
|
||||
}
|
||||
|
||||
int cur_query_id = blockIdx.x * num_threads + threadIdx.x;
|
||||
|
||||
if (cur_query_id >= num_queries) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Update input_tokens
|
||||
input_tokens_ptr[cur_query_id] = sampled_token_ids_ptr[cur_query_id];
|
||||
|
||||
int seq_len = seq_lens_ptr[cur_query_id];
|
||||
int next_seq_len = seq_len + 1;
|
||||
int next_input_pos = next_seq_len - 1;
|
||||
|
||||
// Update seq_lens
|
||||
seq_lens_ptr[cur_query_id] = next_seq_len;
|
||||
// Update input_positions
|
||||
input_positions_ptr[cur_query_id] = next_input_pos;
|
||||
|
||||
int const* seq_block_tables_ptr =
|
||||
block_tables_ptr + block_tables_stride * cur_query_id;
|
||||
|
||||
int block_index = next_input_pos / block_size;
|
||||
int block_offset = next_input_pos % block_size;
|
||||
|
||||
int slot_num = seq_block_tables_ptr[block_index] * block_size + block_offset;
|
||||
// Update slot_mapping
|
||||
slot_mapping_ptr[cur_query_id] = slot_num;
|
||||
}
|
||||
|
||||
inline void verify_tensor(std::string const& name, torch::Tensor const& t,
|
||||
int64_t const size_0, int64_t const size_1,
|
||||
c10::ScalarType const type) {
|
||||
bool size_0_cond = true;
|
||||
if (size_0 != -1) {
|
||||
size_0_cond = t.size(0) == size_0;
|
||||
}
|
||||
|
||||
bool size_1_cond = true;
|
||||
if (size_1 != -1) {
|
||||
size_1_cond = t.size(1) == size_1;
|
||||
}
|
||||
|
||||
bool is_contiguous = t.is_contiguous();
|
||||
bool same_type = t.dtype() == type;
|
||||
|
||||
bool pass = size_0_cond && size_1_cond && is_contiguous && same_type;
|
||||
if (!pass) {
|
||||
TORCH_CHECK(false, "tensor: name = ", name, ", shape = ", t.sizes(),
|
||||
" is_cont = ", t.is_contiguous(), ", type = ", t.dtype(),
|
||||
" is not as expected: shape = [", size_0, ", ", size_1,
|
||||
"], type = ", type);
|
||||
}
|
||||
}
|
||||
|
||||
/// each thread processes a block per query
|
||||
__global__ void advance_step_flashinfer_kernel(
|
||||
int num_threads, int num_seqs, int num_queries, int block_size,
|
||||
long* input_tokens_ptr, long const* sampled_token_ids_ptr,
|
||||
long* input_positions_ptr, int* seq_lens_ptr, long* slot_mapping_ptr,
|
||||
int const* block_tables_ptr, int64_t const block_tables_stride,
|
||||
int* paged_kv_last_page_len_ptr, int* block_table_bound_ptr) {
|
||||
int const n_pad = num_seqs - num_queries;
|
||||
if (n_pad && blockIdx.x == 0) {
|
||||
// Handle cuda graph padding
|
||||
int const offset = num_queries;
|
||||
for (int i = threadIdx.x; i < n_pad; i += blockDim.x) {
|
||||
input_tokens_ptr[offset + i] = 0;
|
||||
input_positions_ptr[offset + i] = 0;
|
||||
slot_mapping_ptr[offset + i] = -1;
|
||||
}
|
||||
}
|
||||
int num_query_blocks = div_ceil(num_queries, num_threads);
|
||||
|
||||
if (blockIdx.x < num_query_blocks) {
|
||||
int cur_query_id = blockIdx.x * num_threads + threadIdx.x;
|
||||
|
||||
if (cur_query_id < num_queries) {
|
||||
// Update input_tokens
|
||||
input_tokens_ptr[cur_query_id] = sampled_token_ids_ptr[cur_query_id];
|
||||
|
||||
int seq_len = seq_lens_ptr[cur_query_id];
|
||||
int next_seq_len = seq_len + 1;
|
||||
int next_input_pos = next_seq_len - 1;
|
||||
|
||||
// Update seq_lens
|
||||
seq_lens_ptr[cur_query_id] = next_seq_len;
|
||||
// Update input_positions
|
||||
input_positions_ptr[cur_query_id] = next_input_pos;
|
||||
|
||||
int const* seq_block_tables_ptr =
|
||||
block_tables_ptr + block_tables_stride * cur_query_id;
|
||||
|
||||
int block_index = next_input_pos / block_size;
|
||||
int block_offset = next_input_pos % block_size;
|
||||
|
||||
// Update paged_kv_last_page_len
|
||||
paged_kv_last_page_len_ptr[cur_query_id] = block_offset + 1;
|
||||
|
||||
int slot_num =
|
||||
seq_block_tables_ptr[block_index] * block_size + block_offset;
|
||||
// Update slot_mapping
|
||||
slot_mapping_ptr[cur_query_id] = slot_num;
|
||||
block_table_bound_ptr[cur_query_id] = div_ceil(next_seq_len, block_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void advance_step_flashinfer_indptr_kernel(
|
||||
int num_threads, int num_seqs, int num_queries, int* paged_kv_indptr_ptr,
|
||||
int* block_table_bound_ptr) {
|
||||
int idx = blockIdx.x * num_threads + threadIdx.x;
|
||||
// Update paged_kv_indptr
|
||||
if (idx == 0) {
|
||||
paged_kv_indptr_ptr[idx] = 0;
|
||||
}
|
||||
if (idx < num_queries) {
|
||||
int sum = 0;
|
||||
for (int i = 0; i <= idx; ++i) {
|
||||
sum += block_table_bound_ptr[i];
|
||||
}
|
||||
paged_kv_indptr_ptr[idx + 1] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void advance_step_flashinfer_indices_kernel(
|
||||
int num_seqs, int num_queries, int const* block_tables_ptr,
|
||||
int64_t const max_num_blocks_per_seq, int* paged_kv_indices_ptr,
|
||||
int* paged_kv_indptr_ptr, int* block_table_bound_ptr) {
|
||||
// note: max_num_blocks_per_seq = block_tables.stride(0)
|
||||
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
// when cuda graphs are enabled, paged_kv_indptr tensor
|
||||
// has to be updated for the padded queries
|
||||
// tid represents a query# for paged_kv_indptr tensor
|
||||
if (num_queries < tid && tid <= num_seqs) {
|
||||
paged_kv_indptr_ptr[tid] = paged_kv_indptr_ptr[num_queries];
|
||||
}
|
||||
|
||||
// each thread processes a block_ptr in block_tables
|
||||
// block_tables shape: [num_queries, max_num_blocks_per_seq]
|
||||
// paged_kv_indices is flattened block_tables.
|
||||
for (int idx = tid; idx < (num_seqs * max_num_blocks_per_seq);
|
||||
idx += (gridDim.x * blockDim.x)) {
|
||||
// block_tables-row = paged_kv_indptr[queryNum]
|
||||
int queryNum = idx / max_num_blocks_per_seq;
|
||||
int col = idx % max_num_blocks_per_seq;
|
||||
if (queryNum < num_queries && col < block_table_bound_ptr[queryNum]) {
|
||||
int indices_arr_idx = paged_kv_indptr_ptr[queryNum] + col;
|
||||
int block_tables_idx = queryNum * max_num_blocks_per_seq + col;
|
||||
paged_kv_indices_ptr[indices_arr_idx] =
|
||||
block_tables_ptr[block_tables_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void advance_step_flashattn(int num_seqs, int num_queries, int block_size,
|
||||
torch::Tensor& input_tokens, // type: long
|
||||
torch::Tensor& sampled_token_ids, // type: long
|
||||
torch::Tensor& input_positions, // type: long
|
||||
torch::Tensor& seq_lens, // type: int
|
||||
torch::Tensor& slot_mapping, // type: long
|
||||
torch::Tensor& block_tables) { // type: int
|
||||
|
||||
if (logging) {
|
||||
printf("advance_step_flashattn:\n");
|
||||
printf(" num_seqs = %d\n", num_seqs);
|
||||
printf(" num_queries = %d\n", num_queries);
|
||||
printf(" block_size = %d\n", block_size);
|
||||
}
|
||||
// Verify all tensors
|
||||
verify_tensor("input_tokens", input_tokens, num_seqs, -1, at::kLong);
|
||||
verify_tensor("sampled_token_ids", sampled_token_ids, num_queries, 1,
|
||||
at::kLong);
|
||||
verify_tensor("input_positions", input_positions, num_seqs, -1, at::kLong);
|
||||
verify_tensor("seq_lens", seq_lens, num_seqs, -1, at::kInt);
|
||||
verify_tensor("slot_mapping", slot_mapping, num_seqs, -1, at::kLong);
|
||||
verify_tensor("block_tables", block_tables, num_seqs, -1, at::kInt);
|
||||
|
||||
int dev = sampled_token_ids.get_device();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
|
||||
|
||||
int blocks;
|
||||
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
|
||||
|
||||
advance_step_flashattn_kernel<max_threads>
|
||||
<<<blocks, max_threads, 0, stream>>>(
|
||||
num_seqs, num_queries, block_size,
|
||||
reinterpret_cast<long*>(input_tokens.data_ptr()),
|
||||
reinterpret_cast<long const*>(sampled_token_ids.data_ptr()),
|
||||
reinterpret_cast<long*>(input_positions.data_ptr()),
|
||||
reinterpret_cast<int*>(seq_lens.data_ptr()),
|
||||
reinterpret_cast<long*>(slot_mapping.data_ptr()),
|
||||
reinterpret_cast<int const*>(block_tables.data_ptr()),
|
||||
block_tables.stride(0));
|
||||
}
|
||||
|
||||
void advance_step_flashinfer(
|
||||
int num_seqs, int num_queries, int block_size,
|
||||
torch::Tensor& input_tokens, // type: long
|
||||
torch::Tensor& sampled_token_ids, // type: long
|
||||
torch::Tensor& input_positions, // type: long
|
||||
torch::Tensor& seq_lens, // type: int
|
||||
torch::Tensor& slot_mapping, // type: long
|
||||
torch::Tensor& block_tables, // type: int
|
||||
torch::Tensor& paged_kv_indices, // type: int
|
||||
torch::Tensor& paged_kv_indptr, // type: int
|
||||
torch::Tensor& paged_kv_last_page_len, // type: int
|
||||
torch::Tensor& block_table_bound) { // type: int
|
||||
|
||||
if (logging) {
|
||||
printf("advance_step_flashinfer:\n");
|
||||
printf(" num_seqs = %d\n", num_seqs);
|
||||
printf(" num_queries = %d\n", num_queries);
|
||||
printf(" block_size = %d\n", block_size);
|
||||
printf(" block_tables.stride(0) = %zu\n", block_tables.stride(0));
|
||||
}
|
||||
// Verify all tensors
|
||||
verify_tensor("input_tokens", input_tokens, num_seqs, -1, at::kLong);
|
||||
// verify_tensor("sampled_token_ids", sampled_token_ids, num_queries, 1,
|
||||
// at::kLong);
|
||||
verify_tensor("input_positions", input_positions, num_seqs, -1, at::kLong);
|
||||
verify_tensor("seq_lens", seq_lens, num_seqs, -1, at::kInt);
|
||||
verify_tensor("slot_mapping", slot_mapping, num_seqs, -1, at::kLong);
|
||||
verify_tensor("block_tables", block_tables, num_seqs, -1, at::kInt);
|
||||
|
||||
verify_tensor("paged_kv_indices", paged_kv_indices, -1, -1, at::kInt);
|
||||
verify_tensor("paged_kv_indptr", paged_kv_indptr, num_seqs + 1, -1, at::kInt);
|
||||
verify_tensor("paged_kv_last_page_len", paged_kv_last_page_len, num_seqs, -1,
|
||||
at::kInt);
|
||||
|
||||
verify_tensor("block_table_bound", block_table_bound, num_seqs, -1, at::kInt);
|
||||
|
||||
int dev = sampled_token_ids.get_device();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
|
||||
|
||||
int blocks;
|
||||
int threads;
|
||||
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);
|
||||
cudaDeviceGetAttribute(&threads, cudaDevAttrMaxThreadsPerBlock, dev);
|
||||
|
||||
TORCH_CHECK((blocks * threads > num_queries),
|
||||
"multi-step: not enough threads to map to num_queries = ",
|
||||
num_queries, " block_tables.stride(0) = ", block_tables.stride(0),
|
||||
" blocks = ", blocks, " max_threads = ", threads);
|
||||
if (logging) {
|
||||
printf("launching kernels with %d blocks and %d threads\n", blocks,
|
||||
threads);
|
||||
}
|
||||
advance_step_flashinfer_kernel<<<blocks, threads, 0, stream>>>(
|
||||
threads, num_seqs, num_queries, block_size,
|
||||
reinterpret_cast<long*>(input_tokens.data_ptr()),
|
||||
reinterpret_cast<long const*>(sampled_token_ids.data_ptr()),
|
||||
reinterpret_cast<long*>(input_positions.data_ptr()),
|
||||
reinterpret_cast<int*>(seq_lens.data_ptr()),
|
||||
reinterpret_cast<long*>(slot_mapping.data_ptr()),
|
||||
reinterpret_cast<int const*>(block_tables.data_ptr()),
|
||||
block_tables.stride(0),
|
||||
reinterpret_cast<int*>(paged_kv_last_page_len.data_ptr()),
|
||||
reinterpret_cast<int*>(block_table_bound.data_ptr()));
|
||||
|
||||
advance_step_flashinfer_indptr_kernel<<<blocks, threads, 0, stream>>>(
|
||||
threads, num_seqs, num_queries,
|
||||
reinterpret_cast<int*>(paged_kv_indptr.data_ptr()),
|
||||
reinterpret_cast<int*>(block_table_bound.data_ptr()));
|
||||
|
||||
advance_step_flashinfer_indices_kernel<<<blocks, threads, 0, stream>>>(
|
||||
num_seqs, num_queries,
|
||||
reinterpret_cast<int const*>(block_tables.data_ptr()),
|
||||
block_tables.stride(0),
|
||||
reinterpret_cast<int*>(paged_kv_indices.data_ptr()),
|
||||
reinterpret_cast<int*>(paged_kv_indptr.data_ptr()),
|
||||
reinterpret_cast<int*>(block_table_bound.data_ptr()));
|
||||
}
|
||||
|
||||
} // namespace prepare_inputs
|
||||
|
||||
void advance_step_flashattn(int64_t num_seqs, int64_t num_queries,
|
||||
int64_t block_size, torch::Tensor& input_tokens,
|
||||
torch::Tensor& sampled_token_ids,
|
||||
torch::Tensor& input_positions,
|
||||
torch::Tensor& seq_lens,
|
||||
torch::Tensor& slot_mapping,
|
||||
torch::Tensor& block_tables) {
|
||||
prepare_inputs::advance_step_flashattn(
|
||||
num_seqs, num_queries, block_size, input_tokens, sampled_token_ids,
|
||||
input_positions, seq_lens, slot_mapping, block_tables);
|
||||
}
|
||||
|
||||
void advance_step_flashinfer(
|
||||
int64_t num_seqs, int64_t num_queries, int64_t block_size,
|
||||
torch::Tensor& input_tokens, torch::Tensor& sampled_token_ids,
|
||||
torch::Tensor& input_positions, torch::Tensor& seq_lens,
|
||||
torch::Tensor& slot_mapping, torch::Tensor& block_tables,
|
||||
torch::Tensor& paged_kv_indices, torch::Tensor& paged_kv_indptr,
|
||||
torch::Tensor& paged_kv_last_page_len, torch::Tensor& block_table_bound) {
|
||||
prepare_inputs::advance_step_flashinfer(
|
||||
num_seqs, num_queries, block_size, input_tokens, sampled_token_ids,
|
||||
input_positions, seq_lens, slot_mapping, block_tables, paged_kv_indices,
|
||||
paged_kv_indptr, paged_kv_last_page_len, block_table_bound);
|
||||
}
|
||||
@ -1,19 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <torch/all.h>
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace prepare_inputs {
|
||||
|
||||
static constexpr int max_threads = 256;
|
||||
static constexpr bool logging = false;
|
||||
|
||||
constexpr int div_ceil(int a, int b) { return (a + b - 1) / b; }
|
||||
|
||||
} // namespace prepare_inputs
|
||||
@ -1,597 +0,0 @@
|
||||
/*
|
||||
* Modified by Neural Magic
|
||||
* Adapted from https://github.com/Vahe1994/AQLM
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/all.h>
|
||||
#include <c10/cuda/CUDAStream.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
|
||||
namespace vllm {
|
||||
namespace aqlm {
|
||||
|
||||
__global__ void Code1x16MatVec(
|
||||
const int4* __restrict__ A, const int4* __restrict__ B,
|
||||
int4* __restrict__ C, const int4* __restrict__ codebook, const int prob_m,
|
||||
const int prob_k,
|
||||
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
|
||||
// codebook, at most 3 long.
|
||||
const int codebook_stride // as int4.
|
||||
) {
|
||||
int a_gl_stride = prob_k / 8 / 8;
|
||||
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
|
||||
bool pred = a_gl_rd < prob_m;
|
||||
|
||||
if (pred) {
|
||||
// advance to the correct codebook, this easy because we only multiply one
|
||||
// column of the codebook.
|
||||
auto codebook_size = &codebook_a_sizes.x;
|
||||
while (a_gl_rd >= *codebook_size) {
|
||||
codebook += codebook_stride;
|
||||
++codebook_size;
|
||||
}
|
||||
}
|
||||
|
||||
int b_gl_rd = 0;
|
||||
int c_gl_wr = a_gl_rd;
|
||||
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
|
||||
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
|
||||
|
||||
__shared__ int4 sh_b[32 * 9];
|
||||
float res = 0;
|
||||
|
||||
int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32);
|
||||
while (iters--) {
|
||||
// We pad shared memory to avoid bank conflicts during reads
|
||||
__syncthreads();
|
||||
for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) {
|
||||
if (b_gl_rd + i < prob_k / 8) sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i];
|
||||
}
|
||||
__syncthreads();
|
||||
b_gl_rd += 32 * 8;
|
||||
|
||||
int b_sh_rd = 9 * (threadIdx.x % 32);
|
||||
if (pred && a_gl_rd < a_gl_end) {
|
||||
const uint16_t* enc = reinterpret_cast<const uint16_t*>(&A[a_gl_rd]);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 8; i++) {
|
||||
uint32_t dec[4];
|
||||
// We bypass the L1 cache to avoid massive amounts of memory streaming
|
||||
// that doesn't actually help us; this brings > 2x speedup.
|
||||
asm volatile("ld.cg.global.v4.u32 {%0, %1, %2, %3}, [%4];"
|
||||
: "=r"(dec[0]), "=r"(dec[1]), "=r"(dec[2]), "=r"(dec[3])
|
||||
: "l"((void*)&codebook[enc[i]]));
|
||||
half2* a = reinterpret_cast<half2*>(&dec);
|
||||
half2* b = reinterpret_cast<half2*>(&sh_b[b_sh_rd]);
|
||||
half2 res2 = {};
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; j++) res2 = __hfma2(a[j], b[j], res2);
|
||||
res += __half2float(res2.x) + __half2float(res2.y);
|
||||
b_sh_rd++;
|
||||
}
|
||||
a_gl_rd += 32;
|
||||
}
|
||||
}
|
||||
|
||||
if (pred) {
|
||||
#pragma unroll
|
||||
for (int i = 16; i > 0; i /= 2) res += __shfl_down_sync(0xffffffff, res, i);
|
||||
if (threadIdx.x % 32 == 0)
|
||||
reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Code2x8MatVec(
|
||||
const int4* __restrict__ A, const int4* __restrict__ B,
|
||||
int4* __restrict__ C, const int4* __restrict__ codebook, int prob_m,
|
||||
int prob_k,
|
||||
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
|
||||
// codebook, at most 3 long.
|
||||
const int codebook_stride // as int4.
|
||||
|
||||
) {
|
||||
int a_gl_stride = prob_k / 8 / 8;
|
||||
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
|
||||
bool pred = a_gl_rd < prob_m;
|
||||
|
||||
if (pred) {
|
||||
// advance to the correct codebook, this easy because we only multiply one
|
||||
// column of the codebook.
|
||||
auto codebook_size = &codebook_a_sizes.x;
|
||||
while (a_gl_rd >= *codebook_size) {
|
||||
codebook += codebook_stride;
|
||||
++codebook_size;
|
||||
}
|
||||
}
|
||||
|
||||
int b_gl_rd = 0;
|
||||
int c_gl_wr = a_gl_rd;
|
||||
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
|
||||
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
|
||||
int lane = threadIdx.x % 8;
|
||||
|
||||
extern __shared__ int4 sh[];
|
||||
int4* sh_b = sh;
|
||||
int4* sh_code = sh_b + 32 * 9;
|
||||
int4* sh_code0 = sh_code;
|
||||
int4* sh_code1 = sh_code + 256 * 8;
|
||||
|
||||
for (int i = threadIdx.x; i < 2 * 256; i += blockDim.x) {
|
||||
int4 dec = codebook[i];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 8; j++) sh_code[8 * i + (j + lane) % 8] = dec;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
float res = 0;
|
||||
|
||||
int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32);
|
||||
while (iters--) {
|
||||
// We pad shared memory to avoid bank conflicts during reads
|
||||
__syncthreads();
|
||||
for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) {
|
||||
if (b_gl_rd + i < prob_k / 8) sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i];
|
||||
}
|
||||
__syncthreads();
|
||||
b_gl_rd += 32 * 8;
|
||||
|
||||
int b_sh_rd = 9 * (threadIdx.x % 32);
|
||||
if (pred && a_gl_rd < a_gl_end) {
|
||||
const uint8_t* enc = reinterpret_cast<const uint8_t*>(&A[a_gl_rd]);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 8; i++) {
|
||||
half2* a0 =
|
||||
reinterpret_cast<half2*>(&sh_code0[8 * enc[2 * i + 0] + lane]);
|
||||
half2* a1 =
|
||||
reinterpret_cast<half2*>(&sh_code1[8 * enc[2 * i + 1] + lane]);
|
||||
half2* b = reinterpret_cast<half2*>(&sh_b[b_sh_rd]);
|
||||
half2 res2 = {};
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; j++)
|
||||
res2 = __hfma2(__hadd2(a0[j], a1[j]), b[j], res2);
|
||||
res += __half2float(res2.x) + __half2float(res2.y);
|
||||
b_sh_rd++;
|
||||
}
|
||||
a_gl_rd += 32;
|
||||
}
|
||||
}
|
||||
|
||||
if (pred) {
|
||||
#pragma unroll
|
||||
for (int i = 16; i > 0; i /= 2) res += __shfl_down_sync(0xffffffff, res, i);
|
||||
if (threadIdx.x % 32 == 0)
|
||||
reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Code1x16Dequant(
|
||||
const int4* __restrict__ A, int4* __restrict__ C,
|
||||
const int4* __restrict__ codebook, int prob_m, int prob_k,
|
||||
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
|
||||
// codebook, at most 3 long, sums to m.
|
||||
const int codebook_stride // as int4
|
||||
) {
|
||||
int a_gl_stride = prob_k / 8 / 8;
|
||||
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
|
||||
bool pred = a_gl_rd < prob_m;
|
||||
|
||||
if (pred) {
|
||||
// advance to the correct codebook, this easy because we only multiply one
|
||||
// column of the codebook.
|
||||
auto codebook_size = &codebook_a_sizes.x;
|
||||
while (a_gl_rd >= *codebook_size) {
|
||||
codebook += codebook_stride;
|
||||
++codebook_size;
|
||||
}
|
||||
}
|
||||
|
||||
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
|
||||
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
|
||||
|
||||
int c_gl_stride = prob_k / 8;
|
||||
int c_gl_wr = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
|
||||
c_gl_wr = c_gl_stride * c_gl_wr + (threadIdx.x % 32) * 8;
|
||||
|
||||
int iters = (prob_k / 8 - 1) / (8 * 32) + 1;
|
||||
while (iters--) {
|
||||
if (pred && a_gl_rd < a_gl_end) {
|
||||
const uint16_t* enc = reinterpret_cast<const uint16_t*>(&A[a_gl_rd]);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 8; i++) {
|
||||
int4 chunk;
|
||||
auto dec = reinterpret_cast<uint32_t*>(&chunk);
|
||||
// We bypass the L1 cache to avoid massive amounts of memory streaming
|
||||
// that doesn't actually help us; this brings > 2x speedup.
|
||||
asm volatile("ld.cg.global.v4.u32 {%0, %1, %2, %3}, [%4];"
|
||||
: "=r"(dec[0]), "=r"(dec[1]), "=r"(dec[2]), "=r"(dec[3])
|
||||
: "l"((void*)&codebook[enc[i]]));
|
||||
|
||||
C[a_gl_rd * 8 + i] = chunk;
|
||||
}
|
||||
}
|
||||
a_gl_rd += 32;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Code2x8Dequant(
|
||||
const int4* __restrict__ A, int4* __restrict__ C,
|
||||
const int4* __restrict__ codebook, int prob_m, int prob_k,
|
||||
const int4
|
||||
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at
|
||||
// most 3 long, corresponds to cols.
|
||||
const int codebook_stride // as int4
|
||||
) {
|
||||
int a_gl_stride = prob_k / 8 / 8;
|
||||
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
|
||||
bool pred = a_gl_rd < prob_m;
|
||||
|
||||
if (pred) {
|
||||
// advance to the correct codebook, this easy because we only multiply one
|
||||
// column of the codebook.
|
||||
auto codebook_size = &codebook_a_sizes.x;
|
||||
while (a_gl_rd >= *codebook_size) {
|
||||
codebook += codebook_stride;
|
||||
++codebook_size;
|
||||
}
|
||||
}
|
||||
|
||||
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
|
||||
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
|
||||
int lane = threadIdx.x % 8;
|
||||
|
||||
int c_gl_stride = prob_k / 8;
|
||||
int c_gl_wr = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
|
||||
c_gl_wr = c_gl_stride * c_gl_wr + (threadIdx.x % 32) * 8;
|
||||
|
||||
extern __shared__ int4 sh[];
|
||||
int4* sh_code = sh;
|
||||
int4* sh_code0 = sh_code;
|
||||
int4* sh_code1 = sh_code + 256 * 8;
|
||||
|
||||
for (int i = threadIdx.x; i < 2 * 256; i += blockDim.x) {
|
||||
int4 dec = codebook[i];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 8; j++) sh_code[8 * i + (j + lane) % 8] = dec;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
int iters = (prob_k / 8 - 1) / (8 * 32) + 1;
|
||||
while (iters--) {
|
||||
if (pred && a_gl_rd < a_gl_end) {
|
||||
const uint8_t* enc = reinterpret_cast<const uint8_t*>(&A[a_gl_rd]);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 8; i++) {
|
||||
int4 chunk;
|
||||
half2* a0 =
|
||||
reinterpret_cast<half2*>(&sh_code0[8 * enc[2 * i + 0] + lane]);
|
||||
half2* a1 =
|
||||
reinterpret_cast<half2*>(&sh_code1[8 * enc[2 * i + 1] + lane]);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; j++)
|
||||
reinterpret_cast<half2*>(&chunk)[j] = __hadd2(a0[j], a1[j]);
|
||||
C[a_gl_rd * 8 + i] = chunk;
|
||||
}
|
||||
}
|
||||
a_gl_rd += 32;
|
||||
}
|
||||
}
|
||||
|
||||
inline int ceildiv(int a, int b) { return (a + b - 1) / b; }
|
||||
|
||||
const int THREAD_M = 16;
|
||||
|
||||
void code1x16_matvec_cuda(const void* __restrict__ A,
|
||||
const void* __restrict__ B, void* __restrict__ C,
|
||||
const void* __restrict__ codebook, int prob_m,
|
||||
int prob_k, const int4 codebook_a_sizes,
|
||||
const int codebook_stride) {
|
||||
int sms;
|
||||
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
|
||||
int waves = 0;
|
||||
int thread_m;
|
||||
do {
|
||||
waves++;
|
||||
thread_m = ceildiv(prob_m, waves * sms);
|
||||
} while (thread_m > THREAD_M);
|
||||
|
||||
int blocks = ceildiv(prob_m, thread_m);
|
||||
int threads = 32 * thread_m;
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
Code1x16MatVec<<<blocks, threads, 16 * 32 * 9, stream>>>(
|
||||
(const int4*)A, (const int4*)B, (int4*)C, (const int4*)codebook, prob_m,
|
||||
prob_k, codebook_a_sizes, codebook_stride);
|
||||
}
|
||||
|
||||
void code2x8_matvec_cuda(const void* __restrict__ A, const void* __restrict__ B,
|
||||
void* __restrict__ C,
|
||||
const void* __restrict__ codebook, int prob_m,
|
||||
int prob_k, const int4 codebook_a_sizes,
|
||||
const int codebook_stride) {
|
||||
int sms;
|
||||
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
|
||||
int waves = 0;
|
||||
int thread_m;
|
||||
do {
|
||||
waves++;
|
||||
thread_m = ceildiv(prob_m, waves * sms);
|
||||
} while (thread_m > THREAD_M);
|
||||
|
||||
int blocks = ceildiv(prob_m, thread_m);
|
||||
int threads = 32 * thread_m;
|
||||
int shared = 16 * (2 * 256 * 8 + 32 * 9);
|
||||
cudaFuncSetAttribute(Code2x8MatVec,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, shared);
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
Code2x8MatVec<<<blocks, threads, shared, stream>>>(
|
||||
(const int4*)A, (const int4*)B, (int4*)C, (const int4*)codebook, prob_m,
|
||||
prob_k, codebook_a_sizes, codebook_stride);
|
||||
}
|
||||
|
||||
void code1x16_dequant_cuda(
|
||||
const void* __restrict__ A, void* __restrict__ C,
|
||||
const void* __restrict__ codebook, int prob_m, int prob_k,
|
||||
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
|
||||
// codebook, at most 3 long.
|
||||
const int codebook_stride // as int4.
|
||||
) {
|
||||
int sms;
|
||||
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
|
||||
int waves = 0;
|
||||
int thread_m;
|
||||
do {
|
||||
waves++;
|
||||
thread_m = ceildiv(prob_m, waves * sms);
|
||||
} while (thread_m > THREAD_M);
|
||||
|
||||
int blocks = ceildiv(prob_m, thread_m);
|
||||
int threads = 32 * thread_m;
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
Code1x16Dequant<<<blocks, threads, 0, stream>>>(
|
||||
(const int4*)A, (int4*)C, (const int4*)codebook, prob_m, prob_k,
|
||||
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at
|
||||
// most 3 long.
|
||||
codebook_stride // as int4.
|
||||
);
|
||||
}
|
||||
|
||||
// Dequantizes the code and codebook into weights.
|
||||
void code2x8_dequant_cuda(
|
||||
const void* __restrict__ A, void* __restrict__ C,
|
||||
const void* __restrict__ codebook, int prob_m, int prob_k,
|
||||
const int4
|
||||
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at
|
||||
// most 3 long, corresponds to cols.
|
||||
const int codebook_stride // as int4
|
||||
) {
|
||||
int sms;
|
||||
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
|
||||
int waves = 0;
|
||||
int thread_m;
|
||||
do {
|
||||
waves++;
|
||||
thread_m = ceildiv(prob_m, waves * sms);
|
||||
} while (thread_m > THREAD_M);
|
||||
|
||||
int blocks = ceildiv(prob_m, thread_m);
|
||||
int threads = 32 * thread_m;
|
||||
int shared = 16 * (2 * 256 * 8 + 32 * 9);
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
|
||||
cudaFuncSetAttribute(Code2x8Dequant,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, shared);
|
||||
Code2x8Dequant<<<blocks, threads, shared, stream>>>(
|
||||
(const int4*)A, (int4*)C, (const int4*)codebook, prob_m, prob_k,
|
||||
codebook_a_sizes, codebook_stride);
|
||||
}
|
||||
|
||||
int codebook_stride(const torch::Tensor& codebooks) {
|
||||
return codebooks.stride(0) * codebooks.element_size() / sizeof(int4);
|
||||
}
|
||||
|
||||
void code1x16_matvec(
|
||||
const torch::Tensor& A, const torch::Tensor& B, torch::Tensor& C,
|
||||
const torch::Tensor& codebook,
|
||||
const int4 codebook_a_sizes // cumulative sizes of A spanning each
|
||||
// codebook, at most 3 long.
|
||||
) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
|
||||
int prob_m = C.size(0);
|
||||
int prob_k = B.size(0);
|
||||
|
||||
code1x16_matvec_cuda(A.data_ptr(), B.data_ptr(), C.data_ptr(),
|
||||
codebook.data_ptr(), prob_m, prob_k, codebook_a_sizes,
|
||||
codebook_stride(codebook));
|
||||
}
|
||||
|
||||
torch::Tensor code1x16_matmat(const torch::Tensor& input,
|
||||
const torch::Tensor& codes,
|
||||
const torch::Tensor& codebooks,
|
||||
const torch::Tensor& scales,
|
||||
const int4 codebook_a_sizes,
|
||||
const std::optional<torch::Tensor>& bias) {
|
||||
auto input_sizes = input.sizes();
|
||||
auto out_features = codes.size(0) * codebooks.size(2);
|
||||
auto flat_input = input.reshape({-1, input.size(-1)});
|
||||
auto flat_output = torch::empty(
|
||||
{flat_input.size(0), out_features},
|
||||
torch::TensorOptions().dtype(input.dtype()).device(input.device()));
|
||||
|
||||
for (int i = 0; i < flat_input.size(0); ++i) {
|
||||
auto input_vec = flat_input.index({i});
|
||||
auto output_vec = flat_output.index({i});
|
||||
code1x16_matvec(codes.squeeze(2), input_vec, output_vec, codebooks,
|
||||
codebook_a_sizes);
|
||||
}
|
||||
flat_output *= scales.flatten().unsqueeze(0);
|
||||
|
||||
if (bias.has_value()) {
|
||||
flat_output += bias->unsqueeze(0);
|
||||
}
|
||||
|
||||
auto output_sizes = input_sizes.vec();
|
||||
output_sizes.pop_back();
|
||||
output_sizes.push_back(-1);
|
||||
auto output = flat_output.reshape(output_sizes);
|
||||
return output;
|
||||
}
|
||||
|
||||
void code2x8_matvec(const torch::Tensor& A, const torch::Tensor& B,
|
||||
torch::Tensor& C, const torch::Tensor& codebook,
|
||||
const int4 codebook_a_sizes) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
|
||||
int prob_m = C.size(0);
|
||||
int prob_k = B.size(0);
|
||||
code2x8_matvec_cuda(A.data_ptr(), B.data_ptr(), C.data_ptr(),
|
||||
codebook.data_ptr(), prob_m, prob_k, codebook_a_sizes,
|
||||
2 * codebook_stride(codebook));
|
||||
}
|
||||
|
||||
torch::Tensor code2x8_matmat(const torch::Tensor& input,
|
||||
const torch::Tensor& codes,
|
||||
const torch::Tensor& codebooks,
|
||||
const torch::Tensor& scales,
|
||||
const int4 codebook_a_sizes,
|
||||
const std::optional<torch::Tensor>& bias) {
|
||||
auto input_sizes = input.sizes();
|
||||
auto out_features = codes.size(0) * codebooks.size(2);
|
||||
auto flat_input = input.reshape({-1, input.size(-1)});
|
||||
auto flat_output = torch::empty(
|
||||
{flat_input.size(0), out_features},
|
||||
torch::TensorOptions().dtype(input.dtype()).device(input.device()));
|
||||
|
||||
for (int i = 0; i < flat_input.size(0); ++i) {
|
||||
auto input_vec = flat_input.index({i});
|
||||
auto output_vec = flat_output.index({i});
|
||||
code2x8_matvec(codes.squeeze(2), input_vec, output_vec, codebooks,
|
||||
codebook_a_sizes);
|
||||
}
|
||||
flat_output *= scales.flatten().unsqueeze(0);
|
||||
if (bias.has_value()) {
|
||||
flat_output += bias->unsqueeze(0);
|
||||
}
|
||||
|
||||
auto output_sizes = input_sizes.vec();
|
||||
output_sizes.pop_back();
|
||||
output_sizes.push_back(-1);
|
||||
auto output = flat_output.reshape(output_sizes);
|
||||
return output;
|
||||
}
|
||||
|
||||
// Accumulate the partition sizes.
|
||||
int4 accumulate_sizes(const std::vector<int64_t>& codebook_partition_sizes) {
|
||||
int4 cumulative_sizes;
|
||||
auto cumulative_size = &cumulative_sizes.x;
|
||||
size_t i = 0;
|
||||
int last = 0;
|
||||
assert(codebook_partition_sizes.size() <= 4);
|
||||
for (; i < codebook_partition_sizes.size(); ++i, ++cumulative_size) {
|
||||
*cumulative_size = codebook_partition_sizes[i] + last;
|
||||
last = *cumulative_size;
|
||||
}
|
||||
// fill in the rest with unreachable.
|
||||
for (; i < 4; ++i, ++cumulative_size) {
|
||||
*cumulative_size = last * 10;
|
||||
}
|
||||
return cumulative_sizes;
|
||||
}
|
||||
|
||||
} // namespace aqlm
|
||||
} // namespace vllm
|
||||
|
||||
torch::Tensor aqlm_gemm(const torch::Tensor& input, const torch::Tensor& codes,
|
||||
const torch::Tensor& codebooks,
|
||||
const torch::Tensor& scales,
|
||||
const std::vector<int64_t>& codebook_partition_sizes,
|
||||
const std::optional<torch::Tensor>& bias) {
|
||||
int4 cumulative_sizes =
|
||||
vllm::aqlm::accumulate_sizes(codebook_partition_sizes);
|
||||
|
||||
int const nbooks = codebooks.size(0) / codebook_partition_sizes.size();
|
||||
int const entries = codebooks.size(1);
|
||||
|
||||
if (nbooks == 1 && entries == (1 << 16)) {
|
||||
return vllm::aqlm::code1x16_matmat(input, codes, codebooks, scales,
|
||||
cumulative_sizes, bias);
|
||||
}
|
||||
if (nbooks == 2 && entries == (1 << 8)) {
|
||||
return vllm::aqlm::code2x8_matmat(input, codes, codebooks, scales,
|
||||
cumulative_sizes, bias);
|
||||
}
|
||||
|
||||
TORCH_CHECK(false, "AQLM with ", nbooks, " codebooks and ", entries,
|
||||
" entries is not currently supported.")
|
||||
return {};
|
||||
}
|
||||
|
||||
torch::Tensor aqlm_dequant(
|
||||
const torch::Tensor& codes, const torch::Tensor& codebooks,
|
||||
const std::vector<int64_t>& codebook_partition_sizes) {
|
||||
int4 cumulative_sizes =
|
||||
vllm::aqlm::accumulate_sizes(codebook_partition_sizes);
|
||||
|
||||
int const nbooks = codebooks.size(0) / codebook_partition_sizes.size();
|
||||
int const entries = codebooks.size(1);
|
||||
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(codes));
|
||||
int rows = codes.size(1);
|
||||
int cols = codes.size(0);
|
||||
|
||||
auto in_features = codes.size(1) * 8;
|
||||
auto out_features = codes.size(0);
|
||||
|
||||
assert(out_features == std::accumulate(codebook_partition_sizes.begin(),
|
||||
codebook_partition_sizes.end(), 0));
|
||||
|
||||
auto weights = torch::empty({out_features, in_features},
|
||||
torch::TensorOptions()
|
||||
.dtype(codebooks.dtype())
|
||||
.device(codebooks.device()));
|
||||
|
||||
if (nbooks == 1 && entries == (1 << 16)) {
|
||||
vllm::aqlm::code1x16_dequant_cuda(codes.data_ptr(), weights.data_ptr(),
|
||||
codebooks.data_ptr(), out_features,
|
||||
in_features, cumulative_sizes,
|
||||
vllm::aqlm::codebook_stride(codebooks));
|
||||
|
||||
// if you wanted to flip to scaling the weights, (though it's 30%-ish slower
|
||||
// and not consistent with gemv implementation.) weights *=
|
||||
// scales.index({"...", 0, 0});
|
||||
|
||||
return weights;
|
||||
}
|
||||
|
||||
if (nbooks == 2 && entries == (1 << 8)) {
|
||||
vllm::aqlm::code2x8_dequant_cuda(codes.data_ptr(), weights.data_ptr(),
|
||||
codebooks.data_ptr(), out_features,
|
||||
in_features, cumulative_sizes,
|
||||
vllm::aqlm::codebook_stride(codebooks));
|
||||
|
||||
// if you wanted to flip to scaling the weights, (though it's 30%-ish slower
|
||||
// and not consistent with gemv implementation) weights *=
|
||||
// scales.index({"...", 0, 0});
|
||||
|
||||
return weights;
|
||||
}
|
||||
|
||||
TORCH_CHECK(false, "AQLM with ", nbooks, " codebooks and ", entries,
|
||||
" entries is not currently supported.")
|
||||
return {};
|
||||
}
|
||||
418
csrc/quantization/cutlass_w4a8/w4a8_mm_entry.cu
Normal file
418
csrc/quantization/cutlass_w4a8/w4a8_mm_entry.cu
Normal file
@ -0,0 +1,418 @@
|
||||
//
|
||||
// Based off of:
|
||||
// https://github.com/NVIDIA/cutlass/blob/main/examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu
|
||||
//
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <torch/all.h>
|
||||
#include "cutlass_extensions/torch_utils.hpp"
|
||||
|
||||
#include "core/registration.h"
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cute/tensor.hpp"
|
||||
#include "cutlass/gemm/collective/collective_builder.hpp"
|
||||
#include "cutlass/epilogue/collective/collective_builder.hpp"
|
||||
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
||||
#include "cutlass/gemm/kernel/gemm_universal.hpp"
|
||||
|
||||
#include "cutlass/util/packed_stride.hpp"
|
||||
#include "cutlass/util/mixed_dtype_utils.hpp"
|
||||
|
||||
#include "cutlass_extensions/common.hpp"
|
||||
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
|
||||
|
||||
namespace vllm::cutlass_w4a8 {
|
||||
|
||||
using namespace cute;
|
||||
|
||||
// -------------------------------------------------------------------------------------
|
||||
// Static configuration shared across all instantiations
|
||||
// -------------------------------------------------------------------------------------
|
||||
using MmaType = cutlass::float_e4m3_t; // A/scale element type
|
||||
using QuantType = cutlass::int4b_t; // B element type (packed int4)
|
||||
|
||||
static int constexpr TileShapeK = 128 * 8 / sizeof_bits<MmaType>::value;
|
||||
static int constexpr ScalePackSize = 8; // pack 8 scale elements together
|
||||
static int constexpr PackFactor = 8; // 8 4-bit packed into int32
|
||||
|
||||
// A matrix configuration
|
||||
using ElementA = MmaType; // Element type for A matrix operand
|
||||
using LayoutA = cutlass::layout::RowMajor; // Layout type for A matrix operand
|
||||
using LayoutA_Transpose =
|
||||
typename cutlass::layout::LayoutTranspose<LayoutA>::type;
|
||||
constexpr int AlignmentA =
|
||||
128 / cutlass::sizeof_bits<
|
||||
ElementA>::value; // Memory access granularity/alignment of A
|
||||
// matrix in units of elements (up to 16 bytes)
|
||||
using StrideA = cutlass::detail::TagToStrideA_t<LayoutA>;
|
||||
|
||||
// B matrix configuration
|
||||
using ElementB = QuantType; // Element type for B matrix operand
|
||||
using LayoutB =
|
||||
cutlass::layout::ColumnMajor; // Layout type for B matrix operand
|
||||
using LayoutB_Transpose =
|
||||
typename cutlass::layout::LayoutTranspose<LayoutB>::type;
|
||||
constexpr int AlignmentB =
|
||||
128 / cutlass::sizeof_bits<
|
||||
ElementB>::value; // Memory access granularity/alignment of B
|
||||
// matrix in units of elements (up to 16 bytes)
|
||||
using StrideB = cutlass::detail::TagToStrideB_t<LayoutB>;
|
||||
|
||||
// Define the CuTe layout for reordered quantized tensor B
|
||||
// LayoutAtomQuant places values that will be read by the same thread in
|
||||
// contiguous locations in global memory. It specifies the reordering within a
|
||||
// single warp's fragment
|
||||
using LayoutAtomQuant =
|
||||
decltype(cutlass::compute_memory_reordering_atom<MmaType>());
|
||||
using LayoutB_Reordered = decltype(cute::tile_to_shape(
|
||||
LayoutAtomQuant{}, Layout<Shape<int, int, int>, StrideB>{}));
|
||||
|
||||
// Group-wise scales
|
||||
using ElementScale = MmaType;
|
||||
using LayoutScale = cutlass::layout::RowMajor;
|
||||
|
||||
// Per-tok, per-chan scales
|
||||
using ElementSChannel = float;
|
||||
|
||||
// C/D matrix configuration
|
||||
using ElementC =
|
||||
cutlass::bfloat16_t; // Element type for C and D matrix operands
|
||||
using LayoutC =
|
||||
cutlass::layout::RowMajor; // Layout type for C and D matrix operands
|
||||
constexpr int AlignmentC =
|
||||
128 / cutlass::sizeof_bits<
|
||||
ElementC>::value; // Memory access granularity/alignment of C
|
||||
// matrix in units of elements (up to 16 bytes)
|
||||
|
||||
using ElementD = ElementC;
|
||||
using LayoutD = LayoutC;
|
||||
constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
|
||||
|
||||
// Core kernel configurations
|
||||
using ElementAccumulator = float; // Element type for internal accumulation
|
||||
using ElementCompute = float; // Element type for epilogue computation
|
||||
using ArchTag = cutlass::arch::Sm90; // Tag indicating the minimum SM that
|
||||
// supports the intended feature
|
||||
using OperatorClass = cutlass::arch::OpClassTensorOp; // Operator class tag
|
||||
using KernelSchedule =
|
||||
cutlass::gemm::KernelTmaWarpSpecializedCooperative; // Kernel to launch
|
||||
// based on the default
|
||||
// setting in the
|
||||
// Collective Builder
|
||||
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecializedCooperative;
|
||||
using EpilogueTileType = cutlass::epilogue::collective::EpilogueTileAuto;
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Kernel template — Tile/Cluster shapes
|
||||
// ----------------------------------------------------------------------------
|
||||
template <class TileShape_MN, class ClusterShape_MNK>
|
||||
struct W4A8GemmKernel {
|
||||
using TileShape =
|
||||
decltype(cute::append(TileShape_MN{}, cute::Int<TileShapeK>{}));
|
||||
using ClusterShape = ClusterShape_MNK;
|
||||
|
||||
// Epilogue per-tok, per-chan scales
|
||||
using ChTokScalesEpilogue =
|
||||
typename vllm::c3x::ScaledEpilogue<ElementAccumulator, ElementD,
|
||||
TileShape>;
|
||||
using EVTCompute = typename ChTokScalesEpilogue::EVTCompute;
|
||||
using CollectiveEpilogue =
|
||||
typename cutlass::epilogue::collective::CollectiveBuilder<
|
||||
ArchTag, OperatorClass, TileShape, ClusterShape, EpilogueTileType,
|
||||
ElementAccumulator, ElementSChannel,
|
||||
// Transpose layout of D here since we use explicit swap + transpose
|
||||
// the void type for C tells the builder to allocate 0 smem for the C
|
||||
// matrix. We can enable this if beta == 0 by changing ElementC to
|
||||
// void below.
|
||||
ElementC, typename cutlass::layout::LayoutTranspose<LayoutC>::type,
|
||||
AlignmentC, ElementD,
|
||||
typename cutlass::layout::LayoutTranspose<LayoutD>::type, AlignmentD,
|
||||
EpilogueSchedule, // This is the only epi supporting the required
|
||||
// swap + transpose.
|
||||
EVTCompute>::CollectiveOp;
|
||||
|
||||
// The Scale information must get paired with the operand that will be scaled.
|
||||
// In this example, B is scaled so we make a tuple of B's information and the
|
||||
// scale information.
|
||||
using CollectiveMainloopShuffled =
|
||||
typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag, OperatorClass,
|
||||
cute::tuple<ElementB, cutlass::Array<ElementScale, ScalePackSize>>,
|
||||
LayoutB_Reordered, AlignmentB, ElementA, LayoutA_Transpose,
|
||||
AlignmentA, ElementAccumulator, TileShape, ClusterShape,
|
||||
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
|
||||
sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
||||
KernelSchedule>::CollectiveOp;
|
||||
|
||||
using GemmKernelShuffled = cutlass::gemm::kernel::GemmUniversal<
|
||||
Shape<int, int, int, int>, // Indicates ProblemShape
|
||||
CollectiveMainloopShuffled, CollectiveEpilogue>;
|
||||
using GemmShuffled =
|
||||
cutlass::gemm::device::GemmUniversalAdapter<GemmKernelShuffled>;
|
||||
|
||||
using StrideC = typename GemmKernelShuffled::StrideC;
|
||||
using StrideD = typename GemmKernelShuffled::StrideD;
|
||||
using StrideS = typename CollectiveMainloopShuffled::StrideScale;
|
||||
|
||||
static torch::Tensor mm(torch::Tensor const& A,
|
||||
torch::Tensor const& B, // already packed
|
||||
torch::Tensor const& group_scales, // already packed
|
||||
int64_t group_size,
|
||||
torch::Tensor const& channel_scales,
|
||||
torch::Tensor const& token_scales,
|
||||
std::optional<at::ScalarType> const& maybe_out_type) {
|
||||
// TODO: param validation
|
||||
int m = A.size(0);
|
||||
int k = A.size(1);
|
||||
int n = B.size(1);
|
||||
|
||||
// Allocate output
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
|
||||
auto device = A.device();
|
||||
auto stream = at::cuda::getCurrentCUDAStream(device.index());
|
||||
torch::Tensor D =
|
||||
torch::empty({m, n}, torch::TensorOptions()
|
||||
.dtype(equivalent_scalar_type_v<ElementD>)
|
||||
.device(device));
|
||||
// prepare arg pointers
|
||||
auto A_ptr = static_cast<MmaType const*>(A.const_data_ptr());
|
||||
auto B_ptr = static_cast<QuantType const*>(B.const_data_ptr());
|
||||
auto D_ptr = static_cast<ElementD*>(D.data_ptr());
|
||||
// can we avoid harcode the 8 here
|
||||
auto S_ptr =
|
||||
static_cast<cutlass::Array<ElementScale, ScalePackSize> const*>(
|
||||
group_scales.const_data_ptr());
|
||||
|
||||
// runtime layout for B
|
||||
auto shape_B = cute::make_shape(n, k, 1);
|
||||
LayoutB_Reordered layout_B_reordered =
|
||||
cute::tile_to_shape(LayoutAtomQuant{}, shape_B);
|
||||
|
||||
// strides
|
||||
int const scale_k = cutlass::ceil_div(k, group_size);
|
||||
StrideA stride_A =
|
||||
cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(m, k, 1));
|
||||
// Reverse stride here due to swap and transpose
|
||||
StrideD stride_D =
|
||||
cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(n, m, 1));
|
||||
StrideS stride_S = cutlass::make_cute_packed_stride(
|
||||
StrideS{}, cute::make_shape(n, scale_k, 1));
|
||||
|
||||
// Create a structure of gemm kernel arguments suitable for invoking an
|
||||
// instance of Gemm auto arguments =
|
||||
// args_from_options<GemmShuffled>(options);
|
||||
/// Populates a Gemm::Arguments structure from the given arguments
|
||||
/// Swap the A and B tensors, as well as problem shapes here.
|
||||
using Args = typename GemmShuffled::Arguments;
|
||||
using MainloopArguments = typename GemmKernelShuffled::MainloopArguments;
|
||||
using EpilogueArguments = typename GemmKernelShuffled::EpilogueArguments;
|
||||
|
||||
MainloopArguments mainloop_arguments{
|
||||
B_ptr, layout_B_reordered, A_ptr, stride_A,
|
||||
S_ptr, stride_S, group_size};
|
||||
|
||||
EpilogueArguments epilogue_arguments{
|
||||
ChTokScalesEpilogue::prepare_args(channel_scales, token_scales),
|
||||
nullptr,
|
||||
{}, // no C
|
||||
D_ptr,
|
||||
stride_D};
|
||||
|
||||
Args arguments{cutlass::gemm::GemmUniversalMode::kGemm,
|
||||
{n, m, k, 1}, // shape
|
||||
mainloop_arguments,
|
||||
epilogue_arguments};
|
||||
|
||||
// Workspace
|
||||
size_t workspace_size = GemmShuffled::get_workspace_size(arguments);
|
||||
torch::Tensor workspace =
|
||||
torch::empty(workspace_size,
|
||||
torch::TensorOptions().dtype(torch::kU8).device(device));
|
||||
|
||||
// Run GEMM
|
||||
GemmShuffled gemm;
|
||||
CUTLASS_CHECK(gemm.can_implement(arguments));
|
||||
CUTLASS_CHECK(gemm.initialize(arguments, workspace.data_ptr(), stream));
|
||||
CUTLASS_CHECK(gemm.run(stream));
|
||||
|
||||
return D;
|
||||
}
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Kernel instantiations and dispatch logic
|
||||
// ----------------------------------------------------------------------------
|
||||
using Kernel_256x128_1x1x1 =
|
||||
W4A8GemmKernel<Shape<_256, _128>, Shape<_1, _1, _1>>;
|
||||
using Kernel_256x64_1x1x1 = W4A8GemmKernel<Shape<_256, _64>, Shape<_1, _1, _1>>;
|
||||
using Kernel_256x32_1x1x1 = W4A8GemmKernel<Shape<_256, _32>, Shape<_1, _1, _1>>;
|
||||
using Kernel_256x16_1x1x1 = W4A8GemmKernel<Shape<_256, _16>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x256_2x1x1 =
|
||||
W4A8GemmKernel<Shape<_128, _256>, Shape<_2, _1, _1>>;
|
||||
using Kernel_128x256_1x1x1 =
|
||||
W4A8GemmKernel<Shape<_128, _256>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x128_1x1x1 =
|
||||
W4A8GemmKernel<Shape<_128, _128>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x64_1x1x1 = W4A8GemmKernel<Shape<_128, _64>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x32_1x1x1 = W4A8GemmKernel<Shape<_128, _32>, Shape<_1, _1, _1>>;
|
||||
using Kernel_128x16_1x1x1 = W4A8GemmKernel<Shape<_128, _16>, Shape<_1, _1, _1>>;
|
||||
|
||||
torch::Tensor mm_dispatch(torch::Tensor const& A,
|
||||
torch::Tensor const& B, // already packed
|
||||
torch::Tensor const& group_scales, // already packed
|
||||
int64_t group_size,
|
||||
torch::Tensor const& channel_scales,
|
||||
torch::Tensor const& token_scales,
|
||||
std::optional<at::ScalarType> const& maybe_out_type,
|
||||
const std::string& schedule) {
|
||||
if (schedule == "256x128_1x1x1") {
|
||||
return Kernel_256x128_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "256x64_1x1x1") {
|
||||
return Kernel_256x64_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "256x32_1x1x1") {
|
||||
return Kernel_256x32_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "256x16_1x1x1") {
|
||||
return Kernel_256x16_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x256_2x1x1") {
|
||||
return Kernel_128x256_2x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x256_1x1x1") {
|
||||
return Kernel_128x256_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x128_1x1x1") {
|
||||
return Kernel_128x128_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x64_1x1x1") {
|
||||
return Kernel_128x64_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x32_1x1x1") {
|
||||
return Kernel_128x32_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
} else if (schedule == "128x16_1x1x1") {
|
||||
return Kernel_128x16_1x1x1::mm(A, B, group_scales, group_size,
|
||||
channel_scales, token_scales,
|
||||
maybe_out_type);
|
||||
}
|
||||
TORCH_CHECK(false, "Unknown W4A8 schedule: ", schedule);
|
||||
return {};
|
||||
}
|
||||
|
||||
torch::Tensor mm(torch::Tensor const& A,
|
||||
torch::Tensor const& B, // already packed
|
||||
torch::Tensor const& group_scales, // already packed
|
||||
int64_t group_size, torch::Tensor const& channel_scales,
|
||||
torch::Tensor const& token_scales,
|
||||
std::optional<at::ScalarType> const& maybe_out_type,
|
||||
std::optional<std::string> maybe_schedule) {
|
||||
// requested a specific schedule
|
||||
if (maybe_schedule) {
|
||||
return mm_dispatch(A, B, group_scales, group_size, channel_scales,
|
||||
token_scales, maybe_out_type, *maybe_schedule);
|
||||
}
|
||||
std::string schedule;
|
||||
int M = A.size(0);
|
||||
int K = A.size(1);
|
||||
int N = B.size(1);
|
||||
// heuristic
|
||||
if (M <= 16) {
|
||||
schedule = (K == 16384 && N == 18432) ? "256x16_1x1x1" : "128x16_1x1x1";
|
||||
} else if (M <= 32) {
|
||||
schedule = (K == 16384 && N == 18432) ? "256x32_1x1x1" : "128x32_1x1x1";
|
||||
} else if (M <= 64) {
|
||||
if (K == 16384 && N == 18432)
|
||||
schedule = "256x64_1x1x1";
|
||||
else if (N <= 8192 && K <= 8192)
|
||||
schedule = "128x32_1x1x1";
|
||||
else
|
||||
schedule = "128x64_1x1x1";
|
||||
} else if (M <= 128) {
|
||||
if (K == 16384 && N == 18432)
|
||||
schedule = "256x128_1x1x1";
|
||||
else if (N <= 8192)
|
||||
schedule = "128x64_1x1x1";
|
||||
else
|
||||
schedule = "128x128_1x1x1";
|
||||
} else if (M <= 256) {
|
||||
if (N <= 4096)
|
||||
schedule = "128x64_1x1x1";
|
||||
else if (N <= 8192)
|
||||
schedule = "128x128_1x1x1";
|
||||
else
|
||||
schedule = "128x256_1x1x1";
|
||||
} else if (M <= 512 && N <= 4096) {
|
||||
schedule = "128x128_1x1x1";
|
||||
} else if (M <= 1024) {
|
||||
schedule = "128x256_1x1x1";
|
||||
} else {
|
||||
schedule = "128x256_2x1x1";
|
||||
}
|
||||
return mm_dispatch(A, B, group_scales, group_size, channel_scales,
|
||||
token_scales, maybe_out_type, schedule);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Pre-processing utils
|
||||
// ----------------------------------------------------------------------------
|
||||
torch::Tensor pack_scale_fp8(torch::Tensor const& scales) {
|
||||
TORCH_CHECK(scales.dtype() == torch::kFloat8_e4m3fn);
|
||||
TORCH_CHECK(scales.is_contiguous());
|
||||
TORCH_CHECK(scales.is_cuda());
|
||||
|
||||
auto packed_scales = torch::empty(
|
||||
{scales.numel() * ScalePackSize},
|
||||
torch::TensorOptions().dtype(scales.dtype()).device(scales.device()));
|
||||
auto scales_ptr = static_cast<MmaType const*>(scales.const_data_ptr());
|
||||
auto packed_scales_ptr =
|
||||
static_cast<cutlass::Array<ElementScale, ScalePackSize>*>(
|
||||
packed_scales.data_ptr());
|
||||
|
||||
cutlass::pack_scale_fp8(scales_ptr, packed_scales_ptr, scales.numel());
|
||||
|
||||
return packed_scales;
|
||||
}
|
||||
|
||||
torch::Tensor encode_and_reorder_int4b(torch::Tensor const& B) {
|
||||
TORCH_CHECK(B.dtype() == torch::kInt32);
|
||||
TORCH_CHECK(B.dim() == 2);
|
||||
|
||||
torch::Tensor B_packed = torch::empty_like(B);
|
||||
|
||||
int k = B.size(0) * PackFactor; // logical k
|
||||
int n = B.size(1);
|
||||
|
||||
auto B_ptr = static_cast<QuantType const*>(B.const_data_ptr());
|
||||
auto B_packed_ptr = static_cast<QuantType*>(B_packed.data_ptr());
|
||||
auto shape_B = cute::make_shape(n, k, 1);
|
||||
auto layout_B = make_layout(shape_B, LayoutRight{}); // row major
|
||||
LayoutB_Reordered layout_B_reordered =
|
||||
cute::tile_to_shape(LayoutAtomQuant{}, shape_B);
|
||||
|
||||
cutlass::unified_encode_int4b(B_ptr, B_packed_ptr, n * k);
|
||||
cutlass::reorder_tensor(B_packed_ptr, layout_B, layout_B_reordered);
|
||||
|
||||
return B_packed;
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
|
||||
m.impl("cutlass_w4a8_mm", &mm);
|
||||
m.impl("cutlass_pack_scale_fp8", &pack_scale_fp8);
|
||||
m.impl("cutlass_encode_and_reorder_int4b", &encode_and_reorder_int4b);
|
||||
}
|
||||
|
||||
} // namespace vllm::cutlass_w4a8
|
||||
@ -10,7 +10,7 @@
|
||||
|
||||
template <typename ElementAB, typename ElementC, typename ElementAccumulator>
|
||||
__global__ void get_group_gemm_starts(
|
||||
int32_t* expert_offsets, ElementAB** a_offsets, ElementAB** b_offsets,
|
||||
int64_t* expert_offsets, ElementAB** a_offsets, ElementAB** b_offsets,
|
||||
ElementC** out_offsets, ElementAccumulator** a_scales_offsets,
|
||||
ElementAccumulator** b_scales_offsets, ElementAB* a_base_as_int,
|
||||
ElementAB* b_base_as_int, ElementC* out_base_as_int,
|
||||
@ -34,7 +34,7 @@ __global__ void get_group_gemm_starts(
|
||||
else if (out_tensors.dtype() == TENSOR_C_TYPE) { \
|
||||
get_group_gemm_starts<cutlass::float_e4m3_t, C_TYPE, float> \
|
||||
<<<1, num_experts, 0, stream>>>( \
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()), \
|
||||
static_cast<int64_t*>(expert_offsets.data_ptr()), \
|
||||
static_cast<cutlass::float_e4m3_t**>(a_ptrs.data_ptr()), \
|
||||
static_cast<cutlass::float_e4m3_t**>(b_ptrs.data_ptr()), \
|
||||
static_cast<C_TYPE**>(out_ptrs.data_ptr()), \
|
||||
@ -61,6 +61,8 @@ void run_get_group_gemm_starts(
|
||||
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn);
|
||||
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
||||
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
||||
// expect int64_t to avoid overflow during offset calculations
|
||||
TORCH_CHECK(expert_offsets.dtype() == torch::kInt64);
|
||||
|
||||
int num_experts = static_cast<int>(expert_offsets.size(0));
|
||||
bool per_act_token = a_scales.numel() != 1;
|
||||
|
||||
@ -104,6 +104,53 @@ __global__ void compute_arg_sorts(const int32_t* __restrict__ topk_ids,
|
||||
}
|
||||
}
|
||||
|
||||
namespace {
|
||||
inline void launch_compute_problem_sizes(const torch::Tensor& topk_ids,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
torch::Tensor& atomic_buffer,
|
||||
int64_t num_experts, int64_t n,
|
||||
int64_t k, cudaStream_t stream,
|
||||
const bool swap_ab) {
|
||||
int num_threads = min(THREADS_PER_EXPERT, topk_ids.numel());
|
||||
|
||||
const int32_t* topk_ptr = static_cast<const int32_t*>(topk_ids.data_ptr());
|
||||
int32_t* ps1_ptr = static_cast<int32_t*>(problem_sizes1.data_ptr());
|
||||
int32_t* ps2_ptr = static_cast<int32_t*>(problem_sizes2.data_ptr());
|
||||
int32_t* atomic_ptr = static_cast<int32_t*>(atomic_buffer.data_ptr());
|
||||
|
||||
if (swap_ab) {
|
||||
compute_problem_sizes<true><<<num_experts, num_threads, 0, stream>>>(
|
||||
topk_ptr, ps1_ptr, ps2_ptr, atomic_ptr,
|
||||
static_cast<int>(topk_ids.numel()), static_cast<int>(n),
|
||||
static_cast<int>(k));
|
||||
} else {
|
||||
compute_problem_sizes<false><<<num_experts, num_threads, 0, stream>>>(
|
||||
topk_ptr, ps1_ptr, ps2_ptr, atomic_ptr,
|
||||
static_cast<int>(topk_ids.numel()), static_cast<int>(n),
|
||||
static_cast<int>(k));
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void get_cutlass_moe_mm_problem_sizes_caller(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2, const int64_t num_experts, const int64_t n,
|
||||
const int64_t k, const std::optional<torch::Tensor>& blockscale_offsets) {
|
||||
auto stream = at::cuda::getCurrentCUDAStream(topk_ids.device().index());
|
||||
auto options_int32 =
|
||||
torch::TensorOptions().dtype(torch::kInt32).device(topk_ids.device());
|
||||
torch::Tensor atomic_buffer = torch::zeros(num_experts, options_int32);
|
||||
|
||||
// Swap-AB should be disabled for FP4 path
|
||||
bool may_swap_ab = (!blockscale_offsets.has_value()) &&
|
||||
(topk_ids.numel() <= SWAP_AB_THRESHOLD);
|
||||
|
||||
launch_compute_problem_sizes(topk_ids, problem_sizes1, problem_sizes2,
|
||||
atomic_buffer, num_experts, n, k, stream,
|
||||
may_swap_ab);
|
||||
}
|
||||
|
||||
void get_cutlass_moe_mm_data_caller(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
@ -121,21 +168,9 @@ void get_cutlass_moe_mm_data_caller(
|
||||
bool may_swap_ab = (!blockscale_offsets.has_value()) &&
|
||||
(topk_ids.numel() <= SWAP_AB_THRESHOLD);
|
||||
|
||||
if (may_swap_ab) {
|
||||
compute_problem_sizes<true><<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n,
|
||||
k);
|
||||
} else {
|
||||
compute_problem_sizes<false><<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n,
|
||||
k);
|
||||
}
|
||||
launch_compute_problem_sizes(topk_ids, problem_sizes1, problem_sizes2,
|
||||
atomic_buffer, num_experts, n, k, stream,
|
||||
may_swap_ab);
|
||||
|
||||
if (blockscale_offsets.has_value()) {
|
||||
// fp4 path
|
||||
@ -161,6 +196,7 @@ void get_cutlass_moe_mm_data_caller(
|
||||
topk_ids.size(1));
|
||||
}
|
||||
|
||||
template <bool SWAP_AB>
|
||||
__global__ void compute_pplx_data(int32_t* expert_offsets,
|
||||
int32_t* problem_sizes1,
|
||||
int32_t* problem_sizes2,
|
||||
@ -168,14 +204,23 @@ __global__ void compute_pplx_data(int32_t* expert_offsets,
|
||||
const int padded_m, const int n,
|
||||
const int k) {
|
||||
int expert_idx = threadIdx.x;
|
||||
|
||||
expert_offsets[expert_idx] = expert_idx * padded_m;
|
||||
problem_sizes1[expert_idx * 3] = expert_num_tokens[expert_idx];
|
||||
problem_sizes1[expert_idx * 3 + 1] = 2 * n;
|
||||
problem_sizes1[expert_idx * 3 + 2] = k;
|
||||
problem_sizes2[expert_idx * 3] = expert_num_tokens[expert_idx];
|
||||
problem_sizes2[expert_idx * 3 + 1] = k;
|
||||
problem_sizes2[expert_idx * 3 + 2] = n;
|
||||
|
||||
if constexpr (!SWAP_AB) {
|
||||
problem_sizes1[expert_idx * 3] = expert_num_tokens[expert_idx];
|
||||
problem_sizes1[expert_idx * 3 + 1] = 2 * n;
|
||||
problem_sizes1[expert_idx * 3 + 2] = k;
|
||||
problem_sizes2[expert_idx * 3] = expert_num_tokens[expert_idx];
|
||||
problem_sizes2[expert_idx * 3 + 1] = k;
|
||||
problem_sizes2[expert_idx * 3 + 2] = n;
|
||||
} else {
|
||||
problem_sizes1[expert_idx * 3] = 2 * n;
|
||||
problem_sizes1[expert_idx * 3 + 1] = expert_num_tokens[expert_idx];
|
||||
problem_sizes1[expert_idx * 3 + 2] = k;
|
||||
problem_sizes2[expert_idx * 3] = k;
|
||||
problem_sizes2[expert_idx * 3 + 1] = expert_num_tokens[expert_idx];
|
||||
problem_sizes2[expert_idx * 3 + 2] = n;
|
||||
}
|
||||
}
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
|
||||
@ -187,10 +232,19 @@ void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
|
||||
const int64_t n, const int64_t k) {
|
||||
auto stream = at::cuda::getCurrentCUDAStream(expert_offsets.device().index());
|
||||
|
||||
compute_pplx_data<<<1, num_local_experts, 0, stream>>>(
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
|
||||
k);
|
||||
if (num_local_experts * padded_m > SWAP_AB_THRESHOLD) {
|
||||
compute_pplx_data<false><<<1, num_local_experts, 0, stream>>>(
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
|
||||
k);
|
||||
} else {
|
||||
compute_pplx_data<true><<<1, num_local_experts, 0, stream>>>(
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
|
||||
k);
|
||||
}
|
||||
}
|
||||
@ -76,6 +76,11 @@ void get_cutlass_moe_mm_data_caller(
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets);
|
||||
|
||||
void get_cutlass_moe_mm_problem_sizes_caller(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2, const int64_t num_experts, const int64_t n,
|
||||
const int64_t k, const std::optional<torch::Tensor>& blockscale_offsets);
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
@ -293,6 +298,25 @@ void get_cutlass_moe_mm_data(
|
||||
version_num, ". Required capability: 90 or 100");
|
||||
}
|
||||
|
||||
void get_cutlass_moe_mm_problem_sizes(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2, const int64_t num_experts, const int64_t n,
|
||||
const int64_t k, const std::optional<torch::Tensor>& blockscale_offsets) {
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if (defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90) || \
|
||||
(defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100)
|
||||
get_cutlass_moe_mm_problem_sizes_caller(topk_ids, problem_sizes1,
|
||||
problem_sizes2, num_experts, n, k,
|
||||
blockscale_offsets);
|
||||
return;
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false,
|
||||
"No compiled get_cutlass_moe_mm_problem_sizes: no cutlass_scaled_mm "
|
||||
"kernel for CUDA device capability: ",
|
||||
version_num, ". Required capability: 90 or 100");
|
||||
}
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
|
||||
@ -470,11 +470,12 @@ __device__ inline void dequant<nv_bfloat162, vllm::kFE2M1f.id(), false>(
|
||||
frag_b[0] = __hmul2(frag_b[0], bias_reg);
|
||||
}
|
||||
|
||||
template <typename scalar_t2>
|
||||
template <typename scalar_t2, vllm::ScalarTypeId s_type_id>
|
||||
__device__ inline void dequant_fp8_scales(int q, scalar_t2* frag_b);
|
||||
|
||||
template <>
|
||||
__device__ inline void dequant_fp8_scales<half2>(int q, half2* frag_b) {
|
||||
__device__ inline void dequant_fp8_scales<half2, vllm::kFE4M3fn.id()>(
|
||||
int q, half2* frag_b) {
|
||||
int Out1 = (q & 0xFF00FF00) >> 1;
|
||||
;
|
||||
q <<= 8;
|
||||
@ -486,8 +487,8 @@ __device__ inline void dequant_fp8_scales<half2>(int q, half2* frag_b) {
|
||||
};
|
||||
|
||||
template <>
|
||||
__device__ inline void dequant_fp8_scales<nv_bfloat162>(int q,
|
||||
nv_bfloat162* frag_b) {
|
||||
__device__ inline void dequant_fp8_scales<nv_bfloat162, vllm::kFE4M3fn.id()>(
|
||||
int q, nv_bfloat162* frag_b) {
|
||||
constexpr int FP8_EXPONENT = 4, BF16_EXPONENT = 8;
|
||||
constexpr int RIGHT_SHIFT = BF16_EXPONENT - FP8_EXPONENT;
|
||||
constexpr int MASK = 0x7F007F00;
|
||||
@ -502,6 +503,20 @@ __device__ inline void dequant_fp8_scales<nv_bfloat162>(int q,
|
||||
frag_b[0] = *reinterpret_cast<const nv_bfloat162*>(&Out2);
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ inline void dequant_fp8_scales<nv_bfloat162, vllm::kFE8M0fnu.id()>(
|
||||
int q, nv_bfloat162* frag_b) {
|
||||
// In this conversion, 2 ** -127 in FP8E8M0 would become 0 in BF16,
|
||||
// but we assume that such a extreme value would not occur in real models.
|
||||
int Out1 = (q & 0xFF00FF00) >> 1;
|
||||
q <<= 7;
|
||||
int Out2 = q & 0x7F807F80;
|
||||
|
||||
// Note: reverse indexing is intentional because weights are permuted
|
||||
frag_b[1] = *reinterpret_cast<const nv_bfloat162*>(&Out1);
|
||||
frag_b[0] = *reinterpret_cast<const nv_bfloat162*>(&Out2);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
} // namespace MARLIN_NAMESPACE_NAME
|
||||
|
||||
@ -20,6 +20,7 @@ namespace MARLIN_NAMESPACE_NAME {
|
||||
TEMPLATE = ("template __global__ void Marlin<"
|
||||
"{{scalar_t}}, "
|
||||
"{{w_type_id}}, "
|
||||
"{{s_type_id}}, "
|
||||
"{{threads}}, "
|
||||
"{{thread_m_blocks}}, "
|
||||
"{{thread_n_blocks}}, "
|
||||
@ -78,7 +79,8 @@ def generate_new_kernels():
|
||||
if scalar_type == "vllm::kFE4M3fn" and group_blocks not in [-1, 8]:
|
||||
continue
|
||||
# nvfp4 only supports group_size == 16
|
||||
if scalar_type == "vllm::kFE2M1f" and group_blocks != 1:
|
||||
# mxfp4 only supports group_size == 32
|
||||
if scalar_type == "vllm::kFE2M1f" and group_blocks not in [1, 2]:
|
||||
continue
|
||||
# other quantization methods don't support group_size = 16
|
||||
if scalar_type != "vllm::kFE2M1f" and group_blocks == 1:
|
||||
@ -97,10 +99,23 @@ def generate_new_kernels():
|
||||
# 4bit quantization and fp16
|
||||
is_zp_float_list.append(True)
|
||||
|
||||
if scalar_type == "vllm::kFE2M1f" and group_blocks == 1:
|
||||
s_type = "vllm::kFE4M3fn"
|
||||
elif scalar_type == "vllm::kFE2M1f" and group_blocks == 2:
|
||||
s_type = "vllm::kFE8M0fnu"
|
||||
if dtype == "fp16":
|
||||
# we cannot safely dequantize e8m0 to fp16, so skip this
|
||||
continue
|
||||
elif dtype == "fp16":
|
||||
s_type = "vllm::kFloat16"
|
||||
elif dtype == "bf16":
|
||||
s_type = "vllm::kBFloat16"
|
||||
|
||||
for is_zp_float in is_zp_float_list:
|
||||
template_str = jinja2.Template(TEMPLATE).render(
|
||||
scalar_t=c_dtype,
|
||||
w_type_id=scalar_type + ".id()",
|
||||
s_type_id=s_type + ".id()",
|
||||
threads=threads,
|
||||
thread_m_blocks=max(m_blocks, 1),
|
||||
thread_n_blocks=n_blocks,
|
||||
|
||||
@ -48,7 +48,8 @@ __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
|
||||
|
||||
torch::Tensor gptq_marlin_gemm(
|
||||
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
|
||||
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
|
||||
torch::Tensor& b_q_weight,
|
||||
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
|
||||
std::optional<torch::Tensor> const& b_zeros_or_none,
|
||||
std::optional<torch::Tensor> const& g_idx_or_none,
|
||||
std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
|
||||
@ -187,7 +188,12 @@ int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
|
||||
int tb_m = thread_m_blocks * 16;
|
||||
int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
|
||||
int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
|
||||
int sh_red_size = tb_m * (tb_n + 8);
|
||||
int sh_red_size = tb_m * (tb_n + 8) * 2;
|
||||
int sh_bias_size = tb_n * 2;
|
||||
int tmp_size =
|
||||
(sh_b_size > sh_red_size ? sh_red_size : sh_b_size) + sh_bias_size;
|
||||
tmp_size = max(max(sh_b_size, sh_red_size), tmp_size);
|
||||
|
||||
int sh_s_size =
|
||||
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
|
||||
group_size, has_act_order, is_k_full);
|
||||
@ -202,8 +208,8 @@ int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
|
||||
sh_zp_size = sh_s_size / 2;
|
||||
}
|
||||
|
||||
int total_size = max(sh_b_size, sh_red_size) + sh_a_size + sh_s_size +
|
||||
sh_zp_size + sh_g_idx_size;
|
||||
int total_size =
|
||||
tmp_size + sh_a_size + sh_s_size + sh_zp_size + sh_g_idx_size;
|
||||
|
||||
return total_size;
|
||||
}
|
||||
@ -237,20 +243,25 @@ bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
|
||||
int cache_size = get_kernel_cache_size(
|
||||
th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size,
|
||||
has_act_order, is_k_full, has_zp, is_zp_float);
|
||||
return cache_size <= max_shared_mem;
|
||||
return cache_size + 512 <= max_shared_mem;
|
||||
}
|
||||
|
||||
#define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
|
||||
M_BLOCK_SIZE_8, GROUP_BLOCKS, NUM_THREADS, IS_ZP_FLOAT) \
|
||||
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
|
||||
thread_n_blocks == THREAD_N_BLOCKS && \
|
||||
thread_k_blocks == THREAD_K_BLOCKS && \
|
||||
m_block_size_8 == M_BLOCK_SIZE_8 && \
|
||||
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
|
||||
is_zp_float == IS_ZP_FLOAT) { \
|
||||
kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, \
|
||||
THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8, \
|
||||
pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
|
||||
#define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
|
||||
M_BLOCK_SIZE_8, GROUP_BLOCKS, NUM_THREADS, IS_ZP_FLOAT) \
|
||||
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
|
||||
thread_n_blocks == THREAD_N_BLOCKS && \
|
||||
thread_k_blocks == THREAD_K_BLOCKS && \
|
||||
m_block_size_8 == M_BLOCK_SIZE_8 && \
|
||||
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS && \
|
||||
is_zp_float == IS_ZP_FLOAT) { \
|
||||
constexpr auto S_TYPE = \
|
||||
W_TYPE == vllm::kFE2M1f \
|
||||
? (GROUP_BLOCKS == 1 ? vllm::kFE4M3fn : vllm::kFE8M0fnu) \
|
||||
: (std::is_same<scalar_t, half>::value ? vllm::kFloat16 \
|
||||
: vllm::kBFloat16); \
|
||||
kernel = Marlin<scalar_t, W_TYPE.id(), S_TYPE.id(), NUM_THREADS, \
|
||||
THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
|
||||
M_BLOCK_SIZE_8, pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>; \
|
||||
}
|
||||
|
||||
// COMMON: cases for (group_blocks in [-1, 2, 4, 8] and is_zp_float == false)
|
||||
@ -315,22 +326,39 @@ bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
|
||||
BIGGROUP_GET_IF_M234(W_TYPE, 8, 4, 128) \
|
||||
BIGGROUP_GET_IF_M234(W_TYPE, 4, 8, 128)
|
||||
|
||||
#define FP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
#define NVFP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
|
||||
|
||||
#define FP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
#define NVFP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)
|
||||
|
||||
#define FP4_GET_IF(W_TYPE) \
|
||||
FP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
||||
FP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
||||
FP4_GET_IF_M1(W_TYPE, 4, 8, 128) \
|
||||
FP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
||||
FP4_GET_IF_M234(W_TYPE, 8, 4, 128) \
|
||||
FP4_GET_IF_M234(W_TYPE, 4, 8, 128)
|
||||
#define NVFP4_GET_IF(W_TYPE) \
|
||||
NVFP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
||||
NVFP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
||||
NVFP4_GET_IF_M1(W_TYPE, 4, 8, 128) \
|
||||
NVFP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
||||
NVFP4_GET_IF_M234(W_TYPE, 8, 4, 128) \
|
||||
NVFP4_GET_IF_M234(W_TYPE, 4, 8, 128)
|
||||
|
||||
#define MXFP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 2, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)
|
||||
|
||||
#define MXFP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
_GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false) \
|
||||
_GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)
|
||||
|
||||
#define MXFP4_GET_IF(W_TYPE) \
|
||||
MXFP4_GET_IF_M1(W_TYPE, 8, 8, 256) \
|
||||
MXFP4_GET_IF_M1(W_TYPE, 8, 4, 128) \
|
||||
MXFP4_GET_IF_M1(W_TYPE, 4, 8, 128) \
|
||||
MXFP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
|
||||
MXFP4_GET_IF_M234(W_TYPE, 8, 4, 128) \
|
||||
MXFP4_GET_IF_M234(W_TYPE, 4, 8, 128)
|
||||
|
||||
// We currently have 4-bit models only with group_blocks == 4
|
||||
#define FZP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
|
||||
@ -384,7 +412,7 @@ MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
|
||||
COMMON_GET_IF(vllm::kU4B8)
|
||||
COMMON_GET_IF(vllm::kU8B128)
|
||||
|
||||
FP4_GET_IF(vllm::kFE2M1f)
|
||||
NVFP4_GET_IF(vllm::kFE2M1f)
|
||||
|
||||
BIGGROUP_GET_IF(vllm::kFE4M3fn)
|
||||
|
||||
@ -396,6 +424,11 @@ MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
|
||||
}
|
||||
FZP_GET_IF(vllm::kU4)
|
||||
}
|
||||
if (std::is_same<scalar_t, nv_bfloat16>::value) {
|
||||
if (false) {
|
||||
}
|
||||
MXFP4_GET_IF(vllm::kFE2M1f)
|
||||
}
|
||||
|
||||
return kernel;
|
||||
}
|
||||
@ -453,12 +486,12 @@ exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
|
||||
void* s2, void* zp, void* g_idx, void* perm, void* a_tmp,
|
||||
int prob_m, int prob_n, int prob_k, int lda, void* workspace,
|
||||
vllm::ScalarType const& q_type, bool has_act_order,
|
||||
bool is_k_full, bool has_zp, int num_groups, int group_size,
|
||||
int dev, cudaStream_t stream, int thread_k_init,
|
||||
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* b_bias,
|
||||
void* s, void* s2, void* zp, void* g_idx, void* perm,
|
||||
void* a_tmp, int prob_m, int prob_n, int prob_k, int lda,
|
||||
void* workspace, vllm::ScalarType const& q_type, bool has_bias,
|
||||
bool has_act_order, bool is_k_full, bool has_zp, int num_groups,
|
||||
int group_size, int dev, cudaStream_t stream, int thread_k_init,
|
||||
int thread_n_init, int sms, bool use_atomic_add,
|
||||
bool use_fp32_reduce, bool is_zp_float) {
|
||||
if (has_zp) {
|
||||
@ -503,6 +536,7 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
|
||||
const int4* B_ptr = (const int4*)B;
|
||||
int4* C_ptr = (int4*)C;
|
||||
int4* C_tmp_ptr = (int4*)C_tmp;
|
||||
const int4* bias_ptr = (const int4*)b_bias;
|
||||
const int4* s_ptr = (const int4*)s;
|
||||
const uint16_t* s2_ptr = (const uint16_t*)s2;
|
||||
const int4* zp_ptr = (const int4*)zp;
|
||||
@ -623,8 +657,9 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
|
||||
// avoid ">>>" being formatted to "> > >"
|
||||
// clang-format off
|
||||
kernel<<<blocks, num_threads, max_shared_mem_new, stream>>>(
|
||||
A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, s2_ptr, zp_ptr, g_idx_ptr, num_groups,
|
||||
prob_m_split, prob_n, prob_k, lda, locks, part_use_atomic_add,
|
||||
A_ptr, B_ptr, C_ptr, C_tmp_ptr, bias_ptr, s_ptr, s2_ptr, zp_ptr,
|
||||
g_idx_ptr, num_groups,
|
||||
prob_m_split, prob_n, prob_k, lda, locks, has_bias, part_use_atomic_add,
|
||||
use_fp32_reduce, max_shared_mem_new);
|
||||
// clang-format on
|
||||
|
||||
@ -638,7 +673,8 @@ void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
|
||||
|
||||
torch::Tensor gptq_marlin_gemm(
|
||||
torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
|
||||
torch::Tensor& b_q_weight, torch::Tensor& b_scales,
|
||||
torch::Tensor& b_q_weight,
|
||||
std::optional<torch::Tensor> const& b_bias_or_none, torch::Tensor& b_scales,
|
||||
std::optional<torch::Tensor> const& global_scale_or_none,
|
||||
std::optional<torch::Tensor> const& b_zeros_or_none,
|
||||
std::optional<torch::Tensor> const& g_idx_or_none,
|
||||
@ -785,12 +821,24 @@ torch::Tensor gptq_marlin_gemm(
|
||||
torch::Tensor global_scale;
|
||||
if (global_scale_or_none.has_value()) {
|
||||
global_scale = global_scale_or_none.value();
|
||||
TORCH_CHECK(b_q_type == vllm::kFE2M1f,
|
||||
"global_scale can only be used for float4_e2m1f.");
|
||||
TORCH_CHECK(b_q_type == vllm::kFE2M1f && group_size == 16,
|
||||
"global_scale can only be used for nvfp4 format.");
|
||||
} else {
|
||||
global_scale = torch::empty({0}, options);
|
||||
TORCH_CHECK(!(b_q_type == vllm::kFE2M1f),
|
||||
"the global_scale parameter must be passed for float4_e2m1f.");
|
||||
TORCH_CHECK(!(b_q_type == vllm::kFE2M1f && group_size == 16),
|
||||
"the global_scale parameter must be passed for nvfp4 format.");
|
||||
}
|
||||
|
||||
bool has_bias = b_bias_or_none.has_value();
|
||||
torch::Tensor b_bias;
|
||||
if (has_bias) {
|
||||
b_bias = b_bias_or_none.value();
|
||||
TORCH_CHECK(b_bias.device().is_cuda(), "b_bias is not on GPU");
|
||||
TORCH_CHECK(b_bias.is_contiguous(), "b_bias is not contiguous");
|
||||
TORCH_CHECK(b_bias.size(0) == size_n, "b_bias.size(0) != size_n");
|
||||
TORCH_CHECK(b_bias.stride(0) == 1, "b_bias.stride(0) != 1");
|
||||
} else {
|
||||
b_bias = torch::empty({0}, options);
|
||||
}
|
||||
|
||||
torch::Tensor b_zeros;
|
||||
@ -857,34 +905,50 @@ torch::Tensor gptq_marlin_gemm(
|
||||
if (a.scalar_type() == at::ScalarType::Half) {
|
||||
void* scales_ptr;
|
||||
if (b_q_type == vllm::kFE2M1f) {
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
|
||||
if (group_size == 16)
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
|
||||
else if (group_size == 32)
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e8m0fnu>();
|
||||
else
|
||||
TORCH_CHECK(false,
|
||||
"float4_e2m1f only supports group_size == 16 (NVFP4) ",
|
||||
"and group_size == 32 (MXFP4)");
|
||||
} else {
|
||||
scales_ptr = b_scales.data_ptr<at::Half>();
|
||||
}
|
||||
|
||||
marlin::marlin_mm<half>(
|
||||
a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
|
||||
c_tmp.data_ptr<float>(), scales_ptr, global_scale.data_ptr<at::Half>(),
|
||||
b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
|
||||
a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k, a.stride(0),
|
||||
workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
|
||||
num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
|
||||
thread_k, thread_n, sms, use_atomic_add, use_fp32_reduce, is_zp_float);
|
||||
c_tmp.data_ptr<float>(), b_bias.data_ptr<at::Half>(), scales_ptr,
|
||||
global_scale.data_ptr<at::Half>(), b_zeros.data_ptr(), g_idx.data_ptr(),
|
||||
perm.data_ptr(), a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k,
|
||||
a.stride(0), workspace.data_ptr(), b_q_type, has_bias, has_act_order,
|
||||
is_k_full, has_zp, num_groups, group_size, dev,
|
||||
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
|
||||
use_atomic_add, use_fp32_reduce, is_zp_float);
|
||||
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
|
||||
void* scales_ptr;
|
||||
if (b_q_type == vllm::kFE2M1f) {
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
|
||||
if (group_size == 16)
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
|
||||
else if (group_size == 32)
|
||||
scales_ptr = b_scales.data_ptr<at::Float8_e8m0fnu>();
|
||||
else
|
||||
TORCH_CHECK(false,
|
||||
"float4_e2m1f only supports group_size == 16 (NVFP4) ",
|
||||
"and group_size == 32 (MXFP4)");
|
||||
} else {
|
||||
scales_ptr = b_scales.data_ptr<at::BFloat16>();
|
||||
}
|
||||
|
||||
marlin::marlin_mm<nv_bfloat16>(
|
||||
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
|
||||
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(), scales_ptr,
|
||||
c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(),
|
||||
b_bias.data_ptr<at::BFloat16>(), scales_ptr,
|
||||
global_scale.data_ptr<at::BFloat16>(), b_zeros.data_ptr(),
|
||||
g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
|
||||
size_m, size_n, size_k, a.stride(0), workspace.data_ptr(), b_q_type,
|
||||
has_act_order, is_k_full, has_zp, num_groups, group_size, dev,
|
||||
has_bias, has_act_order, is_k_full, has_zp, num_groups, group_size, dev,
|
||||
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
|
||||
use_atomic_add, use_fp32_reduce, is_zp_float);
|
||||
} else {
|
||||
|
||||
@ -10,15 +10,18 @@
|
||||
#define MARLIN_KERNEL_PARAMS \
|
||||
const int4 *__restrict__ A, const int4 *__restrict__ B, \
|
||||
int4 *__restrict__ C, int4 *__restrict__ C_tmp, \
|
||||
const int4 *__restrict__ b_bias_ptr, \
|
||||
const int4 *__restrict__ scales_ptr, \
|
||||
const uint16_t *__restrict__ scale2_ptr, \
|
||||
const int4 *__restrict__ zp_ptr, const int *__restrict__ g_idx, \
|
||||
int num_groups, int prob_m, int prob_n, int prob_k, int lda, int *locks, \
|
||||
bool use_atomic_add, bool use_fp32_reduce, int max_shared_mem
|
||||
bool has_bias, bool use_atomic_add, bool use_fp32_reduce, \
|
||||
int max_shared_mem
|
||||
|
||||
namespace MARLIN_NAMESPACE_NAME {
|
||||
template <typename scalar_t, // compute dtype, half or nv_float16
|
||||
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
|
||||
const vllm::ScalarTypeId s_type_id, // weight ScalarType id
|
||||
const int threads, // number of threads in a threadblock
|
||||
const int thread_m_blocks, // number of 16x16 blocks in the m
|
||||
// dimension (batchsize) of the
|
||||
|
||||
@ -39,6 +39,7 @@ namespace MARLIN_NAMESPACE_NAME {
|
||||
|
||||
template <typename scalar_t, // compute dtype, half or nv_float16
|
||||
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
|
||||
const vllm::ScalarTypeId s_type_id, // weight scale ScalarType id
|
||||
const int threads, // number of threads in a threadblock
|
||||
const int thread_m_blocks, // number of 16x16 blocks in the m
|
||||
// dimension (batchsize) of the
|
||||
@ -271,6 +272,7 @@ __device__ inline void wait_negative_and_add(int* lock) {
|
||||
|
||||
template <typename scalar_t, // compute dtype, half or nv_float16
|
||||
const vllm::ScalarTypeId w_type_id, // weight ScalarType id
|
||||
const vllm::ScalarTypeId s_type_id, // weight scale ScalarType id
|
||||
const int threads, // number of threads in a threadblock
|
||||
const int thread_m_blocks, // number of 16x16 blocks in the m
|
||||
// dimension (batchsize) of the
|
||||
@ -290,6 +292,7 @@ __global__ void Marlin(
|
||||
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
|
||||
int4* __restrict__ C, // fp16 output buffer of shape mxn
|
||||
int4* __restrict__ C_tmp, // fp32 tmp output buffer (for reduce)
|
||||
const int4* __restrict__ b_bias_ptr,
|
||||
const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape
|
||||
// (k/groupsize)xn
|
||||
const uint16_t* __restrict__ scale2_ptr, // fp16 global scale (for nvfp4
|
||||
@ -297,12 +300,13 @@ __global__ void Marlin(
|
||||
const int4* __restrict__ zp_ptr, // 4bit packed zero-points of shape
|
||||
// (k/groupsize)x(n/pack_factor)
|
||||
const int* __restrict__ g_idx, // int32 group indices of shape k
|
||||
int num_groups, // number of scale groups per output channel
|
||||
int prob_m, // batch dimension m
|
||||
int prob_n, // output dimension n
|
||||
int prob_k, // reduction dimension k
|
||||
int lda, // A.stride(0), equal to prob_k is A is contiguous
|
||||
int* locks, // extra global storage for barrier synchronization
|
||||
int num_groups, // number of scale groups per output channel
|
||||
int prob_m, // batch dimension m
|
||||
int prob_n, // output dimension n
|
||||
int prob_k, // reduction dimension k
|
||||
int lda, // A.stride(0), equal to prob_k is A is contiguous
|
||||
int* locks, // extra global storage for barrier synchronization
|
||||
bool has_bias,
|
||||
bool use_atomic_add, // whether to use atomic add to reduce
|
||||
bool use_fp32_reduce, // whether to use fp32 global reduce
|
||||
int max_shared_mem) {
|
||||
@ -326,18 +330,29 @@ __global__ void Marlin(
|
||||
using FragZP = typename ScalarType<scalar_t>::FragZP;
|
||||
|
||||
static constexpr auto w_type = vllm::ScalarType::from_id(w_type_id);
|
||||
static constexpr auto s_type = vllm::ScalarType::from_id(s_type_id);
|
||||
if constexpr (w_type == vllm::kFE2M1f) {
|
||||
static_assert(s_type == vllm::kFE4M3fn && group_blocks == 1 ||
|
||||
s_type == vllm::kFE8M0fnu && group_blocks == 2);
|
||||
} else if constexpr (std::is_same<scalar_t, nv_bfloat16>::value) {
|
||||
static_assert(s_type == vllm::kBFloat16);
|
||||
} else if constexpr (std::is_same<scalar_t, half>::value) {
|
||||
static_assert(s_type == vllm::kFloat16);
|
||||
}
|
||||
|
||||
constexpr bool has_zp = w_type == vllm::kU4 || w_type == vllm::kU8;
|
||||
constexpr bool is_int_type = w_type == vllm::kU4 || w_type == vllm::kU8 ||
|
||||
w_type == vllm::kU4B8 || w_type == vllm::kU8B128;
|
||||
// see comments of dequant.h for more details
|
||||
constexpr bool dequant_skip_flop =
|
||||
!is_int_type ||
|
||||
w_type == vllm::kFE4M3fn ||
|
||||
w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn ||
|
||||
has_zp && !is_zp_float && !std::is_same<scalar_t, nv_bfloat16>::value ||
|
||||
has_zp && !is_zp_float && !(w_type == vllm::kU8);
|
||||
|
||||
scalar_t2 global_scale;
|
||||
|
||||
if constexpr (w_type == vllm::kFE2M1f) {
|
||||
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
|
||||
// NVFP4 format requires global scale
|
||||
uint16_t val = scale2_ptr[0];
|
||||
global_scale = Dtype::num2num2(*reinterpret_cast<scalar_t*>(&val));
|
||||
}
|
||||
@ -589,7 +604,7 @@ __global__ void Marlin(
|
||||
|
||||
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
(threadIdx.x % 32) / 4;
|
||||
s_sh_rd = s_sh_rd * 2 + warp_row % 2;
|
||||
s_sh_rd = s_sh_rd * 2 + (warp_row / group_blocks) % 2;
|
||||
|
||||
} else if constexpr (group_blocks != -1)
|
||||
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
@ -602,6 +617,18 @@ __global__ void Marlin(
|
||||
s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
(threadIdx.x % 32) % 4;
|
||||
|
||||
int bias_sh_rd;
|
||||
if constexpr (m_block_size_8) {
|
||||
bias_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
(threadIdx.x % 32) / 8;
|
||||
} else {
|
||||
bias_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
|
||||
(threadIdx.x % 32) % 4;
|
||||
}
|
||||
|
||||
int bias_sh_wr = threadIdx.x;
|
||||
int bias_gl_rd = (thread_n_blocks * 16 / 8) * slice_col + threadIdx.x;
|
||||
|
||||
// Zero-points have the same read layout as the scales
|
||||
// (without column-wise case)
|
||||
constexpr int num_col_threads = 8;
|
||||
@ -670,7 +697,19 @@ __global__ void Marlin(
|
||||
constexpr int sh_b_size = stages * b_sh_stage;
|
||||
int4* sh_b = sh;
|
||||
int4* sh_red = sh;
|
||||
int4* sh_g_idx = sh_b + (sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
|
||||
|
||||
constexpr int sh_size_b_red_min =
|
||||
(sh_red_size < sh_b_size ? sh_red_size : sh_b_size);
|
||||
constexpr int sh_size_b_red_max =
|
||||
(sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
|
||||
constexpr int sh_bias_size = (thread_n_blocks * 16 / 8);
|
||||
constexpr int sh_b_red_bias_size =
|
||||
sh_size_b_red_max > (sh_size_b_red_min + sh_bias_size)
|
||||
? sh_size_b_red_max
|
||||
: (sh_size_b_red_min + sh_bias_size);
|
||||
|
||||
int4* sh_bias = sh + sh_size_b_red_min;
|
||||
int4* sh_g_idx = sh + sh_b_red_bias_size;
|
||||
int4* sh_zp = sh_g_idx + (stages * g_idx_stage);
|
||||
constexpr int sh_s_size = has_act_order ? (act_s_max_num_groups * s_sh_stride)
|
||||
: (stages * s_sh_stage);
|
||||
@ -680,15 +719,13 @@ __global__ void Marlin(
|
||||
static_assert(thread_m_blocks * 16 * thread_n_blocks * 16 / 8 <=
|
||||
stages * b_sh_stage);
|
||||
int4* sh_a = sh_s + sh_s_size;
|
||||
// constexpr int shm_size_used =
|
||||
// stages * (g_idx_stage + zp_sh_stage) + sh_s_size +
|
||||
// (sh_red_size > sh_b_size ? sh_red_size : sh_b_size);
|
||||
|
||||
// Register storage for double buffer of shared memory reads.
|
||||
FragA frag_a[2][thread_m_blocks];
|
||||
I4 frag_b_quant[2][b_thread_vecs];
|
||||
FragC frag_c[thread_m_blocks][4][2];
|
||||
FragS frag_s[2][4]; // No act-order
|
||||
FragS frag_s[2][4]; // No act-order
|
||||
FragS frag_bias[2][4];
|
||||
FragS act_frag_s[2][4][4]; // For act-order
|
||||
int frag_qzp[2][num_ints_per_thread]; // Zero-points
|
||||
FragZP frag_zp; // Zero-points in fp16
|
||||
@ -923,10 +960,15 @@ __global__ void Marlin(
|
||||
if constexpr (w_type_id != vllm::kFE2M1f.id()) {
|
||||
reinterpret_cast<int4*>(&frag_s[k % 2])[0] =
|
||||
sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride];
|
||||
} else {
|
||||
} else if constexpr (group_blocks == 1 || thread_k_blocks > 4) {
|
||||
reinterpret_cast<int2*>(&frag_s[k % 2])[0] =
|
||||
reinterpret_cast<int2*>(
|
||||
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride)];
|
||||
} else {
|
||||
reinterpret_cast<int2*>(&frag_s[k % 2])[0] =
|
||||
reinterpret_cast<int2*>(
|
||||
sh_s_stage)[s_sh_rd + cur_group_id * (2 * s_sh_stride) +
|
||||
k % 2];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1139,9 +1181,9 @@ __global__ void Marlin(
|
||||
int s_quant_0 = reinterpret_cast<int*>(frag_s[k2])[0];
|
||||
int s_quant_1 = reinterpret_cast<int*>(frag_s[k2])[1];
|
||||
|
||||
dequant_fp8_scales<scalar_t2>(s_quant_0,
|
||||
reinterpret_cast<scalar_t2*>(&frag_s[k2]));
|
||||
dequant_fp8_scales<scalar_t2>(
|
||||
dequant_fp8_scales<scalar_t2, s_type_id>(
|
||||
s_quant_0, reinterpret_cast<scalar_t2*>(&frag_s[k2]));
|
||||
dequant_fp8_scales<scalar_t2, s_type_id>(
|
||||
s_quant_1, reinterpret_cast<scalar_t2*>(&frag_s[k2]) + 2);
|
||||
}
|
||||
|
||||
@ -1411,7 +1453,7 @@ __global__ void Marlin(
|
||||
// Write out the reduce final result in the correct layout. We only actually
|
||||
// reshuffle matrix fragments in this step, the reduction above is performed
|
||||
// in fragment layout.
|
||||
auto write_result = [&]() {
|
||||
auto write_result = [&](bool last) {
|
||||
int c_gl_stride = prob_n / 8;
|
||||
constexpr int c_sh_stride = 2 * thread_n_blocks + 1;
|
||||
int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks));
|
||||
@ -1438,7 +1480,7 @@ __global__ void Marlin(
|
||||
int c_gl_wr_end = c_gl_stride * prob_m;
|
||||
// We first reorder in shared memory to guarantee the most efficient final
|
||||
// global write patterns
|
||||
auto write = [&](int idx, float c0, float c1, FragS& s) {
|
||||
auto write = [&](int idx, float c0, float c1, FragS& s, FragS& b_bias) {
|
||||
scalar_t2 res =
|
||||
Dtype::nums2num2(Dtype::float2num(c0), Dtype::float2num(c1));
|
||||
|
||||
@ -1447,12 +1489,25 @@ __global__ void Marlin(
|
||||
if constexpr (!has_act_order && group_blocks == -1 &&
|
||||
w_type.size_bits() == 4 &&
|
||||
(has_zp && dequant_skip_flop || !has_zp)) {
|
||||
res = __hmul2(res, s[0]);
|
||||
scalar_t2 tmp_scale = s[0];
|
||||
if constexpr (m_block_size_8) {
|
||||
tmp_scale = Dtype::num2num2(
|
||||
reinterpret_cast<scalar_t*>(&s[0])[(threadIdx.x % 8) / 4]);
|
||||
}
|
||||
res = __hmul2(res, tmp_scale);
|
||||
}
|
||||
|
||||
if constexpr (w_type == vllm::kFE2M1f) {
|
||||
if constexpr (w_type == vllm::kFE2M1f && s_type == vllm::kFE4M3fn) {
|
||||
res = __hmul2(res, global_scale);
|
||||
}
|
||||
if (has_bias && last) {
|
||||
scalar_t2 tmp_bias = b_bias[0];
|
||||
if constexpr (m_block_size_8) {
|
||||
tmp_bias = Dtype::num2num2(
|
||||
reinterpret_cast<scalar_t*>(&b_bias[0])[(threadIdx.x % 8) / 4]);
|
||||
}
|
||||
res = __hadd2(res, tmp_bias);
|
||||
}
|
||||
|
||||
if constexpr (m_block_size_8) {
|
||||
((scalar_t*)sh_red)[idx] = res.x;
|
||||
@ -1470,19 +1525,25 @@ __global__ void Marlin(
|
||||
if constexpr (m_block_size_8) {
|
||||
int wr = c_sh_wr + 16 * j;
|
||||
write(wr, frag_c[i][j][0][0], frag_c[i][j][0][1],
|
||||
frag_s[j / 2][2 * (j % 2) + 0]);
|
||||
frag_s[j / 2][2 * (j % 2) + 0],
|
||||
frag_bias[j / 2][2 * (j % 2) + 0]);
|
||||
write(wr + 8, frag_c[i][j][0][2], frag_c[i][j][0][3],
|
||||
frag_s[j / 2][2 * (j % 2) + 1]);
|
||||
frag_s[j / 2][2 * (j % 2) + 1],
|
||||
frag_bias[j / 2][2 * (j % 2) + 1]);
|
||||
} else {
|
||||
int wr = c_sh_wr + 8 * j;
|
||||
write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0],
|
||||
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]);
|
||||
frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0],
|
||||
frag_bias[j / 2][2 * (j % 2) + 0]);
|
||||
write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2],
|
||||
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]);
|
||||
frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0],
|
||||
frag_bias[j / 2][2 * (j % 2) + 0]);
|
||||
write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0],
|
||||
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]);
|
||||
frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1],
|
||||
frag_bias[j / 2][2 * (j % 2) + 1]);
|
||||
write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2],
|
||||
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]);
|
||||
frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1],
|
||||
frag_bias[j / 2][2 * (j % 2) + 1]);
|
||||
}
|
||||
}
|
||||
c_sh_wr += 16 * (4 * c_sh_stride);
|
||||
@ -1622,6 +1683,14 @@ __global__ void Marlin(
|
||||
}
|
||||
|
||||
thread_block_reduce();
|
||||
|
||||
if (has_bias && last) {
|
||||
__syncthreads();
|
||||
cp_async4_pred(&sh_bias[bias_sh_wr], &b_bias_ptr[bias_gl_rd],
|
||||
threadIdx.x < 16 * thread_n_blocks / 8);
|
||||
cp_async_fence();
|
||||
}
|
||||
|
||||
if constexpr (!has_act_order && group_blocks == -1 &&
|
||||
(has_zp && dequant_skip_flop || !has_zp)) {
|
||||
if (w_type.size_bits() == 8 || (last || use_atomic_add)) {
|
||||
@ -1684,11 +1753,20 @@ __global__ void Marlin(
|
||||
}
|
||||
barrier_release(&locks[locks_off], last);
|
||||
}
|
||||
|
||||
if (has_bias && last) {
|
||||
cp_async_wait<0>();
|
||||
__syncthreads();
|
||||
reinterpret_cast<int4*>(&frag_bias)[0] = sh_bias[bias_sh_rd];
|
||||
reinterpret_cast<int4*>(&frag_bias)[1] = sh_bias[bias_sh_rd + 4];
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (use_atomic_add && slice_count > 1 && slice_idx != 0)
|
||||
wait_negative_and_add(&locks[locks_off]);
|
||||
if (last || use_atomic_add)
|
||||
// only the last block in a slice actually writes the result
|
||||
write_result();
|
||||
write_result(last);
|
||||
slice_row = 0;
|
||||
slice_col_par++;
|
||||
slice_col++;
|
||||
@ -1706,6 +1784,7 @@ __global__ void Marlin(
|
||||
for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
|
||||
}
|
||||
|
||||
bias_gl_rd = (thread_n_blocks * 16 / 8) * slice_col + threadIdx.x;
|
||||
// Update slice k/n for scales loading
|
||||
if constexpr (has_act_order) {
|
||||
slice_k_start = tb_k * slice_row;
|
||||
|
||||
@ -349,9 +349,12 @@ def to_cute_constant(value: list[int]):
|
||||
|
||||
|
||||
def unique_schedules(impl_configs: list[ImplConfig]):
|
||||
return list(
|
||||
set(sch for impl_config in impl_configs
|
||||
for sch in impl_config.schedules))
|
||||
# Use dict over set for deterministic ordering
|
||||
return list({
|
||||
sch: None
|
||||
for impl_config in impl_configs
|
||||
for sch in impl_config.schedules
|
||||
}.keys())
|
||||
|
||||
|
||||
def unsigned_type_with_bitwidth(num_bits):
|
||||
@ -568,78 +571,79 @@ def generate():
|
||||
itertools.repeat(default_heuristic))
|
||||
]
|
||||
|
||||
# Stored as "condition": ((tile_shape_mn), (cluster_shape_mnk))
|
||||
# TODO (LucasWilkinson): Further tuning required
|
||||
qqq_tile_heuristic_config = {
|
||||
#### M = 257+
|
||||
# ((128, 256), (2, 1, 1)) Broken for QQQ types
|
||||
# TODO (LucasWilkinson): Investigate further
|
||||
# "M > 256 && K <= 16384 && N <= 4096": ((128, 128), (2, 1, 1)),
|
||||
# "M > 256": ((128, 256), (2, 1, 1)),
|
||||
"M > 256": ((128, 128), (2, 1, 1)),
|
||||
#### M = 129-256
|
||||
"M > 128 && K <= 4096 && N <= 4096": ((128, 64), (2, 1, 1)),
|
||||
"M > 128 && K <= 8192 && N <= 8192": ((128, 128), (2, 1, 1)),
|
||||
# ((128, 256), (2, 1, 1)) Broken for QQQ types
|
||||
# TODO (LucasWilkinson): Investigate further
|
||||
# "M > 128": ((128, 256), (2, 1, 1)),
|
||||
"M > 128": ((128, 128), (2, 1, 1)),
|
||||
#### M = 65-128
|
||||
"M > 64 && K <= 4069 && N <= 4069": ((128, 32), (2, 1, 1)),
|
||||
"M > 64 && K <= 4069 && N <= 8192": ((128, 64), (2, 1, 1)),
|
||||
"M > 64 && K >= 8192 && N >= 12288": ((256, 128), (2, 1, 1)),
|
||||
"M > 64": ((128, 128), (2, 1, 1)),
|
||||
#### M = 33-64
|
||||
"M > 32 && K <= 6144 && N <= 6144": ((128, 16), (1, 1, 1)),
|
||||
# Broken for QQQ types
|
||||
# TODO (LucasWilkinson): Investigate further
|
||||
#"M > 32 && K >= 16384 && N >= 12288": ((256, 64), (2, 1, 1)),
|
||||
"M > 32": ((128, 64), (2, 1, 1)),
|
||||
#### M = 17-32
|
||||
"M > 16 && K <= 12288 && N <= 8192": ((128, 32), (2, 1, 1)),
|
||||
"M > 16": ((256, 32), (2, 1, 1)),
|
||||
#### M = 1-16
|
||||
"N >= 26624": ((256, 16), (1, 1, 1)),
|
||||
None: ((128, 16), (1, 1, 1)),
|
||||
}
|
||||
# TODO: Support W4A8 when ready
|
||||
# # Stored as "condition": ((tile_shape_mn), (cluster_shape_mnk))
|
||||
# # TODO (LucasWilkinson): Further tuning required
|
||||
# qqq_tile_heuristic_config = {
|
||||
# #### M = 257+
|
||||
# # ((128, 256), (2, 1, 1)) Broken for QQQ types
|
||||
# # TODO (LucasWilkinson): Investigate further
|
||||
# # "M > 256 && K <= 16384 && N <= 4096": ((128, 128), (2, 1, 1)),
|
||||
# # "M > 256": ((128, 256), (2, 1, 1)),
|
||||
# "M > 256": ((128, 128), (2, 1, 1)),
|
||||
# #### M = 129-256
|
||||
# "M > 128 && K <= 4096 && N <= 4096": ((128, 64), (2, 1, 1)),
|
||||
# "M > 128 && K <= 8192 && N <= 8192": ((128, 128), (2, 1, 1)),
|
||||
# # ((128, 256), (2, 1, 1)) Broken for QQQ types
|
||||
# # TODO (LucasWilkinson): Investigate further
|
||||
# # "M > 128": ((128, 256), (2, 1, 1)),
|
||||
# "M > 128": ((128, 128), (2, 1, 1)),
|
||||
# #### M = 65-128
|
||||
# "M > 64 && K <= 4069 && N <= 4069": ((128, 32), (2, 1, 1)),
|
||||
# "M > 64 && K <= 4069 && N <= 8192": ((128, 64), (2, 1, 1)),
|
||||
# "M > 64 && K >= 8192 && N >= 12288": ((256, 128), (2, 1, 1)),
|
||||
# "M > 64": ((128, 128), (2, 1, 1)),
|
||||
# #### M = 33-64
|
||||
# "M > 32 && K <= 6144 && N <= 6144": ((128, 16), (1, 1, 1)),
|
||||
# # Broken for QQQ types
|
||||
# # TODO (LucasWilkinson): Investigate further
|
||||
# #"M > 32 && K >= 16384 && N >= 12288": ((256, 64), (2, 1, 1)),
|
||||
# "M > 32": ((128, 64), (2, 1, 1)),
|
||||
# #### M = 17-32
|
||||
# "M > 16 && K <= 12288 && N <= 8192": ((128, 32), (2, 1, 1)),
|
||||
# "M > 16": ((256, 32), (2, 1, 1)),
|
||||
# #### M = 1-16
|
||||
# "N >= 26624": ((256, 16), (1, 1, 1)),
|
||||
# None: ((128, 16), (1, 1, 1)),
|
||||
# }
|
||||
|
||||
# For now we use the same heuristic for all types
|
||||
# Heuristic is currently tuned for H100s
|
||||
qqq_heuristic = [
|
||||
(cond, ScheduleConfig(*tile_config,
|
||||
**sch_common_params)) # type: ignore
|
||||
for cond, tile_config in qqq_tile_heuristic_config.items()
|
||||
]
|
||||
# # For now we use the same heuristic for all types
|
||||
# # Heuristic is currently tuned for H100s
|
||||
# qqq_heuristic = [
|
||||
# (cond, ScheduleConfig(*tile_config,
|
||||
# **sch_common_params)) # type: ignore
|
||||
# for cond, tile_config in qqq_tile_heuristic_config.items()
|
||||
# ]
|
||||
|
||||
QQQ_kernel_types = [
|
||||
*(TypeConfig(
|
||||
a=DataType.s8,
|
||||
b=VLLMDataType.u4b8,
|
||||
b_group_scale=b_group_scale,
|
||||
b_group_zeropoint=DataType.void,
|
||||
b_channel_scale=DataType.f32,
|
||||
a_token_scale=DataType.f32,
|
||||
out=DataType.f16,
|
||||
accumulator=DataType.s32,
|
||||
) for b_group_scale in (DataType.f16, DataType.void)),
|
||||
*(TypeConfig(
|
||||
a=DataType.e4m3,
|
||||
b=VLLMDataType.u4b8,
|
||||
b_group_scale=b_group_scale,
|
||||
b_group_zeropoint=DataType.void,
|
||||
b_channel_scale=DataType.f32,
|
||||
a_token_scale=DataType.f32,
|
||||
out=DataType.f16,
|
||||
accumulator=DataType.f32,
|
||||
) for b_group_scale in (DataType.f16, DataType.void)),
|
||||
]
|
||||
# QQQ_kernel_types = [
|
||||
# *(TypeConfig(
|
||||
# a=DataType.s8,
|
||||
# b=VLLMDataType.u4b8,
|
||||
# b_group_scale=b_group_scale,
|
||||
# b_group_zeropoint=DataType.void,
|
||||
# b_channel_scale=DataType.f32,
|
||||
# a_token_scale=DataType.f32,
|
||||
# out=DataType.f16,
|
||||
# accumulator=DataType.s32,
|
||||
# ) for b_group_scale in (DataType.f16, DataType.void)),
|
||||
# *(TypeConfig(
|
||||
# a=DataType.e4m3,
|
||||
# b=VLLMDataType.u4b8,
|
||||
# b_group_scale=b_group_scale,
|
||||
# b_group_zeropoint=DataType.void,
|
||||
# b_channel_scale=DataType.f32,
|
||||
# a_token_scale=DataType.f32,
|
||||
# out=DataType.f16,
|
||||
# accumulator=DataType.f32,
|
||||
# ) for b_group_scale in (DataType.f16, DataType.void)),
|
||||
# ]
|
||||
|
||||
impl_configs += [
|
||||
ImplConfig(x[0], x[1], x[2])
|
||||
for x in zip(QQQ_kernel_types,
|
||||
itertools.repeat(get_unique_schedules(qqq_heuristic)),
|
||||
itertools.repeat(qqq_heuristic))
|
||||
]
|
||||
# impl_configs += [
|
||||
# ImplConfig(x[0], x[1], x[2])
|
||||
# for x in zip(QQQ_kernel_types,
|
||||
# itertools.repeat(get_unique_schedules(qqq_heuristic)),
|
||||
# itertools.repeat(qqq_heuristic))
|
||||
# ]
|
||||
|
||||
output_dir = os.path.join(SCRIPT_DIR, "generated")
|
||||
|
||||
|
||||
@ -1,209 +0,0 @@
|
||||
Contains code from https://github.com/IST-DASLab/marlin
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "{}"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright {yyyy} {name of copyright owner}
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
------------------------------------------------------------------------------------
|
||||
|
||||
This product bundles various third-party components under other open source licenses.
|
||||
This section summarizes those components and their licenses. See licenses/
|
||||
for text of these licenses.
|
||||
@ -1,32 +0,0 @@
|
||||
/*
|
||||
* Modified by HandH1998
|
||||
* Modified by Neural Magic
|
||||
* Copyright (C) Marlin.2024 Elias Frantar
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; }
|
||||
|
||||
// Instances of `Vec` are used to organize groups of >>registers<<, as needed
|
||||
// for instance as inputs to tensor core operations. Consequently, all
|
||||
// corresponding index accesses must be compile-time constants, which is why we
|
||||
// extensively use `#pragma unroll` throughout the kernel code to guarantee
|
||||
// this.
|
||||
template <typename T, int n>
|
||||
struct Vec {
|
||||
T elems[n];
|
||||
__device__ T& operator[](int i) { return elems[i]; }
|
||||
};
|
||||
@ -1,89 +0,0 @@
|
||||
/*
|
||||
* Modified by HandH1998
|
||||
* Modified by Neural Magic
|
||||
* Copyright (C) Marlin.2024 Elias Frantar
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
// Predicated asynchronous global->shared copy; used for inputs A where we apply
|
||||
// predication to handle batchsizes that are not multiples of 16.
|
||||
__device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr,
|
||||
bool pred = true) {
|
||||
const int BYTES = 16;
|
||||
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %0, 0;\n"
|
||||
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
|
||||
"}\n" ::"r"((int)pred),
|
||||
"r"(smem), "l"(glob_ptr), "n"(BYTES));
|
||||
}
|
||||
|
||||
// Asynchronous global->shared copy
|
||||
__device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) {
|
||||
const int BYTES = 16;
|
||||
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" cp.async.cg.shared.global [%0], [%1], %2;\n"
|
||||
"}\n" ::"r"(smem),
|
||||
"l"(glob_ptr), "n"(BYTES));
|
||||
}
|
||||
|
||||
// Async copy fence.
|
||||
__device__ inline void cp_async_fence() {
|
||||
asm volatile("cp.async.commit_group;\n" ::);
|
||||
}
|
||||
|
||||
// Wait until at most `n` async copy stages are still pending.
|
||||
template <int n>
|
||||
__device__ inline void cp_async_wait() {
|
||||
asm volatile("cp.async.wait_group %0;\n" ::"n"(n));
|
||||
}
|
||||
|
||||
// Wait until barrier reaches `count`, then lock for current threadblock.
|
||||
__device__ inline void barrier_acquire(int* lock, int count) {
|
||||
if (threadIdx.x == 0) {
|
||||
int state = -1;
|
||||
do
|
||||
// Guarantee that subsequent writes by this threadblock will be visible
|
||||
// globally.
|
||||
asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n"
|
||||
: "=r"(state)
|
||||
: "l"(lock));
|
||||
while (state != count);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// Release barrier and increment visitation count.
|
||||
__device__ inline void barrier_release(int* lock, bool reset = false) {
|
||||
__syncthreads();
|
||||
if (threadIdx.x == 0) {
|
||||
if (reset) {
|
||||
lock[0] = 0;
|
||||
return;
|
||||
}
|
||||
int val = 1;
|
||||
// Make sure that all writes since acquiring this barrier are visible
|
||||
// globally, while releasing the barrier.
|
||||
asm volatile("fence.acq_rel.gpu;\n");
|
||||
asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n"
|
||||
:
|
||||
: "l"(lock), "r"(val));
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -41,8 +41,10 @@ __device__ inline void vectorize_with_alignment(
|
||||
|
||||
for (int i = tid; i < num_vec; i += stride) {
|
||||
vout_t tmp;
|
||||
vec_op(tmp, v_in[i]);
|
||||
v_out[i] = tmp;
|
||||
// Make a local copy of the entire pack
|
||||
vin_t src = v_in[i]; // <- encourages a single vector ld
|
||||
vec_op(tmp, src);
|
||||
v_out[i] = tmp; // <- encourages a single vector st
|
||||
}
|
||||
return;
|
||||
}
|
||||
@ -71,8 +73,10 @@ __device__ inline void vectorize_with_alignment(
|
||||
// 2. vectorize the main part
|
||||
for (int i = tid; i < num_vec; i += stride) {
|
||||
vout_t tmp;
|
||||
vec_op(tmp, v_in[i]);
|
||||
v_out[i] = tmp;
|
||||
// Make a local copy of the entire pack
|
||||
vin_t src = v_in[i]; // <- encourages a single vector ld
|
||||
vec_op(tmp, src);
|
||||
v_out[i] = tmp; // <- encourages a single vector st
|
||||
}
|
||||
|
||||
// 3. handle the tail
|
||||
@ -125,7 +129,8 @@ __device__ inline void vectorize_read_with_alignment(const InT* in, int len,
|
||||
auto* v_in = reinterpret_cast<const vin_t*>(in);
|
||||
|
||||
for (int i = tid; i < num_vec; i += stride) {
|
||||
vec_op(v_in[i]);
|
||||
vin_t tmp = v_in[i];
|
||||
vec_op(tmp);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
@ -130,6 +130,12 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.def("fatrelu_and_mul(Tensor! out, Tensor input, float threshold) -> ()");
|
||||
ops.impl("fatrelu_and_mul", torch::kCUDA, &fatrelu_and_mul);
|
||||
|
||||
ops.def(
|
||||
"swigluoai_and_mul(Tensor! out, Tensor input, float alpha=1.702, float "
|
||||
"limit=7.0) "
|
||||
"-> ()");
|
||||
ops.impl("swigluoai_and_mul", torch::kCUDA, &swigluoai_and_mul);
|
||||
|
||||
// GELU implementation used in GPT-2.
|
||||
ops.def("gelu_new(Tensor! out, Tensor input) -> ()");
|
||||
ops.impl("gelu_new", torch::kCUDA, &gelu_new);
|
||||
@ -142,25 +148,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.def("gelu_quick(Tensor! out, Tensor input) -> ()");
|
||||
ops.impl("gelu_quick", torch::kCUDA, &gelu_quick);
|
||||
|
||||
// prepare_inputs advance_step
|
||||
ops.def(
|
||||
"advance_step_flashattn(int num_seqs, int num_queries, int block_size, "
|
||||
"Tensor! input_tokens, Tensor sampled_token_ids, "
|
||||
"Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping, "
|
||||
"Tensor block_tables) -> ()");
|
||||
ops.impl("advance_step_flashattn", torch::kCUDA, &advance_step_flashattn);
|
||||
|
||||
ops.def(
|
||||
"advance_step_flashinfer("
|
||||
" int num_seqs, int num_queries, int block_size,"
|
||||
" Tensor! input_tokens, Tensor sampled_token_ids,"
|
||||
" Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping,"
|
||||
" Tensor block_tables, Tensor! paged_kv_indices,"
|
||||
" Tensor! paged_kv_indptr, Tensor! paged_kv_last_page_len,"
|
||||
" Tensor! block_table_bounds"
|
||||
") -> ()");
|
||||
ops.impl("advance_step_flashinfer", torch::kCUDA, &advance_step_flashinfer);
|
||||
|
||||
// Layernorm
|
||||
// Apply Root Mean Square (RMS) Normalization to the input tensor.
|
||||
ops.def(
|
||||
@ -226,21 +213,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
|
||||
// Quantization ops
|
||||
#ifndef USE_ROCM
|
||||
// Quantized GEMM for AQLM.
|
||||
ops.def(
|
||||
"aqlm_gemm(Tensor input, Tensor codes, Tensor codebooks, "
|
||||
"Tensor scales, int[] codebook_partition_sizes, Tensor? bias) "
|
||||
"-> Tensor",
|
||||
{stride_tag});
|
||||
ops.impl("aqlm_gemm", torch::kCUDA, &aqlm_gemm);
|
||||
|
||||
// Decompression method for AQLM.
|
||||
ops.def(
|
||||
"aqlm_dequant(Tensor codes, Tensor codebooks, "
|
||||
"int[] codebook_partition_sizes) -> Tensor",
|
||||
{stride_tag});
|
||||
ops.impl("aqlm_dequant", torch::kCUDA, &aqlm_dequant);
|
||||
|
||||
// Quantized GEMM for AWQ.
|
||||
ops.def(
|
||||
"awq_gemm(Tensor _in_feats, Tensor _kernel, Tensor _scaling_factors, "
|
||||
@ -269,14 +241,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
// custom types:
|
||||
// https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA
|
||||
|
||||
// Marlin (Dense) Optimized Quantized GEMM for GPTQ.
|
||||
ops.def(
|
||||
"marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
|
||||
"Tensor! workspace, SymInt size_m, SymInt size_n, SymInt size_k) -> "
|
||||
"Tensor",
|
||||
{stride_tag});
|
||||
// conditionally compiled so impl in source file
|
||||
|
||||
// Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ.
|
||||
ops.def(
|
||||
"gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, "
|
||||
@ -326,6 +290,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
// gptq_marlin Optimized Quantized GEMM for GPTQ.
|
||||
ops.def(
|
||||
"gptq_marlin_gemm(Tensor a, Tensor? c_or_none, Tensor b_q_weight, "
|
||||
"Tensor? b_bias_or_none,"
|
||||
"Tensor b_scales, Tensor? global_scale, Tensor? b_zeros_or_none, Tensor? "
|
||||
"g_idx_or_none, Tensor? perm_or_none, Tensor workspace, int b_q_type, "
|
||||
"SymInt size_m, SymInt size_n, SymInt size_k, bool is_k_full, "
|
||||
@ -344,6 +309,26 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
"awq_marlin_repack(Tensor b_q_weight, SymInt size_k, "
|
||||
"SymInt size_n, int num_bits) -> Tensor");
|
||||
// conditionally compiled so impl registrations are in source file
|
||||
|
||||
// CUTLASS w4a8 GEMM
|
||||
ops.def(
|
||||
"cutlass_w4a8_mm("
|
||||
" Tensor A,"
|
||||
" Tensor B,"
|
||||
" Tensor group_scales,"
|
||||
" int group_size,"
|
||||
" Tensor channel_scales,"
|
||||
" Tensor token_scales,"
|
||||
" ScalarType? out_type,"
|
||||
" str? maybe_schedule"
|
||||
") -> Tensor",
|
||||
{stride_tag});
|
||||
// pack scales
|
||||
ops.def("cutlass_pack_scale_fp8(Tensor scales) -> Tensor");
|
||||
// encode and reorder weight matrix
|
||||
ops.def("cutlass_encode_and_reorder_int4b(Tensor B) -> Tensor");
|
||||
// conditionally compiled so impl registration is in source file
|
||||
|
||||
#endif
|
||||
|
||||
// Dequantization for GGML.
|
||||
@ -380,15 +365,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.def("ggml_moe_get_block_size", &ggml_moe_get_block_size);
|
||||
|
||||
#ifndef USE_ROCM
|
||||
// marlin_qqq_gemm for QQQ.
|
||||
ops.def(
|
||||
"marlin_qqq_gemm(Tensor a, Tensor b_q_weight, "
|
||||
"Tensor s_tok, Tensor s_ch, Tensor s_group, "
|
||||
"Tensor! workspace, SymInt size_m, SymInt size_n, "
|
||||
"SymInt size_k) -> Tensor",
|
||||
{stride_tag});
|
||||
// conditionally compiled so impl registration is in source file
|
||||
|
||||
// CUTLASS nvfp4 block scaled GEMM
|
||||
ops.def(
|
||||
"cutlass_scaled_fp4_mm(Tensor! out, Tensor a, Tensor b,"
|
||||
@ -467,6 +443,19 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
{stride_tag});
|
||||
ops.impl("get_cutlass_moe_mm_data", torch::kCUDA, &get_cutlass_moe_mm_data);
|
||||
|
||||
// A function that computes problem sizes for each expert's multiplication
|
||||
// used by the two mms called from fused MoE operation. It takes topk_ids as
|
||||
// an input, and computes problem_sizes1 and problem_sizes2 only.
|
||||
ops.def(
|
||||
"get_cutlass_moe_mm_problem_sizes(Tensor topk_ids, "
|
||||
" Tensor! problem_sizes1, "
|
||||
" Tensor! problem_sizes2, "
|
||||
" int num_experts, int n, int k, "
|
||||
" Tensor? blockscale_offsets) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("get_cutlass_moe_mm_problem_sizes", torch::kCUDA,
|
||||
&get_cutlass_moe_mm_problem_sizes);
|
||||
|
||||
// A function that computes data required to run fused MoE with w8a8 grouped
|
||||
// GEMM and PPLX. It takes expert_num_tokens and non_zero_expert_idxs
|
||||
// as an input, and computes expert_offsets (token start indices of each
|
||||
@ -703,11 +692,16 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
|
||||
"str kv_cache_dtype) -> ()");
|
||||
cache_ops.impl("convert_fp8", torch::kCUDA, &convert_fp8);
|
||||
|
||||
// Gather cache blocks from src_cache to dst.
|
||||
// Gather cache blocks from src_cache to dst, dequantizing from
|
||||
// src_cache's dtype to dst's dtype if necessary.
|
||||
cache_ops.def(
|
||||
"gather_cache(Tensor src_cache, Tensor! dst, Tensor block_table, "
|
||||
"Tensor cu_seq_lens, int batch_size, Tensor? seq_starts) -> ()");
|
||||
cache_ops.impl("gather_cache", torch::kCUDA, &gather_cache);
|
||||
"gather_and_maybe_dequant_cache(Tensor src_cache, Tensor! dst, "
|
||||
" Tensor block_table, Tensor cu_seq_lens, "
|
||||
" int batch_size, "
|
||||
" str kv_cache_dtype, "
|
||||
" Tensor scale, Tensor? seq_starts) -> ()");
|
||||
cache_ops.impl("gather_and_maybe_dequant_cache", torch::kCUDA,
|
||||
&gather_and_maybe_dequant_cache);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user