Compare commits
3 Commits
remove-asy
...
remove-reg
| Author | SHA1 | Date | |
|---|---|---|---|
| 36ccdcad2c | |||
| 1d20c34717 | |||
| b6af24fba7 |
@ -227,16 +227,6 @@ steps:
|
||||
##### fast check tests #####
|
||||
##### 1 GPU test #####
|
||||
|
||||
- label: Regression Test # 5min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_regression
|
||||
commands:
|
||||
- pip install modelscope
|
||||
- pytest -v -s test_regression.py
|
||||
working_dir: "/vllm-workspace/tests" # optional
|
||||
|
||||
- label: Engine Test # 10min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
|
||||
@ -54,38 +54,54 @@ def before_generate_case(context: schemathesis.hooks.HookContext, strategy):
|
||||
op = context.operation
|
||||
assert op is not None
|
||||
|
||||
def no_file_type(case: schemathesis.models.Case):
|
||||
def no_invalid_types(case: schemathesis.models.Case):
|
||||
"""
|
||||
This filter skips test cases for the `POST /tokenize` endpoint where the
|
||||
HTTP request body uses `"type": "file"` in any message's content.
|
||||
We expect these cases to fail because that type isn't implemented here
|
||||
https://github.com/vllm-project/vllm/blob/0b34593017953051b3225b1483ce0f4670e3eb0e/vllm/entrypoints/chat_utils.py#L1038-L1095
|
||||
This filter skips test cases with invalid data that schemathesis
|
||||
incorrectly generates due to permissive schema configurations.
|
||||
|
||||
1. Skips `POST /tokenize` endpoint cases with `"type": "file"` in
|
||||
message content, which isn't implemented.
|
||||
|
||||
2. Skips tool_calls with `"type": "custom"` which schemathesis
|
||||
incorrectly generates instead of the valid `"type": "function"`.
|
||||
|
||||
Example test cases that are skipped:
|
||||
curl -X POST -H 'Content-Type: application/json' \
|
||||
-d '{"messages": [{"role": "assistant"}, {"content": [{"file": {}, "type": "file"}], "role": "user"}]}' \
|
||||
-d '{"messages": [{"content": [{"file": {}, "type": "file"}], "role": "user"}]}' \
|
||||
http://localhost:8000/tokenize
|
||||
|
||||
curl -X POST -H 'Content-Type: application/json' \
|
||||
-d '{"messages": [{"content": [{"file": {}, "type": "file"}], "role": "user"}]}' \
|
||||
http://localhost:8000/tokenize
|
||||
-d '{"messages": [{"role": "assistant", "tool_calls": [{"custom": {"input": "", "name": ""}, "id": "", "type": "custom"}]}]}' \
|
||||
http://localhost:8000/v1/chat/completions
|
||||
""" # noqa: E501
|
||||
if (op.method.lower() == "post" and op.path == "/tokenize"
|
||||
and hasattr(case, "body") and isinstance(case.body, dict)
|
||||
if (hasattr(case, "body") and isinstance(case.body, dict)
|
||||
and "messages" in case.body
|
||||
and isinstance(case.body["messages"], list)
|
||||
and len(case.body["messages"]) > 0):
|
||||
|
||||
for message in case.body["messages"]:
|
||||
if not isinstance(message, dict):
|
||||
continue
|
||||
content = message.get("content", [])
|
||||
if not isinstance(content, list) or len(content) == 0:
|
||||
continue
|
||||
if any(item.get("type") == "file" for item in content):
|
||||
return False
|
||||
|
||||
# Check for invalid file type in tokenize endpoint
|
||||
if op.method.lower() == "post" and op.path == "/tokenize":
|
||||
content = message.get("content", [])
|
||||
if (isinstance(content, list) and len(content) > 0 and any(
|
||||
item.get("type") == "file" for item in content)):
|
||||
return False
|
||||
|
||||
# Check for invalid tool_calls with non-function types
|
||||
tool_calls = message.get("tool_calls", [])
|
||||
if isinstance(tool_calls, list):
|
||||
for tool_call in tool_calls:
|
||||
if isinstance(tool_call, dict):
|
||||
if tool_call.get("type") != "function":
|
||||
return False
|
||||
if "custom" in tool_call:
|
||||
return False
|
||||
return True
|
||||
|
||||
return strategy.filter(no_file_type)
|
||||
return strategy.filter(no_invalid_types)
|
||||
|
||||
|
||||
@schema.parametrize()
|
||||
|
||||
@ -1,78 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Containing tests that check for regressions in vLLM's behavior.
|
||||
|
||||
It should include tests that are reported by users and making sure they
|
||||
will never happen again.
|
||||
|
||||
"""
|
||||
import gc
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="In V1, we reject tokens > max_seq_len")
|
||||
def test_duplicated_ignored_sequence_group():
|
||||
"""https://github.com/vllm-project/vllm/issues/1655"""
|
||||
|
||||
sampling_params = SamplingParams(temperature=0.01,
|
||||
top_p=0.1,
|
||||
max_tokens=256)
|
||||
llm = LLM(model="distilbert/distilgpt2",
|
||||
max_num_batched_tokens=4096,
|
||||
tensor_parallel_size=1)
|
||||
prompts = ["This is a short prompt", "This is a very long prompt " * 1000]
|
||||
outputs = llm.generate(prompts, sampling_params=sampling_params)
|
||||
|
||||
assert len(prompts) == len(outputs)
|
||||
|
||||
|
||||
def test_max_tokens_none():
|
||||
sampling_params = SamplingParams(temperature=0.01,
|
||||
top_p=0.1,
|
||||
max_tokens=None)
|
||||
llm = LLM(model="distilbert/distilgpt2",
|
||||
max_num_batched_tokens=4096,
|
||||
tensor_parallel_size=1)
|
||||
prompts = ["Just say hello!"]
|
||||
outputs = llm.generate(prompts, sampling_params=sampling_params)
|
||||
|
||||
assert len(prompts) == len(outputs)
|
||||
|
||||
|
||||
def test_gc():
|
||||
llm = LLM(model="distilbert/distilgpt2", enforce_eager=True)
|
||||
del llm
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# The memory allocated for model and KV cache should be released.
|
||||
# The memory allocated for PyTorch and others should be less than 50MB.
|
||||
# Usually, it's around 10MB.
|
||||
allocated = torch.cuda.memory_allocated()
|
||||
assert allocated < 50 * 1024 * 1024
|
||||
|
||||
|
||||
def test_model_from_modelscope(monkeypatch: pytest.MonkeyPatch):
|
||||
# model: https://modelscope.cn/models/qwen/Qwen1.5-0.5B-Chat/summary
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_MODELSCOPE", "True")
|
||||
# Don't use HF_TOKEN for ModelScope repos, otherwise it will fail
|
||||
# with 400 Client Error: Bad Request.
|
||||
m.setenv("HF_TOKEN", "")
|
||||
llm = LLM(model="qwen/Qwen1.5-0.5B-Chat")
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
assert len(outputs) == 4
|
||||
@ -297,7 +297,7 @@ class CustomAllreduce:
|
||||
@staticmethod
|
||||
def free_shared_buffer(pointers: list[int],
|
||||
group: Optional[ProcessGroup] = None,
|
||||
rank: Optional[int] = 0) -> None:
|
||||
rank: Optional[int] = None) -> None:
|
||||
if rank is None:
|
||||
rank = dist.get_rank(group=group)
|
||||
if ops is not None:
|
||||
|
||||
Reference in New Issue
Block a user