Compare commits

...

303 Commits

Author SHA1 Message Date
83f478bb19 [KVConnector] Migrate the LMCache integration code to be vLLM native (#25542)
Signed-off-by: ApostaC <yihua98@uchicago.edu>
2025-10-25 00:23:53 +00:00
269c4db0a4 [Misc][DP] Guard mxfp4 implementation selection (#27484)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-10-24 23:29:24 +00:00
52efc34ebf [Log] Optimize Startup Log (#26740)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-24 19:27:04 -04:00
d95d0f4b98 [Distributed] Basic set of configuration for large EP deployment on GB200 (#27328)
Signed-off-by: Pengchao Wang <wpc@fb.com>
Co-authored-by: Lu Fang <30275821+houseroad@users.noreply.github.com>
2025-10-24 14:16:44 -07:00
0402428200 [Perf][Async Scheduling] Remove CPU->GPU sync in dummy_run (#27455)
Signed-off-by: Lehua Ding <lehuading@tencent.com>
2025-10-24 20:45:36 +00:00
17af6aa0da [Document] Add ms-swift library to rlhf.md (#27469) 2025-10-24 20:31:50 +00:00
fc168c33f3 [CI/Build] Fix test_torch_utils in AMD CI (#27317)
Signed-off-by: zhewenli <zhewenli@meta.com>
2025-10-24 12:26:00 -07:00
acc78aeb88 [Bugfix] Fix interns1-vit qk norm code path (#27480)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-24 17:43:45 +00:00
0f67d4d962 [Attention] Add MLA prefill backend: trtllm_ragged_attention_deepseek (#26397)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-10-24 10:24:08 -07:00
7e1d697b56 [Bugfix] Fix MultiConnector stats reconstruction across process boundaries (#27366)
Signed-off-by: Kourosh Hakhamaneshi <Kourosh@anyscale.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
2025-10-24 17:08:05 +00:00
699d62e6cf [NIXL][BUGFIX] delay done_recving queue cleanup to bottom of get_finished (#27297)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2025-10-24 17:01:41 +00:00
cd390b609d [compile] Turn standalone_compile back on (#27460)
Signed-off-by: Richard Zou <zou3519@gmail.com>
2025-10-24 16:30:27 +00:00
2080b05099 [cpu][fix] Fix onednn_mm crash on consecutive matmuls with same M,K,N and different dtype (#27472)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
2025-10-24 15:57:48 +00:00
6454afec90 [Doc] Fix minor issues in docs/design/metrics.md (#27436)
Signed-off-by: Lifan Shen <lifans@meta.com>
2025-10-24 05:40:54 -07:00
41a62564a7 Fix test named tool use (#27458)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-10-24 20:27:45 +08:00
284cc92275 [MISC] cudagraph_capture_sizes related improvements (#26016)
Signed-off-by: fhl <2410591650@qq.com>
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-24 05:11:05 -07:00
435be10db9 Fix AArch64 CPU Docker pipeline (#27331)
Signed-off-by: Ioana Ghiban <ioana.ghiban@arm.com>
2025-10-24 05:11:01 -07:00
b7030d962b [Benchmark] Enable benchmark to run with encoding_format="bytes" (#27467)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-24 11:16:50 +00:00
3567816932 [Refactor] move tool parsing logic from protocol.py to the tool parser (#27383)
Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
2025-10-24 09:53:23 +00:00
e0ef8a2920 [BugFix] Fix torchrun DP with LLM class (#27395)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-10-24 08:11:37 +00:00
42efe609ba [MM][Bugfix] Replace PatchEmbed's conv3d to linear layer (#27418)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-24 07:32:47 +00:00
88d3141ec6 [Docs] remove v1 column for embedding models (#27446)
Signed-off-by: piood <2477084691@qq.com>
Signed-off-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-10-23 23:55:03 -07:00
09a6a49eaf [Misc] Avoid "PyTorch non-writable tensors" warning in RayPPCommunicator (#27443)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-10-24 14:53:09 +08:00
074475541a [Bugfix] Fix Pydantic union resolution for ResponseFunctionToolCall in Responses API (#26706)
Signed-off-by: Shai Trinczer <strinczer@icloud.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-10-23 22:53:42 -07:00
d4c574c39f [Chore] remove structural tags logging lines (#27451) 2025-10-24 05:35:45 +00:00
c528b9006a Fix EventPublisherFactory logic for disabled KV cache events (#27419)
Signed-off-by: Bradley <bradley.b.pitt@gmail.com>
2025-10-24 05:00:01 +00:00
85fee74b33 [Bugfix][CI] Move resolving cudagraph_mode before initializing attn_metadata_builder (#27427)
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
2025-10-23 20:31:14 -07:00
8dbe0c527f [Misc] Add TPU usage report when using tpu_inference. (#27423)
Signed-off-by: Hongmin Fan <fanhongmin@google.com>
2025-10-23 20:29:37 -07:00
5cc6bddb6e [Kernel] Add GPTQv2 format support for low-bit or asymmetric quantization, by adapting gptq_gemm (#26092) 2025-10-23 23:26:13 -04:00
1f9460c4c1 Fix pooling adapters for Transformers backend (#27338)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-23 20:23:55 -07:00
70022ffc00 Granite 4.0 quark quantization support (#26944)
Signed-off-by: Xiao YU <Xiao.YU@xilinx.com>
Signed-off-by: Xiao Yu <xiao.yu.dc@outlook.com>
Co-authored-by: Xiao YU <Xiao.YU@xilinx.com>
2025-10-24 02:14:03 +00:00
f417746ad7 [Hardware][POWERPC] Disable oneDNN path in vllm/model_executor/layers/utils.py for Powerpc (#27422)
Signed-off-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
Co-authored-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
2025-10-23 21:21:36 +00:00
0552cfb195 [Model] Siglip Embedding Support (#27324)
Signed-off-by: piood <2477084691@qq.com>
2025-10-23 20:19:48 +00:00
51dd14ac2b [Bugfix][DP] Fix creating too many DP Placement Groups (#26880)
Signed-off-by: Kebe <mail@kebe7jun.com>
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
Co-authored-by: Rui Qiao <ruisearch42@gmail.com>
2025-10-23 20:16:51 +00:00
dbfbf9f324 [Attention] Fix FlashMLA metadata builder arguments for q_len > 1 (#27368)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-23 15:58:15 -04:00
ca76486a16 [Chore] Separate out vllm.utils.platform_utils.py (#27374)
Signed-off-by: Jonathan <chenleejonathan@gmail.com>
2025-10-23 19:08:06 +00:00
a9f55dc588 [Misc] Add triton_kernels dependency (#27370)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-10-23 12:04:14 -07:00
81d5bb765a [Bugfix] Fix AWQ marlin layer skipping (#27416)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-23 18:30:28 +00:00
0825197bee [Bugfix][ROCm][DeepSeek] Fix for forward_hip in rope for DeepSeek (#27373)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-10-23 17:43:53 +00:00
9ef3d5b875 [Bugfix] Fix dp_chunking enablement logic in FusedMoE layer (#27220)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-10-24 00:03:14 +08:00
295c7f0267 Mirroring the test definitions (2025-10-22) (#27362)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-10-24 00:02:26 +08:00
3fa2c12185 [Frontend][4/N] Improve all pooling task | Add plugin pooling task (#26973)
Signed-off-by: wang.yuqi <noooop@126.com>
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Christian Pinto <christian.pinto@ibm.com>
2025-10-23 14:46:18 +00:00
fe2016de2d [CI/Build] Remove unnecessary flags from test registry (#27353)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-23 14:42:40 +00:00
237cf6d32a [Misc] Remove use of CUDA_VISIBLE_DEVICES for device selection (fix DP slow startup time &c) (#26709)
Signed-off-by: ilmarkov <markovilya197@gmail.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-10-23 20:58:39 +08:00
faee3ccdc2 [Feature] Pydantic validation for speculative.py (#27156)
Signed-off-by: Navya Srivastava <navya.srivastava1707@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-23 12:19:33 +00:00
570c3e1cd4 [Bugfix] Honor --mm_encoder_attn_backend when used (#27124)
Co-authored-by: Bradley D <4551889+bradleyhd@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-23 20:09:52 +08:00
3a4255c7c4 Run mypy on the lowest supported Python version instead of system Python (#27048)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-23 05:07:44 -07:00
61089465a6 [Model] Add MoE support for NemotronH (#25863)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
2025-10-23 10:27:23 +00:00
88afa11010 [Metrics] [KVConnector] Add connector prefix cache hit rate stats (#26245)
Signed-off-by: tovam <tovam@pliops.com>
2025-10-23 12:21:08 +02:00
d00ce29d89 [CI] Reorganize entrypoints tests (#27403)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-10-23 10:10:06 +00:00
3b7bdf983b add SLA information into comparison graph for vLLM Benchmark Suite (#25525)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
Signed-off-by: louie-tsai <louie.tsai@intel.com>
Signed-off-by: Louie Tsai <louie.tsai@intel.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-23 08:04:59 +00:00
50b788a17a [CI/Build] Fix AMD CI: test_cpu_gpu.py (#27388)
Signed-off-by: zhewenli <zhewenli@meta.com>
2025-10-23 07:55:00 +00:00
fc059c7061 [Bugfix] Fix args settings for guided decoding args (#27375)
Signed-off-by: Lucia Fang <fanglu@fb.com>
2025-10-23 07:34:06 +00:00
bfb240cc49 [CI/Build] Fix Prithvi plugin test (#27393)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-23 07:30:44 +00:00
e255d92990 [Chore] Remove duplicate has_ functions in vllm.utils (#27372)
Signed-off-by: Jonathan <chenleejonathan@gmail.com>
2025-10-23 06:11:59 +00:00
3729ed00ba [Model] Add num_cached_tokens for PoolingRequestOutput (#27378)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-10-23 14:03:42 +08:00
6644796bf4 [V1][spec decode] return logprobs for spec decoding (#26060)
Signed-off-by: Giancarlo Delfin <gdelfin@meta.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-10-22 22:59:59 -07:00
ff93cc8c84 [CORE] Support Prefix Caching with Prompt Embeds (#27219)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
2025-10-22 22:18:07 -07:00
243ed7d32e [Bugfix][Core] running queue index leakage exception (#26754)
Signed-off-by: CLFutureX <chenyongqyl@163.com>
2025-10-22 21:40:12 -07:00
7e0941055f [Bugfix] Fix incorrect kv cache metrics in grafana.json (#27133)
Signed-off-by: Fangping Shi <fangping_shi@apple.com>
Co-authored-by: Fangping Shi <fangping_shi@apple.com>
2025-10-22 20:58:36 -07:00
6738e4a093 [Bugfix] Fix SLA tuner initialization (#27355)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-22 20:43:04 -07:00
2566dca2a9 [Bugfix] Fix deepseek-ocr multi-image inference and add merge_by_field_config=True with tensor schema support (#27361)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-22 17:15:38 -07:00
b4fda58a2d [MLA] Bump FlashMLA (#27354)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-22 15:48:37 -07:00
a0003b56b0 [Chore] Separate out system utilities from vllm.utils (#27201)
Signed-off-by: dongbo910220 <1275604947@qq.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-22 20:25:25 +00:00
5beacce2ea [BugFix] bugfix for Flash Attention MLA with full cuda graph IMA following pr-25490 (#27128)
Signed-off-by: qqma <qqma@amazon.com>
Co-authored-by: qqma <qqma@amazon.com>
2025-10-22 19:36:39 +00:00
8669c69afa [Feature] publisher default set zmq in kv_event config (#26915)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-22 19:19:33 +00:00
1651003c35 [Prefix Cache] Use LoRA name for consistent KV-cache block hashing (#27211)
Signed-off-by: Sage Ahrac <sagiahrak@gmail.com>
2025-10-22 18:13:03 +00:00
1cb8c6c5fe [Doc] Fix numbering sequence in prefix caching (#27357)
Signed-off-by: William Song <jinwook@umich.edu>
2025-10-22 17:35:47 +00:00
e05a6754a8 [Model] Revert PR #26715: Restore custom PaliGemma and Gemma3-MM impl… (#27309)
Signed-off-by: Luciano Martins <lucianommartins@users.noreply.github.com>
Co-authored-by: Luciano Martins <lucianommartins@users.noreply.github.com>
2025-10-22 10:05:34 -07:00
084a9dae80 [Bugfix] Disable FlexAttention direct block mask building for encoder-only models (#27344)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-22 16:39:08 +00:00
RED
c9461e05a4 Support Anthropic API /v1/messages Endpoint (#22627)
Signed-off-by: liuli <ll407707@alibaba-inc.com>
Co-authored-by: liuli <ll407707@alibaba-inc.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-22 09:13:18 -07:00
4dfdb821c8 [P/D] Dynamic kv_output_aggregator collect size (#26734)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-22 18:07:58 +02:00
58fab50d82 [Frontend] Require flag for loading text and image embeds (#27204)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-22 15:52:02 +00:00
db6f28d898 [Bugfix] Fix HF format InternVL large variants video processing (#27330)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-22 08:39:23 -07:00
14e2f1231e [Bugfix] Make get_mrope_input_positions instance methods (#27342)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-22 08:38:34 -07:00
7c4767f1eb [NIXL] use Host buffer to support TP_ratio > 1 for XPU (#27140)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Nicolò Lucchesi <nicolo.lucchesi@gmail.com>
2025-10-22 15:28:13 +00:00
9771e0b432 [Bugfix] Add missing 'is_internal_router' attribute to FusedMoEWithLoRA (#27351)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-22 08:19:12 -07:00
980de31ca0 [bugfix] remove unused parameters to reduce unnecessary vram usage (#26789)
Signed-off-by: Reinforce-II <fate@eastal.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-22 08:16:09 -07:00
1c160841ea [Bug] Fix DeepSeek-V2.5-1210-FP8 issue (#27267)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-22 11:00:10 -04:00
4ca13a8667 [NIXL] Terminate handshake listener thread in shutdown (#26404)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-10-22 16:59:53 +02:00
675aa2ec64 [Model] Upstream Deepseek-OCR model (#27247)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-22 07:59:15 -07:00
3ae082c373 [Chore] Separate out optional dependency checks from vllm.utils (#27207)
Signed-off-by: dongbo910220 <1275604947@qq.com>
Signed-off-by: dongbo910220 <32610838+dongbo910220@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-22 10:44:21 -04:00
49c00fe304 Mirroring changes in test-pipeline.yaml into test-amd.yaml (#27242)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-10-22 09:59:45 -04:00
141d3b9fc5 [docs] Update v1 metrics design doc (#27332)
Signed-off-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: atalhens <sneh.lata@nutanix.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: atalhens <sneh.lata@nutanix.com>
2025-10-22 06:29:15 -07:00
abf3db40ef [Core] Handle MoE LoRA edge cases (#27335)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-22 13:14:33 +00:00
8e4ca4d14e Bugfix - pass 'max_num_tokens_padded' into 'moe_lora_align_block_size' (#27311)
Signed-off-by: gnovack <gnovack@amazon.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-22 12:23:57 +00:00
1a0f4defb7 [Log] Add Warning for LLM(data_parallel_size=k) single-process DP Usage (#27282)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-22 12:12:21 +00:00
843af7f7fc [Bugfix][CPU] Disable dual stream execution for experts on CPU (#27320)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-10-22 11:02:27 +00:00
1f633b8632 [Frontend][3/N] Improve all pooling task | Support binary embedding response (#27066)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-10-22 18:38:57 +08:00
a4c29e6e82 fixed reasoning streaming with tool_choice="required" (#24108)
Signed-off-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
Signed-off-by: ExtReMLapin <3909752+ExtReMLapin@users.noreply.github.com>
Co-authored-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-10-22 09:42:55 +00:00
8f18feb191 Remove last level references not removed in #26355 (#27260)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-22 09:18:17 +00:00
ed540d6d4c Update release pipeline for PyTorch 2.9.0 (#27303)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-10-22 09:18:01 +00:00
f6027b2855 [1/N][Platform] Cleanup useless function (#26982)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-10-22 09:04:57 +00:00
ab3e80042e [torch.compile] Enable silu_mul_fp8_quant fusion without custom ops enabled (#27146)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-10-22 00:22:39 -04:00
ceacedc1f9 [Benchmark] Add plot utility for parameter sweep (#27168)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-21 20:30:03 -07:00
bfa59be8f1 [CI] Nixl integration tests DP-EP (#27199)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-22 11:17:48 +08:00
265ecb05fb [DOC] [ROCm] Add ROCm quickstart guide (#26505)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-10-22 03:10:48 +00:00
09a7e6f617 [Deepseek v3.2] Remove extra logics in indexer (#26465)
Signed-off-by: Siyuan Fu <siyuanf@nvidia.com>
Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
Signed-off-by: Lain <siyuanf@nvidia.com>
Co-authored-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
2025-10-21 23:34:03 +00:00
6c2eef5a5d [P/D] KVConnector for decode benchmarking (#25986)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-10-21 16:30:47 -07:00
19748806f0 [Bugfix] skip cuda graph for drafter when running with eager (#26821)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-21 15:39:09 -07:00
4a8a567e16 Updated xgrammar backend to not deny supported string formats (#27253)
Signed-off-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
Signed-off-by: ExtReMLapin <3909752+ExtReMLapin@users.noreply.github.com>
Co-authored-by: CNE Pierre FICHEPOIL <pierre-1.fichepoil@gendarmerie.interieur.gouv.fr>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-21 22:25:23 +00:00
344a0017c0 [Performance] Dual stream execution of "shared_experts" and "selected_experts" inside FusedMoE (#26440)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
2025-10-21 21:38:29 +00:00
becb7de40b Update PyTorch to 2.9.0+cu129 (#24994)
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-21 17:20:18 -04:00
250fb1b8ea [Bugfix] fixes the decoding metadata of dense mla's fp8 kvcache. (#27144)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-10-21 18:27:03 +00:00
647214f3d5 [V0 Deprecation] Remove V0 executors (#27142)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-21 11:09:37 -07:00
ddeec11ba9 [Bugfix][P/D] Reduce num_threads used by nixl ucx backend (#27196)
Signed-off-by: David Whyte-Gray <40244437+dagrayvid@users.noreply.github.com>
2025-10-21 13:41:52 -04:00
86ed77022d [Feature] Batch Invariant for R1 TP 8 on Blackwell (#27229)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-21 10:25:55 -07:00
aa1356ec53 [ROCm] Update Triton, Torch, and AITER branches for ROCm base Dockerfile (#27206)
Signed-off-by: Micah Williamson <micah.williamson@amd.com>
2025-10-21 12:01:23 -04:00
ecc3c0940a Add @pavanimajety to .github/codeowners for Flashinfer, ModelOpt related code (#27213)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-10-21 22:59:53 +08:00
ba09652de2 [ROCM] Enable CompressedTensorsWNA16 (#27187)
Signed-off-by: JartX <sagformas@epdcenter.es>
2025-10-21 10:43:23 -04:00
bd66b8529b [CI] Install pre-release version of apache-tvm-ffi for flashinfer (#27262)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-21 14:23:56 +00:00
6c728f7771 [Chore] Separate out NCCL utilities from vllm.utils (#27197)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-10-21 06:18:23 -07:00
80e9452984 [Deepseek v3.2] Optimize top_k_per_row (#26763)
Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
2025-10-21 08:30:07 +00:00
c3a2c6ac5f [MM][Core] Decouple ViT backend from LM backend (#27061)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-10-21 00:30:10 -07:00
72f431e709 [Nixl] Minor refactor to handshake related metadata (#26410)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-21 09:07:47 +02:00
be4445072c [Fix][Spec Decode] Fix llama4 draft loading with different quantization (#27136)
Signed-off-by: linzebing <linzebing1995@gmail.com>
2025-10-20 23:19:00 -07:00
f381cf2302 [Bugfix] Fix broken MTP weight loading for FP8 KV Scales (#27227)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
2025-10-20 22:51:44 -07:00
5ff5d94e77 [Bugfix] Fix gpt-oss w4a8 DP/EP on B200 (#26729)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-21 01:51:14 -04:00
f95da13c3d [ModelOpt] Load w13/w2_input_scale for all experts, nvfp4 (#26135)
Signed-off-by: Shu Wang <shuw@nvidia.com>
Signed-off-by: Shu Wang. <shuw@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-21 01:50:31 -04:00
aef368aa08 [BugFix] GPT-OSS Attention DP + MoE TP weight loading issue (#24032)
Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
2025-10-21 04:03:47 +00:00
5f6cbf60d6 [Feature][Kernel]FusedMoE LoRA (#21229)
Signed-off-by: wuchen <cntryroa@gmail.com>
Signed-off-by: banjuede <lmklhc@163.com>
Signed-off-by: Chen Wu <cntryroa@gmail.com>
Signed-off-by: Danielle Robinson <dmmaddix@amazon.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: bk-201 <joy25810@foxmail.com>
Co-authored-by: wuchen <wuchen@zetyun.com>
Co-authored-by: Nathan Van Gheem <vangheem@gmail.com>
Co-authored-by: banjuede <lmklhc@163.com>
Co-authored-by: Danielle Robinson <dmmaddix@amazon.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: bk-201 <joy25810@foxmail.com>
2025-10-21 03:01:37 +00:00
3ada34f9cb [Frontend] Enforce tokenize=False when applying chat template (#27205)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-21 02:57:34 +00:00
0eb8f2b880 create is_in_the_same_node on cpu (#26832)
Co-authored-by: Lunwen He <lunwenh@meta.com>
2025-10-21 02:04:14 +00:00
163965d183 [cpu] Dispatch un-quantized linear to oneDNN/ACL by default for AArch64 (#27183)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
Co-authored-by: Michael Yang <Michael.Yang@arm.com>
2025-10-21 02:02:58 +00:00
a03cf9bc70 [V0 Deprecation] Remove V0 metrics code (#27215)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-21 02:02:10 +00:00
352c0c8a28 [Quantization] Automatically infer AWQ modules_to_not_convert field (#26909)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-21 01:49:28 +00:00
bfe0b4bd2a [ez] add uv lock to gitignore (#27212)
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
2025-10-21 00:37:44 +00:00
58fbbcb2f5 [ROCm] enable some tests in entrypoints test groups on AMD (#26725)
Signed-off-by: Yida <yida.wu@amd.com>
2025-10-21 00:37:16 +00:00
87778d5f00 [Feature][Quantization] auto_round support for mixed bits quantization (#23812)
Signed-off-by: n1ck-guo <heng.guo@intel.com>
Signed-off-by: Heng Guo <heng.guo@intel.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-20 22:23:30 +00:00
f9e7ad5400 [Bugfix][CI] Fix Distributed Tests (4 GPUs) async_sched+ray test (#27195)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-20 16:34:54 +00:00
4d0f266113 [Kernel][Model] Tune fused_moe Triton configs for Qwen3-30B A3/A3B on H100 (FP8/BF16) (#26268)
Signed-off-by: Shivam <shivampr.dev@gmail.com>
2025-10-20 07:48:01 -07:00
e93ff6c8b9 Nemotron Nano V2 VL + EVS Video Support (#27107)
Signed-off-by: Eugene Khvedchenia <ekhvedchenia@nvidia.com>
Signed-off-by: Natan Bagrov <nbagrov@nvidia.com>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Natan Bagrov <nbagrov@nvidia.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-20 22:19:11 +08:00
1c691f4a71 AArch64 CPU Docker pipeline (#26931) 2025-10-20 07:09:40 -04:00
9fce7bee74 [Kernel] Accelerate solve_tril with TMA (#26746)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-10-20 05:39:02 +00:00
b63f2143f8 [LoRA] LoRA cuda graph specialization (#25914)
Signed-off-by: Andy Lo <andy@mistral.ai>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-20 04:21:09 +00:00
f32bf7582e [Model][VLM] Support Bee-8B Model (#27012)
Signed-off-by: uyzhang <yi.zhang.4096@gmail.com>
Signed-off-by: Yi Zhang <zhangyi970819@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-20 02:31:26 +00:00
8a81d776ce Fix typo in ValueError message: use kv_role instead of kv_disagg_role (#27166)
Signed-off-by: Yongtao Huang <yongtaoh2022@gmail.com>
2025-10-19 19:47:19 +00:00
f6fdacd82c [Bugfix] Fix error with penalties when speculative decoding and structural output are enabled (#26586)
Signed-off-by: southfreebird <yvorott@gmail.com>
2025-10-19 19:24:46 +00:00
d31f7844f8 [Misc] Move utils to avoid conflicts with stdlib, and move tests (#27169)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-19 05:20:55 -07:00
7a6c8c3fa1 [Chore] Separate out vllm.utils.network_utils (#27164)
Signed-off-by: iAmir97 <Amir.balwel@embeddedllm.com>
Co-authored-by: iAmir97 <Amir.balwel@embeddedllm.com>
2025-10-19 03:06:32 -07:00
221bf72577 output type conversion fix (#27159) 2025-10-19 08:10:07 +00:00
b3aba04e5a [Benchmark] Convenience script for multiple parameter combinations (#27085)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-18 23:57:01 -07:00
8a297115e2 [Chore] Separate out hashing utilities from vllm.utils (#27151)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-10-19 11:09:38 +08:00
191eed0bb9 [BugFix] Fix lazy imports involving outlines_core (#27158)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-10-19 02:35:32 +00:00
fb860670da [Minor] Remove unused env variable (#27161) 2025-10-18 18:48:35 -07:00
83e760c57d [V1][Metrics][Plugin] Add plugin support for custom StatLoggerBase implementations (#22456)
Signed-off-by: tovam <tovam@pliops.com>
2025-10-18 15:12:46 -07:00
c2bba69065 [BugFix] Disable fp8 kv-cache by default for DeepSeek V3.2 (#27121)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-18 22:05:23 +00:00
e133d6d218 [BugFix] fix graph partition signature (#27139)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
2025-10-18 17:34:36 -04:00
a1946c9f61 [Chore] Separate out profiling utilities from vllm.utils (#27150)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-10-18 19:12:01 +00:00
9f020f4f31 [BugFix] Fix failing gemma-3-1b-it test: test_lm_eval_accuracy_v1_engine[google/gemma-3-1b-it] (#27111)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-10-18 12:44:39 -06:00
3b45075206 [Minor] Add some clarifying comments to recent changes (#27130)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-18 09:52:45 -07:00
168e578efc Fix incorrect string formatting in barrier timeout exceptions (#27149)
Signed-off-by: Yongtao Huang <yongtaoh2022@gmail.com>
2025-10-18 09:51:57 -07:00
6ac5e06f7c [Chore] Clean up pytorch helper functions in vllm.utils (#26908)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: isotr0py <2037008807@qq.com>
2025-10-18 09:48:22 -07:00
5c2acb270a [Models][QwenVL] Remove unnecessary .contiguous() calls (#27106)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-10-18 07:05:05 -07:00
b26b70bec4 [Misc] Refactor get_kv_cache_spec into AttentionLayerBase (#26587)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-18 13:51:21 +00:00
ab4be40fc5 [fix][cpu] fix prefill attention in CPU attention backend (#27035)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
2025-10-18 13:30:21 +00:00
245e4f2c01 [Feature] Batch Invariant: Support DeepGEMM and Blackwell (#27127)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-18 09:28:05 -04:00
1d165d6d85 [Chore] Separate out vllm.utils.mem_utils (#27143)
Signed-off-by: iAmir97 <Amir.balwel@embeddedllm.com>
Signed-off-by: iAmir97 <71513472+iAmir97@users.noreply.github.com>
Co-authored-by: iAmir97 <Amir.balwel@embeddedllm.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-18 10:06:59 +00:00
83004020fd [Test] Add test for /health endpoint on engine failure (#26074)
Signed-off-by: dongbo910220 <1275604947@qq.com>
2025-10-18 09:59:05 +00:00
12e21701e7 [DOC][FEATURES][CPU]update cpu feature for v1 (#27135)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2025-10-18 01:10:45 -07:00
30a33b92ee [Misc] Rev DeepEP (#27122)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-10-18 14:54:29 +08:00
7c572544e4 [GPT-OSS] Structure_Tag support for gpt-oss tool-call in cot (#25515)
Signed-off-by: Hanchenli <lihanc2002@gmail.com>
Signed-off-by: Hanchenli <61769611+Hanchenli@users.noreply.github.com>
Signed-off-by: Wei Wei <wwei6@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Wei Wei <wwei6@meta.com>
Co-authored-by: Wei Wei <weiweinpu@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-10-17 21:55:54 -07:00
c312320764 [CI/Build] tests(v1): feed Triton attention the (num_blocks, 2, …) KV cache layout in backend-correctness tests (#26663)
Signed-off-by: Huamin Li <3ericli@gmail.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-10-17 21:11:26 -07:00
c981f0ea78 [Perf] Add H100 fused MoE config (#25398)
Signed-off-by: zitian.zhao <zitian.zhao@tencentmusic.com>
2025-10-18 02:21:27 +00:00
6367bde739 [BugFix][Core] Fix error when enable async-scheduling in multi-node env (#25887)
Signed-off-by: Lehua Ding <lehuading@tencent.com>
Signed-off-by: Lehua Ding <lehuading@qq.com>
Co-authored-by: Benjamin Chislett <chislett.ben@gmail.com>
2025-10-17 22:16:18 +00:00
f50cc221ea [Test] Make test_failure more stable for batch invariance (#27054) 2025-10-17 16:59:08 -04:00
acedc74b1a [V1][Spec Decode] Fix greedy temperature detection after sampler refactor (#27077)
Signed-off-by: Pradyun Ramadorai <pradyunr@amazon.com>
Co-authored-by: Pradyun Ramadorai <pradyunr@amazon.com>
2025-10-17 13:27:47 -07:00
d29483b58a [Minor] Remove unnecessary error message (#27115)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
2025-10-17 20:02:12 +00:00
950cf9e58e [Bugfix] Use PIECEWISE cudagraphs on Blackwell if max_model_len > 131072 (#27114)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-17 19:47:18 +00:00
3125d79950 [Chore] Remove unused PolyNorm layer (#27110)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-17 19:03:43 +00:00
e33ee23ee3 [Bugfix] [AITER] [ROCm] Fix Quark MoE Quant Config and AITER Fused MoE quant type logic (#27029)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-10-17 12:51:10 -06:00
b10c64c834 [ROCm][Bugfix][Model] Fix illegal memory access when running qwen3_moe models with rms_norm (Qwen3-235B-A22B, Qwen3-30B-A3B, etc.) (#26192)
Signed-off-by: Randall Smith <ransmith@amd.com>
Signed-off-by: Randall Smith <Randall.Smith@amd.com>
Signed-off-by: rasmith <Randall.Smith@amd.com>
Co-authored-by: Randall Smith <ransmith@amd.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-17 14:17:18 -04:00
0925b28a8e [ROCM] MoE fp4 CK kernel (#26545)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
2025-10-17 14:06:33 -04:00
99722d5f0e [CI] Remove forbidden slash (#27112)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-17 09:38:00 -07:00
4c91a28e30 [bugfix] Qwen3-VL fix video incorrect timestamp calculations while do_sample_frames=True (#27104)
Co-authored-by: 松灵 <wpf272043@alibaba-inc.com>
2025-10-17 16:26:33 +00:00
b038d9c40c [Data-parallel] Allow DP>1 for world_size > num_gpus on node (8) (#26367)
Signed-off-by: Patrick von Platen <patrick.v.platen@gmail.com>
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Rui Qiao <ruisearch42@gmail.com>
2025-10-17 08:24:42 -07:00
2ba60ec7fe [CI] Nixl integration tests (#27010)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-17 07:13:31 -07:00
bd7157a071 [torch.compile] Enable attention and allreduce fusion without custom ops enabled (#24604)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-17 08:10:23 -06:00
be429d0cfd Fix incorrect docstring for stop_profile() method (#27101)
Signed-off-by: Yongtao Huang <yongtaoh2022@gmail.com>
2025-10-17 06:30:23 -07:00
c253745eb8 [Harware][AMD][Model] Triton MoE tuning configs for GLM-4.5 for MI350 and MI355 (#25586)
Signed-off-by: Reima Karhila <reima.karhila@amd.com>
Signed-off-by: xaguilar <Xavier.AguilarFruto@amd.com>
Co-authored-by: xaguilar <Xavier.AguilarFruto@amd.com>
2025-10-17 04:56:12 -07:00
daec4d2624 [Model]Improve Qwen3VLMoeForConditionalGeneration packed_modules_mapping (#27096)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-17 04:47:00 -07:00
6c9fdbf725 [Docs] Replace rst style double-backtick with md single-backtick (#27091)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-17 02:47:34 -07:00
483ea64611 [Docs] Replace all explicit anchors with real links (#27087)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-17 02:22:06 -07:00
e20eba753b [VLM][Refactor] Remove useless func get_input_positions in MRotaryEmbedding (#27088)
Signed-off-by: MengqingCao <cmq0113@163.com>
2025-10-17 02:00:30 -07:00
bbc1b29665 Update troubleshooting.md and remind VLLM_TRACE_FUNCTION usage (#27069)
Signed-off-by: cong-meta <prowindy@hotmail.com>
2025-10-17 01:53:06 -07:00
acb1bfa601 [CI] fix docs build failed (#27082)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-10-17 07:53:40 +00:00
75c7ad9918 [Kernel][Performance] Fuse float cast and renormalize to topk softmax kernel (#26717)
Signed-off-by: zhuhaoran <zhuhaoran.zhr@alibaba-inc.com>
Signed-off-by: izhuhaoran <izhuhaoran@qq.com>
2025-10-17 07:30:35 +00:00
5550ff9c25 [CI/Build] Update compressed tensor test path to fix CPU CI (#27068)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-10-16 22:34:56 -07:00
3aeb19a39e [Model] Add support for LightOnOCR (#26916)
Signed-off-by: Said Taghadouini <taghadouinisaid@gmail.com>
Signed-off-by: Said Taghadouini <84044788+staghado@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-10-17 05:05:24 +00:00
8c017b3490 [Model] Always use Transformers backend for PaliGemma and Gemma3-MM (#26715)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-17 05:03:35 +00:00
9c2c2287a0 [CI/Build] Update Llama4 eval yaml (#27070)
Signed-off-by: zhewenli <zhewenli@meta.com>
2025-10-17 04:59:47 +00:00
fec2b341ad [Kernel] Lazy import FlashInfer (#26977) 2025-10-17 04:48:18 +00:00
87bc0c492f [Bugfix] Fix ReplicatedLinearWithLoRA (#27065)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-17 04:43:16 +00:00
fe3b9372ad [Core] Change execute_model_with_error_logging() to be a ctx manager (#27060)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-17 11:45:32 +08:00
bde9e2272a [Bugfix][Qwen] fixes the weights dtype in qwen3_next: it is actually a bfloat16 (#27030)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-10-17 03:37:52 +00:00
08405609cc disable graph partition in custom op (#26952)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
Signed-off-by: Boyuan Feng <fby.1994@gmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-17 11:08:47 +08:00
ab81379ea6 [Perf] Exploit out-of-band buffers in shm_broadcast (#26961)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-16 20:08:03 -07:00
4ffd6e8942 [Docs] Reduce custom syntax used in docs (#27009)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-16 20:05:34 -07:00
965c5f4914 vllm bench serve shows num of failed requests (#26478)
Signed-off-by: Tomas Ruiz <tomas.ruiz.te@gmail.com>
2025-10-16 19:55:09 -07:00
4d055ef465 Remove unused imports (#26972)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-10-16 19:51:17 -07:00
17c540a993 [torch.compile] fix simple inductor graph partition test (#27050)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
2025-10-16 21:09:36 -04:00
4d4d6bad19 [Chore] Separate out vllm.utils.importlib (#27022)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-17 00:48:59 +00:00
11ae016bd7 [torch.compile] Passing only necessary compilation config to inductor pass config (#27041)
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Lucia (Lu) Fang <fanglu@meta.com>
2025-10-17 00:01:52 +00:00
41d3071918 [NVIDIA] [Perf] Update to leverage flashinfer trtllm FP4 MOE throughput kernel (#26714)
Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-16 16:20:25 -07:00
fb5e10d3fb Refactor Transformers backend to use mixins (#26906)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-16 21:50:39 +00:00
b2f78cbad4 [small][batch invariance] Rename the env and internal flags to simplify usage (#26855)
Signed-off-by: Bram Wasti <bwasti@meta.com>
2025-10-16 21:40:25 +00:00
23583ee28c [Bug] Add Assertion for random-input-len / random-output-len (#26834)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-16 21:36:39 +00:00
01c977e96d [CI] Prune Quantization Tests and skip compilation (#27038)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-16 17:26:35 -04:00
b3dda72c23 [Feature] Migrate DeepGEMM API from get_m_alignment_for_contiguous_layout to get_mk_alignment_for_contiguous_layout (#26935)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-16 16:46:48 -04:00
fb0571b077 [GPTOSS][DP/EP][Marlin] Enable GPTOSS Batched DP/EP using Marlin kernels (#25997)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-10-16 12:53:11 -07:00
2ed8b6b3d0 [Bug] Fix batch invariant test has to is (#27032)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-16 19:45:14 +00:00
013abde6ef Adding Warmup to Benchmark Serving (#26943)
Signed-off-by: Kimbo Chen <chentenghung@gmail.com>
2025-10-16 12:44:32 -07:00
a5464dcf92 [Compressed Tensors] Always clone output for compile robustness (#26849)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-16 19:29:59 +00:00
ac3ed5a815 Support block size of 256 used by Intel HPU (#26883)
Signed-off-by: mandy-li <mandy.j.li@intel.com>
2025-10-16 15:10:57 -04:00
e6ba2000ae [gpt-oss][1/N] EZ: refactor serving_responses for modularity (#26948)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-10-16 18:44:06 +00:00
aa255ff55a Support set in the CLI generation (#27031)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-16 18:07:18 +00:00
7bb736d00e Fix Qwen2.5 VL image grid docstring (#27033)
Signed-off-by: zitian zhao <zitian.zhao@tencentmusic.com>
2025-10-16 09:57:36 -07:00
9f4e30904b [Model] Fix Qwen3VL mm mapping (#27027)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-16 09:45:59 -07:00
5afd3276df [Feature] Add process_weights_after_loading to AttentionImpl (#26870)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-10-16 08:02:30 -07:00
43721bc67f [CI] Replace large models with tiny alternatives in tests (#24057)
Signed-off-by: Tahsin Tunan <tahsintunan@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-16 15:51:27 +01:00
02d709a6f1 [docs] standardize Hugging Face env var to HF_TOKEN (deprecates HUGGING_FACE_HUB_TOKEN) (#27020)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-10-16 15:31:02 +01:00
4a510ab487 [NIXL] Improve request_finished() debug logs (#25665)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-10-16 15:55:17 +02:00
314fa8abbf [Attention] Tune CUTLASS MLA num_splits (#26846)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-16 06:36:09 -07:00
334535b6fb [Benchmark] Show E2EL by default for pooling models (#27014)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-16 12:47:09 +00:00
dcbb3f1871 [Bugfix] Correct LayerNorm epsilon parameter in modernbert.py (#27008)
Signed-off-by: bogdanm <152898065+bogdan01m@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-16 12:27:44 +00:00
00417f4e44 [MISC] fix import violations for re and triton modules (#26654)
Signed-off-by: Sungjae Lee <33976427+llsj14@users.noreply.github.com>
Co-authored-by: Mengqing Cao <cmq0113@163.com>
2025-10-16 03:38:27 -07:00
ed344f4116 Cleanup code after Python 3.10 upgrade (#26520)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-10-16 03:38:23 -07:00
e51928793e [Model][Bugfix] fix ernie45 vl run failed from shared experts optimization (#26885)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-10-16 03:37:35 -07:00
d2740fafbf [Chore] Separate out vllm.utils.collections (#26990)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-16 08:35:35 +00:00
17838e50ef [Benchmark] Use truncation by default for pooling benchmarks (#26992)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-16 16:02:39 +08:00
44c8555621 [CI/Build] Fix AMD import failures in CI (#26841)
Signed-off-by: zhewenli <zhewenli@meta.com>
2025-10-16 07:28:20 +00:00
f7d318de2b [Hardware][CPU][PowerPC]Disable torch.compile() in toptopk sampling (#26987)
Signed-off-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
Co-authored-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
2025-10-15 22:36:59 -07:00
76f0d05bc6 [CI/Build] Update expected beam search output for Phi3V (#26978)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-16 05:12:44 +00:00
7d8975de84 Deepseek-v3 Batch Invariant on 8xH100 (#26609)
Signed-off-by: Bram Wasti <bwasti@meta.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-15 22:06:02 -07:00
785d8b6410 [PERF] Qwen3-next MTP speedup (change bool mask indexing to index_select / index_copy to reduce d2h) (#26437)
Signed-off-by: Vadim Gimpelson <vadim.gimpelson@gmail.com>
2025-10-16 12:18:31 +08:00
f6cdc9a02f [Chore] Rename utils submodules (#26920)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-16 03:58:13 +00:00
509cdc0370 [DOC][XPU]update feature parity with Intel GPU (#26954)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2025-10-15 20:07:10 -07:00
9b6504c307 [BugFix] Work around graph partition x torch.compile cache issue (#26956)
Signed-off-by: Richard Zou <zou3519@gmail.com>
2025-10-15 20:06:11 -07:00
e19b16dde6 [bugfix] Fix SP + PP without specifying compile size (#26955)
Signed-off-by: angelayi <yiangela7@gmail.com>
2025-10-15 20:05:33 -07:00
582f2c6be7 [BUG] Allow runai_streamer_sharded in config check (#26958)
Signed-off-by: ahao-anyscale <ahao@anyscale.com>
2025-10-15 20:05:14 -07:00
f8a0acbdbe [CI] Enable Blackwell Llama4 MoE tests (#26731)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-15 21:02:57 -06:00
1317034379 [ROCm][FEAT] Fuse DeepSeek shared experts into AITER fused_moe ops (#24097)
Signed-off-by: chenjun <junchen2@amd.com>
Signed-off-by: kliuae <kuanfu.liu@embeddedllm.com>
Co-authored-by: valarLip <103567126+valarLip@users.noreply.github.com>
Co-authored-by: TJian <tunjian.tan@embeddedllm.com>
2025-10-16 10:41:34 +08:00
0ecc553ee6 [Bugfix] reasoning_parser parameter handling in run_batch.py (#26225)
Signed-off-by: inc-jeong <inc.jeong@navercorp.com>
Signed-off-by: InChang Jeong <inc.jeong@navercorp.com>
Co-authored-by: USER <user@AL02367916.local>
2025-10-16 10:24:05 +08:00
f96bc3649c [Qwen3-Next] Add tuned MoE config for Qwen3-Next FP8 on H100 tp2 (#26887)
Signed-off-by: Felix Zhu <felixzhu555@gmail.com>
2025-10-15 18:55:05 -07:00
938c43ea7f [ci] Adjusting AMD test composition 2025-10-14 (#26852)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-10-15 23:52:13 +00:00
0a9ef0cfce Move query quantization to attention layer for Flashinfer & Triton. (#26534)
Signed-off-by: adabeyta <aabeyta@redhat.com>
Signed-off-by: Adrian Abeyta <aabeyta@redhat.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-15 19:01:38 -04:00
e5b438a247 [Bug] Temporally Disable VLLM_ALLREDUCE_USE_SYMM_MEM by Default (#26925)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-15 16:18:50 -04:00
0b99f5d302 support flashinfer_fp4 moe for 5090 gpu (#26669)
Signed-off-by: XiaobingSuper <xiaobingzhangupc@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-15 15:06:47 -04:00
1f491aa0c8 Vectorize RMS norm variance using vectorize_read_with_alignment (#26234)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-15 11:54:41 -07:00
de92d916fe [NVIDIA] Add support for cudnn fp4 gemm via flashinfer (#26107)
Signed-off-by: kaixih <kaixih@nvidia.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-10-15 13:53:00 -04:00
a1063628a4 [Chore] Clean up CODEOWNERS (#26923)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-10-15 10:52:54 -07:00
d796375258 [ModelOpt] Remove NVFP4 MoE K%16==0 constraint (#26891)
Signed-off-by: XiaobingSuper <xiaobingzhangupc@gmail.com>
2025-10-15 13:06:17 -04:00
14f8456344 [Feature]: Use pydantic validation in observability.py config (#26637)
Signed-off-by: Samuel Wu <cernunnos1710@gmail.com>
Signed-off-by: Sam/Samuel <57896620+cern1710@users.noreply.github.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-15 16:44:03 +00:00
4794c2bd92 Olmo 3 tool parser and tests (#26143)
Signed-off-by: Pradeep Dasigi <pradeepd@allenai.org>
2025-10-15 16:36:12 +00:00
d3cbaa08dc Lower sevarity of log when model info cache misses due to exception (#26917)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-15 09:01:09 -07:00
828523ad8e [Chore] Separate out vllm.utils.async_utils (#26913)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-15 15:33:00 +00:00
136a17fe6e [Chore] Separate out vllm.utils.func (#26904)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-15 13:03:58 +00:00
f57438338d [BugFix] Patch inductor memory plan logic (#26878)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-15 12:51:45 +00:00
5d598680e3 chore: remove unused marker (#26890)
Signed-off-by: Max Wittig <max.wittig@siemens.com>
2025-10-15 05:40:33 -07:00
8f4b313c37 [Misc] rename torch_dtype to dtype (#26695)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-10-15 12:11:48 +00:00
f93e348010 [Misc] Remove isort and yapf ignores (#26888)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-15 12:09:03 +00:00
f54f85129e [Model][2/N] Improve all pooling task | Support multi-vector retrieval (#25370)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-10-15 11:14:41 +00:00
d4d1a6024f [Lora]Load tuned multi-lora kernel configs from json files (#26319)
Signed-off-by: li2haipeng <44383182+li2haipeng@users.noreply.github.com>
Signed-off-by: Haipeng Li <li2haipeng@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-15 09:45:14 +00:00
db1764e4e0 [Platform] allow platform to init dp group (#22243)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-10-15 02:32:17 -07:00
7f83b4ee8e [Easy] Get rid of unnecessary paraenthesis in kv_cache_manager (#26842)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-10-15 09:17:43 +00:00
5c3bae1a6a [Fix] Remove divisibility requirement between num_kv_heads and tp_size in bailing_moe (#26876)
Signed-off-by: vito.yy <vito.yy@antgroup.com>
2025-10-15 16:44:04 +08:00
5210dc3940 [Misc] Update TritonLanguagePlaceholder to have attributes that are used by Flash Linear Attention ops. (#26853)
Co-authored-by: Xudong Ma <mxd@meta.com>
2025-10-15 08:37:49 +00:00
650b51f9f9 [doc] add Context Parallel Deployment doc (#26877)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-10-15 16:33:52 +08:00
6256697997 [Doc] ruff format remaining Python examples (#26795)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-15 01:25:49 -07:00
71557a5f7c [CI] Fix mypy for vllm/executor (#26845)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-15 01:23:33 -07:00
f3c378ffa7 [CI/Build] Add Qwen2.5-VL-7B-Instruct ChartQA Accuracy Tests in CI (#21810)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
Signed-off-by: zhewenli <zhewenli@meta.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
Co-authored-by: Ye (Charlotte) Qi <ye.charlotte.qi@gmail.com>
2025-10-15 08:09:56 +00:00
f5ed68ef63 [Deepseek-V3.2][Kernel] Integrate cuda indexer k cache gather (#26456)
Signed-off-by: Yongye Zhu <zyy1102000@gmail.com>
2025-10-15 16:05:01 +08:00
efdef57b1f [bugfix] Lazy import cv2 (#26869)
Signed-off-by: angelayi <yiangela7@gmail.com>
2025-10-15 07:47:50 +00:00
b8a4572157 [Misc] Use helper function to generate dummy messages in OpenAI MM tests (#26875)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-15 07:17:37 +00:00
302ef403a2 [DSA][MLA] Tiny refactor on DeepSeek to make it reusable for different backends (#26656)
Signed-off-by: MengqingCao <cmq0113@163.com>
2025-10-15 00:16:44 -07:00
8865da157b [Bugfix][Multi Modal] Fix incorrect Molmo token processing (#26873)
Signed-off-by: sanghol <sanghol@allenai.org>
2025-10-15 07:13:59 +00:00
f0862eae43 [Graph Partition] pass tests for decorator (#26831)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
2025-10-15 06:39:48 +00:00
8c851f6d04 [Bugfix] Fix qwen3-omni audio truncation issue (#26815)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-15 05:38:36 +00:00
7cfa420f49 [BugFix] Patch inductor partitioning logic (#26735)
Signed-off-by: angelayi <yiangela7@gmail.com>
2025-10-15 05:04:32 +00:00
a27b288e4a [Feature] default --extra-body param to disable thinking in vllm bench serve (#26784)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-10-15 04:23:44 +00:00
e471d7ca7e [CI/Build][Bugfix] fix qutlass cmake error when set QUTLASS_SRC_DIR (#26773)
Signed-off-by: izhuhaoran <izhuhaoran@qq.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-10-15 04:09:44 +00:00
c43ca8259e [Docs] Move build.inc into arm.inc (#26862)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-10-14 20:35:08 -07:00
85a65e7f51 [Model] Add DeepSeek-V3.1 reasoning parser (split from PR #24972) (#25589)
Signed-off-by: taohui <taohui3@gmail.com>
Signed-off-by: Tao Hui <taohui3@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-10-15 11:09:52 +08:00
a2986b3e33 [Bugfix] Fixes prefix-repetition benchmark script (#26828)
Signed-off-by: Kourosh Hakhamaneshi <Kourosh@anyscale.com>
2025-10-15 02:54:43 +00:00
96b9aa5aa0 [Frontend][torch.compile] CompilationConfig Overhaul (#20283): name change compilation level to compilation mode, deprecation compilation level (#26355)
Signed-off-by: morrison-turnansky <mturnans@redhat.com>
Signed-off-by: Morrison Turnansky <mturnans@redhat.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-15 02:51:16 +00:00
e66d787bce Disable FlashInfer sampler by default (#26859)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-15 02:35:18 +00:00
bfad142e25 [BUGFIX][NIXL] quick fix for 'assert self.connector_worker is not None' in get_kv_connector_stats (#26851)
Signed-off-by: Chendi Xue <chendi.xue@intel.com>
2025-10-15 02:33:25 +00:00
9354660036 [Bugfix]fix Qwen3 xml tool parser (#26345)
Signed-off-by: Zhikaiiii <1658973216@qq.com>
2025-10-15 09:50:30 +08:00
07ca70af8d [Core][Easy] Use envs.__getattr__ for all Unify to environment variable access (#26810)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-10-15 01:41:18 +00:00
2dcd12d357 [torch.compile] Fix tests for torch==2.9 inductor partition (#26116)
Signed-off-by: ProExpertProg <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
2025-10-14 19:55:02 -04:00
579d2e5458 [WideEP][P/D] Add usage stats for DP+EP and KV Connector (#26836)
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-10-14 23:51:54 +00:00
0512c04aee [frontend][gptoss] Add per turn stats into Harmony Context (#25061)
Signed-off-by: lacora <hyelacora@gmail.com>
Co-authored-by: Ye Hu <yehu@fb.com>
2025-10-14 16:48:13 -07:00
7e0ef4084a [CI Failure] Fix torchao dep failure for Quantization Test (#26824)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-14 16:41:43 -07:00
4aed506b65 [Core] Streamline some structured output related code (#26737)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-14 23:27:44 +00:00
a86b4c58e8 remove attn output view kernel (#26680)
Signed-off-by: Boyuan Feng <boyuan@meta.com>
Signed-off-by: Boyuan Feng <fby.1994@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-14 22:53:10 +00:00
ff4810ba73 [Minor] Group async_scheduling related fields in model runner init (#26736)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-10-14 14:46:37 -07:00
9d6964926e fix: response_format for completion (#23212)
Signed-off-by: Nan2018 <qinnanjoshua@gmail.com>
2025-10-14 21:23:22 +00:00
0e65818910 Added MoE configs for llama 4, H200 device with tp=4/8 tuning (#26837)
Signed-off-by: Dhruvil Bhatt <bhattdbh@amazon.com>
2025-10-14 14:21:03 -07:00
380f17527c [Perf] Cache vllm.env.__getattr__ result to avoid recomputation (#26146)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-10-14 17:03:21 -04:00
b92ab3deda Notice for deprecation of AutoAWQ (#26820)
Signed-off-by: HDCharles <39544797+HDCharles@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-14 13:39:59 -07:00
acaa2c0a4a [Core] Reuse empty block lists whenever possible in KVCacheBlocks to mitigate GC costs (#24964)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-10-14 12:58:43 -07:00
82af928c41 [Attention][Spec Decode] FlashMLA spec decode support (#26541)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-14 19:38:20 +00:00
87efc681db llama4_vision_rope: add HIP override to accept (q, k) and avoid (positions, q, k) mismatch (#26790)
Signed-off-by: Huamin Li <3ericli@gmail.com>
2025-10-14 11:54:12 -07:00
879 changed files with 39016 additions and 14905 deletions

View File

@ -0,0 +1,12 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.419
- name: "exact_match,flexible-extract"
value: 0.416
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,12 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh -m meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 -l 100 -t 8
model_name: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
backend: "vllm-vlm"
tasks:
- name: "chartqa"
metrics:
- name: "relaxed_accuracy,none"
# TODO(zhewenl): model card is 0.90, but the actual score is 0.80.
value: 0.80
limit: 100
num_fewshot: 0

View File

@ -0,0 +1,10 @@
# For hf script, without -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-mmlupro-vllm-baseline.sh -m meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 -l 250 -t 8 -f 5
model_name: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
tasks:
- name: "mmlu_pro"
metrics:
- name: "exact_match,custom-extract"
value: 0.80
limit: 250 # will run on 250 * 14 subjects = 3500 samples
num_fewshot: 5

View File

@ -1,4 +1,5 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -b auto -l 1319 -f 5 -t 1
# For vllm script, with -t option (tensor parallel size)
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -l 1319 -t 1
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
tasks:
- name: "gsm8k"

View File

@ -0,0 +1,12 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh -m Qwen/Qwen2.5-VL-7B-Instruct -l 2500 -t 1
model_name: "Qwen/Qwen2.5-VL-7B-Instruct"
backend: "vllm-vlm"
tasks:
- name: "chartqa"
metrics:
- name: "relaxed_accuracy,none"
value: 0.855
limit: 2500
num_fewshot: 0

View File

@ -0,0 +1 @@
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8.yaml

View File

@ -0,0 +1 @@
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8-MM.yaml

View File

@ -0,0 +1 @@
Qwen2.5-VL-7B-Instruct.yaml

View File

@ -0,0 +1,44 @@
#!/bin/bash
# We can use this script to compute baseline accuracy on chartqa for vllm.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.9
usage() {
echo``
echo "Runs lm eval harness on ChartQA using multimodal vllm."
echo "This pathway is intended to be used to create baselines for "
echo "our correctness tests in vllm's CI."
echo
echo "usage: ${0} <options>"
echo
echo " -m - huggingface stub or local directory of the model"
echo " -l - limit number of samples to run"
echo " -t - tensor parallel size to run at"
echo
}
while getopts "m:l:t:" OPT; do
case ${OPT} in
m )
MODEL="$OPTARG"
;;
l )
LIMIT="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
lm_eval --model vllm-vlm \
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE" \
--tasks chartqa \
--batch_size auto \
--apply_chat_template \
--limit $LIMIT

View File

View File

@ -0,0 +1,50 @@
#!/bin/bash
# We can use this script to compute baseline accuracy on MMLUPRO for vllm.
# We use this for fp8, which HF does not support.
#
# Make sure you have lm-eval-harness installed:
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
usage() {
echo``
echo "Runs lm eval harness on MMLU Pro using huggingface transformers."
echo "This pathway is intended to be used to create baselines for "
echo "our automated nm-test-accuracy workflow"
echo
echo "usage: ${0} <options>"
echo
echo " -m - huggingface stub or local directory of the model"
echo " -l - limit number of samples to run"
echo " -f - number of fewshot samples to use"
echo " -t - tensor parallel size to run at"
echo
}
while getopts "m:b:l:f:t:" OPT; do
case ${OPT} in
m )
MODEL="$OPTARG"
;;
b )
BATCH_SIZE="$OPTARG"
;;
l )
LIMIT="$OPTARG"
;;
f )
FEWSHOT="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done
lm_eval --model vllm \
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,add_bos_token=true,trust_remote_code=true,max_model_len=4096" \
--tasks mmlu_pro --num_fewshot "$FEWSHOT" --limit "$LIMIT" \
--batch_size auto

View File

@ -19,21 +19,27 @@ RTOL = 0.08
def launch_lm_eval(eval_config, tp_size):
trust_remote_code = eval_config.get("trust_remote_code", False)
max_model_len = eval_config.get("max_model_len", 4096)
batch_size = eval_config.get("batch_size", "auto")
backend = eval_config.get("backend", "vllm")
model_args = (
f"pretrained={eval_config['model_name']},"
f"tensor_parallel_size={tp_size},"
f"enforce_eager=true,"
f"add_bos_token=true,"
f"trust_remote_code={trust_remote_code},"
f"max_model_len={max_model_len}"
f"max_model_len={max_model_len},"
)
results = lm_eval.simple_evaluate(
model="vllm",
model=backend,
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
batch_size="auto",
# TODO(yeq): using chat template w/ fewshot_as_multiturn is supposed help
# text models. however, this is regressing measured strict-match for
# existing text models in CI, so only apply it for mm.
apply_chat_template=backend == "vllm-vlm",
batch_size=batch_size,
)
return results

View File

@ -7,6 +7,7 @@ from importlib import util
import pandas as pd
pd.options.display.float_format = "{:.2f}".format
plotly_found = util.find_spec("plotly.express") is not None
@ -109,7 +110,10 @@ def compare_data_columns(
if len(compare_frames) >= 2:
base = compare_frames[0]
current = compare_frames[-1]
ratio = current / base
if "P99" in data_column or "Median" in data_column:
ratio = base / current # for latency
else:
ratio = current / base
ratio = ratio.mask(base == 0) # avoid inf when baseline is 0
ratio.name = f"Ratio 1 vs {len(compare_frames)}"
frames.append(ratio)
@ -199,6 +203,71 @@ def split_json_by_tp_pp(
return saved_paths
def _add_limit_line(fig, y_value, label):
# Visible dashed line + annotation
fig.add_hline(
y=y_value,
line_dash="dash",
line_color="red" if "ttft" in label.lower() else "blue",
annotation_text=f"{label}: {y_value} ms",
annotation_position="top left",
)
# Optional: add a legend item (as a transparent helper trace)
if plot and plotly_found:
import plotly.graph_objects as go
fig.add_trace(
go.Scatter(
x=[None],
y=[None],
mode="lines",
line=dict(
dash="dash", color="red" if "ttft" in label.lower() else "blue"
),
name=f"{label}",
)
)
def _find_concurrency_col(df: pd.DataFrame) -> str:
for c in [
"# of max concurrency.",
"# of max concurrency",
"Max Concurrency",
"max_concurrency",
"Concurrency",
]:
if c in df.columns:
return c
# Fallback: guess an integer-like column (harmless if unused)
for c in df.columns:
if df[c].dtype.kind in "iu" and df[c].nunique() > 1 and df[c].min() >= 1:
return c
return "# of max concurrency."
def _highlight_threshold(
df: pd.DataFrame, threshold: float
) -> "pd.io.formats.style.Styler":
"""Highlight numeric per-configuration columns with value <= threshold."""
conc_col = _find_concurrency_col(df)
key_cols = [
c
for c in ["Model", "Dataset Name", "Input Len", "Output Len", conc_col]
if c in df.columns
]
conf_cols = [
c for c in df.columns if c not in key_cols and not str(c).startswith("Ratio")
]
conf_cols = [c for c in conf_cols if pd.api.types.is_numeric_dtype(df[c])]
return df.style.map(
lambda v: "background-color:#e6ffe6;font-weight:bold;"
if pd.notna(v) and v <= threshold
else "",
subset=conf_cols,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
@ -220,6 +289,26 @@ if __name__ == "__main__":
default="# of max concurrency.",
help="column name to use as X Axis in comparison graph",
)
parser.add_argument(
"-l",
"--latency",
type=str,
default="p99",
help="take median|p99 for latency like TTFT/TPOT",
)
parser.add_argument(
"--ttft-max-ms",
type=float,
default=3000.0,
help="Reference limit for TTFT plots (ms)",
)
parser.add_argument(
"--tpot-max-ms",
type=float,
default=100.0,
help="Reference limit for TPOT plots (ms)",
)
args = parser.parse_args()
drop_column = "P99"
@ -234,12 +323,22 @@ if __name__ == "__main__":
"# of max concurrency.",
"qps",
]
data_cols_to_compare = ["Output Tput (tok/s)", "Median TTFT (ms)", "Median"]
html_msgs_for_data_cols = [
"Compare Output Tokens /n",
"Median TTFT /n",
"Median TPOT /n",
]
if "median" in args.latency:
data_cols_to_compare = ["Output Tput (tok/s)", "Median TTFT (ms)", "Median"]
html_msgs_for_data_cols = [
"Compare Output Tokens /n",
"Median TTFT /n",
"Median TPOT /n",
]
drop_column = "P99"
elif "p99" in args.latency:
data_cols_to_compare = ["Output Tput (tok/s)", "P99 TTFT (ms)", "P99"]
html_msgs_for_data_cols = [
"Compare Output Tokens /n",
"P99 TTFT /n",
"P99 TPOT /n",
]
if len(args.file) == 1:
files = split_json_by_tp_pp(args.file[0], output_root="splits")
@ -275,33 +374,83 @@ if __name__ == "__main__":
f"Expected subset: {filtered_info_cols}, "
f"but DataFrame has: {list(output_df.columns)}"
)
output_df_sorted = output_df.sort_values(by=existing_group_cols)
# output_df_sorted = output_df.sort_values(by=existing_group_cols)
output_df_sorted = output_df.sort_values(by=args.xaxis)
output_groups = output_df_sorted.groupby(existing_group_cols, dropna=False)
for name, group in output_groups:
html = group.to_html()
group_name = (
",".join(map(str, name)).replace(",", "_").replace("/", "-")
)
group_html_name = "perf_comparison_" + group_name + ".html"
metric_name = str(data_cols_to_compare[i]).lower()
if "tok/s" in metric_name:
html = group.to_html()
elif "ttft" in metric_name:
styler = _highlight_threshold(group, args.ttft_max_ms).format(
{c: "{:.2f}" for c in group.select_dtypes("number").columns},
na_rep="",
)
html = styler.to_html(
table_attributes='border="1" class="dataframe"'
)
elif (
"tpot" in metric_name
or "median" in metric_name
or "p99" in metric_name
):
styler = _highlight_threshold(group, args.tpot_max_ms).format(
{c: "{:.2f}" for c in group.select_dtypes("number").columns},
na_rep="",
)
html = styler.to_html(
table_attributes='border="1" class="dataframe"'
)
text_file.write(html_msgs_for_data_cols[i])
text_file.write(html)
with open(group_html_name, "a+") as sub_text_file:
sub_text_file.write(html_msgs_for_data_cols[i])
sub_text_file.write(html)
if plot and plotly_found:
import plotly.express as px
if plot and plotly_found:
import plotly.express as px
df = group[raw_data_cols]
df_sorted = df.sort_values(by=info_cols[y_axis_index])
# Melt DataFrame for plotting
df_melted = df_sorted.melt(
id_vars=info_cols[y_axis_index],
var_name="Configuration",
value_name=data_cols_to_compare[i],
)
title = data_cols_to_compare[i] + " vs " + info_cols[y_axis_index]
# Create Plotly line chart
fig = px.line(
df_melted,
x=info_cols[y_axis_index],
y=data_cols_to_compare[i],
color="Configuration",
title=title,
markers=True,
)
# Export to HTML
text_file.write(fig.to_html(full_html=True, include_plotlyjs="cdn"))
df = group[raw_data_cols]
df_sorted = df.sort_values(by=info_cols[y_axis_index])
# Melt DataFrame for plotting
df_melted = df_sorted.melt(
id_vars=info_cols[y_axis_index],
var_name="Configuration",
value_name=data_cols_to_compare[i],
)
title = (
data_cols_to_compare[i] + " vs " + info_cols[y_axis_index]
)
# Create Plotly line chart
fig = px.line(
df_melted,
x=info_cols[y_axis_index],
y=data_cols_to_compare[i],
color="Configuration",
title=title,
markers=True,
)
# ---- Add threshold lines based on metric name ----
if "ttft" in metric_name:
_add_limit_line(fig, args.ttft_max_ms, "TTFT limit")
elif (
"tpot" in metric_name
or "median" in metric_name
or "p99" in metric_name
):
_add_limit_line(fig, args.tpot_max_ms, "TPOT limit")
# Export to HTML
text_file.write(
fig.to_html(full_html=True, include_plotlyjs="cdn")
)
sub_text_file.write(
fig.to_html(full_html=True, include_plotlyjs="cdn")
)

View File

@ -63,9 +63,11 @@ serving_column_mapping = {
"mean_ttft_ms": "Mean TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"p99_ttft_ms": "P99 TTFT (ms)",
"std_ttft_ms": "STD TTFT (ms)",
"mean_tpot_ms": "Mean TPOT (ms)",
"median_tpot_ms": "Median",
"p99_tpot_ms": "P99",
"std_tpot_ms": "STD TPOT (ms)",
"mean_itl_ms": "Mean ITL (ms)",
"median_itl_ms": "Median ITL (ms)",
"p99_itl_ms": "P99 ITL (ms)",
@ -368,7 +370,7 @@ if __name__ == "__main__":
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
# we want to turn it into "8xGPUTYPE"
df["GPU"] = df["GPU"].apply(
lambda x: f"{len(x.splitlines())}x{x.splitlines()[0]}"
lambda x: "{}x{}".format(len(x.split("\n")), x.split("\n")[0])
)
# get markdown tables

View File

@ -471,6 +471,11 @@ main() {
mkdir -p $RESULTS_FOLDER
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
# dump vllm info via vllm collect-env
env_output=$(vllm collect-env)
echo "$env_output" >"$RESULTS_FOLDER/vllm_env.txt"
# benchmarking
run_serving_tests $QUICK_BENCHMARK_ROOT/tests/"${SERVING_JSON:-serving-tests$ARCH.json}"
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/"${LATENCY_JSON:-latency-tests$ARCH.json}"

View File

@ -1,28 +1,24 @@
[
{
"test_name": "latency_llama8B_tp1",
"test_name": "latency_llama8B_tp2",
"environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
{
"test_name": "latency_llama8B_tp4",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"num_iters_warmup": 5,
"num_iters": 15
}

View File

@ -95,6 +95,38 @@
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_bf16_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_bf16_tp2pp3_sharegpt",
"qps_list": ["inf"],
@ -233,6 +265,41 @@
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_bf16_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_bf16_tp2pp3_random_128_128",
"qps_list": ["inf"],
@ -365,6 +432,38 @@
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_sharegpt",
"qps_list": ["inf"],
@ -503,6 +602,41 @@
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int8_tp2pp3_random_128_128",
"qps_list": ["inf"],
@ -638,6 +772,39 @@
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp4_sharegpt",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_sharegpt",
"qps_list": ["inf"],
@ -780,6 +947,42 @@
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp4_random_128_128",
"qps_list": ["inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200, 1000],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"quantization": "awq",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 1000
}
},
{
"test_name": "serving_llama8B_int4_tp2pp3_random_128_128",
"qps_list": ["inf"],

View File

@ -2,7 +2,7 @@
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"max_concurrency_list": [32],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -28,13 +28,13 @@
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
"num_prompts": 32
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"max_concurrency_list": [32],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -60,13 +60,13 @@
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
"num_prompts": 32
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"test_name": "serving_llama8B_tp1_random_128_128",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"max_concurrency_list": [32],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -76,39 +76,7 @@
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
@ -124,16 +92,16 @@
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 100
"num_prompts": 32
}
},
{
"test_name": "serving_llama8B_pp6_random_1024_128",
"test_name": "serving_llama8B_tp2_random_128_128",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [12, 16, 24, 32, 64, 128, 200],
"max_concurrency_list": [32],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
@ -143,7 +111,7 @@
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 6,
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
@ -159,10 +127,150 @@
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-input-len": 128,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 100
"num_prompts": 32
}
},
{
"test_name": "serving_llama8B_tp1_random_128_2048",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [32],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 2048,
"ignore-eos": "",
"num_prompts": 32
}
},
{
"test_name": "serving_llama8B_tp2_random_128_2048",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [32],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 128,
"random-output-len": 2048,
"ignore-eos": "",
"num_prompts": 32
}
},
{
"test_name": "serving_llama8B_tp1_random_2048_128",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [32],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 2048,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 32
}
},
{
"test_name": "serving_llama8B_tp2_random_2048_128",
"qps_list": [1, 4, 16, "inf"],
"max_concurrency_list": [32],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 2048,
"random-output-len": 128,
"ignore-eos": "",
"num_prompts": 32
}
}
]

View File

@ -1,29 +1,24 @@
[
{
"test_name": "throughput_llama8B_tp1",
"test_name": "throughput_llama8B_tp2",
"environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_SGL_KERNEL": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
},
{
"test_name": "throughput_llama8B_tp4",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"enforce_eager": "",
"max_num_batched_tokens": 2048,
"max_num_seqs": 256,
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"

View File

@ -1,5 +1,5 @@
steps:
# aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
# aarch64 + CUDA builds
- label: "Build arm64 wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-arm64-cuda-12-9
@ -15,6 +15,21 @@ steps:
env:
DOCKER_BUILDKIT: "1"
# aarch64 build
- label: "Build arm64 CPU wheel"
depends_on: ~
id: build-wheel-arm64-cpu
agents:
queue: arm64_cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --build-arg VLLM_BUILD_ACL=ON --tag vllm-ci:build-image --target vllm-build --progress plain -f docker/Dockerfile.cpu ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.8"
depends_on: ~
id: build-wheel-cuda-12-8
@ -28,20 +43,6 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.6"
depends_on: ~
id: build-wheel-cuda-12-6
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-cuda-12-9
@ -55,6 +56,20 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 13.0"
depends_on: ~
id: build-wheel-cuda-13-0
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=13.0.1 --build-arg BUILD_BASE_IMAGE=nvidia/cuda:13.0.1-devel-ubuntu22.04 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
# Build release images (12.9)
- label: "Build release image (x86)"
depends_on: ~
id: build-release-image-x86
@ -62,13 +77,12 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
# re-tag to default image tag and push, just in case arm64 build fails
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
# PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
- label: "Build release image (arm64)"
depends_on: ~
id: build-release-image-arm64
@ -142,6 +156,22 @@ steps:
env:
DOCKER_BUILDKIT: "1"
- block: "Build arm64 CPU release image"
key: block-arm64-cpu-release-image-build
depends_on: ~
- label: "Build and publish arm64 CPU release image"
depends_on: block-arm64-cpu-release-image-build
agents:
queue: arm64_cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"
- label: "Build and publish nightly multi-arch image to DockerHub"
depends_on:
- create-multi-arch-manifest

View File

@ -70,7 +70,7 @@ function cpu_tests() {
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -x -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs"
# Note: disable it until supports V1
# Run AWQ test

View File

@ -58,33 +58,25 @@ python3 .buildkite/generate_index.py --wheel "$normal_wheel"
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
if [[ $normal_wheel == *"cu129"* ]]; then
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
else
echo "Skipping index files for non-cu129 wheels"
fi
# generate index for nightly
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
elif [[ $normal_wheel == *"cu128"* ]]; then
# if $normal_wheel matches cu128, do not upload the index.html
echo "Skipping index files for cu128 wheels"
else
if [[ $normal_wheel == *"cu129"* ]]; then
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
else
echo "Skipping index files for non-cu129 wheels"
fi
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"

View File

@ -50,7 +50,7 @@ steps:
- label: Async Engine, Inputs, Utils, Worker Test # 36min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
@ -63,7 +63,7 @@ steps:
- label: Async Engine, Inputs, Utils, Worker Test (CPU) # 4 mins
timeout_in_minutes: 10
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
@ -353,7 +353,7 @@ steps:
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: V1 Test others (CPU) # 5 mins
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
@ -395,7 +395,9 @@ steps:
- python3 offline_inference/basic/embed.py
- python3 offline_inference/basic/score.py
- python3 offline_inference/spec_decode.py --test --method eagle --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
# https://github.com/vllm-project/vllm/pull/26682 uses slightly more memory in PyTorch 2.9+ causing this test to OOM in 1xL4 GPU
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 1536
#- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
- label: Platform Tests (CUDA) # 4min
timeout_in_minutes: 15
@ -436,7 +438,11 @@ steps:
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
--ignore=lora/test_chatglm3_tp.py \
--ignore=lora/test_llama_tp.py \
--ignore=lora/test_llm_with_multi_loras.py
--ignore=lora/test_llm_with_multi_loras.py \
--ignore=lora/test_olmoe_tp.py \
--ignore=lora/test_deepseekv2_tp.py \
--ignore=lora/test_gptoss.py \
--ignore=lora/test_qwen3moe_tp.py
parallelism: 4
- label: PyTorch Compilation Unit Tests # 15min
@ -454,11 +460,12 @@ steps:
- pytest -v -s compile/test_fusion_attn.py
- pytest -v -s compile/test_functionalization.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_sequence_parallelism.py
- pytest -v -s compile/test_async_tp.py
# - pytest -v -s compile/test_sequence_parallelism.py
# - pytest -v -s compile/test_async_tp.py
- pytest -v -s compile/test_fusion_all_reduce.py
- pytest -v -s compile/test_decorator.py
- pytest -v -s compile/test_noop_elimination.py
- pytest -v -s compile/test_aot_compile.py
- label: PyTorch Fullgraph Smoke Test # 15min
timeout_in_minutes: 30
@ -473,8 +480,8 @@ steps:
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s compile/piecewise/
- label: PyTorch Fullgraph Test # 20min
timeout_in_minutes: 30
- label: PyTorch Fullgraph Test # 22min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
@ -484,17 +491,19 @@ steps:
- tests/compile
commands:
- pytest -v -s compile/test_full_graph.py
- pytest -v -s compile/test_fusions_e2e.py
- label: Kernels Core Operation Test # 48min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
- csrc/
- tests/kernels/core
- tests/kernels/test_top_k_per_row.py
commands:
- pytest -v -s kernels/core
- pytest -v -s kernels/core kernels/test_top_k_per_row.py
- label: Kernels Attention Test %N # 23min
timeout_in_minutes: 35
@ -603,8 +612,9 @@ steps:
# since torchao nightly is only compatible with torch nightly currently
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
# we can only upgrade after this is resolved
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
# TODO(jerryzh168): resolve the above comment
- uv pip install --system torchao==0.13.0
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
@ -631,7 +641,7 @@ steps:
- label: OpenAI-Compatible Tool Use # 23 min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
fast_check: false
@ -846,6 +856,18 @@ steps:
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Accuracy Eval (Small Models) # 50min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
timeout_in_minutes: 70
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- vllm/multimodal/
- vllm/inputs/
- vllm/v1/core/
commands:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
- label: Multi-Modal Models Test (Extended) 1
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
@ -921,8 +943,8 @@ steps:
# Whisper needs spawn method to avoid deadlock
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
- label: Blackwell Test # 21 min
timeout_in_minutes: 30
working_dir: "/vllm-workspace/"
gpu: b200
# optional: true
@ -935,8 +957,6 @@ steps:
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/fusion.py
- vllm/compilation/fusion_attn.py
commands:
- nvidia-smi
- python3 examples/offline_inference/basic/chat.py
@ -953,13 +973,32 @@ steps:
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_qutlass.py
- pytest -v -s tests/kernels/quantization/test_mxfp4_qutlass.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
# Fusion
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
- pytest -v -s tests/kernels/moe/test_flashinfer.py
- label: Blackwell Fusion Tests # 30 min
timeout_in_minutes: 40
working_dir: "/vllm-workspace/"
gpu: b200
source_file_dependencies:
- csrc/quantization/fp4/
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/
# can affect pattern matching
- vllm/model_executor/layers/layernorm.py
- vllm/model_executor/layers/activation.py
- vllm/model_executor/layers/quantization/input_quant_fp8.py
commands:
- nvidia-smi
- pytest -v -s tests/compile/test_fusion_attn.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
# this runner has 2 GPUs available even though num_gpus=2 is not set
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py
- label: Blackwell GPT-OSS Eval
timeout_in_minutes: 60
@ -1079,6 +1118,7 @@ steps:
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- VLLM_TEST_SAME_HOST=1 VLLM_TEST_WITH_DEFAULT_DEVICE_SET=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- pytest -v -s distributed/test_sequence_parallel.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
@ -1126,6 +1166,11 @@ steps:
- pytest -v -s plugins_tests/test_io_processor_plugins.py
- pip uninstall prithvi_io_processor_plugin -y
# end io_processor plugins test
# begin stat_logger plugins test
- pip install -e ./plugins/vllm_add_dummy_stat_logger
- pytest -v -s plugins_tests/test_stats_logger_plugins.py
- pip uninstall dummy_stat_logger -y
# end stat_logger plugins test
# other tests continue here:
- pytest -v -s plugins_tests/test_scheduler_plugins.py
- pip install -e ./plugins/vllm_add_dummy_model
@ -1169,7 +1214,7 @@ steps:
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_llm_with_multi_loras.py
- pytest -v -s -x lora/test_olmoe_tp.py
- label: Weight Loading Multiple GPU Test # 33min
timeout_in_minutes: 45
@ -1199,6 +1244,18 @@ steps:
commands:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
- label: NixlConnector PD accuracy tests (Distributed) # 30min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_4
timeout_in_minutes: 30
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py
- tests/v1/kv_connector/nixl_integration/
commands:
- uv pip install --system -r /vllm-workspace/requirements/kv_connectors.txt
- bash v1/kv_connector/nixl_integration/tp_config_sweep_accuracy_test.sh
##### multi gpus test #####
##### A100 test #####
@ -1230,12 +1287,16 @@ steps:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
##### H200 test #####
- label: Distrubted Tests (H200) # optional
- label: Distributed Tests (H200) # optional
gpu: h200
optional: true
working_dir: "/vllm-workspace/"
num_gpus: 2
commands:
- pytest -v -s tests/compile/test_async_tp.py
- pytest -v -s tests/compile/test_sequence_parallelism.py
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm
- pytest -v -s tests/distributed/test_context_parallel.py
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048

View File

@ -172,6 +172,8 @@ steps:
- tests/v1/engine/test_engine_core_client.py
- tests/distributed/test_symm_mem_allreduce.py
commands:
# https://github.com/NVIDIA/nccl/issues/1838
- export NCCL_CUMEM_HOST_ENABLE=0
# test with torchrun tp=2 and external_dp=2
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with torchrun tp=2 and pp=2
@ -349,7 +351,8 @@ steps:
- python3 offline_inference/basic/embed.py
- python3 offline_inference/basic/score.py
- python3 offline_inference/spec_decode.py --test --method eagle --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
# https://github.com/vllm-project/vllm/pull/26682 uses slightly more memory in PyTorch 2.9+ causing this test to OOM in 1xL4 GPU
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 1536
- label: Platform Tests (CUDA) # 4min
timeout_in_minutes: 15
@ -384,7 +387,12 @@ steps:
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
--ignore=lora/test_chatglm3_tp.py \
--ignore=lora/test_llama_tp.py \
--ignore=lora/test_llm_with_multi_loras.py
--ignore=lora/test_llm_with_multi_loras.py \
--ignore=lora/test_olmoe_tp.py \
--ignore=lora/test_deepseekv2_tp.py \
--ignore=lora/test_gptoss.py \
--ignore=lora/test_qwen3moe_tp.py
parallelism: 4
- label: PyTorch Compilation Unit Tests # 15min
@ -416,8 +424,8 @@ steps:
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s compile/piecewise/
- label: PyTorch Fullgraph Test # 20min
timeout_in_minutes: 30
- label: PyTorch Fullgraph Test # 22min
timeout_in_minutes: 35
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
@ -425,6 +433,7 @@ steps:
- tests/compile
commands:
- pytest -v -s compile/test_full_graph.py
- pytest -v -s compile/test_fusions_e2e.py
- label: Kernels Core Operation Test # 48min
timeout_in_minutes: 75
@ -527,8 +536,9 @@ steps:
# since torchao nightly is only compatible with torch nightly currently
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
# we can only upgrade after this is resolved
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
# TODO(jerryzh168): resolve the above comment
- uv pip install --system torchao==0.13.0 --index-url https://download.pytorch.org/whl/cu129
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
@ -733,6 +743,16 @@ steps:
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Accuracy Eval (Small Models) # 50min
timeout_in_minutes: 70
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- vllm/multimodal/
- vllm/inputs/
- vllm/v1/core/
commands:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
- label: Multi-Modal Models Test (Extended) 1
mirror_hardwares: [amdexperimental]
optional: true
@ -796,8 +816,8 @@ steps:
# Whisper needs spawn method to avoid deadlock
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
- label: Blackwell Test # 38 min
timeout_in_minutes: 60
- label: Blackwell Test # 21 min
timeout_in_minutes: 30
working_dir: "/vllm-workspace/"
gpu: b200
# optional: true
@ -810,8 +830,6 @@ steps:
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/fusion.py
- vllm/compilation/fusion_attn.py
commands:
- nvidia-smi
- python3 examples/offline_inference/basic/chat.py
@ -828,15 +846,32 @@ steps:
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
# Fusion
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
- pytest -v -s tests/kernels/moe/test_flashinfer.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_qutlass.py
- pytest -v -s tests/kernels/quantization/test_mxfp4_qutlass.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
- pytest -v -s tests/kernels/moe/test_flashinfer.py
- label: Blackwell Fusion Tests # 30 min
timeout_in_minutes: 40
working_dir: "/vllm-workspace/"
gpu: b200
source_file_dependencies:
- csrc/quantization/fp4/
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/
# can affect pattern matching
- vllm/model_executor/layers/layernorm.py
- vllm/model_executor/layers/activation.py
- vllm/model_executor/layers/quantization/input_quant_fp8.py
commands:
- nvidia-smi
- pytest -v -s tests/compile/test_fusion_attn.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
# this runner has 2 GPUs available even though num_gpus=2 is not set
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py
- label: Blackwell GPT-OSS Eval
timeout_in_minutes: 60
@ -943,6 +978,8 @@ steps:
- tests/v1/shutdown
- tests/v1/worker/test_worker_memory_snapshot.py
commands:
# https://github.com/NVIDIA/nccl/issues/1838
- export NCCL_CUMEM_HOST_ENABLE=0
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
@ -950,6 +987,7 @@ steps:
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- VLLM_TEST_SAME_HOST=1 VLLM_TEST_WITH_DEFAULT_DEVICE_SET=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- pytest -v -s distributed/test_sequence_parallel.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
@ -993,6 +1031,11 @@ steps:
- pytest -v -s plugins_tests/test_io_processor_plugins.py
- pip uninstall prithvi_io_processor_plugin -y
# end io_processor plugins test
# begin stat_logger plugins test
- pip install -e ./plugins/vllm_add_dummy_stat_logger
- pytest -v -s plugins_tests/test_stats_logger_plugins.py
- pip uninstall dummy_stat_logger -y
# end stat_logger plugins test
# other tests continue here:
- pytest -v -s plugins_tests/test_scheduler_plugins.py
- pip install -e ./plugins/vllm_add_dummy_model
@ -1032,6 +1075,7 @@ steps:
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_llm_with_multi_loras.py
- pytest -v -s -x lora/test_olmoe_tp.py
- label: Weight Loading Multiple GPU Test # 33min
@ -1057,6 +1101,17 @@ steps:
- tests/weight_loading
commands:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
- label: NixlConnector PD accuracy tests (Distributed) # 30min
timeout_in_minutes: 30
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py
- tests/v1/kv_connector/nixl_integration/
commands:
- uv pip install --system -r /vllm-workspace/requirements/kv_connectors.txt
- bash v1/kv_connector/nixl_integration/tp_config_sweep_accuracy_test.sh
##### multi gpus test #####
@ -1089,7 +1144,7 @@ steps:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
##### H200 test #####
- label: Distrubted Tests (H200) # optional
- label: Distributed Tests (H200) # optional
gpu: h200
optional: true
working_dir: "/vllm-workspace/"
@ -1097,6 +1152,8 @@ steps:
commands:
- pytest -v -s tests/compile/test_async_tp.py
- pytest -v -s tests/compile/test_sequence_parallelism.py
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm
- pytest -v -s tests/distributed/test_context_parallel.py
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048

14
.github/CODEOWNERS vendored
View File

@ -5,10 +5,8 @@
/vllm/attention @LucasWilkinson
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/model_executor/layers/fused_moe @mgoin
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @NickLucche
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
/vllm/model_executor/layers/fused_moe @mgoin @pavanimajety
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256 @pavanimajety
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
@ -26,9 +24,9 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/vllm/config/cache.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/attention @LucasWilkinson
/vllm/v1/attention/backends/flashinfer.py @mgoin
/vllm/v1/attention/backends/mla @pavanimajety
/vllm/v1/attention/backends/flashinfer.py @mgoin @pavanimajety
/vllm/v1/attention/backends/triton_attn.py @tdoublep
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/vllm/v1/sample @22quinn @houseroad @njhill
@ -47,7 +45,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256
/tests/models @DarkLight1337 @ywang96
/tests/multimodal @DarkLight1337 @ywang96 @NickLucche
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256 @pavanimajety
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm
@ -60,7 +58,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/v1/offloading @ApostaC
# Transformers backend
/vllm/model_executor/models/transformers.py @hmellor
/vllm/model_executor/models/transformers @hmellor
/tests/models/test_transformers.py @hmellor
# Docs

3
.gitignore vendored
View File

@ -94,6 +94,9 @@ ipython_config.py
# generated files
**/generated/**
# uv
uv.lock
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:

View File

@ -4,7 +4,6 @@ MD013: false
MD024:
siblings_only: true
MD033: false
MD042: false
MD045: false
MD046: false
MD051: false

View File

@ -38,7 +38,7 @@ repos:
rev: 0.9.1
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu129, --python-platform, x86_64-manylinux_2_28]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
@ -48,8 +48,8 @@ repos:
entry: python tools/generate_nightly_torch_test.py
files: ^requirements/test\.(in|txt)$
- id: mypy-local
name: Run mypy for local Python installation
entry: python tools/pre_commit/mypy.py 0 "local"
name: Run mypy locally for lowest supported Python version
entry: python tools/pre_commit/mypy.py 0 "3.10"
stages: [pre-commit] # Don't run in CI
<<: &mypy_common
language: python

View File

@ -49,8 +49,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.8.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.8.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.9.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.9.0")
#
# Try to find python package with an executable that exactly matches
@ -883,6 +883,7 @@ target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1)
set(VLLM_MOE_EXT_SRC
"csrc/moe/torch_bindings.cpp"
"csrc/moe/moe_align_sum_kernels.cu"
"csrc/moe/moe_lora_align_sum_kernels.cu"
"csrc/moe/topk_softmax_kernels.cu")
if(VLLM_GPU_LANG STREQUAL "CUDA")

View File

@ -31,6 +31,7 @@ import time
import uuid
import warnings
from collections.abc import AsyncGenerator
from contextlib import nullcontext
from dataclasses import dataclass
import datasets
@ -501,15 +502,9 @@ async def benchmark(
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
# This can be used once the minimum Python version is 3.10 or higher,
# and it will simplify the code in limited_request_func.
# semaphore = (asyncio.Semaphore(max_concurrency)
# if max_concurrency else contextlib.nullcontext())
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else nullcontext()
async def limited_request_func(request_func_input, pbar):
if semaphore is None:
return await request_func(request_func_input=request_func_input, pbar=pbar)
async with semaphore:
return await request_func(request_func_input=request_func_input, pbar=pbar)

View File

@ -10,7 +10,8 @@ import torch
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
from vllm.triton_utils import triton
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
def with_triton_mode(fn):

View File

@ -10,7 +10,8 @@ import vllm.model_executor.layers.activation # noqa F401
from vllm.model_executor.custom_op import CustomOp
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
batch_size_range = [1, 16, 32, 64, 128]
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]

View File

@ -7,7 +7,8 @@ import torch
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
@torch.inference_mode()

View File

@ -631,7 +631,7 @@ def main(args: argparse.Namespace):
else:
ensure_divisibility(intermediate_size, args.tp_size, "intermediate_size")
shard_intermediate_size = 2 * intermediate_size // args.tp_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
dtype = torch.float16 if current_platform.is_rocm() else config.dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
block_quant_shape = get_weight_block_size_safety(config)

View File

@ -344,7 +344,7 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
dtype = torch.float16 if current_platform.is_rocm() else config.dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
use_customized_permute = args.use_customized_permute

View File

@ -9,9 +9,9 @@ import torch
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random,
)

View File

@ -1,155 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
import torch
from vllm import _custom_ops as vllm_ops
from vllm.triton_utils import triton
def polynorm_naive(
x: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
def norm(x, eps: float):
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + eps)
x = x.float()
return (
(
weight[0] * norm(x**3, eps)
+ weight[1] * norm(x**2, eps)
+ weight[2] * norm(x, eps)
+ bias
)
.to(weight.dtype)
.view(orig_shape)
)
def polynorm_vllm(
x: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
out = torch.empty_like(x)
vllm_ops.poly_norm(out, x, weight, bias, eps)
output = out
output = output.view(orig_shape)
return output
def calculate_diff(batch_size, seq_len, hidden_dim):
dtype = torch.bfloat16
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
weight = torch.ones(3, dtype=dtype, device="cuda")
bias = torch.ones(1, dtype=dtype, device="cuda")
output_naive = polynorm_naive(x, weight, bias)
output_vllm = polynorm_vllm(x, weight, bias)
if torch.allclose(output_naive, output_vllm, atol=1e-2, rtol=1e-2):
print("✅ All implementations match")
else:
print("❌ Implementations differ")
batch_size_range = [2**i for i in range(0, 7, 2)]
seq_length_range = [2**i for i in range(6, 11, 1)]
dim_range = [2048, 4096]
configs = list(itertools.product(dim_range, batch_size_range, seq_length_range))
def get_benchmark():
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["dim", "batch_size", "seq_len"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["naive", "vllm"],
line_names=["Naive", "vLLM"],
styles=[("blue", "-"), ("red", "-")],
ylabel="us",
plot_name="polynorm-perf",
args={},
)
)
def benchmark(dim, batch_size, seq_len, provider):
dtype = torch.bfloat16
hidden_dim = dim * 4
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
weight = torch.ones(3, dtype=dtype, device="cuda")
bias = torch.ones(1, dtype=dtype, device="cuda")
quantiles = [0.5, 0.2, 0.8]
if provider == "naive":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: polynorm_naive(x, weight, bias),
quantiles=quantiles,
)
else:
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: polynorm_vllm(x, weight, bias),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
return benchmark
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--batch-size",
type=int,
default=4,
help="Batch size",
)
parser.add_argument(
"--seq-len",
type=int,
default=128,
help="Sequence length",
)
parser.add_argument(
"--hidden-dim",
type=int,
default=8192,
help="Intermediate size of MLP",
)
parser.add_argument(
"--save-path",
type=str,
default="./configs/polnorm/",
help="Path to save polnorm benchmark results",
)
args = parser.parse_args()
# Run correctness test
calculate_diff(
batch_size=args.batch_size,
seq_len=args.seq_len,
hidden_dim=args.hidden_dim,
)
benchmark = get_benchmark()
# Run performance benchmark
benchmark.run(print_data=True, save_path=args.save_path)

View File

@ -7,7 +7,8 @@ import torch
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
@torch.inference_mode()

View File

@ -9,9 +9,9 @@ from tabulate import tabulate
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random,
)

View File

@ -12,9 +12,9 @@ from vllm.attention.ops.triton_reshape_and_cache_flash import (
)
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import (
from vllm.utils import FlexibleArgumentParser
from vllm.utils.torch_utils import (
STR_DTYPE_TO_TORCH_DTYPE,
FlexibleArgumentParser,
create_kv_caches_with_random_flash,
)

View File

@ -1251,7 +1251,7 @@ async def main() -> None:
default=None,
help="The model name used in the API. "
"If not specified, the model name will be the "
"same as the ``--model`` argument. ",
"same as the `--model` argument. ",
)
parser.add_argument(

View File

@ -188,16 +188,47 @@ else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
endif()
#
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
# Flag to enable ACL kernels for AARCH64 platforms
if (VLLM_BUILD_ACL STREQUAL "ON")
set(USE_ACL ON)
else()
set(USE_ACL OFF)
endif()
# Build oneDNN for GEMM kernels (only for x86-AVX512 /ARM platforms)
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
# Fetch and build Arm Compute Library (ACL) as oneDNN's backend for AArch64
# TODO [fadara01]: remove this once ACL can be fetched and built automatically as a dependency of oneDNN
if(ASIMD_FOUND)
if(DEFINED ENV{ACL_ROOT_DIR} AND IS_DIRECTORY "$ENV{ACL_ROOT_DIR}")
message(STATUS "Using ACL from specified source directory: $ENV{ACL_ROOT_DIR}")
else()
message(STATUS "Downloading Arm Compute Library (ACL) from GitHub")
FetchContent_Populate(arm_compute
SUBBUILD_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-subbuild"
SOURCE_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-src"
GIT_REPOSITORY https://github.com/ARM-software/ComputeLibrary.git
GIT_TAG v52.2.0
GIT_SHALLOW TRUE
GIT_PROGRESS TRUE
)
set(ENV{ACL_ROOT_DIR} "${arm_compute_SOURCE_DIR}")
endif()
# Build ACL with scons
include(ProcessorCount)
ProcessorCount(_NPROC)
execute_process(
COMMAND scons -j${_NPROC}
Werror=0 debug=0 neon=1 examples=0 embed_kernels=0 os=linux
arch=armv8.2-a build=native benchmark_examples=0 fixed_format_kernels=1
multi_isa=1 openmp=1 cppthreads=0
WORKING_DIRECTORY "$ENV{ACL_ROOT_DIR}"
RESULT_VARIABLE _acl_rc
)
if(NOT _acl_rc EQUAL 0)
message(FATAL_ERROR "ACL SCons build failed (exit ${_acl_rc}).")
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
add_compile_definitions(VLLM_USE_ACL)
endif()
set(FETCHCONTENT_SOURCE_DIR_ONEDNN "$ENV{FETCHCONTENT_SOURCE_DIR_ONEDNN}" CACHE PATH "Path to a local oneDNN source directory.")
if(FETCHCONTENT_SOURCE_DIR_ONEDNN)
@ -217,16 +248,6 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
)
endif()
if(USE_ACL)
find_library(ARM_COMPUTE_LIBRARY NAMES arm_compute PATHS $ENV{ACL_ROOT_DIR}/build/)
if(NOT ARM_COMPUTE_LIBRARY)
message(FATAL_ERROR "Could not find ARM Compute Library: please set ACL_ROOT_DIR")
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
add_compile_definitions(VLLM_USE_ACL)
endif()
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
set(ONEDNN_BUILD_EXAMPLES "OFF")

View File

@ -19,7 +19,7 @@ else()
FetchContent_Declare(
flashmla
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
GIT_TAG 46d64a8ebef03fa50b4ae74937276a5c940e3f95
GIT_PROGRESS TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
@ -66,6 +66,7 @@ if(FLASH_MLA_ARCHS)
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_metadata.cu
)
set(FlashMLA_INCLUDES

View File

@ -22,10 +22,10 @@ else()
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
)
FetchContent_Populate(qutlass)
set(qutlass_SOURCE_DIR "${qutlass_SOURCE_DIR}")
endif()
FetchContent_Populate(qutlass)
if(NOT qutlass_SOURCE_DIR)
message(FATAL_ERROR "[QUTLASS] source directory could not be resolved.")
endif()

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 8f468e7da54a8e2f98abfa7c38636aac91c0cba1
GIT_TAG a893712401d70362fbb299cd9c4b3476e8e9ed54
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -125,32 +125,37 @@ public:
}
static void set_split_kv (KernelArguments& args) {
// printf("set_split_kv start");
if (args.split_kv >= 1) return;
auto [H, K, D, B] = args.problem_shape;
// std::cout << H << " " << K << " " << D << " " << B << "\n";
int sm_count = args.hw_info.sm_count;
// printf(" sm_count = %d\n", sm_count);
int max_splits = ceil_div(K, 128);
max_splits = min(16, max_splits);
float seq_length_k = static_cast<float>(K) / 1024.0f;
int max_splits = 1;
// TODO: This avoids a hang when the batch size larger than 1 and
// there is more than 1 kv_splits.
// Discuss with NVIDIA how this can be fixed.
if (B > 1) {
max_splits = min(1, max_splits);
if (B <= 4 && seq_length_k >= 16) {
max_splits = 16;
}
// printf(" max_splits = %d\n", max_splits);
else if (B <= 8 && seq_length_k >= 4) {
max_splits = 8;
}
else if ((B <= 16 && seq_length_k >= 8) ||
(B == 48 && seq_length_k >= 32)) {
max_splits = 4;
}
else if ((B <= 32 && seq_length_k >= 16) ||
(B == 96 && seq_length_k >= 16)) {
max_splits = 2;
}
else {
max_splits = 1;
}
// Wave-aware scheduling: ensure integer number of waves in K dimension
int sms_per_batch = max(1, sm_count / B);
// printf(" sms_per_batch = %d\n", sms_per_batch);
int split_heur = min(max_splits, sms_per_batch);
int waves = ceil_div(B * split_heur, sm_count);
int k_waves = ceil_div(max_splits, split_heur);
int split_wave_aware = ceil_div(max_splits, k_waves);
args.split_kv = split_wave_aware;
// printf(" args.split_kv = %d\n", args.split_kv);
}
/// Determines whether the GEMM can execute the given problem.

View File

@ -5,11 +5,11 @@
namespace vllm {
// vllm_kernel_override_batch_invariant(); returns true
// if env VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT=1
inline bool vllm_kernel_override_batch_invariant() {
// vllm_is_batch_invariant(); returns true
// if env VLLM_BATCH_INVARIANT=1
inline bool vllm_is_batch_invariant() {
static bool cached = []() {
std::string env_key = "VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT";
std::string env_key = "VLLM_BATCH_INVARIANT";
const char* val = std::getenv(env_key.c_str());
return (val && std::atoi(val) != 0) ? 1 : 0;
}();

View File

@ -187,7 +187,8 @@ template <>
struct hash<MatMulPrimitiveHandler::ClassMatmulCacheKey> {
size_t operator()(
const MatMulPrimitiveHandler::ClassMatmulCacheKey& val) const {
return hash<dnnl_dim_t>()(val.b_n_size) ^ hash<dnnl_dim_t>()(val.b_k_size);
return hash<dnnl_dim_t>()(val.b_n_size) ^ hash<dnnl_dim_t>()(val.b_k_size) ^
hash<int>()(static_cast<int>(val.b_type));
}
};
@ -216,7 +217,8 @@ bool operator==(const W8A8MatMulPrimitiveHandler::MSizeCacheKey& l,
bool operator==(const MatMulPrimitiveHandler::ClassMatmulCacheKey& l,
const MatMulPrimitiveHandler::ClassMatmulCacheKey& r) {
return l.b_n_size == r.b_n_size && l.b_k_size == r.b_k_size;
return l.b_n_size == r.b_n_size && l.b_k_size == r.b_k_size &&
l.b_type == r.b_type;
}
bool operator==(const MatMulPrimitiveHandler::MSizeCacheKey& l,
@ -493,8 +495,10 @@ void MatMulPrimitiveHandler::execute(ExecArgs& args) {
dnnl::matmul MatMulPrimitiveHandler::get_matmul_cache(
const MSizeCacheKey& key) {
if (m_size_cache_.get() == nullptr) {
ClassMatmulCacheKey key = {.b_n_size = b_n_size_, .b_k_size = b_k_size_};
m_size_cache_ = get_matul_class_primitive_cache(key, primitive_cache_size_);
ClassMatmulCacheKey class_key = {
.b_n_size = b_n_size_, .b_k_size = b_k_size_, .b_type = b_type_};
m_size_cache_ =
get_matul_class_primitive_cache(class_key, primitive_cache_size_);
}
return m_size_cache_->get_or_create(key, [&]() {
dnnl::matmul::primitive_desc desc = this->create_primitive_desc(key, false);

View File

@ -199,6 +199,7 @@ class MatMulPrimitiveHandler : public DNNLMatMulPrimitiveHandler {
struct ClassMatmulCacheKey {
dnnl_dim_t b_n_size;
dnnl_dim_t b_k_size;
dnnl::memory::data_type b_type;
friend bool operator==(const ClassMatmulCacheKey& l,
const ClassMatmulCacheKey& r);

View File

@ -2,6 +2,7 @@
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include "quantization/vectorization_utils.cuh"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -18,11 +19,22 @@ __global__ void rms_norm_kernel(
const float epsilon, const int num_tokens, const int hidden_size) {
__shared__ float s_variance;
float variance = 0.0f;
const scalar_t* input_row = input + blockIdx.x * input_stride;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
const float x = (float)input[blockIdx.x * input_stride + idx];
constexpr int VEC_SIZE = 8;
auto vec_op = [&variance](const vec_n_t<scalar_t, VEC_SIZE>& vec) {
#pragma unroll
for (int i = 0; i < VEC_SIZE; ++i) {
float x = static_cast<float>(vec.val[i]);
variance += x * x;
}
};
auto scalar_op = [&variance](const scalar_t& val) {
float x = static_cast<float>(val);
variance += x * x;
}
};
vllm::vectorize_read_with_alignment<VEC_SIZE>(
input_row, hidden_size, threadIdx.x, blockDim.x, vec_op, scalar_op);
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
@ -136,211 +148,6 @@ fused_add_rms_norm_kernel(
}
}
/* Function specialization in the case of FP16/BF16 tensors.
Additional optimizations we can make in this case are
packed and vectorized operations, which help with the
memory latency bottleneck.
_f16VecPN struct extends _f16Vec to add operations specifically required for
polynomial normalization (poly norm).
The original _f16Vec does not include the sum-of-powers computation or
in-place polynomial normalization logic. */
template <typename scalar_t, int width>
struct alignas(16) _f16VecPN : _f16Vec<scalar_t, width> {
using Base = _f16Vec<scalar_t, width>;
using Converter = typename Base::Converter;
using T1 = typename Base::T1;
using T2 = typename Base::T2;
using Base::data;
__device__ auto sum_pows() const {
float s2 = 0.0f, s4 = 0.0f, s6 = 0.0f;
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 z = Converter::convert(T2{data[i], data[i + 1]});
float x2 = z.x * z.x;
float x4 = x2 * x2;
float x6 = x4 * x2;
float y2 = z.y * z.y;
float y4 = y2 * y2;
float y6 = y4 * y2;
s2 += x2 + y2;
s4 += x4 + y4;
s6 += x6 + y6;
}
return std::make_tuple(s2, s4, s6);
}
__device__ void poly_norm_inplace(const float w2_inv_std,
const float w1_inv_std2,
const float w0_inv_std3, const float bias) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 z = Converter::convert(T2{data[i], data[i + 1]});
float x2 = z.x * z.x;
float x3 = x2 * z.x;
z.x = w2_inv_std * z.x + w1_inv_std2 * x2 + w0_inv_std3 * x3 + bias;
float y2 = z.y * z.y;
float y3 = y2 * z.y;
z.y = w2_inv_std * z.y + w1_inv_std2 * y2 + w0_inv_std3 * y3 + bias;
auto out = Converter::convert(z);
data[i] = out.x;
data[i + 1] = out.y;
}
}
};
template <typename scalar_t, int width>
__global__ std::enable_if_t<(width > 0) && _typeConvert<scalar_t>::exists>
poly_norm_kernel(scalar_t* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [3]
const scalar_t* __restrict__ bias, // [1]
const float epsilon, const int hidden_size) {
// Sanity checks on our vector struct and type-punned pointer arithmetic
static_assert(std::is_pod_v<_f16VecPN<scalar_t, width>>);
static_assert(sizeof(_f16VecPN<scalar_t, width>) == sizeof(scalar_t) * width);
/* These and the argument pointers are all declared `restrict` as they are
not aliased in practice. Argument pointers should not be dereferenced
in this kernel as that would be undefined behavior */
auto* __restrict__ input_v =
reinterpret_cast<const _f16VecPN<scalar_t, width>*>(input);
const int vec_hidden_size = hidden_size / width;
float variance = 0.0f;
float variance2 = 0.0f;
float variance3 = 0.0f;
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16VecPN<scalar_t, width> temp = input_v[id];
auto [x2, x4, x6] = temp.sum_pows();
variance += x2;
variance2 += x4;
variance3 += x6;
}
float3 thread_variances = make_float3(variance, variance2, variance3);
struct SumOp {
__device__ float3 operator()(const float3& a, const float3& b) const {
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
}
};
using BlockReduce = cub::BlockReduce<float3, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
float3 block_variances =
BlockReduce(reduceStore).Reduce(thread_variances, SumOp{}, blockDim.x);
variance = block_variances.x;
variance2 = block_variances.y;
variance3 = block_variances.z;
__shared__ float s_w2_inv_std;
__shared__ float s_w1_inv_std2;
__shared__ float s_w0_inv_std3;
__shared__ float s_bias;
if (threadIdx.x == 0) {
float w0 = (float)weight[0];
float w1 = (float)weight[1];
float w2 = (float)weight[2];
s_bias = (float)bias[0];
s_w2_inv_std = w2 * rsqrtf(variance / hidden_size + epsilon);
s_w1_inv_std2 = w1 * rsqrtf(variance2 / hidden_size + epsilon);
s_w0_inv_std3 = w0 * rsqrtf(variance3 / hidden_size + epsilon);
}
__syncthreads();
auto* __restrict__ out_v = reinterpret_cast<_f16VecPN<scalar_t, width>*>(out);
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16VecPN<scalar_t, width> temp = input_v[id];
temp.poly_norm_inplace(s_w2_inv_std, s_w1_inv_std2, s_w0_inv_std3, s_bias);
out_v[id] = temp;
}
}
/* Generic poly_norm_kernel
The width field is not used here but necessary for other specializations.
*/
template <typename scalar_t, int width>
__global__ std::enable_if_t<(width == 0) || !_typeConvert<scalar_t>::exists>
poly_norm_kernel(scalar_t* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [3]
const scalar_t* __restrict__ bias, // [1]
const float epsilon, const int hidden_size) {
float variance = 0.0f;
float variance2 = 0.0f;
float variance3 = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)input[blockIdx.x * hidden_size + idx];
float x2 = x * x;
float x4 = x2 * x2;
float x6 = x4 * x2;
variance += x2;
variance2 += x4;
variance3 += x6;
}
float3 thread_variances = make_float3(variance, variance2, variance3);
struct SumOp {
__device__ float3 operator()(const float3& a, const float3& b) const {
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
}
};
using BlockReduce = cub::BlockReduce<float3, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
float3 block_variances =
BlockReduce(reduceStore).Reduce(thread_variances, SumOp{}, blockDim.x);
variance = block_variances.x;
variance2 = block_variances.y;
variance3 = block_variances.z;
__shared__ float s_w2_inv_std;
__shared__ float s_w1_inv_std2;
__shared__ float s_w0_inv_std3;
__shared__ float s_bias;
if (threadIdx.x == 0) {
float w0 = (float)weight[0];
float w1 = (float)weight[1];
float w2 = (float)weight[2];
s_bias = (float)bias[0];
s_w2_inv_std = w2 * rsqrtf(variance / hidden_size + epsilon);
s_w1_inv_std2 = w1 * rsqrtf(variance2 / hidden_size + epsilon);
s_w0_inv_std3 = w0 * rsqrtf(variance3 / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)input[blockIdx.x * hidden_size + idx];
float x2 = x * x;
float x3 = x2 * x;
out[blockIdx.x * hidden_size + idx] =
(scalar_t)(x * s_w2_inv_std + x2 * s_w1_inv_std2 + x3 * s_w0_inv_std3 +
s_bias);
}
}
} // namespace vllm
void rms_norm(torch::Tensor& out, // [..., hidden_size]
@ -352,18 +159,26 @@ void rms_norm(torch::Tensor& out, // [..., hidden_size]
TORCH_CHECK(weight.is_contiguous());
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
int64_t input_stride = input.stride(-2);
// We cannot just use `input.stride(-2)` if the tensor is not row-major.
// Instead, we use a 2d view to get the second-innermost stride.
// That way the dimensions (except the last one) can be arbitrarily permuted.
torch::Tensor input_view = input.view({-1, hidden_size});
int num_tokens = input_view.numel() / hidden_size;
int64_t input_stride = input_view.stride(-2);
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input_view));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_kernel", [&] {
vllm::rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(), input_stride,
weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
});
VLLM_DISPATCH_FLOATING_TYPES(
input_view.scalar_type(), "rms_norm_kernel", [&] {
vllm::rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(), input_view.data_ptr<scalar_t>(),
input_stride, weight.data_ptr<scalar_t>(), epsilon, num_tokens,
hidden_size);
});
}
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
@ -380,6 +195,8 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
torch::Tensor& residual, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
double epsilon) {
TORCH_CHECK(weight.scalar_type() == input.scalar_type());
TORCH_CHECK(input.scalar_type() == residual.scalar_type());
TORCH_CHECK(residual.is_contiguous());
TORCH_CHECK(weight.is_contiguous());
int hidden_size = input.size(-1);
@ -414,7 +231,7 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
wt_ptr % req_alignment_bytes == 0;
bool offsets_are_multiple_of_vector_width =
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
bool batch_invariant_launch = vllm::vllm_is_batch_invariant();
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
!batch_invariant_launch) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
@ -422,50 +239,3 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
LAUNCH_FUSED_ADD_RMS_NORM(0);
}
}
#define LAUNCH_FUSED_POLY_NORM(width) \
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "poly_norm_kernel", [&] { \
vllm::poly_norm_kernel<scalar_t, width><<<grid, block, 0, stream>>>( \
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), bias.data_ptr<scalar_t>(), epsilon, \
hidden_size); \
});
void poly_norm(torch::Tensor& out, // [..., hidden_size]
torch::Tensor& input, // [..., hidden_size]
torch::Tensor& weight, // [3]
torch::Tensor& bias, // [1]
double epsilon) {
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.data_ptr() != input.data_ptr());
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
/* This kernel is memory-latency bound in many scenarios.
When num_tokens is large, a smaller block size allows
for increased block occupancy on CUs and better latency
hiding on global mem ops. */
const int max_block_size = (num_tokens < 256) ? 1024 : 256;
dim3 block(std::min(hidden_size, max_block_size));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
/*If the tensor types are FP16/BF16, try to use the optimized kernel
with packed + vectorized ops.
Max optimization is achieved with a width-8 vector of FP16/BF16s
since we can load at most 128 bits at once in a global memory op.
However, this requires each tensor's data to be aligned to 16
bytes.
*/
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
LAUNCH_FUSED_POLY_NORM(8);
} else {
LAUNCH_FUSED_POLY_NORM(0);
}
}

View File

@ -10,6 +10,7 @@
#include "dispatch_utils.h"
#include "cub_helpers.h"
#include "core/batch_invariant.hpp"
#include "quantization/vectorization_utils.cuh"
#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>
@ -28,10 +29,22 @@ __global__ void rms_norm_static_fp8_quant_kernel(
__shared__ float s_variance;
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
const float x = (float)input[blockIdx.x * input_stride + idx];
const scalar_t* input_row = input + blockIdx.x * input_stride;
constexpr int VEC_SIZE = 8;
auto vec_op = [&variance](const vec_n_t<scalar_t, VEC_SIZE>& vec) {
#pragma unroll
for (int i = 0; i < VEC_SIZE; ++i) {
float x = static_cast<float>(vec.val[i]);
variance += x * x;
}
};
auto scalar_op = [&variance](const scalar_t& val) {
float x = static_cast<float>(val);
variance += x * x;
}
};
vllm::vectorize_read_with_alignment<VEC_SIZE>(
input_row, hidden_size, threadIdx.x, blockDim.x, vec_op, scalar_op);
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStore;
@ -216,6 +229,8 @@ void fused_add_rms_norm_static_fp8_quant(
double epsilon) {
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(residual.is_contiguous());
TORCH_CHECK(residual.scalar_type() == input.scalar_type());
TORCH_CHECK(weight.scalar_type() == input.scalar_type());
int hidden_size = input.size(-1);
int input_stride = input.stride(-2);
int num_tokens = input.numel() / hidden_size;
@ -241,7 +256,7 @@ void fused_add_rms_norm_static_fp8_quant(
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned =
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
bool batch_invariant_launch = vllm::vllm_is_batch_invariant();
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
!batch_invariant_launch) {
LAUNCH_FUSED_ADD_RMS_NORM(8);

View File

@ -8,12 +8,77 @@
#include "../cuda_compat.h"
#include "../dispatch_utils.h"
#include "core/math.hpp"
#define CEILDIV(x, y) (((x) + (y) - 1) / (y))
namespace vllm {
namespace moe {
namespace batched_moe_align_block_size {
// Note num_threads needs to be 1024 for BlockScan Reduction in the kernel.
static constexpr int32_t num_threads = 1024;
static constexpr int32_t num_blocks = 1;
__global__ void batched_moe_align_block_size_kernel(
int32_t const num_batches, int32_t const max_tokens_per_batch,
int32_t const block_size, int32_t const* __restrict__ batch_num_tokens,
int32_t* __restrict__ sorted_ids, int32_t* __restrict__ block_ids,
int32_t* __restrict__ num_tokens_post_pad) {
// TODO(varun): This is a naive implementation. Could be optimized.
size_t const batch_id = threadIdx.x;
size_t const stride = blockDim.x * gridDim.x;
int32_t const num_blocks_per_batch =
CEILDIV(max_tokens_per_batch, block_size);
int32_t const sorted_ids_size =
num_blocks_per_batch * num_batches * block_size;
int32_t const block_ids_size = sorted_ids_size / block_size;
int32_t const SENTINEL =
num_batches * max_tokens_per_batch; // To denote invalid entries.
// Intialize sorted_ids
for (size_t i = threadIdx.x; i < sorted_ids_size; i += stride) {
sorted_ids[i] = SENTINEL;
}
// Intialize expert_ids with -1
for (size_t i = threadIdx.x; i < block_ids_size; i += stride) {
block_ids[i] = -1;
}
int32_t b_num_tokens = 0;
if (batch_id < num_batches) {
b_num_tokens = batch_num_tokens[batch_id];
}
int32_t const ceil_b_num_tokens =
CEILDIV(b_num_tokens, block_size) * block_size;
// Compute prefix sum over token counts per expert
using BlockScan = cub::BlockScan<int32_t, 1024>;
__shared__ typename BlockScan::TempStorage temp_storage;
int cumsum_val;
BlockScan(temp_storage).ExclusiveSum(ceil_b_num_tokens, cumsum_val);
__syncthreads();
bool const is_last_batch = batch_id == (num_batches - 1);
if (is_last_batch) {
*num_tokens_post_pad = cumsum_val + ceil_b_num_tokens;
}
if (batch_id < num_batches) {
int32_t const batch_offset = batch_id * max_tokens_per_batch;
for (size_t i = 0; i < b_num_tokens; ++i) {
sorted_ids[cumsum_val + i] = batch_offset + i;
}
int32_t const block_start = cumsum_val / block_size;
int32_t const num_blocks = ceil_b_num_tokens / block_size;
for (size_t i = 0; i < num_blocks; ++i) {
block_ids[block_start + i] = batch_id;
}
}
}
} // namespace batched_moe_align_block_size
template <typename scalar_t>
__global__ void moe_align_block_size_kernel(
const scalar_t* __restrict__ topk_ids,
@ -280,6 +345,33 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
});
}
void batched_moe_align_block_size(int64_t max_tokens_per_batch,
int64_t block_size,
torch::Tensor const& batch_num_tokens,
torch::Tensor sorted_ids,
torch::Tensor batch_ids,
torch::Tensor num_tokens_post_pad) {
namespace batched_kernel = vllm::moe::batched_moe_align_block_size;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
int32_t const B = batch_num_tokens.size(0);
int32_t const num_blocks_per_batch =
round_to_next_multiple_of(max_tokens_per_batch, block_size) / block_size;
int32_t const num_blocks = num_blocks_per_batch * B;
int64_t const sorted_ids_size = num_blocks * block_size;
TORCH_CHECK(sorted_ids.size(0) == sorted_ids_size);
TORCH_CHECK(batch_ids.size(0) == sorted_ids_size / block_size);
TORCH_CHECK(num_tokens_post_pad.size(0) == 1);
TORCH_CHECK(B <= batched_kernel::num_threads);
batched_kernel::batched_moe_align_block_size_kernel<<<
batched_kernel::num_blocks, batched_kernel::num_threads, 0, stream>>>(
B, max_tokens_per_batch, block_size, batch_num_tokens.data_ptr<int32_t>(),
sorted_ids.data_ptr<int32_t>(), batch_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>());
}
void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]
torch::Tensor& output) // [num_tokens, hidden_size]
{

View File

@ -0,0 +1,169 @@
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/ATen.h>
#include <ATen/cuda/Atomic.cuh>
#include "../cuda_compat.h"
#include "../dispatch_utils.h"
#include "core/math.hpp"
namespace {
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row,
int32_t col) {
return row * total_col + col;
}
} // namespace
// TODO: Refactor common parts with moe_align_sum_kernels
template <typename scalar_t, typename token_cnts_t>
__global__ void moe_lora_align_sum_kernel(
scalar_t* __restrict__ topk_ids, int32_t* token_lora_mapping,
int64_t block_size, int num_experts, int max_loras, size_t numel,
int max_num_tokens_padded, int max_num_m_blocks,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
int topk_num, int32_t* total_tokens_post_pad) {
const size_t tokens_per_thread = div_ceil(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
int lora_id = blockIdx.x;
extern __shared__ int32_t shared_mem[];
int32_t* cumsum = shared_mem;
token_cnts_t* tokens_cnts = (token_cnts_t*)(shared_mem + num_experts + 1);
// Initialize sorted_token_ids with numel
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
sorted_token_ids[lora_id * max_num_tokens_padded + it] = numel;
}
// Initialize expert_ids with -1
for (size_t it = threadIdx.x; it < max_num_m_blocks; it += blockDim.x) {
expert_ids[lora_id * max_num_m_blocks + it] = -1;
}
// Initialize total_tokens_post_pad with 0
if (threadIdx.x == 0) {
total_tokens_post_pad[lora_id] = 0;
}
for (int i = 0; i < num_experts; ++i) {
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
}
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int mask = token_lora_mapping[i / topk_num] == lora_id;
int idx = index(num_experts, threadIdx.x + 1, topk_ids[i]);
tokens_cnts[idx] += mask;
}
__syncthreads();
// For each expert we accumulate the token counts from the different threads.
if (threadIdx.x < num_experts) {
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
}
}
__syncthreads();
// We accumulate the token counts of all experts in thread 0.
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i - 1] +
div_ceil(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
block_size) *
block_size;
}
total_tokens_post_pad[lora_id] = static_cast<int32_t>(cumsum[num_experts]);
}
__syncthreads();
/**
* For each expert, each thread processes the tokens of the corresponding
* blocks and stores the corresponding expert_id for each block.
*/
if (threadIdx.x < num_experts) {
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
i += block_size) {
expert_ids[index(max_num_m_blocks, lora_id, i / block_size)] =
threadIdx.x;
}
}
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
/** The cumsum[expert_id] stores the starting index of the tokens that the
* expert with expert_id needs to process, and
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
* processed by the expert with expert_id within the current thread's token
* shard.
*/
int32_t rank_post_pad =
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
cumsum[expert_id];
int mask = (int)token_lora_mapping[i / topk_num] == lora_id;
atomicAdd(
&sorted_token_ids[index(max_num_tokens_padded, lora_id, rank_post_pad)],
(i - numel) * mask);
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] += mask;
}
}
void moe_lora_align_block_size(torch::Tensor topk_ids,
torch::Tensor token_lora_mapping,
int64_t num_experts, int64_t block_size,
int64_t max_loras, int64_t max_num_tokens_padded,
int64_t max_num_m_blocks,
torch::Tensor sorted_token_ids,
torch::Tensor expert_ids,
torch::Tensor num_tokens_post_pad) {
const int topk_num = topk_ids.size(1);
TORCH_CHECK(block_size > 0, "block_size should be greater than 0. ");
int device_max_shared_mem;
auto dev = topk_ids.get_device();
cudaDeviceGetAttribute(&device_max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
const int32_t num_thread = max((int32_t)num_experts, 128); // WARP_SIZE,
TORCH_CHECK(num_thread <= 1024,
"num_thread must be less than 1024, "
"and fallback is not implemented yet.");
const int32_t shared_mem = (num_thread + 1) * num_experts * sizeof(int32_t) +
(num_experts + 1) * sizeof(int32_t);
if (shared_mem > device_max_shared_mem) {
TORCH_CHECK(false,
"Shared memory usage exceeds device limit, and global memory "
"fallback is not implemented yet.");
}
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_lora_align_sum_kernel", [&] {
dim3 blockDim(num_thread);
auto kernel = moe_lora_align_sum_kernel<scalar_t, int32_t>;
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
(void*)kernel, shared_mem));
kernel<<<max_loras, blockDim, shared_mem, stream>>>(
topk_ids.data_ptr<scalar_t>(),
token_lora_mapping.data_ptr<int32_t>(), block_size, num_experts,
max_loras, topk_ids.numel(), max_num_tokens_padded,
max_num_m_blocks, sorted_token_ids.data_ptr<int32_t>(),
expert_ids.data_ptr<int32_t>(), topk_num,
num_tokens_post_pad.data_ptr<int32_t>());
});
}

View File

@ -4,7 +4,7 @@
void topk_softmax(torch::Tensor& topk_weights, torch::Tensor& topk_indices,
torch::Tensor& token_expert_indices,
torch::Tensor& gating_output);
torch::Tensor& gating_output, bool renormalize);
void moe_sum(torch::Tensor& input, torch::Tensor& output);
@ -12,6 +12,22 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int64_t block_size, torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);
void batched_moe_align_block_size(int64_t max_tokens_per_batch,
int64_t block_size,
torch::Tensor const& expert_num_tokens,
torch::Tensor sorted_ids,
torch::Tensor expert_ids,
torch::Tensor num_tokens_post_pad);
void moe_lora_align_block_size(torch::Tensor topk_ids,
torch::Tensor token_lora_mapping,
int64_t num_experts, int64_t block_size,
int64_t max_loras, int64_t max_num_tokens_padded,
int64_t max_num_m_blocks,
torch::Tensor sorted_token_ids,
torch::Tensor expert_ids,
torch::Tensor num_tokens_post_pad);
#ifndef USE_ROCM
torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
torch::Tensor b_qweight, torch::Tensor b_scales,

View File

@ -16,12 +16,23 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <type_traits>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "../cuda_compat.h"
#include "../cub_helpers.h"
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
typedef __hip_bfloat16 __nv_bfloat16;
typedef __hip_bfloat162 __nv_bfloat162;
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -36,16 +47,27 @@ template <
/// Alignment requirement in bytes
int Alignment = sizeof(T) * N
>
class alignas(Alignment) AlignedArray {
float data[N];
struct alignas(Alignment) AlignedArray {
T data[N];
};
template <typename T>
__device__ __forceinline__ float toFloat(T value) {
if constexpr (std::is_same_v<T, float>) {
return value;
} else if constexpr (std::is_same_v<T, __nv_bfloat16>) {
return __bfloat162float(value);
} else if constexpr (std::is_same_v<T, __half>) {
return __half2float(value);
}
}
// ====================== Softmax things ===============================
// We have our own implementation of softmax here so we can support transposing the output
// in the softmax kernel when we extend this module to support expert-choice routing.
template <int TPB>
template <int TPB, typename InputType>
__launch_bounds__(TPB) __global__
void moeSoftmax(const float* input, const bool* finished, float* output, const int num_cols)
void moeSoftmax(const InputType* input, const bool* finished, float* output, const int num_cols)
{
using BlockReduce = cub::BlockReduce<float, TPB>;
__shared__ typename BlockReduce::TempStorage tmpStorage;
@ -66,7 +88,8 @@ __launch_bounds__(TPB) __global__
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
threadData = max(static_cast<float>(input[idx]), threadData);
const float val = toFloat(input[idx]);
threadData = max(val, threadData);
}
const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, CubMaxOp());
@ -81,7 +104,8 @@ __launch_bounds__(TPB) __global__
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
threadData += exp((static_cast<float>(input[idx]) - float_max));
const float val = toFloat(input[idx]);
threadData += expf(val - float_max);
}
const auto Z = BlockReduce(tmpStorage).Reduce(threadData, CubAddOp());
@ -95,8 +119,9 @@ __launch_bounds__(TPB) __global__
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
{
const int idx = thread_row_offset + ii;
const float val = exp((static_cast<float>(input[idx]) - float_max)) * normalizing_factor;
output[idx] = val;
const float val = toFloat(input[idx]);
const float softmax_val = expf(val - float_max) * normalizing_factor;
output[idx] = softmax_val;
}
}
@ -110,7 +135,8 @@ __launch_bounds__(TPB) __global__ void moeTopK(
const int num_experts,
const int k,
const int start_expert,
const int end_expert)
const int end_expert,
const bool renormalize)
{
using cub_kvp = cub::KeyValuePair<int, float>;
@ -125,6 +151,7 @@ __launch_bounds__(TPB) __global__ void moeTopK(
const bool row_is_active = finished ? !finished[block_row] : true;
const int thread_read_offset = blockIdx.x * num_experts;
float selected_sum = 0.f;
for (int k_idx = 0; k_idx < k; ++k_idx)
{
thread_kvp.key = 0;
@ -163,9 +190,23 @@ __launch_bounds__(TPB) __global__ void moeTopK(
indices[idx] = should_process_row ? (expert - start_expert) : num_experts;
assert(indices[idx] >= 0);
source_rows[idx] = k_idx * num_rows + block_row;
if (renormalize) {
selected_sum += result_kvp.value;
}
}
__syncthreads();
}
// Renormalize the k weights for this row to sum to 1, if requested.
if (renormalize) {
if (threadIdx.x == 0) {
const float denom = selected_sum > 0.f ? selected_sum : 1.f;
for (int k_idx = 0; k_idx < k; ++k_idx) {
const int idx = k * block_row + k_idx;
output[idx] = output[idx] / denom;
}
}
}
}
// ====================== TopK softmax things ===============================
@ -184,21 +225,30 @@ __launch_bounds__(TPB) __global__ void moeTopK(
2) This implementation assumes k is small, but will work for any k.
*/
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG, int WARP_SIZE_PARAM, typename IndType>
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG, int WARP_SIZE_PARAM, typename IndType, typename InputType = float>
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
void topkGatingSoftmax(const float* input, const bool* finished, float* output, const int num_rows, IndType* indices,
int* source_rows, const int k, const int start_expert, const int end_expert)
void topkGatingSoftmax(const InputType* input, const bool* finished, float* output, const int num_rows, IndType* indices,
int* source_rows, const int k, const int start_expert, const int end_expert, const bool renormalize)
{
static_assert(std::is_same_v<InputType, float> || std::is_same_v<InputType, __nv_bfloat16> ||
std::is_same_v<InputType, __half>,
"InputType must be float, __nv_bfloat16, or __half");
// We begin by enforcing compile time assertions and setting up compile time constants.
static_assert(BYTES_PER_LDG == (BYTES_PER_LDG & -BYTES_PER_LDG), "BYTES_PER_LDG must be power of 2");
static_assert(BYTES_PER_LDG <= 16, "BYTES_PER_LDG must be leq 16");
// Number of bytes each thread pulls in per load
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(InputType);
static constexpr int ELTS_PER_ROW = NUM_EXPERTS;
static constexpr int THREADS_PER_ROW = ELTS_PER_ROW / VPT;
static constexpr int LDG_PER_THREAD = VPT / ELTS_PER_LDG;
if constexpr (std::is_same_v<InputType, __nv_bfloat16> || std::is_same_v<InputType, __half>) {
static_assert(ELTS_PER_LDG == 1 || ELTS_PER_LDG % 2 == 0,
"ELTS_PER_LDG must be 1 or even for 16-bit conversion");
}
// Restrictions based on previous section.
static_assert(VPT % ELTS_PER_LDG == 0, "The elements per thread must be a multiple of the elements per ldg");
static_assert(WARP_SIZE_PARAM % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
@ -236,27 +286,71 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
// We finally start setting up the read pointers for each thread. First, each thread jumps to the start of the
// row it will read.
const float* thread_row_ptr = input + thread_row * ELTS_PER_ROW;
const InputType* thread_row_ptr = input + thread_row * ELTS_PER_ROW;
// Now, we compute the group each thread belong to in order to determine the first column to start loads.
const int thread_group_idx = threadIdx.x % THREADS_PER_ROW;
const int first_elt_read_by_thread = thread_group_idx * ELTS_PER_LDG;
const float* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;
// Determine the pointer type to use to read in the data depending on the BYTES_PER_LDG template param. In theory,
// this can support all powers of 2 up to 16.
// NOTE(woosuk): The original implementation uses CUTLASS aligned array here.
// We defined our own aligned array and use it here to avoid the dependency on CUTLASS.
using AccessType = AlignedArray<float, ELTS_PER_LDG>;
const InputType* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;
// Finally, we pull in the data from global mem
float row_chunk[VPT];
AccessType* row_chunk_vec_ptr = reinterpret_cast<AccessType*>(&row_chunk);
const AccessType* vec_thread_read_ptr = reinterpret_cast<const AccessType*>(thread_read_ptr);
// NOTE(zhuhaoran): dispatch different input types loading, BF16/FP16 convert to float
if constexpr (std::is_same_v<InputType, float>) {
using VecType = AlignedArray<float, ELTS_PER_LDG>;
VecType* row_chunk_vec_ptr = reinterpret_cast<VecType*>(&row_chunk);
const VecType* vec_thread_read_ptr = reinterpret_cast<const VecType*>(thread_read_ptr);
#pragma unroll
for (int ii = 0; ii < LDG_PER_THREAD; ++ii)
{
row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
}
} else if constexpr (std::is_same_v<InputType, __nv_bfloat16>) {
if constexpr (ELTS_PER_LDG >= 2) {
using VecType = AlignedArray<__nv_bfloat16, ELTS_PER_LDG>;
float2* row_chunk_f2 = reinterpret_cast<float2*>(row_chunk);
const VecType* vec_thread_read_ptr = reinterpret_cast<const VecType*>(thread_read_ptr);
#pragma unroll
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
VecType vec = vec_thread_read_ptr[ii * THREADS_PER_ROW];
int base_idx_f2 = ii * ELTS_PER_LDG / 2;
#pragma unroll
for (int jj = 0; jj < ELTS_PER_LDG / 2; ++jj) {
row_chunk_f2[base_idx_f2 + jj] = __bfloat1622float2(
*reinterpret_cast<const __nv_bfloat162*>(vec.data + jj * 2)
);
}
}
} else { // ELTS_PER_LDG == 1
#pragma unroll
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
const __nv_bfloat16* scalar_ptr = thread_read_ptr + ii * THREADS_PER_ROW;
row_chunk[ii] = __bfloat162float(*scalar_ptr);
}
}
} else if constexpr (std::is_same_v<InputType, __half>) {
if constexpr (ELTS_PER_LDG >= 2) {
using VecType = AlignedArray<__half, ELTS_PER_LDG>;
float2* row_chunk_f2 = reinterpret_cast<float2*>(row_chunk);
const VecType* vec_thread_read_ptr = reinterpret_cast<const VecType*>(thread_read_ptr);
#pragma unroll
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
VecType vec = vec_thread_read_ptr[ii * THREADS_PER_ROW];
int base_idx_f2 = ii * ELTS_PER_LDG / 2;
#pragma unroll
for (int jj = 0; jj < ELTS_PER_LDG / 2; ++jj) {
row_chunk_f2[base_idx_f2 + jj] = __half22float2(
*reinterpret_cast<const __half2*>(vec.data + jj * 2)
);
}
}
} else { // ELTS_PER_LDG == 1
#pragma unroll
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
const __half* scalar_ptr = thread_read_ptr + ii * THREADS_PER_ROW;
row_chunk[ii] = __half2float(*scalar_ptr);
}
}
}
// First, we perform a max reduce within the thread. We can do the max in fp16 safely (I think) and just
@ -310,6 +404,7 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
int start_col = first_elt_read_by_thread;
static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW;
float selected_sum = 0.f;
for (int k_idx = 0; k_idx < k; ++k_idx)
{
// First, each thread does the local argmax
@ -363,6 +458,9 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
output[idx] = max_val;
indices[idx] = should_process_row ? (expert - start_expert) : NUM_EXPERTS;
source_rows[idx] = k_idx * num_rows + thread_row;
if (renormalize) {
selected_sum += max_val;
}
}
// Finally, we clear the value in the thread with the current max if there is another iteration to run.
@ -380,15 +478,28 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
}
}
}
// Renormalize the k weights for this row to sum to 1, if requested.
if (renormalize) {
if (thread_group_idx == 0)
{
const float denom = selected_sum > 0.f ? selected_sum : 1.f;
for (int k_idx = 0; k_idx < k; ++k_idx)
{
const int idx = k * thread_row + k_idx;
output[idx] = output[idx] / denom;
}
}
}
}
namespace detail
{
// Constructs some constants needed to partition the work across threads at compile time.
template <int EXPERTS, int BYTES_PER_LDG, int WARP_SIZE_PARAM>
template <int EXPERTS, int BYTES_PER_LDG, int WARP_SIZE_PARAM, typename InputType>
struct TopkConstants
{
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(InputType);
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0, "");
static constexpr int VECs_PER_THREAD = MAX(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM));
static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
@ -397,20 +508,21 @@ struct TopkConstants
};
} // namespace detail
template <int EXPERTS, int WARPS_PER_TB, int WARP_SIZE_PARAM, int MAX_BYTES_PER_LDG, typename IndType>
void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, float* output, IndType* indices,
int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, cudaStream_t stream)
template <int EXPERTS, int WARPS_PER_TB, int WARP_SIZE_PARAM, int MAX_BYTES_PER_LDG, typename IndType, typename InputType>
void topkGatingSoftmaxLauncherHelper(const InputType* input, const bool* finished, float* output, IndType* indices,
int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, const bool renormalize,
cudaStream_t stream)
{
static constexpr int BYTES_PER_LDG = MIN(MAX_BYTES_PER_LDG, sizeof(float) * EXPERTS);
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
static constexpr int BYTES_PER_LDG = MIN(MAX_BYTES_PER_LDG, sizeof(InputType) * EXPERTS);
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM, InputType>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG, WARP_SIZE_PARAM><<<num_blocks, block_dim, 0, stream>>>(
input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert);
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG, WARP_SIZE_PARAM, IndType, InputType><<<num_blocks, block_dim, 0, stream>>>(
input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert, renormalize);
}
#ifndef USE_ROCM
@ -418,26 +530,26 @@ void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, f
static_assert(WARP_SIZE == 32, \
"Unsupported warp size. Only 32 is supported for CUDA"); \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, WARP_SIZE, MAX_BYTES>( \
gating_output, nullptr, topk_weights, topk_indices, \
token_expert_indices, num_tokens, topk, 0, num_experts, stream);
gating_output, nullptr, topk_weights, topk_indices, token_expert_indices, \
num_tokens, topk, 0, num_experts, renormalize, stream);
#else
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB, MAX_BYTES) \
if (WARP_SIZE == 64) { \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 64, MAX_BYTES>( \
gating_output, nullptr, topk_weights, topk_indices, \
token_expert_indices, num_tokens, topk, 0, num_experts, stream); \
gating_output, nullptr, topk_weights, topk_indices, token_expert_indices, \
num_tokens, topk, 0, num_experts, renormalize, stream); \
} else if (WARP_SIZE == 32) { \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 32, MAX_BYTES>( \
gating_output, nullptr, topk_weights, topk_indices, \
token_expert_indices, num_tokens, topk, 0, num_experts, stream); \
gating_output, nullptr, topk_weights, topk_indices, token_expert_indices, \
num_tokens, topk, 0, num_experts, renormalize, stream); \
} else { \
assert(false && "Unsupported warp size. Only 32 and 64 are supported for ROCm"); \
}
#endif
template <typename IndType>
template <typename IndType, typename InputType>
void topkGatingSoftmaxKernelLauncher(
const float* gating_output,
const InputType* gating_output,
float* topk_weights,
IndType* topk_indices,
int* token_expert_indices,
@ -445,11 +557,15 @@ void topkGatingSoftmaxKernelLauncher(
const int num_tokens,
const int num_experts,
const int topk,
const bool renormalize,
cudaStream_t stream) {
static constexpr int WARPS_PER_TB = 4;
static constexpr int BYTES_PER_LDG_POWER_OF_2 = 16;
#ifndef USE_ROCM
static constexpr int BYTES_PER_LDG_MULTIPLE_64 = 8;
// for bfloat16 dtype, we need 4 bytes loading to make sure num_experts
// elements can be loaded by a warp
static constexpr int BYTES_PER_LDG_MULTIPLE_64 =
(std::is_same_v<InputType, __nv_bfloat16> || std::is_same_v<InputType, __half>) ? 4 : 8;
#endif
switch (num_experts) {
case 1:
@ -506,11 +622,11 @@ void topkGatingSoftmaxKernelLauncher(
TORCH_CHECK(softmax_workspace != nullptr,
"softmax_workspace must be provided for num_experts that are not a power of 2 or multiple of 64.");
static constexpr int TPB = 256;
moeSoftmax<TPB><<<num_tokens, TPB, 0, stream>>>(
moeSoftmax<TPB, InputType><<<num_tokens, TPB, 0, stream>>>(
gating_output, nullptr, softmax_workspace, num_experts);
moeTopK<TPB><<<num_tokens, TPB, 0, stream>>>(
softmax_workspace, nullptr, topk_weights, topk_indices, token_expert_indices,
num_experts, topk, 0, num_experts);
num_experts, topk, 0, num_experts, renormalize);
}
}
}
@ -518,11 +634,50 @@ void topkGatingSoftmaxKernelLauncher(
} // namespace moe
} // namespace vllm
template<typename ComputeType>
void dispatch_topk_softmax_launch(
torch::Tensor& gating_output,
torch::Tensor& topk_weights,
torch::Tensor& topk_indices,
torch::Tensor& token_expert_indices,
torch::Tensor& softmax_workspace,
int num_tokens, int num_experts, int topk, bool renormalize, cudaStream_t stream)
{
if (topk_indices.scalar_type() == at::ScalarType::Int) {
vllm::moe::topkGatingSoftmaxKernelLauncher<int, ComputeType>(
reinterpret_cast<const ComputeType*>(gating_output.data_ptr()),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<int>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens, num_experts, topk, renormalize, stream);
} else if (topk_indices.scalar_type() == at::ScalarType::UInt32) {
vllm::moe::topkGatingSoftmaxKernelLauncher<uint32_t, ComputeType>(
reinterpret_cast<const ComputeType*>(gating_output.data_ptr()),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<uint32_t>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens, num_experts, topk, renormalize, stream);
} else {
TORCH_CHECK(topk_indices.scalar_type() == at::ScalarType::Long);
vllm::moe::topkGatingSoftmaxKernelLauncher<int64_t, ComputeType>(
reinterpret_cast<const ComputeType*>(gating_output.data_ptr()),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<int64_t>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens, num_experts, topk, renormalize, stream);
}
}
void topk_softmax(
torch::Tensor& topk_weights, // [num_tokens, topk]
torch::Tensor& topk_indices, // [num_tokens, topk]
torch::Tensor& token_expert_indices, // [num_tokens, topk]
torch::Tensor& gating_output) // [num_tokens, num_experts]
torch::Tensor& gating_output, // [num_tokens, num_experts]
bool renormalize)
{
const int num_experts = gating_output.size(-1);
const auto num_tokens = gating_output.numel() / num_experts;
@ -534,45 +689,19 @@ void topk_softmax(
const at::cuda::OptionalCUDAGuard device_guard(device_of(gating_output));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
torch::Tensor softmax_workspace = torch::empty({workspace_size}, gating_output.options());
const auto workspace_options = gating_output.options().dtype(at::ScalarType::Float);
torch::Tensor softmax_workspace = torch::empty({workspace_size}, workspace_options);
if(topk_indices.scalar_type() == at::ScalarType::Int)
{
vllm::moe::topkGatingSoftmaxKernelLauncher(
gating_output.data_ptr<float>(),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<int>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens,
num_experts,
topk,
stream);
}
else if (topk_indices.scalar_type() == at::ScalarType::UInt32)
{
vllm::moe::topkGatingSoftmaxKernelLauncher(
gating_output.data_ptr<float>(),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<uint32_t>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens,
num_experts,
topk,
stream);
}
else {
TORCH_CHECK(topk_indices.scalar_type() == at::ScalarType::Long);
vllm::moe::topkGatingSoftmaxKernelLauncher(
gating_output.data_ptr<float>(),
topk_weights.data_ptr<float>(),
topk_indices.data_ptr<int64_t>(),
token_expert_indices.data_ptr<int>(),
softmax_workspace.data_ptr<float>(),
num_tokens,
num_experts,
topk,
stream);
if (gating_output.scalar_type() == at::ScalarType::Float) {
dispatch_topk_softmax_launch<float>(gating_output, topk_weights, topk_indices,
token_expert_indices, softmax_workspace, num_tokens, num_experts, topk, renormalize, stream);
} else if (gating_output.scalar_type() == at::ScalarType::Half) {
dispatch_topk_softmax_launch<__half>(gating_output, topk_weights, topk_indices,
token_expert_indices, softmax_workspace, num_tokens, num_experts, topk, renormalize, stream);
} else if (gating_output.scalar_type() == at::ScalarType::BFloat16) {
dispatch_topk_softmax_launch<__nv_bfloat16>(gating_output, topk_weights, topk_indices,
token_expert_indices, softmax_workspace, num_tokens, num_experts, topk, renormalize, stream);
} else {
TORCH_CHECK(false, "Unsupported gating_output data type: ", gating_output.scalar_type());
}
}

View File

@ -5,7 +5,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
// Apply topk softmax to the gating outputs.
m.def(
"topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! "
"token_expert_indices, Tensor gating_output) -> ()");
"token_expert_indices, Tensor gating_output, bool renormalize) -> ()");
m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
// Calculate the result of moe by summing up the partial results
@ -22,6 +22,31 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
" Tensor! num_tokens_post_pad) -> ()");
m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
// Aligning the number of tokens to be processed by each expert such
// that it is divisible by the block size, but for the batched case.
m.def(
"batched_moe_align_block_size(int max_tokens_per_batch,"
" int block_size, Tensor expert_num_tokens,"
" Tensor! sorted_token_ids,"
" Tensor! experts_ids,"
" Tensor! num_tokens_post_pad) -> ()");
m.impl("batched_moe_align_block_size", torch::kCUDA,
&batched_moe_align_block_size);
// Aligning the number of tokens to be processed by each expert such
// that it is divisible by the block size.
m.def(
"moe_lora_align_block_size(Tensor topk_ids,"
" Tensor token_lora_mapping,"
" int num_experts,"
" int block_size, int max_loras, "
" int max_num_tokens_padded, "
" int max_num_m_blocks, "
" Tensor !sorted_token_ids,"
" Tensor !experts_ids,"
" Tensor !num_tokens_post_pad) -> () ");
m.impl("moe_lora_align_block_size", torch::kCUDA, &moe_lora_align_block_size);
#ifndef USE_ROCM
m.def(
"moe_wna16_gemm(Tensor input, Tensor! output, Tensor b_qweight, "

View File

@ -92,9 +92,6 @@ void rms_norm(torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight,
void fused_add_rms_norm(torch::Tensor& input, torch::Tensor& residual,
torch::Tensor& weight, double epsilon);
void poly_norm(torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight,
torch::Tensor& bias, double epsilon);
void apply_repetition_penalties_(torch::Tensor& logits,
const torch::Tensor& prompt_mask,
const torch::Tensor& output_mask,
@ -102,8 +99,11 @@ void apply_repetition_penalties_(torch::Tensor& logits,
void top_k_per_row(const torch::Tensor& logits, const torch::Tensor& rowStarts,
const torch::Tensor& rowEnds, torch::Tensor& indices,
torch::Tensor& values, int64_t numRows, int64_t stride0,
int64_t stride1);
int64_t numRows, int64_t stride0, int64_t stride1);
void top_k_per_row_decode(const torch::Tensor& logits, int64_t next_n,
const torch::Tensor& seq_lens, torch::Tensor& indices,
int64_t numRows, int64_t stride0, int64_t stride1);
void rms_norm_static_fp8_quant(torch::Tensor& out, torch::Tensor& input,
torch::Tensor& weight, torch::Tensor& scale,
@ -307,7 +307,7 @@ void dynamic_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,
torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales, torch::Tensor b_g_idx,
bool use_exllama, int64_t bit);
bool use_exllama, bool use_v2_format, int64_t bit);
void gptq_shuffle(torch::Tensor q_weight, torch::Tensor q_perm, int64_t bit);

View File

@ -145,7 +145,11 @@ void rms_norm_dynamic_per_token_quant(
if (scale_ub.has_value()) {
TORCH_CHECK(out.dtype() == kFp8Type);
}
TORCH_CHECK(weight.dtype() == input.dtype());
TORCH_CHECK(scales.dtype() == torch::kFloat32);
if (residual) {
TORCH_CHECK(residual->scalar_type() == input.scalar_type());
}
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "rms_norm_dynamic_per_token_quant_dispatch", [&] {

View File

@ -185,7 +185,7 @@ typedef void (*fp_gemm_half_q_half_gptq_kernel)(const half*, const uint32_t*,
const uint32_t*, const half*,
half*, const int, const int,
const int, const int,
const int*);
const bool, const int*);
template <bool first_block, int m_count>
__global__ void gemm_half_q_half_gptq_4bit_kernel(
@ -193,12 +193,15 @@ __global__ void gemm_half_q_half_gptq_4bit_kernel(
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, half* __restrict__ c,
const int size_m, const int size_n, const int size_k, const int groups,
const int* __restrict__ b_q_perm) {
const bool use_v2_format, const int* __restrict__ b_q_perm) {
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
auto t = threadIdx.x;
// Block
@ -256,10 +259,10 @@ __global__ void gemm_half_q_half_gptq_4bit_kernel(
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
dequant_4bit_8_prep_zero(zeros[0] + zero_offset, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + zero_offset, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + zero_offset, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + zero_offset, z1z16[3], y1y16[3]);
// Column result
float block_c[m_count][4] = {};
@ -272,10 +275,10 @@ __global__ void gemm_half_q_half_gptq_4bit_kernel(
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
dequant_4bit_8_prep_zero(zeros[0] + zero_offset, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + zero_offset, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + zero_offset, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + zero_offset, z1z16[3], y1y16[3]);
}
#pragma unroll
@ -329,12 +332,15 @@ __global__ void gemm_half_q_half_gptq_2bit_kernel(
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, half* __restrict__ c,
const int size_m, const int size_n, const int size_k, const int groups,
const int* __restrict__ b_q_perm) {
const bool use_v2_format, const int* __restrict__ b_q_perm) {
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q2_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
auto t = threadIdx.x;
// Block
@ -409,10 +415,10 @@ __global__ void gemm_half_q_half_gptq_2bit_kernel(
int4 load_int4 = *b_ptr4;
half2 dq[4][8];
dequant_2bit_16(load_int4.x, dq[0], size_n, zeros[0] + 1);
dequant_2bit_16(load_int4.y, dq[1], size_n, zeros[1] + 1);
dequant_2bit_16(load_int4.z, dq[2], size_n, zeros[2] + 1);
dequant_2bit_16(load_int4.w, dq[3], size_n, zeros[3] + 1);
dequant_2bit_16(load_int4.x, dq[0], size_n, zeros[0] + zero_offset);
dequant_2bit_16(load_int4.y, dq[1], size_n, zeros[1] + zero_offset);
dequant_2bit_16(load_int4.z, dq[2], size_n, zeros[2] + zero_offset);
dequant_2bit_16(load_int4.w, dq[3], size_n, zeros[3] + zero_offset);
#pragma unroll
for (int m = 0; m < m_count; m++) {
@ -448,12 +454,15 @@ __global__ void gemm_half_q_half_gptq_3bit_kernel(
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, half* __restrict__ c,
const int size_m, const int size_n, const int size_k, const int groups,
const int* __restrict__ b_q_perm) {
const bool use_v2_format, const int* __restrict__ b_q_perm) {
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q3_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
auto t = threadIdx.x;
// Block
@ -534,13 +543,13 @@ __global__ void gemm_half_q_half_gptq_3bit_kernel(
half2 dq[4][16];
dequant_3bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0],
size_n, zeros[0] + 1);
size_n, zeros[0] + zero_offset);
dequant_3bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1],
size_n, zeros[1] + 1);
size_n, zeros[1] + zero_offset);
dequant_3bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2],
size_n, zeros[2] + 1);
size_n, zeros[2] + zero_offset);
dequant_3bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3],
size_n, zeros[3] + 1);
size_n, zeros[3] + zero_offset);
#pragma unroll
for (int m = 0; m < m_count; m++) {
@ -574,12 +583,15 @@ __global__ void gemm_half_q_half_gptq_8bit_kernel(
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, half* __restrict__ c,
const int size_m, const int size_n, const int size_k, const int groups,
const int* __restrict__ b_q_perm) {
const bool use_v2_format, const int* __restrict__ b_q_perm) {
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q8_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
auto t = threadIdx.x;
// Block
@ -658,13 +670,13 @@ __global__ void gemm_half_q_half_gptq_8bit_kernel(
half2 dq[4][4];
dequant_8bit_8(load_int4[0].x, load_int4[1].x, dq[0], size_n,
zeros[0] + 1);
zeros[0] + zero_offset);
dequant_8bit_8(load_int4[0].y, load_int4[1].y, dq[1], size_n,
zeros[1] + 1);
zeros[1] + zero_offset);
dequant_8bit_8(load_int4[0].z, load_int4[1].z, dq[2], size_n,
zeros[2] + 1);
zeros[2] + zero_offset);
dequant_8bit_8(load_int4[0].w, load_int4[1].w, dq[3], size_n,
zeros[3] + 1);
zeros[3] + zero_offset);
for (int m = 0; m < m_count; m++) {
block_c[m][0] =
@ -730,7 +742,8 @@ void gemm_half_q_half_cuda_part(const half* a, const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_q_perm,
half* c, int size_m, int size_n, int size_k,
int m_count, int groups, int bit) {
int m_count, int groups, bool use_v2_format,
int bit) {
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
@ -743,20 +756,23 @@ void gemm_half_q_half_cuda_part(const half* a, const uint32_t* b_q_weight,
pick_gemm_half_q_half_gptq_kernel(true, m_count, bit);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
kernel<<<gridDim, blockDim, 0, stream>>>(a, b_q_weight, b_gptq_qzeros,
b_gptq_scales, c, size_m, size_n,
size_k, groups, b_q_perm);
kernel<<<gridDim, blockDim, 0, stream>>>(
a, b_q_weight, b_gptq_qzeros, b_gptq_scales, c, size_m, size_n, size_k,
groups, use_v2_format, b_q_perm);
}
__global__ void reconstruct_exllama_8bit_kernel(
const uint32_t* __restrict__ b_q_weight, const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, const int size_k, const int size_n,
const int groups, half* __restrict__ b) {
const int groups, const bool use_v2_format, half* __restrict__ b) {
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q8_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
auto offset_k = BLOCK_KN_SIZE * blockIdx.y;
auto offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
@ -812,13 +828,13 @@ __global__ void reconstruct_exllama_8bit_kernel(
half2 dq[4][4];
dequant_8bit_8(load_int4[0].x, load_int4[1].x, dq[0], size_n,
zeros[0] + 1);
zeros[0] + zero_offset);
dequant_8bit_8(load_int4[0].y, load_int4[1].y, dq[1], size_n,
zeros[1] + 1);
zeros[1] + zero_offset);
dequant_8bit_8(load_int4[0].z, load_int4[1].z, dq[2], size_n,
zeros[2] + 1);
zeros[2] + zero_offset);
dequant_8bit_8(load_int4[0].w, load_int4[1].w, dq[3], size_n,
zeros[3] + 1);
zeros[3] + zero_offset);
// half* dqh = (half*)dq;
if (b_q_perm) {
@ -849,11 +865,14 @@ __global__ void reconstruct_exllama_4bit_kernel(
const uint32_t* __restrict__ b_q_weight, const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, const int size_k, const int size_n,
const int groups, half* __restrict__ b) {
const int groups, const bool use_v2_format, half* __restrict__ b) {
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
auto offset_k = BLOCK_KN_SIZE * blockIdx.y;
auto offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
@ -888,10 +907,10 @@ __global__ void reconstruct_exllama_4bit_kernel(
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
dequant_4bit_8_prep_zero(zeros[0] + zero_offset, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + zero_offset, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + zero_offset, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + zero_offset, z1z16[3], y1y16[3]);
__syncthreads();
@ -904,10 +923,10 @@ __global__ void reconstruct_exllama_4bit_kernel(
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
dequant_4bit_8_prep_zero(zeros[0] + zero_offset, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + zero_offset, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + zero_offset, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + zero_offset, z1z16[3], y1y16[3]);
}
for (int p = 0; p < 4; p++) {
@ -954,11 +973,14 @@ __global__ void reconstruct_exllama_3bit_kernel(
const uint32_t* __restrict__ b_q_weight, const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, const int size_k, const int size_n,
const int groups, half* __restrict__ b) {
const int groups, const bool use_v2_format, half* __restrict__ b) {
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q3_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
auto offset_k = BLOCK_KN_SIZE * blockIdx.y;
auto offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
@ -1016,13 +1038,13 @@ __global__ void reconstruct_exllama_3bit_kernel(
half2 dq[4][16];
dequant_3bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0],
size_n, zeros[0] + 1);
size_n, zeros[0] + zero_offset);
dequant_3bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1],
size_n, zeros[1] + 1);
size_n, zeros[1] + zero_offset);
dequant_3bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2],
size_n, zeros[2] + 1);
size_n, zeros[2] + zero_offset);
dequant_3bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3],
size_n, zeros[3] + 1);
size_n, zeros[3] + zero_offset);
if (b_q_perm) {
for (int j = 0; j < 16; j++) {
@ -1052,11 +1074,14 @@ __global__ void reconstruct_exllama_2bit_kernel(
const uint32_t* __restrict__ b_q_weight, const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, const int size_k, const int size_n,
const int groups, half* __restrict__ b) {
const int groups, const bool use_v2_format, half* __restrict__ b) {
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q2_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
auto offset_k = BLOCK_KN_SIZE * blockIdx.y;
auto offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
@ -1108,10 +1133,10 @@ __global__ void reconstruct_exllama_2bit_kernel(
int4 load_int4 = *b_ptr4;
half2 dq[4][8];
dequant_2bit_16(load_int4.x, dq[0], size_n, zeros[0] + 1);
dequant_2bit_16(load_int4.y, dq[1], size_n, zeros[1] + 1);
dequant_2bit_16(load_int4.z, dq[2], size_n, zeros[2] + 1);
dequant_2bit_16(load_int4.w, dq[3], size_n, zeros[3] + 1);
dequant_2bit_16(load_int4.x, dq[0], size_n, zeros[0] + zero_offset);
dequant_2bit_16(load_int4.y, dq[1], size_n, zeros[1] + zero_offset);
dequant_2bit_16(load_int4.z, dq[2], size_n, zeros[2] + zero_offset);
dequant_2bit_16(load_int4.w, dq[3], size_n, zeros[3] + zero_offset);
b_ptr += size_n;
// half* dqh = (half*)dq;
@ -1143,7 +1168,7 @@ void reconstruct_exllama(const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_q_perm,
half* out, int height, int width, int groups,
int bit) {
bool use_v2_format, int bit) {
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
@ -1162,14 +1187,14 @@ void reconstruct_exllama(const uint32_t* b_q_weight,
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
reconstruct_exllama_kernel<<<gridDim, blockDim, 0, stream>>>(
b_q_weight, b_q_perm, b_gptq_qzeros, b_gptq_scales, height, width, groups,
out);
use_v2_format, out);
}
__global__ void gemm_half_q_half_alt_4bit_kernel(
const half2* __restrict__ vec, const uint32_t* __restrict__ mat,
half* __restrict__ mul, const half* __restrict__ scales,
const uint32_t* __restrict__ zeros, const int* __restrict__ g_idx,
int batch, int height, int width) {
int batch, int height, int width, bool use_v2_format) {
int zero_width = width / 8;
int vec_height = height * 4;
const int blockwidth2 = BLOCK_KN_SIZE / 2;
@ -1179,6 +1204,9 @@ __global__ void gemm_half_q_half_alt_4bit_kernel(
int h_end = min(BLOCK_KN_SIZE / 8, height - h) * 4;
auto w = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
__shared__ half2 blockvec[BLOCK_M_SIZE_MAX][blockwidth2];
if (threadIdx.x < h_end) {
for (int m = 0; m < b_end; ++m) {
@ -1223,10 +1251,11 @@ __global__ void gemm_half_q_half_alt_4bit_kernel(
half2 zero = __halves2half2(
__hmul(scale_f,
__int2half_rn(-((zeros[g * zero_width + z_w] >> z_mod) & 0xF) -
1)),
__hmul(scale_f2,
__int2half_rn(
-((zeros[g2 * zero_width + z_w] >> z_mod) & 0xF) - 1)));
zero_offset)),
__hmul(
scale_f2,
__int2half_rn(-((zeros[g2 * zero_width + z_w] >> z_mod) & 0xF) -
zero_offset)));
scales_tmp[tmp_k] = scale;
zeros_tmp[tmp_k] = zero;
}
@ -1268,7 +1297,7 @@ __global__ void gemm_half_q_half_alt_8bit_kernel(
const half2* __restrict__ vec, const uint32_t* __restrict__ mat,
half* __restrict__ mul, const half* __restrict__ scales,
const uint32_t* __restrict__ zeros, const int* __restrict__ g_idx,
int batch, int height, int width) {
int batch, int height, int width, bool use_v2_format) {
int zero_width = width / 4;
int vec_height = height * 2;
const int blockwidth2 = BLOCK_KN_SIZE / 2;
@ -1278,6 +1307,9 @@ __global__ void gemm_half_q_half_alt_8bit_kernel(
int h_end = min(BLOCK_KN_SIZE / 4, height - h) * 2;
auto w = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
__shared__ half2 blockvec[BLOCK_M_SIZE_MAX][blockwidth2];
if (threadIdx.x < h_end) {
for (int m = 0; m < b_end; ++m) {
@ -1312,12 +1344,13 @@ __global__ void gemm_half_q_half_alt_8bit_kernel(
half scale_f2 = scales[g2 * width + w];
half2 scale = __halves2half2(scale_f, scale_f2);
half2 zero = __halves2half2(
__hmul(scale_f,
__int2half_rn(
-((zeros[g * zero_width + z_w] >> z_mod) & 0xff) - 1)),
__hmul(scale_f2,
__int2half_rn(
-((zeros[g2 * zero_width + z_w] >> z_mod) & 0xff) - 1)));
__hmul(scale_f, __int2half_rn(
-((zeros[g * zero_width + z_w] >> z_mod) & 0xff) -
zero_offset)),
__hmul(
scale_f2,
__int2half_rn(-((zeros[g2 * zero_width + z_w] >> z_mod) & 0xff) -
zero_offset)));
scales_tmp[tmp_k] = scale;
zeros_tmp[tmp_k] = zero;
}
@ -1355,7 +1388,7 @@ void gemm_half_q_half_alt(const half* a, const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_g_idx,
half* c, int size_m, int size_n, int size_k,
int bit) {
bool use_v2_format, int bit) {
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
@ -1372,17 +1405,15 @@ void gemm_half_q_half_alt(const half* a, const uint32_t* b_q_weight,
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
kernel<<<gridDim, blockDim, 0, stream>>>(
(const half2*)a, b_q_weight, c, b_gptq_scales, b_gptq_qzeros, b_g_idx,
size_m, size_k / 32 * bit, size_n);
size_m, size_k / 32 * bit, size_n, use_v2_format);
}
template <class T, int bit>
__global__ void reconstruct_gptq_kernel(const uint32_t* __restrict__ w,
const half* __restrict__ w_scales,
const uint32_t* __restrict__ w_zeros,
const int* __restrict__ g_idx,
const int height, const int width,
const int group,
half* __restrict__ out) {
__global__ void reconstruct_gptq_kernel(
const uint32_t* __restrict__ w, const half* __restrict__ w_scales,
const uint32_t* __restrict__ w_zeros, const int* __restrict__ g_idx,
const int height, const int width, const int group,
const bool use_v2_format, half* __restrict__ out) {
// Start of block
auto column = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
@ -1395,6 +1426,9 @@ __global__ void reconstruct_gptq_kernel(const uint32_t* __restrict__ w,
MatrixView_half w_scales_(w_scales, group, width);
T w_zeros_(w_zeros, group, width);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
uint32_t w_read = w[blockIdx.y * width + column];
half* out_ptr = out_.item_ptr(row, column);
@ -1402,7 +1436,7 @@ __global__ void reconstruct_gptq_kernel(const uint32_t* __restrict__ w,
for (int s = 0; s < 32; s += bit) {
int group = g_idx[row + s / bit];
half w_scale = w_scales_.item(group, column);
uint32_t w_zero = w_zeros_.item(group, column) + 1;
uint32_t w_zero = w_zeros_.item(group, column) + zero_offset;
half w_item =
__hmul(__int2half_rn((int)((w_read >> s) & ((1 << bit) - 1)) - w_zero),
w_scale);
@ -1415,7 +1449,7 @@ __global__ void reconstruct_gptq_3bit_kernel(
const uint32_t* __restrict__ w, const half* __restrict__ w_scales,
const uint32_t* __restrict__ w_zeros, const int* __restrict__ g_idx,
const int height, const int width, const int group,
half* __restrict__ out) {
const bool use_v2_format, half* __restrict__ out) {
// Start of block
auto column = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
auto row = blockIdx.y * 32;
@ -1427,6 +1461,9 @@ __global__ void reconstruct_gptq_3bit_kernel(
MatrixView_half w_scales_(w_scales, group, width);
MatrixView_q3_row w_zeros_(w_zeros, group, width);
// GPTQv2 and GPTQv1 handles zero points differently
int zero_offset = use_v2_format ? 0 : 1;
uint32_t w1 = w[(blockIdx.y * 3) * width + column];
uint32_t w2 = w[(blockIdx.y * 3 + 1) * width + column];
uint32_t w3 = w[(blockIdx.y * 3 + 2) * width + column];
@ -1436,7 +1473,7 @@ __global__ void reconstruct_gptq_3bit_kernel(
for (int i = 0; i < 32; i += 1) {
int group = g_idx[row + i];
half w_scale = w_scales_.item(group, column);
uint32_t w_zero = w_zeros_.item(group, column) + 1;
uint32_t w_zero = w_zeros_.item(group, column) + zero_offset;
int w_item;
if (i == 10) {
w_item = (w1 >> 30) | ((w2 << 2) & 0x4);
@ -1456,7 +1493,8 @@ __global__ void reconstruct_gptq_3bit_kernel(
void reconstruct_gptq(const uint32_t* b_q_weight, const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_g_idx, half* out,
int height, int width, int groups, int bit) {
int height, int width, int groups, bool use_v2_format,
int bit) {
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
@ -1476,7 +1514,7 @@ void reconstruct_gptq(const uint32_t* b_q_weight, const uint32_t* b_gptq_qzeros,
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
kernel<<<gridDim, blockDim, 0, stream>>>(b_q_weight, b_gptq_scales,
b_gptq_qzeros, b_g_idx, height,
width, groups, out);
width, groups, use_v2_format, out);
}
void gemm_half_q_half_cuda(cublasHandle_t cublas_handle, const half* a,
@ -1484,7 +1522,8 @@ void gemm_half_q_half_cuda(cublasHandle_t cublas_handle, const half* a,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_g_idx,
half* c, half* temp_dq, int size_m, int size_n,
int size_k, int groups, bool use_exllama, int bit) {
int size_k, int groups, bool use_exllama,
bool use_v2_format, int bit) {
bool use_reconstruct;
if (use_exllama) {
use_reconstruct = ((bit == 8 && size_m > MAX_Q_GEMM_ROWS_8BIT) ||
@ -1498,10 +1537,10 @@ void gemm_half_q_half_cuda(cublasHandle_t cublas_handle, const half* a,
// Reconstruct FP16 matrix, then cuBLAS
if (use_exllama) {
reconstruct_exllama(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
temp_dq, size_k, size_n, groups, bit);
temp_dq, size_k, size_n, groups, use_v2_format, bit);
} else {
reconstruct_gptq(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
temp_dq, size_k, size_n, groups, bit);
temp_dq, size_k, size_n, groups, use_v2_format, bit);
}
const half alpha = __float2half(1.0f);
@ -1517,18 +1556,18 @@ void gemm_half_q_half_cuda(cublasHandle_t cublas_handle, const half* a,
if (max_chunks) {
gemm_half_q_half_cuda_part(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
b_g_idx, c, last_chunk, size_n, size_k,
BLOCK_M_SIZE_MAX, groups, bit);
BLOCK_M_SIZE_MAX, groups, use_v2_format, bit);
}
if (last_chunk_size) {
gemm_half_q_half_cuda_part(a + last_chunk * size_k, b_q_weight,
b_gptq_qzeros, b_gptq_scales, b_g_idx,
c + last_chunk * size_n, last_chunk_size,
size_n, size_k, last_chunk_size, groups, bit);
gemm_half_q_half_cuda_part(
a + last_chunk * size_k, b_q_weight, b_gptq_qzeros, b_gptq_scales,
b_g_idx, c + last_chunk * size_n, last_chunk_size, size_n, size_k,
last_chunk_size, groups, use_v2_format, bit);
}
} else {
gemm_half_q_half_alt(a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
c, size_m, size_n, size_k, bit);
c, size_m, size_n, size_k, use_v2_format, bit);
}
}
@ -1815,7 +1854,7 @@ void shuffle_exllama_weight(uint32_t* q_weight, int* q_perm, int height,
torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales, torch::Tensor b_g_idx,
bool use_exllama, int64_t bit) {
bool use_exllama, bool use_v2_format, int64_t bit) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
at::Tensor c = torch::empty({a.size(0), b_q_weight.size(1)}, options);
@ -1833,7 +1872,7 @@ torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
c.size(1), // n
a.size(1), // k
b_gptq_qzeros.size(0), // group number
use_exllama, bit);
use_exllama, use_v2_format, bit);
return c;
}

View File

@ -54,15 +54,10 @@ static inline __device__ uint16_t extractBinIdx(float x) {
return 511 - (tmp.u16 >> 7);
}
template <int kNumThreadsPerBlock = 512>
static __global__ void topKPerRow(const float* logits, const int* rowStarts,
const int* rowEnds, int* outIndices,
float* outLogits, int stride0, int stride1) {
// The number of bins in the histogram.
static constexpr int kNumBins = 512;
// The top-k width.
static constexpr int kTopK = 2048;
template <int kNumThreadsPerBlock = 512, int kNumBins = 512, int kTopK = 2048>
__device__ void topKPerRowJob(const float* logits, const int rowStart,
const int rowEnd, const int rowIdx,
int* outIndices, int stride0, int stride1) {
// The number of elements per thread for the final top-k sort.
static constexpr int kNumTopKItemsPerThread = kTopK / kNumThreadsPerBlock;
// The class to sort the elements during the final top-k sort.
@ -103,17 +98,11 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
__shared__ int smemHistogram[kNumBins];
// Shared memory to store the selected indices.
__shared__ int smemIndices[kTopK];
// Shared memory to store the selected logits.
__shared__ float smemLogits[kTopK];
// Shared memory to store the threshold bin.
__shared__ int smemThresholdBinIdx[1];
// Shared memory counter to register the candidates for the final phase.
__shared__ int smemFinalDstIdx[1];
// The row computed by this block.
int rowIdx = blockIdx.x;
// The range of logits within the row.
int rowStart = rowStarts[rowIdx], rowEnd = rowEnds[rowIdx];
// The length of the row.
int rowLen = rowEnd - rowStart;
@ -124,13 +113,10 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
rowIt += kNumThreadsPerBlock) {
int idx = rowStart + rowIt;
outIndices[rowIdx * kTopK + rowIt] = idx - rowStart;
outLogits[rowIdx * kTopK + rowIt] =
logits[rowIdx * stride0 + idx * stride1];
}
for (int rowIt = rowLen + threadIdx.x; rowIt < kTopK;
rowIt += kNumThreadsPerBlock) {
outIndices[rowIdx * kTopK + rowIt] = -1;
outLogits[rowIdx * kTopK + rowIt] = -FLT_MAX;
}
return;
}
@ -201,7 +187,6 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
uint16_t idx = extractBinIdx(logit);
if (idx < thresholdBinIdx) {
int dstIdx = atomicAdd(&smemHistogram[idx], 1);
smemLogits[dstIdx] = logit;
smemIndices[dstIdx] = rowIt;
} else if (idx == thresholdBinIdx) {
int dstIdx = atomicAdd(&smemFinalDstIdx[0], 1);
@ -250,7 +235,6 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
int srcIdx = ii * kNumThreadsPerBlock + threadIdx.x;
int dstIdx = baseIdx + srcIdx;
if (dstIdx < kTopK) {
smemLogits[dstIdx] = finalLogits[ii];
smemIndices[dstIdx] = finalIndices[ii];
}
}
@ -258,31 +242,58 @@ static __global__ void topKPerRow(const float* logits, const int* rowStarts,
// Make sure the data is in shared memory.
__syncthreads();
// The topK logits.
float topKLogits[kNumTopKItemsPerThread];
// The topK indices.
int topKIndices[kNumTopKItemsPerThread];
// Load from shared memory.
#pragma unroll
for (int ii = 0; ii < kNumTopKItemsPerThread; ++ii) {
topKLogits[ii] = smemLogits[ii * kNumThreadsPerBlock + threadIdx.x];
topKIndices[ii] = smemIndices[ii * kNumThreadsPerBlock + threadIdx.x];
}
// Sort the elements.
TopKSort(smemFinal.topKSort)
.SortDescendingBlockedToStriped(topKLogits, topKIndices);
// Store to global memory.
#pragma unroll
for (int ii = 0; ii < kNumTopKItemsPerThread; ++ii) {
int offset = rowIdx * kTopK + ii * kNumThreadsPerBlock + threadIdx.x;
outIndices[offset] = topKIndices[ii] - rowStart;
outLogits[offset] = topKLogits[ii];
outIndices[offset] =
smemIndices[ii * kNumThreadsPerBlock + threadIdx.x] - rowStart;
}
}
template <int kNumThreadsPerBlock = 512>
static __global__ void topKPerRow(const float* logits, const int* rowStarts,
const int* rowEnds, int* outIndices,
int stride0, int stride1) {
// The number of bins in the histogram.
static constexpr int kNumBins = 512;
// The top-k width.
static constexpr int kTopK = 2048;
// The row computed by this block.
int rowIdx = blockIdx.x;
// The range of logits within the row.
int rowStart = rowStarts[rowIdx];
int rowEnd = rowEnds[rowIdx];
topKPerRowJob<kNumThreadsPerBlock, kNumBins, kTopK>(
logits, rowStart, rowEnd, rowIdx, outIndices, stride0, stride1);
}
template <int kNumThreadsPerBlock = 512>
static __global__ void topKPerRowDecode(const float* logits, const int* seqLens,
int* outIndices, int stride0,
int stride1, int next_n) {
// The number of bins in the histogram.
static constexpr int kNumBins = 512;
// The top-k width.
static constexpr int kTopK = 2048;
// The row computed by this block.
int rowIdx = blockIdx.x;
// The range of logits within the row.
int rowStart = 0;
int seq_len = seqLens[rowIdx / next_n];
int rowEnd = seq_len - next_n + (rowIdx % next_n) + 1;
topKPerRowJob<kNumThreadsPerBlock, kNumBins, kTopK>(
logits, rowStart, rowEnd, rowIdx, outIndices, stride0, stride1);
}
} // namespace vllm
void apply_repetition_penalties_(
@ -326,10 +337,23 @@ void apply_repetition_penalties_(
});
}
void top_k_per_row_decode(const torch::Tensor& logits, int64_t next_n,
const torch::Tensor& seqLens, torch::Tensor& indices,
int64_t numRows, int64_t stride0, int64_t stride1) {
// Compute the results on the device.
constexpr int kNumThreadsPerBlock = 512;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
vllm::topKPerRowDecode<kNumThreadsPerBlock>
<<<numRows, kNumThreadsPerBlock, 0, stream>>>(
logits.data_ptr<float>(), seqLens.data_ptr<int>(),
indices.data_ptr<int>(), static_cast<int>(stride0),
static_cast<int>(stride1), static_cast<int>(next_n));
}
void top_k_per_row(const torch::Tensor& logits, const torch::Tensor& rowStarts,
const torch::Tensor& rowEnds, torch::Tensor& indices,
torch::Tensor& values, int64_t numRows, int64_t stride0,
int64_t stride1) {
int64_t numRows, int64_t stride0, int64_t stride1) {
// Compute the results on the device.
constexpr int kNumThreadsPerBlock = 512;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -338,6 +362,5 @@ void top_k_per_row(const torch::Tensor& logits, const torch::Tensor& rowStarts,
<<<numRows, kNumThreadsPerBlock, 0, stream>>>(
logits.data_ptr<float>(), rowStarts.data_ptr<int>(),
rowEnds.data_ptr<int>(), indices.data_ptr<int>(),
values.data_ptr<float>(), static_cast<int>(stride0),
static_cast<int>(stride1));
static_cast<int>(stride0), static_cast<int>(stride1));
}

View File

@ -175,12 +175,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"float epsilon) -> ()");
ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm);
// Polynomial Normalization.
ops.def(
"poly_norm(Tensor! out, Tensor input, Tensor weight, Tensor bias, float "
"epsilon) -> ()");
ops.impl("poly_norm", torch::kCUDA, &poly_norm);
// Apply repetition penalties to logits in-place
ops.def(
"apply_repetition_penalties_(Tensor! logits, Tensor prompt_mask, "
@ -191,10 +185,16 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// Optimized top-k per row operation
ops.def(
"top_k_per_row(Tensor logits, Tensor rowStarts, Tensor rowEnds, "
"Tensor! indices, Tensor! values, int numRows, int stride0, "
"Tensor! indices, int numRows, int stride0, "
"int stride1) -> ()");
ops.impl("top_k_per_row", torch::kCUDA, &top_k_per_row);
ops.def(
"top_k_per_row_decode(Tensor logits, int next_n, "
"Tensor seq_lens, Tensor! indices, int numRows, "
"int stride0, int stride1) -> ()");
ops.impl("top_k_per_row_decode", torch::kCUDA, &top_k_per_row_decode);
// Layernorm-quant
// Apply Root Mean Square (RMS) Normalization to the input tensor.
ops.def(
@ -557,7 +557,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// to prevent the meta function registry.
ops.def(
"gptq_gemm(Tensor a, Tensor b_q_weight, Tensor b_gptq_qzeros, "
"Tensor b_gptq_scales, Tensor b_g_idx, bool use_exllama, int bit) "
"Tensor b_gptq_scales, Tensor b_g_idx, bool use_exllama, bool "
"use_v2_format, int bit) "
"-> Tensor",
{stride_tag});
ops.impl("gptq_gemm", torch::kCUDA, &gptq_gemm);

View File

@ -5,7 +5,7 @@
# docs/contributing/dockerfile/dockerfile.md and
# docs/assets/contributing/dockerfile-stages-dependency.png
ARG CUDA_VERSION=12.8.1
ARG CUDA_VERSION=12.9.1
ARG PYTHON_VERSION=3.12
# By parameterizing the base images, we allow third-party to use their own
@ -132,7 +132,9 @@ WORKDIR /workspace
COPY requirements/common.txt requirements/common.txt
COPY requirements/cuda.txt requirements/cuda.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --python /opt/venv/bin/python3 -r requirements/cuda.txt \
# TODO: remove apache-tvm-ffi once FlashInfer is fixed https://github.com/flashinfer-ai/flashinfer/issues/1962
uv pip install --python /opt/venv/bin/python3 --pre apache-tvm-ffi==0.1.0b15 \
&& uv pip install --python /opt/venv/bin/python3 -r requirements/cuda.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# cuda arch list used by torch
@ -273,6 +275,7 @@ WORKDIR /vllm-workspace
ENV DEBIAN_FRONTEND=noninteractive
ARG TARGETPLATFORM
# TODO (huydhn): There is no prebuilt gdrcopy package on 12.9 at the moment
ARG GDRCOPY_CUDA_VERSION=12.8
# Keep in line with FINAL_BASE_IMAGE
ARG GDRCOPY_OS_VERSION=Ubuntu22_04
@ -353,14 +356,23 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# Install vllm wheel first, so that torch etc will be installed.
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/uv \
uv pip install --system dist/*.whl --verbose \
# TODO: remove apache-tvm-ffi once FlashInfer is fixed https://github.com/flashinfer-ai/flashinfer/issues/1962
uv pip install --system --pre apache-tvm-ffi==0.1.0b15 \
&& uv pip install --system dist/*.whl --verbose \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# TODO (huydhn): Remove this once xformers is released for 2.9.0
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
. /etc/environment
export TORCH_CUDA_ARCH_LIST='7.5 8.0+PTX 9.0a'
uv pip install --system --no-build-isolation "git+https://github.com/facebookresearch/xformers@v0.0.32.post2"
BASH
# Install FlashInfer pre-compiled kernel cache and binaries
# https://docs.flashinfer.ai/installation.html
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system flashinfer-cubin==0.4.0 \
&& uv pip install --system flashinfer-jit-cache==0.4.0 \
uv pip install --system flashinfer-cubin==0.4.1 \
&& uv pip install --system flashinfer-jit-cache==0.4.1 \
--extra-index-url https://flashinfer.ai/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
&& flashinfer show-config
@ -422,6 +434,7 @@ ARG PYTHON_VERSION
ARG PIP_INDEX_URL UV_INDEX_URL
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
ARG PYTORCH_CUDA_INDEX_BASE_URL
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
@ -434,7 +447,8 @@ ENV UV_LINK_MODE=copy
RUN --mount=type=cache,target=/root/.cache/uv \
CUDA_MAJOR="${CUDA_VERSION%%.*}"; \
if [ "$CUDA_MAJOR" -ge 12 ]; then \
uv pip install --system -r requirements/dev.txt; \
uv pip install --system -r requirements/dev.txt \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
fi
# install development dependencies (for testing)

View File

@ -31,7 +31,7 @@ ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt-get update -y \
&& apt-get install -y --no-install-recommends ccache git curl wget ca-certificates \
&& apt-get install -y --no-install-recommends sudo ccache git curl wget ca-certificates \
gcc-12 g++-12 libtcmalloc-minimal4 libnuma-dev ffmpeg libsm6 libxext6 libgl1 jq lsof \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12 \
&& curl -LsSf https://astral.sh/uv/install.sh | sh
@ -79,6 +79,9 @@ RUN echo 'ulimit -c 0' >> ~/.bashrc
######################### BUILD IMAGE #########################
FROM base AS vllm-build
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
ARG GIT_REPO_CHECK=0
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
ARG VLLM_CPU_DISABLE_AVX512=0
@ -104,16 +107,20 @@ RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/workspace/vllm/.deps,sharing=locked \
--mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38
######################### TEST DEPS #########################
FROM base AS vllm-test-deps
WORKDIR /workspace/vllm
# TODO: Update to 2.9.0 when there is a new build for intel_extension_for_pytorch for that version
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
cp requirements/test.in requirements/cpu-test.in && \
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
sed -i 's/^torch==.*/torch==2.8.0/g' requirements/cpu-test.in && \
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
RUN --mount=type=cache,target=/root/.cache/uv \

View File

@ -246,7 +246,7 @@ RUN pip install setuptools==75.6.0 packaging==23.2 ninja==1.11.1.3 build==1.2.2.
# build flashinfer for torch nightly from source around 10 mins
# release version: v0.4.0
# release version: v0.4.1
# todo(elainewy): cache flashinfer build result for faster build
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
@ -254,7 +254,7 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
echo "git clone flashinfer..." \
&& git clone --recursive https://github.com/flashinfer-ai/flashinfer.git \
&& cd flashinfer \
&& git checkout v0.4.0 \
&& git checkout v0.4.1\
&& git submodule update --init --recursive \
&& echo "finish git clone flashinfer..." \
&& rm -rf build \

View File

@ -12,7 +12,7 @@ ENV PYTORCH_ROCM_ARCH=${ARG_PYTORCH_ROCM_ARCH:-${PYTORCH_ROCM_ARCH}}
RUN apt-get update -q -y && apt-get install -q -y \
sqlite3 libsqlite3-dev libfmt-dev libmsgpack-dev libsuitesparse-dev \
apt-transport-https ca-certificates wget curl
# Remove sccache
# Remove sccache
RUN python3 -m pip install --upgrade pip
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
ARG COMMON_WORKDIR

View File

@ -1,13 +1,13 @@
ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:7.0-complete
ARG TRITON_BRANCH="f9e5bf54"
ARG TRITON_BRANCH="57c693b6"
ARG TRITON_REPO="https://github.com/ROCm/triton.git"
ARG PYTORCH_BRANCH="b2fb6885"
ARG PYTORCH_BRANCH="1c57644d"
ARG PYTORCH_VISION_BRANCH="v0.23.0"
ARG PYTORCH_REPO="https://github.com/ROCm/pytorch.git"
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
ARG FA_BRANCH="0e60e394"
ARG FA_REPO="https://github.com/Dao-AILab/flash-attention.git"
ARG AITER_BRANCH="2ab9f4cd"
ARG AITER_BRANCH="eef23c7f"
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
FROM ${BASE_IMAGE} AS base

View File

@ -20,8 +20,6 @@ API documentation for vLLM's configuration classes.
- [vllm.config.CompilationConfig][]
- [vllm.config.VllmConfig][]
[](){ #offline-inference-api }
## Offline Inference
LLM Class.
@ -45,18 +43,14 @@ Engine classes for offline and online inference.
Inference parameters for vLLM APIs.
[](){ #sampling-params }
- [vllm.SamplingParams][]
- [vllm.PoolingParams][]
[](){ #multi-modality }
## Multi-Modality
vLLM provides experimental support for multi-modal models through the [vllm.multimodal][] package.
Multi-modal inputs can be passed alongside text and token prompts to [supported models][supported-mm-models]
Multi-modal inputs can be passed alongside text and token prompts to [supported models](../models/supported_models.md#list-of-multimodal-language-models)
via the `multi_modal_data` field in [vllm.inputs.PromptType][].
Looking to add your own multi-modal model? Please follow the instructions listed [here](../contributing/model/multimodal.md).

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

After

Width:  |  Height:  |  Size: 119 KiB

View File

@ -4,6 +4,6 @@ This section lists the most common options for running vLLM.
There are three main levels of configuration, from highest priority to lowest priority:
- [Request parameters][completions-api] and [input arguments][sampling-params]
- [Request parameters](../serving/openai_compatible_server.md#completions-api) and [input arguments](../api/README.md#inference-parameters)
- [Engine arguments](./engine_args.md)
- [Environment variables](./env_vars.md)

View File

@ -23,7 +23,7 @@ llm = LLM(model="ibm-granite/granite-3.1-8b-instruct", tensor_parallel_size=2)
!!! note
With tensor parallelism enabled, each process will read the whole model and split it into chunks, which makes the disk reading time even longer (proportional to the size of tensor parallelism).
You can convert the model checkpoint to a sharded checkpoint using <gh-file:examples/offline_inference/save_sharded_state.py>. The conversion process might take some time, but later you can load the sharded checkpoint much faster. The model loading time should remain constant regardless of the size of tensor parallelism.
You can convert the model checkpoint to a sharded checkpoint using [examples/offline_inference/save_sharded_state.py](../../examples/offline_inference/save_sharded_state.py). The conversion process might take some time, but later you can load the sharded checkpoint much faster. The model loading time should remain constant regardless of the size of tensor parallelism.
## Quantization
@ -58,12 +58,12 @@ You can adjust `compilation_config` to achieve a better balance between inferenc
```python
from vllm import LLM
from vllm.config import CompilationConfig, CompilationLevel
from vllm.config import CompilationConfig, CompilationMode
llm = LLM(
model="meta-llama/Llama-3.1-8B-Instruct",
compilation_config=CompilationConfig(
level=CompilationLevel.PIECEWISE,
mode=CompilationMode.VLLM_COMPILE,
# By default, it goes up to max_num_seqs
cudagraph_capture_sizes=[1, 2, 4, 8, 16],
),

View File

@ -27,8 +27,6 @@ You can monitor the number of preemption requests through Prometheus metrics exp
In vLLM V1, the default preemption mode is `RECOMPUTE` rather than `SWAP`, as recomputation has lower overhead in the V1 architecture.
[](){ #chunked-prefill }
## Chunked Prefill
Chunked prefill allows vLLM to process large prefills in smaller chunks and batch them together with decode requests. This feature helps improve both throughput and latency by better balancing compute-bound (prefill) and memory-bound (decode) operations.
@ -174,14 +172,14 @@ Regardless, you need to set `mm_encoder_tp_mode="data"` in engine arguments to u
Known supported models (with corresponding benchmarks):
- dots_ocr (<gh-pr:25466>)
- GLM-4.1V or above (<gh-pr:23168>)
- InternVL (<gh-pr:23909>)
- Kimi-VL (<gh-pr:23817>)
- Llama4 (<gh-pr:18368>)
- MiniCPM-V-2.5 or above (<gh-pr:23327>, <gh-pr:23948>)
- Qwen2-VL or above (<gh-pr:22742>, <gh-pr:24955>, <gh-pr:25445>)
- Step3 (<gh-pr:22697>)
- dots_ocr (<https://github.com/vllm-project/vllm/pull/25466>)
- GLM-4.1V or above (<https://github.com/vllm-project/vllm/pull/23168>)
- InternVL (<https://github.com/vllm-project/vllm/pull/23909>)
- Kimi-VL (<https://github.com/vllm-project/vllm/pull/23817>)
- Llama4 (<https://github.com/vllm-project/vllm/pull/18368>)
- MiniCPM-V-2.5 or above (<https://github.com/vllm-project/vllm/pull/23327>, <https://github.com/vllm-project/vllm/pull/23948>)
- Qwen2-VL or above (<https://github.com/vllm-project/vllm/pull/22742>, <https://github.com/vllm-project/vllm/pull/24955>, <https://github.com/vllm-project/vllm/pull/25445>)
- Step3 (<https://github.com/vllm-project/vllm/pull/22697>)
## Input Processing

View File

@ -96,7 +96,7 @@ Although its common to do this with GPUs, don't try to fragment 2 or 8 differ
### Tune your workloads
Although we try to have great default configs, we strongly recommend you check out the [vLLM auto-tuner](gh-file:benchmarks/auto_tune/README.md) to optimize your workloads for your use case.
Although we try to have great default configs, we strongly recommend you check out the [vLLM auto-tuner](../../benchmarks/auto_tune/README.md) to optimize your workloads for your use case.
### Future Topics We'll Cover

View File

@ -22,7 +22,7 @@ Unsure on where to start? Check out the following links for tasks to work on:
## License
See <gh-file:LICENSE>.
See [LICENSE](../../LICENSE).
## Developing
@ -54,7 +54,7 @@ For more details about installing from source and installing for other hardware,
For an optimized workflow when iterating on C++/CUDA kernels, see the [Incremental Compilation Workflow](./incremental_build.md) for recommendations.
!!! tip
vLLM is compatible with Python versions 3.10 to 3.13. However, vLLM's default [Dockerfile](gh-file:docker/Dockerfile) ships with Python 3.12 and tests in CI (except `mypy`) are run with Python 3.12.
vLLM is compatible with Python versions 3.10 to 3.13. However, vLLM's default [Dockerfile](../../docker/Dockerfile) ships with Python 3.12 and tests in CI (except `mypy`) are run with Python 3.12.
Therefore, we recommend developing with Python 3.12 to minimise the chance of your local environment clashing with our CI environment.
@ -88,7 +88,7 @@ vLLM's `pre-commit` hooks will now run automatically every time you commit.
### Documentation
MkDocs is a fast, simple and downright gorgeous static site generator that's geared towards building project documentation. Documentation source files are written in Markdown, and configured with a single YAML configuration file, <gh-file:mkdocs.yaml>.
MkDocs is a fast, simple and downright gorgeous static site generator that's geared towards building project documentation. Documentation source files are written in Markdown, and configured with a single YAML configuration file, [mkdocs.yaml](../../mkdocs.yaml).
Get started with:
@ -152,7 +152,7 @@ pytest -s -v tests/test_logger.py
If you encounter a bug or have a feature request, please [search existing issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue) first to see if it has already been reported. If not, please [file a new issue](https://github.com/vllm-project/vllm/issues/new/choose), providing as much relevant information as possible.
!!! important
If you discover a security vulnerability, please follow the instructions [here](gh-file:SECURITY.md#reporting-a-vulnerability).
If you discover a security vulnerability, please follow the instructions [here](../../SECURITY.md).
## Pull Requests & Code Reviews
@ -162,7 +162,7 @@ code quality and improve the efficiency of the review process.
### DCO and Signed-off-by
When contributing changes to this project, you must agree to the <gh-file:DCO>.
When contributing changes to this project, you must agree to the [DCO](../../DCO).
Commits must include a `Signed-off-by:` header which certifies agreement with
the terms of the DCO.

View File

@ -6,9 +6,10 @@ toc_depth: 4
vLLM provides comprehensive benchmarking tools for performance testing and evaluation:
- **[Benchmark CLI]**: `vllm bench` CLI tools and specialized benchmark scripts for interactive performance testing
- **[Performance benchmarks][performance-benchmarks]**: Automated CI benchmarks for development
- **[Nightly benchmarks][nightly-benchmarks]**: Comparative benchmarks against alternatives
- **[Benchmark CLI](#benchmark-cli)**: `vllm bench` CLI tools and specialized benchmark scripts for interactive performance testing
- **[Parameter sweeps](#parameter-sweeps)**: Automate `vllm bench` runs for multiple configurations
- **[Performance benchmarks](#performance-benchmarks)**: Automated CI benchmarks for development
- **[Nightly benchmarks](#nightly-benchmarks)**: Comparative benchmarks against alternatives
[Benchmark CLI]: #benchmark-cli
@ -29,7 +30,7 @@ th {
| Dataset | Online | Offline | Data Path |
|---------|--------|---------|-----------|
| ShareGPT | ✅ | ✅ | `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json` |
| ShareGPT4V (Image) | ✅ | ✅ | `wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json`<br>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:<br>`wget http://images.cocodataset.org/zips/train2017.zip` |
| ShareGPT4V (Image) | ✅ | ✅ | `wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/resolve/main/sharegpt4v_instruct_gpt4-vision_cap100k.json`<br>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:<br>`wget http://images.cocodataset.org/zips/train2017.zip` |
| ShareGPT4Video (Video) | ✅ | ✅ | `git clone https://huggingface.co/datasets/ShareGPT4Video/ShareGPT4Video` |
| BurstGPT | ✅ | ✅ | `wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv` |
| Sonnet (deprecated) | ✅ | ✅ | Local file: `benchmarks/sonnet.txt` |
@ -714,7 +715,7 @@ Generate synthetic image inputs alongside random text prompts to stress-test vis
Notes:
- Works only with online benchmark via the OpenAI backend (`--backend openai-chat`) and endpoint `/v1/chat/completions`.
- Works only with online benchmark via the OpenAI backend (`--backend openai-chat`) and endpoint `/v1/chat/completions`.
- Video sampling is not yet implemented.
Start the server (example):
@ -822,7 +823,7 @@ you should set `--endpoint /v1/embeddings` to use the Embeddings API. The backen
- CLIP: `--backend openai-embeddings-clip`
- VLM2Vec: `--backend openai-embeddings-vlm2vec`
For other models, please add your own implementation inside <gh-file:vllm/benchmarks/lib/endpoint_request_func.py> to match the expected instruction format.
For other models, please add your own implementation inside [vllm/benchmarks/lib/endpoint_request_func.py](../../vllm/benchmarks/lib/endpoint_request_func.py) to match the expected instruction format.
You can use any text or multi-modal dataset to benchmark the model, as long as the model supports it.
For example, you can use ShareGPT and VisionArena to benchmark vision-language embeddings.
@ -924,7 +925,162 @@ throughput numbers correctly is also adjusted.
</details>
[](){ #performance-benchmarks }
## Parameter Sweeps
### Online Benchmark
[`vllm/benchmarks/sweep/serve.py`](../../vllm/benchmarks/sweep/serve.py) automatically starts `vllm serve` and runs `vllm bench serve` to evaluate vLLM over multiple configurations.
Follow these steps to run the script:
1. Construct the base command to `vllm serve`, and pass it to the `--serve-cmd` option.
2. Construct the base command to `vllm bench serve`, and pass it to the `--bench-cmd` option.
3. (Optional) If you would like to vary the settings of `vllm serve`, create a new JSON file and populate it with the parameter combinations you want to test. Pass the file path to `--serve-params`.
- Example: Tuning `--max-num-seqs` and `--max-num-batched-tokens`:
```json
[
{
"max_num_seqs": 32,
"max_num_batched_tokens": 1024
},
{
"max_num_seqs": 64,
"max_num_batched_tokens": 1024
},
{
"max_num_seqs": 64,
"max_num_batched_tokens": 2048
},
{
"max_num_seqs": 128,
"max_num_batched_tokens": 2048
},
{
"max_num_seqs": 128,
"max_num_batched_tokens": 4096
},
{
"max_num_seqs": 256,
"max_num_batched_tokens": 4096
}
]
```
4. (Optional) If you would like to vary the settings of `vllm bench serve`, create a new JSON file and populate it with the parameter combinations you want to test. Pass the file path to `--bench-params`.
- Example: Using different input/output lengths for random dataset:
```json
[
{
"random_input_len": 128,
"random_output_len": 32
},
{
"random_input_len": 256,
"random_output_len": 64
},
{
"random_input_len": 512,
"random_output_len": 128
}
]
```
5. Determine where you want to save the results, and pass that to `--output-dir`.
Example command:
```bash
python -m vllm.benchmarks.sweep.serve \
--serve-cmd 'vllm serve meta-llama/Llama-2-7b-chat-hf' \
--bench-cmd 'vllm bench serve --model meta-llama/Llama-2-7b-chat-hf --backend vllm --endpoint /v1/completions --dataset-name sharegpt --dataset-path benchmarks/ShareGPT_V3_unfiltered_cleaned_split.json' \
--serve-params benchmarks/serve_hparams.json \
--bench-params benchmarks/bench_hparams.json \
-o benchmarks/results
```
!!! important
If both `--serve-params` and `--bench-params` are passed, the script will iterate over the Cartesian product between them.
You can use `--dry-run` to preview the commands to be run.
We only start the server once for each `--serve-params`, and keep it running for multiple `--bench-params`.
Between each benchmark run, we call the `/reset_prefix_cache` and `/reset_mm_cache` endpoints to get a clean slate for the next run.
In case you are using a custom `--serve-cmd`, you can override the commands used for resetting the state by setting `--after-bench-cmd`.
!!! note
By default, each parameter combination is run 3 times to make the results more reliable. You can adjust the number of runs by setting `--num-runs`.
!!! tip
You can use the `--resume` option to continue the parameter sweep if one of the runs failed.
### SLA Auto-Tuner
[`vllm/benchmarks/sweep/serve_sla.py`](../../vllm/benchmarks/sweep/serve_sla.py) is a wrapper over [`vllm/benchmarks/sweep/serve.py`](../../vllm/benchmarks/sweep/serve.py) that tunes either the request rate or concurrency (choose using `--sla-variable`) in order to satisfy the SLA constraints given by `--sla-params`.
For example, to ensure E2E latency within different target values for 99% of requests:
```json
[
{
"p99_e2el_ms": "<=200"
},
{
"p99_e2el_ms": "<=500"
},
{
"p99_e2el_ms": "<=1000"
},
{
"p99_e2el_ms": "<=2000"
}
]
```
Example command:
```bash
python -m vllm.benchmarks.sweep.serve_sla \
--serve-cmd 'vllm serve meta-llama/Llama-2-7b-chat-hf' \
--bench-cmd 'vllm bench serve --model meta-llama/Llama-2-7b-chat-hf --backend vllm --endpoint /v1/completions --dataset-name sharegpt --dataset-path benchmarks/ShareGPT_V3_unfiltered_cleaned_split.json' \
--serve-params benchmarks/serve_hparams.json \
--bench-params benchmarks/bench_hparams.json \
--sla-params benchmarks/sla_hparams.json \
--sla-variable max_concurrency \
-o benchmarks/results
```
The algorithm for adjusting the SLA variable is as follows:
1. Run the benchmark with infinite QPS, and use the corresponding metrics to determine the initial value of the variable.
- For example, the initial request rate is set to the concurrency under infinite QPS.
2. If the SLA is still satisfied, keep doubling the value until the SLA is no longer satisfied. This gives a relatively narrow window that contains the point where the SLA is barely satisfied.
3. Apply binary search over the window to find the maximum value that still satisfies the SLA.
!!! important
SLA tuning is applied over each combination of `--serve-params`, `--bench-params`, and `--sla-params`.
For a given combination of `--serve-params` and `--bench-params`, we share the benchmark results across `--sla-params` to avoid rerunning benchmarks with the same SLA variable value.
### Visualizer
[`vllm/benchmarks/sweep/plot.py`](../../vllm/benchmarks/sweep/plot.py) can be used to plot performance curves from parameter sweep results.
Example command:
```bash
python -m vllm.benchmarks.sweep.plot benchmarks/results/<timestamp> \
--var-x max_concurrency \
--row-by random_input_len \
--col-by random_output_len \
--curve-by api_server_count,max_num_batched_tokens \
--filter-by 'max_concurrency<=1024'
```
!!! tip
You can use `--dry-run` to preview the figures to be plotted.
## Performance Benchmarks
@ -962,7 +1118,7 @@ For more results visualization, check the [visualizing the results](https://gith
The latest performance results are hosted on the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](gh-file:.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](../../.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
### Continuous Benchmarking
@ -988,12 +1144,10 @@ The benchmarking currently runs on a predefined set of models configured in the
All continuous benchmarking results are automatically published to the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
[](){ #nightly-benchmarks }
## Nightly Benchmarks
These compare vLLM's performance against alternatives (`tgi`, `trt-llm`, and `lmdeploy`) when there are major updates of vLLM (e.g., bumping up to a new version). They are primarily intended for consumers to evaluate when to choose vLLM over other options and are triggered on every commit with both the `perf-benchmarks` and `nightly-benchmarks` labels.
The latest nightly benchmark results are shared in major release blog posts such as [vLLM v0.6.0](https://blog.vllm.ai/2024/09/05/perf-update.html).
More information on the nightly benchmarks and their parameters can be found [here](gh-file:.buildkite/nightly-benchmarks/nightly-descriptions.md).
More information on the nightly benchmarks and their parameters can be found [here](../../.buildkite/nightly-benchmarks/nightly-descriptions.md).

View File

@ -64,7 +64,7 @@ Download the full log file from Buildkite locally.
Strip timestamps and colorization:
<gh-file:.buildkite/scripts/ci-clean-log.sh>
[.buildkite/scripts/ci-clean-log.sh](../../../.buildkite/scripts/ci-clean-log.sh)
```bash
./ci-clean-log.sh ci.log
@ -87,7 +87,7 @@ tail -525 ci_build.log | wl-copy
CI test failures may be flaky. Use a bash loop to run repeatedly:
<gh-file:.buildkite/scripts/rerun-test.sh>
[.buildkite/scripts/rerun-test.sh](../../../.buildkite/scripts/rerun-test.sh)
```bash
./rerun-test.sh tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]

View File

@ -5,7 +5,7 @@ release in CI/CD. It is standard practice to submit a PR to update the
PyTorch version as early as possible when a new [PyTorch stable
release](https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-cadence) becomes available.
This process is non-trivial due to the gap between PyTorch
releases. Using <gh-pr:16859> as an example, this document outlines common steps to achieve this
releases. Using <https://github.com/vllm-project/vllm/pull/16859> as an example, this document outlines common steps to achieve this
update along with a list of potential issues and how to address them.
## Test PyTorch release candidates (RCs)
@ -85,9 +85,9 @@ and timeout. Additionally, since vLLM's fastcheck pipeline runs in read-only mod
it doesn't populate the cache, so re-running it to warm up the cache
is ineffective.
While ongoing efforts like [#17419](gh-issue:17419)
While ongoing efforts like <https://github.com/vllm-project/vllm/issues/17419>
address the long build time at its source, the current workaround is to set `VLLM_CI_BRANCH`
to a custom branch provided by @khluu (`VLLM_CI_BRANCH=khluu/use_postmerge_q`)
to a custom branch provided by @khluu (`VLLM_CI_BRANCH=khluu/long_build`)
when manually triggering a build on Buildkite. This branch accomplishes two things:
1. Increase the timeout limit to 10 hours so that the build doesn't time out.
@ -100,35 +100,17 @@ to warm it up so that future builds are faster.
## Update dependencies
Several vLLM dependencies, such as FlashInfer, also depend on PyTorch and need
Several vLLM dependencies like xFormers depend on PyTorch and need
to be updated accordingly. Rather than waiting for all of them to publish new
releases (which would take too much time), they can be built from
source to unblock the update process.
### FlashInfer
Here is how to build and install it from source with `torch2.7.0+cu128` in vLLM [Dockerfile](https://github.com/vllm-project/vllm/blob/27bebcd89792d5c4b08af7a65095759526f2f9e1/docker/Dockerfile#L259-L271):
```bash
export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0 10.0+PTX'
export FLASHINFER_ENABLE_SM90=1
uv pip install --system \
--no-build-isolation "git+https://github.com/flashinfer-ai/flashinfer@v0.2.6.post1"
```
One caveat is that building FlashInfer from source adds approximately 30
minutes to the vLLM build time. Therefore, it's preferable to cache the wheel in a
public location for immediate installation, such as [this FlashInfer wheel link](https://download.pytorch.org/whl/cu128/flashinfer/flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl). For future releases, contact the PyTorch release
team if you want to get the package published there.
### xFormers
Similar to FlashInfer, here is how to build and install xFormers from source:
```bash
export TORCH_CUDA_ARCH_LIST='7.0 7.5 8.0 8.9 9.0 10.0+PTX'
export TORCH_CUDA_ARCH_LIST='7.5 8.0+PTX 9.0a'
MAX_JOBS=16 uv pip install --system \
--no-build-isolation "git+https://github.com/facebookresearch/xformers@v0.0.30"
--no-build-isolation "git+https://github.com/facebookresearch/xformers@v0.0.32.post2"
```
## Update all the different vLLM platforms
@ -138,5 +120,5 @@ to handle some platforms separately. The separation of requirements and Dockerfi
for different platforms in vLLM CI/CD allows us to selectively choose
which platforms to update. For instance, updating XPU requires the corresponding
release from [Intel Extension for PyTorch](https://github.com/intel/intel-extension-for-pytorch) by Intel.
While <gh-pr:16859> updated vLLM to PyTorch 2.7.0 on CPU, CUDA, and ROCm,
<gh-pr:17444> completed the update for XPU.
While <https://github.com/vllm-project/vllm/pull/16859> updated vLLM to PyTorch 2.7.0 on CPU, CUDA, and ROCm,
<https://github.com/vllm-project/vllm/pull/17444> completed the update for XPU.

View File

@ -1,6 +1,6 @@
# Dockerfile
We provide a <gh-file:docker/Dockerfile> to construct the image for running an OpenAI compatible server with vLLM.
We provide a [docker/Dockerfile](../../../docker/Dockerfile) to construct the image for running an OpenAI compatible server with vLLM.
More information about deploying with Docker can be found [here](../../deployment/docker.md).
Below is a visual representation of the multi-stage Dockerfile. The build graph contains the following nodes:

View File

@ -1,7 +1,7 @@
# Summary
!!! important
Many decoder language models can now be automatically loaded using the [Transformers backend][transformers-backend] without having to implement them in vLLM. See if `vllm serve <model>` works first!
Many decoder language models can now be automatically loaded using the [Transformers backend](../../models/supported_models.md#transformers) without having to implement them in vLLM. See if `vllm serve <model>` works first!
vLLM models are specialized [PyTorch](https://pytorch.org/) models that take advantage of various [features](../../features/README.md#compatibility-matrix) to optimize their performance.

View File

@ -5,7 +5,7 @@ This guide walks you through the steps to implement a basic vLLM model.
## 1. Bring your model code
First, clone the PyTorch model code from the source repository.
For instance, vLLM's [OPT model](gh-file:vllm/model_executor/models/opt.py) was adapted from
For instance, vLLM's [OPT model](../../../vllm/model_executor/models/opt.py) was adapted from
HuggingFace's [modeling_opt.py](https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py) file.
!!! warning
@ -83,7 +83,7 @@ def forward(
Currently, vLLM supports the basic multi-head attention mechanism and its variant with rotary positional embeddings.
If your model employs a different attention mechanism, you will need to implement a new attention layer in vLLM.
For reference, check out our [Llama implementation](gh-file:vllm/model_executor/models/llama.py). vLLM already supports a large number of models. It is recommended to find a model similar to yours and adapt it to your model's architecture. Check out <gh-dir:vllm/model_executor/models> for more examples.
For reference, check out our [Llama implementation](../../../vllm/model_executor/models/llama.py). vLLM already supports a large number of models. It is recommended to find a model similar to yours and adapt it to your model's architecture. Check out [vllm/model_executor/models](../../../vllm/model_executor/models) for more examples.
## 3. (Optional) Implement tensor parallelism and quantization support
@ -130,22 +130,22 @@ We consider 3 different scenarios:
2. Models that combine Mamba layers (either Mamba-1 or Mamba-2) together with attention layers.
3. Models that combine Mamba-like mechanisms (e.g., Linear Attention, ShortConv) together with attention layers.
For case (1), we recommend looking at the implementation of [`MambaForCausalLM`](gh-file:vllm/model_executor/models/mamba.py) (for Mamba-1) or [`Mamba2ForCausalLM`](gh-file:vllm/model_executor/models/mamba2.py) (for Mamba-2) as a reference.
For case (1), we recommend looking at the implementation of [`MambaForCausalLM`](../../../vllm/model_executor/models/mamba.py) (for Mamba-1) or [`Mamba2ForCausalLM`](../../../vllm/model_executor/models/mamba2.py) (for Mamba-2) as a reference.
The model should inherit protocol `IsAttentionFree` and also implement class methods `get_mamba_state_dtype_from_config` and `get_mamba_state_shape_from_config` to calculate the state shapes and data types from the config.
For the mamba layers themselves, please use the [`MambaMixer`](gh-file:vllm/model_executor/layers/mamba/mamba_mixer.py) (for Mamba-1) or [`MambaMixer2`](gh-file:vllm/model_executor/layers/mamba/mamba_mixer2.py) (for Mamba-2) classes.
For the mamba layers themselves, please use the [`MambaMixer`](../../../vllm/model_executor/layers/mamba/mamba_mixer.py) (for Mamba-1) or [`MambaMixer2`](../../../vllm/model_executor/layers/mamba/mamba_mixer2.py) (for Mamba-2) classes.
Please *do not* use the `MambaCacheManager` (deprecated in V1) or replicate any of the V0-specific code paths in the existing model implementations.
V0-only classes and code will be removed in the very near future.
The model should also be added to the `MODELS_CONFIG_MAP` dictionary in <gh-file:vllm/model_executor/models/config.py> to ensure that the runtime defaults are optimized.
The model should also be added to the `MODELS_CONFIG_MAP` dictionary in [vllm/model_executor/models/config.py](../../../vllm/model_executor/models/config.py) to ensure that the runtime defaults are optimized.
For case (2), we recommend using as a reference the implementation of [`JambaForCausalLM`](gh-file:vllm/model_executor/models/jamba.py) (for an example of a model that uses Mamba-1 and attention together) or [`BambaForCausalLM`](gh-file:vllm/model_executor/models/bamba.py) (for an example of a model that uses Mamba-2 and attention together).
For case (2), we recommend using as a reference the implementation of [`JambaForCausalLM`](../../../vllm/model_executor/models/jamba.py) (for an example of a model that uses Mamba-1 and attention together) or [`BambaForCausalLM`](../../../vllm/model_executor/models/bamba.py) (for an example of a model that uses Mamba-2 and attention together).
These models should follow the same instructions as case (1), but they should inherit protocol `IsHybrid` (instead of `IsAttentionFree`) and it is *not* necessary to add them to the `MODELS_CONFIG_MAP` (their runtime defaults will be inferred from the protocol).
For case (3), we recommend looking at the implementation of [`MiniMaxText01ForCausalLM`](gh-file:vllm/model_executor/models/minimax_text_01.py) or [`Lfm2ForCausalLM`](gh-file:vllm/model_executor/models/lfm2.py) as a reference, which use custom "mamba-like" layers `MiniMaxText01LinearAttention` and `ShortConv` respectively.
For case (3), we recommend looking at the implementation of [`MiniMaxText01ForCausalLM`](../../../vllm/model_executor/models/minimax_text_01.py) or [`Lfm2ForCausalLM`](../../../vllm/model_executor/models/lfm2.py) as a reference, which use custom "mamba-like" layers `MiniMaxText01LinearAttention` and `ShortConv` respectively.
Please follow the same guidelines as case (2) for implementing these models.
We use "mamba-like" to refer to layers that posses a state that is updated in-place, rather than being appended-to (like KV cache for attention).
For implementing new custom mamba-like layers, one should inherit from `MambaBase` and implement the methods `get_state_dtype`, `get_state_shape` to calculate the data types and state shapes at runtime, as well as `mamba_type` and `get_attn_backend`.
It is also necessary to implement the "attention meta-data" class which handles the meta-data that is common across all layers.
Please see [`LinearAttentionMetadata`](gh-file:vllm/v1/attention/backends/linear_attn.py) or [`ShortConvAttentionMetadata`](gh-file:v1/attention/backends/short_conv_attn.py) for examples of this.
Please see [`LinearAttentionMetadata`](../../../vllm/v1/attention/backends/linear_attn.py) or [`ShortConvAttentionMetadata`](../../../vllm/v1/attention/backends/short_conv_attn.py) for examples of this.
Finally, if one wants to support torch compile and CUDA graphs, it necessary to wrap the call to the mamba-like layer inside a custom op and register it.
Please see the calls to `direct_register_custom_op` in <gh-file:vllm/model_executor/models/minimax_text_01.py> or <gh-file:vllm/model_executor/layers/mamba/short_conv.py> for examples of this.
The new custom op should then be added to the list `_attention_ops` in <gh-file:vllm/config/compilation.py> to ensure that piecewise CUDA graphs works as intended.
Please see the calls to `direct_register_custom_op` in [vllm/model_executor/models/minimax_text_01.py](../../../vllm/model_executor/models/minimax_text_01.py) or [vllm/model_executor/layers/mamba/short_conv.py](../../../vllm/model_executor/layers/mamba/short_conv.py) for examples of this.
The new custom op should then be added to the list `_attention_ops` in [vllm/config/compilation.py](../../../vllm/config/compilation.py) to ensure that piecewise CUDA graphs works as intended.

View File

@ -507,7 +507,7 @@ return a schema of the tensors outputted by the HF processor that are related to
```
!!! note
Our [actual code](gh-file:vllm/model_executor/models/llava.py) additionally supports
Our [actual code](../../../vllm/model_executor/models/llava.py) additionally supports
pre-computed image embeddings, which can be passed to be model via the `image_embeds` argument.
=== "With postprocessing: Fuyu"
@ -569,7 +569,7 @@ return a schema of the tensors outputted by the HF processor that are related to
```
!!! note
Our [actual code](gh-file:vllm/model_executor/models/fuyu.py) has special handling
Our [actual code](../../../vllm/model_executor/models/fuyu.py) has special handling
for text-only inputs to prevent unnecessary warnings from HF processor.
!!! note
@ -828,8 +828,8 @@ Some HF processors directly insert feature tokens without replacing anything in
Examples:
- BLIP-2 (insert at start of prompt): <gh-file:vllm/model_executor/models/blip2.py>
- Molmo (insert after `<|endoftext|>` token): <gh-file:vllm/model_executor/models/molmo.py>
- BLIP-2 (insert at start of prompt): [vllm/model_executor/models/blip2.py](../../../vllm/model_executor/models/blip2.py)
- Molmo (insert after `<|endoftext|>` token): [vllm/model_executor/models/molmo.py](../../../vllm/model_executor/models/molmo.py)
### Handling prompt updates unrelated to multi-modal data
@ -837,9 +837,9 @@ Examples:
Examples:
- Chameleon (appends `sep_token`): <gh-file:vllm/model_executor/models/chameleon.py>
- Fuyu (appends `boa_token`): <gh-file:vllm/model_executor/models/fuyu.py>
- Molmo (applies chat template which is not defined elsewhere): <gh-file:vllm/model_executor/models/molmo.py>
- Chameleon (appends `sep_token`): [vllm/model_executor/models/chameleon.py](../../../vllm/model_executor/models/chameleon.py)
- Fuyu (appends `boa_token`): [vllm/model_executor/models/fuyu.py](../../../vllm/model_executor/models/fuyu.py)
- Molmo (applies chat template which is not defined elsewhere): [vllm/model_executor/models/molmo.py](../../../vllm/model_executor/models/molmo.py)
### Custom HF processor
@ -847,6 +847,6 @@ Some models don't define an HF processor class on HF Hub. In that case, you can
Examples:
- DeepSeek-VL2: <gh-file:vllm/model_executor/models/deepseek_vl2.py>
- InternVL: <gh-file:vllm/model_executor/models/internvl.py>
- Qwen-VL: <gh-file:vllm/model_executor/models/qwen_vl.py>
- DeepSeek-VL2: [vllm/model_executor/models/deepseek_vl2.py](../../../vllm/model_executor/models/deepseek_vl2.py)
- InternVL: [vllm/model_executor/models/internvl.py](../../../vllm/model_executor/models/internvl.py)
- Qwen-VL: [vllm/model_executor/models/qwen_vl.py](../../../vllm/model_executor/models/qwen_vl.py)

View File

@ -8,11 +8,11 @@ This page provides detailed instructions on how to do so.
## Built-in models
To add a model directly to the vLLM library, start by forking our [GitHub repository](https://github.com/vllm-project/vllm) and then [build it from source][build-from-source].
To add a model directly to the vLLM library, start by forking our [GitHub repository](https://github.com/vllm-project/vllm) and then [build it from source](../../getting_started/installation/gpu.md#build-wheel-from-source).
This gives you the ability to modify the codebase and test your model.
After you have implemented your model (see [tutorial](basic.md)), put it into the <gh-dir:vllm/model_executor/models> directory.
Then, add your model class to `_VLLM_MODELS` in <gh-file:vllm/model_executor/models/registry.py> so that it is automatically registered upon importing vLLM.
After you have implemented your model (see [tutorial](basic.md)), put it into the [vllm/model_executor/models](../../../vllm/model_executor/models) directory.
Then, add your model class to `_VLLM_MODELS` in [vllm/model_executor/models/registry.py](../../../vllm/model_executor/models/registry.py) so that it is automatically registered upon importing vLLM.
Finally, update our [list of supported models](../../models/supported_models.md) to promote your model!
!!! important

View File

@ -9,7 +9,7 @@ Without them, the CI for your PR will fail.
### Model loading
Include an example HuggingFace repository for your model in <gh-file:tests/models/registry.py>.
Include an example HuggingFace repository for your model in [tests/models/registry.py](../../../tests/models/registry.py).
This enables a unit test that loads dummy weights to ensure that the model can be initialized in vLLM.
!!! important
@ -26,26 +26,24 @@ Passing these tests provides more confidence that your implementation is correct
### Model correctness
These tests compare the model outputs of vLLM against [HF Transformers](https://github.com/huggingface/transformers). You can add new tests under the subdirectories of <gh-dir:tests/models>.
These tests compare the model outputs of vLLM against [HF Transformers](https://github.com/huggingface/transformers). You can add new tests under the subdirectories of [tests/models](../../../tests/models).
#### Generative models
For [generative models](../../models/generative_models.md), there are two levels of correctness tests, as defined in <gh-file:tests/models/utils.py>:
For [generative models](../../models/generative_models.md), there are two levels of correctness tests, as defined in [tests/models/utils.py](../../../tests/models/utils.py):
- Exact correctness (`check_outputs_equal`): The text outputted by vLLM should exactly match the text outputted by HF.
- Logprobs similarity (`check_logprobs_close`): The logprobs outputted by vLLM should be in the top-k logprobs outputted by HF, and vice versa.
#### Pooling models
For [pooling models](../../models/pooling_models.md), we simply check the cosine similarity, as defined in <gh-file:tests/models/utils.py>.
[](){ #mm-processing-tests }
For [pooling models](../../models/pooling_models.md), we simply check the cosine similarity, as defined in [tests/models/utils.py](../../../tests/models/utils.py).
### Multi-modal processing
#### Common tests
Adding your model to <gh-file:tests/models/multimodal/processing/test_common.py> verifies that the following input combinations result in the same outputs:
Adding your model to [tests/models/multimodal/processing/test_common.py](../../../tests/models/multimodal/processing/test_common.py) verifies that the following input combinations result in the same outputs:
- Text + multi-modal data
- Tokens + multi-modal data
@ -54,6 +52,6 @@ Adding your model to <gh-file:tests/models/multimodal/processing/test_common.py>
#### Model-specific tests
You can add a new file under <gh-dir:tests/models/multimodal/processing> to run tests that only apply to your model.
You can add a new file under [tests/models/multimodal/processing](../../../tests/models/multimodal/processing) to run tests that only apply to your model.
For example, if the HF processor for your model accepts user-specified keyword arguments, you can verify that the keyword arguments are being applied correctly, such as in <gh-file:tests/models/multimodal/processing/test_phi3v.py>.
For example, if the HF processor for your model accepts user-specified keyword arguments, you can verify that the keyword arguments are being applied correctly, such as in [tests/models/multimodal/processing/test_phi3v.py](../../../tests/models/multimodal/processing/test_phi3v.py).

View File

@ -248,9 +248,9 @@ No extra registration is required beyond having your model class available via t
## Examples in-tree
- Whisper encoderdecoder (audio-only): <gh-file:vllm/model_executor/models/whisper.py>
- Voxtral decoder-only (audio embeddings + LLM): <gh-file:vllm/model_executor/models/voxtral.py>
- Gemma3n decoder-only with fixed instruction prompt: <gh-file:vllm/model_executor/models/gemma3n_mm.py>
- Whisper encoderdecoder (audio-only): [vllm/model_executor/models/whisper.py](../../../vllm/model_executor/models/whisper.py)
- Voxtral decoder-only (audio embeddings + LLM): [vllm/model_executor/models/voxtral.py](../../../vllm/model_executor/models/voxtral.py)
- Gemma3n decoder-only with fixed instruction prompt: [vllm/model_executor/models/gemma3n_mm.py](../../../vllm/model_executor/models/gemma3n_mm.py)
## Test with the API
@ -278,7 +278,7 @@ Once your model implements `SupportsTranscription`, you can test the endpoints (
http://localhost:8000/v1/audio/translations
```
Or check out more examples in <gh-file:examples/online_serving>.
Or check out more examples in [examples/online_serving](../../../examples/online_serving).
!!! note
- If your model handles chunking internally (e.g., via its processor or encoder), set `min_energy_split_window_size=None` in the returned `SpeechToTextConfig` to disable server-side chunking.

View File

@ -33,7 +33,7 @@ Traces can be visualized using <https://ui.perfetto.dev/>.
#### Offline Inference
Refer to <gh-file:examples/offline_inference/simple_profiling.py> for an example.
Refer to [examples/offline_inference/simple_profiling.py](../../examples/offline_inference/simple_profiling.py) for an example.
#### OpenAI Server
@ -180,9 +180,13 @@ The profiling traces generated by the continuous profiling workflow are publicly
The Python standard library includes
[cProfile](https://docs.python.org/3/library/profile.html) for profiling Python
code. vLLM includes a couple of helpers that make it easy to apply it to a section of vLLM.
Both the `vllm.utils.cprofile` and `vllm.utils.cprofile_context` functions can be
Both the `vllm.utils.profiling.cprofile` and `vllm.utils.profiling.cprofile_context` functions can be
used to profile a section of code.
!!! note
The legacy import paths `vllm.utils.cprofile` and `vllm.utils.cprofile_context` are deprecated.
Please use `vllm.utils.profiling.cprofile` and `vllm.utils.profiling.cprofile_context` instead.
### Example usage - decorator
The first helper is a Python decorator that can be used to profile a function.
@ -190,9 +194,9 @@ If a filename is specified, the profile will be saved to that file. If no filena
specified, profile data will be printed to stdout.
```python
import vllm.utils
from vllm.utils.profiling import cprofile
@vllm.utils.cprofile("expensive_function.prof")
@cprofile("expensive_function.prof")
def expensive_function():
# some expensive code
pass
@ -204,13 +208,13 @@ The second helper is a context manager that can be used to profile a block of
code. Similar to the decorator, the filename is optional.
```python
import vllm.utils
from vllm.utils.profiling import cprofile_context
def another_function():
# more expensive code
pass
with vllm.utils.cprofile_context("another_function.prof"):
with cprofile_context("another_function.prof"):
another_function()
```

View File

@ -1,7 +1,5 @@
# Using Docker
[](){ #deployment-docker-pre-built-image }
## Use vLLM's Official Docker Image
vLLM offers an official Docker image for deployment.
@ -10,7 +8,7 @@ The image can be used to run OpenAI compatible server and is available on Docker
```bash
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_TOKEN=$HF_TOKEN" \
-p 8000:8000 \
--ipc=host \
vllm/vllm-openai:latest \
@ -22,7 +20,7 @@ This image can also be used with other container engines such as [Podman](https:
```bash
podman run --device nvidia.com/gpu=all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_TOKEN=$HF_TOKEN" \
-p 8000:8000 \
--ipc=host \
docker.io/vllm/vllm-openai:latest \
@ -37,7 +35,7 @@ You can add any other [engine-args](../configuration/engine_args.md) you need af
memory to share data between processes under the hood, particularly for tensor parallel inference.
!!! note
Optional dependencies are not included in order to avoid licensing issues (e.g. <gh-issue:8030>).
Optional dependencies are not included in order to avoid licensing issues (e.g. <https://github.com/vllm-project/vllm/issues/8030>).
If you need to use those dependencies (having accepted the license terms),
create a custom Dockerfile on top of the base image with an extra layer that installs them:
@ -62,11 +60,9 @@ You can add any other [engine-args](../configuration/engine_args.md) you need af
RUN uv pip install --system git+https://github.com/huggingface/transformers.git
```
[](){ #deployment-docker-build-image-from-source }
## Building vLLM's Docker Image from Source
You can build and run vLLM from source via the provided <gh-file:docker/Dockerfile>. To build vLLM:
You can build and run vLLM from source via the provided [docker/Dockerfile](../../docker/Dockerfile). To build vLLM:
```bash
# optionally specifies: --build-arg max_jobs=8 --build-arg nvcc_threads=2
@ -128,7 +124,7 @@ To run vLLM with the custom-built Docker image:
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
-p 8000:8000 \
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
--env "HF_TOKEN=<secret>" \
vllm/vllm-openai <args...>
```

View File

@ -1,11 +1,9 @@
# Anyscale
[](){ #deployment-anyscale }
[Anyscale](https://www.anyscale.com) is a managed, multi-cloud platform developed by the creators of Ray.
Anyscale automates the entire lifecycle of Ray clusters in your AWS, GCP, or Azure account, delivering the flexibility of open-source Ray
without the operational overhead of maintaining Kubernetes control planes, configuring autoscalers, managing observability stacks, or manually managing head and worker nodes with helper scripts like <gh-file:examples/online_serving/run_cluster.sh>.
without the operational overhead of maintaining Kubernetes control planes, configuring autoscalers, managing observability stacks, or manually managing head and worker nodes with helper scripts like [examples/online_serving/run_cluster.sh](../../../examples/online_serving/run_cluster.sh).
When serving large language models with vLLM, Anyscale can rapidly provision [production-ready HTTPS endpoints](https://docs.anyscale.com/examples/deploy-ray-serve-llms) or [fault-tolerant batch inference jobs](https://docs.anyscale.com/examples/ray-data-llm).

View File

@ -35,7 +35,7 @@ Deploy the following yaml file `lws.yaml`
- name: vllm-leader
image: docker.io/vllm/vllm-openai:latest
env:
- name: HUGGING_FACE_HUB_TOKEN
- name: HF_TOKEN
value: <your-hf-token>
command:
- sh
@ -83,7 +83,7 @@ Deploy the following yaml file `lws.yaml`
ephemeral-storage: 800Gi
cpu: 125
env:
- name: HUGGING_FACE_HUB_TOKEN
- name: HF_TOKEN
value: <your-hf-token>
volumeMounts:
- mountPath: /dev/shm

View File

@ -36,7 +36,7 @@ pip install -U vllm \
vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001
```
1. Use the script: <gh-file:examples/online_serving/retrieval_augmented_generation_with_langchain.py>
1. Use the script: [examples/online_serving/retrieval_augmented_generation_with_langchain.py](../../../examples/online_serving/retrieval_augmented_generation_with_langchain.py)
1. Run the script
@ -74,7 +74,7 @@ pip install vllm \
vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001
```
1. Use the script: <gh-file:examples/online_serving/retrieval_augmented_generation_with_llamaindex.py>
1. Use the script: [examples/online_serving/retrieval_augmented_generation_with_llamaindex.py](../../../examples/online_serving/retrieval_augmented_generation_with_llamaindex.py)
1. Run the script:

View File

@ -20,7 +20,7 @@ pip install vllm streamlit openai
vllm serve Qwen/Qwen1.5-0.5B-Chat
```
1. Use the script: <gh-file:examples/online_serving/streamlit_openai_chatbot_webserver.py>
1. Use the script: [examples/online_serving/streamlit_openai_chatbot_webserver.py](../../../examples/online_serving/streamlit_openai_chatbot_webserver.py)
1. Start the streamlit web UI and start to chat:

View File

@ -82,7 +82,7 @@ Next, start the vLLM server as a Kubernetes Deployment and Service:
"vllm serve meta-llama/Llama-3.2-1B-Instruct"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
@ -209,7 +209,7 @@ INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
"vllm serve mistralai/Mistral-7B-Instruct-v0.3 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
@ -298,7 +298,7 @@ INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
"vllm serve mistralai/Mistral-7B-v0.3 --port 8000 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret

View File

@ -2,8 +2,6 @@
This document shows how to launch multiple vLLM serving containers and use Nginx to act as a load balancer between the servers.
[](){ #nginxloadbalancer-nginx-build }
## Build Nginx Container
This guide assumes that you have just cloned the vLLM project and you're currently in the vllm root directory.
@ -27,8 +25,6 @@ Build the container:
docker build . -f Dockerfile.nginx --tag nginx-lb
```
[](){ #nginxloadbalancer-nginx-conf }
## Create Simple Nginx Config file
Create a file named `nginx_conf/nginx.conf`. Note that you can add as many servers as you'd like. In the below example we'll start with two. To add more, add another `server vllmN:8000 max_fails=3 fail_timeout=10000s;` entry to `upstream backend`.
@ -53,8 +49,6 @@ Create a file named `nginx_conf/nginx.conf`. Note that you can add as many serve
}
```
[](){ #nginxloadbalancer-nginx-vllm-container }
## Build vLLM Container
```bash
@ -73,16 +67,12 @@ docker build \
--build-arg https_proxy=$https_proxy
```
[](){ #nginxloadbalancer-nginx-docker-network }
## Create Docker Network
```bash
docker network create vllm_nginx
```
[](){ #nginxloadbalancer-nginx-launch-container }
## Launch vLLM Containers
Notes:
@ -122,8 +112,6 @@ Notes:
!!! note
If you are behind proxy, you can pass the proxy settings to the docker run command via `-e http_proxy=$http_proxy -e https_proxy=$https_proxy`.
[](){ #nginxloadbalancer-nginx-launch-nginx }
## Launch Nginx
```bash
@ -135,8 +123,6 @@ docker run \
--name nginx-lb nginx-lb:latest
```
[](){ #nginxloadbalancer-nginx-verify-nginx }
## Verify That vLLM Servers Are Ready
```bash

View File

@ -47,9 +47,9 @@ Here is a sample of `LLM` class usage:
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
More API details can be found in the [Offline Inference](#offline-inference-api) section of the API docs.
More API details can be found in the [Offline Inference](../api/README.md#offline-inference) section of the API docs.
The code for the `LLM` class can be found in <gh-file:vllm/entrypoints/llm.py>.
The code for the `LLM` class can be found in [vllm/entrypoints/llm.py](../../vllm/entrypoints/llm.py).
### OpenAI-Compatible API Server
@ -60,7 +60,7 @@ This server can be started using the `vllm serve` command.
vllm serve <model>
```
The code for the `vllm` CLI can be found in <gh-file:vllm/entrypoints/cli/main.py>.
The code for the `vllm` CLI can be found in [vllm/entrypoints/cli/main.py](../../vllm/entrypoints/cli/main.py).
Sometimes you may see the API server entrypoint used directly instead of via the
`vllm` CLI command. For example:
@ -74,7 +74,7 @@ python -m vllm.entrypoints.openai.api_server --model <model>
`python -m vllm.entrypoints.openai.api_server` is deprecated
and may become unsupported in a future release.
That code can be found in <gh-file:vllm/entrypoints/openai/api_server.py>.
That code can be found in [vllm/entrypoints/openai/api_server.py](../../vllm/entrypoints/openai/api_server.py).
More details on the API server can be found in the [OpenAI-Compatible Server](../serving/openai_compatible_server.md) document.
@ -101,7 +101,7 @@ processing.
- **Output Processing**: Processes the outputs generated by the model, decoding the
token IDs from a language model into human-readable text.
The code for `LLMEngine` can be found in <gh-file:vllm/engine/llm_engine.py>.
The code for `LLMEngine` can be found in [vllm/engine/llm_engine.py](../../vllm/engine/llm_engine.py).
### AsyncLLMEngine
@ -111,9 +111,9 @@ incoming requests. The `AsyncLLMEngine` is designed for online serving, where it
can handle multiple concurrent requests and stream outputs to clients.
The OpenAI-compatible API server uses the `AsyncLLMEngine`. There is also a demo
API server that serves as a simpler example in <gh-file:vllm/entrypoints/api_server.py>.
API server that serves as a simpler example in [vllm/entrypoints/api_server.py](../../vllm/entrypoints/api_server.py).
The code for `AsyncLLMEngine` can be found in <gh-file:vllm/engine/async_llm_engine.py>.
The code for `AsyncLLMEngine` can be found in [vllm/engine/async_llm_engine.py](../../vllm/engine/async_llm_engine.py).
## Worker

View File

@ -17,7 +17,7 @@ In this document we will discuss the:
In this document, we refer to pure decode (`max_query_len=1`) or speculative decode (`max_query_len =1+num_spec_tokens`) as **uniform decode** batches, and the opposite would be **non-uniform** batches (i.e., prefill or mixed prefill-decode batches).
!!! note
The following contents are mostly based on the last commit of <gh-pr:20059>.
The following contents are mostly based on the last commit of <https://github.com/vllm-project/vllm/pull/20059>.
## Motivation
@ -92,7 +92,7 @@ where `num_tokens` can be the padded token length, and `uniform_decode` is deter
The goal of this structure is to uniquely identify a (padded) batch with minimal possible items corresponding to a CUDA Graphs item. We are safe to exclude items like `uniform_query_len` because it is a constant at runtime for a certain setup currently. For example, it should be either `1` for a commonly pure decode or `1+num_spec_tokens` for a validation phase of speculative decode.
!!! note
The prototype of `BatchDescriptor` may be extended for more general situations in the future, e.g., include more items, like `uniform_query_len` to support multiple different uniform decode lengths settings (<gh-pr:23679>), or other modifications needed to support CUDA Graphs for models whose inputs are not necessarily token length aware (for example, some multi-modal inputs).
The prototype of `BatchDescriptor` may be extended for more general situations in the future, e.g., include more items, like `uniform_query_len` to support multiple different uniform decode lengths settings (<https://github.com/vllm-project/vllm/pull/23679>), or other modifications needed to support CUDA Graphs for models whose inputs are not necessarily token length aware (for example, some multi-modal inputs).
### `CudagraphDispatcher`
@ -167,7 +167,7 @@ class AttentionCGSupport(enum.Enum):
"""NO CUDA Graphs support"""
```
Suppose we have hybrid attention backends (e.g., in mamba mixer models). In that case, we seek the minimum capability of all backends to determine the final capability of the model, and we might resolve the incompatible CUDA Graphs mode by downgrading the mode to the best fit one. For example, downgrading `FULL` mode to `FULL_AND_PIECEWISE` mode if the minimum capability is `UNIFORM_BATCH`, or `PIECEWISE` mode if the minimum capability is `NEVER` for -O3 compilation level. For the complete fallback policy, please see the code of [initialize_cudagraph_capture][vllm.v1.worker.gpu_model_runner.GPUModelRunner.initialize_cudagraph_capture].
Suppose we have hybrid attention backends (e.g., in mamba mixer models). In that case, we seek the minimum capability of all backends to determine the final capability of the model, and we might resolve the incompatible CUDA Graphs mode by downgrading the mode to the best fit one. For example, downgrading `FULL` mode to `FULL_AND_PIECEWISE` mode if the minimum capability is `UNIFORM_BATCH`, or `PIECEWISE` mode if the minimum capability is `NEVER` for -O3 compilation mode. For the complete fallback policy, please see the code for [this][vllm.v1.worker.gpu_model_runner.GPUModelRunner._check_and_update_cudagraph_mode].
The following table lists backends that support full CUDA Graphs at the time of writing.
@ -202,7 +202,7 @@ os.environ.setdefault("VLLM_LOGGING_LEVEL", "DEBUG")
import vllm
from vllm.config import CUDAGraphMode
compilation_config = {"level": 3, "cudagraph_mode": "FULL_AND_PIECEWISE"}
compilation_config = {"mode": 3, "cudagraph_mode": "FULL_AND_PIECEWISE"}
model = vllm.LLM(
model="meta-llama/Llama-3.1-8B-Instruct",
dtype="auto",

View File

@ -2,7 +2,7 @@
## Introduction
FusedMoEModularKernel is implemented [here](gh-file:/vllm/model_executor/layers/fused_moe/modular_kernel.py)
FusedMoEModularKernel is implemented [here](../..//vllm/model_executor/layers/fused_moe/modular_kernel.py)
Based on the format of the input activations, FusedMoE implementations are broadly classified into 2 types.
@ -44,7 +44,7 @@ FusedMoEModularKernel splits the FusedMoE operation into 3 parts,
The TopK Weight Application and Reduction components happen right after the Unpermute operation and before the All2All Combine. Note that the `FusedMoEPermuteExpertsUnpermute` is responsible for the Unpermute and `FusedMoEPrepareAndFinalize` is responsible for the All2All Combine. There is value in doing the TopK Weight Application and Reduction in the `FusedMoEPermuteExpertsUnpermute`. But some implementations choose to do it `FusedMoEPrepareAndFinalize`. In order to enable this flexibility, we have a TopKWeightAndReduce abstract class.
Please find the implementations of TopKWeightAndReduce [here](gh-file:vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py).
Please find the implementations of TopKWeightAndReduce [here](../../vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py).
`FusedMoEPrepareAndFinalize::finalize()` method accepts a `TopKWeightAndReduce` argument that is invoked inside the method.
The `FusedMoEModularKernel` acts as a bridge between the `FusedMoEPermuteExpertsUnpermute` and `FusedMoEPerpareAndFinalize` implementations to determine where the TopK Weight Application and Reduction happens.
@ -138,7 +138,7 @@ Typically a FusedMoEPrepareAndFinalize type is backed by an All2All Dispatch & C
#### Step 1: Add an All2All manager
The purpose of the All2All Manager is to set up the All2All kernel implementations. The `FusedMoEPrepareAndFinalize` implementations typically fetch a kernel-implementation "handle" from the All2All Manager to invoke the Dispatch and Combine functions. Please look at the All2All Manager implementations [here](gh-file:vllm/distributed/device_communicators/all2all.py).
The purpose of the All2All Manager is to set up the All2All kernel implementations. The `FusedMoEPrepareAndFinalize` implementations typically fetch a kernel-implementation "handle" from the All2All Manager to invoke the Dispatch and Combine functions. Please look at the All2All Manager implementations [here](../../vllm/distributed/device_communicators/all2all.py).
#### Step 2: Add a FusedMoEPrepareAndFinalize Type
@ -213,29 +213,29 @@ Please take a look at [init_prepare_finalize](https://github.com/vllm-project/vl
### How To Unit Test
We have `FusedMoEModularKernel` unit tests at [test_modular_kernel_combinations.py](gh-file:tests/kernels/moe/test_modular_kernel_combinations.py).
We have `FusedMoEModularKernel` unit tests at [test_modular_kernel_combinations.py](../../tests/kernels/moe/test_modular_kernel_combinations.py).
The unit test iterates through all combinations of `FusedMoEPrepareAndFinalize` and `FusedMoEPremuteExpertsUnpermute` types and if they are
compatible, runs some correctness tests.
If you are adding some `FusedMoEPrepareAndFinalize` / `FusedMoEPermuteExpertsUnpermute` implementations,
1. Add the implementation type to `MK_ALL_PREPARE_FINALIZE_TYPES` and `MK_FUSED_EXPERT_TYPES` in [mk_objects.py](gh-file:tests/kernels/moe/modular_kernel_tools/mk_objects.py) respectively.
1. Add the implementation type to `MK_ALL_PREPARE_FINALIZE_TYPES` and `MK_FUSED_EXPERT_TYPES` in [mk_objects.py](../../tests/kernels/moe/modular_kernel_tools/mk_objects.py) respectively.
2. Update `Config::is_batched_prepare_finalize()`, `Config::is_batched_fused_experts()`, `Config::is_standard_fused_experts()`,
`Config::is_fe_16bit_supported()`, `Config::is_fe_fp8_supported()`, `Config::is_fe_block_fp8_supported()`,
`Config::is_fe_supports_chunking()` methods in [/tests/kernels/moe/modular_kernel_tools/common.py](gh-file:tests/kernels/moe/modular_kernel_tools/common.py)
`Config::is_fe_supports_chunking()` methods in [/tests/kernels/moe/modular_kernel_tools/common.py](../../tests/kernels/moe/modular_kernel_tools/common.py)
Doing this will add the new implementation to the test suite.
### How To Check `FusedMoEPrepareAndFinalize` & `FusedMoEPermuteExpertsUnpermute` Compatibility
The unit test file [test_modular_kernel_combinations.py](gh-file:tests/kernels/moe/test_modular_kernel_combinations.py) can also be executed as a standalone script.
The unit test file [test_modular_kernel_combinations.py](../../tests/kernels/moe/test_modular_kernel_combinations.py) can also be executed as a standalone script.
Example: `python3 -m tests.kernels.moe.test_modular_kernel_combinations --pf-type PplxPrepareAndFinalize --experts-type BatchedTritonExperts`
As a side effect, this script can be used to test `FusedMoEPrepareAndFinalize` & `FusedMoEPermuteExpertsUnpermute` compatibility. When invoked
with incompatible types, the script will error.
### How To Profile
Please take a look at [profile_modular_kernel.py](gh-file:tests/kernels/moe/modular_kernel_tools/profile_modular_kernel.py)
Please take a look at [profile_modular_kernel.py](../../tests/kernels/moe/modular_kernel_tools/profile_modular_kernel.py)
The script can be used to generate Torch traces for a single `FusedMoEModularKernel::forward()` call for any compatible
`FusedMoEPrepareAndFinalize` and `FusedMoEPermuteExpertsUnpermute` types.
Example: `python3 -m tests.kernels.moe.modular_kernel_tools.profile_modular_kernel --pf-type PplxPrepareAndFinalize --experts-type BatchedTritonExperts`

View File

@ -6,14 +6,13 @@ When performing an inference with IO Processor plugins, the prompt type is defin
## Writing an IO Processor Plugin
IO Processor plugins implement the `IOProcessor` interface (<gh-file:vllm/plugins/io_processors/interface.py>):
IO Processor plugins implement the [`IOProcessor`][vllm.plugins.io_processors.interface.IOProcessor] interface:
```python
IOProcessorInput = TypeVar("IOProcessorInput")
IOProcessorOutput = TypeVar("IOProcessorOutput")
class IOProcessor(ABC, Generic[IOProcessorInput, IOProcessorOutput]):
def __init__(self, vllm_config: VllmConfig):
self.vllm_config = vllm_config
@ -49,13 +48,24 @@ class IOProcessor(ABC, Generic[IOProcessorInput, IOProcessorOutput]):
request_id: str | None = None,
**kwargs,
) -> IOProcessorOutput:
collected_output = [item async for i, item in model_output]
# We cannot guarantee outputs are returned in the same order they were
# fed to vLLM.
# Let's sort them by id before post_processing
sorted_output = sorted(
[(i, item) async for i, item in model_output], key=lambda output: output[0]
)
collected_output = [output[1] for output in sorted_output]
return self.post_process(collected_output, request_id, **kwargs)
@abstractmethod
def parse_request(self, request: Any) -> IOProcessorInput:
raise NotImplementedError
def validate_or_generate_params(
self, params: SamplingParams | PoolingParams | None = None
) -> SamplingParams | PoolingParams:
return params or PoolingParams()
@abstractmethod
def output_to_response(
self, plugin_output: IOProcessorOutput
@ -66,10 +76,10 @@ class IOProcessor(ABC, Generic[IOProcessorInput, IOProcessorOutput]):
The `parse_request` method is used for validating the user prompt and converting it into the input expected by the `pre_process`/`pre_process_async` methods.
The `pre_process*` methods take the validated plugin input to generate vLLM's model prompts for regular inference.
The `post_process*` methods take `PoolingRequestOutput` objects as input and generate a custom plugin output.
The `validate_or_generate_params` method is used for validating with the plugin any `SamplingParameters`/`PoolingParameters` received with the user request, or to generate new ones if none are specified. The function always returns the validated/generated parameters.
The `output_to_response` method is used only for online serving and converts the plugin output to the `IOProcessorResponse` type that is then returned by the API Server. The implementation of the `/pooling` serving endpoint is available here [vllm/entrypoints/openai/serving_pooling.py](../../vllm/entrypoints/openai/serving_pooling.py).
The `output_to_response` method is used only for online serving and converts the plugin output to the `IOProcessorResponse` type that is then returned by the API Server. The implementation of the `/io_processor_pooling` serving endpoint is available here <gh-file:vllm/entrypoints/openai/serving_pooling_with_io_plugin.py>.
An example implementation of a plugin that enables generating geotiff images with the PrithviGeospatialMAE model is available [here](https://github.com/christian-pinto/prithvi_io_processor_plugin). Please, also refer to our online (<gh-file:examples/online_serving/prithvi_geospatial_mae.py>) and offline (<gh-file:examples/offline_inference/prithvi_geospatial_mae_io_processor.py>) inference examples.
An example implementation of a plugin that enables generating geotiff images with the PrithviGeospatialMAE model is available [here](https://github.com/IBM/terratorch/tree/main/terratorch/vllm/plugins/segmentation). Please, also refer to our online ([examples/online_serving/prithvi_geospatial_mae.py](../../examples/online_serving/prithvi_geospatial_mae.py)) and offline ([examples/offline_inference/prithvi_geospatial_mae_io_processor.py](../../examples/offline_inference/prithvi_geospatial_mae_io_processor.py)) inference examples.
## Using an IO Processor plugin

View File

@ -1,12 +1,12 @@
# Metrics
Ensure the v1 LLM Engine exposes a superset of the metrics available in v0.
vLLM exposes a rich set of metrics to support observability and capacity planning for the V1 engine.
## Objectives
- Achieve parity of metrics between v0 and v1.
- The priority use case is accessing these metrics via Prometheus, as this is what we expect to be used in production environments.
- Logging support (i.e. printing metrics to the info log) is provided for more ad-hoc testing, debugging, development, and exploratory use cases.
- Provide comprehensive coverage of engine and request level metrics to aid production monitoring.
- Prioritize Prometheus integrations, as this is what we expect to be used in production environments.
- Offer logging support (i.e. printing metrics to the info log) for ad-hoc testing, debugging, development, and exploratory use cases.
## Background
@ -17,51 +17,42 @@ Metrics in vLLM can be categorized as follows:
The mental model is that server-level metrics help explain the values of request-level metrics.
### v0 Metrics
### Metrics Overview
In v0, the following metrics are exposed via a Prometheus-compatible `/metrics` endpoint using the `vllm:` prefix:
### v1 Metrics
- `vllm:num_requests_running` (Gauge)
- `vllm:num_requests_swapped` (Gauge)
- `vllm:num_requests_waiting` (Gauge)
- `vllm:gpu_cache_usage_perc` (Gauge)
- `vllm:cpu_cache_usage_perc` (Gauge)
- `vllm:gpu_prefix_cache_hit_rate` (Gauge)
- `vllm:cpu_prefix_cache_hit_rate` (Gauge)
- `vllm:prompt_tokens_total` (Counter)
- `vllm:generation_tokens_total` (Counter)
- `vllm:request_success_total` (Counter)
- `vllm:request_prompt_tokens` (Histogram)
- `vllm:request_generation_tokens` (Histogram)
- `vllm:time_to_first_token_seconds` (Histogram)
- `vllm:time_per_output_token_seconds` (Histogram)
- `vllm:e2e_request_latency_seconds` (Histogram)
- `vllm:request_queue_time_seconds` (Histogram)
- `vllm:request_inference_time_seconds` (Histogram)
- `vllm:request_prefill_time_seconds` (Histogram)
- `vllm:request_decode_time_seconds` (Histogram)
- `vllm:request_max_num_generation_tokens` (Histogram)
- `vllm:num_preemptions_total` (Counter)
- `vllm:cache_config_info` (Gauge)
- `vllm:lora_requests_info` (Gauge)
- `vllm:tokens_total` (Counter)
- `vllm:iteration_tokens_total` (Histogram)
- `vllm:time_in_queue_requests` (Histogram)
- `vllm:model_forward_time_milliseconds` (Histogram)
- `vllm:model_execute_time_milliseconds` (Histogram)
- `vllm:request_params_n` (Histogram)
- `vllm:request_params_max_tokens` (Histogram)
- `vllm:spec_decode_draft_acceptance_rate` (Gauge)
- `vllm:spec_decode_efficiency` (Gauge)
- `vllm:spec_decode_num_accepted_tokens_total` (Counter)
- `vllm:spec_decode_num_draft_tokens_total` (Counter)
- `vllm:spec_decode_num_emitted_tokens_total` (Counter)
In v1, the following metrics are exposed via a Prometheus-compatible `/metrics` endpoint using the `vllm:` prefix:
- `vllm:num_requests_running` (Gauge) - Number of requests currently running.
- `vllm:num_requests_waiting` (Gauge) - Number of requests currently waiting.
- `vllm:kv_cache_usage_perc` (Gauge) - Fraction of used KV cache blocks (01).
- `vllm:prefix_cache_queries` (Counter) - Number of prefix cache queries.
- `vllm:prefix_cache_hits` (Counter) - Number of prefix cache hits.
- `vllm:mm_cache_queries` (Counter) - (For multimodal models) Number of multimodal cache queries.
- `vllm:mm_cache_hits` (Counter) - (For multimodal models) Number of multimodal cache hits.
- `vllm:num_preemptions_total` (Counter) - Number of preemptions.
- `vllm:prompt_tokens_total` (Counter) - Total number of prompt tokens processed.
- `vllm:generation_tokens_total` (Counter) - Total number of generated tokens.
- `vllm:iteration_tokens_total` (Histogram) - Histogram of tokens processed in each engine step.
- `vllm:cache_config_info` (Gauge) - Information about the cache configuration.
- `vllm:request_success_total` (Counter) - Number of finished requests (by finish reason).
- `vllm:request_prompt_tokens` (Histogram) - Histogram of input prompt token counts.
- `vllm:request_generation_tokens` (Histogram) - Histogram of generation token counts.
- `vllm:request_params_n` (Histogram) - Histogram of request parameter n.
- `vllm:request_params_max_tokens` - (Histogram) - Histogram of max_tokens parameter in requests.
- `vllm:time_to_first_token_seconds` (Histogram) - Time to first token (TTFT).
- `vllm:inter_token_latency_seconds` (Histogram) - Inter-token latency.
- `vllm:e2e_request_latency_seconds` (Histogram) - End-to-end request latency.
- `vllm:request_queue_time_seconds` (Histogram) - Time spent in the queue.
- `vllm:request_inference_time_seconds` (Histogram) - Request inference time.
- `vllm:request_prefill_time_seconds` (Histogram) - Request prefill time.
- `vllm:request_decode_time_seconds` (Histogram) - Request decode time.
These are documented under [Inferencing and Serving -> Production Metrics](../usage/metrics.md).
### Grafana Dashboard
vLLM also provides [a reference example](../examples/online_serving/prometheus_grafana.md) for how to collect and store these metrics using Prometheus and visualize them using a Grafana dashboard.
vLLM also provides [a reference example](../../examples/online_serving/prometheus_grafana/README.md) for how to collect and store these metrics using Prometheus and visualize them using a Grafana dashboard.
The subset of metrics exposed in the Grafana dashboard gives us an indication of which metrics are especially important:
@ -80,13 +71,13 @@ The subset of metrics exposed in the Grafana dashboard gives us an indication of
- `vllm:request_decode_time_seconds` - Requests decode time.
- `vllm:request_max_num_generation_tokens` - Max generation tokens in a sequence group.
See [the PR which added this Dashboard](gh-pr:2316) for interesting and useful background on the choices made here.
See [the PR which added this Dashboard](https://github.com/vllm-project/vllm/pull/2316) for interesting and useful background on the choices made here.
### Prometheus Client Library
Prometheus support was initially added [using the aioprometheus library](gh-pr:1890), but a switch was made quickly to [prometheus_client](gh-pr:2730). The rationale is discussed in both linked PRs.
Prometheus support was initially added [using the aioprometheus library](https://github.com/vllm-project/vllm/pull/1890), but a switch was made quickly to [prometheus_client](https://github.com/vllm-project/vllm/pull/2730). The rationale is discussed in both linked PRs.
With the switch to `aioprometheus`, we lost a `MetricsMiddleware` to track HTTP metrics, but this was reinstated [using prometheus_fastapi_instrumentator](gh-pr:15657):
During those migrations we briefly lost a `MetricsMiddleware` to track HTTP metrics, but this was reinstated [using prometheus_fastapi_instrumentator](https://github.com/vllm-project/vllm/pull/15657):
```bash
$ curl http://0.0.0.0:8000/metrics 2>/dev/null | grep -P '^http_(?!.*(_bucket|_created|_sum)).*'
@ -99,7 +90,9 @@ http_request_duration_seconds_count{handler="/v1/completions",method="POST"} 201
### Multi-process Mode
In v0, metrics are collected in the engine core process and we use multiprocess mode to make them available in the API server process. See <gh-pr:7279>.
Historically, metrics were collected in the engine core process and multiprocess mode was used to make them available in the API server process. See <https://github.com/vllm-project/vllm/pull/7279>.
More recently, metrics are collected in the API server process and multiprocess mode is only used when `--api-server-count > 1`. See <https://github.com/vllm-project/vllm/pull/17546> and details on [API server scale-out](../serving/data_parallel_deployment.md#internal-load-balancing).
### Built in Python/Process Metrics
@ -116,41 +109,37 @@ The following metrics are supported by default by `prometheus_client`, but they
- `process_open_fds`
- `process_max_fds`
This is relevant because if we move away from multiprocess mode in v1,
we get these back. However, it's questionable how relevant these are
if they don't aggregate these stats for all processes that make up a
vLLM instance.
Therefore, these metrics are unavailable when `--api-server-count > 1`. It's questionable how relevant these are since they do not aggregate these stats for all processes that make up a vLLM instance.
### v0 PRs and Issues
## Metrics Design
For background, these are some of the relevant PRs which added the v0 metrics:
The ["Even Better Observability"](https://github.com/vllm-project/vllm/issues/3616) feature where was where much of the metrics design was planned. For example, see where [a detailed roadmap was laid out](https://github.com/vllm-project/vllm/issues/3616#issuecomment-2030858781).
- <gh-pr:1890>
- <gh-pr:2316>
- <gh-pr:2730>
- <gh-pr:4464>
- <gh-pr:7279>
### Legacy PRs
Also note the ["Even Better Observability"](gh-issue:3616) feature where e.g. [a detailed roadmap was laid out](gh-issue:3616#issuecomment-2030858781).
To help understand the background to the metrics design, here are some of the relevant PRs which added the original, now legacy, metrics:
## v1 Design
- <https://github.com/vllm-project/vllm/pull/1890>
- <https://github.com/vllm-project/vllm/pull/2316>
- <https://github.com/vllm-project/vllm/pull/2730>
- <https://github.com/vllm-project/vllm/pull/4464>
- <https://github.com/vllm-project/vllm/pull/7279>
### v1 PRs
### Metrics Implementation PRs
For background, here are the relevant v1 PRs relating to the v1
metrics issue <gh-issue:10582>:
For background, here are the relevant PRs relating to the metrics implementation <https://github.com/vllm-project/vllm/issues/10582>:
- <gh-pr:11962>
- <gh-pr:11973>
- <gh-pr:10907>
- <gh-pr:12416>
- <gh-pr:12478>
- <gh-pr:12516>
- <gh-pr:12530>
- <gh-pr:12561>
- <gh-pr:12579>
- <gh-pr:12592>
- <gh-pr:12644>
- <https://github.com/vllm-project/vllm/pull/11962>
- <https://github.com/vllm-project/vllm/pull/11973>
- <https://github.com/vllm-project/vllm/pull/10907>
- <https://github.com/vllm-project/vllm/pull/12416>
- <https://github.com/vllm-project/vllm/pull/12478>
- <https://github.com/vllm-project/vllm/pull/12516>
- <https://github.com/vllm-project/vllm/pull/12530>
- <https://github.com/vllm-project/vllm/pull/12561>
- <https://github.com/vllm-project/vllm/pull/12579>
- <https://github.com/vllm-project/vllm/pull/12592>
- <https://github.com/vllm-project/vllm/pull/12644>
### Metrics Collection
@ -394,15 +383,14 @@ distinguish between per-adapter counts. This should be revisited.
Note that `multiprocess_mode="livemostrecent"` is used - the most
recent metric is used, but only from currently running processes.
This was added in <gh-pr:9477> and there is
This was added in <https://github.com/vllm-project/vllm/pull/9477> and there is
[at least one known user](https://github.com/kubernetes-sigs/gateway-api-inference-extension/pull/54).
If we revisit this design and deprecate the old metric, we should reduce
the need for a significant deprecation period by making the change in
v0 also and asking this project to move to the new metric.
If we revisit this design and deprecate the old metric, we should
coordinate with downstream users so they can migrate before the removal.
### Prefix Cache metrics
The discussion in <gh-issue:10582> about adding prefix cache metrics yielded
The discussion in <https://github.com/vllm-project/vllm/issues/10582> about adding prefix cache metrics yielded
some interesting points which may be relevant to how we approach
future metrics.
@ -439,8 +427,8 @@ suddenly (from their perspective) when it is removed, even if there is
an equivalent metric for them to use.
As an example, see how `vllm:avg_prompt_throughput_toks_per_s` was
[deprecated](gh-pr:2764) (with a comment in the code),
[removed](gh-pr:12383), and then [noticed by a user](gh-issue:13218).
[deprecated](https://github.com/vllm-project/vllm/pull/2764) (with a comment in the code),
[removed](https://github.com/vllm-project/vllm/pull/12383), and then [noticed by a user](https://github.com/vllm-project/vllm/issues/13218).
In general:
@ -460,40 +448,38 @@ the project-wide deprecation policy.
### Unimplemented - `vllm:tokens_total`
Added by <gh-pr:4464>, but apparently never implemented. This can just be
Added by <https://github.com/vllm-project/vllm/pull/4464>, but apparently never implemented. This can just be
removed.
### Duplicated - Queue Time
The `vllm:time_in_queue_requests` Histogram metric was added by
<gh-pr:9659> and its calculation is:
<https://github.com/vllm-project/vllm/pull/9659> and its calculation is:
```python
self.metrics.first_scheduled_time = now
self.metrics.time_in_queue = now - self.metrics.arrival_time
```
Two weeks later, <gh-pr:4464> added `vllm:request_queue_time_seconds` leaving
Two weeks later, <https://github.com/vllm-project/vllm/pull/4464> added `vllm:request_queue_time_seconds` leaving
us with:
```python
if seq_group.is_finished():
if (
seq_group.metrics.first_scheduled_time is not None
and seq_group.metrics.first_token_time is not None
):
if (seq_group.metrics.first_scheduled_time is not None and
seq_group.metrics.first_token_time is not None):
time_queue_requests.append(
seq_group.metrics.first_scheduled_time -
seq_group.metrics.arrival_time
)
seq_group.metrics.arrival_time)
...
if seq_group.metrics.time_in_queue is not None:
time_in_queue_requests.append(seq_group.metrics.time_in_queue)
time_in_queue_requests.append(
seq_group.metrics.time_in_queue)
```
This seems duplicative, and one of them should be removed. The latter
is used by the Grafana dashboard, so we should deprecate or remove the
former from v0.
former.
### Prefix Cache Hit Rate
@ -502,7 +488,7 @@ See above - we now expose 'queries' and 'hits' counters rather than a
### KV Cache Offloading
Two v0 metrics relate to a "swapped" preemption mode that is no
Two legacy metrics relate to a "swapped" preemption mode that is no
longer relevant in v1:
- `vllm:num_requests_swapped`
@ -513,7 +499,7 @@ cache to complete other requests), we swap kv cache blocks out to CPU
memory. This is also known as "KV cache offloading" and is configured
with `--swap-space` and `--preemption-mode`.
In v0, [vLLM has long supported beam search](gh-issue:6226). The
Historically, [vLLM has long supported beam search](https://github.com/vllm-project/vllm/issues/6226). The
SequenceGroup encapsulated the idea of N Sequences which
all shared the same prompt kv blocks. This enabled KV cache block
sharing between requests, and copy-on-write to do branching. CPU
@ -526,7 +512,7 @@ and the part of the prompt that was evicted can be recomputed.
SequenceGroup was removed in V1, although a replacement will be
required for "parallel sampling" (`n>1`).
[Beam search was moved out of the core (in V0)](gh-issue:8306). There was a
[Beam search was moved out of the core](https://github.com/vllm-project/vllm/issues/8306). There was a
lot of complex code for a very uncommon feature.
In V1, with prefix caching being better (zero over head) and therefore
@ -537,11 +523,11 @@ better.
### Parallel Sampling
Some v0 metrics are only relevant in the context of "parallel
Some legacy metrics are only relevant in the context of "parallel
sampling". This is where the `n` parameter in a request is used to
request multiple completions from the same prompt.
As part of adding parallel sampling support in <gh-pr:10980>, we should
As part of adding parallel sampling support in <https://github.com/vllm-project/vllm/pull/10980>, we should
also add these metrics.
- `vllm:request_params_n` (Histogram)
@ -556,7 +542,7 @@ also add these metrics.
### Speculative Decoding
Some v0 metrics are specific to "speculative decoding". This is where
Some legacy metrics are specific to "speculative decoding". This is where
we generate candidate tokens using a faster, approximate method or
model and then validate those tokens with the larger model.
@ -566,9 +552,9 @@ model and then validate those tokens with the larger model.
- `vllm:spec_decode_num_draft_tokens_total` (Counter)
- `vllm:spec_decode_num_emitted_tokens_total` (Counter)
There is a PR under review (<gh-pr:12193>) to add "prompt lookup (ngram)"
There is a PR under review (<https://github.com/vllm-project/vllm/pull/12193>) to add "prompt lookup (ngram)"
speculative decoding to v1. Other techniques will follow. We should
revisit the v0 metrics in this context.
revisit these metrics in this context.
!!! note
We should probably expose acceptance rate as separate accepted
@ -587,7 +573,7 @@ see:
- [Standardizing Large Model Server Metrics in Kubernetes](https://docs.google.com/document/d/1SpSp1E6moa4HSrJnS4x3NpLuj88sMXr2tbofKlzTZpk)
- [Benchmarking LLM Workloads for Performance Evaluation and Autoscaling in Kubernetes](https://docs.google.com/document/d/1k4Q4X14hW4vftElIuYGDu5KDe2LtV1XammoG-Xi3bbQ)
- [Inference Perf](https://github.com/kubernetes-sigs/wg-serving/tree/main/proposals/013-inference-perf)
- <gh-issue:5041> and <gh-pr:12726>.
- <https://github.com/vllm-project/vllm/issues/5041> and <https://github.com/vllm-project/vllm/pull/12726>.
This is a non-trivial topic. Consider this comment from Rob:
@ -641,7 +627,7 @@ metrics are often relatively straightforward to add:
metrics are usually of very limited use unless they can be enabled
by default and in production.
3. They have an impact on development and maintenance of the
project. Every metric added to v0 has made this v1 effort more
project. Every metric added over time has made this effort more
time-consuming, and perhaps not all metrics justify this ongoing
investment in their maintenance.
@ -652,24 +638,24 @@ performance and health. Tracing, on the other hand, tracks individual
requests as they move through different services and components. Both
fall under the more general heading of "Observability".
v0 has support for OpenTelemetry tracing:
vLLM has support for OpenTelemetry tracing:
- Added by <gh-pr:4687>
- Added by <https://github.com/vllm-project/vllm/pull/4687> and reinstated by <https://github.com/vllm-project/vllm/pull/20372>
- Configured with `--oltp-traces-endpoint` and `--collect-detailed-traces`
- [OpenTelemetry blog post](https://opentelemetry.io/blog/2024/llm-observability/)
- [User-facing docs](../examples/online_serving/opentelemetry.md)
- [Blog post](https://medium.com/@ronen.schaffer/follow-the-trail-supercharging-vllm-with-opentelemetry-distributed-tracing-aa655229b46f)
- [IBM product docs](https://www.ibm.com/docs/en/instana-observability/current?topic=mgaa-monitoring-large-language-models-llms-vllm-public-preview)
OpenTelemetry has a
[Gen AI Working Group](https://github.com/open-telemetry/community/blob/main/projects/gen-ai.md).
Since metrics is a big enough topic on its own, we are going to tackle
the topic of tracing in v1 separately.
Since metrics is a big enough topic on its own, we consider the topic
of tracing to be quite separate from metrics.
### OpenTelemetry Model Forward vs Execute Time
In v0, we have the following two metrics:
The current implementation exposes the following two metrics:
- `vllm:model_forward_time_milliseconds` (Histogram) - The time spent
in the model forward pass when this request was in the batch.
@ -685,7 +671,7 @@ documentation for this option states:
> use of possibly costly and or blocking operations and hence might
> have a performance impact.
The metrics were added by <gh-pr:7089> and who up in an OpenTelemetry trace
The metrics were added by <https://github.com/vllm-project/vllm/pull/7089> and who up in an OpenTelemetry trace
as:
```text

View File

@ -1,6 +1,6 @@
# Multi-Modal Data Processing
To enable various optimizations in vLLM such as [chunked prefill][chunked-prefill] and [prefix caching](../features/automatic_prefix_caching.md), we use [BaseMultiModalProcessor][vllm.multimodal.processing.BaseMultiModalProcessor] to provide the correspondence between placeholder feature tokens (e.g. `<image>`) and multi-modal inputs (e.g. the raw input image) based on the outputs of HF processor.
To enable various optimizations in vLLM such as [chunked prefill](../configuration/optimization.md#chunked-prefill) and [prefix caching](../features/automatic_prefix_caching.md), we use [BaseMultiModalProcessor][vllm.multimodal.processing.BaseMultiModalProcessor] to provide the correspondence between placeholder feature tokens (e.g. `<image>`) and multi-modal inputs (e.g. the raw input image) based on the outputs of HF processor.
Here are the main features of [BaseMultiModalProcessor][vllm.multimodal.processing.BaseMultiModalProcessor]:
@ -41,14 +41,10 @@ While HF processors support text + multi-modal inputs natively, this is not so f
Moreover, since the tokenized text has not passed through the HF processor, we have to apply Step 3 by ourselves to keep the output tokens and multi-modal data consistent with each other.
[](){ #mm-dummy-text }
### Dummy text
We work around the first issue by requiring each model to define how to generate dummy text based on the number of multi-modal inputs, via [get_dummy_text][vllm.multimodal.profiling.BaseDummyInputsBuilder.get_dummy_text]. This lets us generate dummy text corresponding to the multi-modal inputs and input them together to obtain the processed multi-modal data.
[](){ #mm-automatic-prompt-updating }
### Automatic prompt updating
We address the second issue by implementing model-agnostic code in
@ -60,8 +56,8 @@ With the help of dummy text and automatic prompt updating, our multi-modal proce
## Processor Output Caching
Some HF processors, such as the one for Qwen2-VL, are [very slow](gh-issue:9238). To alleviate this problem, we cache the multi-modal outputs of HF processor to avoid processing the same multi-modal input (e.g. image) again.
Some HF processors, such as the one for Qwen2-VL, are [very slow](https://github.com/vllm-project/vllm/issues/9238). To alleviate this problem, we cache the multi-modal outputs of HF processor to avoid processing the same multi-modal input (e.g. image) again.
When new data is passed in, we first check which items are in the cache, and which ones are missing. The missing items are passed into the HF processor in a single batch and cached, before being merged with the existing items in the cache.
Since we only process the missing multi-modal data items, the number of input placeholder tokens no longer corresponds to the number of the multi-modal inputs, so they can't be passed alongside the text prompt to HF processor. Therefore, we process the text and multi-modal inputs separately, using [dummy text][mm-dummy-text] to avoid HF errors. Since this skips HF's prompt updating code, we apply [automatic prompt updating][mm-automatic-prompt-updating] afterwards to keep the output tokens and multi-modal data consistent with each other.
Since we only process the missing multi-modal data items, the number of input placeholder tokens no longer corresponds to the number of the multi-modal inputs, so they can't be passed alongside the text prompt to HF processor. Therefore, we process the text and multi-modal inputs separately, using [dummy text](#dummy-text) to avoid HF errors. Since this skips HF's prompt updating code, we apply [automatic prompt updating](#automatic-prompt-updating) afterwards to keep the output tokens and multi-modal data consistent with each other.

View File

@ -92,8 +92,8 @@ To be used with a particular `FusedMoEPrepareAndFinalize` sub-class, MoE kernels
| flashinfer | standard | nvfp4,</br>fp8 | T | <sup>5</sup> | N | Y | [`flashinfer_cutlass_moe_fp4`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe.flashinfer_cutlass_moe_fp4],</br>[`FlashInferExperts`][vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe.FlashInferExperts] |
| gpt oss triton | standard | N/A | N/A | <sup>5</sup> | Y | Y | [`triton_kernel_fused_experts`][vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe.triton_kernel_fused_experts],</br>[`OAITritonExperts`][vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe.OAITritonExperts] |
| deep gemm+triton<sup>2</sup> | standard,</br>batched | all<sup>1</sup> | G(128),A,T | silu, gelu | <sup>6</sup> | Y | [`TritonOrDeepGemmExperts`][vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe.TritonOrDeepGemmExperts],</br>[`BatchedTritonOrDeepGemmExperts`][vllm.model_executor.layers.fused_moe.batched_triton_or_deep_gemm_moe.BatchedTritonOrDeepGemmExperts] |
| marlin | standard | <sup>3</sup> | <sup>3</sup> | silu,</br>swigluoai | Y | N | [`fused_marlin_moe`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.fused_marlin_moe] |
| marlin experts | standard | N/A | N/A | silu,</br>swigluoai | Y | Y | [`MarlinExperts`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.MarlinExperts] |
| marlin | standard | <sup>3</sup> | <sup>3</sup> | silu,</br>swigluoai | Y | Y | [`fused_marlin_moe`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.fused_marlin_moe],</br>[`MarlinExperts`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.MarlinExperts],</br>[`BatchedMarlinExperts`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.BatchedMarlinExperts] |
| marlin experts | standard,</br>batched | N/A | N/A | silu,</br>swigluoai | Y | Y | [`MarlinExperts`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.MarlinExperts],</br>[`BatchedMarlinExperts`][vllm.model_executor.layers.fused_moe.fused_marlin_moe.BatchedMarlinExperts] |
| trtllm | standard | mxfp4,</br>nvfp4 | G(16),G(32) | <sup>5</sup> | N | Y | [`TrtLlmGenExperts`][vllm.model_executor.layers.fused_moe.trtllm_moe.TrtLlmGenExperts] |
| pallas | standard | N/A | N/A | silu | N | N | [`fused_moe`][vllm.model_executor.layers.fused_moe.moe_pallas.fused_moe] |
| iterative | standard | N/A | N/A | silu | N | N | [`fused_moe`][vllm.model_executor.layers.fused_moe.moe_torch_iterative.fused_moe] |
@ -115,6 +115,6 @@ The following table shows "families" of modular kernels that are intended to wor
| backend | `FusedMoEPrepareAndFinalize` subclasses | `FusedMoEPermuteExpertsUnpermute` subclasses |
|----------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| deepep_high_throughput | `DeepEPHTPrepareAndFinalize` | `DeepGemmExperts`,</br>`TritonExperts`,</br>`TritonOrDeepGemmExperts`,</br>`CutlassExpertsFp8`, </br>`MarlinExperts` |
| deepep_low_latency,</br>pplx | `DeepEPLLPrepareAndFinalize`,</br>`PplxPrepareAndFinalize` | `BatchedDeepGemmExperts`,</br>`BatchedTritonExperts`,</br>`BatchedTritonOrDeepGemmExperts`,</br>`CutlassBatchedExpertsFp8`|
| flashinfer | `FlashInferCutlassMoEPrepareAndFinalize` | `FlashInferExperts` |
| deepep_high_throughput | `DeepEPHTPrepareAndFinalize` | `DeepGemmExperts`,</br>`TritonExperts`,</br>`TritonOrDeepGemmExperts`,</br>`CutlassExpertsFp8`, </br>`MarlinExperts` |
| deepep_low_latency,</br>pplx | `DeepEPLLPrepareAndFinalize`,</br>`PplxPrepareAndFinalize` | `BatchedDeepGemmExperts`,</br>`BatchedTritonExperts`,</br>`BatchedTritonOrDeepGemmExperts`,</br>`CutlassBatchedExpertsFp8`,</br>`BatchedMarlinExperts`|
| flashinfer | `FlashInferCutlassMoEPrepareAndFinalize` | `FlashInferExperts` |

View File

@ -2,7 +2,7 @@
## Debugging
Please see the [Troubleshooting][troubleshooting-python-multiprocessing]
Please see the [Troubleshooting](../usage/troubleshooting.md#python-multiprocessing)
page for information on known issues and how to solve them.
## Introduction
@ -82,7 +82,7 @@ There are other miscellaneous places hard-coding the use of `spawn`:
Related PRs:
- <gh-pr:8823>
- <https://github.com/vllm-project/vllm/pull/8823>
## Prior State in v1

View File

@ -41,7 +41,7 @@ Every plugin has three parts:
1. **Plugin group**: The name of the entry point group. vLLM uses the entry point group `vllm.general_plugins` to register general plugins. This is the key of `entry_points` in the `setup.py` file. Always use `vllm.general_plugins` for vLLM's general plugins.
2. **Plugin name**: The name of the plugin. This is the value in the dictionary of the `entry_points` dictionary. In the example above, the plugin name is `register_dummy_model`. Plugins can be filtered by their names using the `VLLM_PLUGINS` environment variable. To load only a specific plugin, set `VLLM_PLUGINS` to the plugin name.
3. **Plugin value**: The fully qualified name of the function to register in the plugin system. In the example above, the plugin value is `vllm_add_dummy_model:register`, which refers to a function named `register` in the `vllm_add_dummy_model` module.
3. **Plugin value**: The fully qualified name of the function or module to register in the plugin system. In the example above, the plugin value is `vllm_add_dummy_model:register`, which refers to a function named `register` in the `vllm_add_dummy_model` module.
## Types of supported plugins
@ -51,6 +51,8 @@ Every plugin has three parts:
- **IO Processor plugins** (with group name `vllm.io_processor_plugins`): The primary use case for these plugins is to register custom pre/post processing of the model prompt and model output for pooling models. The plugin function returns the IOProcessor's class fully qualified name.
- **Stat logger plugins** (with group name `vllm.stat_logger_plugins`): The primary use case for these plugins is to register custom, out-of-the-tree loggers into vLLM. The entry point should be a class that subclasses StatLoggerBase.
## Guidelines for Writing Plugins
- **Being re-entrant**: The function specified in the entry point should be re-entrant, meaning it can be called multiple times without causing issues. This is necessary because the function might be called multiple times in some processes.

Some files were not shown because too many files have changed in this diff Show More